plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
weifanjiang/UWA_OCT_Image_Processing-master
Snake.m
.m
UWA_OCT_Image_Processing-master/Snake.m
12,530
utf_8
89478754a3bf6f3b3f51604af4e97df5
%% <Snake.m> % % Weifan Jiang % This function finds and marks the lymphatic vessels within an OCT image % with the active contour model (Snake) algorithm. %========================================================================= function Snake(img) %% Function Parameters: % img: the OCT image needs to be processed. %% Local Variables: % These parameters are used for Before_Segmentation.m to pre-process % scans, each parameter's function is specified in % Before_Segmentation.m. Lower_Bound = 12; Lower_Value = 0; Higher_Bound = 45; Higher_Value = 45; % Iteration_Count: the maximum iterations active contour is run. This % number can be changed based on the complexity of exterior shape of % image, as well as the size of image (i.e. larger image requires more % iterations for the snake to reach inside). % This one is used for initial active contour which detects the surface Iteration_Count_1 = 1000; % This one is used for active contouring inside of image. Iteration_Count_2 = 1000; % pushing: push the averaged esum line downward to ensure it is within % the inner part of OCT image. This value should be adjusted based on % image. pushing = 114; % thick: how thick the mask should be initially, this value should also % be adjusted based on image. thick = 150; % expected_pixel: the maximum intensity a pixel holds in order to be % determined as vessel % default = 20 expected_pixel = 30; % ecpected count: for each pixel determined as vessel in result of % active contour applied in last part, the surrounding 3x3 window in % raw picture is expected to contain at least this number of pixels % with expected_pixel intensity. % default = 3 expected_count = 1; %% Display original image and process with pre-process function figure; subplot(2, 3, 1); imagesc(img, [Lower_Value Higher_Value]); title('Original Image'); colormap(gray); raw = Before_Segmentation(img, Lower_Bound, Lower_Value, Higher_Bound, Higher_Value); subplot(2, 3, 2); imagesc(raw); title('Before segmentation processing'); colormap(gray); %% Find centers of all the connected regions of pixels with intensity = 0 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ========================================================= % % ========================================================= % % ========== Please keep this part commented ============== % % ========================================================= % % ========================================================= % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Note: this part implements an algorithm of Breath-First % Search based on graph theory of Computer Science. % It may work for small pictures, but the data size for this project is % too large for this part to work efficiently. Thus keeping this part % commented is essential for this function to run. % [width, height] = size(raw); % ptr = 1; % flags = zeros(width, height); % centers = []; % % while ptr <= width * height % ptr_x = mod(ptr, width); % ptr_y = floor(ptr / width) + 1; % % if flags(ptr_x, ptr_y) == 0 && raw(ptr_x, ptr_y) == 0 % % curr = [ptr_x, ptr_y]; % toExplore = [ptr_x, ptr_y]; % seen = zeros(width, height); % seem(ptr_x, ptr_y) = 1; % % while sum(sum(toExplore)) ~= 0 % loc = toExplore(1, :); % toExplore = toExplore(2:end, :); % loc_x = loc(1); % loc_y = loc(2); % flags(loc_x, loc_y) = 1; % curr = [curr % loc_x, loc_y]; % % % if loc_x > 1 % if raw(loc_x - 1, loc_y) == 0 && flags(loc_x - 1, loc_y) == 0 && seen(loc_x - 1, loc_y) == 0 % toExplore = [toExplore % loc_x - 1, loc_y]; % seen(loc_x - 1, loc_y) = 1; % end % end % if loc_y > 1 % if raw(loc_x, loc_y - 1) == 0 && flags(loc_x, loc_y - 1) == 0 && seen(loc_x, loc_y - 1) == 0 % toExplore = [toExplore % loc_x, loc_y - 1]; % seen(loc_x, loc_y - 1) = 1; % end % end % if loc_x < width % if raw(loc_x + 1, loc_y) == 0 && flags(loc_x + 1, loc_y) == 0 && seen(loc_x + 1, loc_y) == 0 % toExplore = [toExplore % loc_x + 1, loc_y]; % seen(loc_x + 1, loc_y) = 1; % end % end % if loc_y < height % if raw(loc_x, loc_y + 1) == 0 && flags(loc_x, loc_y + 1) == 0 && seen(loc_x, loc_y + 1) == 0 % toExplore = [toExplore % loc_x, loc_y + 1]; % seen(loc_x, loc_y + 1) = 1; % end % end % end % % all_x = curr(1, :); % all_y = curr(2, :); % % [num, gg] = size(all_x); % % centers = [centers % floor(sum(all_x)/num), floor(sum(all_y)/num)]; % end % ptr = ptr + 1; % end % % [centerCount, gg] = size(centers); % centerGraph = zeros(width, height); % for j = (1:centerCount) % centerGraph(centers(1, j), centers(2, j)) = 255; % end % figure; imagesc(centerGraph); title('Centers for black pixels regions'); colormap(gray); %% Using active contour to find the upper & lower edges of image's exterior surface. [width, height] = size(raw); % initial mask of active contour, can be adjusted based on property of % original graph. mask = zeros(width, height); mask(10:end-10, 10:end-10) = 1; % Outputs the background of image. % Background should be set to black (index = 0) while image set to % white (index = 1). background = activecontour(raw, mask, Iteration_Count_1); %% Denoise the background by removing selected pixels. % for each non-zero intensed pixel in the background image, set it to % non-special (i.e. change its intensity to 0) if there are no other % non-background pixels within the surrounding 3x3 window. backGround_extend = zeros(width + 2, height + 2); backGround_extend(2:end-1, 2:end-1) = background; for j = (2:width + 1) for k = (2:height + 1) if backGround_extend(j, k) > 0 % Count surrounding non-zero pixels. count = 0; for delta_x = [-1 0 1] for delta_y = [-1 0 1] if backGround_extend(j + delta_x, k + delta_y) > 0 count = count + 1; end end end if count == 1 % count == 1 indicates only 1 non-background pixel % inside 3x3 window (which is target pixel itself). background(j - 1, k - 1) = 0; end end end end %% Binarilize original image to discard noise % Note: This part can be activated if there are too many noises that % the previous denoise portions cannot handle. Since the % Before_Segmentation.m function oftern set the center of each vessel % to 0 intensity, binarilize the "raw" picture can discard many noises, % but also produces great risk of discarding useful informations. % Not recommended in most of the situations. % for j = (1:width) % for k = (1:height) % if raw(j, k) ~= 0 % raw(j, k) = 1; % end % end % end %% Apply mean filter to background to further remove small noises. denoise = background; mean_filted = zeros(width + 2, height + 2); % Applied in 3x3 window. outer = zeros(width + 4, height + 4); outer(3:width + 2, 3:height + 2) = denoise; for j = [-1, 0, 1] for k = [-1, 0, 1] mean_filted = mean_filted + outer(2 + j:width + 3 + j, 2 + k:height + 3 + k); end end mean_filted = mean_filted / 9; %Resize to original size. mean_filted = mean_filted(3:width + 2, 3:height + 2); background = mean_filted; % Binarilize background. for j = (1:width) for k = (1:height) if background(j, k) ~= 1 background(j, k) = 0; end end end subplot(2, 3, 3); imagesc(background); title('Background'); colormap(gray); %% Remove background in the previous image by setting background to a smooth color for j = (1:width) for k = (1:height) if background(j, k) == 0 % background(j, k) == 0 indicates that it is not the % useful portion of picture, thus we set the corresponding % pixel in raw picture to a smooth color, which will be % less-likely influncing the snake as it changes iteration % by iteration. % Since the original picture is between 0-45, we choose a % value in between for the background, seems like 27 works % the best by experience. raw(j, k) = 27; end end end subplot(2, 3, 4); imagesc(raw); title('Background removed in original picture'); colormap(gray); %% Construct a mask to explore the interior of image. mask2 = zeros(width, height); % make sure the mask has same size as original picture. % We choose the initial place of mask to be the averge of position of % the first black pixel in each column. esum = 0; %% keep track of sum of all first black pixels' positions for j=(1:height) ptr = 1; % Keep iterating until ptr represents a black pixel while ptr < width && background(ptr, j) == 0 ptr = ptr + 1; end esum = esum + ptr; end esum = floor(esum / height); % Divide by total number of columns. % Adjust the initial position of snake with pushing and determine the % range of window by thick. esum = esum + pushing; % Set the region in mask2 to be 1. mask2(esum:esum + thick, :) = 1; subplot(2, 3, 5); imagesc(mask2); title('Second mask'); colormap(gray); %% Apply actvie contour to raw picture % At this point, the black background of raw should be changed to a % smooth color, so the snake will go inside the image. fig = activecontour(raw, mask2, Iteration_Count_2); %% Construct final result with previous answers % Count surrounding 3x3 window in the raw picture of any pixel defined % as vessel from active coutour, discard pixels do not meet standard. % Use ecxpected_pixel and expected_count to filter out unwanted noises. result = ones(width, height); for j = (2:width-1) for k = (2:height-1) % 0 intensity: vessel pixel if fig(j, k) == 0 count = 0; for delta_x = [-1 0 1] for delta_y = [-1 0 1] if raw(j + delta_x, k + delta_y) < expected_pixel count = count + 1; end end end if count > expected_count % Set to 0 indicates a vessel-pixel is marked black in % result. result(j, k) = 0; end end end end %% Return final answer. final = result; subplot(2, 3, 6); imagesc(final); title('final result'); colormap(gray); end
github
weifanjiang/UWA_OCT_Image_Processing-master
Gradient_Segmentation.m
.m
UWA_OCT_Image_Processing-master/Gradient_Segmentation.m
6,265
utf_8
a53c1107b94131770459c208d748d110
%% <Gradient_Segmentation.m> % % Weifan Jiang % This function finds and marks the lymphatic vessels within an OCT image % with an algorithm based on gradient calculation. %========================================================================= function Gradient_Segmentation(img) %% Function Parameters: % img: the OCT image being processed. %% Local Variables: % These parameters are used for Before_Segmentation.m to pre-process % scans, each parameter's function is specified in % Before_Segmentation.m. Lower_Bound = 12; Lower_Value = 0; Higher_Bound = 45; Higher_Value = 45; % gradient_method: indicates which gradient-calculating method would be % used to calculate gradient. % % possible values: 'sobel', 'prewitt', 'roberts', 'central', 'intermediate'. gradient_method = 'intermediate'; % thr: gradient magnitude lower than this value would be treated as % noise and eliminated. % for sobel and prewitt operator, thr should be set to approximately 50 % for roberts, thr should be set to about 15 % for central and intermediate, thr should be set to about 5 thr = 5; % vessel_intensity: in the original picture, any pixel with intensity % lower than thr is determined to be vessel signal. % default = 10 vessel_intensity = 25; % expect_vessel: expected vessel pixel number in the 5x5 window % centered in a target pixel. % default = 5 expect_vessel = 5; % expect_grad: expected number of pixels with non-zero gradient within % an 5x5 window centered at the target pixel % default = 5 expect_grad = 5; %% Display original image and process with pre-process function figure; subplot(2, 2, 1); imagesc(img, [Lower_Value Higher_Value]); title('Original Image'); colormap(gray); raw = Before_Segmentation(img, Lower_Bound, Lower_Value, Higher_Bound, Higher_Value); subplot(2, 2, 2); imagesc(raw); title('Before segmentation processing'); colormap(gray); %% Calculate Gradient of picture % Note: the default option of imgradient function in Matlab uses % Sobel's operator to calculate gradient magnitude and direction, other % operator can also be used, but other parameters may need to be % adjusted. [Gmag, Gdir] = imgradient(raw, gradient_method); % This algorithm would only analyze image based on Gradient magnitude % since lymphatic vessels usually don't process a regular shape. %% Use Thresholding to filter out low signal of gradient. % Since there are many noise pixels within the picture, and it differs % not much in intensity with surrounding pixels, therefore it would % result in a small value of gradient magnitude thus needs to be % discarded. % use thr to eliminate lower magnitude pixels. [width, height] = size(Gmag); for j = (1:width) for k = (1:height) if Gmag(j, k) < thr Gmag(j, k) = 0; end end end %% Compare Gradient picture with original picture detect = zeros(width + 4, height + 4); detect(3:2+width, 3:2+height) = Gmag; raw_extend = zeros(width + 4, height + 4); raw_extend(3:2+width, 3:2+height) = raw; % All pixels with non-zero gradient magnitude in this picture will be % determined whether it is noise by counting the number of surrounding % vessel pixels and surrounding pixels with non-zero gradient magnitude % in a 5x5 window. % vessel_intensity, expected_vessel and expected_grad are used here. for center_x = (3:2+width) for center_y = (3:2+height) if detect(center_x, center_y) > 0 raw_count = 0; % count number of edge pixels within the window edge_count = 0; % count non-zero gradient magnitude pixels for delta_x = (-2:2) for delta_y = (-2:2) if raw_extend(center_x - delta_x, center_y - delta_y) < vessel_intensity raw_count = raw_count + 1; end if detect(center_x - delta_x, center_y - delta_y) > 0 edge_count = edge_count + 1; end end end % Set a pixel's gradient magnitude to zero if either the % vessel pixel count or gradient magnitude pixel number % count fails to meet the expected standard. if raw_count < expect_vessel detect(center_x, center_y) = 0; end if edge_count < expect_grad detect(center_x, center_y) = 0; end end end end % Resize the picture to original size. detect = detect((3:2+width), (3:2+height)); %% Apply a 3x3 mean filter to the graph to reduce small noises. denoise = detect; [width, height] = size(denoise); mean_filted = zeros(width + 2, height + 2); outer = zeros(width + 4, height + 4); outer(3:width + 2, 3:height + 2) = denoise; % Add up surrounding pixel's intensity. for j = [-1, 0, 1] for k = [-1, 0, 1] mean_filted = mean_filted + outer(2 + j:width + 3 + j, 2 + k:height + 3 + k); end end % Take average. mean_filted = mean_filted / 9; % Resize the window to original size. mean_filted = mean_filted(3:width + 2, 3:height + 2); denoise = mean_filted; %% Binarilize the image for better viewing. % by setting non-zero pixels to 255 intensity. for j = (1:width) for k = (1:height) if denoise(j, k) ~= 0 denoise(j, k) = 255; else denoise(j, k) = 0; end end end %% display final picture. final = denoise; subplot(2, 2, 3); imagesc(final); title(gradient_method); colormap(gray); end
github
weifanjiang/UWA_OCT_Image_Processing-master
Before_Segmentation.m
.m
UWA_OCT_Image_Processing-master/Before_Segmentation.m
4,269
utf_8
e916d2d94e98712f3ffa7138709dc1e3
%% <Before_Segmentation.m> % % Weifan Jiang % This function pre-processes an OCT image, including denoising, % smoothing and contrast enhancement. %========================================================================= function final = Before_Segmentation(I, lower_bound, lower_value, higher_bound, higher_value) %% Function Parameters: % I: the OCT image being processed by this function % lower_bound: the lowest intensed pixel needed to be processed % lower_value: the lowest intensed pixel allowed in output % higher_bound: the highest intensed pixel needed to be processed % higher_value: the highest intensed pixel allowed in output %% Local Variables: % Step: indicates the height of each region where local intensity will % be calculated when adjusting attenuation. step = 15; % set_value: set_value is used to determine if a special pixel is noise % by looking at surrounding numbers of background pixels in 5x5 window. % If there are more than set_value amount of background pixels around a % special pixel, then that pixel is determined to be noise instead of % vessel. % % Larger set_value can filter out more noise but also produces the risk % of losing vessel pixels. set_value = 15; %% Median Filter to discard minor noises. img = medfilt2(I); %% Adjust attenuation of the picture [width, height] = size(img); ptr = 1; intensity = []; % holds all intensity levels for each region while ptr + step - 1 <= height curr = 0; % Add up all intensities in current region. for j = (1:width) for k = (ptr:ptr + step - 1) curr = curr + img(j, k); end end % Append to intensity intensity = [intensity, curr]; % Increment the pointer for current region. ptr = ptr + step; end % Re-scale each-region's intensity by setting each pixel's intensity % to: % % new_intensity = (old_intensity / average_intensity_of_region) * % max_regional_average_intensity count = 1; ptr = 1; while ptr + step - 1 <= height for j = (1:width) for k = (ptr:ptr + step - 1) img(j, k) = (img(j, k) / intensity(count)) * max(intensity); end end ptr = ptr + step; count = count + 1; end %% Set all pixels below lower_bound or above upper_bound to appropriate for j = (1:width) for k = (1:height) if img(j, k) < lower_bound img(j, k) = lower_value; end if img(j, k) > higher_bound img(j, k) = higher_value; end end end %% Compare processed image with original image % set a pixel A in processed image to non-special if there are more than % a certain value of non-special pixels in the 5x5 window centered at A % in the original picture. % use set_value to determine if a pixel is noise. detect = zeros(width + 4, height + 4); detect(3:2+width, 3:2+height) = img; for center_x = (3:2+width) for center_y = (3:2+height) count = 0; %sum = 0; for delta_x = (-2:2) for delta_y = (-2:2) %sum = sum + detect(center_x + delta_x, center_y + delta_y); if detect(center_x + delta_x, center_y + delta_y) == lower_value count = count + 1; end end end if count > set_value detect(center_x, center_y) = 0; % detect(center_x. center_y) = sum / 25; end end end % Note: there is also the option to set the intensity to average of the % 25-pixel window instead of setting it directly to 0, which option is % better depends on other parameters and the gradient-calculating % method used previously. % Rescale the picture to original. detect = detect((3:2+width), (3:2+height)); %% Return final answer final = detect; end
github
LorisMarini/content_caching_with_reinforcement_learning-master
Configure_The_Network.m
.m
content_caching_with_reinforcement_learning-master/network_configurations/Configure_The_Network.m
5,652
utf_8
a8761718fc1d3605ad9b8219e6207502
function [ Network_Parameters ] = Configure_The_Network( N_Networks, Diameter, Radius_Protected_Area, Step_Size, H, N, Alpha) %{ ------------------------- AUTHORSHIP ------------------------- Developer: Loris Marini Affiliation: The University of Sydney Contact: [email protected] Notes: ------------------------- DESCRIPTION ------------------------- This function creates N_Networks different instances of a radio cell. If the function is run more than once there are two possibilities: 1. The Network_Parameters differs from those defined previously. The function creates a subdirectory with a random name and saves the data there. 2. The Network_Parameters is identical to the one already defined. The function does not do anyhting. ------------------------- INPUT PARAMETERS ------------------------- -- N_Networks -- Number of different networks to simulate -- Diameter -- Diameter of the cell in meters. -- Radius_Protected_Area -- Radius of clear space around each user (Necessary to avoid ...) -- Step_Size -- Distance between two points on the cell. Must be <= 1. The ratio Diameter/Step_Size is equal to the number of points along the diameter of the cell. -- H -- Number of Helpers in the cell. -- N -- Number of users in the cell. -- Alpha -- The free space absorption coefficient ------------------------- OUTPUT PARAMETERS ------------------------- -- Parameters -- A struct containing all the relevant parameters for the function call. ------------------------- EXAMPLE OF CALL ----------------------- % Number of radio cells to deploy Nrc = 2; % Cell diameter [m] Diam = 1000; % Clear space around each helper [m]: CS = 10; % Step size SS = 0.1 % Number of helpers in the network Nh = 20; % Number of users in the network Nu = 100; % A propagation Loss of 1 [km^-1] Ap = 1; [ Parameters ] = Configure_The_Network( Nrc, Diam, CS, SS, Nh, Nu, Ap) %} % ---------------------------- CODE -------------------------- % Add the communications toolbox to path. This is a known issue in Matlab % 2017a. See this post for more info: % https://au.mathworks.com/matlabcentral/answers/350491-how-to-set-the-correct-path- % for-communications-toolbox-for-rtl-sdr-support-package-at-startup addpath(fullfile(matlabroot, 'toolbox', 'comm', 'comm'), '-end') % Define the path to the directory where you store the network configurations: % path_to_networks = 'C:\Users\lmar1564\Documents\MATLAB\FemtoChaching\Network_Configuration\Configurations'; path_to_networks = '/home/loris/Desktop/test'; % Create a struct with the name and value of all relevant parameters used % in this function call: Network_Parameters = struct('Number_Of_Netoworks_Generated',N_Networks, 'Diameter',Diameter, ... 'Radius_Protected_Area',Radius_Protected_Area, 'Step_Size',Step_Size, ... 'N_Of_Helpers',H, 'N_Of_Users', N, 'Propagation_Loss_Alpha', Alpha ); % Define the name with which you save the Network_Parameters: parameters_saveas = ['Network_Parameters_' num2str(N_Networks),... '_Random_Networks_H' num2str(H) '_N' num2str(N) '.mat']; cd(path_to_networks); search = dir(parameters_saveas); if ~isempty( search ) % Check they are identical l = load(parameters_saveas); Loaded_param = l.Network_Parameters; if isequal(Loaded_param, Network_Parameters) % File exists and has identical parameters. Do nothing disp('Configuration already exists.'); return; elseif Loaded_param ~= Network_Parameters % perform the full simulation but save data in subdirectory that % starts with the idenfifiers of parameters_saveas plus a random % string of integers random_string = num2str(randi(9,1,7)); random_string(random_string==' ') = []; subdir_name = ['N_Net_' num2str(N_Networks),'H' num2str(H) '_N' num2str(N),'_id_',random_string]; % ???? end else % Do nothing here and continue execution. end % Save to disk the network parameters in the 'path_to_networks' with the 'parameters_saveas' name: save( fullfile( path_to_networks ,parameters_saveas), 'Network_Parameters'); for n = 1:1:N_Networks % Call the function Place_Users to randomly place users in a cell [ distances, fh ] = Place_Users( Diameter, Radius_Protected_Area, Step_Size, H,N ); % Save distances matrix to file Matrix_Distances_Name = ['Distances_' num2str(n) '_of_' num2str(N_Networks) '_with_H' num2str(H) '_N' num2str(N) '.mat']; save( fullfile( path_to_networks ,Matrix_Distances_Name), 'distances'); Network_Delays = Network_Normalised_Delays( distances, Alpha ); % Save Matrix of delays Matrix_Delays_Name = ['Network_Delays_' num2str(n) '_of_' num2str(N_Networks) '_with_H' num2str(H) '_N' num2str(N) '.mat']; save( fullfile( path_to_networks ,Matrix_Delays_Name), 'Network_Delays'); % Save the figure representing the cell with helpers and users Figure_Name = ['Network_Scenario_' num2str(n) '_of_' num2str(N_Networks) '_with_H' num2str(H) '_N' num2str(N) '.fig']; Figure_File_Name = fullfile(path_to_networks, Figure_Name); figure(fh); saveas(fh, Figure_File_Name); end close all; end
github
LorisMarini/content_caching_with_reinforcement_learning-master
PLAY.m
.m
content_caching_with_reinforcement_learning-master/Multi_Agent_CIDGPA_Framework/PLAY.m
11,557
utf_8
eef3771b11c2b4b66f71ed303fd16d17
function [ Conv_Actions, Game_Iterations, History_Delays, Convergence_Delays, New_Learning] = PLAY( Network_Delays, Popularities, Learning, Reward_Type, Resolution, P_Threshold ) %{ -------------------------- AUTHORSHIP --------------------------------- Developer: Loris Marini Affiliation: The University of Sydney Contact: [email protected] Notes: --------------------------- DESCRIPTION ------------------------------- This script initializes a game of learning automata using DGPA reinforcement learning. ----------------------------- DEPENDENCIES -------------------------------- Learners_Files_Selection(...) User_Weighted_Delay(...) User_NCA_Selection(...) Best_File_Based_Reward() Weighted_Delay_Based_Reward() -------------------------------- INPUT ---------------------------------- Network_Delays Popularities Learning The Set of Learners as Initialised by the 'INITIALIZE_Game_Of_DGPA'. Reward_Type (See ...) Resolution Typically 1, is the resolution step of the DGPA. P_Threshold Level of probability we consider to convergence. -------------------------------- OUTPUT ---------------------------------- Conv_Actions The set of actions for each learner that the game has converged to. Weighted_Delays The final weighted delay for each user. GAME_Delay_Performance The history of weighted delays for each user during the GAME. % ----------------------------- CODE --------------------------------- %} NP = size(Network_Delays,2); % Number of content providers (BS or Helpers) in the cell H = NP - 1; % Number of Helpers in the cell N = size(Network_Delays,1); % Number of users in the cell M = size(Learning,1); % Caching capability of each Helper F = H*M; % Total number of files that can be cached. S = 1:1:F; % S: Space of Actions. F: How many files we can offload from the BS. Delta = 1/(F.*Resolution); % Resulution Step Conv_Actions = zeros(M,H); % The Matrix of actions to which learners converge during the game. GAME_Positive_Feedbacks = zeros(M,H); % .... GITER = 1; % Game Iteration Number. Elapsed_Time = 0; % Time Initialisation. Min_Weighted_Delay = Inf*ones(1,N); Min_Average_Weighted_Delay = Inf*ones(1,H); Average_Weighted_Delay = zeros(1,H); while ~Check_Game_Convergence( Learning, P_Threshold ) tic; % Iteration Timing % Learners Select Files in Parallel (same time) [Available_Files, New_Learning] = Learners_Files_Selection( S, Learning ); Learning = New_Learning; % Feedbacks from the users: % Pre-allocate cumulative Rewards for all users % Pre-allocate cumulative Penalsties for all users GAME_Rewards = zeros(M,H+1); GAME_Penalties = zeros(M,H+1); switch Reward_Type case 'Best_File_Based_Reward' for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) User_Selections = User_NCA_Selection( n, S, Available_Files, Network_Delays); % Calculate the weighted latency that the user would experience Delay_Performance(GITER,n) = User_Weighted_Delay( User_Selections, Popularities ); User_Delays = Network_Delays(n,:); % Let the user provide its own feedback [ Current_Rewards, ~, Current_Penalties, ~ ] = Best_File_Based_Reward( User_Delays, User_Selections, Popularities ); % Update Rewards and Penalties GAME_Rewards = GAME_Rewards + Current_Rewards; GAME_Penalties = GAME_Penalties + Current_Penalties; end case 'Weighted_Delay_Based_Reward' for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) User_Selections = User_NCA_Selection( n, S, Available_Files, Network_Delays); % Calculate the weighted latency that the user would experience Delay_Performance(GITER,n) = User_Weighted_Delay( User_Selections, Popularities ); User_Delays = Network_Delays(n,:); if (Weighted_Delay < Min_Weighted_Delay(n)) Min_Weighted_Delay(n) = Weighted_Delay; end if( GITER == 1) Current_Minima = Inf; elseif (GITER > 1) Current_Minima = Min_Weighted_Delay(n); end % Let the user provide its own feedback [ Current_Rewards, ~, Current_Penalties, ~ ]... = Weighted_Delay_Based_Reward( User_Delays, User_Selections, Weighted_Delay, Current_Minima , Popularities ); % Update Rewards and Penalties GAME_Rewards = GAME_Rewards + Current_Rewards; GAME_Penalties = GAME_Penalties + Current_Penalties; end case 'Average_Weighted_Delay_Based_Reward' Tot_Rewards = zeros(M,H+1,N); Tot_Penalties = zeros(M,H+1,N); for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) User_Selections(n,:,:,:) = User_NCA_Selection( n, S, Available_Files, Network_Delays); % Calculate the weighted latency that the user would experience This_User_Selections = squeeze(User_Selections(n,:,:,:)); Delay_Performance(GITER,n) = User_Weighted_Delay( This_User_Selections, Popularities ); % Let the user provide its own feedback User_Delays = Network_Delays(n,:); [ Current_Rewards, ~, Current_Penalties, ~ ] = Best_File_Based_Reward( User_Delays, This_User_Selections, Popularities ); Tot_Rewards(:,:,n) = Current_Rewards; Tot_Penalties(:,:,n) = Current_Penalties; end for j=1:1:H % Take only the users connected to the learner (j,k) Who_to_Average = Network_Delays(:,j) ~= Inf; Average_Weighted_Delay(j) = sum( Weighted_Delay(Who_to_Average)) / sum(Who_to_Average); if (Average_Weighted_Delay(j) <= Min_Average_Weighted_Delay(j) ) Min_Average_Weighted_Delay(j) = Average_Weighted_Delay(j); GAME_Rewards(:,j) = GAME_Rewards(:,j) + sum( squeeze( Tot_Rewards(:,j,:) ),2); GAME_Penalties(:,j) = GAME_Penalties(:,j) + sum( squeeze( Tot_Penalties(:,j,:) ),2); else GAME_Rewards(:,j) = GAME_Rewards(:,j); GAME_Penalties(:,j) = GAME_Penalties(:,j) + sum( squeeze( Tot_Rewards(:,j,:) ),2) + sum( squeeze( Tot_Penalties(:,j,:) ),2); end end History_Of_Average_Weighted_Delays(GITER,:) = Average_Weighted_Delay; end % GAME Learners Determine the Environment Feedback Democratically % 'Env_Feedback(k,j)'= 1 --> Larner(k,j) Rewarded. % 'Env_Feedback(k,j)'= 0 --> Learner(k,j) Penalised. for j = 1:1:H for k = 1:1:M Curr_Action = Learning(k,j).Ai; if (GAME_Rewards(k,j) > GAME_Penalties(k,j)) GAME_Positive_Feedbacks(k,j) = GAME_Positive_Feedbacks(k,j) + 1; Learning(k,j).W(Curr_Action) = Learning(k,j).W(Curr_Action) + 1; Who_to_Divide = Learning(k,j).W ~= 0; Learning(k,j).D(Who_to_Divide) = Learning(k,j).W(Who_to_Divide)./ Learning(k,j).Z(Who_to_Divide); else % Do nothing. end end end % GAME Probabilities Vectors Update. [ Updated_Learning, Updated_Conv_Actions ] = New_P_Vectors_DGPA_A( Conv_Actions, Learning, Delta, P_Threshold); Learning = Updated_Learning; Conv_Actions = Updated_Conv_Actions; % Iteration Timing Time = toc; Elapsed_Time = Elapsed_Time + Time; Average_Time = Elapsed_Time/GITER; disp(['This is iteration number ' num2str(GITER) '. The Average Time per iteration is: ' num2str(Average_Time) '.'] ); GITER = GITER + 1; end Game_Iterations = GITER - 1; New_Learning = Learning; % Output Variables: switch Reward_Type case 'Best_File_Based_Reward' History_Delays = Delay_Performance; Convergence_Delays = Delay_Performance(end,:); case 'Weighted_Delay_Based_Reward' History_Delays = Delay_Performance; Convergence_Delays = Delay_Performance(end,:); case 'Average_Weighted_Delay_Based_Reward' History_Delays = History_Of_Average_Weighted_Delays; Convergence_Delays = History_Of_Average_Weighted_Delays(end,:); end % VISUAL OUTPUT (Uncomment if needed in debugging mode) %{ disp('-------------------------------------------------------------------'); disp('=================== Convergence COMPLETE. ======================'); disp('-------------------------------------------------------------------'); switch Reward_Type case 'Best_File_Based_Reward' disp(Reward_Type); disp(['The converged weighted delays are: ' num2str(Delay_Performance(GITER-1,:)) '.']); disp(['The Average Weighted Delay among all the users is: ' num2str(sum( Delay_Performance(GITER-1,:) )./N) '.']); disp(['The game with ' num2str(M*H) ' players (that is file memories) converged after ' num2str(GITER-1) ' iterations.']); case 'Weighted_Delay_Based_Reward' disp(Reward_Type); disp(['The converged weighted delays are: ' num2str(Delay_Performance(GITER-1,:)) '.']); disp(['The Average Weighted Delay among all the users is: ' num2str(sum(Delay_Performance(GITER-1,:))./N) '.']); disp(['The game with ' num2str(M*H) ' players (that is file memories) converged after ' num2str(GITER-1) ' iterations.']); case 'Average_Weighted_Delay_Based_Reward' disp(Reward_Type); disp(['The converged weighted delays are: ' num2str(Delay_Performance(GITER-1,:)) '.']); disp(['The Min_Average_Weighted_Delays, at convergence are : ' num2str(Min_Average_Weighted_Delay) '.']); disp(['The game with ' num2str(M*H) ' players (that is file memories) converged after ' num2str(GITER-1) ' iterations.']); end %} end
github
LorisMarini/content_caching_with_reinforcement_learning-master
INITIALIZE.m
.m
content_caching_with_reinforcement_learning-master/Multi_Agent_CIDGPA_Framework/INITIALIZE.m
9,684
utf_8
148284711069c94d8689ab4b2a9b11dd
function [ Learning, Iterations ] = INITIALIZE( Learning_Setup, Network_Delays, M, Popularities, Reward_Type, Initialization_Number ) %{ -------------------------- AUTHORSHIP --------------------------------- Developer: Loris Marini Affiliation: The University of Sydney Contact: [email protected] Notes: --------------------------- DESCRIPTION ------------------------------- This script initializes a game of learning automata using DGPA reinforcement learning. ----------------------------- DEPENDENCIES -------------------------------- Allocate_Learners(...) Learners_Files_Selection(...) User_NCA_Selection(...) User_Weighted_Delay(...) Best_File_Based_Reward() Weighted_Delay_Based_Reward() -------------------------------- INPUT ---------------------------------- Network_Delays Matrix of delays NxH+1 where N= number of users and H+1= Number of providers M Caching capability of a single helper; Popularities File Popularities Reward_Type Initialization_Number See NITIALIZE_Game_Of_DGPA -------------------------------- OUTPUT ---------------------------------- Learning KxH Initialized learners Iterations The actual number of iteratiosn that it took to initialize. % ----------------------------- CODE --------------------------------- %} H = size(Network_Delays,2) - 1; % Number of Helpers in the cell N = size(Network_Delays,1); % Number of users in the cell F = H*M; % Total number of files that can be cached. S = 1:1:F; % S: Space of Actions. F: How many files we can offload from the BS. N_Ini = Initialization_Number; % Initial #Iterations for estimation of D from each Learner INI_Positive_Feedbacks = zeros(M,H); % Initialise Environmental Feedback Zeros = Inf; % Is a variable to control the learners with empty D. ITER = 1; % Iteration Number Min_Weighted_Delay = Inf*ones(1,N); Min_Average_Weighted_Delay = Inf*ones(1,H); Average_Weighted_Delay = zeros(1,H); % Loop until you make sure that all actions are selected at least N_Ini % times. We do it with 'Lesser_Selected' which is a variable that controls % the action that has been selected the least. Lesser_Selected = 0; % Initialize learners Learning = Learners_Allocation( Learning_Setup, S, H,M,F ); while (Lesser_Selected < N_Ini || Zeros > 0) % If we reach 10^4 iterations we declared the initialization to have % failed. since actions are selected at random, for small numbers of % N_Ini and smalle sets convergence should be reached much earlier. % However, larger sets and N_Init might need to adjust this threshold % to a larger value. if ITER > 10000 error('Initialisation Failed.'); end % Learners Select Files in Parallel (same time) [Available_Files, New_Learning] = Learners_Files_Selection( S, Learning ); Learning = New_Learning; % Feedbacks from the users: % Pre-allocate cumulative Rewards for all users % Pre-allocate cumulative Penalsties for all users INI_Rewards = zeros(M,H+1); INI_Penalties = zeros(M,H+1); switch Reward_Type case 'Best_File_Based_Reward' for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) user_selections = User_NCA_Selection( n, S, Available_Files, Network_Delays); % Calculate the weighted latency that the user would experience delays(ITER,n) = User_Weighted_Delay( user_selections, Popularities ); this_user_delays = Network_Delays(n,:); % Let the user provide its own feedback [Current_Rewards, ~, Current_Penalties, ~ ] = Best_File_Based_Reward( this_user_delays, user_selections, Popularities ); % Update Rewards and Penalties INI_Rewards = INI_Rewards + Current_Rewards; INI_Penalties = INI_Penalties + Current_Penalties; end case 'Weighted_Delay_Based_Reward' for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) user_selections = User_NCA_Selection( n, S, Available_Files, Network_Delays); % Calculate the weighted latency that the user would experience delays(ITER,n) = User_Weighted_Delay( user_selections, Popularities ); % Extract the actual delays that interest this user this_user_delays = Network_Delays(n,:); if (Weighted_Delay < Min_Weighted_Delay(n)) Min_Weighted_Delay(n) = Weighted_Delay; end if( ITER == 1) Current_Minima = Inf; elseif (ITER > 1) Current_Minima = Min_Weighted_Delay(n); end [ Current_Rewards, ~, Current_Penalties, ~ ]... = Weighted_Delay_Based_Reward( this_user_delays, user_selections, Weighted_Delay, Current_Minima , Popularities ); % Update Rewards and Penalties INI_Rewards = INI_Rewards + Current_Rewards; INI_Penalties = INI_Penalties + Current_Penalties; end case 'Average_Weighted_Delay_Based_Reward' Tot_Rewards = zeros(M,H+1,N); Tot_Penalties = zeros(M,H+1,N); for n = 1:1:N % Let each user choose which content they prefer using the % policy if nearest available (Nearest Content Available % NCA) user_selections(n,:,:,:) = User_NCA_Selection( n, S, Available_Files, Network_Delays); This_User_Selections = squeeze(user_selections(n,:,:,:)); delays(ITER,n) = User_Weighted_Delay( This_User_Selections, Popularities ); this_user_delays = Network_Delays(n,:); [ Current_Rewards, ~, Current_Penalties, ~ ] = Best_File_Based_Reward( this_user_delays,This_User_Selections, Popularities ); Tot_Rewards(:,:,n) = Current_Rewards; Tot_Penalties(:,:,n) = Current_Penalties; end for j=1:1:H % Take only the users connected to the learner (j,k) Who_to_Average = Network_Delays(:,j) ~= Inf; Average_Weighted_Delay(j) = sum( Weighted_Delay(Who_to_Average)) / sum(Who_to_Average); if (Average_Weighted_Delay(j) <= Min_Average_Weighted_Delay(j) ) Min_Average_Weighted_Delay(j) = Average_Weighted_Delay(j); INI_Rewards(:,j) = INI_Rewards(:,j) + sum( squeeze( Tot_Rewards(:,j,:) ),2); INI_Penalties(:,j) = INI_Penalties(:,j) + sum( squeeze( Tot_Penalties(:,j,:) ),2); else INI_Rewards(:,j) = INI_Rewards(:,j); INI_Penalties(:,j) = INI_Penalties(:,j) + sum( squeeze( Tot_Rewards(:,j,:) ),2) + sum( squeeze( Tot_Penalties(:,j,:) ),2); end end end % INI Learners Determine the Environment Feedback Democratically [ Learning, INI_Positive_Feedbacks ] = Determine_Environment_Feedback( Learning, INI_Rewards, INI_Penalties, INI_Positive_Feedbacks); % CHECKS Curr_min = Inf; for j = 1:1:H for k = 1:1:M if (min(Learning(k,j).Z) < Curr_min) Curr_min = min(Learning(k,j).Z); end end end Lesser_Selected = Curr_min; Zeros = 0; MaxNZeros = 0; for j = 1:1:H for k = 1:1:M % All the elements of D of (k,j) are zero. Until Zeros is ~= 0 we should keep initerating. if (max(Learning(k,j).D) == 0) Zeros = Zeros+1; end if (sum(Learning(k,j).D == 0) > MaxNZeros) MaxNZeros = sum(Learning(k,j).D == 0); end end end disp(['INITIALISATION: Iteration ' num2str(ITER) ]); disp(['The weighted delays are: ' num2str(delays(ITER,:)) '.There are ' num2str(Zeros) ' learners with a zero D vector.']); disp(['The maximum number of zeros in the D vectors is: ' num2str(MaxNZeros) '.']) ITER = ITER +1; end Iterations = ITER - 1; % OUTPUT Variables Learning = Learning; Network_Delays = Network_Delays; end
github
locatelf/cone-greedy-master
PWNMP.m
.m
cone-greedy-master/NMF/dense_square/PWNMP.m
2,143
utf_8
5ee02a618bbd1dfeffef955fc3b18dc4
function [X_r, residual_time,test_error] = PWNMP(Y,X_0,R,nil,LMO_it,X_tst) %% variables init convergence_check = zeros(1,R+1); X_r=X_0; S = zeros(size(X_0)); alpha = 0; test_error = zeros(R,1); residual_time = zeros(1,R); cnt = 0; A = zeros(size(Y,1),1); B = zeros(size(Y,2),1); for r = 1:R r %% call to the oracle grad = -(Y-X_r); [a,b,residual] = LMO(-grad,Y,X_r,nil,LMO_it); residual_time(r) = residual; Z = a*b'; A = cat(2,A,a); B = cat(2,B,b); maxV=0; idxV=1; idxZ=-1; for it=1:numel(alpha) c = S(:,:,it); if dot(grad(:),c(:))>maxV idxV = it; maxV = dot(grad(:),c(:)); end if dot(Z(:),c(:)) == norm(Z(:))^2 idxZ = it; end end if idxZ == -1 idxZ = numel(alpha) + 1; S = cat(3,S,Z); alpha = [alpha,0]; end V = S(:,:,idxV); D = Z - V; if dot(-grad(:),D(:)) == 0 break end gamma = dot(-grad(:),D(:))/norm(D(:)); idxDelete = []; if idxV~=1 if alpha(idxV)-gamma<=0 gamma = alpha(idxV); cnt = cnt +1; idxDelete = idxV; else alpha(idxV) = alpha(idxV) - gamma; A(:,idxV) = A(:,idxV).*sqrt(alpha(idxV)); B(:,idxV) = B(:,idxV).*sqrt(alpha(idxV)); end end alpha(idxZ) = alpha(idxZ) + gamma; A(:,idxZ) = A(:,idxZ).*sqrt(alpha(idxZ)); B(:,idxZ) = B(:,idxZ).*sqrt(alpha(idxZ)); alpha(idxDelete) = []; S(:,:,idxDelete) = []; A(:,idxDelete) = []; B(:,idxDelete) = []; [Aprov, Bprov, ~] = NMF_GCD(Y,size(A,2)-1,20,A(:,2:end),B(:,2:end)',1); X_r = Aprov*Bprov; A = [zeros(size(X_r,1),1), normc(Aprov)]; B = [zeros(size(X_r,2),1), normc(Bprov')]; for itt = 1:size(A,2) S(:,:,itt) = sparse(A(:,itt)*B(:,itt)'); %Sfull(:,:,itt) = Zprov; end alpha = [0,norms(Aprov).*norms(Bprov')]; convergence_check(r) = 2*(sum(X_r(:).^2)-1); test_error(r) = 0.5*norm(X_tst - X_r,'fro')^2; r = size(S,3); end end function S = norms(S) S = sqrt(sum(S.^2,1)); end
github
locatelf/cone-greedy-master
nnls1_asgivens.m
.m
cone-greedy-master/TensorFactorization/nnls1_asgivens.m
4,652
utf_8
fe4f132c0c6503c13c348aa65cc9e7ef
function [ x,y,success,iter ] = nnls1_asgivens( A,b,overwrite, isInputProd, init ) % Nonnegativity-constrained least squares for single righthand side : minimize |Ax-b|_2 % Jingu Kim ([email protected]) % % Reference: % Jingu Kim and Haesun Park. Fast Nonnegative Matrix Factorization: An Activeset-like Method and Comparisons, % SIAM Journal on Scientific Computing, 33(6), pp. 3261-3281, 2011. % % Updated 2011.03.20: First implemented, overwrite option % Updated 2011.03.21: init option % Updated 2011.03.23: Givens updating not always if nargin<3, overwrite = false; end if nargin<4, isInputProd = false; end if isInputProd AtA=A;,Atb=b; else AtA=A'*A;, Atb=A'*b; end n=size(Atb,1); MAX_ITER = n*5; % set initial feasible solution if overwrite x = AtA\Atb; x(x<0) = 0; PassiveList = find(x > 0)'; R = chol(AtA(PassiveList,PassiveList)); Rinv_b = (R')\Atb(PassiveList); iter = 1; else if nargin<5 PassiveList = []; R = []; Rinv_b = zeros(0,0); x = zeros(n,1); else x = init; x(x<0) = 0; PassiveList = find(x > 0)'; R = chol(AtA(PassiveList,PassiveList)); Rinv_b = (R')\Atb(PassiveList); end iter=0; end success=1; while(success) if iter >= MAX_ITER, break, end % find unconstrained LS solution for the passive set if ~isempty(PassiveList) z = R\Rinv_b; iter = iter + 1; else z = []; end z( abs(z)<1e-12 ) = 0; % One can uncomment this line for numerical stability. InfeaSet = find(z < 0); if isempty(InfeaSet) % if feasibile x(:) = 0; x(PassiveList) = z; y = AtA * x - Atb; y( PassiveList) = 0; y( abs(y)<1e-12 ) = 0; % One can uncomment this line for numerical stability. NonOptSet = find(y < 0); if isempty(NonOptSet), success=0; % check optimality else [minVal,minIx] = min(y); PassiveList = [PassiveList minIx]; % increase passive set [R,Rinv_b] = cholAdd(R,AtA(PassiveList,minIx),Rinv_b,Atb(minIx)); end else % if not feasibile x_pass = x(PassiveList); x_infeaset = x_pass(InfeaSet); z_infeaset = z(InfeaSet); [minVal,minIx] = min(x_infeaset./(x_infeaset-z_infeaset)); x_pass_new = x_pass+(z-x_pass).*minVal; x_pass_new(InfeaSet(minIx))=0; zeroSetSub = sort(find(x_pass_new==0),'descend'); for i=1:length(zeroSetSub) subidx = zeroSetSub(i); PassiveList(subidx) = []; % Givens updating is not always better (maybe only in matlab?). if subidx >= 0.9 * size(R,2) R = cholDelete(R,subidx); else R = chol(AtA(PassiveList,PassiveList)); end end Rinv_b = (R')\Atb(PassiveList); x_pass_new(x_pass_new == 0) = []; x(:) = 0; x(PassiveList) = x_pass_new; end end end function [new_R,new_d] = cholAdd(R,v,d,val) if isempty(R) new_R = sqrt(v); new_d = val/new_R; else n = size(R,1); new_R = zeros(n+1,n+1); new_R(1:n,1:n)=R; vec = zeros(n+1,1); vec(1:n)=R'\v(1:n); vec(n+1)=sqrt(v(n+1)-vec(1:n)'*vec(1:n)); new_R(:,n+1) = vec; new_d = [d;zeros(1,1)]; new_d(n+1) = (val-vec(1:n)'*d)/vec(n+1); end end function [new_R] = cholDelete(R,idx) n = size(R,1); new_R = R; new_R(:,idx) = []; for i=idx:n-1 %G=getGivens(new_R(:,i),i,i+1); G=planerot(new_R([i i+1],i)); new_R([i i+1],:)=G*new_R([i i+1],:);, new_R(i+1,i)=0; end new_R = new_R(1:n-1,1:n-1); end % function [G]=getGivens(a,i,j) % G=zeros(2,2); % [c,s]=givensRotation(a(i),a(j)); % G(1,1)=c; % G(1,2)=s; % G(2,1)=-s; % G(2,2)=c; % end % % function [c,s]=givensRotation(a,b) % % Givens Rotation to annihilate b with respect to a % if(b==0) % c=1;s=0; % else % if (abs(b)>abs(a)) % t=-a/b; % s=1/sqrt(1+t*t); % c=s*t; % else % t=-b/a; % c=1/sqrt(1+t*t); % s=c*t; % end % end % end
github
locatelf/cone-greedy-master
cast_to_set.m
.m
cone-greedy-master/TensorFactorization/cast_to_set.m
624
utf_8
0a51464057642c461237748e511a466f
function rez = cast_to_set(rez,normalized,non_negative,sparsity) if strcmp(non_negative,'true') rez(rez<0)=0; end if ~strcmp(sparsity,'0') rez = to_sparse(rez,str2double(sparsity)); end if strcmp(normalized,'true') rez=rez./norm(rez); end end function in = to_sparse(in,k) [~,sortIndex] = sort(abs(in(:)),'ascend'); %# Sort the values in ascending order assert(size(sortIndex,1)-k>=0,'non zero falues greater than number of entries') minIndex = sortIndex(1:size(sortIndex,1)-k); %# Get a linear index into A of the 5 largest values in(minIndex) = 0; end
github
locatelf/cone-greedy-master
nmf.m
.m
cone-greedy-master/TensorFactorization/nmf.m
23,853
utf_8
7462a6647d7acb938254b76c028c50d1
