plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github | BrainardLab/TeachingCode-master | GLW_Gabor.m | .m | TeachingCode-master/GLWindowExamples/GLW_Gabor.m | 4,810 | utf_8 | 1d932035a25694b0cc0366af7fae8500 | function GLW_Gabor
% GLW_Gabor Demonstrates how to show a gabor patch in GLWindow.
%
% Syntax:
% GLW_Gabor
%
% Description:
% The function createGabor at the end does the work of
% creating the gabor patch.
%
% Also demonstrated is how to use the PTB calibration routines
% to gamma correct the gabor.
%
% Press - 'd' to dump image of window into a file
% - 'q' to quit
% 12/5/12 dhb Wrote it from code lying around, in part due to Adam Gifford.
try
% Choose the last attached screen as our target screen, and figure out its
% screen dimensions in pixels. Using these to open the GLWindow keeps
% the aspect ratio of stuff correct.
d = mglDescribeDisplays;
screenDims = d(end).screenSizePixel;
% Open the window.
win = GLWindow('SceneDimensions', screenDims,'windowId',length(d));
win.open;
% Load a calibration file for gamma correction. Put
% your calibration file here.
calFile = 'PTB3TestCal';
S = WlsToS((380:4:780)');
load T_xyz1931
T_xyz = SplineCmf(S_xyz1931,683*T_xyz1931,S);
igertCalSV = LoadCalFile(calFile);
igertCalSV = SetGammaMethod(igertCalSV,0);
igertCalSV = SetSensorColorSpace(igertCalSV,T_xyz,S);
% Draw a neutral background at roughly half the
% dispaly maximum luminance.
bgrgb = [0.5 0.5 0.5]';
bgRGB1 = PrimaryToSettings(igertCalSV,bgrgb);
win.BackgroundColor = bgRGB1';
win.draw;
% Add central fixation cross, just for fun
win.addLine([-20 0], [20 0], 3, [1 1 1],'Name','fixHorz');
win.addLine([0 20], [0 -20], 3, [1 1 1],'Name', 'fixVert');
% Create two gabor patches with specified parameters
pixelSize = 400;
contrast1 = 0.75;
contrast2 = 0.25;
sf1 = 6;
sf2 = 3;
sigma1 = 0.1;
sigma2 = 0.2;
theta1 = 0;
theta2 = 75;
phase1 = 90;
phase2 = 0;
xdist = 400;
ydist = 0;
gabor1rgb = createGabor(pixelSize,contrast1,sf1,theta1,phase1,sigma1);
gabor2rgb = createGabor(pixelSize,contrast2,sf2,theta2,phase2,sigma2);
% Gamma correct
[calForm1 c1 r1] = ImageToCalFormat(gabor1rgb);
[calForm2 c2 r2] = ImageToCalFormat(gabor2rgb);
[RGB1] = PrimaryToSettings(igertCalSV,calForm1);
[RGB2] = PrimaryToSettings(igertCalSV,calForm2);
gabor1RGB = CalFormatToImage(RGB1,c1,r1);
gabor2RGB = CalFormatToImage(RGB2,c2,r2);
% Add to display and draw. One is on left and the other on the right.
win.addImage([-xdist ydist], [pixelSize pixelSize], gabor1RGB, 'Name','leftGabor');
win.addImage([xdist ydist], [pixelSize pixelSize], gabor2RGB, 'Name','rightGabor');
win.enableObject('leftGabor');
win.enableObject('rightGabor');
win.draw;
% Wait for a key to quit
ListenChar(2);
FlushEvents;
while true
win.draw;
key = GetChar;
switch key
% Quit
case 'q'
break;
case 'd'
win.dumpSceneToTiff('GLGabors.tif');
otherwise
break;
end
end
% Clean up and exit
win.close;
ListenChar(0);
% Error handler
catch e
ListenChar(0);
if ~isempty(win)
win.close;
end
rethrow(e);
end
function theGabor = createGabor(meshSize,contrast,sf,theta,phase,sigma)
%
% Input
% meshSize: size of meshgrid (and ultimately size of image).
% Must be an even integer
% contrast: contrast on a 0-1 scale
% sf: spatial frequency in cycles/image
% cycles/pixel = sf/meshSize
% theta: gabor orientation in degrees, clockwise relative to positive x axis.
% theta = 0 means horizontal grating
% phase: gabor phase in degrees.
% phase = 0 means sin phase at center, 90 means cosine phase at center
% sigma: standard deviation of the gaussian filter expressed as fraction of image
%
% Output
% theGabor: the gabor patch as rgb primary (not gamma corrected) image
% Create a mesh on which to compute the gabor
if rem(meshSize,2) ~= 0
error('meshSize must be an even integer');
end
res = [meshSize meshSize];
xCenter=res(1)/2;
yCenter=res(2)/2;
[gab_x gab_y] = meshgrid(0:(res(1)-1), 0:(res(2)-1));
% Compute the oriented sinusoidal grating
a=cos(deg2rad(theta));
b=sin(deg2rad(theta));
sinWave=sin((2*pi/meshSize)*sf*(b*(gab_x - xCenter) - a*(gab_y - yCenter)) + deg2rad(phase));
% Compute the Gaussian window
x_factor=-1*(gab_x-xCenter).^2;
y_factor=-1*(gab_y-yCenter).^2;
varScale=2*(sigma*meshSize)^2;
gaussianWindow = exp(x_factor/varScale+y_factor/varScale);
% Compute gabor. Numbers here run from -1 to 1.
theGabor=gaussianWindow.*sinWave;
% Convert to contrast
theGabor = (0.5+0.5*contrast*theGabor);
% Convert single plane to rgb
theGabor = repmat(theGabor,[1 1 3]);
|
github | BrainardLab/TeachingCode-master | GLW_Mouse.m | .m | TeachingCode-master/GLWindowExamples/GLW_Mouse.m | 5,836 | utf_8 | fa2bd80d702af2e7d6a36896e5e0834e | function GLW_Mouse(fullScreen)
% GLW_Mouse Shows how to capture/set the mouse with GLWindow.
%
% Syntax:
% GLW_Mouse
% GLW_Mouse(false)
%
% Description:
% Demonstrates how to capture mouse position and button clicks and how to
% set the mouse position while using GLWindow. Mouse functionality is
% provided by the MGL libraries. At the beginning of the program the mouse
% is forced to the middle of the display. Clicking the mouse prints out the
% RGB value of the pixel that was clicked if using the system mouse cursor.
%
% If the rendered cursor is enabled, detection of the pixel values isn't
% possible without doing some geometry calculations or reading non RGB pixel
% data, which this example doesn't get into.
%
% Bring the cursor back into the Matlab command window and hit 'q' to
% quit.
%
% Input:
% fullScreen (logical) - Toggles fullscreen mode on/off. Defaults to true.
% This global lets us access some low level OpenGL values.
global GL;
if nargin == 0
fullScreen = true;
end
% Dimensions of our GLWindow scene.
screenDimsCm = [48 30];
% If we want to display the cursor as a dot instead of the system cursor,
% enable this flag. The consequence of not using the system cursor and instead
% using a rendered cursor is that it's harder to get the underlying RGB values
% and we don't do that here.
useSystemCursor = true;
% Create the GLWindow object.
win = GLWindow('FullScreen', logical(fullScreen), 'SceneDimensions', screenDimsCm, ...
'HideCursor', ~useSystemCursor);
try
% Add a blue oval.
win.addOval([0 0], [5 5], [0 0 1], 'Name', 'square');
if ~useSystemCursor
% Add a small oval to represent our mouse position. Add this last
% to your GLWindow so that it is always on top of your other
% objects.
win.addOval([0 0], [0.25 0.25], [1 0 0], 'Name', 'mouse');
end
% Open up the display.
win.open;
% Store the pixel dimensions of the display. We'll use this later to
% convert pixel values into SceneDimensions values.
screenDimsPx = win.DisplayInfo(win.WindowID).screenSizePixel;
% Enable keyboard capture.
ListenChar(2);
FlushEvents;
% Flag to keep track of mouse button state.
alreadyPressed = false;
% Force the mouse to the center of the screen. The mouse coordinate
% system is in pixels, with lower left as 0,0 and increasing to the
% right and upwards. This coordinate system differs from that used to
% draw objects, which we agree is irritating.
fprintf('- Moving mouse to center of the display.\n');
mglSetMousePosition(screenDimsPx(1)/2, screenDimsPx(2)/2, win.WindowID);
% Loop continuously until 'q' is pressed.
keepLooping = true;
while keepLooping
if CharAvail
switch GetChar
case 'q'
keepLooping = false;
end
else
% Get the current mouse state. The mouse state has 3 fields:
% buttons, x, y. x and y will give you the horizontal and
% vertical pixel position of the mouse relative to the
% specified screen where (0,0) is the bottom left corner of the
% display. The GLWindow object contains a property 'WindowID'
% that gives us the target screen for mglGetMouse.
mouseInfo = mglGetMouse(win.WindowID);
% Look to see if the user is pressing a button. We keep track
% of button state so that we don't register the same button
% press multiple times.
if mouseInfo.buttons > 0 && ~alreadyPressed
if useSystemCursor
% Print out the RGB value of the pixel the mouse was on.
% To do this we make a low level OpenGL call to read pixels
% straight from the framebuffer. This call also returns
% the alpha (transparency) value as the 4th value in the
% return vector.
if (mouseInfo.x > 0 & mouseInfo.y > 0)
glReadBuffer(GL.FRONT);
pxRGBA = squeeze(glReadPixels(mouseInfo.x, mouseInfo.y, 1, 1, GL.RGB, GL.UNSIGNED_BYTE)) / 255;
fprintf('- Pixel at position %0.1f, %0.1f in RGB: [%g, %g, %g]\n', mouseInfo.x, mouseInfo.y ,pxRGBA(1), pxRGBA(2), pxRGBA(3));
glReadBuffer(GL.BACK);
end
else
fprintf('- Mouse clicked at pixel (%d, %d)\n', mouseInfo.x, mouseInfo.y);
end
% Toggle that the button is being pressed.
alreadyPressed = true;
elseif mouseInfo.buttons == 0
% If the button isn't currently being pressed we can turn
% off the alreadyPressed flag.
alreadyPressed = false;
end
if ~useSystemCursor
% Move our circle to the position of the mouse so it looks like
% we're moving around a cursor. We first need to put the
% mouse pixel coordinates into the same units as
% SceneDimensions in our GLWindow object. There's a short
% function at the bottom of this file that does this.
mousePos = px2cm([mouseInfo.x mouseInfo.y], screenDimsPx, screenDimsCm);
win.setObjectProperty('mouse', 'Center', mousePos);
end
% Render the scene.
win.draw;
end
end
% Clean up.
ListenChar(0);
win.close;
catch e
ListenChar(0);
win.close;
rethrow(e);
end
function cmCoords = px2cm(pxCoords, screenDimsPx, screenDimsCm)
% px2cm - Converts a position in pixels to centimeters.
%
% Syntax:
% cmCoords = px2cm(pxCoords, screenDimsPx, screenDimsCm)
%
% Input:
% pxCoords (Mx2) - Pixel coordinates.
% screenDimsPx (1x2) - Screen dimensions in pixels.
% screenDimsCm (1x2) - Screen dimensions in centimeters.
%
% Output:
% cmCoords (Mx2) - Coordinates in centimeters.
if nargin ~= 3
error('Usage: EyeTracker.px2cm(pxCoords, screenDimsPx, screenDimsCm)');
end
cmCoords = zeros(size(pxCoords));
cmCoords(:,1) = pxCoords(:,1) * screenDimsCm(1) / screenDimsPx(1) - screenDimsCm(1)/2;
cmCoords(:,2) = -screenDimsCm(2)/2 + pxCoords(:,2) * screenDimsCm(2) / screenDimsPx(2);
|
github | BrainardLab/TeachingCode-master | GLW_Text.m | .m | TeachingCode-master/GLWindowExamples/GLW_Text.m | 3,299 | utf_8 | 2c62be36a85ef53bcb2a78bba3193d3d | function GLW_Text(fullScreen)
% GLW_Text Demonstrates how to show text with GLWindow
%
% Syntax:
% GLW_Text
% GLW_Text(fullScreen)
%
% Description:
% Opens a window and shows the string 'red' on the screen.
%
% Press - 'r' to change the word
% - 'c' to change the color of the text
% - 'e' to enable the text (i.e. display it)
% - 'd' to disable the text (i.e. hide it)
% - 'q' to quit
%
% Input:
% fullScreen (logical) - If true, the last screen attached to the computer
% will be opened in fullscreen mode. If false, a regular window is opened
% on the main screen. Defaults to true.
error(nargchk(0, 1, nargin));
if ~exist('fullScreen', 'var')
fullScreen = true;
end
% We can set the coordinate range of our OpenGL window.
sceneDimensions = [50 30];
% Background color (RGB) of the window.
bgRGB = [0 0 0];
% Create the GLWindow object.
win = GLWindow('FullScreen', fullScreen, ...
'SceneDimensions', sceneDimensions, ...
'BackgroundColor', bgRGB);
try
% Add some text. At minimum, we have to pass the text to display to
% 'addText', but there are other parameters we can set including its
% location, color, and font size.
txtString = 'red';
enableState = true;
win.addText(txtString, ... % Text to display
'Center', [0 0], ... % Where to center the text. (x,y)
'FontSize', 100, ... % Font size
'Color', [1 0 0], ... % RGB color
'Name', 'myText'); % Identifier for the object.
% Open the window.
win.open;
% Initialize our keyboard capture.
ListenChar(2);
FlushEvents;
while true
% Draw the scene.
win.draw;
% Wait for a keypress.
switch GetChar
% Quit
case 'q'
break;
% Randomly change the text.
case 'r'
switch ceil(rand*6)
case 1
txtString = 'red';
case 2
txtString = 'green';
case 3
txtString = 'blue';
case 4
txtString = 'yellow';
case 5
txtString = 'brown';
case 6
txtString = 'pink';
end
% This will replace whatever text was shown before.
win.setText('myText', txtString);
% Change color
case 'c'
% For technical reasons, you can't change the color
% of a text object directly. But, you can 're-add'
% it with the same name and it will replace the
% previous version. This this code acts to change
% the color of the currently displayed string.
win.addText(txtString, ... % Text to display
'Center', [0 0], ... % Where to center the text. (x,y)
'FontSize', 100, ... % Font size
'Color', rand(1,3), ... % RGB color
'Enabled',enableState, ... % Preseve enable/disable
'Name', 'myText'); % Identifier for the object.
% Enable
case 'e'
enableState = true;
win.enableObject('myText');
case 'd'
enableState = false;
win.disableObject('myText');
end
end
cleanup(win);
catch e
cleanup(win);
rethrow(e);
end
function cleanup(win)
if ~isempty(win)
win.close;
end
ListenChar(0);
|
github | BrainardLab/TeachingCode-master | GetTheResponse.m | .m | TeachingCode-master/GLWindowExamples/GLW_PhaseDistort/GetTheResponse.m | 3,680 | utf_8 | 6a5242c995de8001a5ccd02583cac7e8 | function [answerIsCorrect, quitExp] = GetTheResponse(win, imageSize, whichSide, leftImagePosition, rightImagePosition)
% [answerInCorrect, quitExp] = GetTheResponse(win, imageSize, whichSide, leftImagePosition, rightImagePosition)
%
% This function positions the mouse on the center of the screen and waits
% for the user to click on one or the two images that are displayed on the
% experimental window.
%
% If the user clicks on the correct/wrong image (specified by parameter
% whichSide), the returned parameter 'answerIsCorrect' is set to true/false.
%
% If the user clicks outside of either image, we remain in the loop until
% the mouse click occurs within one of the two image areas.
%
% If the user enter a 'q' key, the loop is terminated and the returned
% parameter 'quitExp' is set to true.
%
%
% 12/10/12 npc Wrote it.
%
% move cursor to center of screen
screenSizeInPixels = win.DisplayInfo(win.WindowID).screenSizePixel;
mouseHomeX = screenSizeInPixels(1)/2;
mouseHomeY = screenSizeInPixels(2)/2;
mglSetMousePosition(mouseHomeX, mouseHomeY,win.WindowID);
% compute bounding rects for left and right image
rect0 = SetRect(0,0, imageSize, imageSize);
leftImageRect = CenterRectOnPointd(rect0, leftImagePosition(1) + mouseHomeX, ...
leftImagePosition(2) + mouseHomeY);
rightImageRect = CenterRectOnPointd(rect0, rightImagePosition(1) + mouseHomeX, ...
rightImagePosition(2) + mouseHomeY);
quitExp = false;
keepLooping = true;
answerIsCorrect = false;
while (keepLooping)
if CharAvail
% Get the key
theKey = GetChar;
if (theKey == 'q')
keepLooping = false;
quitExp = true;
end
else
% Get the mouse state
mouseInfo = mglGetMouse(win.WindowID);
% Check to see if a mouse button was pressed
if (mouseInfo.buttons > 0)
[keepLooping, answerIsCorrect] = ...
CheckWhichImageWasSelected(mouseInfo.x, mouseInfo.y, leftImageRect, rightImageRect, whichSide);
end
end
end % while keepLooping
if (~quitExp)
GiveFeedback(answerIsCorrect);
end
end
function [keepLooping, answerIsCorrect] = CheckWhichImageWasSelected(mouseX, mouseY, leftImageRect, rightImageRect, whichSide)
% [keepLooping, answerIsCorrect] = CheckWhichImageWasSelected(win, mouseX, mouseY, leftImageRect, rightImageRect, whichSide)
%
% Determine if the mouse click occurred within the left or the right image
% and determine whether the anser is correct or wrong. If the mouse click was
% outside of both image areas, remain in the polling loop.
%
% 12/10/12 npc Wrote it.
%
answerIsCorrect = false;
% If the user did not click on the left or the right image, remain in the polling loop
if ((~IsInRect(mouseX, mouseY, leftImageRect))&&(~IsInRect(mouseX, mouseY, rightImageRect)))
keepLooping = true;
return;
end
% Ok, we have a hit. Exit mouse/keyboard polling loop
keepLooping = false;
% Determine if the mouse click was on the correct image
if (IsInRect(mouseX, mouseY, leftImageRect))
% mouse click on LEFT image
if (whichSide == 0)
answerIsCorrect = true;
end
elseif (IsInRect(mouseX, mouseY, rightImageRect))
% mouse click on RIGHT image
if (whichSide == 1)
answerIsCorrect = true;
end
end
end
|
github | BrainardLab/TeachingCode-master | LoadImagesAndComputeTheirSpectra.m | .m | TeachingCode-master/GLWindowExamples/GLW_PhaseDistort/LoadImagesAndComputeTheirSpectra.m | 3,523 | utf_8 | c04e731ea8750c9a0e2e9608650c1853 | function [image1Struct, image2Struct, imageSize] = LoadImagesAndComputeTheirSpectra(imageResizingFactor)
% [image1struct, image2struct, imageSize] = LoadImagesAndComputeTheirSpectra(imageResizingFactor)
%
% Load images, resize them according to parameter imageResizingFactor
% (via bicubic interpolation) and perform Fourier analysis on them.
% Convention assumes that images are in MAT files with image name
% equal to file name. Images are also assumed scaled in range 0-255.
%
% The returned image structs contain the following fields:
% - Name : a string with the name of the image
% - ImageMatrix : the image data, i.e, a [rows x cols] matrix
% - Amplitude : the amplitude spectrum of the image, i.e., a [rows x cols] matrix
% - Phase : the phase spectrum of the image, i.e., a [rows x cols] matrix
% - RGBdata : the RGB version of the image data, i.e, a [rows x cols x 3] matrix
%
% 12/10/12 npc Wrote it.
%
image1Struct = loadAndAnalyze('reagan128', imageResizingFactor);
image2Struct = loadAndAnalyze('einstein128', imageResizingFactor);
if (isempty(image1Struct) || isempty(image2Struct))
imageSize = 0;
else
[imageSize,~] = size(image1Struct.ImageMatrix);
end
end
function imageStruct = loadAndAnalyze(imageName, imageResizingFactor)
% Load image, interpolate and compute its amplitude/phase spectra
%
if (exist(sprintf('%s.mat', imageName)) == 2)
% load mat file with image
load(imageName, '-mat');
eval(['imageMatrix = ' imageName ';']);
% interpolate imageMatrix by imageResizingFactor
if (imageResizingFactor > 1)
imageMatrix = intepolateImage(imageMatrix, imageResizingFactor);
end
% flip image upside-down and normalize it
imageMatrix = flipud(imageMatrix) / 255;
% compute spectral analysis
imageFT = fft2(imageMatrix);
% generate imageStruct
imageStruct = struct;
imageStruct.Name = imageName;
imageStruct.ImageMatrix = imageMatrix;
imageStruct.Amplitude = abs(imageFT);
imageStruct.Phase = angle(imageFT);
imageStruct.RGBdata = repmat(imageStruct.ImageMatrix, [1 1 3]);
else
% file does not exist. Print message
fprintf('Did not find image %s', sprintf('%s.mat', imageName));
imageStruct = [];
end
end
function newImage = intepolateImage(image, factor)
% Intepolate image by the given factor
%
% make sure newImageSize is an even number
newImageSize = ceil(size(image,1) * factor);
if (mod(newImageSize,2) == 1)
newImageSize = newImageSize-1;
end
% compute original and interpolated indices
x = [1:size(image,1)];
xi = 1+[0:newImageSize-1]/newImageSize*size(image,1);
[X,Y] = meshgrid(x,x);
[XI,YI] = meshgrid(xi,xi);
% do the interpolation
newImage = interp2(X,Y, image, XI, YI, 'cubic*');
% take care of any nan values
newImage(isnan(newImage)) = 0;
% enable this flag to generate a figure showing the original and intepolated images
displayIntepolatedPhotos = false;
if (displayIntepolatedPhotos)
figure(2); clf;
subplot(1,2,1);
imagesc(image); axis square
set(gca, 'CLim', [0 255]);
subplot(1,2,2);
imagesc(newImage); axis square
set(gca, 'CLim', [0 255]);
colormap(gray);
end
end |
github | BrainardLab/TeachingCode-master | PhaseDistortDemoGUI.m | .m | TeachingCode-master/GLWindowExamples/GLW_PhaseDistort/PhaseDistortDemoGUI.m | 5,375 | utf_8 | e5f168581d0225e06a5760f0e0990ec2 | function varargout = PhaseDistortDemoGUI(varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @PhaseDistortDemoGUI_OpeningFcn, ...
'gui_OutputFcn', @PhaseDistortDemoGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
end
% --- Executes just before PhaseDistortDemoGUI is made visible.
function PhaseDistortDemoGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to PhaseDistortDemoGUI (see VARARGIN)
% Choose default command line output for PhaseDistortDemoGUI
handles.output = hObject;
experimentParams = struct;
experimentParams.generatePhaseFieldFromPinkNoise = false;
experimentParams.useSoftCircularAperture = false;
experimentParams.imageResizingFactor = 1.5;
experimentParams.questTrials = 60;
handles.experimentParams = experimentParams;
set(handles.WindowImagesCheckbox, 'Value', handles.experimentParams.useSoftCircularAperture);
if (experimentParams.generatePhaseFieldFromPinkNoise)
set(handles.Noise1fMethodButton, 'Value', 1);
set(handles.DavidMethodButton, 'Value', 0);
else
set(handles.Noise1fMethodButton, 'Value', 0);
set(handles.DavidMethodButton, 'Value', 1);
end
set(handles.ResizingFactor, 'String', sprintf('%2.2f', handles.experimentParams.imageResizingFactor));
set(handles.QuestTrials, 'String', sprintf('%2.0f', handles.experimentParams.questTrials));
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes PhaseDistortDemoGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
end
% --- Outputs from this function are returned to the command line.
function varargout = PhaseDistortDemoGUI_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
end
% --- Executes on button press in StartExperiment.
function StartExperiment_Callback(hObject, eventdata, handles)
handles.experimentParams.imageResizingFactor = str2double(get(handles.ResizingFactor, 'String'));
handles.experimentParams.questTrials = str2double(get(handles.QuestTrials, 'String'));
handles.experimentParams.useSoftCircularAperture = get(handles.WindowImagesCheckbox, 'Value');
handles.experimentParams
PhaseDistortDemo(handles.experimentParams.generatePhaseFieldFromPinkNoise, ...
handles.experimentParams.useSoftCircularAperture, ...
handles.experimentParams.imageResizingFactor, ...
handles.experimentParams.questTrials, ...
handles.ResultsAxes);
end
function WindowImagesCheckbox_Callback(hObject, eventdata, handles)
handles.experimentParams.useSoftCircularAperture = get(hObject,'Value');
end
function ResizingFactor_Callback(hObject, eventdata, handles)
handles.experimentParams.imageResizingFactor = str2double(get(hObject,'String'));
end
function QuestTrials_Callback(hObject, eventdata, handles)
handles.experimentParams.questTrials = str2double(get(hObject,'String'));
end
function ResizingFactor_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
function edit2_Callback(hObject, eventdata, handles)
end
function edit2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
function RandomPhaseGenerationSelector_SelectionChangeFcn(hObject, eventdata, handles)
switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.
case 'DavidMethodButton'
handles.experimentParams.generatePhaseFieldFromPinkNoise = false;
case 'Noise1fMethodButton'
handles.experimentParams.generatePhaseFieldFromPinkNoise = true;
otherwise
% Code for when there is no match.
end
end
function figure1_CreateFcn(hObject, eventdata, handles)
end
function QuestTrials_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
function edit4_Callback(hObject, eventdata, handles)
end
function edit4_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
|
github | BrainardLab/TeachingCode-master | backpropTutorial.m | .m | TeachingCode-master/MatlabTutorials/backpropTutorial.m | 5,769 | utf_8 | 6899dc4f89555b0feb61209b349d76d9 | function backpropTutorial
% backpropTutorial.m
%
% Illustrate backprop, by trying to use it to fit a function with a two
% layer network. The initial idea was to set this up to reproduce some
% of the fits shown in Figure 4.12 of Bishop, using the backpropagation
% algorithm described later in the chapter.
%
% The line example works perfectly. For the parabola, dualramp, and step
% functions, the network does approximately the right thing, but the quality of fit
% is markedly worse than shown in Figure 4.12. The sinusoid is not fit
% at all well.
%
% The example in Bishop uses a different algorithm to set the weights, and
% this may be the problem. Or we may still have a bug in the backprop
% implementation here.
%
% For some of the test functions, the training can get stuck in a local
% minima. Whether it does this or not is pretty sensitive to the initial
% weights, learning rate, etc. For the most part, the current parameters
% seem to work pretty well for the functions being fit (except for the
% sine).
%
% 8/27/08 dhb Wrote it.
% 8/27/08 dhb and others Squashed several bugs during reading group meeting.
% 8/27/08 dhb Store previous weights from output layer for hidder layer update.
% dhb Get tanh derivative correct.
% dhb Variable learning rate.
% dhb More functions to try to fit.
%% Clear and close
clear; close all;
%% Define network dimension and initialize weights. The number of weights
% includes the additive term.
nInputUnits = 2;
nHiddenUnits = 5;
inputWeights = rand(nHiddenUnits-1,nInputUnits);
outputWeights = rand(1,nHiddenUnits);
%% Define function to try to fit. Change the string
% to one of the options in the case statement to try
% different functions.
inputFunction = 'dualramp';
nTrainingPoints = 1000;
x = 2*rand(nInputUnits-1,nTrainingPoints)-1;
switch(inputFunction)
case 'parabola'
t = x.^2;
case 'line'
t = x;
case 'step'
t = sign(x);
case 'dualramp'
t = abs(x);
case 'sine'
t = sin(2*pi*x);
end
%% Plot of target function
funPlot = figure; clf; hold on
set(gca,'FontName','Helvetica','FontSize',14);
plot(x,t,'ro','MarkerSize',2,'MarkerFaceColor','r');
%% Add plot of the initial network response
y0 = ComputeNetwork(x,inputWeights,outputWeights);
plot(x,y0,'go','MarkerSize',2,'MarkerFaceColor','g');
drawnow;
%% Set up learning and error tracking parameters
n0 = 0.2;
decayExponent = 0.01;
errIndex = 1;
err(errIndex) = sum((t-y0).^2);
errPlot = figure; clf;
set(gca,'FontName','Helvetica','FontSize',14);
plotEvery = 100;
%% Train the network, using the backprop algorithm
nTrainingIterations = 5000;
for i = 1:nTrainingIterations
% Print and plot of incremental error
if (rem(i,100) == 0)
yNow = ComputeNetwork(x,inputWeights,outputWeights);
errIndex = errIndex+1;
err(errIndex) = sum((t-yNow).^2);
figure(errPlot); hold on
plot(plotEvery*((1:errIndex)-1),err(1:errIndex),'k');
end
% Choose a training value from training set
randomObservationIndices = randperm(nTrainingPoints);
randomObservationIndex = randomObservationIndices(1);
xTrain = x(:,randomObservationIndex);
xTrainOnes = [ones(1,size(xTrain,2)) ; xTrain];
tTrain = t(randomObservationIndex);
% Compute network values for this training exemplar
[yCurrent,yCurrentLinear,hiddenCurrent,hiddenCurrentLinear] = ComputeNetwork(xTrain,inputWeights,outputWeights);
% Update learning rate
n = n0/(i^decayExponent);
% Update output weights
deltaOut = (yCurrent-tTrain);
outputWeights0 = outputWeights;
for j = 1:nHiddenUnits
outputWeights(1,j) = outputWeights(1,j) - n*deltaOut*hiddenCurrent(j);
end
% Backprop to input weights
for j = 2:nHiddenUnits
deltaHidden = nonlinderiv(hiddenCurrentLinear(j-1))*deltaOut*outputWeights0(1,j);
for k = 1:nInputUnits
inputWeights(j-1,k) = inputWeights(j-1,k) - n*deltaHidden*xTrainOnes(k);
end
end
end
% Labels for error plot
figure(errPlot);
xlabel('Iteration','FontName','Helvetica','FontSize',18);
ylabel('Summed Squared Error','FontName','Helvetica','FontSize',18);
%% Add plot final network response, in black
figure(funPlot);
y = ComputeNetwork(x,inputWeights,outputWeights);
plot(x,y,'ko','MarkerSize',2,'MarkerFaceColor','k');
xlim([-1 1.5]);
xlabel('X','FontName','Helvetica','FontSize',18);
ylabel('Y','FontName','Helvetica','FontSize',18);
legend('target','initial','final');
%% Done
end
%% Forward network computation. Linear output layer and non-linearity on
% output of hidden units.
function [response,responseLinear,hiddenResponse,hiddenResponseLinear] = ComputeNetwork(x,inputWeights,outputWeights)
% Compute response of hidden units
x = [ones(1,size(x,2)) ; x];
hiddenResponseLinear = inputWeights*x;
hiddenResponse = nonlin(hiddenResponseLinear);
% Compute output response
hiddenResponse = [ones(1,size(hiddenResponse,2)) ; hiddenResponse];
responseLinear = outputWeights*hiddenResponse;
response = responseLinear;
end
%% Nonlinear function. Can change this and the corresponding derivative
% function if you want to use another non-linearity (e.g. logistic).
function y = nonlin(x)
y = tanh(x);
end
%% Nonlinear function derivative.
function y = nonlinderiv(x)
y = tanhderiv(x);
end
%% Derivative of hyperbolic tangent.
function y = tanhderiv(x)
y = 1-tanh(x).^2;
end
% Logistic function
function y = logit(x)
y = 1./(1+exp(-x));
end
% Logistic derivative
function y = logitderiv(x)
y = logit(x).*(1-logit(x));
end
|
github | BrainardLab/TeachingCode-master | crossvalTutorial.m | .m | TeachingCode-master/MatlabTutorials/crossvalTutorial.m | 2,991 | utf_8 | 3fcbfceda64bb678c4eb5f1e92ce3200 | function crossvalTutorial
% crossvalTutorial
%
% Quick little tutorial to show how to cross-validate some data.
%
% 12/16/16 dhb, ar Wrote the skeleton.
%% Clear
clear; close all;
%% Parameters
nIndependentValues = 10;
nReplications = 100;
noiseSd = 10;
nFolds = 8;
c1 = 5;
c2 = -3;
%% Let's generate a dataset of random numbers that are described by a quadratic
xVals = repmat(linspace(0,10,nIndependentValues),nReplications,1);
yObserved = zeros(size(xVals));
for jj = 1:nReplications
xMatTemp = [xVals(jj,:) ; xVals(jj,:).^ 2];
yTemp = [c1 c2]*xMatTemp;
yObserved(jj,:) = yTemp + normrnd(0,noiseSd,1,size(yObserved,2));
end
%% Plot the simulated data
figure; clf; hold on
for jj = 1:size(yObserved,2)
plot(xVals(jj,:),yObserved(jj,:),'ro','MarkerSize',8,'MarkerFaceColor','r');
end
%% Do a cross-validated fit, using the crossval function
%
% We'll do both linear and quadratic fits
%
% Linear
linearCrossValErr = crossval(@linearFit,xVals,yObserved,'KFold',nFolds);
meanLinearCrossValErr = mean(linearCrossValErr);
% Quadratic
quadraticCrossValErr = crossval(@quadraticFit,xVals,yObserved,'KFold',nFolds);
meanQuadraticCrossValErr = mean(quadraticCrossValErr);
% Report who won
if (quadraticCrossValErr < linearCrossValErr)
fprintf('Crossval method: Correctly identified that it was quadratic\n');
else
fprintf('Crossval method: Incorrectly think it is linear\n');
end
%% Now we'll do the same thing using the cvpartition class.
%
% This is a bit less slick for this simple example, but much
% more flexible when the fit functions need to be more complicated.
c = cvpartition(nReplications,'Kfold',nFolds);
for kk = 1:nFolds
% Get indices for kkth fold
trainingIndex = c.training(kk);
testIndex = c.test(kk);
check = trainingIndex + testIndex;
if (any(check ~= 1))
error('We do not understand cvparitiion''s kFold indexing scheme');
end
% Get linear and quadratic error for this fold
linearCrossValErr(kk) = linearFit(xVals(trainingIndex,:),yObserved(trainingIndex,:),xVals(testIndex,:),yObserved(testIndex,:));
quadraticCrossValErr(kk) = quadraticFit(xVals(trainingIndex,:),yObserved(trainingIndex,:),xVals(testIndex,:),yObserved(testIndex,:));
end
% Get mean error for two types of it
meanQuadraticCrossValErr = mean(quadraticCrossValErr);
meanLinearCrossValErr = mean(linearCrossValErr);
% Report who won
if (quadraticCrossValErr < linearCrossValErr)
fprintf('CVParitition method: Correctly identified that it was quadratic\n');
else
fprintf('CVParitition method: Incorrectly think it is linear\n');
end
end
function testVal = linearFit(xTrain,yTrain,xTest,yTest)
c = xTrain(:)\yTrain(:);
yPred = xTest(:)*c;
yDiff = yPred(:)-yTest(:);
testVal = sum(yDiff.^2);
end
function testVal = quadraticFit(xTrain,yTrain,xTest,yTest)
c = [xTrain(:) xTrain(:).^2]\yTrain(:);
yPred = [xTest(:) xTest(:).^2]*c;
yDiff = yPred(:)-yTest(:);
testVal = sum(yDiff.^2);
end |
github | BrainardLab/TeachingCode-master | fourierFitTutorial.m | .m | TeachingCode-master/MatlabTutorials/fourierFitTutorial.m | 6,908 | utf_8 | a67ecd1ea0d9e92848a1435151551bbe | function fourierFitTutorial
% fourierFitTutorial
%
% Demonstrate how to fit fourier functions to data, using optimization
% toolbox. Both unconstrained and constrained. Shows fmincon in action.
%
% 4/21/09 dhb Started on it.
% 7/15/09 dhb Check optim version and handle inconsistences in options.
%% Clear
clear; close all;
%% Generate a test data set with three elements in the data set. Make shape similar but not identical.
noisesd = 0.2;
fitorder = 2;
testHues = 1:40;
xset{1} = (testHues-1)/length(testHues+1);
xset{2} = xset{1};
xset{3} = xset{1};
coeffstrue{1} = [2 1 1 0.4 0.25 0.1 0.2];
yset{1} = ComputeFourierModel(coeffstrue{1},xset{1}) + normrnd(0,noisesd,size(xset{1}));
coeffstrue{2} = [1 0.3 1.2 0.5 0.25 -0.1 0.0];
yset{2} = ComputeFourierModel(coeffstrue{2},xset{2}) + normrnd(0,noisesd,size(xset{1}));
coeffstrue{3} = [1.5 0.5 0.9 0.3 0.35 0 0.2];
yset{3} = ComputeFourierModel(coeffstrue{3},xset{3}) + normrnd(0,noisesd,size(xset{1}));
%% Fit the dataset, unconstrained
[coeffsunset,ypredunset,errorunset] = FitUnconstrainedModel(xset,yset,fitorder);
%% Fit the dataset, constrained
[coeffsconset,ypredconset,errorconset] = FitConstrainedModel(xset,yset,fitorder);
%% Report what happened
figure; clf;
subplot(3,1,1); hold on
plot(xset{1},yset{1},'ro','MarkerFaceColor','r','MarkerSize',6);
plot(xset{1},ypredunset{1},'r');
plot(xset{1},ypredconset{1},'b');
ylim([0 5]);
subplot(3,1,2); hold on
plot(xset{2},yset{2},'ro','MarkerFaceColor','r','MarkerSize',6);
plot(xset{2},ypredunset{2},'r');
plot(xset{2},ypredconset{2},'b');
ylim([0 5]);
subplot(3,1,3); hold on
plot(xset{3},yset{3},'ro','MarkerFaceColor','r','MarkerSize',6);
plot(xset{3},ypredunset{3},'r');
plot(xset{3},ypredconset{3},'b');
ylim([0 5]);
end
function [coeffsset,ypredset,errorset] = FitUnconstrainedModel(xset,yset,order)
% [coeffset,ypred] = FitUnconstrainedModel(x,y,order)
%
% Fit the fourier model of given order separately to each data set in the
% passed cell arrays xset and yset. Return cell arrays giving fit coefficients,
% predictions, and errors.
%
% 4/21/09 dhb Wrote it.
% Optimization options
options = optimset('fmincon');
if (verLessThan('optim','4.1'))
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off');
else
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
end
% Define length of coefficients from order
coeffs00 = zeros(1,3+2*(order-1));
% Do each set separately
nSets = length(xset);
for i = 1:nSets
x = xset{i};
y = yset{i};
% Initialize guess and set bounds, based loosely on data.
coeffs0 = coeffs00;
coeffs0(1) = mean(y);
coeffs0(2) = mean(y);
lb = [min(y) -10*max(abs(y))*ones(1,length(coeffs0(2:end)))];
ub = [max(y) 10*max(abs(y))*ones(1,length(coeffs0(2:end)))];
% Do the fit.
coeffsset{i} = fmincon(@FitUnconstrainedFun,coeffs0,[],[],[],[],...
lb,ub,[],options,x,y);
% Get final prediction and error for return
ypredset{i} = ComputeFourierModel(coeffsset{i},x);
errorset{i} = EvaluateModelFit(y,ypredset{i});
end
end
function f = FitUnconstrainedFun(coeffs,x,y)
% f = FitUnconstrainedFun(coeffs,x,y)
%
% Error function for unconstrained model fit.
%
% 4/21/09 dhb Wrote it.
ypred = ComputeFourierModel(coeffs,x);
f = EvaluateModelFit(y,ypred);
end
function [coeffsset,ypredset,errorset] = FitConstrainedModel(xset,yset,order,guesscoeffs)
% [coeffset,ypred] = FitConstrainedModel(x,y,order,guesscoeffs)
%
% Fit the fourier model of given order separately to each data set in the
% passed cell arrays xset and yset. Return cell arrays giving fit coefficients,
% predictions, and errors. The fit is constrained so that each element of the
% dataset has the same modulation shape, but the modulation mean and depth can
% vary.
%
% 4/21/09 dhb Wrote it.
% Optimization options
options = optimset('fmincon');
if (verLessThan('optim','4.1'))
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off');
else
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
end
% Grab number of sets
nSets = length(xset);
% Initialize guess and set bounds, based loosely on data.
concoeffs0 = [zeros(1,2*nSets) zeros(1,1+2*(order-1))];
miny = Inf;
maxy = -Inf;
index = 1;
for i = 1:nSets
concoeffs0(2*(i-1)+1) = mean(yset{i});
concoeffs0(2*(i-1)+2) = mean(yset{i});
index = index+2;
if (min(yset{i}) < miny)
miny = min(yset{i});
end
if (max(yset{i}) > maxy)
maxy = max(yset{i});
end
end
lb = [-10*max(abs([miny maxy]))*ones(1,length(concoeffs0))];
ub = [10*max(abs([miny maxy]))*ones(1,length(concoeffs0))];
for i = 1:nSets
lb(2*(i-1)+1) = miny;
ub(2*(i-1)+1) = maxy;
end
% Do the numerical fit
concoeffs = fmincon(@FitConstrainedFun,concoeffs0,[],[],[],[],...
lb,ub,[],options,xset,yset);
% Get final prediction and error for return
coeffsset = UnpackConCoeffs(concoeffs,nSets);
for i = 1:nSets
ypredset{i} = ComputeFourierModel(coeffsset{i},xset{i});
errorset{i} = EvaluateModelFit(yset{i},ypredset{i});
end
end
function f = FitConstrainedFun(concoeffs,xset,yset)
% f = FitUnconstrainedFun(coeffs,xset,yset)
%
% Error function for constrained model fit.
%
% 4/21/09 dhb Wrote it.
% Unpack constrained coefficients
nSets = length(xset);
coeffsset = UnpackConCoeffs(concoeffs,nSets);
% Get error for each set and sum
f = 0;
for i = 1:nSets
ypred = ComputeFourierModel(coeffsset{i},xset{i});
f = f + EvaluateModelFit(yset{i},ypred);
end
end
function coeffsset = UnpackConCoeffs(concoeffs,nSets)
% coeffsset = UnpackConCoeffs(concoeffs,nSets)
%
% Unpack array of constrained coefficients into cell array
% in form to evaluate each component separately.
%
% 4/21/09 dhb Wrote it.
index = 1;
for i = 1:nSets
coeffsset{i}(1) = concoeffs(index);
index = index+1;
coeffsset{i}(2) = concoeffs(index);
index = index+1;
end
for i = 1:nSets
coeffsset{i}(3:3+length(concoeffs(index:end))-1) = concoeffs(index:end);
end
end
function ypred = ComputeFourierModel(coeffs,x)
% ypred = ComputeFourierModel(coeffs,x)
%
% ypred = coeffs(1) + coeffs(2)*(sin(2*pi*x) + coeffs(3)*cos(2*pi*x) + coeffs(4)*sin(2*pi*2*x) + coeffs(5)*cos(2*pi*2*x) + ...
%
% The order of the equation is determined from the length of coeffs.
% The input x is assumed to be in the range [0-1].
%
% 4/21/09 dhb Wrote it.
% Modulation
a = coeffs(1);
b = coeffs(2);
modulation = sin(2*pi*x) + coeffs(3)*cos(2*pi*x);
for i = 1:length(coeffs(4:end))/2
modulation = modulation + coeffs(2*(i-1)+4)*sin(2*pi*(i+1)*x) + coeffs(2*(i-1)+5)*cos(2*pi*(i+1)*x);
end
ypred = a + b*modulation;
end
function f = EvaluateModelFit(y,ypred)
% f = EvaluateModelFit(y,ypred)
%
% 4/21/09 dhb Wrote it.
resid = y-ypred;
f = sqrt(sum(resid.^2)/length(resid));
end
|
github | BrainardLab/TeachingCode-master | crossContextMLDScalingTutorial.m | .m | TeachingCode-master/MatlabTutorials/crossContextMLDScalingTutorial.m | 5,968 | utf_8 | 6678160b25bded3b8fd03551f9351930 | function CrossContextMLDSScalingTutorial
% CrossContextMLDSScalingTutorial
%
% Suppose we have cross-context data of the form, see stimulus
% X, seen in context 1, and choose which of two alternatives, Y1 and Y2,
% seen in context 2, that is most like X.
%
% We want to take a bunch of data of this form, where Y1 and Y2 vary
% trial-to-trial, and find the value of Y that is the best match to X.
%
% We assume that the Y's live in an N dimensional perceptual space.
% This seems like an MDS setup, with triad data. As discussed
% in Maloney and Yang (2003), triads are a special case of
% the MLDS stimuli, with one stimulus repeated twice.
%
% The other difference here is the change of context, but I don't think
% that is fundamental.
%
% If we're willing to take the scales as one-dimensional and assume that
% the scale in one context maps into the other in some parametric
% way, we could find the parametric transformation.
%
% This code simulates out the basic MLDS analysis for a case like the above,
% to make sure nothing goes too wonky.
%
% NOTE: We how have a toolbox, BrainardLabToolbox/MLDSColorSelection, that
% implements much of what is here. This should be modified to call through
% that, and the two should cross-reference each other.
%
% 1/10/12 dhb Wrote it.
%% Clear and close
clear; close all;
%% Parameters
sigma = 0.10;
nY = 10;
nSimulatePerPair = 100;
%% Generate a list of X and Y stimuli
x = 0.55;
yOfX = MapXToY(x);
linY = logspace(log10(0.5),log10(0.6),nY);
y = MapXToY(linY);
%% Simulate out probabilities for pairwise trials
thePairs = nchoosek(1:nY,2);
nPairs = size(thePairs,1);
theSimResponse1 = zeros(nPairs,1);
theTheoryResponse1 = zeros(nPairs,1);
for i = 1:nPairs
n1 = 0;
for j = 1:nSimulatePerPair
if (SimulateResponse1(x,y(thePairs(i,1)),y(thePairs(i,2)),sigma,@MapXToY))
n1 = n1 + 1;
end
end
theSimResponse1(i) = n1;
theTheoryProb1(i) = ComputeProb1(x,y(thePairs(i,1)),y(thePairs(i,2)),sigma,@MapXToY);
end
theSimProb1 = theSimResponse1/nSimulatePerPair;
%% Make sure that simulated data matches the theoretical model. Nothing
% else is going to work if this isn't done correctly
figure; clf; hold on
plot(theTheoryProb1,theSimProb1,'ro','MarkerSize',4,'MarkerFaceColor','r');
xlabel('Theory'); ylabel('Simulation');
axis('square'); axis([0 1 0 1]);
plot([0 1],[0 1],'k');
%% Find the maximum likelihood solution for x and the y's. We
% fix the origin at y(1) and the scale via sigma, which are thus
% assumed known.
% Compute log likelihood of actual simulated data as a baseline
logLikelyTrue = ComputeLogLikelihood(thePairs,theSimResponse1,nSimulatePerPair,MapXToY(x),y,sigma);
% Search to find the best solution
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','iter','LargeScale','off','Algorithm','active-set');
y1 = y(1);
x0 = [x linY(2:end)];
vlb = -10*max(x0)*ones(size(x0));
vub = 10*max(x0)*ones(size(x0));
fitX = fmincon(@(x)FitContextFCScalingFun(x,y1,thePairs,theSimResponse1,nSimulatePerPair,sigma),x0,[],[],[],[],vlb,vub,[],options);
xFit = fitX(1);
yFit = [y1 fitX(2:end)];
logLikelyFit = ComputeLogLikelihood(thePairs,theSimResponse1,nSimulatePerPair,xFit,yFit,sigma);
fprintf('Log likelihood true: %g, fit: %g\n',logLikelyTrue,logLikelyFit);
%% Plot the recovered configuration
figure; clf; hold on
plot(y,yFit,'ro','MarkerSize',4,'MarkerFaceColor','r');
plot(MapXToY(x),xFit,'bo','MarkerSize',4,'MarkerFaceColor','b');
xlabel('Simulated'); ylabel('Fit');
axis('square');
minVal = min([y yFit]);
maxVal = max([y yFit]);
axis([minVal maxVal minVal maxVal]);
plot([minVal maxVal],[minVal maxVal],'k');
end
%% f = FitContextFCScalingFun(x,y1,thePairs,theResponse1,nTrials,sigma)
%
% Error function for the numerical search.
function f = FitContextFCScalingFun(x,y1,thePairs,theResponse1,nTrials,sigma)
if (any(isnan(x)))
error('Entry of x is Nan');
end
xFit = x(1);
yFit = [y1 x(2:end)];
logLikely = ComputeLogLikelihood(thePairs,theResponse1,nTrials,xFit,yFit,sigma);
f = -logLikely;
end
%% logLikely = ComputeLogLikelihood(thePairs,theResponse1,nTrials,xFit,yFit,sigma)
%
% Compute likelihood of data for any configuration
function logLikely = ComputeLogLikelihood(thePairs,theResponse1,nTrials,xFit,yFit,sigma)
nPairs = size(thePairs,1);
logLikely = 0;
for i = 1:nPairs
theTheoryProb1 = ComputeProb1(xFit,yFit(thePairs(i,1)),yFit(thePairs(i,2)),sigma,@IdentityMap);
if (isnan(theTheoryProb1))
error('Returned probability is NaN');
end
if (isinf(theTheoryProb1))
error('Returend probability is Inf');
end
logLikely = logLikely + theResponse1(i)*log10(theTheoryProb1) + (nTrials-theResponse1(i))*log10(1-theTheoryProb1);
end
if (isnan(logLikely))
error('Returned likelihood is NaN');
end
end
%% p1 = ComputeProb1(x,y1,y2,sigma,mapFunction)
%
% Compute probability of responding 1 given target and pair.
% The passed mapFunction simulates the effect of context change
% between x domain and y domain
function p1 = ComputeProb1(x,y1,y2,sigma,mapFunction)
yOfX = mapFunction(x);
diff1 = y1-yOfX;
diff2 = y2-yOfX;
diffDiff = abs(diff1)-abs(diff2);
p1 = normcdf(-diffDiff,0,sigma);
if (p1 == 0)
p1 = 0.0001;
elseif (p1 == 1)
p1 = 0.9999;
end
end
%% response1 = SimulateResponse1(x,y1,y2,sigma,mapFunction)
%
% Simulate a trial given target and pair.
% The passed mapFunction simulates the effect of context change
% between x domain and y domain
function response1 = SimulateResponse1(x,y1,y2,sigma,mapFunction)
yOfX = mapFunction(x);
diff1 = y1-yOfX;
diff2 = y2-yOfX;
if (abs(diff1)-abs(diff2) + normrnd(0,sigma) <= 0)
response1 = 1;
else
response1 = 0;
end
end
%% yOfX = MapXToY(x)
%
% Example map function
function yOfX = MapXToY(x)
yOfX = x.^0.8 - 0.1;
end
%% yOfX = IdentityMap(x)
%
% Identity map function. When simulating fit
% we use this.
function yOfX = IdentityMap(x)
yOfX = x;
end |
github | BrainardLab/TeachingCode-master | glmTutorial.m | .m | TeachingCode-master/MatlabTutorials/glmTutorial.m | 4,724 | utf_8 | e130c3872af22a7d5482aa8d8594dce6 | function glmTutorial
%
% Demonstrate how to use Matlab's Statistics Toolbox glm routines
% to fit data.
%
% This is right basic idea, but needs a little fixing up still.
%
% Need to:
% a) Add better comments.
% b) Show how to wrap a parameter search around the parameters of
% the linking function.
% c) Worry about the regime where the linking function is such that
% the glm routines return NaN because of ill-conditioning.
%
% 9/21/13 dhb Wrote it.
%% Clear
clear; close all;
%% Parameters.
%
% We construct a linear function of some
% random numbers, bTrue gives the weights.
bTrue = [2 3 5]';
xDim = length(bTrue);
nObservations = 100;
noiseSd = 0.01;
%% Link function and its parameters.
%
% We assume that the observed data are a Naka-Rushton function
% of the linear values. The way the glm stuff works,
% this means that the linking function is the inverse of the
% Naka-Rushton function.
global linkParams
linkParams.type = 'AffinePower';
switch (linkParams.type)
case 'InverseNakaRushton'
linkParams.params(1) = 10;
linkParams.params(2) = 3;
linkParams.params(3) = 2;
linkS.Link = @ForwardLink;
linkS.Derivative = @DerivativeLink;
linkS.Inverse = @InverseLink;
case 'AffinePower'
linkParams.params(1) = 1;
linkParams.params(2) = 0.5;
linkS.Link = @ForwardLink;
linkS.Derivative = @DerivativeLink;
linkS.Inverse = @InverseLink;
case 'Power'
linkParams.params(1) = 2;
linkS.Link = @ForwardLink;
linkS.Derivative = @DerivativeLink;
linkS.Inverse = @InverseLink;
otherwise
error('Unknown link function type');
end
%% X variables
X = rand(nObservations,xDim);
%% Linear y is a linear function of X
yLinear = X*bTrue;
yNonLinear = InverseLink(yLinear);
yObserved = yNonLinear + noiseSd*randn(size(yNonLinear));
%% Figure
[~,index] = sort(yLinear);
theFig = figure; clf;
hold on
plot(yLinear(index),yObserved(index),'ro','MarkerSize',8,'MarkerFaceColor','r');
plot(yLinear(index),yNonLinear(index),'r');
%% GLM fit
warnState = warning('off','stats:glmfit:IterationLimit');
GLM = GeneralizedLinearModel.fit(X,yObserved,'Distribution','normal','Link',linkS,'Intercept',false);
warning(warnState);
bFit = GLM.Coefficients.Estimate
yLinearPred = X*bFit;
yNonLinearPred = InverseLink(yLinearPred);
figure(theFig);
plot(yLinear(index),yNonLinearPred(index),'b');
xlabel('True linear value');
ylabel('Obs/Predicted nonlinear value');
%% This is just a check that the PTB NakaRushton function properly
% inverts itself.
switch (linkParams.type)
case 'NakaRushton'
linearInvertCheck = ForwardLink(yNonLinearPred);
if (any(abs(yLinearPred-linearInvertCheck) > 1e-7))
error('Naka-Rushton inversion error');
end
% A little more testing
figure; clf;
derivCheck = DerivativeLink(yNonLinearPred);
subplot(2,1,1); hold on
plot(yNonLinearPred(index),linearInvertCheck(index),'r');
subplot(2,1,2); hold on
plot(yNonLinearPred(index),derivCheck(index),'r');
end
end
function out = ForwardLink(in)
global linkParams
switch (linkParams.type)
case 'InverseNakaRushton'
in(in < 0) = 0;
in(in > linkParams.params(1)) = linkParams.params(1);
out = InvertNakaRushton(linkParams.params,in);
case 'AffinePower'
in(in < 0) = 0;
out = linkParams.params(1) + in.^linkParams.params(2);
case 'Power'
in(in < 0) = 0;
out = in.^linkParams.params(1);
otherwise
error('Unknown link function type');
end
end
function out = DerivativeLink(in)
global linkParams
switch (linkParams.type)
case 'InverseNakaRushton'
in(in < 0) = 0;
in(in > linkParams.params(1)) = linkParams.params(1);
out = DerivativeInvertNakaRushton(linkParams.params,in);
case 'AffinePower'
in(in < 0) = 0;
out = linkParams.params(2)*in.^(linkParams.params(2)-1);
case 'Power'
in(in < 0) = 0;
out = linkParams.params(2)*in.^(linkParams.params(2)-1);
otherwise
error('Unknown link function type');
end
end
function out = InverseLink(in)
global linkParams
switch (linkParams.type)
case 'InverseNakaRushton'
% Force input into required range
in(in < 0) = 0;
out = ComputeNakaRushton(linkParams.params,in);
case 'AffinePower'
in(in < 0) = 0;
tmp = in - linkParams.params(1);
tmp(tmp < 0) = 0;
out = tmp.^(1/linkParams.params(2));
case 'Power'
in(in < 0) = 0;
out = in.^(1/linkParams.params(2));
otherwise
error('Unknown link function type');
end
end
|
github | BrainardLab/TeachingCode-master | TestPredictNRAffineMatchesAnaIndividual.m | .m | TeachingCode-master/MatlabTutorials/lightessModelsTutorial/TestPredictNRAffineMatchesAnaIndividual.m | 29,899 | utf_8 | d4db10f878711848957271786b92778a | function TestPredictNRAffineMatches
% TestPredictNRAffineMatches
%
% Work out what the little model does for various choices of input
%
% 12/4/10 dhb Wrote it.
% 4/20/11 dhb Lot's of little changes. Switch polarity of data plots
%% Clear
clear; close all;
% Define relevant directories.
currentDir = pwd;
dataDir = '/Users/Shared/Matlab/Experiments/HDRExperiments/HDRAna';
whichDataSet = 3;
%% Choose model parameters and generate predictions, plot.
% Let's one explore what the model can do.
%DO_PRELIM_STUFF = 0;
% if (DO_PRELIM_STUFF)
% yRef = logspace(-2,4);
%
% %% Set up parameters
% params0.rmaxRef = 1.0;
% params0.gainRef = 10e-4;
% params0.offsetRef = 0;
% params0.expRef = 2.5;
% params0.rmax = 1.01;
% params0.gain = 0.5*10e-4;
% params0.offset = 1;
% params0.exp = 1;
%
% %% Plot effect of mucking with exponent
% figure; clf; hold on
% exponents = [1.5 2 2.5];
% for i = 1:length(exponents)
% params0.exp = exponents(i);
% yMatch{i} = PredictNRAffineMatches(yRef,params0);
%
% % Plot
% plot(log10(yMatch{i}),log10(yRef),'k','LineWidth',3);
% xlim([-3 5]); ylim([-3 5]);
% xlabel('Log10 Target Lum');
% ylabel('Log10 Standard Lum/Refl');
% end
% end
paletteGlossy = [-2.0458e+00 -1.8447e+00 -1.6840e+00 -1.4881e+00 -1.3251e+00 -1.1838e+00 -1.0424e+00 -9.2046e-01 -8.1417e-01 -7.1175e-01 ...
-6.2160e-01 -5.3180e-01 -4.5087e-01 -3.7192e-01 -2.9654e-01 -2.2746e-01 -1.6488e-01 -1.0768e-01 -4.3064e-02];
paletteMatte = [ NaN NaN NaN -1.4660 -1.3279 -1.1379 -1.0155 -0.8726 -0.7791 -0.6807 -0.6038 ...
-0.5046 -0.4332 -0.3622 -0.3050 -0.2280 -0.1671 -0.0941 -0.0472];
paletteGlossyTruncated = [NaN NaN NaN paletteGlossy(:,4:end)];
%% Fit some matching data
SARAH_TEST_DATA = 0;
if (SARAH_TEST_DATA)
else
switch whichDataSet
case 1
conditionList = {'FullGlossyfull','FullGlossytruncated', 'FullMattetruncated', 'WhiteGlossyfull','WhiteGlossytruncated', 'WhiteMattetruncated'};
subjectList = {'bam', 'cly', 'flv', 'lta' ,'ncd', 'rpd', 'stg', 'tfm'};
keepSomeData = [
[ -1.3802 -1.2294 -0.9707 -0.7100 -0.3612 0.0249 0.3078 0.5715 0.7699 0.9778 1.0846 1.3089 1.4555 1.5644 1.7196 1.9207 2.0673 2.2239 2.3914];
[ NaN NaN NaN -0.9522 -0.6050 -0.2339 0.1047 0.4402 0.6977 0.8384 1.0023 1.2422 1.4114 1.5759 1.7508 1.9397 2.0528 2.2656 2.4112];
[ NaN NaN NaN -1.0312 -0.7059 -0.2358 0.1020 0.4629 0.6309 0.8030 1.0495 1.1958 1.3473 1.5350 1.6646 1.8909 2.0447 2.2378 2.3792];
[ NaN -0.0746 0.0318 0.2519 0.6330 0.9303 1.1223 1.3450 1.5182 1.7405 1.8143 2.0090 1.9072 2.2261 NaN 2.4317 NaN NaN NaN];
[ NaN NaN NaN -0.0043 0.4266 0.6850 0.9769 1.2355 1.4810 1.6573 1.7507 1.9130 2.0836 2.1939 NaN 2.4042 NaN NaN NaN];
[ NaN NaN NaN 0.0356 0.3936 0.7326 0.9986 1.2143 1.4117 1.5808 1.7714 1.9066 2.0828 2.1358 2.3293 2.3833 NaN NaN NaN];];
case 2
conditionList = {'FullGlossyfull2','FullMattetruncated2', 'Full30Glossyfull2', 'Full30Mattetruncated2', 'White30Glossyfull','White30Mattetruncated', 'Gray30Glossyfull', 'Gray30Mattetruncated'};
subjectList = {'bam', 'cly', 'ncd', 'stg', 'tfm'};
keepSomeData = [
[ -1.0849 -0.9622 -0.8648 -0.6281 -0.3869 -0.1036 0.2128 0.4567 0.7647 0.9488 1.1614 ...
1.3723 1.5101 1.6622 1.7990 1.9214 2.0359 2.2311 2.3199];
[ NaN NaN NaN -0.8392 -0.5873 -0.1825 0.1171 0.4655 0.7031 0.9464 1.1034 ...
1.3530 1.4774 1.6270 1.8231 1.9047 2.1262 2.2451 2.2713]
[ NaN NaN NaN NaN NaN 1.2849 1.2088 1.2595 1.3693 1.4580 1.5826 ...
1.7126 1.8139 1.9713 2.1010 2.1720 2.3164 2.4515 2.5170];
[ NaN NaN NaN NaN NaN NaN 1.1963 1.2787 1.3236 1.4529 1.5473 ...
1.6579 1.8419 1.8985 2.0625 2.1901 2.3280 2.4015 2.5215];
[ NaN NaN NaN NaN NaN 1.2475 1.2973 1.3907 1.6027 1.7238 1.8637...
1.9849 2.0992 2.2393 2.3454 2.4286 2.5200 2.5425 2.6196];
[NaN NaN NaN NaN NaN 1.2689 1.2883 1.4364 1.5560 1.7329 1.8336...
1.9731 2.1075 2.2431 2.3248 2.4025 2.5065 2.5691 2.6030];
[ NaN NaN NaN -0.0572 -0.0016 0.0921 0.2724 0.4301 0.5819 0.7071 0.7965 ...
0.9089 1.0300 1.0749 1.1734 1.2381 1.2656 NaN NaN];
[NaN NaN NaN NaN -0.0920 0.0354 0.2398 0.4029 0.5708 0.6956 0.7910...
0.9222 1.0426 1.0873 1.1855 1.2379 NaN NaN NaN];
]
case 3
subjectList={'ajh', 'arp', 'kjn', 'orp' ,'rvn'};
conditionList = {'FullGlossyfull3', 'FullGlossyfull4','Full30Glossyfull3','Full30Glossyfull4'...
, 'Full1000Glossyfull3', 'FullGray30Glossyfull', 'FullGray1000Glossyfull', ...
'FullMeanPlusGlossyfull', 'Full30MeanPlusGlossyfull', 'FullGray30MeanPlusGlossyfull', 'FullMeanPlusGlossyfull2', 'FullMeanMinusGlossyfull2'};
keepSomeData = [[-1.2469 -1.0194 -0.6968 -0.3888 -0.1960 0.1387 0.3627 0.6095 0.8034 0.8159 ...
0.9833 1.1952 1.3942 1.5388 1.5710 1.7905 2.0848 2.0719 2.3168]; % full3
[ -1.4012 -0.9285 -0.7862 -0.4952 -0.2476 0.0172 0.2259 0.4565 0.5586 0.7049 ...
0.8431 1.0677 1.1933 1.3972 1.6246 1.7266 1.8868 2.1460 2.2618]; % full4
[NaN NaN NaN NaN 1.1345 1.1445 1.2867 1.3138 1.3704 1.5017 ...
1.5732 1.6708 1.7791 1.8904 1.9778 2.0832 2.2022 2.3184 2.4071]; % full30 3
[NaN NaN NaN NaN NaN NaN 1.1932 1.2166 1.2841 1.4061 ...
1.4842 1.6065 1.6801 1.8158 1.9317 2.0486 2.1714 2.2893 2.4259]; % full30 4
[ -0.3140 -0.2027 -0.0686 0.0819 0.2873 0.4310 0.5986 0.7905 0.8960 1.0847 ...
1.2355 1.3290 1.4651 1.6356 1.7116 1.8833 1.9983 2.1780 2.3949]; % full 1000
[ NaN NaN NaN NaN 0.4098 0.4786 0.6039 0.7330 0.8416 0.8923 ...
0.9797 1.1226 1.1993 1.3123 1.4279 1.5174 1.6544 1.6851 NaN]; % full Gray30
[ -1.0961 -0.8952 -0.7221 -0.4952 -0.3652 -0.1803 -0.0603 0.0522 0.3139 0.3222 ...
0.4816 0.6810 0.8161 0.9925 1.1563 1.3792 1.5010 1.6713 1.7328]; % full gray 1000;
[-1.2028 -0.9204 -0.6084 -0.2414 -0.0021 0.0723 0.2916 0.5297 0.6825 0.8876 ...
0.9969 1.2277 1.2544 1.4292 1.6247 1.8370 2.0001 2.1447 2.2880]; % full mean plus;
[NaN NaN NaN NaN NaN NaN 1.1726 1.2939 1.3940 1.5356 ...
1.5940 1.7435 1.8141 1.9606 2.0642 2.1749 2.3042 2.3794 2.4674]; % full30 mean plus;
[NaN NaN NaN NaN 0.4270 0.4158 0.5322 0.6765 0.7749 0.8527 ...
0.9992 1.1176 1.2819 1.3642 1.4917 1.6065 1.6876 NaN NaN]; % fullgray30
[-7.5486e-01 -6.3016e-01 -3.7002e-01 -7.5043e-02 2.5521e-01 4.1869e-01 6.5650e-01 8.2140e-01 9.3936e-01 ...
1.1518e+00 1.3266e+00 1.3894e+00 1.4861e+00 1.7282e+00 1.8061e+00 1.9940e+00 2.1053e+00 2.2826e+00 2.3641e+00]; % fullmeanplus2
[-8.8795e-01 -7.5641e-01 -5.6947e-01 -4.3999e-01 -2.9319e-01 -1.1604e-01 5.8502e-02 2.5986e-01 3.7464e-01 ...
5.2778e-01 6.5286e-01 8.2851e-01 9.8959e-01 1.1379e+00 1.4417e+00 1.6340e+00 1.7811e+00 2.0558e+00 2.1961e+00]; % fullmeanminus
];
end
for i = 1:length(conditionList)
for j=1:length(subjectList)
luminanceMatchesPerChip{i,j} = load(fullfile(dataDir,'data',conditionList{i},subjectList{j},[conditionList{i} '-' subjectList{j} '-TestAverages.txt']));
luminanceMatchesPerChip{i,j} = luminanceMatchesPerChip{i,j}(:, 2:end);
% averageLumMatchesPerSubject{j}(:,i) = nanmean(luminanceMatchesPerChip{i,j},2);
averageLumMatchesPerSubject{i}(:,j) = nanmean(luminanceMatchesPerChip{i,j},2);
end
end
averageLumMatchesPerSubjectAll{i} = averageLumMatchesPerSubject{i};
%% See how many matches per subject are made.
% If less than 3 subjects assigned anything to this chip, drop them.
for g = 1: length(averageLumMatchesPerSubject)
nSubjectMatches{g} = sum(isnan(averageLumMatchesPerSubject{g}),2);
end
for g = 1: length(nSubjectMatches)
for r = 1:length(nSubjectMatches{g})
if (nSubjectMatches{g}(r) > 2)
averageLumMatchesPerSubject{g}(r,:) = nan(1, size(averageLumMatchesPerSubject{g},2));
end
end
end
cd(currentDir);
xDataLim = [-2 3];
yDataLim = [-3 0];
fid = fopen(['ANA_TEST_DATA/ParamDump_All' num2str(whichDataSet) '_ALL.txt'],'w');
figPrefix = 'ANA_TEST_DATA/';
RESPONSE_REMAP = 0;
end
% Optional search to find reference parameters that put the responses rougly equally spaced on the y-axis. This isn't theoretically critical, but
% seems as good an idea as any.
FITREF = 0;
if (FITREF)
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','iter','LargeScale','off','Algorithm','active-set');
options = optimset(options,'MaxFunEvals',1200);
targetRespRef = linspace(critValue,1-critValue,length(someDataRef));
conTolRef = (targetRespRef(2)-targetRespRef(1));
x0 = ParamsToListRef(params0);
vlb = [x0(1)/100 x0(2) -100*mean(someDataRef) 1];
vub = [x0(1)*100 x0(2) 100*mean(someDataRef) 4];
x1 = fmincon(@InlineMinFunctionRef,x0,[],[],[],[],vlb,vub,@InlineConFunctionRef,options);
params0 = ListToParamsRef(x1,params0);
end
%% Now do the fitting wrt to the reference paramters
% rangeFig = figure;
dataFig = figure;
%position = get(gcf,'Position');
%position(3) = 1000; position(4) = 400;
%set(gcf,'Position',position);
allData = cell(1,length(conditionList));
for i = 1:length(conditionList)
temptemp = [];
for j = 1:length(subjectList)
temptemp = [temptemp; [averageLumMatchesPerSubject{i}(:,j)']];
end
%allDataMean(i,:) = nanmean(temptemp, 1);
acrossSubjectLumAverages{i} = NaN(size(paletteGlossy',1),1);
for g = 1:size(paletteGlossy',1)
okindex = ~isnan(averageLumMatchesPerSubject{i}(g,:)');
tt=mean(averageLumMatchesPerSubject{i}(g,okindex))';
acrossSubjectLumAverages{i}(g,1)=tt;
end
temptemp = [temptemp; acrossSubjectLumAverages{i}(:)'] ;
allData{i} = temptemp;
clear temptemp
end
%% for debugging purposes.
for i = 1:length(conditionList)
check = keepSomeData(i,:) - acrossSubjectLumAverages{i}(:)';
end
%%
for i = 1: length(conditionList)
figure(dataFig); clf;
someData = allData{i};
for whichData = 1:(size(someData,1))
switch(conditionList{i})
case {'FullGlossyfull','WhiteGlossyfull', 'FullGlossyfull2','Full30Glossyfull2', 'White30Glossyfull','Gray30Glossyfull',...
'FullGlossyfull3', 'Full30Glossyfull3', 'Full1000Glossyfull3', 'FullGray30Glossyfull'...
'FullGlossyfull4', 'Full30Glossyfull4', 'FullGray1000Glossyfull', 'FullGray30MeanPlusGlossyfull'...
'FullMeanPlusGlossyfull', 'Full30MeanPlusGlossyfull', 'FullMeanPlusGlossyfull2', 'FullMeanMinusGlossyfull2'}
someDataRef = 10.^[paletteGlossy(1,:)];
case {'FullGlossytruncated','WhiteGlossytruncated'}
someDataRef = 10.^paletteMatte(1,:);
case {'FullMattetruncated','WhiteMattetruncated', 'FullMattetruncated2','Full30Mattetruncated2','White30Mattetruncated','Gray30Mattetruncated'}
someDataRef = 10.^paletteMatte(1,:);
end
%% Initialize parameters. Set reference rmax to 1 and exponent to 2. Find
% gain and offset that map the luminances across the central
% portion
% of the response range.
useDataRef = someDataRef;
clear params0
params0.rmaxRef = 1.0;
params0.expRef = 3;
critValue = 0.01;
minResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],critValue);
maxResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],1-critValue);
minRef = min(someDataRef);
maxRef = max(someDataRef);
params0.gainRef = (maxResp-minResp)/(maxRef-minRef);
params0.offsetRef = minRef-minResp/params0.gainRef;
paramsRefNoFit = params0;
lumVals = logspace(log10(someDataRef(1)),log10(someDataRef(end)),1000);
lumVals = logspace(-3,0,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefForRemap = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
respRefRemapped = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefForRemap)/params0.gainRef+params0.offsetRef);
%remapFig = figure; clf; hold on
%plot(respRefForRemap,respRefRemapped,'r','LineWidth',2);
%xlim([0 1]);
%ylim(yDataLim);
%xlabel('Visual Response');
%ylabel('Predicted Reflectance Match');
% cd(figPrefix);
%
%
% if SARAH_TEST_DATA;
%
% else
% savefig(['ResponseRemapping' num2str(whichDataSet) '.pdf'],remapFig,'pdf');
% save(['ResponseRemappingData' num2str(whichDataSet)],'respRefForRemap','respRefRemapped');
%
% end
% cd ..
%
someDataMatch = 10.^[someData(whichData,:)];
okIndex = find(~isnan(someDataMatch));
useDataMatch = someDataMatch(okIndex);
useDataRef = someDataRef(okIndex);
if whichDataSet == 1
subplot(3,3,whichData,'FontSize', 4); hold on
else
subplot(3,2,whichData,'FontSize', 4); hold on
end
plot(log10(useDataMatch),log10(useDataRef),'bo','MarkerFaceColor','b','MarkerSize',4);
xlabel('Log10 Target Lum', 'FontSize',6);
ylabel('Log10 Standard Lum/Refl', 'FontSize',6);
setAverage = size(someData,1);
if whichData == setAverage
title(['Average' conditionList{i}], 'FontSize',6);
else
title([subjectList{whichData} ' ' conditionList{i}], 'FontSize',6);
end
% Parameter search options
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
% Initialize match parameters in same way
endPointWeight = 0;
params0.rmax = params0.rmaxRef;
params0.exp = params0.expRef;
params0.gain = params0.gainRef;
params0.offset = params0.offsetRef;
someDataPred0 = PredictNRAffineMatches(someDataRef,params0);
%plot(log10(someDataRef),log10(someDataPred0),'y','LineWidth',1);
%params0
if whichData == setAverage
fprintf(fid,['Dataset ' conditionList{i} ' Average ' '\n']);
else
fprintf(fid,['Dataset ' conditionList{i} ' ' subjectList{whichData} '\n']);
end
fprintf(fid,'\tReference params: gain = %0.2g, offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',params0.gainRef,params0.offsetRef,params0.rmaxRef,params0.expRef);
% Fit, first just gain
x0 = ParamsToList(params0);
vlb = [x0(1) x0(2)/100 x0(3:end)];
vub = [x0(1) x0(2)*100 x0(3:end)];
x1 = fmincon(@InlineMinFunction,x0,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x1,params0);
someDataPred1 = PredictNRAffineMatches(someDataRef,params0);
%plot(log10(someDataPred1),log10(someDataRef),'b','LineWidth',1);
%params0
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain only model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Fit, gain and offset
vlb = [x1(1) x1(2)/100 x1(3) -100*abs(x1(4)) x1(5)];
vub = [x1(1) x1(2)*100 x1(3) 100*abs(x1(4)) x1(5)];
x2 = fmincon(@InlineMinFunction,x1,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x2,params0);
someDataPred2 = PredictNRAffineMatches(someDataRef,params0);
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain/Offset model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
paramsGainOffset = params0;
%params0
% Exp
FITEXP = 1;
if (FITEXP)
vlb = [x2(1) x2(2)/100 x2(3) -100*abs(x2(4)) 0.5];
vub = [x2(1) x2(2)*100 x2(3) 100*abs(x2(4)) 4];
endPointWeight = 10;
x3 = fmincon(@InlineMinFunction,x2,[],[],[],[],vlb,vub,[],options);
endPointWeight = 0;
x3 = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x3,params0);
someDataPred3 = PredictNRAffineMatches(someDataRef,params0);
else
x3 = x2;
someDataPred3 = PredictNRAffineMatches(someDataRef,params0);
end
fprintf(fid,'\tGain/Offset/Exp model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Let rMax vary too. This doesn't add much if exponent varies.. Tp the fits, so I
% uncluttered plots by removing. Have not looked at whether varying
% rMax can be substituted for varying the exponent.
FITMAX = 0;
if (FITMAX)
vlb = [x3(1) x3(2)/100 0.5 -100*abs(x3(4)) x3(5)];
vub = [x3(1) x3(2)*100 2 100*abs(x3(4)) x3(5)];
x = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x,params0);
someDataPred = PredictNRAffineMatches(someDataRef,params0);
plot(log10(someDataPred3),log10(someDataRef),'k','LineWidth',1.5);
%params0
else
x = x3;
someDataPred = PredictNRAffineMatches(someDataRef,params0);
end
% Dump of interesting parameters
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tPredicted (actual) black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(1),someDataMatch(1),someDataPred(end),someDataMatch(end));
fprintf(fid,'\tOne-in predicted black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(2),someDataMatch(2),someDataPred(end-1),someDataMatch(end-1));
% Plot stuff of interest
plot(log10(someDataPred),log10(someDataRef),'r','LineWidth',2);
plot(log10(someDataPred2),log10(someDataRef),'g','LineWidth',1);
xlim(xDataLim); ylim(yDataLim);
% Add plot of response functions for ref and match
% Subtract the old offset, and truncate below 0 to zero.
% We allow an optional remapping of the response back to the
% luminance/reflectance space of the reference matches. This
% mapping is static across contexts. This turns out not to
% terribly interesting.
lumVals = logspace(-2,3,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefSmooth = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRefSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gainRef*(someDataRef-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRef = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRef)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(lumVals-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatchSmooth = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatchSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatchSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(someDataMatch-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatch = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatch = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatch)/params0.gainRef+params0.offsetRef);
end
ySub = paramsGainOffset.gain*(lumVals-paramsGainOffset.offset);
ySub(ySub <= 0) = 0+eps;
respGainOffsetSmooth = ComputeNakaRushton([paramsGainOffset.rmax 1 paramsGainOffset.exp],ySub);
if (RESPONSE_REMAP)
respGainOffsetSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respGainOffsetSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = paramsRefNoFit.gainRef*(lumVals-paramsRefNoFit.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefNoFitSmooth = ComputeNakaRushton([paramsRefNoFit.rmaxRef 1 paramsRefNoFit.expRef],ySub);
% if (RESPONSE_REMAP)
% respRefNoFitSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefNoFitSmooth)/params0.gainRef+params0.offsetRef);
% end
%
% % subplot(1,2,2); hold on
% % plot(log10(someDataRef),respRef,'ko','MarkerFaceColor','k','MarkerSize',6);
% % plot(log10(lumVals),respRefSmooth,'k:','LineWidth',2);
% % %plot(log10(lumVals),respRefNoFitSmooth,'b','LineWidth',1);
% %
% % plot(log10(someDataMatch),respMatch,'bo','MarkerFaceColor','b','MarkerSize',8);
% % plot(log10(lumVals),respMatchSmooth,'r','LineWidth',2);
% % plot(log10(lumVals),respGainOffsetSmooth,'g','LineWidth',1);
% %
% xlim(xDataLim);
% if (RESPONSE_REMAP)
% ylim(yDataLim);
% ylabel('Remapped Response');
% else
% ylim([0 1.2]);
% ylabel('Response');
% end
% xlabel('Log10 luminance');
%
% % Save figure
cd(figPrefix);
savefig(['TestFit_' num2str(whichDataSet) ' ' conditionList{i} 'ALL.pdf'],dataFig,'pdf');
cd('..');
fprintf(fid,'\n');
% %% Fill output summary structure
% if (SARAH_TEST_DATA)
%
% else
% summaryStructs(whichData).whitePoint = someDataPred(end);
% summaryStructs(whichData).blackPoint = someDataPred(1);
% summaryStructs(whichData).range = someDataPred(end) - someDataPred(1);
% summaryStructs(whichData).exp = params0.exp;
% predictExpFromWB(whichData,1) = summaryStructs(whichData).whitePoint;
% predictExpFromWB(whichData,2) = log10(summaryStructs(whichData).range);
% expVals(whichData,1) = summaryStructs(whichData).exp;
% %% Range versus exp figure
% figure(rangeFig)
% subplot(1,2,1); hold on
% plot(summaryStructs(whichData).range,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
% xlabel('Range'); ylabel('Exponent');
% xlim([0 300]); ylim([0 4]);
% subplot(1,2,2); hold on
% plot(summaryStructs(whichData).whitePoint,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
% xlabel('White Point'); ylabel('Exponent');
% xlim([0 300]); ylim([0 4]);
% end
end
end
fclose(fid);
%% Try to predict exponents
% expRegCoefs = predictExpFromWB\expVals;
% predictedExpVals = predictExpFromWB*expRegCoefs;
% expPredFig = figure; clf; hold on
% plot(expVals,predictedExpVals,'ro','MarkerSize',8,'MarkerFaceColor','r');
% plot([0 4],[0 4],'k');
% xlim([0 4]); ylim([0 4]);
% xlabel('Exponent'); ylabel('Predicted Exponent');
% axis('square');
%% Write out summary structs
% cd(figPrefix);
% if (SARAH_TEST_DATA)
%
% else
% WriteStructsToText(['SummaryDataAll', num2str(whichDataSet), '.txt'],summaryStructs);
% end
% cd('..');
%% Save plot of exponent versus range
% cd(figPrefix);
% if (SARAH_TEST_DATA)
%
% else
% savefig(['ExpVersusRange', num2str(whichDataSet),'.pdf'],rangeFig,'pdf');
% end
% cd('..');
%% INLINE FUNCTION TO BE USED FOR CTF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunction(x)
paramsInline = ListToParams(x,params0);
yPred = PredictNRAffineMatches(useDataRef,paramsInline);
yPred(yPred <= 0) = 0 + eps;
yDiff = log10(useDataMatch)-log10(yPred);
f = sum(yDiff.^2) + endPointWeight*yDiff(1).^2 + endPointWeight*yDiff(end).^2;
end
%% INLINE FUNCTION TO BE USED FOR REF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
f = sum(abs(yDiff));
%f = sum(yDiff.^2);
end
function [g,geq] = InlineConFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
g = max(abs(yDiff))-conTolRef;
geq = 0;
end
end
%% Param translation
function params = ListToParams(x,params0)
params = params0;
params.gainRef = x(1);
params.gain = x(2);
params.rmax = x(3);
params.offset = x(4);
params.exp = x(5);
end
function x = ParamsToList(params)
x = [params.gainRef params.gain params.rmax params.offset params.exp];
end
function params = ListToParamsRef(x,params0)
params = params0;
params.gainRef = x(1);
params.rmaxRef = x(2);
params.offsetRef = x(3);
params.expRef = x(4);
end
function x = ParamsToListRef(params)
x = [params.gainRef params.rmaxRef params.offsetRef params.expRef];
end
|
github | BrainardLab/TeachingCode-master | TestPredictNRAffineMatchesAna.m | .m | TeachingCode-master/MatlabTutorials/lightessModelsTutorial/TestPredictNRAffineMatchesAna.m | 29,372 | utf_8 | b34c4e02b1fa332bece2bf4d9fc26526 | function TestNRAPredictMatches
% TestNRAPredictMatches
%
% Work out what the little model does for various choices of input
%
% 12/4/10 dhb Wrote it.
% 4/20/11 dhb Lot's of little changes. Switch polarity of data plots
%% Clear
clear; close all;
% Define relevant directories.
currentDir = pwd;
dataDir = '/Users/Shared/Matlab/Experiments/HDRExperiments/HDRAna';
whichDataSet = 2;
%% Choose model parameters and generate predictions, plot.
% Let's one explore what the model can do.
%DO_PRELIM_STUFF = 0;
% if (DO_PRELIM_STUFF)
% yRef = logspace(-2,4);
%
% %% Set up parameters
% params0.rmaxRef = 1.0;
% params0.gainRef = 10e-4;
% params0.offsetRef = 0;
% params0.expRef = 2.5;
% params0.rmax = 1.01;
% params0.gain = 0.5*10e-4;
% params0.offset = 1;
% params0.exp = 1;
%
% %% Plot effect of mucking with exponent
% figure; clf; hold on
% exponents = [1.5 2 2.5];
% for i = 1:length(exponents)
% params0.exp = exponents(i);
% yMatch{i} = NRAPredictMatches(yRef,params0);
%
% % Plot
% plot(log10(yMatch{i}),log10(yRef),'k','LineWidth',3);
% xlim([-3 5]); ylim([-3 5]);
% xlabel('Log10 Target Lum');
% ylabel('Log10 Standard Lum/Refl');
% end
% end
paletteGlossy = [-2.0458e+00 -1.8447e+00 -1.6840e+00 -1.4881e+00 -1.3251e+00 -1.1838e+00 -1.0424e+00 -9.2046e-01 -8.1417e-01 -7.1175e-01 ...
-6.2160e-01 -5.3180e-01 -4.5087e-01 -3.7192e-01 -2.9654e-01 -2.2746e-01 -1.6488e-01 -1.0768e-01 -4.3064e-02];
paletteMatte = [ NaN NaN NaN -1.4660 -1.3279 -1.1379 -1.0155 -0.8726 -0.7791 -0.6807 -0.6038 ...
-0.5046 -0.4332 -0.3622 -0.3050 -0.2280 -0.1671 -0.0941 -0.0472];
paletteGlossyTruncated = [NaN NaN NaN paletteGlossy(:,4:end)];
%% Fit some matching data
SARAH_TEST_DATA = 0;
if (SARAH_TEST_DATA)
else
switch whichDataSet
case 1
conditionList = {'FullGlossyfull','FullGlossytruncated', 'FullMattetruncated', 'WhiteGlossyfull','WhiteGlossytruncated', 'WhiteMattetruncated'};
subjectList = {'bam', 'cly', 'flv', 'lta' ,'ncd', 'rpd', 'stg', 'tfm'};
keepSomeData = [
[ -1.3802 -1.2294 -0.9707 -0.7100 -0.3612 0.0249 0.3078 0.5715 0.7699 0.9778 1.0846 1.3089 1.4555 1.5644 1.7196 1.9207 2.0673 2.2239 2.3914];
[ NaN NaN NaN -0.9522 -0.6050 -0.2339 0.1047 0.4402 0.6977 0.8384 1.0023 1.2422 1.4114 1.5759 1.7508 1.9397 2.0528 2.2656 2.4112];
[ NaN NaN NaN -1.0312 -0.7059 -0.2358 0.1020 0.4629 0.6309 0.8030 1.0495 1.1958 1.3473 1.5350 1.6646 1.8909 2.0447 2.2378 2.3792];
[ NaN -0.0746 0.0318 0.2519 0.6330 0.9303 1.1223 1.3450 1.5182 1.7405 1.8143 2.0090 1.9072 2.2261 NaN 2.4317 NaN NaN NaN];
[ NaN NaN NaN -0.0043 0.4266 0.6850 0.9769 1.2355 1.4810 1.6573 1.7507 1.9130 2.0836 2.1939 NaN 2.4042 NaN NaN NaN];
[ NaN NaN NaN 0.0356 0.3936 0.7326 0.9986 1.2143 1.4117 1.5808 1.7714 1.9066 2.0828 2.1358 2.3293 2.3833 NaN NaN NaN];];
case 2
conditionList = {'FullGlossyfull2','FullMattetruncated2', 'Full30Glossyfull2', 'Full30Mattetruncated2', 'White30Glossyfull','White30Mattetruncated', 'Gray30Glossyfull', 'Gray30Mattetruncated'};
subjectList = {'bam', 'cly', 'ncd', 'stg', 'tfm'};
keepSomeData = [
[ -1.0849 -0.9622 -0.8648 -0.6281 -0.3869 -0.1036 0.2128 0.4567 0.7647 0.9488 1.1614 ...
1.3723 1.5101 1.6622 1.7990 1.9214 2.0359 2.2311 2.3199];
[ NaN NaN NaN -0.8392 -0.5873 -0.1825 0.1171 0.4655 0.7031 0.9464 1.1034 ...
1.3530 1.4774 1.6270 1.8231 1.9047 2.1262 2.2451 2.2713]
[ NaN NaN NaN NaN NaN 1.2849 1.2088 1.2595 1.3693 1.4580 1.5826 ...
1.7126 1.8139 1.9713 2.1010 2.1720 2.3164 2.4515 2.5170];
[ NaN NaN NaN NaN NaN NaN 1.1963 1.2787 1.3236 1.4529 1.5473 ...
1.6579 1.8419 1.8985 2.0625 2.1901 2.3280 2.4015 2.5215];
[ NaN NaN NaN NaN NaN 1.2475 1.2973 1.3907 1.6027 1.7238 1.8637...
1.9849 2.0992 2.2393 2.3454 2.4286 2.5200 2.5425 2.6196];
[NaN NaN NaN NaN NaN 1.2689 1.2883 1.4364 1.5560 1.7329 1.8336...
1.9731 2.1075 2.2431 2.3248 2.4025 2.5065 2.5691 2.6030];
[ NaN NaN NaN -0.0572 -0.0016 0.0921 0.2724 0.4301 0.5819 0.7071 0.7965 ...
0.9089 1.0300 1.0749 1.1734 1.2381 1.2656 NaN NaN];
[NaN NaN NaN NaN -0.0920 0.0354 0.2398 0.4029 0.5708 0.6956 0.7910...
0.9222 1.0426 1.0873 1.1855 1.2379 NaN NaN NaN];];
case 3
subjectList={'ajh', 'arp', 'kjn', 'orp' ,'rvn'};
conditionList = {'FullGlossyfull3', 'FullGlossyfull4','Full30Glossyfull3','Full30Glossyfull4'...
, 'Full1000Glossyfull3', 'FullGray30Glossyfull', 'FullGray1000Glossyfull', ...
'FullMeanPlusGlossyfull', 'Full30MeanPlusGlossyfull', 'FullGray30MeanPlusGlossyfull', 'FullMeanPlusGlossyfull2', 'FullMeanMinusGlossyfull2'};
keepSomeData = [[-1.2469 -1.0194 -0.6968 -0.3888 -0.1960 0.1387 0.3627 0.6095 0.8034 0.8159 ...
0.9833 1.1952 1.3942 1.5388 1.5710 1.7905 2.0848 2.0719 2.3168]; % full3
[ -1.4012 -0.9285 -0.7862 -0.4952 -0.2476 0.0172 0.2259 0.4565 0.5586 0.7049 ...
0.8431 1.0677 1.1933 1.3972 1.6246 1.7266 1.8868 2.1460 2.2618]; % full4
[NaN NaN NaN NaN 1.1345 1.1445 1.2867 1.3138 1.3704 1.5017 ...
1.5732 1.6708 1.7791 1.8904 1.9778 2.0832 2.2022 2.3184 2.4071]; % full30 3
[NaN NaN NaN NaN NaN NaN 1.1932 1.2166 1.2841 1.4061 ...
1.4842 1.6065 1.6801 1.8158 1.9317 2.0486 2.1714 2.2893 2.4259]; % full30 4
[ -0.3140 -0.2027 -0.0686 0.0819 0.2873 0.4310 0.5986 0.7905 0.8960 1.0847 ...
1.2355 1.3290 1.4651 1.6356 1.7116 1.8833 1.9983 2.1780 2.3949]; % full 1000
[ NaN NaN NaN NaN 0.4098 0.4786 0.6039 0.7330 0.8416 0.8923 ...
0.9797 1.1226 1.1993 1.3123 1.4279 1.5174 1.6544 1.6851 NaN]; % full Gray30
[ -1.0961 -0.8952 -0.7221 -0.4952 -0.3652 -0.1803 -0.0603 0.0522 0.3139 0.3222 ...
0.4816 0.6810 0.8161 0.9925 1.1563 1.3792 1.5010 1.6713 1.7328]; % full gray 1000;
[-1.2028 -0.9204 -0.6084 -0.2414 -0.0021 0.0723 0.2916 0.5297 0.6825 0.8876 ...
0.9969 1.2277 1.2544 1.4292 1.6247 1.8370 2.0001 2.1447 2.2880]; % full mean plus;
[NaN NaN NaN NaN NaN NaN 1.1726 1.2939 1.3940 1.5356 ...
1.5940 1.7435 1.8141 1.9606 2.0642 2.1749 2.3042 2.3794 2.4674]; % full30 mean plus;
[NaN NaN NaN NaN 0.4270 0.4158 0.5322 0.6765 0.7749 0.8527 ...
0.9992 1.1176 1.2819 1.3642 1.4917 1.6065 1.6876 NaN NaN]; % fullgray30
[-7.5486e-01 -6.3016e-01 -3.7002e-01 -7.5043e-02 2.5521e-01 4.1869e-01 6.5650e-01 8.2140e-01 9.3936e-01 ...
1.1518e+00 1.3266e+00 1.3894e+00 1.4861e+00 1.7282e+00 1.8061e+00 1.9940e+00 2.1053e+00 2.2826e+00 2.3641e+00]; % fullmeanplus2
[-8.8795e-01 -7.5641e-01 -5.6947e-01 -4.3999e-01 -2.9319e-01 -1.1604e-01 5.8502e-02 2.5986e-01 3.7464e-01 ...
5.2778e-01 6.5286e-01 8.2851e-01 9.8959e-01 1.1379e+00 1.4417e+00 1.6340e+00 1.7811e+00 2.0558e+00 2.1961e+00]; % fullmeanminus
];
end
for i = 1:length(conditionList)
for j=1:length(subjectList)
luminanceMatchesPerChip{i,j} = load(fullfile(dataDir,'data',conditionList{i},subjectList{j},[conditionList{i} '-' subjectList{j} '-TestAverages.txt']));
luminanceMatchesPerChip{i,j} = luminanceMatchesPerChip{i,j}(:, 2:end);
% averageLumMatchesPerSubject{j}(:,i) = nanmean(luminanceMatchesPerChip{i,j},2);
averageLumMatchesPerSubject{i}(:,j) = nanmean(luminanceMatchesPerChip{i,j},2);
end
end
averageLumMatchesPerSubjectAll{i} = averageLumMatchesPerSubject{i};
%% See how many matches per subject are made.
% If less than 3 subjects assigned anything to this chip, drop them.
for g = 1: length(averageLumMatchesPerSubject)
nSubjectMatches{g} = sum(isnan(averageLumMatchesPerSubject{g}),2);
end
for g = 1: length(nSubjectMatches)
for r = 1:length(nSubjectMatches{g})
if (nSubjectMatches{g}(r) > 2)
averageLumMatchesPerSubject{g}(r,:) = nan(1, size(averageLumMatchesPerSubject{g},2));
end
end
end
cd(currentDir);
xDataLim = [-2 3];
yDataLim = [-3 0];
fid = fopen(['ANA_TEST_DATA/ParamDump_All' num2str(whichDataSet) '.txt'],'w');
figPrefix = 'ANA_TEST_DATA/';
RESPONSE_REMAP = 0;
end
% Optional search to find reference parameters that put the responses rougly equally spaced on the y-axis. This isn't theoretically critical, but
% seems as good an idea as any.
