plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jhalakpatel/AI-ML-DL-master
loadubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jhalakpatel/AI-ML-DL-master
saveubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jhalakpatel/AI-ML-DL-master
submit.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
jhalakpatel/AI-ML-DL-master
submitWithConfiguration.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jhalakpatel/AI-ML-DL-master
savejson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jhalakpatel/AI-ML-DL-master
loadjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jhalakpatel/AI-ML-DL-master
loadubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jhalakpatel/AI-ML-DL-master
saveubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jhalakpatel/AI-ML-DL-master
submit.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
jhalakpatel/AI-ML-DL-master
submitWithConfiguration.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jhalakpatel/AI-ML-DL-master
savejson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jhalakpatel/AI-ML-DL-master
loadjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jhalakpatel/AI-ML-DL-master
loadubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jhalakpatel/AI-ML-DL-master
saveubjson.m
.m
AI-ML-DL-master/AndrewNg_MachineLearning/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
SeRViCE-Lab/FormationControl-master
detector.m
.m
FormationControl-master/sphero_ros/detector.m
6,914
utf_8
d28e558faed25d1343ebb11ae9439023
% Version 1.4: % - Replaces centroids by median of upper edge of the bbox. % this provides a more stable representation for the % location of the spheros % % Version 1.3: % - Sends back the run time as a parameter % % Version 1.2: % - Refined search method: % blob detection, then circle detection around the % blobs, but only when the correct number of robots % is not detected % % Version 1.1: % - It doesn't work, its just for trial purposes % % Version 1.0: % - Initial version % - Detects blobs of resonable size using binarization % according to a threshold % - Can distinguish between robots that have collided (using erosion) % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [locs, bboxes,t] = detect_SpheroV1_4 (frame, numRob) tic % initialize variables locs = zeros(2, numRob); centersTemp(:,1) = [0;0]; bboxes = zeros(4, numRob); bboxesTemp(:,1) = [0;0;0;0]; thresh = 0.9; newDetectedTotal = 0; numBlobsChecked = 0; % resizing the image frame = imresize(frame, [480,640]); % changing frame to grayscale frameGray = rgb2gray(frame); % figure; % imshow(frameGray); % binarize blurred image usign a threshold frameBin = imbinarize (frameGray,thresh); % generate binary image using thresh % figure; % imshow(frameBin); % erode the image to remove noise erodeElt = strel('disk',5); frameEr = imerode(frameBin,erodeElt); % figure; % imshow(frameEr); % dilate eroded image dilateElt = strel('disk',5); frameDil = imdilate(frameEr, dilateElt); % figure; % imshow(frameDil); % detect large enough blobs whiteBlobs = bwpropfilt(frameDil, 'Area', [20, 100000]); % find white blobs % figure; % imshow(whiteBlobs); % get statistics from whiteBolobs image stats1 = regionprops ( logical(whiteBlobs), ... 'BoundingBox', 'Centroid', 'Area',... 'MajorAxisLength', 'MinorAxisLength'); % organize data center1 = reshape([stats1.Centroid]', 2, numel(stats1)); bboxes1 = reshape([stats1.BoundingBox]', 4, numel(stats1)); % format: ULcorner(x,y), x-width, y-width area1 = reshape([stats1.Area]', 1, numel(stats1)); majAxLeng1 = reshape([stats1.MajorAxisLength]', 1, numel(stats1)); minAxLeng1 = reshape([stats1.MinorAxisLength]', 1, numel(stats1)); numRobDetect = numel(stats1); % number of robots detected % check to see if all robots were detected if (numRobDetect == numRob) % if robots detected bboxes = bboxes1; locs(:,:) = bboxes(1:2, :) + [bboxes(3,:)/2;zeros(1,numel(bboxes)/4)]; elseif (numRobDetect > numRob) disp('Error: More objects detected than spheros'); disp('Centers will be set to zero'); else % objects detected < num Spheros % calculate ratios of maj/min axis length for i = 1 : numel(stats1) maj_minAxRatio(i) = majAxLeng1(i)/ minAxLeng1(i); end % sort the detected blobs based on maj/min axis ratio [sortedAxRatio,sortAxRatioIndex] = sort(maj_minAxRatio); %finding sorting index using ratio stats2 = stats1(sortAxRatioIndex); % sort stats based on index obtained % organize data centers2 = reshape([stats2.Centroid]', 2, numel(stats2)); bboxes2 = reshape([stats2.BoundingBox]', 4, numel(stats2)); % format: ULcorner(x,y), x-width, y-width area2 = reshape([stats2.Area]', 1, numel(stats2)); majAxLeng2 = reshape([stats2.MajorAxisLength]', 1, numel(stats2)); minAxLeng2 = reshape([stats2.MinorAxisLength]', 1, numel(stats2)); % go through list to detect circles in blobs for i = numel(stats2) : -1 : 1 if (numRobDetect ~= numRob) box = bboxes2(:,i); % get bbox center = centers2(:,i); % store center cornerUL = [box(1); box(2)];% store UL corner xCorner = box(1); yCorner = box(2); xWidth = box(3); yWidth = box(4); % zoom in on object xWidthN = xWidth * 1.5; % new x-width yWidthN = yWidth * 1.5; % new y-width dxWidth = xWidthN -xWidth; % variation in xWidth dyWidth = yWidthN -yWidth; % variation in yWidth xCornerN = xCorner - dxWidth/2; % new x for UL corner yCornerN = yCorner - dyWidth/2; % new y for UL corner boxN = [xCornerN, yCornerN, xWidthN, yWidthN]; % new bbox % take only image in new bbox frameCrop = frameGray( ... max(0,round(yCornerN)) : min(round(yCornerN + yWidthN), 480) ,... max(0,round(xCornerN)) : min(round(xCornerN + xWidthN), 680)); % frame; % imshow(frameCrop); % hold on; % scatter(xWidthN/2 ,yWidthN/2, 'filled', 'LineWidth', 2); % display center on image % hold off; % use circle detection on zoomed image d = min(xWidthN, yWidthN); % minimum of new bbox sides tic [c, r] = imfindcircles(frameCrop,[round(d*0.1667), 3*round(0.1667*d)-1],'Sensitivity',0.9); % find circles toc % frame; % imshow(frameCrop); % hold on; % viscircles(c, r,'Color','b'); % hold off % % moving back centers to the initial frame cFrame = c + [xCornerN, yCornerN]; % cFrame = [x1, y1 ; x2, y2; x3,y3 ; ...] % frame; % imshow(frameGray); % hold on; % viscircles(cFrame, r,'Color','b'); % hold off; % saving the new centers and bboxes newDetected = numel(cFrame)/2; for j = 1 : newDetected centersTemp(:,numel(centersTemp)/2+1) = cFrame(j,:); % sotre new center cornerUL = cFrame(j,:) - r(j); % calculate new corener for bbox bboxesTemp(:,numel(bboxesTemp)/4+1) = [cornerUL' ; 2*r(j); 2*r(j)]; % store new bboc end % deleting old centers2 and bboxes2 centers2(:,i) = []; bboxes2(:,i) = []; % update numBlobsChecked, newDetectedTotal, and numRobDetect numBlobsChecked = numBlobsChecked + 1; % keep track of number of blobs checked for robots newDetectedTotal = newDetectedTotal + newDetected; % keep track of number of newly discovered robots numRobDetect = numRobDetect + newDetected - 1; % update number of robots detected end end bboxes(:, 1 : (numel(bboxesTemp)/4-1)) = bboxesTemp(:, 2 : end); bboxes(:, (numel(bboxesTemp)/4) : numRob) = bboxes2(:,:); locs(:,:) = bboxes(1:2, :) + [bboxes(3,:)/2;zeros(1,numel(bboxes)/4)]; end t = toc;
github
panji530/EDSC-master
hungarian.m
.m
EDSC-master/hungarian.m
11,781
utf_8
294996aeeca4dadfc427da4f81f8b99d
function [C,T]=hungarian(A) %HUNGARIAN Solve the Assignment problem using the Hungarian method. % %[C,T]=hungarian(A) %A - a square cost matrix. %C - the optimal assignment. %T - the cost of the optimal assignment. %s.t. T = trace(A(C,:)) is minimized over all possible assignments. % Adapted from the FORTRAN IV code in Carpaneto and Toth, "Algorithm 548: % Solution of the assignment problem [H]", ACM Transactions on % Mathematical Software, 6(1):104-111, 1980. % v1.0 96-06-14. Niclas Borlin, [email protected]. % Department of Computing Science, Ume? University, % Sweden. % All standard disclaimers apply. % A substantial effort was put into this code. If you use it for a % publication or otherwise, please include an acknowledgement or at least % notify me by email. /Niclas [m,n]=size(A); if (m~=n) error('HUNGARIAN: Cost matrix must be square!'); end % Save original cost matrix. orig=A; % Reduce matrix. A=hminired(A); % Do an initial assignment. [A,C,U]=hminiass(A); % Repeat while we have unassigned rows. while (U(n+1)) % Start with no path, no unchecked zeros, and no unexplored rows. LR=zeros(1,n); LC=zeros(1,n); CH=zeros(1,n); RH=[zeros(1,n) -1]; % No labelled columns. SLC=[]; % Start path in first unassigned row. r=U(n+1); % Mark row with end-of-path label. LR(r)=-1; % Insert row first in labelled row set. SLR=r; % Repeat until we manage to find an assignable zero. while (1) % If there are free zeros in row r if (A(r,n+1)~=0) % ...get column of first free zero. l=-A(r,n+1); % If there are more free zeros in row r and row r in not % yet marked as unexplored.. if (A(r,l)~=0 & RH(r)==0) % Insert row r first in unexplored list. RH(r)=RH(n+1); RH(n+1)=r; % Mark in which column the next unexplored zero in this row % is. CH(r)=-A(r,l); end else % If all rows are explored.. if (RH(n+1)<=0) % Reduce matrix. [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR); end % Re-start with first unexplored row. r=RH(n+1); % Get column of next free zero in row r. l=CH(r); % Advance "column of next free zero". CH(r)=-A(r,l); % If this zero is last in the list.. if (A(r,l)==0) % ...remove row r from unexplored list. RH(n+1)=RH(r); RH(r)=0; end end % While the column l is labelled, i.e. in path. while (LC(l)~=0) % If row r is explored.. if (RH(r)==0) % If all rows are explored.. if (RH(n+1)<=0) % Reduce cost matrix. [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR); end % Re-start with first unexplored row. r=RH(n+1); end % Get column of next free zero in row r. l=CH(r); % Advance "column of next free zero". CH(r)=-A(r,l); % If this zero is last in list.. if(A(r,l)==0) % ...remove row r from unexplored list. RH(n+1)=RH(r); RH(r)=0; end end % If the column found is unassigned.. if (C(l)==0) % Flip all zeros along the path in LR,LC. [A,C,U]=hmflip(A,C,LC,LR,U,l,r); % ...and exit to continue with next unassigned row. break; else % ...else add zero to path. % Label column l with row r. LC(l)=r; % Add l to the set of labelled columns. SLC=[SLC l]; % Continue with the row assigned to column l. r=C(l); % Label row r with column l. LR(r)=l; % Add r to the set of labelled rows. SLR=[SLR r]; end end end % Calculate the total cost. T=sum(orig(logical(sparse(C,1:size(orig,2),1)))); function A=hminired(A) %HMINIRED Initial reduction of cost matrix for the Hungarian method. % %B=assredin(A) %A - the unreduced cost matris. %B - the reduced cost matrix with linked zeros in each row. % v1.0 96-06-13. Niclas Borlin, [email protected]. [m,n]=size(A); % Subtract column-minimum values from each column. colMin=min(A); A=A-colMin(ones(n,1),:); % Subtract row-minimum values from each row. rowMin=min(A')'; A=A-rowMin(:,ones(1,n)); % Get positions of all zeros. [i,j]=find(A==0); % Extend A to give room for row zero list header column. A(1,n+1)=0; for k=1:n % Get all column in this row. cols=j(k==i)'; % Insert pointers in matrix. A(k,[n+1 cols])=[-cols 0]; end function [A,C,U]=hminiass(A) %HMINIASS Initial assignment of the Hungarian method. % %[B,C,U]=hminiass(A) %A - the reduced cost matrix. %B - the reduced cost matrix, with assigned zeros removed from lists. %C - a vector. C(J)=I means row I is assigned to column J, % i.e. there is an assigned zero in position I,J. %U - a vector with a linked list of unassigned rows. % v1.0 96-06-14. Niclas Borlin, [email protected]. [n,np1]=size(A); % Initalize return vectors. C=zeros(1,n); U=zeros(1,n+1); % Initialize last/next zero "pointers". LZ=zeros(1,n); NZ=zeros(1,n); for i=1:n % Set j to first unassigned zero in row i. lj=n+1; j=-A(i,lj); % Repeat until we have no more zeros (j==0) or we find a zero % in an unassigned column (c(j)==0). while (C(j)~=0) % Advance lj and j in zero list. lj=j; j=-A(i,lj); % Stop if we hit end of list. if (j==0) break; end end if (j~=0) % We found a zero in an unassigned column. % Assign row i to column j. C(j)=i; % Remove A(i,j) from unassigned zero list. A(i,lj)=A(i,j); % Update next/last unassigned zero pointers. NZ(i)=-A(i,j); LZ(i)=lj; % Indicate A(i,j) is an assigned zero. A(i,j)=0; else % We found no zero in an unassigned column. % Check all zeros in this row. lj=n+1; j=-A(i,lj); % Check all zeros in this row for a suitable zero in another row. while (j~=0) % Check the in the row assigned to this column. r=C(j); % Pick up last/next pointers. lm=LZ(r); m=NZ(r); % Check all unchecked zeros in free list of this row. while (m~=0) % Stop if we find an unassigned column. if (C(m)==0) break; end % Advance one step in list. lm=m; m=-A(r,lm); end if (m==0) % We failed on row r. Continue with next zero on row i. lj=j; j=-A(i,lj); else % We found a zero in an unassigned column. % Replace zero at (r,m) in unassigned list with zero at (r,j) A(r,lm)=-j; A(r,j)=A(r,m); % Update last/next pointers in row r. NZ(r)=-A(r,m); LZ(r)=j; % Mark A(r,m) as an assigned zero in the matrix . . . A(r,m)=0; % ...and in the assignment vector. C(m)=r; % Remove A(i,j) from unassigned list. A(i,lj)=A(i,j); % Update last/next pointers in row r. NZ(i)=-A(i,j); LZ(i)=lj; % Mark A(r,m) as an assigned zero in the matrix . . . A(i,j)=0; % ...and in the assignment vector. C(j)=i; % Stop search. break; end end end end % Create vector with list of unassigned rows. % Mark all rows have assignment. r=zeros(1,n); rows=C(C~=0); r(rows)=rows; empty=find(r==0); % Create vector with linked list of unassigned rows. U=zeros(1,n+1); U([n+1 empty])=[empty 0]; function [A,C,U]=hmflip(A,C,LC,LR,U,l,r) %HMFLIP Flip assignment state of all zeros along a path. % %[A,C,U]=hmflip(A,C,LC,LR,U,l,r) %Input: %A - the cost matrix. %C - the assignment vector. %LC - the column label vector. %LR - the row label vector. %U - the %r,l - position of last zero in path. %Output: %A - updated cost matrix. %C - updated assignment vector. %U - updated unassigned row list vector. % v1.0 96-06-14. Niclas Borlin, [email protected]. n=size(A,1); while (1) % Move assignment in column l to row r. C(l)=r; % Find zero to be removed from zero list.. % Find zero before this. m=find(A(r,:)==-l); % Link past this zero. A(r,m)=A(r,l); A(r,l)=0; % If this was the first zero of the path.. if (LR(r)<0) ...remove row from unassigned row list and return. U(n+1)=U(r); U(r)=0; return; else % Move back in this row along the path and get column of next zero. l=LR(r); % Insert zero at (r,l) first in zero list. A(r,l)=A(r,n+1); A(r,n+1)=-l; % Continue back along the column to get row of next zero in path. r=LC(l); end end function [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR) %HMREDUCE Reduce parts of cost matrix in the Hungerian method. % %[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR) %Input: %A - Cost matrix. %CH - vector of column of 'next zeros' in each row. %RH - vector with list of unexplored rows. %LC - column labels. %RC - row labels. %SLC - set of column labels. %SLR - set of row labels. % %Output: %A - Reduced cost matrix. %CH - Updated vector of 'next zeros' in each row. %RH - Updated vector of unexplored rows. % v1.0 96-06-14. Niclas Borlin, [email protected]. n=size(A,1); % Find which rows are covered, i.e. unlabelled. coveredRows=LR==0; % Find which columns are covered, i.e. labelled. coveredCols=LC~=0; r=find(~coveredRows); c=find(~coveredCols); % Get minimum of uncovered elements. m=min(min(A(r,c))); % Subtract minimum from all uncovered elements. A(r,c)=A(r,c)-m; % Check all uncovered columns.. for j=c % ...and uncovered rows in path order.. for i=SLR % If this is a (new) zero.. if (A(i,j)==0) % If the row is not in unexplored list.. if (RH(i)==0) % ...insert it first in unexplored list. RH(i)=RH(n+1); RH(n+1)=i; % Mark this zero as "next free" in this row. CH(i)=j; end % Find last unassigned zero on row I. row=A(i,:); colsInList=-row(row<0); if (length(colsInList)==0) % No zeros in the list. l=n+1; else l=colsInList(row(colsInList)==0); end % Append this zero to end of list. A(i,l)=-j; end end end % Add minimum to all doubly covered elements. r=find(coveredRows); c=find(coveredCols); % Take care of the zeros we will remove. [i,j]=find(A(r,c)<=0); i=r(i); j=c(j); for k=1:length(i) % Find zero before this in this row. lj=find(A(i(k),:)==-j(k)); % Link past it. A(i(k),lj)=A(i(k),j(k)); % Mark it as assigned. A(i(k),j(k))=0; end A(r,c)=A(r,c)+m;
github
panji530/EDSC-master
dataProjection.m
.m
EDSC-master/dataProjection.m
733
utf_8
608c1dd2735280c008ffa8c973aff3d2
%-------------------------------------------------------------------------- % This function takes the D x N data matrix with columns indicating % different data points and project the D dimensional data into a r % dimensional subspace using PCA. % X: D x N matrix of N data points % r: dimension of the PCA projection, if r = 0, then no projection % Xp: r x N matrix of N projectred data points %-------------------------------------------------------------------------- % Copyright @ Ehsan Elhamifar, 2012 %-------------------------------------------------------------------------- function Xp = DataProjection(X,r) if (nargin < 2) r = 0; end if (r == 0) Xp = X; else [U,~,~] = svd(X,0); Xp = U(:,1:r)' * X; end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
chuongtrinh.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/chuongtrinh.m
4,326
utf_8
9aa6e0fba6419280402c840c53ddc448
function varargout = chuongtrinh(varargin) % CHUONGTRINH MATLAB code for chuongtrinh.fig % CHUONGTRINH, by itself, creates a new CHUONGTRINH or raises the existing % singleton*. % % H = CHUONGTRINH returns the handle to a new CHUONGTRINH or the handle to % the existing singleton*. % % CHUONGTRINH('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CHUONGTRINH.M with the given input arguments. % % CHUONGTRINH('Property','Value',...) creates a new CHUONGTRINH or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before chuongtrinh_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to chuongtrinh_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help chuongtrinh % Last Modified by GUIDE v2.5 29-Aug-2017 10:44:09 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @chuongtrinh_OpeningFcn, ... 'gui_OutputFcn', @chuongtrinh_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before chuongtrinh is made visible. function chuongtrinh_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to chuongtrinh (see VARARGIN) % Choose default command line output for chuongtrinh handles.output = hObject; % Update handles structure guidata(hObject, handles); addpath('./params/'); addpath('./libs/'); addpath('./libsvm-master/matlab'); start_i=imread('xinchonanh.png'); axes(handles.axes1); imshow(start_i); % UIWAIT makes chuongtrinh wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = chuongtrinh_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in btnChonanh. function btnChonanh_Callback(hObject, eventdata, handles) % hObject handle to btnChonanh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile('.\image','Xin vui long chon anh...'); I=imread([pathname,filename]); imshow(I); assignin('base','I',I) % --- Executes on button press in btnNhandang. function btnNhandang_Callback(hObject, eventdata, handles) % hObject handle to btnNhandang (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) evalin('base','nhandien'); % --- Executes on button press in btnthoat. function btnthoat_Callback(hObject, eventdata, handles) % hObject handle to btnthoat (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close all % --- Executes on button press in btntrain. function btntrain_Callback(hObject, eventdata, handles) % hObject handle to btntrain (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) eval('train');
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
plot_DETcurve.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/plot_DETcurve.m
5,510
utf_8
6c913ccc7db9a1ed012aa94ead1116cd