% Nonnegative Matrix Factorization Algorithms Toolbox % % Written by Jingu Kim ([email protected]) % Work done at % School of Computational Science and Engineering % College of Computing, Georgia Institute of Technology % % Please send bug reports, comments, or questions to Jingu Kim. % This code comes with no guarantee or warranty of any kind. % % Reference: % [1] Jingu Kim, Yunlong He, and Haesun Park. % Algorithms for Nonnegative Matrix and Tensor Factorizations: A Unified View % Based on Block Coordinate Descent Framework. % Journal of Global Optimization, 58(2), pp. 285-319, 2014. % % [2] Jingu Kim and Haesun Park. % Fast Nonnegative Matrix Factorization: An Active-set-like Method And Comparisons. % SIAM Journal on Scientific Computing (SISC), 33(6), pp. 3261-3281, 2011. % % Last modified on 07/28/2013 % % <Inputs> % A : Input data matrix (m x n) % k : Target low-rank % % (Below are optional arguments: can be set by providing name-value pairs) % % METHOD : Algorithm for solving NMF. Available values are as follows. Default is 'anls_bpp'. % 'anls_bpp' : ANLS with Block Principal Pivoting Method % 'anls_asgivens': ANLS with Active Set Method and Givens Updating % 'anls_asgroup' : ANLS with Active Set Method and Column Grouping % 'als' : Alternating Least Squares Method % 'hals' : Hierarchical Alternating Least Squares Method % 'mu' : Multiplicative Updating Method % See publication [1] (and references therein) for the details of these algorithms. % TOL : Stopping tolerance. Default is 1e-3. % If you want to obtain a more accurate solution, % decrease TOL and increase MAX_ITER at the same time. % Note that algorithms will need more time to terminate if you do so. % MAX_ITER : Maximum number of iterations. Default is 500. % MIN_ITER : Minimum number of iterations. Default is 20. % MAX_TIME : Maximum amount of time in seconds. Default is 1,000,000. % INIT : A struct containing initial values. INIT.W and INIT.H should contain % initial values of W and H of size (m x k) and (k x n), respectively. % When INIT is not given, W and H are randomly initialized. % VERBOSE : 0 (default) - No debugging information is collected. % 1 (debugging/experimental purpose) - History of computation is returned. % See 'REC' variable. % 2 (debugging/experimental purpose) - History of computation is additionally % printed on screen. % REG_W, REG_H : Regularization parameters for W and H. % Both REG_W and REG_H should be vector of two nonnegative numbers. % The first component is a parameter with Frobenius norm regularization, and % the second component is a parameter with L1-norm regularization. % For example, to promote sparsity in H, one might set % REG_W = [alpha 0] and REG_H = [0 beta] % where alpha and beta are positive numbers. % See papers [1] and [2] for more details. % Defaut is [0 0] for both REG_W and REG_H, which means no regularization. % <Outputs> % W : Obtained basis matrix (m x k) % H : Obtained coefficient matrix (k x n) % iter : Number of iterations % HIS : (debugging/experimental purpose) Auxiliary information about the execution % <Usage Examples> % nmf(A,10) % nmf(A,20,'verbose',2) % nmf(A,20,'verbose',1,'method','anls_bpp') % nmf(A,20,'verbose',1,'method','hals') % nmf(A,20,'verbose',1,'reg_w',[0.1 0],'reg_h',[0 0.5]) function [W,H,iter,REC]=nmf(A,k,varargin) % parse parameters params = inputParser; params.addParamValue('method' ,'anls_bpp',@(x) ischar(x) ); params.addParamValue('tol' ,1e-3 ,@(x) isscalar(x) & x > 0); params.addParamValue('min_iter' ,20 ,@(x) isscalar(x) & x > 0); params.addParamValue('max_iter' ,500 ,@(x) isscalar(x) & x > 0); params.addParamValue('max_time' ,1e6 ,@(x) isscalar(x) & x > 0); params.addParamValue('init' ,struct([]),@(x) isstruct(x)); params.addParamValue('verbose' ,1 ,@(x) isscalar(x) & x >= 0); params.addParamValue('reg_w' ,[0 0] ,@(x) isvector(x) & length(x) == 2); params.addParamValue('reg_h' ,[0 0] ,@(x) isvector(x) & length(x) == 2); % The following options are reserved for debugging/experimental purposes. % Make sure to understand them before making changes params.addParamValue('subparams' ,struct([]),@(x) isstruct(x) ); params.addParamValue('track_grad' ,1 ,@(x) isscalar(x) & x >= 0); params.addParamValue('track_prev' ,1 ,@(x) isscalar(x) & x >= 0); params.addParamValue('stop_criterion',2 ,@(x) isscalar(x) & x >= 0); params.parse(varargin{:}); % copy from params object [m,n] = size(A); par = params.Results; par.m = m; par.n = n; par.k = k; % If stopping criterion is based on the gradient information, turn on 'track_grad' option. if par.stop_criterion > 0 par.track_grad = 1; end % initialize if isempty(par.init) W = rand(m,k); H = rand(k,n); else W = par.init.W; H = par.init.H; end % This variable is for analysis/debugging, so it does not affect the output (W,H) of this program REC = struct([]); clear('init'); init.norm_A = norm(A,'fro'); init.norm_W = norm(W,'fro'); init.norm_H = norm(H,'fro'); init.baseObj = getObj((init.norm_A)^2,W,H,par); if par.verbose % Collect initial information for analysis/debugging if par.track_grad [gradW,gradH] = getGradient(A,W,H,par); init.normGr_W = norm(gradW,'fro'); init.normGr_H = norm(gradH,'fro'); init.SC_NM_PGRAD = getInitCriterion(1,A,W,H,par,gradW,gradH); init.SC_PGRAD = getInitCriterion(2,A,W,H,par,gradW,gradH); init.SC_DELTA = getInitCriterion(3,A,W,H,par,gradW,gradH); else gradW = 0; gradH = 0; end if par.track_prev prev_W = W; prev_H = H; else prev_W = 0; prev_H = 0; end ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,0,0,gradW,gradH); REC(1).init = init; REC.HIS = ver; if par.verbose == 2 display(init); end tPrev = cputime; end initializer= str2func([par.method,'_initializer']); iterSolver = str2func([par.method,'_iterSolver']); iterLogger = str2func([par.method,'_iterLogger']); [W,H,par,val,ver] = feval(initializer,A,W,H,par); if par.verbose & ~isempty(ver) tTemp = cputime; REC.HIS = saveHIS(1,ver,REC.HIS); tPrev = tPrev+(cputime-tTemp); end REC(1).par = par; REC.start_time = datestr(now); display(par); tStart = cputime;, tTotal = 0; if par.track_grad initSC = getInitCriterion(par.stop_criterion,A,W,H,par); end SCconv = 0; SC_COUNT = 3; for iter=1:par.max_iter % Actual work of this iteration is executed here. [W,H,gradW,gradH,val] = feval(iterSolver,A,W,H,iter,par,val); if par.verbose % Collect information for analysis/debugging elapsed = cputime-tPrev; tTotal = tTotal + elapsed; clear('ver'); ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,iter,elapsed,gradW,gradH); ver = feval(iterLogger,ver,par,val,W,H,prev_W,prev_H); REC.HIS = saveHIS(iter+1,ver,REC.HIS); if par.track_prev, prev_W = W; prev_H = H; end if par.verbose == 2, display(ver);, end tPrev = cputime; end if (iter > par.min_iter) if (par.verbose && (tTotal > par.max_time)) || (~par.verbose && ((cputime-tStart)>par.max_time)) break; elseif par.track_grad SC = getStopCriterion(par.stop_criterion,A,W,H,par,gradW,gradH); if (SC/initSC <= par.tol) SCconv = SCconv + 1; if (SCconv >= SC_COUNT), break;, end else SCconv = 0; end end end end [m,n]=size(A); [W,H]=normalize_by_W(W,H); if par.verbose final.elapsed_total = sum(REC.HIS.elapsed); else final.elapsed_total = cputime-tStart; end final.iterations = iter; sqErr = getSquaredError(A,W,H,init); final.relative_error = sqrt(sqErr)/init.norm_A; final.relative_obj = getObj(sqErr,W,H,par)/init.baseObj; final.W_density = length(find(W>0))/(m*k); final.H_density = length(find(H>0))/(n*k); if par.verbose REC.final = final; end REC.finish_time = datestr(now); display(final); end %---------------------------------------------------------------------------- % Implementation of methods %---------------------------------------------------------------------------- % 'anls_bpp' : ANLS with Block Principal Pivoting Method % See nnlsm_blockpivot.m for reference and details. function [W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par) H = zeros(size(H)); ver.turnZr_W = 0; ver.turnZr_H = 0; ver.turnNz_W = 0; ver.turnNz_H = 0; ver.numChol_W = 0; ver.numChol_H = 0; ver.numEq_W = 0; ver.numEq_H = 0; ver.suc_W = 0; ver.suc_H = 0; val(1).WtA = W'*A; val.WtW = W'*W; end function [W,H,gradW,gradH,val] = anls_bpp_iterSolver(A,W,H,iter,par,val) WtW_reg = applyReg(val.WtW,par,par.reg_h); [H,temp,suc_H,numChol_H,numEq_H] = nnlsm_blockpivot(WtW_reg,val.WtA,1,H); HHt_reg = applyReg(H*H',par,par.reg_w); [W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_blockpivot(HHt_reg,H*A',1,W'); W = W'; val.WtA = W'*A; val.WtW = W'*W; if par.track_grad gradW = gradW'; gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par); else gradW = 0;gradH =0; end val(1).numChol_W = numChol_W; val.numChol_H = numChol_H; val.numEq_W = numEq_W; val.numEq_H = numEq_H; val.suc_W = suc_W; val.suc_H = suc_H; end function [ver] = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H) if par.track_prev ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k); ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k); ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k); ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k); end ver.numChol_W = val.numChol_W; ver.numChol_H = val.numChol_H; ver.numEq_W = val.numEq_W; ver.numEq_H = val.numEq_H; ver.suc_W = val.suc_W; ver.suc_H = val.suc_H; end % 'anls_asgivens': ANLS with Active Set Method and Givens Updating % See nnls1_asgivens.m for reference and details. function [W,H,par,val,ver] = anls_asgivens_initializer(A,W,H,par) H = zeros(size(H)); ver.turnZr_W = 0; ver.turnZr_H = 0; ver.turnNz_W = 0; ver.turnNz_H = 0; ver.numChol_W = 0; ver.numChol_H = 0; ver.suc_W = 0; ver.suc_H = 0; val(1).WtA = W'*A; val.WtW = W'*W; end function [W,H,gradW,gradH,val] = anls_asgivens_iterSolver(A,W,H,iter,par,val) WtW_reg = applyReg(val.WtW,par,par.reg_h); ow = 0; suc_H = zeros(1,size(H,2)); numChol_H = zeros(1,size(H,2)); for i=1:size(H,2) [H(:,i),temp,suc_H(i),numChol_H(i)] = nnls1_asgivens(WtW_reg,val.WtA(:,i),ow,1,H(:,i)); end suc_W = zeros(1,size(W,1)); numChol_W = zeros(1,size(W,1)); HHt_reg = applyReg(H*H',par,par.reg_w); HAt = H*A'; Wt = W'; gradWt = zeros(size(Wt)); for i=1:size(W,1) [Wt(:,i),gradWt(:,i),suc_W(i),numChol_W(i)] = nnls1_asgivens(HHt_reg,HAt(:,i),ow,1,Wt(:,i)); end W = Wt'; val.WtA = W'*A; val.WtW = W'*W; if par.track_grad gradW = gradWt'; gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par); else gradW = 0; gradH =0; end val(1).numChol_W = sum(numChol_W); val.numChol_H = sum(numChol_H); val.suc_W = any(suc_W); val.suc_H = any(suc_H); end function [ver] = anls_asgivens_iterLogger(ver,par,val,W,H,prev_W,prev_H) if par.track_prev ver.turnZr_W = length(find( (prev_W>0) & (W==0) ))/(par.m*par.k); ver.turnZr_H = length(find( (prev_H>0) & (H==0) ))/(par.n*par.k); ver.turnNz_W = length(find( (prev_W==0) & (W>0) ))/(par.m*par.k); ver.turnNz_H = length(find( (prev_H==0) & (H>0) ))/(par.n*par.k); end ver.numChol_W = val.numChol_W; ver.numChol_H = val.numChol_H; ver.suc_W = val.suc_W; ver.suc_H = val.suc_H; end % 'anls_asgroup' : ANLS with Active Set Method and Column Grouping % See nnlsm_activeset.m for reference and details. function [W,H,par,val,ver] = anls_asgroup_initializer(A,W,H,par) [W,H,par,val,ver] = anls_bpp_initializer(A,W,H,par); end function [W,H,gradW,gradH,val] = anls_asgroup_iterSolver(A,W,H,iter,par,val) WtW_reg = applyReg(val.WtW,par,par.reg_h); ow = 0; [H,temp,suc_H,numChol_H,numEq_H] = nnlsm_activeset(WtW_reg,val.WtA,ow,1,H); HHt_reg = applyReg(H*H',par,par.reg_w); [W,gradW,suc_W,numChol_W,numEq_W] = nnlsm_activeset(HHt_reg,H*A',ow,1,W'); W = W'; val.WtA = W'*A; val.WtW = W'*W; if par.track_grad gradW = gradW'; gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par); else gradW = 0; gradH =0; end val(1).numChol_W = numChol_W; val.numChol_H = numChol_H; val.numEq_W = numEq_W; val.numEq_H = numEq_H; val.suc_W = suc_W; val.suc_H = suc_H; end function [ver] = anls_asgroup_iterLogger(ver,par,val,W,H,prev_W,prev_H) ver = anls_bpp_iterLogger(ver,par,val,W,H,prev_W,prev_H); end % 'als': Alternating Least Squares Method % Reference: % Berry, M. and Browne, M. and Langville, A. and Pauca, V. and Plemmons, R. % Algorithms and applications for approximate nonnegative matrix factorization. % Computational Statistics and Data Analysis, 52(1), pp. 155–173 ,2007 function [W,H,par,val,ver] = als_initializer(A,W,H,par) ver = struct([]); val.WtA = W'*A; val.WtW = W'*W; end function [W,H,gradW,gradH,val] = als_iterSolver(A,W,H,iter,par,val) WtW_reg = applyReg(val.WtW,par,par.reg_h); H = WtW_reg\val.WtA; H(H<0)=0; AHt = A*H'; HHt_reg = applyReg(H*H',par,par.reg_w); Wt = HHt_reg\AHt'; W=Wt'; W(W<0)=0; % normalize : necessary for ALS [W,H,weights] = normalize_by_W(W,H); D = diag(weights); val.WtA = W'*A; val.WtW = W'*W; AHt = AHt*D; HHt_reg = D*HHt_reg*D; if par.track_grad gradW = W*HHt_reg - AHt; gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par); else gradH = 0; gradW = 0; end end function [ver] = als_iterLogger(ver,par,val,W,H,prev_W,prev_H) end % 'mu' : Multiplicative Updating Method % Reference: % Lee, D. D. and Seung, H. S. % Algorithms for Non-negative Matrix Factorization. % Advances in Neural Information Processing Systems 13, pp. 556-562, 2001 function [W,H,par,val,ver] = mu_initializer(A,W,H,par) ver = struct([]); val.WtA = W'*A; val.WtW = W'*W; end function [W,H,gradW,gradH,val] = mu_iterSolver(A,W,H,iter,par,val) epsilon = 1e-16; WtW_reg = applyReg(val.WtW,par,par.reg_h); H = H.*val.WtA./(WtW_reg*H + epsilon); HHt_reg = applyReg(H*H',par,par.reg_w); AHt = A*H'; W = W.*AHt./(W*HHt_reg + epsilon); val.WtA = W'*A; val.WtW = W'*W; if par.track_grad gradW = W*HHt_reg - AHt; gradH = getGradientOne(val.WtW,val.WtA,H,par.reg_h,par); else gradH = 0; gradW = 0; end end function [ver] = mu_iterLogger(ver,par,val,W,H,prev_W,prev_H) end % 'hals' : Hierarchical Alternating Least Squares Method % Reference (See Algorithm 2): % Cichocki, A. and Phan, A.H. % Fast local algorithms for large scale nonnegative matrix and tensor factorizations. % IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(3), 708–721 (2009) function [W,H,par,val,ver] = hals_initializer(A,W,H,par) [W,H]=normalize_by_W(W,H); val = struct([]); ver = struct([]); end function [W,H,gradW,gradH,val] = hals_iterSolver(A,W,H,iter,par,val) epsilon = 1e-16; WtA = W'*A; WtW = W'*W; WtW_reg = applyReg(WtW,par,par.reg_h); for i = 1:par.k H(i,:) = max(H(i,:) + WtA(i,:) - WtW_reg(i,:) * H,epsilon); end AHt = A*H'; HHt_reg = applyReg(H*H',par,par.reg_w); for i = 1:par.k W(:,i) = max(W(:,i) * HHt_reg(i,i) + AHt(:,i) - W * HHt_reg(:,i),epsilon); if sum(W(:,i))>0 W(:,i) = W(:,i)/norm(W(:,i)); end end if par.track_grad gradW = W*HHt_reg - AHt; gradH = getGradientOne(W'*W,W'*A,H,par.reg_h,par); else gradH = 0; gradW = 0; end end function [ver] = hals_iterLogger(ver,par,val,W,H,prev_W,prev_H) end %---------------------------------------------------------------------------------------------- % Utility Functions %---------------------------------------------------------------------------------------------- % This function prepares information about execution for a experiment purpose function ver = prepareHIS(A,W,H,prev_W,prev_H,init,par,iter,elapsed,gradW,gradH) ver.iter = iter; ver.elapsed = elapsed; sqErr = getSquaredError(A,W,H,init); ver.rel_Error = sqrt(sqErr)/init.norm_A; ver.rel_Obj = getObj(sqErr,W,H,par)/init.baseObj; ver.norm_W = norm(W,'fro'); ver.norm_H = norm(H,'fro'); if par.track_prev ver.rel_Change_W = norm(W-prev_W,'fro')/init.norm_W; ver.rel_Change_H = norm(H-prev_H,'fro')/init.norm_H; end if par.track_grad ver.rel_NrPGrad_W = norm(projGradient(W,gradW),'fro')/init.normGr_W; ver.rel_NrPGrad_H = norm(projGradient(H,gradH),'fro')/init.normGr_H; ver.SC_NM_PGRAD = getStopCriterion(1,A,W,H,par,gradW,gradH)/init.SC_NM_PGRAD; ver.SC_PGRAD = getStopCriterion(2,A,W,H,par,gradW,gradH)/init.SC_PGRAD; ver.SC_DELTA = getStopCriterion(3,A,W,H,par,gradW,gradH)/init.SC_DELTA; end ver.density_W = length(find(W>0))/(par.m*par.k); ver.density_H = length(find(H>0))/(par.n*par.k); end % Execution information is collected in HIS variable function HIS = saveHIS(idx,ver,HIS) fldnames = fieldnames(ver); for i=1:length(fldnames) flname = fldnames{i}; HIS.(flname)(idx) = ver.(flname); end end %------------------------------------------------------------------------------- function retVal = getInitCriterion(stopRule,A,W,H,par,gradW,gradH) % STOPPING_RULE : 1 - Normalized proj. gradient % 2 - Proj. gradient % 3 - Delta by H. Kim % 0 - None (want to stop by MAX_ITER or MAX_TIME) if nargin~=7 [gradW,gradH] = getGradient(A,W,H,par); end [m,k]=size(W);, [k,n]=size(H);, numAll=(m*k)+(k*n); switch stopRule case 1 retVal = norm([gradW(:); gradH(:)])/numAll; case 2 retVal = norm([gradW(:); gradH(:)]); case 3 retVal = getStopCriterion(3,A,W,H,par,gradW,gradH); case 0 retVal = 1; end end %------------------------------------------------------------------------------- function retVal = getStopCriterion(stopRule,A,W,H,par,gradW,gradH) % STOPPING_RULE : 1 - Normalized proj. gradient % 2 - Proj. gradient % 3 - Delta by H. Kim % 0 - None (want to stop by MAX_ITER or MAX_TIME) if nargin~=7 [gradW,gradH] = getGradient(A,W,H,par); end switch stopRule case 1 pGradW = projGradient(W,gradW); pGradH = projGradient(H,gradH); pGrad = [pGradW(:); pGradH(:)]; retVal = norm(pGrad)/length(pGrad); case 2 pGradW = projGradient(W,gradW); pGradH = projGradient(H,gradH); pGrad = [pGradW(:); pGradH(:)]; retVal = norm(pGrad); case 3 resmat=min(H,gradH); resvec=resmat(:); resmat=min(W,gradW); resvec=[resvec; resmat(:)]; deltao=norm(resvec,1); %L1-norm num_notconv=length(find(abs(resvec)>0)); retVal=deltao/num_notconv; case 0 retVal = 1e100; end end %------------------------------------------------------------------------------- function sqErr = getSquaredError(A,W,H,init) sqErr = max((init.norm_A)^2 - 2*trace(H*(A'*W))+trace((W'*W)*(H*H')),0 ); end function retVal = getObj(sqErr,W,H,par) retVal = 0.5 * sqErr; retVal = retVal + par.reg_w(1) * sum(sum(W.*W)); retVal = retVal + par.reg_w(2) * sum(sum(W,2).^2); retVal = retVal + par.reg_h(1) * sum(sum(H.*H)); retVal = retVal + par.reg_h(2) * sum(sum(H,1).^2); end function AtA = applyReg(AtA,par,reg) % Frobenius norm regularization if reg(1) > 0 AtA = AtA + 2 * reg(1) * eye(par.k); end % L1-norm regularization if reg(2) > 0 AtA = AtA + 2 * reg(2) * ones(par.k,par.k); end end function [grad] = modifyGradient(grad,X,reg,par) if reg(1) > 0 grad = grad + 2 * reg(1) * X; end if reg(2) > 0 grad = grad + 2 * reg(2) * ones(par.k,par.k) * X; end end function [grad] = getGradientOne(AtA,AtB,X,reg,par) grad = AtA*X - AtB; grad = modifyGradient(grad,X,reg,par); end function [gradW,gradH] = getGradient(A,W,H,par) HHt = H*H'; HHt_reg = applyReg(HHt,par,par.reg_w); WtW = W'*W; WtW_reg = applyReg(WtW,par,par.reg_h); gradW = W*HHt_reg - A*H'; gradH = WtW_reg*H - W'*A; end %------------------------------------------------------------------------------- function pGradF = projGradient(F,gradF) pGradF = gradF(gradF<0|F>0); end %------------------------------------------------------------------------------- function [W,H,weights] = normalize_by_W(W,H) norm2=sqrt(sum(W.^2,1)); toNormalize = norm2>0; if any(toNormalize) W(:,toNormalize) = W(:,toNormalize)./repmat(norm2(toNormalize),size(W,1),1); H(toNormalize,:) = H(toNormalize,:).*repmat(norm2(toNormalize)',1,size(H,2)); end weights = ones(size(norm2)); weights(toNormalize) = norm2(toNormalize); end
github
locatelf/cone-greedy-master
nnlsm_blockpivot.m
.m
cone-greedy-master/TensorFactorization/nnlsm_blockpivot.m
4,542
utf_8
376a788b205edbb0344ec40fc5afbf9f
% Nonnegativity Constrained Least Squares with Multiple Righthand Sides % using Block Principal Pivoting method % % This software solves the following problem: given A and B, find X such that % minimize || AX-B ||_F^2 where X>=0 elementwise. % % Reference: % Jingu Kim and Haesun Park. Fast Nonnegative Matrix Factorization: An Activeset-like Method and Comparisons, % SIAM Journal on Scientific Computing, 33(6), pp. 3261-3281, 2011. % % Written by Jingu Kim ([email protected]) % School of Computational Science and Engineering, % Georgia Institute of Technology % % Note that this algorithm assumes that the input matrix A has full column rank. % This code comes with no guarantee or warranty of any kind. % Please send bug reports, comments, or questions to Jingu Kim. % % Modified Feb-20-2009 % Modified Mar-13-2011: numChol and numEq % % <Inputs> % A : input matrix (m x n) (by default), or A'*A (n x n) if isInputProd==1 % B : input matrix (m x k) (by default), or A'*B (n x k) if isInputProd==1 % isInputProd : (optional, default:0) if turned on, use (A'*A,A'*B) as input instead of (A,B) % init : (optional) initial value for X % <Outputs> % X : the solution (n x k) % Y : A'*A*X - A'*B where X is the solution (n x k) % success : 0 for success, 1 for failure. % Failure could only happen on a numericall very ill-conditioned problem. % numChol : number of unique cholesky decompositions done % numEqs : number of systems of linear equations solved function [ X,Y,success,numChol,numEq ] = nnlsm_blockpivot( A, B, isInputProd, init ) if nargin<3, isInputProd=0;, end if isInputProd AtA = A;, AtB = B; else AtA = A'*A;, AtB = A'*B; end if size(AtA,1)==1 X = AtB/AtA; X(X<0) = 0; Y = AtA*X - AtB; numChol = 1; numEq = size(AtB,2); success = 1; return end [n,k]=size(AtB); MAX_BIG_ITER = n*5; % set initial feasible solution X = zeros(n,k); if nargin<4 Y = - AtB; PassiveSet = false(n,k); numChol = 0; numEq = 0; else PassiveSet = (init > 0); [ X,numChol,numEq] = normalEqComb(AtA,AtB,PassiveSet); Y = AtA * X - AtB; end % parameters pbar = 3; P = zeros(1,k);, P(:) = pbar; Ninf = zeros(1,k);, Ninf(:) = n+1; NonOptSet = (Y < 0) & ~PassiveSet; InfeaSet = (X < 0) & PassiveSet; NotGood = sum(NonOptSet)+sum(InfeaSet); NotOptCols = NotGood > 0; bigIter = 0;, success=0; while(~isempty(find(NotOptCols))) bigIter = bigIter+1; if ((MAX_BIG_ITER >0) && (bigIter > MAX_BIG_ITER)) % set max_iter for ill-conditioned (numerically unstable) case success = 1;, break end Cols1 = NotOptCols & (NotGood < Ninf); Cols2 = NotOptCols & (NotGood >= Ninf) & (P >= 1); Cols3Ix = find(NotOptCols & ~Cols1 & ~Cols2); if ~isempty(find(Cols1)) P(Cols1) = pbar;,Ninf(Cols1) = NotGood(Cols1); PassiveSet(NonOptSet & repmat(Cols1,n,1)) = true; PassiveSet(InfeaSet & repmat(Cols1,n,1)) = false; end if ~isempty(find(Cols2)) P(Cols2) = P(Cols2)-1; PassiveSet(NonOptSet & repmat(Cols2,n,1)) = true; PassiveSet(InfeaSet & repmat(Cols2,n,1)) = false; end if ~isempty(Cols3Ix) for i=1:length(Cols3Ix) Ix = Cols3Ix(i); toChange = max(find( NonOptSet(:,Ix)|InfeaSet(:,Ix) )); if PassiveSet(toChange,Ix) PassiveSet(toChange,Ix)=false; else PassiveSet(toChange,Ix)=true; end end end [ X(:,NotOptCols),tempChol,tempEq ] = normalEqComb(AtA,AtB(:,NotOptCols),PassiveSet(:,NotOptCols)); numChol = numChol + tempChol; numEq = numEq + tempEq; X(abs(X)<1e-12) = 0; % One can uncomment this line for numerical stability. Y(:,NotOptCols) = AtA * X(:,NotOptCols) - AtB(:,NotOptCols); Y(abs(Y)<1e-12) = 0; % One can uncomment this line for numerical stability. % check optimality NotOptMask = repmat(NotOptCols,n,1); NonOptSet = NotOptMask & (Y < 0) & ~PassiveSet; InfeaSet = NotOptMask & (X < 0) & PassiveSet; NotGood = sum(NonOptSet)+sum(InfeaSet); NotOptCols = NotGood > 0; end end
github
locatelf/cone-greedy-master
nnlsm_activeset.m
.m
cone-greedy-master/TensorFactorization/nnlsm_activeset.m
5,185
utf_8
96f73fcf70f7083cd2d2a9bd9f71767a
% Nonnegativity Constrained Least Squares with Multiple Righthand Sides % using Active Set method % % This software solves the following problem: given A and B, find X such that % minimize || AX-B ||_F^2 where X>=0 elementwise. % % Reference: % Charles L. Lawson and Richard J. Hanson, Solving Least Squares Problems, % Society for Industrial and Applied Mathematics, 1995 % M. H. Van Benthem and M. R. Keenan, % Fast Algorithm for the Solution of Large-scale Non-negativity-constrained Least Squares Problems, % J. Chemometrics 2004; 18: 441-450 % % Written by Jingu Kim ([email protected]) % School of Computational Science and Engineering, % Georgia Institute of Technology % % Please send bug reports, comments, or questions to Jingu Kim. % % Updated Feb-20-2010 % Updated Mar-20-2011: numChol, numEq % % <Inputs> % A : input matrix (m x n) (by default), or A'*A (n x n) if isInputProd==1 % B : input matrix (m x k) (by default), or A'*B (n x k) if isInputProd==1 % overwrite : (optional, default:0) if turned on, unconstrained least squares solution is computed in the beginning % isInputProd : (optional, default:0) if turned on, use (A'*A,A'*B) as input instead of (A,B) % init : (optional) initial value for X % <Outputs> % X : the solution (n x k) % Y : A'*A*X - A'*B where X is the solution (n x k) % iter : number of systems of linear equations solved % success : 0 for success, 1 for failure. % Failure could only happen on a numericall very ill-conditioned problem. function [ X,Y,success,numChol,numEq ] = nnlsm_activeset( A, B, overwrite, isInputProd, init) if nargin<3, overwrite=0;, end if nargin<4, isInputProd=0;, end if isInputProd AtA=A;,AtB=B; else AtA=A'*A;, AtB=A'*B; end if size(AtA,1)==1 X = AtB/AtA; X(X<0) = 0; Y = AtA*X - AtB; numChol = 1; numEq = size(AtB,2); success = 1; return end [n,k]=size(AtB); MAX_ITER = n*5; % set initial feasible solution if overwrite [X,numChol,numEq] = normalEqComb(AtA,AtB); PassSet = (X > 0); NotOptSet = any(X<0); elseif nargin>=5 X = init; X(X<0)=0; PassSet = (X > 0); NotOptSet = true(1,k); numChol = 0; numEq = 0; else X = zeros(n,k); PassSet = false(n,k); NotOptSet = true(1,k); numChol = 0; numEq = 0; end Y = zeros(n,k); Y(:,~NotOptSet)=AtA*X(:,~NotOptSet) - AtB(:,~NotOptSet); NotOptCols = find(NotOptSet); bigIter = 0;, success=0; while(~isempty(NotOptCols)) bigIter = bigIter+1; if ((MAX_ITER >0) && (bigIter > MAX_ITER)) % set max_iter for ill-conditioned (numerically unstable) case success = 1;, break end % find unconstrained LS solution for the passive set [ Z,tempChol,tempEq ] = normalEqComb(AtA,AtB(:,NotOptCols),PassSet(:,NotOptCols)); numChol = numChol + tempChol; numEq = numEq + tempEq; Z(abs(Z)<1e-12) = 0; % One can uncomment this line for numerical stability. InfeaSubSet = Z < 0; InfeaSubCols = find(any(InfeaSubSet)); FeaSubCols = find(all(~InfeaSubSet)); if ~isempty(InfeaSubCols) % for infeasible cols ZInfea = Z(:,InfeaSubCols); InfeaCols = NotOptCols(InfeaSubCols); Alpha = zeros(n,length(InfeaSubCols));, Alpha(:) = Inf; [i,j] = find(InfeaSubSet(:,InfeaSubCols)); InfeaSubIx = sub2ind(size(Alpha),i,j); if length(InfeaCols) == 1 InfeaIx = sub2ind([n,k],i,InfeaCols * ones(length(j),1)); else InfeaIx = sub2ind([n,k],i,InfeaCols(j)'); end Alpha(InfeaSubIx) = X(InfeaIx)./(X(InfeaIx)-ZInfea(InfeaSubIx)); [minVal,minIx] = min(Alpha); Alpha(:,:) = repmat(minVal,n,1); X(:,InfeaCols) = X(:,InfeaCols)+Alpha.*(ZInfea-X(:,InfeaCols)); IxToActive = sub2ind([n,k],minIx,InfeaCols); X(IxToActive) = 0; PassSet(IxToActive) = false; end if ~isempty(FeaSubCols) % for feasible cols FeaCols = NotOptCols(FeaSubCols); X(:,FeaCols) = Z(:,FeaSubCols); Y(:,FeaCols) = AtA * X(:,FeaCols) - AtB(:,FeaCols); Y( abs(Y)<1e-12 ) = 0; % One can uncomment this line for numerical stability. NotOptSubSet = (Y(:,FeaCols) < 0) & ~PassSet(:,FeaCols); NewOptCols = FeaCols(all(~NotOptSubSet)); UpdateNotOptCols = FeaCols(any(NotOptSubSet)); if ~isempty(UpdateNotOptCols) [minVal,minIx] = min(Y(:,UpdateNotOptCols).*~PassSet(:,UpdateNotOptCols)); PassSet(sub2ind([n,k],minIx,UpdateNotOptCols)) = true; end NotOptSet(NewOptCols) = false; NotOptCols = find(NotOptSet); end end end
github
locatelf/cone-greedy-master
ncp.m
.m
cone-greedy-master/TensorFactorization/ncp.m
16,643
utf_8
688c72175fc36a416b097532b15c08b8
% Nonnegative Tensor Factorization (Canonical Decomposition / PARAFAC) % % Written by Jingu Kim ([email protected]) % School of Computational Science and Engineering, % Georgia Institute of Technology % % This software implements nonnegativity-constrained low-rank approximation of tensors in PARAFAC model. % Assuming that a k-way tensor X and target rank r are given, this software seeks F1, ... , Fk % by solving the following problem: % % minimize || X- sum_(j=1)^r (F1_j o F2_j o ... o Fk_j) ||_F^2 + G(F1, ... , Fk) + H(F1, ..., Fk) % where % G(F1, ... , Fk) = sum_(i=1)^k ( alpha_i * ||Fi||_F^2 ), % H(F1, ... , Fk) = sum_(i=1)^k ( beta_i sum_(j=1)^n || Fi_j ||_1^2 ). % such that % Fi >= 0 for all i. % % To use this software, it is necessary to first install MATLAB Tensor Toolbox % by Brett W. Bader and Tamara G. Kolda, available at http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/. % The latest version that was tested with this software is Version 2.4, March 2010. % Refer to the help manual of the toolbox for installation and basic usage. % % Reference: % Jingu Kim and Haesun Park. % Fast Nonnegative Tensor Factorization with an Active-set-like Method. % In High-Performance Scientific Computing: Algorithms and Applications, Springer, 2012, pp. 311-326. % % Please send bug reports, comments, or questions to Jingu Kim. % This code comes with no guarantee or warranty of any kind. % % Last modified 03/26/2012 % % <Inputs> % X : Input data tensor. X is a 'tensor' object of tensor toolbox. % r : Target low-rank % % (Below are optional arguments: can be set by providing name-value pairs) % % METHOD : Algorithm for solving NMF. One of the following values: % 'anls_bpp' 'anls_asgroup' 'hals' 'mu' % See above paper (and references therein) for the details of these algorithms. % Default is 'anls_bpp'. % TOL : Stopping tolerance. Default is 1e-4. If you want to obtain a more accurate solution, % decrease TOL and increase MAX_ITER at the same time. % MIN_ITER : Minimum number of iterations. Default is 20. % MAX_ITER : Maximum number of iterations. Default is 200. % : A cell array that contains initial values for factors Fi. % See examples to learn how to set. % VERBOSE : 0 (default) - No debugging information is collected. % 1 (debugging/experimental purpose) - History of computation is returned. See 'REC' variable. % 2 (debugging/experimental purpose) - History of computation is additionally printed on screen. % <Outputs> % F : a 'ktensor' object that represent a factorized form of a tensor. See tensor toolbox for more info. % iter : Number of iterations % REC : (debugging/experimental purpose) Auxiliary information about the execution % <Usage Examples> % F = ncpp(X,5); % F = ncp(X,10,'tol',1e-3); % F = ncp(X,10,'tol',1e-3,'verbose',2); % F = ncp(X,7,'init',Finit,'tol',1e-5,'verbose',2); function [F,iter,REC]=ncp(X,r,varargin) % set parameters params = inputParser; params.addParamValue('method' ,'anls_bpp' ,@(x) ischar(x) ); params.addParamValue('tol' ,1e-4 ,@(x) isscalar(x) & x > 0 ); params.addParamValue('stop_criterion' ,1 ,@(x) isscalar(x) & x >= 0); params.addParamValue('min_iter' ,20 ,@(x) isscalar(x) & x > 0); params.addParamValue('max_iter' ,200 ,@(x) isscalar(x) & x > 0 ); params.addParamValue('max_time' ,1e6 ,@(x) isscalar(x) & x > 0); params.addParamValue('init' ,cell(0) ,@(x) iscell(x) ); params.addParamValue('verbose' ,0 ,@(x) isscalar(x) & x >= 0 ); params.addParamValue('orderWays',[]); params.parse(varargin{:}); % copy from params object par = params.Results; par.nWay = ndims(X); par.r = r; par.size = size(X); if isempty(par.orderWays) par.orderWays = [1:par.nWay]; end % set initial values if ~isempty(par.init) F_cell = par.init; par.init_type = 'User provided'; par.init = cell(0); else Finit = cell(par.nWay,1); for i=1:par.nWay Finit{i}=rand(size(X,i),r); end F_cell = Finit; par.init_type = 'Randomly generated'; end % This variable is for analysis/debugging, so it does not affect the output (W,H) of this program REC = struct([]); tPrev = cputime; REC(1).start_time = datestr(now); grad = getGradient(X,F_cell,par); ver= struct([]); clear('init'); init.nr_X = norm(X); init.nr_grad_all = 0; for i=1:par.nWay this_value = norm(grad{i},'fro'); init.(['nr_grad_',num2str(i)]) = this_value; init.nr_grad_all = init.nr_grad_all + this_value^2; end init.nr_grad_all = sqrt(init.nr_grad_all); REC(1).init = init; initializer= str2func([par.method,'_initializer']); iterSolver = str2func([par.method,'_iterSolver']); iterLogger = str2func([par.method,'_iterLogger']); % Collect initial information for analysis/debugging if par.verbose tTemp = cputime; prev_F_cell = F_cell; pGrad = getProjGradient(X,F_cell,par); ver = prepareHIS(ver,X,F_cell,ktensor(F_cell),prev_F_cell,pGrad,init,par,0,0); tPrev = tPrev+(cputime-tTemp); end % Execute initializer [F_cell,par,val,ver] = feval(initializer,X,F_cell,par,ver); if par.verbose & ~isempty(ver) tTemp = cputime; if par.verbose == 2, display(ver);, end REC.HIS = ver; tPrev = tPrev+(cputime-tTemp); end REC(1).par = par; tTemp = cputime; display(par); tPrev = tPrev+(cputime-tTemp); tStart = tPrev;, tTotal = 0; if (par.stop_criterion == 2) && ~isfield(ver,'rel_Error') F_kten = ktensor(F_cell); ver(1).rel_Error = getRelError(X,ktensor(F_cell),init); end % main iterations for iter=1:par.max_iter; cntu = 1; [F_cell,val] = feval(iterSolver,X,F_cell,iter,par,val); pGrad = getProjGradient(X,F_cell,par); F_kten = ktensor(F_cell); prev_Ver = ver; ver= struct([]); if (iter >= par.min_iter) if (par.verbose && (tTotal > par.max_time)) || (~par.verbose && ((cputime-tStart)>par.max_time)) cntu = 0; else switch par.stop_criterion case 1 ver(1).SC_PGRAD = getStopCriterion(pGrad,init,par); if (ver.SC_PGRAD<par.tol) cntu = 0; end case 2 ver(1).rel_Error = getRelError(X,F_kten,init); ver.SC_DIFF = abs(prev_Ver.rel_Error - ver.rel_Error); if (ver.SC_DIFF<par.tol) cntu = 0; end case 99 ver(1).rel_Error = getRelError(X,F_kten,init); if ver(1).rel_Error< 1 cntu = 0; end end end end % Collect information for analysis/debugging if par.verbose elapsed = cputime-tPrev; tTotal = tTotal + elapsed; ver = prepareHIS(ver,X,F_cell,F_kten,prev_F_cell,pGrad,init,par,iter,elapsed); ver = feval(iterLogger,ver,par,val,F_cell,prev_F_cell); if ~isfield(ver,'SC_PGRAD') ver.SC_PGRAD = getStopCriterion(pGrad,init,par); end if ~isfield(ver,'SC_DIFF') ver.SC_DIFF = abs(prev_Ver.rel_Error - ver.rel_Error); end REC.HIS = saveHIS(iter+1,ver,REC.HIS); prev_F_cell = F_cell; if par.verbose == 2, display(ver);, end tPrev = cputime; end if cntu==0, break; end end F = arrange(F_kten); % print finishing information final.iterations = iter; if par.verbose final.elapsed_sec = tTotal; else final.elapsed_sec = cputime-tStart; end for i=1:par.nWay final.(['f_density_',num2str(i)]) = length(find(F.U{i}>0))/(size(F.U{i},1)*size(F.U{i},2)); end final.rel_Error = getRelError(X,F_kten,init); REC.final = final; REC.finish_time = datestr(now); display(final); end %---------------------------------------------------------------------------------------------- % Utility Functions %---------------------------------------------------------------------------------------------- function ver = prepareHIS(ver,X,F,F_kten,prev_F,pGrad,init,par,iter,elapsed) ver(1).iter = iter; ver.elapsed = elapsed; if ~isfield(ver,'rel_Error') ver.rel_Error = getRelError(X,F_kten,init); end for i=1:par.nWay ver.(['f_change_',num2str(i)]) = norm(F{i}-prev_F{i}); ver.(['f_density_',num2str(i)]) = length(find(F{i}>0))/(size(F{i},1)*size(F{i},2)); ver.(['rel_nr_pgrad_',num2str(i)]) = norm(pGrad{i},'fro')/init.(['nr_grad_',num2str(i)]); end end function HIS = saveHIS(idx,ver,HIS) fldnames = fieldnames(ver); for i=1:length(fldnames) flname = fldnames{i}; HIS.(flname)(idx) = ver.(flname); end end function rel_Error = getRelError(X,F_kten,init) rel_Error = sqrt(max(init.nr_X^2 + norm(F_kten)^2 - 2 * innerprod(X,F_kten),0))/init.nr_X; end function [grad] = getGradient(X,F,par) grad = cell(par.nWay,1); for k=1:par.nWay ways = 1:par.nWay; ways(k)=''; XF = mttkrp(X,F,k); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* (F{i}'*F{i}); end grad{k} = F{k} * FF - XF; end end function [pGrad] = getProjGradient(X,F,par) pGrad = cell(par.nWay,1); for k=1:par.nWay ways = 1:par.nWay; ways(k)=''; XF = mttkrp(X,F,k); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* (F{i}'*F{i}); end grad = F{k} * FF - XF; pGrad{k} = grad(grad<0|F{k}>0); end end function retVal = getStopCriterion(pGrad,init,par) retVal = 0; for i=1:par.nWay retVal = retVal + (norm(pGrad{i},'fro'))^2; end retVal = sqrt(retVal)/init.nr_grad_all; end % 'anls_bpp' : ANLS with Block Principal Pivoting Method % Reference: % Jingu Kim and Haesun Park. % Fast Nonnegative Tensor Factorization with an Active-set-like Method. % In High-Performance Scientific Computing: Algorithms and Applications, % Springer, 2012, pp. 311-326. function [F,par,val,ver] = anls_bpp_initializer(X,F,par,ver) F{par.orderWays(1)} = zeros(size(F{par.orderWays(1)})); for k=1:par.nWay ver(1).(['turnZr_',num2str(k)]) = 0; ver.(['turnNz_',num2str(k)]) = 0; ver.(['numChol_',num2str(k)]) = 0; ver.(['numEq_',num2str(k)]) = 0; ver.(['suc_',num2str(k)]) = 0; end val.FF = cell(par.nWay,1); for k=1:par.nWay val.FF{k} = F{k}'*F{k}; end end function [F,val] = anls_bpp_iterSolver(X,F,iter,par,val) % solve NNLS problems for each factor for k=1:par.nWay curWay = par.orderWays(k); ways = 1:par.nWay; ways(curWay)=''; XF = mttkrp(X,F,curWay); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* val.FF{i}; end [Fthis,temp,sucThis,numCholThis,numEqThis] = nnlsm_blockpivot(FF,XF',1,F{curWay}'); F{curWay}=Fthis'; val(1).FF{curWay} = F{curWay}'*F{curWay}; val.(['numChol_',num2str(k)]) = numCholThis; val.(['numEq_',num2str(k)]) = numEqThis; val.(['suc_',num2str(k)]) = sucThis; end end function [ver] = anls_bpp_iterLogger(ver,par,val,F,prev_F) for k=1:par.nWay ver.(['turnZr_',num2str(k)]) = length(find( (prev_F{k}>0) & (F{k}==0) ))/(size(F{k},1)*size(F{k},2)); ver.(['turnNz_',num2str(k)]) = length(find( (prev_F{k}==0) & (F{k}>0) ))/(size(F{k},1)*size(F{k},2)); ver.(['numChol_',num2str(k)]) = val.(['numChol_',num2str(k)]); ver.(['numEq_',num2str(k)]) = val.(['numEq_',num2str(k)]); ver.(['suc_',num2str(k)]) = val.(['suc_',num2str(k)]); end end % 'anls_asgroup' : ANLS with Active Set Method and Column Grouping % Reference: % Kim, H. and Park, H. and Elden, L. % Non-negative Tensor Factorization Based on Alternating Large-scale Non-negativity-constrained Least Squares. % In Proceedings of IEEE 7th International Conference on Bioinformatics and Bioengineering % (BIBE07), 2, pp. 1147-1151,2007 function [F,par,val,ver] = anls_asgroup_initializer(X,F,par,ver) [F,par,val,ver] = anls_bpp_initializer(X,F,par,ver); end function [F,val] = anls_asgroup_iterSolver(X,F,iter,par,val) % solve NNLS problems for each factor for k=1:par.nWay curWay = par.orderWays(k); ways = 1:par.nWay; ways(curWay)=''; XF = mttkrp(X,F,curWay); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* val.FF{i}; end ow = 0; [Fthis,temp,sucThis,numCholThis,numEqThis] = nnlsm_activeset(FF,XF',ow,1,F{curWay}'); F{curWay}=Fthis'; val(1).FF{curWay} = F{curWay}'*F{curWay}; val.(['numChol_',num2str(k)]) = numCholThis; val.(['numEq_',num2str(k)]) = numEqThis; val.(['suc_',num2str(k)]) = sucThis; end end function [ver] = anls_asgroup_iterLogger(ver,par,val,F,prev_F) ver = anls_bpp_iterLogger(ver,par,val,F,prev_F); end % 'mu' : Multiplicative Updating Method % Reference: % M. Welling and M. Weber. % Positive tensor factorization. % Pattern Recognition Letters, 22(12), pp. 1255???1261, 2001. function [F,par,val,ver] = mu_initializer(X,F,par,ver) val.FF = cell(par.nWay,1); for k=1:par.nWay val.FF{k} = F{k}'*F{k}; end end function [F,val] = mu_iterSolver(X,F,iter,par,val) epsilon = 1e-16; for k=1:par.nWay curWay = par.orderWays(k); ways = 1:par.nWay; ways(curWay)=''; % Calculate Fnew = X_(n) * khatrirao(all U except n, 'r'). XF = mttkrp(X,F,curWay); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* val.FF{i}; end F{curWay} = F{curWay}.*XF./(F{curWay}*FF+epsilon); val(1).FF{curWay} = F{curWay}'*F{curWay}; end end function [ver] = mu_iterLogger(ver,par,val,F,prev_F) end % 'hals' : Hierarchical Alternating Least Squares Method % Reference: % Cichocki, A. and Phan, A.H. % Fast local algorithms for large scale nonnegative matrix and tensor factorizations. % IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(3), 708???721 (2009) function [F,par,val,ver] = hals_initializer(X,F,par,ver) % normalize d = ones(1,par.r); for k=1:par.nWay-1 curWay = par.orderWays(k); norm2 = sqrt(sum(F{curWay}.^2,1)); F{curWay} = F{curWay}./repmat(norm2,size(F{curWay},1),1); d = d .* norm2; end curWay = par.orderWays(end); F{curWay} = F{curWay}.*repmat(d,size(F{curWay},1),1); val.FF = cell(par.nWay,1); for k=1:par.nWay val.FF{k} = F{k}'*F{k}; end end function [F,val] = hals_iterSolver(X,F,iter,par,val) epsilon = 1e-16; d = sum(F{par.orderWays(end)}.^2,1); for k=1:par.nWay curWay = par.orderWays(k); ways = 1:par.nWay; ways(curWay)=''; % Calculate Fnew = X_(n) * khatrirao(all U except n, 'r'). XF = mttkrp(X,F,curWay); % Compute the inner-product matrix FF = ones(par.r,par.r); for i = ways FF = FF .* val.FF{i}; end if k<par.nWay for j = 1:par.r F{curWay}(:,j) = max( d(j) * F{curWay}(:,j) + XF(:,j) - F{curWay} * FF(:,j),epsilon); F{curWay}(:,j) = F{curWay}(:,j) ./ norm(F{curWay}(:,j)); end else for j = 1:par.r F{curWay}(:,j) = max( F{curWay}(:,j) + XF(:,j) - F{curWay} * FF(:,j),epsilon); end end val(1).FF{curWay} = F{curWay}'*F{curWay}; end end function [ver] = hals_iterLogger(ver,par,val,F,prev_F) end
github
locatelf/cone-greedy-master
lsqnonnegMy.m
.m
cone-greedy-master/NNMP/lsqnonnegMy.m
8,296
utf_8
fda5216b3d7550977d2efa475e8ca118
function [x,allres,resnorm,resid,exitflag,output,lambda] = lsqnonnegMy(C,d,options,varargin) %LSQNONNEG Linear least squares with nonnegativity constraints. % X = LSQNONNEG(C,d) returns the vector X that minimizes NORM(d-C*X) % subject to X >= 0. C and d must be real. % % X = LSQNONNEG(C,d,OPTIONS) minimizes with the default optimization % parameters replaced by values in the structure OPTIONS, an argument % created with the OPTIMSET function. See OPTIMSET for details. Used % options are Display and TolX. (A default tolerance TolX of % 10*MAX(SIZE(C))*NORM(C,1)*EPS is used.) % % X = LSQNONNEG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a % structure with the matrix 'C' in PROBLEM.C, the vector 'd' in % PROBLEM.d, the options structure in PROBLEM.options, and solver name % 'lsqnonneg' in PROBLEM.solver. % % [X,RESNORM] = LSQNONNEG(...) also returns the value of the squared 2-norm of % the residual: norm(d-C*X)^2. % % [X,RESNORM,RESIDUAL] = LSQNONNEG(...) also returns the value of the % residual: d-C*X. % % [X,RESNORM,RESIDUAL,EXITFLAG] = LSQNONNEG(...) returns an EXITFLAG that % describes the exit condition. Possible values of EXITFLAG and the % corresponding exit conditions are % % 1 LSQNONNEG converged with a solution X. % 0 Iteration count was exceeded. Increasing the tolerance % (OPTIONS.TolX) may lead to a solution. % % [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT] = LSQNONNEG(...) returns a structure % OUTPUT with the number of steps taken in OUTPUT.iterations, the type of % algorithm used in OUTPUT.algorithm, and the exit message in OUTPUT.message. % % [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = LSQNONNEG(...) returns % the dual vector LAMBDA where LAMBDA(i) <= 0 when X(i) is (approximately) 0 % and LAMBDA(i) is (approximately) 0 when X(i) > 0. % % See also LSCOV, SLASH. % Copyright 1984-2016 The MathWorks, Inc. % Reference: % Lawson and Hanson, "Solving Least Squares Problems", Prentice-Hall, 1974. % Check if more inputs have been passed. In that case error. if nargin > 4 error('MATLAB:lsqnonneg:TooManyInputs',... getString(message('MATLAB:optimfun:lsqnonneg:TooManyInputs'))); end defaultopt = struct('Display','notify','TolX','10*eps*norm(C,1)*length(C)'); % If just 'defaults' passed in, return the default options in X if nargin == 1 && nargout <= 1 && isequal(C,'defaults') x = defaultopt; return end if nargin < 3 options = []; end if nargin == 1 % Detect problem structure input if isa(C,'struct') [C,d,options] = separateOptimStruct(C); else % Single input and non-structure. error('MATLAB:lsqnonneg:InputArg',... getString(message('MATLAB:optimfun:lsqnonneg:InputArg'))); end end if nargin == 0 error('MATLAB:lsqnonneg:NotEnoughInputs',... getString(message('MATLAB:optimfun:lsqnonneg:NotEnoughInputs'))); end if ~isreal(C) || ~isreal(d) error('MATLAB:lsqnonneg:ComplexCorD',... getString(message('MATLAB:optimfun:lsqnonneg:ComplexCorD'))); end % Check for non-double inputs if ~isa(C,'double') || ~isa(d,'double') error('MATLAB:lsqnonneg:NonDoubleInput',... getString(message('MATLAB:optimfun:lsqnonneg:NonDoubleInput'))); end % Check if options was created with optimoptions if ~isempty(options) && isa(options,'optim.options.SolverOptions') error('MATLAB:lsqnonneg:ArgNotStruct',... getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 3))); end % Check for deprecated syntax options = deprecateX0(options,nargin,varargin{:}); printtype = optimget(options,'Display',defaultopt,'fast'); tol = optimget(options,'TolX',defaultopt,'fast'); % In case the defaults were gathered from calling: optimset('lsqnonneg'): if ischar(tol) if strcmpi(tol,'10*eps*norm(c,1)*length(c)') tol = 10*eps*norm(C,1)*length(C); else error('MATLAB:lsqnonneg:OptTolXNotPosScalar',... getString(message('MATLAB:optimfun:lsqnonneg:OptTolXNotPosScalar'))); end end switch printtype case {'notify','notify-detailed'} verbosity = 1; case {'none','off'} verbosity = 0; case {'iter','iter-detailed'} warning('MATLAB:lsqnonneg:InvalidDisplayValueIter',... getString(message('MATLAB:optimfun:lsqnonneg:InvalidDisplayValueIter'))); verbosity = 3; case {'final','final-detailed'} verbosity = 2; otherwise error('MATLAB:lsqnonneg:InvalidOptParamDisplay',... getString(message('MATLAB:optimfun:lsqnonneg:InvalidOptParamDisplay'))); end n = size(C,2); % Initialize vector of n zeros and Infs (to be used later) nZeros = zeros(n,1); wz = nZeros; % Initialize set of non-active columns to null P = false(n,1); % Initialize set of active columns to all and the initial point to zeros Z = true(n,1); x = nZeros; resid = d - C*x; w = C'*resid; % Set up iteration criterion outeriter = 0; iter = 0; itmax = 50;%3*n; exitflag = 1; allres = zeros(itmax,1); % Outer loop to put variables into set to hold positive coefficients while any(Z) && any(w(Z) > tol) outeriter = outeriter + 1; % Reset intermediate solution z z = nZeros; % Create wz, a Lagrange multiplier vector of variables in the zero set. % wz must have the same size as w to preserve the correct indices, so % set multipliers to -Inf for variables outside of the zero set. wz(P) = -Inf; wz(Z) = w(Z); % Find variable with largest Lagrange multiplier [~,t] = max(wz); % Move variable t from zero set to positive set P(t) = true; Z(t) = false; % Compute intermediate solution using only variables in positive set z(P) = C(:,P)\d; % inner loop to remove elements from the positive set which no longer belong while any(z(P) <= 0) iter = iter + 1; if iter > itmax msg = getString(message('MATLAB:optimfun:lsqnonneg:IterationCountExceeded')); if verbosity disp(msg) end exitflag = 0; output.iterations = outeriter; output.message = msg; output.algorithm = 'active-set'; resnorm = sum(resid.*resid); x = z; lambda = w; return end % Find indices where intermediate solution z is approximately negative Q = (z <= 0) & P; % Choose new x subject to keeping new x nonnegative alpha = min(x(Q)./(x(Q) - z(Q))); x = x + alpha*(z - x); % Reset Z and P given intermediate values of x Z = ((abs(x) < tol) & P) | Z; P = ~Z; z = nZeros; % Reset z z(P) = C(:,P)\d; % Re-solve for z end x = z; resid = d - C*x; allres(outeriter) = norm(resid)^2; w = C'*resid; end lambda = w; resnorm = resid'*resid; output.iterations = outeriter; output.algorithm = 'active-set'; % msg = getString(message('MATLAB:optimfun:lsqnonneg:OptimizationTerminated')); % if verbosity > 1 % disp(msg) % end %output.message = msg; allres(outeriter+1:end)= 10000000000000000; er_pre = 1000000000; for i = 1:itmax allres(i) = min(allres(i),er_pre); er_pre = allres(i); end %-------------------------------------------------------------------------- function options = deprecateX0(options,numInputs,varargin) % Code to check if user has passed in x0. If so, ignore it and warn of its % deprecation. Also check whether the options have been passed in either % the 3rd or 4th input. if numInputs == 4 % 4 inputs given; the 3rd (variable name "options") will be interpreted % as x0, and the 4th as options if ~isempty(options) % x0 is non-empty warning('MATLAB:lsqnonneg:ignoringX0',... getString(message('MATLAB:optimfun:lsqnonneg:ignoringX0'))); end % Take the 4th argument as the options options = varargin{1}; elseif numInputs == 3 % Check if a non-empty or non-struct has been passed in for options % If so, assume that it's an attempt to pass x0 if ~isstruct(options) && ~isempty(options) warning('MATLAB:lsqnonneg:ignoringX0',... getString(message('MATLAB:optimfun:lsqnonneg:ignoringX0'))); % No options passed, set to empty options = []; end end
github
locatelf/cone-greedy-master
experiment_EEAs.m
.m
cone-greedy-master/HyperspectralImaging/experiment_EEAs.m
1,254
utf_8
6824855f221c01fc60b03f94ac1d27fd
% Running the algorithm on data set M function [Kall, Hall, resultsErr, Hall2, resultsErr2, nEEAs,resultsErr3,resultsErr4,resultsErr5] = experiment_EEAs( M , r ) % 2. Running the EEAs on the full and subsampled data set maxitNNLS = 10; nEEAs{1} = 'SPA '; nEEAs{2} = 'VCA '; nEEAs{3} = 'XRAY '; nEEAs{4} = 'H2NMF'; nEEAs{5} = 'SNPA '; for algo = 1 : 5 D = M; % full data set fprintf([nEEAs{algo}, ' on the full data set...']); %% Normalization to apply EEAs that need it (SPA, VCA, H2NMF, SNPA) e = cputime; K = EEAs(D,r,algo); % extract endmembers from 'dictionary' Kall{algo} = K; % Error [H, err] = plotnnlsHALSupdt(M,D(:,K),[],maxitNNLS,algo); % optimal weights [H2, Hslow,HPW,HA] = NNMPmatrix(M,D(:,K),maxitNNLS,algo,err,nEEAs{algo}); Hall{algo} = H; Hall2{algo} = H2; resultsErr(algo) = 100*norm(M - D(:,K)*H,'fro')/norm(M,'fro'); resultsErr2(algo) = 100*norm(M - D(:,K)*H2,'fro')/norm(M,'fro'); resultsErr3(algo) = 100*norm(M - Hslow,'fro')/norm(M,'fro'); resultsErr4(algo) = 100*norm(M - D(:,K)*HPW,'fro')/norm(M,'fro'); resultsErr5(algo) = 100*norm(M - D(:,K)*HA,'fro')/norm(M,'fro'); fprintf(' done.\n'); end
github
locatelf/cone-greedy-master
fquad.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/fquad.m
1,774
utf_8
85e40c6d6d0a040702758d817f0a5008
% Select treshold to split the entries of x into two subsets % % See Section 3.2 in % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. function [thres,delta,fobj] = fquad(x,s); if nargin == 1 s = 0.01; % grid for the values of delta end [fdel,fdelp,delta,finter,gs] = fdelta(x,s); % fdel is the percentage of values smaller than delta % finter is the number of points in a small interval around delta warning('off'); fobj = -log( fdel.* (1-fdel) ) + exp(finter); % Can potentially use other objectives: %fobj = -log( fdel.* (1-fdel) ) + 2.^(finter); %fobj = ( 2*(fdel - 0.5) ).^2 + finter.^2; %fobj = -log( fdel.* (1-fdel) ) + finter.^2; %fobj = ( 2*(fdel - 0.5) ).^2 + finter.^2; warning('on'); [a,b] = min(fobj); thres = delta(b); % Evaluate the function fdel = sum( x_i <= delta)/n and its derivate % for all delta in interval [0,1] with step s function [fdel,fdelp,delta,finter,gs] = fdelta(x,s); n = length(x); if nargin == 1 s = 0.01; end delta = 0:s:1; lD = length(delta); gs = 0.05; % Other values could be used, in [0,0.5] for i = 1 : lD fdel(i) = sum(x <= delta(i))/n; if i == 2 % use only next point to evaluate fdelp(1) fdelp(1) = (fdel(2)-fdel(1))/s; elseif i >= 2 % use next and previous point to evaluate fdelp(i) fdelp(i-1) = (fdel(i)-fdel(i-2))/2/s; if i == lD % use only previous point to evaluate fdelp(lD) fdelp(lD) = (fdel(lD)-fdel(lD-1))/s; end end deltahigh = min(1,delta(i) + gs); deltalow = max(0,delta(i) - gs); finter(i) = ( sum(x <= deltahigh) - sum(x < deltalow) )/n/(deltahigh-deltalow) ; end
github
locatelf/cone-greedy-master
anls_entry_rank2_precompute_opt.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/anls_entry_rank2_precompute_opt.m
1,376
utf_8
12fa56b139f94a061bb74c871176ec31
% Solve min_H ||M - WH'||_2 s.t. H >= 0 % % where left = W^TW and right = M^TW % % See Kuang, Park, `Fast Rank-2 Nonnegative Matrix Factorization % for Hierarchical Document Clustering', KDD '13. % % See also Algorithm 4 in % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. % % ****** Input ****** % left : 2-by-2 matrix (or possibly 1-by-1) % right : n-by-2 matrix (or possibly n-by-1) % % ****** Output ****** % H : nonnegative n-by-2 matrix, solution to KKT equations function H = anls_entry_rank2_precompute_opt(left, right) warning('off'); if length(left) == 1 H = max(0,right/left); else H = (left \ right')'; use_either = ~all(H>=0, 2); H(use_either, :) = anls_entry_rank2_binary(left, right(use_either,:)); H = H'; end warning('on'); % Case where one entry in each column of H has to be equal to zero function solve_either = anls_entry_rank2_binary(left, right) n = size(right, 1); solve_either = zeros(n, 2); solve_either(:, 1) = max(0, right(:, 1) ./ left(1,1)); solve_either(:, 2) = max(0, right(:, 2) ./ left(2,2)); cosine_either = solve_either.* repmat([sqrt(left(1,1)), sqrt(left(2,2))],n,1); choose_first = (cosine_either(:, 1) >= cosine_either(:, 2)); solve_either(choose_first, 2) = 0; solve_either(~choose_first, 1) = 0;
github
locatelf/cone-greedy-master
hierclust2nmf.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/hierclust2nmf.m
9,170
utf_8
2ed0455c900bc24ed801586e0ea7ebd8
% Hierarchical custering based on rank-two nonnegative matrix factorization % % Given a data matrix M (m-by-n) representing n data points in an % m-dimensional space, this algorithm computes a set of clusters obtained % using the hierarchical rank-two NMF method described in % % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. % % % ****** Input ****** % M : m-by-n data matrix (or a H-by-L-by-m tensor) % n (=HL) is the number of pixels, m the number of wavelengths % r : number of clusters to generate, OR % for r = []: the user is asked how many clusters she/he wants, % OR she/he can choose the leaf node to be split based % on the displayed current clusters. (default) % algo : algorithm used to split the clusters % 1. rank-two NMF (default) % 2. k-means % 3. spherical k-means % % sol : it can be used to resume a previous solution computed by % hierclust2nmf (this allows to go deeper in the tree and % generate more clusters from a previous solution). % ---> Optional. % % displ: display the evolution of the hierarhical procedure % % ****** Output ****** % IDX : an indicator vector in {1,2,...,r}^m, identifying r clusters % C, J : The columns of C are the spectral signatures of endmembers, % that is, the cluster centroids. % J is the index set locating the endmembers in the data set: % C = M(:,J) (for matrix format). % sol : contains the tree structure function [IDX, C, J, sol] = hierclust2nmf(M,r,algo,sol,displ) if nargin <= 4 displ = 1; end [m,n] = size(M); if min(M(:)) < 0 warning('The input matrix contains negative entries which have been set to zero'); M = max(M,0); end % The input is a tensor --> matrix format if length(size(M)) == 3 [H,L,m] = size(M); n = H*L; A = zeros(m,n); for i = 1 : m A(i,:) = reshape(M(:,:,i),1,n); end clear M; M = A; end if nargin == 1 || isempty(r) if ~exist('algo') || isempty(algo) algo = 1; end y = 1; n = 0; b = input('Do you want to visually choose the cluster to be split? (y/n) \n'); [m,n] = size(M); if b == 'y' || b == 1 if ~exist('L') H = input('What is the number of pixels in each row of your hyperspectral image? \n'); L = n/H; end r = Inf; manualsplit = 1; % Split according to user feedback elseif b == 'n' || b == 0 r = input('How many clusters do you want to generate? '); manualsplit = 0; else error('Enter ''y'' or ''n''.') end else manualsplit = 0; % Split according to the proposed criterion if nargin == 2 algo = 1; end end if nargin < 4 || isempty(sol) % Intialization of the tree structure sol.K{1} = (1:n)'; % All clusters; the first node contains all pixels sol.allnodes = 1; % nodes numbering sol.maxnode = 1; % Last leaf node added sol.parents = [0 0]; % Parents of leaf nodes sol.childs = []; % Child(i,:) = child of node i sol.leafnodes = 1; % Current clustering: set of leaf nodes corresponding to selected clusters sol.e = -1; % Criterion to decide which leafnode to split sol.U(:,1) = ones(m,1); % Centroids sol.Ke(1) = 1; % index centroid: index of the endmember sol.count = 1; % Number of clusters generated so far sol.firstsv = 0; end if displ == 1 fprintf('Hierarchical clustering started... \n'); end while sol.count < r %*************************************************************** % Update: split leaf nodes added at previous iteration %*************************************************************** for k = 1 : length(sol.leafnodes) % Update leaf nodes not yet split if sol.e(sol.leafnodes(k)) == -1 && length(sol.K{sol.leafnodes(k)}) > 1 % Update leaf node ind(k) by splitting it and adding its child nodes [Kc,Uc,sc] = splitclust(M(:,sol.K{sol.leafnodes(k)}),algo); if ~isempty(Kc{2}) % the second cluster has to be non-empty: this can occur for a rank-one matrix. % Add the two leaf nodes, child of nodes(sol.leafnodes(k)) sol.allnodes = [sol.allnodes; sol.maxnode+1; sol.maxnode+2]; sol.parents(sol.maxnode+1,:) = [sol.leafnodes(k) 0]; sol.parents(sol.maxnode+2,:) = [sol.leafnodes(k) 0]; sol.childs(sol.leafnodes(k), : ) = [sol.maxnode+1 sol.maxnode+2]; sol.childs(sol.maxnode+1 , :) = 0; sol.childs(sol.maxnode+2 , :) = 0; sol.K{sol.maxnode+1} = sol.K{sol.leafnodes(k)}(Kc{1}); sol.K{sol.maxnode+2} = sol.K{sol.leafnodes(k)}(Kc{2}); [sol.U(:,sol.maxnode+1),sol.firstsv(sol.maxnode+1), sol.Ke(sol.maxnode+1)] = reprvec(M(:,sol.K{sol.maxnode+1})); [sol.U(:,sol.maxnode+2),sol.firstsv(sol.maxnode+2), sol.Ke(sol.maxnode+2)] = reprvec(M(:,sol.K{sol.maxnode+2})); % Update criterion to choose next cluster to split sol.e([sol.maxnode+1 sol.maxnode+2]) = -1; % Compte the reduction in the error if kth cluster is split sol.e(sol.leafnodes(k)) = sol.firstsv(sol.maxnode+1)^2 + sol.firstsv(sol.maxnode+2)^2 - sol.firstsv(sol.leafnodes(k))^2; sol.maxnode = sol.maxnode+2; end end end %*************************************************************** % Choose the cluster to split, split it, and update leaf nodes %*************************************************************** if sol.count == 1 % Only one leaf node, the root node: split it. b = 1; elseif manualsplit == 0 % Split the node maximizing the critetion e [a,b] = max(sol.e(sol.leafnodes)); elseif manualsplit == 1 % Split w.r.t. user visual feedback [a,b] = max(sol.e(sol.leafnodes)); close all; a = affclust(sol.K(sol.leafnodes),H,L); fprintf('Which cluster do you want to split (between 1 and %2.0f)? \n', sol.count); fprintf('Suggested cluster to split w.r.t. error: %2.0f \n', b); fprintf('Type 0 if you want to stop. \n'); fprintf('Type -1 if you want to fuse two clusters. \n'); b = input('Choice: '); if b == 0 IDX = clu2vec(sol.K(sol.leafnodes)); for k = 1 : length(sol.leafnodes) J(k) = sol.K{sol.leafnodes(k)}(sol.Ke(sol.leafnodes(k))); end C = sol.U(:,sol.leafnodes); disp('*************************************************************'); return; end end if b == -1 fprintf('Which clusters do you want to fuse? (between 1 and %2.0f)? \n', sol.count); b1 = input('Choice 1: '); b2 = input('Choice 2: '); b = sort([b1 b2]); % Create a new node, child of the two fused ones, and update its entries sol.maxnode = sol.maxnode+1; sol.allnodes = [sol.allnodes; sol.maxnode+1]; sol.parents(sol.maxnode+1,:) = [sol.leafnodes(b(1)) sol.leafnodes(b(2))]; sol.childs(sol.maxnode+1,:) = 0; sol.K{sol.maxnode+1} = [sol.K{sol.leafnodes(b(1))}; sol.K{sol.leafnodes(b(2))}]; [u1,s1,ke1] = reprvec(M(:,sol.K{sol.maxnode+1})); sol.firstsv(sol.maxnode+1) = s1; sol.U(:,sol.maxnode+1) = u1; sol.Ke(:,sol.maxnode+1) = ke1; sol.e([sol.maxnode+1]) = -1; sol.e2([sol.maxnode+1]) = -1; % Update leaf nodes: delete two fused and add the new one sol.leafnodes = sol.leafnodes([1:b(1)-1 b(1)+1:b(2)-1 b(2)+1:end]); sol.leafnodes = [sol.leafnodes; sol.maxnode+1]; % Update counters sol.maxnode = sol.maxnode+1; sol.count = sol.count-1; else sol.leafnodes = [sol.leafnodes; sol.childs(sol.leafnodes(b),:)']; % Add its two children sol.leafnodes = sol.leafnodes([1:b-1 b+1:end]); % Remove bth leaf node if manualsplit == 0 && displ == 1 % Dispay progress in tree exploration if mod(sol.count,10) == 0, fprintf('%1.0f...\n',sol.count); else fprintf('%1.0f...',sol.count); end if sol.count == r-1, fprintf('Done. \n',sol.count); end elseif manualsplit == 1 disp('*************************************************************'); end sol.count = sol.count+1; end end IDX = clu2vec(sol.K(sol.leafnodes)); for k = 1 : length(sol.leafnodes) J(k) = sol.K{sol.leafnodes(k)}(sol.Ke(sol.leafnodes(k))); end C = sol.U(:,sol.leafnodes);