FITREF = 0;
if (FITREF)
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','iter','LargeScale','off','Algorithm','active-set');
options = optimset(options,'MaxFunEvals',1200);
targetRespRef = linspace(critValue,1-critValue,length(someDataRef));
conTolRef = (targetRespRef(2)-targetRespRef(1));
x0 = ParamsToListRef(params0);
vlb = [x0(1)/100 x0(2) -100*mean(someDataRef) 1];
vub = [x0(1)*100 x0(2) 100*mean(someDataRef) 4];
x1 = fmincon(@InlineMinFunctionRef,x0,[],[],[],[],vlb,vub,@InlineConFunctionRef,options);
params0 = ListToParamsRef(x1,params0);
end
%% Now do the fitting wrt to the reference paramters
% rangeFig = figure;
rangeFig = figure;
dataFig = figure;
position = get(gcf,'Position');
position(3) = 1000; position(4) = 400;
set(gcf,'Position',position);
allData = cell(1,length(conditionList));
for i = 1:length(conditionList)
temptemp = [];
for j = 1:length(subjectList)
temptemp = [temptemp; [averageLumMatchesPerSubject{i}(:,j)']];
end
%allDataMean(i,:) = nanmean(temptemp, 1);
acrossSubjectLumAverages{i} = NaN(size(paletteGlossy',1),1);
for g = 1:size(paletteGlossy',1)
okindex = ~isnan(averageLumMatchesPerSubject{i}(g,:)');
tt=mean(averageLumMatchesPerSubject{i}(g,okindex))';
acrossSubjectLumAverages{i}(g,1)=tt;
end
temptemp = [temptemp; acrossSubjectLumAverages{i}(:)'] ;
allData{i} = temptemp;
clear temptemp
end
clear okindex;
%% for debugging purposes.
for i = 1:length(conditionList)
check = keepSomeData(i,:) - acrossSubjectLumAverages{i}(:)';
end
%%
someData = [];
for i = 1:length(conditionList)
someData = [someData; acrossSubjectLumAverages{i}(:)'];
end
check = keepSomeData - someData
for whichData = 1:size(someData,1)
switch (whichDataSet)
case 1
if whichData == 1 || whichData == 4
someDataRef = 10.^[paletteGlossy(1,:)];
elseif whichData == 2 || whichData == 5
someDataRef = 10.^[paletteMatte(1,:)];
elseif whichData == 3 || whichData == 6
someDataRef = 10.^[paletteMatte(1,:)];
end
case 2
if whichData == 1 || whichData == 3 || whichData == 5 || whichData == 7
someDataRef = 10.^[paletteGlossy(1,:)];
elseif whichData == 2 || whichData == 4 || whichData == 6 || whichData == 8
someDataRef = 10.^[paletteMatte(1,:)];
end
case 3
someDataRef = 10.^[paletteGlossy(1,:)];
end
%% Initialize parameters. Set reference rmax to 1 and exponent to 2. Find
% gain and offset that map the luminances across the central portion
% of the response range.
useDataRef = someDataRef;
clear params0
params0.rmaxRef = 1.0;
params0.expRef = 3;
critValue = 0.01;
minResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],critValue);
maxResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],1-critValue);
minRef = min(someDataRef);
maxRef = max(someDataRef);
params0.gainRef = (maxResp-minResp)/(maxRef-minRef);
params0.offsetRef = minRef-minResp/params0.gainRef;
paramsRefNoFit = params0;
if whichData == 1
%% Plot of remapping between response and reference log10
% luminance/reflectance
lumVals = logspace(log10(someDataRef(1)),log10(someDataRef(end)),1000);
lumVals = logspace(-3,0,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefForRemap = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
respRefRemapped = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefForRemap)/params0.gainRef+params0.offsetRef);
remapFig = figure; clf; hold on
plot(respRefForRemap,respRefRemapped,'r','LineWidth',2);
xlim([0 1]);
ylim(yDataLim);
xlabel('Visual Response');
ylabel('Predicted Reflectance Match');
cd(figPrefix);
%savefig('ResponseRemapping.pdf',remapFig,'pdf');
%save('ResponseRemappingData','respRefForRemap','respRefRemapped');
savefig(['ResponseRemapping' num2str(whichDataSet) '.pdf'],remapFig,'pdf');
save(['ResponseRemappingData' num2str(whichDataSet)],'respRefForRemap','respRefRemapped');
cd ..
end
someDataMatch = 10.^[someData(whichData,:)]
okIndex = find(~isnan(someDataMatch));
useDataMatch = someDataMatch(okIndex);
useDataRef = someDataRef(okIndex);
figure(dataFig); clf;
subplot(1,2,1); hold on
plot(log10(useDataMatch),log10(useDataRef),'bo','MarkerFaceColor','b','MarkerSize',8);
xlabel('Log10 Target Lum');
ylabel('Log10 Standard Lum/Refl');
% Parameter search options
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
% Initialize match parameters in same way
endPointWeight = 0;
params0.rmax = params0.rmaxRef;
params0.exp = params0.expRef;
params0.gain = params0.gainRef;
params0.offset = params0.offsetRef;
someDataPred0 = NRAPredictMatches(someDataRef,params0);
%plot(log10(someDataRef),log10(someDataPred0),'y','LineWidth',1);
%params0
fprintf(fid,['Dataset ' conditionList{whichData} '\n']);
fprintf(fid,'\tReference params: gain = %0.2g, offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',params0.gainRef,params0.offsetRef,params0.rmaxRef,params0.expRef);
% Fit, first just gain
x0 = ParamsToList(params0);
vlb = [x0(1) x0(2)/100 x0(3:end)];
vub = [x0(1) x0(2)*100 x0(3:end)];
x1 = fmincon(@InlineMinFunction,x0,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x1,params0);
someDataPred1 = NRAPredictMatches(someDataRef,params0);
%plot(log10(someDataPred1),log10(someDataRef),'b','LineWidth',1);
%params0
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain only model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Fit, gain and offset
vlb = [x1(1) x1(2)/100 x1(3) -100*abs(x1(4)) x1(5)];
vub = [x1(1) x1(2)*100 x1(3) 100*abs(x1(4)) x1(5)];
x2 = fmincon(@InlineMinFunction,x1,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x2,params0);
someDataPred2 = NRAPredictMatches(someDataRef,params0);
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain/Offset model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
paramsGainOffset = params0;
%params0
% Exp
FITEXP = 1;
if (FITEXP)
vlb = [x2(1) x2(2)/100 x2(3) -100*abs(x2(4)) 0.5];
vub = [x2(1) x2(2)*100 x2(3) 100*abs(x2(4)) 4];
endPointWeight = 10;
x3 = fmincon(@InlineMinFunction,x2,[],[],[],[],vlb,vub,[],options);
endPointWeight = 0;
x3 = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x3,params0);
someDataPred3 = NRAPredictMatches(someDataRef,params0);
else
x3 = x2;
someDataPred3 = NRAPredictMatches(someDataRef,params0);
end
fprintf(fid,'\tGain/Offset/Exp model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Let rMax vary too. This doesn't add much if exponent varies.. Tp the fits, so I
% uncluttered plots by removing. Have not looked at whether varying
% rMax can be substituted for varying the exponent.
FITMAX = 0;
if (FITMAX)
vlb = [x3(1) x3(2)/100 0.5 -100*abs(x3(4)) x3(5)];
vub = [x3(1) x3(2)*100 2 100*abs(x3(4)) x3(5)];
x = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x,params0);
someDataPred = NRAPredictMatches(someDataRef,params0);
plot(log10(someDataPred3),log10(someDataRef),'k','LineWidth',1.5);
%params0
else
x = x3;
someDataPred = NRAPredictMatches(someDataRef,params0);
end
% Dump of interesting parameters
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tPredicted (actual) black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(1),someDataMatch(1),someDataPred(end),log10(someDataMatch(end)));
fprintf(fid,'\tOne-in predicted black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(2),someDataMatch(2),someDataPred(end-1),log10(someDataMatch(end-1)));
% Plot stuff of interest
plot(log10(someDataPred),log10(someDataRef),'r','LineWidth',3);
plot(log10(someDataPred2),log10(someDataRef),'g','LineWidth',1);
xlim(xDataLim); ylim(yDataLim);
% Add plot of response functions for ref and match
% Subtract the old offset, and truncate below 0 to zero.
% We allow an optional remapping of the response back to the
% luminance/reflectance space of the reference matches. This
% mapping is static across contexts. This turns out not to
% terribly interesting.
lumVals = logspace(-2,3,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefSmooth = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRefSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gainRef*(someDataRef-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRef = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRef)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(lumVals-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatchSmooth = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatchSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatchSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(someDataMatch-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatch = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatch = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatch)/params0.gainRef+params0.offsetRef);
end
ySub = paramsGainOffset.gain*(lumVals-paramsGainOffset.offset);
ySub(ySub <= 0) = 0+eps;
respGainOffsetSmooth = ComputeNakaRushton([paramsGainOffset.rmax 1 paramsGainOffset.exp],ySub);
if (RESPONSE_REMAP)
respGainOffsetSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respGainOffsetSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = paramsRefNoFit.gainRef*(lumVals-paramsRefNoFit.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefNoFitSmooth = ComputeNakaRushton([paramsRefNoFit.rmaxRef 1 paramsRefNoFit.expRef],ySub);
if (RESPONSE_REMAP)
respRefNoFitSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefNoFitSmooth)/params0.gainRef+params0.offsetRef);
end
subplot(1,2,2); hold on
plot(log10(someDataRef),respRef,'ko','MarkerFaceColor','k','MarkerSize',6);
plot(log10(lumVals),respRefSmooth,'k:','LineWidth',2);
%plot(log10(lumVals),respRefNoFitSmooth,'b','LineWidth',1);
plot(log10(someDataMatch),respMatch,'bo','MarkerFaceColor','b','MarkerSize',8);
plot(log10(lumVals),respMatchSmooth,'r','LineWidth',2);
plot(log10(lumVals),respGainOffsetSmooth,'g','LineWidth',1);
xlim(xDataLim);
if (RESPONSE_REMAP)
ylim(yDataLim);
ylabel('Remapped Response');
else
ylim([0 1.2]);
ylabel('Response');
end
xlabel('Log10 luminance');
% Save figure
cd(figPrefix);
savefig(['TestFit_' num2str(whichDataSet) ' ' conditionList{whichData} '.pdf'],dataFig,'pdf');
cd('..');
fprintf(fid,'\n');
%% Fill output summary structure
if (SARAH_TEST_DATA)
summaryStructs(whichData-1).whitePoint = someDataPred(end);
summaryStructs(whichData-1).blackPoint = someDataPred(1);
summaryStructs(whichData-1).range = someDataPred(end) - someDataPred(1);
summaryStructs(whichData-1).exp = params0.exp;
predictExpFromWB(whichData-1,1) = summaryStructs(whichData-1).whitePoint;
predictExpFromWB(whichData-1,2) = log10(summaryStructs(whichData-1).range);
expVals(whichData-1,1) = summaryStructs(whichData-1).exp;
%% Range versus exp figure
figure(rangeFig)
subplot(1,2,1); hold on
plot(summaryStructs(whichData-1).range,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('Range'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
subplot(1,2,2); hold on
plot(summaryStructs(whichData-1).whitePoint,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('White Point'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
else
summaryStructs(whichData).whitePoint = someDataPred(end);
summaryStructs(whichData).blackPoint = someDataPred(1);
summaryStructs(whichData).range = someDataPred(end) - someDataPred(1);
summaryStructs(whichData).exp = params0.exp;
predictExpFromWB(whichData,1) = summaryStructs(whichData).whitePoint;
predictExpFromWB(whichData,2) = log10(summaryStructs(whichData).range);
expVals(whichData,1) = summaryStructs(whichData).exp;
%% Range versus exp figure
figure(rangeFig)
subplot(1,2,1); hold on
plot(summaryStructs(whichData).range,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('Range'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
subplot(1,2,2); hold on
plot(summaryStructs(whichData).whitePoint,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('White Point'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
end
end
fclose(fid);
%% Try to predict exponents
% expRegCoefs = predictExpFromWB\expVals;
% predictedExpVals = predictExpFromWB*expRegCoefs;
% expPredFig = figure; clf; hold on
% plot(expVals,predictedExpVals,'ro','MarkerSize',8,'MarkerFaceColor','r');
% plot([0 4],[0 4],'k');
% xlim([0 4]); ylim([0 4]);
% xlabel('Exponent'); ylabel('Predicted Exponent');
% axis('square');
%% Write out summary structs
cd(figPrefix);
if (SARAH_TEST_DATA)
WriteStructsToText('SummaryData.txt',summaryStructs);
else
WriteStructsToText(['SummaryData', num2str(whichDataSet), '.txt'],summaryStructs);
end
cd('..');
%% Save plot of exponent versus range
cd(figPrefix);
if (SARAH_TEST_DATA)
savefig(['ExpVersusRange.pdf'],rangeFig,'pdf');
else
savefig(['ExpVersusRange', num2str(whichDataSet),'.pdf'],rangeFig,'pdf');
end
cd('..');
%% INLINE FUNCTION TO BE USED FOR CTF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunction(x)
paramsInline = ListToParams(x,params0);
yPred = NRAPredictMatches(useDataRef,paramsInline);
yPred(yPred <= 0) = 0 + eps;
yDiff = log10(useDataMatch)-log10(yPred);
f = sum(yDiff.^2) + endPointWeight*yDiff(1).^2 + endPointWeight*yDiff(end).^2;
end
%% INLINE FUNCTION TO BE USED FOR REF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
f = sum(abs(yDiff));
%f = sum(yDiff.^2);
end
function [g,geq] = InlineConFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
g = max(abs(yDiff))-conTolRef;
geq = 0;
end
end
%% Param translation
function params = ListToParams(x,params0)
params = params0;
params.gainRef = x(1);
params.gain = x(2);
params.rmax = x(3);
params.offset = x(4);
params.exp = x(5);
end
function x = ParamsToList(params)
x = [params.gainRef params.gain params.rmax params.offset params.exp];
end
function params = ListToParamsRef(x,params0)
params = params0;
params.gainRef = x(1);
params.rmaxRef = x(2);
params.offsetRef = x(3);
params.expRef = x(4);
end
function x = ParamsToListRef(params)
x = [params.gainRef params.rmaxRef params.offsetRef params.expRef];
end
|
github | BrainardLab/TeachingCode-master | TestPredictNRAffineMatchesContol.m | .m | TeachingCode-master/MatlabTutorials/lightessModelsTutorial/TestPredictNRAffineMatchesContol.m | 21,771 | utf_8 | 3fb8e64c27a74be3bd8a49675a9464b0 | function TestPredictNRAffineMatchesContol
% TestPredictNRAffineMatchesControl
%
% Fit the model through the control conditions.
%
% 05/20/11 ar Adapded it in order to Model bunch of old controls previously done by Sarah.
%% Clear
clear; close all;
% Define relevant directories.
currentDir = pwd;
dataDir = '/Users/Shared/Matlab/Experiments/HDRExperiments/HDRAna';
whichDataSet = 1;
%% Choose model parameters and generate predictions, plot.
% Let's one explore what the model can do.
%DO_PRELIM_STUFF = 0;
% if (DO_PRELIM_STUFF)
% yRef = logspace(-2,4);
%
% %% Set up parameters
% params0.rmaxRef = 1.0;
% params0.gainRef = 10e-4;
% params0.offsetRef = 0;
% params0.expRef = 2.5;
% params0.rmax = 1.01;
% params0.gain = 0.5*10e-4;
% params0.offset = 1;
% params0.exp = 1;
%
% %% Plot effect of mucking with exponent
% figure; clf; hold on
% exponents = [1.5 2 2.5];
% for i = 1:length(exponents)
% params0.exp = exponents(i);
% yMatch{i} = NRAPredictMatches(yRef,params0);
%
% % Plot
% plot(log10(yMatch{i}),log10(yRef),'k','LineWidth',3);
% xlim([-3 5]); ylim([-3 5]);
% xlabel('Log10 Target Lum');
% ylabel('Log10 Standard Lum/Refl');
% end
% end
%% Palette Values from Sarah's old experiments.
paletteGlossy = [ -2.1460 -1.8211 -1.7097 -1.5066 -1.3266 -1.1874 -1.0410 -0.9402 -0.8007 -0.7012 -0.6070 ...
-0.5109 -0.4395 -0.3639 -0.3139 -0.2053 -0.1452 -0.0880 -0.0307];
paletteMatte = [ NaN NaN NaN -1.3619 -1.3298 -1.1938 -0.9993 -0.9174 -0.8027 -0.7206 -0.6117 ...
-0.5474 -0.4374 -0.3707 -0.2806 -0.2226 -0.1525 -0.1009 -0.0419 ];
%% Fit some matching data
SARAH_TEST_DATA = 0;
if (SARAH_TEST_DATA)
else
switch whichDataSet
case 1
conditionList = {'SIonGlossy','SIoffGlossy', 'SIoldMatte', 'fMonGlossy','fMoffGlossy', 'fMoldMatte',};
% subjectList = {'bam', 'cly', 'flv', 'lta' ,'ncd', 'rpd', 'stg', 'tfm'};
someData = [[-1.1820 -0.7709 -0.5714 -0.2102 -0.0518 0.1396 0.3406 0.4518 0.6188 0.8408 0.9734 1.1930 1.2922 1.4202 1.5267 1.6482 1.7918 2.0094 2.2232 ];
[ -1.2288 -0.7391 -0.3809 -0.2950 -0.1586 0.1467 0.2993 0.4713 0.6734 0.7679 0.9406 1.0131 1.2507 1.3145 1.4443 1.6137 1.7227 2.0653 2.1752];
[ NaN NaN NaN -0.5785 -0.2625 -0.0359 0.2090 0.4355 0.5728 0.7679 0.9699 1.1320 1.2803 1.4505 1.6429 1.7727 1.8928 2.0566 2.1480];
[-1.1133 -0.7398 -0.4359 -0.1763 0.0267 0.3351 0.5433 0.7359 0.8915 1.0952 1.2348 1.3061 1.4766 1.6375 1.7163 1.9082 1.9294 2.1959 2.1790];
[-1.2353 -0.4408 -0.3123 -0.1259 0.1121 0.2837 0.4506 0.7405 0.9927 0.9704 1.2497 1.4010 1.4841 1.6258 1.6844 1.7980 2.0851 2.1959 2.2573];
[ NaN NaN NaN -0.6949 -0.2629 0.0446 0.3898 0.5828 0.8021 1.0371 1.0989 1.3152 1.4972 1.6377 1.7715 1.9127 2.0254 2.1249 2.2717]; ]
end
cd(currentDir);
xDataLim = [-2 3];
yDataLim = [-3 0];
fid = fopen(['ANA_TEST_DATA/ParamDump_Control' num2str(whichDataSet) '.txt'],'w');
figPrefix = 'ANA_TEST_DATA/';
RESPONSE_REMAP = 0;
end
% Optional search to find reference parameters that put the responses rougly equally spaced on the y-axis. This isn't theoretically critical, but
% seems as good an idea as any.
FITREF = 0;
if (FITREF)
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','iter','LargeScale','off','Algorithm','active-set');
options = optimset(options,'MaxFunEvals',1200);
targetRespRef = linspace(critValue,1-critValue,length(someDataRef));
conTolRef = (targetRespRef(2)-targetRespRef(1));
x0 = ParamsToListRef(params0);
vlb = [x0(1)/100 x0(2) -100*mean(someDataRef) 1];
vub = [x0(1)*100 x0(2) 100*mean(someDataRef) 4];
x1 = fmincon(@InlineMinFunctionRef,x0,[],[],[],[],vlb,vub,@InlineConFunctionRef,options);
params0 = ListToParamsRef(x1,params0);
end
%% Now do the fitting wrt to the reference paramters
% rangeFig = figure;
rangeFig = figure;
dataFig = figure;
position = get(gcf,'Position');
position(3) = 1000; position(4) = 400;
set(gcf,'Position',position);
% allData = cell(1,length(conditionList));
% for i = 1:length(conditionList)
% temptemp = [];
% for j = 1:length(subjectList)
% temptemp = [temptemp; [averageLumMatchesPerSubject{i}(:,j)']];
% end
% %allDataMean(i,:) = nanmean(temptemp, 1);
% acrossSubjectLumAverages{i} = NaN(size(paletteGlossy',1),1);
% for g = 1:size(paletteGlossy',1)
% okindex = ~isnan(averageLumMatchesPerSubject{i}(g,:)');
% tt=mean(averageLumMatchesPerSubject{i}(g,okindex))';
% acrossSubjectLumAverages{i}(g,1)=tt;
% end
% temptemp = [temptemp; acrossSubjectLumAverages{i}(:)'] ;
% allData{i} = temptemp;
% clear temptemp
% end
% clear okindex;
% %% for debugging purposes.
% for i = 1:length(conditionList)
% check = keepSomeData(i,:) - acrossSubjectLumAverages{i}(:)';
% end
% %%
% someData = [];
% for i = 1:length(conditionList)
% someData = [someData; acrossSubjectLumAverages{i}(:)'];
% end
for whichData = 1:size(someData,1)
switch (whichDataSet)
case 1
if whichData == 1 || whichData == 2 || whichData == 4 || whichData == 5
someDataRef = 10.^[paletteGlossy(1,:)];
elseif whichData == 3 || whichData == 6
someDataRef = 10.^[paletteMatte(1,:)];
end
end
%% Initialize parameters. Set reference rmax to 1 and exponent to 2. Find
% gain and offset that map the luminances across the central portion
% of the response range.
useDataRef = someDataRef;
clear params0
params0.rmaxRef = 1.0;
params0.expRef = 3;
critValue = 0.01;
minResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],critValue);
maxResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],1-critValue);
minRef = min(someDataRef);
maxRef = max(someDataRef);
params0.gainRef = (maxResp-minResp)/(maxRef-minRef);
params0.offsetRef = minRef-minResp/params0.gainRef;
paramsRefNoFit = params0;
if whichData == 1
%% Plot of remapping between response and reference log10
% luminance/reflectance
lumVals = logspace(log10(someDataRef(1)),log10(someDataRef(end)),1000);
lumVals = logspace(-3,0,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefForRemap = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
respRefRemapped = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefForRemap)/params0.gainRef+params0.offsetRef);
remapFig = figure; clf; hold on
plot(respRefForRemap,respRefRemapped,'r','LineWidth',2);
xlim([0 1]);
ylim(yDataLim);
xlabel('Visual Response');
ylabel('Predicted Reflectance Match');
cd(figPrefix);
%savefig('ResponseRemapping.pdf',remapFig,'pdf');
%save('ResponseRemappingData','respRefForRemap','respRefRemapped');
savefig(['ResponseRemappingControl' num2str(whichDataSet) '.pdf'],remapFig,'pdf');
save(['ResponseRemappingDataControl' num2str(whichDataSet)],'respRefForRemap','respRefRemapped');
cd ..
end
someDataMatch = 10.^[someData(whichData,:)];
okIndex = find(~isnan(someDataMatch));
useDataMatch = someDataMatch(okIndex);
useDataRef = someDataRef(okIndex);
figure(dataFig); clf;
subplot(1,2,1); hold on
plot(log10(useDataMatch),log10(useDataRef),'bo','MarkerFaceColor','b','MarkerSize',8);
xlabel('Log10 Target Lum');
ylabel('Log10 Standard Lum/Refl');
% Parameter search options
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
% Initialize match parameters in same way
endPointWeight = 0;
params0.rmax = params0.rmaxRef;
params0.exp = params0.expRef;
params0.gain = params0.gainRef;
params0.offset = params0.offsetRef;
someDataPred0 = NRAPredictMatches(someDataRef,params0);
%plot(log10(someDataRef),log10(someDataPred0),'y','LineWidth',1);
%params0
fprintf(fid,['Dataset ' conditionList{whichData} '\n']);
fprintf(fid,'\tReference params: gain = %0.2g, offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',params0.gainRef,params0.offsetRef,params0.rmaxRef,params0.expRef);
% Fit, first just gain
x0 = ParamsToList(params0);
vlb = [x0(1) x0(2)/100 x0(3:end)];
vub = [x0(1) x0(2)*100 x0(3:end)];
x1 = fmincon(@InlineMinFunction,x0,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x1,params0);
someDataPred1 = NRAPredictMatches(someDataRef,params0);
%plot(log10(someDataPred1),log10(someDataRef),'b','LineWidth',1);
%params0
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain only model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Fit, gain and offset
vlb = [x1(1) x1(2)/100 x1(3) -100*abs(x1(4)) x1(5)];
vub = [x1(1) x1(2)*100 x1(3) 100*abs(x1(4)) x1(5)];
x2 = fmincon(@InlineMinFunction,x1,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x2,params0);
someDataPred2 = NRAPredictMatches(someDataRef,params0);
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain/Offset model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
paramsGainOffset = params0;
%params0
% Exp
FITEXP = 1;
if (FITEXP)
vlb = [x2(1) x2(2)/100 x2(3) -100*abs(x2(4)) 0.5];
vub = [x2(1) x2(2)*100 x2(3) 100*abs(x2(4)) 4];
endPointWeight = 10;
x3 = fmincon(@InlineMinFunction,x2,[],[],[],[],vlb,vub,[],options);
endPointWeight = 0;
x3 = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x3,params0);
someDataPred3 = NRAPredictMatches(someDataRef,params0);
else
x3 = x2;
someDataPred3 = NRAPredictMatches(someDataRef,params0);
end
fprintf(fid,'\tGain/Offset/Exp model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Let rMax vary too. This doesn't add much if exponent varies.. Tp the fits, so I
% uncluttered plots by removing. Have not looked at whether varying
% rMax can be substituted for varying the exponent.
FITMAX = 0;
if (FITMAX)
vlb = [x3(1) x3(2)/100 0.5 -100*abs(x3(4)) x3(5)];
vub = [x3(1) x3(2)*100 2 100*abs(x3(4)) x3(5)];
x = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x,params0);
someDataPred = NRAPredictMatches(someDataRef,params0);
plot(log10(someDataPred3),log10(someDataRef),'k','LineWidth',1.5);
%params0
else
x = x3;
someDataPred = NRAPredictMatches(someDataRef,params0);
end
% Dump of interesting parameters
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tPredicted (actual) black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(1),someDataMatch(1),someDataPred(end),someDataMatch(end));
fprintf(fid,'\tOne-in predicted black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(2),someDataMatch(2),someDataPred(end-1),someDataMatch(end-1));
% Plot stuff of interest
plot(log10(someDataPred),log10(someDataRef),'r','LineWidth',3);
plot(log10(someDataPred2),log10(someDataRef),'g','LineWidth',1);
xlim(xDataLim); ylim(yDataLim);
% Add plot of response functions for ref and match
% Subtract the old offset, and truncate below 0 to zero.
% We allow an optional remapping of the response back to the
% luminance/reflectance space of the reference matches. This
% mapping is static across contexts. This turns out not to
% terribly interesting.
lumVals = logspace(-2,3,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefSmooth = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRefSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gainRef*(someDataRef-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRef = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRef)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(lumVals-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatchSmooth = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatchSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatchSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(someDataMatch-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatch = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatch = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatch)/params0.gainRef+params0.offsetRef);
end
ySub = paramsGainOffset.gain*(lumVals-paramsGainOffset.offset);
ySub(ySub <= 0) = 0+eps;
respGainOffsetSmooth = ComputeNakaRushton([paramsGainOffset.rmax 1 paramsGainOffset.exp],ySub);
if (RESPONSE_REMAP)
respGainOffsetSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respGainOffsetSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = paramsRefNoFit.gainRef*(lumVals-paramsRefNoFit.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefNoFitSmooth = ComputeNakaRushton([paramsRefNoFit.rmaxRef 1 paramsRefNoFit.expRef],ySub);
if (RESPONSE_REMAP)
respRefNoFitSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefNoFitSmooth)/params0.gainRef+params0.offsetRef);
end
subplot(1,2,2); hold on
plot(log10(someDataRef),respRef,'ko','MarkerFaceColor','k','MarkerSize',6);
plot(log10(lumVals),respRefSmooth,'k:','LineWidth',2);
%plot(log10(lumVals),respRefNoFitSmooth,'b','LineWidth',1);
plot(log10(someDataMatch),respMatch,'bo','MarkerFaceColor','b','MarkerSize',8);
plot(log10(lumVals),respMatchSmooth,'r','LineWidth',2);
plot(log10(lumVals),respGainOffsetSmooth,'g','LineWidth',1);
xlim(xDataLim);
if (RESPONSE_REMAP)
ylim(yDataLim);
ylabel('Remapped Response');
else
ylim([0 1.2]);
ylabel('Response');
end
xlabel('Log10 luminance');
% Save figure
cd(figPrefix);
savefig(['TestFit_Control' num2str(whichDataSet) ' ' conditionList{whichData} '.pdf'],dataFig,'pdf');
cd('..');
fprintf(fid,'\n');
%% Fill output summary structure
if (SARAH_TEST_DATA)
summaryStructs(whichData-1).whitePoint = someDataPred(end);
summaryStructs(whichData-1).blackPoint = someDataPred(1);
summaryStructs(whichData-1).range = someDataPred(end) - someDataPred(1);
summaryStructs(whichData-1).exp = params0.exp;
predictExpFromWB(whichData-1,1) = summaryStructs(whichData-1).whitePoint;
predictExpFromWB(whichData-1,2) = log10(summaryStructs(whichData-1).range);
expVals(whichData-1,1) = summaryStructs(whichData-1).exp;
%% Range versus exp figure
figure(rangeFig)
subplot(1,2,1); hold on
plot(summaryStructs(whichData-1).range,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('Range'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
subplot(1,2,2); hold on
plot(summaryStructs(whichData-1).whitePoint,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('White Point'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
else
summaryStructs(whichData).whitePoint = someDataPred(end);
summaryStructs(whichData).blackPoint = someDataPred(1);
summaryStructs(whichData).range = someDataPred(end) - someDataPred(1);
summaryStructs(whichData).exp = params0.exp;
predictExpFromWB(whichData,1) = summaryStructs(whichData).whitePoint;
predictExpFromWB(whichData,2) = log10(summaryStructs(whichData).range);
expVals(whichData,1) = summaryStructs(whichData).exp;
%% Range versus exp figure
figure(rangeFig)
subplot(1,2,1); hold on
plot(summaryStructs(whichData).range,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('Range'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
subplot(1,2,2); hold on
plot(summaryStructs(whichData).whitePoint,summaryStructs(whichData).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('White Point'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
end
end
fclose(fid);
%% Try to predict exponents
expRegCoefs = predictExpFromWB\expVals;
predictedExpVals = predictExpFromWB*expRegCoefs;
expPredFig = figure; clf; hold on
plot(expVals,predictedExpVals,'ro','MarkerSize',8,'MarkerFaceColor','r');
plot([0 4],[0 4],'k');
xlim([0 4]); ylim([0 4]);
xlabel('Exponent'); ylabel('Predicted Exponent');
axis('square');
%% Write out summary structs
cd(figPrefix);
if (SARAH_TEST_DATA)
WriteStructsToText('SummaryDataControl.txt',summaryStructs);
else
WriteStructsToText(['SummaryDataControl', num2str(whichDataSet), '.txt'],summaryStructs);
end
cd('..');
%% Save plot of exponent versus range
cd(figPrefix);
if (SARAH_TEST_DATA)
savefig(['ExpVersusRangeControl.pdf'],rangeFig,'pdf');
else
savefig(['ExpVersusRangeControl', num2str(whichDataSet),'.pdf'],rangeFig,'pdf');
end
cd('..');
%% INLINE FUNCTION TO BE USED FOR CTF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunction(x)
paramsInline = ListToParams(x,params0);
yPred = NRAPredictMatches(useDataRef,paramsInline);
yPred(yPred <= 0) = 0 + eps;
yDiff = log10(useDataMatch)-log10(yPred);
f = sum(yDiff.^2) + endPointWeight*yDiff(1).^2 + endPointWeight*yDiff(end).^2;
end
%% INLINE FUNCTION TO BE USED FOR REF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
f = sum(abs(yDiff));
%f = sum(yDiff.^2);
end
function [g,geq] = InlineConFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
g = max(abs(yDiff))-conTolRef;
geq = 0;
end
end
%% Param translation
function params = ListToParams(x,params0)
params = params0;
params.gainRef = x(1);
params.gain = x(2);
params.rmax = x(3);
params.offset = x(4);
params.exp = x(5);
end
function x = ParamsToList(params)
x = [params.gainRef params.gain params.rmax params.offset params.exp];
end
function params = ListToParamsRef(x,params0)
params = params0;
params.gainRef = x(1);
params.rmaxRef = x(2);
params.offsetRef = x(3);
params.expRef = x(4);
end
function x = ParamsToListRef(params)
x = [params.gainRef params.rmaxRef params.offsetRef params.expRef];
end
|
github | BrainardLab/TeachingCode-master | TestPredictNRAffineMatches.m | .m | TeachingCode-master/MatlabTutorials/lightessModelsTutorial/TestPredictNRAffineMatches.m | 21,578 | utf_8 | ebf3f7a8b2bbe30f79780c97aeb9448a | function TestPredictNRAffineMatches
% TestPredictNRAffineMatches
%
% Work out what the little model does for various choices of input
%
% 12/4/10 dhb Wrote it.
% 4/20/11 dhb Lot's of little changes. Switch polarity of data plots
%% Clear
clear; close all;
%% Choose model parameters and generate predictions, plot.
% Let's one explore what the model can do.
DO_PRELIM_STUFF = 0;
if (DO_PRELIM_STUFF)
yRef = logspace(-2,4);
%% Set up parameters
params0.rmaxRef = 1.0;
params0.gainRef = 10e-4;
params0.offsetRef = 0;
params0.expRef = 2.5;
params0.rmax = 1.01;
params0.gain = 0.5*10e-4;
params0.offset = 1;
params0.exp = 1;
%% Plot effect of mucking with exponent
figure; clf; hold on
exponents = [1.5 2 2.5];
for i = 1:length(exponents)
params0.exp = exponents(i);
yMatch{i} = PredictNRAffineMatches(yRef,params0);
% Plot
plot(log10(yMatch{i}),log10(yRef),'k','LineWidth',3);
xlim([-3 5]); ylim([-3 5]);
xlabel('Log10 Target Lum');
ylabel('Log10 Standard Lum/Refl');
end
end
%% Fit some matching data
SARAH_TEST_DATA = 0;
if (SARAH_TEST_DATA)
someData = [ ...
%[-1.4666 -1.3279 -1.1376 -1.0155 -0.8727 -0.7791 -0.6807 -0.6039 -0.5046 -0.4332 -0.3622 -0.3050 -0.2280 -0.1671 -0.0941 -0.0472]; ...
-0.3425 -0.1963 0.0211 0.2595 0.4734 0.5964 0.8080 0.9776 1.1431 1.3214 1.4757 1.6494 1.8117 1.9341 2.0687 2.1320;...
NaN -0.7632 -0.6575 -0.4410 -0.3869 -0.2870 -0.0619 -0.0495 0.1377 0.3261 0.5331 0.8137 1.0949 1.2788 1.4755 1.7163;...
-0.8488 -0.6492 -0.3507 -0.1405 0.0320 0.1059 0.5055 0.5369 0.6712 0.9123 1.1550 1.4602 1.6382 1.7404 1.9184 2.0872;...
-0.7557 -0.5774 -0.3305 -0.0248 0.1117 0.4900 0.5283 0.7715 0.8772 1.0994 1.3277 1.4880 1.7048 1.7955 2.0763 2.1066;...
-0.6644 -0.3730 -0.2039 -0.0068 0.2048 0.4702 0.6319 0.8008 0.9775 1.1454 1.4122 1.5620 1.6963 1.8275 1.8847 2.1487;...
-0.4542 -0.1567 0.0871 0.3464 0.5848 0.7929 1.0680 1.1379 1.2462 1.4850 1.6129 1.7910 1.9263 1.9863 2.2012 NaN;...
-0.3636 -0.1035 0.2051 0.4746 0.7457 0.9043 1.1863 1.2533 1.4154 1.6568 1.7909 1.9330 2.0616 2.0808 2.1693 2.2539;...
-0.1974 0.0098 0.2721 0.6128 0.8488 1.0728 1.2161 1.3985 1.4178 1.6738 1.7163 1.9348 1.9615 2.1480 2.1840 2.2982;...
-0.2089 0.1448 0.4346 0.7253 0.9232 1.1556 1.3072 1.4958 1.5687 1.7282 1.8244 2.0339 2.0361 2.1448 2.2066 NaN];
someDataRef = 10.^[someData(1,:)];
xDataLim = [-2 3];
yDataLim = [-2 3];
fid = fopen('SARAH_TEST_DATA/ParamDump.txt','w');
figPrefix = 'SARAH_TEST_DATA/';
RESPONSE_REMAP = 0;
else
someData = [ ...
[-2.0458e+00 -1.8447e+00 -1.6840e+00 -1.4881e+00 -1.3251e+00 -1.1838e+00 -1.0424e+00 -9.2046e-01 -8.1417e-01 -7.1175e-01 ...
-6.2160e-01 -5.3180e-01 -4.5087e-01 -3.7192e-01 -2.9654e-01 -2.2746e-01 -1.6488e-01 -1.0768e-01 -4.3064e-02]; %palette
[-1.4012 -0.9285 -0.7862 -0.4952 -0.2476 0.0172 0.2259 0.4565 0.5586 0.7049 ...
0.8431 1.0677 1.1933 1.3972 1.6246 1.7266 1.8868 2.1460 2.2618]; % full4
[-1.2469 -1.0194 -0.6968 -0.3888 -0.1960 0.1387 0.3627 0.6095 0.8034 0.8159 ...
0.9833 1.1952 1.3942 1.5388 1.5710 1.7905 2.0848 2.0719 2.3168]; % full3
[NaN NaN NaN NaN 1.1345 1.1445 1.2867 1.3138 1.3704 1.5017 ...
1.5732 1.6708 1.7791 1.8904 1.9778 2.0832 2.2022 2.3184 2.4071]; % full30 3
[NaN NaN NaN NaN NaN NaN 1.1932 1.2166 1.2841 1.4061 ...
1.4842 1.6065 1.6801 1.8158 1.9317 2.0486 2.1714 2.2893 2.4259]; % full30 4
[ -0.3140 -0.2027 -0.0686 0.0819 0.2873 0.4310 0.5986 0.7905 0.8960 1.0847 ...
1.2355 1.3290 1.4651 1.6356 1.7116 1.8833 1.9983 2.1780 2.3949]; % full 1000
[ NaN NaN NaN NaN 0.4098 0.4786 0.6039 0.7330 0.8416 0.8923 ...
0.9797 1.1226 1.1993 1.3123 1.4279 1.5174 1.6544 1.6851 NaN]; % full Gray30
[ -1.0961 -0.8952 -0.7221 -0.4952 -0.3652 -0.1803 -0.0603 0.0522 0.3139 0.3222 ...
0.4816 0.6810 0.8161 0.9925 1.1563 1.3792 1.5010 1.6713 1.7328]; % full gray 1000;
[-1.2028 -0.9204 -0.6084 -0.2414 -0.0021 0.0723 0.2916 0.5297 0.6825 0.8876 ...
0.9969 1.2277 1.2544 1.4292 1.6247 1.8370 2.0001 2.1447 2.2880]; % full mean plus;
[NaN NaN NaN NaN NaN NaN 1.1726 1.2939 1.3940 1.5356 ...
1.5940 1.7435 1.8141 1.9606 2.0642 2.1749 2.3042 2.3794 2.4674]; % full30 mean plus;
[NaN NaN NaN NaN 0.4270 0.4158 0.5322 0.6765 0.7749 0.8527 ...
0.9992 1.1176 1.2819 1.3642 1.4917 1.6065 1.6876 NaN NaN]; % fullgray30
[-7.5486e-01 -6.3016e-01 -3.7002e-01 -7.5043e-02 2.5521e-01 4.1869e-01 6.5650e-01 8.2140e-01 9.3936e-01 ...
1.1518e+00 1.3266e+00 1.3894e+00 1.4861e+00 1.7282e+00 1.8061e+00 1.9940e+00 2.1053e+00 2.2826e+00 2.3641e+00]; % fullmeanplus2
[-8.8795e-01 -7.5641e-01 -5.6947e-01 -4.3999e-01 -2.9319e-01 -1.1604e-01 5.8502e-02 2.5986e-01 3.7464e-01 ...
5.2778e-01 6.5286e-01 8.2851e-01 9.8959e-01 1.1379e+00 1.4417e+00 1.6340e+00 1.7811e+00 2.0558e+00 2.1961e+00]; % fullmeanminus
];
someDataRef = 10.^[someData(1,:)];
xDataLim = [-2 3];
yDataLim = [-3 0];
fid = fopen('ANA_TEST_DATA/ParamDump.txt','w');
figPrefix = 'ANA_TEST_DATA/';
RESPONSE_REMAP = 0;
end
%% Initialize parameters. Set reference rmax to 1 and exponent to 2. Find
% gain and offset that map the luminances across the central portion
% of the response range.
useDataRef = someDataRef;
clear params0
params0.rmaxRef = 1.0;
params0.expRef = 3;
critValue = 0.01;
minResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],critValue);
maxResp = InvertNakaRushton([params0.rmaxRef 1 params0.expRef],1-critValue);
minRef = min(someDataRef);
maxRef = max(someDataRef);
params0.gainRef = (maxResp-minResp)/(maxRef-minRef);
params0.offsetRef = minRef-minResp/params0.gainRef;
paramsRefNoFit = params0;
% Optional search to find reference parameters that put the responses rougly equally spaced on the y-axis. This isn't theoretically critical, but
% seems as good an idea as any.
FITREF = 0;
if (FITREF)
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','iter','LargeScale','off','Algorithm','active-set');
options = optimset(options,'MaxFunEvals',1200);
targetRespRef = linspace(critValue,1-critValue,length(someDataRef));
conTolRef = (targetRespRef(2)-targetRespRef(1));
x0 = ParamsToListRef(params0);
vlb = [x0(1)/100 x0(2) -100*mean(someDataRef) 1];
vub = [x0(1)*100 x0(2) 100*mean(someDataRef) 4];
x1 = fmincon(@InlineMinFunctionRef,x0,[],[],[],[],vlb,vub,@InlineConFunctionRef,options);
params0 = ListToParamsRef(x1,params0);
end
%% Plot of remapping between response and reference log10
% luminance/reflectance
lumVals = logspace(log10(someDataRef(1)),log10(someDataRef(end)),1000);
lumVals = logspace(-3,0,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefForRemap = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
respRefRemapped = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefForRemap)/params0.gainRef+params0.offsetRef);
remapFig = figure; clf; hold on
plot(respRefForRemap,respRefRemapped,'r','LineWidth',2);
xlim([0 1]);
ylim(yDataLim);
xlabel('Visual Response');
ylabel('Predicted Reflectance Match');
cd(figPrefix);
savefig('ResponseRemapping.pdf',remapFig,'pdf');
save('ResponseRemappingData','respRefForRemap','respRefRemapped');
cd ..
%% Now do the fitting wrt to the reference paramters
rangeFig = figure;
dataFig = figure;
position = get(gcf,'Position');
position(3) = 1000; position(4) = 400;
set(gcf,'Position',position);
for whichData = 2:size(someData,1)
%clear params0
someDataMatch = 10.^[someData(whichData,:)];
okIndex = find(~isnan(someDataMatch));
useDataMatch = someDataMatch(okIndex);
useDataRef = someDataRef(okIndex);
figure(dataFig); clf;
subplot(1,2,1); hold on
plot(log10(useDataMatch),log10(useDataRef),'bo','MarkerFaceColor','b','MarkerSize',8);
xlabel('Log10 Target Lum');
ylabel('Log10 Standard Lum/Refl');
% Parameter search options
if (verLessThan('optim','4.1'))
error('Your version of the optimization toolbox is too old. Update it.');
end
options = optimset('fmincon');
options = optimset(options,'Diagnostics','off','Display','off','LargeScale','off','Algorithm','active-set');
% Initialize match parameters in same way
endPointWeight = 0;
params0.rmax = params0.rmaxRef;
params0.exp = params0.expRef;
params0.gain = params0.gainRef;
params0.offset = params0.offsetRef;
someDataPred0 = PredictNRAffineMatches(someDataRef,params0);
%plot(log10(someDataRef),log10(someDataPred0),'y','LineWidth',1);
%params0
fprintf(fid,'Dataset %d\n',whichData);
fprintf(fid,'\tReference params: gain = %0.2g, offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',params0.gainRef,params0.offsetRef,params0.rmaxRef,params0.expRef);
% Fit, first just gain
x0 = ParamsToList(params0);
vlb = [x0(1) x0(2)/100 x0(3:end)];
vub = [x0(1) x0(2)*100 x0(3:end)];
x1 = fmincon(@InlineMinFunction,x0,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x1,params0);
someDataPred1 = PredictNRAffineMatches(someDataRef,params0);
%plot(log10(someDataPred1),log10(someDataRef),'b','LineWidth',1);
%params0
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain only model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Fit, gain and offset
vlb = [x1(1) x1(2)/100 x1(3) -100*abs(x1(4)) x1(5)];
vub = [x1(1) x1(2)*100 x1(3) 100*abs(x1(4)) x1(5)];
x2 = fmincon(@InlineMinFunction,x1,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x2,params0);
someDataPred2 = PredictNRAffineMatches(someDataRef,params0);
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tGain/Offset model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
paramsGainOffset = params0;
%params0
% Exp
FITEXP = 1;
if (FITEXP)
vlb = [x2(1) x2(2)/100 x2(3) -100*abs(x2(4)) 0.5];
vub = [x2(1) x2(2)*100 x2(3) 100*abs(x2(4)) 4];
endPointWeight = 10;
x3 = fmincon(@InlineMinFunction,x2,[],[],[],[],vlb,vub,[],options);
endPointWeight = 0;
x3 = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x3,params0);
someDataPred3 = PredictNRAffineMatches(someDataRef,params0);
else
x3 = x2;
someDataPred3 = PredictNRAffineMatches(someDataRef,params0);
end
fprintf(fid,'\tGain/Offset/Exp model: gain = %0.2g, offset = %0.2g, log10 gain change = %0.2g, log10 effective offset = %0.2g, rmax = %0.5g, exp = %0.2g\n',...
params0.gain,params0.offset,log10(g),log10(l0),params0.rmax,params0.exp);
% Let rMax vary too. This doesn't add much if exponent varies.. Tp the fits, so I
% uncluttered plots by removing. Have not looked at whether varying
% rMax can be substituted for varying the exponent.
FITMAX = 0;
if (FITMAX)
vlb = [x3(1) x3(2)/100 0.5 -100*abs(x3(4)) x3(5)];
vub = [x3(1) x3(2)*100 2 100*abs(x3(4)) x3(5)];
x = fmincon(@InlineMinFunction,x3,[],[],[],[],vlb,vub,[],options);
params0 = ListToParams(x,params0);
someDataPred = PredictNRAffineMatches(someDataRef,params0);
plot(log10(someDataPred3),log10(someDataRef),'k','LineWidth',1.5);
%params0
else
x = x3;
someDataPred = PredictNRAffineMatches(someDataRef,params0);
end
% Dump of interesting parameters
g = params0.gainRef/params0.gain;
l0 = -params0.offsetRef + params0.offset/g;
fprintf(fid,'\tPredicted (actual) black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(1),someDataMatch(1),someDataPred(end),someDataMatch(end));
fprintf(fid,'\tOne-in predicted black point %0.2g (%0.2g); white point %0.2g (%0.2g)\n',someDataPred(2),someDataMatch(2),someDataPred(end-1),someDataMatch(end-1));
% Plot stuff of interest
plot(log10(someDataPred),log10(someDataRef),'r','LineWidth',3);
plot(log10(someDataPred2),log10(someDataRef),'g','LineWidth',1);
xlim(xDataLim); ylim(yDataLim);
% Add plot of response functions for ref and match
% Subtract the old offset, and truncate below 0 to zero.
% We allow an optional remapping of the response back to the
% luminance/reflectance space of the reference matches. This
% mapping is static across contexts. This turns out not to
% terribly interesting.
lumVals = logspace(-2,3,1000);
ySub = params0.gainRef*(lumVals-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefSmooth = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRefSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gainRef*(someDataRef-params0.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([params0.rmaxRef 1 params0.expRef],ySub);
if (RESPONSE_REMAP)
respRef = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRef)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(lumVals-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatchSmooth = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatchSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatchSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = params0.gain*(someDataMatch-params0.offset);
ySub(ySub <= 0) = 0+eps;
respMatch = ComputeNakaRushton([params0.rmax 1 params0.exp],ySub);
if (RESPONSE_REMAP)
respMatch = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respMatch)/params0.gainRef+params0.offsetRef);
end
ySub = paramsGainOffset.gain*(lumVals-paramsGainOffset.offset);
ySub(ySub <= 0) = 0+eps;
respGainOffsetSmooth = ComputeNakaRushton([paramsGainOffset.rmax 1 paramsGainOffset.exp],ySub);
if (RESPONSE_REMAP)
respGainOffsetSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respGainOffsetSmooth)/params0.gainRef+params0.offsetRef);
end
ySub = paramsRefNoFit.gainRef*(lumVals-paramsRefNoFit.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRefNoFitSmooth = ComputeNakaRushton([paramsRefNoFit.rmaxRef 1 paramsRefNoFit.expRef],ySub);
if (RESPONSE_REMAP)
respRefNoFitSmooth = log10(InvertNakaRushton([params0.rmaxRef 1 params0.expRef],respRefNoFitSmooth)/params0.gainRef+params0.offsetRef);
end
subplot(1,2,2); hold on
plot(log10(someDataRef),respRef,'ko','MarkerFaceColor','k','MarkerSize',6);
plot(log10(lumVals),respRefSmooth,'k:','LineWidth',2);
%plot(log10(lumVals),respRefNoFitSmooth,'b','LineWidth',1);
plot(log10(someDataMatch),respMatch,'bo','MarkerFaceColor','b','MarkerSize',8);
plot(log10(lumVals),respMatchSmooth,'r','LineWidth',2);
plot(log10(lumVals),respGainOffsetSmooth,'g','LineWidth',1);
xlim(xDataLim);
if (RESPONSE_REMAP)
ylim(yDataLim);
ylabel('Remapped Response');
else
ylim([0 1.2]);
ylabel('Response');
end
xlabel('Log10 luminance');
% Save figure
cd(figPrefix);
savefig(['TestFit_' num2str(whichData) '.pdf'],dataFig,'pdf');
cd('..');
fprintf(fid,'\n');
%% Fill output summary structure
summaryStructs(whichData-1).whitePoint = someDataPred(end);
summaryStructs(whichData-1).blackPoint = someDataPred(1);
summaryStructs(whichData-1).range = someDataPred(end) - someDataPred(1);
summaryStructs(whichData-1).exp = params0.exp;
predictExpFromWB(whichData-1,1) = summaryStructs(whichData-1).whitePoint;
predictExpFromWB(whichData-1,2) = log10(summaryStructs(whichData-1).range);
expVals(whichData-1,1) = summaryStructs(whichData-1).exp;
%% Range versus exp figure
figure(rangeFig)
subplot(1,2,1); hold on
plot(summaryStructs(whichData-1).range,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('Range'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
subplot(1,2,2); hold on
plot(summaryStructs(whichData-1).whitePoint,summaryStructs(whichData-1).exp,'ro','MarkerFaceColor','r','MarkerSize',8);
xlabel('White Point'); ylabel('Exponent');
xlim([0 300]); ylim([0 4]);
end
fclose(fid);
%% Try to predict exponents
expRegCoefs = predictExpFromWB\expVals;
predictedExpVals = predictExpFromWB*expRegCoefs;
expPredFig = figure; clf; hold on
plot(expVals,predictedExpVals,'ro','MarkerSize',8,'MarkerFaceColor','r');
plot([0 4],[0 4],'k');
xlim([0 4]); ylim([0 4]);
xlabel('Exponent'); ylabel('Predicted Exponent');
axis('square');
%% Write out summary structs
cd(figPrefix);
WriteStructsToText('SummaryData.txt',summaryStructs);
cd('..');
%% Save plot of exponent versus range
cd(figPrefix);
savefig(['ExpVersusRange.pdf'],rangeFig,'pdf');
cd('..');
%% INLINE FUNCTION TO BE USED FOR CTF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunction(x)
paramsInline = ListToParams(x,params0);
yPred = PredictNRAffineMatches(useDataRef,paramsInline);
yPred(yPred <= 0) = 0 + eps;
yDiff = log10(useDataMatch)-log10(yPred);
f = sum(yDiff.^2) + endPointWeight*yDiff(1).^2 + endPointWeight*yDiff(end).^2;
end
%% INLINE FUNCTION TO BE USED FOR REF MINIMIZATION.
% Inline functions have the feature that any variable they use that is
% not defined in the function has its value inherited
% from the workspace of wherever they were invoked.
%
% Variables set here are also in the base workspace, and can change the values of
% variables with the same name there. This can produce all sorts of problems,
% so be careful.
function f = InlineMinFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
f = sum(abs(yDiff));
%f = sum(yDiff.^2);
end
function [g,geq] = InlineConFunctionRef(x)
paramsInline = ListToParamsRef(x,params0);
% Subtract the old offset, and truncate below 0 to zero
ySub = paramsInline.gainRef*(useDataRef-paramsInline.offsetRef);
ySub(ySub <= 0) = 0+eps;
respRef = ComputeNakaRushton([paramsInline.rmaxRef 1 paramsInline.expRef],ySub);
yDiff = targetRespRef-respRef;
g = max(abs(yDiff))-conTolRef;
geq = 0;
end
end
%% Param translation
function params = ListToParams(x,params0)
params = params0;
params.gainRef = x(1);
params.gain = x(2);
params.rmax = x(3);
params.offset = x(4);
params.exp = x(5);
end
function x = ParamsToList(params)
x = [params.gainRef params.gain params.rmax params.offset params.exp];
end
function params = ListToParamsRef(x,params0)
params = params0;
params.gainRef = x(1);
params.rmaxRef = x(2);
params.offsetRef = x(3);
params.expRef = x(4);
end
function x = ParamsToListRef(params)
x = [params.gainRef params.rmaxRef params.offsetRef params.expRef];
end
|
github | BrainardLab/TeachingCode-master | rayleighMatchPittDiagramTutorial.m | .m | TeachingCode-master/MatlabTutorials/rayleighMatchPittDiagramTutorial/rayleighMatchPittDiagramTutorial.m | 12,692 | utf_8 | 8f45f8a84d49fb70384e5e670eaac090 | % Illustrate how Rayleigh matches and Pitt diagram work
%
% Description:
% Simulate Rayleigh match performance and plot in the form of what
% I think is called a Pitt diagram. Illustrates the principles of
% color vision testing by anomaloscope.
%
% The simulated anomaloscope allows adjustment of a monochromatic test
% and the ratio of two monochromatic primaries in the match. The routine
% computes the cone responses to the test and match and from these a
% color difference. Matches are predicted for test intensity and mixing
% ratio parameters where the color difference is below a criterion.
%
% The locus of matches is plotted in a Pitt diagram, where the x-axis is
% the mixing ratio and the y-axis is the test intensity. The output
% diagram reproduces the qualitative features of the one that came in the
% manual for our anamoloscope.
%
% The color difference model is very simple and is briefly described in
% the header comments for routine ComputeConfusions, which is at the
% bottom of this file.
%
% You can play around with the modeled observers and the properties of
% the simulated anomaloscope by adjusting parameters.
% History
% 07/03/19 dhb Wrote it.
% 09/03/19 dhb, dce Modified to use Asano et al. individual difference
% parameters, but in the end does the same thing.
% However, and enterprising person can now examine
% the effect of changing photopigment density.
%% Clear
clear; close all;
%% Parameters
%
% Cone lambda max. Set two of them to be the same
% to create a dichromat, etc.
lambdaMaxes = [ ...
[558.9 550 420.7]' ... % Deuteranomalous
[538 530.3 420.7]' ... % Protanomalous
[558.9 530.3 420.7]' ... % Normal trichromat
[558.9 530.3 420.7]' ... % Normal trichromat
[558.9 530.3 420.7]']; % Normal trichromat
% We actually specify the cones as a shift relative to a
% nomogram generated lambda max. These base values are given
% here. If you make this match the above, then all shifts
% end up as zero. But you can specify deviations, and control
% what the shift is relative to.
baseLambdaMaxes = [ ...
[558.9 550 420.7]' ...
[538 530.3 420.7]' ...
[558.9 530.3 420.7]' ...
[558.9 530.3 420.7]' ...
[558.9 530.3 420.7]'];
% You can also allow the specified photopigment density to
% vary. Enter these as percent changes relative to nominal
% values. Can be positive or negative.
dphotopigments = [ ...
[0 0 0]' ...
[0 0 0]' ...
[0 0 0]' ...
[-90 0 0]' ...
[0 90 0]'];
theColors = [ 'r' 'g' 'k' 'b' 'y'];
theLegend = {'DA' 'PA' 'N' 'LDen' 'MDen' };
% Convert specified lambda max values to shifts from the nominal CIE
% standard values.
nominalLambdaMax = [558.9 530.3 420.7];
for ii = 1:size(lambdaMaxes,2)
indDiffParams(ii).dlens= 0;
indDiffParams(ii).dmac = 0;
indDiffParams(ii).dphotopigment = dphotopigments(:,ii)';
indDiffParams(ii).lambdaMaxShift = lambdaMaxes(:,ii)' - baseLambdaMaxes(:,ii)';
indDiffParams(ii).shiftType = 'linear';
end
% Threshold difference below which it is a match
% Fussed with this by hand to adjust plot to taste.
thresholdVal = 0.12;
% Apparatus range parameters
%
% Mixing ratio of zero is all green primary, 1 is all red
% (assuming shorter primary is first one specified in routine
% below.)
testIntensityRange = 0.01:0.001:0.4;
mixingRatioRange = 0.1:0.001:1;
%% Loop to calculate matching locus for each set of cones
%
% For each set of specified cone pigment lambda max, this
% computes the matching range and adds to the Pitt diagram
% plot.
theFigure = figure; clf; hold on
for kk = 1:size(lambdaMaxes,2)
%lambdaMax = lambdaMaxes(:,kk);
% Function below does the work, based on lambdaMax.
% Most operating parameters are set in the function itself.
[testIntensity{kk},mixingRatio{kk},matchDiff{kk}] = ComputeConfusions(baseLambdaMaxes(:,kk),indDiffParams(kk),testIntensityRange,mixingRatioRange);
% This plot will show the color difference as a function of mixing ratio
% and test intensity, one plot per set of lambda max values. I found these
% useful for development but not all that instructive in the end, so
% they conditional and off by default.
diffPlots = false;
if (diffPlots)
figure; clf; hold on
mesh(mixingRatio{kk},testIntensity{kk},matchDiff{kk});
colormap(winter)
view([2 14]);
zlim([0 2]);
xlim([min(mixingRatioRange) max(mixingRatioRange)]);
ylim([min(testIntensityRange) max(testIntensityRange)]);
xlabel(' Mixing Ratio (0 -> green; 1 -> red)');
ylabel('Test Intensity');
zlabel('Color Difference');
end
figure(theFigure);
index = find(matchDiff{kk} < thresholdVal);
plot(mixingRatio{kk}(index),testIntensity{kk}(index),[theColors(kk) 'o'],'MarkerFaceColor',theColors(kk));
end
% Finish off the plot
figure(theFigure);
xlim([min(mixingRatioRange) max(mixingRatioRange)]);
ylim([min(testIntensityRange) max(testIntensityRange)]);
xlabel(' Mixing Ratio (0 -> green; 1 -> red)');
ylabel('Test Intensity');
axis('square')
legend(theLegend);
title('Pitt Diagram')
FigureSave('pittDiagram.pdf',theFigure,'pdf');
% Compute locus of confusions in intensity-ratio plot
%
% Syntax:
% [testIntensity,mixingRatio,matchDiff] = ComputeConfusions(lambdaMax,indDiffParams,testIntensityRange,mixingRatioRange)
%
% Description:
% Take lambdaMax values and generate receptor fundamentals. Then loop
% over all test intensities and mixing ratio combinations and compute a
% measure of color difference between test and corresponding match.
%
% Many key parameters are specified within this routine rather than
% passed, because this is a tutorial script. These include primary
% wavelengths, matching primary intensities, parameters describing color
% difference calculation, etc.
%
% The color difference is computed based on vector length in an
% post-receptoral contrast space, with different weights applied to the
% different post-receptoral contrast directions. It is a very rough and
% ready calculation, but this aspect is not key to demonstrate the
% principles we are interested in here.
%
% Inputs:
% lambdaMax Column vector of three receptor photopigment lambda
% max (wavelength of peak sensitivity) values, in nm.
% indDiffParams Passed to ComputeCIEConeFundamentals.
% Ignored if empty. If you pass this
% structure, then lambdaMax should be empty,
% and vice-versa. That is, only adjust the
% fundamentals using one of the two available
% methods.
% testIntensityRange Row vector of test intensities. Arbitrary
% units. Values between 0 and 1 are about
% right given the way the other parameters are
% set.
% mixingRatioRange Row vector of g/r mixing ratios. 0 means all
% green primary, 1 means all red. Here green
% and red are really defined by the
% wavelengths of the two matching primaries
% defined in the parameters for this routine.
%
% Outputs:
% testIntensity Matrix where entry i,j is the test intensity
% given by the ith intensity in testIntensityRange,
% and j indexes the mixing ratios.
% mixingRatio Matrix where entry i,j is the mixingRatio
% given by the jth tentry of mixingRatioRange,
% and i indexes the test intensities
% matchDiff Matrix of color differences, where entry i,j
% corresponds to the test intensity and mixing
% ratio in entry i,j of matrices testIntensity
% and mixingRatio.
% History:
% 07/04/19 dhb Made this its own routine.
function [testIntensity,mixingRatio,matchDiff] = ComputeConfusions(lambdaMax,indDiffParams,testIntensityRange,mixingRatioRange)
% Check
% if (~isempty(indDiffParams) & ~isempty(lambdaMax))
% error('Don''t risk using two different ways to adjust cone fundamentals.');
% end
% Observer parameters
fieldSizeDegs = 2;
observerAge = 32;
pupilDiameterMM = 3;
% Wavelength sampling. Life is easiest at 1 nm sampling.
S = [380 1 401];
wls = SToWls(S);
% Apparatus parameters. These match the Nagel in wavelengths.
testWavelength = 589;
matchWavelength1 = 545;
matchWavelength2 = 670;
% I fussed with these to rotate the D line to be horizontal in the plot.
% In real life, they are parameters of the apparatus.
matchIntensity1 = 0.12;
matchIntensity2 = 2.5;
% Compute indices so that we can set spectra below
testIndex = find(wls == testWavelength);
matchIndex1 = find(wls == matchWavelength1);
matchIndex2 = find(wls == matchWavelength2);
% Color difference computation parameters.
% I fussed with these to make the uncertainty
% regions look a bit like those in our device's
% diagram.
LMRatio = 2;
lumWeight = 4;
rgWeight = 2;
sWeight = 0.5;
% Act like we have an added background that suppresses S cone signals.
% Otherwise small S cone differences explode when we compute contrast,
% because of small denominator.
addedBackgroundCones = [0 0 1]';
% Generate match spectra before application of mixing ratio
matchSpectrum1 = zeros(size(wls)); matchSpectrum1(matchIndex1) = matchIntensity1;
matchSpectrum2 = zeros(size(wls)); matchSpectrum2(matchIndex2) = matchIntensity2;
% Generate the cones
%
% The weird looking call around the CompueCIEConeFundamentals has the net
% effect of putting the cone fundamentals into energy units, and then we
% normalize each to a peak of one.
%
% See ComputeCIEConeFundamentals for more info, and for other ways to shift
% individual difference parameters.
T_cones = EnergyToQuanta(S, ...
ComputeCIEConeFundamentals(S,fieldSizeDegs,observerAge,pupilDiameterMM,lambdaMax, ...
[],[],[],[],[],indDiffParams)')';
for ii = 1:size(T_cones,1)
T_cones(ii,:) = T_cones(ii,:)/max(T_cones(ii,:));
end
% Make diagnostic plot of cone fundamentals?
FUNDAMENTAL_PLOTS = false;
figure; clf; hold on;
plot(SToWls(S),T_cones(1,:),'r','LineWidth',2);
plot(SToWls(S),T_cones(2,:),'g','LineWidth',2);
plot(SToWls(S),T_cones(3,:),'b','LineWidth',2);
xlabel('Wavelength');
ylabel('Fundamental');
% Compute cone respones to test and match
%
% We just do this for all possible test intensities and match ratios, as
% specified in the parameters section.
% Construct each test and compute cone responses
for ii = 1:length(testIntensityRange)
testIntensity = testIntensityRange(ii);
testSpectrum{ii} = zeros(size(wls)); testSpectrum{ii}(testIndex) = testIntensity;
testCones{ii} = T_cones*testSpectrum{ii};
end
% Construct each match and compute cone responses
for jj = 1:length(mixingRatioRange)
mixingRatio = mixingRatioRange(jj);
matchSpectrum{jj} = (1-mixingRatio)*matchSpectrum1 + (mixingRatio)*matchSpectrum2;
matchCones{jj} = T_cones*matchSpectrum{jj};
end
% Compute a measure of color difference for each test/match pairing
%
% We'll take the test as contributing to the adapting background and compute difference as
% cone contrast with respect to that plus the added background as specfied
% above.
for ii = 1:length(testIntensityRange)
for jj = 1:length(mixingRatioRange)
effectiveBackgroundCones{ii} = testCones{ii} + addedBackgroundCones;
coneContrastDiff = (testCones{ii}-matchCones{jj})./effectiveBackgroundCones{ii};
% Approximate three post-receptoral constrasts
lumContrast(ii,jj) = (LMRatio*coneContrastDiff(1)+coneContrastDiff(2))/(LMRatio+1);
rgContrast(ii,jj) = coneContrastDiff(1)-coneContrastDiff(2);
sContrast(ii,jj) = coneContrastDiff(3);
% Take weighted sum of squares. I'm making weights up on grounds
% that rg is most sensitive, lum next, and s last. Very back of
% envelope and may not be right for uniform fields.
testIntensity(ii,jj) = testIntensityRange(ii);
mixingRatio(ii,jj) = mixingRatioRange(jj);
matchDiff(ii,jj) = sqrt((lumWeight*lumContrast(ii,jj))^2 + (rgWeight*rgContrast(ii,jj))^2 + (sWeight*sContrast(ii,jj))^2);
end
end
end
|
github | BrainardLab/TeachingCode-master | rayleighMatchPittDiagramTutorialDensity.m | .m | TeachingCode-master/MatlabTutorials/rayleighMatchPittDiagramTutorial/rayleighMatchPittDiagramTutorialDensity.m | 12,691 | utf_8 | b6b9153e08cc556256ce82415e7128ba | % Illustrate how Rayleigh matches and Pitt diagram work
%
% Description:
% Simulate Rayleigh match performance and plot in the form of what
% I think is called a Pitt diagram. Illustrates the principles of
% color vision testing by anomaloscope.
%
% The simulated anomaloscope allows adjustment of a monochromatic test
% and the ratio of two monochromatic primaries in the match. The routine
% computes the cone responses to the test and match and from these a
% color difference. Matches are predicted for test intensity and mixing
% ratio parameters where the color difference is below a criterion.
%
% The locus of matches is plotted in a Pitt diagram, where the x-axis is
% the mixing ratio and the y-axis is the test intensity. The output
% diagram reproduces the qualitative features of the one that came in the
% manual for our anamoloscope.
%
% The color difference model is very simple and is briefly described in
% the header comments for routine ComputeConfusions, which is at the
% bottom of this file.
%
% You can play around with the modeled observers and the properties of
% the simulated anomaloscope by adjusting parameters.
% History
% 07/03/19 dhb Wrote it.
% 09/03/19 dhb, dce Modified to use Asano et al. individual difference
% parameters, but in the end does the same thing.
% However, and enterprising person can now examine
% the effect of changing photopigment density.
%% Clear
clear; close all;
%% Parameters
%
% Cone lambda max. Set two of them to be the same
% to create a dichromat, etc.
lambdaMaxes = [ ...
[558.9 550 420.7]' ... % Deuteranomalous
[538 530.3 420.7]' ... % Protanomalous
[558.9 530.3 420.7]' ... % Normal trichromat
[558.9 530.3 420.7]' ... % Normal trichromat
[558.9 530.3 420.7]']; % Normal trichromat
% We actually specify the cones as a shift relative to a
% nomogram generated lambda max. These base values are given
% here. If you make this match the above, then all shifts
% end up as zero. But you can specify deviations, and control
% what the shift is relative to.
baseLambdaMaxes = [ ...
[558.9 550 420.7]' ...
[538 530.3 420.7]' ...
[558.9 530.3 420.7]' ...
[558.9 530.3 420.7]' ...
[558.9 530.3 420.7]'];
% You can also allow the specified photopigment density to
% vary. Enter these as percent changes relative to nominal
% values. Can be positive or negative.
dphotopigments = [ ...
[0 0 0]' ...
[0 0 0]' ...
[0 0 0]' ...
[-90 0 0]' ...
[0 90 0]'];
theColors = [ 'r' 'g' 'k' 'b' 'y'];
theLegend = {'DA' 'PA' 'N' 'LDen' 'MDen' };
% Convert specified lambda max values to shifts from the nominal CIE
% standard values.
nominalLambdaMax = [558.9 530.3 420.7];
for ii = 1:size(lambdaMaxes,2)
indDiffParams(ii).dlens= 0;
indDiffParams(ii).dmac = 0;
indDiffParams(ii).dphotopigment = dphotopigments(:,ii)';
indDiffParams(ii).lambdaMaxShift = lambdaMaxes(:,ii)' - baseLambdaMaxes(:,ii)';
indDiffParams(ii).shiftType = 'linear';
end
% Threshold difference below which it is a match
% Fussed with this by hand to adjust plot to taste.
thresholdVal = 0.12;
% Apparatus range parameters
%
% Mixing ratio of zero is all green primary, 1 is all red
% (assuming shorter primary is first one specified in routine
% below.)
testIntensityRange = 0.01:0.001:0.4;
mixingRatioRange = 0.1:0.001:1;
%% Loop to calculate matching locus for each set of cones
%
% For each set of specified cone pigment lambda max, this
% computes the matching range and adds to the Pitt diagram
% plot.
theFigure = figure; clf; hold on
for kk = 1:size(lambdaMaxes,2)
%lambdaMax = lambdaMaxes(:,kk);
% Function below does the work, based on lambdaMax.
% Most operating parameters are set in the function itself.
[testIntensity{kk},mixingRatio{kk},matchDiff{kk}] = ComputeConfusions(baseLambdaMaxes(:,kk),indDiffParams(kk),testIntensityRange,mixingRatioRange);
% This plot will show the color difference as a function of mixing ratio
% and test intensity, one plot per set of lambda max values. I found these
% useful for development but not all that instructive in the end, so
% they conditional and off by default.
diffPlots = false;
if (diffPlots)
figure; clf; hold on
mesh(mixingRatio{kk},testIntensity{kk},matchDiff{kk});
colormap(winter)
view([2 14]);
zlim([0 2]);
xlim([min(mixingRatioRange) max(mixingRatioRange)]);
ylim([min(testIntensityRange) max(testIntensityRange)]);
xlabel(' Mixing Ratio (0 -> green; 1 -> red)');
ylabel('Test Intensity');
zlabel('Color Difference');
end
figure(theFigure);
index = find(matchDiff{kk} < thresholdVal);
plot(mixingRatio{kk}(index),testIntensity{kk}(index),[theColors(kk) 'o'],'MarkerFaceColor',theColors(kk));
end
% Finish off the plot
figure(theFigure);
xlim([min(mixingRatioRange) max(mixingRatioRange)]);
ylim([min(testIntensityRange) max(testIntensityRange)]);
xlabel(' Mixing Ratio (0 -> green; 1 -> red)');
ylabel('Test Intensity');
axis('square')
legend(theLegend);
title('Pitt Diagram')
FigureSave('pittDiagram.pdf',theFigure,'pdf');
% Compute locus of confusions in intensity-ratio plot
%
% Syntax:
% [testIntensity,mixingRatio,matchDiff] = ComputeConfusions(lambdaMax,indDiffParams,testIntensityRange,mixingRatioRange)
%
% Description:
% Take lambdaMax values and generate receptor fundamentals. Then loop
% over all test intensities and mixing ratio combinations and compute a
% measure of color difference between test and corresponding match.
%
% Many key parameters are specified within this routine rather than
% passed, because this is a tutorial script. These include primary
% wavelengths, matching primary intensities, parameters describing color
% difference calculation, etc.
%
% The color difference is computed based on vector length in an
% post-receptoral contrast space, with different weights applied to the
% different post-receptoral contrast directions. It is a very rough and
% ready calculation, but this aspect is not key to demonstrate the
% principles we are interested in here.
%
% Inputs:
% lambdaMax Column vector of three receptor photopigment lambda
% max (wavelength of peak sensitivity) values, in nm.
% indDiffParams Passed to ComputeCIEConeFundamentals.
% Ignored if empty. If you pass this
% structure, then lambdaMax should be empty,
% and vice-versa. That is, only adjust the
% fundamentals using one of the two available
% methods.
% testIntensityRange Row vector of test intensities. Arbitrary
% units. Values between 0 and 1 are about
% right given the way the other parameters are
% set.
% mixingRatioRange Row vector of g/r mixing ratios. 0 means all
% green primary, 1 means all red. Here green
% and red are really defined by the
% wavelengths of the two matching primaries
% defined in the parameters for this routine.
%
% Outputs:
% testIntensity Matrix where entry i,j is the test intensity
% given by the ith intensity in testIntensityRange,
% and j indexes the mixing ratios.
% mixingRatio Matrix where entry i,j is the mixingRatio
% given by the jth tentry of mixingRatioRange,
% and i indexes the test intensities
% matchDiff Matrix of color differences, where entry i,j
% corresponds to the test intensity and mixing
% ratio in entry i,j of matrices testIntensity
% and mixingRatio.
% History:
% 07/04/19 dhb Made this its own routine.
function [testIntensity,mixingRatio,matchDiff] = ComputeConfusions(lambdaMax,indDiffParams,testIntensityRange,mixingRatioRange)
% Check
% if (~isempty(indDiffParams) & ~isempty(lambdaMax))
% error('Don''t risk using two different ways to adjust cone fundamentals.');
% end
% Observer parameters
fieldSizeDegs = 2;
observerAge = 32;
pupilDiameterMM = 3;
% Wavelength sampling. Life is easiest at 1 nm sampling.
S = [380 1 401];
wls = SToWls(S);
% Apparatus parameters. These match the Nagel in wavelengths.
testWavelength = 589;
matchWavelength1 = 545;
matchWavelength2 = 670;
% I fussed with these to rotate the D line to be horizontal in the plot.
% In real life, they are parameters of the apparatus.
matchIntensity1 = 0.12;
matchIntensity2 = 2.5;
% Compute indices so that we can set spectra below
testIndex = find(wls == testWavelength);
matchIndex1 = find(wls == matchWavelength1);
matchIndex2 = find(wls == matchWavelength2);
% Color difference computation parameters.
% I fussed with these to make the uncertainty
% regions look a bit like those in our device's
% diagram.
LMRatio = 2;
lumWeight = 4;
rgWeight = 2;
sWeight = 0.5;
% Act like we have an added background that suppresses S cone signals.
% Otherwise small S cone differences explode when we compute contrast,
% because of small denominator.
addedBackgroundCones = [0 0 1]';
% Generate match spectra before application of mixing ratio
matchSpectrum1 = zeros(size(wls)); matchSpectrum1(matchIndex1) = matchIntensity1;
matchSpectrum2 = zeros(size(wls)); matchSpectrum2(matchIndex2) = matchIntensity2;
% Generate the cones
%
% The weird looking call around the CompueCIEConeFundamentals has the net
% effect of putting the cone fundamentals into energy units, and then we
% normalize each to a peak of one.
%
% See ComputeCIEConeFundamentals for more info, and for other ways to shift
% individual difference parameters.
T_cones = EnergyToQuanta(S, ...
ComputeCIEConeFundamentals(S,fieldSizeDegs,observerAge,pupilDiameterMM,lambdaMax, ...
[],[],[],[],[],indDiffParams)')';
for ii = 1:size(T_cones,1)
T_cones(ii,:) = T_cones(ii,:)/max(T_cones(ii,:));
end
% Make diagnostic plot of cone fundamentals?
FUNDAMENTAL_PLOTS = true;
figure; clf; hold on;
plot(SToWls(S),T_cones(1,:),'r','LineWidth',2);
plot(SToWls(S),T_cones(2,:),'g','LineWidth',2);
plot(SToWls(S),T_cones(3,:),'b','LineWidth',2);
xlabel('Wavelength');
ylabel('Fundamental');
% Compute cone respones to test and match
%
% We just do this for all possible test intensities and match ratios, as
% specified in the parameters section.
% Construct each test and compute cone responses
for ii = 1:length(testIntensityRange)
testIntensity = testIntensityRange(ii);
testSpectrum{ii} = zeros(size(wls)); testSpectrum{ii}(testIndex) = testIntensity;
testCones{ii} = T_cones*testSpectrum{ii};
end
% Construct each match and compute cone responses
for jj = 1:length(mixingRatioRange)
mixingRatio = mixingRatioRange(jj);
matchSpectrum{jj} = (1-mixingRatio)*matchSpectrum1 + (mixingRatio)*matchSpectrum2;
matchCones{jj} = T_cones*matchSpectrum{jj};
end
% Compute a measure of color difference for each test/match pairing
%
% We'll take the test as contributing to the adapting background and compute difference as
% cone contrast with respect to that plus the added background as specfied
% above.
for ii = 1:length(testIntensityRange)
for jj = 1:length(mixingRatioRange)
effectiveBackgroundCones{ii} = testCones{ii} + addedBackgroundCones;
coneContrastDiff = (testCones{ii}-matchCones{jj})./effectiveBackgroundCones{ii};
% Approximate three post-receptoral constrasts
lumContrast(ii,jj) = (LMRatio*coneContrastDiff(1)+coneContrastDiff(2))/(LMRatio+1);
rgContrast(ii,jj) = coneContrastDiff(1)-coneContrastDiff(2);
sContrast(ii,jj) = coneContrastDiff(3);
% Take weighted sum of squares. I'm making weights up on grounds
% that rg is most sensitive, lum next, and s last. Very back of
% envelope and may not be right for uniform fields.
testIntensity(ii,jj) = testIntensityRange(ii);
mixingRatio(ii,jj) = mixingRatioRange(jj);
matchDiff(ii,jj) = sqrt((lumWeight*lumContrast(ii,jj))^2 + (rgWeight*rgContrast(ii,jj))^2 + (sWeight*sContrast(ii,jj))^2);
end
end
end
|
github | BrainardLab/TeachingCode-master | exploreMemBiasTutorial.m | .m | TeachingCode-master/MatlabTutorials/exploreMemBiasTutorial/exploreMemBiasTutorial.m | 10,221 | utf_8 | 53a869d8f12366bbce514f93cab2eb50 | function exploreMemBiasTutorial
% exploreMemBiasTutorial
%
% Work out predictions of a very simple memory model. The idea is to see
% what the predictions are if we start with the ideas that
% a) there is a non-linear transduction between the stimulus variable and perceptual response.
% b) noise is added in the perceptual domain
% c) noise can have different variance depending on delay.
%
% This is worked out for the circular stimulus variable hue, but nothing
% much would change in the model for an intensive variable.
%
% 4/25/09 dhb Started on it.
%% Clear
clear; close all;
%% Parameters
% Specify precision as noise of a Gaussian variable. There is a separate
% noise for the test stimulus and the comparison stimulus. This is
% because we want to model both simultaneous presentation and delayed, and we'll
% do this by mucking with the variances.
testSd = 0.06;
comparisonSd = 0.06;
scaleBase = 2*max([testSd comparisonSd]);
testHueRawIndex = 300;
nComparison = 100;
nMatchSimulate = 10000;
nPsychoSimulate = 1000;
nFitSimulate = nPsychoSimulate;
nStimulusHues = 600;
respType = 'naka';
responseOrder = 2;
responseCoeefs = 0.1*[0 1 1 0.4 0.25 0.5 0.2];
fittype = 'c';
%% Generate the non-linear response function. This is veridical plus a sum of some
% sinusoids.
stimulusHues = linspace(0,1,nStimulusHues);
stimulusHues = [stimulusHues];
switch (respType)
case 'fourier'
responseFun = stimulusHues + ComputeFourierModel(responseCoeefs,stimulusHues);
case 'naka'
responseFun = (stimulusHues.^6)./(stimulusHues.^6 + 0.4.^6);
end
sumPlot = figure('WindowStyle','docked'); clf;
subplot(4,1,1); hold on
plot(stimulusHues,responseFun,'r','LineWidth',2);
xlim([0 1]); ylim([0 1]);
xlabel('Hue','FontSize',16);
ylabel('Response','FontSize',16);
title('Underlying Psychophysical Function','FontSize',16);
%% Compute psychometric function through a specified test hue. Response will be 1 (aka "yes")
% if subjects thinks comparison presentation is of higher perceptual hue, 0 (aka "no") otherwise.
testHueIndex = testHueRawIndex;
testHue = stimulusHues(testHueIndex);
meanResponseTest = responseFun(testHueIndex);
comparisonIndices = testHueIndex-nComparison:testHueIndex+nComparison;
comparisonHues = stimulusHues(comparisonIndices);
for i = 1:length(comparisonIndices)
meanResponseComparison = responseFun(comparisonIndices(i));
probYes(i) = SimulateProbYes(meanResponseTest,meanResponseComparison,testSd,comparisonSd,nPsychoSimulate); %#ok<AGROW>
end
% Fit simulated data
pfitdata = [comparisonHues', probYes', nFitSimulate*ones(size(probYes'))];
pfitstruct = pfit(pfitdata,'no plot','matrix_format','xyn', ...
'shape', fittype, 'n_intervals', 1, 'runs',0, 'sens',0, ...
'compute_stats', 0, 'cuts', [0.5], 'verbose', 0);
probYesFit = psigpsi(fittype, pfitstruct.params.est, comparisonHues');
pse = findthreshold(fittype,pfitstruct.params.est,0.5,'performance');
thresh = findthreshold(fittype,pfitstruct.params.est,0.75,'performance') - ...
findthreshold(fittype,pfitstruct.params.est,0.25,'performance');
% Little plot
figure('WindowStyle','docked'); clf; hold on
plot(comparisonHues,probYes,'ko','MarkerSize',2,'MarkerFaceColor','k');
plot([testHue testHue],[0 0.5],'b');
plot([comparisonHues(1) testHue],[0.5 0.5],'b');
plot(comparisonHues,probYesFit,'r','LineWidth',2);
plot([pse pse],[0 0.5],'g');
xlabel('Comparison Hue','FontSize',16);
ylabel('Prob "Yes"','FontSize',16);
title(sprintf('Psychometric function, test hue %g',testHue),'FontSize',16);
xlim([comparisonHues(1) comparisonHues(end)])
ylim([0 1]);
%% Find average match for each test hue
nPrint = 25;
theMatchedStimuli = zeros(nMatchSimulate,nStimulusHues-2*nComparison-1);
matchProgPlot = figure('WindowStyle','docked');
for t = 1:nStimulusHues-2*nComparison-1
testHueIndex = nComparison+t;
testHuesMatch(t) = stimulusHues(testHueIndex);
meanResponseTest = responseFun(testHueIndex);
noiseDrawsTest = normrnd(0,testSd,nMatchSimulate,1);
for i = 1:nMatchSimulate
theResponse = meanResponseTest + noiseDrawsTest(i);
noiseDrawsComparison = normrnd(0,comparisonSd,size(responseFun));
comparisonResponses = responseFun + noiseDrawsComparison;
[nil,index] = min(abs(comparisonResponses-theResponse));
theMatchedStimuli(i,t) = stimulusHues(index(1));
end
meanMatch(t) = mean(theMatchedStimuli(:,t));
medianMatch(t) = median(theMatchedStimuli(:,t));
% Diagnostic plot if desired
if (rem(t,nPrint) == 0)
figure(matchProgPlot); clf; hold on
[n,x] = hist(theMatchedStimuli(:,t),25);
bar(x,n);
plot([testHuesMatch(t) testHuesMatch(t)],[0 1.2*max(n)],'k','LineWidth',2);
plot([meanMatch(t) meanMatch(t)],[0 1.2*max(n)],'r','LineWidth',2);
%plot([medianMatch(t) medianMatch(t)],[0 1.2*max(n)],'g','LineWidth',2);
xlabel('Matches','FontSize',16);
ylabel('Count','FontSize',16);
xlim([0 1]);
ylim([0 1.2*max(n)]);
title(sprintf('Match distribution, test hue %0.2g',testHuesMatch(t)),'FontSize',16);
drawnow;
saveas(matchProgPlot,sprintf('Matches_%g_%g_%0.2g.png',testSd,comparisonSd,testHuesMatch(t)),'png');
fprintf('Computing mean match for test hue %d of %d\n',t,nStimulusHues-2*nComparison-1);
end
end
% Plot of simulated matches
figure(sumPlot);
subplot(4,1,3); hold on
plot(testHuesMatch,meanMatch-testHuesMatch,'r','LineWidth',2);
%plot(testHuesMatch,medianMatch-testHuesMatch,'b','LineWidth',2);
xlim([0 1]);
ylim([-scaleBase scaleBase]);
xlabel('Test Hue','FontSize',16);
ylabel('Match Bias','FontSize',16);
%% Now compute out PSE as a function of test hue, as well as threshold
nPrint = 25;
progPlot = figure('WindowStyle','docked');
for t = 1:nStimulusHues-2*nComparison-1
testHueIndex = nComparison+t;
testHues(t) = stimulusHues(testHueIndex);
meanResponseTest = responseFun(testHueIndex);
comparisonIndices = testHueIndex-nComparison:testHueIndex+nComparison;
comparisonHues = stimulusHues(comparisonIndices);
for i = 1:length(comparisonIndices)
meanResponseComparison = responseFun(comparisonIndices(i));
probYes(i) = SimulateProbYes(meanResponseTest,meanResponseComparison,testSd,comparisonSd,nPsychoSimulate); %#ok<AGROW>
end
% Fit
pfitdata = [comparisonHues', probYes', nFitSimulate*ones(size(probYes'))];
pfitstruct = pfit(pfitdata,'no plot','matrix_format','xyn', ...
'shape', fittype, 'n_intervals', 1, 'runs',0, 'sens',0, ...
'compute_stats', 0, 'cuts', [0.5], 'verbose', 0);
probYesFit = psigpsi(fittype, pfitstruct.params.est, comparisonHues');
pses(t) = findthreshold(fittype,pfitstruct.params.est,0.5,'performance');
threshs(t) = findthreshold(fittype,pfitstruct.params.est,0.75,'performance') - ...
findthreshold(fittype,pfitstruct.params.est,0.25,'performance');
% Fit central part
centralIndex = nComparison-10:nComparison+10;
pfitdata = [comparisonHues(centralIndex)', probYes(centralIndex)', nFitSimulate*ones(size(centralIndex'))];
pfitstruct1 = pfit(pfitdata,'no plot','matrix_format','xyn', ...
'shape', fittype, 'n_intervals', 1, 'runs',0, 'sens',0, ...
'compute_stats', 0, 'cuts', [0.5], 'verbose', 0);
probYesFit1 = psigpsi(fittype, pfitstruct1.params.est, comparisonHues(centralIndex)');
pses1(t) = findthreshold(fittype,pfitstruct1.params.est,0.5,'performance');
% Diagnostic plot if desired
if (rem(t,nPrint) == 0)
figure(progPlot); clf; hold on
plot(comparisonHues,probYes,'ko','MarkerSize',2,'MarkerFaceColor','k');
plot(comparisonHues,probYesFit,'r','LineWidth',2);
plot(comparisonHues(centralIndex),probYesFit1,'b','LineWidth',2);
plot([testHues(t) testHues(t)],[0 1],'b');
plot([pses(t) pses(t)],[0 1],'g');
xlabel('Comparison Hue','FontSize',16);
ylabel('Prob "Yes"','FontSize',16);
title(sprintf('Psychometric function, test hue %0.2g',testHues(t)),'FontSize',16);
xlim([comparisonHues(1) comparisonHues(end)])
xlim([0 1]);
ylim([0 1]);
drawnow;
saveas(progPlot,sprintf('Psycho_%g_%g_%0.2g.png',testSd,comparisonSd,testHues(t)),'png');
fprintf('Computing PSE for test hue %d of %d\n',t,nStimulusHues-2*nComparison-1);
end
end
% Plot of simulated PSEs
figure(sumPlot);
subplot(4,1,2); hold on
plot(testHues,1./threshs,'r','LineWidth',2);
xlim([0 1]);
%ylim([0 scaleBase]);
xlabel('Test Hue','FontSize',16);
ylabel('Inverse Threshold','FontSize',16);
subplot(4,1,4); hold on
plot(testHues,pses-testHues,'r','LineWidth',2);
plot(testHues,pses1-testHues,'b','LineWidth',2);
xlim([0 1]);
ylim([-scaleBase scaleBase]);
xlabel('Test Hue','FontSize',16);
ylabel('PSE Bias','FontSize',16);
saveas(sumPlot,sprintf('Summary_%g_%g.png',testSd,comparisonSd),'png');
end
%% Subfunctions
function probYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
% probYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
%
% Simulate out the number of times that the comparison is judged as larger on the response variable
% than the test. I'm sure there is an analytic solution, but it's a little tricky because we
% allow different standard deviations for the test and comparison noise.
%
% 4/25/09 dhb Wrote it.
diffNoise = normrnd(0,comparisonSd,nSimulate,1)-normrnd(0,testSd,nSimulate,1);
nYes = length(find(responseComparison-responseTest+diffNoise > 0));
probYes = nYes/nSimulate;
end
function ypred = ComputeFourierModel(coeffs,x)
% ypred = ComputeFourierModel(coeffs,x)
%
% ypred = coeffs(1) + coeffs(2)*(sin(2*pi*x) + coeffs(3)*cos(2*pi*x) + coeffs(4)*sin(2*pi*2*x) + coeffs(5)*cos(2*pi*2*x) + ...
%
% The order of the equation is determined from the length of coeffs.
% The input x is assumed to be in the range [0-1].
%
% 4/21/09 dhb Wrote it.
% Modulation
a = coeffs(1);
b = coeffs(2);
modulation = sin(2*pi*x) + coeffs(3)*cos(2*pi*x);
for i = 1:length(coeffs(4:end))/2
modulation = modulation + coeffs(2*(i-1)+4)*sin(2*pi*(i+1)*x) + coeffs(2*(i-1)+5)*cos(2*pi*(i+1)*x);
end
ypred = a + b*modulation;
end
|
github | BrainardLab/TeachingCode-master | psychofitTutorialYN.m | .m | TeachingCode-master/MatlabTutorials/psychofitTutorial/psychofitTutorialYN.m | 6,771 | utf_8 | 875ba9d234f3d08d50560f4097522ab0 | function psychofitTutorialYN
% psychofitTutorialYN
%
% Show basic use Palamedes toolboxe to simulate and
% fit psychophysical data. This one for Y/N method of constant stimuli.
%
% You need both the psignifit and Palamedes toolboxes on your path, as well
% as the Brainard lab staircase class and the Psychtoolbox.
%
% 4/30/09 dhb Wrote it.
% 10/18/09 dhb Add some fits with Palamedes, just for grins
% 10/19/09 dhb Added TAFC example as well as Y/N. Cleaned up and added comments.
% 10/19/09 dhb Use staircase class for a TAFC staircase example.
% 5/6/11 dhb Fix initial guess of slope for Palamedes. This was inverted, but worked by luck previously.
% 10/31/12 dhb Fix what is printed out for Y/N staircase threshold.
% dhb Y/N thresh defined as 75% point minus 50% point.
% dhb Save figures, and a few more lines on the figs.
% dhb Add option to simulate adapting bias.
% 11/14/13 dhb Tune up a bunch of little things.
% 10/21/14 dhb Added better comments for staircasing stuff.
% 11/22/17 dhb Strip down to Y/N Palemedes and ver 1.8.2 of Palemedes.
%% Clear
clear; close all;
%% Specify precision as noise of a Gaussian variable
%
% Simulated Y/N experiment is for test bigger or less than
% comparison.
noiseSd = 0.06;
testStimulus = 100;
nComparisonFit = 100;
adaptingBias = 0;
nComparison = 10;
nSimulate = 40;
%% Simulate Y/N psychometric function and fit. The cumulative normal is a pretty natural choice
% for y/n psychometric data, and that's what's shown here.
%
% There are lots of variants to the fitting that could be used, in the sense that we could
% allow for lapse rates, etc. But this form should work pretty well for most purposes. It's
% always a good idea to plot the fit against the actual data and make sure it is reasonable.
% For staircase data, this requires some binning (not demonstrated here.)
comparisonStimuli = linspace(testStimulus-4*noiseSd,testStimulus+4*noiseSd,nComparison);
comparisonStimuliFit = linspace(testStimulus-4*noiseSd,testStimulus+4*noiseSd,nComparisonFit);
for i = 1:nComparison
nYes(i) = SimulateProbYes(testStimulus,comparisonStimuli(i),0,noiseSd,nSimulate,adaptingBias); %#ok<AGROW>
end
% PALAMEDES
% Psychometric function form
PF = @PAL_CumulativeNormal; % Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
% The first two parameters of the psychometric function define its position and shape.
%
% The third is the guess rate, which determines the value the function
% takes on at low values of x. For a perfect subject this would be 0,
% but there might be lapses (see below) for small x as well as high x.
%
% The fourth parameter is the lapse rate - the asymptotic performance at
% high values of x. For a perfect subject, this would be 0, but sometimes
% subjects have a "lapse" and get the answer wrong even when the stimulus
% is easy to see. We can search over this, but shouldn't allow it to take
% on unreasonable values. 0.05 as an upper limit isn't crazy.
%
% paramsFree is a boolean vector that determins what parameters get
% searched over. 1: free parameter, 0: fixed parameter
paramsFree = [1 1 1 1];
% Initial guess. Setting the first parameter to the middle of the stimulus
% range and the second to 1 puts things into a reasonable ballpark here.
paramsValues0 = [mean(comparisonStimuli') 1/((max(comparisonStimuli')-min(comparisonStimuli'))/4) 0 0];
% This puts limits on the range of the lapse rate. And we pass an option
% to the fit function that forces the guess and lapse rates to be equal,
% which is reasonable for this case.
lapseLimits = [0 0.05];
% Set up standard options for Palamedes search
options = PAL_minimize('options');
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Some thinking is
% required to initialize the parameters sensibly. We know that the mean of the cumulative normal should be
% roughly within the range of the comparison stimuli, so we initialize this to the mean. The standard deviation
% should be some moderate fraction of the range of the stimuli, so again this is used as the initializer.
[paramsValues] = PAL_PFML_Fit(...
comparisonStimuli',nYes',nSimulate*ones(size(nYes')), ...
paramsValues0,paramsFree,PF,'searchOptions',options, ...
'lapseLimits',lapseLimits,'gammaEQlambda',true);
probYesFitPal = PF(paramsValues,comparisonStimuliFit');
psePal = PF(paramsValues,0.5,'inverse');
threshPal = PF(paramsValues,0.75,'inverse')-psePal;
% Plot of Y/N simulation. When the red and green overlap (which they do in all my tests), it
% means that psignfit and Palamedes agree.
figure; clf; hold on
plot(comparisonStimuli,nYes/nSimulate,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot([testStimulus testStimulus],[0 1],'b');
plot(comparisonStimuliFit,probYesFitPal,'g','LineWidth',1);
plot([psePal psePal],[0 1],'g','LineWidth',1);
plot([psePal psePal+threshPal],[0.75 0.75],'g','LineWidth',1);
xlabel('Comparison','FontSize',16);
ylabel('Prob "Yes"','FontSize',16);
title(sprintf('Y/N psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1) comparisonStimuli(end)])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('PsychoYN',gcf,'pdf');
else
saveas('gcf','PsychoYN','pdf');
end
% Printout of interesting parameters.
fprintf('Y/N simulated data\n');
fprintf('Palamedes pse: %g, thresh: %g\n',psePal,threshPal);
fprintf('\n');
end
%% Subfunctions for simulating observer
function nYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate,adaptingBias)
% probYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate,adaptingBias)
%
% Simulate out the number of times that the comparison is judged as larger on the response variable
% than the test. I'm sure there is an analytic solution, but it's a little tricky because we
% allow different standard deviations for the test and comparison noise.
%
% Assume experiment is based on comparison of noisy draws from underlying comparison and test
% distributions. You can also think of responseTest as a criterion. Passing testSd = 0 makes
% the criterion noise free, and other testSd may be thought of as criterial noise.
%
% The parameter adaptingBias is expressed in the same units as the internal response, and is subtracted
% from the comparison response before the decision. It simulates an adaptive effect. Typically passed
% as zero. It could also be regarded as a criterion that is shifted from the standard, if you are
% thinking in TSD terms.
%
% 4/25/09 dhb Wrote it.
diffNoise = normrnd(0,comparisonSd,nSimulate,1)-normrnd(0,testSd,nSimulate,1);
nYes = length(find(responseComparison-adaptingBias-responseTest+diffNoise > 0));
end
|
github | BrainardLab/TeachingCode-master | psychofitTutorialTAFCStaircase.m | .m | TeachingCode-master/MatlabTutorials/psychofitTutorial/psychofitTutorialTAFCStaircase.m | 8,302 | utf_8 | 493bbea8ee0a6593d8f99f7e9e661094 | function psychofitTutorialTAFCStaircase
% psychofitTutorialTAFCStaircase
%
% Show a staircase procedure and illustrate how to aggregate data and fit.