function plot_DETcurve(models, model_names,pos_path, neg_path) % PLOT_DETCURVE function to compute de DET plot given a set of models % % INPUT: % models: SVM models to test (as a row vector) % model_names: names of the models to use it in the DET_plot legends % (as cell array) % pos/neg path: path to pos/neg images % % %$ Author: Jose Marcos Rodriguez $ %$ Date: 09-Nov-2013 22:45:23 $ %$ Revision : 1.04 $ %% FILENAME : performance.m % if paths not specified by parameters if nargin < 3 pos_path = uigetdir('.\images','Select positive test image path'); neg_path = uigetdir('.\images','Select negative test image path'); if isa(neg_path,'double') || isa(pos_path,'double') cprintf('Errors','Invalid paths...\nexiting...\n\n') return end end det_figure_handler = figure('name','DET curves'); set(det_figure_handler,'Visible','off'); det_plot_handlers = zeros(1,max(size(models))); color = ['b','r','g','y']; for m_index=1:max(size(models)) hold on; model = models(m_index); % getting classification scores [p_scores, n_scores] = get_scores(model,pos_path,neg_path); % Plot scores distribution as a Histogram positives = max(size(p_scores)); negatives = max(size(n_scores)); scores = zeros(min(positives, negatives),2); for i=1:size(scores) scores(i,1) = p_scores(i); scores(i,2) = n_scores(i); end figure('name', sprintf('model %s scores distribution',model_names{m_index})); hist(scores); % Compute Pmiss and Pfa from experimental detection output scores [P_miss,P_fppw] = Compute_DET(p_scores,n_scores); % Plot the detection error trade-off figure(det_figure_handler); thick = 2; det_plot_handler = Plot_DET(P_miss,P_fppw,color(m_index)', thick); det_plot_handlers(m_index) = det_plot_handler; % Plot the optimum point for the detector C_miss = 1; C_fppw = 1; P_target = 0.5; Set_DCF(C_miss,C_fppw,P_target); [DCF_opt, Popt_miss, Popt_fa] = Min_DCF(P_miss,P_fppw); fprintf('Optimal Decision Cost Function for %s = %d\n',model_names{m_index},DCF_opt) Plot_DET (Popt_miss,Popt_fa,'ko'); end legend(det_plot_handlers, model_names); end function [p_scores, n_scores] = get_scores(model,pos_path, neg_path) % Tests a (lib)SVM classifier from the specified images paths % % ok: number of correct classifications % ko: number of wrong classifications % positive / negative images_path: paths of the images to test % model: SVMmodel to use. % %$ Author: Jose Marcos Rodriguez $ %$ Date: 2013/11/09 $ %$ Revision: 1.2 $ [positive_images, negative_images] = get_files(-1,-1,{pos_path,neg_path}); total_pos_windows = numel(positive_images); total_neg_windows = numel(negative_images); %% Init the svm test variables params = get_params('det_plot_params'); chunk_size = params.chunk_size; desc_size = params.desc_size; params = get_params('window_params'); im_h_size = params.height; im_w_size = params.width; im_c_depth = params.color_depth; % ==================================================================== %% Reading all POSITIVE images % (64x128 images) % ==================================================================== % SVM scores p_scores = zeros(total_pos_windows,1); i = 0; while i < numel(positive_images) %% window obtainment this_chunk = min(chunk_size,numel(positive_images)-i); windows = uint8(zeros(im_h_size,im_w_size,im_c_depth,this_chunk)); hogs = zeros(this_chunk, desc_size); labels = ones(size(hogs,1),1); for l=1:this_chunk I = imread(positive_images(i+1).name); windows(:,:,:,l) = get_window(I,im_w_size,im_h_size,'center'); hogs(l,:) = compute_HOG(windows(:,:,:,l),8,2,9); i = i+1; end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction [~, ~, scores] = ... svmpredict(labels, hogs, model, '-b 0'); p_scores(i-this_chunk+1:i,:) = scores(:,:); end % ==================================================================== %% Reading all NEGATIVE images % (64x128 windows) % ==================================================================== n_scores = zeros(total_neg_windows,1); i = 0; while i < numel(negative_images) %% window obtainment this_chunk = min(chunk_size,numel(negative_images)-i); windows = uint8(zeros(im_h_size,im_w_size,im_c_depth,this_chunk)); hogs = zeros(this_chunk, desc_size); labels = ones(size(hogs,1),1)*(-1); for l=1:this_chunk I = imread(negative_images(i+1).name); windows(:,:,:,l) = get_window(I,im_w_size,im_h_size,[1,1]); hogs(l,:) = compute_HOG(windows(:,:,:,l),8,2,9); i = i+1; end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction [~, ~, scores] = ... svmpredict(labels, hogs, model, '-b 0'); n_scores(i-this_chunk+1:i,:) = scores(:,:); end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
draw_sliding_window.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/draw_sliding_window.m
3,630
utf_8
2577c102d36999695fc68a9d8324fe2e
function draw_sliding_window(I, model) % DRAW_SLIDING_WINDOW function that given an image and a model scans % exhaustively over a scale-space pyramid the image for pedestrians % drawing the sliding detection window and the confidence probability. % % INPUT: % model: model to test % I: image to scan % % %$ Author: Jose Marcos Rodriguez $ %$ Date: - $ %$ Revision : 1.00 $ %% FILENAME : draw_sliding_window.m % Testing if param file exists in the params directory if exist(['params',filesep,'detect_and_draw.params'],'file') test_params = load(['params',filesep,'detect_and_draw.params'],'-ascii'); % Testing if param file exists in the current directory elseif exist('detect_and_draw.params','file') test_params = load('detect_and_draw.params','-ascii'); % Dialog to select param file else [param_file,PathName,~] = uigetfile('*.params','Select parameter file'); if ~isa(param_file,'double') test_params = load([PathName,filesep,param_file],'-ascii'); else cprintf('Errors','Missing param file...\nexiting...\n\n'); return end end %% wiring up the param vars th = test_params(1); scale = test_params(2); hog_size = test_params(3); stride = test_params(4); % fprintf('Threshold=%f\n',th) % fprintf('Scale=%f\n',scale) % fprintf('Descriptor size=%f\n',hog_size) % fprintf('Window stride=%f\n',stride) %% color definitions red = uint8([255,0,0]); green = uint8([0,255,0]); %% shape inserters ok_shapeInserter = ... vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',green); ko_shapeInserter = ... vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',red); ti = tic; fprintf('\nbegining the pyramid hog extraction...\n') [hogs, ~, wxl, coordinates] = get_pyramid_hogs(I, hog_size, scale, stride); tf = toc(ti); fprintf('time to extract %d hogs: %d\n', size(hogs,1), tf); %% refer coordinates to the original image... (Level0) % for each window in every level... ind = 1; for l=1:size(wxl,2) ws= wxl(l); for w=1:ws % compute original coordinates in Level0 image factor = (scale^(l-1)); coordinates(1,ind) = floor(coordinates(1,ind) * factor); coordinates(2,ind) = floor(coordinates(2,ind) * factor); ind = ind + 1; end end %% SVM prediction for all windows... [predict_labels, ~, probs] = ... svmpredict(zeros(size(hogs,1),1), hogs, model, '-b 1'); % draw in the original image the detecction window % red: not detected % green: detected for i=1:numel(predict_labels) [level, ~] = get_window_indices(wxl, i); % figure('name', sprintf('level %d detection', level)); x = coordinates(1,i); y = coordinates(2,i); factor = (scale^(level-1)); rectangle = int32([x,y,64*factor,128*factor]); if predict_labels(i) == 1 && probs(i) > th % J = step(ok_shapeInserter, I, rectangle); % J = insertText(J, [x,y], probs(i), 'FontSize',9,'BoxColor', 'green'); % imshow(J); % figure(gcf); %pause(0.5); disp('ok'); else disp('mok'); J = step(ko_shapeInserter, I, rectangle); imshow(J); figure(gcf); end end % closing all figures... % close all end %% Aux func. to get the level and window number given a linear index function [level, num_window] = get_window_indices(wxl, w_linear_index) accum_windows = 0; for i=1:size(wxl,2) accum_windows = accum_windows + wxl(i); if w_linear_index <= accum_windows level = i; num_window = accum_windows - w_linear_index; break end end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
compute_level0_coordinates.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/compute_level0_coordinates.m
1,067
utf_8
d65b971929cc232aad3dc34827e93fe2
%% Aux function to compute the windows coordiantes at level 0 pyramid image function [bb_size, new_cords] = compute_level0_coordinates(wxl, coordinates, inds, scale) % Consts bb_width = 64; bb_height = 128; % Vars new_cords = zeros(size(inds,2),2); bb_size = zeros(size(inds,2),2); % for each positive window index... for i=1:size(inds,2) % linear index of the window ind = inds(i); % find the positive window original level level = 0; while ind > sum(wxl(1:level)) level = level + 1; end % fprintf('Match found at level %d\n', level); % compute original coordinates in Level0 image factor = (scale^(level-1)); new_cords(i,1) = floor(coordinates(i,1) * factor); new_cords(i,2) = floor(coordinates(i,2) * factor); % Bounding Box resizing? bb_size(i,1) = ceil(bb_height*factor); bb_size(i,2) = ceil(bb_width*factor); end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
test_svm.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/test_svm.m
11,053
utf_8
9bfbc961a2df8136aa2b0eb74f485b1d
function statistics = test_svm(model,paths) % TEST_SVM Tests a (lib)SVM classifier from the specified images paths % % INPUT: % model: SVMmodel to use % threshold: positive confidence threshold % paths: positive / negative images_path to test % // % windows, descriptor and test parameter configuration is read from their % corresponding paramteter files. If not found a window prompts for them. % % OUTPUT: % statistics: ok, ko, false_pos, false_neg, true_pos, true_neg % fppw and miss_rate metrics % %$ Author: Jose Marcos Rodriguez $ %$ Date: 2013/11/09 $ %$ Revision: 1.05 $ %% svm testing parameters get_test_params(); % path stuff if nargin < 2 positive_images_path = uigetdir('images','Select positive image folder'); negative_images_path = uigetdir('images','Select negative image folder'); if safe images_path = uigetdir('images','Select base image path'); end if isa(positive_images_path,'double') || ... isa(negative_images_path,'double') cprintf('Errors','Invalid paths...\nexiting...\n\n') return end else positive_images_path = paths{1}; negative_images_path = paths{2}; if safe images_path = paths{3}; end end %% getting images to test from the specified folders paths = {positive_images_path,negative_images_path}; [positive_images, negative_images] = get_files(pos_instances,neg_instances, paths); % ==================================================================== %% Reading all POSITIVE images & computing the descriptor % (64x128 images) % ==================================================================== %% Computing HOG descriptor for all images (in chunks) pos_start_time = tic; false_negatives = 0; true_positives = 0; i = 0; while i < numel(positive_images) %% window obtainment this_chunk = min(pos_chunk_size,numel(positive_images)-i); windows = uint8(zeros(height,width,depth,this_chunk)); hogs = zeros(this_chunk, descriptor_size); labels = ones(size(hogs,1),1); for l=1:this_chunk I = imread(positive_images(i+1).name); windows(:,:,:,l) = get_window(I,width,height, 'center'); hogs(l,:) = compute_HOG(windows(:,:,:,l),cell_size,block_size,n_bins); i = i+1; end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction [predict_labels, ~, probs] = ... svmpredict(labels, hogs, model, '-b 1'); %% counting and copying for l=1:size(predict_labels) predict_label = predict_labels(l); if probs(l,1) >= 0.1 ok = ok + 1; true_positives = true_positives + 1; else ko = ko + 1; false_negatives = false_negatives + 1; % saving hard image for further retrain if safe [~, name, ext] = fileparts(positive_images(i).name); saving_path = [images_path,'/hard_examples/false_neg/',... name,... '_n_wind_',num2str(l), ext]; % writting image imwrite(windows(:,:,:,l), saving_path); end end end end % hog extraction elapsed time pos_elapsed_time = toc(pos_start_time); fprintf('Elapsed time to classify positive images: %f seconds.