github
locatelf/cone-greedy-master
fastsvds.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/fastsvds.m
683
utf_8
b81c39bffb76f2522e20bd1c42ae60b0
% "Fast" but less accurate SVD by computing the SVD of MM^T or M^TM % ***IF*** one of the dimensions of M is much smaller than the other. % Note. This is numerically less stable, but useful for large hyperspectral % images. function [u,s,v] = fastsvds(M,r); [m,n] = size(M); rationmn = 10; % Parameter, should be >= 1 if m < rationmn*n MMt = M*M'; [u,s,v] = svds(MMt,r); v = M'*u; v = v.*repmat( (sum(v.^2)+1e-16).^(-0.5),n,1); s = sqrt(s); elseif n < rationmn*m MtM = M'*M; [u,s,v] = svds(MtM,r); u = M*v; u = u.*repmat( (sum(u.^2)+1e-16).^(-0.5),m,1); s = sqrt(s); else [u,s,v] = svds(M,r); end
github
locatelf/cone-greedy-master
splitclust.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/splitclust.m
1,644
utf_8
3db01b4e0e55f4537496b1675c54445a
% Given a matrix M, split its columns into two subsets % % See Section 3 in % % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. % % % ****** Input ****** % M : m-by-n data matrix (or a H-by-L-by-m tensor) % algo : algorithm used to split the clusters % 1. rank-two NMF (default) % 2. k-means % 3. spherical k-means % % ****** Output ****** % K : two clusters % U : corresponding centroids % s : first singular value of M function [K,U,s] = splitclust(M,algo); if nargin == 1 algo = 1; end if algo == 1 % rank-2 NMF [U,V,s] = rank2nmf(M); % Normalize columns of V to sum to one V = V.*repmat( (sum(V)+1e-16).^(-1), 2,1); x = V(1,:)'; % Compute treshold to split cluster threshold = fquad(x); K{1} = find(x >= threshold); K{2} = find(x < threshold); elseif algo == 2 % k-means [u,s,v] = fastsvds(M,2); % Initialization: SVD+SPA Kf = FastSepNMF(s*v',2,0); U0 = u*s*v(Kf,:)'; [IDX,U] = kmeans(M', 2, 'EmptyAction','singleton','Start',U0'); U = U'; K{1} = find(IDX==1); K{2} = find(IDX==2); s = s(1); elseif algo == 3 % shperical k-means [u,s,v] = fastsvds(M,2); % Initialization: SVD+SPA Kf = FastSepNMF(s*v',2,0); U0 = u*s*v(Kf,:)'; [IDX,U] = spkmeans(M, U0); % or (?) %[IDX,U] = kmeans(M', 2, 'EmptyAction','singleton','Start',U0','Distance','cosine'); K{1} = find(IDX==1); K{2} = find(IDX==2); s = s(1); end
github
locatelf/cone-greedy-master
vectoind.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/vectoind.m
220
utf_8
8820e9734a50ee8f7795f604051c3e34
% From cluster indicator vector to indicator matrix function V = vectoind(IDX,r) m = length(IDX); if nargin == 1 r = max(IDX(:)); end V = zeros(m,r); for i = 1 : r V(find(IDX==i),i) = 1; end
github
locatelf/cone-greedy-master
rank2nmf.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/rank2nmf.m
945
utf_8
22891abe4abe34be96416d412279a329
% Given a data matrix M (m-by-n), computes a rank-two NMF of M. % % See Algorithm 3 in % % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. % % ****** Input ****** % M : a nonnegative m-by-n data matrix % % ****** Output ****** % (U,V) : a rank-two NMF of M % s1 : first singular value of M function [U,V,s1] = rank2nmf(M) [m,n] = size(M); % Best rank-two approximation of M if min(m,n) == 1 [U,S,V] = fastsvds(M,1); U = abs(U); V = abs(V); s1 = S; else [u,s,v] = fastsvds(M,2); s1 = s(1); K = FastSepNMF(s*v',2); U = zeros(size(M,1),2); if length(K) >= 1 U(:,1) = max(u*s*v(K(1),:)',0); end if length(K) >= 2 U(:,2) = max(u*s*v(K(2),:)',0); end % Compute corresponding optimal V V = anls_entry_rank2_precompute_opt(U'*U, M'*U); end
github
locatelf/cone-greedy-master
affclust.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/affclust.m
572
utf_8
f25d9a40ba0a120bd94d132688082bb1
% Display clusters function [a, Vaff] = affclust(K,H,L,ncol,bw); n = H*L; if iscell(K) K = clu2vec(K,n); end % K is an indicator vector of type IDX A = vectoind(K); r = size(A,2); % 'Optimize' display in 16/9 if nargin < 4 ncol = 1; nrow = ceil(r/ncol); while (r > 1 && L*ncol*9 < H*nrow*16) || rem(r,ncol) == 1 ncol = ncol+1; nrow = ceil(r/ncol); end end if nargin == 5 && bw == 1 [a, Vaff] = affichage(A,ncol,H,L,bw); %bw==1 switches black and white else [a, Vaff] = affichage(A,ncol,H,L); end
github
locatelf/cone-greedy-master
affichage.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/affichage.m
1,155
utf_8
ebfdbc0a5a5f07a8cbf18f410f322bdc
% Display (=affichage in French) of a NMF solution, for image datasets % % a = affichage(V,lig,Li,Co) % % Input. % V : (m x r) matrix whose colums contains vectorized images % lig : number of images per row in the display % (Co,Li) : dimensions of images % bw : if bw=1, reverse gray level % % Output. % Diplay columns of matrix V as images function [a, Vaff] = affichage(V,lig,Li,Co,bw) V = max(V,0); [m,r] = size(V); for i = 1 : r if max(V(:,i)) > 0 V(:,i) = V(:,i)/max(V(:,i)); end end Vaff = []; for i = 1 : r ligne = floor((i-1)/lig)+1; col = i - (ligne-1)*lig; Vaff((ligne-1)*Li+1:ligne*Li,(col-1)*Co+1:col*Co) = reshape(V(:,i),Li,Co); end [m,n] = size(Vaff); for i = 1 : n/Co-1 Vaff = [Vaff(:,1:Co*i+i-1) 0.5*ones(m,1) Vaff(:,Co*i+i:end)]; end [m,n] = size(Vaff); for i = 1 : m/Li-1 Vaff = [Vaff(1:Li*i+i-1,:); 0.5*ones(1,n); Vaff(Li*i+i:end,:)]; end warning('off'); figure; if nargin == 5 && bw == 1 imshow(Vaff,[0 1]); else imshow(1-Vaff,[0 1]); end colormap(gray); warning('on'); a = 1;
github
locatelf/cone-greedy-master
nnlsm_blockpivot.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/nnlsm_blockpivot.m
4,413
utf_8
cb9bf3455d6fd3ae19ea98b4dd754547
% Nonnegativity Constrained Least Squares with Multiple Righthand Sides % using Block Principal Pivoting method % % This software solves the following problem: given A and B, find X such that % minimize || AX-B ||_F^2 where X>=0 elementwise. % % Reference: % Jingu Kim and Haesun Park, Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons, % In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM'08), 353-362, 2008 % % Written by Jingu Kim ([email protected]) % Copyright 2008-2009 by Jingu Kim and Haesun Park, % School of Computational Science and Engineering, % Georgia Institute of Technology % % Check updated code at http://www.cc.gatech.edu/~jingu % Please send bug reports, comments, or questions to Jingu Kim. % This code comes with no guarantee or warranty of any kind. Note that this algorithm assumes that the % input matrix A has full column rank. % % Last modified Feb-20-2009 % % <Inputs> % A : input matrix (m x n) (by default), or A'*A (n x n) if isInputProd==1 % B : input matrix (m x k) (by default), or A'*B (n x k) if isInputProd==1 % isInputProd : (optional, default:0) if turned on, use (A'*A,A'*B) as input instead of (A,B) % init : (optional) initial value for X % <Outputs> % X : the solution (n x k) % Y : A'*A*X - A'*B where X is the solution (n x k) % iter : number of iterations % success : 1 for success, 0 for failure. % Failure could only happen on a numericall very ill-conditioned problem. function [ X,Y,iter,success ] = nnlsm_blockpivot( A, B, isInputProd, init ) if nargin<3, isInputProd=0;, end if isInputProd AtA = A;, AtB = B; else AtA = A'*A;, AtB = A'*B; end [n,k]=size(AtB); MAX_ITER = n*5; % set initial feasible solution X = zeros(n,k); if nargin<4 Y = - AtB; PassiveSet = false(n,k); iter = 0; else PassiveSet = (init > 0); [ X,iter ] = solveNormalEqComb(AtA,AtB,PassiveSet); Y = AtA * X - AtB; end % parameters pbar = 3; P = zeros(1,k);, P(:) = pbar; Ninf = zeros(1,k);, Ninf(:) = n+1; iter = 0; NonOptSet = (Y < 0) & ~PassiveSet; InfeaSet = (X < 0) & PassiveSet; NotGood = sum(NonOptSet)+sum(InfeaSet); NotOptCols = NotGood > 0; bigIter = 0;, success=1; while(~isempty(find(NotOptCols))) bigIter = bigIter+1; if ((MAX_ITER >0) && (bigIter > MAX_ITER)) % set max_iter for ill-conditioned (numerically unstable) case success = 0;, break end Cols1 = NotOptCols & (NotGood < Ninf); Cols2 = NotOptCols & (NotGood >= Ninf) & (P >= 1); Cols3Ix = find(NotOptCols & ~Cols1 & ~Cols2); if ~isempty(find(Cols1)) P(Cols1) = pbar;,Ninf(Cols1) = NotGood(Cols1); PassiveSet(NonOptSet & repmat(Cols1,n,1)) = true; PassiveSet(InfeaSet & repmat(Cols1,n,1)) = false; end if ~isempty(find(Cols2)) P(Cols2) = P(Cols2)-1; PassiveSet(NonOptSet & repmat(Cols2,n,1)) = true; PassiveSet(InfeaSet & repmat(Cols2,n,1)) = false; end if ~isempty(Cols3Ix) for i=1:length(Cols3Ix) Ix = Cols3Ix(i); toChange = max(find( NonOptSet(:,Ix)|InfeaSet(:,Ix) )); if PassiveSet(toChange,Ix) PassiveSet(toChange,Ix)=false; else PassiveSet(toChange,Ix)=true; end end end NotOptMask = repmat(NotOptCols,n,1); [ X(:,NotOptCols),subiter ] = solveNormalEqComb(AtA,AtB(:,NotOptCols),PassiveSet(:,NotOptCols)); iter = iter + subiter; X(abs(X)<1e-12) = 0; % for numerical stability Y(:,NotOptCols) = AtA * X(:,NotOptCols) - AtB(:,NotOptCols); Y(abs(Y)<1e-12) = 0; % for numerical stability % check optimality NonOptSet = NotOptMask & (Y < 0) & ~PassiveSet; InfeaSet = NotOptMask & (X < 0) & PassiveSet; NotGood = sum(NonOptSet)+sum(InfeaSet); NotOptCols = NotGood > 0; end end
github
locatelf/cone-greedy-master
FastSepNMF.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/FastSepNMF.m
3,369
utf_8
d1efacdacf79352c067116cbd6ec4a61
% FastSepNMF - Fast and robust recursive algorithm for separable NMF % % *** Description *** % At each step of the algorithm, the column of M maximizing ||.||_2 is % extracted, and M is updated by projecting its columns onto the orthogonal % complement of the extracted column. % % See N. Gillis and S.A. Vavasis, Fast and Robust Recursive Algorithms % for Separable Nonnegative Matrix Factorization, arXiv:1208.1237. % % See also https://sites.google.com/site/nicolasgillis/ % % [J,normM,U] = FastSepNMF(M,r,normalize) % % ****** Input ****** % M = WH + N : a (normalized) noisy separable matrix, that is, W is full rank, % H = [I,H']P where I is the identity matrix, H'>= 0 and its % columns sum to at most one, P is a permutation matrix, and % N is sufficiently small. % r : number of columns to be extracted. % normalize : normalize=1 will scale the columns of M so that they sum to one, % hence matrix H will satisfy the assumption above for any % nonnegative separable matrix M. % normalize=0 is the default value for which no scaling is % performed. For example, in hyperspectral imaging, this % assumption is already satisfied and normalization is not % necessary. % % ****** Output ****** % J : index set of the extracted columns. % normM : the l2-norm of the columns of the last residual matrix. % U : normalized extracted columns of the residual. % % --> normM and U can be used to continue the recursion later on without % recomputing everything from scratch. % % This implementation of the algorithm is based on the formula % ||(I-uu^T)v||^2 = ||v||^2 - (u^T v)^2. function [J,normM,U] = FastSepNMF(M,r,normalize) [m,n] = size(M); J = []; if nargin <= 2, normalize = 0; end if normalize == 1 % Normalization of the columns of M so that they sum to one D = spdiags((sum(M).^(-1))', 0, n, n); M = M*D; end normM = sum(M.^2); nM = max(normM); i = 1; % Perform r recursion steps (unless the relative approximation error is % smaller than 10^-9) while i <= r && max(normM)/nM > 1e-9 % Select the column of M with largest l2-norm [a,b] = max(normM); % Norm of the columns of the input matrix M if i == 1, normM1 = normM; end % Check ties up to 1e-6 precision b = find((a-normM)/a <= 1e-6); % In case of a tie, select column with largest norm of the input matrix M if length(b) > 1, [c,d] = max(normM1(b)); b = b(d); end % Update the index set, and extracted column J(i) = b; U(:,i) = M(:,b); % Compute (I-u_{i-1}u_{i-1}^T)...(I-u_1u_1^T) U(:,i), that is, % R^(i)(:,J(i)), where R^(i) is the ith residual (with R^(1) = M). for j = 1 : i-1 U(:,i) = U(:,i) - U(:,j)*(U(:,j)'*U(:,i)); end % Normalize U(:,i) U(:,i) = U(:,i)/norm(U(:,i)); % Compute v = u_i^T(I-u_{i-1}u_{i-1}^T)...(I-u_1u_1^T) v = U(:,i); for j = i-1 : -1 : 1 v = v - (v'*U(:,j))*U(:,j); end % Update the norm of the columns of M after orhogonal projection using % the formula ||r^(i)_k||^2 = ||r^(i-1)_k||^2 - ( v^T m_k )^2 for all k. normM = normM - (v'*M).^2; i = i + 1; end
github
locatelf/cone-greedy-master
clu2vec.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/clu2vec.m
302
utf_8
59890ba3279c8d45d1c01fb24000bdc6
% Transform a cluster cell to a vector function IDX = clu2vec(K,m,r); if nargin < 3 r = length(K); end if nargin < 2 % Compute max entry in K m = 0; for i = 1 : r m = max(0, max(K{i})); end end IDX = zeros(m,1); for i = 1 : r IDX(K{i}) = i; end
github
locatelf/cone-greedy-master
reprvec.m
.m
cone-greedy-master/HyperspectralImaging/hierclust2nmf_v2/reprvec.m
726
utf_8
d3e05d1279b90585355adc9d6de3c3a7
% Extract "most" representative column from a matrix M as follows: % % First, it computes the best rank-one approximation u v^T of M. % Then, it identifies the column of M minimizing the MRSA with the first % singular vector u of M. % % See Section 4.4.1 of % Gillis, Kuang, Park, `Hierarchical Clustering of Hyperspectral Images % using Rank-Two Nonnegative Matrix Factorization', arXiv. function [u,s,b] = reprvec(M); [u,s,v] = svds(M,1); u = abs(u); [m,n] = size(M); % Exctract the column of M approximating u the best (up to a translation and scaling) u = u - mean(u); Mm = M - repmat(mean(M),m,1); err = acos( (Mm'*u/norm(u))./( sqrt(sum(Mm.^2)) )' ); [a,b] = min(err); u = M(:,b);
github
locatelf/cone-greedy-master
EEAs.m
.m
cone-greedy-master/HyperspectralImaging/Endmember Extraction Algorithms/EEAs.m
328
utf_8
b80a0699acd0816f24d73bf3969910ec
% Different EEA algorithms function K = EEAs(M,r,algo); if algo == 1 K = FastSepNMF(M,r); elseif algo == 2 K = VCA(M,'Endmembers',r,'verbose','off'); elseif algo == 3 K = FastConicalHull(M,r); elseif algo == 4 [~, ~, K] = hierclust2nmf(M,r,1,[],0); elseif algo == 5 K = SNPA(M,r); end
github
locatelf/cone-greedy-master
RVCA.m
.m
cone-greedy-master/HyperspectralImaging/Endmember Extraction Algorithms/RVCA.m
358
utf_8
5f0767712f593be37f43c851734d741d
% Robust VCA function K = RVCA(M,r,rparam); maxiter = 10; if nargin <= 2 rparam = 10; end emin = +Inf; for i = 1 : rparam [A, K] = VCA(M,'Endmembers',r,'verbose','off'); H = nnlsHALSupdt(M,M(:,K),[],maxiter); err = norm(M-M(:,K)*H,'fro'); if err < emin Kf = K; emin = err; end end
github
locatelf/cone-greedy-master
SimplexProj.m
.m
cone-greedy-master/HyperspectralImaging/Endmember Extraction Algorithms/SimplexProj.m
1,374
utf_8
f6f156f333432d0897537cbf10fa3595
function x = SimplexProj(y) % Given y, computes its projection x* onto the simplex % % Delta = { x | x >= 0 and sum(x) <= 1 }, % % that is, x* = argmin_x ||x-y||_2 such that x in Delta. % % % See Appendix A.1 in N. Gillis, Successive Nonnegative Projection % Algorithm for Robust Nonnegative Blind Source Separation, arXiv, 2013. % % % x = SimplexProj(y) % % ****** Input ****** % y : input vector. % % ****** Output ****** % x : projection of y onto Delta. x = max(y,0); K = find(sum(x) > 1); x(:,K) = blockSimplexProj(y(:,K)); end function x = blockSimplexProj(y) % Same as function SimplexProj except that sum(max(Y,0)) > 1. [r,m] = size(y); ys = sort(-y); ys = -ys; indi2 = 1:m; lambda = zeros(1,m); S(1,indi2) = 0; for i = 2 : r if i == 2 S(i,:) = (ys(1:i-1,:)-repmat(ys(i,:),i-1,1)); else S(i,:) = sum(ys(1:i-1,:)-repmat(ys(i,:),i-1,1)); end indi1 = find(S(i,indi2) >= 1); indi1 = indi2(indi1); indi2 = find(S(i,:) < 1); if ~isempty(indi1) if i == 1 lambda(indi1) = -ys(1,indi1)+1; else lambda(indi1) = (1-S(i-1,indi1))/(i-1) - ys(i-1,indi1); end end if i == r lambda(indi2) = (1-S(r,indi2))/r - ys(r,indi2); end end x = max( y + repmat(lambda,r,1), 0); end
github
krasvas/LandRate-master
fixations_t2.m
.m
LandRate-master/fixations_t2.m
3,218
utf_8
35b1c3cbde506d34b53f3d7774c7b5f1
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %import fixations list after t1 criterion,fixation id and t2 parameter %output:(fixx,fixy,number_t1,number_t2,duration,list_out_points) %fixx,fixy: coordinates of the center %number_t1: number of points before t2 criterion %number_t2:number of points after t2 criterion %list_out_points:points which are not used after t2 criterion function [fixx,fixy,number_t1,number_t2,start_time,end_time,duration,list_out_points]=fixations_t2(fixations,fixation_id,t2) %fixations after t1 criterion n=size(fixations); n=n(1,1); %number of all points fixations_id=zeros(1,4); for i=1:n if fixations(i,4)==fixation_id fixations_id=[fixations_id;fixations(i,:)]; end end n=size(fixations_id); n=n(1,1); fixations_id=fixations_id(2:n,:); %list of data points with the defined id %clustering according to criterion t2 number_t1=size(fixations_id); x=fixations_id(:,1); y=fixations_id(:,2); t=fixations_id(:,3); number_t1=number_t1(1,1); %number of points before t2 %initialize mean values of center fixx=mean(fixations_id(:,1)); fixy=mean(fixations_id(:,2)); d=0; %distance between cluster point and mean point for i=1:number_t1 d=distance2p(x(i),y(i),fixx,fixy); if d>t2 fixations_id(i,4)=0; end end %initialize new list (data points according to t2) fixations_list_t2=zeros(1,4); %initialize list of points which are nto used aftere t2 criterion list_out_points=zeros(1,4); for i=1:number_t1 if fixations_id(i,4)>0 fixations_list_t2=[fixations_list_t2;fixations_id(i,:)]; else list_out_points=[list_out_points;fixations_id(i,:)]; end end n=size(fixations_list_t2); n=n(1,1); fixations_list_t2=fixations_list_t2(2:n,:); number_t2=size(fixations_list_t2); number_t2=number_t2(1,1); fixx=mean(fixations_list_t2(:,1)); fixy=mean(fixations_list_t2(:,2)); if number_t2>0 start_time=fixations_list_t2(1,3); end_time=fixations_list_t2(number_t2,3); duration=fixations_list_t2(number_t2,3)-fixations_list_t2(1,3); else start_time=0; end_time=0; duration=0; end list_out_points; n_out=size(list_out_points); n_out=n_out(1,1); if n_out>1 list_out_points=list_out_points(2:n_out,:); else list_out_points=[0 0 0 -1];%indicates that there are not points which are not used end end
github
krasvas/LandRate-master
angle_to_tracker.m
.m
LandRate-master/angle_to_tracker.m
2,653
utf_8
d6c6e7e24857b7c66791375b69c56293
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function angle_to_tracker %compute distance t in stimuli display from visual range in tracker units %input parameters: %-theta: visual angle range in degrees %-d: distance between subject and stimulus in mm %-tmm: the distance in mm which corresponds with 1 unit in tracker values %export matlab matrix: %-t:the corresponded spatial section in tracker units %call function example: %angle_to_tracker(8,555,301.1) function t=angle_to_tracker(theta,d,tmm) %transform angle from degrees to rads theta=theta*pi()/180; %compute t t=(2*d/tmm)*tan(theta/2); %tracker units fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
min_duration.m
.m
LandRate-master/min_duration.m
1,455
utf_8
08bbb2e381ecc7d1eaf94b5d1cd77dde
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %import the list of fixations (Center x, Center y, Number of data points %after t1, Number of data points after second criterion, Start time, End %time, Duration) and minimum duration function fixations=min_duration(fixation_list,minDur) n=size(fixation_list); n=n(1,1); %initialize new fixation list fixations=zeros(1,7); for i=1:n if fixation_list(i,7)>minDur fixations=[fixations;fixation_list(i,:)]; end end n=size(fixations); n=n(1,1); fixations=fixations(2:n,:); end
github
krasvas/LandRate-master
points_in_region.m
.m
LandRate-master/points_in_region.m
1,683
utf_8
81e57f7705f5cae4ec62c23ff24f6996
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %x:horizontal coord from all records %y:vertical coord from all records function n_records_region=points_in_region(x,y,left_up_edge_x,left_up_edge_y,right_down_edge_x,right_down_edge_y) %edges of region right_up_edge_x=right_down_edge_x; right_up_edge_y=left_up_edge_y; left_down_edge_x=left_up_edge_x; left_down_edge_y=right_down_edge_y; %total number of records n=size(x); n=n(1,1); %number of records in region n_records_region=0; for i=1:n if (x(i)>left_up_edge_x || x(i)==left_up_edge_x) &&( x(i)<right_up_edge_x || x(i)==right_up_edge_x )&& (y(i)>left_up_edge_y || y(i)==left_up_edge_y) &&( y(i)<left_down_edge_y || y(i)==left_down_edge_y) n_records_region=n_records_region+1; end end end
github
krasvas/LandRate-master
ROI_analysis.m
.m
LandRate-master/ROI_analysis.m
6,080
utf_8
daaa2c110078af2f97a7f3a6c2ec7388
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function ROI_analysis %analysis in predefined rectangle region of interest %input parameters: %-fixation_list: list of fixations(after fixation_detection) %-rois: regions of interest file((x_left_up,y_left_up,x_right_down,y_right_down,ROIs ID) %-roi_to_analyze: define the analyzed ROI from ROI ID (according to the IDs in rois file) %export matlab matrix: %-fixations_in_roi: fixations in the analyzed region of interest %call function example: %ROI_analysis(fixation_list,'ROIS.txt',2); %fixation_list:matlab matrix as computed from fixation_detection function fixations_in_roi=ROI_analysis(fixation_list,rois,roi_to_analyze) rois=load(rois); x_fix=fixation_list(:,1); y_fix=fixation_list(:,2); duration=fixation_list(:,7); %number of ROIs n_rois=size(rois); n_rois=n_rois(1,1); %classify fixations in ROis(0:indicates that fixation is out of ROI) fixations_classification=zeros(length(x_fix),1); for i=1:length(x_fix) for j=1:n_rois if ((x_fix(i)>=rois(j,1) && x_fix(i)<=rois(j,3)) && (y_fix(i)<=rois(j,2) && y_fix(i)>=rois(j,4))) fixations_classification(i)=rois(j,5); end end end fixation_list(:,8)=fixations_classification; %build the matrix with fixations in selected roi %initialize fixations_in_roi(x_fixation,y_fixation,duration) fixations_in_roi=zeros(1,3); for i=1:length(x_fix) if fixation_list(i,8)==roi_to_analyze fixations_in_roi=[fixations_in_roi;x_fix(i),y_fix(i),duration(i)]; end end n_fixations=size(fixations_in_roi); n_fixations=n_fixations(1,1); if n_fixations>1 fixations_in_roi=fixations_in_roi(2:n_fixations,:); %compute the number of fixations in roi number_fixations_in_roi=size(fixations_in_roi); number_fixations_in_roi=number_fixations_in_roi(1,1); %compute mean duration of fixations in roi mean_duration_roi=mean(fixations_in_roi(:,3)); %compute % number of fixations in roi fixations_percentage_roi=number_fixations_in_roi/length(x_fix); %compute % duration of fixations in roi duration_percentage_roi=sum(fixations_in_roi(:,3))/sum(duration); %print results fprintf(' ROI Analysis\n') fprintf('\nID of selected ROI for analysis: %.f\n',roi_to_analyze) fprintf('Number of fixations in selected ROI: %.f\n',number_fixations_in_roi) if n_fixations>1 fprintf('\nFixation List in ROI:\n') fprintf(' X_Fixation-Y_Fixation-Duration\n') for i=1:number_fixations_in_roi fprintf(' %.4f %.4f %.1f\n',fixations_in_roi(i,1),fixations_in_roi(i,2),fixations_in_roi(i,3)) end fprintf('\nMean duration of fixations in ROI: %.1f\n',mean_duration_roi) fprintf('Number (%%) of fixations in ROI: %.2f%%\n',fixations_percentage_roi*100) fprintf('Duration (%%) of fixations in ROI: %.2f%%\n',duration_percentage_roi*100) end %plot_ROIs plot(x_fix,y_fix,'bo') hold on for i=1:n_rois roi_region=[rois(i,1),rois(i,2);rois(i,3),rois(i,2);rois(i,3),rois(i,4);rois(i,1),rois(i,4);rois(i,1),rois(i,2)]; if i==roi_to_analyze fill(roi_region(:,1),roi_region(:,2),'r') alpha(0.7) end hold on end for i=1:n_rois roi_region=[rois(i,1),rois(i,2);rois(i,3),rois(i,2);rois(i,3),rois(i,4);rois(i,1),rois(i,4);rois(i,1),rois(i,2)]; plot(roi_region(:,1),roi_region(:,2),'g-') hold on end axis('equal') title('Regions of Interest (ROIs) ','Color','k','FontSize',20) xlabel('Horizontal Coordinate','Color','k','FontSize',20) ylabel('Vertical Coordinate','Color','k','FontSize',20) set(gca,'FontSize',20) legend('Fixations','Selected ROI','ROIs','Location','SouthEastOutside') else number_fixations_in_roi=0; fprintf(' ROI Analysis\n') fprintf('\nID of selected ROI for analysis: %.f\n',roi_to_analyze) fprintf('Number of fixations in selected ROI: %.f\n',number_fixations_in_roi) end fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
heatmap_generator.m
.m
LandRate-master/heatmap_generator.m
6,654
utf_8
11496414805a2ede9a65bd0da6982178
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %Heatmap generator %Generate Heatmap Visualization computed from Raw Data %input parameters: %-records: list of records(x,y) from all subjects,x,y:in tracker units %-scene: stimulus image %-spacing: interval to define heatmap density %-max_hor: maximum horizontal value of tracker coordinate system %-max_ver: maximum vertical value of tracker coordinate system %-kernel_size_gaussian: kernel size for gaussian filtering %-s_gaussian:sigma for gaussian filtering %export matlab matrixes: %-heatmapRGB:heatmap values RGB %-heatmap:heatmap grayscale %call function example: %heatmap_generator('data.txt','stimulus.bmp',0.0833,1.25,1.00,5,3); function [heatmapRGB,heatmap]=heatmap_generator(records,scene,spacing,max_hor,max_ver,kernel_size_gaussian,s_gaussian) records=load(records); scene=imread(scene); x=records(:,1); y=records(:,2); n_scene=size(scene); n_1_scene=n_scene(1,1); n_2_scene=n_scene(1,2); %total number of points n=size(records); n=n(1,1); %create heatmap matrix %heatmap values: records frequency %heatmap dimensions heatmap_ver_values=(0:spacing:max_ver); heatmap_hor_values=(0:spacing:max_hor); heatmap_ver_number=size(heatmap_ver_values); heatmap_ver_number=heatmap_ver_number(1,2)-1;%number of vertical elements in heatmap matrix heatmap_hor_number=size(heatmap_hor_values); heatmap_hor_number=heatmap_hor_number(1,2)-1;%number of vertical elements in heatmap matrix %heatmap matrix initialization heatmap=zeros(heatmap_ver_number,heatmap_hor_number); %frequencies f=zeros(heatmap_hor_number*heatmap_ver_number,1); n_f=size(f); n_f=n_f(1,1); %initialize counters j=0; i=1; for l=1:heatmap_ver_number for k=1:heatmap_hor_number i; j=j+1; heatmap(i,j)=points_in_region(x,y,heatmap_hor_values(k),heatmap_ver_values(l),heatmap_hor_values(k+1),heatmap_ver_values(l+1)); end i=i+1; j=0; end heatmap_frequencies=heatmap; %adjust frequenies values to range 0-255 %255:max frequency %0:no frequency heatmap=(255/max(max(heatmap)))*heatmap; heatmap=floor(heatmap);%integer values %take the inverse image %heatmap=255-heatmap; heatmap=uint8(heatmap); %resize heatmap to adjust to scene resolution heatmap=imresize(heatmap,[n_1_scene n_2_scene],'bicubic'); %create RGB heatmap heatmapRGB=zeros(n_1_scene,n_2_scene,3); %initialize R,G,B R=zeros(n_1_scene,n_2_scene); G=zeros(n_1_scene,n_2_scene); B=zeros(n_1_scene,n_2_scene); for i=1:1024 for j=1:1280 if (heatmap(i,j)==0 || heatmap(i,j)>0) && (heatmap(i,j)==25 || heatmap(i,j)<25) R(i,j)=10; G(i,j)=10; B(i,j)=10; elseif (heatmap(i,j)==26 || heatmap(i,j)>26) && (heatmap(i,j)==50 || heatmap(i,j)<50) R(i,j)=60; G(i,j)=60; B(i,j)=60; elseif (heatmap(i,j)==51 || heatmap(i,j)>51) && (heatmap(i,j)==75 || heatmap(i,j)<75) R(i,j)=0; G(i,j)=0; B(i,j)=255; elseif (heatmap(i,j)==76 || heatmap(i,j)>76) && (heatmap(i,j)==100 || heatmap(i,j)<100) R(i,j)=0; G(i,j)=255; B(i,j)=210; elseif (heatmap(i,j)==101 || heatmap(i,j)>101) && (heatmap(i,j)==125 || heatmap(i,j)<125) R(i,j)=0; G(i,j)=255; B(i,j)=75; elseif (heatmap(i,j)==126 || heatmap(i,j)>126) && (heatmap(i,j)==150 || heatmap(i,j)<150) R(i,j)=192; G(i,j)=255; B(i,j)=0; elseif (heatmap(i,j)==151 || heatmap(i,j)>151) && (heatmap(i,j)==175 || heatmap(i,j)<175) R(i,j)=255; G(i,j)=240; B(i,j)=0; elseif (heatmap(i,j)==176 || heatmap(i,j)>176) && (heatmap(i,j)==200 || heatmap(i,j)<200) R(i,j)=255; G(i,j)=192; B(i,j)=0; elseif (heatmap(i,j)==201 || heatmap(i,j)>201) && (heatmap(i,j)==225 || heatmap(i,j)<225) R(i,j)=255; G(i,j)=150; B(i,j)=0; else R(i,j)=255; G(i,j)=0; B(i,j)=0; end end end R=uint8(R); G=uint8(G); B=uint8(B); heatmapRGB(:,:,1)=R; heatmapRGB(:,:,2)=G; heatmapRGB(:,:,3)=B; heatmapRGB=uint8(heatmapRGB); %show heatmap after gaussian filtering figure imshow(scene) hold on h = fspecial('gaussian',kernel_size_gaussian,s_gaussian); imshow(imfilter(heatmapRGB,h,'replicate')); title('Heatmap','Color','k','FontSize',14) alpha(0.6) fprintf('\nHeatmap Visualization is completed successfully\n') fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
heatmap_generator_EyeMMV_modified.m
.m
LandRate-master/heatmap_generator_EyeMMV_modified.m
6,927
utf_8
5ca3103a40391da6e0a0aaf6652b4ee8
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %Heatmap generator %Generate Heatmap Visualization computed from Raw Data %input parameters: %-records: list of records(x,y) from all subjects,x,y:in tracker units %-scene: stimulus image %-spacing: interval to define heatmap density %-max_hor: maximum horizontal value of tracker coordinate system %-max_ver: maximum vertical value of tracker coordinate system %-kernel_size_gaussian: kernel size for gaussian filtering %-s_gaussian:sigma for gaussian filtering %export matlab matrixes: %-heatmapRGB:heatmap values RGB %-heatmap:heatmap grayscale %call function example: %heatmap_generator('data.txt','stimulus.bmp',0.0833,1.25,1.00,5,3); %new parameters %spacing_coefficient %stimulus_ID %max_hor,max_ver:in pixels function [heatmapRGB,heatmap]=heatmap_generator(records,scene,spacing_coef,max_hor,max_ver,kernel_size_gaussian,s_gaussian,stimulus_ID) figure ('Name','Heatmap visualization') spacing=spacing_coef*max_hor; %records=load(records); scene=imread(scene); x=records(:,1); y=records(:,2); n_scene=size(scene); n_1_scene=n_scene(1,1); n_2_scene=n_scene(1,2); %total number of points n=size(records); n=n(1,1); %create heatmap matrix %heatmap values: records frequency %heatmap dimensions heatmap_ver_values=(0:spacing:max_ver); heatmap_hor_values=(0:spacing:max_hor); heatmap_ver_number=size(heatmap_ver_values); heatmap_ver_number=heatmap_ver_number(1,2)-1;%number of vertical elements in heatmap matrix heatmap_hor_number=size(heatmap_hor_values); heatmap_hor_number=heatmap_hor_number(1,2)-1;%number of vertical elements in heatmap matrix %heatmap matrix initialization heatmap=zeros(heatmap_ver_number,heatmap_hor_number); %frequencies f=zeros(heatmap_hor_number*heatmap_ver_number,1); n_f=size(f); n_f=n_f(1,1); %initialize counters j=0; i=1; for l=1:heatmap_ver_number for k=1:heatmap_hor_number i; j=j+1; heatmap(i,j)=points_in_region(x,y,heatmap_hor_values(k),heatmap_ver_values(l),heatmap_hor_values(k+1),heatmap_ver_values(l+1)); end i=i+1; j=0; end heatmap_frequencies=heatmap; %adjust frequenies values to range 0-255 %255:max frequency %0:no frequency heatmap=(255/max(max(heatmap)))*heatmap; heatmap=floor(heatmap);%integer values %take the inverse image %heatmap=255-heatmap; heatmap=uint8(heatmap); %resize heatmap to adjust to scene resolution heatmap=imresize(heatmap,[n_1_scene n_2_scene],'bicubic'); %create RGB heatmap heatmapRGB=zeros(n_1_scene,n_2_scene,3); %initialize R,G,B R=zeros(n_1_scene,n_2_scene); G=zeros(n_1_scene,n_2_scene); B=zeros(n_1_scene,n_2_scene); for i=1:n_1_scene for j=1:n_2_scene if (heatmap(i,j)==0 || heatmap(i,j)>0) && (heatmap(i,j)==25 || heatmap(i,j)<25) R(i,j)=150; G(i,j)=150; B(i,j)=150; elseif (heatmap(i,j)==26 || heatmap(i,j)>26) && (heatmap(i,j)==50 || heatmap(i,j)<50) R(i,j)=100; G(i,j)=100; B(i,j)=100; elseif (heatmap(i,j)==51 || heatmap(i,j)>51) && (heatmap(i,j)==75 || heatmap(i,j)<75) R(i,j)=0; G(i,j)=0; B(i,j)=255; elseif (heatmap(i,j)==76 || heatmap(i,j)>76) && (heatmap(i,j)==100 || heatmap(i,j)<100) R(i,j)=0; G(i,j)=255; B(i,j)=210; elseif (heatmap(i,j)==101 || heatmap(i,j)>101) && (heatmap(i,j)==125 || heatmap(i,j)<125) R(i,j)=0; G(i,j)=255; B(i,j)=75; elseif (heatmap(i,j)==126 || heatmap(i,j)>126) && (heatmap(i,j)==150 || heatmap(i,j)<150) R(i,j)=192; G(i,j)=255; B(i,j)=0; elseif (heatmap(i,j)==151 || heatmap(i,j)>151) && (heatmap(i,j)==175 || heatmap(i,j)<175) R(i,j)=255; G(i,j)=240; B(i,j)=0; elseif (heatmap(i,j)==176 || heatmap(i,j)>176) && (heatmap(i,j)==200 || heatmap(i,j)<200) R(i,j)=255; G(i,j)=192; B(i,j)=0; elseif (heatmap(i,j)==201 || heatmap(i,j)>201) && (heatmap(i,j)==225 || heatmap(i,j)<225) R(i,j)=255; G(i,j)=150; B(i,j)=0; else R(i,j)=255; G(i,j)=0; B(i,j)=0; end end end R=uint8(R); G=uint8(G); B=uint8(B); heatmapRGB(:,:,1)=R; heatmapRGB(:,:,2)=G; heatmapRGB(:,:,3)=B; heatmapRGB=uint8(heatmapRGB); %show heatmap after gaussian filtering imshow(scene,'InitialMagnification','fit') hold on h = fspecial('gaussian',kernel_size_gaussian,s_gaussian); imshow(imfilter(heatmapRGB,h,'replicate')); title(['Heatmap visualization [Stimulus: ',num2str(stimulus_ID),']']) alpha(0.6) % fprintf('\nHeatmap Visualization is completed successfully\n') % % % % fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') % fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') % fprintf('\n') % fprintf(' This program is free software: you can redistribute it and/or modify\n') % fprintf(' it under the terms of the GNU General Public License as published by\n') % fprintf(' the Free Software Foundation, either version 3 of the License, or\n') % fprintf(' (at your option) any later version.\n') % fprintf('\n') % fprintf(' This program is distributed in the hope that it will be useful,\n') % fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') % fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') % fprintf(' GNU General Public License for more details.\n') % fprintf('\n') % fprintf(' You should have received a copy of the GNU General Public License\n') % fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') % fprintf('\n') % fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
fixations_3s.m
.m
LandRate-master/fixations_3s.m
2,772
utf_8
dd807d2f0ba54a516cf1196248a718ce
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %applying 3s criterion %import fixations list after t1 criterion, fixation id %output:(fixx,fixy,number_t1,number_t2,duration) %fixx,fixy: coordinates of the center %number_t1: number of points before t2 criterion %number_3s:number of points after 3s criterion function [fixx,fixy,number_t1,number_3s,start_time,end_time,duration]=fixations_3s(fixations,fixation_id) %fixations after t1 criterion n=size(fixations); n=n(1,1); %number of all points fixations_id=zeros(1,4); for i=1:n if fixations(i,4)==fixation_id fixations_id=[fixations_id;fixations(i,:)]; end end n=size(fixations_id); n=n(1,1); fixations_id=fixations_id(2:n,:); %list of data points with the defined id %clustering according to criterion t2 number_t1=size(fixations_id); x=fixations_id(:,1); y=fixations_id(:,2); t=fixations_id(:,3); number_t1=number_t1(1,1); %number of points before 3s criterion %initialize mean values of center fixx=mean(fixations_id(:,1)); fixy=mean(fixations_id(:,2)); %compute standard deviation of cluster sx=std(x); sy=std(y); s=sqrt((sx^2)+(sy^2)); d=0; %distance between cluster point and mean point for i=1:number_t1 d=distance2p(x(i),y(i),fixx,fixy); if d>(3*s) fixations_id(i,4)=0; end end %initialize new list (data points according to 3s criterion) fixations_list_3s=zeros(1,4); for i=1:number_t1 if fixations_id(i,4)>0 fixations_list_3s=[fixations_list_3s;fixations_id(i,:)]; end end n=size(fixations_list_3s); n=n(1,1); fixations_list_3s=fixations_list_3s(2:n,:); number_3s=size(fixations_list_3s); number_3s=number_3s(1,1); fixx=mean(fixations_list_3s(:,1)); fixy=mean(fixations_list_3s(:,2)); start_time=fixations_list_3s(1,3); end_time=fixations_list_3s(number_3s,3); duration=fixations_list_3s(number_3s,3)-fixations_list_3s(1,3); end
github
krasvas/LandRate-master
metrics_analysis.m
.m
LandRate-master/metrics_analysis.m
10,253
utf_8
b519fe7acad925cc6d0c0035d27752b8
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function metrics_analysis %eye movement metrics computations %input parameters: %-fixation_list: list of fixations(after fixation_detection) %-repeat_fixation_threshold: threshold in tracker units for repeat fixations %-spacing_scanpath: interval in tracker units to compute scanpath density %-spacing_transition: interval in tracker units to compute transition matrix density %-maxx: maximum horizontal coordinate in tracker coordinate system %-maxy: maximum vertical coordinate in tracker coordinate system %export matlab matrixes: %-repeat_fixations: list of repeat fixations %-saccades: list of saccadic movements %-transition_matrix: transition matrix according the giving sapcing %call function example: %metrics_analysis(fixation_list,0.10,0.25,0.25,1.25,1.00); %fixation_list:matlab matrix as computed from fixation_detection function [repeat_fixations,saccades,transition_matrix]=metrics_analysis(fixation_list,repeat_fixation_threshold,spacing_scanpath,spacing_transition,maxx,maxy) %Fixation analysis %compute total number of fixations total_number_fixations=size(fixation_list); total_number_fixations=total_number_fixations(1,1); %compute mean duration of fixations mean_durations_fixations=mean(fixation_list(:,7)); %compute time to first fixation time_to_first_fixation=fixation_list(1,5); %compute repeat fixations %initialize distances between fixations(fixation1,fixation2,distance_between_two_fixations) distances_between_fixations=zeros(1,3); for i=1:total_number_fixations for j=1:total_number_fixations if i~=j && i<j distances_between_fixations=[distances_between_fixations;[i,j,(distance2p(fixation_list(i,1),fixation_list(i,2),fixation_list(j,1),fixation_list(j,2)))]]; end end end n_distances_between_fixations=size(distances_between_fixations); n_distances_between_fixations=n_distances_between_fixations(1,1); distances_between_fixations=distances_between_fixations(2:n_distances_between_fixations,:); %initialize matrix of repeat fixations repeat_fixations=zeros(1,3); for i=1:(n_distances_between_fixations-1) if distances_between_fixations(i,3)<repeat_fixation_threshold repeat_fixations=[repeat_fixations;distances_between_fixations(i,:)]; end end n_repeat_fixations=size(repeat_fixations); n_repeat_fixations=n_repeat_fixations(1,1); if n_repeat_fixations>1 repeat_fixations=repeat_fixations(2:n_repeat_fixations,:); end %compute total duration of fixations total_duration_fixations=sum(fixation_list(:,7)); %Saccade analysis %build saccades list (x_start_point,y_start_point,x_end_point,y_end_point, duration, amplitude, direction angle,start_fixation,end_fixation) if total_number_fixations>2 || total_number_fixations==2 total_number_saccades=total_number_fixations-1; %initialize saccades list saccades=zeros(total_number_saccades,9); j=2;%pointer for i=1:(total_number_fixations-1) %import start and end points in list saccades(i,1)=fixation_list(i,1); saccades(i,2)=fixation_list(i,2); saccades(i,3)=fixation_list(j,1); saccades(i,4)=fixation_list(j,2); %compute saccades durations saccades(i,5)=fixation_list(j,5)-fixation_list(i,6); %compute amplitude saccades(i,6)=distance2p(saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4)); %compute direction angle saccades(i,7)=direction_angle(saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4)); %name start and end fixations in each saccade saccades(i,8)=i; saccades(i,9)=j; j=j+1; end %compute mean duration of saccades mean_durations_saccades=mean(saccades(:,5)); else total_number_saccades=0; end %Scanpath analysis %compute scanpath length scanpath_length=sum(saccades(:,6)); %compute scanpath duration scanpath_duration=fixation_list(total_number_fixations,6)-fixation_list(1,5); %compute saccade/fixation ratio ratio_sf=sum(saccades(:,5))/sum(fixation_list(:,7)); %compute scanpath spatial density %build points_areas_matrix(x,y,area_id) %initialize points_areas_matrix=zeros(1,3); for i=1:total_number_fixations area=find_point_area(fixation_list(i,1),fixation_list(i,2),maxx,maxy,spacing_scanpath); points_areas_matrix(i,1)=area(1); points_areas_matrix(i,2)=area(2); points_areas_matrix(i,3)=area(3); end n_scanpath_areas=area(4); %compute the number of unique areas between points areas number_different_areas=length(unique(points_areas_matrix(:,3))); %scanpath_density scanpath_density=number_different_areas/n_scanpath_areas; %create transition matrix %build fixation_transition_areas(x_fixation,y_fixation,x_center,y_center,transition_area) %initialize fixation_transition areas fixation_transition_areas=zeros(1,5); for i=1:total_number_fixations fixation_transition_areas(i,1)=fixation_list(i,1); fixation_transition_areas(i,2)=fixation_list(i,2); area=find_point_area(fixation_list(i,1),fixation_list(i,2),maxx,maxy,spacing_transition); fixation_transition_areas(i,3:5)=area(1:3); end %transitions transitions=fixation_transition_areas(:,5); %transition dimension corresponds to maximun number of areas transition_dimension=area(4); %build transition matrix(>=1:indicates transition, 0: indicates no transition) %initialize transition_matrix=zeros(transition_dimension); for i=1:(total_number_fixations-1) for j=1:transition_dimension if j==transitions(i) transition_matrix(transitions(i+1),j)=transition_matrix(transitions(i+1),j)+1; end end end %compute the number of transitions %initialize number number_transitions=0; for i=1:transition_dimension for j=1:transition_dimension if transition_matrix(i,j)>0 number_transitions=number_transitions+1; end end end %compute transition density transition_density=number_transitions/(transition_dimension^2); %print results fprintf('Eye Movement metrics analysis\n\n') fprintf('Input Parameters: \n') fprintf(' Threshold for repeat fixations: %.3f\n',repeat_fixation_threshold) fprintf(' Scanpath spacing (spatial density computation): %.3f\n',spacing_scanpath) fprintf(' Transition matrix spacing: %.3f\n',spacing_transition) fprintf('\nFixation Metrics Analysis:\n') fprintf(' Total number of fixations: %.f\n',total_number_fixations) fprintf(' Mean duration of fixations: %.1f\n',mean_durations_fixations) fprintf(' Time to first fixation: %.1f\n',time_to_first_fixation) if n_repeat_fixations>1 fprintf(' Repeat Fixations:\n') fprintf(' (Fixation_1_id-Fixation_2_id-Distance)\n') for i=1:(n_repeat_fixations-1) fprintf(' %.f %.f %.3f \n',repeat_fixations(i,1),repeat_fixations(i,2),repeat_fixations(i,3)) end end fprintf(' Total duration of all fixations: %.1f\n',total_duration_fixations) fprintf('\nSaccades Analysis:\n') fprintf(' Total number of saccades: %.f\n',total_number_saccades) if total_number_saccades>1 fprintf(' Saccades list:\n') fprintf(' (ID-X_Start_Point-Y_Start_Point-X_End_Point-Y_End_Point-\n Duration-Amplitude-Direction_angle-Start_Fixation-End_Fixation)\n') for i=1:total_number_saccades fprintf(' %.f %.4f %.4f %.4f %.4f %.1f %.3f %.3f %.f %.f\n',i,saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4),saccades(i,5),saccades(i,6),saccades(i,7),saccades(i,8),saccades(i,9)) end end fprintf('\nScanpath Analysis:\n') fprintf(' Scanpath length: %.3f\n',scanpath_length) fprintf(' Scanpath duration: %.1f\n',scanpath_duration) fprintf(' Saccades/Fixations Ratio: %.3f\n',ratio_sf) fprintf(' Scanpath Spatial Density: %.3f\n',scanpath_density) fprintf(' Transition Matrix:\n') fprintf(' ') for i=1:transition_dimension fprintf('-%.f',i) end fprintf('\n') for i=1:transition_dimension fprintf(' %.f-',i) for j=1:transition_dimension fprintf(' %.f',transition_matrix(i,j)) end fprintf('\n') end fprintf('Transition Density: %.3f\n',transition_density) fprintf('________________________________________________________\n') fprintf('\nEnd of Metrics Analysis Report\n') fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
visualizations.m
.m
LandRate-master/visualizations.m
4,618
utf_8
b86cb5e5590444b6dd3ba5d7f54d2128
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function visualizations %export different visualizations in tracker units %input parameters: %-data: raw data corresponded to one stimuli %-fixation_list: list of fixations(after fixation_detection) %-maxr: maximum value of radius in tracker units to represent fixations durations %call function example %visualizations('data.txt',fixations_list,0.1) function visualizations(data,fixations_list,maxr) data=load(data); %x,y,t x=data(:,1); y=data(:,2); t=data(:,3); %x_fix,y_fix,duration x_fix=fixations_list(:,1); y_fix=fixations_list(:,2); duration=fixations_list(:,7); n_fix=length(x_fix); %x(t),y(t) visualizations figure plot(t,x,'r-') hold on plot(t,y,'b-') title('Horizontal and Vertical Coordinates along Time','Color','k','FontSize',14) xlabel('Time','Color','k','FontSize',12) ylabel('Coordinates','Color','k','FontSize',12) legend('x(t)','y(t)','Location','SouthEastOutside') grid on %raw data visualization figure plot(x,y,'r+') title('Raw Data Distribution','Color','k','FontSize',14) xlabel('Horizontal Coordinate','Color','k','FontSize',12) ylabel('Vertical Coordinate','Color','k','FontSize',12) hold on plot(x,y,'b--') axis('equal') legend('Record Point','Records Trace','Location','SouthEastOutside') grid on %space-time-cube figure plot3(x,y,t,'r','LineWidth',1.5) hold on plot3(x,y,t,'b+') title('Space-Time-Cube','Color','k','FontSize',14) xlabel('Horizontal Coordinate','Color','k','FontSize',12) ylabel('Vertical Coordinate','Color','k','FontSize',12) zlabel('Time','Color','k','FontSize',12) legend('Records Trace','Record Point','Location','SouthEastOutside') grid on %Scanpath visualization figure plot(x_fix,y_fix,'gs') hold on plot(x_fix,y_fix,'-b') title('Scanpath (Fixations Duration & Saccades) ','Color','k','FontSize',14) axis('equal') %create circle points c=linspace(0,2*pi); %compute maxr_par maxr_par=maxr/max(sqrt(duration)); %max r corresponds to max duration for i=1:n_fix hold on %create circle with duration x_center=x_fix(i); y_center=y_fix(i); xc=(maxr_par*sqrt(duration(i)))*cos(c); yc=(maxr_par*sqrt(duration(i)))*sin(c); fill(x_center+xc,y_center+yc,'r'); text(x_center,y_center,num2str(i),'HorizontalAlignment','Left','VerticalAlignment','Bottom','Color','m') end alpha(0.6) legend('Fixation Center','Saccade','Radius represents the duration','Location','SouthEastOutside') xlabel('Horizontal Coordinate','Color','k','FontSize',10) ylabel('Vertical Coordinate','Color','k','FontSize',10) fprintf('\nVisualizations are plotted successfully\n') fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
saccade_analysis_EyeMMV_modified.m
.m
LandRate-master/saccade_analysis_EyeMMV_modified.m
10,726
utf_8
da79190df4a2472a20a0d9e862b846b2