%
% You need the Palamedes toolboxe (1.8.2) and BrainardLabToolbox for this to work.
% 10/30/17 dhb Separated out and updated.
%% Clear
clear; close all;
%% Specify precision as noise of a Gaussian variable
%
% Simulation parameters
noiseSd = 0.06;
testStimulus = 100;
nComparisonFit = 100;
nComparison = 10;
nSimulate = 40;
nComparisonSds = 4;
thresholdCriterionCorrect = 0.75;
baseStepSize = 0.10;
%% Set up stimulus range
comparisonStimuli = linspace(testStimulus,testStimulus+nComparisonSds*noiseSd,nComparison);
comparisonStimuliFit = linspace(testStimulus,testStimulus+nComparisonSds*noiseSd,nComparisonFit);
%% Staircase type. You can specify either 'quest' or 'standard'.
staircaseType = 'standard';
%% Do a staircase for a TAFC experiment. Uses our Staircase class.
% The code below runs either 1 or 3 interleaved staircases.
% The use of 1 or 3 is hard-coded, with parameters for each
% set in the switch statement below
nInterleavedStaircases = 3;
maxDelta = max(comparisonStimuli)-testStimulus;
minDelta = 0.01;
% Initialize staircases. Initialization is slightly different for 'standard'
% and 'quest' versions. All parameters other than 'MaxValue' and 'MinValue'
% are required, and this is enforced by the class constructor function.
%
% The logic for TAFC staircases is similar to Y/N, but we want to set
% ups/downs or criterionCorr to aim above 50%, whereas in Y/N we typically
% aim at 50%.
for k = 1:nInterleavedStaircases
% Set starting value for the staircase at a random level between
% min and max.
initialDelta = (maxDelta-minDelta)*3*rand(1)+minDelta;
switch(staircaseType)
case 'standard'
stepSizes = [2*baseStepSize baseStepSize baseStepSize/4];
switch (nInterleavedStaircases)
case 1
% Parameters for just one staircase
numTrialsPerStaircase = 50;
nUps = [2];
nDowns = [1];
case 3
% Parameters for three interleaved
% Can also make the up/down rule vary
% across the staircases, to spread trials
% a little more.
numTrialsPerStaircase = 30;
nUps = [2 2 2];
nDowns = [1 1 1];
otherwise
error('Don''t know how to deal with specified number of staircases');
end
st{k} = Staircase(staircaseType,initialDelta, ...
'StepSizes', stepSizes, 'NUp', nUps(k), 'NDown', nDowns(k), ...
'MaxValue', maxDelta, 'MinValue', minDelta);
otherwise
error('Unknown staircase type specified');
end
end
% Simulate interleaved staircases
for i = 1:numTrialsPerStaircase
order = Shuffle(1:nInterleavedStaircases);
for k = 1:nInterleavedStaircases
comparisonDelta = getCurrentValue(st{order(k)});
response = SimulateTAFC(testStimulus,testStimulus+comparisonDelta,noiseSd,noiseSd,1);
st{order(k)} = updateForTrial(st{order(k)},comparisonDelta,response);
end
end
% Analyze staircase data
valuesStair = []; responsesStair = [];
for k = 1:nInterleavedStaircases
threshStair(k) = getThresholdEstimate(st{k});
[valuesSingleStair{k},responsesSingleStair{k}] = getTrials(st{k});
valuesStair = [valuesStair valuesSingleStair{k}];
responsesStair = [responsesStair responsesSingleStair{k}];
end
[meanValues,nCorrectStair,nTrialsStair] = GetAggregatedStairTrials(valuesStair,responsesStair,10);
% Palamedes fit
%
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Again, some
% thought is required to initialize reasonably. The threshold parameter is reasonably taken to be in the
% range of the comparison stimuli, where here 0 means that the comparison is the same as the test. The
% second parameter should be on the order of 1/2, so we just hard code that. As with Y/N, really want to
% plot the fit against the data to make sure it is reasonable in practice.
% Define what psychometric functional form to fit.
%
% Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
PF = @PAL_Weibull;
% The first two parameters of the Weibull define its shape.
%
% The third is the guess rate, which determines the value the function
% takes on at x = 0. For TAFC, this should be locked at 0.5.
%
% The fourth parameter is the lapse rate - the asymptotic performance at
% high values of x. For a perfect subject, this would be 0, but sometimes
% subjects have a "lapse" and get the answer wrong even when the stimulus
% is easy to see. We can search over this, but shouldn't allow it to take
% on unreasonable values. 0.05 as an upper limit isn't crazy.
%
% paramsFree is a boolean vector that determins what parameters get
% searched over. 1: free parameter, 0: fixed parameter
paramsFree = [1 1 0 1];
% Initial guess. Setting the first parameter to the middle of the stimulus
% range and the second to 1 puts things into a reasonable ballpark here.
paramsValues0 = [mean(comparisonStimuli'-testStimulus) 1 0.5 0.01];
% This puts limits on the range of the lapse rate
lapseLimits = [0 0.05];
% Set up standard options for Palamedes search
options = PAL_minimize('options');
% Do the search to get the parameters
[paramsValues] = PAL_PFML_Fit(...
valuesStair',responsesStair',ones(size(responsesStair')), ...
paramsValues0,paramsFree,PF,'searchOptions',options,'lapseLimits',lapseLimits);
probCorrFitStair = PF(paramsValues,comparisonStimuliFit'-testStimulus);
threshPalStair = PF(paramsValues,thresholdCriterionCorrect,'inverse');
% Figure
stairFig = figure; clf;
colors = ['r' 'g' 'b' 'k' 'y' 'c'];
subplot(1,2,1); hold on
for k = 1:nInterleavedStaircases
xvalues = 1:numTrialsPerStaircase;
index = find(responsesSingleStair{k} == 0);
plot(xvalues,valuesSingleStair{k},[colors(k) '-']);
plot(xvalues,valuesSingleStair{k},[colors(k) 'o'],'MarkerFaceColor',colors(k),'MarkerSize',6);
if (~isempty(index))
plot(xvalues(index),valuesSingleStair{k}(index),[colors(k) 'o'],'MarkerFaceColor','w','MarkerSize',6);
end
plot(xvalues,threshStair(k)*ones(1,numTrialsPerStaircase),colors(k));
end
xlabel('Trial Number','FontSize',16);
ylabel('Level','FontSize',16);
title(sprintf('TAFC staircase plot'),'FontSize',16);
subplot(1,2,2); hold on
plot(meanValues,nCorrectStair./nTrialsStair,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot(comparisonStimuliFit-testStimulus,probCorrFitStair,'r','LineWidth',2);
plot([threshPalStair threshPalStair],[0 thresholdCriterionCorrect],'r','LineWidth',2);
xlabel('Delta Stimulus','FontSize',16);
ylabel('Prob Correct','FontSize',16);
title(sprintf('TAFC staircase psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1)-testStimulus comparisonStimuli(end)-testStimulus])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('StaircaseFC',gcf','pdf');
else
saveas(gcf','StaircaseFC','pdf');
end
fprintf('Staircase simulated data\n');
for k = 1:nInterleavedStaircases
fprintf('\tTAFC staircase %d threshold estimate: %g\n',k,threshStair(k));
end
fprintf('Palamedes''s threshold estimate from staircase data: %g\n',threshPalStair);
end
%% Subfunctions for simulating observer
function nCorrect = SimulateTAFC(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
% nCorrect = SimulateTAFC(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
%
% Simulate out the number of times that a TAFC task is done correctly, with judgment greater
% corresponding to greater noisy response.
%
% 4/25/09 dhb Wrote it.
nCorrect = 0;
for i = 1:nSimulate
responseTestNoise = responseTest+normrnd(0,testSd,1,1);
responseComparisonNoise = responseComparison+normrnd(0,comparisonSd,1,1);
if (responseComparison > responseTest & responseComparisonNoise > responseTestNoise)
nCorrect = nCorrect+1;
elseif (responseComparison <= responseTest & responseComparisonNoise <= responseTestNoise)
nCorrect = nCorrect+1;
end
end
end
|
github | BrainardLab/TeachingCode-master | psychofitTutorial2014.m | .m | TeachingCode-master/MatlabTutorials/psychofitTutorial/psychofitTutorial2014.m | 22,190 | utf_8 | 0385fcfe145686c5be6fb0f57f0c1129 | function psychofitTutorial
% psychofitTutorial2014
%
% Show basic use of psignifit and Palamedes toolboxes to simulate and
% fit psychophysical data. Has cases for Y/N and TAFC, and shows
% both method of constant stimuli and staircase procedures.
%
% This is set up for our local version of psignifit, where the function psi has been
% renamed psigpsi to avoid a name conflict with MATLAB's own psi function.
%
% You need both the psignifit and Palamedes toolboxes on your path, as well
% as the Brainard lab staircase class and the Psychtoolbox.
%
% * [NOTE: DHB - This is a somewhat outdated version, as both psignifit and
% Palamedes have changed since this was written. And, it does not use
% mQUESTPlus. Starting to update parts in a new version today,
% 4/30/09 dhb Wrote it.
% 10/18/09 dhb Add some fits with Palamedes, just for grins
% 10/19/09 dhb Added TAFC example as well as Y/N. Cleaned up and added comments.
% 10/19/09 dhb Use staircase class for a TAFC staircase example.
% 5/6/11 dhb Fix initial guess of slope for Palamedes. This was inverted, but worked by luck previously.
% 10/31/12 dhb Fix what is printed out for Y/N staircase threshold.
% dhb Y/N thresh defined as 75% point minus 50% point.
% dhb Save figures, and a few more lines on the figs.
% dhb Add option to simulate adapting bias.
% 11/14/13 dhb Tune up a bunch of little things.
% 10/21/14 dhb Added better comments for staircasing stuff.
%% Clear
clear; close all; clear classes;
%% Specify precision as noise of a Gaussian variable
%
% Simulated Y/N experiment is for test bigger or less than
% comparison.
noiseSd = 0.06;
testStimulus = 100;
nComparisonFit = 100;
adaptingBias = 0;
nComparison = 10;
nSimulate = 40;
%% Staircase type. You can specify either 'quest' or 'standard'.
staircaseType = 'standard';
%% Simulate Y/N psychometric function and fit. The cumulative normal is a pretty natural choice
% for y/n psychometric data, and that's what's shown here.
%
% There are lots of variants to the fitting that could be used, in the sense that we could
% allow for lapse rates, etc. But this form should work pretty well for most purposes. It's
% always a good idea to plot the fit against the actual data and make sure it is reasonable.
% For staircase data, this requires some binning (not demonstrated here.)
comparisonStimuli = linspace(testStimulus-4*noiseSd,testStimulus+4*noiseSd,nComparison);
comparisonStimuliFit = linspace(testStimulus-4*noiseSd,testStimulus+4*noiseSd,nComparisonFit);
for i = 1:nComparison
nYes(i) = SimulateProbYes(testStimulus,comparisonStimuli(i),0,noiseSd,nSimulate,adaptingBias); %#ok<AGROW>
end
% PSIGNIFIT
% Fit simulated data, psignifit. These parameters do a one interval (y/n) fit. Both lambda (lapse rate) and
% gamma (value for -Inf input) are locked at 0.
fittype = 'c';
pfitdata = [comparisonStimuli', nYes', nSimulate*ones(size(nYes'))];
pfitstruct = pfit(pfitdata,'no plot','matrix_format','xrn', ...
'shape', fittype, 'n_intervals', 1, 'runs', 0, 'sens', 0, ...
'compute_stats', 0, 'cuts', [0.5], 'verbose', 0, 'fix_lambda',0,'fix_gamma',0);
probYesFitPsig = psigpsi(fittype, pfitstruct.params.est, comparisonStimuliFit');
psePsig = findthreshold(fittype,pfitstruct.params.est,0.5,'performance');
threshPsig = findthreshold(fittype,pfitstruct.params.est,0.75,'performance') - ...
findthreshold(fittype,pfitstruct.params.est,0.5,'performance');
% PALAMEDES
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Some thinking is
% required to initialize the parameters sensibly. We know that the mean of the cumulative normal should be
% roughly within the range of the comparison stimuli, so we initialize this to the mean. The standard deviation
% should be some moderate fraction of the range of the stimuli, so again this is used as the initializer.
PF = @PAL_CumulativeNormal; % Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
PFI = @PAL_inverseCumulativeNormal;
paramsFree = [1 1 0 0]; % 1: free parameter, 0: fixed parameter
paramsValues0 = [mean(comparisonStimuli') 1/((max(comparisonStimuli')-min(comparisonStimuli'))/4) 0 0];
options = optimset('fminsearch'); % Type help optimset
options.TolFun = 1e-09; % Increase required precision on LL
options.Display = 'off'; % Suppress fminsearch messages
lapseLimits = [0 1]; % Limit range for lambda
[paramsValues] = PAL_PFML_Fit(...
comparisonStimuli',nYes',nSimulate*ones(size(nYes')), ...
paramsValues0,paramsFree,PF,'searchOptions',options, ...
'lapseLimits',lapseLimits);
probYesFitPal = PF(paramsValues,comparisonStimuliFit');
psePal = PFI(paramsValues,0.5);
threshPal = PFI(paramsValues,0.75)-PFI(paramsValues,0.5);
% Plot of Y/N simulation. When the red and green overlap (which they do in all my tests), it
% means that psignfit and Palamedes agree.
figure; clf; hold on
plot(comparisonStimuli,nYes/nSimulate,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot([testStimulus testStimulus],[0 1],'b');
plot(comparisonStimuliFit,probYesFitPsig,'r','LineWidth',2);
plot(comparisonStimuliFit,probYesFitPal,'g','LineWidth',1);
plot([psePsig psePsig],[0 1],'r','LineWidth',2);
plot([psePal psePal],[0 1],'g','LineWidth',1);
plot([psePsig psePsig+threshPsig],[0.75 0.75],'r','LineWidth',2);
plot([psePal psePal+threshPal],[0.75 0.75],'g','LineWidth',1);
xlabel('Comparison','FontSize',16);
ylabel('Prob "Yes"','FontSize',16);
title(sprintf('Y/N psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1) comparisonStimuli(end)])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('PsychoYN',gcf,'pdf');
else
saveas('gcf','PsychoYN','pdf');
end
% Printout of interesting parameters.
fprintf('Y/N simulated data\n');
fprintf('Psignifit pse: %g, thresh: %g\n',psePsig,threshPsig);
fprintf('Palamedes pse: %g, thresh: %g\n',psePal,threshPal);
fprintf('\n');
%% Do a staircase for a Y/N experiment. Uses our Staircase class.
% The code below runs three interleaved staircases.
% For 'quest', three different criterion percent correct values are used.
% For 'standard', three different up/down rules are used.
% The use of 3 is hard-coded, in the sense that the vector lengths of the
% criterion/up-down vectors must match this number.
%
% The variables maxDelta and minDelta below represent the range of trial values
% that the staircase will range between.
numTrialsPerStaircase = 50;
maxDelta = max(comparisonStimuli)-testStimulus;
minDelta = -maxDelta;
% Initialize staircases. Initialization is slightly different for 'standard'
% and 'quest' versions. All parameters other than 'MaxValue' and 'MinValue'
% are required, and this is enforced by the class constructor function.
nInterleavedStaircases = 3;
for k = 1:nInterleavedStaircases
% Set starting value for the staircase at a random level between
% min and max.
initialDelta = (maxDelta-minDelta)*rand(1)+minDelta;
switch(staircaseType)
case 'standard'
% The staircase starts at the largest step size and decreases with
% each reversal. When it gets to the minimum value in the list, it
% stays there.
stepSizes = [maxDelta/2 maxDelta/4 maxDelta/8];
% Set the up/dow rule for each staircase. N-Up, M-Down means (counterintuitively)
% that it requires N positive responses to decrease the level and M negative responses
% to decrease it. The choices shown here tend to spread the values around the 50-50
% response point.
nUps = [1 1 2];
nDowns = [2 1 1];
st{k} = Staircase(staircaseType,initialDelta, ...
'StepSizes', stepSizes, 'NUp', nUps(k), 'NDown', nDowns(k), ...
'MaxValue', maxDelta, 'MinValue', minDelta);
case 'quest'
criterionCorrs = [.4 .5 .6];
st{k} = Staircase(staircaseType,initialDelta, ...
'Beta', 2, 'Delta', 0.01, 'PriorSD',1000, ...
'TargetThreshold', criterionCorrs(k), 'Gamma', 0, ...
'MaxValue', maxDelta, 'MinValue', minDelta);
end
end
% Simulate interleaved staircases
for i = 1:numTrialsPerStaircase
order = Shuffle(1:nInterleavedStaircases);
for k = 1:nInterleavedStaircases
comparisonDelta = getCurrentValue(st{order(k)});
response = SimulateProbYes(testStimulus,testStimulus+comparisonDelta,0,noiseSd,1,adaptingBias);
st{order(k)} = updateForTrial(st{order(k)},comparisonDelta,response);
end
end
% Analyze staircase data
valuesStair = []; responsesStair = [];
for k = 1:nInterleavedStaircases
pseStair(k) = getThresholdEstimate(st{k});
[valuesSingleStair{k},responsesSingleStair{k}] = getTrials(st{k});
valuesStair = [valuesStair valuesSingleStair{k}];
responsesStair = [responsesStair responsesSingleStair{k}];
end
[meanValues,nCorrectStair,nTrialsStair] = GetAggregatedStairTrials(valuesStair,responsesStair,10);
% Fit staircase data using Palamedes
paramsValues0(1) = 0;
paramsValues0(2) = 1/((max(valuesStair) - min(valuesStair))/4);
[paramsValuesStair] = PAL_PFML_Fit(...
valuesStair',responsesStair',ones(size(responsesStair')), ...
paramsValues0,paramsFree,PF,'searchOptions',options, ...
'lapseLimits',lapseLimits);
probYesFitStair = PF(paramsValuesStair,comparisonStimuliFit'-testStimulus);
psePalStair = PFI(paramsValuesStair,0.5);
threshPalStair = PFI(paramsValuesStair,0.75)-PFI(paramsValuesStair,0.5);
% Figure
stairFig = figure; clf;
colors = ['r' 'g' 'b' 'k' 'y' 'c'];
subplot(1,2,1); hold on
for k = 1:nInterleavedStaircases
xvalues = 1:numTrialsPerStaircase;
index = find(responsesSingleStair{k} == 0);
plot(xvalues,valuesSingleStair{k},[colors(k) '-']);
plot(xvalues,valuesSingleStair{k},[colors(k) 'o'],'MarkerFaceColor',colors(k),'MarkerSize',6);
if (~isempty(index))
plot(xvalues(index),valuesSingleStair{k}(index),[colors(k) 'o'],'MarkerFaceColor','w','MarkerSize',6);
end
plot(xvalues,pseStair(k)*ones(1,numTrialsPerStaircase),colors(k));
end
xlabel('Trial Number','FontSize',16);
ylabel('Level','FontSize',16);
title(sprintf('Y/N staircase plot'),'FontSize',16);
subplot(1,2,2); hold on
plot(meanValues,nCorrectStair./nTrialsStair,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot(comparisonStimuliFit-testStimulus,probYesFitStair,'r','LineWidth',2);
plot([psePalStair psePalStair],[0 0.5],'r','LineWidth',2);
plot([psePalStair psePalStair+threshPalStair],[0.75 0.75],'g','LineWidth',2);
xlabel('Delta Stimulus','FontSize',16);
ylabel('Prob Yes','FontSize',16);
title(sprintf('Y/N staircase psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1)-testStimulus comparisonStimuli(end)-testStimulus])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('StaircaseYN',gcf','pdf');
else
saveas(gcf,'StaircaseYN','pdf');
end
fprintf('Staircase simulated data\n');
for k = 1:nInterleavedStaircases
fprintf('\tY/N staircase %d threshold estimate: %g\n',k,pseStair(k));
end
fprintf('Palamedes''s threshold estimate from staircase data: %g\n',threshPalStair);
fprintf('\n');
%% Simulate TAFC psychometric function and fit. Here the Weibull is a more natural functional
% form, and we show its use for both toolboxes.
%
% Unlike Y/N, the most natural x axis for TAFC is the increment of the comparison relative to
% the test, so that a 0 comparison corresponds to chance performance.
%
% As with Y/N simulation above, we don't allow for a lapse rate in this demo.
comparisonStimuli = linspace(testStimulus,testStimulus+6*noiseSd,nComparison);
comparisonStimuliFit = linspace(testStimulus,testStimulus+6*noiseSd,nComparisonFit);
for i = 1:nComparison
nCorrect(i) = SimulateTAFC(testStimulus,comparisonStimuli(i),noiseSd,noiseSd,nSimulate,adaptingBias); %#ok<AGROW>
end
% PSIGNIFIT
% Fit simulated data, psignifit. These parameters do a one interval (y/n) fit. Both lambda (lapse rate) and
% gamma (value for -Inf input) are locked at 0.
criterionCorr = 0.82;
fittype = 'w';
pfitdata = [comparisonStimuli'-testStimulus, nCorrect', nSimulate*ones(size(nCorrect'))];
pfitstruct = pfit(pfitdata,'no plot','matrix_format','xrn', ...
'shape', fittype, 'n_intervals', 2, 'runs', 0, 'sens', 0, ...
'compute_stats', 0, 'cuts', [0.5], 'verbose', 0, 'fix_lambda',0,'fix_gamma',0.5);
probCorrFitPsig = psigpsi(fittype, pfitstruct.params.est, comparisonStimuliFit'-testStimulus);
threshPsig = findthreshold(fittype,pfitstruct.params.est,criterionCorr,'performance');
% PALAMEDES
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Again, some
% thought is required to initialize reasonably. The threshold parameter is reasonably taken to be in the
% range of the comparison stimuli, where here 0 means that the comparison is the same as the test. The
% second parameter should be on the order of 1/2, so we just hard code that. As with Y/N, really want to
% plot the fit against the data to make sure it is reasonable in practice.
PF = @PAL_Weibull; % Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
PFI = @PAL_inverseWeibull;
paramsFree = [1 1 0 0]; % 1: free parameter, 0: fixed parameter
paramsValues0 = [mean(comparisonStimuli'-testStimulus) 1/2 0.5 0];
options = optimset('fminsearch'); % Type help optimset
options.TolFun = 1e-09; % Increase required precision on LL
options.Display = 'off'; % Suppress fminsearch messages
lapseLimits = [0 1]; % Limit range for lambda
[paramsValues] = PAL_PFML_Fit(...
comparisonStimuli'-testStimulus,nCorrect',nSimulate*ones(size(nYes')), ...
paramsValues0,paramsFree,PF,'searchOptions',options, ...
'lapseLimits',lapseLimits);
probCorrFitPal = PF(paramsValues,comparisonStimuliFit'-testStimulus);
threshPal = PFI(paramsValues,criterionCorr);
% Plot of TAFC simulation. When the red and green overlap (which they do in all my tests), it
% means that psignfit and Palamedes agree.
figure; clf; hold on
plot(comparisonStimuli'-testStimulus,nCorrect/nSimulate,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot(comparisonStimuliFit-testStimulus,probCorrFitPsig,'r','LineWidth',2);
plot(comparisonStimuliFit-testStimulus,probCorrFitPal,'g','LineWidth',1);
plot([threshPsig threshPsig],[0 criterionCorr],'r','LineWidth',2);
plot([threshPal threshPal],[0 criterionCorr],'g','LineWidth',1);
xlabel('Delta Stimulus','FontSize',16);
ylabel('Prob Correct','FontSize',16);
title(sprintf('TAFC psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1)-testStimulus comparisonStimuli(end)-testStimulus])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('PsychoFC',gcf,'pdf');
else
saveas(gcf,'PsychFC','pdf');
end
% Printout
fprintf('TAFC simulated data\n');
fprintf('Psignifit thresh: %g\n',threshPsig);
fprintf('Palamedes thresh: %g\n',threshPal);
fprintf('\n');
%% Do a staircase for a TAFC experiment. Uses our Staircase class.
% The code below runs three interleaved staircases.
% For 'quest', three different criterion percent correct values are used.
% For 'standard', three different up/down rules are used.
% The use of 3 is hard-coded, in the sense that the vector lengths of the
% criterion/up-down vectors must match this number.
numTrialsPerStaircase = 30;
maxDelta = max(comparisonStimuli)-testStimulus;
minDelta = 0.01;
% Initialize staircases. Initialization is slightly different for 'standard'
% and 'quest' versions. All parameters other than 'MaxValue' and 'MinValue'
% are required, and this is enforced by the class constructor function.
%
% The logic for TAFC staircases is similar to Y/N, but we want to set
% ups/downs or criterionCorr to aim above 50%, whereas in Y/N we typically
% aim at 50%.
nInterleavedStaircases = 3;
for k = 1:nInterleavedStaircases
% Set starting value for the staircase at a random level between
% min and max.
initialDelta = (maxDelta-minDelta)*rand(1)+minDelta;
switch(staircaseType)
case 'standard'
stepSizes = [2*threshPal threshPal threshPal/4];
nUps = [3 2 3];
nDowns = [1 1 2];
st{k} = Staircase(staircaseType,initialDelta, ...
'StepSizes', stepSizes, 'NUp', nUps(k), 'NDown', nDowns(k), ...
'MaxValue', maxDelta, 'MinValue', minDelta);
case 'quest'
criterionCorrs = [criterionCorr-0.08 criterionCorr criterionCorr+0.08];
st{k} = Staircase(staircaseType,initialDelta, ...
'Beta', 2, 'Delta', 0.01, 'PriorSD',1000, ...
'TargetThreshold', criterionCorrs(k),'Gamma', 0.5, ...
'MaxValue', maxDelta, 'MinValue', minDelta);
end
end
% Simulate interleaved staircases
for i = 1:numTrialsPerStaircase
order = Shuffle(1:nInterleavedStaircases);
for k = 1:nInterleavedStaircases
comparisonDelta = getCurrentValue(st{order(k)});
response = SimulateTAFC(testStimulus,testStimulus+comparisonDelta,noiseSd,noiseSd,1,adaptingBias);
st{order(k)} = updateForTrial(st{order(k)},comparisonDelta,response);
end
end
% Analyze staircase data
valuesStair = []; responsesStair = [];
for k = 1:nInterleavedStaircases
threshStair(k) = getThresholdEstimate(st{k});
[valuesSingleStair{k},responsesSingleStair{k}] = getTrials(st{k});
valuesStair = [valuesStair valuesSingleStair{k}];
responsesStair = [responsesStair responsesSingleStair{k}];
end
[meanValues,nCorrectStair,nTrialsStair] = GetAggregatedStairTrials(valuesStair,responsesStair,10);
% Fit staircase data using Palamedes
[paramsValuesStair] = PAL_PFML_Fit(...
valuesStair',responsesStair',ones(size(responsesStair')), ...
paramsValues0,paramsFree,PF,'searchOptions',options, ...
'lapseLimits',lapseLimits);
probCorrFitStair = PF(paramsValuesStair,comparisonStimuliFit'-testStimulus);
threshPalStair = PFI(paramsValuesStair,criterionCorr);
% Figure
stairFig = figure; clf;
colors = ['r' 'g' 'b' 'k' 'y' 'c'];
subplot(1,2,1); hold on
for k = 1:nInterleavedStaircases
xvalues = 1:numTrialsPerStaircase;
index = find(responsesSingleStair{k} == 0);
plot(xvalues,valuesSingleStair{k},[colors(k) '-']);
plot(xvalues,valuesSingleStair{k},[colors(k) 'o'],'MarkerFaceColor',colors(k),'MarkerSize',6);
if (~isempty(index))
plot(xvalues(index),valuesSingleStair{k}(index),[colors(k) 'o'],'MarkerFaceColor','w','MarkerSize',6);
end
plot(xvalues,threshStair(k)*ones(1,numTrialsPerStaircase),colors(k));
end
xlabel('Trial Number','FontSize',16);
ylabel('Level','FontSize',16);
title(sprintf('TAFC staircase plot'),'FontSize',16);
subplot(1,2,2); hold on
plot(meanValues,nCorrectStair./nTrialsStair,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot(comparisonStimuliFit-testStimulus,probCorrFitStair,'r','LineWidth',2);
plot([threshPalStair threshPalStair],[0 criterionCorr],'r','LineWidth',2);
xlabel('Delta Stimulus','FontSize',16);
ylabel('Prob Correct','FontSize',16);
title(sprintf('TAFC staircase psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1)-testStimulus comparisonStimuli(end)-testStimulus])
ylim([0 1]);
if (exist('FigureSave','file'))
FigureSave('StaircaseFC',gcf','pdf');
else
saveas(gcf','StaircaseFC','pdf');
end
fprintf('Staircase simulated data\n');
for k = 1:nInterleavedStaircases
fprintf('\tTAFC staircase %d threshold estimate: %g\n',k,threshStair(k));
end
fprintf('Palamedes''s threshold estimate from staircase data: %g\n',threshPalStair);
end
%% Subfunctions for simulating observer
function nYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate,adaptingBias)
% probYes = SimulateProbYes(responseTest,responseComparison,testSd,comparisonSd,nSimulate,adaptingBias)
%
% Simulate out the number of times that the comparison is judged as larger on the response variable
% than the test. I'm sure there is an analytic solution, but it's a little tricky because we
% allow different standard deviations for the test and comparison noise.
%
% Assume experiment is based on comparison of noisy draws from underlying comparison and test
% distributions. You can also think of responseTest as a criterion. Passing testSd = 0 makes
% the criterion noise free, and other testSd may be thought of as criterial noise.
%
% The parameter adaptingBias is expressed in the same units as the internal response, and is subtracted
% from the comparison response before the decision. It simulates an adaptive effect. Typically passed
% as zero. It could also be regarded as a criterion that is shifted from the standard, if you are
% thinking in TSD terms.
%
% 4/25/09 dhb Wrote it.
diffNoise = normrnd(0,comparisonSd,nSimulate,1)-normrnd(0,testSd,nSimulate,1);
nYes = length(find(responseComparison-adaptingBias-responseTest+diffNoise > 0));
end
function nCorrect = SimulateTAFC(responseTest,responseComparison,testSd,comparisonSd,nSimulate,adaptingBias)
% probYes = SimulateProbYes(responseTest,responseComparison,testSd, comparisonSd,nSimulate,adaptingBias)
%
% Simulate out the number of times that a TAFC task is done correctly, with judgment greater
% corresponding to greater noisy response.
%
% The parameter adaptingBias is expressed in the same units as the internal response, and is subtracted
% from the comparison response before the decision. It simulates an adaptive effect. Typically passed
% as zero. This can be a bit weird because the decision rule is coded on the assumption that the
% comparison is always bigger than the test.
%
% 4/25/09 dhb Wrote it.
nCorrect = 0;
for i = 1:nSimulate
responseTestNoise = responseTest+normrnd(0,testSd,1,1);
responseComparisonNoise = responseComparison+normrnd(0,comparisonSd,1,1)-adaptingBias;
if (responseComparison > responseTest & responseComparisonNoise > responseTestNoise)
nCorrect = nCorrect+1;
elseif (responseComparison <= responseTest & responseComparisonNoise <= responseTestNoise)
nCorrect = nCorrect+1;
end
end
end
|
github | BrainardLab/TeachingCode-master | psychofitTutorialTAFC.m | .m | TeachingCode-master/MatlabTutorials/psychofitTutorial/psychofitTutorialTAFC.m | 5,173 | utf_8 | fa2b815076ca613d136e8e4c261f32ef | function psychofitTutorialTAFC
% psychofitTutorialTAFC
%
% Show basic use of Palamedes toolboxes to simulate and
% fit psychophysical data, TAFC, for method of constant stimuli.
%
% You need the Palamedes toolboxe (1.8.2) for this to work.
% 04/30/09 dhb Broke out from 2014 version and updated.
%% Clear
clear; close all;
%% Specify precision as noise of a Gaussian variable
%
% Simulation parameters
noiseSd = 0.06;
testStimulus = 100;
nComparisonFit = 100;
nComparison = 10;
nSimulate = 40;
nComparisonSds = 4;
thresholdCriterionCorrect = 0.75;
%% Simulate TAFC psychometric function and fit. Here the Weibull is a more natural functional
% form, and we show its use for both toolboxes.
%
% The most natural x axis for TAFC is the increment of the comparison relative to
% the test, so that a 0 comparison corresponds to chance performance.
comparisonStimuli = linspace(testStimulus,testStimulus+nComparisonSds*noiseSd,nComparison);
comparisonStimuliFit = linspace(testStimulus,testStimulus+nComparisonSds*noiseSd,nComparisonFit);
for i = 1:nComparison
nCorrect(i) = SimulateTAFC(testStimulus,comparisonStimuli(i),noiseSd,noiseSd,nSimulate); %#ok<AGROW>
end
% Palamedes fit
%
% Fit with Palemedes Toolbox. The parameter constraints match the psignifit parameters above. Again, some
% thought is required to initialize reasonably. The threshold parameter is reasonably taken to be in the
% range of the comparison stimuli, where here 0 means that the comparison is the same as the test. The
% second parameter should be on the order of 1/2, so we just hard code that. As with Y/N, really want to
% plot the fit against the data to make sure it is reasonable in practice.
% Define what psychometric functional form to fit.
%
% Alternatives: PAL_Gumbel, PAL_Weibull, PAL_CumulativeNormal, PAL_HyperbolicSecant
PF = @PAL_Weibull;
% The first two parameters of the Weibull define its shape.
%
% The third is the guess rate, which determines the value the function
% takes on at x = 0. For TAFC, this should be locked at 0.5.
%
% The fourth parameter is the lapse rate - the asymptotic performance at
% high values of x. For a perfect subject, this would be 0, but sometimes
% subjects have a "lapse" and get the answer wrong even when the stimulus
% is easy to see. We can search over this, but shouldn't allow it to take
% on unreasonable values. 0.05 as an upper limit isn't crazy.
%
% paramsFree is a boolean vector that determins what parameters get
% searched over. 1: free parameter, 0: fixed parameter
paramsFree = [1 1 0 1];
% Initial guess. Setting the first parameter to the middle of the stimulus
% range and the second to 1 puts things into a reasonable ballpark here.
paramsValues0 = [mean(comparisonStimuli'-testStimulus) 1 0.5 0.01];
% This puts limits on the range of the lapse rate
lapseLimits = [0 0.05];
% Set up standard options for Palamedes search
options = PAL_minimize('options');
% Do the search to get the parameters
[paramsValues] = PAL_PFML_Fit(...
comparisonStimuli'-testStimulus,nCorrect',nSimulate*ones(size(nCorrect')), ...
paramsValues0,paramsFree,PF,'searchOptions',options,'lapseLimits',lapseLimits);
%% Make a smooth curve with the parameters
probCorrFitPal = PF(paramsValues,comparisonStimuliFit'-testStimulus);
%% Invert psychometric function to find threshold
threshPal = PF(paramsValues,thresholdCriterionCorrect,'inverse');
%% Plot of TAFC simulation
%
% The plot shows the simulated data, the fit, and the threshold from the
% fit.
figure; clf; hold on
plot(comparisonStimuli'-testStimulus,nCorrect/nSimulate,'ko','MarkerSize',6,'MarkerFaceColor','k');
plot(comparisonStimuliFit-testStimulus,probCorrFitPal,'g','LineWidth',1);
plot([threshPal threshPal],[0 thresholdCriterionCorrect],'g','LineWidth',1);
xlabel('Delta Stimulus','FontSize',16);
ylabel('Prob Correct','FontSize',16);
title(sprintf('TAFC psychometric function'),'FontSize',16);
xlim([comparisonStimuli(1)-testStimulus comparisonStimuli(end)-testStimulus])
ylim([0 1.01]);
if (exist('FigureSave','file'))
FigureSave('PsychoTAFC',gcf,'pdf');
else
saveas(gcf,'PsychTAFC','pdf');
end
% Printout
fprintf('TAFC simulated data\n');
fprintf('Palamedes thresh: %g\n',threshPal);
fprintf('Parameters: %0.2g %0.2g %0.2g %0.2g\n',paramsValues(1),paramsValues(2),paramsValues(3),paramsValues(4));
fprintf('\n');
end
function nCorrect = SimulateTAFC(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
% nCorrect = SimulateTAFC(responseTest,responseComparison,testSd,comparisonSd,nSimulate)
%
% Simulate out the number of times that a TAFC task is done correctly, with judgment greater
% corresponding to greater noisy response.
%
% 4/25/09 dhb Wrote it.
nCorrect = 0;
for i = 1:nSimulate
responseTestNoise = responseTest+normrnd(0,testSd,1,1);
responseComparisonNoise = responseComparison+normrnd(0,comparisonSd,1,1);
if (responseComparison > responseTest & responseComparisonNoise > responseTestNoise)
nCorrect = nCorrect+1;
elseif (responseComparison <= responseTest & responseComparisonNoise <= responseTestNoise)
nCorrect = nCorrect+1;
end
end
end
|
github | BrainardLab/TeachingCode-master | poissonSetup.m | .m | TeachingCode-master/MatlabTutorials/filteringAndNoise (Phil Nelson)/poissonSetup.m | 716 | utf_8 | 26ec6970be1e3b049bf000cac6dbd324 | %% pcn 9/07 poissonSetup.m
% this function sets up the vector distrBins, which can then be used
% to generate random integers in a Poisson distribution:
% a. this function poissonSetup(Q) prepares the vector distrBins
% b. to use it in your main routine, initialize with:
% dist=poissonSetup(2)
% (The argument selects the desired mean.) Then say:
% [n,k]=histc(rand,dist)
% which returns
% k = a sample from the distribution, plus 1
% (and n = array with zeros except for bin #k)
%
%%
function distrBins=poissonSetup(r);
topBin=max([10 round(10*r)]);
tmpBins(1)=0;
running=exp(-r);
tmpBins(2)=running;
for m=1:(topBin-2);
running=running*r/m;
tmpBins(m+2)=running; end;
distrBins=cumsum(tmpBins);
return; |
github | BrainardLab/TeachingCode-master | MGL_MOGL_VertexArray.m | .m | TeachingCode-master/MGLExamples/MGL_MOGL_VertexArray.m | 8,758 | utf_8 | 626bad60ec16d7eb3318b734aeb9e5e2 | function MGL_MOGL_VertexArray
% MGL_MOGL_VertexArray
%
% Description:
% Shows how to create a simple shape with vertex arrays.
% This setups up some OpenGL constants in the Matlab environment.
% Essentially, anything in C OpenGL that starts with GL_ becomes GL.., e.g.
% GL_RECT becomes GL.RECT. All GL_ are stored globally in the GL struct.
global GL;
InitializeMatlabOpenGL;
% Setup some parameters we'll use.
screenDims = [50 30]; % Width, height in centimeters of the display.
backgroundRGB = [0 0 0]; % RGB of the background. All values are in the [0,1] range.
screenDist = 50; % The distance from the observer to the display.
cubeSize = 10; % Size of one side of the cube.
% This the half the distance between the observers 2 pupils. This value is
% key in setting up the stereo perspective for the left and right eyes.
% For a single screen setup, we'll use a value of 0 since we're not
% actually in stereo.
ioOffset = 0;
% Define the vertices of our cube.
v = zeros(8, 3);
v(1,:) = [-1 -1 1];
v(2,:) = [1 -1 1];
v(3,:) = [1 1 1];
v(4,:) = [-1 1 1];
v(5,:) = [-1 -1 -1];
v(6,:) = [1 -1 -1];
v(7,:) = [1 1 -1];
v(8,:) = [-1 1 -1];
% Now we define the vertex information for the vertex arrays we'll be
% using. Essentially, we're defining the vertices for the OpenGL
% primitives that will be used.
cubeVerts = [v(1,:), v(2,:), v(3,:), v(4,:), ... % Front
v(2,:), v(6,:), v(7,:), v(3,:), ... % Right
v(6,:), v(5,:), v(8,:), v(7,:), ... % Back
v(5,:), v(1,:), v(4,:), v(8,:), ... % Left
v(4,:), v(3,:), v(7,:), v(8,:), ... % Top
v(2,:), v(1,:), v(5,:), v(6,:)]; % Bottom
% Define the surface normals for the each vertex for every primitive. It
% is possible to use shared vertices to reduce the number of specified
% values, but it makes it trickier to define vertex normals. These need to
% match the vertices defined above.
n.front = [0 0 1];
n.back = [0 0 -1];
n.right = [1 0 0];
n.left = [-1 0 0];
n.up = [0 1 0];
n.down = [0 -1 0];
cubeNormals = [repmat(n.front, 1, 4), repmat(n.right, 1, 4), ...
repmat(n.back, 1, 4), repmat(n.left, 1, 4), ...
repmat(n.up, 1, 4), repmat(n.down, 1, 4)];
% Define the vertex colors.
cubeColors = repmat([1 0 0], 1, 24);
% Now we define the indices of the vertices that we'll use to define the
% cube. These are indices into the 'cubeVerts' array specified above.
% Note that OpenGL uses 0 based indices unlike Matlab.
cubeIndices = [0 1 2 3, ... % Front
4 5 6 7, ... % Right
8 9 10 11, ... % Back
12 13 14 15, ... % Left
16 17 18 19, ... % Top
20 21 22 23]; % Bottom
% Convert the indices to unsigned bytes for storage optimization.
cubeIndices = uint8(cubeIndices);
try
mglOpen;
% We need to calculate a frustum to define our perspective matrix.
% Using this data in combination with the glFrustum command, we can now
% have a 3D rendering space instead of orthographic (2D).
frustum = calculateFrustum(screenDist, screenDims, ioOffset);
% Setup what our background color will be. We only need to do this
% once unless we want to change our background color in the middle of
% the program.
glClearColor(backgroundRGB(1), backgroundRGB(2), backgroundRGB(3), ...
0); % This 4th value is the alpha value. We rarely care about it
% for the background color.
% Make sure we're testing for depth. Important if more than 1 thing is
% on the screen and you don't want to deal with render order effects.
glEnable(GL.DEPTH_TEST);
% These help things rendered look nicer.
glEnable(GL.BLEND);
glEnable(GL.POLYGON_SMOOTH);
glEnable(GL.LINE_SMOOTH);
glEnable(GL.POINT_SMOOTH);
% Turn on lighting.
glLightfv(GL.LIGHT0, GL.AMBIENT, [0.5 0.5 0.5 1]);
glLightfv(GL.LIGHT0, GL.DIFFUSE, [0.6 0.6 0.6 1]);
glLightfv(GL.LIGHT0, GL.SPECULAR, [0.5 0.5 0.5 1]);
glLightfv(GL.LIGHT0, GL.POSITION, [0 0 0 1]);
glEnable(GL.LIGHTING);
glEnable(GL.COLOR_MATERIAL);
glEnable(GL.LIGHT0);
% Turn on character listening. This function causes keyboard
% characters to be gobbled up so they don't appear in any Matlab
% window.
mglEatKeys(1:50);
% Clear the keyboard buffer.
mglGetKeyEvent;
keepDrawing = true;
while keepDrawing
% Look for a keyboard press.
key = mglGetKeyEvent;
% If the nothing was pressed keeping drawing.
if ~isempty(key)
% We can react differently to each key press.
switch key.charCode
% All other keys go here.
otherwise
fprintf('Exiting...\n');
% Quit our drawing loop.
keepDrawing = false;
end
end
% Setup the projection matrix. The projection matrix defines how
% the OpenGL coordinate system maps onto the physical screen.
glMatrixMode(GL.PROJECTION);
% This gives us a clean slate to work with.
glLoadIdentity;
% Map our 3D rendering space to the display given a specific
% distance from the screen to the subject and an interocular
% offset. This is calculated at the beginning of the program.
glFrustum(frustum.left, frustum.right, frustum.bottom, frustum.top, frustum.near, frustum.far);
% Now we switch to the modelview mode, which is where we draw
% stuff.
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% In 3D mode, we need to specify where the camera (the subject) is
% in relation to the display. Essentially, for proper stereo, the
% camera will be placed at the screen distance facing straight
% ahead not at (0,0).
gluLookAt(ioOffset, 0, screenDist, ... % Eye position
ioOffset, 0, 0, ... % Fixation center
0, 1, 0); % Vector defining which way is up.
% Clear our rendering space. If you don't do this rendered in the
% buffer before will still be there. The scene is filled with the
% background color specified above.
glClear(mor(GL.COLOR_BUFFER_BIT, GL.DEPTH_BUFFER_BIT, GL.STENCIL_BUFFER_BIT, GL.ACCUM_BUFFER_BIT));
glRotated(20, 1, 1, 1);
% Set the size of the cube.
glScaled(cubeSize/2, cubeSize/2, cubeSize/2);
% Render the cube.
glEnableClientState(GL.VERTEX_ARRAY);
glEnableClientState(GL.NORMAL_ARRAY);
glEnableClientState(GL.COLOR_ARRAY);
glNormalPointer(GL.DOUBLE, 0, cubeNormals);
glColorPointer(3, GL.DOUBLE, 0, cubeColors);
glVertexPointer(3, GL.DOUBLE, 0, cubeVerts);
glColorMaterial(GL.FRONT_AND_BACK, GL.AMBIENT_AND_DIFFUSE);
glDrawElements(GL.QUADS, length(cubeIndices), GL.UNSIGNED_BYTE, cubeIndices);
glDisableClientState(GL.VERTEX_ARRAY);
glDisableClientState(GL.NORMAL_ARRAY);
glDisableClientState(GL.COLOR_ARRAY);
% This command sticks everything we just did onto the screen. It
% syncs to the refresh rate of the display.
mglFlush;
end
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
catch e
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
% Send the error to the Matlab command window.
rethrow(e);
end
function frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
% frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
%
% Description:
% Takes some basic screen information and calculates the frustum parameters
% required to setup a 3D projection matrix.
%
% Input:
% screenDistance (scalar) - Distance from the screen to the observer.
% screenDims (1x2) - Dimensions of the screen. (width, height)
% horizontal offset (scalar) - Horizontal shift of the observer from the
% center of the display. Should be 0 for regular displays and half the
% interocular distance for stereo setups.
%
% Output:
% frust (struct) - Struct containing all calculated frustum parameters.
% Contains the following fields.
% 1. left - Left edge of the near clipping plane.
% 2. right - Right edge of the near clipping plane.
% 3. top - Top edge of the near clipping plane.
% 4. bottom - Bottom edge of the near clipping plane.
% 5. near - Distance from the observer to the near clipping plane.
% 6. far - Distance from the observer to the far clipping plane.
if nargin ~= 3
error('Usage: frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)');
end
% I chose these constants as reasonable values for the distances from the
% camera for the type of experiments the Brainard lab does.
frustum.near = 1;
frustum.far = 100;
% Use similar triangles to figure out the boundaries of the near clipping
% plane based on the information about the screen size and its distance
% from the camera.
frustum.right = (screenDims(1)/2 - horizontalOffset) * frustum.near / screenDistance;
frustum.left = -(screenDims(1)/2 + horizontalOffset) * frustum.near / screenDistance;
frustum.top = screenDims(2)/2 * frustum.near / screenDistance;
frustum.bottom = -frustum.top;
|
github | BrainardLab/TeachingCode-master | MGL_MOGL_NURBS.m | .m | TeachingCode-master/MGLExamples/MGL_MOGL_NURBS.m | 7,889 | utf_8 | 6070c511717e4aeb6321fc2724c40d49 | function MGL_MOGL_NURBS
% MGL_MOGL_NURBS
%
% Description:
% Opens a full screen MGL window with a black background, and renders a
% NURBS surface.
%
% Keyboard Control:
% 'q' - Exits the program.
% 't', 'r' - Rotate the surface about the x-axis.
% This setups up some OpenGL constants in the Matlab environment.
% Essentially, anything in C OpenGL that starts with GL_ becomes GL.., e.g.
% GL_RECT becomes GL.RECT. All GL. are stored globally in the GL struct.
global GL;
InitializeMatlabOpenGL;
% Setup some parameters we'll use.
screenDims = [50 30]; % Width, height in centimeters of the display.
screenDist = 50; % The distance from the observer to the display.
backgroundRGB = [0 0 0]; % RGB of the background. All values are in the [0,1] range.
rotationAmount = -80; % Degrees of rotation about the x-axis.
% This the half the distance between the observers 2 pupils. This value is
% key in setting up the stereo perspective for the left and right eyes.
% For a single screen setup, we'll use a value of 0 since we're not
% actually in stereo.
ioOffset = 0;
% Define the NURBS surface.
ctlPoints = zeros(4,4,3);
cPoints = zeros(1, 4*4*3);
cIndex = 1;
for u = 1:4
for v = 1:4
ctlPoints(u,v,1) = 2.0*(u - 1.5);
ctlPoints(u,v,2) = 2.0*(v - 1.5);
if ( (u == 2 || u == 3) && (v == 2 || v == 3))
ctlPoints(u,v,3) = 3.0;
else
ctlPoints(u,v,3) = -3.0;
end
% Re-pack the control points data into an array that the glNurbs
% functions below understand.
cPoints(cIndex:(cIndex+2)) = ctlPoints(u,v,:);
cIndex = cIndex + 3;
end
end
knots = [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0];
try
mglOpen;
% We need to calculate a frustum to define our perspective matrix.
% Using this data in combination with the glFrustum command, we can now
% have a 3D rendering space instead of orthographic (2D).
frustum = calculateFrustum(screenDist, screenDims, ioOffset);
% Setup what our background color will be. We only need to do this
% once unless we want to change our background color in the middle of
% the program.
glClearColor(backgroundRGB(1), backgroundRGB(2), backgroundRGB(3), ...
0); % This 4th value is the alpha value. We rarely care about it
% for the background color.
% Make sure we're testing for depth. Important if more than 1 thing is
% on the screen and you don't want to deal with render order effects.
glEnable(GL.DEPTH_TEST);
% These help things rendered look nicer.
glEnable(GL.BLEND);
glEnable(GL.POLYGON_SMOOTH);
glEnable(GL.LINE_SMOOTH);
glEnable(GL.POINT_SMOOTH);
% Setup some lighting and material properties for the surface.
glEnable(GL.LIGHTING);
glEnable(GL.LIGHT0);
matDiffuse = [0.7, 0.7, 0.7, 1.0];
matSpecular = [1.0, 1.0, 1.0, 1.0];
matShininess = 100;
glMaterialfv(GL.FRONT, GL.DIFFUSE, matDiffuse);
glMaterialfv(GL.FRONT, GL.SPECULAR, matSpecular);
glMaterialfv(GL.FRONT, GL.SHININESS, matShininess);
% Have OpenGL do polygon normalization for us to make the surface look
% smoother.
glEnable(GL.AUTO_NORMAL);
glEnable(GL.NORMALIZE);
% Create the NURBS renderer.
theNurb = gluNewNurbsRenderer;
% Turn on character listening. This function causes keyboard
% characters to be gobbled up so they don't appear in any Matlab
% window.
mglEatKeys(1:50);
keepDrawing = true;
while keepDrawing
% Look for a keyboard press.
key = mglGetKeyEvent;
% If the nothing was pressed keeping drawing.
if ~isempty(key)
% We can react differently to each key press.
switch key.charCode
case 'r'
rotationAmount = rotationAmount + 10;
case 't'
rotationAmount = rotationAmount - 10;
% All other keys go here.
case 'q'
fprintf('Exiting...\n');
% Quit our drawing loop.
keepDrawing = false;
end
end
% Setup the projection matrix. The projection matrix defines how
% the OpenGL coordinate system maps onto the physical screen.
glMatrixMode(GL.PROJECTION);
% This gives us a clean slate to work with.
glLoadIdentity;
% Map our 3D rendering space to the display given a specific
% distance from the screen to the subject and an interocular
% offset. This is calculated at the beginning of the program.
glFrustum(frustum.left, frustum.right, frustum.bottom, frustum.top, frustum.near, frustum.far);
% Now we switch to the modelview mode, which is where we draw
% stuff.
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% In 3D mode, we need to specify where the camera (the subject) is
% in relation to the display. Essentially, for proper stereo, the
% camera will be placed at the screen distance facing straight
% ahead not at (0,0).
gluLookAt(ioOffset, 0, screenDist, ... % Eye position
ioOffset, 0, 0, ... % Fixation center
0, 1, 0); % Vector defining which way is up.
% Clear our rendering space. If you don't do this rendered in the
% buffer before will still be there. The scene is filled with the
% background color specified above.
glClear(mor(GL.COLOR_BUFFER_BIT, GL.DEPTH_BUFFER_BIT, GL.STENCIL_BUFFER_BIT, GL.ACCUM_BUFFER_BIT));
% Rotate the surface.
glRotated(rotationAmount, 1, 0, 0);
% Move the surface to the center of the screen.
glTranslated(-2, -2, 0);
% Render the NURBS surface.
gluBeginSurface(theNurb);
gluNurbsSurface(theNurb, ...
8, knots, 8, knots, ...
4 * 3, 3, cPoints, ...
4, 4, GL.MAP2_VERTEX_3);
gluEndSurface(theNurb);
% Show the control points.
glPointSize(5.0);
glDisable(GL.LIGHTING);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL.POINTS);
for i = 1:4
for j = 1:4
glVertex3fv(ctlPoints(i,j,:));
end
end
glEnd;
glEnable(GL.LIGHTING);
% This command sticks everything we just did onto the screen. It
% syncs to the refresh rate of the display.
mglFlush;
end
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
catch e
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
% Send the error to the Matlab command window.
rethrow(e);
end
function frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
% frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
%
% Description:
% Takes some basic screen information and calculates the frustum parameters
% required to setup a 3D projection matrix.
%
% Input:
% screenDistance (scalar) - Distance from the screen to the observer.
% screenDims (1x2) - Dimensions of the screen. (width, height)
% horizontal offset (scalar) - Horizontal shift of the observer from the
% center of the display. Should be 0 for regular displays and half the
% interocular distance for stereo setups.
%
% Output:
% frust (struct) - Struct containing all calculated frustum parameters.
% Contains the following fields.
% 1. left - Left edge of the near clipping plane.
% 2. right - Right edge of the near clipping plane.
% 3. top - Top edge of the near clipping plane.
% 4. bottom - Bottom edge of the near clipping plane.
% 5. near - Distance from the observer to the near clipping plane.
% 6. far - Distance from the observer to the far clipping plane.
if nargin ~= 3
error('Usage: frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)');
end
% I chose these constants as reasonable values for the distances from the
% camera for the type of experiments the Brainard lab does.
frustum.near = 1;
frustum.far = 100;
% Use similar triangles to figure out the boundaries of the near clipping
% plane based on the information about the screen size and its distance
% from the camera.
frustum.right = (screenDims(1)/2 - horizontalOffset) * frustum.near / screenDistance;
frustum.left = -(screenDims(1)/2 + horizontalOffset) * frustum.near / screenDistance;
frustum.top = screenDims(2)/2 * frustum.near / screenDistance;
frustum.bottom = -frustum.top;
|
github | BrainardLab/TeachingCode-master | MGL_MOGL_StereoWarping.m | .m | TeachingCode-master/MGLExamples/MGL_MOGL_StereoWarping.m | 9,614 | utf_8 | 294340811667d6f6047cc2f76b701f14 | function MGL_MOGL_StereoWarping
% This setups up some OpenGL constants in the Matlab environment.
% Essentially, anything in C OpenGL that starts with GL_ becomes GL.., e.g.
% GL_RECT becomes GL.RECT. All GL_ are stored globally in the GL struct.
global GL;
InitializeMatlabOpenGL;
% Setup some parameters we'll use.
screenDist = 76.4; % The distance from the observer to the display.
backgroundRGB = [0 0 0]; % RGB of the background. All values are in the [0,1] range.
rectDims = [2.54 2.54]*2; % Rectangle dimensions in centimeters.
rectRGB = [1 0 0]; % Color of the rectangle in RGB.
rectPos = [0 0 0]; % (x,y,z) position of the rectangle.
rectInc = 1; % How much we'll move the rectangle for a given step.
% The 2 screens we'll use have different IDs associated with them. We'll
% set up some variables that make it easy to reference them. These IDs are
% determined by the operating system, these are not arbitrary. Under
screenID.left = 3;
screenID.right = 2;
% This the half the distance (cm) between the observers 2 pupils. This value is
% key in setting up the stereo perspective for the left and right eyes.
ioOffset.left = -3;
ioOffset.right = 3;
% Turn on character listening. This function causes keyboard
% characters to be gobbled up so they don't appear in any Matlab
% window.
mglEatKeys(1:50);
% Clear the keyboard buffer.
mglGetKeyEvent;
try
% Open both displays. We setup some of the OpenGL parameters for both
% displays because OpenGL commands are only effective for the
% currently active display as specified by mglSwitchDisplay.
for whichScreen = {'left', 'right'}
% Pull out the string that's contained in the cell.
i = whichScreen{1};
mglSwitchDisplay(screenID.(i));
mglOpen(screenID.(i));
% Setup what our background color will be. We only need to do this
% once unless we want to change our background color in the middle of
% the program.
glClearColor(backgroundRGB(1), backgroundRGB(2), backgroundRGB(3), ...
0); % This 4th value is the alpha value. We rarely care about it
% for the background color.
% Make sure we're testing for depth. Important if more than 1 thing is
% on the screen and you don't want to deal with render order effects.
glEnable(GL.DEPTH_TEST);
% These help things rendered look nicer.
glEnable(GL.BLEND);
glEnable(GL.POLYGON_SMOOTH);
glEnable(GL.LINE_SMOOTH);
glEnable(GL.POINT_SMOOTH);
% Load in the calibration file for the display. We use this to
% extract information needed for the framebuffer objet which
% handles the warping, and some of the screen info.
calFileName = sprintf('StereoWarp-NoRadiance-%s', i);
cal = LoadCalFile(calFileName);
% Extract the screen dimensions.
screenDims.(i) = cal.warpParams.screenDims;
% Create the framebuffer object.
fbWidth = cal.warpParams.fbObject.width;
fbHeight = cal.warpParams.fbObject.height;
fbo.(i) = mglCreateFrameBufferObject(fbWidth, fbHeight);
% Create the OpenGL display list we'll use to warp the vertices of
% the framebuffer object onto the screen.
warpList.(i) = mglCreateWarpList(cal.warpParams.actualGrid, [fbWidth fbHeight]);
% Get the scene dimensions of the framebuffer object.
fbSceneDims.(i) = cal.warpParams.fbSceneDims;
% We need to calculate a frustum to define our perspective matrix.
% Using this data in combination with the glFrustum command, we can now
% have a 3D rendering space instead of orthographic (2D). The left and
% right screen will have different frustums because the eye offset is
% in different horizontal directions.
frustum.(i) = calculateFrustum(screenDist, fbSceneDims.(i), ioOffset.(i));
end
keepDrawing = true;
while keepDrawing
% Look for a keyboard press.
key = mglGetKeyEvent;
% If the nothing was pressed keeping drawing.
if ~isempty(key)
% We can react differently to each key press.
switch key.charCode
case 'r'
rectRGB = rand(1,3);
% Move the rectangle closer to the subject.
case 'j'
rectPos(3) = rectPos(3) + rectInc;
% Move the rectangle further from the subject.
case 'k'
rectPos(3) = rectPos(3) - rectInc;
% Move the rectangle left.
case 'a'
rectPos(1) = rectPos(1) - rectInc;
% Move the rectangle right.
case 'd'
rectPos(1) = rectPos(1) + rectInc;
% Move the rectangle up.
case 'w'
rectPos(2) = rectPos(2) + rectInc;
% Move the rectangle down.
case 's'
rectPos(2) = rectPos(2) - rectInc;
% All other keys go here.
otherwise
fprintf('Exiting...\n');
% Quit our drawing loop.
keepDrawing = false;
end
end
% We need to do the rendering for both displays.
for whichScreen = {'left', 'right'}
i = whichScreen{1};
% Direct all OpenGL commands to the appropriate screen.
mglSwitchDisplay(screenID.(i));
% Setup the framebuffer object so that we can render into it.
mglBindFrameBufferObject(fbo.(i));
% Setup the projection matrix. The projection matrix defines how
% the OpenGL coordinate system maps onto the physical screen.
glMatrixMode(GL.PROJECTION);
% This gives us a clean slate to work with.
glLoadIdentity;
% Map our 3D rendering space to the display given a specific
% distance from the screen to the subject and an interocular
% offset. This is calculated at the beginning of the program.
glFrustum(frustum.(i).left, frustum.(i).right, frustum.(i).bottom, ...
frustum.(i).top, frustum.(i).near, frustum.(i).far);
% Now we switch to the modelview mode, which is where we draw
% stuff.
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% In 3D mode, we need to specify where the camera (the subject) is
% in relation to the display. Essentially, for proper stereo, the
% camera will be placed at the screen distance facing straight
% ahead not at (0,0).
gluLookAt(ioOffset.(i), 0, screenDist, ... % Eye position
ioOffset.(i), 0, 0, ... % Fixation center
0, 1, 0); % Vector defining which way is up.
% Clear our rendering space. If you don't do this rendered in the
% buffer before will still be there. The scene is filled with the
% background color specified above.
glClear(mor(GL.COLOR_BUFFER_BIT, GL.DEPTH_BUFFER_BIT, GL.STENCIL_BUFFER_BIT, GL.ACCUM_BUFFER_BIT));
% Set the rectangle's color.
glColor3dv(rectRGB);
% This will center the rectangle on the screen. We call this prior
% to specifying rectangle because all vertices are multiplied
% against the current transformation matrix. In other words, the
% order of operations happens in the opposite order they're written
% in the code.
glTranslated(-rectDims(1)/2 + rectPos(1), -rectDims(2)/2 + rectPos(2), rectPos(3));
% Draw the rectangle.
glBegin(GL.QUADS);
glVertex2d(0, 0); % Lower left corner
glVertex2d(rectDims(1), 0); % Lower right corner
glVertex2d(rectDims(1), rectDims(2)); % Upper right corner
glVertex2d(0, rectDims(2)); % Upper left corner.
glEnd;
% Stop rendering to the framebuffer object.
mglUnbindFrameBufferObject;
% Draw the framebuffer object to the screen.
mglRenderWarpedFrameBufferObject(fbo.(i).texture, warpList.(i), screenDims.(i));
% This command sticks everything we just did onto the screen. It
% syncs to the refresh rate of the display.
mglFlush;
end
end
% Passing -1 to mglSwitchDisplay is a special option which closes any
% MGL windows open on the screen.
mglSwitchDisplay(-1);
catch e
% Close any open MGL windows.
mglSwitchDisplay(-1);
% Disable character listening.
mglEatKeys([]);
% Send the error to the Matlab command window.
rethrow(e);
end
function frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
% frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
%
% Description:
% Takes some basic screen information and calculates the frustum parameters
% required to setup a 3D projection matrix.
%
% Input:
% screenDistance (scalar) - Distance from the screen to the observer.
% screenDims (1x2) - Dimensions of the screen. (width, height)
% horizontal offset (scalar) - Horizontal shift of the observer from the
% center of the display. Should be 0 for regular displays and half the
% interocular distance for stereo setups.
%
% Output:
% frust (struct) - Struct containing all calculated frustum parameters.
% Contains the following fields.
% 1. left - Left edge of the near clipping plane.
% 2. right - Right edge of the near clipping plane.
% 3. top - Top edge of the near clipping plane.
% 4. bottom - Bottom edge of the near clipping plane.
% 5. near - Distance from the observer to the near clipping plane.
% 6. far - Distance from the observer to the far clipping plane.
if nargin ~= 3
error('Usage: frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)');
end
% I chose these constants as reasonable values for the distances from the
% camera for the type of experiments the Brainard lab does.
frustum.near = 1;
frustum.far = 100;
% Use similar triangles to figure out the boundaries of the near clipping
% plane based on the information about the screen size and its distance
% from the camera.
frustum.right = (screenDims(1)/2 - horizontalOffset) * frustum.near / screenDistance;
frustum.left = -(screenDims(1)/2 + horizontalOffset) * frustum.near / screenDistance;
frustum.top = screenDims(2)/2 * frustum.near / screenDistance;
frustum.bottom = -frustum.top;
|
github | BrainardLab/TeachingCode-master | MGL_MOGL_Surface.m | .m | TeachingCode-master/MGLExamples/MGL_MOGL_Surface.m | 9,259 | utf_8 | 6d2177251935845d4826380586c28c74 | function MGL_MOGL_Surface
% MGL_MOGL_Surface
%
% Description:
% Shows how to display an arbitrary surface/mesh.
% This setups up some OpenGL constants in the Matlab environment.
% Essentially, anything in C OpenGL that starts with GL_ becomes GL.., e.g.
% GL_RECT becomes GL.RECT. All GL_ are stored globally in the GL struct.
global GL;
InitializeMatlabOpenGL;
% Setup some parameters we'll use.
screenDims = [50 30]; % Width, height in centimeters of the display.
backgroundRGB = [0 0 0]; % RGB of the background. All values are in the [0,1] range.
screenDist = 50; % The distance from the observer to the display.
rotationAmount = -80; % Amount of rotation to apply to the surface.
% This the half the distance between the observers 2 pupils. This value is
% key in setting up the stereo perspective for the left and right eyes.
% For a single screen setup, we'll use a value of 0 since we're not
% actually in stereo.
ioOffset = 0;
% Create the (x,y,z) coordinates of a mesh.
[meshData.x, meshData.y] = meshgrid(-8:0.1:8);
r = sqrt(meshData.x .^ 2 + meshData.y .^ 2) + eps;
meshData.z = 5*sin(r)./r;
% Now create the surface normals.
[meshData.nx meshData.ny meshData.nz] = surfnorm(meshData.x, meshData.y, meshData.z);
try
mglOpen;
% We need to calculate a frustum to define our perspective matrix.
% Using this data in combination with the glFrustum command, we can now
% have a 3D rendering space instead of orthographic (2D).
frustum = calculateFrustum(screenDist, screenDims, ioOffset);
% Setup what our background color will be. We only need to do this
% once unless we want to change our background color in the middle of
% the program.
glClearColor(backgroundRGB(1), backgroundRGB(2), backgroundRGB(3), ...
0); % This 4th value is the alpha value. We rarely care about it
% for the background color.
% Make sure we're testing for depth. Important if more than 1 thing is
% on the screen and you don't want to deal with render order effects.
glEnable(GL.DEPTH_TEST);
% These help things rendered look nicer.
glEnable(GL.BLEND);
glEnable(GL.POLYGON_SMOOTH);
glEnable(GL.LINE_SMOOTH);
glEnable(GL.POINT_SMOOTH);
glShadeModel(GL.SMOOTH);
% Turn on lighting.
glLightfv(GL.LIGHT0, GL.AMBIENT, [0.5 0.5 0.5 1]);
glLightfv(GL.LIGHT0, GL.DIFFUSE, [0.6 0.6 0.6 1]);
glLightfv(GL.LIGHT0, GL.SPECULAR, [0.5 0.5 0.5 1]);
glLightfv(GL.LIGHT0, GL.POSITION, [20 10 0 0]);
glEnable(GL.LIGHTING);
glEnable(GL.COLOR_MATERIAL);
glEnable(GL.LIGHT0);
% Create our OpenGL display list. A display list is basically a group
% of OpenGL commands that can be pre-computed and displayed later.
% There is a reduction in overhead so the display lists improve
% performance for complex renderings.
displayList = createDisplayList(meshData);
% Turn on character listening. This function causes keyboard
% characters to be gobbled up so they don't appear in any Matlab
% window.
mglEatKeys(1:50);
% Clear the keyboard buffer.
mglGetKeyEvent;
keepDrawing = true;
while keepDrawing
% Look for a keyboard press.
key = mglGetKeyEvent;
% If the nothing was pressed keeping drawing.
if ~isempty(key)
% We can react differently to each key press.
switch key.charCode
case 'r'
rotationAmount = rotationAmount + 20;
% All other keys go here.
otherwise
fprintf('Exiting...\n');
% Quit our drawing loop.
keepDrawing = false;
end
end
% Setup the projection matrix. The projection matrix defines how
% the OpenGL coordinate system maps onto the physical screen.
glMatrixMode(GL.PROJECTION);
% This gives us a clean slate to work with.
glLoadIdentity;
% Map our 3D rendering space to the display given a specific
% distance from the screen to the subject and an interocular
% offset. This is calculated at the beginning of the program.
glFrustum(frustum.left, frustum.right, frustum.bottom, frustum.top, frustum.near, frustum.far);
% Now we switch to the modelview mode, which is where we draw
% stuff.
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% In 3D mode, we need to specify where the camera (the subject) is
% in relation to the display. Essentially, for proper stereo, the
% camera will be placed at the screen distance facing straight
% ahead not at (0,0).
gluLookAt(ioOffset, 0, screenDist, ... % Eye position
ioOffset, 0, 0, ... % Fixation center
0, 1, 0); % Vector defining which way is up.
% Clear our rendering space. If you don't do this rendered in the
% buffer before will still be there. The scene is filled with the
% background color specified above.
glClear(mor(GL.COLOR_BUFFER_BIT, GL.DEPTH_BUFFER_BIT, GL.STENCIL_BUFFER_BIT, GL.ACCUM_BUFFER_BIT));
glColorMaterial(GL.FRONT_AND_BACK, GL.AMBIENT_AND_DIFFUSE);
% This rotates the mesh so we can see it better.
glRotated(rotationAmount, 1, 1, 1);
% Set our specular lighting component manually.
glMaterialfv(GL.FRONT, GL.SPECULAR, [0.1 0 0 1])
% Use glColor to specify the ambient and diffuse material
% properties of the surface.
glColor3dv([1 0 0]);
% Call the display list to render the mesh. We wrap the call to
% the list with push and pop commands to save OpenGL state
% information that might get modified by the display list.
glPushMatrix;
glPushAttrib(GL.ALL_ATTRIB_BITS);
glCallList(displayList);
glPopMatrix;
glPopAttrib;
% This command sticks everything we just did onto the screen. It
% syncs to the refresh rate of the display.
mglFlush;
end
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
catch e
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
% Send the error to the Matlab command window.
rethrow(e);
end
function displayList = createDisplayList(meshData)
% displayList = createDisplayList(meshData)
%
% Description:
% Generates a display list containing the specified mesh.
%
% Input:
% meshData (struct) - Struct containing the vertex and surface normal data.
%
% Output:
% displayList (scalar) - A pointer to the generated display list.
global GL;
% Create the empty display list.
displayList = glGenLists(1);
% We stick all the stuff we want in the display list between glNewList and
% glEndList.
glNewList(displayList, GL.COMPILE);
glBegin(GL.QUADS);
numRows = size(meshData.x, 1);
numCols = size(meshData.x, 2);
% Loop over all the vertices in the mesh to render all the rectangle
% polygons.
for row = 1:numRows - 1
for col = 1:numCols - 1
% Upper left corner.
glNormal3d(meshData.nx(row, col), meshData.ny(row, col), meshData.nz(row, col));
glVertex3d(meshData.x(row, col), meshData.y(row, col), meshData.z(row, col));
% Lower left corner.
glNormal3d(meshData.nx(row+1, col), meshData.ny(row+1, col), meshData.nz(row+1, col));
glVertex3d(meshData.x(row+1, col), meshData.y(row+1, col), meshData.z(row+1, col));
% Lower right corner.
glNormal3d(meshData.nx(row+1, col+1), meshData.ny(row+1, col+1), meshData.nz(row+1, col+1));
glVertex3d(meshData.x(row+1, col+1), meshData.y(row+1, col+1), meshData.z(row+1, col+1));
% Upper right corner.
glNormal3d(meshData.nx(row, col+1), meshData.ny(row, col+1), meshData.nz(row, col+1));
glVertex3d(meshData.x(row, col+1), meshData.y(row, col+1), meshData.z(row, col+1));
end
end
glEnd;
glEndList;
function frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
% frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
%
% Description:
% Takes some basic screen information and calculates the frustum parameters
% required to setup a 3D projection matrix.
%
% Input:
% screenDistance (scalar) - Distance from the screen to the observer.
% screenDims (1x2) - Dimensions of the screen. (width, height)
% horizontal offset (scalar) - Horizontal shift of the observer from the
% center of the display. Should be 0 for regular displays and half the
% interocular distance for stereo setups.
%
% Output:
% frust (struct) - Struct containing all calculated frustum parameters.
% Contains the following fields.
% 1. left - Left edge of the near clipping plane.
% 2. right - Right edge of the near clipping plane.
% 3. top - Top edge of the near clipping plane.
% 4. bottom - Bottom edge of the near clipping plane.
% 5. near - Distance from the observer to the near clipping plane.
% 6. far - Distance from the observer to the far clipping plane.
if nargin ~= 3
error('Usage: frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)');
end
% I chose these constants as reasonable values for the distances from the
% camera for the type of experiments the Brainard lab does.
frustum.near = 1;
frustum.far = 100;
% Use similar triangles to figure out the boundaries of the near clipping
% plane based on the information about the screen size and its distance
% from the camera.
frustum.right = (screenDims(1)/2 - horizontalOffset) * frustum.near / screenDistance;
frustum.left = -(screenDims(1)/2 + horizontalOffset) * frustum.near / screenDistance;
frustum.top = screenDims(2)/2 * frustum.near / screenDistance;
frustum.bottom = -frustum.top;
|
github | BrainardLab/TeachingCode-master | MGL_MOGL_Rect3D.m | .m | TeachingCode-master/MGLExamples/MGL_MOGL_Rect3D.m | 7,826 | utf_8 | e7461951771b128e13418a47d363f41b | function MGL_MOGL_Rect3D
% MGL_MOGL_Rect3D
%
% Description:
% Opens a full screen MGL window with a black background, and renders a
% rectangle in 3D space.
%
% Keyboard Control:
% 'r' - Randomly change the rectangle color.
% 'k' - Moves the rectangle further away.
% 'j' - Moves the rectangle closer.
% 'a' - Moves the rectangle left.
% 'd' - Moves the rectangle right.
% 'w' - Moves the rectangle up.
% 's' - Moves the rectangle down.
% This setups up some OpenGL constants in the Matlab environment.
% Essentially, anything in C OpenGL that starts with GL_ becomes GL.., e.g.
% GL_RECT becomes GL.RECT. All GL_ are stored globally in the GL struct.
global GL;
InitializeMatlabOpenGL;
% Setup some parameters we'll use.
screenDims = [50 30]; % Width, height in centimeters of the display.
screenDist = 50; % The distance from the observer to the display.
backgroundRGB = [0 0 0]; % RGB of the background. All values are in the [0,1] range.
rectDims = [10 6]; % Rectangle dimensions in centimeters.
rectRGB = [1 0 0]; % Color of the rectangle in RGB.
rectPos = [0 0 0]; % (x,y,z) position of the rectangle.
rectInc = 1; % How much we'll move the rectangle for a given step.
% This the half the distance between the observers 2 pupils. This value is
% key in setting up the stereo perspective for the left and right eyes.
% For a single screen setup, we'll use a value of 0 since we're not
% actually in stereo.
ioOffset = 0;
try
mglOpen;
% We need to calculate a frustum to define our perspective matrix.
% Using this data in combination with the glFrustum command, we can now
% have a 3D rendering space instead of orthographic (2D).
frustum = calculateFrustum(screenDist, screenDims, ioOffset);
% Setup what our background color will be. We only need to do this
% once unless we want to change our background color in the middle of
% the program.
glClearColor(backgroundRGB(1), backgroundRGB(2), backgroundRGB(3), ...
0); % This 4th value is the alpha value. We rarely care about it
% for the background color.
% Make sure we're testing for depth. Important if more than 1 thing is
% on the screen and you don't want to deal with render order effects.
glEnable(GL.DEPTH_TEST);
% These help things rendered look nicer.
glEnable(GL.BLEND);
glEnable(GL.POLYGON_SMOOTH);
glEnable(GL.LINE_SMOOTH);
glEnable(GL.POINT_SMOOTH);
% Turn on character listening. This function causes keyboard
% characters to be gobbled up so they don't appear in any Matlab
% window.
mglEatKeys(1:50);
% Clear the keyboard buffer.
mglGetKeyEvent;
keepDrawing = true;
while keepDrawing
% Look for a keyboard press.
key = mglGetKeyEvent;
% If the nothing was pressed keeping drawing.
if ~isempty(key)
% We can react differently to each key press.
switch key.charCode
case 'r'
rectRGB = rand(1,3);
% Move the rectangle closer to the subject.
case 'j'
rectPos(3) = rectPos(3) + rectInc;
% Move the rectangle further from the subject.
case 'k'
rectPos(3) = rectPos(3) - rectInc;
% Move the rectangle left.
case 'a'
rectPos(1) = rectPos(1) - rectInc;
% Move the rectangle right.
case 'd'
rectPos(1) = rectPos(1) + rectInc;
% Move the rectangle up.
case 'w'
rectPos(2) = rectPos(2) + rectInc;
% Move the rectangle down.
case 's'
rectPos(2) = rectPos(2) - rectInc;
% All other keys go here.
otherwise
fprintf('Exiting...\n');
% Quit our drawing loop.
keepDrawing = false;
end
end
% Setup the projection matrix. The projection matrix defines how
% the OpenGL coordinate system maps onto the physical screen.
glMatrixMode(GL.PROJECTION);
% This gives us a clean slate to work with.
glLoadIdentity;
% Map our 3D rendering space to the display given a specific
% distance from the screen to the subject and an interocular
% offset. This is calculated at the beginning of the program.
glFrustum(frustum.left, frustum.right, frustum.bottom, frustum.top, frustum.near, frustum.far);
% Now we switch to the modelview mode, which is where we draw
% stuff.
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% In 3D mode, we need to specify where the camera (the subject) is
% in relation to the display. Essentially, for proper stereo, the
% camera will be placed at the screen distance facing straight
% ahead not at (0,0).
gluLookAt(ioOffset, 0, screenDist, ... % Eye position
ioOffset, 0, 0, ... % Fixation center
0, 1, 0); % Vector defining which way is up.
% Clear our rendering space. If you don't do this rendered in the
% buffer before will still be there. The scene is filled with the
% background color specified above.
glClear(mor(GL.COLOR_BUFFER_BIT, GL.DEPTH_BUFFER_BIT, GL.STENCIL_BUFFER_BIT, GL.ACCUM_BUFFER_BIT));
% Set the rectangle's color.
glColor3dv(rectRGB);
% This will center the rectangle on the screen. We call this prior
% to specifying rectangle because all vertices are multiplied
% against the current transformation matrix. In other words, the
% order of operations happens in the opposite order they're written
% in the code.
glTranslated(-rectDims(1)/2 + rectPos(1), -rectDims(2)/2 + rectPos(2), rectPos(3));
% Draw the rectangle.
glBegin(GL.QUADS);
glVertex2d(0, 0); % Lower left corner
glVertex2d(rectDims(1), 0); % Lower right corner
glVertex2d(rectDims(1), rectDims(2)); % Upper right corner
glVertex2d(0, rectDims(2)); % Upper left corner.
glEnd;
% This command sticks everything we just did onto the screen. It
% syncs to the refresh rate of the display.
mglFlush;
end
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
catch e
% Close the MGL window.
mglClose;
% Disable character listening.
mglEatKeys([]);
% Send the error to the Matlab command window.
rethrow(e);
end
function frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
% frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)
%
% Description:
% Takes some basic screen information and calculates the frustum parameters
% required to setup a 3D projection matrix.
%
% Input:
% screenDistance (scalar) - Distance from the screen to the observer.
% screenDims (1x2) - Dimensions of the screen. (width, height)
% horizontal offset (scalar) - Horizontal shift of the observer from the
% center of the display. Should be 0 for regular displays and half the
% interocular distance for stereo setups.
%
% Output:
% frust (struct) - Struct containing all calculated frustum parameters.
% Contains the following fields.
% 1. left - Left edge of the near clipping plane.
% 2. right - Right edge of the near clipping plane.
% 3. top - Top edge of the near clipping plane.
% 4. bottom - Bottom edge of the near clipping plane.
% 5. near - Distance from the observer to the near clipping plane.
% 6. far - Distance from the observer to the far clipping plane.
if nargin ~= 3
error('Usage: frustum = calculateFrustum(screenDistance, screenDims, horizontalOffset)');
end
% I chose these constants as reasonable values for the distances from the
% camera for the type of experiments the Brainard lab does.
frustum.near = 1;
frustum.far = 100;
% Use similar triangles to figure out the boundaries of the near clipping
% plane based on the information about the screen size and its distance
% from the camera.
frustum.right = (screenDims(1)/2 - horizontalOffset) * frustum.near / screenDistance;
frustum.left = -(screenDims(1)/2 + horizontalOffset) * frustum.near / screenDistance;
frustum.top = screenDims(2)/2 * frustum.near / screenDistance;
frustum.bottom = -frustum.top;
|
github | quantizedmassivemimo/1bit_precoding_VLSI-master | precoder_sim.m | .m | 1bit_precoding_VLSI-master/precoder_sim.m | 17,150 | iso_8859_13 | 38b9849df5b7637eb31e03b1c657cfa0 | % =========================================================================
% -- Simulator for 1-bit Massive MU-MIMO Precoding in VLSI with CxPO
% -------------------------------------------------------------------------
% -- (c) 2016 Christoph Studer, Oscar Castañeda, and Sven Jacobsson
% -- e-mail: [email protected], [email protected], and
% -- [email protected] (version 0.1; August 14, 2017)
% -------------------------------------------------------------------------
% -- If you use this simulator or parts of it, then you must cite our
% -- journal paper:
% -- Oscar Castañeda, Sven Jacobsson, Giuseppe Durisi, Mikael Coldrey,
% -- Tom Goldstein, and Christoph Studer, "1-bit Massive MU-MIMO
% -- Precoding in VLSI," IEEE Journal on Emerging and Selected Topics in
% -- Circuits and Systems (JETCAS), to appear in 2017
% -- and clearly mention this in your paper
% -------------------------------------------------------------------------
% -- REMEMBER: C1PO + C2PO = C(1+2)PO = C3PO :)
% =========================================================================
function precoder_sim(varargin)
% -- set up default/custom parameters
if isempty(varargin)
disp('using default simulation settings and parameters...')
% set default simulation parameters
par.runId = 0; % simulation ID (used to reproduce results)
par.L = 2; % number of DAC levels per I or Q dimension (must be 2!!!)
par.U = 16; % number of single-antenna users
par.B = 256; % number of base-station antennas (B>>U)
par.mod = '16QAM'; % modulation type: 'BPSK','QPSK','16QAM','64QAM','8PSK'
par.trials = 1e3; % number of Monte-Carlo trials (transmissions)
par.NTPdB_list = ... % list of normalized transmit power [dB] values
-10:2:20; % to be simulated
par.precoder = ... % precoding scheme(s) to be evaluated
{'ZF','MRT','ZFQ','MRTQ','SQUID','C1PO','C2PO'};
par.save = true; % save results (true,false)
par.plot = true; % plot results (true,false)
% *** SQUID specific
%
% note that the SQUID code includes two more algorithm parameters that
% must be tuned for best performance (if you know what you are doing).
par.SQUID.iterations = 200;
% *** C1PO specific
%
% reasonable parameters for C1PO with different system configurations
% please optimize manually for best performance (depends on # of iters)
%
% BxU | mod. | gamma | delta | rho
% -------+-------+-------+-------+------
% 32x16 | BPSK | 2^5 | 6.4 | 1.25
% 64x16 | BPSK | 2^4 | 3.2 | 1.25
% 128x16 | BPSK | 2^2 | 0.8 | 1.25
% 256x16 | BPSK | 2^3 | 1.6 | 1.25
% -------+-------+-------+-------+------
% 32x16 | QPSK | 2^5 | 6.4 | 1.25
% 64x16 | QPSK | 2^4 | 3.2 | 1.25
% 128x16 | QPSK | 2^2 | 0.8 | 1.25
% 256x16 | QPSK | 2^3 | 1.6 | 1.25
% -------+-------+-------+-------+-------
% 256x16 | 16QAM | 2^1 | 0.4 | 1.25
% -------+-------+-------+-------+-------
% 256x16 | 64QAM | 14 | 2.8 | 1.25
par.C1PO.gamma = 2^1; % good for 256x16 with 16-QAM
par.C1PO.rho = 1.25; % rho = gamma/(gamma-delta) [aka. pushfactor]
par.C1PO.iterations = 25; % max number of iterations
% *** C2PO specific
%
% reasonable parameters for C2PO with different system configurations
% please optimize manually for best performance (depends on # of iters)
%
% BxU | mod. | tau | delta | rho
% -------+-------+-------+-------+------
% 32x16 | BPSK | 2^-6 | 12.8 | 1.25
% 64x16 | BPSK | 2^-7 | 25.6 | 1.25
% 128x16 | BPSK | 2^-7 | 25.6 | 1.25
% 256x16 | BPSK | 2^-8 | 51.2 | 1.25
% -------+-------+-------+-------+------
% 32x16 | QPSK | 2^-6 | 12.8 | 1.25
% 64x16 | QPSK | 2^-7 | 25.6 | 1.25
% 128x16 | QPSK | 2^-7 | 25.6 | 1.25
% 256x16 | QPSK | 2^-8 | 51.2 | 1.25
% -------+-------+-------+-------+-------
% 256x16 | 16QAM | 2^-8 | 51.2 | 1.25
% -------+-------+-------+-------+-------
% 256x16 | 64QAM | 2^-8 | 51.2 | 1.25
par.C2PO.tau = 2^(-8); % good for 256x16 with 16-QAM
par.C2PO.rho = 1.25; % rho = 1/(1-tau*delta) [aka. pushfactor]
par.C2PO.iterations = 25; % max number of iterations
else
disp('use custom simulation settings and parameters...')
par = varargin{1}; % only argument is par structure
end
% -- initialization
% the methods have only been checked for 1-bit transmission
% an extension to multi-bit needs more work :)
if par.L~=2
error('This simulator is specifically designed for 1-bit scenarios')
end
% use runId random seed (enables reproducibility)
rng(par.runId);
% simulation name (used for saving results)
par.simName = ['ERR_',num2str(par.U),'x',num2str(par.B), '_', ...
par.mod, '_', num2str(par.trials),'Trials'];
% set up Gray-mapped constellation alphabet (according to IEEE 802.11)
switch (par.mod)
case 'BPSK',
par.symbols = [ -1 1 ];
case 'QPSK',
par.symbols = [ -1-1i,-1+1i,+1-1i,+1+1i ];
case '16QAM',
par.symbols = [ -3-3i,-3-1i,-3+3i,-3+1i, ...
-1-3i,-1-1i,-1+3i,-1+1i, ...
+3-3i,+3-1i,+3+3i,+3+1i, ...
+1-3i,+1-1i,+1+3i,+1+1i ];
case '64QAM',
par.symbols = [ -7-7i,-7-5i,-7-1i,-7-3i,-7+7i,-7+5i,-7+1i,-7+3i, ...
-5-7i,-5-5i,-5-1i,-5-3i,-5+7i,-5+5i,-5+1i,-5+3i, ...
-1-7i,-1-5i,-1-1i,-1-3i,-1+7i,-1+5i,-1+1i,-1+3i, ...
-3-7i,-3-5i,-3-1i,-3-3i,-3+7i,-3+5i,-3+1i,-3+3i, ...
+7-7i,+7-5i,+7-1i,+7-3i,+7+7i,+7+5i,+7+1i,+7+3i, ...
+5-7i,+5-5i,+5-1i,+5-3i,+5+7i,+5+5i,+5+1i,+5+3i, ...
+1-7i,+1-5i,+1-1i,+1-3i,+1+7i,+1+5i,+1+1i,+1+3i, ...
+3-7i,+3-5i,+3-1i,+3-3i,+3+7i,+3+5i,+3+1i,+3+3i ];
case '8PSK',
par.symbols = [ exp(1i*2*pi/8*0), exp(1i*2*pi/8*1), ...
exp(1i*2*pi/8*7), exp(1i*2*pi/8*6), ...
exp(1i*2*pi/8*3), exp(1i*2*pi/8*2), ...
exp(1i*2*pi/8*4), exp(1i*2*pi/8*5) ];
end
% compute symbol energy
par.Es = mean(abs(par.symbols).^2);
% - quantizer paremeters
% optimal LSB for 2 < L < 16 quantization levels
lsb_list = [ 1.59628628628629, ...
1.22515515515516, ...
0.994694694694695, ...
0.842052052052052, ...
0.734304304304304, ...
0.650500500500501, ...
0.584654654654655, ...
0.533773773773774, ...
0.491871871871872, ...
0.455955955955956, ...
0.423033033033033, ...
0.396096096096096, ...
0.375145145145145, ...
0.354194194194194, ...
0.336236236236236 ];
% resolution (number of bits) of the DACs
par.Q = log2(par.L);
% least significant bit
par.lsb = lsb_list(par.L-1)/sqrt(2*par.B);
% clip level
par.clip = par.lsb*par.L/2;
% quantizer labels and thresholds
[~, ~, par.labels, par.thresholds, ~] = uniquantiz(1, par.lsb, par.L);
% normalization constant
par.alpha = sqrt( 1/(2*par.B) ...
/sum(par.labels.^2.*( ...
normcdf(par.thresholds(2:end)*sqrt(2*par.B)) ...
-normcdf(par.thresholds(1:end-1)*sqrt(2*par.B)))));
% scale quantization labels
par.labels = par.alpha*par.labels;
% quantizer alphabet
par.alphabet = combvec(par.labels, par.labels);
par.alphabet = par.alphabet(1,:) + 1i*par.alphabet(2,:);
% quantizer-mapping function
par.quantizer = @(x) par.alpha * uniquantiz(x, par.lsb, par.L);
% equivalent (average) quantizer gain
par.F = par.alpha*par.lsb*...
sum(normpdf(par.thresholds(2:end-1),0,1/sqrt(2*par.B)));
% precompute bit labels
par.bps = log2(length(par.symbols)); % number of bits per symbol
par.bits = de2bi(0:length(par.symbols)-1,par.bps,'left-msb');
% track simulation time
time_elapsed = 0;
% -- start simulation
% - initialize result arrays (detector x normalized transmit power)
% vector error rate
res.VER = zeros(length(par.precoder),length(par.NTPdB_list));
% symbol error rate
res.SER = zeros(length(par.precoder),length(par.NTPdB_list));
% bit error rate
res.BER = zeros(length(par.precoder),length(par.NTPdB_list));
% error-vector magnitude
res.EVM = zeros(length(par.precoder),length(par.NTPdB_list));
% SINDR
res.SINDR = zeros(length(par.precoder),length(par.NTPdB_list));
% transmit power
res.TxPower = zeros(length(par.precoder),length(par.NTPdB_list));
% receive power
res.RxPower = zeros(length(par.precoder),length(par.NTPdB_list));
% simulation beamforming time
res.TIME = zeros(length(par.precoder),length(par.NTPdB_list));
% compute noise variances to be considered
N0_list = 10.^(-par.NTPdB_list/10);
% generate random bit stream (antenna x bit x trial)
bits = randi([0 1],par.U,par.bps,par.trials);
% trials loop
tic
for t=1:par.trials
% generate transmit symbol
idx = bi2de(bits(:,:,t),'left-msb')+1;
s = par.symbols(idx).';
% generate iid Gaussian channel matrix and noise vector
n = sqrt(0.5)*(randn(par.U,1)+1i*randn(par.U,1));
H = sqrt(0.5)*(randn(par.U,par.B)+1i*randn(par.U,par.B));
% algorithm loop
for d=1:length(par.precoder)
% normalized transmit power loop
for k=1:length(par.NTPdB_list)
% set noise variance
N0 = N0_list(k);
% record time used by the beamformer
starttime = toc;
% beamformers
switch (par.precoder{d})
% noise-independent
case 'ZF', % ZF beamforming (infinite precision)
[x, beta] = ZF(par, s, H);
case 'ZFQ', % ZF beamforming (quantized)
[x, beta] = ZF(par, s, H);
x = par.quantizer(x);
beta = beta/par.F;
case 'MRT', % MRT beamforming (infinite precision)
[x, beta] = MRT(par, s, H);
case 'MRTQ', % MRT beamforming (quantized)
[x, beta] = MRT(par, s, H);
x = par.quantizer(x);
beta = beta/par.F;
case 'C1PO', % C1PO: biConvex 1-bit PrecOding
[x, beta] = C1PO(par, s, H);
case 'C2PO', % C2PO: C1PO with simpler preprocessing
[x, beta] = C2PO(par, s, H);
% noise-dependent
case 'SQUID', % SQUID: Squared inifinity-norm relaxation with
% Douglas-Rachford splitting
[x, beta] = SQUID(par,s,H,N0);
otherwise,
error('par.precoder not specified')
end
% record beamforming simulation time
res.TIME(d,k) = res.TIME(d,k) + (toc-starttime);
% transmit data over noisy channel
Hx = H*x;
y = Hx + sqrt(N0)*n;
% extract transmit and receive power
res.TxPower(d,k) = res.TxPower(d,k) + mean(sum(abs(x).^2));
res.RxPower(d,k) = res.RxPower(d,k) + mean(sum(abs(Hx).^2))/par.U;
% user terminals can estimate the beamforming factor beta
shat = beta*y;
% perform user-side detection
[~,idxhat] = min(abs(shat*ones(1,length(par.symbols)) ...
-ones(par.U,1)*par.symbols).^2,[],2);
bithat = par.bits(idxhat,:);
% -- compute error and complexity metrics
err = (idx~=idxhat);
res.VER(d,k) = res.VER(d,k) + any(err);
res.SER(d,k) = res.SER(d,k) + sum(err)/par.U;
res.BER(d,k) = res.BER(d,k) + ...
sum(sum(bits(:,:,t)~=bithat))/(par.U*par.bps);
res.EVM(d,k) = res.EVM(d,k) + 100*norm(shat - s)^2/norm(s)^2;
res.SINDR(d,k) = res.SINDR(d,k) + norm(s)^2/norm(shat - s)^2;
end % NTP loop
end % algorithm loop
% keep track of simulation time
if toc>10
time=toc;
time_elapsed = time_elapsed + time;
fprintf('estimated remaining simulation time: %3.0f min.\n',...
time_elapsed*(par.trials/t-1)/60);
tic
end
end % trials loop
% normalize results
res.VER = res.VER/par.trials;
res.SER = res.SER/par.trials;
res.BER = res.BER/par.trials;
res.EVM = res.EVM/par.trials;
res.SINDR = res.SINDR/par.trials;
res.TxPower = res.TxPower/par.trials;
res.RxPower = res.RxPower/par.trials;
res.TIME = res.TIME/par.trials;
res.time_elapsed = time_elapsed;
% -- save final results (par and res structures)
if par.save
save([ par.simName '_' num2str(par.runId) ],'par','res');
end
% -- show results (generates fairly nice Matlab plots)
if par.plot
% - BER results
marker_style = {'k-','b:','r--','y-.','g-.','bs--','mv--'};
figure(1)
for d=1:length(par.precoder)
semilogy(par.NTPdB_list,res.BER(d,:),marker_style{d},'LineWidth',2);
if (d==1)
hold on
end
end
hold off
grid on
box on
xlabel('normalized transmit power [dB]','FontSize',12)
ylabel('uncoded bit error rate (BER)','FontSize',12);
if length(par.NTPdB_list) > 1
axis([min(par.NTPdB_list) max(par.NTPdB_list) 1e-3 1]);
end
legend(par.precoder,'FontSize',12,'location','southwest')
set(gca,'FontSize',12);
end
end
%% Uniform quantizer
function [v, q, vl, vt, c] = uniquantiz(y, lsb, L)
% set clip level
c = lsb*L/2;
% clip signal
if isreal(y)
yc = max(min(y,c-lsb/1e5),-(c-lsb/1e5));
else
yc = max(min(real(y),c-lsb/1e5),-(c-lsb/1e5)) ...