\n',pos_elapsed_time); % ==================================================================== %% Reading all NEGATIVE images & computing the descriptor % Exhaustive search for hard examples % (space-scaled 64x128 windows) % ==================================================================== num_neg_images = size(negative_images,1); if strcmp(neg_method, 'pyramid') num_neg_windows = ... get_negative_windows_count(negative_images); elseif strcmp(neg_method, 'windows') num_neg_windows = num_neg_images*neg_chunk_size; end fprintf('testing with %d negative images and %d negative windows\n', num_neg_images,num_neg_windows); %% Computing HOG descriptor for all images (in chunks) neg_start_time = tic; false_positives = 0; true_negatives = 0; i = 0; while i < numel(negative_images) %% window obtaintion % All pyramid HOGS if strcmp(neg_method, 'pyramid') I = imread(negative_images(i+1).name); %% temporal [h,w,~] = size(I); if max(h,w) >= 160 ratio = max(96/w,160/h); I = imresize(I,ratio); end %% fin temporal [hogs, windows, wxl] = get_pyramid_hogs(I, descriptor_size, scale, stride); labels = ones(size(hogs,1),1).*(-1); i = i+1; % random window HOG elseif strcmp(neg_method,'windows') this_chunk = min(neg_chunk_size, numel(negative_images)-i); windows = uint8(zeros(height,width,depth,this_chunk)); hogs = zeros(this_chunk, descriptor_size); labels = ones(size(hogs,1),1).*(-1); for l=1:this_chunk I = imread(negative_images(i+1).name); windows(:,:,:,l) = get_window(I,width,height, 'center'); hogs(l,:) = compute_HOG(windows(:,:,:,l),cell_size,block_size,n_bins); i = i+1; end end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction [predict_labels, ~, probs] = ... svmpredict(labels, hogs, model, '-b 1'); %% updating statistics for l=1:size(predict_labels) predict_label = predict_labels(l); if probs(l,1) < 0.1 ok = ok + 1; true_negatives = true_negatives + 1; else ko = ko + 1; false_positives = false_positives + 1; if safe % saving hard image for further retrain [~, name, ext] = fileparts(negative_images(i).name); if strcmp(neg_method, 'pyramid') [level, num_image] = get_window_indices(wxl, l); saving_path = [images_path,'/hard_examples/false_pos/',... name,... '_l',num2str(level),... '_w',num2str(num_image),ext]; else saving_path = [images_path,'/hard_examples/false_pos/',... name,... '_n_wind_',num2str(l), ext]; end % writting image imwrite(windows(:,:,:,l), saving_path); end end end end % hog extraction elapsed time neg_elapsed_time = toc(neg_start_time); fprintf('Elapsed time to classify negative images: %f seconds.\n',neg_elapsed_time); %% Printing gloabl results precision = true_positives/(true_positives+false_positives); recall = true_positives/(true_positives+false_negatives); fprintf('oks: %d \n',ok) fprintf('kos: %d \n',ko) fprintf('false positives: %d \n',false_positives) fprintf('false negatives: %d \n',false_negatives) fprintf('true positives: %d \n',true_positives) fprintf('true negatives: %d \n',true_negatives) fprintf('mis rate: %d \n',false_negatives / (true_positives + false_negatives)) fprintf('fppw: %d \n',false_positives / (ok + ko)) fprintf('Precision: %d \n',precision) fprintf('Recall: %d \n',recall) fprintf('F score: %d \n',2*((precision*recall)/(precision+recall))) % preparing values to return statistics = containers.Map; statistics('oks') = ok; statistics('kos') = ok; statistics('fp') = false_positives; statistics('tp') = true_positives; statistics('fn') = false_negatives; statistics('tn') = true_negatives; statistics('miss_rate') = false_negatives / (true_positives + false_negatives); statistics('fppw') = false_positives / (ok + ko); statistics('precision') = precision; statistics('recall') = recall; statistics('fscore') = 2*((precision*recall)/(precision+recall)); % --------------------------------------------------------------------- %% Aux function to obtain the test parameters % --------------------------------------------------------------------- function get_test_params() test_params = get_params('test_svm_params'); pos_chunk_size = test_params.pos_chunk_size; neg_chunk_size = test_params.neg_chunk_size; scale = test_params.scale; stride = test_params.stride; threshold = test_params.threshold; neg_method = test_params.neg_window_method; safe = test_params.safe; neg_instances = test_params.neg_instances; pos_instances = test_params.pos_instances; w_params = get_params('window_params'); depth = w_params.color_depth; width = w_params.width; height = w_params.height; desc_params = get_params('desc_params'); cell_size = desc_params.cell_size; block_size = desc_params.block_size; n_bins = desc_params.n_bins; desp = 1; n_v_cells = floor(height/cell_size); n_h_cells = floor(width/cell_size); hist_size = block_size*block_size*n_bins; descriptor_size = hist_size*(n_v_cells-block_size+desp)*(n_h_cells-block_size+desp); ok = 0; ko = 0; end end %% Aux function to know how many windows we'll have... function count = get_negative_windows_count(negative_images) % computing number of levels in the pyramid count = 0; for i=1:numel(negative_images) I = imread(negative_images(i).name); %% temporal [h,w,~] = size(I); if max(h,w) >= 160 ratio = max(96/w,160/h); I = imresize(I,ratio); end %% fin temporal [~, windows] = get_pyramid_dimensions(I); count = count + windows; end end %% Aux function to know how the windows indices... function [level, num_window] = get_window_indices(wxl, w_linear_index) accum_windows = 0; for i=1:size(wxl,2) accum_windows = accum_windows + wxl(i); if w_linear_index <= accum_windows level = i; num_window = accum_windows - w_linear_index; break end end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
test_svm_PCA.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/test_svm_PCA.m
11,226
utf_8
515c2df08059e5339874b04bb212cf82
function statistics = test_svm_PCA(model,Ureduce, paths) % TEST_SVM_PCA Tests a (lib)SVM classifier from the specified images paths % reducing first each hog matrix to a dimensionality reduced % version. % % INPUT: % model: SVMmodel to use % threshold: positive confidence threshold % paths: positive / negative images_path to test % // % windows, descriptor and test parameter configuration is read from their % corresponding paramteter files. If not found a window prompts for them. % % OUTPUT: % statistics: ok, ko, false_pos, false_neg, true_pos, true_neg % fppw and miss_rate metrics % %$ Author: Jose Marcos Rodriguez $ %$ Date: 2013/11/09 $ %$ Revision: 1.05 $ %% svm testing parameters get_test_params(); % path stuff if nargin < 3 positive_images_path = uigetdir('images','Select positive image folder'); negative_images_path = uigetdir('images','Select negative image folder'); if safe images_path = uigetdir('images','Select base image path'); end if isa(positive_images_path,'double') || ... isa(negative_images_path,'double') cprintf('Errors','Invalid paths...\nexiting...\n\n') return end else positive_images_path = paths{1}; negative_images_path = paths{2}; if safe images_path = paths{3}; end end %% getting images to test from the specified folders paths = {positive_images_path,negative_images_path}; [positive_images, negative_images] = get_files(pos_instances,neg_instances, paths); % ==================================================================== %% Reading all POSITIVE images & computing the descriptor % (64x128 images) % ==================================================================== %% Computing HOG descriptor for all images (in chunks) pos_start_time = tic; false_negatives = 0; true_positives = 0; i = 0; while i < numel(positive_images) %% window obtainment this_chunk = min(pos_chunk_size,numel(positive_images)-i); windows = uint8(zeros(height,width,depth,this_chunk)); hogs = zeros(this_chunk, descriptor_size); labels = ones(size(hogs,1),1); for l=1:this_chunk I = imread(positive_images(i+1).name); windows(:,:,:,l) = get_window(I,width,height, 'center'); hogs(l,:) = compute_HOG(windows(:,:,:,l),cell_size,block_size,n_bins); i = i+1; end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction hogs = hogs*Ureduce; [predict_labels, ~, probs] = ... svmpredict(labels, hogs, model, '-b 1'); %% counting and copying for l=1:size(predict_labels) predict_label = predict_labels(l); if probs(l,1) >= 0.1 ok = ok + 1; true_positives = true_positives + 1; else ko = ko + 1; false_negatives = false_negatives + 1; % saving hard image for further retrain if safe [~, name, ext] = fileparts(positive_images(i).name); saving_path = [images_path,'/hard_examples/false_neg/',... name,... '_n_wind_',num2str(l), ext]; % writting image imwrite(windows(:,:,:,l), saving_path); end end end end % hog extraction elapsed time pos_elapsed_time = toc(pos_start_time); fprintf('Elapsed time to classify positive images: %f seconds.\n',pos_elapsed_time); % ==================================================================== %% Reading all NEGATIVE images & computing the descriptor % Exhaustive search for hard examples % (space-scaled 64x128 windows) % ==================================================================== num_neg_images = size(negative_images,1); if strcmp(neg_method, 'pyramid') num_neg_windows = ... get_negative_windows_count(negative_images); elseif strcmp(neg_method, 'windows') num_neg_windows = num_neg_images*neg_chunk_size; end fprintf('testing with %d negative images and %d negative windows\n', num_neg_images,num_neg_windows); %% Computing HOG descriptor for all images (in chunks) neg_start_time = tic; false_positives = 0; true_negatives = 0; i = 0; while i < numel(negative_images) %% window obtaintion % All pyramid HOGS if strcmp(neg_method, 'pyramid') I = imread(negative_images(i+1).name); %% temporal [h,w,~] = size(I); if max(h,w) >= 160 ratio = max(96/w,160/h); I = imresize(I,ratio); end %% fin temporal [hogs, windows, wxl] = get_pyramid_hogs(I, descriptor_size, scale, stride); labels = ones(size(hogs,1),1).