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function metrics_analysis %eye movement metrics computations %input parameters: %-fixation_list: list of fixations(after fixation_detection) %-repeat_fixation_threshold: threshold in tracker units for repeat fixations %-spacing_scanpath: interval in tracker units to compute scanpath density %-spacing_transition: interval in tracker units to compute transition matrix density %-maxx: maximum horizontal coordinate in tracker coordinate system %-maxy: maximum vertical coordinate in tracker coordinate system %export matlab matrixes: %-repeat_fixations: list of repeat fixations %-saccades: list of saccadic movements %-transition_matrix: transition matrix according the giving sapcing %call function example: %metrics_analysis(fixation_list,0.10,0.25,0.25,1.25,1.00); %fixation_list:matlab matrix as computed from fixation_detection %export saccade_list:[X_Start_Point][Y_Start_Point][X_End_Point][Y_End_Point][Duration][Amplitude][Direction_angle][Start_Fixation][End_Fixation]) function saccades=saccade_analysis_EyeMMV_modified(fixation_list)%,repeat_fixation_threshold,spacing_scanpath,spacing_transition,maxx,maxy) %Fixation analysis %compute total number of fixations total_number_fixations=size(fixation_list); total_number_fixations=total_number_fixations(1,1); % %compute mean duration of fixations % mean_durations_fixations=mean(fixation_list(:,7)); % % %compute time to first fixation % time_to_first_fixation=fixation_list(1,5); % %compute repeat fixations % %initialize distances between fixations(fixation1,fixation2,distance_between_two_fixations) % distances_between_fixations=zeros(1,3); % for i=1:total_number_fixations % for j=1:total_number_fixations % if i~=j && i<j % distances_between_fixations=[distances_between_fixations;[i,j,(distance2p(fixation_list(i,1),fixation_list(i,2),fixation_list(j,1),fixation_list(j,2)))]]; % end % end % end % n_distances_between_fixations=size(distances_between_fixations); % n_distances_between_fixations=n_distances_between_fixations(1,1); % distances_between_fixations=distances_between_fixations(2:n_distances_between_fixations,:); % %initialize matrix of repeat fixations % repeat_fixations=zeros(1,3); % for i=1:(n_distances_between_fixations-1) % if distances_between_fixations(i,3)<repeat_fixation_threshold % repeat_fixations=[repeat_fixations;distances_between_fixations(i,:)]; % end % end % % n_repeat_fixations=size(repeat_fixations); % n_repeat_fixations=n_repeat_fixations(1,1); % if n_repeat_fixations>1 % repeat_fixations=repeat_fixations(2:n_repeat_fixations,:); % end % % %compute total duration of fixations % total_duration_fixations=sum(fixation_list(:,7)); %Saccade analysis %build saccades list (x_start_point,y_start_point,x_end_point,y_end_point, duration, amplitude, direction angle,start_fixation,end_fixation) if total_number_fixations>2 || total_number_fixations==2 total_number_saccades=total_number_fixations-1; %initialize saccades list saccades=zeros(total_number_saccades,9); j=2;%pointer for i=1:(total_number_fixations-1) %import start and end points in list saccades(i,1)=fixation_list(i,1); saccades(i,2)=fixation_list(i,2); saccades(i,3)=fixation_list(j,1); saccades(i,4)=fixation_list(j,2); %compute saccades durations saccades(i,5)=fixation_list(j,5)-fixation_list(i,6); %compute amplitude saccades(i,6)=distance2p(saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4)); %compute direction angle saccades(i,7)=direction_angle(saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4)); %name start and end fixations in each saccade saccades(i,8)=i; saccades(i,9)=j; j=j+1; end %compute mean duration of saccades mean_durations_saccades=mean(saccades(:,5)); else total_number_saccades=0; end % %Scanpath analysis % %compute scanpath length % scanpath_length=sum(saccades(:,6)); % % %compute scanpath duration % scanpath_duration=fixation_list(total_number_fixations,6)-fixation_list(1,5); % % %compute saccade/fixation ratio % ratio_sf=sum(saccades(:,5))/sum(fixation_list(:,7)); % % %compute scanpath spatial density % %build points_areas_matrix(x,y,area_id) % %initialize % points_areas_matrix=zeros(1,3); % for i=1:total_number_fixations % area=find_point_area(fixation_list(i,1),fixation_list(i,2),maxx,maxy,spacing_scanpath); % points_areas_matrix(i,1)=area(1); % points_areas_matrix(i,2)=area(2); % points_areas_matrix(i,3)=area(3); % % end % n_scanpath_areas=area(4); % %compute the number of unique areas between points areas % number_different_areas=length(unique(points_areas_matrix(:,3))); % %scanpath_density % scanpath_density=number_different_areas/n_scanpath_areas; % % %create transition matrix % %build fixation_transition_areas(x_fixation,y_fixation,x_center,y_center,transition_area) % %initialize fixation_transition areas % fixation_transition_areas=zeros(1,5); % for i=1:total_number_fixations % fixation_transition_areas(i,1)=fixation_list(i,1); % fixation_transition_areas(i,2)=fixation_list(i,2); % area=find_point_area(fixation_list(i,1),fixation_list(i,2),maxx,maxy,spacing_transition); % fixation_transition_areas(i,3:5)=area(1:3); % end % %transitions % transitions=fixation_transition_areas(:,5); % %transition dimension corresponds to maximun number of areas % transition_dimension=area(4); % %build transition matrix(>=1:indicates transition, 0: indicates no transition) % %initialize % transition_matrix=zeros(transition_dimension); % % for i=1:(total_number_fixations-1) % for j=1:transition_dimension % if j==transitions(i) % transition_matrix(transitions(i+1),j)=transition_matrix(transitions(i+1),j)+1; % end % end % end % % %compute the number of transitions % %initialize number % number_transitions=0; % for i=1:transition_dimension % for j=1:transition_dimension % if transition_matrix(i,j)>0 % number_transitions=number_transitions+1; % end % end % end % % %compute transition density % transition_density=number_transitions/(transition_dimension^2); % % % %print results % fprintf('Eye Movement metrics analysis\n\n') % fprintf('Input Parameters: \n') % fprintf(' Threshold for repeat fixations: %.3f\n',repeat_fixation_threshold) % fprintf(' Scanpath spacing (spatial density computation): %.3f\n',spacing_scanpath) % fprintf(' Transition matrix spacing: %.3f\n',spacing_transition) % % fprintf('\nFixation Metrics Analysis:\n') % fprintf(' Total number of fixations: %.f\n',total_number_fixations) % fprintf(' Mean duration of fixations: %.1f\n',mean_durations_fixations) % fprintf(' Time to first fixation: %.1f\n',time_to_first_fixation) % if n_repeat_fixations>1 % fprintf(' Repeat Fixations:\n') % fprintf(' (Fixation_1_id-Fixation_2_id-Distance)\n') % for i=1:(n_repeat_fixations-1) % fprintf(' %.f %.f %.3f \n',repeat_fixations(i,1),repeat_fixations(i,2),repeat_fixations(i,3)) % end % end % fprintf(' Total duration of all fixations: %.1f\n',total_duration_fixations) % % fprintf('\nSaccades Analysis:\n') % fprintf(' Total number of saccades: %.f\n',total_number_saccades) % if total_number_saccades>1 % fprintf(' Saccades list:\n') % fprintf(' (ID-X_Start_Point-Y_Start_Point-X_End_Point-Y_End_Point-\n Duration-Amplitude-Direction_angle-Start_Fixation-End_Fixation)\n') % for i=1:total_number_saccades % fprintf(' %.f %.4f %.4f %.4f %.4f %.1f %.3f %.3f %.f %.f\n',i,saccades(i,1),saccades(i,2),saccades(i,3),saccades(i,4),saccades(i,5),saccades(i,6),saccades(i,7),saccades(i,8),saccades(i,9)) % end % end % % fprintf('\nScanpath Analysis:\n') % fprintf(' Scanpath length: %.3f\n',scanpath_length) % fprintf(' Scanpath duration: %.1f\n',scanpath_duration) % fprintf(' Saccades/Fixations Ratio: %.3f\n',ratio_sf) % fprintf(' Scanpath Spatial Density: %.3f\n',scanpath_density) % fprintf(' Transition Matrix:\n') % fprintf(' ') % for i=1:transition_dimension % fprintf('-%.f',i) % end % fprintf('\n') % for i=1:transition_dimension % fprintf(' %.f-',i) % for j=1:transition_dimension % fprintf(' %.f',transition_matrix(i,j)) % end % fprintf('\n') % end % fprintf('Transition Density: %.3f\n',transition_density) % fprintf('________________________________________________________\n') % fprintf('\nEnd of Metrics Analysis Report\n') % % % fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') % fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') % fprintf('\n') % fprintf(' This program is free software: you can redistribute it and/or modify\n') % fprintf(' it under the terms of the GNU General Public License as published by\n') % fprintf(' the Free Software Foundation, either version 3 of the License, or\n') % fprintf(' (at your option) any later version.\n') % fprintf('\n') % fprintf(' This program is distributed in the hope that it will be useful,\n') % fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') % fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') % fprintf(' GNU General Public License for more details.\n') % fprintf('\n') % fprintf(' You should have received a copy of the GNU General Public License\n') % fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') % fprintf('\n') % fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
find_point_area.m
.m
LandRate-master/find_point_area.m
2,943
utf_8
bf1a31dbfba11e00783fb8c1b8ad7345
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function find_point_area %input parameters %(x,y): coordinates of point %max_hor: maximum horizontal dimension of coordinate system %max_ver: maximum vertical dimension of coordinate system %spacing: spacing parameter to create transition matrix %export Point_area(x_center,y_center,area,maximum_number_of_areas) function Point_area=find_point_area(x,y,max_hor,max_ver,spacing) hor_spacing=[0:spacing:max_hor]; ver_spacing=[0:spacing:max_ver]; %build matrix with the coordinates of centers of transition matrix squares %initialization (x,y,ID) centers=zeros((length(hor_spacing)-1)*(length(ver_spacing)-1),3); centers(1,1)=spacing/2; centers(1,2)=spacing/2; for i=2:(length(hor_spacing)-1) centers(i,1)=centers(i-1,1)+spacing; centers(i,2)=centers(1,2); end for i=length(hor_spacing):length(hor_spacing)-1:((length(hor_spacing)-1)*(length(ver_spacing)-1)) centers(i:(i-2+length(hor_spacing)),1)=centers(1:(length(hor_spacing)-1),1); centers(i:(i-2+length(hor_spacing)),2)=centers((i-((length(hor_spacing)-1))):(i-1),2)+spacing; end %create areas id %the matrix centers contains the square areas (x_center,y_center,id) of transition matrix for i=1:(length(hor_spacing)-1)*(length(ver_spacing)-1) centers(i,3)=i; end %compute number of areas n_areas=(length(hor_spacing)-1)*(length(ver_spacing)-1); %find in which area the point is located %compute distances between point and centers %initialize distances(distance center from point,x_center,y_center,area) distances=zeros(n_areas,4); for i=1:n_areas distances(i,1)=distance2p(x,y,centers(i,1),centers(i,2)); distances(i,2)=centers(i,1); distances(i,3)=centers(i,2); distances(i,4)=centers(i,3); end %the area corresponds to the minimum value of distance min_value=min(distances(:,1)); %find point corresponded center for i=1:n_areas if distances(i,1)==min_value Point_area=distances(i,2:4); end end %maximun number of areas Point_area=[Point_area,n_areas]; end
github
krasvas/LandRate-master
scan_path_visualization_EyeMMV_modified.m
.m
LandRate-master/scan_path_visualization_EyeMMV_modified.m
5,064
utf_8
b33ae032caf71d2aec57f5b53ebe1667
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function visualizations %export different visualizations in tracker units %input parameters: %-data: raw data corresponded to one stimuli %-fixation_list: list of fixations(after fixation_detection) %-maxr: maximum value of radius in tracker units to represent fixations durations %call function example %visualizations('data.txt',fixations_list,0.1) function scan_path_visualization_EyeMMV_modified(fixations_list, maxr) % data=load(data); % %x,y,t % x=data(:,1); % y=data(:,2); % t=data(:,3); %x_fix,y_fix,duration x_fix=fixations_list(:,1); y_fix=fixations_list(:,2); duration=fixations_list(:,7); n_fix=length(x_fix); % %x(t),y(t) visualizations % figure % plot(t,x,'r-') % hold on % plot(t,y,'b-') % title('Horizontal and Vertical Coordinates along Time','Color','k','FontSize',14) % xlabel('Time','Color','k','FontSize',12) % ylabel('Coordinates','Color','k','FontSize',12) % legend('x(t)','y(t)','Location','SouthEastOutside') % grid on % % %raw data visualization % figure % plot(x,y,'r+') % title('Raw Data Distribution','Color','k','FontSize',14) % xlabel('Horizontal Coordinate','Color','k','FontSize',12) % ylabel('Vertical Coordinate','Color','k','FontSize',12) % hold on % plot(x,y,'b--') % axis('equal') % legend('Record Point','Records Trace','Location','SouthEastOutside') % grid on % % %space-time-cube % figure % plot3(x,y,t,'r','LineWidth',1.5) % hold on % plot3(x,y,t,'b+') % title('Space-Time-Cube','Color','k','FontSize',14) % xlabel('Horizontal Coordinate','Color','k','FontSize',12) % ylabel('Vertical Coordinate','Color','k','FontSize',12) % zlabel('Time','Color','k','FontSize',12) % legend('Records Trace','Record Point','Location','SouthEastOutside') % grid on %imshow(stimulus,'InitialMagnification','fit') hold on %Scanpath visualization plot(x_fix,y_fix,'gs') hold on plot(x_fix,y_fix,'-b') %title('Scanpath (Fixations Duration & Saccades) ','Color','k','FontSize',14) %create circle points c=linspace(0,2*pi); %compute maxr_par maxr_par=maxr/max(sqrt(duration)); %max r corresponds to max duration for i=1:n_fix hold on %create circle with duration x_center=x_fix(i); y_center=y_fix(i); xc=(maxr_par*sqrt(duration(i)))*cos(c); yc=(maxr_par*sqrt(duration(i)))*sin(c); fill(x_center+xc,y_center+yc,'r'); text(x_center,y_center,num2str(duration(i)),'HorizontalAlignment','Left','VerticalAlignment','Bottom','Color','y') end alpha(0.8) hold on %show start and end fixation point text(x_fix(1),y_fix(1),'START','HorizontalAlignment','Left','VerticalAlignment','top','Color','c') hold on text(x_fix(n_fix),y_fix(n_fix),'END','HorizontalAlignment','Left','VerticalAlignment','top','Color','c') % legend('Fixation Center','Saccade','Radius represents the duration','Location','SouthEastOutside') % xlabel('Horizontal Coordinate','Color','k','FontSize',10) % ylabel('Vertical Coordinate','Color','k','FontSize',10) % fprintf('\nVisualizations are plotted successfully\n') % fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') % fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') % fprintf('\n') % fprintf(' This program is free software: you can redistribute it and/or modify\n') % fprintf(' it under the terms of the GNU General Public License as published by\n') % fprintf(' the Free Software Foundation, either version 3 of the License, or\n') % fprintf(' (at your option) any later version.\n') % fprintf('\n') % fprintf(' This program is distributed in the hope that it will be useful,\n') % fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') % fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') % fprintf(' GNU General Public License for more details.\n') % fprintf('\n') % fprintf(' You should have received a copy of the GNU General Public License\n') % fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') % fprintf('\n') % fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
distance2p.m
.m
LandRate-master/distance2p.m
1,124
utf_8
cd76c27ed4b3f0855a9ff19c2bddc429
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %distance between 2 points %point 1(x1,y1) %point 2(x2,y2) function distance2p=distance2p(x1,y1,x2,y2) dx=x2-x1; dy=y2-y1; distance2p=sqrt((dx^2)+(dy^2)); end
github
krasvas/LandRate-master
values_normalization.m
.m
LandRate-master/values_normalization.m
148
utf_8
dff1706d74406c28b86fb02ac727bfc4
%Values normalization function between 0 and 1 function normalized_values=values_normalization(values) normalized_values=values./max(values); end
github
krasvas/LandRate-master
direction_angle.m
.m
LandRate-master/direction_angle.m
1,372
utf_8
36805f28c8d3616a761d5db8a6e1dfe7
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %calculate direction angle(grads & degrees) %export direction angle in degrees function a12=direction_angle(x1,y1,x2,y2) dx=x2-x1; dy=y2-y1; a=(200/pi())*atan(abs(dx)/abs(dy)); a=abs(a); a12=a; if dx>0 & dy>0 a12=a; elseif dx>0 & dy<0 a12=200-a; elseif dx<0 & dy<0 a12=200+a; elseif dx<0 & dy>0 a12=400-a; else a12=a; end if a12>400 a12=a12-400; end if a12<0 a12=a12+400; end a12=(360/400)*a12; end
github
krasvas/LandRate-master
fixation_detection_EyeMMV_modified.m
.m
LandRate-master/fixation_detection_EyeMMV_modified.m
8,663
utf_8
c5aff6169465d2a52873e3049320b768
% This is a modified version of EyeMMV's toolbox fixation detection % algorithm % EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function fixation_detection %detect fixations from raw data %input parameters: %-data:raw data (x y t),x,y: in tracker units(cartesian coordinate system),t: time in ms %-t1: spatial parameter t1 in tracker units %-t2: spatial parameter t2 in tracker units %-minDur: minimum value of fixation duration in ms %-maxx: maximum horizontal coordinate in tracker coordinate system %-maxy: maximum vertical coordinate in tracker coordinate system %export matlab matrixes: %-fixation_list_t2:list of fixations info computed with t1,t2,minDur criteria %-fixation_list_3s:list of fixations info computed with t1,3s,minDur criteria %call function example: %fixation_detection('data.txt',0.250,0.100,150,1.25,1.00); function final_fixation_list=fixation_detection_EyeMMV_modified(data,t1,t2,minDur,maxx,maxy,fixation_method) %read data according to the new format x=data(:,3); y=data(:,4); t=data(:,2); %adapt new format in EyeMMV's required format data=[x y t]; x=data(:,1); y=data(:,2); t=data(:,3); n=length(t); %build initial fixations list %categorize each data point to a fixation cluster according to tolerance 1 fixations=[data,zeros(n,1)]; %initialize pointers fixid=1; %fixation id mx=0; %mean coordinate x my=0; %mean coordinate y d=0; %dinstance between data point and mean point fixpointer=1; %fixations pointer for i=1:n mx=mean(x(fixpointer:i)); my=mean(y(fixpointer:i)); d=distance2p(mx,my,x(i),y(i)); if d>t1 fixid=fixid+1; fixpointer=i; end fixations(i,4)=fixid; end %end of clustering according to tolerance 1 %number of fixation after clustering (t1) number_fixations=fixations(n,4); %initialize fixations list according spatial criteria %(Center x, Center y, Number of data points after t1, Number of data points %after second criterion, Start time, End time, Duration) fixation_list_t2=zeros(1,7); fixation_list_3s=zeros(1,7); %initialize the list of points which are not participate in fixation analysis list_of_out_points=[0 0 0 -1]; %print fixation list according to spatial criteria for i=1:number_fixations [centerx_t2,centery_t2,n_t1_t2,n_t2,t1_t2,t2_t2,d_t2,out_points]=fixations_t2(fixations,i,t2); [centerx_3s,centery_3s,n_t1_3s,n_3s,t1_3s,t2_3s,d_3s]=fixations_3s(fixations,i); %build list(t2) fixation_list_t2(i,1)=centerx_t2; fixation_list_t2(i,2)=centery_t2; fixation_list_t2(i,3)=n_t1_t2; fixation_list_t2(i,4)=n_t2; fixation_list_t2(i,5)=t1_t2; fixation_list_t2(i,6)=t2_t2; fixation_list_t2(i,7)=d_t2; %build list(3s) fixation_list_3s(i,1)=centerx_3s; fixation_list_3s(i,2)=centery_3s; fixation_list_3s(i,3)=n_t1_3s; fixation_list_3s(i,4)=n_3s; fixation_list_3s(i,5)=t1_3s; fixation_list_3s(i,6)=t2_3s; fixation_list_3s(i,7)=d_3s; %build list of points which are not used list_of_out_points=[list_of_out_points;out_points]; end %remove from list of out points the zeros records n_out=size(list_of_out_points); n_out=n_out(1,1); list=zeros(1,4); for i=1:n_out if list_of_out_points(i,4)==0 list=[list;list_of_out_points(i,:)]; end end n_list=size(list); n_list=n_list(1,1); if n_out>1 list_of_out_points=list(2:n_list,:); else list_of_out_points=0; end %applying duration threshold fixation_list_t2=min_duration(fixation_list_t2,minDur); fixation_list_3s=min_duration(fixation_list_3s,minDur); %export results n_t2=size(fixation_list_t2); n_t2=n_t2(1,1); n_3s=size(fixation_list_3s); n_3s=n_3s(1,1); if fixation_method=='t2' final_fixation_list=fixation_list_t2; elseif fixation_method=='3s' final_fixation_list=fixation_list_3s; end % fprintf(' Fixation Detection Report \n\n') % fprintf('Import Parameters: \n') % fprintf(' Spatial Parameter t1: %.3f\n',t1) % fprintf(' Spatial Parameter t2: %.3f\n',t2) % fprintf(' Minimum Fixation Duration: %.2f\n',minDur) % fprintf(' Maximum Coordinate in Horizontal Dimension: %.2f\n',maxx) % fprintf(' Maximum Coordinate in Vertical Dimension: %.2f\n\n',maxy) % % fprintf('Number of Raw Data: %.f\n',n) % fprintf('Number of Data used in the analysis(t1,t2,minDur): %.f\n',sum(fixation_list_t2(:,4))) % fprintf('Number of Data used in the analysis(t1,3s,minDur): %.f\n',sum(fixation_list_t2(:,4))) % % fprintf('\nFixations: \n') % fprintf(' Total Number of Fixations(t1,t2,minDur): %.f\n',n_t2) % fprintf(' Total Number of Fixations(t1,3s,minDur): %.f\n',n_3s) % % fprintf('\nt1,t2,minDur:\n') % fprintf(' ID-Xcenter-Ycenter-Nt1-Nt2-StartTime-EndTime-Duration\n') % for i=1:n_t2 % fprintf(' %.f %.4f %.4f %.f %.f %.4f %.4f %.4f\n',i,fixation_list_t2(i,1),fixation_list_t2(i,2),fixation_list_t2(i,3),fixation_list_t2(i,4),fixation_list_t2(i,5),fixation_list_t2(i,6),fixation_list_t2(i,7)) % end % fprintf('\n') % fprintf('t1,3s,minDur:\n') % fprintf(' ID-Xcenter-Ycenter-Nt1-N3s-StartTime-EndTime-Duration\n') % for i=1:n_3s % fprintf(' %.f %.4f %.4f %.f %.f %.4f %.4f %.4f\n',i,fixation_list_3s(i,1),fixation_list_3s(i,2),fixation_list_3s(i,3),fixation_list_3s(i,4),fixation_list_3s(i,5),fixation_list_3s(i,6),fixation_list_3s(i,7)) % end % % % %plot records and fixations % figure % plot(x,y,'co') % set(gca,'Fontsize',20) % hold on % plot(fixation_list_t2(:,1),fixation_list_t2(:,2),'r+') % text(fixation_list_t2(:,1),fixation_list_t2(:,2),num2str(fixation_list_t2(:,7)),'HorizontalAlignment','Left','VerticalAlignment','Bottom','FontSize',20,'Color','r') % hold on % plot(fixation_list_3s(:,1),fixation_list_3s(:,2),'bs') % text(fixation_list_3s(:,1),fixation_list_3s(:,2),num2str(fixation_list_3s(:,7)),'HorizontalAlignment','Right','VerticalAlignment','Top','FontSize',20,'Color','b') % hold on % plot(list_of_out_points(:,1),list_of_out_points(:,2),'go') % legend('Raw Data','Fixations (t1, t2, minDur)','Fixations (t1, 3s, minDur)','Points out of analysis (t1,t2,minDur)','Location','Best') % title(['Raw Data and Fixations (t1=',num2str(t1),', t2=',num2str(t2),', minDur=',num2str(minDur),')'],'FontSize',20) % xlabel('Horizontal Coordinate','Color','k','FontSize',20) % ylabel('Vertical Coordinate','Color','k','FontSize',20) % axis('equal') % %plot screen outline % screen=[0,0;maxx,0;maxx,maxy;0,maxy;0,0]; %sreen region % hold on % plot(screen(:,1),screen(:,2),'-r') % % fprintf('\n Raw Data and Fixations are visualized successfully\n') % fprintf('________________________________________________________\n') % % fprintf('End of Fixation Detection report\n') % % % fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') % fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') % fprintf('\n') % fprintf(' This program is free software: you can redistribute it and/or modify\n') % fprintf(' it under the terms of the GNU General Public License as published by\n') % fprintf(' the Free Software Foundation, either version 3 of the License, or\n') % fprintf(' (at your option) any later version.\n') % fprintf('\n') % fprintf(' This program is distributed in the hope that it will be useful,\n') % fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') % fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') % fprintf(' GNU General Public License for more details.\n') % fprintf('\n') % fprintf(' You should have received a copy of the GNU General Public License\n') % fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') % fprintf('\n') % fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
krasvas/LandRate-master
visualizations_stimulus.m
.m
LandRate-master/visualizations_stimulus.m
4,473
utf_8
f29efbcf0b0c5b77cde3750f23f30b48
% EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. % Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % For further information, please email me: [email protected] or [email protected] %function visualizations_stimulus %export different visualizations with stimulus image %input parameters: %-data: raw data corresponded to one stimuli %-stimulus: stimulus image %-fixation_list: list of fixations(after fixation_detection) %-maxr: maximum value of radius in pixels to represent fixations durations %call function example %visualizations_stimulus('data.txt','stimulus.bmp',fixations_list,100) function visualizations_stimulus(data,stimulus,fixations_list,maxr); data=load(data); stimulus=imread(stimulus); %x,y,t x=data(:,1); y=data(:,2); t=data(:,3); %x_fix,y_fix,duration x_fix=fixations_list(:,1); y_fix=fixations_list(:,2); duration=fixations_list(:,7); n_fix=length(x_fix); %stimulus_size stimulus_size=size(stimulus); stimulus_vertical_size=stimulus_size(1,1); stimulus_horizontal_size=stimulus_size(1,2); %transform data to pixel coordinate system x=stimulus_vertical_size*x; y=stimulus_vertical_size*(1-y); x_fix=stimulus_vertical_size*x_fix; y_fix=stimulus_vertical_size*(1-y_fix); %raw data visualization figure imshow(stimulus) hold on plot(x,y,'r+') title('Raw Data Distribution','Color','k','FontSize',14) xlabel('Horizontal Coordinate','Color','k','FontSize',12) ylabel('Vertical Coordinate','Color','k','FontSize',12) hold on plot(x,y,'b--') axis('equal') legend('Record Point','Records Trace','Location','SouthEastOutside') %Scanpath visualization figure imshow(stimulus) hold on plot(x_fix,y_fix,'gs') hold on plot(x_fix,y_fix,'-b') title('Scanpath (Fixations Duration & Saccades) ','Color','k','FontSize',14) axis('equal') %create circle points c=linspace(0,2*pi); %compute maxr_par maxr_par=maxr/max(sqrt(duration)); %max r corresponds to max duration for i=1:n_fix hold on %create circle with duration x_center=x_fix(i); y_center=y_fix(i); xc=(maxr_par*sqrt(duration(i)))*cos(c); yc=(maxr_par*sqrt(duration(i)))*sin(c); fill(x_center+xc,y_center+yc,'r'); text(x_center,y_center,num2str(i),'HorizontalAlignment','Left','VerticalAlignment','Bottom','Color','m') end alpha(0.6) legend('Fixation Center','Saccade','Radius represents the duration','Location','SouthEastOutside') xlabel('Horizontal Coordinate','Color','k','FontSize',10) ylabel('Vertical Coordinate','Color','k','FontSize',10) fprintf('\nVisualizations are plotted successfully\n') fprintf('\nVisualizations with stimulus are plotted successfully\n') fprintf('\n EyeMMV toolbox (Eye Movements Metrics & Visualizations): An eye movement post-analysis tool. \n') fprintf(' Copyright (C) 2014 Vassilios Krassanakis (National Technical University of Athens) \n') fprintf('\n') fprintf(' This program is free software: you can redistribute it and/or modify\n') fprintf(' it under the terms of the GNU General Public License as published by\n') fprintf(' the Free Software Foundation, either version 3 of the License, or\n') fprintf(' (at your option) any later version.\n') fprintf('\n') fprintf(' This program is distributed in the hope that it will be useful,\n') fprintf(' but WITHOUT ANY WARRANTY; without even the implied warranty of\n') fprintf(' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n') fprintf(' GNU General Public License for more details.\n') fprintf('\n') fprintf(' You should have received a copy of the GNU General Public License\n') fprintf(' along with this program. If not, see <http://www.gnu.org/licenses/>.\n') fprintf('\n') fprintf(' For further information, please email me: [email protected] or [email protected]\n') end
github
tomluc/Pinax-camera-model-master
RayTrace.m
.m
Pinax-camera-model-master/MATLAB/Optimal_d_0/RayTrace.m
1,672
utf_8
cf6dfb029293b40cc5f65303955b0b07
% % Copyright (c) 2017 Jacobs University Robotics Group % All rights reserved. % % % Unless specified otherwise this code examples are released under % Creative Commons CC BY-NC-ND 4.0 license (free for non-commercial use). % Details may be found here: https://creativecommons.org/licenses/by-nc-nd/4.0/ % % % If you are interested in using this code commercially, % please contact us. % % THIS SOFTWARE IS PROVIDED BY Jacobs Robotics ``AS IS'' AND ANY % EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL Jacobs Robotics BE LIABLE FOR ANY % DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Contact: [email protected] % function [refPts]=RayTrace (ray0, normal, mu, mu2, d0, d1,zero) v0=ray0/norm(ray0); normal=normal/norm(normal); pi=zero+ d0*v0/(v0'*normal); normal=-normal; c=-normal'*v0; rglass=1/mu; rwater=1/mu2; v1=rglass*v0+(rglass*c -sqrt(1-rglass^2*(1-c^2)))*normal; v2=rwater*v0+(rwater*c -sqrt(1-rwater^2*(1-c^2)))*normal; normal=-normal; po=pi+ d1*v1/(v1'*normal); v1=v1/norm(v1); v2=v2/norm(v2); refPts=[v0;pi;v1;po;v2]; end
github
tomluc/Pinax-camera-model-master
optim_d_0.m
.m
Pinax-camera-model-master/MATLAB/Optimal_d_0/optim_d_0.m
1,848
utf_8
f357020570d91223d794d7378da9c884
% % Copyright (c) 2017 Jacobs University Robotics Group % All rights reserved. % % % Unless specified otherwise this code examples are released under % Creative Commons CC BY-NC-ND 4.0 license (free for non-commercial use). % Details may be found here: https://creativecommons.org/licenses/by-nc-nd/4.0/ % % % If you are interested in using this code commercially, % please contact us. % % THIS SOFTWARE IS PROVIDED BY Jacobs Robotics ``AS IS'' AND ANY % EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL Jacobs Robotics BE LIABLE FOR ANY % DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Contact: [email protected] function [diff] = optim_d_0(x) global dmax dmin K d1 ng nw dif d0=x; ImgPts=zeros(3,300); for i=1:20 for j=1:15 ImgPts(1,(j-1)*20+i)=50*i; ImgPts(2,(j-1)*20+i)=50*j; ImgPts(3,(j-1)*20+i)=1; end end ZeroRays=inv(K)*ImgPts; normal=[0;0;1]; t=[0;0;0]; dmin=9999; dmax=-9999; for i=1:300 xl= RayTrace (ZeroRays(:,i), normal, ng, nw, d0, d1,t); xl=xl(:); po=[xl(10);xl(11);xl(12)]; v2=[xl(13);xl(14);xl(15)]; pom=abs(po(3)-v2(3)*(po(1)/(2*v2(1)) + po(2)/(2*v2(2)))); dmin=min(dmin,pom); dmax=max(dmax,pom); end dif=dmax-dmin; diff=dif;
github
tomluc/Pinax-camera-model-master
SolveForwardProjectionCase3.m
.m
Pinax-camera-model-master/MATLAB/Find_correction_map/SolveForwardProjectionCase3.m
5,661
utf_8
7d7e2e3c69273bfc11e9f03096a468ec
% Copyright 2009 Mitsubishi Electric Research Laboratories All Rights Reserved. % % Permission to use, copy and modify this software and its documentation without fee for educational, research and non-profit purposes, is hereby granted, provided that the above copyright notice and the following three paragraphs appear in all copies. % % To request permission to incorporate this software into commercial products contact: Vice President of Marketing and Business Development; Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139 or <[email protected]>. % % IN NO EVENT SHALL MERL BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF MERL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. % % MERL SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND MERL HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR MODIFICATIONS. % % Solve Forward projection equation for Case 3 (two layer) (Air-Medium1-Medium2) % d is the distance of medium1 from camera % d2 is the total distance of medium2 from camera % p is given 3D point % n is the normal % mu is refractive index vector % M is the 3D point on the layer closest to camera where the first % refraction happens function [M] = SolveForwardProjectionCase3(d,d2,n,mu,p) mu1 = mu(1,1); mu2 = mu(2,1); M = [0;0;1]; %find POR the plane of refraction POR = cross(n,p); POR = POR/norm(POR); % [z1,z2] defines a coordinate system on POR % axis is away from the camera. z1 is along the axis z1 = -n; z1 = z1/norm(z1); % find z2 z2 = cross(POR,z1); z2 = z2/norm(z2); % find the projection of given 3D point on POR v = p'*z1; u = p'*z2; %solve 12thth degree equation s1 = (mu1^2 - 1)^2*(mu2^2 - 1)^2; s2 = (-4)*u*(mu1^2 - 1)^2*(mu2^2 - 1)^2; s3 = 4*u^2*(mu1^2 - 1)^2*(mu2^2 - 1)^2 + 2*(mu1^2 - 1)*(mu2^2 - 1)*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1)); s4 = - 2*(mu1^2 - 1)*(mu2^2 - 1)*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1)) - 4*u*(mu1^2 - 1)*(mu2^2 - 1)*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1)); s5 = ((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1))^2 + 2*(mu1^2 - 1)*(mu2^2 - 1)*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)) - 4*(mu1^2 - 1)*(mu2^2 - 1)*(d - d2)^2*(d2 - v)^2 + 4*u*(mu1^2 - 1)*(mu2^2 - 1)*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1)); s6 = -2*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1))*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1)) - 4*u*(mu1^2 - 1)*(mu2^2 - 1)*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)) - 4*d^4*mu1^2*mu2^2*u*(mu1^2 - 1)*(mu2^2 - 1); s7 = 2*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1))*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)) + (2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1))^2 - 4*(d - d2)^2*(d^2*mu1^2*(mu2^2 - 1) + d^2*mu2^2*(mu1^2 - 1))*(d2 - v)^2 + 10*d^4*mu1^2*mu2^2*u^2*(mu1^2 - 1)*(mu2^2 - 1); s8 = -2*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1))*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)) - 4*d^4*mu1^2*mu2^2*u*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1)) - 4*d^4*mu1^2*mu2^2*u^3*(mu1^2 - 1)*(mu2^2 - 1); s9 = (d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1))^2 + 2*d^4*mu1^2*mu2^2*u^2*((mu2^2 - 1)*(u^2*(mu1^2 - 1) + d^2*mu1^2) - (mu2^2 - 1)*(d - d2)^2 - (mu1^2 - 1)*(d2 - v)^2 + d^2*mu2^2*(mu1^2 - 1)) - 4*d^4*mu1^2*mu2^2*(d - d2)^2*(d2 - v)^2 + 4*d^4*mu1^2*mu2^2*u*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1)); s10 = - 2*d^4*mu1^2*mu2^2*u^2*(2*d^2*mu1^2*u*(mu2^2 - 1) + 2*d^2*mu2^2*u*(mu1^2 - 1)) - 4*d^4*mu1^2*mu2^2*u*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)); s11 = 4*d^8*mu1^4*mu2^4*u^2 + 2*d^4*mu1^2*mu2^2*u^2*(d^2*mu2^2*(u^2*(mu1^2 - 1) + d^2*mu1^2) - d^2*mu2^2*(d - d2)^2 - d^2*mu1^2*(d2 - v)^2 + d^2*mu1^2*u^2*(mu2^2 - 1)); s12 = (-4)*d^8*mu1^4*mu2^4*u^3; s13 = d^8*mu1^4*mu2^4*u^4; %[s1;s2;s3;s4;s5;s6;s7;s8;s9;s10;s11;s12;s13] sol = roots([s1;s2;s3;s4;s5;s6;s7;s8;s9;s10;s11;s12;s13]); idx = find(abs(imag(sol)) < 1e-6); if(isempty(idx)) disp('no solution'); return end sol1 = sol(idx); nn = size(sol1,1); Normal = [0;-1]; for ii = 1:nn x = sol1(ii,1); vi = [x;d]; v2 = RefractedRay(vi,Normal,1,mu1); q2 = vi + (d-d2)*v2/(v2'*Normal); v3 = RefractedRay(v2,Normal,mu1,mu2); vrd = [u;v] - q2; e = abs(vrd(1)*v3(2) - vrd(2)*v3(1)); if(e < 1e-4) M = x*z2 + d*z1; return end end
github
tomluc/Pinax-camera-model-master
RayTrace.m
.m
Pinax-camera-model-master/MATLAB/Find_correction_map/RayTrace.m
1,681
utf_8
9a53429738aea5dd3b07e1a43324ac47
% % Copyright (c) 2017 Jacobs University Robotics Group % All rights reserved. % % % Unless specified otherwise this code examples are released under % Creative Commons CC BY-NC-ND 4.0 license (free for non-commercial use). % Details may be found here: https://creativecommons.org/licenses/by-nc-nd/4.0/ % % % If you are interested in using this code commercially, % please contact us. % % THIS SOFTWARE IS PROVIDED BY Jacobs Robotics ``AS IS'' AND ANY % EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL Jacobs Robotics BE LIABLE FOR ANY % DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Contact: [email protected] % function [refPts]=RayTrace (ray0, normal, mu, mu2, d0, d1,zero) v0=ray0/norm(ray0); normal=normal/norm(normal); pi=zero+ d0*v0/(v0'*normal); normal=-normal; c=-normal'*v0; rglass=1/mu; rwater=1/mu2; v1=rglass*v0+(rglass*c -sqrt(1-rglass^2*(1-c^2)))*normal; v2=rwater*v0+(rwater*c -sqrt(1-rwater^2*(1-c^2)))*normal; normal=-normal; po=pi+ d1*v1/(v1'*normal); v1=v1/norm(v1); v2=v2/norm(v2); refPts=[v0;pi;v1;po;v2]; end
github
tomluc/Pinax-camera-model-master
RefractedRay.m
.m
Pinax-camera-model-master/MATLAB/Find_correction_map/RefractedRay.m
614
utf_8
603b41ff3d8a155e43e94de324e462b9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright (c) MERL 2012 % CVPR 2012 Paper Title: A Theory of Multi-Layer Flat Refractive Geometry % Author: Amit Agrawal %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Compute refracted ray direction at a refraction boundary function [vr,a,b,tir] = RefractedRay(vi,n,mu1,mu2) tir = 0; n = n/norm(n); kk = mu1^2*(vi'*n)^2 - (mu1^2-mu2^2)*(vi'*vi); if(kk < 0) % total internal reflection tir = 1; a = 0; b = 0; vr = zeros(3,1); return end a = mu1/mu2; b = -mu1*(vi'*n) - sqrt(kk); b = b/mu2; vr = a*vi + b*n;
github
V170SC/ESN-homeokinesis-master
mackeyglass_rk4.m
.m
ESN-homeokinesis-master/ESNConceptorsTest/MackeyGlassGenerator/mackeyglass_rk4.m
1,157
utf_8
aab166beab25f407a8396d0149f4f480
%% mackeyglass_rk4 % This function computes the numerical solution of the Mackey-Glass % delayed differential equation using the 4-th order Runge-Kutta method %% % $$k_1=\Delta t \cdot mackeyglass\_eq(x(t), x(t-\tau), a, b)$$ %% % $$k_2=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_1), x(t-\tau), a, b)$$ %% % $$k_3=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_2), x(t-\tau), a, b)$$ %% % $$k_4=\Delta t \cdot mackeyglass\_eq(x(t+k_3), x(t-\tau), a, b)$$ %% % $$x(t+\Delta t) = x(t) + \frac{k_1}{6}+ \frac{k_2}{3} + \frac{k_3}{6} + \frac{k_4}{6}$$ %% % Here is the code for <mackeyglass_eq.html mackeyglass_eq>, % the Mackey-Glass delayed differential equation %% % *Matlab code:* function x_t_plus_deltat = mackeyglass_rk4(x_t, x_t_minus_tau, deltat, a, b, n) k1 = deltat*mackeyglass_eq(x_t, x_t_minus_tau, a, b, n); k2 = deltat*mackeyglass_eq(x_t+0.5*k1, x_t_minus_tau, a, b, n); k3 = deltat*mackeyglass_eq(x_t+0.5*k2, x_t_minus_tau, a, b, n); k4 = deltat*mackeyglass_eq(x_t+k3, x_t_minus_tau, a, b, n); x_t_plus_deltat = (x_t + k1/6 + k2/3 + k3/3 + k4/6); end %% % % <mackeyglass.html _back to main_>
github
V170SC/ESN-homeokinesis-master
mackeyglass_eq.m
.m
ESN-homeokinesis-master/ESNConceptorsTest/MackeyGlassGenerator/mackeyglass_eq.m
357
utf_8
7ee7c2d23205ea0883eaa806816697e7
%% makeyglass_eq % This function returns dx/dt of Mackey-Glass delayed differential equation %% % % $$\frac{dx(t)}{dt}=\frac{ax(t-\tau)}{1+x(t-\tau)^{10}}-bx(t)$$ % %% % *Matlab code:* function x_dot = mackeyglass_eq(x_t, x_t_minus_tau, a, b, n) x_dot = -b*x_t + a*x_t_minus_tau/(1 + x_t_minus_tau^n); end %% % % <mackeyglass.html _back to main_>
github
Regon94/Smooth-Particle-Hydrodynamics-master
Post_multifluid_energy.m
.m
Smooth-Particle-Hydrodynamics-master/Post_multifluid_energy.m
4,422
utf_8
02c1a46f09d25f338dddf38fd7a2d0c0
%% Function to calculate the energy of each fluid in a multi-fluid system function [KE_alpha, KE_beta, PE_alpha, PE_beta] = Post_multifluid_energy() %% initialisation clear particles %close all clc time = save_pos_t; n = length(time); E_kin_alpha = zeros(n,1); E_kin_beta = zeros(n,1); E_pot_alpha = zeros(n,1); E_pot_beta = zeros(n,1); E_pV_alpha = zeros(n,1); E_pV_beta = zeros(n,1); E_tot1_alpha = zeros(n,1); E_tot2_alpha = zeros(n,1); E_tot1_beta = zeros(n,1); E_tot2_beta = zeros(n,1); % particles = [] %% loop over timesteps for t = 2:n % particle data of current timestep particles(:,:) = save_pos(int_fluid,:,t); % kinetic Energy mass = particles(:,4); vel_sq = (particles(:,6).^2 + particles(:,7).^2); % v^2 kin = mass .* vel_sq / 2; kin(isnan(kin)) = 0; % summing the KE of all the particles of each fluid % E_kin_alpha is going to rewrite the value at t for every iteration in % this loop i=1; for i = 1:int_fluid if particles(i,3) == 2 E_kin_alpha(t) = E_kin_alpha(t) + kin(i); elseif particles(i,3) == 3 E_kin_beta(t) = E_kin_beta(t) + kin(i); end end if (time(t) - t_damp) <= 1e-3 % transient gravity force g = 0.5 * (sin((-0.5 + time(t)/t_damp) * pi) + 1 ) * abs(G(2)); % potential Energy pot = mass .* g .* particles(:,2); pot(isnan(pot)) = 0; % Summing PE of all particles of each fluid at this timestep i=1; for i = 1:int_fluid if particles(i,3) == 2 E_pot_alpha(t) = E_pot_alpha(t) + pot(i); elseif particles(i,3) == 3 E_pot_beta(t) = E_pot_beta(t) + pot(i); end end % E_pot(t) = sum(pot); % E_pot_ref = E_pot(t); % pressure volume work volume = particles(:,4)./ particles(:,5); rho = particles(:,5); volume_0 = dx * dx; pV = mass .* c_0(2).^2./(7.*(7-1)).*((rho./rho_0(2)).^(7-1) + (7-1).*rho_0(2)./rho - 7); %pV = volume .* particles(:,8); %pV = p_0(2) ./ (1-gamma(2)) .* volume_0.^(gamma(2)) .* ( volume.^(1-gamma(2)) - volume_0.^(1-gamma(2))) + (Xi(2) - p_0(2)) .* (volume - volume_0); pV(isnan(pV)) = 0; i=1; for i = 1:int_fluid if particles(i,3) == 2 E_pV_alpha(t) = E_pV_alpha(t) + pV(i); elseif particles(i,3) == 3 E_pV_beta(t) = E_pV_beta(t) + pV(i); end end % E_pV(t) = sum(pV); % E_pV_ref = E_pV(t); elseif time(t) >= t_damp g = abs(G(2)); % potential Energy pot = mass .* g .* particles(:,2); pot(isnan(pot)) = 0; % Summing PE of all particles of each fluid at this timestep j=0; for j = 1:int_fluid if particles(j,3) == 2 E_pot_alpha(t) = E_pot_alpha(t) + pot(j); elseif particles(j,3) == 3 E_pot_beta(t) = E_pot_beta(t) + pot(j); end end % E_pot(t) = sum(pot) - E_pot_ref; % pressure volume work volume = particles(:,4)./ particles(:,5); rho = particles(:,5); volume_0 = dx * dx; pV = mass .* c_0(2).^2./(7.*(7-1)).*((rho./rho_0(2)).^(7-1) + (7-1).*rho_0(2)./rho - 7); %pV = volume .* particles(:,8); %pV = p_0(2) ./ (1-gamma(2)) .* volume_0.^(gamma(2)) .* ( volume.^(1-gamma(2)) - volume_0.^(1-gamma(2))) + (Xi(2) - p_0(2)) .* (volume - volume_0); pV(isnan(pV)) = 0; % Summing PE of all particles of each fluid at this timestep i=1; for i = 1:int_fluid if particles(i,3) == 2 E_pV_alpha(t) = E_pV_alpha(t) + pV(i); elseif particles(i,3) == 3 E_pV_beta(t) = E_pV_beta(t) + pV(i); end end % E_pV(t) = sum(pV) - E_pV_ref; end % total Energy E_tot1_alpha(t) = E_kin_alpha(t) + E_pot_alpha(t); E_tot2_alpha(t) = E_kin_alpha(t) + E_pot_alpha(t) + E_pV_alpha(t); E_tot1_beta(t) = E_kin_beta(t) + E_pot_beta(t); E_tot2_beta(t) = E_kin_beta(t) + E_pot_beta(t) + E_pV_beta(t); end end
github
Regon94/Smooth-Particle-Hydrodynamics-master
Free_Bubble.m
.m
Smooth-Particle-Hydrodynamics-master/Free_Bubble.m
3,971
utf_8
2017ecdee885e0b5d75c900aa7fa6c45
%% Bubble Formation Dynamic Test Case % Roger Gonzalez % 12/06/17 function [particles, rho_0,gamma,c_0,p_0,Xi,my,alpha, a_wall, int_fluid, int_boundary] = Free_Bubble(kernel, dx, d, v_max, alpha) % Square domain origin = [0 0]; % first fluid phase % specify coordinates of edges for fluid f_lowleft = [-0.1 0.0]+origin; f_lowright = [ 0.1 0.0]+origin; f_upleft = [-0.1 0.2]+origin; f_upright = [ 0.1 0.2]+origin; % properties of fluid (will be stored) flag = 2; rho_0(flag) = 1; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag);% reference pressure Xi(flag) = 0.0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = 0.02; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); particles = []; [particles, int_f1] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); %% second fluid phase multi_ph = 0; if multi_ph == 1 f_lowleft = [-0.1 0.0]+origin; f_lowright = [ 0.1 0.0]+origin; f_upleft = [-0.1 0.2]+origin; f_upright = [ 0.1 0.2]+origin; % properties of fluid (will be stored) flag = 3; rho_0(flag) = 1; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag); % reference pressure Xi(flag) = 0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = 0.02; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix %fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); fluid = create_boundary(3, dx, f_lowleft, f_lowright, f_upleft, f_upright); [particles, int_f2] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); % integer of fluid particles in matrix int_fluid = 1:max(int_f2); else int_fluid = 1:max(int_f1); end %% specify coordinates of edges for boundary % b_lowleft = [-0.25 0.0]+origin; % b_lowright = [ 0.25 0.0]+origin; % b_upleft = [-0.25 0.5]+origin; % b_upright = [ 0.25 0.5]+origin; %properties v_wall = [0,0]; % prescribed wall velocity a_wall = [0,0]; % wall acceleration int_boundary = 0; % flag = 1; % for boundary % %set artificial viscosity of boundary to 0 % alpha(flag) = 0; % % create boundary matrix % boundary = create_boundary(kernel, dx, b_lowleft, b_lowright, b_upleft, b_upright); % [particles, int_boundary] = initialisation(particles, boundary, flag, 0, dx, d, [0,0]); % particles(int_boundary,4) = v_wall(1); % particles(int_boundary,5) = v_wall(2); % %% plot initial positions of particles figure(1) hold on plot(particles(int_f1,1), particles(int_f1,2), '.') axis([-.4 0.4 -0.2 0.6]) if multi_ph == 1 plot(particles(int_f2,1), particles(int_f2,2), 'g.') end % plot(particles(int_boundary,1), particles(int_boundary,2), 'r.') % plot([b_upleft(1,1), b_lowleft(1,1), b_lowright(1,1), b_upright(1,1)],... % [b_upleft(1,2), b_lowleft(1,2), b_lowright(1,2), b_upright(1,2)], 'r', 'linewidth', 2) axis('equal') end
github
Regon94/Smooth-Particle-Hydrodynamics-master
der_color_field.m
.m
Smooth-Particle-Hydrodynamics-master/der_color_field.m
1,449
utf_8
5ce0f648cfe22f24743494652a876eb1
%% Calculating the gradient of the smoothed color field %part of the Surface area minimization in Akinci Surface tension model % % Roger Gonzalez % 04/07/2017 function [boundary_der_color_field] = der_color_field(particles, a, b, r_c, h, rho_0, p_0, Xi, gamma, eqn_of_state, range) % % a - fluid particle wrt which boundary values will be calculated % b - particle in question % r_c - kernel sampling range % h - initial distance between particles = dx boundary_der_color_field = 0; for k = range{b}(2:end) if particles(k,3) == 1 rho_b = boundary_rho(particles, a, rho_0, p_0, Xi, gamma,eqn_of_state); m_b = rho_0(particles(a,3)) * h*h; else rho_b = particles(k,5); m_b = particles(k,4); end %distance between particles drx = particles(b,1) - particles(k,1); dry = particles(b,2) - particles(k,2); rad = sqrt(drx^2 + dry^2); W_der = kernel_der(1, 2, h, rad)/h; boundary_der_color_field = boundary_der_color_field + (m_b/rho_b) *W_der; end % Serves to make the term scale independent boundary_der_color_field = r_c * boundary_der_color_field; %Warning Signs if isnan(boundary_der_color_field) fprintf('Mass \n',m_b); fprintf('desity \n',rho_b); error('derivative of the color field is NaN') end end
github
Regon94/Smooth-Particle-Hydrodynamics-master
Meniscus.m
.m
Smooth-Particle-Hydrodynamics-master/Meniscus.m
3,808
utf_8
78b1db669f26941672c04687dafe35fd
%% Surface Tension Force model % Roger Gonzalez % 21/06/17 function [particles, rho_0,gamma,c_0,p_0,Xi,my,alpha, a_wall, int_fluid, int_boundary] = Meniscus(kernel, dx, d, v_max, alpha) % rectangular domain origin = [0 0]; % first fluid phase % specify coordinates of edges for fluid f_lowleft = [-1.5 0.0]+origin; f_lowright = [ 1.5 0.0]+origin; f_upleft = [-1.5 0.5]+origin; f_upright = [ 1.5 0.5]+origin; % properties of fluid (will be stored) flag = 2; rho_0(flag) = 1000; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag);% reference pressure Xi(flag) = 0.0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = 0.02; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); particles = []; [particles, int_f1] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); %% second fluid phase multi_ph = 0; if multi_ph == 1 f_lowleft = [-0.2 0.0]+origin; f_lowright = [ 0.0 0.0]+origin; f_upleft = [-0.2 1.2]+origin; f_upright = [ 0.0 1.2]+origin; % properties of fluid (will be stored) flag = 3; rho_0(flag) = 1; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag); % reference pressure Xi(flag) = 0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = alpha; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); [particles, int_f2] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); % integer of fluid particles in matrix int_fluid = 1:max(int_f2); else int_fluid = 1:max(int_f1); end %% specify coordinates of edges for boundary b_lowleft = [-1.5 0.0]+origin; b_lowright = [ 1.5 0.0]+origin; b_upleft = [-1.5 1.0]+origin; b_upright = [ 1.5 1.0]+origin; % properties v_wall = [0,0]; % prescribed wall velocity a_wall = [0,0]; % wall acceleration flag = 1; % for boundary %set artificial viscosity of boundary to 0 alpha(flag) = 0; % create boundary matrix boundary = create_boundary(kernel, dx, b_lowleft, b_lowright, b_upleft, b_upright); [particles, int_boundary] = initialisation(particles, boundary, flag, 0, dx, d, [0,0]); particles(int_boundary,4) = v_wall(1); particles(int_boundary,5) = v_wall(2); %% plot initial positions of particles figure(1) hold on plot(particles(int_f1,1), particles(int_f1,2), '.') if multi_ph == 1 plot(particles(int_f2,1), particles(int_f2,2), 'g.') end plot(particles(int_boundary,1), particles(int_boundary,2), 'r.') plot([b_upleft(1,1), b_lowleft(1,1), b_lowright(1,1), b_upright(1,1)],... [b_upleft(1,2), b_lowleft(1,2), b_lowright(1,2), b_upright(1,2)], 'r', 'linewidth', 2) axis('equal') end
github
Regon94/Smooth-Particle-Hydrodynamics-master
PairwiseForce.m
.m
Smooth-Particle-Hydrodynamics-master/PairwiseForce.m
5,508
utf_8
79c32e9db906e42ecb4c0644cbf4e43a
%% Surface Tension Force model % Roger Gonzalez % 30/05/17 function [PF, Virial_Pressure, adhesion_F, der_color_field_i] = PairwiseForce(ST_model, particles, h, dist, a, b, domain, rho_0, p_0, r_c, rho_b, m_b, Xi, gamma, eqn_of_state, int_boundary,idx_all) % Have to individually import mass and density for the boundary particle %% Cosine Pairwise Force if ST_model == 1 phase_flag = abs(particles(a,3) - particles(b,3)); %Calibration constants for surface tension if length(domain{a}) < 27 || phase_flag ~= 0 S_ab = (16^2)*0.00001; %different fluid phases or surface particle VP_switch = 0; elseif phase_flag == 0 S_ab = (16^2)*0.1; %same fluid phase or bulk particle VP_switch = 1; % To ensure virial pressure only adds when all particles are in same phase end if dist < h PF = -100*S_ab*cos(1.5*pi*dist / (3*h)); Virial_Pressure = 0; else PF = 0; xi = (h^3) *(-8 +9*pi^2) / (27*pi^2); Virial_Pressure = - xi*(particles(a,5)^2)*S_ab * VP_switch; end %Specific energy due to the pairwise force model % PF_spec_E = (8/81) * ((h^4)/(pi^4)) * (9/4*pi^3 - 6*pi -4) * particles(a,5) * particles(b,5) * S_ab; % assignin(ws, 'PF_spec_E', PF_spec_E); end %% PF-3 if ST_model ==3 phase_flag = abs(particles(a,3) - particles(b,3)); if length(domain{a}) < 27 || phase_flag ~= 0 S_ab = (16^2)*2; %same fluid phase VP_switch = 1; % To ensure virial pressure only adds when all particles are in same phase else S_ab = (16^2)*0.00001; %different fluid phases VP_switch = 0; end if dist <= r_c eps=r_c/3.5; eps_0 = eps/2; A = (eps/eps_0)^3; psi_eps = exp(-(dist^2)/(2*(eps^2))); psi_eps_0 = exp(-(dist^2)/(2*(eps_0^2))); PF = S_ab*dist*(-A*psi_eps_0 + psi_eps); Virial_Pressure = 0; else PF = 0; xi = (r_c^3) *(-8 +9*pi^2) / (27*pi^2); Virial_Pressure = - xi*(particles(a,5)^2)*S_ab * VP_switch; end end %% Kernel Weighted Attraction (Becker & Teschner) % - Upon further consideration this model is pointless % - It is not useful with the kernel that we are using and less accurate % than Cohesion Force (Akinci) if ST_model == 4 W = kernel_fct(1, 2, h, dist/h); PF = -( particles(b,4) / particles(a,4) ) * W; Virial_Pressure = 0; PF_spec_E = 0; if dist < 0.5*r_c PF=0; end end %% Cohesion Force model if ST_model == 5 % NS = particles(:,1:2); %List of all particles % idx_all = rangesearch(NS,NS,r_c); %List of all particles within range of each fluid particle cohesion_spline = 0; adhesion_spline = 0; adhesion_F = 0; %Cohesion Force if dist <= r_c && dist > 0.5*r_c cohesion_spline = ((r_c-dist)^3)*(dist^3); elseif dist >= 0 && dist <= 0.5*r_c cohesion_spline = 2*((r_c-dist)^3)*(dist^3) - (r_c^6)/64; end cohesion_spline = (32/(pi*r_c^9))*cohesion_spline; cohesion_F = -particles(a,4) * particles(b,4) * cohesion_spline; %Surface Area Minimization %derivative of the color field for a fluid particle: particle in %question der_color_field_i = der_color_field(particles, a, a, r_c, h, rho_0, p_0, Xi, gamma, eqn_of_state, idx_all); % derivative of the color field of second particle der_color_field_j = der_color_field(particles, a, b, r_c, h, rho_0, p_0, Xi, gamma, eqn_of_state, idx_all); surf_area_min_F = -particles(a,4) * (der_color_field_i - der_color_field_j); if isnan(surf_area_min_F) || isnan(der_color_field_i) || isnan(der_color_field_i) fprintf('mass of fluid particle: %d \n ',particles(a,4)); fprintf('derivative of color field of a: %d \n', der_color_field_i); fprintf('derivative of color field of b: %d \n', der_color_field_j); error('Surface Area Minimization force is NaN') end %Adhesion Force if particles(b,3) == 1 sum_boundary_vol = Boundary_Sampling_density(particles, 2, h, r_c, int_boundary, 1); temp_index = b - int_boundary(1)+1; BSD = sum_boundary_vol(temp_index); if dist > 0.5*r_c && dist <= r_c adhesion_spline = (0.007/(r_c^3.25)) * (-(4*dist^2)/r_c + 6*dist - 2*r_c)^(1/4); end adhesion_F = - particles(a,4) * rho_0(particles(a,3)) * BSD * adhesion_spline; end % Correction Factor to amplify forces of the particles with % neighbourhood deficiency corr_factor=(2*rho_0(particles(a,3))) / ( particles(a,5) + particles(b,5) ); contact_angle = 120; gamma = 1-0.75*cosd(contact_angle); beta = 1+abs(0.5*cosd(contact_angle)); % gamma=0.1; % beta=1.5; PF = corr_factor * gamma * (cohesion_F) + beta * adhesion_F; % % virial Pressure % Cosine Force Virial Pressure % eps = (h^3 *(9*(pi^2)-8))/(27*(pi^2)); % Virial_Pressure = -eps * (particles(a,5)^2) * gamma % %Derived Virial Pressure Term % if dist <= r_c && dist > 0.5*r_c % eps = 1/1260; % elseif dist >= 0 && dist <= 0.5*r_c % eps = 61/645120; % end % Virial_Pressure = - pi * particles(a,5)^2 * gamma * particles(a,4) * particles(b,4) * r_c^3 * eps; end Virial_Pressure=0; end
github
Regon94/Smooth-Particle-Hydrodynamics-master
save_vtu.m
.m
Smooth-Particle-Hydrodynamics-master/save_vtu.m
4,555
utf_8
20ab9ee84fcea2f326bfb92a45538c04
% Script to plot data from SPH slosh simulation function [] = save_vtu(particles,n_save, dirname) % specify n_save = 0 for boundary particles %% saving directory % check for existence of paraviewfiles/vtu directory. this is the directory where % the .vtu files will be stored. if it does not exist create it % dirname='VTU_Results'; dirstatus=exist(dirname,'dir'); if(dirstatus==0) mkdir(dirname) end %% test vtu output (ascii) i = n_save; %for i = 1:size(save_pos,3) % specify file name if n_save ~= 0 name = strcat('slosh',num2str(i,'%3.3d'),'.dat'); fid=eval(['fopen(''',dirname,'/PART' num2str(i,'%3.3d') '.vtu' ''',''w'' );']); else % for boundary particles %name = strcat('slosh',num2str(i,'%3.3d'),'.dat'); fid=eval(['fopen(''',dirname,'/BOUND' num2str(i,'%3.3d') '.vtu' ''',''w'' );']); i = 1; end % specify data to store/ output % particles(:,:) = save_pos(:,:,i); np = size(particles,1); xp=particles(:,1); % position zp=particles(:,2); up=particles(:,6); % velocity wp=particles(:,7); rhop=particles(:,5); % density P=particles(:,8); % pressure % numbering idiv=2; nbeg1=1; nb=0; nend1=nb; nbeg2=nb+1; nend2=np; % output to file in vtu format fprintf(fid,'<?xml version="1.0"?>\r\n'); fprintf(fid,'<VTKFile type= "UnstructuredGrid" version= "0.1" byte_order= "BigEndian">\r\n'); fprintf(fid,' <UnstructuredGrid>\r\n'); fprintf(fid,' <Piece NumberOfPoints="%d" NumberOfCells="%d">\r\n',np,np); % write in pressure data fprintf(fid,' <PointData Scalars="Pressure" Vectors="Velocity">\r\n'); fprintf(fid,' <DataArray type="Float32" Name="Pressures" format="ascii">\r\n'); for ii=1:np fprintf(fid,'%f\t',P(ii)); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); % write density data fprintf(fid,' <DataArray type="Float32" Name="Density" format="ascii">\r\n'); for ii=1:np fprintf(fid,'%f\t',rhop(ii)); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); % this section is used to color different particles based the input idiv specified above. fprintf(fid,' <DataArray type="Float32" Name="Scalarplot" format="ascii">\r\n'); for ii=1:idiv eval(['nbeg=nbeg' int2str(ii) ';']) eval(['nend=nend' int2str(ii) ';']) for jj=nbeg:nend fprintf(fid,'%f\t',ii); fprintf(fid,'\n'); end end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); % write velocity data fprintf(fid,' <DataArray type="Float32" Name="Velocity" NumberOfComponents="3" format="ascii">\r\n'); for ii=1:np vel=[up(ii) 0 wp(ii)]; fprintf(fid,'%f\t %f\t %f\t',vel); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); fprintf(fid,' </PointData>\r\n'); % write particle position data fprintf(fid,' <Points>\r\n'); fprintf(fid,' <DataArray type="Float32" NumberOfComponents="3" format="ascii">\r\n'); for ii=1:np pos=[xp(ii) 0 zp(ii)]; fprintf(fid,'%f\t %f\t %f\t',pos); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); fprintf(fid,' </Points>\r\n'); % write cell data. cell is of type vertex. fprintf(fid,' <Cells>\r\n'); fprintf(fid,' <DataArray type="Int32" Name="connectivity" format="ascii">\r\n'); for ii=1:np fprintf(fid,'%d\t',ii-1); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); fprintf(fid,'\r\n'); fprintf(fid,' <DataArray type="Int32" Name="offsets" format="ascii">\r\n'); for ii=1:np fprintf(fid,'%d\t',ii); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); fprintf(fid,'\r\n'); fprintf(fid,' <DataArray type="Int32" Name="types" format="ascii">\r\n'); for ii=1:np fprintf(fid,'%d\t',1); fprintf(fid,'\n'); end fprintf(fid,'\r\n'); fprintf(fid,' </DataArray>\r\n'); fprintf(fid,' </Cells>\r\n'); fprintf(fid,' </Piece>\r\n'); fprintf(fid,' </UnstructuredGrid>\r\n'); fprintf(fid,'</VTKFile>'); fclose(fid); %end