+ 1i*max(min(imag(y),c-lsb/1e5),-(c-lsb/1e5));
end
% quantizer
if mod(L,2) == 0
% midrise quantizer (without clipping)
Q = @(x) lsb*floor(x/lsb) + lsb/2;
else
% midtread quantizer (without clipping)
Q = @(x) lsb*floor(x/lsb + 1/2);
end
% quantize signal
if isreal(y)
v = Q(yc);
else
v = Q(real(yc)) + 1i*Q(imag(yc));
end
% quantization error
q = v - y;
% uniform quantization labels
vl = lsb *((0:L-1) - (L-1)/2);
% uniform quantization thresholds
vt = [-realmax*ones(length(lsb),1), ...
bsxfun(@minus, vl(:,2:end), lsb/2), ...
realmax*ones(length(lsb),1)];
end
%% Zero-forcing beamforming (with infinite precision)
function [x, beta] = ZF(par, s, H)
% normalization constant (average gain)
rho = sqrt((par.B-par.U)/(par.Es*par.U));
% transmitted signal
x = rho*H'/(H*H')*s;
% beamforming factor
beta = 1/rho;
end
%% Maximum ratio transmission (MRT) beamforming (with infinite precision)
function [x, beta, P] = MRT(par, s, H)
% normalization constant
gmrt = 1/sqrt(par.Es*par.U*par.B); % average gain
% gmrt = 1/sqrt(par.Es*trace(H*H')); % instant gain
% precoding matrix
P = gmrt*H';
% transmitted signal
x = P*s;
% scaling factor
beta = sqrt(par.U*par.Es/par.B);
end
%% C1PO: biConvex 1-bit PrecOding (Algorithm 1)
function [x, beta] = C1PO(par,s,H)
% initial guess
x = H'*s;
% preprocessing with exact inverse
gammainv = 1/par.C1PO.gamma;
Ainv = inv(eye(par.B) + gammainv*H'*(eye(par.U)-s*s'/norm(s,2)^2)*H);
% main C1PO algorithm loop
for i=2:par.C1PO.iterations
x = par.C1PO.rho*(Ainv*x);
x = min(max(real(x),-1),1) + 1i*min(max(imag(x),-1),1);
end
x = (sign(real(x))+1i*sign(imag(x)))/sqrt(2*par.B);
% scaling factor
beta = norm(s,2)^2/(s'*H*x);
end
%% C2PO: biConvex 1-bit PrecOding with simplified processing (Algorithm 2)
function [x, beta] = C2PO(par,s,H)
% initial guess
x = H'*s;
% preprocessing with approximate inverse
tau = par.C2PO.tau; % step size
Ainvapprox = eye(par.B) - tau*H'*(eye(par.U)-s*s'/norm(s,2)^2)*H ;
% main C1PO algorithm loop
for i=2:par.C2PO.iterations
x = par.C2PO.rho*(Ainvapprox*x);
x = min(max(real(x),-1),1) + 1i*min(max(imag(x),-1),1);
end
x = (sign(real(x))+1i*sign(imag(x)))/sqrt(2*par.B);
% scaling factor
beta = norm(s,2)^2/(s'*H*x);
end
%% Squared inifinity-norm relaxation with Douglas-Rachford splitting
% (SQUID) (1-bit beamforming algorithm)
function [x,beta] = SQUID(par,s,H,N0)
% -- real-valued decomposition
HR = [ real(H) -imag(H) ; imag(H) real(H) ];
sR = [ real(s) ; imag(s) ];
% -- initialization
x = zeros(par.B*2,1);
y = zeros(par.B*2,1);
gain = 1; % ADMM algorithm parameter
epsilon = 1e-5; % ADMM algorithm parameter
Ainv = inv(HR'*HR + 0.5/gain*eye(par.B*2));
sREG = Ainv*(HR'*sR);
% -- SQUID loop
for t=1:par.SQUID.iterations
u = sREG + 0.5/gain*(Ainv*(2*x-y));
xold = x;
x = prox_infinityNorm2(y+u-x,2*2*par.U*par.B*N0);
if norm(x-xold)/norm(x)<epsilon
break;
end
y = y + u - x;
end
% -- extract binary solution
xRest = sign(x);
x = 1/sqrt(2*par.B)*(xRest(1:par.B,1)+1i*xRest(par.B+1:2*par.B,1));
% -- compute output gains
beta = real(x'*H'*s)/(norm(H*x,2)^2+par.U*N0);
if beta < 0
warning('SQUID: negative precoding factor!');
end
end
%% Infinity^2 proximal operator
function [ xk ] = prox_infinityNorm2(w,lambda)
N = length(w);
wabs = abs(w);
ws = (cumsum(sort(wabs,'descend')))./(lambda+(1:N)');
alphaopt = max(ws);
if alphaopt>0
% -- truncation step
xk = min(wabs,alphaopt).*sign(w);
else
xk = zeros(size(w));
end
end
|
github | AnriKaede/IM-master | FMSearchTokenField.m | .m | IM-master/mac/TeamTalk/interface/mainWindow/FMSearchTokenField.m | 4,519 | utf_8 | 2a89df28133e0c91280b5daf58944c94 | //
// FMSearchTokenField.m
// Duoduo
//
// Created by zuoye on 13-12-23.
// Copyright (c) 2013年 zuoye. All rights reserved.
//
#import "FMSearchTokenField.h"
#import "FMSearchTokenFieldCell.h"
@implementation FMSearchTokenField
@synthesize sendActionWhenEditing=_sendActionWhenEditing;
@synthesize alwaysSendActionWhenPressEnter=_alwaysSendActionWhenPressEnter;
+(void)initialize {
[FMSearchTokenField setCellClass:[FMSearchTokenFieldCell class]];
}
- (id)initWithFrame:(NSRect)frame
{
self = [super initWithFrame:frame];
if (self) {
self.sendActionWhenEditing = NO;
self.alwaysSendActionWhenPressEnter = NO;
self.m_tokenizingChar = 0x2c;
/*
var_32 = rdi;
var_40 = *0x1002c3b58;
rax = [[&var_32 super] initWithFrame:edx];
if (rax != 0x0) {
rbx.sendActionWhenEditing = 0x0;
rbx.alwaysSendActionWhenPressEnter = 0x0;
rax = [NSMutableString alloc];
rax = [rax init];
rbx.m_untokenizedStringValue = rax;
rbx.m_tokenizingChar = 0x2c; //44
}
rax = rbx;
return rax;
*/
}
return self;
}
-(void)setTokenizingChars:(NSString *) chars{
self.m_tokenizingChar = [chars characterAtIndex:0];
[self setTokenizingCharacterSet:[NSCharacterSet characterSetWithCharactersInString:chars]];
}
/*
function methImpl_FMSearchTokenField_tokenCount {
rbx = rdi;
rax = [rdi tokenStyle];
rcx = rax;
rax = 0x1;
if (rcx == 0x1) goto loc_0x100111ce7;
goto loc_100111c3f;
loc_100111ce7:
return rax;
loc_100111c3f:
rax = [rbx currentEditor];
if (rax == 0x0) goto loc_0x100111cf6;
goto loc_100111c58;
loc_100111cf6:
rax = [rbx attributedStringValue];
rax = [rax length];
loc_100111c58:
rax = [rax attributedString];
rax = [rax length];
r13 = 0x0;
if (rax != 0x0) {
rbx = 0x0;
r13 = 0x0;
do {
rax = [r14 attribute:**NSAttachmentAttributeName atIndex:rbx effectiveRange:0x0];
r13 = r13 - 0xff + CARRY(CF);
rax = [r14 length];
} while (rbx + 0x1 < rax);
}
rax = [r14 length];
rax = ((rax != r13 ? 0xff : 0x0) & 0xff) + r13;
goto loc_100111ce7;
}
*/
/*
$rdi == arg0 (ObjC: self)
$rsi == arg1 (ObjC: op, or _cmd)
$rdx == arg2 (ObjC: first arg of method)
$rcx == arg3 (ObjC: second arg of method) cell
$r8 == arg4 第三个参数
$r9 == arg5 第四个
*/
- (void)drawRect:(NSRect)dirtyRect{
if([[self subviews] count]>0){
NSView *view = [[self subviews] objectAtIndex:0];
if ([view isKindOfClass:[FMSearchTokenFieldCell class]]) {
NSRect cellRect ;
if ([self cell]) {
cellRect = [[self cell] bounds];
}
NSRect imageRect ;
NSRect textRect;
[(FMSearchTokenFieldCell *)view divideFrame:cellRect ToImageRect:&imageRect textRect:&textRect buttonRect:nil callFromView:YES];
[view setFrame:cellRect];
}
}
/*
r12 = rdi;
rax = [rdi subviews];
rax = [rax count];
if (rax != 0x0) {
rax = [rbx objectAtIndex:0x0];
r14 = rax;
rax = [*0x1002c29e8 class];
rax = [r14 isKindOfClass:rax];
if (rax != 0x0) {
rax = [r12 cell];
r15 = rax;
if (r12 != 0x0) {
var_80 = [r12 bounds];
}
else {
}
rbx = *objc_msgSend;
rdx = 0x0;
(*objc_msgSend)(r15, @selector(divideFrame:ToImageRect:textRect:buttonRect:callFromView:), rdx, &var_112, 0x0, 0x1);
var_72 = var_136;
var_64 = var_128;
var_56 = var_120;
var_48 = var_112;
[r14 setFrame:rdx];
}
}
rax = &arg_0;
var_32 = r12;
var_40 = *0x1002c3b58;
rax = [[&var_32 super] drawRect:edx];
return rax;
*/
[super drawRect:dirtyRect];
}
/*
function methImpl_FMSearchTokenField_dealloc {
rbx = rdi;
r14 = objc_msg_release;
[rbx.m_buttonTrackingArea release];
[rbx.m_untokenizedStringValue release];
var_0 = rbx;
var_8 = *0x1002c3b58;
rax = [[&var_0 super] dealloc];
return rax;
}
*/
-(void)mouseDown:(NSEvent *)theEvent{
}
-(void)mouseUp:(NSEvent *)theEvent{
}
-(void)mouseEntered:(NSEvent *)theEvent{
}
-(void)mouseExited:(NSEvent *)theEvent{
}
-(BOOL)isFlipped{
return NO;
}
@end
|
github | AnriKaede/IM-master | DDNinePartImage.m | .m | IM-master/mac/TeamTalk/interface/mainWindow/searchField/DDNinePartImage.m | 6,722 | utf_8 | 6dac0c29b80d07b31ccfd0b48ec932de | //
// DDNinePartImage.m
// Duoduo
//
// Created by zuoye on 14-1-20.
// Copyright (c) 2014年 zuoye. All rights reserved.
//
#import "DDNinePartImage.h"
@implementation DDNinePartImage
-(id)initWithNSImage:(NSImage *)image leftPartWidth:(CGFloat)leftWidth rightPartWidth:(CGFloat)rightWidth topPartHeight:(CGFloat)topHeight bottomPartHeight:(CGFloat)bottomHeight{
return [self initWithNSImage:image leftPartWidth:leftWidth rightPartWidth:rightWidth topPartHeight:topHeight bottomPartHeight:bottomHeight flipped:NO];
}
-(id)initWithNSImage:(NSImage *)image leftPartWidth:(CGFloat)leftWidth rightPartWidth:(CGFloat)rightWidth topPartHeight:(CGFloat)topHeight bottomPartHeight:(CGFloat)bottomHeight flipped:(BOOL)flipped{
self = [super init];
if (self) {
//size 是指块图片的大小.
// topLeftCornerImage = [DDNinePartImage getPartImage:image withSize:<#(NSSize)#> fromRect:<#(NSRect)#>]
}
return self;
}
/*
function meth_TXNinePartImage_dealloc {
edi = arg_0;
[*(edi + 0x1c) release]; //topLeftCornerImage
[*(edi + 0x20) release]; //topEdgeImage
[*(edi + 0x24) release]; //topRightCornerImage
[*(edi + 0x28) release]; //leftEdgeImage
[*(edi + 0x2c) release]; //centerImage
[*(edi + 0x30) release]; //rightEdgeImage
[*(edi + 0x34) release]; //bottomLeftCornerImage
[*(edi + 0x38) release]; //bottomEdgeImage
[*(edi + 0x3c) release]; //bottomRightCornerImage
var_8 = edi;
var_12 = *0xca2ce4;
eax = [[&var_8 super] dealloc];
return eax;
}
*/
-(void)drawInRect:(NSRect)rect fromRect:(NSRect)fromRect operation:(NSCompositingOperation)op fraction:(CGFloat)delta{
[self drawInRect:rect compositingOperation:op alphaFraction:delta flipped:NO];
}
-(void)drawInRect:(NSRect)rect compositingOperation:(NSCompositingOperation)op alphaFraction:(CGFloat)alphaFraction flipped:(BOOL)isFlipped{
NSGraphicsContext *context = [NSGraphicsContext currentContext];
[context saveGraphicsState];
[context setShouldAntialias:YES];
NSDrawNinePartImage(rect, topLeftCornerImage, topEdgeImage, topRightCornerImage, leftEdgeImage, centerImage, rightEdgeImage, bottomLeftCornerImage, bottomEdgeImage, bottomRightCornerImage, op, alphaFraction, isFlipped);
[context restoreGraphicsState];
}
+(NSImage *)getPartImage:(NSImage *)image withSize:(NSSize)size fromRect:(NSRect)rect{
NSImage *im = [[NSImage alloc] initWithSize:size];
[im lockFocus];
[image drawInRect:NSMakeRect(0, 0, size.width, size.height) fromRect:rect operation:NSCompositeCopy fraction:1];
[im unlockFocus];
return im;
}
/*
$rdi == arg0 (ObjC: self)
$rsi == arg1 (ObjC: op, or _cmd)
$rdx == arg2 (ObjC: first arg of method)
$rcx == arg3 (ObjC: second arg of method) cell
$r8 == arg4 第三个参数
$r9 == arg5 第四个
*/
/*
function meth_TXNinePartImage_initWithNSImage_leftPartWidth_rightPartWidth_topPartHeight_bottomPartHeight_flipped_ {
var_240 = arg_0;
var_244 = *0xca2ce4;
eax = [[&var_240 super] init];
if (eax != 0x0) {
ecx = arg_8;
edi = ecx;
eax = [ecx size];
var_48 = eax;
[edi size];
floorf(edx);
asm{ fstp tword [ss:ebp-0x108+var_60] };
floorf(arg_14);
asm{ fstp dword [ss:ebp-0x108+var_80] };
asm{ fld tword [ss:ebp-0x108+var_60] };
asm{ fstp dword [ss:ebp-0x108+var_92] };
floorf(arg_C);
asm{ fstp dword [ss:ebp-0x108+var_72] };
xmm3 = var_80;
var_52 = xmm3;
xmm0 = var_92 - xmm3;
var_60 = xmm0;
var_224 = 0x0;
var_228 = xmm0;
xmm0 = var_72;
var_56 = xmm0;
var_232 = xmm0;
var_236 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm0 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x1c) = eax;
floorf(var_48);
var_36 = esi;
var_208 = var_56;
asm{ fstp dword [ss:ebp-0x108+var_88] };
floorf(arg_10);
asm{ fstp dword [ss:ebp-0x108+var_76] };
var_212 = var_60;
xmm0 = var_88;
var_48 = xmm0;
xmm1 = var_76;
var_44 = xmm1;
xmm0 = xmm0 - var_56 - xmm1;
var_40 = xmm0;
var_216 = xmm0;
xmm3 = var_52;
var_220 = xmm3;
esi = var_36;
eax = [TXNinePartImage getPartImage:edi withSize:xmm0 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x20) = eax;
xmm0 = var_44;
xmm1 = var_48 - xmm0;
var_48 = xmm1;
var_192 = xmm1;
var_196 = var_60;
var_200 = xmm0;
xmm3 = var_52;
var_204 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm0 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x24) = eax;
floorf(arg_18);
asm{ fstp dword [ss:ebp-0x108+var_84] };
var_176 = 0x0;
xmm1 = var_84;
var_52 = xmm1;
var_180 = xmm1;
xmm2 = var_56;
var_184 = xmm2;
xmm0 = var_60 - xmm1;
var_60 = xmm0;
var_188 = xmm0;
eax = [TXNinePartImage getPartImage:edi withSize:xmm2 fromRect:xmm0];
eax = [eax retain];
*(esi + 0x28) = eax;
var_160 = var_56;
var_164 = var_52;
xmm2 = var_40;
var_168 = xmm2;
xmm3 = var_60;
var_172 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm2 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x2c) = eax;
var_144 = var_48;
var_148 = var_52;
xmm2 = var_44;
var_152 = xmm2;
xmm3 = var_60;
var_156 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm2 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x30) = eax;
var_128 = 0x0;
var_132 = 0x0;
xmm2 = var_56;
var_136 = xmm2;
xmm3 = var_52;
var_140 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm2 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x34) = eax;
var_112 = var_56;
var_116 = 0x0;
xmm3 = var_40;
var_120 = xmm3;
xmm2 = var_52;
var_124 = xmm2;
eax = [TXNinePartImage getPartImage:edi withSize:xmm3 fromRect:xmm2];
eax = [eax retain];
*(esi + 0x38) = eax;
var_96 = var_48;
var_100 = 0x0;
xmm2 = var_44;
var_104 = xmm2;
xmm3 = var_52;
var_108 = xmm3;
eax = [TXNinePartImage getPartImage:edi withSize:xmm2 fromRect:xmm3];
eax = [eax retain];
*(esi + 0x3c) = eax;
*(int8_t *)(esi + 0x40) = arg_1C;
}
eax = esi;
return eax;
}
*/
@end
|
github | AnriKaede/IM-master | echo_diagnostic.m | .m | IM-master/win-client/3rdParty/src/libspeex/libspeex/echo_diagnostic.m | 2,076 | utf_8 | 8d5e7563976fbd9bd2eda26711f7d8dc | % Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github | AnriKaede/IM-master | echo_diagnostic.m | .m | IM-master/android/app/src/main/jni/libspeex/echo_diagnostic.m | 2,076 | utf_8 | 8d5e7563976fbd9bd2eda26711f7d8dc | % Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github | truongd8593/1D-Shallow-Water-equations-master | Fr.m | .m | 1D-Shallow-Water-equations-master/Fr.m | 207 | utf_8 | b7adb7763a8a9f44c45ad2ce3924eec0 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Froude
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [froude] = Fr(U)
global g;
if ( U(1) == 0 )
froude = 0.;
else
froude = U(2)/(U(1)*sqrt(g*U(1)));
end
end |
github | posgraph/coupe.bilateral-texture-filtering-master | btf_2d_color_gpu.m | .m | coupe.bilateral-texture-filtering-master/bilateralTextureFiltering/btf_2d_color_gpu.m | 3,053 | utf_8 | d6329d1d843ceb6c8424dd6bc33deca4 | function r_img = btf_2d_color_gpu(I, fr, n_iter, fr_blf)
% btf_2d_color_gpu - Bilateral Texture Filtering
%
% S = btf_2d_color_gpu(I, fr, n_iter, fr_blf) extracts structure S from
% input I, with scale parameter fr, joint filtering scale fr_blf and
% iteration number n_iter.
%
% Paras:
% @I : Input image, both grayscale and color images are acceptable.
% @fr : Parameter specifying the maximum size of texture elements.
% @n_iter : Number of itearations, 5 by default.
% @fr_blf : Parameter specifying kernel size of joint bilateral filtering.
%
% Example
% ==========
% I = imread('input.png');
% radius = 3;
% iterations = 3;
% radius_bf = radius * 2;
% S = btf_2d_color_gpu(I, radius, iterations, radius_bf);
%
% ==========
% The Code is created based on the following paper
% [1] "Bilateral Texture Filtering", Hojin Cho, Hyunjoon Lee, Seungyong Lee, ACM Transactions on Graphics,
% (SIGGRAPH 2014), 2014.
% The code and the algorithm are for non-comercial use only.
%
global o_img
if ~exist('fr_blf', 'var') || isempty(fr_blf),
fr_blf = 2*fr;
end
if ~exist('n_iter', 'var') || isempty(n_iter),
n_iter = 5;
end
sigma_avg = 0.05*sqrt(size(I, 3));
sigma_alpha = 5;
tic;
I = gpuArray(im2single(I));
o_img = I;
for iter = 1:n_iter
fprintf('iter = %d\n', iter);
L = I;
Gc = cell(fr, 1);
%Lcpu = gather(L);
for i = fr:fr
B = imfilter(L, fspecial('average', 2*i+1), 'symmetric');
% MRTV
Delta = comp_Delta_gpu(L, i);
M = comp_MRTV_gpu(L, i);
M = mean(M.*Delta, 3);
% comp_S
[S, M_min, ~] = comp_S(B, M, i);
% alpha blending
M_diff = M - M_min;
alpha = sigmoid(M_diff, sigma_alpha);
alpha = (alpha - 0.5) * 2;
alpha = repmat(alpha, [1 1 size(S, 3)]);
G = (alpha).*S + (1-alpha).*B;
Gc{i} = G;
end
G = Gc{end};
r_img = blf_2d_gpu(I, G, fr_blf, sigma_avg);
I = r_img;
end
r_img = gather(I);
et = toc;
disp(['elapsed time = ' num2str(et)]);
end
function b = sigmoid(a, p)
b = 1 ./ (1 + exp(-p.*a));
end
% comp_S
function [S, M_min, min_idx] = comp_S(B, M, fr)
[h, w, d] = size(B);
p_M = padarray(M, [fr fr], 'replicate');
p_B = padarray(B, [fr fr], 'symmetric');
pu = fr+1;
pb = pu+h-1;
pl = fr+1;
pr = pl+w-1;
% minimum value
S = B; %gpuArray(zeros(size(B), 'single'));
M_min = M; %gpuArray(ones(h, w, 'single')*1000); % arbitrary large value
oX = gpuArray(zeros(h, w, 'single'));
oY = gpuArray(zeros(h, w, 'single'));
min_idx = gpuArray(reshape(1:h*w, [h w]));
p_min_idx = padarray(min_idx, [fr fr], 'symmetric');
for x = -fr:fr
for y = -fr:fr
n_M = p_M(pu+y:pb+y, pl+x:pr+x);
n_B = p_B(pu+y:pb+y, pl+x:pr+x, :);
n_min_idx = p_min_idx(pu+y:pb+y, pl+x:pr+x);
idx = n_M < M_min;
M_min = min(M_min, n_M);
oX = oX.*(1-idx) + x.*idx;
oY = oY.*(1-idx) + y.*idx;
min_idx = n_min_idx.*idx + min_idx.*(1-idx);
idx = repmat(idx, [1 1 d]);
S = n_B.*idx + S.*(1-idx);
end
end
end
|
github | latelee/caffe-master | classification_demo.m | .m | caffe-master/matlab/demo/classification_demo.m | 5,466 | utf_8 | 45745fb7cfe37ef723c307dfa06f1b97 | function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to the Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% and what versions are installed.
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab code for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to your Matlab search PATH in order to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github | InverseTampere/TreeQSM-master | make_models_parallel.m | .m | TreeQSM-master/src/make_models_parallel.m | 8,030 | utf_8 | 11981cd204b15a2aced81d8c7a0a25ad | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function QSMs = make_models_parallel(dataname,savename,Nmodels,inputs)
% ---------------------------------------------------------------------
% MAKE_MODELS.M Makes QSMs of given point clouds.
%
% Version 1.1.2
% Latest update 9 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Makes QSMs of given point clouds specified by the "dataname" and by the
% other inputs. The results are saved into file named "savename".
% Notice, the code does not save indivual QSM runs into their own .mat or
% .txt files but saves all models into one big .mat file. Same as
% MAKE_MODELS but uses parfor command (requires Parallel Computing Toolbox)
% which allows the utilization of multiple processors/cores to compute in
% parallel number of QSMs with the same inputs.
%
% Inputs:
% dataname String specifying the .mat-file containing the point
% clouds that are used for the QSM reconstruction.
% savename String, the name of the file where the QSMs are saved
% Nmodels (Optional) Number of models generated for each input
% (cloud and input parameters). Default value is 5.
% inputs (Optional) The input parameters structure. Can be defined
% below as part of this code. Can also be given as a
% structure array where each tree gets its own, possibly
% uniquely, defined parameters (e.g. optimal parameters)
% but each tree has to have same number of parameter values.
%
% Output:
% QSMs Structure array containing all the QSMs generated
% ---------------------------------------------------------------------
% Changes from version 1.1.1 to 1.1.2, 18 Aug 2020:
% 1) Removed the inputs "lcyl" and "FilRad" from the inputs and the
% calculations of number of input parameters
% Changes from version 1.1.0 to 1.1.1, 13 Jan 2020:
% 1) Changed "m = m+n;" to "m = m+n(j);" at the end of the function.
% Changes from version 1.0.0 to 1.1.0, 03 Oct 2019:
% 1) Added try-catch structure where "treeqsm" is called, so that if there
% is an error during the reconstruction process of one tree, then the
% larger process of making multiple QSMs from multiple tree is not
% stopped.
% 2) Changed the way the data is loaded. Previously all the data was
% loaded into workspace, now only one point cloud is in the workspace.
% 3) Corrected a bug where incomplete QSM was saved as complete QSM
% 4) Changed where the input-structure for each tree reconstructed
% 5) Changed the coding to separate more the results of the different
% parallel processes (less warnings and errors)
if nargin < 2
disp('Not enough inputs, no models generated!')
QSMs = struct([]);
return
end
if nargin == 2
Nmodels = 5; % Number of models per inputs, usually about 5 models is enough
end
%% Define the parameter values
if nargin == 3 || nargin == 2
% The following parameters can be varied and should be optimised
% (each can have multiple values):
% Patch size of the first uniform-size cover:
inputs.PatchDiam1 = [0.08 0.15];
% Minimum patch size of the cover sets in the second cover:
inputs.PatchDiam2Min = [0.015 0.025];
% Maximum cover set size in the stem's base in the second cover:
inputs.PatchDiam2Max = [0.06 0.08];
% The following parameters can be varied and but usually can be kept as
% shown (i.e. as little bigger than PatchDiam parameters):
% Ball radius used for the first uniform-size cover generation:
inputs.BallRad1 = inputs.PatchDiam1+0.02;
% Maximum ball radius used for the second cover generation:
inputs.BallRad2 = inputs.PatchDiam2Max+0.01;
% The following parameters can be usually kept fixed as shown:
inputs.nmin1 = 3; % Minimum number of points in BallRad1-balls, good value is 3
inputs.nmin2 = 1; % Minimum number of points in BallRad2-balls, good value is 1
inputs.OnlyTree = 1; % If "1", then point cloud contains points only from the tree
inputs.Tria = 0; % If "1", then triangulation produces
inputs.Dist = 1; % If "1", then computes the point-model distances
% Different cylinder radius correction options for modifying too large and
% too small cylinders:
% Traditional TreeQSM choices:
% Minimum cylinder radius, used particularly in the taper corrections:
inputs.MinCylRad = 0.0025;
% Child branch cylinders radii are always smaller than the parent
% branche's cylinder radii:
inputs.ParentCor = 1;
% Use partially linear (stem) and parabola (branches) taper corrections:
inputs.TaperCor = 1;
% Growth volume correction approach introduced by Jan Hackenberg,
% allometry: GrowthVol = a*Radius^b+c
% Use growth volume correction:
inputs.GrowthVolCor = 0;
% fac-parameter of the growth vol. approach, defines upper and lower
% boundary:
inputs.GrowthVolFac = 2.5;
inputs.name = 'test';
inputs.tree = 0;
inputs.plot = 0;
inputs.savetxt = 0;
inputs.savemat = 0;
inputs.disp = 0;
end
% Compute the number of input parameter combinations
in = inputs(1);
ninputs = prod([length(in.PatchDiam1) length(in.PatchDiam2Min)...
length(in.PatchDiam2Max)]);
%% Load data
matobj = matfile([dataname,'.mat']);
names = fieldnames(matobj);
i = 1;
n = max(size(names));
while i <= n && ~strcmp(names{i,:},'Properties')
i = i+1;
end
I = (1:1:n);
I = setdiff(I,i);
names = names(I,1);
names = sort(names);
nt = max(size(names)); % number of trees/point clouds
%% make the models
QSMs = struct('cylinder',{},'branch',{},'treedata',{},'rundata',{},...
'pmdistance',{},'triangulation',{});
% Generate Inputs struct that contains the input parameters for each tree
if max(size(inputs)) == 1
for i = 1:nt
Inputs(i) = inputs;
Inputs(i).name = names{i};
Inputs(i).tree = i;
Inputs(i).plot = 0;
Inputs(i).savetxt = 0;
Inputs(i).savemat = 0;
Inputs(i).disp = 0;
end
else
Inputs = inputs;
end
m = 1;
for t = 1:nt % trees
disp(['Modelling tree ',num2str(t),'/',num2str(nt),' (',Inputs(t).name,'):'])
P = matobj.(Inputs(t).name);
qsms = cell(Nmodels,1); % save here the accepted models
qsm = cell(Nmodels,1); % cell-structure to keep different models separate
n = ones(Nmodels,1);
n0 = zeros(Nmodels,1);
k = ones(Nmodels,1);
parfor j = 1:Nmodels % generate N models per input
inputs = Inputs(t);
inputs.model = j;
while k(j) <= 5 % try up to five times to generate non-empty models
try
qsm{j} = treeqsm(P,inputs);
catch
qsm{j} = struct('cylinder',{},'branch',{},'treedata',{},...
'rundata',{},'pmdistance',{},'triangulation',{});
qsm{j}(ninputs).treedata = 0;
end
n(j) = max(size(qsm{j}));
Empty = false(n(j),1);
for b = 1:n(j)
if isempty(qsm{j}(b).branch)
Empty(b) = true;
end
end
if n(j) < ninputs || any(Empty)
n(j) = nnz(~Empty);
k(j) = k(j)+1;
if n(j) > n0(j)
qsms{j} = qsm{j}(~Empty);
n0(j) = n(j);
end
else
% Successful models generated
qsms{j} = qsm{j};
k(j) = 10;
end
end
if k(j) == 6
disp('Incomplete run!!')
end
end
% Save the models
for j = 1:Nmodels
QSM = qsms{j};
a = max(size(QSM));
QSMs(m:m+a-1) = QSM;
m = m+n(j);
end
str = ['results/',savename];
save(str,'QSMs')
end
|
github | InverseTampere/TreeQSM-master | make_models.m | .m | TreeQSM-master/src/make_models.m | 7,381 | utf_8 | 4c4a04194131735e4fc02825bc11a987 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function QSMs = make_models(dataname,savename,Nmodels,inputs)
% ---------------------------------------------------------------------
% MAKE_MODELS.M Makes QSMs of given point clouds.
%
% Version 1.1.0
% Latest update 9 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Makes QSMs of given point clouds specified by the "dataname" and by the
% other inputs. The results are saved into file named "savename".
% Notice, the code does not save indivual QSM runs into their own .mat or
% .txt files but saves all models into one big .mat file.
%
% Inputs:
% dataname String specifying the .mat-file containing the point
% clouds that are used for the QSM reconstruction.
% savename String, the name of the file where the QSMs are saved
% Nmodels (Optional) Number of models generated for each input
% (cloud and input parameters). Default value is 5.
% inputs (Optional) The input parameters structure. Can be defined
% below as part of this code. Can also be given as a
% structure array where each tree gets its own, possibly
% uniquely, defined parameters (e.g. optimal parameters)
% but each tree has to have same number of parameter values.
%
% Output:
% QSMs Structure array containing all the QSMs generated
% ---------------------------------------------------------------------
% Changes from version 1.1.0 to 1.1.1, 18 Aug 2020:
% 1) Removed the inputs "lcyl" and "FilRad" from the inputs and the
% calculations of number of input parameters
% Changes from version 1.0.0 to 1.1.0, 03 Oct 2019:
% 1) Added try-catch structure where "treeqsm" is called, so that if there
% is an error during the reconstruction process of one tree, then the
% larger process of making multiple QSMs from multiple tree is not
% stopped.
% 2) Changed the way the data is loaded. Previously all the data was
% loaded into workspace, now only one point cloud is in the workspace.
% 3) Corrected a bug where incomplete QSM was saved as complete QSM
% 4) Changed where the input-structure for each tree is reconstructed
if nargin < 2
disp('Not enough inputs, no models generated!')
QSMs = struct([]);
return
end
if nargin == 2
Nmodels = 5; % Number of models per inputs, usually about 5 models is enough
end
%% Define the parameter values
if nargin == 3 || nargin == 2
% The following parameters can be varied and should be optimised
% (each can have multiple values):
% Patch size of the first uniform-size cover:
inputs.PatchDiam1 = [0.08 0.1];
% Minimum patch size of the cover sets in the second cover:
inputs.PatchDiam2Min = [0.015 0.025];
% Maximum cover set size in the stem's base in the second cover:
inputs.PatchDiam2Max = [0.06 0.08];
% The following parameters can be varied and but usually can be kept as
% shown (i.e. as little bigger than PatchDiam parameters):
% Ball radius used for the first uniform-size cover generation:
inputs.BallRad1 = inputs.PatchDiam1+0.02;
% Maximum ball radius used for the second cover generation:
inputs.BallRad2 = inputs.PatchDiam2Max+0.01;
% The following parameters can be usually kept fixed as shown:
inputs.nmin1 = 3; % Minimum number of points in BallRad1-balls, good value is 3
inputs.nmin2 = 1; % Minimum number of points in BallRad2-balls, good value is 1
inputs.OnlyTree = 1; % If "1", then point cloud contains points only from the tree
inputs.Tria = 0; % If "1", then triangulation produces
inputs.Dist = 1; % If "1", then computes the point-model distances
% Different cylinder radius correction options for modifying too large and
% too small cylinders:
% Traditional TreeQSM choices:
% Minimum cylinder radius, used particularly in the taper corrections:
inputs.MinCylRad = 0.0025;
% Child branch cylinders radii are always smaller than the parent
% branche's cylinder radii:
inputs.ParentCor = 1;
% Use partially linear (stem) and parabola (branches) taper corrections:
inputs.TaperCor = 1;
% Growth volume correction approach introduced by Jan Hackenberg,
% allometry: GrowthVol = a*Radius^b+c
% Use growth volume correction:
inputs.GrowthVolCor = 0;
% fac-parameter of the growth vol. approach, defines upper and lower
% boundary:
inputs.GrowthVolFac = 2.5;
inputs.name = 'test';
inputs.tree = 0;
inputs.plot = 0;
inputs.savetxt = 0;
inputs.savemat = 0;
inputs.disp = 0;
end
% Compute the number of input parameter combinations
in = inputs(1);
ninputs = prod([length(in.PatchDiam1) length(in.PatchDiam2Min)...
length(in.PatchDiam2Max)]);
%% Load data
matobj = matfile([dataname,'.mat']);
names = fieldnames(matobj);
i = 1;
n = max(size(names));
while i <= n && ~strcmp(names{i,:},'Properties')
i = i+1;
end
I = (1:1:n);
I = setdiff(I,i);
names = names(I,1);
names = sort(names);
nt = max(size(names)); % number of trees/point clouds
%% make the models
QSMs = struct('cylinder',{},'branch',{},'treedata',{},'rundata',{},...
'pmdistance',{},'triangulation',{});
% Generate Inputs struct that contains the input parameters for each tree
if max(size(inputs)) == 1
for i = 1:nt
Inputs(i) = inputs;
Inputs(i).name = names{i};
Inputs(i).tree = i;
Inputs(i).plot = 0;
Inputs(i).savetxt = 0;
Inputs(i).savemat = 0;
Inputs(i).disp = 0;
end
else
Inputs = inputs;
end
m = 1;
for t = 1:nt % trees
disp(['Modelling tree ',num2str(t),'/',num2str(nt),' (',Inputs(t).name,'):'])
P = matobj.(Inputs(t).name);
j = 1; % model number under generation, make "Nmodels" models per tree
inputs = Inputs(t);
while j <= Nmodels % generate N models per input
k = 1;
n0 = 0;
inputs.model = j;
while k <= 5 % try up to five times to generate non-empty models
try
QSM = treeqsm(P,inputs);
catch
QSM = struct('cylinder',{},'branch',{},'treedata',{},...
'rundata',{},'pmdistance',{},'triangulation',{});
QSM(ninputs).treedata = 0;
end
n = max(size(QSM));
Empty = false(n,1);
for b = 1:n
if isempty(QSM(b).branch)
Empty(b) = true;
end
end
if n < ninputs || any(Empty)
n = nnz(~Empty);
k = k+1;
if n >= n0
qsm = QSM(~Empty);
n0 = n;
end
else
% Succesfull models generated
QSMs(m:m+n-1) = QSM;
m = m+n;
k = 10;
end
end
if k == 6
disp('Incomplete run!!')
QSMs(m:m+n0-1) = qsm;
m = m+n0;
end
j = j+1;
end
stri = ['results/',savename];
save(stri,'QSMs')
end
|
github | InverseTampere/TreeQSM-master | select_optimum.m | .m | TreeQSM-master/src/select_optimum.m | 41,288 | utf_8 | 4810c22b2697e27fafb380cec479755f | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [TreeData,OptModels,OptInputs,OptQSM] = ...
select_optimum(QSMs,Metric,savename)
% ---------------------------------------------------------------------
% SELECT_OPTIMUM.M Selects optimum models based on point-cylinder model
% distances or standard deviations of attributes
%
% Version 1.4.0
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Works for single or multiple tree cases where the input QSMs contains
% multiple models for the same tree with different inputs and multiple runs
% with the same inputs. Allows the user to select from 34 different metrics
% for the optimization. These include average point-model distances from
% all, trunk, branch, 1st-order branch and 2nd-order branch cylinders plus
% some combinations where e.g. "mean trunk and mean branch" or "mean trunk
% and mean 1st-order branch" point-model distances are added together.
% Similarly for the maximum point-model distances and the sums of mean and
% the maximum distances.
% The difference between "all" and "trunk and branch" is that "all"
% is the average of all cylinder distances which usually emphasizes
% branch cylinder as there usually much more those, whereas "trunk and branch"
% gives equal weight for trunk and branch cylinders.
% The other options for metric are based on minimizing the standard deviations
% of volumes (total, trunk, branch, trunk+branch which have equal emphasis
% between trunk and branches), lengths (trunk, branches) or total number of
% branches. Here the idea is that if the variance (standard deviation) of
% some attribute between models with the same inputs is small, then it
% indicates some kind of robustness which might indicate that the inputs
% are close to optimal.
% The optimal single model out of the models with the optimal inputs is
% selected based on the minimum mean point-model-distance.
%
% Inputs:
% QSMs Contain all the QSMs, possibly from multiple trees
% Metric Optional input, Metric to be minimized:
% CYLINDER-DISTANCE METRICS:
% 'all_mean_dis' = mean distances from (mdf) all cylinders, DEFAULT option
% 'trunk_mean_dis' = mdf trunk cylinders,
% 'branch_mean_dis' = mdf all branch cylinders,
% '1branch_mean_dis' = mdf 1st-order branch cylinders,
% '2branch_mean_dis' = mdf 2nd-order branch cylinders,
% 'trunk+branch_mean_dis' = mdf trunk + mdf branch cylinders,
% 'trunk+1branch_mean_dis' = mdf trunk + mdf 1st-ord branch cyls,
% 'trunk+1branch+2branch_mean_dis' = above + mdf 2nd-ord branch cyls
% '1branch+2branch_mean_dis' = mdf 1branch cyls + mdf 2branch cyls
% 'all_max_dis' = maximum distances from (mdf) all cylinders
% 'trunk_max_dis' = mdf trunk cylinders,
% 'branch_max_dis' = mdf all branch cylinders,
% '1branch_max_dis' = mdf 1st-order branch cylinders,
% '2branch_max_dis' = mdf 2nd-order branch cylinders,
% 'trunk+branch_max_dis' = mdf trunk + mdf branch cylinders,
% 'trunk+1branch_max_dis' = mdf trunk + mdf 1st-ord branch cyls,
% 'trunk+1branch+2branch_max_dis' = above + mdf 2nd-ord branch cyls.
% '1branch+2branch_max_dis' = mdf 1branch cyls + mdf 2branch cyls
% 'all_mean+max_dis' = mean + maximum distances from (m+mdf) all cylinders
% 'trunk_mean+max_dis' = (m+mdf) trunk cylinders,
% 'branch_mean+max_dis' = (m+mdf) all branch cylinders,
% '1branch_mean+max_dis' = (m+mdf) 1st-order branch cylinders,
% '2branch_mean+max_dis' = (m+mdf) 2nd-order branch cylinders,
% 'trunk+branch_mean+max_dis' = (m+mdf) trunk + (m+mdf) branch cylinders,
% 'trunk+1branch_mean+max_dis' = (m+mdf) trunk + (m+mdf) 1branch cyls,
% 'trunk+1branch+2branch_mean+max_dis' = above + (m+mdf) 2branch cyls.
% '1branch+2branch_mean+max_dis' = (m+mdf) 1branch cyls + (m+mdf) 2branch cyls
% STANDARD DEVIATION METRICS:
% 'tot_vol_std' = standard deviation of total volume
% 'trunk_vol_std' = standard deviation of trunk volume
% 'branch_vol_std' = standard deviation of branch volume
% 'trunk+branch_vol_std' = standard deviation of trunk plus branch volume
% 'tot_are_std' = standard deviation of total area
% 'trunk_are_std' = standard deviation of trunk area
% 'branch_are_std' = standard deviation of branch area
% 'trunk+branch_are_std' = standard deviation of trunk plus branch area
% 'trunk_len_std' = standard deviation of trunk length
% 'branch_len_std' = standard deviation of branch length
% 'branch_num_std' = standard deviation of number of branches
% BRANCH-ORDER DISTRIBUTION METRICS:
% 'branch_vol_ord3_mean' = mean difference in volume of 1-3 branch orders
% 'branch_are_ord3_mean' = mean difference in area of 1-3 branch orders
% 'branch_len_ord3_mean' = mean difference in length of 1-3 branch orders
% 'branch_num_ord3_mean' = mean difference in number of 1-3 branch orders
% 'branch_vol_ord3_max' = max difference in volume of 1-3 branch orders
% 'branch_are_ord3_max' = max difference in area of 1-3 branch orders
% 'branch_len_ord3_max' = max difference in length of 1-3 branch orders
% 'branch_num_ord3_max' = max difference in number of 1-3 branch orders
% 'branch_vol_ord6_mean' = mean difference in volume of 1-6 branch orders
% 'branch_are_ord6_mean' = mean difference in area of 1-6 branch orders
% 'branch_len_ord6_mean' = mean difference in length of 1-6 branch orders
% 'branch_num_ord6_mean' = mean difference in number of 1-6 branch orders
% 'branch_vol_ord6_max' = max difference in volume of 1-6 branch orders
% 'branch_are_ord6_max' = max difference in area of 1-6 branch orders
% 'branch_len_ord6_max' = max difference in length of 1-6 branch orders
% 'branch_num_ord6_max' = max difference in number of 1-6 branch orders
% CYLINDER DISTRIBUTION METRICS:
% 'cyl_vol_dia10_mean') = mean diff. in volume of 1-10cm diam cyl classes
% 'cyl_are_dia10_mean') = mean diff. in area of 1-10cm diam cyl classes
% 'cyl_len_dia10_mean') = mean diff. in length of 1-10cm diam cyl classes
% 'cyl_vol_dia10_max') = max diff. in volume of 1-10cm diam cyl classes
% 'cyl_are_dia10_max') = max diff. in area of 1-10cm diam cyl classes
% 'cyl_len_dia10_max') = max diff. in length of 1-10cm diam cyl classes
% 'cyl_vol_dia20_mean') = mean diff. in volume of 1-20cm diam cyl classes
% 'cyl_are_dia20_mean') = mean diff. in area of 1-20cm diam cyl classes
% 'cyl_len_dia20_mean') = mean diff. in length of 1-20cm diam cyl classes
% 'cyl_vol_dia20_max') = max diff. in volume of 1-20cm diam cyl classes
% 'cyl_are_dia20_max') = max diff. in area of 1-20cm diam cyl classes
% 'cyl_len_dia20_max') = max diff. in length of 1-20cm diam cyl classes
% 'cyl_vol_zen_mean') = mean diff. in volume of cyl zenith distribution
% 'cyl_are_zen_mean') = mean diff. in area of cyl zenith distribution
% 'cyl_len_zen_mean') = mean diff. in length of cyl zenith distribution
% 'cyl_vol_zen_max') = max diff. in volume of cyl zenith distribution
% 'cyl_are_zen_max') = max diff. in area of cyl zenith distribution
% 'cyl_len_zen_max') = max diff. in length of cyl zenith distribution
% SURFACE COVERAGE METRICS:
% metric to be minimized is 1-mean(surface_coverage) or 1-min(SC)
% 'all_mean_surf' = mean surface coverage from (msc) all cylinders
% 'trunk_mean_surf' = msc trunk cylinders,
% 'branch_mean_surf' = msc all branch cylinders,
% '1branch_mean_surf' = msc 1st-order branch cylinders,
% '2branch_mean_surf' = msc 2nd-order branch cylinders,
% 'trunk+branch_mean_surf' = msc trunk + msc branch cylinders,
% 'trunk+1branch_mean_surf' = msc trunk + msc 1st-ord branch cyls,
% 'trunk+1branch+2branch_mean_surf' = above + msc 2nd-ord branch cyls
% '1branch+2branch_mean_surf' = msc 1branch cyls + msc 2branch cyls
% 'all_min_surf' = minimum surface coverage from (msc) all cylinders
% 'trunk_min_surf' = msc trunk cylinders,
% 'branch_min_surf' = msc all branch cylinders,
% '1branch_min_surf' = msc 1st-order branch cylinders,
% '2branch_min_surf' = msc 2nd-order branch cylinders,
% 'trunk+branch_min_surf' = msc trunk + msc branch cylinders,
% 'trunk+1branch_min_surf' = msc trunk + msc 1st-ord branch cyls,
% 'trunk+1branch+2branch_min_surf' = above + msc 2nd-ord branch cyls.
% '1branch+2branch_min_surf' = msc 1branch cyls + msc 2branch cyls
% savename Optional input, name string specifying the name of the saved file
% containing the outputs
%
% Outputs:
% TreeData Similar structure array as the "treedata" in QSMs but now each
% attribute contains the mean and std computed from the models
% with the optimal inputs. Also contains the sensitivities
% for the inputs PatchDiam1, PatchDiam2Min, PatchDiam2Max.
% Thus for single number attributes (e.g. TotalVolume) there
% are five numbers [mean std sensi_PD1 sensi_PD2Min sensi_PD2Max]
% OptModels Indexes of the models with the optimal inputs (column 1) and
% the index of the optimal single model (column 2) in "QSMs"
% for each tree
% OptInputs The optimal input parameters for each tree
% OptQSMs The single best QSM for each tree, OptQSMs = QSMs(OptModel);
% ---------------------------------------------------------------------
% Changes from version 1.3.1 to 1.4.0, 2 May 2022:
% 1) Added estimation of (relative) sensitivity of the single number
% attributes in TreeData for the inputs PatchDiam1, PatchDiam2Min,
% PatchDiam2Max. Now TreeData contains also these values as the columns
% 3 to 5.
% 2) Corrected a small bug in the subfunction "collect_data" (assignment
% of values for "CylSurfCov(i,:)"). The bug caused error for QSMs whose
% maximum branch order is less than 2.
% 3) Bug fix for 3 lines (caused error for some cases and for other cases
% the optimal single model was wrongly selected):
% [~,T] = min(dist(ind,best)); --> [~,T] = min(Data.CylDist(ind,best));
% Changes from version 1.2.0 to 1.3.0, 4 Aug 2020:
% 1) Removed two inputs ("lcyl" and "FilRad") from the inputs to be
% optimised. This corresponds to changes in the cylinder fitting.
% 2) Added more choices for the optimisation criteria or cost
% functions ("metric") that are minimised. There is now 91 metrics and
% the new ones include surface coverage based metrics.
% Changes from version 1.1.1 to 1.2.0, 4 Feb 2020:
% 1) Major change in the structure: subfunctions
% 2) Added more choices for the optimisation criteria or cost
% functions ("metric") that are minimised. There is now 73 metrics and in
% particular the new ones include some area related metrics and branch
% and cylinder distribution based metrics.
% Changes from version 1.1.0 to 1.1.1, 26 Nov 2019:
% 1) Added the "name" of the point cloud from the inputs.name to the output
% TreeData as a field. Also now displays the name together with the tree
% number.
% 2) TreeData contains now correctly fields ("location", "StemTaper",
% "VolumeBranchOrder", etc) from the Optimal QSMs.
% Changes from version 1.0.0 to 1.1.0, 08 Oct 2019:
% 1) Added the posibility to select the optimisation criteria or cost
% function ("metric") that is minimised from 34 different options.
% Previously only one option was used. The used metric is also included
% in "OptInputs" output as one of the fields.
% 2) Added OptQSM as one of the outputs
%% Select the metric based on the input
if nargin > 1
[met,Metric] = select_metric(Metric);
else
met = 1;
Metric = 'all_mean_dis';
end
% The metric for selecting the optimal single model from the models with
% the optimal inputs is the mean point-model-distance.
best = 1;
%% Collect data
% Find the first non-empty model
i = 1;
while isempty(QSMs(i).cylinder)
i = i+1;
end
% Determine how many single-number attributes there are in treedata
names = fieldnames(QSMs(i).treedata);
n = 1;
while numel(QSMs(i).treedata.(names{n})) == 1
n = n+1;
end
n = n-1;
Names = names(1:n);
L = max(cellfun('length',Names))+1;
for i = 1:n
name = Names{i};
name(L) = ' ';
Names{i} = name;
end
% Collect data:
[treedata,inputs,TreeId,Data] = collect_data(QSMs,names,n);
% Trees and their unique IDs
TreeIds = unique(TreeId(:,1));
nt = length(TreeIds); % number of trees
DataM = zeros(n,nt);
DataS = zeros(n,nt); % Standard deviation of tree data for each tree
DataM2 = DataM; DataM3 = DataM;
DataS2 = DataS; DataS3 = DataS;
OptIn = zeros(nt,9); % Optimal input values
OptDist = zeros(nt,9); % Smallest metric values
% average treedata and inputs for each tree-input-combination:
TreeDataAll = zeros(nt,5*5*5,n);
Inputs = zeros(nt,5*5*5,3);
IndAll = (1:1:size(TreeId,1))';
% Indexes of the optimal single models in QSMs:
OptModel = zeros(nt,3);
% The indexes of models in QSMs with the optimal inputs (col 1)
% and the indexes of the optimal single models (col 2):
OptModels = cell(nt,2);
NInputs = zeros(nt,1);
%% Process each tree separately
for tree = 1:nt
% Select the models for the tree
Models = TreeId(:,1) == TreeIds(tree);
%% Determine the input parameter values
InputParComb = unique(inputs(Models,:),'rows'); % Input parameter combinations
IV = cell(3,1);
N = zeros(3,1);
for i = 1:3
I = unique(InputParComb(:,i));
IV{i} = I;
N(i) = length(I);
end
%% Determine metric-value for each input
% (average over number of models with the same inputs)
input = cell(1,N(1)*N(2)*N(3));
distM = zeros(1,N(1)*N(2)*N(3)); % average distances or volume stds
b = 0;
for d = 1:N(1) % PatchDiam1
J = abs(inputs(:,1)-IV{1}(d)) < 0.0001;
for a = 1:N(2) % PatchDiam2Min
K = abs(inputs(:,2)-IV{2}(a)) < 0.0001;
for i = 1:N(3) % PatchDiam2Max
L = abs(inputs(:,3)-IV{3}(i)) < 0.0001;
% Select models for the tree with the same inputs:
T = Models & J & K & L;
b = b+1;
input{b} = [d a i];
% Compute the metric value;
D = compute_metric_value(met,T,treedata,Data);
distM(b) = D;
% Collect the data and inputs
TreeDataAll(tree,b,:) = mean(treedata(:,T),2);
Inputs(tree,b,:) = [IV{1}(d) IV{2}(a) IV{3}(i)];
end
end
end
%% Determine the optimal inputs and models
ninputs = prod(N);
NInputs(tree) = ninputs;
[d,J] = sort(distM);
O = input{J(1)};
OptIn(tree,1:3) = [IV{1}(O(1)) IV{2}(O(2)) IV{3}(O(3))];
OptDist(tree,1) = d(1);
if ninputs > 1
O = input{J(2)};
OptIn(tree,4:6) = [IV{1}(O(1)) IV{2}(O(2)) IV{3}(O(3))];
OptDist(tree,2) = d(2);
if ninputs > 2
O = input{J(3)};
OptIn(tree,7:9) = [IV{1}(O(1)) IV{2}(O(2)) IV{3}(O(3))];
OptDist(tree,3) = d(3);
end
end
%% Mean of tree data for each tree computed from the optimal models:
% Select the optimal models for each tree: In the case of multiple models
% with same inputs, select the one model with the optimal inputs that
% has the minimum metric value.
J = abs(inputs(:,1)-OptIn(tree,1)) < 0.0001;
K = abs(inputs(:,2)-OptIn(tree,2)) < 0.0001;
L = abs(inputs(:,3)-OptIn(tree,3)) < 0.0001;
T = Models & J & K & L;
ind = IndAll(T);
[~,T] = min(Data.CylDist(ind,best));
OptModel(tree,1) = ind(T);
OptModels{tree,1} = ind;
OptModels{tree,2} = ind(T);
DataM(:,tree) = mean(treedata(:,ind),2);
DataS(:,tree) = std(treedata(:,ind),[],2);
if ninputs > 1
J = abs(inputs(:,1)-OptIn(tree,4)) < 0.0001;
K = abs(inputs(:,2)-OptIn(tree,5)) < 0.0001;
L = abs(inputs(:,3)-OptIn(tree,6)) < 0.0001;
T = Models & J & K & L;
ind = IndAll(T);
[~,T] = min(Data.CylDist(ind,best));
OptModel(tree,2) = ind(T);
DataM2(:,tree) = mean(treedata(:,ind),2);
DataS2(:,tree) = std(treedata(:,ind),[],2);
if ninputs > 2
J = abs(inputs(:,1)-OptIn(tree,7)) < 0.0001;
K = abs(inputs(:,2)-OptIn(tree,8)) < 0.0001;
L = abs(inputs(:,3)-OptIn(tree,9)) < 0.0001;
T = Models & J & K & L;
ind = IndAll(T);
[~,T] = min(Data.CylDist(ind,best));
OptModel(tree,3) = ind(T);
DataM3(:,tree) = mean(treedata(:,ind),2);
DataS3(:,tree) = std(treedata(:,ind),[],2);
end
end
% Decrease the number on non-zero decimals
DataM(:,tree) = change_precision(DataM(:,tree));
DataS(:,tree) = change_precision(DataS(:,tree));
if ninputs > 1
DataM2(:,tree) = change_precision(DataM2(:,tree));
DataS2(:,tree) = change_precision(DataS2(:,tree));
if ninputs > 2
DataM3(:,tree) = change_precision(DataM3(:,tree));
DataS3(:,tree) = change_precision(DataS3(:,tree));
end
end
% Define the output "OptInputs"
OptM = IndAll(OptModel(tree,1));
OptInputs(tree) = QSMs(OptM).rundata.inputs;
if ninputs > 1
OptM2 = IndAll(OptModel(tree,2));
OI2(tree) = QSMs(OptM2).rundata.inputs;
if ninputs > 2
OptM3 = IndAll(OptModel(tree,3));
OI3(tree) = QSMs(OptM3).rundata.inputs;
end
end
end
N = max(NInputs);
TreeDataAll = TreeDataAll(:,1:N,:);
Inputs = Inputs(:,1:N,:);
% Compute Coefficient of variation for the data
OptModel = IndAll(OptModel(:,1));
OptQSM = QSMs(OptModel);
DataCV = DataS./DataM*100; % Coefficient of variation
if ninputs > 1
DataCV2 = DataS2./DataM2*100; % Coefficient of variation
if ninputs > 2
DataCV3 = DataS3./DataM3*100; % Coefficient of variation
end
end
% Decrease the number on non-zero decimals
for j = 1:nt
DataCV(:,j) = change_precision(DataCV(:,j));
if ninputs > 1
DataCV2(:,j) = change_precision(DataCV2(:,j));
if ninputs > 2
DataCV3(:,j) = change_precision(DataCV3(:,j));
end
end
end
%% Display some data about optimal models
% Display optimal inputs, model and attributes for each tree
for t = 1:nt
disp('-------------------------------')
disp([' Tree: ',num2str(OptInputs(t).tree),', ',OptInputs(t).name])
if NInputs(t) == 1
disp([' Metric: ',Metric])
disp([' Metric value: ',num2str(1000*OptDist(t,1))])
disp([' Optimal inputs: PatchDiam1 = ',...
num2str(OptInputs(t).PatchDiam1)])
disp([' PatchDiam2Min = ',...
num2str(OptInputs(t).PatchDiam2Min)])
disp([' PatchDiam2Max = ',...
num2str(OptInputs(t).PatchDiam2Max)])
disp([' Optimal model: ',num2str(OptModel(t))])
sec = num2str(round(QSMs(OptModel(t)).rundata.time(end)));
disp([' Reconstruction time for the optimal model: ',sec,' seconds'])
disp(' Attributes (mean, std, CV(%)):')
for i = 1:n
str = ([' ',Names{i},': ',num2str([...
DataM(i,t) DataS(i,t) DataCV(i,t)])]);
disp(str)
end
elseif NInputs(t) == 2
disp(' The best two cases:')
disp([' Metric: ',Metric])
disp([' Metric values: ',num2str(OptDist(t,1:2))])
disp([' inputs: PatchDiam1 = ',...
num2str([OptInputs(t).PatchDiam1 OI2(t).PatchDiam1])])
disp([' PatchDiam2Min = ',...
num2str([OptInputs(t).PatchDiam2Min OI2(t).PatchDiam2Min])])
disp([' PatchDiam2Max = ',...
num2str([OptInputs(t).PatchDiam2Max OI2(t).PatchDiam2Max])])
disp([' Optimal model: ',num2str(OptModel(t))])
sec = num2str(round(QSMs(OptModel(t)).rundata.time(end)));
disp([' Reconstruction time for the optimal model: ',sec,' seconds'])
disp(' Attributes (mean, std, CV(%), second best mean):')
for i = 1:n
str = ([' ',Names{i},': ',num2str([DataM(i,t) ...
DataS(i,t) DataCV(i,t) DataM2(i,t)])]);
disp(str)
end
elseif NInputs(t) > 2
disp(' The best three cases:')
disp([' Metric: ',Metric])
disp([' Metric values: ',num2str(OptDist(t,1:3))])
disp([' inputs: PatchDiam1 = ',num2str([...
OptInputs(t).PatchDiam1 OI2(t).PatchDiam1 OI3(t).PatchDiam1])])
disp([' PatchDiam2Min = ',num2str([...
OptInputs(t).PatchDiam2Min OI2(t).PatchDiam2Min OI3(t).PatchDiam2Min])])
disp([' PatchDiam2Max = ',num2str([...
OptInputs(t).PatchDiam2Max OI2(t).PatchDiam2Max OI3(t).PatchDiam2Max])])
disp([' Optimal model: ',num2str(OptModel(t))])
sec = num2str(round(QSMs(OptModel(t)).rundata.time(end)));
disp([' Reconstruction time for the optimal model: ',sec,' seconds'])
str = [' Attributes (mean, std, CV(%),',...
' second best mean, third best mean, sensitivity):'];
disp(str)
for i = 1:n
sensi = max(abs([DataM(i,t)-DataM2(i,t)...
DataM(i,t)-DataM3(i,t)])/DataM(i,t));
sensi2 = 100*sensi;
sensi = 100*sensi/DataCV(i,t);
sensi2 = change_precision(sensi2);
sensi = change_precision(sensi);
str = ([' ',Names{i},': ',num2str([DataM(i,t) DataS(i,t) ...
DataCV(i,t) DataM2(i,t) DataM3(i,t) sensi sensi2])]);
disp(str)
end
end
disp('------')
end
%% Compute the sensitivity of the tree attributes relative to PatchDiam-parameters
Sensi = sensitivity_analysis(TreeDataAll,TreeId,Inputs,OptIn,NInputs);
%% Generate TreeData sructure for optimal models
clear TreeData
TreeData = vertcat(OptQSM(:).treedata);
for t = 1:nt
for i = 1:n
TreeData(t).(names{i}) = [DataM(i,t) DataS(i,t) squeeze(Sensi(t,i,:))'];
end
TreeData(t).name = OptInputs(t).name;
end
%% Add the metric for the "OptInputs"
for i = 1:nt
OptInputs(i).metric = Metric;
end
%% Save results
if nargin == 3
str = ['results/OptimalQSMs_',savename];
save(str,'TreeData','OptModels','OptInputs','OptQSM')
str = ['results/tree_data_',savename,'.txt'];
fid = fopen(str, 'wt');
fprintf(fid, [repmat('%g\t', 1, size(DataM,2)-1) '%g\n'], DataM.');
fclose(fid);
end
% End of main function
end
function [treedata,inputs,TreeId,Data] = collect_data(...
QSMs,names,Nattri)
Nmod = max(size(QSMs)); % number of models
treedata = zeros(Nattri,Nmod); % Collect all tree attributes from all models
inputs = zeros(Nmod,3); % collect the inputs from all models
% ([PatchDiam1 PatchDiam2Min PatchDiam2Max])
CylDist = zeros(Nmod,10); % collect the distances from all models
CylSurfCov = zeros(Nmod,10); % collect the surface coverages from all models
s = 6; % maximum branch order
OrdDis = zeros(Nmod,4*s); % collect the distributions from all the models
r = 20; % maximum cylinder diameter
CylDiaDis = zeros(Nmod,3*r);
CylZenDis = zeros(Nmod,54);
TreeId = zeros(Nmod,2); % collectd the tree and model indexes from all models
Keep = true(Nmod,1); % Non-empty models
for i = 1:Nmod
if ~isempty(QSMs(i).cylinder)
% Collect input-parameter values and tree IDs:
p = QSMs(i).rundata.inputs;
inputs(i,:) = [p.PatchDiam1 p.PatchDiam2Min p.PatchDiam2Max];
TreeId(i,:) = [p.tree p.model];
% Collect cylinder-point distances: mean of all cylinders,
% mean of trunk, branch, 1st- and 2nd-order branch cylinders.
% And the maximum of the previous:
D = QSMs(i).pmdistance;
CylDist(i,:) = [D.mean D.TrunkMean D.BranchMean D.Branch1Mean ...
D.Branch2Mean D.max D.TrunkMax D.BranchMax D.Branch1Max ...
D.Branch2Max];
% Collect surface coverages: mean of all cylinders,
% mean of trunk, branch, 1st- and 2nd-order branch cylinders.
% And the minimum of the previous:
D = QSMs(i).cylinder.SurfCov;
T = QSMs(i).cylinder.branch == 1;
B1 = QSMs(i).cylinder.BranchOrder == 1;
B2 = QSMs(i).cylinder.BranchOrder == 2;
if ~any(B1)
CylSurfCov(i,:) = [mean(D) mean(D(T)) 0 0 0 ...
min(D) min(D(T)) 0 0 0];
elseif ~any(B2)
CylSurfCov(i,:) = [mean(D) mean(D(T)) mean(D(~T)) mean(D(B1)) ...
0 min(D) min(D(T)) min(D(~T)) min(D(B1)) 0];
else
CylSurfCov(i,:) = [mean(D) mean(D(T)) mean(D(~T)) mean(D(B1)) ...
mean(D(B2)) min(D) min(D(T)) min(D(~T)) min(D(B1)) min(D(B2))];
end
% Collect branch-order distributions:
d = QSMs(i).treedata.VolBranchOrd;
nd = length(d);
if nd > 0
a = min(nd,s);
OrdDis(i,1:a) = d(1:a);
OrdDis(i,s+1:s+a) = QSMs(i).treedata.AreBranchOrd(1:a);
OrdDis(i,2*s+1:2*s+a) = QSMs(i).treedata.LenBranchOrd(1:a);
OrdDis(i,3*s+1:3*s+a) = QSMs(i).treedata.NumBranchOrd(1:a);
end
% Collect cylinder diameter distributions:
d = QSMs(i).treedata.VolCylDia;
nd = length(d);
if nd > 0
a = min(nd,r);
CylDiaDis(i,1:a) = d(1:a);
CylDiaDis(i,r+1:r+a) = QSMs(i).treedata.AreCylDia(1:a);
CylDiaDis(i,2*r+1:2*r+a) = QSMs(i).treedata.LenCylDia(1:a);
end
% Collect cylinder zenith direction distributions:
d = QSMs(i).treedata.VolCylZen;
if ~isempty(d)
CylZenDis(i,1:18) = d;
CylZenDis(i,19:36) = QSMs(i).treedata.AreCylZen;
CylZenDis(i,37:54) = QSMs(i).treedata.LenCylZen;
end
% Collect the treedata values from each model
for j = 1:Nattri
treedata(j,i) = QSMs(i).treedata.(names{j});
end
else
Keep(i) = false;
end
end
treedata = treedata(:,Keep);
inputs = inputs(Keep,:);
TreeId = TreeId(Keep,:);
clear Data
Data.CylDist = CylDist(Keep,:);
Data.CylSurfCov = CylSurfCov(Keep,:);
Data.BranchOrdDis = OrdDis(Keep,:);
Data.CylDiaDis = CylDiaDis(Keep,:);
Data.CylZenDis = CylZenDis(Keep,:);
% End of function
end
function [met,Metric] = select_metric(Metric)
% Mean distance metrics:
if strcmp(Metric,'all_mean_dis')
met = 1;
elseif strcmp(Metric,'trunk_mean_dis')
met = 2;
elseif strcmp(Metric,'branch_mean_dis')
met = 3;
elseif strcmp(Metric,'1branch_mean_dis')
met = 4;
elseif strcmp(Metric,'2branch_mean_dis')
met = 5;
elseif strcmp(Metric,'trunk+branch_mean_dis')
met = 6;
elseif strcmp(Metric,'trunk+1branch_mean_dis')
met = 7;
elseif strcmp(Metric,'trunk+1branch+2branch_mean_dis')
met = 8;
elseif strcmp(Metric,'1branch+2branch_mean_dis')
met = 9;
% Maximum distance metrics:
elseif strcmp(Metric,'all_max_dis')
met = 10;
elseif strcmp(Metric,'trunk_max_dis')
met = 11;
elseif strcmp(Metric,'branch_max_dis')
met = 12;
elseif strcmp(Metric,'1branch_max_dis')
met = 13;
elseif strcmp(Metric,'2branch_max_dis')
met = 14;
elseif strcmp(Metric,'trunk+branch_max_dis')
met = 15;
elseif strcmp(Metric,'trunk+1branch_max_dis')
met = 16;
elseif strcmp(Metric,'trunk+1branch+2branch_max_dis')
met = 17;
elseif strcmp(Metric,'1branch+2branch_max_dis')
met = 18;
% Mean plus Maximum distance metrics:
elseif strcmp(Metric,'all_mean+max_dis')
met = 19;
elseif strcmp(Metric,'trunk_mean+max_dis')
met = 20;
elseif strcmp(Metric,'branch_mean+max_dis')
met = 21;
elseif strcmp(Metric,'1branch_mean+max_dis')
met = 22;
elseif strcmp(Metric,'2branch_mean+max_dis')
met = 23;
elseif strcmp(Metric,'trunk+branch_mean+max_dis')
met = 24;
elseif strcmp(Metric,'trunk+1branch_mean+max_dis')
met = 25;
elseif strcmp(Metric,'trunk+1branch+2branch_mean+max_dis')
met = 26;
elseif strcmp(Metric,'1branch+2branch_mean+max_dis')
met = 27;
% Standard deviation metrics:
elseif strcmp(Metric,'tot_vol_std')
met = 28;
elseif strcmp(Metric,'trunk_vol_std')
met = 29;
elseif strcmp(Metric,'branch_vol_std')
met = 30;
elseif strcmp(Metric,'trunk+branch_vol_std')
met = 31;
elseif strcmp(Metric,'tot_are_std')
met = 32;
elseif strcmp(Metric,'trunk_are_std')
met = 33;
elseif strcmp(Metric,'branch_are_std')
met = 34;
elseif strcmp(Metric,'trunk+branch_are_std')
met = 35;
elseif strcmp(Metric,'trunk_len_std')
met = 36;
elseif strcmp(Metric,'trunk+branch_len_std')
met = 37;
elseif strcmp(Metric,'branch_len_std')
met = 38;
elseif strcmp(Metric,'branch_num_std')
met = 39;
% Branch order distribution metrics:
elseif strcmp(Metric,'branch_vol_ord3_mean')
met = 40;
elseif strcmp(Metric,'branch_are_ord3_mean')
met = 41;
elseif strcmp(Metric,'branch_len_ord3_mean')
met = 42;
elseif strcmp(Metric,'branch_num_ord3_mean')
met = 43;
elseif strcmp(Metric,'branch_vol_ord3_max')
met = 44;
elseif strcmp(Metric,'branch_are_ord3_max')
met = 45;
elseif strcmp(Metric,'branch_len_ord3_max')
met = 46;
elseif strcmp(Metric,'branch_num_ord3_max')
met = 47;
elseif strcmp(Metric,'branch_vol_ord6_mean')
met = 48;
elseif strcmp(Metric,'branch_are_ord6_mean')
met = 49;
elseif strcmp(Metric,'branch_len_ord6_mean')
met = 50;
elseif strcmp(Metric,'branch_num_ord6_mean')
met = 51;
elseif strcmp(Metric,'branch_vol_ord6_max')
met = 52;
elseif strcmp(Metric,'branch_are_ord6_max')
met = 53;
elseif strcmp(Metric,'branch_len_ord6_max')
met = 54;
elseif strcmp(Metric,'branch_num_ord6_max')
met = 55;
% Cylinder distribution metrics:
elseif strcmp(Metric,'cyl_vol_dia10_mean')
met = 56;
elseif strcmp(Metric,'cyl_are_dia10_mean')
met = 57;
elseif strcmp(Metric,'cyl_len_dia10_mean')
met = 58;
elseif strcmp(Metric,'cyl_vol_dia10_max')
met = 59;
elseif strcmp(Metric,'cyl_are_dia10_max')
met = 60;
elseif strcmp(Metric,'cyl_len_dia10_max')
met = 61;
elseif strcmp(Metric,'cyl_vol_dia20_mean')
met = 62;
elseif strcmp(Metric,'cyl_are_dia20_mean')
met = 63;
elseif strcmp(Metric,'cyl_len_dia20_mean')
met = 64;
elseif strcmp(Metric,'cyl_vol_dia20_max')
met = 65;
elseif strcmp(Metric,'cyl_are_dia20_max')
met = 66;
elseif strcmp(Metric,'cyl_len_dia20_max')
met = 67;
elseif strcmp(Metric,'cyl_vol_zen_mean')
met = 68;
elseif strcmp(Metric,'cyl_are_zen_mean')
met = 69;
elseif strcmp(Metric,'cyl_len_zen_mean')
met = 70;
elseif strcmp(Metric,'cyl_vol_zen_max')
met = 71;
elseif strcmp(Metric,'cyl_are_zen_max')
met = 72;
elseif strcmp(Metric,'cyl_len_zen_max')
met = 73;
% Mean surface coverage metrics:
elseif strcmp(Metric,'all_mean_surf')
met = 74;
elseif strcmp(Metric,'trunk_mean_surf')
met = 75;
elseif strcmp(Metric,'branch_mean_surf')
met = 76;
elseif strcmp(Metric,'1branch_mean_surf')
met = 77;
elseif strcmp(Metric,'2branch_mean_surf')
met = 78;
elseif strcmp(Metric,'trunk+branch_mean_surf')
met = 79;
elseif strcmp(Metric,'trunk+1branch_mean_surf')
met = 80;
elseif strcmp(Metric,'trunk+1branch+2branch_mean_surf')
met = 81;
elseif strcmp(Metric,'1branch+2branch_mean_surf')
met = 82;
% Minimum surface coverage metrics:
elseif strcmp(Metric,'all_min_surf')
met = 83;
elseif strcmp(Metric,'trunk_min_surf')
met = 84;
elseif strcmp(Metric,'branch_min_surf')
met = 85;
elseif strcmp(Metric,'1branch_min_surf')
met = 86;
elseif strcmp(Metric,'2branch_min_surf')
met = 87;
elseif strcmp(Metric,'trunk+branch_min_surf')
met = 88;
elseif strcmp(Metric,'trunk+1branch_min_surf')
met = 89;
elseif strcmp(Metric,'trunk+1branch+2branch_min_surf')
met = 90;
elseif strcmp(Metric,'1branch+2branch_min_surf')
met = 91;
% Not given in right form, take the default option
else
met = 1;
Metric = 'all_mean_dis';
end
% End of function
end
function D = compute_metric_value(met,T,treedata,Data)
if met <= 27 % cylinder distance metrics:
D = mean(Data.CylDist(T,:),1);
D(6:10) = 0.5*D(6:10); % Half the maximum values
end
if met < 10 % mean cylinder distance metrics:
if met == 1 % all_mean_dis
D = D(1);
elseif met == 2 % trunk_mean_dis
D = D(2);
elseif met == 3 % branch_mean_dis
D = D(3);
elseif met == 4 % 1branch_mean_dis
D = D(4);
elseif met == 5 % 2branch_mean_dis
D = D(5);
elseif met == 6 % trunk+branch_mean_dis
D = D(2)+D(3);
elseif met == 7 % trunk+1branch_mean_dis
D = D(2)+D(4);
elseif met == 8 % trunk+1branch+2branch_mean_dis
D = D(2)+D(4)+D(5);
elseif met == 9 % 1branch+2branch_mean_dis
D = D(4)+D(5);
end
elseif met < 19 % maximum cylinder distance metrics:
if met == 10 % all_max_dis
D = D(6);
elseif met == 11 % trunk_max_dis
D = D(7);
elseif met == 12 % branch_max_dis
D = D(8);
elseif met == 13 % 1branch_max_dis
D = D(9);
elseif met == 14 % 2branch_max_dis
D = D(10);
elseif met == 15 % trunk+branch_max_dis
D = D(7)+D(8);
elseif met == 16 % trunk+1branch_max_dis
D = D(7)+D(9);
elseif met == 17 % trunk+1branch+2branch_max_dis
D = D(7)+D(9)+D(10);
elseif met == 18 % 1branch+2branch_max_dis
D = D(9)+D(10);
end
elseif met < 28 % Mean plus maximum cylinder distance metrics:
if met == 19 % all_mean+max_dis
D = D(1)+D(6);
elseif met == 20 % trunk_mean+max_dis
D = D(2)+D(7);
elseif met == 21 % branch_mean+max_dis
D = D(3)+D(8);
elseif met == 22 % 1branch_mean+max_dis
D = D(4)+D(9);
elseif met == 23 % 2branch_mean+max_dis
D = D(5)+D(10);
elseif met == 24 % trunk+branch_mean+max_dis
D = D(2)+D(3)+D(7)+D(8);
elseif met == 25 % trunk+1branch_mean+max_dis
D = D(2)+D(4)+D(7)+D(9);
elseif met == 26 % trunk+1branch+2branch_mean+max_dis
D = D(2)+D(4)+D(5)+D(7)+D(9)+D(10);
elseif met == 27 % 1branch+2branch_mean+max_dis
D = D(4)+D(5)+D(9)+D(10);
end
elseif met < 39 % Standard deviation metrics:
if met == 28 % tot_vol_std
D = std(treedata(1,T));
elseif met == 29 % trunk_vol_std
D = std(treedata(2,T));
elseif met == 30 % branch_vol_std
D = std(treedata(3,T));
elseif met == 31 % trunk+branch_vol_std
D = std(treedata(2,T))+std(treedata(3,T));
elseif met == 32 % tot_are_std
D = std(treedata(12,T));
elseif met == 33 % trunk_are_std
D = std(treedata(10,T));
elseif met == 34 % branch_are_std
D = std(treedata(11,T));
elseif met == 35 % trunk+branch_are_std
D = std(treedata(10,T))+std(treedata(11,T));
elseif met == 36 % trunk_len_std
D = std(treedata(5,T));
elseif met == 37 % branch_len_std
D = std(treedata(6,T));
elseif met == 38 % trunk+branch_len_std
D = std(treedata(5,T))+std(treedata(6,T));
elseif met == 39 % branch_num_std
D = std(treedata(8,T));
end
elseif met < 56 % Branch order metrics:
dis = max(Data.BranchOrdDis(T,:),[],1)-min(Data.BranchOrdDis(T,:),[],1);
M = mean(Data.BranchOrdDis(T,:),1);
I = M > 0;
dis(I) = dis(I)./M(I);
if met == 40 % branch_vol_ord3_mean
D = mean(dis(1:3));
elseif met == 41 % branch_are_ord3_mean
D = mean(dis(7:9));
elseif met == 42 % branch_len_ord3_mean
D = mean(dis(13:15));
elseif met == 43 % branch_num_ord3_mean
D = mean(dis(19:21));
elseif met == 44 % branch_vol_ord3_max
D = max(dis(1:3));
elseif met == 45 % branch_are_ord3_max
D = max(dis(7:9));
elseif met == 46 % branch_len_ord3_max
D = max(dis(13:15));
elseif met == 47 % branch_vol_ord3_max
D = max(dis(19:21));
elseif met == 48 % branch_vol_ord6_mean
D = mean(dis(1:6));
elseif met == 49 % branch_are_ord6_mean
D = mean(dis(7:12));
elseif met == 50 % branch_len_ord6_mean
D = mean(dis(13:18));
elseif met == 51 % branch_num_ord6_mean
D = mean(dis(19:24));
elseif met == 52 % branch_vol_ord6_max
D = max(dis(1:6));
elseif met == 53 % branch_are_ord6_max
D = max(dis(7:12));
elseif met == 54 % branch_len_ord6_max
D = max(dis(13:18));
elseif met == 55 % branch_vol_ord6_max
D = max(dis(19:24));
end
elseif met < 68 % Cylinder diameter distribution metrics:
dis = max(Data.CylDiaDis(T,:),[],1)-min(Data.CylDiaDis(T,:),[],1);
M = mean(Data.CylDiaDis(T,:),1);
I = M > 0;
dis(I) = dis(I)./M(I);
if met == 56 % cyl_vol_dia10_mean
D = mean(dis(1:10));
elseif met == 57 % cyl_are_dia10_mean
D = mean(dis(21:30));
elseif met == 58 % cyl_len_dia10_mean
D = mean(dis(41:50));
elseif met == 59 % cyl_vol_dia10_max
D = max(dis(1:10));
elseif met == 60 % cyl_are_dia10_max
D = max(dis(21:30));
elseif met == 61 % cyl_len_dia10_max
D = max(dis(41:50));
elseif met == 62 % cyl_vol_dia20_mean
D = mean(dis(1:20));
elseif met == 63 % cyl_are_dia20_mean
D = mean(dis(21:40));
elseif met == 64 % cyl_len_dia20_mean
D = mean(dis(41:60));
elseif met == 65 % cyl_vol_dia20_max
D = max(dis(1:20));
elseif met == 66 % cyl_are_dia20_max
D = max(dis(21:40));
elseif met == 67 % cyl_len_dia20_max
D = max(dis(41:60));
end
elseif met < 74 % Cylinder zenith distribution metrics:
dis = max(Data.CylZenDis(T,:),[],1)-min(Data.CylZenDis(T,:),[],1);
M = mean(Data.CylZenDis(T,:),1);
I = M > 0;
dis(I) = dis(I)./M(I);
if met == 68 % cyl_vol_zen_mean
D = mean(dis(1:18));
elseif met == 69 % cyl_are_zen_mean
D = mean(dis(19:36));
elseif met == 70 % cyl_len_zen_mean
D = mean(dis(37:54));
elseif met == 71 % cyl_vol_zen_max
D = max(dis(1:18));
elseif met == 72 % cyl_are_zen_max
D = max(dis(19:36));
elseif met == 73 % cyl_len_zen_max
D = max(dis(37:54));
end
elseif met < 92 % Surface coverage metrics:
D = 1-mean(Data.CylSurfCov(T,:),1);
if met == 74 % all_mean_surf
D = D(1);
elseif met == 75 % trunk_mean_surf
D = D(2);
elseif met == 76 % branch_mean_surf
D = D(3);
elseif met == 77 % 1branch_mean_surf
D = D(4);
elseif met == 78 % 2branch_mean_surf
D = D(5);
elseif met == 79 % trunk+branch_mean_surf
D = D(2)+D(3);
elseif met == 80 % trunk+1branch_mean_surf
D = D(2)+D(4);
elseif met == 81 % trunk+1branch+2branch_mean_surf
D = D(2)+D(4)+D(5);
elseif met == 82 % 1branch+2branch_mean_surf
D = D(4)+D(5);
elseif met == 83 % all_min_surf
D = D(6);
elseif met == 84 % trunk_min_surf
D = D(7);
elseif met == 85 % branch_min_surf
D = D(8);
elseif met == 86 % 1branch_min_surf
D = D(9);
elseif met == 87 % 2branch_min_surf
D = D(10);
elseif met == 88 % trunk+branch_min_surf
D = D(6)+D(7);
elseif met == 89 % trunk+1branch_min_surf
D = D(6)+D(8);
elseif met == 90 % trunk+1branch+2branch_min_surf
D = D(6)+D(9)+D(10);
elseif met == 91 % 1branch+2branch_min_surf
D = D(9)+D(10);
end
end
% End of function
end
function Sensi = sensitivity_analysis(TreeDataAll,TreeId,Inputs,OptIn,NInputs)
% Computes the sensitivity of tree attributes (e.g. total volume) to the
% changes of input parameter, the PatchDiam parameters, values. The
% sensitivity is normalized, i.e. the relative change of attribute value
% (= max change in attribute value divided by the value with the optimal
% inputs) is divided by the relative change of input parameter value. The
% sensitivity is also expressed as percentage, i.e. multiplied by 100. The
% sensitivity is computed relative PatchDiam1, PatchDiam2Min, and
% PatchDiam2Max. The sensitivity is computed only from the attributes with
% the input parameter values the closest to the optimal value. This way we
% get the local sensitivity in the neighborhood of the optimal input.
%
% Output:
% Sensi 3D-array (#trees,#attributes,#inputs)
TreeIds = unique(TreeId(:,1)); % Unique tree IDs
nt = length(TreeIds); % number of trees
A = [2 3; 1 3; 1 2]; % Keep other two inputs constant and let one varie
Sensi = zeros(nt,size(TreeDataAll,3),3); % initialization of the output
for t = 1:nt % trees
if NInputs(t) > 1
D = squeeze(TreeDataAll(t,1:NInputs(t),:))'; % Select the attributes for the tree
In = squeeze(Inputs(t,1:NInputs(t),:)); % Select the inputs for the tree
n = size(In,1); % number of different input-combinations
I = all(In == OptIn(t,1:3),2); % Which data are with the optimal inputs
ind = (1:1:n)';
I = ind(I);
for i = 1:3 % inputs
if length(unique(In(:,i))) > 1
dI = abs(max(In(:,i),[],2)-OptIn(t,i));
dImin = min(dI(dI > 0)); % the minimum nonzero absolute change in inputs
dI = dImin/OptIn(t,i); % relative change in the attributes
K1 = abs(max(In(:,i),[],2)-min(OptIn(t,i),[],2)) < dImin+0.0001;
K = K1 & abs(max(In(:,i),[],2)-min(OptIn(t,i),[],2)) > 0.0001;
K = ind(K); % the inputs the closest to the optimal input
J = all(In(K,A(i,:)) == OptIn(t,A(i,:)),2);
J = K(J); % input i the closest to the optimal and the other two equal the optimal
dD = max(abs(D(:,J)-D(:,I)),[],2);
dD = dD./D(:,I); % relative change in the input
d = dD/dI*100; % relative sensitivity as a percentage
Sensi(t,:,i) = round(100*d)/100;
end
end
end
end
% End of function
end
|
github | InverseTampere/TreeQSM-master | estimate_precision.m | .m | TreeQSM-master/src/estimate_precision.m | 5,602 | utf_8 | 7781426d9cbcdfb71f74a079141e9b6b | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [TreeData,OptQSMs,OptQSM] = ...
estimate_precision(QSMs,NewQSMs,TreeData,OptModels,savename)
% ---------------------------------------------------------------------
% ESTIMATE_PRECISION.M Combines additional QSMs with optimal inputs
% with previously generated QSMs to estimate the
% precision (standard deviation) better.
%
% Version 1.1.0
% Latest update 10 May 2022
%
% Copyright (C) 2016-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Uses models with the same inputs to estimate the precision (standard
% deviation) of the results. Has two sets of models as its inputs:
% 1) QSMs can contain models with many different input parameters for each tree
% and OptModels contain the indexes of the models that are used here ("optimal
% models"); 2) NewQSMs contains only models with the optimal inputs.
%
% Inputs:
% QSMs Contain all the models, possibly from multiple trees
% NewQSMs Contains the additional models with optimal inputs, for all trees
% TreeData Similar structure array as the "treedata" in QSMs but now each
% single-number attribute contains the mean and std computed
% from the models with the optimal inputs, and the
% sensitivities for PatchDiam-parameters
% OptModels Indexes of the optimal models for each tree in "QSMs"
% savename Optional input, name string specifying the name of the saved
% file containing the outputs
% Outputs:
% TreeData Updated with new mean and std computed from all the QSMs
% with the optimal inputs
% OptQSMs Contains all the models with the optimal inputs, for all trees
% OptQSM The best model (minimum point-model distance) among the models
% with the optimal inputs, for all trees
% ---------------------------------------------------------------------
% Changes from version 1.0.2 to 1.1.0, 10 May 2022:
% 1) Added "TreeData", the output of "select_optimum", as an input, and now
% it is updated
% Changes from version 1.0.1 to 1.0.2, 26 Nov 2019:
% 1) Added the "name" of the point cloud from the inputs.name to the output
% TreeData as a field. Also now displays the name together with the tree
% number.
% Changes from version 1.0.0 to 1.0.1, 08 Oct 2019:
% 1) Small change for how the output "TreeData" is initialised
%% Reconstruct the outputs
OptQSMs = QSMs(vertcat(OptModels{:,1})); % Optimal models from the optimization process
OptQSMs = [OptQSMs NewQSMs]; % Combine all the optimal QSMs
m = max(size(OptQSMs)); % number of models
IndAll = (1:1:m)';
% Find the first non-empty model
i = 1;
while isempty(OptQSMs(i).cylinder)
i = i+1;
end
% Determine how many single-number attributes there are in treedata
names = fieldnames(OptQSMs(i).treedata);
n = 1;
while numel(OptQSMs(i).treedata.(names{n})) == 1
n = n+1;
end
n = n-1;
treedata = zeros(n,m); % Collect all single-number tree attributes from all models
TreeId = zeros(m,1); % Collect tree and model indexes from all models
Dist = zeros(m,1); % Collect the distances
Keep = true(m,1); % Non-empty models
for i = 1:m
if ~isempty(OptQSMs(i).cylinder)
for j = 1:n
treedata(j,i) = OptQSMs(i).treedata.(names{j});
end
TreeId(i) = OptQSMs(i).rundata.inputs.tree;
Dist(i) = OptQSMs(i).pmdistance.mean;
else
Keep(i) = false;
end
end
treedata = treedata(:,Keep);
TreeId = TreeId(Keep,:);
Dist = Dist(Keep);
IndAll = IndAll(Keep);
TreeIds = unique(TreeId);
nt = length(TreeIds); % number of trees
% Compute the means and standard deviations
OptModel = zeros(nt,1);
DataM = zeros(n,nt);
DataS = zeros(n,nt);
for t = 1:nt
I = TreeId == TreeIds(t);
ind = IndAll(I);
dist = vertcat(Dist(ind));
[~,J] = min(dist);
OptModel(t) = ind(J);
DataM(:,t) = mean(treedata(:,ind),2);
DataS(:,t) = std(treedata(:,ind),[],2);
end
OptQSM = OptQSMs(OptModel);
DataCV = DataS./DataM*100;
%% Display some data about optimal models
% Decrease the number of non-zero decimals
for j = 1:nt
DataM(:,j) = change_precision(DataM(:,j));
DataS(:,j) = change_precision(DataS(:,j));
DataCV(:,j) = change_precision(DataCV(:,j));
end
% Display optimal inputs, model and attributes for each tree
for t = 1:nt
disp([' Tree: ',num2str(t),', ',OptQSM(t).rundata.inputs.name])
disp(' Attributes (mean, std, CV(%)):')
for i = 1:n
str = ([' ',names{i},': ',num2str([DataM(i,t) DataS(i,t) DataCV(i,t)])]);
disp(str)
end
disp('------')
end
%% Generate TreeData structure for optimal models
%TreeData = vertcat(OptQSM(:).treedata);
for t = 1:nt
for i = 1:n
TreeData(t).(names{i})(1:2) = [DataM(i,t) DataS(i,t)];
end
TreeData(t).name = OptQSM(t).rundata.inputs.name;
end
%% Save results
if nargin == 5
str = ['results/OptimalQSMs_',savename];
save(str,'TreeData','OptQSMs','OptQSM')
end
|
github | InverseTampere/TreeQSM-master | treeqsm.m | .m | TreeQSM-master/src/treeqsm.m | 19,257 | utf_8 | 2fdd2b10f8257521a3ebf4f33ec31125 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function QSM = treeqsm(P,inputs)
% ---------------------------------------------------------------------
% TREEQSM.M Reconstructs quantitative structure tree models from point
% clouds containing a tree.
%
% Version 2.4.1
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% INPUTS:
%
% P (Filtered) point cloud, (m_points x 3)-matrix, the rows
% give the coordinates of the points.
%
% inputs Structure field defining reconstruction parameters.
% Created with the "create_input.m" script. Contains
% the following main fields:
% PatchDiam1 Patch size of the first uniform-size cover
%
% PatchDiam2Min Minimum patch size of the cover sets in the second cover
%
% PatchDiam2Max Maximum cover set size in the stem's base in the
% second cover
%
% BallRad1 Ball size used for the first cover generation
%
% BallRad2 Maximum ball radius used for the second cover generation
%
% nmin1 Minimum number of points in BallRad1-balls,
% default value is 3.
%
% nmin2 Minimum number of points in BallRad2-balls,
% default value is 1.
%
% OnlyTree If "1", the point cloud contains only points from the
% tree and the trunk's base is defined as the lowest
% part of the point cloud. Default value is "1".
%
% Tria If "1", tries to make triangulation for the stem up
% to first main branch. Default value is "0".
%
% Dist If "1", compute the point-model distances.
% Default value is "1".
%
% MinCylRad Minimum cylinder radius, used particularly in the
% taper corrections
%
% ParentCor If "1", child branch cylinders radii are always
% smaller than the parent branche's cylinder radii
%
% TaperCor If "1", use partially linear (stem) and parabola
% (branches) taper corrections
%
% GrowthVolCor If "1", use growth volume correction introduced
% by Jan Hackenberg
%
% GrowthVolFac fac-parameter of the growth volume approach,
% defines upper and lower bound
%
% name Name string for saving output files and name for the
% model in the output object
%
% tree Numerical id/index given to the tree
%
% model Model number of the tree, e.g. with the same inputs
%
% savemat If "1", saves the output struct QSM as a matlab-file
% into \result folder
%
% savetxt If "1", saves the models in .txt-files into
% \result folder
%
% plot Defines what is plotted during the reconstruction:
% 2 = same as below plus distributions
% 1 = plots the segmented point cloud and QSMs
% 0 = plots nothing
%
% disp Defines what is displayed during the reconstruction:
% 2 = same as below plus times and tree attributes;
% 1 = display name, parameters and fit metrics;
% 0 = display only the name
% ---------------------------------------------------------------------
% OUTPUT:
%
% QSM Structure array with the following fields:
% cylinder Cylinder data
% branch Branch data
% treedata Tree attributes
% rundata Information about the modelling run
% pmdistances Point-to-model distance statistics
% triangulation Triangulation of the stem (if inputs.Tria = 1)
% ---------------------------------------------------------------------
% cylinder (structure-array) contains the following fields:
% radius
% length
% start xyz-coordinates of the starting point
% axis xyz-component of the cylinder axis
% parent index (in this file) of the parent cylinder
% extension index (in this file) of the extension cylinder
% added is cylinder added after normal cylinder fitting (= 1 if added)
% UnmodRadius unmodified radius of the cylinder
% branch branch (index in the branch structure array) of the cylinder
% BranchOrder branch order of the branch the cylinder belongs
% PositionInBranch running number of the cylinder in the branch it belongs
%
% branch (structure-array) contains the following fields:
% order branch order (0 for trunk, 1 for branches originating from
% the trunk, etc.)
% parent index (in this file) of the parent branch
% volume volume (L) of the branch (sum of the volumes of the cylinders
% forming the branch)
% length length (m) of the branch (sum of the lengths of the cylinders)
% angle branching angle (deg) (angle between the branch and its parent
% at the branching point)
% height height (m) of the base of the branch
% azimuth azimuth (deg) of the branch at the base
% diameter diameter (m) of the branch at the base
%
% treedata (structure-array) contains the following fields:
% TotalVolume
% TrunkVolume
% BranchVolume
% TreeHeight
% TrunkLength
% BranchLength
% NumberBranches Total number of branches
% MaxBranchOrder
% TotalArea
% DBHqsm From the cylinder of the QSM at the right heigth
% DBHcyl From the cylinder fitted to the section 1.1-1.5m
% location (x,y,z)-coordinates of the base of the tree
% StemTaper Stem taper function/curve from the QSM
% VolumeCylDiam Distribution of the total volume in diameter classes
% LengthCylDiam Distribution of the total length in diameter classes
% VolumeBranchOrder Branch volume per branching order
% LengthBranchOrder Branch length per branching order
% NumberBranchOrder Number of branches per branching order
% treedata from mixed model (cylinders and triangulation) contains also
% the following fields:
% DBHtri Computed from triangulation model
% TriaTrunkVolume Triangulated trunk volume (up to first branch)
% MixTrunkVolume Mixed trunk volume, bottom (triang.) + top (cylinders)
% MixTotalVolume Mixed total volume, mixed trunk volume + branch volume
% TriaTrunkLength Triangulated trunk length
%
% pmdistances (structure-array) contains the following fields (and others):
% CylDists Average point-model distance for each cylinder
% median median of CylDist for all, stem, 1branch, 2branch cylinder
% mean mean of CylDist for all, stem, 1branch, 2branch cylinder
% max max of CylDist for all, stem, 1branch, 2branch cylinder
% std standard dev. of CylDist for all, stem, 1branch, 2branch cylinder
%
% rundata (structure-array) contains the following fields:
% inputs The input parameters in a structure-array
% time Computation times for each step
% date Starting and stopping dates (year,month,day,hour,minute,second)
% of the computation
%
% triangulation (structure-array) contains the following fields:
% vert Vertices (xyz-coordinates) of the triangulation
% facet Facet information
% fvd Color information for plotting the model
% volume Volume enclosed by the triangulation
% bottom Z-coordinate of the bottom plane of the triangulation
% top Z-coordinate of the top plane of the triangulation
% triah Height of the triangles
% triah Width of the triangles
% cylind Cylinder index in the stem where the triangulation stops
% ---------------------------------------------------------------------
% Changes from version 2.4.0 to 2.4.1, 2 May 2022:
% Minor update. New filtering options, new code ("define_input") for
% selecting automatically PatchDiam and BallRad parameter values for
% the optimization process, added sensitivity estimates of the results,
% new smoother plotting of QSMs, corrected some bugs, rewrote some
% functions (e.g. "branches").
% Particular changes in treeqsm.m file:
% 1) Deleted the remove of the field "ChildCyls" and "CylsInSegment".
% Changes from version 2.3.2 to 2.4.0, 17 Aug 2020:
% First major update. Cylinder fitting process and the taper correction
% has changed. The fitting is adaptive and no more “lcyl” and “FilRad”
% parameters. Treedata has many new outputs: Branch and cylinder
% distributions; surface areas; crown dimensions. More robust triangulation
% of stem. Branch, cylinder and triangulation structures have new fields.