*(-1); i = i+1; % random window HOG elseif strcmp(neg_method,'windows') this_chunk = min(neg_chunk_size, numel(negative_images)-i); windows = uint8(zeros(height,width,depth,this_chunk)); hogs = zeros(this_chunk, descriptor_size); labels = ones(size(hogs,1),1).*(-1); for l=1:this_chunk I = imread(negative_images(i+1).name); windows(:,:,:,l) = get_window(I,width,height, 'center'); hogs(l,:) = compute_HOG(windows(:,:,:,l),cell_size,block_size,n_bins); i = i+1; end end % just for fixing GUI freezing due to unic thread MatLab issue drawnow; %% prediction hogs = hogs*Ureduce; [predict_labels, ~, probs] = ... svmpredict(labels, hogs, model, '-b 1'); %% updating statistics for l=1:size(predict_labels) predict_label = predict_labels(l); if probs(l,1) < 0.1 ok = ok + 1; true_negatives = true_negatives + 1; else ko = ko + 1; false_positives = false_positives + 1; if safe % saving hard image for further retrain [~, name, ext] = fileparts(negative_images(i).name); if strcmp(neg_method, 'pyramid') [level, num_image] = get_window_indices(wxl, l); saving_path = [images_path,'/hard_examples/false_pos/',... name,... '_l',num2str(level),... '_w',num2str(num_image),ext]; else saving_path = [images_path,'/hard_examples/false_pos/',... name,... '_n_wind_',num2str(l), ext]; end % writting image imwrite(windows(:,:,:,l), saving_path); end end end end % hog extraction elapsed time neg_elapsed_time = toc(neg_start_time); fprintf('Elapsed time to classify negative images: %f seconds.\n',neg_elapsed_time); %% Printing gloabl results precision = true_positives/(true_positives+false_positives); recall = true_positives/(true_positives+false_negatives); fprintf('oks: %d \n',ok) fprintf('kos: %d \n',ko) fprintf('false positives: %d \n',false_positives) fprintf('false negatives: %d \n',false_negatives) fprintf('true positives: %d \n',true_positives) fprintf('true negatives: %d \n',true_negatives) fprintf('mis rate: %d \n',false_negatives / (true_positives + false_negatives)) fprintf('fppw: %d \n',false_positives / (ok + ko)) fprintf('Precision: %d \n',precision) fprintf('Recall: %d \n',recall) fprintf('F score: %d \n',2*((precision*recall)/(precision+recall))) % preparing values to return statistics = containers.Map; statistics('oks') = ok; statistics('kos') = ok; statistics('fp') = false_positives; statistics('tp') = true_positives; statistics('fn') = false_negatives; statistics('tn') = true_negatives; statistics('miss_rate') = false_negatives / (true_positives + false_negatives); statistics('fppw') = false_positives / (ok + ko); statistics('precision') = precision; statistics('recall') = recall; statistics('fscore') = 2*((precision*recall)/(precision+recall)); % --------------------------------------------------------------------- %% Aux function to obtain the test parameters % --------------------------------------------------------------------- function get_test_params() test_params = get_params('test_svm_params'); pos_chunk_size = test_params.pos_chunk_size; neg_chunk_size = test_params.neg_chunk_size; scale = test_params.scale; stride = test_params.stride; threshold = test_params.threshold; neg_method = test_params.neg_window_method; safe = test_params.safe; neg_instances = test_params.neg_instances; pos_instances = test_params.pos_instances; w_params = get_params('window_params'); depth = w_params.color_depth; width = w_params.width; height = w_params.height; desc_params = get_params('desc_params'); cell_size = desc_params.cell_size; block_size = desc_params.block_size; n_bins = desc_params.n_bins; desp = 1; n_v_cells = floor(height/cell_size); n_h_cells = floor(width/cell_size); hist_size = block_size*block_size*n_bins; descriptor_size = hist_size*(n_v_cells-block_size+desp)*(n_h_cells-block_size+desp); ok = 0; ko = 0; end end %% Aux function to know how many windows we'll have... function count = get_negative_windows_count(negative_images) % computing number of levels in the pyramid count = 0; for i=1:numel(negative_images) I = imread(negative_images(i).name); %% temporal [h,w,~] = size(I); if max(h,w) >= 160 ratio = max(96/w,160/h); I = imresize(I,ratio); end %% fin temporal [~, windows] = get_pyramid_dimensions(I); count = count + windows; end end %% Aux function to know how the windows indices... function [level, num_window] = get_window_indices(wxl, w_linear_index) accum_windows = 0; for i=1:size(wxl,2) accum_windows = accum_windows + wxl(i); if w_linear_index <= accum_windows level = i; num_window = accum_windows - w_linear_index; break end end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
non_max_suppression.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/non_max_suppression.m
1,983
utf_8
f929c2cfe27c04ea18291377d6a6c143
function max_indices = non_max_suppression(coords, probs, bb_sizes) % NON_MAX_SUPRESION applies non maximum suppression to get the % most confident detections over a proximity area. % Input: window coordiantes, window classification probabilities and % window size referenced to the level 0 pyramid layer. % Output: the most confident window indices %$ Author: Jose Marcos Rodriguez $ %$ Date: 23-Nov-2013 12:37:16 $ %$ Revision : 1.00 $ %% FILENAME : non_max_supresion.m MIN_DIST = 1024; MAX_AREA = 128*64/6; max_indices = []; m = size(coords,1); indices = 1:m; % while we have nearby windows not suppressed... while size(indices, 2) > 1 nearby_window_indices = indices(1); % for all remaining indices... for i=2:size(indices,2) % we search the nearby windows d = distance(coords(indices(1),:), coords(indices(i),:)); if d < MIN_DIST nearby_window_indices = [nearby_window_indices, indices(i)]; end area = overlap(coords(indices(1),:), coords(indices(i),:), bb_sizes(indices(i),:)); if area > MAX_AREA nearby_window_indices = [nearby_window_indices, indices(i)]; end end % from the nearby windows we only keep the most confident one nearby_probs = probs(nearby_window_indices,1); max_indx = nearby_window_indices(max(nearby_probs) == nearby_probs); max_indices = [max_indices, max_indx]; % removing from indices all the treated ones for k=1:size(nearby_window_indices,2) indices = indices(indices ~= nearby_window_indices(k)); end end end function d = distance(coords1, coords2) d = sum((coords1-coords2).^2); end function overlapping_area = overlap(coords1, coords2, bb_size2) delta = coords1-coords2; delta_x = delta(1); delta_y = delta(2); h = bb_size2(1); w = bb_size2(2); overlapping_area = w*h - abs(delta_x*w) - abs(delta_y*h) + abs(delta_x*delta_y); end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
static_detector.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/static_detector.m
5,315
utf_8
c2e656c452e2addd5dc511b90b999441
function static_detector(I,model) % STATIC_DETECTOR given a folder containing PNG or JPG images applies % the specified libSVM model to scan through every image % for pedestrians in a sliding window basis. % % All the parameters are hard coded to guaratee independence from % external files, assuming once this function in run the whole set of % parameters are well known and no further experimentation is needed. % %$ Author: Jose Marcos Rodriguez $ %$ Date: 05-Dec-2013 23:09:05 $ %$ Revision : 1.00 $ %% FILENAME : static_detector.m %% VARS hog_size = 3780; scale = 1.2; stride = 8; show_all = false; draw_all = false; %% color definitions green = uint8([0,255,0]); yellow = uint8([255,255,0]); %% shape inserters ok_shapeInserter = ... vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',green); other_shapeInserter = ... vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',yellow); %images_path = uigetdir('.\..','Select image folder'); %% image reading % jpgs = rdir(strcat(images_path,filesep,'*.jpg')); % pngs = rdir(strcat(images_path,filesep,'*.png')); % images = [jpgs, pngs]; % num_images = size(images,1); %for i=1:num_images %fprintf('-------------------------------------------\n') %disp(images(i).name); %I = imread(images(i).name); %% Reescale [h,w,~] = size(I); rscale = min(w/96, h/160); I = imresize(I, 1.2/rscale); %% HOG extraction for all image windows ti = tic; fprintf('\nbegining the pyramid hog extraction...\n') [hogs, windows, wxl, coordinates] = get_pyramid_hogs(I, hog_size, scale, stride); tf = toc(ti); fprintf('time to extract %d hogs: %d\n', size(hogs,1), tf); %% SVM prediction for all windows... [predict_labels, ~, probs] = ... svmpredict(zeros(size(hogs,1),1), hogs, model, '-b 1'); %% filtering only positives windows instances % index of positives windows range = 1:max(size(predict_labels)); pos_indxs = range(predict_labels == 1); %pos_indxs = range(probs(1) >= 0.8); % positive match information coordinates = coordinates'; coordinates = coordinates(pos_indxs,:); probs = probs(pos_indxs,:); %% Computing level 0 coordinates for drawing [bb_size, l0_coordinates] = compute_level0_coordinates(wxl, coordinates, pos_indxs, scale); %% Showing all positive windows in separate figures if show_all windows = windows(:,:,:,pos_indxs); for w=1:size(pos_indxs,2) figure('name',sprintf('x=%d, y=%d', l0_coordinates(w,1),l0_coordinates(w,2))); % figure('name',sprintf('x=%d, y=%d', bb_size(w,1),bb_size(w,2))); ii = insertText(windows(:,:,:,w), [1,1], probs(w), 'FontSize',9,'BoxColor', 'green'); imshow(ii) end end %% Drawing detections over the original image %draw = I; shape_inserter = other_shapeInserter; if ~draw_all shape_inserter = ok_shapeInserter; %% non-max-suppression! max_indxs = non_max_suppression(l0_coordinates, probs, bb_size); pos_indxs = pos_indxs(max_indxs); l0_coordinates = l0_coordinates(max_indxs,:); bb_size = bb_size(max_indxs, :); probs = probs(max_indxs,:); end draw = I; for w=1:size(pos_indxs,2) %% Drawing the rectangle on the original image x = l0_coordinates(w,1); y = l0_coordinates(w,2); % Rectangle conf bb_height = bb_size(w,1); bb_width = bb_size(w,2); rectangle = int32([x,y,bb_width,bb_height]); draw = step(shape_inserter, draw, rectangle); draw = insertText(draw, [x,y+bb_height], probs(w), 'FontSize',9,'BoxColor', 'green'); end % Showing image with all the detection boxes imshow(draw); figure(gcf); % pause; %end end %% Aux function to compute the windows coordiantes at level 0 pyramid image function [bb_size, new_cords] = compute_level0_coordinates(wxl, coordinates, inds, scale) % Consts bb_width = 64; bb_height = 128; % Vars new_cords = zeros(size(inds,2),2); bb_size = zeros(size(inds,2),2); % for each positive window index... for i=1:size(inds,2) % linear index of the window ind = inds(i); % find the positive window original level level = 0; while ind > sum(wxl(1:level)) level = level + 1; end % fprintf('Match found at level %d\n', level); % compute original coordinates in Level0 image factor = (scale^(level-1)); new_cords(i,1) = floor(coordinates(i,1) * factor); new_cords(i,2) = floor(coordinates(i,2) * factor); % Bounding Box resizing? bb_size(i,1) = ceil(bb_height*factor); bb_size(i,2) = ceil(bb_width*factor); end end