github
Regon94/Smooth-Particle-Hydrodynamics-master
Drop.m
.m
Smooth-Particle-Hydrodynamics-master/Drop.m
3,806
utf_8
e800b4320755500092ff36b0628c2c6c
%% Surface Tension Force model % Roger Gonzalez % 03/07/2017 function [particles, rho_0,gamma,c_0,p_0,Xi,my,alpha, a_wall, int_fluid, int_boundary] = Drop(kernel, dx, d, v_max, alpha) % rectangular domain origin = [0 0]; % first fluid phase % specify coordinates of edges for fluid f_lowleft = [-0.1 0.0]+origin; f_lowright = [ 0.1 0.0]+origin; f_upleft = [-0.1 0.1]+origin; f_upright = [ 0.1 0.1]+origin; % properties of fluid (will be stored) flag = 2; rho_0(flag) = 1000; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag);% reference pressure Xi(flag) = 0.0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = 0.02; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); particles = []; [particles, int_f1] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); %% second fluid phase multi_ph = 0; if multi_ph == 1 f_lowleft = [-0.2 0.0]+origin; f_lowright = [ 0.0 0.0]+origin; f_upleft = [-0.2 1.2]+origin; f_upright = [ 0.0 1.2]+origin; % properties of fluid (will be stored) flag = 3; rho_0(flag) = 1; % density gamma(flag) = 7; % pressure exponent % artificial speed of sound, c_0 = 10 * v_max = 10 * sqrt(g*H) c_0(flag) = 10*v_max; p_0(flag) = rho_0(flag) * c_0(flag)^2 / gamma(flag); % reference pressure Xi(flag) = 0 * p_0(flag); % background pressure my(flag) = 0.01; % viscosity alpha(flag) = alpha; % artificial visc factor % initial velocities vel = [0,0]; % create particle matrix fluid = create_fluid(dx, f_lowleft, f_lowright, f_upleft, f_upright); [particles, int_f2] = initialisation(particles, fluid, flag, rho_0(flag), dx, d, vel); % integer of fluid particles in matrix int_fluid = 1:max(int_f2); else int_fluid = 1:max(int_f1); end %% specify coordinates of edges for boundary b_lowleft = [-0.2 0.0]+origin; b_lowright = [ 0.2 0.0]+origin; b_upleft = [-0.2 0.0]+origin; b_upright = [ 0.2 0.0]+origin; % properties v_wall = [0,0]; % prescribed wall velocity a_wall = [0,0]; % wall acceleration flag = 1; % for boundary %set artificial viscosity of boundary to 0 alpha(flag) = 0; % create boundary matrix boundary = create_boundary(kernel, dx, b_lowleft, b_lowright, b_upleft, b_upright); [particles, int_boundary] = initialisation(particles, boundary, flag, 0, dx, d, [0,0]); particles(int_boundary,4) = v_wall(1); particles(int_boundary,5) = v_wall(2); %% plot initial positions of particles figure(1) hold on plot(particles(int_f1,1), particles(int_f1,2), '.') if multi_ph == 1 plot(particles(int_f2,1), particles(int_f2,2), 'g.') end plot(particles(int_boundary,1), particles(int_boundary,2), 'r.') plot([b_upleft(1,1), b_lowleft(1,1), b_lowright(1,1), b_upright(1,1)],... [b_upleft(1,2), b_lowleft(1,2), b_lowright(1,2), b_upright(1,2)], 'r', 'linewidth', 2) axis('equal') end
github
fan9193/exercise2-master
trandn.m
.m
exercise2-master/trandn.m
3,549
utf_8
307219e197d890623614a7c90eb2bef8
function x=trandn(l,u) %% truncated normal generator % * efficient generator of a vector of length(l)=length(u) % from the standard multivariate normal distribution, % truncated over the region [l,u]; % infinite values for 'u' and 'l' are accepted; % * Remark: % If you wish to simulate a random variable % 'Z' from the non-standard Gaussian N(m,s^2) % conditional on l<Z<u, then first simulate % X=trandn((l-m)/s,(u-m)/s) and set Z=m+s*X; % Reference: % Botev, Z. I. (2016). "The normal law under linear restrictions: % simulation and estimation via minimax tilting". Journal of the % Royal Statistical Society: Series B (Statistical Methodology). % doi:10.1111/rssb.12162 l=l(:);u=u(:); % make 'l' and 'u' column vectors if length(l)~=length(u) error('Truncation limits have to be vectors of the same length') end x=nan(size(l)); a=.66; % treshold for switching between methods % threshold can be tuned for maximum speed for each Matlab version % three cases to consider: % case 1: a<l<u I=l>a; if any(I) tl=l(I); tu=u(I); x(I)=ntail(tl,tu); end % case 2: l<u<-a J=u<-a; if any(J) tl=-u(J); tu=-l(J); x(J)=-ntail(tl,tu); end % case 3: otherwise use inverse transform or accept-reject I=~(I|J); if any(I) tl=l(I); tu=u(I); x(I)=tn(tl,tu); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x=ntail(l,u) % samples a column vector of length=length(l)=length(u) % from the standard multivariate normal distribution, % truncated over the region [l,u], where l>0 and % l and u are column vectors; % uses acceptance-rejection from Rayleigh distr. % similar to Marsaglia (1964); c=l.^2/2; n=length(l); f=expm1(c-u.^2/2); x=c-reallog(1+rand(n,1).*f); % sample using Rayleigh % keep list of rejected I=find(rand(n,1).^2.*x>c); d=length(I); while d>0 % while there are rejections cy=c(I); % find the thresholds of rejected y=cy-reallog(1+rand(d,1).*f(I)); idx=rand(d,1).^2.*y<cy; % accepted x(I(idx))=y(idx); % store the accepted I=I(~idx); % remove accepted from list d=length(I); % number of rejected end x=sqrt(2*x); % this Rayleigh transform can be delayed till the end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x=tn(l,u) % samples a column vector of length=length(l)=length(u) % from the standard multivariate normal distribution, % truncated over the region [l,u], where -a<l<u<a for some % 'a' and l and u are column vectors; % uses acceptance rejection and inverse-transform method; tol=2; % controls switch between methods % threshold can be tuned for maximum speed for each platform % case: abs(u-l)>tol, uses accept-reject from randn I=abs(u-l)>tol; x=l; if any(I) tl=l(I); tu=u(I); x(I)=trnd(tl,tu); end % case: abs(u-l)<tol, uses inverse-transform I=~I; if any(I) tl=l(I); tu=u(I); pl=erfc(tl/sqrt(2))/2; pu=erfc(tu/sqrt(2))/2; x(I)=sqrt(2)*erfcinv(2*(pl-(pl-pu).*rand(size(tl)))); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x=trnd(l,u) % uses acceptance rejection to simulate from truncated normal x=randn(size(l)); % sample normal % keep list of rejected I=find(x<l|x>u); d=length(I); while d>0 % while there are rejections ly=l(I); % find the thresholds of rejected uy=u(I); y=randn(size(ly)); idx=y>ly&y<uy; % accepted x(I(idx))=y(idx); % store the accepted I=I(~idx); % remove accepted from list d=length(I); % number of rejected end end
github
cvjena/caffe_pp2-master
classification_demo.m
.m
caffe_pp2-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
USF-IMARS/wv-land-cover-master
DT_Filter.m
.m
wv-land-cover-master/3d_wetlands/DT_Filter.m
2,287
utf_8
7c137152cbf1babe3afba4c1bd3106a5
%% DT_Filter.M %% Written by Matt McCarthy 8/29/2016 function dt_filt = DT_Filter(file,x,sz2,sz3,dev,FW,FU,UG,WA); filt = x; sz_sm(1) = sz2; % Size of unwarped(smaller) file sz_sm(2) = sz3; fwfilt = 75 wafilt = 50 sz1 = size(file); dt_filt =zeros(sz1(1),sz1(2),'uint8'); for a = filt+1:sz_sm(1)-filt-1; % Mode filter or median filter: 3x3 or 5x5 for b = filt+1:sz_sm(2)-filt-1; if file(a,b) == dev; dt_filt(a,b) = dev; elseif file(a,b) == FW && a > fwfilt && b > fwfilt && a < sz_sm(1)-100 && b < sz_sm(2)-100; % For FW, use larger window to eliminate erroneous urban misclassifications C = file(a-fwfilt:a+fwfilt,b-fwfilt:b+fwfilt); idx = find(C == 0); % If any pixels in C are shadows, they are not included in the mode function C(idx) = []; mod = mode(mode(C)); % Mode of window (by definition, lower value is selected if more than one mode value) if isnan(mod) == 1; dt_filt(a,b) = 0; % If NaN, assign zero because Arc won't load DT tiffs w/ NaNs elseif mod == FW; % Check if mode FW is actually urban tree shadow idxfor = find(C == dev | C == FU); % Find upland forest, grass, and developed nearby if size(idxfor,1)>0.10*size(C,1)*size(C,2); % > 10% is upland, grass, or developed dt_filt(a,b) = FU; % Assumed to be non-wetland forest else dt_filt(a,b) = FW; end else dt_filt(a,b) = FU; end elseif isnan(file(a,b)) == 0; C = file(a-filt:a+filt,b-filt:b+filt); idx = find(C == 0); % If any pixels in C are shadows, they are not included in the mode function C(idx) = []; mod = mode(mode(C)); % Identify most common value (if more than one value, lower value is selected automatically) if isnan(mod) == 1; % Check if mode of box is NaN (redundancy) dt_filt(a,b) = 0; % If NaN, assign zero (Arc won't load DT tiffs w/ NaNs) elseif mod == FW; D = dt_filt(a-filt:a,b-filt:b); modD = mode(mode(D)); dt_filt(a,b) = modD; else dt_filt(a,b) = mod; % If mod is upland, marsh, water or bare/developed, assign it as such end else dt_filt(a,b) = 0; end end end end
github
USF-IMARS/wv-land-cover-master
wv_classify.m
.m
wv-land-cover-master/3d_wetlands/wv_classify.m
37,674
utf_8
a528dc999ab6d7c2903872339d10beb3
%% WV2 Processing % Loads TIFF WorldView-2 image files preprocessed through Polar Geospatial % Laboratory python code, which orthorectifies and projects .NTF files and outputs as % TIFF files % Radiometrically calibrates digital count data % Atmospherically corrects images by subtracting Rayleigh Path Radiance % Converts image to surface reflectance by accounting for Earth-Sun % distance, solar zenith angle, and average spectral irradiance % Tests and optionally corrects for sunglint % Corrects for water column attenuation % Runs Decision Tree classification on each image % Optionally smooths results through moving-window filter % Outputs images as GEOTIFF files with geospatial information. function dt_filt = WV_Processing(images,id,met,crd_sys,dt,filt,loc,idnumber,rrs_out,class_out); tic d_t = str2num(dt); n = num2str(idnumber); id met coor_sys = crd_sys; % Change coordinate system code here filter = str2num(filt); loc_out = rrs_out; % Assign constants for all images ebw1 = 0.001*[47.3 54.3 63.0 37.4 57.4 39.3 98.9 99.6]; % Effective Bandwidth per WV2 band (nm converted to um units; from IMD metadata files) ebw2 = 0.001*[40.5 54.0 61.8 38.1 58.5 38.7 100.4 88.9]; % WV3 irr1 = [1758.2229 1974.2416 1856.4104 1738.4791 1559.4555 1342.0695 1069.7302 861.2866]; % Band-averaged Solar Spectral Irradiance (W/m2/um units) irr2 = [1757.89 2004.61 1830.18 1712.07 1535.33 1348.08 1055.94 858.77]; % WV3 (from Radiometric Use of WorldView-3 Imagery, Thuiller 2003 column Table 3) cw1 = [.4273 .4779 .5462 .6078 .6588 .7237 .8313 .9080]; % Center wavelength (used for Rayleigh correction; from Radiometric Use of WorldView-2 Imagery) cw2 = [.4274 .4819 .5471 .6043 .6601 .7227 .8240 .9136]; % WV3 gamma = 0.01*[1.499 1.471 1.442 1.413 1.413 1.413 1.384 1.384]; % Factor used in Rayleigh Phase Function equation (Bucholtz 1995) [A, R] = geotiffread(images); szA = size(A); s = xml2struct(met); % save XMLtest.mat s % Extract calibration factors and acquisition time from metadata for each band if isfield(s,'IMD') == 1 szB(1) = str2num(s.IMD.SOURCE_IMD.IMD.NUMROWS.Text); %#ok<*ST2NM> szB(2) = str2num(s.IMD.SOURCE_IMD.IMD.NUMCOLUMNS.Text); kf(1,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_C.ABSCALFACTOR.Text); kf(2,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_B.ABSCALFACTOR.Text); kf(3,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_G.ABSCALFACTOR.Text); kf(4,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_Y.ABSCALFACTOR.Text); kf(5,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_R.ABSCALFACTOR.Text); kf(6,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_RE.ABSCALFACTOR.Text); kf(7,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_N.ABSCALFACTOR.Text); kf(8,1) = str2num(s.IMD.SOURCE_IMD.IMD.BAND_N2.ABSCALFACTOR.Text); aqyear = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(12:15)); % Extract Acquisition Time from metadata aqmonth = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(17:18)); % Extract Acquisition Time from metadata aqday = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(20:21)); % Extract Acquisition Time from metadata aqhour = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(23:24)); % Extract Acquisition Time from metadata aqminute = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(26:27)); % Extract Acquisition Time from metadata aqsecond = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.FIRSTLINETIME.Text(29:37)); % Extract Acquisition Time from metadata sunel = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.MEANSUNEL.Text); % Extract Mean Sun Elevation angle from metadata satview = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.MEANOFFNADIRVIEWANGLE.Text); % Extract Mean Off Nadir View angle from metadata sunaz = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.MEANSUNAZ.Text); sensaz = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.MEANSATAZ.Text); satel = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.MEANSATEL.Text); cl_cov = str2num(s.IMD.SOURCE_IMD.IMD.IMAGE.CLOUDCOVER.Text); elseif isfield(s,'isd') == 1 szB(1) = str2num(s.isd.IMD.NUMROWS.Text); szB(2) = str2num(s.isd.IMD.NUMCOLUMNS.Text); kf(1,1) = str2num(s.isd.IMD.BAND_C.ABSCALFACTOR.Text); kf(2,1) = str2num(s.isd.IMD.BAND_B.ABSCALFACTOR.Text); kf(3,1) = str2num(s.isd.IMD.BAND_G.ABSCALFACTOR.Text); kf(4,1) = str2num(s.isd.IMD.BAND_Y.ABSCALFACTOR.Text); kf(5,1) = str2num(s.isd.IMD.BAND_R.ABSCALFACTOR.Text); kf(6,1) = str2num(s.isd.IMD.BAND_RE.ABSCALFACTOR.Text); kf(7,1) = str2num(s.isd.IMD.BAND_N.ABSCALFACTOR.Text); kf(8,1) = str2num(s.isd.IMD.BAND_N2.ABSCALFACTOR.Text); aqyear = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(1:4)); % Extract Acquisition Time from metadata aqmonth = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(6:7)); % Extract Acquisition Time from metadata aqday = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(9:10)); % Extract Acquisition Time from metadata aqhour = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(12:13)); % Extract Acquisition Time from metadata aqminute = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(15:16)); % Extract Acquisition Time from metadata aqsecond = str2num(s.isd.IMD.IMAGE.FIRSTLINETIME.Text(18:26)); % Extract Acquisition Time from metadata sunel = str2num(s.isd.IMD.IMAGE.MEANSUNEL.Text); % Extract Mean Sun Elevation angle from metadata satview = str2num(s.isd.IMD.IMAGE.MEANOFFNADIRVIEWANGLE.Text); % Extract Mean Off Nadir View angle from metadata sunaz = str2num(s.isd.IMD.IMAGE.MEANSUNAZ.Text); sensaz = str2num(s.isd.IMD.IMAGE.MEANSATAZ.Text); satel = str2num(s.isd.IMD.IMAGE.MEANSATEL.Text); cl_cov = str2num(s.isd.IMD.IMAGE.CLOUDCOVER.Text); else c = struct2cell(s.Children(2).Children(:)); idx{1} = strfind(c(1,:),'NUMROWS'); idx{2} = strfind(c(1,:),'NUMCOLUMNS'); idx{3} = strfind(c(1,:),'BAND_C'); idx{4} = strfind(c(1,:),'BAND_B'); idx{5} = strfind(c(1,:),'BAND_G'); idx{6} = strfind(c(1,:),'BAND_Y'); idx{7} = strfind(c(1,:),'BAND_R'); idx{8} = strfind(c(1,:),'BAND_RE'); idx{9} = strfind(c(1,:),'BAND_N'); idx{10} = strfind(c(1,:),'BAND_N2'); idx{11} = strfind(c(1,:),'IMAGE'); for i = 1:11; idxb(i,1:2) = find(not(cellfun('isempty',idx{i}))); end szB(1) = str2num(s.Children(2).Children(idxb(1)).Children.Data); szB(2) = str2num(s.Children(2).Children(idxb(2)).Children.Data); kf(1,1) = str2num(s.Children(2).Children(idxb(3)).Children(26).Children.Data); kf(2,1) = str2num(s.Children(2).Children(idxb(4)).Children(26).Children.Data); kf(3,1) = str2num(s.Children(2).Children(idxb(5)).Children(26).Children.Data); kf(4,1) = str2num(s.Children(2).Children(idxb(6)).Children(26).Children.Data); kf(5,1) = str2num(s.Children(2).Children(idxb(7,1)).Children(26).Children.Data); kf(6,1) = str2num(s.Children(2).Children(idxb(8)).Children(26).Children.Data); kf(7,1) = str2num(s.Children(2).Children(idxb(9,1)).Children(26).Children.Data); kf(8,1) = str2num(s.Children(2).Children(idxb(10)).Children(26).Children.Data); aqyear = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(1:4)); aqmonth = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(6:7)); aqday = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(9:10)); aqhour = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(12:13)); aqminute = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(15:16)); aqsecond = str2num(s.Children(2).Children(idxb(11,2)).Children(16).Children.Data(18:26)); sunel = str2num(s.Children(2).Children(idxb(11,2)).Children(56).Children.Data); sunaz = str2num(s.Children(2).Children(idxb(11,2)).Children(50).Children.Data); satview = str2num(s.Children(2).Children(idxb(11,2)).Children(86).Children.Data); sensaz = str2num(s.Children(2).Children(idxb(11,2)).Children(62).Children.Data); satel = str2num(s.Children(2).Children(idxb(11,2)).Children(68).Children.Data); cl_cov = str2num(s.Children(2).Children(idxb(11,2)).Children(90).Children.Data); end szB(3) = 8; % Assign WV2 vs WV3 constant calibration factors if id(4) == '3' ebw = ebw2; irr = irr2; cw = cw2; else ebw = ebw1; irr = irr1; cw = cw1; end % Identify growing season vs senesced if aqmonth == 11 || aqmonth == 12 || aqmonth == 1 || aqmonth == 2 season = 0; else season = 1; end %% Calculate Earth-Sun distance and relevant geometry if aqmonth == 1 || aqmonth == 2; year = aqyear -1; month = aqmonth + 12; else year = aqyear; month = aqmonth; end UT = aqhour + (aqminute/60.0) + (aqsecond/3600.0); % Convert time to UT B1 = int64(year/100); B2 = 2-B1+int64(B1/4); JD = (int64(365.25*(year+4716)) +int64(30.6001*(month+1)) + aqday + UT/24.0 + B2 - 1524.5); % Julian date D = JD - 2451545.0; degs = double(357.529 + 0.98560028*D); % Degrees ESd = 1.00014 - 0.01671*cosd(degs) - 0.00014*cosd(2*degs); % Earth-Sun distance at given date (should be between 0.983 and 1.017) inc_ang = 90.0 - sunel; TZ = cosd(inc_ang); % Atmospheric spectral transmittance in solar path with solar zenith angle TV = cosd(satview); % Atmospheric spectral transmittance in view path with satellite view angle %% Calculate Rayleigh Path Radiance (Dash et al. 2012 and references therein) if sunaz > 180 % For the following equations, azimuths should be between -180 and +180 degrees sunaz = sunaz - 360; end if sensaz > 180 sensaz = sensaz - 360; end az = abs(sensaz - 180 - sunaz); % Relative azimuth angle thetaplus = acosd(cosd(90-sunel)*cosd(90-satel) - sind(90-sunel)*sind(90-satel)*cosd(az)); % Scattering angles for d = 1:8; Pr(d) = (3/(4*(1+2*gamma(d))))*((1+3*gamma(d))+(1-gamma(d))*cosd(thetaplus)^2); % Rayleigh scattering phase function (described in Bucholtz 1995) end for d = 1:8; tau(d) =(0.008569*(cw(d)^-4)*(1 + 0.0113*(cw(d)^-2) + 0.00013*cw(d)^-4)); % Rayleigh optical thickness (assume standard pressure of 1013.25 mb) end % Rayleigh calculation (Dash et al., 2012) for d = 1:8; ray_rad{1,1}(d) = ((irr(1,d)/ESd)*1*tau(d)*Pr(d))/(4*pi*cosd(90-satel)); % Assume standard pressure (1013.25 mb) end % rrs constant calculation (Kerr et al. 2018 and Mobley 1994) G = single(1.7); % constant Li et al. 2019 na = 1.00029; % Refractive index of air nw = 1.34; % Refractive index seawater inc_ang2 = real(asind(sind(90-satel)*nw/na)); % Incident angle for water-air from Snell's Law trans_aw = real(asind(sind(inc_ang)*na/nw)); % Transmission angle for air-water incident light from Snell's Law trans_wa = 90-satel; % Transmission angle for water-air incident light from Snell's Law pf1 = real(0.5*((sind(inc_ang - trans_aw)/(sind(inc_ang + trans_aw)))^2 + (tand(inc_ang - trans_aw)/(tand(inc_ang + trans_aw)))^2)); % Fresnel reflectance for air-water incident light (Mobley 1994) pf2 = real(0.5*((sind(inc_ang2 - trans_wa)/(sind(inc_ang2 + trans_wa)))^2 + (tand(inc_ang2 - trans_wa)/(tand(inc_ang2 + trans_wa)))^2)); zeta = real(single((1-pf1)*(1-pf2)/(nw^2))); % rrs constant (~0.52) from Mobley 1994 % Adjust file size: Input file (A) warped may contain more or fewer columns/rows than original NITF file, and some may be corrupt. sz(1) = min(szA(1),szB(1)); sz(2) = min(szA(2),szB(2)); sz(3) = 8; %% Assign NaN to no-data pixels and radiometrically calibrate and convert to Rrs Rrs = single(zeros(szA(1),szA(2),8)); % Create empty matrix for Rrs output for j = 1:sz(1); % Assign NaN to pixels of no data for k = 1:sz(2); % If a pixel contains data values other than "zero" or "two thousand and forty seven" in any band, it is calibrated; otherwise, it is considered "no-data" - this avoids a problem created during the orthorectification process wherein reprojecting the image may resample data if (A(j,k,1)) ~= 0 && (A(j,k,1)) ~= 2047 || (A(j,k,2)) ~= 0 && (A(j,k,2)) ~= 2047 || (A(j,k,3)) ~= 0 && (A(j,k,3)) ~= 2047 || (A(j,k,4)) ~= 0 && (A(j,k,4)) ~= 2047 || (A(j,k,5)) ~= 0 && (A(j,k,5)) ~= 2047 || (A(j,k,6)) ~= 0 && (A(j,k,6)) ~= 2047 || (A(j,k,7)) ~= 0 && (A(j,k,7)) ~= 2047 || (A(j,k,8)) ~= 0 && (A(j,k,8)) ~= 2047; for d = 1:8; Rrs(j,k,d) = single((pi*((single(A(j,k,d))*kf(d,1)/ebw(1,d)) - ray_rad{1,1}(1,d))*ESd^2)/(irr(1,d)*TZ*TV)); % Radiometrically calibrate and convert to Rrs (adapted from Radiometric Use of WorldView-2 Imagery( end else Rrs(j,k,:) = NaN; end end end clear A %% Output reflectance image % if Rrs_write == 1; % if id(4) == '3' % info = geotiffinfo(images); % geoTags = info.GeoTIFFTags.GeoKeyDirectoryTag; % tiffTags = struct('TileLength',1024,'TileWidth',1024); % Z = [loc_out,id,'_',loc,'_RrsBT'] % geotiffwrite(Z,Rrs,R(1,1),'GeoKeyDirectoryTag',geoTags,'TiffType','bigtiff','TiffTags',tiffTags); % else % Z = [loc_out,id,'_',loc,'_Rrs'] % geotiffwrite(Z,Rrs,R(1,1),'CoordRefSysCode',coor_sys); % end % end if d_t > 0; % Run DT and/or rrs conversion; otherwise end %% Setup for Deglint, Bathymetry, and Decision Tree b = 1; t = 1; u = 1; y = 0; v = 0; num_pix = 0; sum_SD(b) = 0; sum_veg(t) = 0; sum_veg2(t) = 0; dead_veg(t) = 0; sum_water_rrs(u) = 0; sz_ar = sz(1)*sz(2); water = zeros(sz_ar,9); for j = 1:sz(1); for k = 1:sz(2); if isnan(Rrs(j,k,1)) == 0 num_pix = num_pix +1; % Count number of non-NaN pixels c_val(num_pix) = Rrs(j,k,1); % Record coastal band value for use in cloud mask prediction if (Rrs(j,k,7) - Rrs(j,k,2))/(Rrs(j,k,7) + Rrs(j,k,2)) < 0.65 && Rrs(j,k,5) > Rrs(j,k,4) && Rrs(j,k,4) > Rrs(j,k,3) % Sand & Developed sum_SD(b) = sum(Rrs(j,k,6:8)); b = b+1; elseif (Rrs(j,k,8) - Rrs(j,k,5))/(Rrs(j,k,8) + Rrs(j,k,5)) > 0.65 && Rrs(j,k,7) > Rrs(j,k,3); % Identify vegetation (excluding grass) if ((Rrs(j,k,7) - Rrs(j,k,2))/(Rrs(j,k,7) + Rrs(j,k,2))) > 0.20; % Shadow filter sum_veg(t) = sum(Rrs(j,k,3:5)); % Sum bands 3-5 for selected veg to distinguish wetland from upland sum_veg2(t) = sum(Rrs(j,k,7:8)); dead_veg(t) = (((Rrs(j,k,7) - Rrs(j,k,4))/3) + Rrs(j,k,4)) - Rrs(j,k,5); % Compute difference of predicted B5 value from actual valute t = t+1; end elseif Rrs(j,k,8) < 0.11 && Rrs(j,k,1) > 0 && Rrs(j,k,2) > 0 && Rrs(j,k,3) > 0 && Rrs(j,k,4) > 0 && Rrs(j,k,5) > 0 && Rrs(j,k,6) > 0 && Rrs(j,k,7) > 0 && Rrs(j,k,8) > 0; % Identify glint-free water water(u,1:8) = double(Rrs(j,k,:)); water_rrs(1:6) = Rrs(j,k,1:6)./(zeta + G.*Rrs(j,k,1:6)); if water_rrs(4) > water_rrs(2) && water_rrs(4) < 0.12 && water_rrs(5) < water_rrs(3) sum_water_rrs(u) = sum(water_rrs(3:5)); end u = u+1; if Rrs(j,k,8)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,3)% NDGI to identify glinted water pixels (some confusion w/ clouds) v = v+1; water(u,9) = 2; % Mark array2<array1 glinted pixels elseif Rrs(j,k,8)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,3) v = v+1; water(u,9) = 3; % Mark array2>array1 glinted pixels else water(u,9) = 1; % Mark records of glint-free water end elseif Rrs(j,k,8)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,3) water(u,1:8) = double(Rrs(j,k,:)); water(u,9) = 2; % Mark array2<array1 glinted pixels u = u+1; v = v+1; elseif Rrs(j,k,8)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,3) water(u,9) = 3; % Mark array2>array1 glinted pixels water(u,1:8) = double(Rrs(j,k,:)); u = u+1; v = v+1; % elseif (Rrs(j,k,4)-Rrs(j,k,8))/(Rrs(j,k,4)+Rrs(j,k,8)) < 0.55 && Rrs(j,k,8) < 0.2 && (Rrs(j,k,7)-Rrs(j,k,2))/(Rrs(j,k,7)+Rrs(j,k,2)) < 0.1 && (Rrs(j,k,8)-Rrs(j,k,5))/(Rrs(j,k,8)+Rrs(j,k,5)) < 0.3 && Rrs(j,k,1) > 0 && Rrs(j,k,2) > 0 && Rrs(j,k,3) > 0 && Rrs(j,k,4) > 0 && Rrs(j,k,5) > 0 && Rrs(j,k,6) > 0 && Rrs(j,k,7) > 0 && Rrs(j,k,8) > 0; % Identify glinted water % water(u,1:8) = double(Rrs(j,k,:)); % u = u+1; % v = v+1; end end end end n_water = u; % Number of water pixels used to derive E_glint relationships n_glinted = v; % Number of glinted water pixels idx = find(water(:,1) == 0); water(idx,:) = []; water7 = water(:,7); water8 = water(:,8); mnNIR1 = min(water7(water7>0)); % Positive minimum Band 7 value used for deglinting mnNIR2 = min(water8(water8>0)); % Positive minimum Band 8 value used for deglinting idx_gf = find(water(:,9)==1); % Glint-free water water_gf = water(idx_gf,1:8); % Identify optically deep water average spectrum bn = 7; % Band number pctl_l = 5; % Percentile (5th percentile value of glint-free water n-band values chosen based on visual analysis of density slicing of Rrs image) pctl_u = 15; clear water_gfidx water_odw m0 m1 water_gfidx = find(water_gf(:,bn) == prctile(water_gf(:,bn),pctl_l) & water_gf(:,bn) <= prctile(water_gf(:,bn),pctl_u)); water_odw(:,1:8) = (water_gf(water_gfidx(1:end),1:8)); % Li et al. Dove BGR corresponds to WV2 BGY center wavelengths % Equations from Li et al. 2019 & Hu et al. 2012 for h = 1:size(water_odw,1) % w1(h) = water_odw(h,3) - (water_odw(h,1) + (546-427)/(659-427)*(water_odw(h,5) - water_odw(h,1))); % Hu et al. 2012 w2(h) = water_odw(h,3) - 0.46*water_odw(h,4) - 0.54*water_odw(h,1); % Li et al. 2019 end if exist('w2')==1 w = median(w2(w2<0)); else w = 0; end if w > -0.0005 m0 = 0; m1 = 0; Update = 'Too Turbid for Benthic Mapping' else chla = 10^(-0.4909 + 191.659*w) % Hu et al. 2012 (Kerr limited chla to 1.0mg/m3; 0.1 mg/m3 WV Cay Sal most accurate value used) m0 = 52.083*exp(2.711*chla) % Revised from Li et al. 2019 with exponential scalar derived from Kerr FK WV image field data tuning parameters m1 = 50.156*exp(2.711*chla) % TARGET: 64.3 +/- 0.5 & 62.6 +/- 0.5, Predicted: 67.2 & 64.7 end Kd = [0.036 0.037 0.075 0.25 0.415]; %1.416]; %(Based on Kerr 2018 Fig 7a chl-conc 0.1 mg/m3 i.e. lowest RMSE water-depth predictor values) if v > 0.25*u Update = 'Deglinting' id2 = 'deglinted'; for b = 1:6 %% Calculate linear fitting of all MS bands vs NIR1 & NIR2 for deglinting in DT (Hedley et al. 2005) if b == 1 || b == 4 || b == 6 slope1 = water(:,b)\water(:,8); else slope1 = water(:,b)\water(:,7); end E_glint(1,b) = single(slope1); end E_glint % = [0.8075 0.7356 0.8697 0.7236 0.9482 0.7902] else Update = 'Glint-free' id2 = 'glintfree'; end %% Edge Detection via Morphological Index (improved over Huang & Zhang 2011, Ma et al. 2019) waterind = uint16((Rrs(:,:,3)-Rrs(:,:,8))./(Rrs(:,:,3)+Rrs(:,:,8)) > 0.15); img_sub2 = Rrs(:,:,2); img_sub5 = Rrs(:,:,5); img_sub7 = Rrs(:,:,7); Rrs_cloud = img_sub2./img_sub7; Rrs_cl2 = Rrs_cloud; Rrs_cl3 = Rrs_cloud; Rrs_cl2(Rrs_cloud >= 0.7) = 1; Rrs_cl2(Rrs_cloud < 0.7) = 0; Rrs_cl3(Rrs_cloud <= 0.9) = 1; Rrs_cl3(Rrs_cloud > 0.9) = 0; Rrs_clf = Rrs_cl2 + Rrs_cl3; Rrs_clf(Rrs_clf < 2) = 0; CLrrs = imbinarize(Rrs_clf); CL1 = uint16(imtophat(CLrrs,strel('disk',100))) - waterind; CL1(CL1<0) = 0; CLe = imerode(CL1,strel('disk',20)); CLed = imdilate(CLe,strel('disk',150)); Cloud = imfill(CLed,'holes'); clear Rrs_cl2 Rrs_cl3 Rrs_clf CLrrs CL1 CLe CLed Rrs_sh1 = Rrs_cloud; Rrs_sh2 = Rrs_cloud; Rrs_sh1(Rrs_cloud >= 1.3) = 1; Rrs_sh1(Rrs_cloud < 1.3) = 0; Rrs_sh2(Rrs_cloud <= 1.7) = 1; Rrs_sh2(Rrs_cloud > 1.7) = 0; Rrs_shf = Rrs_sh1 + Rrs_sh2; Rrs_shf(Rrs_shf < 2) = 0; SHrrs = imbinarize(Rrs_shf); Shadow = uint16(imtophat(SHrrs,strel('square',20))); clear Rrs_sh1 Rrs_sh2 Rrs_shf SHrrs Rrs_map = img_sub5./img_sub7; Rrs_map2 = Rrs_map; Rrs_map3 = Rrs_map; Rrs_map2(Rrs_map >= 0.7) = 1; Rrs_map2(Rrs_map < 0.7) = 0; Rrs_map3(Rrs_map <= 1.1) = 1; Rrs_map3(Rrs_map > 1.1) = 0; Rrs_mapf = Rrs_map2 + Rrs_map3; Rrs_mapf(Rrs_mapf < 2) = 0; BWrrs = imbinarize(Rrs_mapf); BW1 = uint16(imtophat(BWrrs,strel('square',30))) - waterind; BW1 = imdilate(BW1,strel('square',5)); % Expand developed to include shadows BW1(BW1<0) = 0; Cloud = Cloud - BW1; Cloud(Cloud<0) = 0; cld_idx = 0; if size(find(Cloud ==1),1) > 0.060*szA(1)*szA(2) cld_idx = 1; end % ns = 2000; % BW = uint16(imtophat(BWrrs,strel('square',ns))); % CC = bwconncomp(BW); % numPixels = cellfun(@numel,CC.PixelIdxList); % BW1idx = find(numPixels > 1000); % CC.PixelIdxList = CC.PixelIdxList(BW1idx); % CC.NumObjects = size(BW1idx,2); % BW3 = uint16(labelmatrix(CC)); % BW3(BW3>0) = 1; % BW3e = uint16(imerode(BW3,strel('disk',100))); % BW3ed = uint16(imdilate(BW3e,strel('square',200))); % BW4 = imfill(BW3ed,'holes'); BAI = (img_sub2 - img_sub7)./(img_sub2 + img_sub7); % Built Area Index BAI = BAI * -1; % Dev & soil negative, soil more negative (water high positive) BAI = imbinarize(BAI); BAI = imerode(BAI,strel('square',5)); clear BW3 BW3e BW3ed BW2 BWrrs BWnew BWnewe BW1idx Ztest = [loc_out,id,'_',loc,'_BW1'] geotiffwrite(Ztest,BW1,R(1,1),'CoordRefSysCode',coor_sys); Ztest = [loc_out,id,'_',loc,'_BAI'] geotiffwrite(Ztest,BAI,R(1,1),'CoordRefSysCode',coor_sys); %% Determine Rrs-infinite from glint-free water pixels rrs_inf = [0.00512 0.00686 0.008898 0.002553 0.001506 0.000403]; % Derived from Rrs_Kd_Model.xlsx for Default values %% Calculate target class metrics avg_SD_sum = mean(sum_SD(:)); stdev_SD_sum = std(sum_SD(:)); avg_veg_sum = mean(sum_veg(:)) avg_dead_veg = mean(dead_veg(:)); avg_mang_sum = mean(sum_veg2(:)); idx_water2 = find(sum_water_rrs==0); sum_water_rrs(idx_water2) = []; avg_water_sum = mean(sum_water_rrs(:)); if cl_cov > 0 num_cld_pix = round(num_pix*cl_cov*0.01); % Number of cloud pixels (rounded down to nearest integer) based on metadata-reported percent cloud cover srt_c = sort(c_val,'descend'); % Sort all pixel blue-values in descending order. Cloud mask threshold will be num_cld_pix'th highest value cld_mask = srt_c(num_cld_pix); % Set cloud mask threshold else cld_mask = max(c_val)+1; end Bathy = single(zeros(szA(1),szA(2))); % Preallocate for Bathymetry Rrs_deglint = single(zeros(5,1)); % Preallocate for deglinted Rrs Rrs_0 = single(zeros(5,1)); %Preallocation for water-column corrected Rrs map = zeros(szA(1),szA(2),'uint8'); % Create empty matrix for classification output if d_t == 1; % Execute Deglinting, rrs, Bathymetry if v > u*0.25 for j = 1:szA(1) for k = 1:szA(2) if isnan(Rrs(j,k,1)) == 0 && Rrs(j,k,8)<0.2 % Deglint equation Rrs_deglint(1,1) = (Rrs(j,k,1) - (E_glint(1)*(Rrs(j,k,8) - mnNIR2))); Rrs_deglint(2,1) = (Rrs(j,k,2) - (E_glint(2)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(3,1) = (Rrs(j,k,3) - (E_glint(3)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(4,1) = (Rrs(j,k,4) - (E_glint(4)*(Rrs(j,k,8) - mnNIR2))); Rrs_deglint(5,1) = (Rrs(j,k,5) - (E_glint(5)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(6,1) = (Rrs(j,k,6) - (E_glint(6)*(Rrs(j,k,8) - mnNIR2))); % Convert above-surface Rrs to below-surface rrs (Kerr et al. 2018) Rrs_0(1:5) = Rrs_deglint(j,k,1:5)./(zeta + G.*Rrs_deglint(j,k,1:5)); % Convert above-surface Rrs to subsurface rrs (Kerr et al. 2018, Lee et al. 1998) b1 = 63.6; % Turning parameters (Kerr 2018) b0 = -60.25; dp = b1*real(log(1000*Rrs_0(2))/log(1000*Rrs_0(3))) + b0; % Calculate depth (Stumpf 2003 ratio transform with Kerr et al. 2018 coefficients) if dp < 15 && dp > 0 % Parameters based on Kerr 2018 RMSE-based recommended constraints (depths greater than 15m inaccurate) Bathy(j,k) = dp; end for d = 1:5 Rrs(j,k,d) = real(((Rrs_0(d)-rrs_inf(d))/exp(-2*Kd(1,d)*dp))+rrs_inf(d)); % Calculate water-column corrected benthic reflectance (Traganos 2017 & Maritorena 1994) end end end end else % For glint-free/low-glint images for j = 1:szA(1) for k = 1:szA(2) if isnan(Rrs(j,k,1)) == 0 && Rrs(j,k,8)<0.2 Rrs_0(1:5) = Rrs(j,k,1:5)./(zeta + G.*Rrs(j,k,1:5)); % Convert above-surface Rrs to subsurface rrs (Kerr et al. 2018, Lee et al. 1998) b1 = 63.6; % Turning parameters (Kerr 2018 Table 6 average of 2 forward-modeling WorldView-2 results) b0 = -60.25; dp = b1*real(log(1000*Rrs_0(2))/log(1000*Rrs_0(3))) + b0; % Calculate depth (Stumpf 2003 ratio transform with Kerr et al. 2018 coefficients) if dp < 15 && dp > 0 % Parameters based on Kerr 2018 RMSE-based recommended constraints (depths greater than 15m inaccurate) Bathy(j,k) = dp; else dp = 0; end for d = 1:5 Rrs(j,k,d) = real(((Rrs_0(d)-rrs_inf(d))/exp(-2*Kd(1,d)*dp))+rrs_inf(d)); % Calculate water-column corrected benthic reflectance (Traganos 2017 & Maritorena 1994) end end end end end elseif d_t == 2; % Only run for Deglinted Rrs and Bathymetry, not Decision Tree update = 'Running DT' BS = 2; WA = 3; DG = 5; MA = 6; SC = 7; FW = 10; FU = 9; UG = 8; dev = 11; p = 1; for j = 1:szA(1) for k = 1:szA(2) if isnan(Rrs(j,k,1)) == 0 %% Cloud Cover if Cloud(j,k) == 1 && BW1(j,k) ~= 1 map(j,k) = 1; % Cloud %% Vegetation elseif (Rrs(j,k,7) - Rrs(j,k,5))/(Rrs(j,k,7) + Rrs(j,k,5)) > 0.20 && Rrs(j,k,7) > Rrs(j,k,3) % Vegetation pixels (NDVI) if ((Rrs(j,k,7) - Rrs(j,k,2))/(Rrs(j,k,7) + Rrs(j,k,2))) < 0.20 && (Rrs(j,k,7) - Rrs(j,k,8))/(Rrs(j,k,7) + Rrs(j,k,8)) > 0.01; % Shadowed-vegetation filter (B7/B8 ratio excludes marsh, which tends to have very similar values here) map(j,k) = 0; % Shadow elseif sum(Rrs(j,k,3:5)) < avg_veg_sum if (Rrs(j,k,3) - Rrs(j,k,8))/(Rrs(j,k,3) + Rrs(j,k,8)) > -0.75 % ML if (Rrs(j,k,7) - Rrs(j,k,5))/(Rrs(j,k,7) + Rrs(j,k,5)) > 0.75 % M map(j,k) = FW; % Forested Wetland elseif sum(Rrs(j,k,3:5)) > 0.12 && sum(Rrs(j,k,7:8)) > 0.45 % ML map(j,k) = FU; % FORESTED UPLAND elseif (Rrs(j,k,7) - Rrs(j,k,5))/(Rrs(j,k,7) + Rrs(j,k,5)) > 0.60 map(j,k) = FW; % Forested Wetland elseif Rrs(j,k,7) < 0.3 && sum(Rrs(j,k,7:8)) > 0.25 if (Rrs(j,k,5) - Rrs(j,k,3))/(Rrs(j,k,5) + Rrs(j,k,3)) > 0.1 map(j,k) = DG; % Dead Grass elseif Rrs(j,k,7) < 0.27 && sum(Rrs(j,k,7:8)) < 0.5 map(j,k) = MA; % Marsh else map(j,k) = FU; % Forested Upland end end elseif (Rrs(j,k,4) - Rrs(j,k,5))/(Rrs(j,k,4) + Rrs(j,k,5)) > 0.08 map(j,k) = 6; % Marsh (was algal flat) else map(j,k) = FU; % Forested Upland end elseif (Rrs(j,k,8) - Rrs(j,k,5))/(Rrs(j,k,8) + Rrs(j,k,5)) > 0.65 map(j,k) = FU; % Forested Upland elseif Rrs(j,k,7) < 0.4 % Marsh, Scrub, Grass, Dead Veg if (Rrs(j,k,4) - Rrs(j,k,5))/(Rrs(j,k,4) + Rrs(j,k,5)) > 0.08 map(j,k) = 6; % Marsh (was algal flat) elseif (Rrs(j,k,5) - Rrs(j,k,3))/(Rrs(j,k,5) + Rrs(j,k,3)) > 0.05 %&& Rrs(j,k,7) < 0.27 % Agriculture or senesced veg/grass map(j,k) = DG; % Dead veg else map(j,k) = UG; % Grass end % elseif sum(Rrs(j,k,7:8)) < 0.8 && sum(Rrs(j,k,7:8)) > 0.65 % Live grass high, dead grass low % map(j,k) = 10; % Upland Forest else map(j,k) = SC; % Scrub/shrub end %% Developed and Soil elseif (Rrs(j,k,7) - Rrs(j,k,2))/(Rrs(j,k,7) + Rrs(j,k,2)) < 0.60 && Rrs(j,k,5) > Rrs(j,k,4) && waterind(j,k) == 0 %Rrs(j,k,8) > 0.1 % && Rrs(j,k,4) > Rrs(j,k,3) if Rrs(j,k,5)/Rrs(j,k,7) > 0.7 && Rrs(j,k,5)/Rrs(j,k,7) < 1.1 if BAI(j,k) == 0 && BW1(j,k) == 1 %BW4(j,k) == 1 map(j,k) = dev; %Developed. Was: BS; % Soil (fallow field) elseif BAI(j,k) == 1 && BW1(j,k) == 0 map(j,k) = BS; % Soil elseif BW1(j,k) == 1 if sum(Rrs(j,k,1:2))<0.35 if sum(Rrs(j,k,6:8)) < 0.85%avg_SD_sum map(j,k) = dev; % Developed else map(j,k) = BS; % Soil end elseif sum(Rrs(j,k,1:2)) > 0.6 map(j,k) = dev; else map(j,k) = dev; end elseif sum(Rrs(j,k,6:8)) < avg_SD_sum map(j,k) = dev; else map(j,k) = dev; % Developed end else map(j,k) = BS; % Soil end %% Water elseif Rrs(j,k,8)<0.2 && Rrs(j,k,8)>0|| Rrs(j,k,8)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,7) && Rrs(j,k,6)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,5) && Rrs(j,k,4)<Rrs(j,k,3) && Rrs(j,k,8)>0 || Rrs(j,k,8)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,7) && Rrs(j,k,6)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,5) && Rrs(j,k,4)>Rrs(j,k,3) && Rrs(j,k,8)>0% Identify all water (glinted and glint-free) if v > u*0.25 && u>0.1*num_pix % Deglint equation Rrs_deglint(1,1) = (Rrs(j,k,1) - (E_glint(1)*(Rrs(j,k,8) - mnNIR2))); Rrs_deglint(2,1) = (Rrs(j,k,2) - (E_glint(2)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(3,1) = (Rrs(j,k,3) - (E_glint(3)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(4,1) = (Rrs(j,k,4) - (E_glint(4)*(Rrs(j,k,8) - mnNIR2))); Rrs_deglint(5,1) = (Rrs(j,k,5) - (E_glint(5)*(Rrs(j,k,7) - mnNIR1))); Rrs_deglint(6,1) = (Rrs(j,k,6) - (E_glint(6)*(Rrs(j,k,8) - mnNIR2))); % Convert above-surface Rrs to below-surface rrs (Kerr et al. 2018) Rrs_0(1:5) = Rrs_deglint(1:5)./(zeta + G.*Rrs_deglint(1:5)); % Was Rrs_0= % Relative depth estimate dp = m0*real(log(1000*Rrs_0(1))/log(1000*Rrs_0(3))) - m1; % Calculate depth (Stumpf 2003 ratio transform with Kerr et al. 2018 coefficients) if dp < 15 && dp > 0 % Parameters based on Kerr 2018 RMSE-based recommended constraints (depths greater than 15m inaccurate) Bathy(j,k) = dp; else dp = 0; end % for d = 1:5 % Rrs(j,k,d) = real(((Rrs_0(d)-rrs_inf(d))/exp(-2*Kd(1,d)*dp))+rrs_inf(d)); % Calculate water-column corrected benthic reflectance (Traganos 2017 & Maritorena 1994) % end %% DT if Shadow(j,k) == 1 && max(Rrs(j,k,:)) == Rrs(j,k,2) % Max band3-6 = turbid/shallow water map(j,k) = 0; % Shadow else map(j,k) = WA; % Deep water end else % For glint-free/low-glint images Rrs_0(1:5) = Rrs(j,k,1:5)./(zeta + G.*Rrs(j,k,1:5)); % Convert above-surface Rrs to subsurface rrs (Kerr et al. 2018, Lee et al. 1998) dp = m0*real(log(1000*Rrs_0(2))/log(1000*Rrs_0(3))) - m1; % Calculate depth (Stumpf 2003 ratio transform with Kerr et al. 2018 coefficients) if dp < 15 && dp > 0 % Parameters based on Kerr 2018 RMSE-based recommended constraints (depths greater than 15m inaccurate) Bathy(j,k) = dp; else dp = 0; end %% DT if Shadow(j,k) == 1 && max(Rrs(j,k,:)) == Rrs(j,k,2) % Max band3-6 = turbid/shallow water map(j,k) = 0; % Shadow/Unclassified else map(j,k) = WA; % Deep water % end end end % if v>u end % If water/land end % If isnan end % k end % j end %% DT Filter if filter > 0 update = 'Filtering' dt_filt = DT_Filter(map,filter,sz(1),sz(2),dev,FW,FU,UG,WA); if cld_idx == 1 AA = [loc_out,id,'_',loc,'_SOALCHI_filt_',num2str(filter),'_Cloudy']; else AA = [loc_out,id,'_',loc,'_SOALCHI_filt_',num2str(filter)]; end geotiffwrite(AA,dt_filt,R(1,1),'CoordRefSysCode',coor_sys); else Z1 = [loc_out,id,'_',loc,'_Map_nofilt']; geotiffwrite(Z1,map,R(1,1),'CoordRefSysCode',coor_sys); end % TP(z,1) = m0; % TP(z,2) = m1; % TP(z,3) = chla; %% Output images % Z = [loc_out,id,'_',loc,'_Bathy_MAv1']; % geotiffwrite(Z,Bathy,R(1,1),'CoordRefSysCode',coor_sys); % Z2 = [Rrs_out,id,'_',loc,'_Rrs']; % last=52 % geotiffwrite(Z2,Rrs,R(1,1),'CoordRefSysCode',coor_sys); % end % If dt>0 wtime = toc; time_min = wtime/60; fprintf(1,'Matlab CPU time (minutes) = %f\n', time_min); end
github
ruihou/caffe-3d-master
classification_demo.m
.m
caffe-3d-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
shainova/EMLN-master
bipartite_modularity_diag_coupling.m
.m
EMLN-master/NEE2017/Modularity/bipartite_modularity_diag_coupling.m
2,782
utf_8
9feea2fb0a17cc601ebb4f1774696b75
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function lays out the B matirx which can be fed to the Louvain % algorithm to calculate Q. It is programmed SPECIFICALLY for a a multilayer % network with 2 bipartite layers connected via one common set of nodes % (diagonal coupling). function [B_multilayer,twomu] = bipartite_modularity_diag_coupling(A1,A2,gamma,omega,show_Bmax) twomu=0; % Initialize twomu %==== Set up the modularity matrix for layer 1: B_1ayer1 % This is simply modularity for a bipartite single-layer network %==== [m,n]=size(A1); N1=m+n; k=sum(A1,2); d=sum(A1,1); mm=sum(k); B_bip=A1-gamma*k*d/mm; B=zeros(N1,N1); % One should be VERY careful in how the B matrix is composed. B(1:m,m+1:N1)=B_bip; B(m+1:N1,1:m)=B_bip'; B_layer1=B; twomu=twomu+2*mm; % Add the 2*mm contributions: %==== Set up the modularity matrix for layer 2: B_1ayer2 % This is simply modularity for a bipartite single-layer network %==== [p,q]=size(A2); N2=p+q; k=sum(A2,2); d=sum(A2,1); mm=sum(k); B_bip=A2-gamma*k*d/mm; B=zeros(N2,N2); B(1:p,p+1:N2)=B_bip; B(p+1:N2,1:p)=B_bip'; B_layer2=B; twomu=twomu+2*mm; % Add the 2*mm contributions: %The second term in twomu should be the total weight of all interlayer %edges, i.e.,since we only have interlayer edges between nodes in set1, %which is on the matrices rows, we use m: twomu=twomu+2*omega*m; %==== Now set up the B matrix of the multilayer % by combining the individual B matrices %==== B_multilayer=zeros(N1+N2,N1+N2); % create the matrix, filled with zeros B_multilayer(1:N1,1:N1)=B_layer1; % Modularity matrix of layer 1 (set1 and set2) B_multilayer(N1+1:N1+N2,N1+1:N1+N2)=B_layer2; % Modularity matrix of layer 2 (set1 and set3) B_multilayer(N1+1:N1+m,1:m)=omega*diag(ones(m,1),0); % Interlayer interactions between the nodes which are in the rows (and hence the use of m) B_multilayer(1:m,N1+1:N1+m)=omega*diag(ones(m,1),0); % Interlayer interactions between the nodes which are in the rows (and hence the use of m) if ~issymmetric(B_multilayer) disp('The modularity matrix is NOT symmetric!!') end % The value above which there will be an abrupt drop in intra-layer % merges (see Bazzi et al 2015, pg. 32): if show_Bmax==1 m1=max(max(B_layer1)); m2=max(max(B_layer2)); disp(max(m1,m2)); end end
github
shainova/EMLN-master
modularity_weighted_multilayer_null2.m
.m
EMLN-master/NEE2017/Modularity/modularity_weighted_multilayer_null2.m
4,423
utf_8
a439e7f70710149743c202654e640b2b
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function is for the second null model from the publication % (reshuffling node identities) % The function takes as input if to permute the order of rows (=hosts) or % columns(=parasites) by entering 1 or 2, respectively. It also receives % the number of realizations to perform and the output folder to where % results are written. It writes as output a vector (Q) with the maximum % modularity values calculated by the function and a matrix (S) with module % affiliations of the state nodes. The number of columns in S corresponds % to the number of realizations (reshuffled networks) and the number of % rows is of length num_layers*num_nodes. The post processing of the output % is done in R and expalined in the R code. The number of modules is % calculated from S during the post processing. function []=modularity_weighted_multilayer_null2(hosts_or_parasites,runs,outputfolder) %% initialize gamma=1; Q_runs=[]; S_runs=[]; files=dir('host_parasite_abundance_weighted_layer_*.csv'); omega=importdata('interlayer_relative_abundance_matrix.csv'); %% Run main loop for r=1:runs r %% Load layers and permute A=cell(1,length(files)); for i = 1:length(files) bip_data=importdata(files(i).name); [p,q]=size(bip_data); %% Reshuffle the node order % The "nodal" null model (sensu Bassett et al., 2011 PNAS) % reshuffles the interlayer edges between nodes and their % counterparts in two consecutive layers by permuting the node % labels separately in each layer so that node identity is not % preserved. In the bipartite networks, this is akin to permuting % the order of rows (or columns) for every given layer. You can % permute by rows for hosts or by columsns for parasites by % commenting/uncommenting the following lines: if hosts_or_parasites==1 rowPermutations=randperm(p); bip_data=bip_data(rowPermutations,:); end if hosts_or_parasites==2 colPermutations=randperm(q); bip_data=bip_data(:,colPermutations); end onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=bip_data; onemode((p+1):(p+q), 1:p)=bip_data'; A{i}=onemode; if ~issymmetric(A{i}) disp(['layer ',num2str(i),' is NOT symmetric']) end end N=length(A{1}); T=length(A); %% Create the modularity matrix B=spalloc(N*T,N*T,N*N*T+2*N*T); twomu=0; for s=1:T k=sum(A{s}); % this is the sum of degrees of the nodes in the two sets k=k(1:p); % This is just the first set d=sum(A{s}); % this is the sum of degrees of the nodes in the two sets d=d((p+1):(p+q)); % This is just the 2nd set m=sum(k); % Note the m instead of twom as in unipartite twomu=twomu+m; % Note that we add m and not 2m to the mu. In the unipartite version this is twomu=twomu+twom indx=[1:N]+(s-1)*N; % This calculates the matrix of probabilities accroding to eq. 15 in % Barber 2007 P_ij=zeros(p,q); for i=1:p for j=1:q P_ij(i,j)=k(i)*d(j); end end % Here again we have to create a symmetric adjacency matrix out of the % bipartite. onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=P_ij; onemode((p+1):(p+q), 1:p)=P_ij'; P_ij=onemode; B(indx,indx)=A{s}-gamma*P_ij/m; % Note the P_ij instead of k*k' as in the unipartite version. also the m in stead of 2m end twomu=twomu+2*sum(sum(omega)); %% Run modularity [S,Q] = genlouvain(B,10000,0,1,1); Q_runs = [Q_runs Q/twomu]; S_runs = [S_runs S]; end %% Write results if hosts_or_parasites==1 dlmwrite([outputfolder,'/Q_null2_hosts.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_null2_hosts.csv'],S_runs,','); end if hosts_or_parasites==2 dlmwrite([outputfolder,'/Q_null2_parasites.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_null2_parasites.csv'],S_runs,','); end end
github
shainova/EMLN-master
modularity_interlayer_infinity.m
.m
EMLN-master/NEE2017/Modularity/modularity_interlayer_infinity.m
4,086
utf_8
1fa8825e8c7b6600a5d00d009e204c44
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function analyses the modular structure of the observed temporal % multilayer networkwhen interlayer edges are infinity. % The input is the number of realizations (runs) the function should % perform due to the heuristic nature of the general Louvain algorithm, and % the folder to which to write the results. It writes as output a vector % (Q) with the maximum modularity values calculated by the function and a % matrix (S) with module affiliations of the state nodes. The number of % columns in S corresponds to the number of realizations and the number of % rows is of length num_layers*num_nodes. The post processing of the output % is done in R and expalined in the R code. The number of modules is % calculated from S during the post processing. function []=modularity_interlayer_infinity(runs,outputfolder) % initialize gamma=1; Q_runs=[]; S_runs=[]; files=dir('host_parasite_abundance_weighted_layer_*.csv'); % These are the different layers of the network, produced with the R code supplied. % Bipartite networks have to be transformed to unipartite (square matrix). A=cell(1,length(files)); for i = 1:length(files) bip_data=importdata(files(i).name); % Transform the pxq matrix into (p+q)x(p+q) [p,q]=size(bip_data); onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=bip_data; onemode((p+1):(p+q), 1:p)=bip_data'; A{i}=onemode; if ~issymmetric(A{i}) disp(['layer ',num2str(i),' is NOT symmetric']) end end N=length(A{1}); % Number of nodes (hosts+parasites) T=length(A); % Number of layers for r=1:runs r B=spalloc(N*T,N*T,N*N*T+2*N*T); % create an empty modularity matrix twomu=0; for s=1:T %%%%%% BIPARTITE: % In case of unipartite undirected networks the probability P of an edge exisiting between two nodes % is proportional to the product of node degrees. This is % k_is*k_js/2m_s in eq. 1 in the SI of the paper. Note the 2*m_s because it is an % undirected unipartite network. % In the bipartite case, P is k_is*d_js/m_s. and the division is over % the number of edges m (see Barber 2007, eq. 15 for reasoning). % When networks are weighted this explanation refers to the strength % instead of degrees. k=sum(A{s}); % this is the sum of degrees of the nodes in the two sets k=k(1:p); % This is just the first set d=sum(A{s}); % this is the sum of degrees of the nodes in the two sets d=d((p+1):(p+q)); % This is just the 2nd set m=sum(k); % Note the m instead of twom as in unipartite twomu=twomu+m; % Note that we add m and not 2m to the mu. In the unipartite version this is twomu=twomu+twom indx=[1:N]+(s-1)*N; % This calculates the matrix of probabilities accroding to eq. 15 in % Barber 2007 P_ij=zeros(p,q); for i=1:p for j=1:q P_ij(i,j)=k(i)*d(j); end end % Here again we have to create a smymetric adjacency matrix out of the bipartite. onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=P_ij; onemode((p+1):(p+q), 1:p)=P_ij'; P_ij=onemode; B(indx,indx)=A{s}-gamma*P_ij/m; % Note the P_ij instead of k*k' as in the unipartite version. also the m instead of 2m end % This makes all the interlayer edges with a value of 10000 which % mimics infinity omega=10000; twomu=twomu+2*omega*N*(T-1); B = B + omega*spdiags(ones(N*T,2),[-N,N],N*T,N*T); [S,Q] = genlouvain(B,10000,0,1,1); Q_runs = [Q_runs Q/twomu]; S_runs = [S_runs S]; end dlmwrite([outputfolder,'/Q_obs_infinity.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_obs_infinity.csv'],S_runs,','); end
github
shainova/EMLN-master
modularity_weighted_multilayer_obs.m
.m
EMLN-master/NEE2017/Modularity/modularity_weighted_multilayer_obs.m
4,156
utf_8
266904c5c388af9b8be6e1a43d0732ab
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function analyses the modular structure of the observed temporal % multilayer network with quantitative interlayer AND intralyer edges. The % input is the number of realizations (runs) the function should perform % due to the heuristic nature of the general Louvain algorithm, and the % folder to which to write the results. It writes as output a vector (Q) % with the maximum modularity values calculated by the function and a % matrix (S) with module affiliations of the state nodes. The number of % columns in S corresponds to the number of realizations and the number of % rows is of length num_layers*num_nodes. The post processing of the output % is done in R and expalined in the R code. The number of modules is % calculated from S during the post processing. function []=modularity_weighted_multilayer_obs(runs,outputfolder) % initialize gamma=1; Q_runs=[]; S_runs=[]; files=dir('host_parasite_abundance_weighted_layer_*.csv'); % These are the different layers of the network, produced with the R code supplied. % Bipartite networks have to be transformed to unipartite (square matrix). A=cell(1,length(files)); for i = 1:length(files) bip_data=importdata(files(i).name); % Transform the pxq matrix into (p+q)x(p+q) [p,q]=size(bip_data); onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=bip_data; onemode((p+1):(p+q), 1:p)=bip_data'; A{i}=onemode; if ~issymmetric(A{i}) disp(['layer ',num2str(i),' is NOT symmetric']) end end N=length(A{1}); % Number of nodes (hosts+parasites) T=length(A); % Number of layers for r=1:runs r B=spalloc(N*T,N*T,N*N*T+2*N*T); % create an empty modularity matrix twomu=0; for s=1:T %%%%%% BIPARTITE: % In case of unipartite undirected networks the probability P of an edge exisiting between two nodes % is proportional to the product of node degrees. This is % k_is*k_js/2m_s in eq. 1 in the SI of the paper. Note the 2*m_s because it is an % undirected unipartite network. % In the bipartite case, P is k_is*d_js/m_s. and the division is over % the number of edges m (see Barber 2007, eq. 15 for reasoning). % When networks are weighted this explanation refers to the strength % instead of degrees. k=sum(A{s}); % this is the sum of degrees of the nodes in the two sets k=k(1:p); % This is just the first set d=sum(A{s}); % this is the sum of degrees of the nodes in the two sets d=d((p+1):(p+q)); % This is just the 2nd set m=sum(k); % Note the m instead of twom as in unipartite twomu=twomu+m; % Note that we add m and not 2m to the mu. In the unipartite version this is twomu=twomu+twom indx=[1:N]+(s-1)*N; % This calculates the matrix of probabilities accroding to eq. 15 in % Barber 2007 P_ij=zeros(p,q); for i=1:p for j=1:q P_ij(i,j)=k(i)*d(j); end end % Here again we have to create a smymetric adjacency matrix out of the bipartite. onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=P_ij; onemode((p+1):(p+q), 1:p)=P_ij'; P_ij=onemode; B(indx,indx)=A{s}-gamma*P_ij/m; % Note the P_ij instead of k*k' as in the unipartite version. also the m instead of 2m end % Because all interlayer edges have different values, OMEGA IS A MATRIX. % This matrix was produced using the accompanying R code. omega=importdata('interlayer_relative_abundance_matrix.csv'); twomu=twomu+2*sum(sum(omega)); B = B+omega; [S,Q] = genlouvain(B,10000,0,1,1); Q_runs = [Q_runs Q/twomu]; S_runs = [S_runs S]; end dlmwrite([outputfolder,'/Q_obs.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_obs.csv'],S_runs,','); end