% More optimisation metrics, more plots of the results and more plotting
% functions.
% Particular changes in treeqsm.m file:
% 1) Removed the for-loops for lcyl and FilRad.
% 2) Changes what is displayed about the quality of QSMs
% (point-model-distances and surface coverage) during reconstruction
% 3) Added version number to rundata
% 4) Added remove of the field "ChildCyls" and "CylsInSegment" of "cylinder"
% from "branches" to "treeqsm".
% Changes from version 2.3.1 to 2.3.2, 2 Dec 2019:
% Small changes in the subfunction to allow trees without branches
% Changes from version 2.3.0 to 2.3.1, 8 Oct 2019:
% 1) Some changes in the subfunctions, particularly in "cylinders" and
% "tree_sets"
% 2) Changed how "treeqsm" displays things during the running of the
% function
%% Code starts -->
Time = zeros(11,1); % Save computation times for modelling steps
Date = zeros(2,6); % Starting and stopping dates of the computation
Date(1,:) = clock;
% Names of the steps to display
name = ['Cover sets ';
'Tree sets ';
'Initial segments';
'Final segments ';
'Cylinders ';
'Branch & data ';
'Distances '];
if inputs.disp > 0
disp('---------------')
disp([' ',inputs.name,', Tree = ',num2str(inputs.tree),...
', Model = ',num2str(inputs.model)])
end
% Input parameters
PatchDiam1 = inputs.PatchDiam1;
PatchDiam2Min = inputs.PatchDiam2Min;
PatchDiam2Max = inputs.PatchDiam2Max;
BallRad1 = inputs.BallRad1;
BallRad2 = inputs.BallRad2;
nd = length(PatchDiam1);
ni = length(PatchDiam2Min);
na = length(PatchDiam2Max);
if inputs.disp == 2
% Display parameter values
disp([' PatchDiam1 = ',num2str(PatchDiam1)])
disp([' BallRad1 = ',num2str(BallRad1)])
disp([' PatchDiam2Min = ',num2str(PatchDiam2Min)])
disp([' PatchDiam2Max = ',num2str(PatchDiam2Max)])
disp([' BallRad2 = ',num2str(BallRad2)])
disp([' Tria = ',num2str(inputs.Tria),...
', OnlyTree = ',num2str(inputs.OnlyTree)])
disp('Progress:')
end
%% Make the point cloud into proper form
% only 3-dimensional data
if size(P,2) > 3
P = P(:,1:3);
end
% Only double precision data
if ~isa(P,'double')
P = double(P);
end
%% Initialize the output file
QSM = struct('cylinder',{},'branch',{},'treedata',{},'rundata',{},...
'pmdistance',{},'triangulation',{});
%% Reconstruct QSMs
nmodel = 0;
for h = 1:nd
tic
Inputs = inputs;
Inputs.PatchDiam1 = PatchDiam1(h);
Inputs.BallRad1 = BallRad1(h);
if nd > 1 && inputs.disp >= 1
disp(' -----------------')
disp([' PatchDiam1 = ',num2str(PatchDiam1(h))]);
disp(' -----------------')
end
%% Generate cover sets
cover1 = cover_sets(P,Inputs);
Time(1) = toc;
if inputs.disp == 2
display_time(Time(1),Time(1),name(1,:),1)
end
%% Determine tree sets and update neighbors
[cover1,Base,Forb] = tree_sets(P,cover1,Inputs);
Time(2) = toc-Time(1);
if inputs.disp == 2
display_time(Time(2),sum(Time(1:2)),name(2,:),1)
end
%% Determine initial segments
segment1 = segments(cover1,Base,Forb);
Time(3) = toc-sum(Time(1:2));
if inputs.disp == 2
display_time(Time(3),sum(Time(1:3)),name(3,:),1)
end
%% Correct segments
% Don't remove small segments and add the modified base to the segment
segment1 = correct_segments(P,cover1,segment1,Inputs,0,1,1);
Time(4) = toc-sum(Time(1:3));
if inputs.disp == 2
display_time(Time(4),sum(Time(1:4)),name(4,:),1)
end
for i = 1:na
% Modify inputs
Inputs.PatchDiam2Max = PatchDiam2Max(i);
Inputs.BallRad2 = BallRad2(i);
if na > 1 && inputs.disp >= 1
disp(' -----------------')
disp([' PatchDiam2Max = ',num2str(PatchDiam2Max(i))]);
disp(' -----------------')
end
for j = 1:ni
tic
% Modify inputs
Inputs.PatchDiam2Min = PatchDiam2Min(j);
if ni > 1 && inputs.disp >= 1
disp(' -----------------')
disp([' PatchDiam2Min = ',num2str(PatchDiam2Min(j))]);
disp(' -----------------')
end
%% Generate new cover sets
% Determine relative size of new cover sets and use only tree points
RS = relative_size(P,cover1,segment1);
% Generate new cover
cover2 = cover_sets(P,Inputs,RS);
Time(5) = toc;
if inputs.disp == 2
display_time(Time(5),sum(Time(1:5)),name(1,:),1)
end
%% Determine tree sets and update neighbors
[cover2,Base,Forb] = tree_sets(P,cover2,Inputs,segment1);
Time(6) = toc-Time(5);
if inputs.disp == 2
display_time(Time(6),sum(Time(1:6)),name(2,:),1)
end
%% Determine segments
segment2 = segments(cover2,Base,Forb);
Time(7) = toc-sum(Time(5:6));
if inputs.disp == 2
display_time(Time(7),sum(Time(1:7)),name(3,:),1)
end
%% Correct segments
% Remove small segments and the extended bases.
segment2 = correct_segments(P,cover2,segment2,Inputs,1,1,0);
Time(8) = toc-sum(Time(5:7));
if inputs.disp == 2
display_time(Time(8),sum(Time(1:8)),name(4,:),1)
end
%% Define cylinders
cylinder = cylinders(P,cover2,segment2,Inputs);
Time(9) = toc;
if inputs.disp == 2
display_time(Time(9),sum(Time(1:9)),name(5,:),1)
end
if ~isempty(cylinder.radius)
%% Determine the branches
branch = branches(cylinder);
%% Compute (and display) model attributes
T = segment2.segments{1};
T = vertcat(T{:});
T = vertcat(cover2.ball{T});
trunk = P(T,:); % point cloud of the trunk
% Compute attributes and distibutions from the cylinder model
% and possibly some from a triangulation
[treedata,triangulation] = tree_data(cylinder,branch,trunk,inputs);
Time(10) = toc-Time(9);
if inputs.disp == 2
display_time(Time(10),sum(Time(1:10)),name(6,:),1)
end
%% Compute point model distances
if inputs.Dist
pmdis = point_model_distance(P,cylinder);
% Display the mean point-model distances and surface coverages
% for stem, branch, 1branc and 2branch cylinders
if inputs.disp >= 1
D = [pmdis.TrunkMean pmdis.BranchMean ...
pmdis.Branch1Mean pmdis.Branch2Mean];
D = round(10000*D)/10;
T = cylinder.branch == 1;
B1 = cylinder.BranchOrder == 1;
B2 = cylinder.BranchOrder == 2;
SC = 100*cylinder.SurfCov;
S = [mean(SC(T)) mean(SC(~T)) mean(SC(B1)) mean(SC(B2))];
S = round(10*S)/10;
disp(' ----------')
str = [' PatchDiam1 = ',num2str(PatchDiam1(h)), ...
', PatchDiam2Max = ',num2str(PatchDiam2Max(i)), ...
', PatchDiam2Min = ',num2str(PatchDiam2Min(j))];
disp(str)
str = [' Distances and surface coverages for ',...
'trunk, branch, 1branch, 2branch:'];
disp(str)
str = [' Average cylinder-point distance: '...
num2str(D(1)),' ',num2str(D(2)),' ',...
num2str(D(3)),' ',num2str(D(4)),' mm'];
disp(str)
str = [' Average surface coverage: '...
num2str(S(1)),' ',num2str(S(2)),' ',...
num2str(S(3)),' ',num2str(S(4)),' %'];
disp(str)
disp(' ----------')
end
Time(11) = toc-sum(Time(9:10));
if inputs.disp == 2
display_time(Time(11),sum(Time(1:11)),name(7,:),1)
end
end
%% Reconstruct the output "QSM"
Date(2,:) = clock;
Time(12) = sum(Time(1:11));
clear qsm
qsm = struct('cylinder',{},'branch',{},'treedata',{},'rundata',{},...
'pmdistance',{},'triangulation',{});
qsm(1).cylinder = cylinder;
qsm(1).branch = branch;
qsm(1).treedata = treedata;
qsm(1).rundata.inputs = Inputs;
qsm(1).rundata.time = single(Time);
qsm(1).rundata.date = single(Date);
qsm(1).rundata.version = '2.4.1';
if inputs.Dist
qsm(1).pmdistance = pmdis;
end
if inputs.Tria
qsm(1).triangulation = triangulation;
end
nmodel = nmodel+1;
QSM(nmodel) = qsm;
%% Save the output into results-folder
% matlab-format (.mat)
if inputs.savemat
str = [inputs.name,'_t',num2str(inputs.tree),'_m',...
num2str(inputs.model)];
save(['results/QSM_',str],'QSM')
end
% text-format (.txt)
if inputs.savetxt
if nd > 1 || na > 1 || ni > 1
str = [inputs.name,'_t',num2str(inputs.tree),'_m',...
num2str(inputs.model)];
if nd > 1
str = [str,'_D',num2str(PatchDiam1(h))];
end
if na > 1
str = [str,'_DA',num2str(PatchDiam2Max(i))];
end
if ni > 1
str = [str,'_DI',num2str(PatchDiam2Min(j))];
end
else
str = [inputs.name,'_t',num2str(inputs.tree),'_m',...
num2str(inputs.model)];
end
save_model_text(qsm,str)
end
%% Plot models and segmentations
if inputs.plot >= 1
if inputs.Tria
plot_models_segmentations(P,cover2,segment2,cylinder,trunk,...
triangulation)
else
plot_models_segmentations(P,cover2,segment2,cylinder)
end
if nd > 1 || na > 1 || ni > 1
pause
end
end
end
end
end
end
|
github | InverseTampere/TreeQSM-master | plot_models_segmentations.m | .m | TreeQSM-master/src/plotting/plot_models_segmentations.m | 3,161 | utf_8 | 5a2123902cb06456971999fd9aee3156 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function plot_models_segmentations(P,cover,segment,cylinder,trunk,triangulation)
% ---------------------------------------------------------------------
% PLOT_MODELS_SEGMENTATION.M Plots the segmented point clouds and
% cylinder/triangulation models
%
% Version 1.1.0
% Latest update 13 July 2020
%
% Copyright (C) 2013-2020 Pasi Raumonen
% ---------------------------------------------------------------------
% Inputs:
% P Point cloud
% cover cover-structure array
% segment segment-structure array
% cylinder cylinder-structure array
% trunk point cloud of the trunk
% triangulation triangulation-structure array
% Changes from version 1.0.0 to 1.1.0, 13 July 2020:
% 1) plots now figure 1 and 2 with two subplots; in the first the colors
% are based on branching order and in the second they are based on
% branch
%% figure 1: branch-segmented point cloud
% colors denote the branching order and branches
figure(1)
subplot(1,2,1)
plot_branch_segmentation(P,cover,segment,'order')
subplot(1,2,2)
plot_branch_segmentation(P,cover,segment,'branch')
%% figure 2: cylinder model
% colors denote the branching order and branches
Sta = cylinder.start;
P = P-Sta(1,:);
if nargin > 5
trunk = trunk-Sta(1,:);
Vert = double(triangulation.vert);
Vert = Vert-Sta(1,:);
end
Sta = Sta-Sta(1,:);
cylinder.start = Sta;
figure(2)
subplot(1,2,1)
plot_cylinder_model(cylinder,'order',2,10)
subplot(1,2,2)
plot_cylinder_model(cylinder,'branch',2,10)
%% figure 3, segmented point cloud and cylinder model
plot_branch_segmentation(P,cover,segment,'order',3,1)
hold on
plot_cylinder_model(cylinder,'order',3,10,0.7)
hold off
if nargin > 4
%% figure 4, triangulation model (bottom) and cylinder model (top)
% of the stem
Facets = double(triangulation.facet);
CylInd = triangulation.cylind;
fvd = triangulation.fvd;
if max(size(Vert)) > 5
Bran = cylinder.branch;
nc = size(Bran,1);
ind = (1:1:nc)';
C = ind(Bran == 1);
n = size(trunk,1);
I = logical(round(0.55*rand(n,1)));
figure(4)
point_cloud_plotting(trunk(I,:),4,3)
patch('Vertices',Vert,'Faces',Facets,'FaceVertexCData',fvd,...
'FaceColor','flat')
alpha(1)
hold on
plot_cylinder_model(cylinder,'order',4,20,1,(CylInd:C(end)))
axis equal
hold off
else
disp('No triangulation model generated!')
end
end |
github | InverseTampere/TreeQSM-master | cubical_partition.m | .m | TreeQSM-master/src/tools/cubical_partition.m | 4,085 | utf_8 | 5c56478a02bcbdc77d66b72d7288c317 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [Partition,CubeCoord,Info,Cubes] = cubical_partition(P,EL,NE)
% ---------------------------------------------------------------------
% CUBICAL_PARTITION.M Partitions the point cloud into cubes.
%
% Version 1.1.0
% Latest update 6 Oct 2021
%
% Copyright (C) 2015-2021 Pasi Raumonen
% ---------------------------------------------------------------------
% Inputs:
% P Point cloud, (n_points x 3)-matrix
% EL Length of the cube edges
% NE Number of empty edge layers
%
% Outputs:
% Partition Point cloud partitioned into cubical cells,
% (nx x ny x nz)-cell, where nx,ny,nz are the number
% of cubes in x,y,z-directions, respectively. If "Cubes"
% is outputed, then "Partition" is (n x 1)-cell, where each
% cell corresponds to a nonempty cube.
%
% CC (n_points x 3)-matrix whose rows are the cube coordinates
% of each point: x,y,z-coordinates
% Info The minimum coordinate values and number of cubes in each
% coordinate direction
% Cubes (Optional) (nx x ny x nz)-matrix (array), each nonzero
% element indicates that its cube is nonempty and the
% number indicates which cell in "Partition" contains the
% points of the cube.
% ---------------------------------------------------------------------
% Changes from version 1.0.0 to 1.1.0, 6 Oct 2021:
% 1) Changed the determinationa EL and NE so that the while loop don't
% continue endlessly in some cases
if nargin == 2
NE = 3;
end
% The vertices of the big cube containing P
Min = double(min(P));
Max = double(max(P));
% Number of cubes with edge length "EdgeLength" in the sides
% of the big cube
N = double(ceil((Max-Min)/EL)+2*NE+1);
t = 0;
while t < 10 && 8*N(1)*N(2)*N(3) > 4e9
t = t+1;
EL = 1.1*EL;
N = double(ceil((Max-Min)/EL)+2*NE+1);
end
if 8*N(1)*N(2)*N(3) > 4e9
NE = 3;
N = double(ceil((Max-Min)/EL)+2*NE+1);
end
Info = [Min N EL NE];
% Calculates the cube-coordinates of the points
CubeCoord = floor([P(:,1)-Min(1) P(:,2)-Min(2) P(:,3)-Min(3)]/EL)+NE+1;
% Sorts the points according a lexicographical order
LexOrd = [CubeCoord(:,1) CubeCoord(:,2)-1 CubeCoord(:,3)-1]*[1 N(1) N(1)*N(2)]';
CubeCoord = uint16(CubeCoord);
[LexOrd,SortOrd] = sort(LexOrd);
SortOrd = uint32(SortOrd);
LexOrd = uint32(LexOrd);
if nargout <= 3
% Define "Partition"
Partition = cell(N(1),N(2),N(3));
np = size(P,1); % number of points
p = 1; % The index of the point under comparison
while p <= np
t = 1;
while (p+t <= np) && (LexOrd(p) == LexOrd(p+t))
t = t+1;
end
q = SortOrd(p);
Partition{CubeCoord(q,1),CubeCoord(q,2),CubeCoord(q,3)} = SortOrd(p:p+t-1);
p = p+t;
end
else
nc = size(unique(LexOrd),1);
% Define "Partition"
Cubes = zeros(N(1),N(2),N(3),'uint32');
Partition = cell(nc,1);
np = size(P,1); % number of points
p = 1; % The index of the point under comparison
c = 0;
while p <= np
t = 1;
while (p+t <= np) && (LexOrd(p) == LexOrd(p+t))
t = t+1;
end
q = SortOrd(p);
c = c+1;
Partition{c,1} = SortOrd(p:p+t-1);
Cubes(CubeCoord(q,1),CubeCoord(q,2),CubeCoord(q,3)) = c;
p = p+t;
end
end
|
github | InverseTampere/TreeQSM-master | connected_components.m | .m | TreeQSM-master/src/tools/connected_components.m | 5,720 | utf_8 | 533338e9122eb5441ad9d27f943075fc | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [Components,CompSize] = connected_components(Nei,Sub,MinSize,Fal)
% ---------------------------------------------------------------------
% CONNECTED_COMPONENTS.M Determines the connected components of cover
% sets using their neighbour-relation
%
% Version 1.1
% Latest update 16 Aug 2017
%
% Copyright (C) 2013-2017 Pasi Raumonen
% ---------------------------------------------------------------------
% Determines connected components of the subset of cover sets defined
% by "Sub" such that each component has at least "MinSize"
% number of cover sets.
%
% Inputs:
% Nei Neighboring cover sets of each cover set, (n_sets x 1)-cell
% Sub Subset whose components are determined,
% length(Sub) < 2 means no subset and thus the whole point cloud
% "Sub" may be also a vector of cover set indexes in the subset
% or a logical (n_sets)-vector, where n_sets is the number of
% all cover sets
% MinSize Minimum number of cover sets in an acceptable component
% Fal Logical false vector for the cover sets
%
% Outputs:
% Components Connected components, (n_comp x 1)-cell
% CompSize Number of sets in the components, (n_comp x 1)-vector
if length(Sub) <= 3 && ~islogical(Sub) && Sub(1) > 0
% Very small subset, i.e. at most 3 cover sets
n = length(Sub);
if n == 1
Components = cell(1,1);
Components{1} = uint32(Sub);
CompSize = 1;
elseif n == 2
I = Nei{Sub(1)} == Sub(2);
if any(I)
Components = cell(1,1);
Components{1} = uint32((Sub));
CompSize = 1;
else
Components = cell(2,1);
Components{1} = uint32(Sub(1));
Components{2} = uint32(Sub(2));
CompSize = [1 1];
end
elseif n == 3
I = Nei{Sub(1)} == Sub(2);
J = Nei{Sub(1)} == Sub(3);
K = Nei{Sub(2)} == Sub(3);
if any(I)+any(J)+any(K) >= 2
Components = cell(1,1);
Components{1} = uint32(Sub);
CompSize = 1;
elseif any(I)
Components = cell(2,1);
Components{1} = uint32(Sub(1:2));
Components{2} = uint32(Sub(3));
CompSize = [2 1];
elseif any(J)
Components = cell(2,1);
Components{1} = uint32(Sub([1 3]));
Components{2} = uint32(Sub(2));
CompSize = [2 1];
elseif any(K)
Components = cell(2,1);
Components{1} = uint32(Sub(2:3));
Components{2} = uint32(Sub(1));
CompSize = [2 1];
else
Components = cell(3,1);
Components{1} = uint32(Sub(1));
Components{2} = uint32(Sub(2));
Components{3} = uint32(Sub(3));
CompSize = [1 1 1];
end
end
elseif any(Sub) || (length(Sub) == 1 && Sub(1) == 0)
nb = size(Nei,1);
if nargin == 3
Fal = false(nb,1);
end
if length(Sub) == 1 && Sub == 0
% All the cover sets
ns = nb;
if nargin == 3
Sub = true(nb,1);
else
Sub = ~Fal;
end
elseif ~islogical(Sub)
% Subset of cover sets
ns = length(Sub);
if nargin == 3
sub = false(nb,1);
else
sub = Fal;
end
sub(Sub) = true;
Sub = sub;
else
% Subset of cover sets
ns = nnz(Sub);
end
Components = cell(ns,1);
CompSize = zeros(ns,1,'uint32');
nc = 0; % number of components found
m = 1;
while ~Sub(m)
m = m+1;
end
i = 0;
Comp = zeros(ns,1,'uint32');
while i < ns
Add = Nei{m};
I = Sub(Add);
Add = Add(I);
a = length(Add);
Comp(1) = m;
Sub(m) = false;
t = 1;
while a > 0
Comp(t+1:t+a) = Add;
Sub(Add) = false;
t = t+a;
Add = vertcat(Nei{Add});
I = Sub(Add);
Add = Add(I);
% select the unique elements of Add:
n = length(Add);
if n > 2
I = true(n,1);
for j = 1:n
if ~Fal(Add(j))
Fal(Add(j)) = true;
else
I(j) = false;
end
end
Fal(Add) = false;
Add = Add(I);
elseif n == 2
if Add(1) == Add(2)
Add = Add(1);
end
end
a = length(Add);
end
i = i+t;
if t >= MinSize
nc = nc+1;
Components{nc} = uint32(Comp(1:t));
CompSize(nc) = t;
end
if i < ns
while m <= nb && Sub(m) == false
m = m+1;
end
end
end
Components = Components(1:nc);
CompSize = CompSize(1:nc);
else
Components = cell(0,1);
CompSize = 0;
end |
github | InverseTampere/TreeQSM-master | growth_volume_correction.m | .m | TreeQSM-master/src/tools/growth_volume_correction.m | 5,308 | utf_8 | 43642ad1b72156592dd2da09e8efa614 | function cylinder = growth_volume_correction(cylinder,inputs)
% ---------------------------------------------------------------------
% GROWTH_VOLUME_CORRECTION.M Use growth volume allometry approach to
% modify the radius of cylinders.
%
% Version 2.0.0
% Latest update 16 Sep 2021
%
% Copyright (C) 2013-2021 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Use growth volume (= the total volume "supported by the cylinder")
% allometry approach to modify the radius of too large and too small
% cylinders. Uses the allometry:
%
% Radius = a * GrowthVolume^b + c
%
% If cylinder's radius is over fac-times or under 1/fac-times the radius
% predicted from the growth volume allometry, then correct the radius to
% match the allometry. However, the radius of the cylinders in the branch
% tips are never incresed, only decreased by the correction. More details
% can be from Jan Hackenberg's "SimpleTree" papers and documents.
% ---------------------------------------------------------------------
% Inputs:
% cylinder Structure array that needs to contains the following fields:
% radius (Rad) Radii of the cylinders, vector
% length (Len) Lengths of the cylinders, vector
% parent (CPar) Parents of the cylinders, vector
% inputs.GrowthVolFac The factor "fac", defines the upper and lower
% allowed radius from the predicted one:
% 1/fac*predicted_rad <= rad <= fac*predicted_rad
% ---------------------------------------------------------------------
% Changes from version 1.0.0 to 2.0.0, 16 Sep 2021:
% 1) Changed the roles of RADIUS and GROWTH_VOLUME in the allometry, i.e.
% the radius is now predicted from the growth volume
% 2) Do not increase the radius of the branch tip cylinders
disp('----------')
disp('Growth volume based correction of cylinder radii:')
Rad = double(cylinder.radius);
Rad0 = Rad;
Len = double(cylinder.length);
CPar = cylinder.parent;
CExt = cylinder.extension;
initial_volume = round(1000*pi*sum(Rad.^2.*Len));
disp([' Initial_volume (L): ',num2str(initial_volume)])
%% Define the child cylinders for each cylinder
n = length(Rad);
CChi = cell(n,1);
ind = (1:1:n)';
for i = 1:n
CChi{i} = ind(CPar == i);
end
%% Compute the growth volume
GrowthVol = zeros(n,1); % growth volume
S = cellfun('length',CChi);
modify = S == 0;
GrowthVol(modify) = pi*Rad(modify).^2.*Len(modify);
parents = unique(CPar(modify));
if parents(1) == 0
parents = parents(2:end);
end
while ~isempty(parents)
V = pi*Rad(parents).^2.*Len(parents);
m = length(parents);
for i = 1:m
GrowthVol(parents(i)) = V(i)+sum(GrowthVol(CChi{parents(i)}));
end
parents = unique(CPar(parents));
if parents(1) == 0
parents = parents(2:end);
end
end
%% Fit the allometry: Rad = a*GV^b;
options = optimset('Display','off');
X = lsqcurvefit(@allometry,[0.5 0.5 0],GrowthVol,Rad,[],[],options);
disp(' Allometry model parameters R = a*GV^b+c:')
disp([' Multiplier a: ', num2str(X(1))])
disp([' Exponent b: ', num2str(X(2))])
if length(X) > 2
disp([' Intersect c: ', num2str(X(3))])
end
%% Compute the predicted radius from the allometry
PredRad = allometry(X,GrowthVol);
%% Correct the radii based on the predictions
% If cylinder's radius is over fac-times or under 1/fac-times the
% predicted radius, then correct the radius to match the allometry
fac = inputs.GrowthVolFac;
modify = Rad < PredRad/fac | Rad > fac*PredRad;
modify(Rad < PredRad/fac & CExt == 0) = 0; % Do not increase the radius at tips
CorRad = PredRad(modify);
% Plot allometry and radii modification
gvm = max(GrowthVol);
gv = (0:0.001:gvm);
PRad = allometry(X,gv);
figure(1)
plot(GrowthVol,Rad,'.b','Markersize',2)
hold on
plot(gv,PRad,'-r','Linewidth',2)
plot(gv,PRad/fac,'-g','Linewidth',2)
plot(gv,fac*PRad,'-g','Linewidth',2)
hold off
grid on
xlabel('Growth volume (m^3)')
ylabel('Radius (m)')
legend('radius','predicted radius','minimum radius','maximum radius','Location','NorthWest')
figure(2)
histogram(CorRad-Rad(modify))
xlabel('Change in radius')
title('Number of cylinders per change in radius class')
% Determine the maximum radius change
R = Rad(modify);
D = max(abs(R-CorRad)); % Maximum radius change
J = abs(R-CorRad) == D;
D = CorRad(J)-R(J);
% modify the radius according to allometry
Rad(modify) = CorRad;
cylinder.radius = Rad;
disp([' Modified ',num2str(nnz(modify)),' of the ',num2str(n),' cylinders'])
disp([' Largest radius change (cm): ',num2str(round(1000*D)/10)])
corrected_volume = round(1000*pi*sum(Rad.^2.*Len));
disp([' Corrected volume (L): ', num2str(corrected_volume)])
disp([' Change in volume (L): ', num2str(corrected_volume-initial_volume)])
disp('----------')
% % Plot cylinder models where the color indicates change (green = no change,
% % red = decreased radius, cyan = increased radius)
% cylinder.branch = ones(n,1);
% cylinder.BranchOrder = ones(n,1);
% I = Rad < Rad0;
% cylinder.BranchOrder(I) = 2;
% I = Rad > Rad0;
% cylinder.BranchOrder(I) = 3;
% plot_cylinder_model(cylinder,'order',3,20,1)
%
% cyl = cylinder;
% cyl.radius = Rad0;
% plot_cylinder_model(cyl,'order',4,20,1)
end % End of main function
function F = allometry(x,xdata)
F = x(1)*xdata.^x(2)+x(3);
end
|
github | InverseTampere/TreeQSM-master | simplify_qsm.m | .m | TreeQSM-master/src/tools/simplify_qsm.m | 10,948 | utf_8 | 56b1bb310e2e1ffb3db492223c4c62d8 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function QSM = simplify_qsm(QSM,MaxOrder,SmallRadii,ReplaceIterations,Plot,Disp)
% ---------------------------------------------------------------------
% SIMPLIFY_QSM.M Simplifies cylinder QSMs by restricting the maximum
% branching order, by removing thin branches, and by
% replacing two concecutive cylinders with a longer cylinder
%
% Version 2.0.0
% Latest update 4 May 2022
%
% Copyright (C) 2015-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Inputs:
% QSM QSM-structure, output of treeqsm.m, must contain only one model
% MaxOrder Maximum branching order, higher order branches removed
% SmallRadii Minimum acceptable radius for a branch at its base
% ReplaceIterations Number of iterations for replacing two concecutive
% cylinders inside one branch with one longer cylinder
% Plot If true/1, then plots the cylinder models before and
% after the simplification
% Disp If Disp == 1, then display the simplication results
% (the number of cylinders after each step). If
% Disp == 2, then display also the treedata results for
% the original and simplified QSMs. If Disp == 0, then
% nothing is displayed.
%
% Output:
% Modified QSM NOTICE: cylinder, branch and treedata are modified.
% Changes from version 1.1.0 to 2.0.0, 4 May 2022:
% 1) Added modification of branch and treedata structures based on the
% modified cylinders
% 2) Added input for plotting and displaying the results
% 3) Corrected some bugs that could cause errors in some special cases
if nargin <= 4
Plot = 0;
Disp = 1;
elseif nargin <= 5
Disp = 1;
end
if Disp == 2
inputs = QSM.rundata.inputs;
display_treedata(QSM.treedata,inputs)
end
% Plot the cylinder model before the simplification
if Plot
plot_cylinder_model(QSM.cylinder,'branch',1,20,1)
end
%% Maximum branching order
c = QSM.cylinder;
nc = size(c.radius,1);
if Disp >= 1
disp([' ',num2str(nc),' cylinders originally'])
end
% Cylinders with branching order up to MaxBranchOrder
SmallOrder = c.BranchOrder <= MaxOrder;
N = fieldnames(c);
n = max(size(N));
for i = 1:n
c.(N{i}) = c.(N{i})(SmallOrder,:);
end
% Modify topology information
Ind = (1:1:nc)';
m = nnz(SmallOrder);
Ind(SmallOrder) = (1:1:m)';
I = c.parent > 0;
c.parent(I) = Ind(c.parent(I));
I = c.extension > 0;
c.extension(I) = Ind(c.extension(I));
if Disp == 1
nc = nnz(SmallOrder);
disp([' ',num2str(nc),' cylinders after branching order simplification'])
end
%% Small branches
if nargin >= 3 && SmallRadii > 0
nc = size(c.radius,1);
% Determine child branches
BPar = QSM.branch.parent;
nb = size(BPar,1);
BChi = cell(nb,1);
for i = 1:nb
P = BPar(i);
if P > 0
BChi{P} = [BChi{P}; i];
end
end
% Remove branches whose radii is too small compared to its parent
Large = true(nc,1);
Pass = true(nb,1);
for i = 1:nb
if Pass(i)
if QSM.branch.diameter(i) < SmallRadii
B = i;
BC = BChi{B};
while ~isempty(BC)
B = [B; BC];
BC = vertcat(BChi{BC});
end
Pass(B) = false;
m = length(B);
for k = 1:m
Large(c.branch == B(k)) = false;
end
end
end
end
% Modify topology information
Ind = (1:1:nc)';
m = nnz(Large);
Ind(Large) = (1:1:m)';
I = c.parent > 0;
c.parent(I) = Ind(c.parent(I));
I = c.extension > 0;
c.extension(I) = Ind(c.extension(I));
% Update/reduce cylinders
for i = 1:n
c.(N{i}) = c.(N{i})(Large,:);
end
if Disp >= 1
nc = nnz(Large);
disp([' ',num2str(nc),' cylinders after small branch simplification'])
end
end
%% Cylinder replacing
if nargin >= 4 && ReplaceIterations > 0
% Determine child cylinders
nc = size(c.radius,1);
CChi = cell(nc,1);
for i = 1:nc
P = c.parent(i);
if P > 0
PE = c.extension(P);
if PE ~= i
CChi{P} = [CChi{P}; i];
end
end
end
% Replace cylinders
for j = 1:ReplaceIterations
nc = size(c.radius,1);
Ind = (1:1:nc)';
Keep = false(nc,1);
i = 1;
while i <= nc
t = 1;
while i+t <= nc && c.branch(i+t) == c.branch(i)
t = t+1;
end
Cyls = (i:1:i+t-1)';
S = c.start(Cyls,:);
A = c.axis(Cyls,:);
L = c.length(Cyls);
if t == 1 % one cylinder in the branch
Keep(i) = true;
elseif ceil(t/2) == floor(t/2) % even number of cylinders in the branch
I = (1:2:t)'; % select 1., 3., 5., ...
% Correct radii, axes and lengths
E = S(end,:)+L(end)*A(end,:);
S = S(I,:);
m = length(I);
if m > 1
A = [S(2:end,:); E]-S(1:end,:);
else
A = E-S(1,:);
end
L = sqrt(sum(A.*A,2));
A = [A(:,1)./L A(:,2)./L A(:,3)./L];
cyls = Cyls(I);
Keep(cyls) = true;
V = pi*c.radius(Cyls).^2.*c.length(Cyls);
J = (2:2:t)';
V = V(I)+V(J);
R = sqrt(V./L/pi);
c.radius(cyls) = R;
else % odd number of cylinders
I = [1 2:2:t]'; % select 1., 2., 4., 6., ...
% Correct radii, axes and lengths
E = S(end,:)+L(end)*A(end,:);
S = S(I,:);
l = L(1);
a = A(I,:);
m = length(I);
if m > 2
a(2:end,:) = [S(3:end,:); E]-S(2:end,:);
else
a(2,:) = E-S(2,:);
end
A = a;
L = sqrt(sum(A.*A,2));
L(1) = l;
A(2:end,:) = [A(2:end,1)./L(2:end) A(2:end,2)./L(2:end) A(2:end,3)./L(2:end)];
cyls = Cyls(I);
Keep(cyls) = true;
V = pi*c.radius(Cyls).^2.*c.length(Cyls);
J = (3:2:t)';
V = V(I(2:end))+V(J);
R = sqrt(V./L(2:end)/pi);
c.radius(cyls(2:end)) = R;
end
if t > 1
% Modify cylinders
c.length(cyls) = L;
c.axis(cyls,:) = A;
% Correct branching/topology information
c.PositionInBranch(cyls) = (1:1:m)';
c.extension(cyls) = [cyls(2:end); 0];
c.parent(cyls(2:end)) = cyls(1:end-1);
par = c.parent(cyls(1));
if par > 0 && ~Keep(par)
par0 = c.parent(par);
if Keep(par0) && c.extension(par0) == par
c.parent(cyls(1)) = par0;
end
end
% Correct child branches
chi = vertcat(CChi{Cyls});
if ~isempty(chi)
par = c.parent(chi);
J = Keep(par);
par = par(~J)-1;
c.parent(chi(~J)) = par;
par = c.parent(chi);
rp = c.radius(par);
sp = c.start(par,:);
ap = c.axis(par,:);
lc = c.length(chi);
sc = c.start(chi,:);
ac = c.axis(chi,:);
ec = sc+[lc.*ac(:,1) lc.*ac(:,2) lc.*ac(:,3)];
m = length(chi);
for k = 1:m
[d,V,h,B] = distances_to_line(sc(k,:),ap(k,:),sp(k,:));
V = V/d;
sc(k,:) = sp(k,:)+rp(k)*V+B;
end
ac = ec-sc;
[ac,lc] = normalize(ac);
c.length(chi) = lc;
c.start(chi,:) = sc;
c.axis(chi,:) = ac;
end
end
i = i+t;
end
% Change topology (parent, extension) indexes
m = nnz(Keep);
Ind(Keep) = (1:1:m)';
I = c.parent > 0;
c.parent(I) = Ind(c.parent(I));
I = c.extension > 0;
c.extension(I) = Ind(c.extension(I));
% Update/reduce cylinders
for i = 1:n
c.(N{i}) = c.(N{i})(Keep,:);
end
if j < ReplaceIterations
% Determine child cylinders
nc = size(c.radius,1);
CChi = cell(nc,1);
for i = 1:nc
P = c.parent(i);
if P > 0
PE = c.extension(P);
if PE ~= i
CChi{P} = [CChi{P}; i];
end
end
end
end
end
if Disp >= 1
nc = size(c.radius,1);
disp([' ',num2str(nc),' cylinders after cylinder replacements'])
end
end
if Disp >= 1
nc = size(c.radius,1);
disp([' ',num2str(nc),' cylinders after all simplifications'])
end
%% Updata the QSM
% Update the branch
branch = branches(c);
% Update the treedata
inputs = QSM.rundata.inputs;
inputs.plot = 0;
% Display
if Disp == 2
inputs.disp = 2;
else
inputs.disp = 0;
end
treedata = update_tree_data(QSM,c,branch,inputs);
% Update the cylinder, branch, and treedata of the QSM
QSM.cylinder = c;
QSM.branch = branch;
QSM.treedata = treedata;
% Plot the cylinder model after the simplification
if Plot
plot_cylinder_model(QSM.cylinder,'branch',2,20,1)
end
end % End of main function
function display_treedata(treedata,inputs)
%% Generate units for displaying the treedata
Names = fieldnames(treedata);
n = size(Names,1);
Units = zeros(n,3);
m = 23;
for i = 1:n
if ~inputs.Tria && strcmp(Names{i},'CrownVolumeAlpha')
m = i;
elseif inputs.Tria && strcmp(Names{i},'TriaTrunkLength')
m = i;
end
if strcmp(Names{i}(1:3),'DBH')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'ume')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(end-2:end),'ght')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'gth')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(1:3),'vol')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(1:3),'len')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'rea')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(1:3),'loc')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-4:end),'aConv')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-5:end),'aAlpha')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-4:end),'eConv')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-5:end),'eAlpha')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-2:end),'Ave')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'Max')
Units(i,:) = 'm ';
end
end
%% Display treedata
disp('------------')
disp(' Tree attributes before simplification:')
for i = 1:m
v = change_precision(treedata.(Names{i}));
if strcmp(Names{i},'DBHtri')
disp(' -----')
disp(' Tree attributes from triangulation:')
end
disp([' ',Names{i},' = ',num2str(v),' ',Units(i,:)])
end
disp(' -----')
end |
github | InverseTampere/TreeQSM-master | save_model_text.m | .m | TreeQSM-master/src/tools/save_model_text.m | 4,758 | utf_8 | b477a27d4b1f21363cdf3c28f6c7f863 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function save_model_text(QSM,savename)
% ---------------------------------------------------------------------
% SAVE_MODEL_TEXT.M Saves QSM (cylinder, branch, treedata) into text
% files
%
% Version 1.1.0
% Latest update 17 Aug 2020
%
% Copyright (C) 2013-2020 Pasi Raumonen
% ---------------------------------------------------------------------
% Save the cylinder, branch, and treedata structures in text-formats (.txt)
% into /result-folder with the input "savename" defining the file names:
% 'cylinder_',savename,'.txt'
% 'branch_',savename,'.txt'
% 'treedata_',savename,'.txt'
% !!! Notice that only part of the treedata, the single number tree
% attributes are saved in the text-file.
% Every user can change this code easily to define what is saved into
% their text-files.
% Changes from version 1.0.0 to 1.1.0, 17 Aug 2020:
% 1) Added the new fields of cylinder, branch and treedata structures
% 2) Added header names to the files
% 3) Changed the names of the files to be saved
% 4) Changed the name of second input from "string" to "savename"
% 5) Changed the rounding of some parameters and attributes
cylinder = QSM.cylinder;
branch = QSM.branch;
treedata = QSM.treedata;
%% Form cylinder data, branch data and tree data
% Use less decimals
Rad = round(10000*cylinder.radius)/10000; % radius (m)
Len = round(10000*cylinder.length)/10000; % length (m)
Sta = round(10000*cylinder.start)/10000; % starting point (m)
Axe = round(10000*cylinder.axis)/10000; % axis (m)
CPar = single(cylinder.parent); % parent cylinder
CExt = single(cylinder.extension); % extension cylinder
Added = single(cylinder.added); % is cylinder added to fil a gap
Rad0 = round(10000*cylinder.UnmodRadius)/10000; % unmodified radius (m)
B = single(cylinder.branch); % branch index of the cylinder
BO = single(cylinder.BranchOrder); % branch order of the branch
PIB = single(cylinder.PositionInBranch); % position of the cyl. in the branch
Mad = single(round(10000*cylinder.mad)/10000); % mean abso. distance (m)
SC = single(round(10000*cylinder.SurfCov)/10000); % surface coverage
CylData = [Rad Len Sta Axe CPar CExt B BO PIB Mad SC Added Rad0];
NamesC = ['radius (m)',"length (m)","start_point","axis_direction",...
"parent","extension","branch","branch_order","position_in_branch",...
"mad","SurfCov","added","UnmodRadius (m)"];
BOrd = single(branch.order); % branch order
BPar = single(branch.parent); % parent branch
BDia = round(10000*branch.diameter)/10000; % diameter (m)
BVol = round(10000*branch.volume)/10000; % volume (L)
BAre = round(10000*branch.area)/10000; % area (m^2)
BLen = round(1000*branch.length)/1000; % length (m)
BAng = round(10*branch.angle)/10; % angle (deg)
BHei = round(1000*branch.height)/1000; % height (m)
BAzi = round(10*branch.azimuth)/10; % azimuth (deg)
BZen = round(10*branch.zenith)/10; % zenith (deg)
BranchData = [BOrd BPar BDia BVol BAre BLen BHei BAng BAzi BZen];
NamesB = ["order","parent","diameter (m)","volume (L)","area (m^2)",...
"length (m)","height (m)","angle (deg)","azimuth (deg)","zenith (deg)"];
% Extract the field names of treedata
Names = fieldnames(treedata);
n = 1;
while ~strcmp(Names{n},'location')
n = n+1;
end
n = n-1;
Names = Names(1:n);
TreeData = zeros(n,1);
% TreeData contains TotalVolume, TrunkVolume, BranchVolume, etc
for i = 1:n
TreeData(i) = treedata.(Names{i,:});
end
TreeData = change_precision(TreeData); % use less decimals
NamesD = string(Names);
%% Save the data as text-files
str = ['results/cylinder_',savename,'.txt'];
fid = fopen(str, 'wt');
fprintf(fid, [repmat('%s\t', 1, size(NamesC,2)-1) '%s\n'], NamesC.');
fprintf(fid, [repmat('%g\t', 1, size(CylData,2)-1) '%g\n'], CylData.');
fclose(fid);
str = ['results/branch_',savename,'.txt'];
fid = fopen(str, 'wt');
fprintf(fid, [repmat('%s\t', 1, size(NamesB,2)-1) '%s\n'], NamesB.');
fprintf(fid, [repmat('%g\t', 1, size(BranchData,2)-1) '%g\n'], BranchData.');
fclose(fid);
str = ['results/treedata_',savename,'.txt'];
fid = fopen(str, 'wt');
NamesD(:,2) = TreeData;
fprintf(fid,'%s\t %g\n',NamesD.');
fclose(fid);
|
github | InverseTampere/TreeQSM-master | define_input.m | .m | TreeQSM-master/src/tools/define_input.m | 4,812 | utf_8 | fc9070dc19351ba25dce1ec2036e2d6d | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function inputs = define_input(Clouds,nPD1,nPD2Min,nPD2Max)
% ---------------------------------------------------------------------
% DEFINE_INPUT.M Defines the required inputs (PatchDiam and BallRad
% parameters) for TreeQSM based in estimated tree
% radius.
%
% Version 1.0.0
% Latest update 4 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Takes in a single tree point clouds, that preferably contains only points
% from the tree and not e.g. from groung. User defines the number of
% PatchDiam1, PatchDiam2Min, PatchDiam2Max parameter values needed. Then
% the code estimates automatically these parameter values based on the
% tree stem radius and tree height. Thus this code can be used to generate
% the inputs needed for QSM reconstruction with TreeQSM.
%
% Inputs:
% P Point cloud of a tree OR string specifying the name of the .mat
% file where multiple point clouds are saved
% nPD1 Number of parameter values estimated for PatchDiam1
% nPD2Min Number of parameter values estimated for PatchDiam2Min
% nPD2Max Number of parameter values estimated for PatchDiam2Max
%
% Output:
% inputs Input structure with the estimated parameter values
% ---------------------------------------------------------------------
% Create inputs-structure
create_input
Inputs = inputs;
% If given multiple clouds, extract the names
if ischar(Clouds) || isstring(Clouds)
matobj = matfile([Clouds,'.mat']);
names = fieldnames(matobj);
i = 1;
n = max(size(names));
while i <= n && ~strcmp(names{i,:},'Properties')
i = i+1;
end
I = (1:1:n);
I = setdiff(I,i);
names = names(I,1);
names = sort(names);
nt = max(size(names)); % number of trees/point clouds
else
P = Clouds;
nt = 1;
end
inputs(nt).PatchDiam1 = 0;
%% Estimate the PatchDiam and BallRad parameters
for i = 1:nt
if nt > 1
% Select point cloud
P = matobj.(names{i});
inputs(i) = Inputs;
inputs(i).name = names{i};
inputs(i).tree = i;
inputs(i).plot = 0;
inputs(i).savetxt = 0;
inputs(i).savemat = 0;
inputs(i).disp = 0;
end
%% Estimate the stem diameter close to bottom
% Define height
Hb = min(P(:,3));
Ht = max(P(:,3));
TreeHeight = double(Ht-Hb);
Hei = P(:,3)-Hb;
% Select a section (0.02-0.1*tree_height) from the bottom of the tree
hSecTop = min(4,0.1*TreeHeight);
hSecBot = 0.02*TreeHeight;
hSec = hSecTop-hSecBot;
Sec = Hei > hSecBot & Hei < hSecTop;
StemBot = P(Sec,1:3);
% Estimate stem axis (point and direction)
AxisPoint = mean(StemBot);
V = StemBot-AxisPoint;
V = normalize(V);
AxisDir = optimal_parallel_vector(V);
% Estimate stem diameter
d = distances_to_line(StemBot,AxisDir,AxisPoint);
Rstem = double(median(d));
% Point resolution (distance between points)
Res = sqrt((2*pi*Rstem*hSec)/size(StemBot,1));
%% Define the PatchDiam parameters
% PatchDiam1 is around stem radius divided by 3.
pd1 = Rstem/3;%*max(1,TreeHeight/20);
if nPD1 == 1
inputs(i).PatchDiam1 = pd1;
else
n = nPD1;
inputs(i).PatchDiam1 = linspace((0.90-(n-2)*0.1)*pd1,(1.10+(n-2)*0.1)*pd1,n);
end
% PatchDiam2Min is around stem radius divided by 6 and increased for
% over 20 m heigh trees.
pd2 = Rstem/6*min(1,20/TreeHeight);
if nPD2Min == 1
inputs(i).PatchDiam2Min = pd2;
else
n = nPD2Min;
inputs(i).PatchDiam2Min = linspace((0.90-(n-2)*0.1)*pd2,(1.10+(n-2)*0.1)*pd2,n);
end
% PatchDiam2Max is around stem radius divided by 2.5.
pd3 = Rstem/2.5;%*max(1,TreeHeight/20);
if nPD2Max == 1
inputs(i).PatchDiam2Max = pd3;
else
n = nPD2Max;
inputs(i).PatchDiam2Max = linspace((0.90-(n-2)*0.1)*pd3,(1.10+(n-2)*0.1)*pd3,n);
end
% Define the BallRad parameters:
inputs(i).BallRad1 = max([inputs(i).PatchDiam1+1.5*Res;
min(1.25*inputs(i).PatchDiam1,inputs(i).PatchDiam1+0.025)]);
inputs(i).BallRad2 = max([inputs(i).PatchDiam2Max+1.25*Res;
min(1.2*inputs(i).PatchDiam2Max,inputs(i).PatchDiam2Max+0.025)]);
%plot_point_cloud(P,1,1)
end
|
github | InverseTampere/TreeQSM-master | update_tree_data.m | .m | TreeQSM-master/src/tools/update_tree_data.m | 22,826 | utf_8 | e026d8880095f35cc2322e8a540a7ed4 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function treedata = update_tree_data(QSM,cylinder,branch,inputs)
% ---------------------------------------------------------------------
% UPDATE_TREE_DATA.M Updates the treedata structure, e.g. after
% simplification of QSM
%
% Version 1.0.0
% Latest update 4 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Inputs:
% treedata Treedata structure from "tree_data"
% cylinder Cylinder structure from "cylinders"
% branch Branch structure from "branches"
%
% Output:
% treedata Tree data/attributes in a struct
% ---------------------------------------------------------------------
% Define some variables from cylinder:
treedata = QSM.treedata;
Rad = cylinder.radius;
Len = cylinder.length;
Sta = cylinder.start;
Axe = cylinder.axis;
nc = length(Rad);
ind = (1:1:nc)';
Trunk = cylinder.branch == 1; % Trunk cylinders
%% Tree attributes from cylinders
% Volumes, areas, lengths, branches
treedata.TotalVolume = 1000*pi*Rad.^2'*Len;
treedata.TrunkVolume = 1000*pi*Rad(Trunk).^2'*Len(Trunk);
treedata.BranchVolume = 1000*pi*Rad(~Trunk).^2'*Len(~Trunk);
bottom = min(Sta(:,3));
[top,i] = max(Sta(:,3));
if Axe(i,3) > 0
top = top+Len(i)*Axe(i,3);
end
treedata.TreeHeight = top-bottom;
treedata.TrunkLength = sum(Len(Trunk));
treedata.BranchLength = sum(Len(~Trunk));
treedata.TotalLength = treedata.TrunkLength+treedata.BranchLength;
NB = length(branch.order)-1; % number of branches
treedata.NumberBranches = NB;
BO = max(branch.order); % maximum branch order
treedata.MaxBranchOrder = BO;
treedata.TrunkArea = 2*pi*sum(Rad(Trunk).*Len(Trunk));
treedata.BranchArea = 2*pi*sum(Rad(~Trunk).*Len(~Trunk));
treedata.TotalArea = 2*pi*sum(Rad.*Len);
%% Crown measures,Vertical profile and spreads
[treedata,spreads] = crown_measures(treedata,cylinder,branch);
%% Update triangulation information
if inputs.Tria
treedata = update_triangulation(QSM,treedata,cylinder);
end
%% Tree Location
treedata.location = Sta(1,:);
%% Stem taper
R = Rad(Trunk);
n = length(R);
Taper = zeros(n+1,2);
Taper(1,2) = 2*R(1);
Taper(2:end,1) = cumsum(Len(Trunk));
Taper(2:end,2) = [2*R(2:end); 2*R(n)];
treedata.StemTaper = Taper';
%% Vertical profile and spreads
treedata.VerticalProfile = mean(spreads,2);
treedata.spreads = spreads;
%% CYLINDER DISTRIBUTIONS:
%% Wood part diameter distributions
% Volume, area and length of wood parts as functions of cylinder diameter
% (in 1cm diameter classes)
treedata = cylinder_distribution(treedata,Rad,Len,Axe,'Dia');
%% Wood part height distributions
% Volume, area and length of cylinders as a function of height
% (in 1 m height classes)
treedata = cylinder_height_distribution(treedata,Rad,Len,Sta,Axe,ind);
%% Wood part zenith direction distributions
% Volume, area and length of wood parts as functions of cylinder zenith
% direction (in 10 degree angle classes)
treedata = cylinder_distribution(treedata,Rad,Len,Axe,'Zen');
%% Wood part azimuth direction distributions
% Volume, area and length of wood parts as functions of cylinder zenith
% direction (in 10 degree angle classes)
treedata = cylinder_distribution(treedata,Rad,Len,Axe,'Azi');
%% BRANCH DISTRIBUTIONS:
%% Branch order distributions
% Volume, area, length and number of branches as a function of branch order
treedata = branch_order_distribution(treedata,branch);
%% Branch diameter distributions
% Volume, area, length and number of branches as a function of branch diameter
% (in 1cm diameter classes)
treedata = branch_distribution(treedata,branch,'Dia');
%% Branch height distribution
% Volume, area, length and number of branches as a function of branch height
% (in 1 meter classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Hei');
%% Branch angle distribution
% Volume, area, length and number of branches as a function of branch angle
% (in 10 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Ang');
%% Branch azimuth distribution
% Volume, area, length and number of branches as a function of branch azimuth
% (in 22.5 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Azi');
%% Branch zenith distribution
% Volume, area, length and number of branches as a function of branch zenith
% (in 10 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Zen');
%% change into single-format
Names = fieldnames(treedata);
n = size(Names,1);
for i = 1:n
treedata.(Names{i}) = single(treedata.(Names{i}));
end
if inputs.disp == 2
%% Generate units for displaying the treedata
Units = zeros(n,3);
m = 23;
for i = 1:n
if ~inputs.Tria && strcmp(Names{i},'CrownVolumeAlpha')
m = i;
elseif inputs.Tria && strcmp(Names{i},'TriaTrunkLength')
m = i;
end
if strcmp(Names{i}(1:3),'DBH')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'ume')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(end-2:end),'ght')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'gth')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(1:3),'vol')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(1:3),'len')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'rea')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(1:3),'loc')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-4:end),'aConv')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-5:end),'aAlpha')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-4:end),'eConv')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-5:end),'eAlpha')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-2:end),'Ave')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'Max')
Units(i,:) = 'm ';
end
end
%% Display treedata
disp('------------')
disp(' Tree attributes:')
for i = 1:m
v = change_precision(treedata.(Names{i}));
if strcmp(Names{i},'DBHtri')
disp(' -----')
disp(' Tree attributes from triangulation:')
end
disp([' ',Names{i},' = ',num2str(v),' ',Units(i,:)])
end
disp(' -----')
end
if inputs.plot > 1
%% Plot distributions
figure(6)
subplot(2,4,1)
plot(Taper(:,1),Taper(:,2),'-b')
title('Stem taper')
xlabel('Distance from base (m)')
ylabel('Diameter (m)')
axis tight
grid on
Q.treedata = treedata;
subplot(2,4,2)
plot_distribution(Q,6,0,0,'VolCylDia')
subplot(2,4,3)
plot_distribution(Q,6,0,0,'AreCylDia')
subplot(2,4,4)
plot_distribution(Q,6,0,0,'LenCylDia')
subplot(2,4,5)
plot_distribution(Q,6,0,0,'VolBranchOrd')
subplot(2,4,6)
plot_distribution(Q,6,0,0,'LenBranchOrd')
subplot(2,4,7)
plot_distribution(Q,6,0,0,'AreBranchOrd')
subplot(2,4,8)
plot_distribution(Q,6,0,0,'NumBranchOrd')
figure(7)
subplot(3,3,1)
plot_distribution(Q,7,0,0,'VolCylHei')
subplot(3,3,2)
plot_distribution(Q,7,0,0,'AreCylHei')
subplot(3,3,3)
plot_distribution(Q,7,0,0,'LenCylHei')
subplot(3,3,4)
plot_distribution(Q,7,0,0,'VolCylZen')
subplot(3,3,5)
plot_distribution(Q,7,0,0,'AreCylZen')
subplot(3,3,6)
plot_distribution(Q,7,0,0,'LenCylZen')
subplot(3,3,7)
plot_distribution(Q,7,0,0,'VolCylAzi')
subplot(3,3,8)
plot_distribution(Q,7,0,0,'AreCylAzi')
subplot(3,3,9)
plot_distribution(Q,7,0,0,'LenCylAzi')
figure(8)
subplot(3,4,1)
plot_distribution(Q,8,1,0,'VolBranchDia','VolBranch1Dia')
subplot(3,4,2)
plot_distribution(Q,8,1,0,'AreBranchDia','AreBranch1Dia')
subplot(3,4,3)
plot_distribution(Q,8,1,0,'LenBranchDia','LenBranch1Dia')
subplot(3,4,4)
plot_distribution(Q,8,1,0,'NumBranchDia','NumBranch1Dia')
subplot(3,4,5)
plot_distribution(Q,8,1,0,'VolBranchHei','VolBranch1Hei')
subplot(3,4,6)
plot_distribution(Q,8,1,0,'AreBranchHei','AreBranch1Hei')
subplot(3,4,7)
plot_distribution(Q,8,1,0,'LenBranchHei','LenBranch1Hei')
subplot(3,4,8)
plot_distribution(Q,8,1,0,'NumBranchHei','NumBranch1Hei')
subplot(3,4,9)
plot_distribution(Q,8,1,0,'VolBranchAng','VolBranch1Ang')
subplot(3,4,10)
plot_distribution(Q,8,1,0,'AreBranchAng','AreBranch1Ang')
subplot(3,4,11)
plot_distribution(Q,8,1,0,'LenBranchAng','LenBranch1Ang')
subplot(3,4,12)
plot_distribution(Q,8,1,0,'NumBranchAng','NumBranch1Ang')
figure(9)
subplot(2,4,1)
plot_distribution(Q,9,1,0,'VolBranchZen','VolBranch1Zen')
subplot(2,4,2)
plot_distribution(Q,9,1,0,'AreBranchZen','AreBranch1Zen')
subplot(2,4,3)
plot_distribution(Q,9,1,0,'LenBranchZen','LenBranch1Zen')
subplot(2,4,4)
plot_distribution(Q,9,1,0,'NumBranchZen','NumBranch1Zen')
subplot(2,4,5)
plot_distribution(Q,9,1,0,'VolBranchAzi','VolBranch1Azi')
subplot(2,4,6)
plot_distribution(Q,9,1,0,'AreBranchAzi','AreBranch1Azi')
subplot(2,4,7)
plot_distribution(Q,9,1,0,'LenBranchAzi','LenBranch1Azi')
subplot(2,4,8)
plot_distribution(Q,9,1,0,'NumBranchAzi','NumBranch1Azi')
end
end % End of main function
function [treedata,spreads] = crown_measures(treedata,cylinder,branch)
%% Generate point clouds from the cylinder model
Axe = cylinder.axis;
Len = cylinder.length;
Sta = cylinder.start;
Tip = Sta+[Len.*Axe(:,1) Len.*Axe(:,2) Len.*Axe(:,3)]; % tips of the cylinders
nc = length(Len);
P = zeros(5*nc,3); % four mid points on the cylinder surface
t = 0;
for i = 1:nc
[U,V] = orthonormal_vectors(Axe(i,:));
U = cylinder.radius(i)*U;
if cylinder.branch(i) == 1
% For stem cylinders generate more points
for k = 1:4
M = Sta(i,:)+k*Len(i)/4*Axe(i,:);
R = rotation_matrix(Axe(i,:),pi/12);
for j = 1:12
if j > 1
U = R*U;
end
t = t+1;
P(t,:) = M+U';
end
end
else
M = Sta(i,:)+Len(i)/2*Axe(i,:);
R = rotation_matrix(Axe(i,:),pi/4);
for j = 1:4
if j > 1
U = R*U;
end
t = t+1;
P(t,:) = M+U';
end
end
end
P = P(1:t,:);
P = double([P; Sta; Tip]);
P = unique(P,'rows');
%% Vertical profiles (layer diameters/spreads), mean:
bot = min(P(:,3));
top = max(P(:,3));
Hei = top-bot;
if Hei > 10
m = 20;
elseif Hei > 2
m = 10;
else
m = 5;
end
spreads = zeros(m,18);
for j = 1:m
I = P(:,3) >= bot+(j-1)*Hei/m & P(:,3) < bot+j*Hei/m;
X = unique(P(I,:),'rows');
if size(X,1) > 5
[K,A] = convhull(X(:,1),X(:,2));
% compute center of gravity for the convex hull and use it as
% center for computing average diameters
n = length(K);
x = X(K,1);
y = X(K,2);
CX = sum((x(1:n-1)+x(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
CY = sum((y(1:n-1)+y(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
V = mat_vec_subtraction(X(:,1:2),[CX CY]);
ang = atan2(V(:,2),V(:,1))+pi;
[ang,I] = sort(ang);
L = sqrt(sum(V.*V,2));
L = L(I);
for i = 1:18
I = ang >= (i-1)*pi/18 & ang < i*pi/18;
if any(I)
L1 = max(L(I));
else
L1 = 0;
end
J = ang >= (i-1)*pi/18+pi & ang < i*pi/18+pi;
if any(J)
L2 = max(L(J));
else
L2 = 0;
end
spreads(j,i) = L1+L2;
end
end
end
%% Crown diameters (spreads), mean and maximum:
X = unique(P(:,1:2),'rows');
[K,A] = convhull(X(:,1),X(:,2));
% compute center of gravity for the convex hull and use it as center for
% computing average diameters
n = length(K);
x = X(K,1);
y = X(K,2);
CX = sum((x(1:n-1)+x(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
CY = sum((y(1:n-1)+y(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
V = mat_vec_subtraction(Tip(:,1:2),[CX CY]);
ang = atan2(V(:,2),V(:,1))+pi;
[ang,I] = sort(ang);
L = sqrt(sum(V.*V,2));
L = L(I);
S = zeros(18,1);
for i = 1:18
I = ang >= (i-1)*pi/18 & ang < i*pi/18;
if any(I)
L1 = max(L(I));
else
L1 = 0;
end
J = ang >= (i-1)*pi/18+pi & ang < i*pi/18+pi;
if any(J)
L2 = max(L(J));
else
L2 = 0;
end
S(i) = L1+L2;
end
treedata.CrownDiamAve = mean(S);
MaxDiam = 0;
for i = 1:n
V = mat_vec_subtraction([x y],[x(i) y(i)]);
L = max(sqrt(sum(V.*V,2)));
if L > MaxDiam
MaxDiam = L;
end
end
treedata.CrownDiamMax = L;
%% Crown areas from convex hull and alpha shape:
treedata.CrownAreaConv = A;
alp = max(0.5,treedata.CrownDiamAve/10);
shp = alphaShape(X(:,1),X(:,2),alp);
treedata.CrownAreaAlpha = shp.area;
%% Crown base
% Define first major branch as the branch whose diameter > min(0.05*dbh,5cm)
% and whose horizontal relative reach is more than the median reach of 1st-ord.
% branches (or at maximum 10). The reach is defined as the horizontal
% distance from the base to the tip divided by the dbh.
dbh = treedata.DBHcyl;
nb = length(branch.order);
HL = zeros(nb,1); % horizontal reach
branches1 = (1:1:nb)';
branches1 = branches1(branch.order == 1); % 1st-order branches
nb = length(branches1);
nc = size(Sta,1);
ind = (1:1:nc)';
for i = 1:nb
C = ind(cylinder.branch == branches1(i));
if ~isempty(C)
base = Sta(C(1),:);
C = C(end);
tip = Sta(C,:)+Len(C)*Axe(C);
V = tip(1:2)-base(1:2);
HL(branches1(i)) = sqrt(V*V')/dbh*2;
end
end
M = min(10,median(HL));
% Sort the branches according to the their heights
Hei = branch.height(branches1);
[Hei,SortOrd] = sort(Hei);
branches1 = branches1(SortOrd);
% Search the first/lowest branch:
d = min(0.05,0.05*dbh);
b = 0;
if nb > 1
i = 1;
while i < nb
i = i+1;
if branch.diameter(branches1(i)) > d && HL(branches1(i)) > M
b = branches1(i);
i = nb+2;
end
end
if i == nb+1 && nb > 1
b = branches1(1);
end
end
if b > 0
% search all the children of the first major branch:
nb = size(branch.parent,1);
Ind = (1:1:nb)';
chi = Ind(branch.parent == b);
B = b;
while ~isempty(chi)
B = [B; chi];
n = length(chi);
C = cell(n,1);
for i = 1:n
C{i} = Ind(branch.parent == chi(i));
end
chi = vertcat(C{:});
end
% define crown base height from the ground:
BaseHeight = max(Sta(:,3)); % Height of the crown base
for i = 1:length(B)
C = ind(cylinder.branch == B(i));
ht = min(Tip(C,3));
hb = min(Sta(C,3));
h = min(hb,ht);
if h < BaseHeight
BaseHeight = h;
end
end
treedata.CrownBaseHeight = BaseHeight-Sta(1,3);
%% Crown length and ratio
treedata.CrownLength = treedata.TreeHeight-treedata.CrownBaseHeight;
treedata.CrownRatio = treedata.CrownLength/treedata.TreeHeight;
%% Crown volume from convex hull and alpha shape:
I = P(:,3) >= BaseHeight;
X = P(I,:);
[K,V] = convhull(X(:,1),X(:,2),X(:,3));
treedata.CrownVolumeConv = V;
alp = max(0.5,treedata.CrownDiamAve/5);
shp = alphaShape(X(:,1),X(:,2),X(:,3),alp,'HoleThreshold',10000);
treedata.CrownVolumeAlpha = shp.volume;
else
% No branches
treedata.CrownBaseHeight = treedata.TreeHeight;
treedata.CrownLength = 0;
treedata.CrownRatio = 0;
treedata.CrownVolumeConv = 0;
treedata.CrownVolumeAlpha = 0;
end
end % End of function
function treedata = update_triangulation(QSM,treedata,cylinder)
% Update the mixed results:
if ~isempty(QSM.triangulation)
CylInd = QSM.triangulation.cylind;
Rad = cylinder.radius;
Len = cylinder.length;
% Determine the new stem cylinder that is about the location where the
% triangulation stops:
nc = length(Rad);
ind = (1:1:nc)';
ind = ind(cylinder.branch == 1); % cylinders in the stem
S = QSM.cylinder.start(CylInd,:); % The place where the triangulation stops
V = cylinder.start(ind,:)-S;
d = sqrt(sum(V.*V,2));
[d,I] = min(d);
V = V(I,:);
CylInd = ind(I); % The new cylinder closest to the correct place
if d < 0.01
TrunkVolMix = treedata.TrunkVolume-...
1000*pi*sum(Rad(1:CylInd-1).^2.*Len(1:CylInd-1))+QSM.triangulation.volume;
TrunkAreaMix = treedata.TrunkArea-...
2*pi*sum(Rad(1:CylInd-1).*Len(1:CylInd-1))+QSM.triangulation.SideArea;
else
% Select the following cylinder
h = V*cylinder.axis(CylInd,:)';
if h < 0
CylInd = CylInd+1;
V = cylinder.start(CylInd,:)-S;
h = V*cylinder.axis(CylInd,:)';
end
Len(CylInd-1) = Len(CylInd-1)-h;
TrunkVolMix = treedata.TrunkVolume-...
1000*pi*sum(Rad(1:CylInd-1).^2.*Len(1:CylInd-1))+QSM.triangulation.volume;
TrunkAreaMix = treedata.TrunkArea-...
2*pi*sum(Rad(1:CylInd-1).*Len(1:CylInd-1))+QSM.triangulation.SideArea;
end
treedata.MixTrunkVolume = TrunkVolMix;
treedata.MixTotalVolume = TrunkVolMix+treedata.BranchVolume;
treedata.MixTrunkArea = TrunkAreaMix;
treedata.MixTotalArea = TrunkAreaMix+treedata.BranchArea;
end
end
function treedata = cylinder_distribution(treedata,Rad,Len,Axe,dist)
%% Wood part diameter, zenith and azimuth direction distributions
% Volume, area and length of wood parts as functions of cylinder
% diameter, zenith, and azimuth
if strcmp(dist,'Dia')
Par = Rad;
n = ceil(max(200*Rad));
a = 0.005; % diameter in 1 cm classes
elseif strcmp(dist,'Zen')
Par = 180/pi*acos(Axe(:,3));
n = 18;
a = 10; % zenith direction in 10 degree angle classes
elseif strcmp(dist,'Azi')
Par = 180/pi*atan2(Axe(:,2),Axe(:,1))+180;
n = 36;
a = 10; % azimuth direction in 10 degree angle classes
end
CylDist = zeros(3,n);
for i = 1:n
K = Par >= (i-1)*a & Par < i*a;
CylDist(1,i) = 1000*pi*sum(Rad(K).^2.*Len(K)); % volumes in litres
CylDist(2,i) = 2*pi*sum(Rad(K).*Len(K)); % areas in litres
CylDist(3,i) = sum(Len(K)); % lengths in meters
end
treedata.(['VolCyl',dist]) = CylDist(1,:);
treedata.(['AreCyl',dist]) = CylDist(2,:);
treedata.(['LenCyl',dist]) = CylDist(3,:);
end
function treedata = cylinder_height_distribution(treedata,Rad,Len,Sta,Axe,ind)
%% Wood part height distributions
% Volume, area and length of cylinders as a function of height
% (in 1 m height classes)
MaxHei= ceil(treedata.TreeHeight);
treedata.VolCylHei = zeros(1,MaxHei);
treedata.AreCylHei = zeros(1,MaxHei);
treedata.LenCylHei = zeros(1,MaxHei);
End = Sta+[Len.*Axe(:,1) Len.*Axe(:,2) Len.*Axe(:,3)];
bot = min(Sta(:,3));
B = Sta(:,3)-bot;
T = End(:,3)-bot;
for j = 1:MaxHei
I1 = B >= (j-2) & B < (j-1); % base below this bin
J1 = B >= (j-1) & B < j; % base in this bin
K1 = B >= j & B < (j+1); % base above this bin
I2 = T >= (j-2) & T < (j-1); % top below this bin
J2 = T >= (j-1) & T < j; % top in this bin
K2 = T >= j & T < (j+1); % top above this bin
C1 = ind(J1&J2); % base and top in this bin
C2 = ind(J1&K2); % base in this bin, top above
C3 = ind(J1&I2); % base in this bin, top below
C4 = ind(I1&J2); % base in bin below, top in this
C5 = ind(K1&J2); % base in bin above, top in this
v1 = 1000*pi*sum(Rad(C1).^2.*Len(C1));
a1 = 2*pi*sum(Rad(C1).*Len(C1));
l1 = sum(Len(C1));
r2 = (j-B(C2))./(T(C2)-B(C2)); % relative portion in this bin
v2 = 1000*pi*sum(Rad(C2).^2.*Len(C2).*r2);
a2 = 2*pi*sum(Rad(C2).*Len(C2).*r2);
l2 = sum(Len(C2).*r2);
r3 = (B(C3)-j+1)./(B(C3)-T(C3)); % relative portion in this bin
v3 = 1000*pi*sum(Rad(C3).^2.*Len(C3).*r3);
a3 = 2*pi*sum(Rad(C3).*Len(C3).*r3);
l3 = sum(Len(C3).*r3);
r4 = (T(C4)-j+1)./(T(C4)-B(C4)); % relative portion in this bin
v4 = 1000*pi*sum(Rad(C4).^2.*Len(C4).*r4);
a4 = 2*pi*sum(Rad(C4).*Len(C4).*r4);
l4 = sum(Len(C4).*r4);
r5 = (j-T(C5))./(B(C5)-T(C5)); % relative portion in this bin
v5 = 1000*pi*sum(Rad(C5).^2.*Len(C5).*r5);
a5 = 2*pi*sum(Rad(C5).*Len(C5).*r5);
l5 = sum(Len(C5).*r5);
treedata.VolCylHei(j) = v1+v2+v3+v4+v5;
treedata.AreCylHei(j) = a1+a2+a3+a4+a5;
treedata.LenCylHei(j) = l1+l2+l3+l4+l5;
end
end
function treedata = branch_distribution(treedata,branch,dist)
%% Branch diameter, height, angle, zenith and azimuth distributions
% Volume, area, length and number of branches as a function of branch
% diamater, height, angle, zenith and aximuth
BOrd = branch.order(2:end);
BVol = branch.volume(2:end);
BAre = branch.area(2:end);
BLen = branch.length(2:end);
if strcmp(dist,'Dia')
Par = branch.diameter(2:end);
n = ceil(max(100*Par));
a = 0.005; % diameter in 1 cm classes
elseif strcmp(dist,'Hei')
Par = branch.height(2:end);
n = ceil(treedata.TreeHeight);
a = 1; % height in 1 m classes
elseif strcmp(dist,'Ang')
Par = branch.angle(2:end);
n = 18;
a = 10; % angle in 10 degree classes
elseif strcmp(dist,'Zen')
Par = branch.zenith(2:end);
n = 18;
a = 10; % zenith direction in 10 degree angle classes
elseif strcmp(dist,'Azi')
Par = branch.azimuth(2:end)+180;
n = 36;
a = 10; % azimuth direction in 10 degree angle classes
end
BranchDist = zeros(8,n);
for i = 1:n
I = Par >= (i-1)*a & Par < i*a;
BranchDist(1,i) = sum(BVol(I)); % volume (all branches)
BranchDist(2,i) = sum(BVol(I & BOrd == 1)); % volume (1st-branches)
BranchDist(3,i) = sum(BAre(I)); % area (all branches)
BranchDist(4,i) = sum(BAre(I & BOrd == 1)); % area (1st-branches)
BranchDist(5,i) = sum(BLen(I)); % length (all branches)
BranchDist(6,i) = sum(BLen(I & BOrd == 1)); % length (1st-branches)
BranchDist(7,i) = nnz(I); % number (all branches)
BranchDist(8,i) = nnz(I & BOrd == 1); % number (1st-branches)
end
treedata.(['VolBranch',dist]) = BranchDist(1,:);
treedata.(['VolBranch1',dist]) = BranchDist(2,:);
treedata.(['AreBranch',dist]) = BranchDist(3,:);
treedata.(['AreBranch1',dist]) = BranchDist(4,:);
treedata.(['LenBranch',dist]) = BranchDist(5,:);
treedata.(['LenBranch1',dist]) = BranchDist(6,:);
treedata.(['NumBranch',dist]) = BranchDist(7,:);
treedata.(['NumBranch1',dist]) = BranchDist(8,:);
end
function treedata = branch_order_distribution(treedata,branch)
%% Branch order distributions
% Volume, area, length and number of branches as a function of branch order
BO = max(branch.order);
BranchOrdDist = zeros(BO,4);
for i = 1:max(1,BO)
I = branch.order == i;
BranchOrdDist(i,1) = sum(branch.volume(I)); % volumes
BranchOrdDist(i,2) = sum(branch.area(I)); % areas
BranchOrdDist(i,3) = sum(branch.length(I)); % lengths
BranchOrdDist(i,4) = nnz(I); % number of ith-order branches
end
treedata.VolBranchOrd = BranchOrdDist(:,1)';
treedata.AreBranchOrd = BranchOrdDist(:,2)';
treedata.LenBranchOrd = BranchOrdDist(:,3)';
treedata.NumBranchOrd = BranchOrdDist(:,4)';
end
|
github | InverseTampere/TreeQSM-master | initial_boundary_curve.m | .m | TreeQSM-master/src/triangulation/initial_boundary_curve.m | 6,528 | utf_8 | e1d5805313e080d63fe8c8cd0fe44b2e | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function Curve = initial_boundary_curve(P,TriaWidth)
% ---------------------------------------------------------------------
% INITIAL_BOUNDARY_CURVE.M Determines the boundary curve adaptively.
%
% Version 1.0.1
% Latest update 26 Nov 2019
%
% Copyright (C) 2015-2017 Pasi Raumonen
% ---------------------------------------------------------------------
% Changes from version 1.0.0 to 1.0.1, 26 Nov 2019:
% 1) Bug fix: Added "return" if the "Curve" is empty after it is first defined.
%% Define suitable center
% Use xy-data and even the z-coordinate to the top
Top = max(P(:,3));
P = [P(:,1:2) Top*ones(size(P,1),1)];
% Define the "center" of points as the mean
Center = mean(P);
Center0 = Center;
% If the center is outside or close to the boundary, define new center
i = 0;
A0 = 61;
ShortestDist = 0;
while ShortestDist < 0.075 && i < 100
Center = Center0+[3*ShortestDist*randn(1,2) 0]; % Randomly move the center
% Compute angles of points as seen from the center
V = mat_vec_subtraction(P(:,1:2),Center(1:2));
angle = 180/pi*atan2(V(:,2),V(:,1))+180;
% % Check if the center is outside or near the boundary of the cross section
A = false(70,1);
a = ceil(angle/5);
I = a > 0;
A(a(I)) = true;
if i == 0
ShortestDist = 0.025;
elseif nnz(A) < A0
ShortestDist = 0.05;
else
PointDist = sqrt(sum(V.*V,2));
[ShortestDist,FirstPoint] = min(PointDist);
end
i = i+1;
if i == 100 && ShortestDist < 0.075
i = 0;
A0 = A0-2;
end
end
%% Define first boundary curve based on the center
Curve = zeros(18,1); % the boundary curve, contains indexed of the point cloud rows
Curve(1) = FirstPoint; % start the curve from the point the closest the center
% Modify the angles so that first point has the angle 0
a0 = angle(FirstPoint);
I = angle < a0;
angle(I) = angle(I)+(360-a0);
angle(~I) = angle(~I)-a0;
% Select the rest of the points as the closest point in 15 deg sectors
% centered at 20 deg intervals
np = size(P,1);
Ind = (1:1:np)';
t = 0;
for i = 2:18
J = angle > 12.5+20*(i-2) & angle < 27.5+20*(i-2);
if ~any(J) % if no points, try 18 deg sector
J = angle > 11+20*(i-2) & angle < 29+20*(i-2);
end
if any(J)
% if sector has points, select the closest point as the curve point
D = PointDist(J);
ind = Ind(J);
[~,J] = min(D);
t = t+1;
Curve(t) = ind(J);
end
end
Curve = Curve(1:t);
if isempty(Curve)
return
end
I = true(np,1);
I(Curve) = false;
Ind = Ind(I);
%% Adapt the initial curve to the data
V = P(Curve([(2:t)'; 1]),:)-P(Curve,:);
D = sqrt(sum(V(:,1:2).*V(:,1:2),2));
n = t;
n0 = 1;
% Continue adding new points as long as too long edges exists
while any(D > 1.25*TriaWidth) && n > n0
N = [V(:,2) -V(:,1) V(:,3)];
M = P(Curve,:)+0.5*V;
Curve1 = Curve;
t = 0;
for i = 1:n
if D(i) > 1.25*TriaWidth
[d,~,hc] = distances_to_line(P(Curve1,:),N(i,:),M(i,:));
I = hc > 0.01 & d < D(i)/2;
if any(I)
H = min(hc(I));
else
H = 1;
end
[d,~,h] = distances_to_line(P(Ind,:),N(i,:),M(i,:));
I = d < D(i)/3 & h > -TriaWidth/2 & h < H;
if any(I)
ind = Ind(I);
h = h(I);
[h,J] = min(h);
I = ind(J);
t = t+1;
if i < n
Curve1 = [Curve1(1:t); I; Curve1(t+1:end)];
else
Curve1 = [Curve1(1:t); I];
end
J = Ind ~= I;
Ind = Ind(J);
t = t+1;
else
t = t+1;
end
else
t = t+1;
end
end
Curve = Curve1(1:t);
n0 = n;
n = size(Curve,1);
V = P(Curve([(2:n)'; 1]),:)-P(Curve,:);
D = sqrt(sum(V.*V,2));
end
%% Refine the curve for longer edges if far away points
n0 = n-1;
while n > n0
N = [V(:,2) -V(:,1) V(:,3)];
M = P(Curve,:)+0.5*V;
Curve1 = Curve;
t = 0;
for i = 1:n
if D(i) > 0.5*TriaWidth
[d,~,hc] = distances_to_line(P(Curve1,:),N(i,:),M(i,:));
I = hc > 0.01 & d < D(i)/2;
if any(I)
H = min(hc(I));
else
H = 1;
end
[d,~,h] = distances_to_line(P(Ind,:),N(i,:),M(i,:));
I = d < D(i)/3 & h > -TriaWidth/3 & h < H;
ind = Ind(I);
h = h(I);
[h,J] = min(h);
if h > TriaWidth/10
I = ind(J);
t = t+1;
if i < n
Curve1 = [Curve1(1:t); I; Curve1(t+1:end)];
else
Curve1 = [Curve1(1:t); I];
end
J = Ind ~= I;
Ind = Ind(J);
t = t+1;
else
t = t+1;
end
else
t = t+1;
end
end
Curve = Curve1(1:t);
n0 = n;
n = size(Curve,1);
V = P(Curve([(2:n)'; 1]),:)-P(Curve,:);
D = sqrt(sum(V.*V,2));
end
%% Smooth the curve by defining the points by means of neighbors
Curve = P(Curve,:); % Change the curve from point indexes to coordinates
Curve = boundary_curve2(P,Curve,0.04,TriaWidth);
if isempty(Curve)
return
end
%% Add points for too long edges
n = size(Curve,1);
V = Curve([(2:n)'; 1],:)-Curve;
D = sqrt(sum(V.*V,2));
Curve1 = Curve;
t = 0;
for i = 1:n
if D(i) > TriaWidth
m = floor(D(i)/TriaWidth);
t = t+1;
W = zeros(m,3);
for j = 1:m
W(j,:) = Curve(i,:)+j/(m+1)*V(i,:);
end
Curve1 = [Curve1(1:t,:); W; Curve1(t+1:end,:)];
t = t+m ;
else
t = t+1;
end
end
Curve = Curve1;
n = size(Curve,1);
%% Define the curve again by equalising the point distances along the curve
V = Curve([(2:n)'; 1],:)-Curve;
D = sqrt(sum(V.*V,2));
L = cumsum(D);
m = ceil(L(end)/TriaWidth);
TriaWidth = L(end)/m;
Curve1 = zeros(m,3);
Curve1(1,:) = Curve(1,:);
b = 1;
for i = 2:m
while L(b) < (i-1)*TriaWidth
b = b+1;
end
if b > 1
a = ((i-1)*TriaWidth-L(b-1))/D(b);
Curve1(i,:) = Curve(b,:)+a*V(b,:);
else
a = (L(b)-(i-1)*TriaWidth)/D(b);
Curve1(i,:) = Curve(b,:)+a*V(b,:);
end
end
Curve = Curve1;
Intersect = check_self_intersection(Curve(:,1:2));
if Intersect
Curve = zeros(0,3);
end
|
github | InverseTampere/TreeQSM-master | boundary_curve2.m | .m | TreeQSM-master/src/triangulation/boundary_curve2.m | 4,546 | utf_8 | 66ccb1233259456e8b6ba495d5ff178a | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function Curve = boundary_curve2(P,Curve0,rball,dmax)
% ---------------------------------------------------------------------
% BOUNDARY_CURVE2.M Determines the boundary curve based on the
% previously defined boundary curve.
%
% Version 1.0
% Latest update 16 Aug 2017
%
% Copyright (C) 2015-2017 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Inputs:
% P Point cloud of the cross section
% Curve0 Seed points from previous cross section curve
% rball Radius of the balls centered at seed points
% dmax Maximum distance between concecutive curve points, if larger,
% then create a new one between the points
%% Partition the point cloud into cubes
Min = double(min([P(:,1:2); Curve0(:,1:2)]));
Max = double(max([P(:,1:2); Curve0(:,1:2)]));
N = double(ceil((Max-Min)/rball)+5);
CC = floor([P(:,1)-Min(1) P(:,2)-Min(2)]/rball)+3; % cube coordinates of the section points
% Sorts the points according a lexicographical order
S = [CC(:,1) CC(:,2)-1]*[1 N(1)]';
[S,I] = sort(S);
% Define "partition"
np = size(P,1);
partition = cell(N(1),N(2));
p = 1; % The index of the point under comparison
while p <= np
t = 1;
while (p+t <= np) && (S(p) == S(p+t))
t = t+1;
end
q = I(p);
partition{CC(q,1),CC(q,2)} = I(p:p+t-1);
p = p+t;
end
%% Define segments using the previous points
CC = floor([Curve0(:,1)-Min(1) Curve0(:,2)-Min(2)]/rball)+3; % cube coordinates of the seed points
I = CC < 3;
CC(I) = 3;
nc = size(Curve0,1); % number of sets
Dist = 1e8*ones(np,1); % distance of point to the closest center
SoP = zeros(np,1); % the segment the points belong to
Radius = rball^2;
for i = 1:nc
points = partition(CC(i,1)-1:CC(i,1)+1,CC(i,2)-1:CC(i,2)+1);
points = vertcat(points{:});
V = [P(points,1)-Curve0(i,1) P(points,2)-Curve0(i,2)];
dist = sum(V.*V,2);
PointsInBall = dist < Radius;
points = points(PointsInBall);
dist = dist(PointsInBall);
D = Dist(points);
L = dist < D;
I = points(L);
Dist(I) = dist(L);
SoP(I) = i;
end
%% Finalise the segments
% Number of points in each segment and index of each point in its segment
Num = zeros(nc,1);
IndPoints = zeros(np,1);
for i = 1:np
if SoP(i) > 0
Num(SoP(i)) = Num(SoP(i))+1;
IndPoints(i) = Num(SoP(i));
end
end
% Continue if enough non-emtpy segments
if nnz(Num) > 0.05*nc
% Initialization of the "Seg"
Seg = cell(nc,1);
for i = 1:nc
Seg{i} = zeros(Num(i),1);
end
% Define the "Seg"
for i = 1:np
if SoP(i) > 0
Seg{SoP(i),1}(IndPoints(i),1) = i;
end
end
%% Define the new curve points as the average of the segments
Curve = zeros(nc,3); % the new boundary curve
for i = 1:nc
S = Seg{i};
if ~isempty(S)
Curve(i,:) = mean(P(S,:),1);
if norm(Curve(i,:)-Curve0(i,:)) > 1.25*dmax
Curve(i,:) = Curve0(i,:);
end
else
Curve(i,:) = Curve0(i,:);
end
end
%% Add new points if too large distances
V = Curve([2:end 1],:)-Curve(1:end,:);
d = sum(V.*V,2);
Large = d > dmax^2;
m = nnz(Large);
if m > 0
Curve0 = zeros(nc+m,3);
t = 0;
for i = 1:nc
if Large(i)
t = t+1;
Curve0(t,:) = Curve(i,:);
t = t+1;
Curve0(t,:) = Curve(i,:)+0.5*V(i,:);
else
t = t+1;
Curve0(t,:) = Curve(i,:);
end
end
Curve = Curve0;
end
%% Remove new points if too small distances
nc = size(Curve,1);
V = Curve([2:end 1],:)-Curve(1:end,:);
d = sum(V.*V,2);
Small = d < (0.333*dmax)^2;
m = nnz(Small);
if m > 0
for i = 1:nc-1
if Small(i) && Small(i+1)
Small(i+1) = false;
end
end
if ~Small(nc) && Small(1)
Small(1) = false;
Small(nc) = true;
end
Curve = Curve(~Small,:);
end
else
% If not enough new points, return the old curve
Curve = Curve0;
end
|
github | InverseTampere/TreeQSM-master | boundary_curve.m | .m | TreeQSM-master/src/triangulation/boundary_curve.m | 8,054 | utf_8 | 8dbebbed345eaa90bcef38e7c4e1da9f | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [Curve,Ind] = boundary_curve(P,Curve0,rball,dmax)
% ---------------------------------------------------------------------
% BOUNDARY_CURVE.M Determines the boundary curve based on the
% previously defined boundary curve.
%
% Version 1.1.0
% Latest update 3 May 2022
%
% Copyright (C) 2015-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Inputs:
% P Point cloud of the cross section
% Curve0 Seed points from previous cross section curve
% rball Radius of the balls centered at seed points
% dmax Maximum distance between concecutive curve points, if larger,
% then create a new one between the points
% ---------------------------------------------------------------------
% Changes from version 1.0.0 to 1.1.0, 3 May 2022:
% 1) Increased the cubical neighborhood in the generation of the segments
%% Partition the point cloud into cubes
Min = double(min([P(:,1:2); Curve0(:,1:2)]));
Max = double(max([P(:,1:2); Curve0(:,1:2)]));
N = double(ceil((Max-Min)/rball)+5);
% cube coordinates of the section points
CC = floor([P(:,1)-Min(1) P(:,2)-Min(2)]/rball)+3;
% Sorts the points according a lexicographical order
S = [CC(:,1) CC(:,2)-1]*[1 N(1)]';
[S,I] = sort(S);
% Define "partition"
np = size(P,1);
partition = cell(N(1),N(2));
p = 1; % The index of the point under comparison
while p <= np
t = 1;
while (p+t <= np) && (S(p) == S(p+t))
t = t+1;
end
q = I(p);
partition{CC(q,1),CC(q,2)} = I(p:p+t-1);
p = p+t;
end
%% Define segments using the previous points
% cube coordinates of the seed points:
CC = floor([Curve0(:,1)-Min(1) Curve0(:,2)-Min(2)]/rball)+3;
I = CC < 3;
CC(I) = 3;
nc = size(Curve0,1); % number of sets
Dist = 1e8*ones(np,1); % distance of point to the closest center
SoP = zeros(np,1); % the segment the points belong to
Radius = rball^2;
for i = 1:nc
points = partition(CC(i,1)-2:CC(i,1)+2,CC(i,2)-2:CC(i,2)+2);
points = vertcat(points{:});
V = [P(points,1)-Curve0(i,1) P(points,2)-Curve0(i,2)];
dist = sum(V.*V,2);
PointsInBall = dist < Radius;
points = points(PointsInBall);
dist = dist(PointsInBall);
D = Dist(points);
L = dist < D;
I = points(L);
Dist(I) = dist(L);
SoP(I) = i;
end
%% Finalise the segments
% Number of points in each segment and index of each point in its segment
Num = zeros(nc,1);
IndPoints = zeros(np,1);
for i = 1:np
if SoP(i) > 0
Num(SoP(i)) = Num(SoP(i))+1;
IndPoints(i) = Num(SoP(i));
end
end
% Continue if enough non-emtpy segments
if nnz(Num) > 0.05*nc
% Initialization of the "Seg"
Seg = cell(nc,1);
for i = 1:nc
Seg{i} = zeros(Num(i),1);
end
% Define the "Seg"
for i = 1:np
if SoP(i) > 0
Seg{SoP(i),1}(IndPoints(i),1) = i;
end
end
%% Define the new curve points as the average of the segments
Curve = zeros(nc,3); % the new boundary curve
Empty = false(nc,1);
for i = 1:nc
S = Seg{i};
if ~isempty(S)
Curve(i,:) = mean(P(S,:),1);
if norm(Curve(i,:)-Curve0(i,:)) > 1.25*dmax
Curve(i,:) = Curve0(i,:);
end
else
Empty(i) = true;
end
end
%% Interpolate for empty segments
% For empty segments create points by interpolation from neighboring
% non-empty segments
if any(Empty)
for i = 1:nc
if Empty(i)
if i > 1 && i < nc
k = 0;
while i+k <= nc && Empty(i+k)
k = k+1;
end
if i+k <= nc
LineEle = Curve(i+k,:)-Curve(i-1,:);
else
LineEle = Curve(1,:)-Curve(i-1,:);
end
if k < 5
for j = 1:k
Curve(i+j-1,:) = Curve(i-1,:)+j/(k+1)*LineEle;
end
else
Curve(i:i+k-1,:) = Curve0(i:i+k-1,:);
end
elseif i == 1
a = 0;
while Empty(end-a)
a = a+1;
end
b = 1;
while Empty(b)
b = b+1;
end
LineEle = Curve(b,:)-Curve(nc-a,:);
n = a+b-1;
if n < 5
for j = 1:a-1
Curve(nc-a+1+j,:) = Curve(nc-a,:)+j/n*LineEle;
end
for j = 1:b-1
Curve(j,:) = Curve(nc-a,:)+(j+a-1)/n*LineEle;
end
else
Curve(nc-a+2:nc,1:2) = Curve0(nc-a+2:nc,1:2);
Curve(nc-a+2:nc,3) = Curve0(nc-a+2:nc,3);
Curve(1:b-1,1:2) = Curve0(1:b-1,1:2);
Curve(1:b-1,3) = Curve0(1:b-1,3);
end
elseif i == nc
LineEle = Curve(1,:)-Curve(nc-1,:);
Curve(i,:) = Curve(nc-1,:)+0.5*LineEle;
end
end
end
end
% Correct the height
Curve(:,3) = min(Curve(:,3));
% Check self-intersection
[Intersect,IntersectLines] = check_self_intersection(Curve(:,1:2));
% If self-intersection, try to modify the curve
j = 1;
while Intersect && j <= 5
n = size(Curve,1);
InterLines = (1:1:n)';
NumberOfIntersections = cellfun('length',IntersectLines(:,1));
I = NumberOfIntersections > 0;
InterLines = InterLines(I);
CrossLen = vertcat(IntersectLines{I,2});
if length(CrossLen) == length(InterLines)
LineEle = Curve([2:end 1],:)-Curve(1:end,:);
d = sqrt(sum(LineEle.*LineEle,2));
m = length(InterLines);
for i = 1:2:m
if InterLines(i) ~= n
Curve(InterLines(i)+1,:) = Curve(InterLines(i),:)+...
0.9*CrossLen(i)/d(InterLines(i))*LineEle(InterLines(i),:);
else
Curve(1,:) = Curve(InterLines(i),:)+...
0.9*CrossLen(i)/d(InterLines(i))*LineEle(InterLines(i),:);
end
end
[Intersect,IntersectLines] = check_self_intersection(Curve(:,1:2));
j = j+1;
else
j = 6;
end
end
%% Add new points if too large distances
LineEle = Curve([2:end 1],:)-Curve(1:end,:);
d = sum(LineEle.*LineEle,2);
Large = d > dmax^2;
m = nnz(Large);
if m > 0
Curve0 = zeros(nc+m,3);
Ind = zeros(nc+m,2);
t = 0;
for i = 1:nc
if Large(i)
t = t+1;
Curve0(t,:) = Curve(i,:);
if i < nc
Ind(t,:) = [i i+1];
else
Ind(t,:) = [i 1];
end
t = t+1;
Curve0(t,:) = Curve(i,:)+0.5*LineEle(i,:);
if i < nc
Ind(t,:) = [i+1 0];
else
Ind(t,:) = [1 0];
end
else
t = t+1;
Curve0(t,:) = Curve(i,:);
if i < nc
Ind(t,:) = [i i+1];
else
Ind(t,:) = [i 1];
end
end
end
Curve = Curve0;
else
Ind = [(1:1:nc)' [(2:1:nc)'; 1]];
end
%% Remove new points if too small distances
nc = size(Curve,1);
LineEle = Curve([2:end 1],:)-Curve(1:end,:);
d = sum(LineEle.*LineEle,2);
Small = d < (0.333*dmax)^2;
m = nnz(Small);
if m > 0
for i = 1:nc-1
if ~Small(i) && Small(i+1)
Ind(i,2) = -1;
elseif Small(i) && Small(i+1)
Small(i+1) = false;
end
end
if ~Small(nc) && Small(1)
Ind(nc,2) = -1;
Ind(1,2) = -1;
Small(1) = false;
Small(nc) = true;
I = Ind(:,2) > 0;
Ind(2:end,1) = Ind(2:end,1)+1;
Ind(I,2) = Ind(I,2)+1;
end
Ind = Ind(~Small,:);
Curve = Curve(~Small,:);
end
else
% If not enough new points, return the old curve
Ind = [(1:1:nc)' [(2:1:nc)'; 1]];
Curve = Curve0;
end
|
github | InverseTampere/TreeQSM-master | curve_based_triangulation.m | .m | TreeQSM-master/src/triangulation/curve_based_triangulation.m | 16,621 | utf_8 | 0a258bbf13767bf5a6c076d151b6307f | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function triangulation = curve_based_triangulation(P,TriaHeight,TriaWidth)
% ---------------------------------------------------------------------
% CURVE_BASED_TRIANGULATION.M Reconstructs a triangulation for the
% stem-buttress surface based on boundary curves
%
% Version 1.1.0
% Latest update 3 May 2022
%
% Copyright (C) 2015-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Inputs:
% P Point cloud of the stem to be triangulated
% TriaHeight Height of the triangles
% TriaWidth Width of the triangles
%
% Output:
% triangulation Structure field defining the triangulation. Contains
% the following main fields:
% vert Vertices of the triangulation model (nv x 3)-matrix
% facet Facets (triangles) of the triangulation
% (the vertices forming the facets)
% fvd Color information of the facets for plotting with "patch"
% volume Volume enclosed by the facets in liters
% bottom The z-coordinate of the bottom of the model
% top The z-coordinate of the top of the model
% triah TriaHeight
% triaw TriaWidth
% ---------------------------------------------------------------------
% Changes from version 1.0.2 to 1.1.0, 3 May 2022:
% 1) Increased the radius of the balls at seed points from TriaWidth to
% 2*TriaWidth in the input of "boundary_curve"
% 2) Added triangle orientation check after the side is covered with
% triangles so that the surface normals are pointing outward
% 3) Modified the check if the new boundary curve changes only a little and
% then stop reconstruction
% 4) Added halving the triangle height if the boundary curve length has
% increased three times.