github
voquocduy/Pedestrian-Detection-using-Hog-Svm-Matab-master
get_negative_windows.m
.m
Pedestrian-Detection-using-Hog-Svm-Matab-master/get_negative_windows.m
1,915
utf_8
ecdfa7fe0e0ffad38158346f78fed842
function get_negative_windows(num_random_windows, num_images) % GET_NEGATIVE_WINDOWS retrieves random windows from the original negative % image set and saves the window in the specified % folder when prompted. % INPUT: % num_random_windows: random window samples per image % num_images: number of images from where to sample windows. % %$ Author: Jose Marcos Rodriguez $ %$ Date: N/D $ %$ Revision : 1.00 $ %% FILENAME : get_negative_windows.m % Paths negative_images_path = uigetdir('.\images','Select original images path'); windows_dst_path = uigetdir('.\images','Select destination path'); if isa(negative_images_path,'double') || isa(windows_dst_path,'double') cprintf('Errors','Invalid paths...\nexiting...\n\n') return end negative_images = dir(negative_images_path); negative_images = negative_images(3:end); if num_images < 1 fprintf('\ngetting all available images\n') num_images = numel(negative_images); elseif num_images > numel(negative_images) fprintf('not enought images...\ngetting al available images\n') num_images = numel(negative_images); end for i=1:num_images for nrw = 1:num_random_windows % getting random window from negative image file_name = ... strcat(negative_images_path,filesep,negative_images(i).name); I = imread(file_name); random_image_window = get_window(I,64,128, 'random'); % making saving path [~, name, ext] = fileparts(file_name); file_saving_name = ... strcat(windows_dst_path, filesep,strcat(name,'_',sprintf('%02d',nrw)),ext); % saving image... imwrite(random_image_window, file_saving_name); end end
github
SkoltechRobotics/pcl-master
plot_camera_poses.m
.m
pcl-master/gpu/kinfu/tools/plot_camera_poses.m
3,407
utf_8
d210c150da98c3f4667f2c1e8d4eb6d2
% Copyright (c) 2014-, Open Perception, Inc. % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions % are met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above % copyright notice, this list of conditions and the following % disclaimer in the documentation and/or other materials provided % with the distribution. % * Neither the name of the copyright holder(s) nor the names of its % contributors may be used to endorse or promote products derived % from this software without specific prior written permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS % "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS % FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE % COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, % INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, % BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER % CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT % LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN % ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % Author: Marco Paladini <[email protected]> % sample octave script to load camera poses from file and plot them % example usage: run 'pcl_kinfu_app -save_pose camera.csv' to save % camera poses in a 'camera.csv' file % run octave and cd into the directory where this script resides % and call plot_camera_poses('<path-to-camera.csv-file>') function plot_camera_poses(filename) poses=load(filename); %% show data on a 2D graph h=figure(); plot(poses,'*-'); legend('x','y','z','qw','qx','qy','qz'); %% show data as 3D axis h=figure(); for n=1:size(poses,1) t=poses(n,1:3); q=poses(n,4:7); r=q2rot(q); coord(h,r,t); end octave_axis_equal(h); %% prevent Octave from quitting if called from the command line input('Press enter to continue'); end function coord(h,r,t) figure(h); hold on; c={'r','g','b'}; p=0.1*[1 0 0;0 1 0;0 0 1]; for n=1:3 a=r*p(n,:)'; plot3([t(1),t(1)+a(1)], [t(2),t(2)+a(2)], [t(3),t(3)+a(3)], 'color', c{n}); end end function R=q2rot(q) % conversion code from http://en.wikipedia.org/wiki/Rotation_matrix%Quaternion Nq = q(1)^2 + q(2)^2 + q(3)^2 + q(4)^2; if Nq>0; s=2/Nq; else s=0; end X = q(2)*s; Y = q(3)*s; Z = q(4)*s; wX = q(1)*X; wY = q(1)*Y; wZ = q(1)*Z; xX = q(2)*X; xY = q(2)*Y; xZ = q(2)*Z; yY = q(3)*Y; yZ = q(3)*Z; zZ = q(4)*Z; R=[ 1.0-(yY+zZ) xY-wZ xZ+wY ; xY+wZ 1.0-(xX+zZ) yZ-wX ; xZ-wY yZ+wX 1.0-(xX+yY) ]; end function octave_axis_equal(h) % workaround for axis auto not working in 3d % tanks http://octave.1599824.n4.nabble.com/axis-equal-help-tp1636701p1636702.html figure(h); xl = get (gca, 'xlim'); yl = get (gca, 'ylim'); zl = get (gca, 'zlim'); span = max ([diff(xl), diff(yl), diff(zl)]); xlim (mean (xl) + span*[-0.5, 0.5]) ylim (mean (yl) + span*[-0.5, 0.5]) zlim (mean (zl) + span*[-0.5, 0.5]) end
github
LarsonLab/UTEMRI_Brain-master
precon_3dute_pfile_bartv300_allec.m
.m
UTEMRI_Brain-master/ImageReconstruction/precon_3dute_pfile_bartv300_allec.m
13,757
utf_8
78e61bbb10ca3b8c81f5817eb027c508
function [im, header] = precon_3dute_pfile_bartv300_allec(pfile, ... coils, undersamp, ... skip, freq_shift, echoes,reg_coe, skip_calib_coil, cc_coil, rNecho,ind_echo_recon, espirit_recon); % [im, header, rhuser, data, data_grid] = recon_3dute_pfile(pfile, % coils, undersamp, skip, freq_shift, echoes) % % Reconstructs 3D UTE PR image acquired with half-projections and % ramp sampling from pfile only. Reads in scan parameters from pfile. % INPUTS: % pfile - points to a scanner raw data file % either use Pfile 'PXXXXX.7', or, for multiple files, can also be % 'filename01', where the number increases (can use rename_pfiles.x to appropriately rename) % use a cell array of the first Pfiles for averaging % coils (optional) - can select which coils to reconstruct % undersamp (optional) - [undersamp_dc, undersamp_imsize]. Undersampling ratios for % density compensation and/or reconstructed image size % (default is [1.0 1.0]) % skip (optional) - shifts readout by this number of points. Can % be positive or negative % freq_shift (optional) - demodulates by this frequency (Hz) to correct for bulk frequency miscalibrations % echoes (optional) - can select which echoes to reconstruct % rNecho - real number of echo % ind_echo_recon - recon each individual echo sequentially % espirit_recon - do espirit recon or just nufft % OUTPUTS: % im - 3d image % header - header data from pfile % data - raw projection data % data_grid - gridded data % % Peder Larson 7/28/2008, 6/24/2011 % pcao has some name conflictions for rawloadX_cp (in the src dir) vs. rawloadX and % rawheadX_cp (in the src dir) vs. rawheadX if ~isdeployed addpath /home/pcao/src/bart-0.2.07/matlab/ addpath /home/pcao/src/bart-0.3.01/matlab/ addpath /home/plarson/matlab/3DUTE-recon % addpath /netopt/share/ese/ESE_DV26.0_R01/tools/matlab/read_MR/ end disp(pfile) header = read_MR_headers(pfile); % <<< DCM >>> 20180312 if (nargin < 2) coils = []; end if (nargin < 3) || (isempty(undersamp)) undersamp = 1/header.rdb_hdr.user26; undersamp_dc = undersamp; undersamp_imsize = undersamp; elseif length(undersamp) == 1 undersamp_dc = undersamp; undersamp_imsize = undersamp; else undersamp_dc = undersamp(1); undersamp_imsize = undersamp(2); end if (nargin < 4) || (isempty(skip)) skip = 0; end if (nargin < 5) || (isempty(freq_shift)) freq_shift = 0; end if (nargin < 6) || (isempty(echoes)) Necho = header.rdb_hdr.nechoes; % <<< DCM >>> 20180312 echoes = 1:Necho; else Necho = length(echoes(:)); end % if isempty(coils) % Ncoils = (header.rdb_hdr.dab(2)-header.rdb_hdr.dab(1))+1; % <<< DCM >>> 20180312 % coils = 1:Ncoils; % else Ncoils = length(coils(:)); % end if (nargin < 7) || (isempty(reg_coe)) reg_coe = '-r0.05'; end if (nargin < 12) || (isempty(espirit_recon)) espirit_recon = 1; end zeropad_factor = 1; % <<< DCM >>> 20180312 -- KLUDGE ... add all echoes and slices %frsize = header.rdb_hdr.da_xres; % <<< DCM >>> 20180312 %nframes = header.rdb_hdr.da_yres -1 ; % <<< DCM >>> 20180312 -- possibly off by one because of "baseline" scan %nslices = header.rdb_hdr.nslices; % <<< DCM >>> 20180312 frsize = header.rdb_hdr.frame_size;%header2.frsize; nframes = header.rdb_hdr.nframes;%header2.nframes; nslices = header.rdb_hdr.nslices;%header2.nslices; nfphases = header.image.fphase; data = read_MR_rawdata(pfile,'db', 1:nfphases, echoes, 1:nslices,coils); % <<< DCM >>> 20180312 -- replaced rawloadX_cp data = squeeze(data); disp('READ DATA SIZE: ') disp(size(data)) Nramp = header.rdb_hdr.user11;%rhuser(12); spres = header.rdb_hdr.user1;%rhuser(2); resz_scale = header.rdb_hdr.user2; %rhuser(3); FOV = [header.rdb_hdr.user16, header.rdb_hdr.user17, header.rdb_hdr.user18]; %rhuser(17:19).'; Nprojections = header.rdb_hdr.user9;%rhuser(10); acqs = header.rdb_hdr.user19;%rhuser(20); shift = [header.rdb_hdr.user20, header.rdb_hdr.user21,0] / spres; %[rhuser(21:22);0].'