github
shainova/EMLN-master
modularity_weighted_multilayer_null1.m
.m
EMLN-master/NEE2017/Modularity/modularity_weighted_multilayer_null1.m
3,654
utf_8
a48fbfce9c1c4c393c423628e0ccad8c
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function analyses the modular structure of the temporal multilaer % networks reshuffled according to the first null model (reshuffling % intralayer interactions). The set of reshuffled network layers was % produced using the R code accompanying this publication. % The function takes as input the number of realizations to perform, the % folder where the reshuffled network layers are stored and the output % folder to where results are written. It writes as output a vector (Q) % with the maximum modularity values calculated by the function and a % matrix (S) with module affiliations of the state nodes. The number of % columns in S corresponds to the number of realizations (reshuffled % networks) and the number of rows is of length num_layers*num_nodes. The % post processing of the output is done in R and expalined in the R code. % The number of modules is calculated from S during the post processing. function []=modularity_weighted_multilayer_null1(runs,inputfolder,outputfolder) % initialize gamma=1; Q_runs=[]; S_runs=[]; for r=1:runs r files=dir([inputfolder,'/network_',num2str(r),'_*.csv']); A=cell(1,length(files)); for i = 1:length(files) bip_data=importdata([inputfolder,'/',files(i).name]); % Transform the pxq matrix into (p+q)x(p+q) [p,q]=size(bip_data); onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=bip_data; onemode((p+1):(p+q), 1:p)=bip_data'; A{i}=onemode; if ~issymmetric(A{i}) error(['layer ',num2str(i),' is NOT symmetric']) end end N=length(A{1}); T=length(A); B=spalloc(N*T,N*T,N*N*T+2*N*T); twomu=0; for s=1:T k=sum(A{s}); % this is the sum of degrees of the nodes in the two sets k=k(1:p); % This is just the first set d=sum(A{s}); % this is the sum of degrees of the nodes in the two sets d=d((p+1):(p+q)); % This is just the 2nd set m=sum(k); % Note the m instead of twom as in unipartite twomu=twomu+m; % Note that we add m and not 2m to the mu. In the unipartite version this is twomu=twomu+twom indx=[1:N]+(s-1)*N; % This calculates the matrix of probabilities accroding to eq. 15 in % Barber 2007 P_ij=zeros(p,q); for i=1:p for j=1:q P_ij(i,j)=k(i)*d(j); end end % Here again we have to create a symetric adjacency matrix out of the % bipartite. onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=P_ij; onemode((p+1):(p+q), 1:p)=P_ij'; P_ij=onemode; B(indx,indx)=A{s}-gamma*P_ij/m; % Note the P_ij instead of k*k' as in the unipartite version. also the m in stead of 2m end % This is if all interlayer edges have different values. OMEGA IS A % MATRIX. Note that it is the same matrix used for the observed network % because the null model only reshuffls the intralayer interactions. omega=importdata('interlayer_relative_abundance_matrix.csv'); twomu=twomu+2*sum(sum(omega)); B = B+omega; [S,Q] = genlouvain(B,10000,0,1,1); Q_runs = [Q_runs Q/twomu]; S_runs = [S_runs S]; end full(Q_runs) dlmwrite([outputfolder,'/Q_null1.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_null1.csv'],S_runs,','); end
github
shainova/EMLN-master
modularity_weighted_multilayer_null3.m
.m
EMLN-master/NEE2017/Modularity/modularity_weighted_multilayer_null3.m
3,373
utf_8
aa4169e5f07c13619ac8715f8a34ae15
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). % This function is for the third null model from the publication % (permuting the order of layers). % The function takes as input the number of realizations to perform and the % output folder to where results are written. It writes as output a vector % (Q) with the maximum modularity values calculated by the function and a % matrix (S) with module affiliations of the state nodes. The number of % columns in S corresponds to the number of realizations (reshuffled % networks) and the number of rows is of length num_layers*num_nodes. The % post processing of the output is done in R and expalined in the R code. % The number of modules is calculated from S during the post processing. function []=modularity_weighted_multilayer_null3(runs,outputfolder) %% initialize gamma=1; Q_runs=[]; S_runs=[]; files=dir('host_parasite_abundance_weighted_layer_*.csv'); omega=importdata('interlayer_relative_abundance_matrix.csv'); A=cell(1,length(files)); for i = 1:length(files) bip_data=importdata(files(i).name); % Transform the pxq matrix into (p+q)x(p+q) [p,q]=size(bip_data); onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=bip_data; onemode((p+1):(p+q), 1:p)=bip_data'; A{i}=onemode; if ~issymmetric(A{i}) disp(['layer ',num2str(i),' is NOT symmetric']) end end N=length(A{1}); T=length(A); %% Main loop for r=1:runs r %% Here we permute the order of the layers layerPermutations=randperm(T); A_perm=cell(T,1); for x=1:T A_perm{x}=A{layerPermutations(x)}; end %% Calculate modularity matrix B=spalloc(N*T,N*T,N*N*T+2*N*T); twomu=0; for s=1:T k=sum(A_perm{s}); % this is the sum of degrees of the nodes in the two sets k=k(1:p); % This is just the first set d=sum(A_perm{s}); % this is the sum of degrees of the nodes in the two sets d=d((p+1):(p+q)); % This is just the 2nd set m=sum(k); % Note the m instead of twom as in unipartite twomu=twomu+m; % Note that we add m and not 2m to the mu. In the unipartite version this is twomu=twomu+twom indx=[1:N]+(s-1)*N; % This calculates the matrix of probabilities accroding to eq. 15 in % Barber 2007 P_ij=zeros(p,q); for i=1:p for j=1:q P_ij(i,j)=k(i)*d(j); end end % Here again we have to create a symmetric adjacency matrix out of the % bipartite. onemode=zeros(p+q,p+q); onemode(1:p, (p+1):(p+q))=P_ij; onemode((p+1):(p+q), 1:p)=P_ij'; P_ij=onemode; B(indx,indx)=A_perm{s}-gamma*P_ij/m; % Note the P_ij instead of k*k' as in the unipartite version. also the m in stead of 2m end twomu=twomu+2*sum(sum(omega)); B = B+omega; %% Run modularity [S,Q] = genlouvain(B,10000,0,1,1); Q_runs = [Q_runs Q/twomu]; S_runs = [S_runs S]; end %% Write results dlmwrite([outputfolder,'/Q_null3.csv'],full(Q_runs)',','); dlmwrite([outputfolder,'/S_null3.csv'],S_runs,','); end
github
shainova/EMLN-master
genlouvain.m
.m
EMLN-master/NEE2017/Modularity/genlouvain.m
11,697
utf_8
92c2a8f309fb987f9c38da6c4be282ac
function [S,Q] = genlouvain(B,limit,verbose,randord,randmove) %GENLOUVAIN Louvain-like community detection, specified quality function. % Version 2.0 (July 2014) % % [S,Q] = GENLOUVAIN(B) with matrix B implements a Louvain-like greedy % community detection method using the modularity/quality matrix B that % encodes the quality function Q, defined by summing over all elements % B(i,j) such that nodes i and j are placed in the same community. % Following Blondel et al. 2008, the algorithm proceeds in two phases % repeated iteratively: quality is optimized by moving one node at a time % until no such moves improve quality; the communities found to that % point are then aggregated to build a new network where each node % represents a community. The output vector S encodes the obtained % community assignments, with S(i) identifying the community to which % node i has been assigned. The output Q gives the quality of the % resulting partition of the network. % % [S,Q] = GENLOUVAIN(B) with function handle B such that B(i) returns % the ith column of the modularity/quality matrix uses this function % handle (to reduce the memory footprint for large networks) until the % number of groups is less than 10000 and then builds the B matrix % corresponding to the new aggregated network in subsequent passes. Use % [S,Q] = GENLOUVAIN(B,limit) to change this default=10000 limit. % % [S,Q] = GENLOUVAIN(B,limit,0) suppresses displayed text output. % % [S,Q] = GENLOUVAIN(B,limit,verbose,0) forces index-ordered (cf. % randperm-ordered) consideration of nodes, for deterministic results. % % [S,Q]=GENLOUVAIN(B,limit,verbose,randord,1) enables additional % randomization to obtain a broader sample of the quality function landscape % and mitigates some undesirable behavior for "multislice" modularity with % ordinal coupling. Without 'randmove' enabled, the algorithm exhibits an % abrupt change in behavior when the strength of the interslice coupling % approaches the maximum value of the intraslice modularity matrices. With % 'randmove' enabled, the algorithm moves the node under consideration to a % community chosen uniformly at random from all moves that increase the % quality function, instead of choosing the move that maximally increases the % quality function. % % Example (using adjacency matrix A) % k = full(sum(A)); % twom = sum(k); % B = @(v) A(:,v) - k'*k(v)/twom; % [S,Q] = genlouvain(B); % Q = Q/twom; % finds community assignments for the undirected network encoded by the % symmetric adjacency matrix A. For small networks, one may obtain % reasonably efficient results even more simply by handling the full % modularity/quality matrix % B = A - k'*k/twom; % instead of the function handle. Intended use also includes the % "multislice" network quality function of Mucha et al. 2010, where B % encodes the interactions as an equivalent matrix (see examples posted % online at http://netwiki.amath.unc.edu/GenLouvain). % % Notes: % The matrix represented by B must be both symmetric and square. This % condition is not checked thoroughly if B is a function handle, but is % essential to the proper use of this routine. % % Under default options, this routine can return different results from % run to run because it considers nodes in pseudorandom (randperm) % order. Because of the potentially large number of nearly-optimal % partitions (Good et al. 2010), one is encouraged to investigate % results of repeated applications of this code (and, if possible, of % other computational heuristics). To force deterministic behavior, % ordering nodes by their index, pass zero as the fourth input: % GENLOUVAIN(B,limit,verbose,0). % % This algorithm is only "Louvain-like" in the sense that the two % phases are used iteratively in the same manner as in the Louvain % algorithm (Blondel et al. 2008). Because it operates on a general % quality/modularity matrix B, it does not include any analytical % formulas for quickly identifying the change in modularity from a % proposed move nor any improved efficiency obtained by their use. If % your problem uses one of the well-used null models included in other % codes, those codes should be much faster for your task. % % Past versions had a problem where accumulated subtraction error might % lead to an infinite loop with each pass oscillating between two or % more partitions yet incorrectly identifying increases in quality. We % believe this problem has been corrected by the relative change checks % in lines 178 and 269. If you encounter a similar problem, notify % Peter Mucha (<a href="mailto:[email protected]">[email protected]</a>). % % The output Q provides the sum over the appropriate elements of B % without any rescaling. As such, we have rescaled Q in the example % above by 2m = sum(k) so that Q <= 1. % % The '~' for ignoring function returns (used for "max" below) are not % supported prior to R2009b. Replace (e.g. 'dummy') for pre-2009b. % % By using this code, the user implicitly acknowledges that the authors % accept no liability associated with that use. (What are you doing % with it anyway that might cause there to be a potential liability?!?) % % References: % Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and % Etienne Lefebvre, "Fast unfolding of communities in large networks," % Journal of Statistical Mechanics: Theory and Experiment, P10008 % (2008). % % Fortunato, Santo, "Community detection in graphs," Physics Reports % 486, 75-174 (2010). % % Mucha, Peter J., Thomas Richardson, Kevin Macon, Mason A. Porter, and % Jukka-Pekka Onnela. "Community Structure in Time-Dependent, % Multiscale, and Multiplex Networks," Science 328, 876-878 (2010). % % Porter, M. A., J. P. Onnela, and P. J. Mucha, "Communities in % networks," Notices of the American Mathematical Society 56, 1082-1097 % & 1164-1166 (2009). % % Acknowledgments: % A special thank you to Stephen Reid, whose greedy.m code was the % original version that has over time developed into the present code, % and Marya Bazzi for noticing the problematic behavior of genlouvain for % ordinal interslice coupling and contributing code that developed into the % 'randmove' option. % Thank you also to Dani Bassett, Jesse Blocher, Mason Porter and Simi % Wang for inspiring improvements to the code. % % Citation: If you use this code, please cite as % Inderjit S. Jutla, Lucas G. S. Jeub, and Peter J. Mucha, % "A generalized Louvain method for community detection implemented % in MATLAB," http://netwiki.amath.unc.edu/GenLouvain (2011-2014). %set default for maximum size of modularity matrix if nargin<2||isempty(limit) limit = 10000; end %set level of reported/displayed text output if nargin<3||isempty(verbose) verbose = 1; end if verbose mydisp = @(s) disp(s); else mydisp = @(s) disp(''); end %set randperm- v. index-ordered if nargin<4||isempty(randord) randord = 1; end if randord myord = @(n) randperm(n); else myord = @(n) 1:n; end %set move function (maximal (original Louvain) or random improvement) if nargin<5||isempty(randmove) randmove=false; end if randmove movefunction='moverand'; else movefunction='move'; end %initialise variables and do symmetry check if isa(B,'function_handle') n=length(B(1)); S=(1:n)'; M=B; it(:,1)=M(1); ii=find(it(2:end)>0,3)+1; ii=[1,ii']; for i=2:length(ii), it(:,i)=M(ii(i)); end it=it(ii,:); if norm(it-it')>2*eps error('Function handle does not correspond to a symmetric matrix') end else n = length(B); S = (1:n)'; if nnz(B-B'), B=(B+B')/2; disp('WARNING: Forced symmetric B matrix') end M=B; end dtot=0; %keeps track of total change in modularity %Run using function handle, if provided while (isa(M,'function_handle')) %loop around each "pass" (in language of Blondel et al) with B function handle y = unique(S); %unique also puts elements in ascending order Sb=S; clocktime=clock; mydisp(['Merging ',num2str(length(y)),' communities ',num2str(clocktime(4:6))]); dstep=1; %keeps track of change in modularity in pass yb=[]; while (~isequal(yb,y))&&(dstep/dtot>2*eps) %This is the loop around Blondel et al's "first phase" yb = y; dstep=0; group_handler('assign',y); for i=myord(length(M(1))) di=group_handler(movefunction,i,M(i)); dstep=dstep+di; end dtot=dtot+dstep; y=group_handler('return'); mydisp([num2str(length(unique(y))),' change: ',num2str(dstep),... ' total: ',num2str(dtot),' relative: ',num2str(dstep/dtot)]); end %group_handler implements tidyconfig for i=1:length(y) S(S==i)=y(i); end %calculate modularity and return if converged if isequal(Sb,S) Q=0; P=sparse(y,1:length(y),1); for i=1:length(M(1)) Q=Q+(P*M(i))'*P(:,i); end return end %check wether #groups < limit t = length(unique(S)); if (t>limit) metanetwork_reduce('assign',S); %inputs group information to metanetwork_reduce M=@(i) metanetwork_i(B,t,i); %use function handle if #groups>limit else metanetwork_reduce('assign',S); J = zeros(t); %convert to matrix if #groups small enough for c=1:t J(:,c)=metanetwork_i(B,t,c); end B = J; M=B; end end S2 = (1:length(B))'; Sb = []; while ~isequal(Sb,S2) %loop around each "pass" (in language of Blondel et al) with B matrix y = unique(S2); %unique also puts elements in ascending order Sb = S2; clocktime=clock; mydisp(['Merging ',num2str(length(y)),' communities ',num2str(clocktime(4:6))]); yb = []; dstep=1; while (~isequal(yb,y)) && (dstep/dtot>2*eps) %This is the loop around Blondel et al's "first phase" % mydisp([num2str(length(unique(y))),' ',num2str(Q)]) yb = y; dstep=0; group_handler('assign',y); for i = myord(length(M)) di=group_handler(movefunction,i,M(:,i)); dstep=dstep+di; end dtot=dtot+dstep; y=group_handler('return'); end for i = 1:length(y) S(S==i) = y(i); S2(S2==i) = y(i); end if isequal(Sb,S2) P=sparse(y,1:length(y),1); Q=sum(sum((P*M).*P)); return end M = metanetwork(B,S2); end %-----% function M = metanetwork(J,S) %Computes new aggregated network (communities --> nodes) PP = sparse(1:length(S),S,1); M = PP'*J*PP; M=full(M); %-----% function Mi = metanetwork_i(J,t,i) %ith column of metanetwork (used to create function handle) %J is a function handle Mi=zeros(t,1); ind=metanetwork_reduce('nodes',i); for j=ind Jj=J(j); P=metanetwork_reduce('reduce',Jj); Mi=Mi+P; end
github
shainova/EMLN-master
single_layer_bipartite_B_matrix.m
.m
EMLN-master/NEE2017/Modularity/single_layer_bipartite_B_matrix.m
554
utf_8
ce18365cfc84fce465315d920e40b606
% NOTE!!! This file accompanies the following publication and can % only be understood by reading the details in the manuscript and its % SI. Please cite the original publication if using this code. % % Pilosof S, Porter MA, Pascual M, Kefi S. % The multilayer nature of ecological networks. % Nature Ecology & Evolution (2017). function [B,mm]=single_layer_bipartite_B_matrix(A,gamma) [m,n]=size(A); N=m+n; k=sum(A,2); d=sum(A,1); mm=sum(k); B1=A-gamma*k*d/mm; B=zeros(N,N); B(1:m,m+1:N)=B1; B(m+1:N,1:m)=B1'; end
github
shainova/EMLN-master
muxOctaveLib.m
.m
EMLN-master/NEE2017/Reducibility/muxOctaveLib.m
58,399
utf_8
410cc4713aa4cfb0d67441e66f48983c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MuxNetLib: Octave library for Multiplex Network Analysis in muxViz % % Version: 0.1 % Last update: Nov 2015 % Authors: Manlio De Domenico % % History: % % May 2014: First release, including part of muxNet %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [A,N] = loadNetworkFromFile(fileName,Flags,Nodes=0,FirstNode=0) A = load(fileName); %if the first node is numbered by zero shift of 1 unit to relabel if FirstNode==0 A(:,1) = A(:,1) + 1; A(:,2) = A(:,2) + 1; endif if Nodes==0 N = max(max(A(:,1)),max(A(:,2))); else N = Nodes; endif if max(ismember(Flags, 'W'))==0 %input is assumed to be an unweighted edge list %add a column of ones as weight for connected nodes %if there are more columns, we have to remove them if columns(A)>2 A = A(:,1:2); endif A = [A 1.0*ones(size(A,1),1)]; else if columns(A)>3 A = A(:,1:3); endif endif A = spconvert(A); A(size(A,1)+1:N,size(A,2)+1:N) = 0; if ismember("D",Flags) && ismember("U",Flags) %input is undirected but provided in directed shape, we need to sum the transpose fprintf(2,"#Input is undirected but in directed shape\n"); A = A + A' - diag(diag(A)); #the -diag() is to avoid counting twice the self-loops endif end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [NodesTensor,Layers,Nodes] = BuildMultiplexFromFileList(LayersList,Flags,Nodes=0,FirstNode=0) % for input from different folders and put the full path in the LayerList % Flags must be a cell array defining the network type: D(irected), W(eighted), U(ndirected with)D(irected input) NodesTensor = {}; Ni = {}; Layers = length(LayersList); for i = 1:Layers if strcmp(LayersList{i},"NULL") if Nodes == 0 fprintf(2,"\tBuildMultiplexFromFileList: ERROR! You requested a null layer, without specifying the number of nodes. Aborting process.\n"); exit end Ni{i} = Nodes; NodesTensor{i} = sparse(Nodes,Nodes); Ei = 0; file = "Null layer"; printf("#Layer %d: %d Nodes %d Edges (file: %s)\n",i,Ni{i},Ei,file); else [NodesTensor{i},Ni{i}] = loadNetworkFromFile(LayersList{i},Flags,Nodes,FirstNode); path = cellstr(strsplit (LayersList{i}, "/")); file = path{length(path)}; Ei = sum(sum(NodesTensor{i}>0)); printf("#Layer %d: %d Nodes %d Edges (file: %s)\n",i,Ni{i},Ei,file); end %check that the number of nodes in each layer is the same if i>1 if Ni{i} != Ni{i-1} error(" BuildMultiplexFromFileList: ERROR! The number of nodes mismatches: %d (layer %d) vs %d (layer %d)\n",Ni{i},i,Ni{i-1},i-1); %pause; end end end printf("#Flags: %s\n",Flags); % if everything is fine, we assign the number of nodes Nodes = Ni{1}; endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [M,L,N] = BuildSupraAdjacencyMatrixFromFile(fileName,Flags,Nodes=0,FirstNode=0) %auto-detection of number of layers and nodes (if not forced with Nodes parameter) %input is expected to be a weighted edge list with 5 columns: %node layer node layer [weight] %if flag W is not specified, weight = 1 is assumed A = load(fileName); %if the first node is numbered by zero shift of 1 unit to relabel if FirstNode==0 A(:,1) = A(:,1) + 1; A(:,3) = A(:,3) + 1; endif %number of layers, assuming they are numbered starting from 1 L = max(max(A(:,2)),max(A(:,4))); if Nodes==0 N = max(max(A(:,1)),max(A(:,3))); else N = Nodes; endif if max(ismember(Flags, 'W'))==0 if size(A)(2) == 5 %input is weighted, but the W flag is missing: reset weights to 1 A(:,5) = 1; else %input is assumed to be an unweighted edge list %add a column of ones as weight for connected nodes A = [A 1.0*ones(size(A,1),1)]; endif endif M = [A(:,1) + (A(:,2)-1)*N A(:,3) + (A(:,4)-1)*N A(:,5)]; M = spconvert(M); %M = full(M) %we work with sparse matrices M(size(M,1)+1:N*L,size(M,2)+1:N*L) = 0; if ismember("D",Flags) && ismember("U",Flags) %input is undirected but provided in directed shape, we need to sum the transpose fprintf(2,"#Input is undirected but in directed shape\n"); M = M + M' - diag(diag(M)); #the -diag() is to avoid counting twice the self-loops endif printf("#%d Layers %d Nodes %d Edges (file: %s)\n",L,N,sum(sum(M>0)),fileName); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function LayersTensor = BuildLayersTensor(Layers,Nodes,OmegaParameter,MultisliceType) %Build the network of layers used to build the multiplex if Layers>1 if strcmp(MultisliceType,"ordered") LayersTensor = (diag(ones(1,Layers-1),1) + diag(ones(1,Layers-1),-1))*OmegaParameter; end if strcmp(MultisliceType, "categorical") LayersTensor = ones(Layers,Layers)*OmegaParameter; LayersTensor = LayersTensor - diag(diag(LayersTensor)); end else LayersTensor = 0; fprintf(2,"--> I will proceed with algorithm for one layer\n"); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function SupraAdjacencyMatrix = BuildSupraAdjacencyMatrix(NodesTensor,LayersTensor,Layers,Nodes) Identity = speye(Nodes); %simple and easy way, probably the correct one SupraAdjacencyMatrix = sparse(blkdiag(NodesTensor{}) + kron(LayersTensor,Identity)); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [QMatrix,LMatrix,Eigenvalues] = SolveEigenvalueProblem(Matrix) [QMatrix,LMatrix] = eig(Matrix); Eigenvalues=sort(diag(LMatrix)); endfunction function [QMatrix,LMatrix] = GetLargestEigenv(Matrix) %This flag force the library to use methods to find approximated leading eigenvalue/vector %However, empirical evidence shows that such methods (coming with octave) are not so %stable, therefore if the final output looks "weird", a full exact method for the calculation %should be used. Unfortunately, the exact method will heavily slow down the computation %Use with care at your own risk UseFastMethodLargestEigenvalue = 0; %we must distinguish between symmetric and nonsymmetric matrices to have correct results if !UseFastMethodLargestEigenvalue [QMatrix,LMatrix] = eig(Matrix); [LambdaVector,IdxVector]=sort(diag(LMatrix)); Idx = length(LambdaVector); LeadingEigenvalue = LambdaVector(Idx); LeadingEigenvector = QMatrix(:,IdxVector(Idx)); QMatrix = LeadingEigenvector; LMatrix = LeadingEigenvalue; else if all(all(Matrix == Matrix')) %symmetric [QMatrix,LMatrix] = eigs(Matrix,1,'la'); else %asymmetric [QMatrix,LMatrix] = eigs(Matrix,1,'lr'); endif %check if the eigenvector has all negative components.. in that case we change the sign %first, set to zero everything that is so small that can create problems even if it compatible with zero QMatrix(find(QMatrix>-1e-12 & QMatrix<1e-12)) = 0; %now verify that all components are negative and change sign if all(floor(QMatrix<0) + floor(QMatrix==0)) QMatrix = -QMatrix; endif endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [NodesTensor] = SupraAdjacencyToNodesTensor(SupraAdjacencyMatrix,Layers,Nodes) % create the nodes tensor from a supradajcency matrix, ie, extracts diagonal blocks NodesTensor = {}; for i = 1:Layers NodesTensor{i} = sparse(SupraAdjacencyMatrix(1+ (i-1)*Nodes:i*Nodes,1+ (i-1)*Nodes:i*Nodes)); end endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [BlockTensor] = SupraAdjacencyToBlockTensor(SupraAdjacencyMatrix,Layers,Nodes) % create the nodes tensor from a supradajcency matrix, ie, extracts all blocks BlockTensor = {}; for i = 1:Layers for j = 1:Layers %BlockTensor{(i-1)*Layers + j} = SupraAdjacencyMatrix(1+ (i-1)*Nodes:i*Nodes,1+ (j-1)*Nodes:j*Nodes); BlockTensor{i,j} = sparse(SupraAdjacencyMatrix(1+ (i-1)*Nodes:i*Nodes,1+ (j-1)*Nodes:j*Nodes)); endfor endfor endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Aggregate = GetAggregateMatrix(NodesTensor,Layers,Nodes) Aggregate = NodesTensor{1}; for alpha = 2:Layers Aggregate += NodesTensor{alpha}; endfor endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Reducibility of Multilayer Networks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function LaplacianMatrix = GetLaplacianMatrix(AdjacencyMatrix) %Calculate the laplacian matrix from an adjacency matrix N = length(AdjacencyMatrix); u = ones(N,1); %laplacian LaplacianMatrix = diag(AdjacencyMatrix*u) - AdjacencyMatrix; %check if sum(LaplacianMatrix*u) > 1.e-8 error("ERROR! The Laplacian matrix has rows that don't sum to 0. Aborting process.\n"); sum(LaplacianMatrix*u) %pause; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function DensityMatrix = BuildDensityMatrix(AdjacencyMatrix) %Calculate the density matrix from an adjacency matrix % References: % S. L. Braunstein, S. Ghosh, S. Severini, Annals of Combinatorics 10, No 3, (2006) % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) DensityMatrix = GetLaplacianMatrix(AdjacencyMatrix); %normalize to degree sum DensityMatrix = DensityMatrix/(trace(DensityMatrix)); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Eigenvalues = GetEigenvaluesOfDensityMatrix(DensityMatrix) %Calculate the eigenvalues of a density matrix % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) Eigenvalues = eig(DensityMatrix); %check that eigenvalues sum to 1 if abs(sum(Eigenvalues)-1)>1e-8 error("ERROR! Eigenvalues dont sum to 1! Aborting process."); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Eigenvalues = GetEigenvaluesOfDensityMatrixFromAdjacencyMatrix(AdjacencyMatrix) DensityMatrix = BuildDensityMatrix(AdjacencyMatrix); Eigenvalues = GetEigenvaluesOfDensityMatrix(DensityMatrix); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [RenyiEntropy] = GetRenyiEntropyFromAdjacencyMatrix(AdjacencyMatrix, q) %Calculate the quantum Renyi entropy of a network % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) % M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nature Communications 6, 6864 (2015) Eigenvalues = GetEigenvaluesOfDensityMatrixFromAdjacencyMatrix(AdjacencyMatrix); if q==1. %Von Neuman quantum entropy RenyiEntropy = -sum(Eigenvalues(Eigenvalues>0).*log(Eigenvalues(Eigenvalues>0))); else %Renyi quantum entropy RenyiEntropy = (1 - sum(Eigenvalues(Eigenvalues>0).^q))/(q-1); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [JSD] = GetJensenShannonDivergence(AdjacencyMatrix1,AdjacencyMatrix2,VNEntropy1,VNEntropy2) %Calculate the Jensen-Shannon Divergence of two networks % References: % M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nature Communications 6, 6864 (2015) %M = 0.5 * (RHO + SIGMA) %JSD: 0.5 * DKL( RHO || M ) + 0.5 * DKL( SIGMA || M ) %DKL( A || B ) = tr[ A log A - A log B ] = -entropy(A) - tr[ A log B ] % %JSD: 0.5 * ( -entropy(RHO) - entropy(SIGMA) - tr[ RHO log M ] - tr[ SIGMA log M ] ) % -0.5 * [ entropy(RHO) + entropy(SIGMA) ] - tr[ M log M ] ) % -0.5 * [ entropy(RHO) + entropy(SIGMA) ] + entropy(M) DensityMatrix1 = BuildDensityMatrix(AdjacencyMatrix1); DensityMatrix2 = BuildDensityMatrix(AdjacencyMatrix2); DensityMatrixM = (DensityMatrix1 +DensityMatrix2)/2.; EigenvaluesM = eig(DensityMatrixM); CrossEntropyM = -sum(EigenvaluesM(EigenvaluesM>0).*log(EigenvaluesM(EigenvaluesM>0))); JSD = CrossEntropyM - 0.5*(VNEntropy1 + VNEntropy2); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Topological Descriptors of Multilayer Networks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [AvGlobOverl] = GetAverageGlobalOverlapping(SupraAdjacencyMatrix,Layers,Nodes) % References: % M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nature Communications 6, 6864 (2015) if Layers==1 fprintf(2,"GetAverageGlobalOverlapping:ERROR! At least two layers required. Aborting process.\n"); exit; endif NodesTensor = SupraAdjacencyToNodesTensor(SupraAdjacencyMatrix,Layers,Nodes); O = min(NodesTensor{1},NodesTensor{2}); NormTotal = sum(sum(NodesTensor{1})); %assuming that LayerTensor is an undirected clique for l = 2:Layers O = min(O,NodesTensor{l}); NormTotal = NormTotal + sum(sum(NodesTensor{l})); end AvGlobOverl = Layers*sum(sum(O))/NormTotal; endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [AvGlobOverlMatrix] = GetAverageGlobalNodeOverlappingMatrix(SupraAdjacencyMatrix,Layers,Nodes) % References: % M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nature Communications 6, 6864 (2015) if Layers==1 fprintf(2,"GetAverageGlobalNodeOverlappingMatrix:ERROR! At least two layers required. Aborting process.\n"); exit; endif NodesTensor = SupraAdjacencyToNodesTensor(SupraAdjacencyMatrix,Layers,Nodes); existingNodes = {}; for l = 1:Layers #find rows where sum by column is > zero to identify existing nodes. Apply modulus Nodes col = mod(find(sum(NodesTensor{l},2)!=0 ),Nodes); #Impose that where modulus give 0, there should be the largest ID (= Nodes) col(col==0) = Nodes; #same with cols row = mod(find(sum(NodesTensor{l},1)!=0 ),Nodes)'; row(row==0) = Nodes; #merge the two (this approach is necessary to deal also with directed networks) existingNodes{l} = union(col, row); end for l1 = 1:Layers AvGlobOverlMatrix(l1,l1) = 1; for l2 = (l1+1):Layers AvGlobOverlMatrix(l1,l2) = length(intersect( existingNodes{l1}, existingNodes{l2} ))/Nodes; AvGlobOverlMatrix(l2,l1) = AvGlobOverlMatrix(l1,l2); end end endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [AvGlobOverlMatrix] = GetAverageGlobalOverlappingMatrix(SupraAdjacencyMatrix,Layers,Nodes) % References: % M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Nature Communications 6, 6864 (2015) if Layers==1 fprintf(2,"GetAverageGlobalOverlappingMatrix:ERROR! At least two layers required. Aborting process.\n"); exit; endif NodesTensor = SupraAdjacencyToNodesTensor(SupraAdjacencyMatrix,Layers,Nodes); for l1 = 1:Layers AvGlobOverlMatrix(l1,l1) = 1; Norm1 = sum(sum(NodesTensor{l1})); for l2 = (l1+1):Layers O = min(NodesTensor{l1},NodesTensor{l2}); AvGlobOverlMatrix(l1,l2) = 2*sum(sum(O))/(Norm1 + sum(sum(NodesTensor{l2}))); AvGlobOverlMatrix(l2,l1) = AvGlobOverlMatrix(l1,l2); end end endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [InterPearson,InterSpearman] = GetInterAssortativityTensor(SupraAdjacencyMatrix,Layers,Nodes,Flags,Type) if Layers==1 fprintf(2,"GetInterAssortativityTensor: ERROR! At least two layers required. Aborting process.\n"); exit; endif NodesTensor = SupraAdjacencyToNodesTensor(SupraAdjacencyMatrix,Layers,Nodes); InterPearson = sparse(Layers,Layers); InterSpearman = sparse(Layers,Layers); if strcmp(Type,"IO") || strcmp(Type,"OI") InDegree = {}; OutDegree = {}; for l = 1:Layers InDegree{l} = GetMultiInDegree(NodesTensor{l},1,Nodes,Flags); OutDegree{l} = GetMultiOutDegree(NodesTensor{l},1,Nodes,Flags); end for l1 = 1:Layers for l2 = 1:Layers InterPearson(l1,l2) = corr(InDegree{l1},OutDegree{l2}); InterSpearman(l1,l2) = spearman(InDegree{l1},OutDegree{l2}); end end if strcmp(Type,"OI") InterPearson = InterPearson'; InterSpearman = InterSpearman'; endif else Degree = {}; if strcmp(Type,"OO") for l = 1:Layers Degree{l} = GetMultiOutDegree(NodesTensor{l},1,Nodes,Flags); end endif if strcmp(Type,"II") for l = 1:Layers Degree{l} = GetMultiInDegree(NodesTensor{l},1,Nodes,Flags); end endif if strcmp(Type,"TT") for l = 1:Layers Degree{l} = GetMultiDegree(NodesTensor{l},1,Nodes,Flags); end endif for l1 = 1:Layers InterPearson(l1,l1) = 1; InterSpearman(l1,l1) = 1; for l2 = (l1+1):Layers InterPearson(l1,l2) = corr(Degree{l1},Degree{l2}); InterSpearman(l1,l2) = spearman(Degree{l1},Degree{l2}); InterPearson(l2,l1) = InterPearson(l1,l2); InterSpearman(l2,l1) = InterSpearman(l1,l2); end end endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function BinaryMatrix = binarizeMatrix(Matrix) BinaryMatrix = double(Matrix|Matrix); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiDegreeVector = GetMultiDegree(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) MultiInDegreeVector = GetMultiInDegree(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes,Flags); MultiOutDegreeVector = GetMultiOutDegree(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes,Flags); if ismember("U",Flags) MultiDegreeVector = (MultiInDegreeVector + MultiOutDegreeVector)/2; else MultiDegreeVector = MultiInDegreeVector + MultiOutDegreeVector; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiOutDegreeVector = GetMultiOutDegree(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) if ismember("U",Flags) %we proceed by considering the interlayers separately BlockTensor = SupraAdjacencyToBlockTensor(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes); MultiOutDegreeVector = sparse(Nodes,1); %with the matrix U we reweight interlinks corresponding to same replicas U = ones(Nodes,Nodes); U(logical(speye(size(U)))) = 1/2; for i = 1:Layers for j = 1:Layers if i==j MultiOutDegreeVector += (BlockTensor{i,j}-diag(diag(BlockTensor{i,j})))*ones(Nodes,1) + diag(BlockTensor{i,j})*0.5; else MultiOutDegreeVector += (BlockTensor{i,j} .* U)*ones(Nodes,1); endif endfor endfor else SupraDegree = binarizeMatrix(SupraAdjacencyMatrix)*ones(Nodes*Layers,1); MultiOutDegreeVector = sum(reshape(SupraDegree,Nodes,Layers),2); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiInDegreeVector = GetMultiInDegree(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) if ismember("U",Flags) %using the following would consider multiple times the interlinks %SupraDegree = (binarizeMatrix(SupraAdjacencyMatrix)*ones(Nodes*Layers,1) + (ones(1,Nodes*Layers)*binarizeMatrix(SupraAdjacencyMatrix))')/2; %we proceed by considering the interlayers separately BlockTensor = SupraAdjacencyToBlockTensor(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes); MultiInDegreeVector = sparse(Nodes,1); %with the matrix U we reweight interlinks corresponding to same replicas U = ones(Nodes,Nodes); U(logical(speye(size(U)))) = 1/2; for i = 1:Layers for j = 1:Layers if i==j MultiInDegreeVector += (ones(1,Nodes)*(BlockTensor{i,j}-diag(diag(BlockTensor{i,j}))))' + diag(BlockTensor{i,j})*0.5; else MultiInDegreeVector += (ones(1,Nodes)*(BlockTensor{i,j} .* U))'; endif endfor endfor else SupraDegree = (ones(1,Nodes*Layers)*binarizeMatrix(SupraAdjacencyMatrix))'; MultiInDegreeVector = sum(reshape(SupraDegree,Nodes,Layers),2); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiDegreeVector = GetMultiDegreeSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) MultiInDegreeVector = GetMultiInDegreeSum(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes,Flags); MultiOutDegreeVector = GetMultiOutDegreeSum(binarizeMatrix(SupraAdjacencyMatrix),Layers,Nodes,Flags); if ismember("U",Flags) MultiDegreeVector = (MultiInDegreeVector + MultiOutDegreeVector)/2; else MultiDegreeVector = MultiInDegreeVector + MultiOutDegreeVector; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiOutDegreeVector = GetMultiOutDegreeSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) %this degree include multiple times the interlinks % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) SupraDegree = binarizeMatrix(SupraAdjacencyMatrix)*ones(Nodes*Layers,1); MultiOutDegreeVector = sum(reshape(SupraDegree,Nodes,Layers),2); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiInDegreeVector = GetMultiInDegreeSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) %this degree include multiple times the interlinks % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) SupraDegree = (ones(1,Nodes*Layers)*binarizeMatrix(SupraAdjacencyMatrix))'; MultiInDegreeVector = sum(reshape(SupraDegree,Nodes,Layers),2); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiStrengthVector = GetMultiStrength(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) MultiInStrengthVector = GetMultiInStrength(SupraAdjacencyMatrix,Layers,Nodes,Flags); MultiOutStrengthVector = GetMultiOutStrength(SupraAdjacencyMatrix,Layers,Nodes,Flags); if ismember("U",Flags) MultiStrengthVector = (MultiInStrengthVector + MultiOutStrengthVector)/2; else MultiStrengthVector = MultiInStrengthVector + MultiOutStrengthVector; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiOutStrengthVector = GetMultiOutStrength(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) if ismember("U",Flags) %we proceed by considering the interlayers separately BlockTensor = SupraAdjacencyToBlockTensor(SupraAdjacencyMatrix,Layers,Nodes); MultiOutStrengthVector = sparse(Nodes,1); %with the matrix U we reweight interlinks corresponding to same replicas U = ones(Nodes,Nodes); U(logical(speye(size(U)))) = 1/2; for i = 1:Layers for j = 1:Layers if i==j MultiOutStrengthVector += (BlockTensor{i,j}-diag(diag(BlockTensor{i,j})))*ones(Nodes,1) + diag(BlockTensor{i,j})*0.5; else MultiOutStrengthVector += (BlockTensor{i,j} .* U)*ones(Nodes,1); endif endfor endfor else SupraStrength = SupraAdjacencyMatrix*ones(Nodes*Layers,1); MultiOutStrengthVector = sum(reshape(SupraStrength,Nodes,Layers),2); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiInStrengthVector = GetMultiInStrength(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) if ismember("U",Flags) %using the following would consider multiple times the interlinks %SupraStrength = (SupraAdjacencyMatrix*ones(Nodes*Layers,1) + (ones(1,Nodes*Layers)*SupraAdjacencyMatrix)')/2; %we proceed by considering the interlayers separately BlockTensor = SupraAdjacencyToBlockTensor(SupraAdjacencyMatrix,Layers,Nodes); MultiInStrengthVector = sparse(Nodes,1); %with the matrix U we reweight interlinks corresponding to same replicas U = ones(Nodes,Nodes); U(logical(speye(size(U)))) = 1/2; for i = 1:Layers for j = 1:Layers if i==j MultiInStrengthVector += (ones(1,Nodes)*(BlockTensor{i,j}-diag(diag(BlockTensor{i,j}))))' + diag(BlockTensor{i,j})*0.5; else MultiInStrengthVector += (ones(1,Nodes)*(BlockTensor{i,j} .* U))'; endif endfor endfor else SupraStrength = (ones(1,Nodes*Layers)*SupraAdjacencyMatrix)'; MultiInStrengthVector = sum(reshape(SupraStrength,Nodes,Layers),2); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiStrengthVector = GetMultiStrengthSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) MultiInStrengthVector = GetMultiInStrengthSum(SupraAdjacencyMatrix,Layers,Nodes,Flags); MultiOutStrengthVector = GetMultiOutStrengthSum(SupraAdjacencyMatrix,Layers,Nodes,Flags); if ismember("U",Flags) MultiStrengthVector = (MultiInStrengthVector + MultiOutStrengthVector)/2; else MultiStrengthVector = MultiInStrengthVector + MultiOutStrengthVector; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiOutStrengthVector = GetMultiOutStrengthSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) %this Strength include multiple times the interlinks % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) SupraStrength = SupraAdjacencyMatrix*ones(Nodes*Layers,1); MultiOutStrengthVector = sum(reshape(SupraStrength,Nodes,Layers),2); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MultiInStrengthVector = GetMultiInStrengthSum(SupraAdjacencyMatrix,Layers,Nodes,Flags) %this Strength include multiple times the interlinks % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) SupraStrength = (ones(1,Nodes*Layers)*SupraAdjacencyMatrix)'; MultiInStrengthVector = sum(reshape(SupraStrength,Nodes,Layers),2); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallKatzCentrality(SupraAdjacencyMatrix,Layers,Nodes) %we pass the transpose of the transition matrix to get the left eigenvectors % References: % M. De Domenico, A. Sole-Ribalta, E. Omodei, S. Gomez, A. Arenas, Nature Communications 6, 6868 (2015) [QMatrix,LMatrix] = GetLargestEigenv(SupraAdjacencyMatrix'); LeadingEigenvalue = LMatrix; %Katz kernel tensor deltaTensor = kron(speye(Nodes,Nodes),speye(Layers,Layers)); %this ensures convergence of the Katz kernel tensor a = 0.99999/abs(LeadingEigenvalue); KatzKernelTensor = inv(deltaTensor - a*SupraAdjacencyMatrix); KatzCentralitySupraVector = KatzKernelTensor * ones(Nodes*Layers,1); CentralityVector = sum(reshape(KatzCentralitySupraVector,Nodes,Layers),2); CentralityVector = CentralityVector/max(CentralityVector); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallEigenvectorCentrality(SupraAdjacencyMatrix,Layers,Nodes) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) % M. De Domenico, A. Sole-Ribalta, E. Omodei, S. Gomez, A. Arenas, Nature Communications 6, 6868 (2015) %we pass the transpose of the transition matrix to get the left eigenvectors [LeadingEigenvector,LeadingEigenvalue] = GetLargestEigenv(SupraAdjacencyMatrix'); %LeadingEigenvector = LeadingEigenvector / sum(LeadingEigenvector); CentralityVector = sum(reshape(LeadingEigenvector,Nodes,Layers),2); CentralityVector = CentralityVector/max(CentralityVector); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallHubCentrality(SupraAdjacencyMatrix,Layers,Nodes) %see review http://arxiv.org/pdf/0805.3322v2.pdf % References: % M. De Domenico, A. Sole-Ribalta, E. Omodei, S. Gomez, A. Arenas, Nature Communications 6, 6868 (2015) %build the A A' SupraMatrix = SupraAdjacencyMatrix*(SupraAdjacencyMatrix'); %we pass the matrix to get the right eigenvectors %to deal with the possible degeneracy of the leading eigenvalue, we add an eps to the matrix %this ensures that we can apply the Perron-Frobenius theorem to say that there is a unique %leading eigenvector. Here we add eps, a very very small number (<1e-8, generally) [LeadingEigenvector,LeadingEigenvalue] = GetLargestEigenv(SupraMatrix+eps); %LeadingEigenvector = LeadingEigenvector / sum(LeadingEigenvector); CentralityVector = sum(reshape(LeadingEigenvector,Nodes,Layers),2); CentralityVector = CentralityVector/max(CentralityVector); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallAuthCentrality(SupraAdjacencyMatrix,Layers,Nodes) %see review http://arxiv.org/pdf/0805.3322v2.pdf % References: % M. De Domenico, A. Sole-Ribalta, E. Omodei, S. Gomez, A. Arenas, Nature Communications 6, 6868 (2015) %build the A' A SupraMatrix = (SupraAdjacencyMatrix') * SupraAdjacencyMatrix; %we pass the matrix to get the right eigenvectors %to deal with the possible degeneracy of the leading eigenvalue, we add an eps to the matrix %this ensures that we can apply the Perron-Frobenius theorem to say that there is a unique %leading eigenvector. Here we add eps, a very very small number (<1e-8, generally) [LeadingEigenvector,LeadingEigenvalue] = GetLargestEigenv(SupraMatrix+eps); CentralityVector = sum(reshape(LeadingEigenvector,Nodes,Layers),2); CentralityVector = CentralityVector/max(CentralityVector); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallMultiplexityCentrality(SupraAdjacencyMatrix,Layers,Nodes) #build the block tensor BlockTensor = SupraAdjacencyToBlockTensor(SupraAdjacencyMatrix,Layers,Nodes); existingNodes = {}; nodeMultiplexity = zeros(1,Nodes); for l = 1:Layers #find rows where sum by column is > zero to identify existing nodes. Apply modulus Nodes col = mod(find(sum(BlockTensor{l,l},2)!=0 ),Nodes); #Impose that where modulus give 0, there should be the largest ID (= Nodes) col(col==0) = Nodes; #same with cols row = mod(find(sum(BlockTensor{l,l},1)!=0 ),Nodes)'; row(row==0) = Nodes; #merge the two (this approach is necessary to deal also with directed networks) existingNodes{l} = union(col, row); for n = 1:Nodes nodeMultiplexity(n) += length(find(existingNodes{l}==n)); end end CentralityVector = nodeMultiplexity'/Layers; endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [S,Q] = GetMultisliceCommunityGeneralizedLouvain(NodesTensor, Layers, Nodes, GammaParameter, OmegaParameter, Type) % This function is an interface between the genlouvain (see the corresponding function % for reference and license) and muxNet (see the above functions for reference and % license) % Type can be: "ordered" or "categorical" % See http://netwiki.amath.unc.edu/GenLouvain/GenLouvain % Ordered Multislice Matrix % Define the cell array A of square symmetric NxN matrices of equal size each representing % one of the layers ordered, undirected network "slices". % Categorical Multislice Matrix % The distinction between ordered slices and categorical slices manifests in the presence % of all-to-all identity arcs between slices. if strcmp(Type,"categorical") B = spalloc(Nodes*Layers,Nodes*Layers,(Nodes+Layers)*Nodes*Layers); end if strcmp(Type, "ordered") B = spalloc(Nodes*Layers,Nodes*Layers,Nodes*Nodes*Layers+2*Nodes*Layers); end twomu = 0; for s = 1:Layers k = sum(NodesTensor{s}); twom = sum(k); twomu = twomu + twom; indx = [1:Nodes] + (s-1)*Nodes; B(indx,indx) = NodesTensor{s} - GammaParameter* k' * k /twom; end if strcmp(Type,"categorical") twomu = twomu + Layers*OmegaParameter*Nodes*(Layers-1); all2all = Nodes*[(-Layers+1):-1,1:(Layers-1)]; B = B + OmegaParameter*spdiags(ones(Nodes*Layers,2*Layers-2),all2all,Nodes*Layers,Nodes*Layers); end if strcmp(Type, "ordered") twomu = twomu + 2*OmegaParameter*Nodes*(Layers-1); B = B + OmegaParameter*spdiags(ones(Nodes*Layers,2),[-Nodes,Nodes],Nodes*Layers,Nodes*Layers); end [S,Q] = genlouvain(B); Q = Q/twomu; Q = full(Q); S = reshape(S,Nodes,Layers); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Random Walk in Multilayer Networks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function SupraTransitionMatrix = BuildSupraTransitionMatrixFromSupraAdjacencyMatrix(SupraAdjacencyMatrix,Layers,Nodes) % References: % M. De Domenico et al, Phys. Rev. X 3, 041022 (2013) % M. De Domenico, A. Sole-Ribalta, S. Gomez, A. Arenas, PNAS 11, 8351 (2014) Order = Layers*Nodes; #SupraUnitVector = ones(Order,1); SupraAdjacencyMatrix = sparse(SupraAdjacencyMatrix); SupraStrengthMatrix = sum(SupraAdjacencyMatrix,2); DisconnectedNodes = size(SupraStrengthMatrix(SupraStrengthMatrix==0),1); SupraStrengthMatrix = sparse(diag(SupraStrengthMatrix)); if DisconnectedNodes>0 fprintf(2,"#Trapping nodes (no outgoing-links): %d\n",DisconnectedNodes); endif SupraStrengthMatrix(SupraStrengthMatrix(:)~=0) = 1./SupraStrengthMatrix(SupraStrengthMatrix(:)~=0); SupraTransitionMatrix = SupraStrengthMatrix*SupraAdjacencyMatrix; alpha = 0.85; %to normalize correctly in the case of nodes with no outgoing links: SupraTransitionMatrix(find(sum(SupraTransitionMatrix,2)==0),:) = 1/Order; SupraTransitionMatrix(find(sum(SupraTransitionMatrix,2)!=0),:) = alpha * SupraTransitionMatrix(find(sum(SupraTransitionMatrix,2)!=0),:) + (1-alpha)/Order; %no more disconnected nodes DisconnectedNodes = 0; %check if abs(sum(sum(SupraTransitionMatrix,2))-Order+DisconnectedNodes) > 1e-6 error(" BuildSupraTransitionMatrixFromSupraAdjacencyMatrix: ERROR! Problems in building the supra-transition matrix -> %f. Aborting process.",abs(sum(sum(SupraTransitionMatrix,2))-Order+DisconnectedNodes)); %pause; endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function CentralityVector = GetOverallPageRankCentrality(SupraTransitionMatrix,Layers,Nodes) % References: % M. De Domenico, A. Sole-Ribalta, E. Omodei, S. Gomez, A. Arenas, Nature Communications 6, 6868 (2015) %we pass the transpose of the transition matrix to get the left eigenvectors [LeadingEigenvector,LeadingEigenvalue] = GetLargestEigenv(SupraTransitionMatrix'); if abs(LeadingEigenvalue-1)>1e-6 error("\tGetRWOverallOccupationProbability: ERROR! Expected leading eigenvalue equal to 1, obtained %f\n",LeadingEigenvalue); %exit endif LeadingEigenvector = LeadingEigenvector / sum(LeadingEigenvector); CentralityVector = sum(reshape(LeadingEigenvector,Nodes,Layers),2); CentralityVector = CentralityVector/max(CentralityVector); endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Community Detection in Multislice Networks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %GENLOUVAIN Louvain-like community detection, specified quality function. % Version 1.2 (July 2012) % % [S,Q] = GENLOUVAIN(B) with matrix B implements a Louvain-like greedy % community detection method using the modularity/quality matrix B that % encodes the quality function Q, defined by summing over all elements % B(i,j) such that nodes i and j are placed in the same community. % Following Blondel et al. 2008, the algorithm proceeds in two phases % repeated iteratively: quality is optimized by moving one node at a time % until no such moves improve quality; the communities found to that % point are then aggregated to build a new network where each node % represents a community. The output vector S encodes the obtained % community assignments, with S(i) identifying the community to which % node i has been assigned. The output Q gives the quality of the % resulting partition of the network. % % [S,Q] = GENLOUVAIN(B) with function handle B such that B(i) returns % the ith column of the modularity/quality matrix uses this function % handle (to reduce the memory footprint for large networks) until the % number of groups is less than 10000 and then builds the B matrix % corresponding to the new aggregated network in subsequent passes. Use % [S,Q] = GENLOUVAIN(B,limit) to change this default=10000 limit. % % [S,Q] = GENLOUVAIN(B,limit,0) suppresses displayed text output. % % [S,Q] = GENLOUVAIN(B,limit,verbose,0) forces index-ordered (cf. % randperm-ordered) consideration of nodes, for deterministic results. % % Example (using adjacency matrix A) % k = full(sum(A)); % twom = sum(k); % B = @(v) A(:,v) - k'*k(v)/twom; % [S,Q] = genlouvain(B); % Q = Q/twom; % finds community assignments for the undirected network encoded by the % symmetric adjacency matrix A. For small networks, one may obtain % reasonably efficient results even more simply by handling the full % modularity/quality matrix % B = A - k'*k/twom; % instead of the function handle. Intended use also includes the % "multislice" network quality function of Mucha et al. 2010, where B % encodes the interactions as an equivalent matrix (see examples posted % online at http://netwiki.amath.unc.edu/GenLouvain). % % Notes: % The matrix represented by B must be both symmetric and square. This % condition is not checked thoroughly if B is a function handle, but is % essential to the proper use of this routine. % % Under default options, this routine can return different results from % run to run because it considers nodes in pseudorandom (randperm) % order. Because of the potentially large number of nearly-optimal % partitions (Good et al. 2010), one is encouraged to investigate % results of repeated applications of this code (and, if possible, of % other computational heuristics). To force deterministic behavior, % ordering nodes by their index, pass zero as the fourth input: % GENLOUVAIN(B,limit,verbose,0). % % This algorithm is only "Louvain-like" in the sense that the two % phases are used iteratively in the same manner as in the Louvain % algorithm (Blondel et al. 2008). Because it operates on a general % quality/modularity matrix B, it does not include any analytical % formulas for quickly identifying the change in modularity from a % proposed move nor any improved efficiency obtained by their use. If % your problem uses one of the well-used null models included in other % codes, those codes should be much faster for your task. % % Past versions had a problem where accumulated subtraction error might % lead to an infinite loop with each pass oscillating between two or % more partitions yet incorrectly identifying increases in quality. We % believe this problem has been corrected by the relative change checks % in lines 178 and 273. If you encounter a similar problem, notify % Peter Mucha (<a href="mailto:[email protected]">[email protected]</a>). % % The output Q provides the sum over the appropriate elements of B % without any rescaling. As such, we have rescaled Q in the example % above by 2m = sum(k) so that Q <= 1. % % The '~' for ignoring function returns (used for "max" below) are not % supported prior to R2009b. Replace (e.g. 