% 5) Changed the bottom level from the smallest z-coordinate to the
% average of the lowest 100 z-coordinates.
% 6) Minor streamlining the code and added more comments
% Changes from version 1.0.2 to 1.0.3, 11 Aug 2020:
% 1) Small changes in the code when computing the delaunay triangulation
% of the top layer
% Changes from version 1.0.1 to 1.0.2, 15 Jan 2020:
% 1) Added side surface areas (side, top, bottom) to output as fields
% Changes from version 1.0.0 to 1.0.1, 26 Nov 2019:
% 1) Removed the plotting of the triangulation model at the end of the code
%% Determine the first boundary curve
np = size(P,1);
[~,I] = sort(P(:,3),'descend');
P = P(I,:);
Hbot = mean(P(end-100:end,3));
Htop = P(1,3);
N = ceil((Htop-Hbot)/TriaHeight);
Vert = zeros(1e5,3);
Tria = zeros(1e5,3);
TriaLay = zeros(1e5,1);
VertLay = zeros(1e5,1,'uint16');
Curve = zeros(0,3);
i = 0; % the layer whose cross section is under reconstruction
ps = 1;
while P(ps,3) > Htop-i*TriaHeight
ps = ps+1;
end
pe = ps;
while i < N/4 && isempty(Curve)
% Define thin horizontal cross section of the stem
i = i+1;
ps = pe+1;
k = 1;
while P(ps+k,3) > Htop-i*TriaHeight
k = k+1;
end
pe = ps+k-1;
PSection = P(ps:pe,:);
% Create initial boundary curve:
iter = 0;
while iter <= 15 && isempty(Curve)
iter = iter+1;
Curve = initial_boundary_curve(PSection,TriaWidth);
end
end
if isempty(Curve)
triangulation = zeros(0,1);
disp(' No triangulation: Problem with the first curve')
return
end
% make the height of the curve even:
Curve(:,3) = max(Curve(:,3));
% Save vertices:
nv = size(Curve,1); % number of vertices in the curve
Vert(1:nv,:) = Curve;
VertLay(1:nv) = i;
t = 0;
m00 = size(Curve,1);
%% Determine the other boundary curves and the triangulation downwards
i0 = i;
i = i0+1;
nv0 = 0;
LayerBottom = Htop-i*TriaHeight;
while i <= N && pe < np
%% Define thin horizontal cross section of the stem
ps = pe+1;
k = 1;
while ps+k <= np && P(ps+k,3) > LayerBottom
k = k+1;
end
pe = ps+k-1;
PSection = P(ps:pe,:);
%% Create boundary curves using the previous curves as seeds
if i > i0+1
nv0 = nv1;
end
% Define seed points:
Curve(:,3) = Curve(:,3)-TriaHeight;
Curve0 = Curve;
% Create new boundary curve
[Curve,Ind] = boundary_curve(PSection,Curve,2*TriaWidth,1.5*TriaWidth);
if isempty(Curve)
disp(' No triangulation: Empty curve')
triangulation = zeros(0,1);
return
end
Curve(:,3) = max(Curve(:,3));
%% Check if the curve intersects itself
[Intersect,IntersectLines] = check_self_intersection(Curve(:,1:2));
%% If self-intersection, try to modify the curve
j = 1;
while Intersect && j <= 10
n = size(Curve,1);
CrossLines = (1:1:n)';
NumberOfIntersections = cellfun('length',IntersectLines(:,1));
I = NumberOfIntersections > 0;
CrossLines = CrossLines(I);
CrossLen = vertcat(IntersectLines{I,2});
if length(CrossLen) == length(CrossLines)
LineEle = Curve([2:end 1],:)-Curve(1:end,:);
d = sqrt(sum(LineEle.*LineEle,2));
m = length(CrossLines);
for k = 1:2:m
if CrossLines(k) ~= n
Curve(CrossLines(k)+1,:) = Curve(CrossLines(k),:)+...
0.9*CrossLen(k)/d(CrossLines(k))*LineEle(CrossLines(k),:);
else
Curve(1,:) = Curve(CrossLines(k),:)+...
0.9*CrossLen(k)/d(CrossLines(k))*LineEle(CrossLines(k),:);
end
end
[Intersect,IntersectLines] = check_self_intersection(Curve(:,1:2));
j = j+1;
else
j = 11;
end
end
m = size(Curve,1);
if Intersect
%% Curve self-intersects, use previous curve to extrapolate to the bottom
H = Curve0(1,3)-Hbot;
if H > 0.75 && Intersect
triangulation = zeros(0,1);
disp([' No triangulation: Self-intersection at ',...
num2str(H),' m from the bottom'])
return
end
Curve = Curve0;
Curve(:,3) = Curve(:,3)-TriaHeight;
Nadd = floor(H/TriaHeight)+1;
m = size(Curve,1);
Ind = [(1:1:m)' [(2:1:m)'; 1]];
T = H/Nadd;
for k = 1:Nadd
if k > 1
Curve(:,3) = Curve(:,3)-T;
end
Vert(nv+1:nv+m,:) = Curve;
VertLay(nv+1:nv+m) = i;
%% Define the triangulation between two boundary curves
nv1 = nv;
nv = nv+m;
t0 = t+1;
pass = false;
for j = 1:m
if Ind(j,2) > 0 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,:)];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,2) nv1+j+1];
elseif Ind(j,2) > 0 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,:)];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,2) nv1+1];
elseif Ind(j,2) == 0 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv1+j+1];
elseif Ind(j,2) == 0 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv1+1];
elseif j == 1 && Ind(j,2) == -1
t = t+1;
Tria(t,:) = [nv nv1 nv0+1];
t = t+1;
Tria(t,:) = [nv nv0+1 nv1+1];
t = t+1;
Tria(t,:) = [nv0+1 nv0+2 nv1+1];
t = t+1;
Tria(t,:) = [nv1+1 nv0+2 nv0+3];
t = t+1;
Tria(t,:) = [nv1+1 nv0+3 nv1+2];
pass = true;
elseif Ind(j,2) == -1 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv0+Ind(j,1)+1];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1)+1 nv1+j+1];
t = t+1;
Tria(t,:) = [nv0+Ind(j,1)+1 nv0+Ind(j,1)+2 nv1+j+1];
elseif Ind(j,2) == -1 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv0+Ind(j,1)+1];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1)+1 nv1+1];
t = t+1;
Tria(t,:) = [nv0+Ind(j,1)+1 nv0+1 nv1+1];
end
end
TriaLay(t0:t) = i;
i = i+1;
nv0 = nv1;
end
i = N+1;
else
%% No self-intersection, proceed with triangulation and new curves
Vert(nv+1:nv+m,:) = Curve;
VertLay(nv+1:nv+m) = i;
%% If little change between Curve and Curve0, stop the reconstruction
C = intersect(Curve0,Curve,"rows");
if size(C,1) > 0.7*size(Curve,1)
N = i;
end
%% If the boundary curve has grown much longer than originally, then
% decrease the triangle height
if m > 3*m00
TriaHeight = TriaHeight/2; % use half the height
N = N+ceil((N-i)/2); % update the number of layers
m00 = m;
end
%% Define the triangulation between two boundary curves
nv1 = nv;
nv = nv+m;
t0 = t+1;
pass = false;
for j = 1:m
if Ind(j,2) > 0 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,:)];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,2) nv1+j+1];
elseif Ind(j,2) > 0 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,:)];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,2) nv1+1];
elseif Ind(j,2) == 0 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv1+j+1];
elseif Ind(j,2) == 0 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv1+1];
elseif j == 1 && Ind(j,2) == -1
t = t+1;
Tria(t,:) = [nv nv1 nv0+1];
t = t+1;
Tria(t,:) = [nv nv0+1 nv1+1];
t = t+1;
Tria(t,:) = [nv0+1 nv0+2 nv1+1];
t = t+1;
Tria(t,:) = [nv1+1 nv0+2 nv0+3];
t = t+1;
Tria(t,:) = [nv1+1 nv0+3 nv1+2];
pass = true;
elseif Ind(j,2) == -1 && j < m
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv0+Ind(j,1)+1];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1)+1 nv1+j+1];
t = t+1;
Tria(t,:) = [nv0+Ind(j,1)+1 nv0+Ind(j,1)+2 nv1+j+1];
elseif Ind(j,2) == -1 && ~pass
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1) nv0+Ind(j,1)+1];
t = t+1;
Tria(t,:) = [nv1+j nv0+Ind(j,1)+1 nv1+1];
t = t+1;
Tria(t,:) = [nv0+Ind(j,1)+1 nv0+1 nv1+1];
end
end
TriaLay(t0:t) = i;
i = i+1;
LayerBottom = LayerBottom-TriaHeight;
end
end
Vert = Vert(1:nv,:);
VertLay = VertLay(1:nv);
Tria = Tria(1:t,:);
TriaLay = TriaLay(1:t);
%% Check the orientation of the triangles
% so that surface normals are outward pointing
a = round(t/10); % select the top triangles
U = Vert(Tria(1:a,2),:)-Vert(Tria(1:a,1),:);
V = Vert(Tria(1:a,3),:)-Vert(Tria(1:a,1),:);
Center = mean(Vert(1:nv-1,:)); % the center of the stem
C = Vert(Tria(1:a,1),:)+0.25*V+0.25*U;
W = C(:,1:2)-Center(1:2); % vectors from the triagles to the stem's center
Normals = cross(U,V);
if nnz(sum(Normals(:,1:2).*W,2) < 0) > 0.5*length(C)
Tria(1:t,1:2) = [Tria(1:t,2) Tria(1:t,1)];
end
% U = Vert(Tria(1:t,2),:)-Vert(Tria(1:t,1),:);
% V = Vert(Tria(1:t,3),:)-Vert(Tria(1:t,1),:);
% Normals = cross(U,V);
% Normals = normalize(Normals);
% C = Vert(Tria(1:t,1),:)+0.25*V+0.25*U;
% fvd = ones(t,1);
% figure(5)
% point_cloud_plotting(P(1,:),5,6)
% patch('Vertices',Vert,'Faces',Tria,'FaceVertexCData',fvd,'FaceColor','flat')
% alpha(1)
% hold on
% arrow_plot(C,0.1*Normals,5)
% hold off
% axis equal
% pause
%% Remove possible double triangles
nt = size(Tria,1);
Keep = true(nt,1);
Scoord = Vert(Tria(:,1),:)+Vert(Tria(:,2),:)+Vert(Tria(:,3),:);
S = sum(Scoord,2);
[part,CC] = cubical_partition(Scoord,2*TriaWidth);
for j = 1:nt-1
if Keep(j)
points = part(CC(j,1)-1:CC(j,1)+1,CC(j,2)-1:CC(j,2)+1,CC(j,3)-1:CC(j,3)+1);
points = vertcat(points{:});
I = S(j) == S(points);
J = points ~= j;
I = I&J&Keep(points);
if any(I)
p = points(I);
I = intersect(Tria(j,:),Tria(p,:));
if length(I) == 3
Keep(p) = false;
end
end
end
end
Tria = Tria(Keep,:);
TriaLay = TriaLay(Keep);
%% Generate triangles for the horizontal layers and compute the volumes
% Triangles of the ground layer
% Select the boundary curve:
N = double(max(VertLay));
I = VertLay == N;
Vert(I,3) = Hbot;
ind = (1:1:nv)';
ind = ind(I);
Curve = Vert(I,:); % Boundary curve of the bottom
n = size(Curve,1);
if n < 10
triangulation = zeros(0,1);
disp(' No triangulation: Ground layer boundary curve too small')
return
end
% Define Delaunay triangulation for the bottom
C = zeros(n,2);
C(:,1) = (1:1:n)';
C(1:n-1,2) = (2:1:n)';
C(n,2) = 1;
warning off
dt = delaunayTriangulation(Curve(:,1),Curve(:,2),C);
In = dt.isInterior();
GroundTria = dt(In,:);
Points = dt.Points;
warning on
if size(Points,1) > size(Curve,1)
disp(' No triangulation: Problem with delaunay in the bottom layer')
triangulation = zeros(0,1);
return
end
GroundTria0 = GroundTria;
GroundTria(:,1) = ind(GroundTria(:,1));
GroundTria(:,2) = ind(GroundTria(:,2));
GroundTria(:,3) = ind(GroundTria(:,3));
% Compute the normals and areas
U = Curve(GroundTria0(:,2),:)-Curve(GroundTria0(:,1),:);
V = Curve(GroundTria0(:,3),:)-Curve(GroundTria0(:,1),:);
Cg = Curve(GroundTria0(:,1),:)+0.25*V+0.25*U;
Ng = cross(U,V);
I = Ng(:,3) > 0; % Check orientation
Ng(I,:) = -Ng(I,:);
Ag = 0.5*sqrt(sum(Ng.*Ng,2));
Ng = 0.5*[Ng(:,1)./Ag Ng(:,2)./Ag Ng(:,3)./Ag];
% Remove possible negative area triangles:
I = Ag > 0; Ag = Ag(I); Cg = Cg(I,:); Ng = Ng(I,:);
GroundTria = GroundTria(I,:);
% Update the triangles:
Tria = [Tria; GroundTria];
TriaLay = [TriaLay; (N+1)*ones(size(GroundTria,1),1)];
if abs(sum(Ag)-polyarea(Curve(:,1),Curve(:,2))) > 0.001*sum(Ag)
disp(' No triangulation: Problem with delaunay in the bottom layer')
triangulation = zeros(0,1);
return
end
% Triangles of the top layer
% Select the top curve:
N = double(min(VertLay));
I = VertLay == N;
ind = (1:1:nv)';
ind = ind(I);
Curve = Vert(I,:);
CenterTop = mean(Curve);
% Delaunay triangulation of the top:
n = size(Curve,1);
C = zeros(n,2);
C(:,1) = (1:1:n)';
C(1:n-1,2) = (2:1:n)';
C(n,2) = 1;
warning off
dt = delaunayTriangulation(Curve(:,1),Curve(:,2),C);
Points = dt.Points;
warning on
if min(size(dt)) == 0 || size(Points,1) > size(Curve,1)
disp(' No triangulation: Problem with delaunay in the top layer')
triangulation = zeros(0,1);
return
end
In = dt.isInterior();
TopTria = dt(In,:);
TopTria0 = TopTria;
TopTria(:,1) = ind(TopTria(:,1));
TopTria(:,2) = ind(TopTria(:,2));
TopTria(:,3) = ind(TopTria(:,3));
% Compute the normals and areas:
U = Curve(TopTria0(:,2),:)-Curve(TopTria0(:,1),:);
V = Curve(TopTria0(:,3),:)-Curve(TopTria0(:,1),:);
Ct = Curve(TopTria0(:,1),:)+0.25*V+0.25*U;
Nt = cross(U,V);
I = Nt(:,3) < 0;
Nt(I,:) = -Nt(I,:);
At = 0.5*sqrt(sum(Nt.*Nt,2));
Nt = 0.5*[Nt(:,1)./At Nt(:,2)./At Nt(:,3)./At];
% Remove possible negative area triangles:
I = At > 0; At = At(I); Ct = Ct(I,:); Nt = Nt(I,:);
TopTria = TopTria(I,:);
% Update the triangles:
Tria = [Tria; TopTria];
TriaLay = [TriaLay; N*ones(size(TopTria,1),1)];
if abs(sum(At)-polyarea(Curve(:,1),Curve(:,2))) > 0.001*sum(At)
disp(' No triangulation: Problem with delaunay in the top layer')
triangulation = zeros(0,1);
return
end
% Triangles of the side
B = TriaLay <= max(VertLay) & TriaLay > 1;
U = Vert(Tria(B,2),:)-Vert(Tria(B,1),:);
V = Vert(Tria(B,3),:)-Vert(Tria(B,1),:);
Cs = Vert(Tria(B,1),:)+0.25*V+0.25*U;
Ns = cross(U,V);
As = 0.5*sqrt(sum(Ns.*Ns,2));
Ns = 0.5*[Ns(:,1)./As Ns(:,2)./As Ns(:,3)./As];
I = As > 0; Ns = Ns(I,:); As = As(I); Cs = Cs(I,:);
% Volumes in liters
VTotal = sum(At.*sum(Ct.*Nt,2))+sum(As.*sum(Cs.*Ns,2))+sum(Ag.*sum(Cg.*Ng,2));
VTotal = round(10000*VTotal/3)/10;
if VTotal < 0
disp(' No triangulation: Problem with volume')
triangulation = zeros(0,1);
return
end
V = Vert(Tria(:,1),1:2)-CenterTop(1:2);
fvd = sqrt(sum(V.*V,2));
triangulation.vert = single(Vert);
triangulation.facet = uint16(Tria);
triangulation.fvd = single(fvd);
triangulation.volume = VTotal;
triangulation.SideArea = sum(As);
triangulation.BottomArea = sum(Ag);
triangulation.TopArea = sum(At);
triangulation.bottom = min(Vert(:,3));
triangulation.top = max(Vert(:,3));
triangulation.triah = TriaHeight;
triangulation.triaw = TriaWidth;
% figure(5)
% point_cloud_plotting(P,5,6)
% patch('Vertices',Vert,'Faces',Tria,'FaceVertexCData',fvd,'FaceColor','flat')
% % hold on
% % arrow_plot(Cs,0.2*Ns,5)
% % hold off
% % axis equal
% alpha(1)
|
github | InverseTampere/TreeQSM-master | check_self_intersection.m | .m | TreeQSM-master/src/triangulation/check_self_intersection.m | 6,103 | utf_8 | 28cf4603e614bcb3a761c35f28e1964f | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [Intersect,IntersectLines] = check_self_intersection(Curve)
% The function takes in a curve (the coordinates of the vertices, in the
% right order) and checks if the curve intersects itself
%
% Outputs:
% Intersect Logical value indicating if the curve self-intersects
% IntersectLines Cell array containing for each line element which are
% the intersecting elements and how far away along
% the line the intersection point is
if ~isempty(Curve)
dim = size(Curve,2); % two or three dimensional curve
n = size(Curve,1); % number of points in the curve
V = Curve([(2:n)'; 1],:)-Curve; % line elements forming the curve
L = sqrt(sum(V.*V,2)); % the lengths of the line elements
i = 1; % the line element under inspection
Ind = (1:1:n)'; % indexes of the line elements
if dim == 2 % 2d curves
% directions (unit vectors) of the line elements:
DirLines = [1./L.*V(:,1) 1./L.*V(:,2)];
Intersect = false;
if nargout == 1 % check only if the curve intersects
while i <= n-1 && ~Intersect
% Select the line elements that can intersect element i
if i > 1
I = Ind > i+1 | Ind < i-1;
else
I = Ind > i+1 & Ind < n;
end
ind = Ind(I)';
for j = ind
% Solve for the crossing points of every line element
A = [DirLines(j,:)' -DirLines(i,:)'];
b = Curve(i,:)'-Curve(j,:)';
Ainv = 1/(A(1,1)*A(2,2)-A(1,2)*A(2,1))*[A(2,2) -A(1,2); -A(2,1) A(1,1)];
x = Ainv*b; % signed length along the line elements to the crossing
if x(1) >= 0 && x(1) <= L(j) && x(2) >= 0 && x(2) <= L(i)
Intersect = true;
end
end
i = i+1; % study the next line element
end
else % determine also all intersection points (line elements)
IntersectLines = cell(n,2);
for i = 1:n-1
% Select the line elements that can intersect element i
if i > 1
I = Ind > i+1 | Ind < i-1;
else
I = Ind > i+1 & Ind < n;
end
ind = Ind(I)';
for j = ind
% Solve for the crossing points of every line element
A = [DirLines(j,:)' -DirLines(i,:)'];
b = Curve(i,:)'-Curve(j,:)';
Ainv = 1/(A(1,1)*A(2,2)-A(1,2)*A(2,1))*[A(2,2) -A(1,2); -A(2,1) A(1,1)];
x = Ainv*b;
if x(1) >= 0 && x(1) <= L(j) && x(2) >= 0 && x(2) <= L(i)
Intersect = true;
% which line elements cross element i:
IntersectLines{i,1} = [IntersectLines{i,1}; j];
% which line elements cross element j:
IntersectLines{j,1} = [IntersectLines{j,1}; i];
% distances along element i to intersection points:
IntersectLines{i,2} = [IntersectLines{i,2}; x(1)];
% distances along element j to intersection points:
IntersectLines{j,2} = [IntersectLines{j,2}; x(2)];
end
end
end
% remove possible multiple values
for i = 1:n
IntersectLines{i,1} = unique(IntersectLines{i,1});
IntersectLines{i,2} = min(IntersectLines{i,2});
end
end
elseif dim == 3 % 3d curves
% directions (unit vectors) of the line elements
DirLines = [1./L.*V(:,1) 1./L.*V(:,2) 1./L.*V(:,3)];
Intersect = false;
if nargout == 1 % check only if the curve intersects
while i <= n-1
% Select the line elements that can intersect element i
if i > 1
I = Ind > i+1 | Ind < i-1;
else
I = Ind > i+1 & Ind < n;
end
% Solve for possible intersection points
[~,DistOnRay,DistOnLines] = distances_between_lines(...
Curve(i,:),DirLines(i,:),Curve(I,:),DirLines(I,:));
if any(DistOnRay >= 0 & DistOnRay <= L(i) &...
DistOnLines > 0 & DistOnLines <= L(I))
Intersect = true;
i = n;
else
i = i+1; % study the next line element
end
end
else % determine also all intersection points (line elements)
IntersectLines = cell(n,2);
for i = 1:n-1
% Select the line elements that can intersect element i
if i > 1
I = Ind > i+1 | Ind < i-1;
else
I = Ind > i+1 & Ind < n;
end
% Solve for possible intersection points
[D,DistOnRay,DistOnLines] = distances_between_lines(...
Curve(i,:),DirLines(i,:),Curve(I,:),DirLines(I,:));
if any(DistOnRay >= 0 & DistOnRay <= L(i) & ...
DistOnLines > 0 & DistOnLines <= L(I))
Intersect = true;
J = DistOnRay >= 0 & DistOnRay <= L(i) & ...
DistOnLines > 0 & DistOnLines <= L(I);
ind = Ind(I);
ind = ind(J);
DistOnLines = DistOnLines(J);
IntersectLines{i,1} = ind;
IntersectLines{i,2} = DistOnRay(J);
% Record the elements intersecting
for j = 1:length(ind)
IntersectLines{ind(j),1} = [IntersectLines{ind(j),1}; i];
IntersectLines{ind(j),2} = [IntersectLines{ind(j),2}; DistOnLines(j)];
end
end
end
% remove possible multiple values
for i = 1:n
IntersectLines{i} = unique(IntersectLines{i});
IntersectLines{i,2} = min(IntersectLines{i,2});
end
end
end
else % Empty curve
Intersect = false;
IntersectLines = cell(1,1);
end
|
github | InverseTampere/TreeQSM-master | branches.m | .m | TreeQSM-master/src/main_steps/branches.m | 4,480 | utf_8 | e5a63f1d1e99bdd56ea657a41c8df921 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function branch = branches(cylinder)
% ---------------------------------------------------------------------
% BRANCHES.M Determines the branching structure and computes branch
% attributes
%
% Version 3.0.0
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Determines the branches (cylinders in a segment define a branch), their order
% and topological parent-child-relation. Branch number one is the trunk and
% its order is zero. Notice that branch number does not tell its age in the
% sense that branch number two would be the oldest branch and the number
% three the second oldest.
%
% Inputs:
% cylinder Cylinders, structure array
%
% Outputs:
% branch Branch structure array, contains fields:
% Branch order, parent, volume, length, angle, height, azimuth
% and diameter
% ---------------------------------------------------------------------
% Changes from version 2.1.0 to 3.0.0, 2 May 2022:
% 1) Changed the code such that the input "segment" and output "cylinder"
% are not needed anymore, which simplified the code in many places.
% Cylinder info is now computed in "cylinders" function.
% Changes from version 2.0.0 to 2.1.0, 25 Jan 2020:
% 1) Chanced the coding to simplify and shorten the code
% 2) Added branch area and zenith direction as new fields in the
% branch-structure array
% 3) Removed the line were 'ChildCyls' and'CylsInSegment' fields are
% removed from the cylinder-structure array
Rad = cylinder.radius;
Len = cylinder.length;
Axe = cylinder.axis;
%% Branches
nc = size(Rad,1); % number of cylinder
ns = max(cylinder.branch); % number of segments
BData = zeros(ns,9); % branch ord, dia, vol, are, len, ang, hei, azi, zen
ind = (1:1:nc)';
CiB = cell(ns,1);
for i = 1:ns
C = ind(cylinder.branch == i);
CiB{i} = C;
if ~isempty(C)
BData(i,1) = cylinder.BranchOrder(C(1)); % branch order
BData(i,2) = 2*Rad(C(1)); % branch diameter
BData(i,3) = 1000*pi*sum(Len(C).*Rad(C).^2); % branch volume
BData(i,4) = 2*pi*sum(Len(C).*Rad(C)); % branch area
BData(i,5) = sum(Len(C)); % branch length
% if the first cylinder is added to fill a gap, then
% use the second cylinder to compute the angle:
if cylinder.added(C(1)) && length(C) > 1
FC = C(2); % first cyl in the branch
PC = cylinder.parent(C(1)); % parent cylinder of the branch
else
FC = C(1);
PC = cylinder.parent(FC);
end
if PC > 0
BData(i,6) = 180/pi*acos(Axe(FC,:)*Axe(PC,:)'); % branch angle
end
BData(i,7) = cylinder.start(C(1),3)-cylinder.start(1,3); % branch height
BData(i,8) = 180/pi*atan2(Axe(C(1),2),Axe(C(1),1)); % branch azimuth
BData(i,9) = 180/pi*acos(Axe(C(1),3)); % branch zenith
end
end
BData = single(BData);
%% Branching structure (topology, parent-child-relation)
branch.order = uint8(BData(:,1));
BPar = zeros(ns,1);
Chi = cell(nc,1);
for i = 1:nc
c = ind(cylinder.parent == i);
c = c(c ~= cylinder.extension(i));
Chi{i} = c;
end
for i = 1:ns
C = CiB{i};
ChildCyls = unique(vertcat(Chi{C}));
CB = unique(cylinder.branch(ChildCyls)); % Child branches
BPar(CB) = i;
end
if ns <= 2^16
branch.parent = uint16(BPar);
else
branch.parent = uint32(BPar);
end
%% Finish the definition of branch
branch.diameter = BData(:,2); % diameters in meters
branch.volume = BData(:,3); % volumes in liters
branch.area = BData(:,4); % areas in square meters
branch.length = BData(:,5); % lengths in meters
branch.angle = BData(:,6); % angles in degrees
branch.height = BData(:,7); % heights in meters
branch.azimuth = BData(:,8); % azimuth directions in angles
branch.zenith = BData(:,9); % zenith directions in angles
|
github | InverseTampere/TreeQSM-master | tree_data.m | .m | TreeQSM-master/src/main_steps/tree_data.m | 31,615 | utf_8 | 29dd42794f0a3a84a3855ab686bba020 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [treedata,triangulation] = tree_data(cylinder,branch,trunk,inputs)
% ---------------------------------------------------------------------
% TREE_DATA.M Calculates some tree attributes from cylinder QSM.
%
% Version 3.0.1
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Inputs:
% cylinder:
% radius (Rad) Radii of the cylinders
% length (Len) Lengths of the cylinders
% start (Sta) Starting points of the cylinders
% axis (Axe) Axes of the cylinders
% branch:
% order (BOrd) Branch order data
% volume (BVol) Branch volume data
% length (BLen) Branch length data
% trunk Point cloud of the trunk
% inputs Input structure, defines if results are displayed and
% plotted and if triangulation results are computed
%
% Output:
% treedata Tree data/attributes in a struct
% ---------------------------------------------------------------------
% Changes from version 3.0.0 to 3.0.1, 2 May 2022:
% 1) Small changes in "crown_measures" when computing crown base to prevent
% errors in special cases.
% 2) Small change for how to compute the "first major branch" in
% "triangulate_stem".
% 3) Modified code so that "n" cannot be empty in "branch_distribution" and
% cause warning
% 4) Decreased the minimum triangle sizes in "triangulate_stem"
% 5) The triangulation code has some changes.
% 6) Minor streamlining of the code
% Changes from version 2.0.2 to 3.0.0, 13 Feb 2020:
% 1) Changed the setup for triangulation:
% - The size of the triangles is more dependent on the dbh
% - The height of the stem section is defined up to the first major branch
% (branch diameter > 0.1*dbh or maximum branch diameter) but keeping
% the stem diameter above 25% of dbh.
% 2) Makes now more tries for triangulation, also changes triangle size
% and the length of the stem section if necessary.
% 3) Changed the names of some fields in the output:
% - VolumeCylDiam --> VolCylDia
% - LengthCylDiam --> LenCylDia
% - VolumeBranchOrder --> VolBranchOrd
% - LengthBranchOrder --> LenBranchOrd
% - NumberBranchOrder --> NumBranchOrd
% 3) Added many new fields into the output treedata, particularly distributions:
% - Total length (trunk length + branch length) ("TotalLength")
% - Trunk area and branch area ("TrunkArea" and "BranchArea")
% - Crown dimensions: "CrownDiamAve", "CrownDiamMax","CrownAreaConv",
% "CrownAreaAlpha", "CrownBaseHeight", "CrownLength", "CrownRatio",
% "CrownVolumeConv", "CrownVolumeAlpha".
% - Vertical tree profile "VerticalProfile" and tree diameters in
% 18 directions at 20 height layers "spreads".
% - Branch area as functions of diameter class and branch order
% ("AreCylDia" and "AreBranchOrd")
% - Volume, area and length of CYLINDERS (tree segments) in 1 meter
% HEIGHT classes ("VolCylHei", "AreCylHei", "LenCylHei")
% - Volume, area and length of CYLINDERS (tree segments) in 10 deg
% ZENITH DIRECTION classes ("VolCylZen", "AreCylZen", "LenCylZen")
% - Volume, area and length of CYLINDERS (tree segments) in 10 deg
% AZIMUTH DIRECTION classes ("VolCylAzi", "AreCylAzi", "LenCylAzi")
% - Volume, area, length and number of all and 1st-order BRANCHES
% in 1 cm DIAMETER classes ("AreBranchDia", "AreBranch1Dia", etc.)
% - Volume, area, length and number of all and 1st-order BRANCHES
% in 1 meter HEIGHT classes ("AreBranchDia", "AreBranch1Dia", etc.)
% - Volume, area, length and number of all and 1st-order BRANCHES
% in 10 degree BRANCHING ANGLE classes
% ("AreBranchAng", "AreBranch1Ang", etc.)
% - Volume, area, length and number of all and 1st-order BRANCHES
% in 22.5 degree branch AZIMUTH ANGLE classes
% ("AreBranchAzi", "AreBranch1Azi", etc.)
% - Volume, area, length and number of all and 1st-order BRANCHES
% in 10 degree branch ZENITH ANGLE classes
% ("AreBranchZen", "AreBranch1Zen", etc.)
% 4) Added new area-related fields into the output triangulation:
% - side area, top area and bottom area
% 5) Added new triangulation related fields to the output treedata:
% - TriaTrunkArea side area of the triangulation
% - MixTrunkArea trunk area from triangulation and cylinders
% - MixTotalArea total area where the MixTrunkArea used instead
% of TrunkArea
% 6) Structure has more subfunctions.
% 7) Changed the coding for cylinder fitting of DBH to conform new output
% of the least_square_cylinder.
% Changes from version 2.0.1 to 2.0.2, 26 Nov 2019:
% 1) Bug fix: Added a statement "C < nc" for a while command that makes sure
% that the index "C" does not exceed the number of stem cylinders, when
% determining the index of cylinders up to first branch.
% 2) Bug fix: Changed "for i = 1:BO" to "for i = 1:max(1,BO)" where
% computing branch order data.
% 3) Added the plotting of the triangulation model
% Changes from version 2.0.0 to 2.0.1, 9 Oct 2019:
% 1) Bug fix: Changed the units (from 100m to 1m) for computing the branch
% length distribution: branch length per branch order.
% Define some variables from cylinder:
Rad = cylinder.radius;
Len = cylinder.length;
nc = length(Rad);
ind = (1:1:nc)';
Trunk = cylinder.branch == 1; % Trunk cylinders
%% Tree attributes from cylinders
% Volumes, areas, lengths, branches
treedata.TotalVolume = 1000*pi*Rad.^2'*Len;
treedata.TrunkVolume = 1000*pi*Rad(Trunk).^2'*Len(Trunk);
treedata.BranchVolume = 1000*pi*Rad(~Trunk).^2'*Len(~Trunk);
bottom = min(cylinder.start(:,3));
[top,i] = max(cylinder.start(:,3));
if cylinder.axis(i,3) > 0
top = top+Len(i)*cylinder.axis(i,3);
end
treedata.TreeHeight = top-bottom;
treedata.TrunkLength = sum(Len(Trunk));
treedata.BranchLength = sum(Len(~Trunk));
treedata.TotalLength = treedata.TrunkLength+treedata.BranchLength;
NB = length(branch.order)-1; % number of branches
treedata.NumberBranches = NB;
BO = max(branch.order); % maximum branch order
treedata.MaxBranchOrder = BO;
treedata.TrunkArea = 2*pi*sum(Rad(Trunk).*Len(Trunk));
treedata.BranchArea = 2*pi*sum(Rad(~Trunk).*Len(~Trunk));
treedata.TotalArea = 2*pi*sum(Rad.*Len);
%% Diameter at breast height (dbh)
% Dbh from the QSM and from a cylinder fitted particularly to the correct place
treedata = dbh_cylinder(treedata,trunk,Trunk,cylinder,ind);
%% Crown measures,Vertical profile and spreads
[treedata,spreads] = crown_measures(treedata,cylinder,branch);
%% Trunk volume and DBH from triangulation
if inputs.Tria
[treedata,triangulation] = triangulate_stem(...
treedata,cylinder,branch,trunk);
else
triangulation = 0;
end
%% Tree Location
treedata.location = cylinder.start(1,:);
%% Stem taper
R = Rad(Trunk);
n = length(R);
Taper = zeros(n+1,2);
Taper(1,2) = 2*R(1);
Taper(2:end,1) = cumsum(Len(Trunk));
Taper(2:end,2) = [2*R(2:end); 2*R(n)];
treedata.StemTaper = Taper';
%% Vertical profile and spreads
treedata.VerticalProfile = mean(spreads,2);
treedata.spreads = spreads;
%% CYLINDER DISTRIBUTIONS:
%% Wood part diameter distributions
% Volume, area and length of wood parts as functions of cylinder diameter
% (in 1cm diameter classes)
treedata = cylinder_distribution(treedata,cylinder,'Dia');
%% Wood part height distributions
% Volume, area and length of cylinders as a function of height
% (in 1 m height classes)
treedata = cylinder_height_distribution(treedata,cylinder,ind);
%% Wood part zenith direction distributions
% Volume, area and length of wood parts as functions of cylinder zenith
% direction (in 10 degree angle classes)
treedata = cylinder_distribution(treedata,cylinder,'Zen');
%% Wood part azimuth direction distributions
% Volume, area and length of wood parts as functions of cylinder zenith
% direction (in 10 degree angle classes)
treedata = cylinder_distribution(treedata,cylinder,'Azi');
%% BRANCH DISTRIBUTIONS:
%% Branch order distributions
% Volume, area, length and number of branches as a function of branch order
treedata = branch_order_distribution(treedata,branch);
%% Branch diameter distributions
% Volume, area, length and number of branches as a function of branch diameter
% (in 1cm diameter classes)
treedata = branch_distribution(treedata,branch,'Dia');
%% Branch height distribution
% Volume, area, length and number of branches as a function of branch height
% (in 1 meter classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Hei');
%% Branch angle distribution
% Volume, area, length and number of branches as a function of branch angle
% (in 10 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Ang');
%% Branch azimuth distribution
% Volume, area, length and number of branches as a function of branch azimuth
% (in 22.5 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Azi');
%% Branch zenith distribution
% Volume, area, length and number of branches as a function of branch zenith
% (in 10 deg angle classes) for all and 1st-order branches
treedata = branch_distribution(treedata,branch,'Zen');
%% change into single-format
Names = fieldnames(treedata);
n = size(Names,1);
for i = 1:n
treedata.(Names{i}) = single(treedata.(Names{i}));
end
if inputs.disp == 2
%% Generate units for displaying the treedata
Units = zeros(n,3);
for i = 1:n
if ~inputs.Tria && strcmp(Names{i},'CrownVolumeAlpha')
m = i;
elseif inputs.Tria && strcmp(Names{i},'TriaTrunkLength')
m = i;
end
if strcmp(Names{i}(1:3),'DBH')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'ume')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(end-2:end),'ght')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'gth')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(1:3),'vol')
Units(i,:) = 'L ';
elseif strcmp(Names{i}(1:3),'len')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'rea')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(1:3),'loc')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-4:end),'aConv')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-5:end),'aAlpha')
Units(i,:) = 'm^2';
elseif strcmp(Names{i}(end-4:end),'eConv')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-5:end),'eAlpha')
Units(i,:) = 'm^3';
elseif strcmp(Names{i}(end-2:end),'Ave')
Units(i,:) = 'm ';
elseif strcmp(Names{i}(end-2:end),'Max')
Units(i,:) = 'm ';
end
end
%% Display treedata
disp('------------')
disp(' Tree attributes:')
for i = 1:m
v = change_precision(treedata.(Names{i}));
if strcmp(Names{i},'DBHtri')
disp(' -----')
disp(' Tree attributes from triangulation:')
end
disp([' ',Names{i},' = ',num2str(v),' ',Units(i,:)])
end
disp(' -----')
end
if inputs.plot > 1
%% Plot distributions
figure(6)
subplot(2,4,1)
plot(Taper(:,1),Taper(:,2),'-b')
title('Stem taper')
xlabel('Distance from base (m)')
ylabel('Diameter (m)')
axis tight
grid on
Q.treedata = treedata;
subplot(2,4,2)
plot_distribution(Q,6,0,0,'VolCylDia')
subplot(2,4,3)
plot_distribution(Q,6,0,0,'AreCylDia')
subplot(2,4,4)
plot_distribution(Q,6,0,0,'LenCylDia')
subplot(2,4,5)
plot_distribution(Q,6,0,0,'VolBranchOrd')
subplot(2,4,6)
plot_distribution(Q,6,0,0,'LenBranchOrd')
subplot(2,4,7)
plot_distribution(Q,6,0,0,'AreBranchOrd')
subplot(2,4,8)
plot_distribution(Q,6,0,0,'NumBranchOrd')
figure(7)
subplot(3,3,1)
plot_distribution(Q,7,0,0,'VolCylHei')
subplot(3,3,2)
plot_distribution(Q,7,0,0,'AreCylHei')
subplot(3,3,3)
plot_distribution(Q,7,0,0,'LenCylHei')
subplot(3,3,4)
plot_distribution(Q,7,0,0,'VolCylZen')
subplot(3,3,5)
plot_distribution(Q,7,0,0,'AreCylZen')
subplot(3,3,6)
plot_distribution(Q,7,0,0,'LenCylZen')
subplot(3,3,7)
plot_distribution(Q,7,0,0,'VolCylAzi')
subplot(3,3,8)
plot_distribution(Q,7,0,0,'AreCylAzi')
subplot(3,3,9)
plot_distribution(Q,7,0,0,'LenCylAzi')
figure(8)
subplot(3,4,1)
%if %%%%%% !!!!!!!!
plot_distribution(Q,8,1,0,'VolBranchDia','VolBranch1Dia')
subplot(3,4,2)
plot_distribution(Q,8,1,0,'AreBranchDia','AreBranch1Dia')
subplot(3,4,3)
plot_distribution(Q,8,1,0,'LenBranchDia','LenBranch1Dia')
subplot(3,4,4)
plot_distribution(Q,8,1,0,'NumBranchDia','NumBranch1Dia')
subplot(3,4,5)
plot_distribution(Q,8,1,0,'VolBranchHei','VolBranch1Hei')
subplot(3,4,6)
plot_distribution(Q,8,1,0,'AreBranchHei','AreBranch1Hei')
subplot(3,4,7)
plot_distribution(Q,8,1,0,'LenBranchHei','LenBranch1Hei')
subplot(3,4,8)
plot_distribution(Q,8,1,0,'NumBranchHei','NumBranch1Hei')
subplot(3,4,9)
plot_distribution(Q,8,1,0,'VolBranchAng','VolBranch1Ang')
subplot(3,4,10)
plot_distribution(Q,8,1,0,'AreBranchAng','AreBranch1Ang')
subplot(3,4,11)
plot_distribution(Q,8,1,0,'LenBranchAng','LenBranch1Ang')
subplot(3,4,12)
plot_distribution(Q,8,1,0,'NumBranchAng','NumBranch1Ang')
figure(9)
subplot(2,4,1)
plot_distribution(Q,9,1,0,'VolBranchZen','VolBranch1Zen')
subplot(2,4,2)
plot_distribution(Q,9,1,0,'AreBranchZen','AreBranch1Zen')
subplot(2,4,3)
plot_distribution(Q,9,1,0,'LenBranchZen','LenBranch1Zen')
subplot(2,4,4)
plot_distribution(Q,9,1,0,'NumBranchZen','NumBranch1Zen')
subplot(2,4,5)
plot_distribution(Q,9,1,0,'VolBranchAzi','VolBranch1Azi')
subplot(2,4,6)
plot_distribution(Q,9,1,0,'AreBranchAzi','AreBranch1Azi')
subplot(2,4,7)
plot_distribution(Q,9,1,0,'LenBranchAzi','LenBranch1Azi')
subplot(2,4,8)
plot_distribution(Q,9,1,0,'NumBranchAzi','NumBranch1Azi')
end
end % End of main function
function treedata = dbh_cylinder(treedata,trunk,Trunk,cylinder,ind)
% Dbh from the QSM
i = 1;
n = nnz(Trunk);
T = ind(Trunk);
while i < n && sum(cylinder.length(T(1:i))) < 1.3
i = i+1;
end
DBHqsm = 2*cylinder.radius(T(i));
treedata.DBHqsm = DBHqsm;
% Determine DBH from cylinder fitted particularly to the correct place
% Select the trunk point set
V = trunk-cylinder.start(1,:);
h = V*cylinder.axis(1,:)';
I = h < 1.5;
J = h > 1.1;
I = I&J;
if nnz(I) > 100
T = trunk(I,:);
% Fit cylinder
cyl0 = select_cylinders(cylinder,i);
cyl = least_squares_cylinder(T,cyl0);
RadiusOK = 2*cyl.radius > 0.8*DBHqsm & 2*cyl.radius < 1.2*DBHqsm;
if RadiusOK && abs(cylinder.axis(i,:)*cyl.axis') > 0.9 && cyl.conv && cyl.rel
treedata.DBHcyl = 2*cyl.radius;
else
treedata.DBHcyl = DBHqsm;
end
else
treedata.DBHcyl = DBHqsm;
end
% End of function
end
function [treedata,spreads] = crown_measures(treedata,cylinder,branch)
%% Generate point clouds from the cylinder model
Axe = cylinder.axis;
Len = cylinder.length;
Sta = cylinder.start;
Tip = Sta+[Len.*Axe(:,1) Len.*Axe(:,2) Len.*Axe(:,3)]; % tips of the cylinders
nc = length(Len);
P = zeros(5*nc,3); % four mid points on the cylinder surface
t = 0;
for i = 1:nc
[U,V] = orthonormal_vectors(Axe(i,:));
U = cylinder.radius(i)*U;
if cylinder.branch(i) == 1
% For stem cylinders generate more points
R = rotation_matrix(Axe(i,:),pi/12);
for k = 1:4
M = Sta(i,:)+k/4*Len(i)*Axe(i,:);
for j = 1:12
if j > 1
U = R*U;
end
t = t+1;
P(t,:) = M+U';
end
end
else
M = Sta(i,:)+0.5*Len(i)*Axe(i,:);
R = rotation_matrix(Axe(i,:),pi/4);
for j = 1:4
if j > 1
U = R*U;
end
t = t+1;
P(t,:) = M+U';
end
end
end
P = P(1:t,:);
I = ~isnan(P(:,1));
P = P(I,:);
P = double([P; Sta; Tip]);
P = unique(P,'rows');
%% Vertical profiles (layer diameters/spreads), mean:
bot = min(P(:,3));
top = max(P(:,3));
Hei = top-bot;
if Hei > 10
m = 20;
elseif Hei > 2
m = 10;
else
m = 5;
end
spreads = zeros(m,18);
for j = 1:m
I = P(:,3) >= bot+(j-1)*Hei/m & P(:,3) < bot+j*Hei/m;
X = unique(P(I,:),'rows');
if size(X,1) > 5
[K,A] = convhull(X(:,1),X(:,2));
% compute center of gravity for the convex hull and use it as
% center for computing average diameters
n = length(K);
x = X(K,1);
y = X(K,2);
CX = sum((x(1:n-1)+x(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
CY = sum((y(1:n-1)+y(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
V = mat_vec_subtraction(X(:,1:2),[CX CY]);
ang = atan2(V(:,2),V(:,1))+pi;
[ang,I] = sort(ang);
L = sqrt(sum(V.*V,2));
L = L(I);
for i = 1:18
I = ang >= (i-1)*pi/18 & ang < i*pi/18;
if any(I)
L1 = max(L(I));
else
L1 = 0;
end
J = ang >= (i-1)*pi/18+pi & ang < i*pi/18+pi;
if any(J)
L2 = max(L(J));
else
L2 = 0;
end
spreads(j,i) = L1+L2;
end
end
end
%% Crown diameters (spreads), mean and maximum:
X = unique(P(:,1:2),'rows');
[K,A] = convhull(X(:,1),X(:,2));
% compute center of gravity for the convex hull and use it as center for
% computing average diameters
n = length(K);
x = X(K,1);
y = X(K,2);
CX = sum((x(1:n-1)+x(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
CY = sum((y(1:n-1)+y(2:n)).*(x(1:n-1).*y(2:n)-x(2:n).*y(1:n-1)))/6/A;
V = Tip(:,1:2)-[CX CY];
ang = atan2(V(:,2),V(:,1))+pi;
[ang,I] = sort(ang);
L = sqrt(sum(V.*V,2));
L = L(I);
S = zeros(18,1);
for i = 1:18
I = ang >= (i-1)*pi/18 & ang < i*pi/18;
if any(I)
L1 = max(L(I));
else
L1 = 0;
end
J = ang >= (i-1)*pi/18+pi & ang < i*pi/18+pi;
if any(J)
L2 = max(L(J));
else
L2 = 0;
end
S(i) = L1+L2;
end
treedata.CrownDiamAve = mean(S);
MaxDiam = 0;
for i = 1:n
V = mat_vec_subtraction([x y],[x(i) y(i)]);
L = max(sqrt(sum(V.*V,2)));
if L > MaxDiam
MaxDiam = L;
end
end
treedata.CrownDiamMax = L;
%% Crown areas from convex hull and alpha shape:
treedata.CrownAreaConv = A;
alp = max(0.5,treedata.CrownDiamAve/10);
shp = alphaShape(X(:,1),X(:,2),alp);
treedata.CrownAreaAlpha = shp.area;
%% Crown base
% Define first major branch as the branch whose diameter > min(0.05*dbh,5cm)
% and whose horizontal relative reach is more than the median reach of 1st-ord.
% branches (or at maximum 10). The reach is defined as the horizontal
% distance from the base to the tip divided by the dbh.
dbh = treedata.DBHcyl;
nb = length(branch.order);
HL = zeros(nb,1); % horizontal reach
branches1 = (1:1:nb)';
branches1 = branches1(branch.order == 1); % 1st-order branches
nb = length(branches1);
nc = size(Sta,1);
ind = (1:1:nc)';
for i = 1:nb
C = ind(cylinder.branch == branches1(i));
if ~isempty(C)
base = Sta(C(1),:);
C = C(end);
tip = Sta(C,:)+Len(C)*Axe(C);
V = tip(1:2)-base(1:2);
HL(branches1(i)) = sqrt(V*V')/dbh*2;
end
end
M = min(10,median(HL));
% Sort the branches according to the their heights
Hei = branch.height(branches1);
[Hei,SortOrd] = sort(Hei);
branches1 = branches1(SortOrd);
% Search the first/lowest branch:
d = min(0.05,0.05*dbh);
b = 0;
if nb > 1
i = 1;
while i < nb
i = i+1;
if branch.diameter(branches1(i)) > d && HL(branches1(i)) > M
b = branches1(i);
i = nb+2;
end
end
if i == nb+1 && nb > 1
b = branches1(1);
end
end
if b > 0
% search all the children of the first major branch:
nb = size(branch.parent,1);
Ind = (1:1:nb)';
chi = Ind(branch.parent == b);
B = b;
while ~isempty(chi)
B = [B; chi];
n = length(chi);
C = cell(n,1);
for i = 1:n
C{i} = Ind(branch.parent == chi(i));
end
chi = vertcat(C{:});
end
% define crown base height from the ground:
BaseHeight = max(Sta(:,3)); % Height of the crown base
for i = 1:length(B)
C = ind(cylinder.branch == B(i));
ht = min(Tip(C,3));
hb = min(Sta(C,3));
h = min(hb,ht);
if h < BaseHeight
BaseHeight = h;
end
end
treedata.CrownBaseHeight = BaseHeight-Sta(1,3);
%% Crown length and ratio
treedata.CrownLength = treedata.TreeHeight-treedata.CrownBaseHeight;
treedata.CrownRatio = treedata.CrownLength/treedata.TreeHeight;
%% Crown volume from convex hull and alpha shape:
I = P(:,3) >= BaseHeight;
X = P(I,:);
[K,V] = convhull(X(:,1),X(:,2),X(:,3));
treedata.CrownVolumeConv = V;
alp = max(0.5,treedata.CrownDiamAve/5);
shp = alphaShape(X(:,1),X(:,2),X(:,3),alp,'HoleThreshold',10000);
treedata.CrownVolumeAlpha = shp.volume;
else
% No branches
treedata.CrownBaseHeight = treedata.TreeHeight;
treedata.CrownLength = 0;
treedata.CrownRatio = 0;
treedata.CrownVolumeConv = 0;
treedata.CrownVolumeAlpha = 0;
end
% End of function
end
function [treedata,triangulation] = ...
triangulate_stem(treedata,cylinder,branch,trunk)
Sta = cylinder.start;
Rad = cylinder.radius;
Len = cylinder.length;
DBHqsm = treedata.DBHqsm;
% Determine the first major branch (over 10% of dbh or the maximum
% diameter branch):
nb = size(branch.diameter,1);
ind = (1:1:nb)';
ind = ind(branch.order == 1);
[~,I] = sort(branch.height(ind));
ind = ind(I);
n = length(ind);
b = 1;
while b <= n && branch.diameter(ind(b)) < 0.1*DBHqsm
b = b+1;
end
b = ind(b);
if b > n
[~,b] = max(branch.diameter);
end
% Determine suitable cylinders up to the first major branch but keep the
% stem diameter above one quarter (25%) of dbh:
C = 1;
nc = size(Sta,1);
while C < nc && cylinder.branch(C) < b
C = C+1;
end
n = nnz(cylinder.branch == 1);
i = 2;
while i < n && Sta(i,3) < Sta(C,3) && Rad(i) > 0.125*DBHqsm
i = i+1;
end
CylInd = max(i,3);
TrunkLenTri = Sta(CylInd,3)-Sta(1,3);
EmptyTriangulation = false;
% Calculate the volumes
if size(trunk,1) > 1000 && TrunkLenTri >= 1
% Set the parameters for triangulation:
% Compute point density, which is used to increase the triangle
% size if the point density is very small
PointDensity = zeros(CylInd-1,1);
for i = 1:CylInd-1
I = trunk(:,3) >= Sta(i,3) & trunk(:,3) < Sta(i+1,3);
PointDensity(i) = pi*Rad(i)*Len(i)/nnz(I);
end
PointDensity = PointDensity(PointDensity < inf);
d = max(PointDensity);
% Determine minimum triangle size based on dbh
if DBHqsm > 1
MinTriaHeight = 0.1;
elseif DBHqsm > 0.50
MinTriaHeight = 0.075;
elseif DBHqsm > 0.10
MinTriaHeight = 0.05;
else
MinTriaHeight = 0.02;
end
TriaHeight0 = max(MinTriaHeight,4*sqrt(d));
% Select the trunk point set used for triangulation
I = trunk(:,3) <= Sta(CylInd,3);
Stem = trunk(I,:);
% Do the triangulation:
triangulation = zeros(1,0);
l = 0;
while isempty(triangulation) && l < 4 && CylInd > 2
l = l+1;
TriaHeight = TriaHeight0;
TriaWidth = TriaHeight;
k = 0;
while isempty(triangulation) && k < 3
k = k+1;
j = 0;
while isempty(triangulation) && j < 5
triangulation = curve_based_triangulation(Stem,TriaHeight,TriaWidth);
j = j+1;
end
% try different triangle sizes if necessary
if isempty(triangulation) && k < 3
TriaHeight = TriaHeight+0.03;
TriaWidth = TriaHeight;
end
end
% try different length of stem sections if necessary
if isempty(triangulation) && l < 4 && CylInd > 2
CylInd = CylInd-1;
I = trunk(:,3) <= Sta(CylInd,3);
Stem = trunk(I,:);
end
end
if ~isempty(triangulation)
triangulation.cylind = CylInd;
% Dbh from triangulation
Vert = triangulation.vert;
h = Vert(:,3)-triangulation.bottom;
[~,I] = min(abs(h-1.3));
H = h(I);
I = abs(h-H) < triangulation.triah/2;
V = Vert(I,:);
V = V([2:end 1],:)-V(1:end,:);
d = sqrt(sum(V.*V,2));
treedata.DBHtri = sum(d)/pi;
% volumes from the triangulation
treedata.TriaTrunkVolume = triangulation.volume;
TrunkVolMix = treedata.TrunkVolume-...
1000*pi*sum(Rad(1:CylInd-1).^2.*Len(1:CylInd-1))+triangulation.volume;
TrunkAreaMix = treedata.TrunkArea-...
2*pi*sum(Rad(1:CylInd-1).*Len(1:CylInd-1))+triangulation.SideArea;
treedata.MixTrunkVolume = TrunkVolMix;
treedata.MixTotalVolume = TrunkVolMix+treedata.BranchVolume;
treedata.TriaTrunkArea = triangulation.SideArea;
treedata.MixTrunkArea = TrunkAreaMix;
treedata.MixTotalArea = TrunkAreaMix+treedata.BranchArea;
treedata.TriaTrunkLength = TrunkLenTri;
else
EmptyTriangulation = true;
end
else
EmptyTriangulation = true;
end
if EmptyTriangulation
disp(' No triangulation model produced')
clear triangulation
treedata.DBHtri = DBHqsm;
treedata.TriaTrunkVolume = treedata.TrunkVolume;
treedata.TriaTrunkArea = treedata.TrunkArea;
treedata.MixTrunkVolume = treedata.TrunkVolume;
treedata.MixTrunkArea = treedata.TrunkArea;
treedata.MixTotalVolume = treedata.TotalVolume;
treedata.MixTotalArea = treedata.TotalArea;
treedata.TriaTrunkLength = 0;
triangulation.vert = zeros(0,3);
triangulation.facet = zeros(0,3);
triangulation.fvd = zeros(0,1);
triangulation.volume = 0;
triangulation.SideArea = 0;
triangulation.BottomArea = 0;
triangulation.TopArea = 0;
triangulation.bottom = 0;
triangulation.top = 0;
triangulation.triah = 0;
triangulation.triaw = 0;
triangulation.cylind = 0;
end
end
function treedata = cylinder_distribution(treedata,cyl,dist)
%% Wood part diameter, zenith and azimuth direction distributions
% Volume, area and length of wood parts as functions of cylinder
% diameter, zenith, and azimuth
if strcmp(dist,'Dia')
Par = cyl.radius;
n = ceil(max(200*cyl.radius));
a = 0.005; % diameter in 1 cm classes
elseif strcmp(dist,'Zen')
Par = 180/pi*acos(cyl.axis(:,3));
n = 18;
a = 10; % zenith direction in 10 degree angle classes
elseif strcmp(dist,'Azi')
Par = 180/pi*atan2(cyl.axis(:,2),cyl.axis(:,1))+180;
n = 36;
a = 10; % azimuth direction in 10 degree angle classes
end
CylDist = zeros(3,n);
for i = 1:n
K = Par >= (i-1)*a & Par < i*a;
CylDist(1,i) = 1000*pi*sum(cyl.radius(K).^2.*cyl.length(K)); % vol in L
CylDist(2,i) = 2*pi*sum(cyl.radius(K).*cyl.length(K)); % area in m^2
CylDist(3,i) = sum(cyl.length(K)); % length in m
end
treedata.(['VolCyl',dist]) = CylDist(1,:);
treedata.(['AreCyl',dist]) = CylDist(2,:);
treedata.(['LenCyl',dist]) = CylDist(3,:);
end
function treedata = cylinder_height_distribution(treedata,cylinder,ind)
Rad = cylinder.radius;
Len = cylinder.length;
Axe = cylinder.axis;
%% Wood part height distributions
% Volume, area and length of cylinders as a function of height
% (in 1 m height classes)
MaxHei= ceil(treedata.TreeHeight);
treedata.VolCylHei = zeros(1,MaxHei);
treedata.AreCylHei = zeros(1,MaxHei);
treedata.LenCylHei = zeros(1,MaxHei);
End = cylinder.start+[Len.*Axe(:,1) Len.*Axe(:,2) Len.*Axe(:,3)];
bot = min(cylinder.start(:,3));
B = cylinder.start(:,3)-bot;
T = End(:,3)-bot;
for j = 1:MaxHei
I1 = B >= (j-2) & B < (j-1); % base below this bin
J1 = B >= (j-1) & B < j; % base in this bin
K1 = B >= j & B < (j+1); % base above this bin
I2 = T >= (j-2) & T < (j-1); % top below this bin
J2 = T >= (j-1) & T < j; % top in this bin
K2 = T >= j & T < (j+1); % top above this bin
C1 = ind(J1&J2); % base and top in this bin
C2 = ind(J1&K2); % base in this bin, top above
C3 = ind(J1&I2); % base in this bin, top below
C4 = ind(I1&J2); % base in bin below, top in this
C5 = ind(K1&J2); % base in bin above, top in this
v1 = 1000*pi*sum(Rad(C1).^2.*Len(C1));
a1 = 2*pi*sum(Rad(C1).*Len(C1));
l1 = sum(Len(C1));
r2 = (j-B(C2))./(T(C2)-B(C2)); % relative portion in this bin
v2 = 1000*pi*sum(Rad(C2).^2.*Len(C2).*r2);
a2 = 2*pi*sum(Rad(C2).*Len(C2).*r2);
l2 = sum(Len(C2).*r2);
r3 = (B(C3)-j+1)./(B(C3)-T(C3)); % relative portion in this bin
v3 = 1000*pi*sum(Rad(C3).^2.*Len(C3).*r3);
a3 = 2*pi*sum(Rad(C3).*Len(C3).*r3);
l3 = sum(Len(C3).*r3);
r4 = (T(C4)-j+1)./(T(C4)-B(C4)); % relative portion in this bin
v4 = 1000*pi*sum(Rad(C4).^2.*Len(C4).*r4);
a4 = 2*pi*sum(Rad(C4).*Len(C4).*r4);
l4 = sum(Len(C4).*r4);
r5 = (j-T(C5))./(B(C5)-T(C5)); % relative portion in this bin
v5 = 1000*pi*sum(Rad(C5).^2.*Len(C5).*r5);
a5 = 2*pi*sum(Rad(C5).*Len(C5).*r5);
l5 = sum(Len(C5).*r5);
treedata.VolCylHei(j) = v1+v2+v3+v4+v5;
treedata.AreCylHei(j) = a1+a2+a3+a4+a5;
treedata.LenCylHei(j) = l1+l2+l3+l4+l5;
end
end
function treedata = branch_distribution(treedata,branch,dist)
%% Branch diameter, height, angle, zenith and azimuth distributions
% Volume, area, length and number of branches as a function of branch
% diamater, height, angle, zenith and aximuth
BOrd = branch.order(2:end);
BVol = branch.volume(2:end);
BAre = branch.area(2:end);
BLen = branch.length(2:end);
if strcmp(dist,'Dia')
Par = branch.diameter(2:end);
n = ceil(max(100*Par));
a = 0.005; % diameter in 1 cm classes
elseif strcmp(dist,'Hei')
Par = branch.height(2:end);
n = ceil(treedata.TreeHeight);
a = 1; % height in 1 m classes
elseif strcmp(dist,'Ang')
Par = branch.angle(2:end);
n = 18;
a = 10; % angle in 10 degree classes
elseif strcmp(dist,'Zen')
Par = branch.zenith(2:end);
n = 18;
a = 10; % zenith direction in 10 degree angle classes
elseif strcmp(dist,'Azi')
Par = branch.azimuth(2:end)+180;
n = 36;
a = 10; % azimuth direction in 10 degree angle classes
end
if isempty(n)
n = 0;
end
BranchDist = zeros(8,n);
for i = 1:n
I = Par >= (i-1)*a & Par < i*a;
BranchDist(1,i) = sum(BVol(I)); % volume (all branches)
BranchDist(2,i) = sum(BVol(I & BOrd == 1)); % volume (1st-branches)
BranchDist(3,i) = sum(BAre(I)); % area (all branches)
BranchDist(4,i) = sum(BAre(I & BOrd == 1)); % area (1st-branches)
BranchDist(5,i) = sum(BLen(I)); % length (all branches)
BranchDist(6,i) = sum(BLen(I & BOrd == 1)); % length (1st-branches)
BranchDist(7,i) = nnz(I); % number (all branches)
BranchDist(8,i) = nnz(I & BOrd == 1); % number (1st-branches)
end
treedata.(['VolBranch',dist]) = BranchDist(1,:);
treedata.(['VolBranch1',dist]) = BranchDist(2,:);
treedata.(['AreBranch',dist]) = BranchDist(3,:);
treedata.(['AreBranch1',dist]) = BranchDist(4,:);
treedata.(['LenBranch',dist]) = BranchDist(5,:);
treedata.(['LenBranch1',dist]) = BranchDist(6,:);
treedata.(['NumBranch',dist]) = BranchDist(7,:);
treedata.(['NumBranch1',dist]) = BranchDist(8,:);
end
function treedata = branch_order_distribution(treedata,branch)
%% Branch order distributions
% Volume, area, length and number of branches as a function of branch order
BO = max(branch.order);
BranchOrdDist = zeros(BO,4);
for i = 1:max(1,BO)
I = branch.order == i;
BranchOrdDist(i,1) = sum(branch.volume(I)); % volumes
BranchOrdDist(i,2) = sum(branch.area(I)); % areas
BranchOrdDist(i,3) = sum(branch.length(I)); % lengths
BranchOrdDist(i,4) = nnz(I); % number of ith-order branches
end
treedata.VolBranchOrd = BranchOrdDist(:,1)';
treedata.AreBranchOrd = BranchOrdDist(:,2)';
treedata.LenBranchOrd = BranchOrdDist(:,3)';
treedata.NumBranchOrd = BranchOrdDist(:,4)';
end
|
github | InverseTampere/TreeQSM-master | cylinders.m | .m | TreeQSM-master/src/main_steps/cylinders.m | 34,496 | utf_8 | 21b6b835cd40db99681596120408488e | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function cylinder = cylinders(P,cover,segment,inputs)
% ---------------------------------------------------------------------
% CYLINDERS.M Fits cylinders to the branch-segments of the point cloud
%
% Version 3.0.0
% Latest update 1 Now 2018
%
% Copyright (C) 2013-2018 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Reconstructs the surface and volume of branches of input tree with
% cylinders. Subdivides each segment to smaller regions to which cylinders
% are fitted in least squares sense. Returns the cylinder information and
% in addition the child-relation of the cylinders plus the cylinders in
% each segment.
% ---------------------------------------------------------------------
% Inputs:
% P Point cloud, matrix
% cover Cover sets
% segment Segments
% input Input parameters of the reconstruction:
% MinCylRad Minimum cylinder radius, used in the taper corrections
% ParentCor Radius correction based on radius of the parent: radii in
% a branch are usually smaller than the radius of the parent
% cylinder in the parent branch
% TaperCor Parabola taper correction of radii inside branches.
% GrowthVolCor If 1, use growth volume correction
% GrowthVolFac Growth volume correction factor
%
% Outputs:
% cylinder Structure array containing the following cylinder info:
% radius Radii of the cylinders, vector
% length Lengths of the cylinders, vector
% axis Axes of the cylinders, matrix
% start Starting points of the cylinders, matrix
% parent Parents of the cylinders, vector
% extension Extensions of the cylinders, vector
% branch Branch of the cylinder
% BranchOrder Branching order of the cylinder
% PositionInBranch Position of the cylinder inside the branch
% mad Mean absolute distances of points from the cylinder
% surface, vector
% SurfCov Surface coverage measure, vector
% added Added cylinders, logical vector
% UnModRadius Unmodified radii
% ---------------------------------------------------------------------
% Changes from version 3.0.0 to 3.1.0, 6 Oct 2021:
% 1) Added the growth volume correction option ("growth_volume_correction")
% back, which was removed from the previous version by a mistake. The
% "growth_volume_correction" function was also corrected.
% 2) Added the fields "branch", "BranchOrder", "PositionInBranch" to the
% output structure "cylinder"
% 3) Removed the fields "CylsInSegment" and "ChildCyls" from the output
% structure "cylinder"
% Changes from version 2.0.0 to 3.0.0, 13 Aug 2020:
% Many comprehensive and small changes:
% 1) "regions" and "cylinder_fitting" are combined into "cylinder_fitting"
% and the process is more adaptive as it now fits at least 3 (up to 10)
% cylinders of different lengths for each region.
% 2) "lcyl" and "FilRad" parameters are not used anymore
% 3) Surface coverage ("SurfCov") and mean absolute distance ("mad") are
% added to the cylinder structure as fields.
% 4) Surface coverage filtering is used in the definition of the regions
% and removing outliers
% 5) "adjustments" has many changes, particularly in the taper corrections
% where the parabola-taper curve is fitted to all the data with surface
% coverage as a weight. Adjustment of radii based on the parabola is
% closer the parabola the smaller the surface coverage. For the stem the
% taper correction is the same as for the branches. The minimum and
% maximum radii corrections are also modified.
% 6) Syntax has changed, particularly for the "cyl"-structure
% Changes from version 2.1.0 to 2.1.1, 26 Nov 2019:
% 1) Increased the minimum number "n" of estimated cylinders for
% initialization of vectors at the beginning of the code. This is done
% to make sure that trees without branches will not cause errors.
% Changes from version 2.0.0 to 2.1.0, 3 Oct 2019:
% 1) Bug fix: UnmodRadius is now defined as it should, as the radius after
% least squares fitting but without parent, taper or growth vol. corrections
% 2) Bug fix: Correction in "least_squares_cylinder.m", calculates the
% starting point of the cylinder now correctly.
% 3) Bug fix: Correct errors related to combining data when a fitted
% cylinder is replaced with two shorter ones, in "cylinder_fitting"
% 4) Removed some unnecessary command lines for computing radius estimates
% in "regions"
%% Initialization of variables
Segs = segment.segments;
SPar = segment.ParentSegment;
SChi = segment.ChildSegment;
NumOfSeg = max(size(Segs)); % number of segments
n = max(2000,min(40*NumOfSeg,2e5));
c = 1; % number of cylinders determined
CChi = cell(n,1); % Children of the cylinders
CiS = cell(NumOfSeg,1); % Cylinders in the segment
cylinder.radius = zeros(n,1,'single');
cylinder.length = zeros(n,1,'single');
cylinder.start = zeros(n,3,'single');
cylinder.axis = zeros(n,3,'single');
cylinder.parent = zeros(n,1,'uint32');
cylinder.extension = zeros(n,1,'uint32');
cylinder.added = false(n,1);
cylinder.UnmodRadius = zeros(n,1,'single');
cylinder.branch = zeros(n,1,'uint16');
cylinder.SurfCov = zeros(n,1,'single');
cylinder.mad = zeros(n,1,'single');
%% Determine suitable order of segments (from trunk to the "youngest" child)
bases = (1:1:NumOfSeg)';
bases = bases(SPar(:,1) == 0);
nb = length(bases);
SegmentIndex = zeros(NumOfSeg,1);
nc = 0;
for i = 1:nb
nc = nc+1;
SegmentIndex(nc) = bases(i);
S = vertcat(SChi{bases(i)});
while ~isempty(S)
n = length(S);
SegmentIndex(nc+1:nc+n) = S;
nc = nc+n;
S = vertcat(SChi{S});
end
end
%% Fit cylinders individually for each segment
for k = 1:NumOfSeg
si = SegmentIndex(k);
if si > 0
%% Some initialization about the segment
Seg = Segs{si}; % the current segment under analysis
nl = max(size(Seg)); % number of cover set layers in the segment
[Sets,IndSets] = verticalcat(Seg); % the cover sets in the segment
ns = length(Sets); % number of cover sets in the current segment
Points = vertcat(cover.ball{Sets}); % the points in the segments
np = length(Points); % number of points in the segment
% Determine indexes of points for faster definition of regions
BallSize = cellfun('length',cover.ball(Sets));
IndPoints = ones(nl,2); % indexes for points in each layer of the segment
for j = 1:nl
IndPoints(j,2) = sum(BallSize(IndSets(j,1):IndSets(j,2)));
end
IndPoints(:,2) = cumsum(IndPoints(:,2));
IndPoints(2:end,1) = IndPoints(2:end,1)+IndPoints(1:end-1,2);
Base = Seg{1}; % the base of the segment
nb = IndPoints(1,2); % number of points in the base
% Reconstruct only large enough segments
if nl > 1 && np > nb && ns > 2 && np > 20 && ~isempty(Base)
%% Cylinder fitting
[cyl,Reg] = cylinder_fitting(P,Points,IndPoints,nl,si);
nc = numel(cyl.radius);
%% Search possible parent cylinder
if nc > 0 && si > 1
[PC,cyl,added] = parent_cylinder(SPar,SChi,CiS,cylinder,cyl,si);
nc = numel(cyl.radius);
elseif si == 1
PC = zeros(0,1);
added = false;
else
added = false;
end
cyl.radius0 = cyl.radius;
%% Modify cylinders
if nc > 0
% Define parent cylinder:
parcyl.radius = cylinder.radius(PC);
parcyl.length = cylinder.length(PC);
parcyl.start = cylinder.start(PC,:);
parcyl.axis = cylinder.axis(PC,:);
% Modify the cylinders
cyl = adjustments(cyl,parcyl,inputs,Reg);
end
%% Save the cylinders
% if at least one acceptable cylinder, then save them
Accept = nc > 0 & min(cyl.radius(1:nc)) > 0;
if Accept
% If the parent cylinder exists, set the parent-child relations
if ~isempty(PC)
cylinder.parent(c) = PC;
if cylinder.extension(PC) == c
I = cylinder.branch(PC);
cylinder.branch(c:c+nc-1) = I;
CiS{I} = [CiS{I}; linspace(c,c+nc-1,nc)'];
else
CChi{PC} = [CChi{PC}; c];
cylinder.branch(c:c+nc-1) = si;
CiS{si} = linspace(c,c+nc-1,nc)';
end
else
cylinder.branch(c:c+nc-1) = si;
CiS{si} = linspace(c,c+nc-1,nc)';
end
cylinder.radius(c:c+nc-1) = cyl.radius(1:nc);
cylinder.length(c:c+nc-1) = cyl.length(1:nc);
cylinder.axis(c:c+nc-1,:) = cyl.axis(1:nc,:);
cylinder.start(c:c+nc-1,:) = cyl.start(1:nc,:);
cylinder.parent(c+1:c+nc-1) = linspace(c,c+nc-2,nc-1);
cylinder.extension(c:c+nc-2) = linspace(c+1,c+nc-1,nc-1);
cylinder.UnmodRadius(c:c+nc-1) = cyl.radius0(1:nc);
cylinder.SurfCov(c:c+nc-1) = cyl.SurfCov(1:nc);
cylinder.mad(c:c+nc-1) = cyl.mad(1:nc);
if added
cylinder.added(c) = true;
cylinder.added(c) = true;
end
c = c+nc; % number of cylinders so far (plus one)
end
end
end
end
c = c-1; % number of cylinders
%% Define outputs
names = fieldnames(cylinder);
n = max(size(names));
for k = 1:n
cylinder.(names{k}) = single(cylinder.(names{k})(1:c,:));
end
if c <= 2^16
cylinder.parent = uint16(cylinder.parent);
cylinder.extension = uint16(cylinder.extension);
end
nb = max(cylinder.branch);
if nb <= 2^8
cylinder.branch = uint8(cylinder.branch);
elseif nb <= 2^16
cylinder.branch = uint16(cylinder.branch);
end
cylinder.added = logical(cylinder.added);
% Define the branching order:
BOrd = zeros(c,1);
for i = 1:c
if cylinder.parent(i) > 0
p = cylinder.parent(i);
if cylinder.extension(p) == i
BOrd(i) = BOrd(p);
else
BOrd(i) = BOrd(p)+1;
end
end
end
cylinder.BranchOrder = uint8(BOrd);
% Define the cylinder position inside the branch
PiB = ones(c,1);
for i = 1:NumOfSeg
C = CiS{i};
if ~isempty(C)
n = length(C);
PiB(C) = (1:1:n)';
end
end
if max(PiB) <= 2^8
cylinder.PositionInBranch = uint8(PiB);
else
cylinder.PositionInBranch = uint16(PiB);
end
% Growth volume correction
if inputs.GrowthVolCor && c > 0
cylinder = growth_volume_correction(cylinder,inputs);
end
end % End of main function
function [cyl,Reg] = cylinder_fitting(P,Points,Ind,nl,si)
if nl > 6
i0 = 1; i = 4; % indexes of the first and last layers of the region
t = 0;
Reg = cell(nl,1);
cyls = cell(11,1);
regs = cell(11,1);
data = zeros(11,4);
while i0 < nl-2
%% Fit at least three cylinders of different lengths
bot = Points(Ind(i0,1):Ind(i0+1,2));
Bot = average(P(bot,:)); % Bottom axis point of the region
again = true;
j = 0;
while i+j <= nl && j <= 10 && (j <= 2 || again)
%% Select points and estimate axis
RegC = Points(Ind(i0,1):Ind(i+j,2)); % candidate region
% Top axis point of the region:
top = Points(Ind(i+j-1,1):Ind(i+j,2));
Top = average(P(top,:));
% Axis of the cylinder:
Axis = Top-Bot;
c0.axis = Axis/norm(Axis);
% Compute the height along the axis:
h = (P(RegC,:)-Bot)*c0.axis';
minh = min(h);
% Correct Bot to correspond to the real bottom
if j == 0
Bot = Bot+minh*c0.axis;
c0.start = Bot;
h = (P(RegC,:)-Bot)*c0.axis';
minh = min(h);
end
if i+j >= nl
ht = (Top-c0.start)*c0.axis';
Top = Top+(max(h)-ht)*c0.axis;
end
% Compute the height of the Top:
ht = (Top-c0.start)*c0.axis';
Sec = h <= ht & h >= minh; % only points below the Top
c0.length = ht-minh; % length of the region/cylinder
% The region for the cylinder fitting:
reg = RegC(Sec);
Q0 = P(reg,:);
%% Filter points and estimate radius
if size(Q0,1) > 20
[Keep,c0] = surface_coverage_filtering(Q0,c0,0.02,20);
reg = reg(Keep);
Q0 = Q0(Keep,:);
else
c0.radius = 0.01;
c0.SurfCov = 0.05;
c0.mad = 0.01;
c0.conv = 1;
c0.rel = 1;
end
%% Fit cylinder
if size(Q0,1) > 9
if i >= nl && t == 0
c = least_squares_cylinder(Q0,c0);
elseif i >= nl && t > 0
h = (Q0-CylTop)*c0.axis';
I = h >= 0;
Q = Q0(I,:); % the section
reg = reg(I);
n2 = size(Q,1); n1 = nnz(~I);
if n2 > 9 && n1 > 5
Q0 = [Q0(~I,:); Q]; % the point cloud for cylinder fitting
W = [1/3*ones(n2,1); 2/3*ones(n1,1)]; % the weights
c = least_squares_cylinder(Q0,c0,W,Q);
else
c = least_squares_cylinder(Q0,c0);
end
elseif t == 0
top = Points(Ind(i+j-3,1):Ind(i+j-2,2));
Top = average(P(top,:)); % Top axis point of the region
ht = (Top-Bot)*c0.axis';
h = (Q0-Bot)*c0.axis';
I = h <= ht;
Q = Q0(I,:); % the section
reg = reg(I);
n2 = size(Q,1); n3 = nnz(~I);
if n2 > 9 && n3 > 5
Q0 = [Q; Q0(~I,:)]; % the point cloud for cylinder fitting
W = [2/3*ones(n2,1); 1/3*ones(n3,1)]; % the weights
c = least_squares_cylinder(Q0,c0,W,Q);
else
c = least_squares_cylinder(Q0,c0);
end
else
top = Points(Ind(i+j-3,1):Ind(i+j-2,2));
Top = average(P(top,:)); % Top axis point of the region
ht = (Top-CylTop)*c0.axis';
h = (Q0-CylTop)*c0.axis';
I1 = h < 0; % the bottom
I2 = h >= 0 & h <= ht; % the section
I3 = h > ht; % the top
Q = Q0(I2,:);
reg = reg(I2);
n1 = nnz(I1); n2 = size(Q,1); n3 = nnz(I3);
if n2 > 9
Q0 = [Q0(I1,:); Q; Q0(I3,:)];
W = [1/4*ones(n1,1); 2/4*ones(n2,1); 1/4*ones(n3,1)];
c = least_squares_cylinder(Q0,c0,W,Q);
else
c = c0;
c.rel = 0;
end
end
if c.conv == 0
c = c0;
c.rel = 0;
end
if c.SurfCov < 0.2
c.rel = 0;
end
else
c = c0;
c.rel = 0;
end
% Collect fit data
data(j+1,:) = [c.rel c.conv c.SurfCov c.length/c.radius];
cyls{j+1} = c;
regs{j+1} = reg;
j = j+1;
% If reasonable cylinder fitted, then stop fitting new ones
% (but always fit at least three cylinders)
RL = c.length/c.radius; % relative length of the cylinder
if again && c.rel && c.conv && RL > 2
if si == 1 && c.SurfCov > 0.7
again = false;
elseif si > 1 && c.SurfCov > 0.5
again = false;
end
end
end
%% Select the best of the fitted cylinders
% based on maximum surface coverage
OKfit = data(1:j,1) & data(1:j,2) & data(1:j,4) > 1.5;
J = (1:1:j)';
t = t+1;
if any(OKfit)
J = J(OKfit);
end
[~,I] = max(data(J,3)-0.01*data(J,4));
J = J(I);
c = cyls{J};
%% Update the indexes of the layers for the next region:
CylTop = c.start+c.length*c.axis;
i0 = i0+1;
bot = Points(Ind(i0,1):Ind(i0+1,2));
Bot = average(P(bot,:)); % Bottom axis point of the region
h = (Bot-CylTop)*c.axis';
i00 = i0;
while i0+1 < nl && i0 < i00+5 && h < -c.radius/3
i0 = i0+1;
bot = Points(Ind(i0,1):Ind(i0+1,2));
Bot = average(P(bot,:)); % Bottom axis point of the region
h = (Bot-CylTop)*c.axis';
end
i = i0+5;
i = min(i,nl);
%% If the next section is very short part of the end of the branch
% then simply increase the length of the current cylinder
if nl-i0+2 < 4
reg = Points(Ind(nl-5,1):Ind(nl,2));
Q0 = P(reg,:);
ht = (c.start+c.length*c.axis)*c.axis';
h = Q0*c.axis';
maxh = max(h);
if maxh > ht
c.length = c.length+(maxh-ht);
end
i0 = nl;
end
Reg{t} = regs{J};
if t == 1
cyl = c;
names = fieldnames(cyl);
n = max(size(names));
else
for k = 1:n
cyl.(names{k}) = [cyl.(names{k}); c.(names{k})];
end
end
%% compute cylinder top for the definition of the next section
CylTop = c.start+c.length*c.axis;
end
Reg = Reg(1:t);
else
%% Define a region for small segments
Q0 = P(Points,:);
if size(Q0,1) > 10
%% Define the direction
bot = Points(Ind(1,1):Ind(1,2));
Bot = average(P(bot,:));
top = Points(Ind(nl,1):Ind(nl,2));
Top = average(P(top,:));
Axis = Top-Bot;
c0.axis = Axis/norm(Axis);
h = Q0*c0.axis';
c0.length = max(h)-min(h);
hpoint = Bot*c0.axis';
c0.start = Bot-(hpoint-min(h))*c0.axis;
%% Define other outputs
[Keep,c0] = surface_coverage_filtering(Q0,c0,0.02,20);
Reg = cell(1,1);
Reg{1} = Points(Keep);
Q0 = Q0(Keep,:);
cyl = least_squares_cylinder(Q0,c0);
if ~cyl.conv || ~cyl.rel
cyl = c0;
end
t = 1;
else
cyl = 0;
t = 0;
end
end
% Define Reg as coordinates
for i = 1:t
Reg{i} = P(Reg{i},:);
end
Reg = Reg(1:t);
% End of function
end
function [PC,cyl,added] = parent_cylinder(SPar,SChi,CiS,cylinder,cyl,si)
% Finds the parent cylinder from the possible parent segment.
% Does this by checking if the axis of the cylinder, if continued, will
% cross the nearby cylinders in the parent segment.
% Adjust the cylinder so that it starts from the surface of its parent.
rad = cyl.radius;
len = cyl.length;
sta = cyl.start;
axe = cyl.axis;
% PC Parent cylinder
nc = numel(rad);
added = false;
if SPar(si) > 0 % parent segment exists, find the parent cylinder
s = SPar(si);
PC = CiS{s}; % the cylinders in the parent segment
% select the closest cylinders for closer examination
if length(PC) > 1
D = mat_vec_subtraction(-cylinder.start(PC,:),-sta(1,:));
d = sum(D.*D,2);
[~,I] = sort(d);
if length(PC) > 3
I = I(1:4);
end
pc = PC(I);
ParentFound = false;
elseif length(PC) == 1
ParentFound = true;
else
PC = zeros(0,1);
ParentFound = true;
end
%% Check possible crossing points
if ~ParentFound
pc0 = pc;
n = length(pc);
% Calculate the possible crossing points of the cylinder axis, when
% extended, on the surfaces of the parent candidate cylinders
x = zeros(n,2); % how much the starting point has to move to cross
h = zeros(n,2); % the crossing point height in the parent
Axe = cylinder.axis(pc,:);
Sta = cylinder.start(pc,:);
for j = 1:n
% Crossing points solved from a quadratic equation
A = axe(1,:)-(axe(1,:)*Axe(j,:)')*Axe(j,:);
B = sta(1,:)-Sta(j,:)-(sta(1,:)*Axe(j,:)')*Axe(j,:)...
+(Sta(j,:)*Axe(j,:)')*Axe(j,:);
e = A*A';
f = 2*A*B';
g = B*B'-cylinder.radius(pc(j))^2;
di = sqrt(f^2 - 4*e*g); % the discriminant
s1 = (-f + di)/(2*e);
% how much the starting point must be moved to cross:
s2 = (-f - di)/(2*e);
if isreal(s1) %% cylinders can cross
% the heights of the crossing points
x(j,:) = [s1 s2];
h(j,1) = sta(1,:)*Axe(j,:)'+x(j,1)*axe(1,:)*Axe(j,:)'-...
Sta(j,:)*Axe(j,:)';
h(j,2) = sta(1,:)*Axe(j,:)'+x(j,2)*axe(1,:)*Axe(j,:)'-...
Sta(j,:)*Axe(j,:)';
end
end
%% Extend to crossing point in the (extended) parent
I = x(:,1) ~= 0; % Select only candidates with crossing points
pc = pc0(I); x = x(I,:); h = h(I,:);
j = 1; n = nnz(I);
X = zeros(n,3); %
Len = cylinder.length(pc);
while j <= n && ~ParentFound
if x(j,1) > 0 && x(j,2) < 0
% sp inside the parent and crosses its surface
if h(j,1) >= 0 && h(j,1) <= Len(j) && len(1)-x(j,1) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,1)*axe(1,:);
len(1) = len(1)-x(j,1);
ParentFound = true;
elseif len(1)-x(j,1) > 0
if h(j,1) < 0
X(j,:) = [x(j,1) abs(h(j,1)) 0];
else
X(j,:) = [x(j,1) h(j,1)-Len(j) 0];
end
else
X(j,:) = [x(j,1) h(j,1) 1];
end
elseif x(j,1) < 0 && x(j,2) > 0 && len(1)-x(j,2) > 0
% sp inside the parent and crosses its surface
if h(j,2) >= 0 && h(j,2) <= Len(j) && len(1)-x(j,2) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,2)*axe(1,:);
len(1) = len(1)-x(j,2);
ParentFound = true;
elseif len(1)-x(j,2) > 0
if h(j,2) < 0
X(j,:) = [x(j,2) abs(h(j,2)) 0];
else
X(j,:) = [x(j,2) h(j,2)-Len(j) 0];
end
else
X(j,:) = [x(j,2) h(j,2) 1];
end
elseif x(j,1) < 0 && x(j,2) < 0 && x(j,2) < x(j,1) && len(1)-x(j,1) > 0
% sp outside the parent and crosses its surface when extended
% backwards
if h(j,1) >= 0 && h(j,1) <= Len(j) && len(1)-x(j,1) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,1)*axe(1,:);
len(1) = len(1)-x(j,1);
ParentFound = true;
elseif len(1)-x(j,1) > 0
if h(j,1) < 0
X(j,:) = [x(j,1) abs(h(j,1)) 0];
else
X(j,:) = [x(j,1) h(j,1)-Len(j) 0];
end
else
X(j,:) = [x(j,1) h(j,1) 1];
end
elseif x(j,1) < 0 && x(j,2) < 0 && x(j,2) > x(j,1) && len(1)-x(j,2) > 0
% sp outside the parent and crosses its surface when extended
% backwards
if h(j,2) >= 0 && h(j,2) <= Len(j) && len(1)-x(j,2) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,2)*axe(1,:);
len(1) = len(1)-x(j,2);
ParentFound = true;
elseif len(1)-x(j,2) > 0
if h(j,2) < 0
X(j,:) = [x(j,2) abs(h(j,2)) 0];
else
X(j,:) = [x(j,2) h(j,2)-Len(j) 0];
end
else
X(j,:) = [x(j,2) h(j,2) 1];
end
elseif x(j,1) > 0 && x(j,2) > 0 && x(j,2) < x(j,1) && len(1)-x(j,1) > 0
% sp outside the parent but crosses its surface when extended forward
if h(j,1) >= 0 && h(j,1) <= Len(j) && len(1)-x(j,1) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,1)*axe(1,:);
len(1) = len(1)-x(j,1);
ParentFound = true;
elseif len(1)-x(j,1) > 0
if h(j,1) < 0
X(j,:) = [x(j,1) abs(h(j,1)) 0];
else
X(j,:) = [x(j,1) h(j,1)-Len(j) 0];
end
else
X(j,:) = [x(j,1) h(j,1) 1];
end
elseif x(j,1) > 0 && x(j,2) > 0 && x(j,2) > x(j,1) && len(1)-x(j,2) > 0
% sp outside the parent and crosses its surface when extended forward
if h(j,2) >= 0 && h(j,2) <= Len(j) && len(1)-x(j,2) > 0
PC = pc(j);
sta(1,:) = sta(1,:)+x(j,2)*axe(1,:);
len(1) = len(1)-x(j,2);
ParentFound = true;
elseif len(1)-x(j,2) > 0
if h(j,1) < 0
X(j,:) = [x(j,2) abs(h(j,2)) 0];
else
X(j,:) = [x(j,2) h(j,2)-Len(j) 0];
end
else
X(j,:) = [x(j,2) h(j,2) 1];
end
end
j = j+1;
end
if ~ParentFound && n > 0
[H,I] = min(X(:,2));
X = X(I,:);
if X(3) == 0 && H < 0.1*Len(I)
PC = pc(I);
sta(1,:) = sta(1,:)+X(1)*axe(1,:);
len(1) = len(1)-X(1);
ParentFound = true;
else
PC = pc(I);
if nc > 1 && X(1) <= rad(1) && abs(X(2)) <= 1.25*cylinder.length(PC)
% Remove the first cylinder and adjust the second
S = sta(1,:)+X(1)*axe(1,:);
V = sta(2,:)+len(2)*axe(2,:)-S;
len(2) = norm(V); len = len(2:nc);
axe(2,:) = V/norm(V); axe = axe(2:nc,:);
sta(2,:) = S; sta = sta(2:nc,:);
rad = rad(2:nc);
cyl.mad = cyl.mad(2:nc);
cyl.SurfCov = cyl.SurfCov(2:nc);
nc = nc-1;
ParentFound = true;
elseif nc > 1
% Remove the first cylinder
sta = sta(2:nc,:); len = len(2:nc);
axe = axe(2:nc,:); rad = rad(2:nc);
cyl.mad = cyl.mad(2:nc);
cyl.SurfCov = cyl.SurfCov(2:nc);
nc = nc-1;
elseif isempty(SChi{si})
% Remove the cylinder
nc = 0;
PC = zeros(0,1);
ParentFound = true;
rad = zeros(0,1);
elseif X(1) <= rad(1) && abs(X(2)) <= 1.5*cylinder.length(PC)
% Adjust the cylinder
sta(1,:) = sta(1,:)+X(1)*axe(1,:);
len(1) = abs(X(1));
ParentFound = true;
end
end
end
if ~ParentFound
% The parent is the cylinder in the parent segment whose axis
% line is the closest to the axis line of the first cylinder
% Or the parent cylinder is the one whose base, when connected
% to the first cylinder is the most parallel.
% Add new cylinder
pc = pc0;
[Dist,~,DistOnLines] = distances_between_lines(...
sta(1,:),axe(1,:),cylinder.start(pc,:),cylinder.axis(pc,:));
I = DistOnLines >= 0;
J = DistOnLines <= cylinder.length(pc);
I = I&J;
if ~any(I)
I = DistOnLines >= -0.2*cylinder.length(pc);
J = DistOnLines <= 1.2*cylinder.length(pc);
I = I&J;
end
if any(I)
pc = pc(I); Dist = Dist(I); DistOnLines = DistOnLines(I);
[~,I] = min(Dist);
DistOnLines = DistOnLines(I); PC = pc(I);
Q = cylinder.start(PC,:)+DistOnLines*cylinder.axis(PC,:);
V = sta(1,:)-Q; L = norm(V); V = V/L;
a = acos(V*cylinder.axis(PC,:)');
h = sin(a)*L;
S = Q+cylinder.radius(PC)/h*L*V;
L = (h-cylinder.radius(PC))/h*L;
if L > 0.01 && L/len(1) > 0.2
nc = nc+1;
sta = [S; sta]; rad = [rad(1); rad];
axe = [V; axe]; len = [L; len];
cyl.mad = [cyl.mad(1); cyl.mad];
cyl.SurfCov = [cyl.SurfCov(1); cyl.SurfCov];
cyl.rel = [cyl.rel(1); cyl.rel];
cyl.conv = [cyl.conv(1); cyl.conv];
added = true;
end
else
V = -mat_vec_subtraction(cylinder.start(pc,:),sta(1,:));
L0 = sqrt(sum(V.*V,2));
V = [V(:,1)./L0 V(:,2)./L0 V(:,3)./L0];
A = V*axe(1,:)';
[A,I] = max(A);
L1 = L0(I); PC = pc(I); V = V(I,:);
a = acos(V*cylinder.axis(PC,:)');
h = sin(a)*L1;
S = cylinder.start(PC,:)+cylinder.radius(PC)/h*L1*V;
L = (h-cylinder.radius(PC))/h*L1;
if L > 0.01 && L/len(1) > 0.2
nc = nc+1;
sta = [S; sta]; rad = [rad(1); rad];
axe = [V; axe]; len = [L; len];
cyl.mad = [cyl.mad(1); cyl.mad];
cyl.SurfCov = [cyl.SurfCov(1); cyl.SurfCov];
cyl.rel = [cyl.rel(1); cyl.rel];
cyl.conv = [cyl.conv(1); cyl.conv];
added = true;
end
end
end
end
else
% no parent segment exists
PC = zeros(0,1);
end
% define the output
cyl.radius = rad(1:nc); cyl.length = len(1:nc,:);
cyl.start = sta(1:nc,:); cyl.axis = axe(1:nc,:);
cyl.mad = cyl.mad(1:nc); cyl.SurfCov = cyl.SurfCov(1:nc);
cyl.conv = cyl.conv(1:nc); cyl.rel = cyl.rel(1:nc);
% End of function
end
function cyl = adjustments(cyl,parcyl,inputs,Regs)
nc = size(cyl.radius,1);
Mod = false(nc,1); % cylinders modified
SC = cyl.SurfCov;
%% Determine the maximum and the minimum radius
% The maximum based on parent branch
if ~isempty(parcyl.radius)
MaxR = 0.95*parcyl.radius;
MaxR = max(MaxR,inputs.MinCylRad);
else
% use the maximum from the bottom cylinders
a = min(3,nc);
MaxR = 1.25*max(cyl.radius(1:a));
end
MinR = min(cyl.radius(SC > 0.7));
if ~isempty(MinR) && min(cyl.radius) < MinR/2
MinR = min(cyl.radius(SC > 0.4));
elseif isempty(MinR)
MinR = min(cyl.radius(SC > 0.4));
if isempty(MinR)
MinR = inputs.MinCylRad;
end
end
%% Check maximum and minimum radii
I = cyl.radius < MinR;
cyl.radius(I) = MinR;
Mod(I) = true;
if inputs.ParentCor || nc <= 3
I = (cyl.radius > MaxR & SC < 0.7) | (cyl.radius > 1.2*MaxR);
cyl.radius(I) = MaxR;
Mod(I) = true;
% For short branches modify with more restrictions
if nc <= 3
I = (cyl.radius > 0.75*MaxR & SC < 0.7);
if any(I)
r = max(SC(I)/0.7.*cyl.radius(I),MinR);
cyl.radius(I) = r;
Mod(I) = true;
end
end
end
%% Use taper correction to modify radius of too small and large cylinders
% Adjust radii if a small SurfCov and high SurfCov in the previous and
% following cylinders
for i = 2:nc-1
if SC(i) < 0.7 && SC(i-1) >= 0.7 && SC(i+1) >= 0.7
cyl.radius(i) = 0.5*(cyl.radius(i-1)+cyl.radius(i+1));
Mod(i) = true;
end
end
%% Use taper correction to modify radius of too small and large cylinders
if inputs.TaperCor
if max(cyl.radius) < 0.001
%% Adjust radii of thin branches to be linearly decreasing
if nc > 2
r = sort(cyl.radius);
r = r(2:end-1);
a = 2*mean(r);
if a > max(r)
a = min(0.01,max(r));
end
b = min(0.5*min(cyl.radius),0.001);
cyl.radius = linspace(a,b,nc)';
elseif nc > 1
r = max(cyl.radius);
cyl.radius = [r; 0.5*r];
end
Mod = true(nc,1);
elseif nc > 4
%% Parabola adjustment of maximum and minimum
% Define parabola taper shape as maximum (and minimum) radii for
% the cylinders with low surface coverage
branchlen = sum(cyl.length(1:nc)); % branch length
L = cyl.length/2+[0; cumsum(cyl.length(1:nc-1))];
Taper = [L; branchlen];
Taper(:,2) = [1.05*cyl.radius; MinR];
sc = [SC; 1];
% Least square fitting of parabola to "Taper":
A = [sum(sc.*Taper(:,1).^4) sum(sc.*Taper(:,1).^2); ...
sum(sc.*Taper(:,1).^2) sum(sc)];
y = [sum(sc.*Taper(:,2).*Taper(:,1).^2); sum(sc.*Taper(:,2))];
warning off
x = A\y;
warning on
x(1) = min(x(1),-0.0001); % tapering from the base to the tip
Ru = x(1)*L.^2+x(2); % upper bound parabola
Ru( Ru < MinR ) = MinR;
if max(Ru) > MaxR
a = max(Ru);
Ru = MaxR/a*Ru;
end
Rl = 0.75*Ru; % lower bound parabola
Rl( Rl < MinR ) = MinR;
% Modify radii based on parabola:
% change values larger than the parabola-values when SC < 70%:
I = cyl.radius > Ru & SC < 0.7;
cyl.radius(I) = Ru(I)+(cyl.radius(I)-Ru(I)).*SC(I)/0.7;
Mod(I) = true;
% change values larger than the parabola-values when SC > 70% and
% radius is over 33% larger than the parabola-value:
I = cyl.radius > 1.333*Ru & SC >= 0.7;
cyl.radius(I) = Ru(I)+(cyl.radius(I)-Ru(I)).*SC(I);
Mod(I) = true;
% change values smaller than the downscaled parabola-values:
I = (cyl.radius < Rl & SC < 0.7) | (cyl.radius < 0.5*Rl);
cyl.radius(I) = Rl(I);
Mod(I) = true;
else
%% Adjust radii of short branches to be linearly decreasing
R = cyl.radius;
if nnz(SC >= 0.7) > 1
a = max(R(SC >= 0.7));
b = min(R(SC >= 0.7));
elseif nnz(SC >= 0.7) == 1
a = max(R(SC >= 0.7));
b = min(R);
else
a = sum(R.*SC/sum(SC));
b = min(R);
end
Ru = linspace(a,b,nc)';
I = SC < 0.7 & ~Mod;
cyl.radius(I) = Ru(I)+(R(I)-Ru(I)).*SC(I)/0.7;
Mod(I) = true;
end
end
%% Modify starting points by optimising them for given radius and axis
nr = size(Regs,1);
for i = 1:nc
if Mod(i)
if nr == nc
Reg = Regs{i};
elseif i > 1
Reg = Regs{i-1};
end
if abs(cyl.radius(i)-cyl.radius0(i)) > 0.005 && ...