/spres; imsize = FOV*10/spres * zeropad_factor / undersamp_imsize; final_imsize=round(imsize); a = 1.375; W = 5; S = calc_kerneldensity(1e-4, a); gridsize = round(a*imsize); % For extracting iamges within FOV rnum = gridsize(1); cnum = gridsize(2); snum = gridsize(3); ru_skip = ceil((rnum-final_imsize(1))/2); rd_skip = rnum - final_imsize(1)-ru_skip; cu_skip = ceil((cnum-final_imsize(2))/2); cd_skip = cnum - final_imsize(2)-cu_skip; su_skip = ceil((snum-final_imsize(3))/2); sd_skip = snum - final_imsize(3)-su_skip; % frsize = size(data,1); % nframes = size(data,2); % Necho = size(data,3); % nslices = size(data,4); % Ncoils = size(data,5); if nframes*nslices >= Nprojections % data is now frsize, 2*ceil(Nprojections/(Nslices*2)) echoes, % Nslices, Ncoils if Nprojections*2 < nframes*nslices % storing extra echos in slices data = cat(3, data(:,:,:,1:nslices/2,:), data(:,:,:,nslices/2+[1:nslices/2],:)); nslices = nslices/2; Necho = 2*Necho; % num_utes? echoes = 1:Necho; end % <<< DCM >>> 20180312 -- reshape and permute the data (interleaved readouts corrected) data = permute(data, [2 1 4 3 5]); %pcao changed coil and echo dimensions reordered_projections = [[1:2:nslices],[2:2:nslices]]; fprintf('DEBUG STUFF: \n'); disp(size(data)); %disp(reordered_projections); fprintf('frsize = %d, nframes = %d, nslices= %d, Necho = %d, Ncoils = %d; product = %d\n', frsize, nframes, nslices, Necho, Ncoils, frsize*nframes*nslices*Necho*Ncoils); fprintf('END DEBUG STUFF\n'); data = data(:, :, reordered_projections, :); data = reshape(data, [frsize nframes*nslices Necho Ncoils]); data = data(:,1:Nprojections,:,:); if Nprojections*2 < nframes*nslices %determine and set the real Number of echo, pcao20170214 if (nargin < 10) || (isempty(rNecho) || (rNecho < 1)) sum_nonzero_echo = squeeze(sum(sum(sum(abs(data),1),2),4))> 0; Necho = sum(sum_nonzero_echo); else Necho = rNecho; end echoes = 1:Necho; data = data(:,:,1:Necho,:); end else % legacy recon code data = read_multiple_pfiles(pfile); end % apply different frequency demodulation if freq_shift ~= 0 dt = 1/(2*header.rdb_hdr.bw*1e3); t = [0:frsize-1].' * dt; Sdata = size(data); data = data .* repmat( exp(-i*2*pi*freq_shift*t), [1 Sdata(2:end)]); end % Determine trajectory [theta, phi, kmax, dcf] = calc_3dpr_ellipse(FOV*10, spres, spres*resz_scale); x = cos(phi) .* sin(theta) .* kmax; y = sin(phi) .* sin(theta) .* kmax; z = cos(theta) .* kmax; kscale = 0.5 / max(abs(kmax(:))); x = kscale * x; y = kscale * y; z = kscale * z; % skip samples? if skip > 0 frsize = frsize - skip; data = data(1+skip:end,:,:,:); % elseif skip < 0 % frsize = frsize - skip; % data = [repmat(data(1,:,:,:,:), [-skip 1 1 1 1]); data]; end [ksp, dcf_all] = calc_pr_ksp_dcf([x(:),y(:),z(:)],Nramp,frsize,dcf,undersamp_dc); clear x; clear y; clear z; clear theta; clear phi; clear dcf; clear kmax; % ksp((frsize * Nprojections + 1):end,:) = []; % dcf_all(:,(Nprojections + 1):end) = []; if skip < 0 data = data(1:end+skip,:,:,:); dcf_new = dcf_all(1-skip:end,:); dcf_new(1,:) = sum(dcf_all(1:1-skip,:),1); % add density of central skipped points dcf_all = dcf_new; clear dcf_new ksp_new = zeros((frsize+skip)*Nprojections,3); for n = 1:Nprojections ksp_new([1:frsize+skip] + (n-1)*(frsize+skip),:) = ... ksp([1-skip:frsize] + (n-1)*frsize,:); end ksp = ksp_new; clear ksp_new % frsize = frsize + skip; % not necessary to change end if (nargin < 8) || (isempty(skip_calib_coil)) skip_calib_coil = 0;%skip the coil calibration end if (nargin < 9) || (isempty(cc_coil)) cc_coil = 0; % the coil compression end if cc_coil && (length(coils) > cc_coil) %do coil compression disp('Coil compression') data(:,:,:,1:cc_coil) = bart(sprintf('cc -r12 -P%d -S',cc_coil), data); % clear data; % data = cc_data; % clear cc_data; coils = 1:cc_coil; skip_calib_coil = 0;%cannot skip the sensitivity measurement data(:,:,:,(cc_coil +1):end) = []; end ktraj_all=reshape(ksp,[frsize Nprojections 3]); ktraj(1,:,:)=ktraj_all(:,:,1)*imsize(1); ktraj(2,:,:)=ktraj_all(:,:,2)*imsize(2); ktraj(3,:,:)=ktraj_all(:,:,3)*imsize(3); tot_npts=frsize*Nprojections; % dcf_all2(1,:,:)=dcf_all; % dcf_all2(2,:,:)=dcf_all; % dcf_all2(3,:,:)=dcf_all; % clear dcf_all; % dcf_all = dcf_all2; for e = 1:length(echoes) disp(['Preparing reconstructing echo ' int2str(e) '...']) for Ic = 1:length(coils) % disp([' Reconstructing coil ' int2str(coils(Ic)) '...']) % tic data_c = squeeze(data(:,:,e,Ic)); data_pc(:,Ic) = data_c(:).*exp(j*2*pi*(ksp(:,1)*shift(1) + ksp(:,2)*shift(2) + ksp(:,3)*shift(3))); end clear data_c; if e == echoes clear data; clear ksp; end data_pc = conj(data_pc); tic if ~espirit_recon disp([' Reconstructing echo ' int2str(e) '...']) im(:,:,:,:,e)=squeeze(bart('nufft -a -p', reshape(dcf_all,[1 tot_npts]), reshape(ktraj, [3 tot_npts]), reshape(data_pc,[1 tot_npts 1 length(coils)]))); else root_dir = pwd; list = exist([root_dir '/smap_m1.mat'], 'file'); if e == 1 if ~skip_calib_coil || ~list disp('unfft to generate calibration k-space') % name = ['/data/larson/brain_uT2/2016-04-27_7T-vounteer/tmpfftec' int2str(echoes)]; im_under=bart('nufft -a -p', reshape(dcf_all,[1 tot_npts]), reshape(ktraj, [3 tot_npts]), reshape(data_pc,[1 tot_npts 1 length(coils)])); k_calb=bart('fft -u 7',im_under); k_calb = bart(sprintf('crop 0 %d', 2*round(size(k_calb,1)*0.2)),k_calb); k_calb = bart(sprintf('crop 1 %d', 2*round(size(k_calb,2)*0.2)),k_calb); k_calb = bart(sprintf('crop 2 %d', 2*round(size(k_calb,3)*0.2)),k_calb); k_calb_zerop = padarray(k_calb, round([size(im_under)/2-size(k_calb)/2])); clear im_under; clear k_calb; smap_m1=bart('ecalib -k4 -r12 -m1 -c0.80', k_calb_zerop); %two sets sensitivity maps are needed here, as tested on the /data/vig2/UTE_ZTE/3dute/brain/20150506_TEphase % figure, imshow3(abs(squeeze(smap_m1(:,:,2,:)))); clear k_calb_zerop; % if ~isdeployed save('smap_m1.mat','smap_m1'); % end else load smap_m1.mat end end smapall(:,:,:,:,1,e) = smap_m1; dataall(:,:,:,:,1,e) = reshape(data_pc,[1 tot_npts 1 length(coils)]); ktrjall(:,:,1,1,1,e) = reshape(ktraj, [3 tot_npts]); decfall(:,:,1,1,1,e) = reshape(dcf_all,[1 tot_npts]); end toc end if espirit_recon clear data disp('Reconstructing all echos ') %try add ' -o' scale *; add -n turn off random shift; add -I to choose %iterative thresholding; move -l1 to reg_coe % recon_l1 = bartv207(['nusense -I -o -n ' reg_coe ' -p'], reshape(dcf_all,[1 tot_npts]), reshape(ktraj, [3 tot_npts]), reshape(data_pc,[1 tot_npts 1 length(coils)]),smap_m1); bartcmd = ['pics ' reg_coe]; bartaddcmd{1} = '-p '; bartaddcmd{2} = '-t '; bartaddcmd{3} = ' '; bartaddcmd{4} = ' '; if nargin < 11 || (isempty(cc_coil)) ind_echo_recon = 0; end if ind_echo_recon for e = 1:length(echoes) disp([' Individual reconstructing echo ' int2str(e) '...']) recon_l1(:,:,:,1,1,e) = bartv301addcmd(bartcmd, bartaddcmd, decfall(:,:,1,1,1,e), ktrjall(:,:,1,1,1,e), dataall(:,:,:,:,1,e),smapall(:,:,:,:,1,e)); end else recon_l1 = bartv301addcmd(bartcmd, bartaddcmd, decfall, ktrjall, dataall,smapall); end im = squeeze(recon_l1); %somehow recon has two sets of data, like corespond to two sets of sensitivity maps clear recon_l1 end return function data = read_multiple_pfiles(pfile) % legacy code for reading multiple pfile data MAX_FRAMES = 16384; if ~iscell(pfile) temp = pfile; pfile = cell(1); pfile{1} = temp; end nex = length(pfile); [data1, header, rhuser] = rawloadX(pfile{1}, [0:MAX_FRAMES],1,1); Nprojections = rhuser(10); acqs = rhuser(20); frsize = size(data1,1); Ncoils = size(data1,5); data = zeros(frsize, Nprojections, Necho, Ncoils); for n = 1:nex for a = 1:acqs pfile_a = parse_pfile(pfile{1}, a); disp(['Reading ' pfile_a '...']) tic [data1] = rawloadX(pfile_a, [0:MAX_FRAMES],1,1); toc data(:, [MAX_FRAMES*(a-1)+1:min(Nprojections, MAX_FRAMES*a)], :,:) = ... data(:, [MAX_FRAMES*(a-1)+1:min(Nprojections, MAX_FRAMES*a)], :,:) + ... squeeze(data1(:, 1:min(Nprojections - (a-1)*MAX_FRAMES,MAX_FRAMES),:,1,:)); clear data1; end end return function pfile_name = parse_pfile(pfilestring, acq) % determine if PXXXXX.7 filename or other if strcmp(pfilestring(end-1:end), '.7') pfile_num = sscanf(pfilestring(end-6:end-2),'%d'); pfile_path = pfilestring(1:end-8); pfile_name = sprintf('%sP%05d.7', pfile_path, pfile_num + acq-1); else pfile_num = sscanf(pfilestring(end-1:end),'%d'); if isempty(pfile_num) % just single pfile pfile_name = pfilestring; else pfile_path = pfilestring(1:end-2); pfile_name = sprintf('%s%02d', pfile_path, pfile_num + acq-1); end end return
github
LarsonLab/UTEMRI_Brain-master
ute_dicom.m
.m
UTEMRI_Brain-master/ImageReconstruction/ute_dicom.m
3,971
utf_8
3ad8fd96e99a55aeb5c47fbaf7ba76f0
function ute_dicom(finalImage, pfile_name, output_image, image_option, scaleFactor, seriesNumberOffset) % Convert matlab 3D matrix to dicom for UTE sequences % resolution is fixed in the recon - FOV/readout(from scanner), isotropic % matrix size is determined in the recon % Inputs: % finalImage: 3D image matrix % pfile_name: original pfile name % output_image: output directory % image_option: 1 for both phase and magnitude, 0(offset) mag only % scaleFactor: scale image matrix % seriesNumber: output series number % % August, 2018, Xucheng Zhu, Nikhil Deveshwar if nargin<4 image_option = 0; end addpath(genpath('../util')); addpath(genpath('../orchestra-sdk-1.7-1.matlab')); Isize = size(finalImage); pfile = GERecon('Pfile.Load', pfile_name); pfile.header = GERecon('Pfile.Header', pfile); pfile.phases = numel(finalImage(1,1,1,1,:)); pfile.xRes = size(finalImage,1); pfile.yRes = size(finalImage,2); pfile.slices = size(finalImage,3); pfile.echoes = size(finalImage,4); % calc real res(isotropic,axial) corners = GERecon('Pfile.Corners', 1); orientation = GERecon('Pfile.Orientation', 1); outCorners = GERecon('Orient', corners, orientation); % res = abs(outCorners.UpperRight(2)-outCorners.UpperLeft(2))/Isize(3); res2 = 2; scale = Isize/Isize(3); scale2 = [1, 1e-6, 1]; corners.LowerLeft = corners.LowerLeft.*scale2; corners.UpperLeft = corners.UpperLeft.*scale2; corners.UpperRight = corners.UpperRight.*scale2; info = GERecon('Pfile.Info', 1); % % NEED TO CONFIRM orientation/corners based on slice number % % HERE IS HOW this is done without the "corners" adjustment shown % % above: % sliceInfo.pass = 1; % sliceInfo.sliceInPass = s; % info = GERecon('Pfile.Info', 1); % orientation = info.Orientation; corners = info.Corners; % X = repmat(int16(0), [96 86 1 94]); X = zeros(96, 86, 1, 94); seriesDescription = ['UTE T2 - ', output_image]; seriesNumber = pfile.header.SeriesData.se_no * 100 + seriesNumberOffset; for s = flip(1:pfile.slices) for e = 1:pfile.echoes for p = 1:pfile.phases mag_t =flip(double(finalImage(:,:,s,e,p) * scaleFactor)); % figure;imshow(mag_t);title('mag_t'); % mag_t2 = GERecon('Orient', mag_t, orientation); imageNumber = ImageNumber(s, e, p, pfile); filename = ['DICOMs_' output_image, '/image_',num2str(imageNumber) '.dcm']; GERecon('Dicom.Write', filename, mag_t, imageNumber, orientation, corners, seriesNumber, seriesDescription); if image_option~=0 phase_t = flip(flip(single(angle(finalImage(:,:,s,e,p))).',1),2); %phase_t = GERecon('Orient', phase_t, orientation); filename = [output_dir,'DICOMS/phase_',num2str(imageNumber) '.dcm']; GERecon('Dicom.Write', filename, phase_t, imageNumber, orientation, corners); end [X(:,:,1,s),map] = dicomread(filename); end end % sliceInfo.pass = 1 % sliceInfo.sliceInPass = s % info = GERecon('Pfile.Info', 1) % Get corners and orientation for next slice location? corners.LowerLeft(3) = corners.LowerLeft(3) + res2; corners.UpperLeft(3) = corners.UpperLeft(3) + res2; corners.UpperRight(3) = corners.UpperRight(3) + res2; % Check header settings in Horos to ensure pixel spacing value is % correct relative to slice thickness end disp([output_image, ' generated.']); % figure;montage(X(:,:,1,:),map);title(output_image); end function number = ImageNumber(slice, echo, phase, pfile) % Image numbering scheme: % P0S0E0, P0S0E1, ... P0S0En, P0S1E0, P0S1E1, ... P0S1En, ... P0SnEn, ... % P1S0E0, P1S0E1, ... PnSnEn slicesPerPhase = pfile.slices * pfile.echoes; number = (phase-1) * slicesPerPhase + (slice-1) * pfile.echoes + (echo-1) + 1; end