'dummy') for pre-2009b. % % By using this code, the user implicitly acknowledges that the authors % accept no liability associated with that use. (What are you doing % with it anyway that might cause there to be a potential liability?!?) % % References: % Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and % Etienne Lefebvre, "Fast unfolding of communities in large networks," % Journal of Statistical Mechanics: Theory and Experiment, P10008 % (2008). % % Fortunato, Santo, "Community detection in graphs," Physics Reports % 486, 75-174 (2010). % % Mucha, Peter J., Thomas Richardson, Kevin Macon, Mason A. Porter, and % Jukka-Pekka Onnela. "Community Structure in Time-Dependent, % Multiscale, and Multiplex Networks," Science 328, 876-878 (2010). % % Porter, M. A., J. P. Onnela, and P. J. Mucha, "Communities in % networks," Notices of the American Mathematical Society 56, 1082-1097 % & 1164-1166 (2009). % % Acknowledgments: % A special thank you to Stephen Reid, whose greedy.m code was the % original version that has over time developed into the present code. % Thank you also to Dani Bassett, Jesse Blocher, Mason Porter and Simi % Wang for inspiring improvements to the code. % % Citation: If you use this code, please cite as % Inderjit S. Jutla, Lucas G. S. Jeub, and Peter J. Mucha, % "A generalized Louvain method for community detection implemented % in MATLAB," http://netwiki.amath.unc.edu/GenLouvain (2011-2012). function [S,Q] = genlouvain(B,limit,verbose,randord) %set default for maximum size of modularity matrix if nargin<2 limit = 10000; end %set level of reported/displayed text output if nargin<3 verbose = 1; end if verbose mydisp = @(s) disp(s); else mydisp = @(s) disp(''); end %set randperm- v. index-ordered if nargin<4 randord = 1; end if randord myord = @(n) randperm(n); else myord = @(n) 1:n; end %initialise variables and do symmetry check if isa(B,'function_handle') n=length(B(1)); S=(1:n)'; M=B; it(:,1)=M(1); ii=find(it(2:end)>0,3)+1; ii=[1,ii']; for i=2:length(ii), it(:,i)=M(ii(i)); end it=it(ii,:); if nnz(it-it'), disp('WARNING: Function handle does not correspond to a symmetric matrix') end else n = length(B); S = (1:n)'; M=B; if nnz(M-M'), B=(B+B')/2; disp('WARNING: Forced symmetric B matrix') end end dtot=0; %keeps track of total change in modularity %Run using function handle, if provided while (isa(M,'function_handle')) %loop around each "pass" (in language of Blondel et al) with B function handle y = unique(S); %unique also puts elements in ascending order Sb=S; yb = []; clocktime=clock; mydisp(['Merging ',num2str(length(y)),' communities ',num2str(clocktime(4:6))]); dstep=1; %keeps track of change in modularity in pass while (~isequal(yb,y))&&(dstep/dtot>2*eps) %This is the loop around Blondel et al's "first phase" % Q = 0; % %improves performance considerably if one doesn't compute modularity % %for the first pass (for display purposes only) % P = sparse(y,1:length(y),1); %Modularity Calculation % for i = 1:length(M(1)) % Q = Q + (P*M(i))'*P(:,i); % end % mydisp([num2str(length(unique(y))),' ',num2str(Q)]) yb = y; G=sparse(1:length(y),y,1); %no-mex version dstep=0; for i = myord(length(M(1))) %loop over nodes in pseudorandom order Mi = M(i); u = unique([y(i);y(Mi>0)]); dH=Mi'*G(:,u); %no-mex version %dH=modchange_y(Mi,y,u); yi=find(u==y(i)); dH(yi) = dH(yi) - Mi(i); [~, k] = max(dH); %only move to different group if it is more optimized than %staying in same group (up to error with double precision) if(dH(k)>(dH(yi))) dtot=dtot+dH(k)-dH(yi); dstep=dstep+dH(k)-dH(yi); G(i,y(i))=0; %no-mex version G(i,u(k))=1; %no-mex version y(i) = u(k); end end mydisp([num2str(length(unique(y))),' change: ',num2str(dstep),... ' total: ',num2str(dtot),' relative: ',num2str(dstep/dtot)]); end %[S,y] = tidyconfig_c(S,y); %note tidyconfig reorders along node numbers y = tidyconfig(y); %no-mex version for i = 1:length(y) %no-mex version S(S==i) = y(i); %no-mex version end %no-mex version %calculate modularity and return if converged if isequal(Sb,S) Q=0; P=sparse(y,1:length(y),1); for i=1:length(M(1)) Q=Q+(P*M(i))'*P(:,i); end return end %check wether #groups < limit t = length(unique(S)); if (t>limit) M=@(i) metanetwork_i(B,S,t,i); %use function handle if #groups>limit else J = zeros(t); %convert to matrix if #groups small enough for c=1:t J(:,c)=metanetwork_i(B,S,t,c); end B = J; M=B; end end S2 = (1:length(B))'; Sb = []; while ~isequal(Sb,S2) %loop around each "pass" (in language of Blondel et al) with B matrix y = unique(S2); %unique also puts elements in ascending order Sb = S2; clocktime=clock; mydisp(['Merging ',num2str(length(y)),' communities ',num2str(clocktime(4:6))]); yb = []; G=sparse(1:length(y),y,1); dstep=1; % P = G'; % Q = sum(sum((P*M).*(P))); % Qb = -inf; while (~isequal(yb,y)) && (dstep/dtot>2*eps) %This is the loop around Blondel et al's "first phase" % mydisp([num2str(length(unique(y))),' ',num2str(Q)]) yb = y; % Qb=Q; dstep=0; for i = myord(length(M)) u = unique([y(i);y(M(:,i)>0)]); % dH = modchange_y(M(:,i),y,u); %relative changes in modularities dH = (M(:,i)'*G(:,u)); yi=find(u==y(i)); dH(yi) = dH(yi) - M(i,i); [~, k] = max(dH); %%only move to different group if it is more optimized than %%staying in same group (up to error with double precision) if(dH(k)>(dH(yi))) dtot=dtot+dH(k)-dH(yi); dstep=dstep+dH(k)-dH(yi); G(i,y(i))=0; G(i,u(k))=1; y(i) = u(k); end end % P=sparse(y,1:length(y),1); % Q = sum(sum((P*M).*(P))); end y = tidyconfig(y); %note tidyconfig reorders along node numbers for i = 1:length(y) S(S==i) = y(i); S2(S2==i) = y(i); end if isequal(Sb,S2) P=G'; Q=sum(sum((P*M).*P)); return end M = metanetwork(B,S2); end endfunction %-----% function M = metanetwork(J,S) %Computes new aggregated network (communities --> nodes) if(issparse(J)) m=max(S); [i,j,v]=find(J); M = sparse(S(i),S(j),v,m,m); else PP = sparse(1:length(S),S,1); M = PP'*J*PP; end endfunction %-----% function Mi = metanetwork_i(J,S,t,i) %ith column of metanetwork (used to create function handle) %J is a function handle Mi=sparse([],[],[],t,1); for j=find(S==i)' Jj=J(j); [ii,k,v]=find(Jj); Mi=Mi+sparse(S(ii),k,v,t,1); end endfunction %-----% function S = tidyconfig(S) %This function remains almost identical to that originally written by %Stephen Reid for his greedy.m code. % tidy up S i.e. S = [2 4 2 6] -> S = [1 2 1 3] T = zeros(length(S),1); for i = 1:length(S) if T(i) == 0 T(S==S(i)) = max(T) + 1; end end S = T; endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Connected Components in Multilayer Networks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Components,ComponentsSize] = GetConnectedComponentsExtended(SupraAdjacencyMatrix,Layers,Nodes) % % Returns the components of an undirected graph specified by the binary and % undirected adjacency matrix adj. Components and their constitutent nodes are % assigned the same index and stored in the vector, comps. The vector, comp_sizes, % contains the number of nodes beloning to each component. % % Note: disconnected nodes will appear as components with a component % size of 1 % % J Goni, University of Navarra and Indiana University, 2009/2011 % % This extended version treats each node in each layer as a independent entity % Manlio De Domenico, Universitat Rovira i Virgili, 2014 #if ~any(SupraAdjacencyMatrix-triu(SupraAdjacencyMatrix)) SupraAdjacencyMatrix = SupraAdjacencyMatrix | SupraAdjacencyMatrix'; #end %if main diagonal of adj do not contain all ones, i.e. autoloops if sum(diag(SupraAdjacencyMatrix))~=size(SupraAdjacencyMatrix,1) %the main diagonal is set to ones SupraAdjacencyMatrix = SupraAdjacencyMatrix | speye(size(SupraAdjacencyMatrix)); end %Dulmage-Mendelsohn decomposition [useless1,p,useless2,r] = dmperm(SupraAdjacencyMatrix); %p indicates a permutation (along rows and columns) %r is a vector indicating the component boundaries % List including the number of nodes of each component. ith entry is r(i+1)-r(i) ComponentsSize = diff(r); % Number of components found. num_comps = numel(ComponentsSize); % initialization Components = sparse(1,Nodes*Layers); % first position of each component is set to one Components(r(1:num_comps)) = ones(1,num_comps); % cumulative sum produces a label for each component (in a consecutive way) Components = cumsum(Components); %re-order component labels according to adj. Components(p) = Components; if sum(ComponentsSize) != Nodes*Layers printf("ERROR! The sum of components size is not equal to the number of nodes x layers. Aborting process.\n") exit end endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Components,ComponentsSize] = GetConnectedComponentsSimple(SupraAdjacencyMatrix,Layers,Nodes) %as the extended, but each node and its replicas are treated as a unique entity [Components,ComponentsSize] = GetConnectedComponentsExtended(SupraAdjacencyMatrix,Layers,Nodes); %first we have to check if the same entity is assigned to the same component %eg, if node A in layer 1 is assigned to component 1 and node A in layer 2 is assigned to component 2 %then it makes no sense to collapse the information: if they are a unique entity, the nodes %should be assigned to the same component, and this happens if they are interconnected or %if some of the replicas are isolated components while the others are interconnected if Layers > 1 newComponents = sparse(1,Nodes); for n = 1:Nodes c = Components(n); %the component assigned to n in layer 1 newComponents(n) = c; for l = 2:Layers ctmp = Components( (l-1)*Nodes + n ); if ctmp != c %check if it is isolated if ComponentsSize(ctmp)!=1 && ComponentsSize(c)!=1 printf("Impossible to find meaningful connected components\n") printf("Node %d in layer 1 is in component %d (size %d) while\n",n,c,ComponentsSize(c)) printf("Node %d (abs id: %d) in layer %d is in component %d (size %d)\n",n,(l-1)*Nodes + n,l,ctmp,ComponentsSize(ctmp)) printf("Aborting process.\n") exit endif endif end end end Components = sparse(1,Nodes); comps = unique(newComponents); %readjust the components label for i = 1:length(comps) c = comps(i); find(newComponents==c); Components( find(newComponents==c) ) = i; end %readjust the components size ComponentsSize = sparse(1,full(max(Components))); for c = 1:max(Components) ComponentsSize(c) = sum( Components==c ); end if sum(ComponentsSize) != Nodes printf("ERROR! The sum of components size is not equal to the number of nodes. Aborting process.\n") exit end endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [GCC,GCCSize] = GetGiantConnectedComponentExtended(SupraAdjacencyMatrix,Layers,Nodes) %compute the giant connected component, each node in each layer is a independent entity [Components,ComponentsSize] = GetConnectedComponentsExtended(SupraAdjacencyMatrix,Layers,Nodes); %if there are multiple components with the same size, we choose the first one [value,cID] = max(ComponentsSize); GCC = find(Components==cID); GCCSize = value; endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [GCC,GCCSize] = GetGiantConnectedComponentSimple(SupraAdjacencyMatrix,Layers,Nodes) %as the extended, but each node and its replicas are treated as a unique entity [Components,ComponentsSize] = GetConnectedComponentsSimple(SupraAdjacencyMatrix,Layers,Nodes); %if there are multiple components with the same size, we choose the first one [value,cID] = max(ComponentsSize); GCC = find(Components==cID); GCCSize = value; endfunction
github
LiHeUA/FastESC-master
demo_EBMM.m
.m
FastESC-master/EBMM_Release/demo_EBMM.m
4,568
utf_8
5e8cf84542aa9a2863c390e4c0f1bdd7
function demo_EBMM % Demot of Extended Basic Matrix Multiplication algorithm. % Select cT columns (or rows) from A (or B) to form C (or R) so that % AB\approx CR. % Also verify Theorem 1 in [1]. % % Details of this algorithm can be found in Alg. 2 in [1]. % % [1] Li He, Nilanjan Ray and Hong Zhang, Fast Large-Scale Spectral % Clustering via Explicit Feature Mapping, submitted to IEEE Trans. % Cybernetics. % % Parameter: % A p*NT matrix A % B NT*q matrix B % N scalar choose c from N % T scalar # of submatrices in A and B % c scalar choose c from N % % Notation: % A^(t): the t-th column in matrix A % B_(t): the t-th row in matrix B % % Notice: % A should be structured as A = [A[1], A[2], ..., A[T]], where A[i] is a % p*N matrix. And % [B[1]] % B = [B[2]] % ... % [B[T]] % where B[i] is an N*q matrix. % % Main idea: % % 1. Split A into T submatrices, titled A[1], A[2],..., A[T], % A = [A[1], A[2], ..., A[T]] % and % [B[1]] % B = [B[2]] % ... % [B[T]] % % 2. Randomly with replacement pick the t-th index i_t \in {1,...,N} with % probability Prob[i_t=k] = p_k, k=1,...,N. % % 3. For t=1,...,c, if i_t==k, then select the k-th columns in A[1], % A[2],...,A[T], scale by 1/sqrt(c*p_k) and form a new matrix C[t], % C[t]=[A[1]^(k), A[2]^(k),...,A[T]^(k)]/sqrt(c*p_k). And % [B[1]_(k)] % R[t] = [B[2]_(k)] /sqrt(c*p_k) % ... % [B[T]_(k)] % % 4. Build C=[C[1],C[2],...,C[T]], and % [R[1]] % R = [R[2]] % ... % [R[T]] % % 5. Then, E[CR]=AB. % % 6. For i=1,...,N, define % % H[i] = A[1]^(i)*B[1]_(i) + A[2]^(i)*B_(i) +...+ A[T]^(i)*B_(i) % % If % % p_i = ||H[i]||_F/sum(||H[i']||_F) % % Then, E[||AB-CR||_F^2] is minimal. % % Li He, [email protected] %% 0. Initialization clc N = 6; T = 2; c = 3; % randomly generate A and B A = rand(100,N*T); B = rand(N*T,200); p = size(A,1); q = size(B,2); % randomly generate the sampling probabilities; for arbitraty prob_col., % E(CR)=AB should hold true prob_col = rand(1,N); prob_col = prob_col/sum(prob_col); %% 1. Verification of E(CR)=AB with Arbitrary Probabilities % we have in total N^c possible C (and R); exhaustively calculate all disp('Exp 1: E(CR)=AB with arbitrary sampling probabilities') % generate all N^c possible indices indices = nchoosek_with_replacement(N,c); % probability of one C (or R) to appear prob_matrix = prod( prob_col(indices), 2 ); % build C and R, and brute-forcely check E(CR) % ECR = sum( prob_matrix*C*R ) ECR = zeros(p,q); % E[||AB-CR||_F^2] ECRF = 0; % ground truth AB AB = A*B; C = zeros(p,c*T); R = zeros(c*T,q); for i=1:N^c % chosen columns (rows) among N^c possible choices index = indices(i,:); % build C and R for t=1:c ind = index(t); % index of one chosen column C(:,t:c:end) = A(:,ind:N:end)/sqrt(c*prob_col(ind)); R(t:c:end,:) = B(ind:N:end,:)/sqrt(c*prob_col(ind)); end % E(CR) ECR = ECR + prob_matrix(i)*C*R; % E(|AB-CR|_F^2) ECRF = ECRF + prob_matrix(i)*norm(C*R-AB,'fro')^2; end disp(['||E(CR) - AB||_F = ' num2str(norm(ECR-AB,'fro'))]) %% 2. Optimal Sapmling % if using the optimal sampling, then E[||AB-CR||_F^2] should be minimum disp(' '); disp('Exp 2: the optimal sampling will minimize E(|AB-CR|_F^2)') % get the optimal sampling probabilities prob_opt = EBMM_OptProb(A, B, N, T); % probability of one C (or R) to appear prob_matrix_opt = prod( prob_opt(indices), 2 ); % ECR = sum( prob_matrix*C*R ) ECR_opt = zeros(p,q); % E[||AB-CR||_F^2] ECRF_opt = 0; C = zeros(p,c*T); R = zeros(c*T,q); for i=1:N^c % chosen columns (rows) among N^c possible choices index = indices(i,:); % build C and R for t=1:c ind = index(t); % index of one chosen column C(:,t:c:end) = A(:,ind:N:end)/sqrt(c*prob_opt(ind)); R(t:c:end,:) = B(ind:N:end,:)/sqrt(c*prob_opt(ind)); end ECR_opt = ECR_opt + prob_matrix_opt(i)*C*R; ECRF_opt = ECRF_opt + prob_matrix_opt(i)*norm(C*R-AB,'fro')^2; end disp(['||E(CR_opt) - AB||_F = ' num2str(norm(ECR_opt-AB,'fro'))]) % compare the F-norm error of CR_optimal with the CR in Experiment 1 disp(['E[||CR_opt - AB||_F^2 = ' num2str(ECRF_opt) ', E[||CR_Exp1 - AB||_F^2 = ' num2str(ECRF)]) function indices = nchoosek_with_replacement(n,k) indices = cell(1,k); [indices{:}] = ndgrid(1:n); indices = indices(end:-1:1); indices = cat(k+1, indices{:}); indices = reshape(indices, [n^k, k]);
github
mirtaheri/Grid-visualization-in-Matlab-master
plotCustMark.m
.m
Grid-visualization-in-Matlab-master/funcs/plotCustMark.m
1,239
utf_8
2a019f8cd68d58ea1aae70790ecba3d0
function patchHndl = plotCustMark(xData,yData,markerDataX,markerDataY,markerSize, lineThick, face_color) % this function uses codes from: https://it.mathworks.com/matlabcentral/fileexchange/39487-custom-marker-plot xData = reshape(xData,length(xData),1) ; yData = reshape(yData,length(yData),1) ; markerDataX = markerSize * reshape(markerDataX,1,length(markerDataX)) ; markerDataY = markerSize * reshape(markerDataY,1,length(markerDataY)) ; %% prepare and plot the patches markerEdgeColor = [0 0 0] ; markerFaceColor = face_color ; % ------ vertX = repmat(markerDataX,length(xData),1) ; vertX = vertX(:) ; vertY = repmat(markerDataY,length(yData),1) ; vertY = vertY(:) ; % ------ vertX = repmat(xData,length(markerDataX),1) + vertX ; vertY = repmat(yData,length(markerDataY),1) + vertY ; % ------ faces = 0:length(xData):length(xData)*(length(markerDataY)-1) ; faces = repmat(faces,length(xData),1) ; faces = repmat((1:length(xData))',1,length(markerDataY)) + faces ; % ------ patchHndl = patch('Faces',faces,'Vertices',[vertX vertY]); set(patchHndl,'FaceColor',markerFaceColor,'LineWidth', lineThick, 'EdgeColor',markerEdgeColor) ; hold on % -------------------------------------------------------------
github
leonid-pishchulin/poseval-master
savejson.m
.m
poseval-master/matlab/external/jsonlab/savejson.m
18,981
utf_8
63859e6bc24eb998f433f53d5880015b
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(filename, 'wb'); fwrite(fid,json); else fid = fopen(filename, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt={}; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; bracketlevel=~jsonopt('singletcell',1,varargin{:}); if(len>bracketlevel) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; name=''; else txt={padding0, '[', nl}; end elseif(len==0) if(~isempty(name)) txt={padding0, '"' checkname(name,varargin{:}) '": []'}; name=''; else txt={padding0, '[]'}; end end for i=1:dim(1) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for j=1:dim(2) txt{end+1}=obj2json(name,item{i,j},level+(dim(1)>1)+(len>bracketlevel),varargin{:}); if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(i<dim(1)) txt(end+1:end+2)={',' nl}; end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>bracketlevel) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt={}; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+forcearray); nl=ws.newline; if(isempty(item)) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": []'}; else txt={padding0, '[]'}; end return; end if(~isempty(name)) if(forcearray) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; end else if(forcearray) txt={padding0, '[', nl}; end end for j=1:dim(2) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt(end+1:end+5)={padding1, '"', checkname(name,varargin{:}),'": {', nl}; else txt(end+1:end+3)={padding1, '{', nl}; end if(~isempty(names)) for e=1:length(names) txt{end+1}=obj2json(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:}); if(e<length(names)) txt{end+1}=','; end txt{end+1}=nl; end end txt(end+1:end+2)={padding1,'}'}; if(i<dim(1)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(forcearray) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt={}; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt={padding1, '"', checkname(name,varargin{:}),'": [', nl}; end else if(len>1) txt={padding1, '[', nl}; end end for e=1:len val=escapejsonstring(item(e,:)); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt(end+1:end+2)={padding1, obj}; else txt(end+1:end+4)={padding0,'"',val,'"'}; end if(e==len) sep=''; end txt{end+1}=sep; end if(len>1) txt(end+1:end+3)={nl,padding1,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matlabobject2json(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2json(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='[]'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\\','\"','\/','\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\$1'); else escapechars={'\\','\"','\/','\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\\$1'); end
github
leonid-pishchulin/poseval-master
loadjson.m
.m
poseval-master/matlab/external/jsonlab/loadjson.m
16,145
ibm852
7582071c5bd7f5e5f74806ce191a9078
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
leonid-pishchulin/poseval-master
loadubjson.m
.m
poseval-master/matlab/external/jsonlab/loadubjson.m
13,300
utf_8
b15e959f758c5c2efa2711aa79c443fc
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % opt.NameIsString [0|1]: for UBJSON Specification Draft 8 or % earlier versions (JSONLab 1.0 final or earlier), % the "name" tag is treated as a string. To load % these UBJSON data, you need to manually set this % flag to 1. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 if(jsonopt('NameIsString',0,varargin{:})) str = parseStr(varargin{:}); else str = parse_name(varargin{:}); end if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; object.(valid_field(str))=val; if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data, adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object, adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object, adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parse_name(varargin) global pos inStr bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of name'); end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
leonid-pishchulin/poseval-master
saveubjson.m
.m
poseval-master/matlab/external/jsonlab/saveubjson.m
17,723
utf_8
3414421172c05225dfbd4a9c8c76e6b3
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) fid = fopen(filename, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end bracketlevel=~jsonopt('singletcell',1,varargin{:}); len=numel(item); % let's handle 1D cell first if(len>bracketlevel) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>bracketlevel),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>bracketlevel) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); if(~isempty(name)) if(forcearray) txt=[N_(checkname(name,varargin{:})) '[']; end else if(forcearray) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt=[txt N_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(forcearray) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[N_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for e=1:len val=item(e,:); if(len==1) obj=[N_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[N_(checkname(name,varargin{:})),'Z']; return; else txt=[N_(checkname(name,varargin{:})),'{',N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[N_(checkname(name,varargin{:})) numtxt]; else txt=[N_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,N_('_ArrayIsComplex_'),'T']; end txt=[txt,N_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,N_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,N_('_ArrayIsComplex_'),'T']; txt=[txt,N_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matlabobject2ubjson(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2ubjson(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(id~=0)) error('high-precision data is not yet supported'); end key='iIlL'; type=key(id~=0); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=N_(str) val=[I_(int32(length(str))) str]; %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
lhmRyan/dual-purpose-hashing-DPH-master
classification_demo.m
.m
dual-purpose-hashing-DPH-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
yuqingtong1990/webrtc_vs2015-master
apmtest.m
.m
webrtc_vs2015-master/webrtc/modules/audio_processing/test/apmtest.m
9,470
utf_8
ad72111888b4bb4b7c4605d0bf79d572
function apmtest(task, testname, filepath, casenumber, legacy) %APMTEST is a tool to process APM file sets and easily display the output. % APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs: % 'test' Processes the files to produce test output. % 'list' Prints a list of cases in the test set, preceded by their % CASENUMBERs. % 'show' Uses spclab to show the test case specified by the % CASENUMBER parameter. % % using a set of test files determined by TESTNAME: % 'all' All tests. % 'apm' The standard APM test set (default). % 'apmm' The mobile APM test set. % 'aec' The AEC test set. % 'aecm' The AECM test set. % 'agc' The AGC test set. % 'ns' The NS test set. % 'vad' The VAD test set. % % FILEPATH specifies the path to the test data files. % % CASENUMBER can be used to select a single test case. Omit CASENUMBER, % or set to zero, to use all test cases. % if nargin < 5 || isempty(legacy) % Set to true to run old VQE recordings. legacy = false; end if nargin < 4 || isempty(casenumber) casenumber = 0; end if nargin < 3 || isempty(filepath) filepath = 'data/'; end if nargin < 2 || isempty(testname) testname = 'all'; end if nargin < 1 || isempty(task) task = 'test'; end if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show') error(['TASK ' task ' is not recognized']); end if casenumber == 0 && strcmp(task, 'show') error(['CASENUMBER must be specified for TASK ' task]); end inpath = [filepath 'input/']; outpath = [filepath 'output/']; refpath = [filepath 'reference/']; if strcmp(testname, 'all') tests = {'apm','apmm','aec','aecm','agc','ns','vad'}; else tests = {testname}; end if legacy progname = './test'; else progname = './process_test'; end global farFile; global nearFile; global eventFile; global delayFile; global driftFile; if legacy farFile = 'vqeFar.pcm'; nearFile = 'vqeNear.pcm'; eventFile = 'vqeEvent.dat'; delayFile = 'vqeBuf.dat'; driftFile = 'vqeDrift.dat'; else farFile = 'apm_far.pcm'; nearFile = 'apm_near.pcm'; eventFile = 'apm_event.dat'; delayFile = 'apm_delay.dat'; driftFile = 'apm_drift.dat'; end simulateMode = false; nErr = 0; nCases = 0; for i=1:length(tests) simulateMode = false; if strcmp(tests{i}, 'apm') testdir = ['apm/']; outfile = ['out']; if legacy opt = ['-ec 1 -agc 2 -nc 2 -vad 3']; else opt = ['--no_progress -hpf' ... ' -aec --drift_compensation -agc --fixed_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apm-swb') simulateMode = true; testdir = ['apm-swb/']; outfile = ['out']; if legacy opt = ['-fs 32000 -ec 1 -agc 2 -nc 2']; else opt = ['--no_progress -fs 32000 -hpf' ... ' -aec --drift_compensation -agc --adaptive_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apmm') testdir = ['apmm/']; outfile = ['out']; opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ... '--ns_moderate']; else error(['TESTNAME ' tests{i} ' is not recognized']); end inpathtest = [inpath testdir]; outpathtest = [outpath testdir]; refpathtest = [refpath testdir]; if ~exist(inpathtest,'dir') error(['Input directory ' inpathtest ' does not exist']); end if ~exist(refpathtest,'dir') warning(['Reference directory ' refpathtest ' does not exist']); end [status, errMsg] = mkdir(outpathtest); if (status == 0) error(errMsg); end [nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ... progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy); if strcmp(task, 'test') || strcmp(task, 'show') system(['rm ' farFile]); system(['rm ' nearFile]); if simulateMode == false system(['rm ' eventFile]); system(['rm ' delayFile]); system(['rm ' driftFile]); end end end if ~strcmp(task, 'list') if nErr == 0 fprintf(1, '\nAll files are bit-exact to reference\n', nErr); else fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr); end end function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ... outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ... legacy) global farFile; global nearFile; global eventFile; global delayFile; global driftFile; dirs = dir(inpath); nDirs = 0; nErrOut = nErr; for i=3:length(dirs) % skip . and .. nDirs = nDirs + dirs(i).isdir; end if nDirs == 0 nCases = nCases + 1; if casenumber == nCases || casenumber == 0 if strcmp(task, 'list') fprintf([num2str(nCases) '. ' outfile '\n']) else vadoutfile = ['vad_' outfile '.dat']; outfile = [outfile '.pcm']; % Check for VAD test vadTest = 0; if ~isempty(findstr(opt, '-vad')) vadTest = 1; if legacy opt = [opt ' ' outpath vadoutfile]; else opt = [opt ' --vad_out_file ' outpath vadoutfile]; end end if exist([inpath 'vqeFar.pcm']) system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]); elseif exist([inpath 'apm_far.pcm']) system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]); end if exist([inpath 'vqeNear.pcm']) system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]); elseif exist([inpath 'apm_near.pcm']) system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]); end if exist([inpath 'vqeEvent.dat']) system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]); elseif exist([inpath 'apm_event.dat']) system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]); end if exist([inpath 'vqeBuf.dat']) system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]); elseif exist([inpath 'apm_delay.dat']) system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]); end if exist([inpath 'vqeSkew.dat']) system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]); elseif exist([inpath 'vqeDrift.dat']) system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]); elseif exist([inpath 'apm_drift.dat']) system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]); end if simulateMode == false command = [progname ' -o ' outpath outfile ' ' opt]; else if legacy inputCmd = [' -in ' nearFile]; else inputCmd = [' -i ' nearFile]; end if exist([farFile]) if legacy inputCmd = [' -if ' farFile inputCmd]; else inputCmd = [' -ir ' farFile inputCmd]; end end command = [progname inputCmd ' -o ' outpath outfile ' ' opt]; end % This prevents MATLAB from using its own C libraries. shellcmd = ['bash -c "unset LD_LIBRARY_PATH;']; fprintf([command '\n']); [status, result] = system([shellcmd command '"']); fprintf(result); fprintf(['Reference file: ' refpath outfile '\n']); if vadTest == 1 equal_to_ref = are_files_equal([outpath vadoutfile], ... [refpath vadoutfile], ... 'int8'); if ~equal_to_ref nErr = nErr + 1; end end [equal_to_ref, diffvector] = are_files_equal([outpath outfile], ... [refpath outfile], ... 'int16'); if ~equal_to_ref nErr = nErr + 1; end if strcmp(task, 'show') % Assume the last init gives the sample rate of interest. str_idx = strfind(result, 'Sample rate:'); fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17)); fprintf('Using %d Hz\n', fs); if exist([farFile]) spclab(fs, farFile, nearFile, [refpath outfile], ... [outpath outfile], diffvector); %spclab(fs, diffvector); else spclab(fs, nearFile, [refpath outfile], [outpath outfile], ... diffvector); %spclab(fs, diffvector); end end end end else for i=3:length(dirs) if dirs(i).isdir [nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ... refpath,[outfile '_' dirs(i).name], progname, opt, ... simulateMode, nErr, nCases, task, casenumber, legacy); end end end nErrOut = nErr; function [are_equal, diffvector] = ... are_files_equal(newfile, reffile, precision, diffvector) are_equal = false; diffvector = 0; if ~exist(newfile,'file') warning(['Output file ' newfile ' does not exist']); return end if ~exist(reffile,'file') warning(['Reference file ' reffile ' does not exist']); return end fid = fopen(newfile,'rb'); new = fread(fid,inf,precision); fclose(fid); fid = fopen(reffile,'rb'); ref = fread(fid,inf,precision); fclose(fid); if length(new) ~= length(ref) warning('Reference is not the same length as output'); minlength = min(length(new), length(ref)); new = new(1:minlength); ref = ref(1:minlength); end diffvector = new - ref; if isequal(new, ref) fprintf([newfile ' is bit-exact to reference\n']); are_equal = true; else if isempty(new) warning([newfile ' is empty']); return end snr = snrseg(new,ref,80); fprintf('\n'); are_equal = false; end
github
yuqingtong1990/webrtc_vs2015-master
plot_neteq_delay.m
.m
webrtc_vs2015-master/webrtc/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
5,563
utf_8
8b6a66813477863da513b1e6971dbc97
function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin) % InfoStruct = plot_neteq_delay(delayfile) % InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds) % % Henrik Lundin, 2006-11-17 % Henrik Lundin, 2011-05-17 % try s = parse_delay_file(delayfile); catch error(lasterr); end delayskip=0; noplot=0; arg_ptr=1; delaypoints=[]; s.sn=unwrap_seqno(s.sn); while arg_ptr+1 <= nargin switch lower(varargin{arg_ptr}) case {'skipdelay', 'delayskip'} % skip a number of seconds in the beginning when calculating delays delayskip = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; case 'noplot' noplot=1; arg_ptr = arg_ptr + 1; case {'get_delay', 'getdelay'} % return a vector of delay values for the points in the given vector delaypoints = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; otherwise warning('Unknown switch %s\n', varargin{arg_ptr}); arg_ptr = arg_ptr + 1; end end % find lost frames that were covered by one-descriptor decoding one_desc_ix=find(isnan(s.arrival)); for k=1:length(one_desc_ix) ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts))); s.sn(one_desc_ix(k))=s.sn(ix)+1; s.pt(one_desc_ix(k))=s.pt(ix); s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix); end % remove duplicate received frames that were never decoded (RED codec) if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts))) ix=find(isfinite(s.decode)); s.sn=s.sn(ix); s.ts=s.ts(ix); s.arrival=s.arrival(ix); s.playout_delay=s.playout_delay(ix); s.pt=s.pt(ix); s.optbuf=s.optbuf(ix); plen=plen(ix); s.decode=s.decode(ix); end % find non-unique sequence numbers [~,un_ix]=unique(s.sn); nonun_ix=setdiff(1:length(s.sn),un_ix); if ~isempty(nonun_ix) warning('RTP sequence numbers are in error'); end % sort vectors [s.sn,sort_ix]=sort(s.sn); s.ts=s.ts(sort_ix); s.arrival=s.arrival(sort_ix); s.decode=s.decode(sort_ix); s.playout_delay=s.playout_delay(sort_ix); s.pt=s.pt(sort_ix); send_t=s.ts-s.ts(1); if length(s.fs)<1 warning('No info about sample rate found in file. Using default 8000.'); s.fs(1)=8000; s.fschange_ts(1)=min(s.ts); elseif s.fschange_ts(1)>min(s.ts) s.fschange_ts(1)=min(s.ts); end end_ix=length(send_t); for k=length(s.fs):-1:1 start_ix=find(s.ts==s.fschange_ts(k)); send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000; s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000; s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000; end_ix=start_ix-1; end tot_time=max(send_t)-min(send_t); seq_ix=s.sn-min(s.sn)+1; send_t=send_t+max(min(s.arrival-send_t),0); plot_send_t=nan*ones(max(seq_ix),1); plot_send_t(seq_ix)=send_t; plot_nw_delay=nan*ones(max(seq_ix),1); plot_nw_delay(seq_ix)=s.arrival-send_t; cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID if noplot==0 h=plot(plot_send_t/1000,plot_nw_delay); set(h,'color',0.75*[1 1 1]); hold on if any(s.optbuf~=0) peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix); h1=plot(send_t(cng_ix(peak_ix))/1000,... s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),... 'r.'); h2=plot(send_t(cng_ix(no_peak_ix))/1000,... s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),... 'g.'); set([h1, h2],'markersize',1) end %h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix)); h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix)); set(h,'linew',1.5); hold off ax1=axis; axis tight ax2=axis; axis([ax2(1:3) ax1(4)]) end % calculate delays and other parameters delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 ); use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames... intersect(find(isfinite(s.decode)),... % ... that did arrive ... (delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix)); neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix)); Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1; nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack; neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack; delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,... 'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,... 'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),... 'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,... 'filename',delayfile,'units','ms','fs',unique(s.fs)); if not(isempty(delaypoints)) delayvalues=interp1(send_t(cng_ix),... s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),... delaypoints,'nearest',NaN); else delayvalues=[]; end % SUBFUNCTIONS % function y=unwrap_seqno(x) jumps=find(abs((diff(x)-1))>65000); while ~isempty(jumps) n=jumps(1); if x(n+1)-x(n) < 0 % negative jump x(n+1:end)=x(n+1:end)+65536; else % positive jump x(n+1:end)=x(n+1:end)-65536; end jumps=find(abs((diff(x(n+1:end))-1))>65000); end y=x; return;
github
kalov/ShapePFCN-master
classification_demo.m
.m
ShapePFCN-master/caffe-ours/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
usgs/landslides-mLS-master
mLS.m
.m
landslides-mLS-master/mLS.m
7,878
utf_8
5fc99d5ed047ae1cd3d70caf7f13cc6c
% This script is provided as a supplementary material of a paper % published in Earth Surface Processes and Landforms. The details of the % method followed in the given script is described in the corresponding % paper. If you publish use this script or a its modified version please % cite the following paper: % Tanyas, H., K.E. Allstadt, and C.J. van Westen, 2018, % An updated method for estimating landslide-event magnitude, Earth Surface % Processes and Landforms. DOI: 10.1002/esp.4359 % The Pupose Of The Script And The Input Parametes % This script is provided for the accurate estimation of landslide-event % magnitude. We used Matlab R2015b to test the given script. It basically % requires three input parameters to estimate landslide-event magnitude: % cutoff smallest area that follows power law)and beta (power-law exponent) % values of frequency-size distribution (FAD) of landslides, and a horizontal % array (Area) with landslide sizes. This script can also calculate the % uncertainty in landslide-event magnitude if uncertainties in cutoff and % beta values are given as input parameters. % The power-law distribution can be captured in both cumulative and % non-cumulative FADs, and the power-law exponent (beta) for a non-cumulative % FAD can be transferred to its cumulative equivalent, alpha, using the relation % alpha=beta-1 (Guzzetti et al., 2002). In this code, the calculations are carried % out on the non-cumulative FAD. % The cutoff is the landslide size where frequency-size distribution curve % diverges form the power-law. In this code its unit is meter square. % Beta value resfers to the slope of the frequency-size distribution. It also % called as power-law exponent (scaling parameter, beta). For most landslide % inventories, non-cumulative power-law exponents occur in the range of % 1.4–3.4, with a central tendency of 2.3–2.5 (Stark and Guzzetti, 2009; % Van Den Eeckhaut et al., 2007). % The unit of landslide sizes are in meter square. % To obtain the cutoff & beta values and thier uncertainties the method % suggested by Clauset et al.(2009) can be used. The original scripts % (plfit.m and plvar.m) of Clauset et al. (2009) can be downloaded from the % following link to calculate these parameters: % http://www.santafe.edu/~aaronc/powerlaws/ % The Output Of The Script % When you run the mLS function, for the given sample data, the corresponding % mLS (landslide-event magnitude) will be obtained. If the uncertainties in % cutoff (cutoff_error) and beta (beta_error) values are provided, the % uncertainty in mLS (error) is also estimated by the script. As an output % of this code, a plot showing the frequency-area distribution of the given % landslides and the corresponding power-law fit are also obtained. % mLS does not have any unit. function [mLS,error]=mLS(Area,cutoff,beta,beta_error,cutoff_error) % In the following lines, the bins are defined with an array. We took 2 as % the minimum bin size and we used increasing bin sizes. We increase the % bin widths while the landslide size increases, so that bin widths become % approximately equal in logarithmic coordinates. To create a long array for % the bins we tentatively pick 120 for the size of x1 vector defined below. x1(1,1)=2; for i=2:120 x1(1,i)=x1(1,i-1)*1.2; end x2=log10(x1); Freq=histc(Area,x1); %Frequency values are calculated for each bin s=size(x1); s=s(1,2); internal=zeros(1,s); for i=2:s internal(1,i)=x1(1,i)-x1(1,i-1); end internal(1,1)=min(x1); FD=Freq./internal; x1_rev = abs(x1-cutoff); % the index of value that is closest to cutoff value is identified along the x1 array [indexMidpoint indexMidpoint] = min(x1_rev); x=x1(indexMidpoint:end); % the x (size bines) array for the frequeny-size distribution is defined y=FD(indexMidpoint:end); % the y (frequency densities) array for the frequeny-size distribution is defined if beta>0 % beta value have to be negative beta=-1*beta; end beta_stored=beta; constant=y(1,1)/cutoff^beta; % The c constant is calculated along the power-low where x=cutoff fit_y=constant*x1.^beta; % Frequency-density values calculated for the defined power-law fit fit_y_stored=fit_y; midx=10^((log10(max(Area))+(log10(cutoff)))/2); % The x and y values at mid-point location is read along the power-law fit midy=constant*midx^beta; Refmidx=4.876599623713225e+04; % X value for the mid point of the Northridge (reference point) inventory Refmidy=8.364725347860417e-04; % Y value for the mid point of the Northridge (reference point) inventory ac=Refmidy/(11111*Refmidx^beta); % the c' constant (as) is calculated here for the mid-point of % the Northridge inventory as a reference point where mLS=log(11111) mLS=log10((midy/(ac*midx^(beta)))); % mLS is calculated in this line mLS_stored=mLS; % Uncertainty in mLS will be calculated if the required inputs are given % To do that Monte-Carlo simulation is run 10,000 times if exist('beta_error')==1 && exist('cutoff_error')==1 beta_interval_N=((beta+beta_error)-(beta-beta_error))/(499); %Number of elements to create an array including 500 uniformly distributed beta values is defined beta_interval=(beta-beta_error):beta_interval_N:(beta+beta_error); %An array including 500 uniformly distributed beta values is defined cutoff_min=(cutoff-cutoff_error); if cutoff_min<=0 cutoff_min=2; else cutoff_min=cutoff_min; end cutoff_max=(cutoff+cutoff_error); cutoff_interval_N=((cutoff_max)-(cutoff_min))/(499); %Number of elements to create an array including 500 uniformly distributed cutoff values is defined cutoff_interval=(cutoff_min):cutoff_interval_N:(cutoff_max); %An array including 500 uniformly distributed cutoff values is defined beta_mean=mean(beta_interval); %Mean of beta values is identified beta_std=std(beta_interval); %Standard deviation of beta vaues is identified cutoff_mean=mean(cutoff_interval); %Mean of cutoff values is identified cutoff_std=std(cutoff_interval); %Standard deviation of cutoff values is identified for i=1:10000 %mLS values are calculated for randomly sampled beta and cutoff values below cutoff=normrnd(cutoff_mean,cutoff_std); beta=normrnd(beta_mean,beta_std); constant=y(1,1)/cutoff^beta; fit_y=constant*x1.^beta; midx=10^((log10(max(Area))+(log10(cutoff)))/2); ac=Refmidy/(11111*Refmidx^beta); mLS_array(i,1)=log10((midy/(ac*midx^(beta)))); end mLS_array=mLS_array(all(~isinf(mLS_array),2),:); % "Inf" cells are removed from the array error=std(mLS_array(:)); %Uncertainty of mLS calcultated as a first standard deviation of mLS values else disp('Uncertainty in mLS will not be calculated because the variable "cutoff_error" and "beta_error" is missing') error='?' end % A graph showing the frequency-area distribution of the given landslides % and the corresponding power-law fit are plotted. loglog(x1,fit_y_stored,'-','LineWidth',2,'Color','r');hold on loglog(x1,FD,'ok','MarkerSize',8,'MarkerFaceColor','b','MarkerEdgeColor','k') axis([1 1.E+7 1.E-6 1000]) set(get(gca,'Xlabel'),'string','Landslide Area (m^2)','FontSize',12, 'FontUnits','points','FontWeight','normal') set(get(gca,'Ylabel'),'string','Frequency Density (m^-^2)','FontSize',12, 'FontUnits','points','FontWeight','normal') str={['\beta = ',num2str(beta_stored)];['mLS = ',num2str(mLS_stored),(char(177)),num2str(error)]}; text(x1(1,1),(min(FD(FD>0)*10)),str,'FontSize',12) end
github
WenbingLv/NPC-radiomics-master
getGLCM_Symmetric.m
.m
NPC-radiomics-master/getGLCM_Symmetric.m
5,813
utf_8
5c7c1e015f2cfab250ac285142fb04c5
function coocMat = getGLCM_Symmetric(varargin) %inputStr = {TumorVolume,'Distance',[],'Direction',[],'numgray',levelsM+1}; % %[email protected] %Southern Medical University % %Default settings coocMat= NaN; distance = [1;2;4;8]; numLevels = 16; offSet = [1 0 0; 1 1 0; 0 1 0; -1 1 0]; %2D Co-Occurrence directions 0,45,90,135 degrees %the additional 9 directions of 3D volume dimension3 = [0 0 1; 1 0 1; -1 0 1; 0,1,1; 0 -1 1; 1 1 1; -1 1 1; 1 1 -1; 1 1 -1]; offSet = cat(1,offSet,dimension3);%13 directions %checking inputs data = varargin{1}; temp = size(data); if size(temp)<3 disp('Error: This program is designed for 3 dimensional data') return; end numInput = size(varargin,2); for inputs =2:numInput temp = varargin{1,inputs}; if ~ischar(temp) continue; end temp = upper(temp); switch (temp) case 'DIRECTION' temp2 = int8(varargin{1,inputs+1}); if size(size(temp2),2) ~=2 disp('Error: Direction input is formatted poorly') return; end if size(temp2,2) ~=3 disp(['Error: Incorrect number of columns in ' ... 'direction variable']) return; end if max(max(temp2))>1 | min(min(temp2))<-1 disp('Error: Direction values can only be {-1,0,1}') return; end offSet = temp2; case 'DISTANCE' temp2 = int8(varargin{1,inputs+1}); if size(size(temp2)) ~= 2 disp('Error: Incorrect formatting of distance variable') return; end if sum(sum(size(temp2))) ~= max(size(temp2)+1) disp(['Error: Distance variable is to be a one ' ... 'dimensional array']) return; end distance = temp2; case 'NUMGRAY' temp2 = varargin{1,inputs+1}; if temp2<1 disp('The number of graylevels must be positive') return; end numLevels = uint16(temp2); end end noDirections = size(offSet,1); %number of directions, currently 13 coocMat = zeros(numLevels, numLevels, noDirections, size(distance,2)); for dist =1:size(distance,2) %distance [coocMat(:,:,:,dist)] = graycooc3d(data(:,:,:),distance(dist),numLevels,offSet); end return function [new_coMat]= graycooc3d(I,distance,numLevels,offSet) %I = the 3D image matrix %distance = a vector of the distances to analyze in %numLevels = the number of graylevels to be used %offSet = a matrix of the directions to analyze in %coMat the Co-Occurrence matrices produced%% %**************Variable initialization/Declaration********************** %harMat =0; noDirections = size(offSet,1); %number of directions, currently 13 coMat = zeros(numLevels,numLevels,noDirections); %**************************Beginning analysis************************* %Order of loops: Direction, slice, graylevel, graylevel locations for direction =1:noDirections %currently 13 (for the 3d image) tempMat = zeros(numLevels,numLevels,size(I,3)); for slicej =1:size(I,3) for j=1:numLevels %graylevel %find all the instances of that graylevel [rowj,colj] = find(I(:,:,slicej)==j); %populating the Cooc matrix. for tempCount = 1:size(rowj,1) rowT = rowj(tempCount) + distance*offSet(direction,1); colT = colj(tempCount) + distance*offSet(direction,2); sliceT = slicej + distance*offSet(direction,3); rowTnegative = rowj(tempCount) - distance*offSet(direction,1);%the symmetry of GLCM. colTnegative = colj(tempCount) - distance*offSet(direction,2);%the symmetry of GLCM. sliceTnegative = slicej - distance*offSet(direction,3);%the symmetry of GLCM. [I1, I2, I3] = size(I); if rowT <= I1 && colT <= I2 && sliceT <= I3 if rowT > 0 && colT > 0 && sliceT > 0 %Error checking for NANs and Infinite numbers IIntensity = I(rowT,colT,sliceT); if ~isnan(IIntensity) if ~isinf(IIntensity) tempMat(j,IIntensity,slicej)= tempMat... (j,IIntensity,slicej)+1; end end end end if rowTnegative <= I1 && colTnegative <= I2 && sliceTnegative <= I3 if rowTnegative > 0 && colTnegative > 0 && sliceTnegative > 0 %Error checking for NANs and Infinite numbers IIntensitynegative = I(rowTnegative,colTnegative,sliceTnegative);% added by if ~isnan(IIntensitynegative) if ~isinf(IIntensitynegative) tempMat(j,IIntensitynegative,slicej)= tempMat... (j,IIntensitynegative,slicej)+1; end end end end end end end for slicej =1:size(I,3) coMat(:,:,direction)= coMat(:,:,direction)+tempMat(:,:,slicej); end end new_coMat=coMat(:,:,:); return
github
WenbingLv/NPC-radiomics-master
getGLCM_Asymmetric.m
.m
NPC-radiomics-master/getGLCM_Asymmetric.m
5,891
utf_8
d600aef8916ea9dd698c1241d56050d9
function coocMat = getGLCM_Asymmetric(varargin) %inputStr = {TumorVolume,'Distance',[],'Direction',[],'numgray',levelsM+1}; % %[email protected] %Southern Medical University % %Default settings coocMat= NaN; distance = [1;2;4;8]; numLevels = 16; offSet = [1 0 0; 1 1 0; 0 1 0; -1 1 0]; %2D Co-Occurrence directions 0,45,90,135 degrees %the additional 9 directions of 3D volume dimension3 = [0 0 1; 1 0 1; -1 0 1; 0,1,1; 0 -1 1; 1 1 1; -1 1 1; 1 1 -1; 1 1 -1]; offSet = cat(1,offSet,dimension3);%13 directions %checking inputs data = varargin{1}; temp = size(data); if size(temp)<3 disp('Error: This program is designed for 3 dimensional data') return; end numInput = size(varargin,2); for inputs =2:numInput temp = varargin{1,inputs}; if ~ischar(temp) continue; end temp = upper(temp); switch (temp) case 'DIRECTION' temp2 = int8(varargin{1,inputs+1}); if size(size(temp2),2) ~=2 disp('Error: Direction input is formatted poorly') return; end if size(temp2,2) ~=3 disp(['Error: Incorrect number of columns in ' ... 'direction variable']) return; end if max(max(temp2))>1 | min(min(temp2))<-1 disp('Error: Direction values can only be {-1,0,1}') return; end offSet = temp2; case 'DISTANCE' temp2 = int8(varargin{1,inputs+1}); if size(size(temp2)) ~= 2 disp('Error: Incorrect formatting of distance variable') return; end if sum(sum(size(temp2))) ~= max(size(temp2)+1) disp(['Error: Distance variable is to be a one ' ... 'dimensional array']) return; end distance = temp2; case 'NUMGRAY' temp2 = varargin{1,inputs+1}; if temp2<1 disp('The number of graylevels must be positive') return; end numLevels = uint16(temp2); end end noDirections = size(offSet,1); %number of directions, currently 13 coocMat = zeros(numLevels, numLevels, noDirections, size(distance,2)); for dist =1:size(distance,2) %distance [coocMat(:,:,:,dist)] = graycooc3d(data(:,:,:),distance(dist),numLevels,offSet); end return function [new_coMat]= graycooc3d(I,distance,numLevels,offSet) %I = the 3D image matrix %distance = a vector of the distances to analyze in %numLevels = the number of graylevels to be used %offSet = a matrix of the directions to analyze in %coMat the Co-Occurrence matrices produced %**************Variable initialization/Declaration********************** noDirections = size(offSet,1); %number of directions, currently 13 coMat = zeros(numLevels,numLevels,noDirections); %**************************Beginning analysis************************* %Order of loops: Direction, slice, graylevel, graylevel locations for direction =1:noDirections %currently 13 (for the 3d image) tempMat = zeros(numLevels,numLevels,size(I,3)); for slicej =1:size(I,3) for j=1:numLevels %graylevel %find all the instances of that graylevel [rowj,colj] = find(I(:,:,slicej)==j); %populating the Cooc matrix. for tempCount = 1:size(rowj,1) rowT = rowj(tempCount) + distance*offSet(direction,1); colT = colj(tempCount) + distance*offSet(direction,2); sliceT = slicej + distance*offSet(direction,3); rowTnegative = rowj(tempCount) - distance*offSet(direction,1);%the symmetry of GLCM. colTnegative = colj(tempCount) - distance*offSet(direction,2);%the symmetry of GLCM. sliceTnegative = slicej - distance*offSet(direction,3);%the symmetry of GLCM. [I1, I2, I3] = size(I); if rowT <= I1 && colT <= I2 && sliceT <= I3 if rowT > 0 && colT > 0 && sliceT > 0 %Error checking for NANs and Infinite numbers IIntensity = I(rowT,colT,sliceT); if ~isnan(IIntensity) if ~isinf(IIntensity) tempMat(j,IIntensity,slicej)= tempMat... (j,IIntensity,slicej)+1; end end end end % if rowTnegative <= I1 && colTnegative <= I2 && sliceTnegative <= I3 % if rowTnegative > 0 && colTnegative > 0 && sliceTnegative > 0 % % %Error checking for NANs and Infinite numbers % % IIntensitynegative = I(rowTnegative,colTnegative,sliceTnegative);% added by % if ~isnan(IIntensitynegative) % if ~isinf(IIntensitynegative) % %Matlab doesn't have a ++ operator. % tempMat(j,IIntensitynegative,slicej)= tempMat... % (j,IIntensitynegative,slicej)+1; % % end % end % end % end end end end for slicej =1:size(I,3) coMat(:,:,direction)= coMat(:,:,direction)+tempMat(:,:,slicej); end end new_coMat=coMat(:,:,:); return