(nr == nc || (nr < nc && i > 1))
P = Reg-cyl.start(i,:);
[U,V] = orthonormal_vectors(cyl.axis(i,:));
P = P*[U V];
cir = least_squares_circle_centre(P,[0 0],cyl.radius(i));
if cir.conv && cir.rel
cyl.start(i,:) = cyl.start(i,:)+cir.point(1)*U'+cir.point(2)*V';
cyl.mad(i,1) = cir.mad;
[~,V,h] = distances_to_line(Reg,cyl.axis(i,:),cyl.start(i,:));
if min(h) < -0.001
cyl.length(i) = max(h)-min(h);
cyl.start(i,:) = cyl.start(i,:)+min(h)*cyl.axis(i,:);
[~,V,h] = distances_to_line(Reg,cyl.axis(i,:),cyl.start(i,:));
end
a = max(0.02,0.2*cyl.radius(i));
nl = ceil(cyl.length(i)/a);
nl = max(nl,4);
ns = ceil(2*pi*cyl.radius(i)/a);
ns = max(ns,10);
ns = min(ns,36);
cyl.SurfCov(i,1) = surface_coverage2(...
cyl.axis(i,:),cyl.length(i),V,h,nl,ns);
end
end
end
end
%% Continuous branches
% Make cylinders properly "continuous" by moving the starting points
% Move the starting point to the plane defined by parent cylinder's top
if nc > 1
for j = 2:nc
U = cyl.start(j,:)-cyl.start(j-1,:)-cyl.length(j-1)*cyl.axis(j-1,:);
if (norm(U) > 0.0001)
% First define vector V and W which are orthogonal to the
% cylinder axis N
N = cyl.axis(j,:)';
if norm(N) > 0
[V,W] = orthonormal_vectors(N);
% Now define the new starting point
x = [N V W]\U';
cyl.start(j,:) = cyl.start(j,:)-x(1)*N';
if x(1) > 0
cyl.length(j) = cyl.length(j)+x(1);
elseif cyl.length(j)+x(1) > 0
cyl.length(j) = cyl.length(j)+x(1);
end
end
end
end
end
%% Connect far away first cylinder to the parent
if ~isempty(parcyl.radius)
[d,V,h,B] = distances_to_line(cyl.start(1,:),parcyl.axis,parcyl.start);
d = d-parcyl.radius;
if d > 0.001
taper = cyl.start(1,:);
E = taper+cyl.length(1)*cyl.axis(1,:);
V = parcyl.radius*V/norm(V);
if h >= 0 && h <= parcyl.length
cyl.start(1,:) = parcyl.start+B+V;
elseif h < 0
cyl.start(1,:) = parcyl.start+V;
else
cyl.start(1,:) = parcyl.start+parcyl.length*parcyl.axis+V;
end
cyl.axis(1,:) = E-cyl.start(1,:);
cyl.length(1) = norm(cyl.axis(1,:));
cyl.axis(1,:) = cyl.axis(1,:)/cyl.length(1);
end
end
% End of function
end
|
github | InverseTampere/TreeQSM-master | correct_segments.m | .m | TreeQSM-master/src/main_steps/correct_segments.m | 30,167 | utf_8 | 3e6a16d9d908979779eec4d463d9d735 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function segment = correct_segments(P,cover,segment,inputs,RemSmall,ModBases,AddChild)
% ---------------------------------------------------------------------
% CORRECT_SEGMENTS.M Corrects the given segmentation.
%
% Version 2.0.2
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% First segments are modified by making them as long as possible. Here the
% stem and 1-st order branches are handled differently as there is also
% restriction to how "curved" they can be in the sense of ratio
% total_length/base_tip_distance. Then, optionally, small segments that
% are close to their parent and have no children are removed as unclear
% (are they part of the parent or real segments?).
% Then, optionally, the bases of branches are modified by
% expanding them into parent segment in order to remove ledges from the
% parent from locations of the branches.
% Inputs:
% P Point cloud
% cover Cover sets
% segment Segments
% inputs The input structure
% RemSmall If True, small unclear segments are removed
% ModBase If True, bases of the segments are modified
% AddChild If True, the expanded (modified) base is added to the child segment.
% If AddChild = false and ModBase = true, then the expanded part is
% removed from both the child and the parent.
% Outputs:
% segment Segments
% ---------------------------------------------------------------------
% Changes from version 2.0.1 to 2.0.2, 2 May 2022:
% 1) Added "if ~isempty(SegChildren)... " statement to the
% "modify_topology" subfunction where next branch is selected based on
% the increasing branching order to prevent a rare bug
% Changes from version 2.0.0 to 2.0.1, 2 Oct 2019:
% 1) Main function: added "if SPar(i,1) > 1"-statement to ModBase -->
% NotAddChild
if nargin == 4
RemSmall = true;
ModBases = false;
elseif nargin == 5
ModBases = false;
elseif nargin == 6
AddChild = false;
end
Bal = cover.ball;
Segs = segment.segments;
SPar = segment.ParentSegment;
SChi = segment.ChildSegment;
Ce = P(cover.center,:);
%% Make stem and branches as long as possible
if RemSmall
[Segs,SPar,SChi] = modify_topology(P,Ce,Bal,Segs,SPar,SChi,inputs.PatchDiam2Max);
else
[Segs,SPar,SChi] = modify_topology(P,Ce,Bal,Segs,SPar,SChi,inputs.PatchDiam1);
end
%% Remove small child segments
if RemSmall
[Segs,SPar,SChi] = remove_small(Ce,Segs,SPar,SChi);
end
% Check the consistency of empty vector sizes
ns = size(Segs,1);
for i = 1:ns
if isempty(SChi{i})
SChi{i} = zeros(0,1,'uint32');
end
end
if ModBases
%% Modify the base of the segments
ns = size(Segs,1);
base = cell(200,1);
if AddChild
% Add the expanded base to the child and remove it from the parent
for i = 2:ns
SegC = Segs{i};
SegP = Segs{SPar(i,1)};
[SegP,Base] = modify_parent(P,Bal,Ce,SegP,SegC,SPar(i,2),inputs.PatchDiam1,base);
Segs{SPar(i,1)} = SegP;
SegC{1} = Base;
Segs{i} = SegC;
end
else
% Only remove the expanded base from the parent
for i = 2:ns
if SPar(i,1) > 1
SegC = Segs{i};
SegP = Segs{SPar(i,1)};
SegP = modify_parent(P,Bal,Ce,SegP,SegC,SPar(i,2),inputs.PatchDiam2Max,base);
Segs{SPar(i,1)} = SegP;
end
end
end
end
SPar = SPar(:,1);
% Modify the size and type of SChi and Segs, if necessary
ns = size(Segs,1);
for i = 1:ns
C = SChi{i};
if size(C,2) > size(C,1) && size(C,1) > 0
SChi{i} = uint32(C');
elseif size(C,1) == 0 || size(C,2) == 0
SChi{i} = zeros(0,1,'uint32');
else
SChi{i} = uint32(C);
end
S = Segs{i};
for j = 1:size(S,1)
S{j} = uint32(S{j});
end
Segs{i} = S;
end
segment.segments = Segs;
segment.ParentSegment = SPar;
segment.ChildSegment = SChi;
%% Generate segment data for the points
np = size(P,1);
ns = size(Segs,1);
% Define for each point its segment
if ns <= 2^16
SegmentOfPoint = zeros(np,1,'uint16');
else
SegmentOfPoint = zeros(np,1,'uint32');
end
for i = 1:ns
S = Segs{i};
S = vertcat(S{:});
SegmentOfPoint(vertcat(Bal{S})) = i;
end
segment.SegmentOfPoint = SegmentOfPoint;
% Define the indexes of the segments up to 3rd-order
C = SChi{1};
segment.branch1indexes = C;
if ~isempty(C)
C = vertcat(SChi{C});
segment.branch2indexes = C;
if ~isempty(C)
C = vertcat(SChi{C});
segment.branch3indexes = C;
else
segment.branch3indexes = zeros(0,1);
end
else
segment.branch2indexes = zeros(0,1);
segment.branch3indexes = zeros(0,1);
end
end % End of main function
function StemTop = search_stem_top(P,Ce,Bal,Segs,SPar,dmin)
% Search the stem's top segment such that the resulting stem
% 1) is one the highest segments (goes to the top of the tree)
% 2) is horizontally close to the bottom of the stem (goes straigth up)
% 3) has length close to the distance between its bottom and top (is not too curved)
nseg = size(Segs,1);
SegHeight = zeros(nseg,1); % heights of the tips of the segments
HorDist = zeros(nseg,1); % horizontal distances of the tips from stem's center
s = Segs{1}{1};
StemCen = average(Ce(s,:)); % center (x,y) of stem base
for i = 1:nseg
S = Segs{i}{end}(1);
SegHeight(i) = Ce(S,3);
HorDist(i) = norm(Ce(S,1:2)-StemCen(1:2));
end
Top = max(SegHeight); % the height of the highest tip
HeiDist = Top-SegHeight; % the height difference to "Top"
Dist = sqrt((HorDist.^2+HeiDist.^2)); % Distance to the top
LenDisRatio = 2;
SearchDist = 0.5;
MaxLenDisRatio = 1.05; % the maximum acceptable length/distance ratio of segments
SubSegs = zeros(100,1); % Segments to be combined to form the stem
while LenDisRatio > MaxLenDisRatio
StemTops = (1:1:nseg)';
I = Dist < SearchDist; % only segments with distance to the top < 0.5m
while ~any(I)
SearchDist = SearchDist+0.5;
I = Dist < SearchDist;
end
StemTops = StemTops(I);
% Define i-1 alternative stems from StemTops
n = length(StemTops);
Stems = cell(n,1);
Segment = cell(3000,1);
for j = 1:n
Seg = Segs{1};
spar = SPar;
if StemTops(j) ~= 1
% Tip point was not in the current segment, modify segments
SubSegs(1) = StemTops(j);
nsegs = 1;
segment = StemTops(j);
while segment ~= 1
segment = SPar(segment,1);
nsegs = nsegs+1;
SubSegs(nsegs) = segment;
end
% Modify stem
a = size(Seg,1);
Segment(1:a) = Seg;
a = a+1;
for i = 1:nsegs-2
I = SubSegs(nsegs-i); % segment to be combined to the first segment
J = SubSegs(nsegs-i-1); % above segment's child to be combined next
SP = spar(I,2); % layer index of the child in the parent
SegC = Segs{I};
sp = spar(J,2); % layer index of the child's child in the child
if SP >= a-2 % Use the whole parent
Segment(a:a+sp-1) = SegC(1:sp);
spar(J,2) = a+sp-1;
a = a+sp;
else % Use only bottom part of the parent
Segment(SP+1:SP+sp) = SegC(1:sp);
a = SP+sp+1;
spar(J,2) = SP+sp;
end
SubSegs(nsegs-i) = 1;
end
% Combine the last segment to the branch
I = SubSegs(1);
SP = spar(I,2);
SegC = Segs{I};
nc = size(SegC,1);
if SP >= a-2 % Use the whole parent
Segment(a:a+nc-1) = SegC;
a = a+nc-1;
else % divide the parent segment into two parts
Segment(SP+1:SP+nc) = SegC;
a = SP+nc;
end
Stems{j,1} = Segment(1:a);
else
Stems{j,1} = Seg;
end
end
% Calculate the lengths of the candidate stems
N = ceil(0.5/dmin/1.4); % number of layers used for linear length approximation
Lengths = zeros(n,1);
Heights = zeros(n,1);
for i = 1:n
Seg = Stems{i,1};
ns = size(Seg,1);
if ceil(ns/N) > floor(ns/N)
m = ceil(ns/N);
else
m = ceil(ns/N)+1;
end
Nodes = zeros(m,3);
for j = 1:m
I = (j-1)*N+1;
if I > ns
I = ns;
end
S = Seg{I};
if length(S) > 1
Nodes(j,:) = average(Ce(S,:));
else
S = Bal{S};
Nodes(j,:) = average(P(S,:));
end
end
V = Nodes(2:end,:)-Nodes(1:end-1,:);
Lengths(i) = sum(sqrt(sum(V.*V,2)));
V = Nodes(end,:)-Nodes(1,:);
Heights(i) = norm(V);
end
LenDisRatio = Lengths./Heights;
[LenDisRatio,I] = min(LenDisRatio);
StemTop = StemTops(I);
SearchDist = SearchDist+1;
if SearchDist > 3
MaxLenDisRatio = 1.1;
if SearchDist > 5
MaxLenDisRatio = 1.15;
if SearchDist > 7
MaxLenDisRatio = 5;
end
end
end
end
end % End subfunction
function BranchTop = search_branch_top(P,Ce,Bal,Segs,SPar,SChi,dmin,BI)
% Search the end segment for branch such that the resulting branch
% 1) has length close to the distance between its bottom and top
% 2) has distance close to the farthest segment end
% Inputs
% BI Branch (segment) index
% Outputs
% BranchTop The index of the segment forming the tip of the branch
% originating from the base of the given segment BI
% Define all the sub-segments of the given segments
ns = size(Segs,1);
Segments = zeros(ns,1); % the given segment and its sub-segments
Segments(1) = BI;
t = 2;
C = SChi{BI};
while ~isempty(C)
n = length(C);
Segments(t:t+n-1) = C;
C = vertcat(SChi{C});
t = t+n;
end
if t > 2
t = t-n;
end
Segments = Segments(1:t);
% Determine linear distances from the segment tips to the base of the given
% segment
LinearDist = zeros(t,1); % linear distances from the
Seg = Segs{Segments(1)};
BranchBase = average(Ce(Seg{1},:)); % center of branch's base
for i = 1:t
Seg = Segs{Segments(i)};
C = average(Ce(Seg{end},:)); % tip
LinearDist(i) = norm(C-BranchBase);
end
LinearDist = LinearDist(1:t);
% Sort the segments according their linear distance, from longest to
% shortest
[LinearDist,I] = sort(LinearDist,'descend');
Segments = Segments(I);
% Define alternative branches from Segments
Branches = cell(t,1); % the alternative segments as cell layers
SubSegs = zeros(100,1); % Segments to be combined
Segment = cell(3000,1);
for j = 1:t
Seg = Segs{BI};
spar = SPar;
if Segments(j) ~= BI
% Tip point was not in the current segment, modify segments
SubSegs(1) = Segments(j);
k = 1;
S = Segments(j);
while S ~= BI
S = SPar(S,1);
k = k+1;
SubSegs(k) = S;
end
% Modify branch
a = size(Seg,1);
Segment(1:a) = Seg;
a = a+1;
for i = 1:k-2
I = SubSegs(k-i); % segment to be combined to the first segment
J = SubSegs(k-i-1); % above segment's child to be combined next
SP = spar(I,2); % layer index of the child in the parent
SegC = Segs{I};
sp = spar(J,2); % layer index of the child's child in the child
if SP >= a-2 % Use the whole parent
Segment(a:a+sp-1) = SegC(1:sp);
spar(J,2) = a+sp-1;
a = a+sp;
else % Use only bottom part of the parent
Segment(SP+1:SP+sp) = SegC(1:sp);
a = SP+sp+1;
spar(J,2) = SP+sp;
end
SubSegs(k-i) = 1;
end
% Combine the last segment to the branch
I = SubSegs(1);
SP = spar(I,2);
SegC = Segs{I};
L = size(SegC,1);
if SP >= a-2 % Use the whole parent
Segment(a:a+L-1) = SegC;
a = a+L-1;
else % divide the parent segment into two parts
Segment(SP+1:SP+L) = SegC;
a = SP+L;
end
Branches{j,1} = Segment(1:a);
else
Branches{j,1} = Seg;
end
end
% Calculate the lengths of the candidate branches. Stop, if possible, when
% the ratio length/linear distance is less 1.2 (branch is quite straight)
N = ceil(0.25/dmin/1.4); % number of layers used for linear length approximation
i = 1; % running index for while loop
Continue = true; % continue while loop as long as "Continue" is true
Lengths = zeros(t,1); % linear lengths of the branches
while i <= t && Continue
% Approximate the length with line segments connecting nodes along
% the segment
Seg = Branches{i,1};
ns = size(Seg,1);
if ceil(ns/N) > floor(ns/N)
m = ceil(ns/N);
else
m = ceil(ns/N)+1;
end
Nodes = zeros(m,3);
for j = 1:m
I = (j-1)*N+1;
if I > ns
I = ns;
end
S = Seg{I};
if length(S) > 1
Nodes(j,:) = average(Ce(S,:));
else
S = Bal{S};
Nodes(j,:) = average(P(S,:));
end
end
V = Nodes(2:end,:)-Nodes(1:end-1,:); % line segments
Lengths(i) = sum(sqrt(sum(V.*V,2)));
% Continue as long as the length is less than 20% longer than the linear dist.
% and the linear distance is over 75% of the maximum
if Lengths(i)/LinearDist(i) < 1.20 && LinearDist(i) > 0.75*LinearDist(1)
Continue = false;
BranchTop = Segments(i);
end
i = i+1;
end
% If no suitable segment was found, try first with less strict conditions,
% and if that does not work, then select the one with the largest linear distance
if Continue
L = Lengths./LinearDist;
i = 1;
while i <= t && L(i) > 1.4 && LinearDist(i) > 0.75*LinearDist(1)
i = i+1;
end
if i <= t
BranchTop = Segments(i);
else
BranchTop = Segments(1);
end
end
end % End subfunction
function [Segs,SPar,SChi] = modify_topology(P,Ce,Bal,Segs,SPar,SChi,dmin)
% Make stem and branches as long as possible
ns = size(Segs,1);
Fal = false(2*ns,1);
nc = ceil(ns/5);
SubSegments = zeros(nc,1); % for searching sub-segments
SegInd = 1; % the segment under modification
UnMod = true(ns,1);
UnMod(SegInd) = false;
BranchOrder = 0;
ChildSegInd = 1; % index of the child segments under modification
while any(UnMod)
ChildSegs = SChi{SegInd}; % child segments of the segment under modification
if size(ChildSegs,1) < size(ChildSegs,2)
ChildSegs = ChildSegs';
SChi{SegInd} = ChildSegs;
end
if ~isempty(Segs(SegInd)) && ~isempty(ChildSegs)
if SegInd > 1 && BranchOrder > 1 % 2nd-order and higher branches
% Search the tip of the sub-branches with biggest linear
% distance from the current branch's base
SubSegments(1) = SegInd;
NSubSegs = 2;
while ~isempty(ChildSegs)
n = length(ChildSegs);
SubSegments(NSubSegs:NSubSegs+n-1) = ChildSegs;
ChildSegs = vertcat(SChi{ChildSegs});
NSubSegs = NSubSegs+n;
end
if NSubSegs > 2
NSubSegs = NSubSegs-n;
end
% Find tip-points
Top = zeros(NSubSegs,3);
for i = 1:NSubSegs
Top(i,:) = Ce(Segs{SubSegments(i)}{end}(1),:);
end
% Define bottom of the branch
BotLayer = Segs{SegInd}{1};
Bottom = average(Ce(BotLayer,:));
% End segment is the segment whose tip has greatest distance to
% the bottom of the branch
V = mat_vec_subtraction(Top,Bottom);
d = sum(V.*V,2);
[~,I] = max(d);
TipSeg = SubSegments(I(1));
elseif SegInd > 1 && BranchOrder <= 1 % first order branches
TipSeg = search_branch_top(P,Ce,Bal,Segs,SPar,SChi,dmin,SegInd);
else % Stem
TipSeg = search_stem_top(P,Ce,Bal,Segs,SPar,dmin);
end
if TipSeg ~= SegInd
% Tip point was not in the current segment, modify segments
SubSegments(1) = TipSeg;
NSubSegs = 1;
while TipSeg ~= SegInd
TipSeg = SPar(TipSeg,1);
NSubSegs = NSubSegs+1;
SubSegments(NSubSegs) = TipSeg;
end
% refine branch
for i = 1:NSubSegs-2
I = SubSegments(NSubSegs-i); % segment to be combined to the first segment
J = SubSegments(NSubSegs-i-1); % above segment's child to be combined next
SP = SPar(I,2); % layer index of the child in the parent
SegP = Segs{SegInd};
SegC = Segs{I};
N = size(SegP,1);
sp = SPar(J,2); % layer index of the child's child in the child
if SP >= N-2 % Use the whole parent
Segs{SegInd} = [SegP; SegC(1:sp)];
if sp < size(SegC,1) % use only part of the child segment
Segs{I} = SegC(sp+1:end);
SPar(I,2) = N+sp;
ChildSegs = SChi{I};
K = SPar(ChildSegs,2) <= sp;
c = ChildSegs(~K);
SChi{I} = c;
SPar(c,2) = SPar(c,2)-sp;
ChildSegs = ChildSegs(K);
SChi{SegInd} = [SChi{SegInd}; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = N+SPar(ChildSegs,2);
else % use the whole child segment
Segs{I} = cell(0,1);
SPar(I,1) = 0;
UnMod(I) = false;
ChildSegs = SChi{I};
SChi{I} = zeros(0,1);
c = set_difference(SChi{SegInd},I,Fal);
SChi{SegInd} = [c; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = N+SPar(ChildSegs,2);
end
SubSegments(NSubSegs-i) = SegInd;
else % divide the parent segment into two parts
ns = ns+1;
Segs{ns} = SegP(SP+1:end); % the top part of the parent forms a new segment
SPar(ns,1) = SegInd;
SPar(ns,2) = SP;
UnMod(ns) = true;
Segs{SegInd} = [SegP(1:SP); SegC(1:sp)];
ChildSegs = SChi{SegInd};
if size(ChildSegs,1) < size(ChildSegs,2)
ChildSegs = ChildSegs';
end
K = SPar(ChildSegs,2) > SP;
SChi{SegInd} = ChildSegs(~K);
ChildSegs = ChildSegs(K);
SChi{ns} = ChildSegs;
SPar(ChildSegs,1) = ns;
SPar(ChildSegs,2) = SPar(ChildSegs,2)-SP;
SChi{SegInd} = [SChi{SegInd}; ns];
if sp < size(SegC,1) % use only part of the child segment
Segs{I} = SegC(sp+1:end);
SPar(I,2) = SP+sp;
ChildSegs = SChi{I};
K = SPar(ChildSegs,2) <= sp;
SChi{I} = ChildSegs(~K);
SPar(ChildSegs(~K),2) = SPar(ChildSegs(~K),2)-sp;
ChildSegs = ChildSegs(K);
SChi{SegInd} = [SChi{SegInd}; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = SP+SPar(ChildSegs,2);
else % use the whole child segment
Segs{I} = cell(0,1);
SPar(I,1) = 0;
UnMod(I) = false;
ChildSegs = SChi{I};
c = set_difference(SChi{SegInd},I,Fal);
SChi{SegInd} = [c; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = SP+SPar(ChildSegs,2);
end
SubSegments(NSubSegs-i) = SegInd;
end
end
% Combine the last segment to the branch
I = SubSegments(1);
SP = SPar(I,2);
SegP = Segs{SegInd};
SegC = Segs{I};
N = size(SegP,1);
if SP >= N-3 % Use the whole parent
Segs{SegInd} = [SegP; SegC];
Segs{I} = cell(0);
SPar(I,1) = 0;
UnMod(I) = false;
ChildSegs = SChi{I};
if size(ChildSegs,1) < size(ChildSegs,2)
ChildSegs = ChildSegs';
end
c = set_difference(SChi{SegInd},I,Fal);
SChi{SegInd} = [c; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = N+SPar(ChildSegs,2);
else % divide the parent segment into two parts
ns = ns+1;
Segs{ns} = SegP(SP+1:end);
SPar(ns,:) = [SegInd SP];
Segs{SegInd} = [SegP(1:SP); SegC];
Segs{I} = cell(0);
SPar(I,1) = 0;
UnMod(ns) = true;
UnMod(I) = false;
ChildSegs = SChi{SegInd};
K = SPar(ChildSegs,2) > SP;
SChi{SegInd} = [ChildSegs(~K); ns];
ChildSegs = ChildSegs(K);
SChi{ns} = ChildSegs;
SPar(ChildSegs,1) = ns;
SPar(ChildSegs,2) = SPar(ChildSegs,2)-SP;
ChildSegs = SChi{I};
c = set_difference(SChi{SegInd},I,Fal);
SChi{SegInd} = [c; ChildSegs];
SPar(ChildSegs,1) = SegInd;
SPar(ChildSegs,2) = SP+SPar(ChildSegs,2);
end
end
UnMod(SegInd) = false;
else
UnMod(SegInd) = false;
end
% Select the next branch, use increasing branching order
if BranchOrder > 0 && any(UnMod(SegChildren))
ChildSegInd = ChildSegInd+1;
SegInd = SegChildren(ChildSegInd);
elseif BranchOrder == 0
BranchOrder = BranchOrder+1;
SegChildren = SChi{1};
if ~isempty(SegChildren)
SegInd = SegChildren(1);
else
UnMod = false;
end
else
BranchOrder = BranchOrder+1;
i = 1;
SegChildren = SChi{1};
while i < BranchOrder && ~isempty(SegChildren)
i = i+1;
L = cellfun('length',SChi(SegChildren));
Keep = L > 0;
SegChildren = SegChildren(Keep);
SegChildren = vertcat(SChi{SegChildren});
end
I = UnMod(SegChildren);
if any(I)
SegChildren = SegChildren(I);
SegInd = SegChildren(1);
ChildSegInd = 1;
end
end
end
% Modify indexes by removing empty segments
Empty = true(ns,1);
for i = 1:ns
if isempty(Segs{i})
Empty(i) = false;
end
end
Segs = Segs(Empty);
Ind = (1:1:ns)';
n = nnz(Empty);
I = (1:1:n)';
Ind(Empty) = I;
SPar = SPar(Empty,:);
J = SPar(:,1) > 0;
SPar(J,1) = Ind(SPar(J,1));
for i = 1:ns
if Empty(i)
ChildSegs = SChi{i};
if ~isempty(ChildSegs)
ChildSegs = Ind(ChildSegs);
SChi{i} = ChildSegs;
end
end
end
SChi = SChi(Empty);
ns = n;
% Modify SChi
for i = 1:ns
ChildSegs = SChi{i};
if size(ChildSegs,2) > size(ChildSegs,1) && size(ChildSegs,1) > 0
SChi{i} = ChildSegs';
elseif size(ChildSegs,1) == 0 || size(ChildSegs,2) == 0
SChi{i} = zeros(0,1);
end
Seg = Segs{i};
n = max(size(Seg));
for j = 1:n
ChildSegs = Seg{j};
if size(ChildSegs,2) > size(ChildSegs,1) && size(ChildSegs,1) > 0
Seg{j} = ChildSegs';
elseif size(ChildSegs,1) == 0 || size(ChildSegs,2) == 0
Seg{j} = zeros(0,1);
end
end
Segs{i} = Seg;
end
end % End of function
function [Segs,SPar,SChi] = remove_small(Ce,Segs,SPar,SChi)
% Removes small child segments
% computes and estimate for stem radius at the base
Segment = Segs{1}; % current or parent segment
ns = size(Segment,1); % layers in the parent
if ns > 10
EndL = 10; % ending layer index in parent
else
EndL = ns;
end
End = average(Ce(Segment{EndL},:)); % Center of end layer
Start = average(Ce(Segment{1},:)); % Center of starting layer
V = End-Start; % Vector between starting and ending centers
V = V/norm(V); % normalize
Sets = vertcat(Segment{1:EndL});
MaxRad = max(distances_to_line(Ce(Sets,:),V,Start));
Nseg = size(Segs,1);
Fal = false(Nseg,1);
Keep = true(Nseg,1);
Sets = zeros(2000,1);
for i = 1:Nseg
if Keep(i)
ChildSegs = SChi{i}; % child segments
if ~isempty(ChildSegs) % child segments exists
n = length(ChildSegs); % number of children
Segment = Segs{i}; % current or parent segment
ns = size(Segment,1); % layers in the parent
for j = 1:n % check each child separately
nl = SPar(ChildSegs(j),2); % the index of the layer in the parent the child begins
if nl > 10
StartL = nl-10; % starting layer index in parent
else
StartL = 1;
end
if ns-nl > 10
EndL = nl+10; % end layer index in parent
else
EndL = ns;
end
End = average(Ce(Segment{EndL},:));
Start = average(Ce(Segment{StartL},:));
V = End-Start; % Vector between starting and ending centers
V = V/norm(V); % normalize
% cover sets of the child
ChildSets = Segs{ChildSegs(j)};
NL = size(ChildSets,1);
a = 1;
for k = 1:NL
S = ChildSets{k};
Sets(a:a+length(S)-1) = S;
a = a+length(S);
end
ChildSets = Sets(1:a-1);
% maximum distance in child
distChild = max(distances_to_line(Ce(ChildSets,:),V,Start));
if distChild < MaxRad+0.06
% Select the cover sets of the parent between centers
NL = EndL-StartL+1;
a = 1;
for k = 1:NL
S = Segment{StartL+(k-1)};
Sets(a:a+length(S)-1) = S;
a = a+length(S);
end
ParentSets = Sets(1:a-1);
% maximum distance in parent
distPar = max(distances_to_line(Ce(ParentSets,:),V,Start));
if (distChild-distPar < 0.02) || (distChild/distPar < 1.2 && distChild-distPar < 0.06)
ChildChildSegs = SChi{ChildSegs(j)};
nc = length(ChildChildSegs);
if nc == 0
% Remove, no child segments
Keep(ChildSegs(j)) = false;
Segs{ChildSegs(j)} = zeros(0,1);
SPar(ChildSegs(j),:) = zeros(1,2);
SChi{i} = set_difference(ChildSegs,ChildSegs(j),Fal);
else
L = SChi(ChildChildSegs);
L = vertcat(L{:}); % child child segments
if isempty(L)
J = false(nc,1);
for k = 1:nc
segment = Segs{ChildChildSegs(k)};
if isempty(segment)
J(k) = true;
else
segment1 = [vertcat(segment{:}); ParentSets];
distSeg = max(distances_to_line(Ce(segment1,:),V,Start));
if (distSeg-distPar < 0.02) || (distSeg/distPar < 1.2 && distSeg-distPar < 0.06)
J(k) = true;
end
end
end
if all(J)
% Remove
ChildChildSegs1 = [ChildChildSegs; ChildSegs(j)];
nc = length(ChildChildSegs1);
Segs(ChildChildSegs1) = cell(nc,1);
Keep(ChildChildSegs1) = false;
SPar(ChildChildSegs1,:) = zeros(nc,2);
d = set_difference(ChildSegs,ChildSegs(j),Fal);
SChi{i} = d;
SChi(ChildChildSegs1) = cell(nc,1);
end
end
end
end
end
end
end
if i == 1
MaxRad = MaxRad/2;
end
end
end
% Modify segments and their indexing
Segs = Segs(Keep);
n = nnz(Keep);
Ind = (1:1:Nseg)';
J = (1:1:n)';
Ind(Keep) = J;
Ind(~Keep) = 0;
SPar = SPar(Keep,:);
J = SPar(:,1) > 0;
SPar(J,1) = Ind(SPar(J,1));
% Modify SChi
for i = 1:Nseg
if Keep(i)
ChildSegs = SChi{i};
if ~isempty(ChildSegs)
ChildSegs = nonzeros(Ind(ChildSegs));
if size(ChildSegs,1) < size(ChildSegs,2)
SChi{i} = ChildSegs';
else
SChi{i} = ChildSegs;
end
else
SChi{i} = zeros(0,1);
end
end
end
SChi = SChi(Keep);
end % End of function
function [SegP,Base] = modify_parent(P,Bal,Ce,SegP,SegC,nl,PatchDiam,base)
% Expands the base of the branch backwards into its parent segment and
% then removes the expansion from the parent segment.
Base = SegC{1};
if ~isempty(Base)
% Define the directions of the segments
DirChi = segment_direction(Ce,SegC,1);
DirPar = segment_direction(Ce,SegP,nl);
if length(Base) > 1
BaseCent = average(Ce(Base,:));
db = distances_to_line(Ce(Base,:), DirChi', BaseCent); % distances of the sets in the base to the axis of the branch
DiamBase = 2*max(db); % diameter of the base
elseif length(Bal{Base}) > 1
BaseCent = average(P(Bal{Base},:));
db = distances_to_line(P(Bal{Base},:), DirChi', BaseCent);
DiamBase = 2*max(db);
else
BaseCent = Ce(Base,:);
DiamBase = 0;
end
% Determine the number of cover set layers "n" to be checked
Angle = abs(DirChi'*DirPar); % abs of cosine of the angle between component and segment directions
Nlayer = max([3,ceil(Angle*2*DiamBase/PatchDiam)]);
if Nlayer > nl % can go only to the bottom of the segment
Nlayer = nl;
end
% Check the layers
layer = 0;
base{1} = Base;
while layer < Nlayer
Sets = SegP{nl-layer};
Seg = average(Ce(Sets,:)); % mean of the cover sets' centers
VBase = mat_vec_subtraction(Ce(Sets,:),BaseCent); % vectors from base's center to sets in the segment
h = VBase*DirChi;
B = repmat(DirChi',length(Sets),1);
B = [h.*B(:,1) h.*B(:,2) h.*B(:,3)];
V = VBase-B;
distSets = sqrt(sum(V.*V,2)); % distances of the sets in the segment to the axis of the branch
VSeg = mat_vec_subtraction(Ce(Sets,:),Seg); % vectors from segments's center to sets in the segment
lenBase = sqrt(sum(VBase.*VBase,2)); % lengths of VBase
lenSeg = sqrt(sum(VSeg.*VSeg,2)); % lengths of VSeg
if Angle < 0.9
K = lenBase < 1.1/(1-0.5*Angle^2)*lenSeg; % sets closer to the base's center than segment's center
J = distSets < 1.25*DiamBase; % sets close enough to the axis of the branch
I = K&J;
else % branch almost parallel to parent
I = distSets < 1.25*DiamBase; % only the distance to the branch axis counts
end
if all(I) || ~any(I) % stop the process if all the segment's or no segment's sets
layer = Nlayer;
else
SegP{nl-layer} = Sets(not(I));
base{layer+2} = Sets(I);
layer = layer+1;
end
end
Base = vertcat(base{1:Nlayer+1});
end
end % End of function
function D = segment_direction(Ce,Seg,nl)
% Defines the direction of the segment
% Define bottom and top layers
if nl-3 > 0
bot = nl-3;
else
bot = 1;
end
j = 1;
while j < 3 && isempty(Seg{bot})
bot = bot+1;
j = j+1;
end
if nl+2 <= size(Seg,1)
top = nl+2;
else
top = size(Seg,1);
end
j = 1;
while j < 3 && isempty(Seg{top})
top = top-1;
j = j+1;
end
% Direction
if top > bot
Bot = average(Ce(Seg{bot},:));
Top = average(Ce(Seg{top},:));
V = Top-Bot;
D = V'/norm(V);
else
D = zeros(3,1);
end
end % End of function
|
github | InverseTampere/TreeQSM-master | cover_sets.m | .m | TreeQSM-master/src/main_steps/cover_sets.m | 10,655 | utf_8 | 60e3bf5398cc4bf4ade45637819e26a7 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function cover = cover_sets(P,inputs,RelSize)
% ---------------------------------------------------------------------
% COVER_SETS.M Creates cover sets (surface patches) and their
% neighbor-relation for a point cloud
%
% Version 2.0.1
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Covers the point cloud with small sets, which are along the surface,
% such that each point belongs at most one cover set; i.e. the cover is
% a partition of the point cloud.
%
% The cover is generated such that at first the point cloud is covered
% with balls with radius "BallRad". This first cover is such that
% 1) the minimum distance between the centers is "PatchDiam", and
% 2) the maximum distance from any point to nearest center is also "PatchDiam".
% Then the first cover of BallRad-balls is used to define a second cover:
% each BallRad-ball "A" defines corresponding cover set "B" in the second cover
% such that "B" contains those points of "A" that are nearer to the center of
% "A" than any other center of BallRad-balls. The BallRad-balls also define
% the neighbors for the second cover: Let CA and CB denote cover sets in
% the second cover, and BA and BB their BallRad-balls. Then CB is
% a neighbor of CA, and vice versa, if BA and CB intersect or
% BB and CA intersect.
%
% Inputs:
% P Point cloud
% inputs Input stucture, the following fields are needed:
% PatchDiam1 Minimum distance between centers of cover sets; i.e. the
% minimum diameter of cover set in uniform covers. Does
% not need nor use the third optional input "RelSize".
% PatchDiam2Min Minimum diameter of cover sets for variable-size
% covers. Needed if "RelSize" is given as input.
% PatchDiam2Max Maximum diameter of cover sets for variable-size
% covers. Needed if "RelSize" is given as input.
% BallRad1 Radius of the balls used to generate the uniform cover.
% These balls are also used to determine the neighbors
% BallRad2 Maximum radius of the balls used to generate the
% varibale-size cover.
% nmin1, nmin2 Minimum number of points in a BallRad1- and
% BallRad2-balls
% RelSize Relative cover set size for each point
%
% Outputs:
% cover Structure array containing the followin fields:
% ball Cover sets, (n_sets x 1)-cell
% center Center points of the cover sets, (n_sets x 1)-vector
% neighbor Neighboring cover sets of each cover set, (n_sets x 1)-cell
% Changes from version 2.0.0 to 2.0.1, 2 May 2022:
% 1) Added comments and changed some variable names
% 2) Enforced that input parameters are type double
if ~isa(P,'double')
P = double(P);
end
%% Large balls and centers
np = size(P,1);
Ball = cell(np,1); % Large balls for generation of the cover sets and their neighbors
Cen = zeros(np,1,'uint32'); % the center points of the balls/cover sets
NotExa = true(np,1); % the points not yet examined
Dist = 1e8*ones(np,1); % distance of point to the closest center
BoP = zeros(np,1,'uint32'); % the balls/cover sets the points belong
nb = 0; % number of sets generated
if nargin == 2
%% Same size cover sets everywhere
BallRad = double(inputs.BallRad1);
PatchDiamMax = double(inputs.PatchDiam1);
nmin = double(inputs.nmin1);
% Partition the point cloud into cubes for quick neighbor search
[partition,CC] = cubical_partition(P,BallRad);
% Generate the balls
Radius = BallRad^2;
MaxDist = PatchDiamMax^2;
% random permutation of points, produces different covers for the same inputs:
RandPerm = randperm(np);
for i = 1:np
if NotExa(RandPerm(i))
Q = RandPerm(i); % the center/seed point of the current cover set
% Select the points in the cubical neighborhood of the seed:
points = partition(CC(Q,1)-1:CC(Q,1)+1,CC(Q,2)-1:CC(Q,2)+1,CC(Q,3)-1:CC(Q,3)+1);
points = vertcat(points{:});
% Compute distances of the points to the seed:
V = [P(points,1)-P(Q,1) P(points,2)-P(Q,2) P(points,3)-P(Q,3)];
dist = sum(V.*V,2);
% Select the points inside the ball:
Inside = dist < Radius;
if nnz(Inside) >= nmin
ball = points(Inside); % the points forming the ball
d = dist(Inside); % the distances of the ball's points
core = (d < MaxDist); % the core points of the cover set
NotExa(ball(core)) = false; % mark points as examined
% define new ball:
nb = nb+1;
Ball{nb} = ball;
Cen(nb) = Q;
% Select which points belong to this ball, i.e. are closer this
% seed than previously tested seeds:
D = Dist(ball); % the previous distances
closer = d < D; % which points are closer to this seed
ball = ball(closer); % define the ball
% update the ball and distance information of the points
Dist(ball) = d(closer);
BoP(ball) = nb;
end
end
end
else
%% Use relative sizes (the size varies)
% Partition the point cloud into cubes
BallRad = double(inputs.BallRad2);
PatchDiamMin = double(inputs.PatchDiam2Min);
PatchDiamMax = double(inputs.PatchDiam2Max);
nmin = double(inputs.nmin2);
MRS = PatchDiamMin/PatchDiamMax;
% minimum radius
r = double(1.5*(double(min(RelSize))/256*(1-MRS)+MRS)*BallRad+1e-5);
NE = 1+ceil(BallRad/r);
if NE > 4
r = PatchDiamMax/4;
NE = 1+ceil(BallRad/r);
end
[Partition,CC,~,Cubes] = cubical_partition(P,r,NE);
I = RelSize == 0; % Don't use points with no size determined
NotExa(I) = false;
% Define random permutation of points (results in different covers for
% same input) so that first small sets are generated
RandPerm = zeros(np,1,'uint32');
I = RelSize <= 32;
ind = uint32(1:1:np)';
I = ind(I);
t1 = length(I);
RandPerm(1:1:t1) = I(randperm(t1));
I = RelSize <= 128 & RelSize > 32;
I = ind(I);
t2 = length(I);
RandPerm(t1+1:1:t1+t2) = I(randperm(t2));
t2 = t2+t1;
I = RelSize > 128;
I = ind(I);
t3 = length(I);
RandPerm(t2+1:1:t2+t3) = I(randperm(t3));
clearvars ind I
Point = zeros(round(np/1000),1,'uint32');
e = BallRad-PatchDiamMax;
for i = 1:np
if NotExa(RandPerm(i))
Q = RandPerm(i); % the center/seed point of the current cover set
% Compute the set size and the cubical neighborhood of the seed point:
rs = double(RelSize(Q))/256*(1-MRS)+MRS; % relative radius
MaxDist = PatchDiamMax*rs; % diameter of the cover set
Radius = MaxDist+sqrt(rs)*e; % radius of the ball including the cover set
N = ceil(Radius/r); % = number of cells needed to include the ball
cubes = Cubes(CC(Q,1)-N:CC(Q,1)+N,CC(Q,2)-N:CC(Q,2)+N,CC(Q,3)-N:CC(Q,3)+N);
I = cubes > 0;
cubes = cubes(I); % Cubes forming the neighborhood
Par = Partition(cubes); % cell-array of the points in the neighborhood
% vertical catenation of the points from the cell-array
S = cellfun('length',Par);
stop = cumsum(S);
start = [0; stop]+1;
for k = 1:length(stop)
Point(start(k):stop(k)) = Par{k};
end
points = Point(1:stop(k));
% Compute the distance of the "points" to the seed:
V = [P(points,1)-P(Q,1) P(points,2)-P(Q,2) P(points,3)-P(Q,3)];
dist = sum(V.*V,2);
% Select the points inside the ball:
Inside = dist < Radius^2;
if nnz(Inside) >= nmin
ball = points(Inside); % the points forming the ball
d = dist(Inside); % the distances of the ball's points
core = (d < MaxDist^2); % the core points of the cover set
NotExa(ball(core)) = false; % mark points as examined
% define new ball:
nb = nb+1;
Ball{nb} = ball;
Cen(nb) = Q;
% Select which points belong to this ball, i.e. are closer this
% seed than previously tested seeds:
D = Dist(ball); % the previous distances
closer = d < D; % which points are closer to this seed
ball = ball(closer); % define the ball
% update the ball and distance information of the points
Dist(ball) = d(closer);
BoP(ball) = nb;
end
end
end
end
Ball = Ball(1:nb,:);
Cen = Cen(1:nb);
clearvars RandPerm NotExa Dist
%% Cover sets
% Number of points in each ball and index of each point in its ball
Num = zeros(nb,1,'uint32');
Ind = zeros(np,1,'uint32');
for i = 1:np
if BoP(i) > 0
Num(BoP(i)) = Num(BoP(i))+1;
Ind(i) = Num(BoP(i));
end
end
% Initialization of the "PointsInSets"
PointsInSets = cell(nb,1);
for i = 1:nb
PointsInSets{i} = zeros(Num(i),1,'uint32');
end
% Define the "PointsInSets"
for i = 1:np
if BoP(i) > 0
PointsInSets{BoP(i),1}(Ind(i)) = i;
end
end
%% Neighbors
% Define neighbors. Sets A and B are neighbors if the large ball of A
% contains points of B. Notice that this is not a symmetric relation.
Nei = cell(nb,1);
Fal = false(nb,1);
for i = 1:nb
B = Ball{i}; % the points in the big ball of cover set "i"
I = (BoP(B) ~= i);
N = B(I); % the points of B not in the cover set "i"
N = BoP(N);
% select the unique elements of N:
n = length(N);
if n > 2
Include = true(n,1);
for j = 1:n
if ~Fal(N(j))
Fal(N(j)) = true;
else
Include(j) = false;
end
end
Fal(N) = false;
N = N(Include);
elseif n == 2
if N(1) == N(2)
N = N(1);
end
end
Nei{i} = uint32(N);
end
% Make the relation symmetric by adding, if needed, A as B's neighbor
% in the case B is A's neighbor
for i = 1:nb
N = Nei{i};
for j = 1:length(N)
K = (Nei{N(j)} == i);
if ~any(K)
Nei{N(j)} = uint32([Nei{N(j)}; i]);
end
end
end
% Define output
cover.ball = PointsInSets;
cover.center = Cen;
cover.neighbor = Nei;
%% Display statistics
%disp([' ',num2str(nb),' cover sets, points not covered: ',num2str(np-nnz(BoP))]) |
github | InverseTampere/TreeQSM-master | point_model_distance.m | .m | TreeQSM-master/src/main_steps/point_model_distance.m | 5,875 | utf_8 | 7b7c334df5d7577f4570e5e7df063761 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function pmdistance = point_model_distance(P,cylinder)
% ---------------------------------------------------------------------
% POINT_MODEL_DISTANCE.M Computes the distances of the points to the
% cylinder model
%
% Version 2.1.1
% Latest update 8 Oct 2021
%
% Copyright (C) 2015-2021 Pasi Raumonen
% ---------------------------------------------------------------------
% Changes from version 2.1.0 to 2.1.1, 8 Oct 2021:
% 1) Changed the determinationa NE, the number of empty edge layers, so
% that is now limited in size, before it is given as input for
% cubical_partition function.
% Changes from version 2.0.0 to 2.1.0, 26 Nov 2019:
% 1) Bug fix: Corrected the computation of the output at the end of the
% code so that trees without branches are computed correctly.
% Cylinder data
Rad = cylinder.radius;
Len = cylinder.length;
Sta = cylinder.start;
Axe = cylinder.axis;
BOrd = cylinder.BranchOrder;
% Select randomly 25 % or max one million points for the distance comput.
np0 = size(P,1);
a = min(0.25*np0,1000000);
I = logical(round(0.5/(1-a/np0)*rand(np0,1)));
P = P(I,:);
% Partition the points into cubes
L = 2*median(Len);
NE = max(3,min(10,ceil(max(Len)/L)))+3;
[Partition,~,Info] = cubical_partition(P,L,NE);
Min = Info(1:3);
EL = Info(7);
NE = Info(8);
% Calculates the cube-coordinates of the starting points
CC = floor([Sta(:,1)-Min(1) Sta(:,2)-Min(2) Sta(:,3)-Min(3)]/EL)+NE+1;
% Compute the number of cubes needed for each starting point
N = ceil(Len/L);
% Correct N so that cube indexes are not too small or large
I = CC(:,1) < N+1;
N(I) = CC(I,1)-1;
I = CC(:,2) < N+1;
N(I) = CC(I,2)-1;
I = CC(:,3) < N+1;
N(I) = CC(I,3)-1;
I = CC(:,1)+N+1 > Info(4);
N(I) = Info(4)-CC(I,1)-1;
I = CC(:,2)+N+1 > Info(5);
N(I) = Info(5)-CC(I,2)-1;
I = CC(:,3)+N+1 > Info(6);
N(I) = Info(6)-CC(I,3)-1;
% Calculate the distances to the cylinders
n = size(Rad,1);
np = size(P,1);
Dist = zeros(np,2); % Distance and the closest cylinder of each points
Dist(:,1) = 2; % Large distance initially
Points = zeros(ceil(np/10),1,'int32'); % Auxiliary variable
Data = cell(n,1);
for i = 1:n
Par = Partition(CC(i,1)-N(i):CC(i,1)+N(i),CC(i,2)-N(i):CC(i,2)+N(i),...
CC(i,3)-N(i):CC(i,3)+N(i));
if N(i) > 1
S = cellfun('length',Par);
I = S > 0;
S = S(I);
Par = Par(I);
stop = cumsum(S);
start = [0; stop]+1;
for k = 1:length(stop)
Points(start(k):stop(k)) = Par{k}(:);
end
points = Points(1:stop(k));
else
points = vertcat(Par{:});
end
[d,~,h] = distances_to_line(P(points,:),Axe(i,:),Sta(i,:));
d = abs(d-Rad(i));
Data{i} = [d h double(points)];
I = d < Dist(points,1);
J = h >= 0;
K = h <= Len(i);
L = d < 0.5;
M = I&J&K&L;
points = points(M);
Dist(points,1) = d(M);
Dist(points,2) = i;
end
% Calculate the distances to the cylinders for points not yet calculated
% because they are not "on side of cylinder
for i = 1:n
if ~isempty(Data{i})
d = Data{i}(:,1);
h = Data{i}(:,2);
points = Data{i}(:,3);
I = d < Dist(points,1);
J = h >= -0.1 & h <= 0;
K = h <= Len(i)+0.1 & h >= Len(i);
L = d < 0.5;
M = I&(J|K)&L;
points = points(M);
Dist(points,1) = d(M);
Dist(points,2) = i;
end
end
% Select only the shortest 95% of distances for each cylinder
N = zeros(n,1);
O = zeros(np,1);
for i = 1:np
if Dist(i,2) > 0
N(Dist(i,2)) = N(Dist(i,2))+1;
O(i) = N(Dist(i,2));
end
end
Cyl = cell(n,1);
for i = 1:n
Cyl{i} = zeros(N(i),1);
end
for i = 1:np
if Dist(i,2) > 0
Cyl{Dist(i,2)}(O(i)) = i;
end
end
DistCyl = zeros(n,1); % Average point distance to each cylinder
for i = 1:n
I = Cyl{i};
m = length(I);
if m > 19 % select the smallest 95% of distances
d = sort(Dist(I,1));
DistCyl(i) = mean(d(1:floor(0.95*m)));
elseif m > 0
DistCyl(i) = mean(Dist(I,1));
end
end
% Define the output
pmdistance.CylDist = single(DistCyl);
pmdistance.median = median(DistCyl(:,1));
pmdistance.mean = mean(DistCyl(:,1));
pmdistance.max = max(DistCyl(:,1));
pmdistance.std = std(DistCyl(:,1));
T = BOrd == 0;
B1 = BOrd == 1;
B2 = BOrd == 2;
B = DistCyl(~T,1);
T = DistCyl(T,1);
B1 = DistCyl(B1,1);
B2 = DistCyl(B2,1);
pmdistance.TrunkMedian = median(T);
pmdistance.TrunkMean = mean(T);
pmdistance.TrunkMax = max(T);
pmdistance.TrunkStd = std(T);
if ~isempty(B)
pmdistance.BranchMedian = median(B);
pmdistance.BranchMean = mean(B);
pmdistance.BranchMax = max(B);
pmdistance.BranchStd = std(B);
else
pmdistance.BranchMedian = 0;
pmdistance.BranchMean = 0;
pmdistance.BranchMax = 0;
pmdistance.BranchStd = 0;
end
if ~isempty(B1)
pmdistance.Branch1Median = median(B1);
pmdistance.Branch1Mean = mean(B1);
pmdistance.Branch1Max = max(B1);
pmdistance.Branch1Std = std(B1);
else
pmdistance.Branch1Median = 0;
pmdistance.Branch1Mean = 0;
pmdistance.Branch1Max = 0;
pmdistance.Branch1Std = 0;
end
if ~isempty(B2)
pmdistance.Branch2Median = median(B2);
pmdistance.Branch2Mean = mean(B2);
pmdistance.Branch2Max = max(B2);
pmdistance.Branch2Std = std(B2);
else
pmdistance.Branch2Median = 0;
pmdistance.Branch2Mean = 0;
pmdistance.Branch2Max = 0;
pmdistance.Branch2Std = 0;
end
|
github | InverseTampere/TreeQSM-master | tree_sets.m | .m | TreeQSM-master/src/main_steps/tree_sets.m | 28,351 | utf_8 | 7b0856d9e0338fff9560f3d810b825c8 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [cover,Base,Forb] = tree_sets(P,cover,inputs,segment)
% ---------------------------------------------------------------------
% TREE_SETS.M Determines the base of the trunk and the cover sets
% belonging to the tree, updates the neighbor-relation
%
% Version 2.3.0
% Latest update 2 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Determines the cover sets that belong to the tree. Determines also the
% base of the tree and updates the neighbor-relation such that all of the
% tree is connected, i.e., the cover sets belonging to the tree form a
% single connected component. Optionally uses information from existing
% segmentation to make sure that stem and 1st-, 2nd-, 3rd-order branches
% are properly connnected.
% ---------------------------------------------------------------------
% Inputs:
% P Point cloud
% cover Cover sets, their centers and neighbors
% PatchDiam Minimum diameter of the cover sets
% OnlyTree Logical value indicating if the point cloud contains only
% points from the tree to be modelled
% segment Previous segments
%
% Outputs:
% cover Cover sets with updated neigbors
% Base Base of the trunk (the cover sets forming the base)
% Forb Cover sets not part of the tree
% ---------------------------------------------------------------------
% Changes from version 2.2.0 to 2.3.0, 2 May 2022:
% 1) Added new lines of code at the end of the "define_main_branches" to
% make sure that the "Trunk" variable defines connected stem
% Changes from version 2.1.0 to 2.2.0, 13 Aug 2020:
% 1) "define_base_forb": Changed the base height specification from
% 0.1*aux.Height to 0.02*aux.Height
% 2) "define_base_forb": changed the cylinder fitting syntax corresponding
% to the new input and outputs of "least_squares_cylinder"
% 3) "make_tree_connected”: Removed "Trunk(Base) = false;" at the beginning
% of the function as unnecessary and to prevent errors in a special case
% where the Trunk is equal to Base.
% 4) "make_tree_connected”: Removed from the end the generation of "Trunk"
% again and the new call for the function
% 5) "make_tree_connected”: Increased the minimum distance of a component
% to be removed from 8m to 12m.
% Changes from version 2.0.0 to 2.1.0, 11 Oct 2019:
% 1) "define_main_branches": modified the size of neighborhood "balls0",
% added seven lines of code, prevents possible error of too low or big
% indexes on "Par"
% 2) Increased the maximum base height from 0.5m to 1.5m
% 3) "make_tree_connected": added at the end a call for the function itself,
% if the tree is not yet connected, thus running the function again if
% necessary
%% Define auxiliar object
clear aux
aux.nb = max(size(cover.center)); % number of cover sets
aux.Fal = false(aux.nb,1);
aux.Ind = (1:1:aux.nb)';
aux.Ce = P(cover.center,1:3); % Coordinates of the center points
aux.Hmin = min(aux.Ce(:,3));
aux.Height = max(aux.Ce(:,3))-aux.Hmin;
%% Define the base of the trunk and the forbidden sets
if nargin == 3
[Base,Forb,cover] = define_base_forb(P,cover,aux,inputs);
else
inputs.OnlyTree = true;
[Base,Forb,cover] = define_base_forb(P,cover,aux,inputs,segment);
end
%% Define the trunk (and the main branches)
if nargin == 3
[Trunk,cover] = define_trunk(cover,aux,Base,Forb,inputs);
else
[Trunk,cover] = define_main_branches(cover,segment,aux,inputs);
end
%% Update neighbor-relation to make the whole tree connected
[cover,Forb] = make_tree_connected(cover,aux,Forb,Base,Trunk,inputs);
end % End of the main function
function [Base,Forb,cover] = define_base_forb(P,cover,aux,inputs,segment)
% Defines the base of the stem and the forbidden sets (the sets containing
% points not from the tree, i.e, ground, understory, etc.)
Ce = aux.Ce;
if inputs.OnlyTree && nargin == 4
% No ground in the point cloud, the base is the lowest part
BaseHeight = min(1.5,0.02*aux.Height);
I = Ce(:,3) < aux.Hmin+BaseHeight;
Base = aux.Ind(I);
Forb = aux.Fal;
% Make sure the base, as the bottom of point cloud, is not in multiple parts
Wb = max(max(Ce(Base,1:2))-min(Ce(Base,1:2)));
Wt = max(max(Ce(:,1:2))-min(Ce(:,1:2)));
k = 1;
while k <= 5 && Wb > 0.3*Wt
BaseHeight = BaseHeight-0.05;
BaseHeight = max(BaseHeight,0.05);
if BaseHeight > 0
I = Ce(:,3) < aux.Hmin+BaseHeight;
else
[~,I] = min(Ce(:,3));
end
Base = aux.Ind(I);
Wb = max(max(Ce(Base,1:2))-min(Ce(Base,1:2)));
k = k+1;
end
elseif inputs.OnlyTree
% Select the stem sets from the previous segmentation and define the
% base
BaseHeight = min(1.5,0.02*aux.Height);
SoP = segment.SegmentOfPoint(cover.center);
stem = aux.Ind(SoP == 1);
I = Ce(stem,3) < aux.Hmin+BaseHeight;
Base = stem(I);
Forb = aux.Fal;
else
% Point cloud contains non-tree points.
% Determine the base from the "height" and "density" of cover sets
% by projecting the sets to the xy-plane
Bal = cover.ball;
Nei = cover.neighbor;
% The vertices of the rectangle containing C
Min = double(min(Ce));
Max = double(max(Ce(:,1:2)));
% Number of rectangles with edge length "E" in the plane
E = min(0.1,0.015*aux.Height);
n = double(ceil((Max(1:2)-Min(1:2))/E)+1);
% Calculates the rectangular-coordinates of the points
px = floor((Ce(:,1)-Min(1))/E)+1;
py = floor((Ce(:,2)-Min(2))/E)+1;
% Sorts the points according a lexicographical order
LexOrd = [px py-1]*[1 n(1)]';
[LexOrd,SortOrd] = sort(LexOrd);
Partition = cell(n(1),n(2));
hei = zeros(n(1),n(2)); % "height" of the cover sets in the squares
den = hei; % density of the cover sets in the squares
baseden = hei;
p = 1; % The index of the point under comparison
while p <= aux.nb
t = 1;
while (p+t <= aux.nb) && (LexOrd(p) == LexOrd(p+t))
t = t+1;
end
q = SortOrd(p);
J = SortOrd(p:p+t-1);
Partition{px(q),py(q)} = J;
p = p+t;
K = ceil(10*(Ce(J,3)-Min(3)+0.01)/(aux.Height-0.01));
B = K <= 2;
K = unique(K);
hei(px(q),py(q)) = length(K)/10;
den(px(q),py(q)) = t;
baseden(px(q),py(q)) = nnz(B);
end
den = den/max(max(den)); % normalize
baseden = baseden/max(max(baseden));
% function whose maximum determines location of the trunk
f = den.*hei.*baseden;
% smooth the function by averaging over 8-neighbors
x = zeros(n(1),n(2));
y = zeros(n(1),n(2));
for i = 2:n(1)-1
for j = 2:n(2)-1
f(i,j) = mean(mean(f(i-1:i+1,j-1:j+1)));
x(i,j) = Min(1)+i*E;
y(i,j) = Min(2)+j*E;
end
end
f = f/max(max(f));
% Trunk location is around the maximum f-value
I = f > 0.5;
Trunk0 = Partition(I); % squares that contain the trunk
Trunk0 = vertcat(Trunk0{:});
HBottom = min(Ce(Trunk0,3));
I = Ce(Trunk0,3) > HBottom+min(0.02*aux.Height,0.3);
J = Ce(Trunk0,3) < HBottom+min(0.08*aux.Height,1.5);
I = I&J; % slice close to bottom should contain the trunk
Trunk = Trunk0(I);
Trunk = union(Trunk,vertcat(Nei{Trunk})); % Expand with neighbors
Trunk = union(Trunk,vertcat(Nei{Trunk})); % Expand with neighbors
Trunk = union(Trunk,vertcat(Nei{Trunk})); % Expand with neighbors
% Define connected components of Trunk and select the largest component
[Comp,CS] = connected_components(Nei,Trunk,0,aux.Fal);
[~,I] = max(CS);
Trunk = Comp{I};
% Fit cylinder to Trunk
I = Ce(Trunk,3) < HBottom+min(0.1*aux.Height,2); % Select the bottom part
Trunk = Trunk(I);
Trunk = union(Trunk,vertcat(Nei{Trunk}));
Points = Ce(Trunk,:);
c.start = mean(Points);
c.axis = [0 0 1];
c.radius = mean(distances_to_line(Points,c.axis,c.start));
c = least_squares_cylinder(Points,c);
% Remove far away points and fit new cylinder
dis = distances_to_line(Points,c.axis,c.start);
[~,I] = sort(abs(dis));
I = I(1:ceil(0.9*length(I)));
Points = Points(I,:);
Trunk = Trunk(I);
c = least_squares_cylinder(Points,c);
% Select the sets in the bottom part of the trunk and remove sets too
% far away form the cylinder axis (also remove far away points from sets)
I = Ce(Trunk0,3) < HBottom+min(0.04*aux.Height,0.6);
TrunkBot = Trunk0(I);
TrunkBot = union(TrunkBot,vertcat(Nei{TrunkBot}));
TrunkBot = union(TrunkBot,vertcat(Nei{TrunkBot}));
n = length(TrunkBot);
Keep = true(n,1); % Keep sets that are close enough the axis
a = max(0.06,0.2*c.radius);
b = max(0.04,0.15*c.radius);
for i = 1:n
d = distances_to_line(Ce(TrunkBot(i),:),c.axis,c.start);
if d < c.radius+a
B = Bal{Trunk(i)};
d = distances_to_line(P(B,:),c.axis,c.start);
I = d < c.radius+b;
Bal{Trunk(i)} = B(I);
else
Keep(i) = false;
end
end
TrunkBot = TrunkBot(Keep);
% Select the above part of the trunk and combine with the bottom
I = Ce(Trunk0,3) > HBottom+min(0.03*aux.Height,0.45);
Trunk = Trunk0(I);
Trunk = union(Trunk,vertcat(Nei{Trunk}));
Trunk = union(Trunk,TrunkBot);
BaseHeight = min(1.5,0.02*aux.Height);
% Determine the base
Bot = min(Ce(Trunk,3));
J = Ce(Trunk,3) < Bot+BaseHeight;
Base = Trunk(J);
% Determine "Forb", i.e, ground and non-tree sets by expanding Trunk
% as much as possible
Trunk = union(Trunk,vertcat(Nei{Trunk}));
Forb = aux.Fal;
Ground = setdiff(vertcat(Nei{Base}),Trunk);
Ground = setdiff(union(Ground,vertcat(Nei{Ground})),Trunk);
Forb(Ground) = true;
Forb(Base) = false;
Add = Forb;
while any(Add)
Add(vertcat(Nei{Add})) = true;
Add(Forb) = false;
Add(Trunk) = false;
Forb(Add) = true;
end
% Try to expand the "Forb" more by adding all the bottom sets
Bot = min(Ce(Trunk,3));
Ground = Ce(:,3) < Bot+0.03*aux.Height;
Forb(Ground) = true;
Forb(Trunk) = false;
cover.ball = Bal;
end
end % End of function
function [Trunk,cover] = define_trunk(cover,aux,Base,Forb,inputs)
% This function tries to make sure that likely "route" of the trunk from
% the bottom to the top is connected. However, this does not mean that the
% final trunk follows this "route".
Nei = cover.neighbor;
Ce = aux.Ce;
% Determine the output "Trunk" which indicates which sets are part of
% likely trunk
Trunk = aux.Fal;
Trunk(Base) = true;
% Expand Trunk from the base above with neighbors as long as possible
Exp = Base; % the current "top" of Trunk
% select the unique neighbors of Exp
Exp = unique_elements([Exp; vertcat(Nei{Exp})],aux.Fal);
I = Trunk(Exp);
J = Forb(Exp);
Exp = Exp(~I|~J); % Only non forbidden sets that are not already in Trunk
Trunk(Exp) = true; % Add the expansion Exp to Trunk
L = 0.25; % maximum height difference in Exp from its top to bottom
H = max(Ce(Trunk,3))-L; % the minimum bottom heigth for the current Exp
% true as long as the expansion is possible with original neighbors:
FirstMod = true;
while ~isempty(Exp)
% Expand Trunk similarly as above as long as possible
H0 = H;
Exp0 = Exp;
Exp = union(Exp,vertcat(Nei{Exp}));
I = Trunk(Exp);
Exp = Exp(~I);
I = Ce(Exp,3) >= H;
Exp = Exp(I);
Trunk(Exp) = true;
if ~isempty(Exp)
H = max(Ce(Exp,3))-L;
end
% If the expansion Exp is empty and the top of the tree is still over 5
% meters higher, then search new neighbors from above
if (isempty(Exp) || H < H0+inputs.PatchDiam1/2) && H < aux.Height-5
% Generate rectangular partition of the sets
if FirstMod
FirstMod = false;
% The vertices of the rectangle containing C
Min = double(min(Ce(:,1:2)));
Max = double(max(Ce(:,1:2)));
nb = size(Ce,1);
% Number of rectangles with edge length "E" in the plane
EdgeLenth = 0.2;
NRect = double(ceil((Max-Min)/EdgeLenth)+1);
% Calculates the rectangular-coordinates of the points
px = floor((Ce(:,1)-Min(1))/EdgeLenth)+1;
py = floor((Ce(:,2)-Min(2))/EdgeLenth)+1;
% Sorts the points according a lexicographical order
LexOrd = [px py-1]*[1 NRect(1)]';
[LexOrd,SortOrd] = sort(LexOrd);
Partition = cell(NRect(1),NRect(2));
p = 1; % The index of the point under comparison
while p <= nb
t = 1;
while (p+t <= nb) && (LexOrd(p) == LexOrd(p+t))
t = t+1;
end
q = SortOrd(p);
J = SortOrd(p:p+t-1);
Partition{px(q),py(q)} = J;
p = p+t;
end
end
% Select the region that is connected to a set above it
if ~isempty(Exp)
Region = Exp;
else
Region = Exp0;
end
% Select the minimum and maximum rectangular coordinate of the
% region
X1 = min(px(Region));
if X1 <= 2
X1 = 3;
end
X2 = max(px(Region));
if X2 >= NRect(1)-1
X2 = NRect(1)-2;
end
Y1 = min(py(Region));
if Y1 <= 2
Y1 = 3;
end
Y2 = max(py(Region));
if Y2 >= NRect(2)-1
Y2 = NRect(2)-2;
end
% Select the sets in the 2 meter layer above the region
sets = Partition(X1-2:X2+2,Y1-2:Y2+2);
sets = vertcat(sets{:});
K = aux.Fal;
K(sets) = true; % the potential sets
I = Ce(:,3) > H;
J = Ce(:,3) < H+2;
I = I&J&K;
I(Trunk) = false; % Must be non-Trunk sets
SetsAbove = aux.Ind(I);
% Search the closest connection between Region and SetsAbove that
% is enough upward sloping (angle to the vertical has cosine larger
% than 0.7)
if ~isempty(SetsAbove)
% Compute the distances and cosines of the connections
n = length(Region);
m = length(SetsAbove);
Dist = zeros(n,m);
Cos = zeros(n,m);
for i = 1:n
V = mat_vec_subtraction(Ce(SetsAbove,:),Ce(Region(i),:));
Len = sum(V.*V,2);
v = normalize(V);
Dist(i,:) = Len';
Cos(i,:) = v(:,3)';
end
I = Cos > 0.7; % select those connection with large enough cosines
% if not any, search with smaller cosines
t = 0;
while ~any(I)
t = t+1;
I = Cos > 0.7-t*0.05;
end
% Search the minimum distance
Dist(~I) = 3;
if n > 1 && m > 1
[d,I] = min(Dist);
[~,J] = min(d);
I = I(J);
elseif n == 1 && m > 1
[~,J] = min(Dist);
I = 1;
elseif m == 1 && n < 1
[~,I] = min(Dist);
J = 1;
else
I = 1; % the set in component to be connected
J = 1; % the set in "trunk" to be connected
end
% Join to "SetsAbove"
I = Region(I);
J = SetsAbove(J);
% make the connection
Nei{I} = [Nei{I}; J];
Nei{J} = [Nei{J}; I];
% Expand "Trunk" again
Exp = union(Region,vertcat(Nei{Region}));
I = Trunk(Exp);
Exp = Exp(~I);
I = Ce(Exp,3) >= H;
Exp = Exp(I);
Trunk(Exp) = true;
H = max(Ce(Exp,3))-L;
end
end
end
cover.neighbor = Nei;
end % End of function
function [Trunk,cover] = define_main_branches(cover,segment,aux,inputs)
% If previous segmentation exists, then use it to make the sets in its main
% branches (stem and first (second or even up to third) order branches)
% connected. This ensures that similar branching structure as in the
% existing segmentation is possible.
Bal = cover.ball;
Nei = cover.neighbor;
Ce = aux.Ce;
% Determine sets in the main branches of previous segmentation
nb = size(Bal,1);
MainBranches = zeros(nb,1);
SegmentOfPoint = segment.SegmentOfPoint;
% Determine which branch indexes define the main branches
MainBranchIndexes = false(max(SegmentOfPoint),1);
MainBranchIndexes(1) = true;
MainBranchIndexes(segment.branch1indexes) = true;
MainBranchIndexes(segment.branch2indexes) = true;
MainBranchIndexes(segment.branch3indexes) = true;
for i = 1:nb
BranchInd = nonzeros(SegmentOfPoint(Bal{i}));
if ~isempty(BranchInd)
ind = min(BranchInd);
if MainBranchIndexes(ind)
MainBranches(i) = min(BranchInd);
end
end
end
% Define the trunk sets
Trunk = aux.Fal;
Trunk(MainBranches > 0) = true;
% Update the neighbors to make the main branches connected
[Par,CC] = cubical_partition(Ce,3*inputs.PatchDiam2Max,10);
Sets = zeros(aux.nb,1,'uint32');
BI = max(MainBranches);
N = size(Par);
for i = 1:BI
if MainBranchIndexes(i)
Branch = MainBranches == i; % The sets forming branch "i"
% the connected components of "Branch":
Comps = connected_components(Nei,Branch,1,aux.Fal);
n = size(Comps,1);
% Connect the components to each other as long as there are more than
% one component
while n > 1
for j = 1:n
comp = Comps{j};
NC = length(comp);
% Determine branch sets closest to the component
c = unique(CC(comp,:),'rows');
m = size(c,1);
t = 0;
NearSets = zeros(0,1);
while isempty(NearSets)
NearSets = aux.Fal;
t = t+1;
for k = 1:m
x1 = max(1,c(k,1)-t);
x2 = min(c(k,1)+t,N(1));
y1 = max(1,c(k,2)-t);
y2 = min(c(k,2)+t,N(2));
z1 = max(1,c(k,3)-t);
z2 = min(c(k,3)+t,N(3));
balls0 = Par(x1:x2,y1:y2,z1:z2);
if t == 1
balls = vertcat(balls0{:});
else
S = cellfun('length',balls0);
I = S > 0;
S = S(I);
balls0 = balls0(I);
stop = cumsum(S);
start = [0; stop]+1;
for l = 1:length(stop)
Sets(start(l):stop(l)) = balls0{l};
end
balls = Sets(1:stop(l));
end
I = Branch(balls);
balls = balls(I);
NearSets(balls) = true;
end
NearSets(comp) = false; % Only the non-component cover sets
NearSets = aux.Ind(NearSets);
end
% Determine the closest sets for "comp"
if ~isempty(NearSets)
d = pdist2(Ce(comp,:),Ce(NearSets,:));
if NC == 1 && length(NearSets) == 1
IU = 1; % the set in component to be connected
JU = 1; % the set in "trunk" to be connected
elseif NC == 1
[du,JU] = min(d);
IU = 1;
elseif length(NearSets) == 1
[du,IU] = min(d);
JU = 1;
else
[d,IU] = min(d);
[du,JU] = min(d);
IU = IU(JU);
end
% Join to the closest component
I = comp(IU);
J = NearSets(JU);
% make the connection
Nei{I} = [Nei{I}; J];
Nei{J} = [Nei{J}; I];
end
end
Comps = connected_components(Nei,Branch,1,aux.Fal);
n = size(Comps,1);
end
end
end
% Update the neigbors to connect 1st-order branches to the stem
Stem = MainBranches == 1;
Stem = aux.Ind(Stem);
MainBranchIndexes = false(max(SegmentOfPoint),1);
MainBranchIndexes(segment.branch1indexes) = true;
BI = max(segment.branch1indexes);
if isempty(BI)
BI = 0;
end
for i = 2:BI
if MainBranchIndexes(i)
Branch = MainBranches == i;
Branch = aux.Ind(Branch);
if ~isempty(Branch)
Neigbors = MainBranches(vertcat(Nei{Branch})) == 1;
if ~any(Neigbors)
d = pdist2(Ce(Branch,:),Ce(Stem,:));
if length(Branch) > 1 && length(Stem) > 1
[d,I] = min(d);
[d,J] = min(d);
I = I(J);
elseif length(Branch) == 1 && length(Stem) > 1
[d,J] = min(d);
I = 1;
elseif length(Stem) == 1 && length(Branch) > 1
[d,I] = min(d);
J = 1;
elseif length(Branch) == 1 && length(Stem) == 1
I = 1; % the set in component to be connected
J = 1; % the set in "trunk" to be connected
end
% Join the Branch to Stem
I = Branch(I);
J = Stem(J);
Nei{I} = [Nei{I}; J];
Nei{J} = [Nei{J}; I];
end
end
end
end
cover.neighbor = Nei;
% Check if the trunk is still in mutliple components and select the bottom
% component to define "Trunk":
[comps,cs] = connected_components(cover.neighbor,Trunk,aux.Fal);
if length(cs) > 1
[cs,I] = sort(cs,'descend');
comps = comps(I);
Stem = MainBranches == 1;
Trunk = aux.Fal;
i = 1;
C = comps{i};
while i <= length(cs) && ~any(Stem(C))
i = i+1;
C = comps{i};
end
Trunk(C) = true;
end
end % End of function
function [cover,Forb] = make_tree_connected(cover,aux,Forb,Base,Trunk,inputs)
% Update neighbor-relation for whole tree such that the whole tree is one
% connected component
Nei = cover.neighbor;
Ce = aux.Ce;
% Expand trunk as much as possible
Trunk(Forb) = false;
Exp = Trunk;
while any(Exp)
Exp(vertcat(Nei{Exp})) = true;
Exp(Trunk) = false;
Exp(Forb) = false;
Exp(Base) = false;
Trunk(Exp) = true;
end
% Define "Other", sets not yet connected to trunk or Forb
Other = ~aux.Fal;
Other(Forb) = false;
Other(Trunk) = false;
Other(Base) = false;
% Determine parameters on the extent of the "Nearby Space" and acceptable
% component size
% cell size for "Nearby Space" = k0 times PatchDiam:
k0 = min(10,ceil(0.2/inputs.PatchDiam1));
% current cell size, increases by k0 every time when new connections cannot
% be made:
k = k0;
if inputs.OnlyTree
Cmin = 0;
else
Cmin = ceil(0.1/inputs.PatchDiam1); % minimum accepted component size,
% smaller ones are added to Forb, the size triples every round
end
% Determine the components of "Other"
if any(Other)
Comps = connected_components(Nei,Other,1,aux.Fal);
nc = size(Comps,1);
NonClassified = true(nc,1);
%plot_segs(P,Comps,6,1,cover.ball)
%pause
else
NonClassified = false;
end
bottom = min(Ce(Base,3));
% repeat search and connecting as long as "Other" sets exists
while any(NonClassified)
npre = nnz(NonClassified); % number of "Other" sets before new connections
again = true; % check connections again with same "distance" if true
% Partition the centers of the cover sets into cubes with size k*dmin
[Par,CC] = cubical_partition(Ce,k*inputs.PatchDiam1);
Neighbors = cell(nc,1);
Sizes = zeros(nc,2);
Pass = true(nc,1);
first_round = true;
while again
% Check each component: part of "Tree" or "Forb"
for i = 1:nc
if NonClassified(i) && Pass(i)
comp = Comps{i}; % candidate component for joining to the tree
% If the component is neighbor of forbidden sets, remove it
J = Forb(vertcat(Nei{comp}));
if any(J)
NonClassified(i) = false;
Forb(comp) = true;
Other(comp) = false;
else
% Other wise check nearest sets for a connection
NC = length(comp);
if first_round
% Select the cover sets the nearest to the component
c = unique(CC(comp,:),'rows');
m = size(c,1);
B = cell(m,1);
for j = 1:m
balls = Par(c(j,1)-1:c(j,1)+1,...
c(j,2)-1:c(j,2)+1,c(j,3)-1:c(j,3)+1);
B{j} = vertcat(balls{:});
end
NearSets = vertcat(B{:});
% Only the non-component cover sets
aux.Fal(comp) = true;
I = aux.Fal(NearSets);
NearSets = NearSets(~I);
aux.Fal(comp) = false;
NearSets = unique(NearSets);
Neighbors{i} = NearSets;
if isempty(NearSets)
Pass(i) = false;
end
% No "Other" sets
I = Other(NearSets);
NearSets = NearSets(~I);
else
NearSets = Neighbors{i};
% No "Other" sets
I = Other(NearSets);
NearSets = NearSets(~I);
end
% Select different class from NearSets
I = Trunk(NearSets);
J = Forb(NearSets);
trunk = NearSets(I); % "Trunk" sets
forb = NearSets(J); % "Forb" sets
if length(trunk) ~= Sizes(i,1) || length(forb) ~= Sizes(i,2)
Sizes(i,:) = [length(trunk) length(forb)];
% If large component is tall and close to ground, then
% search the connection near the component's bottom
if NC > 100
hmin = min(Ce(comp,3));
H = max(Ce(comp,3))-hmin;
if H > 5 && hmin < bottom+5
I = Ce(NearSets,3) < hmin+0.5;
NearSets = NearSets(I);
I = Trunk(NearSets);
J = Forb(NearSets);
trunk = NearSets(I); % "Trunk" sets
forb = NearSets(J); % "Forb" sets
end
end
% Determine the closest sets for "trunk"
if ~isempty(trunk)
d = pdist2(Ce(comp,:),Ce(trunk,:));
if NC == 1 && length(trunk) == 1
dt = d; % the minimum distance
IC = 1; % the set in component to be connected
IT = 1; % the set in "trunk" to be connected
elseif NC == 1
[dt,IT] = min(d);
IC = 1;
elseif length(trunk) == 1
[dt,IC] = min(d);
IT = 1;
else
[d,IC] = min(d);
[dt,IT] = min(d);
IC = IC(IT);
end
else
dt = 700;
end
% Determine the closest sets for "forb"
if ~isempty(forb)
d = pdist2(Ce(comp,:),Ce(forb,:));
df = min(d);
if length(df) > 1
df = min(df);
end
else
df = 1000;
end
% Determine what to do with the component
if (dt > 12 && dt < 100) || (NC < Cmin && dt > 0.5 && dt < 10)
% Remove small isolated component
Forb(comp) = true;
Other(comp) = false;
NonClassified(i) = false;
elseif 3*df < dt || (df < dt && df > 0.25)
% Join the component to "Forb"
Forb(comp) = true;
Other(comp) = false;
NonClassified(i) = false;
elseif (df == 1000 && dt == 700) || dt > k*inputs.PatchDiam1
% Isolated component, do nothing
else
% Join to "Trunk"
I = comp(IC);
J = trunk(IT);
Other(comp) = false;
Trunk(comp) = true;
NonClassified(i) = false;
% make the connection
Nei{I} = [Nei{I}; J];
Nei{J} = [Nei{J}; I];
end
end
end
end
end
first_round = false;
% If "Other" has decreased, do another check with same "distance"
if nnz(NonClassified) < npre
again = true;
npre = nnz(NonClassified);
else
again = false;
end
end
k = k+k0; % increase the cell size of the nearby search space
Cmin = 3*Cmin; % increase the acceptable component size
end
Forb(Base) = false;
cover.neighbor = Nei;
end % End of function
|
github | InverseTampere/TreeQSM-master | segments.m | .m | TreeQSM-master/src/main_steps/segments.m | 13,369 | utf_8 | 775d0a7de8b20ebd931b2cf4c554cabf | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function segment = segments(cover,Base,Forb)
% ---------------------------------------------------------------------
% SEGMENTS.M Segments the covered point cloud into branches.
%
% Version 2.10
% Latest update 16 Aug 2017
%
% Copyright (C) 2013-2017 Pasi Raumonen
% ---------------------------------------------------------------------
% Segments the tree into branches and records their parent-child-relations.
% Bifurcations are recognized by studying connectivity of a "study"
% region moving along the tree. In case of multiple connected components
% in "study", the components are classified as the continuation and branches.
%
% Inputs:
% cover Cover sets
% Base Base of the tree
% Forb Cover sets not part of the tree
%
% Outputs:
% segment Structure array containing the followin fields:
% segments Segments found, (n_seg x 1)-cell, each cell contains a cell array the cover sets
% ParentSegment Parent segment of each segment, (n_seg x 1)-vector,
% equals to zero if no parent segment
% ChildSegment Children segments of each segment, (n_seg x 1)-cell
Nei = cover.neighbor;
nb = size(Nei,1); % The number of cover sets
a = max([200000 nb/100]); % Estimate for maximum number of segments
SBas = cell(a,1); % The segment bases found
Segs = cell(a,1); % The segments found
SPar = zeros(a,2,'uint32'); % The parent segment of each segment
SChi = cell(a,1); % The children segments of each segment
% Initialize SChi
SChi{1} = zeros(5000,1,'uint32');
C = zeros(200,1);
for i = 2:a
SChi{i} = C;
end
NChi = zeros(a,1); % Number of child segments found for each segment
Fal = false(nb,1); % Logical false-vector for cover sets
s = 1; % The index of the segment under expansion
b = s; % The index of the latest found base
SBas{s} = Base;
Seg = cell(1000,1); % The cover set layers in the current segment
Seg{1} = Base;
ForbAll = Fal; % The forbidden sets
ForbAll(Forb) = true;
ForbAll(Base) = true;
Forb = ForbAll; % The forbidden sets for the segment under expansion
Continue = true; % True as long as the component can be segmented further
NewSeg = true; % True if the first Cut for the current segment
nl = 1; % The number of cover set layers currently in the segment
% Segmenting stops when there are no more segments to be found
while Continue && (b < nb)
% Update the forbidden sets
Forb(Seg{nl}) = true;
% Define the study
Cut = define_cut(Nei,Seg{nl},Forb,Fal);
CutSize = length(Cut);
if NewSeg
NewSeg = false;
ns = min(CutSize,6);
end
% Define the components of cut and study regions
if CutSize > 0
CutComps = cut_components(Nei,Cut,CutSize,Fal,Fal);
nc = size(CutComps,1);
if nc > 1
[StudyComps,Bases,CompSize,Cont,BaseSize] = ...
study_components(Nei,ns,Cut,CutComps,Forb,Fal,Fal);
nc = length(Cont);
end
else
nc = 0;
end
% Classify study region components
if nc == 1
% One component, continue expansion of the current segment
nl = nl+1;
if size(Cut,2) > 1
Seg{nl} = Cut';
else
Seg{nl} = Cut;
end
elseif nc > 1
% Classify the components of the Study region
Class = component_classification(CompSize,Cont,BaseSize,CutSize);
for i = 1:nc
if Class(i) == 1
Base = Bases{i};
ForbAll(Base) = true;
Forb(StudyComps{i}) = true;
J = Forb(Cut);
Cut = Cut(~J);
b = b+1;
SBas{b} = Base;
SPar(b,:) = [s nl];
NChi(s) = NChi(s)+1;
SChi{s}(NChi(s)) = b;
end
end
% Define the new cut.
% If the cut is empty, determine the new base
if isempty(Cut)
Segs{s} = Seg(1:nl);
S = vertcat(Seg{1:nl});
ForbAll(S) = true;
if s < b
s = s+1;
Seg{1} = SBas{s};
Forb = ForbAll;
NewSeg = true;
nl = 1;
else
Continue = false;
end
else
if size(Cut,2) > 1
Cut = Cut';
end
nl = nl+1;
Seg{nl} = Cut;
end
else
% If the study region has zero size, then the current segment is
% complete and determine the base of the next segment
Segs{s} = Seg(1:nl);
S = vertcat(Seg{1:nl});
ForbAll(S) = true;
if s < b
s = s+1;
Seg{1} = SBas{s};
Forb = ForbAll;
NewSeg = true;
nl = 1;
else
Continue = false;
end
end
end
Segs = Segs(1:b);
SPar = SPar(1:b,:);
schi = SChi(1:b);
% Define output
SChi = cell(b,1);
for i = 1:b
if NChi(i) > 0
SChi{i} = uint32(schi{i}(1:NChi(i)));
else
SChi{i} = zeros(0,1,'uint32');
end
S = Segs{i};
for j = 1:size(S,1)
S{j} = uint32(S{j});
end
Segs{i} = S;
end
clear Segment
segment.segments = Segs;
segment.ParentSegment = SPar;
segment.ChildSegment = SChi;
end % End of the main function
% Define subfunctions
function Cut = define_cut(Nei,CutPre,Forb,Fal)
% Defines the "Cut" region
Cut = vertcat(Nei{CutPre});
Cut = unique_elements(Cut,Fal);
I = Forb(Cut);
Cut = Cut(~I);
end % End of function
function [Components,CompSize] = cut_components(Nei,Cut,CutSize,Fal,False)
% Define the connected components of the Cut
if CutSize == 1
% Cut is connected and therefore Study is also
CompSize = 1;
Components = cell(1,1);
Components{1} = Cut;
elseif CutSize == 2
I = Nei{Cut(1)} == Cut(2);
if any(I)
Components = cell(1,1);
Components{1} = Cut;
CompSize = 1;
else
Components = cell(2,1);
Components{1} = Cut(1);
Components{2} = Cut(2);
CompSize = [1 1];
end
elseif CutSize == 3
I = Nei{Cut(1)} == Cut(2);
J = Nei{Cut(1)} == Cut(3);
K = Nei{Cut(2)} == Cut(3);
if any(I)+any(J)+any(K) >= 2
CompSize = 1;
Components = cell(1,1);
Components{1} = Cut;
elseif any(I)
Components = cell(2,1);
Components{1} = Cut(1:2);
Components{2} = Cut(3);
CompSize = [2 1];
elseif any(J)
Components = cell(2,1);
Components{1} = Cut([1 3]');
Components{2} = Cut(2);
CompSize = [2 1];
elseif any(K)
Components = cell(2,1);
Components{1} = Cut(2:3);
Components{2} = Cut(1);
CompSize = [2 1];
else
CompSize = [1 1 1];
Components = cell(3,1);
Components{1} = Cut(1);
Components{2} = Cut(2);
Components{3} = Cut(3);
end
else
Components = cell(CutSize,1);
CompSize = zeros(CutSize,1);
Comp = zeros(CutSize,1);
Fal(Cut) = true;
nc = 0; % number of components found
m = Cut(1);
i = 0;
while i < CutSize
Added = Nei{m};
I = Fal(Added);
Added = Added(I);
a = length(Added);
Comp(1) = m;
Fal(m) = false;
t = 1;
while a > 0
Comp(t+1:t+a) = Added;
Fal(Added) = false;
t = t+a;
Ext = vertcat(Nei{Added});
Ext = unique_elements(Ext,False);
I = Fal(Ext);
Added = Ext(I);
a = length(Added);
end
i = i+t;
nc = nc+1;
Components{nc} = Comp(1:t);
CompSize(nc) = t;
if i < CutSize
J = Fal(Cut);
m = Cut(J);
m = m(1);
end
end
Components = Components(1:nc);
CompSize = CompSize(1:nc);
end
end % End of function
function [Components,Bases,CompSize,Cont,BaseSize] = ...
study_components(Nei,ns,Cut,CutComps,Forb,Fal,False)
% Define Study as a cell-array
Study = cell(ns,1);
StudySize = zeros(ns,1);
Study{1} = Cut;
StudySize(1) = length(Cut);
if ns >= 2
N = Cut;
i = 1;
while i < ns
Forb(N) = true;
N = vertcat(Nei{N});
N = unique_elements(N,Fal);
I = Forb(N);
N = N(~I);
if ~isempty(N)
i = i+1;
Study{i} = N;
StudySize(i) = length(N);
else
Study = Study(1:i);
StudySize = StudySize(1:i);
i = ns+1;
end
end
end
% Define study as a vector
ns = length(StudySize);
studysize = sum(StudySize);
study = vertcat(Study{:});
% Determine the components of study
nc = size(CutComps,1);
i = 1; % index of cut component
j = 0; % number of elements attributed to components
k = 0; % number of study components
Fal(study) = true;
Components = cell(nc,1);
CompSize = zeros(nc,1);
Comp = zeros(studysize,1);
while i <= nc
C = CutComps{i};
while j < studysize
a = length(C);
Comp(1:a) = C;
Fal(C) = false;
if a > 1
Add = unique_elements(vertcat(Nei{C}),False);
else
Add = Nei{C};
end
t = a;
I = Fal(Add);
Add = Add(I);
a = length(Add);
while a > 0
Comp(t+1:t+a) = Add;
Fal(Add) = false;
t = t+a;
Add = vertcat(Nei{Add});
Add = unique_elements(Add,False);
I = Fal(Add);
Add = Add(I);
a = length(Add);
end
j = j+t;
k = k+1;
Components{k} = Comp(1:t);
CompSize(k) = t;
if j < studysize
C = zeros(0,1);
while i < nc && isempty(C)
i = i+1;
C = CutComps{i};
J = Fal(C);
C = C(J);
end
if i == nc && isempty(C)
j = studysize;
i = nc+1;
end
else
i = nc+1;
end
end
Components = Components(1:k);
CompSize = CompSize(1:k);
end
% Determine BaseSize and Cont
Cont = true(k,1);
BaseSize = zeros(k,1);
Bases = cell(k,1);
if k > 1
Forb(study) = true;
Fal(study) = false;
Fal(Study{1}) = true;
for i = 1:k
% Determine the size of the base of the components
Set = unique_elements([Components{i}; Study{1}],False);
False(Components{i}) = true;
I = False(Set)&Fal(Set);
False(Components{i}) = false;
Set = Set(I);
Bases{i} = Set;
BaseSize(i) = length(Set);
end
Fal(Study{1}) = false;
Fal(Study{ns}) = true;
Forb(study) = true;
for i = 1:k
% Determine if the component can be extended
Set = unique_elements([Components{i}; Study{ns}],False);
False(Components{i}) = true;
I = False(Set)&Fal(Set);
False(Components{i}) = false;
Set = Set(I);
if ~isempty(Set)
N = vertcat(Nei{Set});
N = unique_elements(N,False);
I = Forb(N);
N = N(~I);
if isempty(N)
Cont(i) = false;
end
else
Cont(i) = false;
end
end
end
end % End of function
function Class = component_classification(CompSize,Cont,BaseSize,CutSize)
% Classifies study region components:
% Class(i) == 0 continuation
% Class(i) == 1 branch
nc = size(CompSize,1);
StudySize = sum(CompSize);
Class = ones(nc,1); % true if a component is a branch to be further segmented
ContiComp = 0;
% Simple initial classification
for i = 1:nc
if BaseSize(i) == CompSize(i) && ~Cont(i)
% component has no expansion, not a branch
Class(i) = 0;
elseif BaseSize(i) == 1 && CompSize(i) <= 2 && ~Cont(i)
% component has very small expansion, not a branch
Class(i) = 0;
elseif BaseSize(i)/CutSize < 0.05 && 2*BaseSize(i) >= CompSize(i) && ~Cont(i)
% component has very small expansion or is very small, not a branch
Class(i) = 0;
elseif CompSize(i) <= 3 && ~Cont(i)
% very small component, not a branch
Class(i) = 0;
elseif BaseSize(i)/CutSize >= 0.7 || CompSize(i) >= 0.7*StudySize
% continuation of the segment
Class(i) = 0;
ContiComp = i;
else
% Component is probably a branch
end
end
Branches = Class == 1;
if ContiComp == 0 && any(Branches)
Ind = (1:1:nc)';
Branches = Ind(Branches);
[~,I] = max(CompSize(Branches));
Class(Branches(I)) = 0;
end
end % End of function
|
github | InverseTampere/TreeQSM-master | filtering.m | .m | TreeQSM-master/src/main_steps/filtering.m | 8,700 | utf_8 | 67b53b588752ce6985691d1aff849e99 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function Pass = filtering(P,inputs)
% ---------------------------------------------------------------------
% FILTERING.M Filters noise from point clouds.
%
% Version 3.0.0
% Latest update 3 May 2022
%
% Copyright (C) 2013-2022 Pasi Raumonen
% ---------------------------------------------------------------------
% Filters the point cloud as follows:
%
% 1) the possible NaNs are removed.
%
% 2) (optional, done if filter.k > 0) Statistical kth-nearest neighbor
% distance outlier filtering based on user defined "k" (filter.k) and
% multiplier for standard deviation (filter.nsigma): Determines the
% kth-nearest neighbor distance for all points and then removes the points
% whose distances are over average_distance + nsigma*std. Computes the
% statistics for each meter layer in vertical direction so that the
% average distances and SDs can change as the point density decreases.
%
% 3) (optional, done if filter.radius > 0) Statistical point density
% filtering based on user defined ball radius (filter.radius) and multiplier
% for standard deviation (filter.nsigma): Balls of radius "filter.radius"
% centered at each point are defined for all points and the number of
% points included ("point density") are computed and then removes the points
% whose density is smaller than average_density - nsigma*std. Computes the
% statistics for each meter layer in vertical direction so that the
% average densities and SDs can change as the point density decreases.
%
% 4) (optional, done if filter.ncomp > 0) Small component filtering based
% on user defined cover (filter.PatchDiam1, filter.BallRad1) and threshold
% (filter.ncomp): Covers the point cloud and determines the connected
% components of the cover and removes the points from the small components
% that have less than filter.ncomp cover sets.
%
% 5) (optional, done if filter.EdgeLength > 0) cubical downsampling of the
% point cloud based on user defined cube size (filter.EdgeLength):
% selects randomly one point from each cube
%
% Does the filtering in the above order and thus always applies the next
% fitering to the point cloud already filtered by the previous methods.
% Statistical kth-nearest neighbor distance outlier filtering and the
% statistical point density filtering are meant to be exlusive to each
% other.
%
% Inputs:
% P Point cloud
% inputs Inputs structure with the following subfields:
% filter.EdgeLength Edge length of the cubes in the cubical downsampling
% filter.k k of knn method
% filter.radius Radius of the balls in the density filtering
% filter.nsigma Multiplier for standard deviation, determines how
% far from the mean the threshold is in terms of SD.
% Used in both the knn and the density filtering
% filter.ncomp Threshold number of components in the small
% component filtering
% filter.PatchDiam1 Defines the patch/cover set size for the component
% filtering
% filter.BallRad1 Defines the neighbors for the component filtering
% filter.plot If true, plots the filtered point cloud
% Outputs:
% Pass Logical vector indicating points passing the filtering
% ---------------------------------------------------------------------
% Changes from version 2.0.0 to 3.0.0, 3 May 2022:
% Major changes and additions.
% 1) Added two new filtering options: statistical kth-nearest neighbor
% distance outlier filtering and cubical downsampling.
% 2) Changed the old point density filtering, which was based on given
% threshold, into statistical point density filtering, where the
% threshold is based on user defined statistical measure
% 3) All the input parameters are given by "inputs"-structure that can be
% defined by "create_input" script
% 4) Streamlined the coding and what is displayed
%% Initial data processing
% Only double precision data
if ~isa(P,'double')
P = double(P);
end
% Only x,y,z-data
if size(P,2) > 3
P = P(:,1:3);
end
np = size(P,1);
np0 = np;
ind = (1:1:np)';
Pass = false(np,1);
disp('----------------------')
disp(' Filtering...')
disp([' Points before filtering: ',num2str(np)])
%% Remove possible NaNs
F = ~any(isnan(P),2);
if nnz(F) < np
disp([' Points with NaN removed: ',num2str(np-nnz(Pass))])
ind = ind(F);
end
%% Statistical kth-nearest neighbor distance outlier filtering
if inputs.filter.k > 0
% Compute the knn distances
Q = P(ind,:);
np = size(Q,1);
[~, kNNdist] = knnsearch(Q,Q,'dist','euclidean','k',inputs.filter.k);
kNNdist = kNNdist(:,end);
% Change the threshold kNNdistance according the average and standard
% deviation for every vertical layer of 1 meter in height
hmin = min(Q(:,3));
hmax = max(Q(:,3));
H = ceil(hmax-hmin);
F = false(np,1);
ind = (1:1:np)';
for i = 1:H
I = Q(:,3) < hmin+i & Q(:,3) >= hmin+i-1;
points = ind(I);
d = kNNdist(points);
J = d < mean(d)+inputs.filter.nsigma*std(d);
points = points(J);
F(points) = 1;
end
ind = ind(F);
disp([' Points removed as statistical outliers: ',num2str(np-length(ind))])
end
%% Statistical point density filtering
if inputs.filter.radius > 0
Q = P(ind,:);
np = size(Q,1);
% Partition the point cloud into cubes
[partition,CC] = cubical_partition(Q,inputs.filter.radius);
% Determine the number of points inside a ball for each point
NumOfPoints = zeros(np,1);
r1 = inputs.filter.radius^2;
for i = 1:np
if NumOfPoints(i) == 0
points = partition(CC(i,1)-1:CC(i,1)+1,CC(i,2)-1:CC(i,2)+1,CC(i,3)-1:CC(i,3)+1);
points = vertcat(points{:,:});
cube = Q(points,:);
p = partition{CC(i,1),CC(i,2),CC(i,3)};
for j = 1:length(p)
dist = (Q(p(j),1)-cube(:,1)).^2+(Q(p(j),2)-cube(:,2)).^2+(Q(p(j),3)-cube(:,3)).^2;
J = dist < r1;
NumOfPoints(p(j)) = nnz(J);
end
end
end
% Change the threshold point density according the average and standard
% deviation for every vertical layer of 1 meter in height
hmin = min(Q(:,3));
hmax = max(Q(:,3));
H = ceil(hmax-hmin);
F = false(np,1);
ind = (1:1:np)';
for i = 1:H
I = Q(:,3) < hmin+i & Q(:,3) >= hmin+i-1;
points = ind(I);
N = NumOfPoints(points);
J = N > mean(N)-inputs.filter.nsigma*std(N);
points = points(J);
F(points) = 1;
end
ind = ind(F);
disp([' Points removed as statistical outliers: ',num2str(np-length(ind))])
end
%% Small component filtering
if inputs.filter.ncomp > 0
% Cover the point cloud with patches
input.BallRad1 = inputs.filter.BallRad1;
input.PatchDiam1 = inputs.filter.PatchDiam1;
input.nmin1 = 0;
Q = P(ind,:);
np = size(Q,1);
cover = cover_sets(Q,input);
% Determine the separate components
Components = connected_components(cover.neighbor,0,inputs.filter.ncomp);
% The filtering
B = vertcat(Components{:}); % patches in the components
points = vertcat(cover.ball{B}); % points in the components
F = false(np,1);
F(points) = true;
ind = ind(F);
disp([' Points with small components removed: ',num2str(np-length(ind))])
end
%% Cubical downsampling
if inputs.filter.EdgeLength > 0
Q = P(ind,:);
np = size(Q,1);
F = cubical_downsampling(Q,inputs.filter.EdgeLength);
ind = ind(F);
disp([' Points removed with downsampling: ',num2str(np-length(ind))])
end
%% Define the output and display summary results
Pass(ind) = true;
np = nnz(Pass);
disp([' Points removed in total: ',num2str(np0-np)])
disp([' Points removed in total (%): ',num2str(round((1-np/np0)*1000)/10)])
disp([' Points left: ',num2str(np)])
%% Plot the filtered and unfiltered point clouds
if inputs.filter.plot
plot_comparison(P(Pass,:),P(~Pass,:),1,1,1)
plot_point_cloud(P(Pass,:),2,1)
end
|
github | InverseTampere/TreeQSM-master | relative_size.m | .m | TreeQSM-master/src/main_steps/relative_size.m | 3,969 | utf_8 | ca5b31c61626f8eab338648a462c355b | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function RS = relative_size(P,cover,segment)
% ---------------------------------------------------------------------
% RELATIVE_SIZE.M Determines relative cover set size for points in new covers
%
% Version 2.00
% Latest update 16 Aug 2017
%
% Copyright (C) 2014-2017 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Uses existing segmentation and its branching structure to determine
% relative size of the cover sets distributed over new covers. The idea is
% to decrease the relative size as the branch size decreases. This is
% realised so that the relative size at the base of a branch is
% proportional to the size of the stem's base, measured as number of
% cover sets in the first few layers. Also when we approach the
% tip of the branch, the relative size decreases to the minimum.
% Maximum relative size is 256 at the bottom of the
% stem and the minimum is 1 at the tip of every branch.
%
% Output:
% RS Relative size (1-256), uint8-vector, (n_points x 1)
Bal = cover.ball;
Cen = cover.center;
Nei = cover.neighbor;
Segs = segment.segments;
SChi = segment.ChildSegment;
np = size(P,1); % number of points
ns = size(Segs,1); % number of segments
%% Use branching order and height as apriori info
% Determine the branch orders of the segments
Ord = zeros(ns,1);
C = SChi{1};
order = 0;
while ~isempty(C)
order = order+order;
Ord(C) = order;
C = vertcat(SChi{C});
end
maxO = order+1; % maximum branching order (plus one)
% Determine tree height
Top = max(P(Cen,3));
Bot = min(P(Cen,3));
H = Top-Bot;
%% Determine "base size" compared to the stem base
% BaseSize is the relative size of the branch base compared to the stem
% base, measured as number of cover sets in the first layers of the cover
% sets. If it is larger than apriori upper limit based on branching order
% and branch height, then correct to the apriori limit
BaseSize = zeros(ns,1);
% Determine first the base size at the stem
S = Segs{1};
n = size(S,1);
if n >= 2
m = min([6 n]);
BaseSize(1) = mean(cellfun(@length,S(2:m)));
else
BaseSize(1) = length(S{1});
end
% Then define base size for other segments
for i = 2:ns
S = Segs{i};
n = size(S,1);
if n >= 2
m = min([6 n]);
BaseSize(i) = ceil(mean(cellfun(@length,S(2:m)))/BaseSize(1)*256);
else
BaseSize(i) = length(S{1})/BaseSize(1)*256;
end
bot = min(P(Cen(S{1}),3));
h = bot-Bot; % height of the segment's base
BS = ceil(256*(maxO-Ord(i))/maxO*(H-h)/H); % maximum apriori base size
if BaseSize(i) > BS
BaseSize(i) = BS;
end
end
BaseSize(1) = 256;
%% Determine relative size for points
TS = 1;
RS = zeros(np,1,'uint8');
for i = 1:ns
S = Segs{i};
s = size(S,1);
for j = 1:s
Q = S{j};
RS(vertcat(Bal{Q})) = BaseSize(i)-(BaseSize(i)-TS)*sqrt((j-1)/s);
end
end
%% Adjust the relative size at the base of child segments
RS0 = RS;
for i = 1:ns
C = SChi{i};
n = length(C);
if n > 0
for j = 1:n
S = Segs{C(j)};
B = S{1};
N = vertcat(Nei{B});
if size(S,1) > 1
N = setdiff(N,S{2});
end
N = union(N,B);
N = vertcat(Bal{N});
RS(N) = RS0(N)/2;
end
end
end
|
github | InverseTampere/TreeQSM-master | func_grad_cylinder.m | .m | TreeQSM-master/src/least_squares_fitting/func_grad_cylinder.m | 3,370 | utf_8 | 20d0b6e220003ae8a669e991c4c73090 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [dist,J] = func_grad_cylinder(par,P,weight)
% ---------------------------------------------------------------------
% FUNC_GRAD_CYLINDER.M Function and gradient calculation for
% least-squares cylinder fit.
%
% Version 2.2.0
% Latest update 5 Oct 2021
%
% Copyright (C) 2013-2021 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Input
% par Cylinder parameters [x0 y0 alpha beta r]'
% P Point cloud
% weight (Optional) Weights for the points
%
% Output
% dist Signed distances of points to the cylinder surface:
% dist(i) = sqrt(xh(i)^2 + yh(i)^2) - r, where
% [xh yh zh]' = Ry(beta) * Rx(alpha) * ([x y z]' - [x0 y0 0]')
% J Jacobian matrix d dist(i)/d par(j).
% Five cylinder parameters:
% Location = axis point intersects xy-plane: x0 and y0 (z0 == 0)
% Rotation angles around x and y axis = alpha and beta
% Radius = r
%
% Transformed points:
% Pt = [xh yx zh] = Ry(beta) * Rx(alpha) * (P - [x0 y0 0])
%
% "Plane points":
% Qt = Pt * I2 = [xh yh];
%
% Distance:
% D(x0,y0,alpha,beta,r) = sqrt( dot(Qt,Qt) )-r = sqrt( Qt*Qt' )-r
%
% Least squares = minimize Sum( D^2 ) over x0, y0, alpha, beta and r
%
% rt = sqrt( dot(Qt,Qt) )
% N = Qt/rt
%
% Jacobian for D with respect to x0, y0, alpha, beta:
% dD/di = dot( N,dQt/di ) = dot( Qt/rt,dQt/di )
%
% R = Ry*Rx
% dQt/dx0 = R*[-1 0 0]'
% dQt/dy0 = R*[0 -1 0]'
% dQt/dalpha = (P-[x0 y0 0])*DRx';
% dQt/dalpha = (P-[x0 y0 0])*DRy';
% Changes from version 2.1.0 to 2.2.0, 5 Oct 20201:
% 1) Minor changes in syntax
% Changes from version 2.0.0 to 2.1.0, 14 July 2020:
% 1) Added optional input for weights of the points
x0 = par(1);
y0 = par(2);
alpha = par(3);
beta = par(4);
r = par(5);
% Determine the rotation matrices and their derivatives
[R,DR1,DR2] = form_rotation_matrices([alpha beta]);
% Calculate the distances
Pt = (P-[x0 y0 0])*R';
xt = Pt(:,1);
yt = Pt(:,2);
rt = sqrt(xt.*xt + yt.*yt);
dist = rt-r; % Distances to the cylinder surface
if nargin == 3
dist = weight.*dist; % Weighted distances
end
% form the Jacobian matrix
if nargout > 1
N = [xt./rt yt./rt];
m = size(P,1);
J = zeros(m,5);
A1 = (R*[-1 0 0]')';
A = eye(2);
A(1,1) = A1(1); A(2,2) = A1(2);
J(:,1) = sum(N(:,1:2)*A,2);
A2 = (R*[0 -1 0]')';
A(1,1) = A2(1); A(2,2) = A2(2);
J(:,2) = sum(N(:,1:2)*A,2);
A3 = (P-[x0 y0 0])*DR1';
J(:,3) = sum(N(:,1:2).*A3(:,1:2),2);
A4 = (P-[x0 y0 0])*DR2';
J(:,4) = sum(N(:,1:2).*A4(:,1:2),2);
J(:,5) = -1*ones(m,1);
if nargin == 3
% Weighted Jacobian
J = [weight.*J(:,1) weight.*J(:,2) weight.*J(:,3) ...
weight.*J(:,4) weight.*J(:,5)];
end
end
|
github | InverseTampere/TreeQSM-master | func_grad_axis.m | .m | TreeQSM-master/src/least_squares_fitting/func_grad_axis.m | 3,013 | utf_8 | 7a75b492055072602912f3a4b149510d | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [dist,J] = func_grad_axis(P,par,weight)
% ---------------------------------------------------------------------
% FUNC_GRAD_CYLINDER.M Function and gradient calculation for
% least-squares cylinder fit.
%
% Version 2.1.0
% Latest update 14 July 2020
%
% Copyright (C) 2013-2020 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Input
% par Cylinder parameters [x0 y0 alpha beta r]'
% P Point cloud
% weight (Optional) Weights for the points
%
% Output
% dist Signed distances of points to the cylinder surface:
% dist(i) = sqrt(xh(i)^2 + yh(i)^2) - r, where
% [xh yh zh]' = Ry(beta) * Rx(alpha) * ([x y z]' - [x0 y0 0]')
% J Jacobian matrix d dist(i)/d par(j).
% Changes from version 2.0.0 to 2.1.0, 14 July 2020:
% 1) Added optional input for weights of the points
% Five cylinder parameters:
% Location = axis point intersects xy-plane: x0 and y0 (z0 == 0)
% Rotation angles around x and y axis = alpha and beta
% Radius = r
%
% Transformed points:
% Pt = [xh yx zh] = Ry(beta) * Rx(alpha) * (P - [x0 y0 0])
%
% "Plane points":
% Qt = Pt * I2 = [xh yh];
%
% Distance:
% D(x0,y0,alpha,beta,r) = sqrt( dot(Qt,Qt) )-r = sqrt( Qt*Qt' )-r
%
% Least squares = minimize Sum( D^2 ) over x0, y0, alpha, beta and r
%
% rt = sqrt( dot(Qt,Qt) )
% N = Qt/rt
%
% Jacobian for D with respect to x0, y0, alpha, beta:
% dD/di = dot( N,dQt/di ) = dot( Qt/rt,dQt/di )
%
% R = Ry*Rx
% dQt/dx0 = R*[-1 0 0]'
% dQt/dy0 = R*[0 -1 0]'
% dQt/dalpha = (P-[x0 y0 0])*DRx';
% dQt/dalpha = (P-[x0 y0 0])*DRy';
x0 = par(1);
y0 = par(2);
alpha = par(3);
beta = par(4);
r = par(5);
% Determine the rotation matrices and their derivatives
[R,DR1,DR2] = form_rotation_matrices([alpha beta]);
% Calculate the distances
Pt = (P-[x0 y0 0])*R';
xt = Pt(:,1);
yt = Pt(:,2);
rt = sqrt(xt.*xt + yt.*yt);
dist = rt-r; % Distances to the cylinder surface
if nargin == 3
dist = weight.*dist; % Weighted distances
end
% form the Jacobian matrix
if nargout > 1
N = [xt./rt yt./rt];
m = size(P,1);
J = zeros(m,2);
A3 = (P-[x0 y0 0])*DR1';
J(:,1) = sum(N(:,1:2).*A3(:,1:2),2);
A4 = (P-[x0 y0 0])*DR2';
J(:,2) = sum(N(:,1:2).*A4(:,1:2),2);
if nargin == 3
% Weighted Jacobian
J = [weight.*J(:,1) weight.*J(:,2)];
end
end
|
github | InverseTampere/TreeQSM-master | nlssolver.m | .m | TreeQSM-master/src/least_squares_fitting/nlssolver.m | 2,534 | utf_8 | d76f851140186c08867124872cbcc554 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [par,d,conv,rel] = nlssolver(par,P,weight)
% ---------------------------------------------------------------------
% NLSSOLVER.M Nonlinear least squares solver for cylinders.
%
% Version 2.1.0
% Latest update 14 July 2020
%
% Copyright (C) 2013-2020 Pasi Raumonen
% ---------------------------------------------------------------------
%
% Input
% par Intial estimates of the parameters
% P Point cloud
%
% Output
% par Optimised parameter values
% d Distances of points to cylinder
% conv True if fitting converged
% rel True if condition number was not very bad, fit was reliable
% Changes from version 2.0.0 to 2.1.0, 14 July 2020:
% 1) Added optional input for weights of the points
maxiter = 50;
iter = 0;
conv = false;
rel = true;
if nargin == 2
NoWeights = true;
else
NoWeights = false;
end
%% Gauss-Newton iterations
while iter < maxiter && ~conv && rel
%% Calculate the distances and Jacobian
if NoWeights
[d0, J] = func_grad_cylinder(par,P);
else
[d0, J] = func_grad_cylinder(par,P,weight);
end
%% Calculate update step
SS0 = norm(d0); % Squared sum of the distances
% solve for the system of equations:
% par(i+1) = par(i) - (J'J)^(-1)*J'd0(par(i))
A = J'*J;
b = J'*d0;
warning off
p = -A\b; % solve for the system of equations
warning on
par = par+p; % update the parameters
%% Check reliability
if rcond(-R) < 10000*eps
rel = false;
end
%% Check convergence:
% The distances with the new parameter values:
if NoWeights
d = func_grad_cylinder(par,P);
else
d = func_grad_cylinder(par,P,weight);
end
SS1 = norm(d); % Squared sum of the distances
if abs(SS0-SS1) < 1e-4
conv = true;
end
iter = iter + 1;
end
|
github | InverseTampere/TreeQSM-master | least_squares_axis.m | .m | TreeQSM-master/src/least_squares_fitting/least_squares_axis.m | 3,918 | utf_8 | f47fffa17b2cc0925b40301fcc7076dd |
function cyl = least_squares_axis(P,Axis,Point0,Rad0,weight)
% ---------------------------------------------------------------------
% LEAST_SQUARES_AXIS.M Least-squares cylinder axis fitting using
% Gauss-Newton when radius and point are given
%
% Version 1.0
% Latest update 1 Oct 2021
%
% Copyright (C) 2017-2021 Pasi Raumonen
% ---------------------------------------------------------------------
% Input
% P 3d point cloud
% Axis0 Initial axis estimate (1 x 3)
% Point0 Initial estimate of axis point (1 x 3)
% Rad0 Initial estimate of the cylinder radius
% weight (Optional) Weights for each point
%
% Output
% cyl Structure array with the following fields
% axis Cylinder axis (optimized here)
% radius Radius of the cylinder (from the input)
% start Axis point (from the input)
% mad Mean absolute distance of the points to the cylinder surface
% SurfCov Surface coverage, how much of the cylinder surface is covered
% with points
% conv If conv = 1, the algorithm has converged
% rel If rel = 1, the algorithm has reliable answer in terms of
% matrix inversion with a good enough condition number
% ---------------------------------------------------------------------
%% Initial estimates and other settings
res = 0.03; % "Resolution level" for computing surface coverage
par = [0 0]';
maxiter = 50; % maximum number of Gauss-Newton iteration
iter = 0; % number of iterations so far
conv = false; % converge of Gauss-Newton algorithm
rel = true; % are the results reliable, system matrix not badly conditioned
if nargin == 4
weight = ones(size(P,1),1);
end
Rot0 = rotate_to_z_axis(Axis);
Pt = (P-Point0)*Rot0';
Par = [0 0 0 0 Rad0]';
%% Gauss-Newton iterations
while iter < maxiter && ~conv && rel
% Calculate the distances and Jacobian
[dist,J] = func_grad_axis(Pt,Par);
% Calculate update step and gradient.
SS0 = norm(dist); % Squared sum of the distances
% solve for the system of equations:
% par(i+1) = par(i) - (J'J)^(-1)*J'd(par(i))
A = J'*J;
b = J'*dist;
warning off
p = -A\b; % solve for the system of equations
warning on
% Update
par = par+p;
% Check if the updated parameters lower the squared sum value
Par = [0; 0; par; Rad0];
dist = func_grad_axis(Pt,Par);
SS1 = norm(dist);
if SS1 > SS0
% Update did not decreased the squared sum, use update with much
% shorter update step
par = par-0.95*p;
Par = [0; 0; par; Rad0];
dist = func_grad_axis(Pt,Par);
SS1 = norm(dist);
end
% Check reliability
rel = true;
if rcond(A) < 10000*eps
rel = false;
end
% Check convergence
if abs(SS0-SS1) < 1e-5
conv = true;
end
iter = iter+1;
end
%% Output
% Inverse transformation to find axis and point on axis
% corresponding to original data
Rot = form_rotation_matrices(par);
Axis = Rot0'*Rot'*[0 0 1]'; % axis direction
% Compute the point distances to the axis
[dist,~,h] = distances_to_line(P,Axis,Point0);
dist = dist-Rad0; % distances without weights
Len = max(h)-min(h);
% Compute mad (for points with maximum weights)
if nargin <= 4
mad = mean(abs(dist)); % mean absolute distance to the circle
else
I = weight == max(weight);
mad = mean(abs(dist(I))); % mean absolute distance to the circle
end
% Compute SurfCov, minimum 3*8 grid
if ~any(isnan(par)) && rel && conv
nl = ceil(Len/res);
nl = max(nl,3);
ns = ceil(2*pi*Rad0/res);
ns = max(ns,8);
ns = min(36,ns);
SurfCov = single(surface_coverage(P,Axis,Point0,nl,ns,0.8*Rad0));
else
SurfCov = single(0);
end
%% Define the output
clear cir
cyl.radius = Rad0;
cyl.start = Point0;
cyl.axis = Axis';
cyl.mad = mad;
cyl.SurfCov = SurfCov;
cyl.conv = conv;
cyl.rel = rel;
|
github | InverseTampere/TreeQSM-master | rotate_to_z_axis.m | .m | TreeQSM-master/src/least_squares_fitting/rotate_to_z_axis.m | 1,206 | utf_8 | 249265c0c3047e01a4cc30792d37be20 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [R,D,a] = rotate_to_z_axis(Vec)
% --------------------------------------------------------------------------
% ROTATE_TO_Z_AXIS.M Forms the rotation matrix to rotate the vector to
% a point along the positive z-axis.
%
% Input
% Vec Vector (3 x 1)
%
% Output
% R Rotation matrix, with R * Vec = [0 0 z]', z > 0
D = cross(Vec,[0 0 1]);
if norm(D) > 0
a = acos(Vec(3));
R = rotation_matrix(D,a);
else
R = eye(3);
a = 0;
D = [1 0 0];
end
|
github | InverseTampere/TreeQSM-master | least_squares_cylinder.m | .m | TreeQSM-master/src/least_squares_fitting/least_squares_cylinder.m | 6,889 | utf_8 | 60305126c9e7fe2681c9f15ee98d5e21 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function cyl = least_squares_cylinder(P,cyl0,weight,Q)
% ---------------------------------------------------------------------
% LEAST_SQUARES_CYLINDER.M Least-squares cylinder using Gauss-Newton.
%
% Version 2.0.0
% Latest update 5 Oct 2021
%
% Copyright (C) 2013-2021 Pasi Raumonen
% ---------------------------------------------------------------------
% Input
% P Point cloud
% cyl0 Initial estimates of the cylinder parameters
% weight (Optional) Weights of the points for fitting
% Q (Optional) Subset of "P" where the cylinder is intended
%
% Output
% cyl Structure array containing the following fields:
% radius Radius of the cylinder
% length Length of the cylinder
% start Point on the axis at the bottom of the cylinder (1 x 3)
% axis Axis direction of the cylinder (1 x 3)
% mad Mean absolute distance between points and cylinder surface
% SurfCov Relative cover of the cylinder's surface by the points
% dist Radial distances from the points to the cylinder (m x 1)
% conv If conv = 1, the algorithm has converged
% rel If rel = 1, the algorithm has reliable answer in terms of
% matrix inversion with a good enough condition number
% ---------------------------------------------------------------------
% Changes from version 1.3.0 to 2.0.0, 5 Oct 2021:
% 1) Included the Gauss-Newton iterations into this function (removed the
% call to nlssolver function)
% 2) Changed how the updata step is solved from the Jacobian
% 3) Simplified some expressions and added comments
% 4) mad is computed only from the points along the cylinder length in the
% case of the optional input "Q" is given.
% 5) Changed the surface coverage estimation by filtering out points whose
% distance to the axis is less than 80% of the radius
% Changes from version 1.2.0 to 1.3.0, 14 July 2020:
% 1) Changed the input parameters of the cylinder to the struct format.
% 2) Added optional input for weights
% 3) Added optional input "Q", a subset of "P", the cylinder is intended
% to be fitted in this subset but it is fitted to "P" to get better
% estimate of the axis direction and radius
% Changes from version 1.1.0 to 1.2.0, 14 Jan 2020:
% 1) Changed the outputs and optionally the inputs to the struct format.
% 2) Added new output, "mad", which is the mean absolute distance of the
% points from the surface of the cylinder.
% 3) Added new output, "SurfCov", that measures how well the surface of the
% cylinder is covered by the points.
% 4) Added new output, "SurfCovDis", which is a matrix of mean point distances
% from layer/sector-intersections to the axis.
% 5) Added new output, "SurfCovVol", which is an estimate of the cylinder's
% volume based on the radii in "SurfCovDis" and "cylindrical sectors".
% 6) Added new optional input "res" which gives the point resolution level
% for computing SurfCov: the width and length of sectors/layers.
% Changes from version 1.0.0 to 1.1.0, 3 Oct 2019:
% 1) Bug fix: --> "Point = Rot0'*([par(1) par(2) 0]')..."
%% Initialize data and values
res = 0.03; % "Resolution level" for computing surface coverage
maxiter = 50; % maximum number of Gauss-Newton iterations
iter = 0;
conv = false; % Did the iterations converge
rel = true; % Are the results reliable (condition number was not very bad)
if nargin == 2
NoWeights = true; % No point weight given for the fitting
else
NoWeights = false;
end
% Transform the data to close to standard position via a translation
% followed by a rotation
Rot0 = rotate_to_z_axis(cyl0.axis);
Pt = (P-cyl0.start)*Rot0';
% Initial estimates
par = [0 0 0 0 cyl0.radius]';
%% Gauss-Newton algorithm
% find estimate of rotation-translation-radius parameters that transform
% the data so that the best-fit cylinder is one in standard position
while iter < maxiter && ~conv && rel
%% Calculate the distances and Jacobian
if NoWeights
[d0,J] = func_grad_cylinder(par,Pt);
else
[d0,J] = func_grad_cylinder(par,Pt,weight);
end
%% Calculate update step
SS0 = norm(d0); % Squared sum of the distances
% solve for the system of equations:
% par(i+1) = par(i) - (J'J)^(-1)*J'd0(par(i))
A = J'*J;
b = J'*d0;
warning off
p = -A\b; % solve for the system of equations
warning on
par = par+p; % update the parameters
%% Check reliability
if rcond(-A) < 10000*eps
rel = false;
end
%% Check convergence:
% The distances with the new parameter values:
if NoWeights
dist = func_grad_cylinder(par,Pt);
else
dist = func_grad_cylinder(par,Pt,weight);
end
SS1 = norm(dist); % Squared sum of the distances
if abs(SS0-SS1) < 1e-4
conv = true;
end
iter = iter + 1;
end
%% Compute the cylinder parameters and other outputs
cyl.radius = single(par(5)); % radius
% Inverse transformation to find axis and point on axis
% corresponding to original data
Rot = form_rotation_matrices(par(3:4));
Axis = Rot0'*Rot'*[0 0 1]'; % axis direction
Point = Rot0'*([par(1) par(2) 0]')+cyl0.start'; % axis point
% Compute the start, length and mad, translate the axis point to the
% cylinder's bottom:
% If the fourth input (point cloud Q) is given, use it for the start,
% length, mad, and SurfCov
if nargin == 4
if size(Q,1) > 5
P = Q;
end
end
H = P*Axis; % heights along the axis
hmin = min(H);
cyl.length = single(abs(max(H)-hmin));
hpoint = Axis'*Point;
Point = Point-(hpoint-hmin)*Axis; % axis point at the cylinder's bottom
cyl.start = single(Point');
cyl.axis = single(Axis');
% Compute mad for the points along the cylinder length:
if nargin >= 6
I = weight == max(weight);
cyl.mad = single(average(abs(dist(I)))); % mean absolute distance
else
cyl.mad = single(average(abs(dist))); % mean absolute distance
end
cyl.conv = conv;
cyl.rel = rel;
% Compute SurfCov, minimum 3*8 grid
if ~any(isnan(Axis)) && ~any(isnan(Point)) && rel && conv
nl = max(3,ceil(cyl.length/res));
ns = ceil(2*pi*cyl.radius/res);
ns = min(36,max(ns,8));
SurfCov = surface_coverage(P,Axis',Point',nl,ns,0.8*cyl.radius);
cyl.SurfCov = single(SurfCov);
else
cyl.SurfCov = single(0);
end
|
github | InverseTampere/TreeQSM-master | form_rotation_matrices.m | .m | TreeQSM-master/src/least_squares_fitting/form_rotation_matrices.m | 1,449 | utf_8 | b8928d5554f70ccfc10d9b4a2e5af802 | % This file is part of TREEQSM.
%
% TREEQSM is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% TREEQSM is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with TREEQSM. If not, see <http://www.gnu.org/licenses/>.
function [R,dR1,dR2] = form_rotation_matrices(theta)
% --------------------------------------------------------------------------
% FORM_ROTATION_MATRICES.M Forms rotation matrices R = R2*R1 and its
% derivatives
%
% Input
% theta Plane rotation angles (t1, t2)
%
% Output
% R Rotation matrix
% R1 Plane rotation [1 0 0; 0 c1 -s1; 0 s1 c1]
% R2 Plane rotation [c2 0 s2; 0 1 0; -s2 0 c2]
c = cos(theta);
s = sin(theta);
R1 = [1 0 0; 0 c(1) -s(1); 0 s(1) c(1)];
R = R1;
R2 = [c(2) 0 s(2); 0 1 0; -s(2) 0 c(2)];
R = R2*R;
if nargout > 1
dR1 = [0 0 0; 0 -R1(3,2) -R1(2,2); 0 R1(2,2) -R1(3,2)];
end
if nargout > 2
dR2 = [-R2(1,3) 0 R2(1,1); 0 0 0; -R2(1,1) 0 -R2(1,3)];
end |
github | soumendu041/clustering-network-valued-data-master | moments.m | .m | clustering-network-valued-data-master/moments.m | 897 | utf_8 | 1e2789b8f0f75799935c1311361a06e2 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Comparison of graphs via normalizec count statistics/moments of the adjacency
% matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = moments(A, k, method)
% A = adjacency matrix of the desired graph
% k = no. of moments requied
% method = 'exact' or 'approx': 'exact' returns exact counts and
% 'approx' returns normalized traces of powers of adjacency matrix
y = zeros(k,1);
if (strcmp(method,'approx'))
n = size(A, 1);
temp = A;
for t = 1:k
y(t) = trace(temp)/exp((1+t/2)*log(n)); % this normalization is for dense graphs
temp = temp*temp;
end
elseif (strcmp(method, 'exact'))
n = size(A, 1);
% need to call those count functions Purna di downloaded
end
end |
github | wvu-navLab/RobustGNSS-master | ccolamd_test.m | .m | RobustGNSS-master/gtsam/gtsam/3rdparty/CCOLAMD/MATLAB/ccolamd_test.m | 11,944 | utf_8 | ab91fed9a7d6b40fa30544983b26cc7f | function ccolamd_test
%CCOLAMD_TEST extensive test of ccolamd and csymamd
%
% Example:
% ccolamd_test
%
% See also csymamd, ccolamd, ccolamd_make.
% Copyright 1998-2007, Timothy A. Davis, Stefan Larimore, and Siva Rajamanickam
% Developed in collaboration with J. Gilbert and E. Ng.
help ccolamd_test
global ccolamd_default_knobs csymamd_default_knobs
ccolamd_default_knobs = [0 10 10 1 0] ;
csymamd_default_knobs = [10 1 0] ;
fprintf ('Compiling ccolamd, csymamd, and test mexFunctions.\n') ;
ccolamd_make ;
d = '' ;
if (~isempty (strfind (computer, '64')))
d = '-largeArrayDims' ;
end
cmd = sprintf ( ...
'mex -DDLONG -O %s -I../../SuiteSparse_config -I../Include ', d) ;
src = '../Source/ccolamd.c ../../SuiteSparse_config/SuiteSparse_config.c' ;
if (~(ispc || ismac))
% for POSIX timing routine
src = [src ' -lrt'] ;
end
eval ([cmd 'ccolamdtestmex.c ' src]) ;
eval ([cmd 'csymamdtestmex.c ' src]) ;
fprintf ('Done compiling.\n') ;
fprintf ('\nThe following codes will be tested:\n') ;
which ccolamd
which csymamd
which ccolamdtestmex
which csymamdtestmex
fprintf ('\nStarting the tests. Please be patient.\n') ;
h = waitbar (0, 'COLAMD test') ;
rand ('state', 0) ;
randn ('state', 0) ;
A = sprandn (500,500,0.4) ;
p = ccolamd (A, [0 10 10 1 1]) ; check_perm (p, A) ;
p = ccolamd (A, [1 2 7 1 1]) ; check_perm (p, A) ;
p = ccolamd (A, [1 2 10 0 1]) ; check_perm (p, A) ;
p = ccolamd (A, [9 2 3 1 1]) ; check_perm (p, A) ;
p = csymamd (A, [10 1 1]) ; check_perm (p, A) ;
p = csymamd (A, [4 1 1]) ; check_perm (p, A) ;
p = csymamd (A, [9 0 1]) ; check_perm (p, A) ;
fprintf ('Null matrices') ;
A = zeros (0,0) ;
A = sparse (A) ;
p = ccolamd (A) ;
check_perm (p, A) ;
p = csymamd (A) ;
check_perm (p, A) ;
A = zeros (0, 100) ;
A = sparse (A) ;
p = ccolamd (A) ;
check_perm (p, A) ;
A = zeros (100, 0) ;
A = sparse (A) ;
p = ccolamd (A) ;
check_perm (p, A) ;
fprintf (' OK\n') ;
fprintf ('Matrices with a few dense row/cols\n') ;
for trial = 1:20
waitbar (trial/20, h, 'CCOLAMD: dense rows/cols') ;
% random square unsymmetric matrix
A = rand_matrix (1000, 1000, 1, 10, 20) ;
[m n] = size (A) ;
cmember = irand (min (trial,n), n) ;
for tol = [0:.1:2 3:20 1e6]
B = A + A' ;
p = ccolamd (A, [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 1]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1]) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 0]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1]) ; check_perm (p, A) ;
p = csymamd (A, [tol 1]) ; check_perm (p, A) ;
p = csymamd (A, tol) ; check_perm (p, A) ;
p = csymamd (A, [ ]) ; check_perm (p, A) ;
p = csymamd (B, [tol 0]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol -1 1]) ; check_perm (p, A) ;
p = ccolamd (A, [0 -1 tol 1]) ; check_perm (p, A) ;
% check with non-null cmember
p = ccolamd (A, [ ], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 1], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 0], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1], cmember) ; check_perm (p, A) ;
p = csymamd (A, [tol 1], cmember) ; check_perm (p, A) ;
p = csymamd (A, tol, cmember) ; check_perm (p, A) ;
p = csymamd (A, [ ], cmember) ; check_perm (p, A) ;
p = csymamd (B, [tol 0], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol -1 1], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [0 -1 tol 1], cmember) ; check_perm (p, A) ;
p = ccolamd (A, [ ], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 1], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [1 tol tol 0], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol tol 1], [ ]) ; check_perm (p, A) ;
p = csymamd (A, [tol 1], [ ]) ; check_perm (p, A) ;
p = csymamd (A, tol, [ ]) ; check_perm (p, A) ;
p = csymamd (A, [ ], [ ]) ; check_perm (p, A) ;
p = csymamd (B, [tol 0], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [0 tol -1 1], [ ]) ; check_perm (p, A) ;
p = ccolamd (A, [0 -1 tol 1], [ ]) ; check_perm (p, A) ;
end
end
fprintf (' OK\n') ;
fprintf ('General matrices\n') ;
for trial = 1:400
waitbar (trial/400, h, 'CCOLAMD: with dense rows/cols') ;
% matrix of random mtype
mtype = irand (3) ;
A = rand_matrix (2000, 2000, mtype, 0, 0) ;
p = ccolamd (A) ;
check_perm (p, A) ;
if (mtype == 3)
p = csymamd (A) ;
check_perm (p, A) ;
end
end
fprintf (' OK\n') ;
fprintf ('Test error handling with invalid inputs\n') ;
% Check different erroneous input.
for trial = 1:30
waitbar (trial/30, h, 'CCOLAMD: error handling') ;
A = rand_matrix (1000, 1000, 2, 0, 0) ;
for err = 1:13
p = Tcolamd (A, [ccolamd_default_knobs 1 err], [ ]) ;
if (p(1) ~= -1) %#ok
check_perm (p, A) ;
end
if (err == 1)
% check different (valid) input args to ccolamd
p = Acolamd (A) ;
p2 = Acolamd (A, [ccolamd_default_knobs 0 0]) ;
if (any (p ~= p2))
error ('ccolamd: mismatch 1!') ;
end
end
B = A'*A ;
p = Tsymamd (B, [-1 1 0 err], [ ]) ;
if (p(1) ~= -1) %#ok
check_perm (p, A) ;
end
if (err == 1)
% check different (valid) input args to csymamd
p = Asymamd (B) ;
check_perm (p, A) ;
p2 = Asymamd (B, [csymamd_default_knobs 0]) ;
if (any (p ~= p2))
error ('symamd: mismatch 1!') ;
end
end
end
end
fprintf (' OK\n') ;
fprintf ('Matrices with a few empty columns\n') ;
for trial = 1:400
waitbar (trial/400, h, 'CCOLAMD: with empty rows/cols') ;
% some are square, some are rectangular
n = 0 ;
while (n < 5)
A = rand_matrix (1000, 1000, irand (2), 0, 0) ;
[m n] = size (A) ;
end
% Add 5 null columns at random locations.
null_col = randperm (n) ;
A (:, null_col) = 0 ;
% Order the matrix and make sure that the null columns are ordered last.
p = ccolamd (A, [1 1e6 1e6 0]) ;
check_perm (p, A) ;
% find all null columns in A
null_col = find (sum (spones (A), 1) == 0) ;
nnull = length (null_col) ;
if (any (null_col ~= p ((n-nnull+1):n)))
error ('ccolamd: Null cols are not ordered last in natural order') ;
end
end
fprintf (' OK\n') ;
fprintf ('Matrices with a few empty rows and columns\n') ;
for trial = 1:400
waitbar (trial/400, h, 'CCOLAMD: with empty rows/cols') ;
% symmetric matrices
n = 0 ;
while (n < 5)
A = rand_matrix (1000, 1000, 3, 0, 0) ;
[m n] = size (A) ;
end
% Add 5 null columns and rows at random locations.
null_col = randperm (n) ;
A (:, null_col) = 0 ;
A (null_col, :) = 0 ;
% Order the matrix and make sure that the null rows/cols are ordered last.
p = csymamd (A, -1) ;
check_perm (p, A) ;
% find all null rows/columns in A
Alo = tril (A, -1) ;
null_col = ...
find ((sum (spones (Alo), 1) == 0) & (sum (spones (Alo), 2) == 0)') ;
nnull = length (null_col) ;
if (any (null_col ~= p ((n-nnull+1):n)))
error ('csymamd: Null cols are not ordered last in natural order') ;
end
end
fprintf (' OK\n') ;
fprintf ('Matrices with a few empty rows\n') ;
% Test matrices with null rows inserted.
for trial = 1:400
waitbar (trial/400, h, 'CCOLAMD: with null rows') ;
m = 0 ;
while (m < 5)
A = rand_matrix (1000, 1000, 2, 0, 0) ;
m = size (A,1) ;
end
% Add 5 null rows at random locations.
null_row = randperm (m) ;
null_row = sort (null_row (1:5)) ;
A (null_row, :) = 0 ;
p = ccolamd (A) ;
check_perm (p, A) ;
end
fprintf (' OK\n') ;
fprintf ('\nccolamd and csymamd: all tests passed\n\n') ;
close (h) ;
%-------------------------------------------------------------------------------
function p = Acolamd (S, knobs)
% Acolamd: compare ccolamd and Tcolamd results
global ccolamd_default_knobs
if (nargin < 2)
p = ccolamd (S) ;
p1 = Tcolamd (S, [ccolamd_default_knobs 0 0], [ ]) ;
else
p = ccolamd (S, knobs) ;
p1 = Tcolamd (S, knobs, [ ]) ;
end
check_perm (p, S) ;
check_perm (p1, S) ;
if (any (p1 ~= p))
narg = nargin ;
if (nargin == 2)
save bad S narg knobs
else
save bad S narg
end
error ('Acolamd mismatch!') ;
end
%-------------------------------------------------------------------------------
function p = Asymamd (S, knobs)
% Asymamd: compare csymamd and Tsymamd results
global csymamd_default_knobs
if (nargin < 2)
p = csymamd (S) ;
p1 = Tsymamd (S, [csymamd_default_knobs 0], [ ]) ;
else
p = csymamd (S, knobs) ;
p1 = Tsymamd (S, knobs, [ ]) ;
end
if (any (p1 ~= p))
error ('Asymamd mismatch!') ;
end
%-------------------------------------------------------------------------------
function check_perm (p, A, cmember)
% check_perm: check for a valid permutation vector
if (isempty (A) & isempty (p)) %#ok
% empty permutation vectors of empty matrices are OK
return
end
if (isempty (p))
error ('Bad permutation: cannot be empty') ;
end
[m n] = size (A) ;
[p_m p_n] = size (p) ;
if (p_n == 1)
% force p to be a row vector
p = p' ;
[p_m p_n] = size (p) ;
end
if (n ~= p_n)
error ('Bad permutation: wrong size') ;
end
if (p_m ~= 1) ;
% p must be a vector
error ('Bad permutation: not a vector') ;
else
if (any (sort (p) - (1:p_n)))
error ('Bad permutation') ;
end
end
if (nargin > 2)
% check cmember
c = cmember (p) ;
% c must be monotonically non-decreasing
c = diff (c) ;
if (any (c < 0))
error ('permutation breaks the cmember constraints') ;
end
end
%-------------------------------------------------------------------------------
function i = irand (n,s)
% irand: return a random vector of size s, with values between 1 and n
if (nargin == 1)
s = 1 ;
end
i = min (n, 1 + floor (rand (1,s) * n)) ;
%-------------------------------------------------------------------------------
function A = rand_matrix (n_max, m_max, mtype, d_rows, d_cols)
% rand_matrix: return a random sparse matrix
%
% A = rand_matrix (n_max, m_max, mtype, d_rows, d_cols)
%
% A binary matrix of random size, at most n_max-by-m_max, with d_rows dense rows
% and d_cols dense columns.
%
% mtype 1: square unsymmetric (m_max is ignored)
% mtype 2: rectangular
% mtype 3: symmetric (m_max is ignored)
n = irand (n_max) ;
if (mtype ~= 2)
% square
m = n ;
else
m = irand (m_max) ;
end
A = sprand (m, n, 10 / max (m,n)) ;
if (d_rows > 0)
% add dense rows
for k = 1:d_rows
i = irand (m) ;
nz = irand (n) ;
p = randperm (n) ;
p = p (1:nz) ;
A (i,p) = 1 ;
end
end
if (d_cols > 0)
% add dense cols
for k = 1:d_cols
j = irand (n) ;
nz = irand (m) ;
p = randperm (m) ;
p = p (1:nz) ;
A (p,j) = 1 ;
end
end
A = spones (A) ;
% ensure that there are no empty columns
d = find (full (sum (A,1)) == 0) ; %#ok
A (m,d) = 1 ; %#ok
% ensure that there are no empty rows
d = find (full (sum (A,2)) == 0) ; %#ok
A (d,n) = 1 ; %#ok
if (mtype == 3)
% symmetric
A = A + A' + speye (n) ;
end
A = spones (A) ;
%-------------------------------------------------------------------------------
% Tcolamd: run ccolamd in a testing mode
%-------------------------------------------------------------------------------
function p = Tcolamd (S, knobs, cmember)
% knobs (5) = 1 ;
p = ccolamdtestmex (S, knobs, cmember) ;
if (p (1) ~= -1)
check_perm (p, S) ;
end
%-------------------------------------------------------------------------------
% Tsymamd: run csymamd in a testing mode
%-------------------------------------------------------------------------------
function p = Tsymamd (S, knobs, cmember)
% knobs (2) = 1 ;
p = csymamdtestmex (S, knobs, cmember) ;
if (p (1) ~= -1)
check_perm (p, S) ;
end
|
github | wvu-navLab/RobustGNSS-master | geodarea.m | .m | RobustGNSS-master/gtsam/gtsam/3rdparty/GeographicLib/matlab/geodarea.m | 4,241 | utf_8 | a20b9abbe24d8781e0c053b3ddfd9f3a | function [A, P, N] = geodarea(lats, lons, ellipsoid)
%GEODAREA Surface area of polygon on an ellipsoid
%
% A = GEODAREA(lats, lons)
% [A, P, N] = GEODAREA(lats, lons, ellipsoid)
%
% calculates the surface area A of the geodesic polygon specified by the
% input vectors lats, lons (in degrees). The ellipsoid vector is of the
% form [a, e], where a is the equatorial radius in meters, e is the
% eccentricity. If ellipsoid is omitted, the WGS84 ellipsoid (more
% precisely, the value returned by DEFAULTELLIPSOID) is used. There is
% no need to "close" the polygon by repeating the first point. Multiple
% polygons can be specified by separating the vertices by NaNs in the
% vectors. Thus a series of quadrilaterals can be specified as two 5 x K
% arrays where the 5th row is NaN. The output, A, is in meters^2.
% Counter-clockwise traversal counts as a positive area. Only simple
% polygons (which do not intersect themselves) are supported. Also
% returned are the perimeters of the polygons in P (meters) and the
% numbers of vertices in N. GEODDOC gives the restrictions on the
% allowed ranges of the arguments.
%
% GEODAREA loosely duplicates the functionality of the AREAINT function
% in the MATLAB mapping toolbox. The major difference is that the
% polygon edges are taken to be geodesics and the area contributed by
% each edge is computed using a series expansion with is accurate
% regardless of the length of the edge. The formulas are derived in
%
% C. F. F. Karney, Algorithms for geodesics,
% J. Geodesy 87, 43-55 (2013);
% http://dx.doi.org/10.1007/s00190-012-0578-z
% Addenda: http://geographiclib.sf.net/geod-addenda.html
%
% See also GEODDOC, GEODDISTANCE, GEODRECKON, POLYGONAREA,
% DEFAULTELLIPSOID.
% Copyright (c) Charles Karney (2012-2013) <[email protected]>.
%
% This file was distributed with GeographicLib 1.31.
if nargin < 2, error('Too few input arguments'), end
if nargin < 3, ellipsoid = defaultellipsoid; end
if ~isequal(size(lats), size(lons))
error('lats, lons have incompatible sizes')
end
if length(ellipsoid(:)) ~= 2
error('ellipsoid must be a vector of size 2')
end
lat1 = lats(:);
lon1 = lons(:);
M = length(lat1);
ind = [0; find(isnan(lat1 + lon1))];
if length(ind) == 1 || ind(end) ~= M
ind = [ind; M + 1];
end
K = length(ind) - 1;
A = zeros(K, 1); P = A; N = A;
if M == 0, return, end
lat2 = [lat1(2:end, 1); 0];
lon2 = [lon1(2:end, 1); 0];
m0 = min(M, ind(1:end-1) + 1);
m1 = max(1, ind(2:end) - 1);
lat2(m1) = lat1(m0); lon2(m1) = lon1(m0);
a = ellipsoid(1);
e2 = ellipsoid(2)^2;
f = e2 / (1 + sqrt(1 - e2));
b = (1 - f) * a;
c2 = (a^2 + b^2 * atanhee(1, e2)) / 2;
area0 = 4 * pi * c2;
[s12, ~, ~, S12] = geoddistance(lat1, lon1, lat2, lon2, ellipsoid);
cross = transit(lon1, lon2);
for k = 1 : K
N(k) = m1(k) - m0(k) + 1;
P(k) = accumulator(s12(m0(k):m1(k)));
[As, At] = accumulator(S12(m0(k):m1(k)));
crossings = sum(cross(m0(k):m1(k)));
if mod(crossings, 2) ~= 0,
[As, At] = accumulator( ((As < 0) * 2 - 1) * area0 / 2, As, At);
end
As = -As; At = -At;
if As > area0/2
As = accumulator( -area0 / 2, As, At);
elseif As <= -area0/2
As = accumulator( area0 / 2, As, At);
end
A(k) = As;
end
end
function cross = transit(lon1, lon2)
%TRANSIT Count crossings of prime meridian
%
% CROSS = TRANSIT(LON1, LON2) return 1 or -1 if crossing prime meridian
% in east or west direction. Otherwise return zero.
lon1 = AngNormalize(lon1);
lon2 = AngNormalize(lon2);
lon12 = AngDiff(lon1, lon2);
cross = zeros(length(lon1), 1);
cross(lon1 < 0 & lon2 >= 0 & lon12 > 0) = 1;
cross(lon2 < 0 & lon1 >= 0 & lon12 < 0) = -1;
end
function [s, t] = accumulator(x, s, t)
%ACCUMULATOR Accurately sum x
%
% [S, T] = ACCUMULATOR(X, S, T) accumulate the sum of the elements of X
% into [S, T] using extended precision. S and T are scalars.
if nargin < 3, t = 0; end
if nargin < 2, s = 0; end
for y = x(:)',
% Here's Shewchuk's solution...
[z, u] = sumx(y, t);
[s, t] = sumx(z, s);
if s == 0
s = u;
else
t = t + u;
end
end
end
|
github | wvu-navLab/RobustGNSS-master | geoddistance.m | .m | RobustGNSS-master/gtsam/gtsam/3rdparty/GeographicLib/matlab/geoddistance.m | 17,333 | utf_8 | 3b8e33df114efbd010cafcfdd2b79868 | function [s12, azi1, azi2, S12, m12, M12, M21, a12] = geoddistance ...
(lat1, lon1, lat2, lon2, ellipsoid)
%GEODDISTANCE Distance between points on an ellipsoid
%
% [s12, azi1, azi2] = GEODDISTANCE(lat1, lon1, lat2, lon2)
% [s12, azi1, azi2, S12, m12, M12, M21, a12] =
% GEODDISTANCE(lat1, lon1, lat2, lon2, ellipsoid)
%
% solves the inverse geodesic problem of finding of length and azimuths
% of the shortest geodesic between points specified by lat1, lon1, lat2,
% lon2. The input latitudes and longitudes, lat1, lon1, lat2, lon2, can
% be scalars or arrays of equal size and must be expressed in degrees.
% The ellipsoid vector is of the form [a, e], where a is the equatorial
% radius in meters, e is the eccentricity. If ellipsoid is omitted, the
% WGS84 ellipsoid (more precisely, the value returned by
% DEFAULTELLIPSOID) is used. The output s12 is the distance in meters
% and azi1 and azi2 are the forward azimuths at the end points in
% degrees. The other optional outputs, S12, m12, M12, M21, a12 are
% documented in GEODDOC. GEODDOC also gives the restrictions on the
% allowed ranges of the arguments.
%
% When given a combination of scalar and array inputs, the scalar inputs
% are automatically expanded to match the size of the arrays.
%
% This is an implementation of the algorithm given in
%
% C. F. F. Karney, Algorithms for geodesics,
% J. Geodesy 87, 43-55 (2013);
% http://dx.doi.org/10.1007/s00190-012-0578-z
% Addenda: http://geographiclib.sf.net/geod-addenda.html
%
% This function duplicates some of the functionality of the DISTANCE
% function in the MATLAB mapping toolbox. Differences are
%
% * When the ellipsoid argument is omitted, use the WGS84 ellipsoid.
% * The routines work for prolate (as well as oblate) ellipsoids.
% * The azimuth at the second end point azi2 is returned.
% * The solution is accurate to round off for abs(e) < 0.2.
% * The algorithm converges for all pairs of input points.
% * Additional properties of the geodesic are calcuated.
%
% See also GEODDOC, GEODRECKON, GEODAREA, GEODESICINVERSE,
% DEFAULTELLIPSOID.
% Copyright (c) Charles Karney (2012, 2013) <[email protected]>.
%
% This file was distributed with GeographicLib 1.31.
%
% This is a straightforward transcription of the C++ implementation in
% GeographicLib and the C++ source should be consulted for additional
% documentation. This is a vector implementation and the results returned
% with array arguments are identical to those obtained with multiple calls
% with scalar arguments. The biggest change was to eliminate the branching
% to allow a vectorized solution.
if nargin < 4, error('Too few input arguments'), end
if nargin < 5, ellipsoid = defaultellipsoid; end
try
Z = lat1 + lon1 + lat2 + lon2;
S = size(Z);
Z = zeros(S);
lat1 = lat1 + Z; lon1 = lon1 + Z;
lat2 = lat2 + Z; lon2 = lon2 + Z;
Z = Z(:);
catch err
error('lat1, lon1, s12, azi1 have incompatible sizes')
end
if length(ellipsoid(:)) ~= 2
error('ellipsoid must be a vector of size 2')
end
degree = pi/180;
tiny = sqrt(realmin);
tol0 = eps;
tolb = eps * sqrt(eps);
maxit1 = 20;
maxit2 = maxit1 + (-log2(eps) + 1) + 10;
a = ellipsoid(1);
e2 = ellipsoid(2)^2;
f = e2 / (1 + sqrt(1 - e2));
f1 = 1 - f;
ep2 = e2 / (1 - e2);
n = f / (2 - f);
b = a * f1;
areap = nargout >= 4;
scalp = nargout >= 6;
A3x = A3coeff(n);
C3x = C3coeff(n);
lon12 = AngDiff(AngNormalize(lon1(:)), AngNormalize(lon2(:)));
lon12 = AngRound(lon12);
lonsign = 2 * (lon12 >= 0) - 1;
lon12 = lonsign .* lon12;
lat1 = AngRound(lat1(:));
lat2 = AngRound(lat2(:));
swapp = 2 * (abs(lat1) >= abs(lat2)) - 1;
lonsign(swapp < 0) = - lonsign(swapp < 0);
[lat1(swapp < 0), lat2(swapp < 0)] = swap(lat1(swapp < 0), lat2(swapp < 0));
latsign = 2 * (lat1 < 0) - 1;
lat1 = latsign .* lat1;
lat2 = latsign .* lat2;
phi = lat1 * degree;
sbet1 = f1 * sin(phi); cbet1 = cos(phi); cbet1(lat1 == -90) = tiny;
[sbet1, cbet1] = SinCosNorm(sbet1, cbet1);
phi = lat2 * degree;
sbet2 = f1 * sin(phi); cbet2 = cos(phi); cbet2(abs(lat2) == 90) = tiny;
[sbet2, cbet2] = SinCosNorm(sbet2, cbet2);
c = cbet1 < -sbet1 & cbet2 == cbet1;
sbet2(c) = (2 * (sbet2(c) < 0) - 1) .* sbet1(c);
c = ~(cbet1 < -sbet1) & abs(sbet2) == - sbet1;
cbet2(c) = cbet1(c);
dn1 = sqrt(1 + ep2 * sbet1.^2);
dn2 = sqrt(1 + ep2 * sbet2.^2);
lam12 = lon12 * degree;
slam12 = sin(lam12); slam12(lon12 == 180) = 0; clam12 = cos(lam12);
sig12 = Z; ssig1 = Z; csig1 = Z; ssig2 = Z; csig2 = Z;
calp1 = Z; salp1 = Z; calp2 = Z; salp2 = Z;
s12 = Z; m12 = Z; M12 = Z; M21 = Z; omg12 = Z;
m = lat1 == -90 | slam12 == 0;
if any(m)
calp1(m) = clam12(m); salp1(m) = slam12(m);
calp2(m) = 1; salp2(m) = 0;
ssig1(m) = sbet1(m); csig1(m) = calp1(m) .* cbet1(m);
ssig2(m) = sbet2(m); csig2(m) = calp2(m) .* cbet2(m);
sig12(m) = atan2(max(csig1(m) .* ssig2(m) - ssig1(m) .* csig2(m), 0), ...
csig1(m) .* csig2(m) + ssig1(m) .* ssig2(m));
[s12(m), m12(m), ~, M12(m), M21(m)] = ...
Lengths(n, sig12(m), ...
ssig1(m), csig1(m), dn1(m), ssig2(m), csig2(m), dn2(m), ...
cbet1(m), cbet2(m), scalp, ep2);
m = m & (sig12 < 1 | m12 >= 0);
m12(m) = m12(m) * b;
s12(m) = s12(m) * b;
end
eq = ~m & sbet1 == 0;
if f > 0
eq = eq & lam12 < pi - f * pi;
end
calp1(eq) = 0; calp2(eq) = 0; salp1(eq) = 1; salp2(eq) = 1;
s12(eq) = a * lam12(eq); sig12(eq) = lam12(eq) / f1; omg12(eq) = sig12(eq);
m12(eq) = b * sin(omg12(eq)); M12(eq) = cos(omg12(eq)); M21(eq) = M12(eq);
g = ~eq & ~m;
dnm = Z;
[sig12(g), salp1(g), calp1(g), salp2(g), calp2(g), dnm(g)] = ...
InverseStart(sbet1(g), cbet1(g), dn1(g), sbet2(g), cbet2(g), dn2(g), ...
lam12(g), f, A3x);
s = g & sig12 >= 0;
s12(s) = b * sig12(s) .* dnm(s);
m12(s) = b * dnm(s).^2 .* sin(sig12(s) ./ dnm(s));
if scalp
M12(s) = cos(sig12(s) ./ dnm(s)); M21(s) = M12(s);
end
omg12(s) = lam12(s) ./ (f1 * dnm(s));
g = g & sig12 < 0;
salp1a = Z + tiny; calp1a = Z + 1;
salp1b = Z + tiny; calp1b = Z - 1;
ssig1 = Z; csig1 = Z; ssig2 = Z; csig2 = Z;
epsi = Z; v = Z; dv = Z;
numit = Z;
tripn = Z > 0;
tripb = tripn;
gsave = g;
for k = 0 : maxit2 - 1
if k == 0 && ~any(g), break, end
numit(g) = k;
[v(g), dv(g), ...
salp2(g), calp2(g), sig12(g), ...
ssig1(g), csig1(g), ssig2(g), csig2(g), epsi(g), omg12(g)] = ...
Lambda12(sbet1(g), cbet1(g), dn1(g), ...
sbet2(g), cbet2(g), dn2(g), ...
salp1(g), calp1(g), f, A3x, C3x);
v = v - lam12;
g = g & ~(tripb | ~(abs(v) >= ((tripn * 6) + 2) * tol0));
if ~any(g), break, end
c = g & v > 0;
if k <= maxit1
c = c & calp1 ./ salp1 > calp1b ./ salp1b;
end
salp1b(c) = salp1(c); calp1b(c) = calp1(c);
c = g & v < 0;
if k <= maxit1
c = c & calp1 ./ salp1 < calp1a ./ salp1a;
end
salp1a(c) = salp1(c); calp1a(c) = calp1(c);
if k == maxit1, tripn(g) = false; end
if k < maxit1
dalp1 = -v ./ dv;
sdalp1 = sin(dalp1); cdalp1 = cos(dalp1);
nsalp1 = salp1 .* cdalp1 + calp1 .* sdalp1;
calp1(g) = calp1(g) .* cdalp1(g) - salp1(g) .* sdalp1(g);
salp1(g) = nsalp1(g);
tripn = g & abs(v) <= 16 * tol0;
c = g & ~(dv > 0 & nsalp1 > 0 & abs(dalp1) < pi);
tripn(c) = false;
else
c = g;
end
salp1(c) = (salp1a(c) + salp1b(c))/2;
calp1(c) = (calp1a(c) + calp1b(c))/2;
[salp1(g), calp1(g)] = SinCosNorm(salp1(g), calp1(g));
tripb(c) = (abs(salp1a(c) - salp1(c)) + (calp1a(c) - calp1(c)) < tolb | ...
abs(salp1(c) - salp1b(c)) + (calp1(c) - calp1b(c)) < tolb);
end
g = gsave;
[s12(g), m12(g), ~, M12(g), M21(g)] = ...
Lengths(epsi(g), sig12(g), ...
ssig1(g), csig1(g), dn1(g), ssig2(g), csig2(g), dn2(g), ...
cbet1(g), cbet2(g), scalp, ep2);
m12(g) = m12(g) * b;
s12(g) = s12(g) * b;
omg12(g) = lam12(g) - omg12(g);
s12 = 0 + s12;
if areap
salp0 = salp1 .* cbet1; calp0 = hypot(calp1, salp1 .* sbet1);
ssig1 = sbet1; csig1 = calp1 .* cbet1;
ssig2 = sbet2; csig2 = calp2 .* cbet2;
k2 = calp0.^2 * ep2;
epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
A4 = (a^2 * e2) * calp0 .* salp0;
[ssig1, csig1] = SinCosNorm(ssig1, csig1);
[ssig2, csig2] = SinCosNorm(ssig2, csig2);
C4x = C4coeff(n);
C4a = C4f(epsi, C4x);
B41 = SinCosSeries(false, ssig1, csig1, C4a);
B42 = SinCosSeries(false, ssig2, csig2, C4a);
S12 = A4 .* (B42 - B41);
S12(calp0 == 0 | salp0 == 0) = 0;
l = ~m & omg12 < 0.75 * pi & sbet2 - sbet1 < 1.75;
alp12 = Z;
somg12 = sin(omg12(l)); domg12 = 1 + cos(omg12(l));
dbet1 = 1 + cbet1(l); dbet2 = 1 + cbet2(l);
alp12(l) = 2 * atan2(somg12 .* (sbet1(l) .* dbet2 + sbet2(l) .* dbet1), ...
domg12 .* (sbet1(l) .* sbet2(l) + dbet1 .* dbet2));
l = ~l;
salp12 = salp2(l) .* calp1(l) - calp2(l) .* salp1(l);
calp12 = calp2(l) .* calp1(l) + salp2(l) .* salp1(l);
s = salp12 == 0 & calp12 < 0;
salp12(s) = tiny * calp1(s); calp12(s) = -1;
alp12(l) = atan2(salp12, calp12);
c2 = (a^2 + b^2 * atanhee(1, e2)) / 2;
S12 = 0 + swapp .* lonsign .* latsign .* (S12 + c2 * alp12);
end
[salp1(swapp<0), salp2(swapp<0)] = swap(salp1(swapp<0), salp2(swapp<0));
[calp1(swapp<0), calp2(swapp<0)] = swap(calp1(swapp<0), calp2(swapp<0));
if scalp
[M12(swapp<0), M21(swapp<0)] = swap(M12(swapp<0), M21(swapp<0));
end
salp1 = salp1 .* swapp .* lonsign; calp1 = calp1 .* swapp .* latsign;
salp2 = salp2 .* swapp .* lonsign; calp2 = calp2 .* swapp .* latsign;
azi1 = 0 - atan2(-salp1, calp1) / degree;
azi2 = 0 - atan2(-salp2, calp2) / degree;
a12 = sig12 / degree;
s12 = reshape(s12, S); azi1 = reshape(azi1, S); azi2 = reshape(azi2, S);
m12 = reshape(m12, S); M12 = reshape(M12, S); M21 = reshape(M21, S);
a12 = reshape(a12, S);
if (areap)
S12 = reshape(S12, S);
end
end
function [sig12, salp1, calp1, salp2, calp2, dnm] = ...
InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2, lam12, f, A3x)
%INVERSESTART Compute a starting point for Newton's method
N = length(sbet1);
f1 = 1 - f;
e2 = f * (2 - f);
ep2 = e2 / (1 - e2);
n = f / (2 - f);
tol0 = eps;
tol1 = 200 * tol0;
tol2 = sqrt(eps);
etol2 = 0.1 * tol2 / sqrt( max(0.001, abs(f)) * min(1, 1 - f/2) / 2 );
xthresh = 1000 * tol2;
sig12 = -ones(N, 1); salp2 = NaN(N, 1); calp2 = NaN(N, 1);
sbet12 = sbet2 .* cbet1 - cbet2 .* sbet1;
cbet12 = cbet2 .* cbet1 + sbet2 .* sbet1;
sbet12a = sbet2 .* cbet1 + cbet2 .* sbet1;
s = cbet12 >= 0 & sbet12 < 0.5 & cbet2 .* lam12 < 0.5;
omg12 = lam12;
dnm = NaN(N, 1);
sbetm2 = (sbet1(s) + sbet2(s)).^2;
sbetm2 = sbetm2 ./ (sbetm2 + (cbet1(s) + cbet2(s)).^2);
dnm(s) = sqrt(1 + ep2 * sbetm2);
omg12(s) = omg12(s) ./ (f1 * dnm(s));
somg12 = sin(omg12); comg12 = cos(omg12);
salp1 = cbet2 .* somg12;
t = cbet2 .* sbet1 .* somg12.^2;
calp1 = cvmgt(sbet12 + t ./ (1 + comg12), ...
sbet12a - t ./ (1 - comg12), ...
comg12 >= 0);
ssig12 = hypot(salp1, calp1);
csig12 = sbet1 .* sbet2 + cbet1 .* cbet2 .* comg12;
s = s & ssig12 < etol2;
salp2(s) = cbet1(s) .* somg12(s);
calp2(s) = somg12(s).^2 ./ (1 + comg12(s));
calp2(s & comg12 < 0) = 1 - comg12(s & comg12 < 0);
calp2(s) = sbet12(s) - cbet1(s) .* sbet2(s) .* calp2(s);
[salp2, calp2] = SinCosNorm(salp2, calp2);
sig12(s) = atan2(ssig12(s), csig12(s));
s = ~(s | abs(n) > 0.1 | csig12 >= 0 | ssig12 >= 6 * abs(n) * pi * cbet1.^2);
if any(s)
if f >= 0
k2 = sbet1(s).^2 * ep2;
epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
lamscale = f * cbet1(s) .* A3f(epsi, A3x) * pi;
betscale = lamscale .* cbet1(s);
x = (lam12(s) - pi) ./ lamscale;
y = sbet12a(s) ./ betscale;
else
cbet12a = cbet2(s) .* cbet1(s) - sbet2(s) .* sbet1(s);
bet12a = atan2(sbet12a(s), cbet12a);
[~, m12b, m0] = ...
Lengths(n, pi + bet12a, ...
sbet1(s), -cbet1(s), dn1(s), sbet2(s), cbet2(s), dn2(s), ...
cbet1(s), cbet2(s), false);
x = -1 + m12b ./ (cbet1(s) .* cbet2(s) .* m0 * pi);
betscale = cvmgt(sbet12a(s) ./ x, - f * cbet1(s).^2 * pi, x < -0.01);
lamscale = betscale ./ cbet1(s);
y = (lam12(s) - pi) ./ lamscale;
end
k = Astroid(x, y);
if f >= 0
omg12a = -x .* k ./ (1 + k);
else
omg12a = -y .* (1 + k) ./ k;
end
omg12a = lamscale .* omg12a;
somg12 = sin(omg12a); comg12 = -cos(omg12a);
salp1(s) = cbet2(s) .* somg12;
calp1(s) = sbet12a(s) - cbet2(s) .* sbet1(s) .* somg12.^2 ./ (1 - comg12);
str = y > -tol1 & x > -1 - xthresh;
if any(str)
salp1s = salp1(s); calp1s = calp1(s);
if f >= 0
salp1s(str) = min(1, -x(str));
calp1s(str) = -sqrt(1 - salp1s(str).^2);
else
calp1s(str) = max(cvmgt(0, -1, x(str) > -tol1), x(str));
salp1s(str) = sqrt(1 - calp1s(str).^2);
end
salp1(s) = salp1s; calp1(s) = calp1s;
end
end
calp1(salp1 <= 0) = 0; salp1(salp1 <= 0) = 1;
[salp1, calp1] = SinCosNorm(salp1, calp1);
end
function k = Astroid(x, y)
% ASTROID Solve the astroid equation
%
% K = ASTROID(X, Y) solves the quartic polynomial Eq. (55)
%
% K^4 + 2 * K^3 - (X^2 + Y^2 - 1) * K^2 - 2*Y^2 * K - Y^2 = 0
%
% for the positive root K. X and Y are column vectors of the same size
% and the returned value K has the same size.
k = zeros(length(x), 1);
p = x.^2;
q = y.^2;
r = (p + q - 1) / 6;
fl1 = ~(q == 0 & r <= 0);
p = p(fl1);
q = q(fl1);
r = r(fl1);
S = p .* q / 4;
r2 = r.^2;
r3 = r .* r2;
disc = S .* (S + 2 * r3);
u = r;
fl2 = disc >= 0;
T3 = S(fl2) + r3(fl2);
T3 = T3 + (1 - 2 * (T3 < 0)) .* sqrt(disc(fl2));
T = cbrt(T3);
u(fl2) = u(fl2) + T + cvmgt(r2(fl2) ./ T, 0, T ~= 0);
ang = atan2(sqrt(-disc(~fl2)), -(S(~fl2) + r3(~fl2)));
u(~fl2) = u(~fl2) + 2 * r(~fl2) .* cos(ang / 3);
v = sqrt(u.^2 + q);
uv = u + v;
fl2 = u < 0;
uv(fl2) = q(fl2) ./ (v(fl2) - u(fl2));
w = (uv - q) ./ (2 * v);
k(fl1) = uv ./ (sqrt(uv + w.^2) + w);
end
function [lam12, dlam12, ...
salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, epsi, domg12] = ...
Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, f, A3x, C3x)
%LAMBDA12 Solve the hybrid problem
tiny = sqrt(realmin);
f1 = 1 - f;
e2 = f * (2 - f);
ep2 = e2 / (1 - e2);
calp1(sbet1 == 0 & calp1 == 0) = -tiny;
salp0 = salp1 .* cbet1;
calp0 = hypot(calp1, salp1 .* sbet1);
ssig1 = sbet1; somg1 = salp0 .* sbet1;
csig1 = calp1 .* cbet1; comg1 = csig1;
[ssig1, csig1] = SinCosNorm(ssig1, csig1);
salp2 = cvmgt(salp0 ./ cbet2, salp1, cbet2 ~= cbet1);
calp2 = cvmgt(sqrt((calp1 .* cbet1).^2 + ...
cvmgt((cbet2 - cbet1) .* (cbet1 + cbet2), ...
(sbet1 - sbet2) .* (sbet1 + sbet2), ...
cbet1 < -sbet1)) ./ cbet2, ...
abs(calp1), cbet2 ~= cbet1 | abs(sbet2) ~= -sbet1);
ssig2 = sbet2; somg2 = salp0 .* sbet2;
csig2 = calp2 .* cbet2; comg2 = csig2;
[ssig2, csig2] = SinCosNorm(ssig2, csig2);
sig12 = atan2(max(csig1 .* ssig2 - ssig1 .* csig2, 0), ...
csig1 .* csig2 + ssig1 .* ssig2);
omg12 = atan2(max(comg1 .* somg2 - somg1 .* comg2, 0), ...
comg1 .* comg2 + somg1 .* somg2);
k2 = calp0.^2 * ep2;
epsi = k2 ./ (2 * (1 + sqrt(1 + k2)) + k2);
C3a = C3f(epsi, C3x);
B312 = SinCosSeries(true, ssig2, csig2, C3a) - ...
SinCosSeries(true, ssig1, csig1, C3a);
h0 = -f * A3f(epsi, A3x);
domg12 = salp0 .* h0 .* (sig12 + B312);
lam12 = omg12 + domg12;
[~, dlam12] = ...
Lengths(epsi, sig12, ...
ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, false);
dlam12 = dlam12 .* f1 ./ (calp2 .* cbet2);
z = calp2 == 0;
dlam12(z) = - 2 * f1 .* dn1(z) ./ sbet1(z);
end
function [s12b, m12b, m0, M12, M21] = ...
Lengths(epsi, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, ...
cbet1, cbet2, scalp, ep2)
%LENGTHS Compute various lengths associate with a geodesic
if isempty(sig12)
s12b = [];
m12b = [];
m0 = [];
M12 = [];
M21 = [];
return
end
C1a = C1f(epsi);
C2a = C2f(epsi);
A1m1 = A1m1f(epsi);
AB1 = (1 + A1m1) .* (SinCosSeries(true, ssig2, csig2, C1a) - ...
SinCosSeries(true, ssig1, csig1, C1a));
A2m1 = A2m1f(epsi);
AB2 = (1 + A2m1) .* (SinCosSeries(true, ssig2, csig2, C2a) - ...
SinCosSeries(true, ssig1, csig1, C2a));
m0 = A1m1 - A2m1;
J12 = m0 .* sig12 + (AB1 - AB2);
m12b = dn2 .* (csig1 .* ssig2) - dn1 .* (ssig1 .* csig2) - ...
csig1 .* csig2 .* J12;
s12b = (1 + A1m1) .* sig12 + AB1;
if scalp
csig12 = csig1 .* csig2 + ssig1 .* ssig2;
t = ep2 * (cbet1 - cbet2) .* (cbet1 + cbet2) ./ (dn1 + dn2);
M12 = csig12 + (t .* ssig2 - csig2 .* J12) .* ssig1 ./ dn1;
M21 = csig12 - (t .* ssig1 - csig1 .* J12) .* ssig2 ./ dn2;
else
M12 = sig12 + NaN; M21 = M12;
end
end
|
github | wvu-navLab/RobustGNSS-master | tranmerc_fwd.m | .m | RobustGNSS-master/gtsam/gtsam/3rdparty/GeographicLib/matlab/tranmerc_fwd.m | 5,674 | utf_8 | acff0226812f95bc17989337218cdde5 | function [x, y, gam, k] = tranmerc_fwd(lat0, lon0, lat, lon, ellipsoid)
%TRANMERC_FWD Forward transverse Mercator projection
%
% [X, Y] = TRANMERC_FWD(LAT0, LON0, LAT, LON)
% [X, Y, GAM, K] = TRANMERC_FWD(LAT0, LON0, LAT, LON, ELLIPSOID)
%
% performs the forward transverse Mercator projection of points (LAT,LON)
% to (X,Y) using (LAT0,LON0) as the center of projection. These input
% arguments can be scalars or arrays of equal size. The ELLIPSOID vector
% is of the form [a, e], where a is the equatorial radius in meters, e is
% the eccentricity. If ellipsoid is omitted, the WGS84 ellipsoid (more
% precisely, the value returned by DEFAULTELLIPSOID) is used. GEODPROJ
% defines the projection and gives the restrictions on the allowed ranges
% of the arguments. The inverse projection is given by TRANMERC_INV.
%
% GAM and K give metric properties of the projection at (LAT,LON); GAM is
% the meridian convergence at the point and K is the scale.
%
% LAT0, LON0, LAT, LON, GAM are in degrees. The projected coordinates X,
% Y are in meters (more precisely the units used for the equatorial
% radius). K is dimensionless.
%
% This implementation of the projection is based on the series method
% described in
%
% C. F. F. Karney, Transverse Mercator with an accuracy of a few
% nanometers, J. Geodesy 85(8), 475-485 (Aug. 2011);
% Addenda: http://geographiclib.sf.net/tm-addenda.html
%
% This extends the series given by Krueger (1912) to sixth order in the
% flattening. This is a substantially better series than that used by
% the MATLAB mapping toolbox. In particular the errors in the projection
% are less than 5 nanometers withing 3900 km of the central meridian (and
% less than 1 mm within 7600 km of the central meridian). The mapping
% can be continued accurately over the poles to the opposite meridian.
%
% This routine depends on the MATLAB File Exchange package "Geodesics on
% an ellipsoid of revolution":
%
% http://www.mathworks.com/matlabcentral/fileexchange/39108
%
% See also GEODPROJ, TRANMERC_INV, GEODDISTANCE, DEFAULTELLIPSOID.
% Copyright (c) Charles Karney (2012) <[email protected]>.
%
% This file was distributed with GeographicLib 1.29.
if nargin < 4, error('Too few input arguments'), end
if nargin < 5, ellipsoid = defaultellipsoid; end
try
Z = lat0 + lon0 + lat + lon;
Z = zeros(size(Z));
catch err
error('lat0, lon0, lat, lon have incompatible sizes')
end
if length(ellipsoid(:)) ~= 2
error('ellipsoid must be a vector of size 2')
end
degree = pi/180;
maxpow = 6;
a = ellipsoid(1);
f = ecc2flat(ellipsoid(2));
e2 = f * (2 - f);
e2m = 1 - e2;
cc = sqrt(e2m) * exp(e2 * atanhee(1, e2));
n = f / (2 -f);
alp = alpf(n);
b1 = (1 - f) * (A1m1f(n) + 1);
a1 = b1 * a;
lon = AngDiff(AngNormalize(lon0), AngNormalize(lon));
latsign = 1 - 2 * (lat < 0);
lonsign = 1 - 2 * (lon < 0);
lon = lon .* lonsign;
lat = lat .* latsign;
backside = lon > 90;
latsign(backside & lat == 0) = -1;
lon(backside) = 180 - lon(backside);
phi = lat * degree;
lam = lon * degree;
c = max(0, cos(lam));
tau = tan(phi);
taup = taupf(tau, e2);
xip = atan2(taup, c);
etap = asinh(sin(lam) ./ hypot(taup, c));
gam = atan(tan(lam) .* taup ./ hypot(1, taup));
k = sqrt(e2m + e2 * cos(phi).^2) .* hypot(1, tau) ./ hypot(taup, c);
c = ~(lat ~= 90);
if any(c)
xip(c) = pi/2;
etap(c) = 0;
gam(c) = lam;
k = cc;
end
c0 = cos(2 * xip); ch0 = cosh(2 * etap);
s0 = sin(2 * xip); sh0 = sinh(2 * etap);
ar = 2 * c0 .* ch0; ai = -2 * s0 .* sh0;
j = maxpow;
xi0 = Z; yr0 = Z;
if mod(j, 2)
xi0 = xi0 + alp(j);
yr0 = yr0 + 2 * maxpow * alp(j);
j = j - 1;
end
xi1 = Z; eta0 = Z; eta1 = Z;
yi0 = Z; yr1 = Z; yi1 = Z;
for j = j : -2 : 1
xi1 = ar .* xi0 - ai .* eta0 - xi1 + alp(j);
eta1 = ai .* xi0 + ar .* eta0 - eta1;
yr1 = ar .* yr0 - ai .* yi0 - yr1 + 2 * j * alp(j);
yi1 = ai .* yr0 + ar .* yi0 - yi1;
xi0 = ar .* xi1 - ai .* eta1 - xi0 + alp(j-1);
eta0 = ai .* xi1 + ar .* eta1 - eta0;
yr0 = ar .* yr1 - ai .* yi1 - yr0 + 2 * (j-1) * alp(j-1);
yi0 = ai .* yr1 + ar .* yi1 - yi0;
end
ar = ar/2; ai = ai/2;
yr1 = 1 - yr1 + ar .* yr0 - ai .* yi0;
yi1 = - yi1 + ai .* yr0 + ar .* yi0;
ar = s0 .* ch0; ai = c0 .* sh0;
xi = xip + ar .* xi0 - ai .* eta0;
eta = etap + ai .* xi0 + ar .* eta0;
gam = gam - atan2(yi1, yr1);
k = k .* (b1 * hypot(yr1, yi1));
gam = gam / degree;
xi(backside) = pi - xi(backside);
y = a1 * xi .* latsign;
x = a1 * eta .* lonsign;
gam(backside) = 180 - gam(backside);
gam = gam .* latsign .* lonsign;
if isscalar(lat0) && lat0 == 0
y0 = 0;
else
[sbet0, cbet0] = SinCosNorm((1-f) * sind(lat0), cosd(lat0));
y0 = a1 * (atan2(sbet0, cbet0) + ...
SinCosSeries(true, sbet0, cbet0, C1f(n)));
end
y = y - y0;
end
function alp = alpf(n)
alp = zeros(1,6);
nx = n^2;
alp(1) = n*(n*(n*(n*(n*(31564*n-66675)+34440)+47250)-100800)+ ...
75600)/151200;
alp(2) = nx*(n*(n*((863232-1983433*n)*n+748608)-1161216)+524160)/ ...
1935360;
nx = nx * n;
alp(3) = nx*(n*(n*(670412*n+406647)-533952)+184464)/725760;
nx = nx * n;
alp(4) = nx*(n*(6601661*n-7732800)+2230245)/7257600;
nx = nx * n;
alp(5) = (3438171-13675556*n)*nx/7983360;
nx = nx * n;
alp(6) = 212378941*nx/319334400;
end
function taup = taupf(tau, e2)
tau1 = hypot(1, tau);
sig = sinh( e2 * atanhee(tau ./ tau1, e2) );
taup = hypot(1, sig) .* tau - sig .* tau1;
overflow = 1/eps^2;
c = ~(abs(tau) < overflow);
taup(c) = tau(c);
end
|
github | wvu-navLab/RobustGNSS-master | tranmerc_inv.m | .m | RobustGNSS-master/gtsam/gtsam/3rdparty/GeographicLib/matlab/tranmerc_inv.m | 5,994 | utf_8 | 3ccf6b37ca13daed68a0ae8f166151ce | function [lat, lon, gam, k] = tranmerc_inv(lat0, lon0, x, y, ellipsoid)
%TRANMERC_INV Inverse transverse Mercator projection
%
% [LAT, LON] = TRANMERC_INV(LAT0, LON0, X, Y)
% [LAT, LON, GAM, K] = TRANMERC_INV(LAT0, LON0, X, Y, ELLIPSOID)
%
% performs the inverse transverse Mercator projection of points (X,Y) to
% (LAT,LON) using (LAT0,LON0) as the center of projection. These input
% arguments can be scalars or arrays of equal size. The ELLIPSOID vector
% is of the form [a, e], where a is the equatorial radius in meters, e is
% the eccentricity. If ellipsoid is omitted, the WGS84 ellipsoid (more
% precisely, the value returned by DEFAULTELLIPSOID) is used. GEODPROJ
% defines the projection and gives the restrictions on the allowed ranges
% of the arguments. The forward projection is given by TRANMERC_FWD.
%
% GAM and K give metric properties of the projection at (LAT,LON); GAM is
% the meridian convergence at the point and K is the scale.
%
% LAT0, LON0, LAT, LON, GAM are in degrees. The projected coordinates X,
% Y are in meters (more precisely the units used for the equatorial
% radius). K is dimensionless.
%
% This implementation of the projection is based on the series method
% described in
%
% C. F. F. Karney, Transverse Mercator with an accuracy of a few
% nanometers, J. Geodesy 85(8), 475-485 (Aug. 2011);
% Addenda: http://geographiclib.sf.net/tm-addenda.html
%
% This extends the series given by Krueger (1912) to sixth order in the
% flattening. This is a substantially better series than that used by
% the MATLAB mapping toolbox. In particular the errors in the projection
% are less than 5 nanometers withing 3900 km of the central meridian (and
% less than 1 mm within 7600 km of the central meridian). The mapping
% can be continued accurately over the poles to the opposite meridian.
%
% This routine depends on the MATLAB File Exchange package "Geodesics on
% an ellipsoid of revolution":
%
% http://www.mathworks.com/matlabcentral/fileexchange/39108
%
% See also GEODPROJ, TRANMERC_FWD, GEODRECKON, DEFAULTELLIPSOID.
% Copyright (c) Charles Karney (2012) <[email protected]>.
%
% This file was distributed with GeographicLib 1.29.
if nargin < 4, error('Too few input arguments'), end
if nargin < 5, ellipsoid = defaultellipsoid; end
try
Z = lat0 + lon0 + x + y;
Z = zeros(size(Z));
catch err
error('lat0, lon0, x, y have incompatible sizes')
end
if length(ellipsoid(:)) ~= 2
error('ellipsoid must be a vector of size 2')
end
degree = pi/180;
maxpow = 6;
a = ellipsoid(1);
f = ecc2flat(ellipsoid(2));
e2 = f * (2 - f);
e2m = 1 - e2;
cc = sqrt(e2m) * exp(e2 * atanhee(1, e2));
n = f / (2 -f);
bet = betf(n);
b1 = (1 - f) * (A1m1f(n) + 1);
a1 = b1 * a;
if isscalar(lat0) && lat0 == 0
y0 = 0;
else
[sbet0, cbet0] = SinCosNorm((1-f) * sind(lat0), cosd(lat0));
y0 = a1 * (atan2(sbet0, cbet0) + ...
SinCosSeries(true, sbet0, cbet0, C1f(n)));
end
y = y + y0;
xi = y / a1;
eta = x / a1;
xisign = 1 - 2 * (xi < 0 );
etasign = 1 - 2 * (eta < 0 );
xi = xi .* xisign;
eta = eta .* etasign;
backside = xi > pi/2;
xi(backside) = pi - xi(backside);
c0 = cos(2 * xi); ch0 = cosh(2 * eta);
s0 = sin(2 * xi); sh0 = sinh(2 * eta);
ar = 2 * c0 .* ch0; ai = -2 * s0 .* sh0;
j = maxpow;
xip0 = Z; yr0 = Z;
if mod(j, 2)
xip0 = xip0 + bet(j);
yr0 = yr0 - 2 * maxpow * bet(j);
j = j - 1;
end
xip1 = Z; etap0 = Z; etap1 = Z;
yi0 = Z; yr1 = Z; yi1 = Z;
for j = j : -2 : 1
xip1 = ar .* xip0 - ai .* etap0 - xip1 - bet(j);
etap1 = ai .* xip0 + ar .* etap0 - etap1;
yr1 = ar .* yr0 - ai .* yi0 - yr1 - 2 * j * bet(j);
yi1 = ai .* yr0 + ar .* yi0 - yi1;
xip0 = ar .* xip1 - ai .* etap1 - xip0 - bet(j-1);
etap0 = ai .* xip1 + ar .* etap1 - etap0;
yr0 = ar .* yr1 - ai .* yi1 - yr0 - 2 * (j-1) * bet(j-1);
yi0 = ai .* yr1 + ar .* yi1 - yi0;
end
ar = ar/2; ai = ai/2;
yr1 = 1 - yr1 + ar .* yr0 - ai .* yi0;
yi1 = - yi1 + ai .* yr0 + ar .* yi0;
ar = s0 .* ch0; ai = c0 .* sh0;
xip = xi + ar .* xip0 - ai .* etap0;
etap = eta + ai .* xip0 + ar .* etap0;
gam = atan2(yi1, yr1);
k = b1 ./ hypot(yr1, yi1);
s = sinh(etap);
c = max(0, cos(xip));
r = hypot(s, c);
lam = atan2(s, c);
taup = sin(xip)./r;
tau = tauf(taup, e2);
phi = atan(tau);
gam = gam + atan(tan(xip) .* tanh(etap));
c = r ~= 0;
k(c) = k(c) .* sqrt(e2m + e2 * cos(phi(c)).^2) .* ...
hypot(1, tau(c)) .* r(c);
c = ~c;
if any(c)
phi(c) = pi/2;
lam(c) = 0;
k(c) = k(c) * cc;
end
lat = phi / degree .* xisign;
lon = lam / degree;
lon(backside) = 180 - lon(backside);
lon = lon .* etasign;
lon = AngNormalize(lon + AngNormalize(lon0));
gam = gam/degree;
gam(backside) = 180 - gam(backside);
gam = gam .* xisign .* etasign;
end
function bet = betf(n)
bet = zeros(1,6);
nx = n^2;
bet(1) = n*(n*(n*(n*(n*(384796*n-382725)-6720)+932400)-1612800)+ ...
1209600)/2419200;
bet(2) = nx*(n*(n*((1695744-1118711*n)*n-1174656)+258048)+80640)/ ...
3870720;
nx = nx * n;
bet(3) = nx*(n*(n*(22276*n-16929)-15984)+12852)/362880;
nx = nx * n;
bet(4) = nx*((-830251*n-158400)*n+197865)/7257600;
nx = nx * n;
bet(5) = (453717-435388*n)*nx/15966720;
nx = nx * n;
bet(6) = 20648693*nx/638668800;
end
function tau = tauf(taup, e2)
overflow = 1/eps^2;
tol = 0.1 * sqrt(eps);
numit = 5;
e2m = 1 - e2;
tau = taup / e2m;
stol = tol * max(1, abs(taup));
g = ~(abs(taup) < overflow);
tau(g) = taup(g);
g = ~g;
for i = 1 : numit
if ~any(g), break, end
tau1 = hypot(1, tau);
sig = sinh(e2 * atanhee( tau ./ tau1, e2 ) );
taupa = hypot(1, sig) .* tau - sig .* tau1;
dtau = (taup - taupa) .* (1 + e2m .* tau.^2) ./ ...
(e2m * tau1 .* hypot(1, taupa));
tau(g) = tau(g) + dtau(g);
g = g & abs(dtau) >= stol;
end
end
|
github | jhalakpatel/AI-ML-DL-master | submit.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/submit.m | 1,605 | utf_8 | 9b63d386e9bd7bcca66b1a3d2fa37579 | function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github | jhalakpatel/AI-ML-DL-master | submitWithConfiguration.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/lib/submitWithConfiguration.m | 3,734 | utf_8 | 84d9a81848f6d00a7aff4f79bdbb6049 | function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github | jhalakpatel/AI-ML-DL-master | savejson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/lib/jsonlab/savejson.m | 17,462 | utf_8 | 861b534fc35ffe982b53ca3ca83143bf | function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github | jhalakpatel/AI-ML-DL-master | loadjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m | 18,732 | ibm852 | ab98cf173af2d50bbe8da4d6db252a20 | function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | loadubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m | 15,574 | utf_8 | 5974e78e71b81b1e0f76123784b951a4 | function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | saveubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m | 16,123 | utf_8 | 61d4f51010aedbf97753396f5d2d9ec0 | function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github | jhalakpatel/AI-ML-DL-master | submit.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/submit.m | 1,635 | utf_8 | ae9c236c78f9b5b09db8fbc2052990fc | function submit()
addpath('./lib');
conf.assignmentSlug = 'neural-network-learning';
conf.itemName = 'Neural Networks Learning';
conf.partArrays = { ...
{ ...
'1', ...
{ 'nnCostFunction.m' }, ...
'Feedforward and Cost Function', ...
}, ...
{ ...
'2', ...
{ 'nnCostFunction.m' }, ...
'Regularized Cost Function', ...
}, ...
{ ...
'3', ...
{ 'sigmoidGradient.m' }, ...
'Sigmoid Gradient', ...
}, ...
{ ...
'4', ...
{ 'nnCostFunction.m' }, ...
'Neural Network Gradient (Backpropagation)', ...
}, ...
{ ...
'5', ...
{ 'nnCostFunction.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == '1'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == '3'
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == '4'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '5'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
|
github | jhalakpatel/AI-ML-DL-master | submitWithConfiguration.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/lib/submitWithConfiguration.m | 3,734 | utf_8 | 84d9a81848f6d00a7aff4f79bdbb6049 | function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github | jhalakpatel/AI-ML-DL-master | savejson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/lib/jsonlab/savejson.m | 17,462 | utf_8 | 861b534fc35ffe982b53ca3ca83143bf | function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github | jhalakpatel/AI-ML-DL-master | loadjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m | 18,732 | ibm852 | ab98cf173af2d50bbe8da4d6db252a20 | function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | loadubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m | 15,574 | utf_8 | 5974e78e71b81b1e0f76123784b951a4 | function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | saveubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m | 16,123 | utf_8 | 61d4f51010aedbf97753396f5d2d9ec0 | function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github | jhalakpatel/AI-ML-DL-master | submit.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/submit.m | 1,318 | utf_8 | bfa0b4ffb8a7854d8e84276e91818107 | function submit()
addpath('./lib');
conf.assignmentSlug = 'support-vector-machines';
conf.itemName = 'Support Vector Machines';
conf.partArrays = { ...
{ ...
'1', ...
{ 'gaussianKernel.m' }, ...
'Gaussian Kernel', ...
}, ...
{ ...
'2', ...
{ 'dataset3Params.m' }, ...
'Parameters (C, sigma) for Dataset 3', ...
}, ...
{ ...
'3', ...
{ 'processEmail.m' }, ...
'Email Preprocessing', ...
}, ...
{ ...
'4', ...
{ 'emailFeatures.m' }, ...
'Email Feature Extraction', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == '1'
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == '2'
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == '3'
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == '4'
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
|
github | jhalakpatel/AI-ML-DL-master | porterStemmer.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/porterStemmer.m | 9,902 | utf_8 | 7ed5acd925808fde342fc72bd62ebc4d | function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};
|
github | jhalakpatel/AI-ML-DL-master | submitWithConfiguration.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/lib/submitWithConfiguration.m | 5,562 | utf_8 | 4ac719ea6570ac228ea6c7a9c919e3f5 | function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github | jhalakpatel/AI-ML-DL-master | savejson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/lib/jsonlab/savejson.m | 17,462 | utf_8 | 861b534fc35ffe982b53ca3ca83143bf | function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github | jhalakpatel/AI-ML-DL-master | loadjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m | 18,732 | ibm852 | ab98cf173af2d50bbe8da4d6db252a20 | function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | loadubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m | 15,574 | utf_8 | 5974e78e71b81b1e0f76123784b951a4 | function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github | jhalakpatel/AI-ML-DL-master | saveubjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m | 16,123 | utf_8 | 61d4f51010aedbf97753396f5d2d9ec0 | function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github | jhalakpatel/AI-ML-DL-master | submit.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/submit.m | 1,765 | utf_8 | b1804fe5854d9744dca981d250eda251 | function submit()
addpath('./lib');
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
conf.partArrays = { ...
{ ...
'1', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Cost Function', ...
}, ...
{ ...
'2', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Gradient', ...
}, ...
{ ...
'3', ...
{ 'learningCurve.m' }, ...
'Learning Curve', ...
}, ...
{ ...
'4', ...
{ 'polyFeatures.m' }, ...
'Polynomial Feature Mapping', ...
}, ...
{ ...
'5', ...
{ 'validationCurve.m' }, ...
'Validation Curve', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == '1'
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == '3'
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == '4'
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == '5'
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end
|
github | jhalakpatel/AI-ML-DL-master | submitWithConfiguration.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/lib/submitWithConfiguration.m | 5,562 | utf_8 | 4ac719ea6570ac228ea6c7a9c919e3f5 | function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github | jhalakpatel/AI-ML-DL-master | savejson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/lib/jsonlab/savejson.m | 17,462 | utf_8 | 861b534fc35ffe982b53ca3ca83143bf | function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github | jhalakpatel/AI-ML-DL-master | loadjson.m | .m | AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m | 18,732 | ibm852 | ab98cf173af2d50bbe8da4d6db252a20 | function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.