github
WenbingLv/NPC-radiomics-master
computeBoundingBox.m
.m
NPC-radiomics-master/computeBoundingBox.m
3,017
utf_8
71c3aad5fb0ffd5ca96a185b0ee529e2
function [boxBound] = computeBoundingBox(mask) % ------------------------------------------------------------------------- % function [boxBound] = computeBoundingBox(mask) % ------------------------------------------------------------------------- % DESCRIPTION: % This function computes the smallest box containing the whole region of % interest (ROI). It is adapted from the function compute_boundingbox.m % of CERR <http://www.cerr.info/>. % ------------------------------------------------------------------------- % INPUTS: % - mask: 3D array, with 1's inside the ROI, and 0's outside the ROI. % ------------------------------------------------------------------------- % OUTPUTS: % - boxBound: Bounds of the smallest box containing the ROI. % Format: [minRow, maxRow; % minColumn, maxColumns; % minSlice, maxSlice] % ------------------------------------------------------------------------- % AUTHOR(S): % - Martin Vallieres <[email protected]> % - CERR development team <http://www.cerr.info/> % ------------------------------------------------------------------------- % HISTORY: % - Creation: May 2015 %-------------------------------------------------------------------------- % STATEMENT: % This file is part of <https://github.com/mvallieres/radiomics/>, % a package providing MATLAB programming tools for radiomics analysis. % --> Copyright (C) 2015 Martin Vallieres % --> Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team % % This package is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This package is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this package. If not, see <http://www.gnu.org/licenses/>. % ------------------------------------------------------------------------- [iV,jV,kV] = find3d(mask); boxBound(1,1) = min(iV); boxBound(1,2) = max(iV); boxBound(2,1) = min(jV); boxBound(2,2) = max(jV); boxBound(3,1) = min(kV); boxBound(3,2) = max(kV); end % CERR UTILITY FUNCTIONS (can be found at: https://github.com/adityaapte/CERR) function [iV,jV,kV] = find3d(mask3M) indV = find(mask3M(:)); [iV,jV,kV] = fastind2sub(size(mask3M),indV); iV = iV'; jV = jV'; kV = kV'; end function varargout = fastind2sub(siz,ndx) nout = max(nargout,1); if length(siz)<=nout, siz = [siz ones(1,nout-length(siz))]; else siz = [siz(1:nout-1) prod(siz(nout:end))]; end n = length(siz); k = [1 cumprod(siz(1:end-1))]; ndx = ndx - 1; for i = n:-1:1, varargout{i} = floor(ndx/k(i)) + 1; ndx = ndx - (varargout{i}-1) * k(i); end end
github
PerfXLab/caffe_perfdnn-master
classification_demo.m
.m
caffe_perfdnn-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
BrainardLab/TeachingCode-master
initialiseProcedure.m
.m
TeachingCode-master/ArduinoAnomaloscope/xxxContributed/arduinoHFP/initialiseProcedure.m
1,144
utf_8
86882fe4db83c69d7a985d7d13165b79
function [increaseKey, decreaseKey, deltaKey, finishKey, ... increaseInputs, decreaseInputs, deltaIndex, rDeltas]=initialiseProcedure increaseKey=KbName('up'); % key code for increasing red intensity decreaseKey=KbName('down'); % key code for decreaseing red intensity deltaKey=KbName('space'); % key code for changing red delta finishKey=KbName('q'); % key code for finishing procedure and recording data % THIS IS IMPORTANT: increase/decrease inputs are the messages telling Arduino % how to change red intensity. increaseInput{i} and decreaseInput{i} have % the same absolute value, but opposite sign (e.g., increaseInput{1}=20, % decreaseInput{1}=-20. so that a single index can change the delta of % both. in the current arduino code, 'q'/'r' change the intensity by 20 % bytes (0-255), 'w'/'t' by 5, 'e', 'y' by 1. To change how much each % affects the code, you need to change the arduino FlickeringLight code. % (by changing the if statements for each input signal) increaseInputs={'q', 'w', 'e'}; decreaseInputs={'r', 't', 'y'}; deltaIndex=1; rDeltas=[20, 5, 1]; end
github
BrainardLab/TeachingCode-master
ArduinoMethodOfAdjustmentHFP.m
.m
TeachingCode-master/ArduinoAnomaloscope/xxxContributed/arduinoHFP/ArduinoMethodOfAdjustmentHFP.m
3,327
utf_8
2afbe378afee5e39e4b9675765af3179
% if the code doesn't work, check that the arduino port (written in % ConstantsHFP) is the right one (for windows, check Device Manager->ports) function ArduinoImplementedHFP % clear everything before starting program delete(instrfindall) clear addpath('C:\Users\mediaworld\Documents\MATLAB\internship\HFP_Code\HFP_Code'); % call arduino object serialObj=serialport(ConstantsHFP.serialPort, 9600); % create variables [increaseKey, decreaseKey, deltaKey,... finishKey, ... increaseInputs, decreaseInputs, ... deltaIndex, rDeltas]=initialiseProcedure; % adjust flicker settings while true fopen(serialObj); ListenChar(0) DoYouWantToStart=input('would you like to run a new trial? (yes or no) ', 's'); if strcmp(DoYouWantToStart, 'yes')==0 disp('aborting mission') break; end ListenChar(2) % setup random initial flicker setting ('s' is the message, in the % FlickeringLight.ino code that stands for randomised start) fprintf(serialObj, 's'); % Record red and green initial values for final save rInit=read(serialObj, 6, "char"); gInit=read(serialObj, 6, "char"); pause(2) disp('starting new trial'); % run trial while true % get keyboard input [secs, keyCode, deltaSecs]=KbPressWait(); if keyCode(increaseKey) % if user asks to increase light, select increase amount % corresponding to current delta. See initialiseProcedure.m for more info arduinoInput=increaseInputs{deltaIndex}; fprintf(serialObj, arduinoInput); elseif keyCode(decreaseKey) % decrease intensity. for more info look at % initialiseProcedure.m arduinoInput=decreaseInputs{deltaIndex}; fprintf(serialObj, arduinoInput); elseif keyCode(deltaKey) deltaIndex=deltaIndex+1; if deltaIndex>length(rDeltas) deltaIndex=1; end elseif keyCode(finishKey) disp('Printing final results... please wait') % print initial and final red value fprintf(serialObj, 'f'); %in case you want to eliminate one of these "read" commands, %remember to cancel the correspondent part in the "f" if %statement in the FlickeringLight arduino code initialRed=read(serialObj, 6, "char"); finalRed=read(serialObj, 6, "char"); fprintf("Initial Red Value = %d,\n", str2num(initialRed)); fprintf("Final Red Value = %d \n", str2num(finalRed)); % save everything ListenChar(0) WantToSave=input("Would you like to save these data? (yes or no) ", 's'); if strcmp(WantToSave, 'yes') disp("Saving results..."); SaveHFPResultsTable(finalRed, rInit, gInit); else disp("Results not saved"); end ListenChar(2) break; else continue; end end delete(instrfindall); %save data end ListenChar(0)
github
BrainardLab/TeachingCode-master
RenderSpectrumOnMonitorTutorial.m
.m
TeachingCode-master/ICVS2020Tutorials/RenderSpectrumOnMonitorTutorial.m
11,826
utf_8
749776d43b6f5da2a72aa5cc8f8786df
% RenderSpectrumOnMonitorTutorial % % Exercise to learn about rendering metamers on a monitor. % % This tutorial is available in the github repository % https://github.com/BrainardLab/TeachingCode % You can either clone the respository or just download a copy from % that page (see green "Code" button). % % To run this, you will need both the Psychophysics Toolbox (PsychToolbox) % and the BrainardLabToolbox on your path. You can get the PsychToolbox % from % psychtoolbox.org % You can get the BrainardLabToolbox from % https://github.com/BrainardLab/BrainardLabToolbox % % If you use the ToolboxToolbox (https://github.com/toolboxhub/toolboxtoolbox) % and install the TeachingCode repository in your projects folder, you can % install the dependencies by using % tbUseProject('TeachingCode') % at the Matlab prompt. % % You also need the calibration file NEC_MultisyncPA241W.mat, which is in % the same directory as this tutorial in the github respository. % % There is a video that goes through this script and unpacks the % calculations. It may be streamed from this link % https://www.dropbox.com/s/v0ylynxteh7jc2j/RenderASpectrum.Orig.mp4?dl=0 % and downloaded from this link % https://www.dropbox.com/s/v0ylynxteh7jc2j/RenderASpectrum.Orig.mp4?dl=1 % The downloaded version will play at higher resolution. % % A video lecture on using matrix-vector representations in colorimetric % calculations is available here % Stream - https://www.dropbox.com/s/lvtr3r60olmho3d/ConeFundamentalsLinearTransform.Orig.mp4?dl=0 % Download - https://www.dropbox.com/s/lvtr3r60olmho3d/ConeFundamentalsLinearTransform.Orig.mp4?dl=1 % As with the video above, the downloaded version will play at higher resolution. % % See also: RenderSpectrumOnMonitorForDogTutorial, RenderImageOnMonitorForDogTutorial % History: % 08/01/2020 dhb Wrote for ICVS from other tutorials that weren't quite % what we wanted. %% Clear clear; close all; %% Load and examine a test calibration file % % These are measurements from an LCD monitor, with data stored in a % structure that describes key monitor properties. calData = load('NEC_MultisyncPA241W'); cal = calData.cals{end}; % Get wavelength sampling of functions in cal file. S = cal.rawData.S; wls = SToWls(S); % For simplicity, let's assume that no light comes off the monitor when the % input is set to zero. This isn't true for real monitors, but we don't % need to fuss with that aspect at the start. cal.processedData.P_ambient = zeros(size(cal.processedData.P_ambient)); %% Plot the spectra of the three monitor primaries. % % For this monitor each primary is determined by the emission spectra of % one of the phosphors on its faceplate, but that's a detail. Whwat we care % about are the spectra, not how they were instrumented physically. % % Each primary spectrum is in a separate column of the matrix cal.processedData.P_device. % In MATLAB,can use the : operator to help extract various pieces of a % matrix. So: redPhosphor = cal.processedData.P_device(:,1); greenPhosphor = cal.processedData.P_device(:,2); bluePhosphor = cal.processedData.P_device(:,3); figure(1);clf; hold on set(gca,'FontName','Helvetica','FontSize',18); plot(wls,redPhosphor,'r','LineWidth',3); plot(wls,greenPhosphor,'g','LineWidth',3); plot(wls,bluePhosphor,'b','LineWidth',3); title( 'Monitor channel spectra','FontSize',24); xlabel( 'Wavelength [ nm ]','FontSize',24); ylabel( 'Radiance [ W / m^2 / sr / wlbin ]','FontSize',24); hold off %% Get human cone spectral sensitivities % % Here we use the Stockman-Sharpe 2-degree fundamentals, which are also the % CIE fundamentals. They are stored as a .mat file in the Psychophysics % Toolbox. See "help PsychColorimetricMatFiles'. % % By convention in the Psychtoolbox, we store sensitivities as the rows of % a matrix. Spline the wavelength sampling to match that in the calibration % file. load T_cones_ss2 T_cones = SplineCmf(S_cones_ss2,T_cones_ss2,S); % Make a plot figure(2); clf; hold on set(gca,'FontName','Helvetica','FontSize',18); plot(wls,T_cones(1,:),'r','LineWidth',3); plot(wls,T_cones(2,:),'g','LineWidth',3);; plot(wls,T_cones(3,:),'b','LineWidth',3); title( 'LMS Cone Fundamentals','FontSize',24); xlabel( 'Wavelength','FontSize',24); ylabel( 'Sensitivity','FontSize',24); hold off %% Get a spectrum to render % % We want to render a spectrum on the monitor so that the light coming off the monitor has % the same effect on the human cones as the spectrum would have. So we % need a spectrum. We'll CIE daylight D65, since we have it available. % % The spectrum we read in is too bright to render on our monitor, so we % also scale it down into a more reasonable range so we don't have to worry % about that below. load spd_D65 spectrumToRender = SplineSpd(S_D65,spd_D65,S)/0.75e4; % If you want a different spectrum, this is operation on the D65 % produces a spectrum with more long wavelenght power and that renders % pinkish. % spectrumToRender = 1.5*max(spectrumToRender(:))*ones(size(spectrumToRender))-spectrumToRender; % Make a plot of the spectrum to render figure(3); clf; hold on plot(wls,spectrumToRender,'k','LineWidth',3); title('Metamers','FontSize',24); xlabel('Wavelength','FontSize',24); ylabel( 'Power','FontSize',24); %% Compute the cone excitations from the spectrum we want to render % % This turns out to be a simple matrix multiply in Matlab. The % sensitivities are in the rows of T_cones and the spectral radiance is in % the column vector spectrumToRender. For each row of T_cones, the matrix % multiple consists of weighting the spectrum by the sensitivity at each % wavelength and adding them up. % % Implicit here is that the units of spectrum give power per wavelength % sampling bin, another important detail you'd want to think about to get % units right for a real application and that we won't worry about here. LMSToRender = T_cones*spectrumToRender; %% We want to find a mixture of the monitor primaries that produces the same excitations % % Let's use the column vector [r g b]' to denote the amount of each primary % we'll ultimately want in the mixture. By convention we'll think of r, g, % and b as proportions relative to the maximum amount of each phosphor % available on the monitor. % % It might be useful to make a plot of the example spectrum and see that it % indeed looks like a mixture of the primary spectra. rgbExample = [0.2 0.5 0.9]'; monitorSpectrumExample = rgbExample(1)*redPhosphor + rgbExample(2)*greenPhosphor + rgbExample(3)*bluePhosphor; % We can also compute the spectrum coming off the monitor for any choice of r, % g, and b using a matrix multiply. In this case, think of the % multiplication as weighting each of the columns of cal.processedData.P_device (which % are the primary spectra) and then summing them. You can verify that this % gives the same answer as the expanded form just above. monitorSpectrumExampleCheck = cal.processedData.P_device*rgbExample; % We can also compute the LMS cone excitations for this example. This is % just a column vector of three numbers. monitorLMSExample = T_cones*monitorSpectrumExample; % Now note that we can combine the two steps above, precomputing the matrix % that maps between the rgb vector and the LMS excitations that result. % % You can verify that monitorLMSExample and monitorLMSExampleCheck are the % same as each other. rgbToLMSMatrix = T_cones*cal.processedData.P_device; monitorLMSExampleCheck = rgbToLMSMatrix*rgbExample; % We want to go the other way, starting with LMSToRender and obtaining an % rgb vector that produces it. This is basically inverting the relation % above, which is easy in Matlab. LMSTorgbMatrix = inv(rgbToLMSMatrix); rgbThatRender = LMSTorgbMatrix*LMSToRender; % Let's check that it worked. The check values here should be the same as % LMSToRender. renderedSpectrum = cal.processedData.P_device*rgbThatRender; LMSToRenderCheck = T_cones*renderedSpectrum; % Add rendered spectrum to plot of target spectrum. You can see that they % are of the same overall scale but differ in relative spectra. These two % spectra are metamers - they produce the same excitations in the cones and % will look the same to a human observer. figure(3); plot(wls,renderedSpectrum,'k:','LineWidth',3); %% Make an image that shows the color % % We know the proportions of each of the monitor primaries required to % produce a metamer to the spectrum we wanted to render. Now we'd like to % look at this rendered spectrum. We have to assume that the properties of % the monitor we're using are the same as the one in the calibration file, % which isn't exactly true but will be close enough for illustrative % purposes. % What we need to do is find RGB values to put in the image so that we get % the desired rgb propotions in the mixture that comes off. This is a % little tricky, because the relation between the RGB values we put into an % image and the rgb values that come off is non-linear. This non-linearity % is called the gamma curve of the monitor, and we have to correct for it, % a process known as gamma correction. % As part of the monitor calibration, we meausured the gamma curves of our % monitor, and they are in the calibration structure. Let's have a look figure(4); clf; hold on set(gca,'FontName','Helvetica','FontSize',18); gammaInput = cal.processedData.gammaInput; redGamma = cal.processedData.gammaTable(:,1); greenGamma = cal.processedData.gammaTable(:,2); blueGamma = cal.processedData.gammaTable(:,3); plot(gammaInput,redGamma,'r','LineWidth',3); plot(gammaInput,greenGamma,'g','LineWidth',3); plot(gammaInput,blueGamma,'b','LineWidth',3); title( 'Monitor gamma curves','FontSize',24); xlabel( 'Input RGB','FontSize',24); ylabel( 'Mixture rgb','FontSize',24); % We need to invert this curve - for each of our desired rgb values we need % to find the corresponding RGB. That's not too hard, we can just do % exhasutive search. This is done here in a little subfunction called % SimpleGammaCorrection at the bottom of this file. nLevels = length(gammaInput); R = SimpleGammaCorrection(gammaInput,redGamma,rgbThatRender(1)); G = SimpleGammaCorrection(gammaInput,greenGamma,rgbThatRender(2)); B = SimpleGammaCorrection(gammaInput,blueGamma,rgbThatRender(3)); RGBThatRender = [R G B]'; % Make an and show the color image. We get (on my Apple Display) a slightly % bluish gray, which is about right for D65 given that we aren't using a % calibration of this display. nPixels = 256; theImage = zeros(nPixels,nPixels,3); for ii = 1:nPixels for jj = 1:nPixels theImage(ii,jj,:) = RGBThatRender; end end figure(5); imshow(theImage); %% Go from RGB back to the spectrum coming off the monitor % % There will be a very small difference between rgbFromRGB and % rgbThatRender because the gamma correction quantizes the RGB % values to discrete levels. rgbFromRGB(1) = SimpleGammaCorrection(redGamma,gammaInput,RGBThatRender(1)); rgbFromRGB(2) = SimpleGammaCorrection(greenGamma,gammaInput,RGBThatRender(2)); rgbFromRGB(3) = SimpleGammaCorrection(blueGamma,gammaInput,RGBThatRender(3)); rgbFromRGB = rgbFromRGB'; spectrumFromRGB = cal.processedData.P_device*rgbFromRGB; figure(3); plot(wls,spectrumFromRGB,'r:','LineWidth',2); function output = SimpleGammaCorrection(gammaInput,gamma,input) % output = SimpleGammaCorrection(gammaInput,gamma,input) % % Perform gamma correction by exhaustive search. Just to show idea, % not worried about efficiency. % % 9/14/08 ijk Wrote it. % 12/2/09 dhb Update for [0,1] input table. % 08/01/20 dhb Get rid of extraneous input variable min_diff = Inf; for i=1:length(gammaInput) currentdiff = abs(gamma(i)-input); if(currentdiff < min_diff) min_diff = currentdiff; output = i; end end output = gammaInput(output); end
github
BrainardLab/TeachingCode-master
ColourCamouflageImageTutorial.m
.m
TeachingCode-master/ICVS2020Tutorials/ColourCamouflageImageTutorial.m
8,062
utf_8
f7e8af66320136d261df52d4cfeecef3
% ColourCamouflageImageTutorial % % Example code to colour a 3-colour image with dichromat confusion colours % for use in camouflage example. % % To run this, you will need both the Psychophysics Toolbox (PsychToolbox) % and the BrainardLabToolbox on your path. You can get the PsychToolbox % from % psychtoolbox.org % You can get the BrainardLabToolbox from % https://github.com/BrainardLab/BrainardLabToolbox % % You also need the kmeans_fast_Color function from Matlab Central % https://uk.mathworks.com/matlabcentral/fileexchange/44598-fast-kmeans-algorithm-code?s_tid=mwa_osa_a % % If you use the ToolboxToolbox (https://github.com/toolboxhub/toolboxtoolbox) % and install the TeachingCode repository in your projects folder, you can % install the above dependencies by using % tbUseProject('TeachingCode') % at the Matlab prompt. % % You also need the calibration file NEC_MultisyncPA241W.mat and the image % animal-silhouette-squirrel.jpg which are in the same directory as this % tutorial in the TeachingCode github respository. % % Before running this, you may want to become familiar with % RenderSpectrumOnMonitorTutorial. % % See also: RenderSpectrumOnMonitorTutorial. % History: % Written 04/08/2020 (that's 08/04/2020 for Americans) by Hannah Smithson % using example code from the RenderSpectrumOnMonitorTutorial % 08/06/20 dhb Some commenting. %% Clear old variables, and close figure windows clear; close all; %% Set some key parameters rgbBackground = [0.2 0.2 0.0]'; % for a 'natural looking' image, choose a brown background coneContrastsForTarget = [1.4 1.4 1.4]; % triplet specifying multiplier on the background LMS (e.g. [1.2, 1.0, 1.0] is 20% L-cone contrast) coneContrastsForCamouflage = [1.3 0.7 1.0]; % triplet specifying multiplier on the background LMS (e.g. [1.2, 1.0, 1.0] is 20% L-cone contrast) numberOfCamoBlobs = 700; % specify the number of "camouflage" blobs numberOfIntensityBlobs = 300; % specify the number of blobs used to add intensity variation sizeScaleFactorCamo = 0.03; % size of blobs (fraction of image width) sizeScaleFactorIntensity = 0.05; %% Load and a test calibration file % % These are measurements from an LCD monitor, with data stored in a % structure that describes key monitor properties. calData = load('NEC_MultisyncPA241W'); cal = calData.cals{end}; % Get wavelength sampling of functions in cal file. S = cal.rawData.S; wls = SToWls(S); % For simplicity, let's assume that no light comes off the monitor when the % input is set to zero. This isn't true for real monitors, but we don't % need to fuss with that aspect at the start. cal.processedData.P_ambient = zeros(size(cal.processedData.P_ambient)); %% Get human cone spectral sensitivities % % Here we use the Stockman-Sharpe 2-degree fundamentals, which are also the % CIE fundamentals. They are stored as a .mat file in the Psychophysics % Toolbox. See "help PsychColorimetricMatFiles'. % % By convention in the Psychtoolbox, we store sensitivities as the rows of % a matrix. Spline the wavelength sampling to match that in the calibration % file. load T_cones_ss2 T_cones = SplineCmf(S_cones_ss2,T_cones_ss2,S); %% We want to find a mixture of the monitor primaries that produces a given LMS excitation % % Use the calibration data to generate the rgbToLMSMatrix % (more info available in RenderSpectrumOnMonitor tutorial) % % We use the column vector [r g b]' to denote the amount of each primary % we'll ultimately want in the mixture. By convention we'll think of r, g, % and b as proportions relative to the maximum amount of each phosphor % available on the monitor. rgbToLMSMatrix = T_cones*cal.processedData.P_device; lmsBackground = rgbToLMSMatrix*rgbBackground; % Now set an LMS triplet for the "figure", which differs from the ground % only in L-cone excitation - a 20% increase in L-cone excitation lmsTarget = coneContrastsForTarget' .* lmsBackground; lmsCamouflage = coneContrastsForCamouflage' .* lmsBackground; % We want to go the other way, starting with lmsFigure and obtaining an % rgb vector that produces it. This is basically inverting the relation % above, which is easy in Matlab. LMSTorgbMatrix = inv(rgbToLMSMatrix); rgbTarget = LMSTorgbMatrix*lmsTarget; rgbCamouflage = LMSTorgbMatrix*lmsCamouflage; %% Make an image that shows the three colors - background, target and camouflage % % What we need to do is find RGB values to put in the image so that we get % the desired rgb propotions in the mixture that comes off. This is a % little tricky, because the relation between the RGB values we put into an % image and the rgb values that come off is non-linear. This non-linearity % is called the gamma curve of the monitor, and we have to correct for it, % a process known as gamma correction. RGBBackground = GammaCorrectionForTriplet(rgbBackground, cal); RGBTarget = GammaCorrectionForTriplet(rgbTarget, cal); RGBCamouflage = GammaCorrectionForTriplet(rgbCamouflage, cal); nPixels = 256; theImageBackground = cat(3, ones(nPixels)*RGBBackground(1), ones(nPixels)*RGBBackground(2), ones(nPixels)*RGBBackground(3)); theImageTarget = cat(3, ones(nPixels)*RGBTarget(1), ones(nPixels)*RGBTarget(2), ones(nPixels)*RGBTarget(3)); theImageCamouflage = cat(3, ones(nPixels)*RGBCamouflage(1), ones(nPixels)*RGBCamouflage(2), ones(nPixels)*RGBCamouflage(3)); figure; imshow(cat(1, theImageBackground, theImageTarget, theImageCamouflage)); %% Make a more naturalistic image of camouflaged targets % % Read in a binary black and white image A = imread('animal-silhouette-squirrel.jpg'); % white = background; black = target imW = size(A, 1); imH = size(A, 2); % Show the original image figure imagesc(A) %% Convert the white to grey and add camo blobs A = 0.5 * A; for i = 1:numberOfCamoBlobs A = insertShape(A,'FilledCircle',[imH*rand(1), imW*rand(1), sizeScaleFactorCamo*imW*rand(1)], 'Color', 'white','Opacity',1.0); end % Show the grey scale image with blobs figure imshow(A) % If the original image has smoothing or compression, cluster 3 pixel values [threeColImage,vec_mean] = kmeans_fast_Color(A, 3); % Make a colour map from the colours we defined map = cat(1, RGBTarget, RGBBackground, RGBCamouflage); figure imshow(threeColImage, map); % Add intensity noise to true colour image A = ind2rgb(threeColImage, map); for i = 1:numberOfIntensityBlobs A = insertShape(A,'FilledCircle',[imH*rand(1), imW*rand(1), sizeScaleFactorIntensity*imW*rand(1)], 'Color', 'black','Opacity',0.1); end figure imshow(A) function useRGB = GammaCorrectionForTriplet(desiredrgb, cal) % As part of the monitor calibration, we meausured the gamma curves of our % monitor, and they are in the calibration structure. Let's have a look gammaInput = cal.processedData.gammaInput; redGamma = cal.processedData.gammaTable(:,1); greenGamma = cal.processedData.gammaTable(:,2); blueGamma = cal.processedData.gammaTable(:,3); % We need to invert this gamma curve - for each of our desired rgb values we need % to find the corresponding RGB. That's not too hard, we can just do % exhasutive search. This is done here in a little subfunction called % SimpleGammaCorrection at the bottom of this file. R = SimpleGammaCorrection(gammaInput,redGamma,desiredrgb(1)); G = SimpleGammaCorrection(gammaInput,greenGamma,desiredrgb(2)); B = SimpleGammaCorrection(gammaInput,blueGamma,desiredrgb(3)); useRGB = [R G B]; end function output = SimpleGammaCorrection(gammaInput,gamma,input) % output = SimpleGammaCorrection(gammaInput,gamma,input) % % Perform gamma correction by exhaustive search. Just to show idea, % not worried about efficiency. % % 9/14/08 ijk Wrote it. % 12/2/09 dhb Update for [0,1] input table. % 08/01/20 dhb Get rid of extraneous input variable min_diff = Inf; for i=1:length(gammaInput) currentdiff = abs(gamma(i)-input); if(currentdiff < min_diff) min_diff = currentdiff; output = i; end end output = gammaInput(output); end
github
BrainardLab/TeachingCode-master
RenderSpectrumOnMonitorForDogTutorial.m
.m
TeachingCode-master/ICVS2020Tutorials/RenderSpectrumOnMonitorForDogTutorial.m
11,021
utf_8
0e4da36aa7791abdabd1128cfd429255
% RenderSpectrumOnMonitorForDogTutorial % % Exercise to learn about rendering metamers on a monitor. This version is % for a dichromat. As an example, we'll use the cone spectral % sensitivities of the dog. % % Before working through this tutorial, you should work through the % tutorial RenderSpectrumOnMonitorTutorial. After you understand this one, % you can look at RenderImageOnMonitorForDogTutorial, which applies the % idea to render images rather than a single spectrum. % % This tutorial is available in the github repository % https://github.com/BrainardLab/TeachingCode % You can either clone the respository or just download a copy from % that page (see green "Code" button). % % To run this, you will need both the Psychophysics Toolbox (PsychToolbox) % and the BrainardLabToolbox on your path. You can get the PsychToolbox % from % psychtoolbox.org % You can get the BrainardLabToolbox from % https://github.com/BrainardLab/BrainardLabToolbox % % If you use the ToolboxToolbox (https://github.com/toolboxhub/toolboxtoolbox) % and install the TeachingCode repository in your projects folder, you can % install the dependencies by using % tbUseProject('TeachingCode') % at the Matlab prompt. % % You also need the calibration file NEC_MultisyncPA241W.mat, which is in % the same directory as this tutorial in the github respository. % % See also: RenderSpectrumOnMonitorTutorial, RenderImageOnMonitorForDogTutorial % History: % 08/02/2020 dhb Wrote for ICVS from other tutorials that weren't quite % what we wanted. %% Clear clear; close all; %% Load and examine a test calibration file % % These are measurements from an LCD monitor, with data stored in a % structure that describes key monitor properties. calData = load('NEC_MultisyncPA241W'); cal = calData.cals{end}; % Get wavelength sampling of functions in cal file. S = cal.rawData.S; wls = SToWls(S); % For simplicity, let's assume that no light comes off the monitor when the % input is set to zero. This isn't true for real monitors, but we don't % need to fuss with that aspect at the start. cal.processedData.P_ambient = zeros(size(cal.processedData.P_ambient)); %% Plot the spectra of the three monitor primaries. % % For this monitor each primary is determined by the emission spectra of % one of the phosphors on its faceplate, but that's a detail. Whwat we care % about are the spectra, not how they were instrumented physically. % % Each primary spectrum is in a separate column of the matrix cal.processedData.P_device. % In MATLAB,can use the : operator to help extract various pieces of a % matrix. So: redPhosphor = cal.processedData.P_device(:,1); greenPhosphor = cal.processedData.P_device(:,2); bluePhosphor = cal.processedData.P_device(:,3); figure(1);clf; hold on set(gca,'FontName','Helvetica','FontSize',18); plot(wls,redPhosphor,'r','LineWidth',3); plot(wls,greenPhosphor,'g','LineWidth',3); plot(wls,bluePhosphor,'b','LineWidth',3); title( 'Monitor channel spectra','FontSize',24); xlabel( 'Wavelength [ nm ]','FontSize',24); ylabel( 'Radiance [ W / m^2 / sr / wlbin ]','FontSize',24); hold off %% Get animal spectral sensitivities % % Here we use the dog, a dichromat. % % By convention in the Psychtoolbox, we store sensitivities as the rows of % a matrix. Spline the wavelength sampling to match that in the calibration % file. % % T_dogrec has the dog L cone, dog S cone, and dog rod in its three % rows. We only want the cones for high light level viewing. load T_dogrec T_cones = SplineCmf(S_dogrec,T_dogrec([1,2],:),S); load T_cones_ss2 T_cones = SplineCmf(S_cones_ss2,T_cones_ss2,S); T_cones = T_cones([1,3],:); % Make a plot figure(2); clf; hold on set(gca,'FontName','Helvetica','FontSize',18); plot(wls,T_cones(1,:),'r','LineWidth',3); plot(wls,T_cones(2,:),'b','LineWidth',3); title( 'LS Cone Fundamentals','FontSize',24); xlabel( 'Wavelength','FontSize',24); ylabel( 'Sensitivity','FontSize',24); hold off %% Get a spectrum to render % % We want to render a spectrum on the monitor so that the light coming off % the monitor has the same effect on the human cones as the spectrum would % have. So we need a spectrum. We'll use a spectrum computed from CIE D65 % that renders pinkish for a human. (See alternate spectrum in % RenderSpectrumOnMonitorTutorial). load spd_D65 spectrumToRender = SplineSpd(S_D65,spd_D65,S)/0.75e4; spectrumToRender = 1.5*max(spectrumToRender(:))*ones(size(spectrumToRender))-spectrumToRender; % Make a plot of the spectrum to render figure(3); clf; hold on plot(wls,spectrumToRender,'k','LineWidth',3); title('Metamers','FontSize',24); xlabel('Wavelength','FontSize',24); ylabel( 'Power','FontSize',24); %% Compute the cone excitations from the spectrum we want to render % % This turns out to be a simple matrix multiply in Matlab. The % sensitivities are in the rows of T_cones and the spectral radiance is in % the column vector spectrumToRender. For each row of T_cones, the matrix % multiple consists of weighting the spectrum by the sensitivity at each % wavelength and adding them up. % % Implicit here is that the units of spectrum give power per wavelength % sampling bin, another important detail you'd want to think about to get % units right for a real application and that we won't worry about here. LSToRender = T_cones*spectrumToRender; %% We want to find a mixture of the monitor primaries that produces the same excitations % % Since there are only two primaries needed, we'll average the red and green % and treat that as a yellow primary. % % Let's use the column vector [y b]' to denote the amount of each primary % we'll ultimately want in the mixture. By convention we'll think of y % and b as proportions relative to the maximum amount of each primary % available on the monitor. % % It might be useful to make a plot of the example spectrum and see that it % indeed looks like a mixture of the primary spectra. ybExample = [0.2 0.5]'; monitorSpectrumExample = ybExample(1)*(redPhosphor+greenPhosphor)/2 + ybExample(2)*bluePhosphor; % We can also compute the spectrum coming off the monitor for any choice of % y and b using a matrix multiply. In this case, think of the % multiplication as weighting each of the columns of monitorBasis (defined % below) and then summing them. You can verify that this gives the same % answer as the expanded form just above. monitorBasis = [(redPhosphor+greenPhosphor)/2 bluePhosphor]; monitorSpectrumExampleCheck = monitorBasis*ybExample; % We can also compute the LMS cone excitations for this example. This is % just a column vector of three numbers. monitorLMSExample = T_cones*monitorSpectrumExample; % Now note that we can combine the two steps above, precomputing the matrix % that maps between the rgb vector and the LS excitations that result. % % You can verify that monitorLMSExample and monitorLMSExampleCheck are the % same as each other. ybToLSMatrix = T_cones*monitorBasis; monitorLMSExampleCheck = ybToLSMatrix*ybExample; % We want to go the other way, starting with LSToRender and obtaining an % rgb vector that produces it. This is basically inverting the relation % above, which is easy in Matlab. LSTorgbMatrix = inv(ybToLSMatrix); ybThatRender = LSTorgbMatrix*LSToRender; % Let's check that it worked. The check values here should be the same as % LMSToRender. renderedSpectrum = monitorBasis*ybThatRender; LSToRenderCheck = T_cones*renderedSpectrum; % Add rendered spectrum to plot of target spectrum. You can see that they % are of the same overall scale but differ in relative spectra. These two % spectra are metamers - they produce the same excitations in the cones and % will look the same to a human observer. figure(3); plot(wls,renderedSpectrum,'k:','LineWidth',3); %% Make an image that shows the color % % We know the proportions of each of the monitor primaries required to % produce a metamer to the spectrum we wanted to render. Now we'd like to % look at this rendered spectrum. We have to assume that the properties of % the monitor we're using are the same as the one in the calibration file, % which isn't exactly true but will be close enough for illustrative % purposes. % What we need to do is find RGB values to put in the image so that we get % the desired rgb propotions in the mixture that comes off. This is a % little tricky, because the relation between the RGB values we put into an % image and the rgb values that come off is non-linear. This non-linearity % is called the gamma curve of the monitor, and we have to correct for it, % a process known as gamma correction. % As part of the monitor calibration, we meausured the gamma curves of our % monitor, and they are in the calibration structure. Let's have a look figure(4); clf; hold on set(gca,'FontName','Helvetica','FontSize',18); gammaInput = cal.processedData.gammaInput; redGamma = cal.processedData.gammaTable(:,1); greenGamma = cal.processedData.gammaTable(:,2); blueGamma = cal.processedData.gammaTable(:,3); plot(gammaInput,redGamma,'r','LineWidth',3); plot(gammaInput,greenGamma,'g','LineWidth',3); plot(gammaInput,blueGamma,'b','LineWidth',3); title( 'Monitor gamma curves','FontSize',24); xlabel( 'Input RGB','FontSize',24); ylabel( 'Mixture rgb','FontSize',24); % We need to convert our yb values to rgb values at this point. But that's % easy r = g = y/2. rgbThatRender = [ybThatRender(1)/2 ybThatRender(1)/2 ybThatRender(2)]'; % Check that this rgb does what we want renderedSpectrum1 = cal.processedData.P_device*rgbThatRender; LSToRenderCheck1 = T_cones*renderedSpectrum1; % Then we invert the RGB gamma curve - for each of our desired rgb values we need % to find the corresponding RGB. That's not too hard, we can just do % exhasutive search. This is done here in a little subfunction called % SimpleGammaCorrection at the bottom of this file. nLevels = length(gammaInput); R = SimpleGammaCorrection(gammaInput,redGamma,rgbThatRender(1)); G = SimpleGammaCorrection(gammaInput,greenGamma,rgbThatRender(2)); B = SimpleGammaCorrection(gammaInput,blueGamma,rgbThatRender(3)); RGBThatRender = [R G B]'; % Make an and show the color image. We get (on my Apple Display) a slightly % bluish gray, which is about right for D65 given that we aren't using a % calibration of this display. nPixels = 256; theImage = zeros(nPixels,nPixels,3); for ii = 1:nPixels for jj = 1:nPixels theImage(ii,jj,:) = RGBThatRender; end end figure(5); imshow(theImage); function output = SimpleGammaCorrection(gammaInput,gamma,input) % output = SimpleGammaCorrection(gammaInput,gamma,input) % % Perform gamma correction by exhaustive search. Just to show idea, % not worried about efficiency. % % 9/14/08 ijk Wrote it. % 12/2/09 dhb Update for [0,1] input table. % 08/01/20 dhb Get rid of extraneous input variable min_diff = Inf; for i=1:length(gammaInput) currentdiff = abs(gamma(i)-input); if(currentdiff < min_diff) min_diff = currentdiff; output = i; end end output = gammaInput(output); end
github
BrainardLab/TeachingCode-master
RenderImageOnMonitorForDogTutorial.m
.m
TeachingCode-master/ICVS2020Tutorials/RenderImageOnMonitorForDogTutorial.m
5,976
utf_8
3d978efe6447db441c9fa1acd1786e2c
% RenderImageOnMonitorForDogTutorial % % Render an RGB image as a metamer for a dichromat. This tutorial builds % on the ideas introduced in RenderSpectrumOnMonitorTutorial and % RenderSpectrumOnMonitorForDogTutorial. % % In this version, you can control the metameric image you produce by % changing the parameter lambda near the top. % % This tutorial is available in the github repository % https://github.com/BrainardLab/TeachingCode % You can either clone the respository or just download a copy from % that page (see green "Code" button). % % To run this, you will need both the Psychophysics Toolbox (PsychToolbox) % and the BrainardLabToolbox on your path. You can get the PsychToolbox % from % psychtoolbox.org % You can get the BrainardLabToolbox from % https://github.com/BrainardLab/BrainardLabToolbox % % If you use the ToolboxToolbox (https://github.com/toolboxhub/toolboxtoolbox) % and install the TeachingCode repository in your projects folder, you can % install the dependencies by using % tbUseProject('TeachingCode') % at the Matlab prompt. % % You also need the calibration file NEC_MultisyncPA241W.mat, which is in % the same directory as this script in the github respository. % % See also: RenderSpectrumOnMonitorTutorial, RenderSpectrumOnMonitorForDogTutorial % History % 08/03/2020 dhb Wrote it. %% Clear clear; close all; %% Parameters % % The lambda parameter governs how the red and green primary spectra are % mixed to produce the "yellow" primary for the simulated two primary % device. Varying this will change the metameric image you produce. This % variable should stay between 0 and 1. lambda = 0.7; %% Load and examine a test calibration file % % These are measurements from an LCD monitor, with data stored in a % structure that describes key monitor properties. calData = load('NEC_MultisyncPA241W'); cal = calData.cals{end}; redPhosphor = cal.processedData.P_device(:,1); greenPhosphor = cal.processedData.P_device(:,2); bluePhosphor = cal.processedData.P_device(:,3); % Get wavelength sampling of functions in cal file. S = cal.rawData.S; wls = SToWls(S); % For simplicity, let's assume that no light comes off the monitor when the % input is set to zero. This isn't true for real monitors, but we don't % need to fuss with that aspect at the start. cal.processedData.P_ambient = zeros(size(cal.processedData.P_ambient)); %% Load human cone spectral sensitivities load T_cones_ss2 T_conesTrichrom = SplineCmf(S_cones_ss2,T_cones_ss2,S); %% Get animal spectral sensitivities % % Here we use the dog, a dichromat. % % By convention in the Psychtoolbox, we store sensitivities as the rows of % a matrix. Spline the wavelength sampling to match that in the calibration % file. % % T_dogrec has the dog L cone, dog S cone, and dog rod in its three % rows. We only want the cones for high light level viewing. load T_dogrec T_conesDichrom = SplineCmf(S_dogrec,T_dogrec([1,2],:),S); % If you want ground squirrel instead comment in these lines. You could % also set T_conesDichrom to some pair of the human LMS cones to generate % metameric image for human dichromats. % load T_ground % T_conesDichrom = SplineCmf(S_dogrec,T_dogrec([1,2],:),S); %% Get an image to render % % This one comes with Matlab, just need to map through the color lookup % table in variable map to produce a full color image. load mandrill RGBImage = zeros(size(X,1),size(X,2),3); for ii = 1:size(X,1) for jj = 1:size(X,2) RGBImage(ii,jj,:) = map(X(ii,jj),:); end end figure(1); imshow(RGBImage); %% Ungamma correct the image % % Cal format strings out each pixel as a column in a 3 by n*m matrix. % Convenient for color transformations. Put the image in cal format. [RGBCal,m,n] = ImageToCalFormat(RGBImage); % Inverse gamma correction to get rgb from RGB rgbCal = zeros(size(RGBCal)); for ii = 1:m*n for cc = 1:3 rgbCal(cc,ii) = SimpleGammaCorrection(cal.processedData.gammaTable(:,cc),cal.processedData.gammaInput,RGBCal(cc,ii)); end end %% Get spectrum and LS coordinates from rgb theSpectrumCal = cal.processedData.P_device*rgbCal; theLSCal = T_conesDichrom*theSpectrumCal; %% Make virtual two primary monitor and find yb values that produce metamers % % Use a controlable mixture of red and green, with parameter lambda % determining how much of each. monitorBasis = [lambda*redPhosphor+(1-lambda)*greenPhosphor bluePhosphor]; ybToLSMatrix = T_conesDichrom*monitorBasis; LSToybMatrix = inv(ybToLSMatrix); ybCal = LSToybMatrix*theLSCal; %% Promote yb to rgb using our knowledge of how we built the primaries % % Use lambda to determine ratio of red to green, to match the way we set up % the combined phosphor. rgbMetamerCal = [lambda*ybCal(1,:) ; (1-lambda)*ybCal(1,:) ; ybCal(2,:)]; %% Check that we get the desired LS excitations ro numerical precision theLSCalCheck = T_conesDichrom*cal.processedData.P_device*rgbMetamerCal; if (max(abs(theLSCal(:)-theLSCalCheck(:))) > 1e-10) error('Do not get desired LS values'); end %% Gamma correct to get RGB for the metamer, convert back to image format, and display RGBMetamerCal = zeros(size(RGBCal)); for ii = 1:m*n for cc = 1:3 RGBMetamerCal(cc,ii) = SimpleGammaCorrection(cal.processedData.gammaInput,cal.processedData.gammaTable(:,cc),rgbMetamerCal(cc,ii)); end end RGBMetamerImage = CalFormatToImage(RGBMetamerCal,m,n); figure(2); imshow(RGBMetamerImage); function output = SimpleGammaCorrection(gammaInput,gamma,input) % output = SimpleGammaCorrection(gammaInput,gamma,input) % % Perform gamma correction by exhaustive search. Just to show idea, % not worried about efficiency. % % 9/14/08 ijk Wrote it. % 12/2/09 dhb Update for [0,1] input table. % 08/01/20 dhb Get rid of extraneous input variable min_diff = Inf; for i=1:length(gammaInput) currentdiff = abs(gamma(i)-input); if(currentdiff < min_diff) min_diff = currentdiff; output = i; end end output = gammaInput(output); end
github
BrainardLab/TeachingCode-master
GLW_CircularApertureStimulus.m
.m
TeachingCode-master/GLWindowExamples/GLW_CircularApertureStimulus.m
3,239
utf_8
4a08aa08a3f6335936cb7c5f2a94a11e
function GLW_CircularApertureStimulus() % GLW_CircularApertureStimulus() % % Demonstrate how to generate a noise stimulus with a circular aperture using % GLWindow. % % The program terminates when the user presses the'q' key. % % % 12/3/13 npc Wrote it. % Generate 256x256 noise stimulus imageSize = 256; stimMatrix = rand(imageSize, imageSize)-0.5; % Generate circular aperture mask = GenerateSoftCircularAperture(imageSize); % Apply the mask to the stimulus imageMatrix = 0.5 + (stimMatrix .* mask); % Create an RGB version for display by GLWindow imageMatrixRGB = repmat(imageMatrix, [1 1 3]); % Get information about the displays attached to our system. displayInfo = mglDescribeDisplays; % We will present everything to the last display. Get its ID. lastDisplay = length(displayInfo); % Get the screen size screenSizeInPixels = displayInfo(lastDisplay).screenSizePixel; win = []; try % Create a full-screen GLWindow object win = GLWindow( 'SceneDimensions', screenSizeInPixels, ... 'BackgroundColor', [0.5 0.5 0.5],... 'windowID', lastDisplay); % Open the window win.open; % Add stimulus image to the GLWindow centerPosition = [0 0]; win.addImage(centerPosition, size(imageMatrix), ... imageMatrixRGB, 'Name', 'stimulus'); % Render the scene win.draw; % Wait for a character keypress. ListenChar(2); FlushEvents; disp('Press q to exit'); Speak('Press q to exit', 'Alex'); keepLooping = true; while (keepLooping) if CharAvail % Get the key theKey = GetChar; if (theKey == 'q') keepLooping = false; end end end % Close the window. win.close; ListenChar(0); catch e disp('An exception was raised'); % Disable character listening. ListenChar(0); % Close the window if it was succesfully created. if ~isempty(win) win.close; end % Send the error back to the Matlab command window. rethrow(e); end % try end function aperture = GenerateSoftCircularAperture(imageSize) % aperture = GenerateSoftCircularAperture(imageSize) % % This function generates a soft circular aperture that is used to window the test image. % % 12/10/12 npc Wrote it. % 12/13/12 npc Changed computation of soft border to decrease the width of % the transition area, and thus display more of the image x = [-imageSize/2:imageSize/2-1] + 0.5; [X,Y] = meshgrid(x,x); radius = sqrt(X.^2 + Y.^2); softRadius = (imageSize/2)*0.9; softSigma = (imageSize/2 - softRadius) / 3.0; delta = radius - softRadius; aperture = ones(size(delta)); indices = find(delta > 0); aperture(indices) = exp(-0.5*(delta(indices)/softSigma).^2); end
github
BrainardLab/TeachingCode-master
GLW_DriftingGrating.m
.m
TeachingCode-master/GLWindowExamples/GLW_DriftingGrating.m
5,238
utf_8
29ff1094bb6efc08206567a0e2b1a378
function GLW_DriftingGrating % GLW_DriftingGrating Demonstrates how to drift a grating in GLWindow. % % Syntax: % GLW_DriftingGrating % % Description: % The function drifts a grating. Might not be completely done % % Press - 'd' to dump image of window into a file % - 'q' to quit % 12/5/12 dhb Wrote it from code lying around, in part due to Adam Gifford. % 11/xx/20 dhb Drifting version. try % Choose the last attached screen as our target screen, and figure out its % screen dimensions in pixels. Using these to open the GLWindow keeps % the aspect ratio of stuff correct. d = mglDescribeDisplays; screenDims = d(end).screenSizePixel; % Open the window. win = GLWindow('SceneDimensions', screenDims,'windowId',length(d)); win.open; % Load a calibration file for gamma correction. Put % your calibration file here. calFile = 'PTB3TestCal'; S = WlsToS((380:4:780)'); load T_xyz1931 T_xyz = SplineCmf(S_xyz1931,683*T_xyz1931,S); igertCalSV = LoadCalFile(calFile); igertCalSV = SetGammaMethod(igertCalSV,0); igertCalSV = SetSensorColorSpace(igertCalSV,T_xyz,S); % Draw a neutral background at roughly half the % dispaly maximum luminance. bgrgb = [0.5 0.5 0.5]'; bgRGB1 = PrimaryToSettings(igertCalSV,bgrgb); win.BackgroundColor = bgRGB1'; win.draw; % Create gabor patches with specified parameters sine = false; pixelSize = min(screenDims); contrast = 0.9; sf = 1; sigma = 0.5; theta = 0; nPhases = 100; phases = linspace(0,360,nPhases); xdist = 0; ydist = 0; for ii = 1:nPhases % Make gabor in each phase gaborrgb{ii} = createGabor(pixelSize,contrast,sf,theta,phases(ii),sigma); if (~sine) gaborrgb{ii}(gaborrgb{ii} > 0.5) = 1; gaborrgb{ii}(gaborrgb{ii} < 0.5) = 0; end % Gamma correct [calForm1 c1 r1] = ImageToCalFormat(gaborrgb{ii}); [RGB] = PrimaryToSettings(igertCalSV,calForm1); gaborRGB{ii} = CalFormatToImage(RGB,c1,r1); win.addImage([xdist ydist], [pixelSize pixelSize], gaborRGB{ii}, 'Name',sprintf('theGabor%d',ii)); end % Temporal params hz = 0.5; frameRate = d.refreshRate; framesPerPhase = round((frameRate/hz)/nPhases); % Wait for a key to quit ListenChar(2); FlushEvents; whichPhase = 1; whichFrame = 1; oldPhase = nPhases; flicker = true; win.enableObject(sprintf('theGabor%d',nPhases)); while true if (whichFrame == 1) if (flicker) win.disableObject(sprintf('theGabor%d',oldPhase)); win.enableObject(sprintf('theGabor%d',whichPhase)); oldPhase = whichPhase; whichPhase = whichPhase + 1; if (whichPhase > nPhases) whichPhase = 1; end end end win.draw; whichFrame = whichFrame + 1; if (whichFrame > framesPerPhase) whichFrame = 1; end key = 'z'; if (CharAvail) key = GetChar; end switch key % Quit case 'q' break; case 'u' flicker = false; win.disableObject(sprintf('theGabor%d',oldPhase)); case 'f' flicker = true; otherwise end end % Clean up and exit win.close; ListenChar(0); % Error handler catch e ListenChar(0); if ~isempty(win) win.close; end rethrow(e); end function theGabor = createGabor(meshSize,contrast,sf,theta,phase,sigma) % % Input % meshSize: size of meshgrid (and ultimately size of image). % Must be an even integer % contrast: contrast on a 0-1 scale % sf: spatial frequency in cycles/image % cycles/pixel = sf/meshSize % theta: gabor orientation in degrees, clockwise relative to positive x axis. % theta = 0 means horizontal grating % phase: gabor phase in degrees. % phase = 0 means sin phase at center, 90 means cosine phase at center % sigma: standard deviation of the gaussian filter expressed as fraction of image % % Output % theGabor: the gabor patch as rgb primary (not gamma corrected) image % Create a mesh on which to compute the gabor if rem(meshSize,2) ~= 0 error('meshSize must be an even integer'); end res = [meshSize meshSize]; xCenter=res(1)/2; yCenter=res(2)/2; [gab_x gab_y] = meshgrid(0:(res(1)-1), 0:(res(2)-1)); % Compute the oriented sinusoidal grating a=cos(deg2rad(theta)); b=sin(deg2rad(theta)); sinWave=sin((2*pi/meshSize)*sf*(b*(gab_x - xCenter) - a*(gab_y - yCenter)) + deg2rad(phase)); % Compute the Gaussian window x_factor=-1*(gab_x-xCenter).^2; y_factor=-1*(gab_y-yCenter).^2; varScale=2*(sigma*meshSize)^2; gaussianWindow = exp(x_factor/varScale+y_factor/varScale); % Compute gabor. Numbers here run from -1 to 1. theGabor=gaussianWindow.*sinWave; % Convert to contrast theGabor = (0.5+0.5*contrast*theGabor); % Convert single plane to rgb theGabor = repmat(theGabor,[1 1 3]);