github
LarsonLab/UTEMRI_Brain-master
get_TE.m
.m
UTEMRI_Brain-master/ImageReconstruction/get_TE.m
1,517
utf_8
d8688efc7a911afd02528f7c5f87b3b3
%% Import data from text file. % Script for importing data from the following text file: % % /data/larson/brain_uT2/2017-09-29_3T-volunteer/multi_utes.dat % % To extend the code to different selected data or a different text file, % generate a function instead of a script. % Auto-generated by MATLAB on 2017/09/29 16:08:36 %% Initialize variables. function TE = get_TE(filename) %filename = 'multi_utes.dat'; delimiter = ' '; startRow = 3; %% Format string for each line of text: % column1: double (%f) % For more information, see the TEXTSCAN documentation. formatSpec = '%f%*s%*s%[^\n\r]'; %% Open the text file. fileID = fopen(filename,'r'); %% Read columns of data according to format string. % This call is based on the structure of the file used to generate this % code. If an error occurs for a different file, try regenerating the code % from the Import Tool. dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines' ,startRow-1, 'ReturnOnError', false); %% Close the text file. fclose(fileID); %% Post processing for unimportable data. % No unimportable data rules were applied during the import, so no post % processing code is included. To generate code which works for % unimportable data, select unimportable cells in a file and regenerate the % script. %% Allocate imported array to column variable names TE = dataArray{:, 1}; TE = TE'; %% Clear temporary variables clearvars filename delimiter startRow formatSpec fileID dataArray ans;
github
longcw/pytorch-faster-rcnn-master
voc_eval.m
.m
pytorch-faster-rcnn-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
dkouzoup/hanging-chain-acado-master
plot_partial_condensing.m
.m
hanging-chain-acado-master/code/utils/plot_partial_condensing.m
1,721
utf_8
306d4177769297aab60fa87db66c8a40
function FHANDLE = plot_partial_condensing(logs) %% process data solver = logs{1}.solver(1:strfind(logs{1}.solver,'_')-1); NMASS = size(logs, 1); BS = size(logs,2); FS = 24; CPUTIMES = zeros(NMASS, BS); BLOCKSIZE = zeros(NMASS, BS); for ii = 1:NMASS for jj = 1:BS if ~contains(logs{ii, jj}.solver, solver) error('log of different solver detected') end CPUTIMES(ii, jj) = max(logs{ii, jj}.cputime - logs{ii, jj}.simtime); BLOCKSIZE(ii, jj) = str2double(logs{ii, jj}.solver(strfind(logs{ii, jj}.solver, '_B')+2:end)); end end SPEEDUPS = 1./(CPUTIMES./repmat(CPUTIMES(:,1), 1, BS)); BLOCKSIZE(BLOCKSIZE == 0) = 1; %% plot FHANDLE = figure; legends = {}; for ii = 1:NMASS MARKER = set_up_marker(logs{ii, 1}.Nmass); plot(BLOCKSIZE(ii,:), SPEEDUPS(ii,:), 'Marker', MARKER, 'MarkerSize', 12, 'color', 'k', 'Linewidth',1.5, 'LineStyle', '-'); hold on legends{end+1} = ['$n_{\mathrm{m}} = ' num2str(logs{ii, 1}.Nmass) '$']; end grid on set(gca, 'fontsize',FS); xlabel('Block size $M$', 'interpreter','latex', 'fontsize',FS); ylabel('Speedup', 'interpreter','latex', 'fontsize',FS); set(gca,'TickLabelInterpreter','latex') title(['Partial condensing with \texttt{' solver '}'],'interpreter','latex', 'fontsize',FS); l = legend(legends); l.Interpreter = 'latex'; l.Location = 'northeast'; xlim([BLOCKSIZE(1,1) BLOCKSIZE(1,end)]); WIDE = 0; if WIDE FHANDLE.Position = [100 300 1200 500]; else FHANDLE.Position = [100 300 600 500]; end end function marker = set_up_marker(nmasses) if nmasses == 3 marker = 'o'; elseif nmasses == 4 marker = '>'; elseif nmasses == 5 marker = 'h'; else marker = '.'; end end
github
dkouzoup/hanging-chain-acado-master
plot_logs.m
.m
hanging-chain-acado-master/code/utils/plot_logs.m
4,222
utf_8
76a079fac6d034835eeb007d55e22c64
function [FHANDLE] = plot_logs(logs, FADED, LOGSCALE, FHANDLE, xlims, ylims) % PLOT_LOGS plot performance of QP solvers as a function of prediction % horizon N. % % INPUTS: % % logs logged data from simulation (cell array) % FADED set to true to plot solver curves faded (boolean) % FHANDLE pass existing figure handle to get multiple logs in on plot if nargin < 6 ylims = [0 130]; end if nargin < 5 xlims = [10 100]; end FS = 24; %% default values for inputs if nargin < 4 || isempty(FHANDLE) FHANDLE = figure; end if nargin < 3 || isempty(LOGSCALE) LOGSCALE = false; end if nargin < 2 || isempty(FADED) FADED = false; end if FADED alpha = 0.3; style = '--'; else alpha = 1.0; style = '-'; end color = [0 0 0 alpha]; %% process data solver = 'undefined'; nexp = length(logs); kk = 0; % will contain number of different solvers in log cell array for ii = 1:nexp if ~strcmp(solver,logs{ii}.solver) kk = kk+1; solver = logs{ii}.solver; data(kk).x = []; data(kk).y = []; data(kk).marker = set_up_marker(solver); data(kk).solver = set_up_solver_name(solver); end data(kk).x = [data(kk).x logs{ii}.N]; data(kk).y = [data(kk).y logs{ii}.cputime - logs{ii}.simtime]; end %% plot timings figure(FHANDLE); if ~LOGSCALE for kk = 1:length(data) plot(data(kk).x, 1e3*(max(data(kk).y)), ... 'Marker', data(kk).marker, 'MarkerSize', 12, 'MarkerEdgeColor', [1-alpha 1-alpha 1-alpha], ... 'Color', color, 'Linewidth',1.5, 'LineStyle', style); hold on end grid on set_up_plot(data, false, FS); xlim(xlims) ylim(ylims) else for kk = 1:length(data) loglog(data(kk).x, 1e3*max(data(kk).y), ... 'Marker', data(kk).marker, 'MarkerSize', 12, 'MarkerEdgeColor', [1-alpha 1-alpha 1-alpha], ... 'Color', color, 'linewidth',1.5, 'LineStyle', style); hold on end grid on set_up_plot(data, true, FS); xlim(xlims) ylim(ylims) % title('Worst case CPU time in closed-loop','interpreter','latex', 'fontsize', FS) end FHANDLE.Position = [100 300 600 500]; end function set_up_plot(data, LOGPLOT, FS) set(gca, 'fontsize',FS); xlabel('Prediction horizon $N$', 'interpreter','latex', 'fontsize',FS); ylabel('CPU time $(\mathrm{ms})$', 'interpreter','latex', 'fontsize',FS); set(gca,'TickLabelInterpreter','latex') if ~LOGPLOT hLegend = findobj(gcf, 'Type', 'Legend'); if isempty(hLegend) l = legend(data.solver); l.Interpreter = 'latex'; l.Location = 'northwest'; else for ii = 1:length(data) hLegend.String{end-ii+1} = data(end-ii+1).solver; end end end if data(1).x(end) > data(1).x(1) xlim([data(1).x(1) data(1).x(end)]) end end function marker = set_up_marker(solver) if strcmp(solver, 'qpOASES_N2') marker = '^'; elseif strcmp(solver, 'qpOASES_N3') marker = 'v'; elseif strcmp(solver, 'FORCES') marker = 's'; elseif strcmp(solver, 'qpDUNES') || strcmp(solver, 'qpDUNES_B0') marker = 'p'; elseif strcmp(solver, 'HPMPC') || strcmp(solver, 'HPMPC_B0') marker = '*'; elseif contains(solver, 'HPMPC_B') marker = 'x'; elseif contains(solver, 'qpDUNES_B') marker = 'd'; else marker = 'o'; end end function solver_name_latex = set_up_solver_name(solver) solver_name_latex = solver; solver_name_latex(solver_name_latex == '_') = ' '; if contains(solver_name_latex, 'qpOASES') solver_name_latex = replace(solver_name_latex, 'N', 'C$N^'); solver_name_latex(end+1) = '$'; end if strcmp(solver_name_latex, 'HPMPC B0') solver_name_latex = 'HPMPC'; end if strcmp(solver_name_latex, 'qpDUNES B0') solver_name_latex = 'qpDUNES'; end if contains(solver_name_latex, 'HPMPC B') || contains(solver_name_latex, 'qpDUNES B') solver_name_latex = [solver_name_latex(1:strfind(solver_name_latex, 'B')-1) 'PC']; % solver_name_latex = replace(solver_name_latex, 'B', 'B$_{'); % solver_name_latex(end+1:end+2) = '}$'; end end
github
shane-nichols/smn-thesis-master
muellerData.m
.m
smn-thesis-master/muellerData.m
52,836
utf_8
c342735994beb5434aef01012c5eb83e
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) muellerData properties Label % string Value % 4,4,M,N,... array of Mueller matrix values ErValue % 4,4,M,N,... array of Mueller matrix error values Size % size of Value Dims % cell array of length ndims(Value)-2 containing arrays of length M,N,... DimNames % cell array of strings with names of a dimensions M,N,... HV % M,N,... array of detector high voltage values (4PEM specific) DC % M,N,... array of waveform DC values (4PEM specific) reflection end methods function obj = muellerData(value) % Class Constructor obj.Size = size(value); obj.Value = value; obj.Label = ''; end function varargout = subsref(obj,s) % overload subsref for custom indexing switch s(1).type case '()' if length(obj) == 1 % positional indexing of object properties if length(s(1).subs) ~= length(obj.Size) error('Error. Size of object and requested index are not equal'); end if length(s) == 1 varargout = {objSubset(obj,s)}; else varargout = {builtin('subsref',objSubset(obj,s(1)),s(2:end))}; end else if length(s) == 1 varargout = {builtin('subsref',obj,s)}; % index object array else obj = builtin('subsref',obj,s(1)); if numel(obj) == 1 varargout = {builtin('subsref',obj,s(2:end))}; else temp = builtin('subsref',obj(1),s(2:end)); if isa(temp,'muellerData') for k=2:numel(obj) temp(k) = builtin('subsref',obj(k),s(2:end)); end else temp = {temp}; for k=2:numel(obj) temp{k} = builtin('subsref',obj(k),s(2:end)); end end varargout = {temp}; end end end case '{}' if length(obj) == 1 if length(s(1).subs) ~= length(obj.Size) error('Error. Size of object and requested index are not equal'); end if length(s) == 1 s = dims2index(obj,s); varargout = {objSubset(obj,s)}; else s(1) = dims2index(obj,s(1)); varargout = {builtin('subsref',objSubset(obj,s(1)),s(2:end))}; end else if any(arrayfun(@(x) length(s(1).subs) ~= length(x.Size),obj)) error('Error. Size of object and requested index are not equal'); end if length(s) == 1 temp = obj; for k=1:numel(obj) subs = dims2index(obj(k),s); temp(k) = objSubset(obj(k),subs); varargout = {temp}; end else subs = dims2index(obj(1),s(1)); temp = builtin('subsref',objSubset(obj(1),subs),s(2:end)); if isa(temp,'muellerData') for k=2:numel(obj) subs = dims2index(obj(k),s(1)); temp(k) = builtin('subsref',objSubset(obj(k),subs),s(2:end)); end else temp = {temp}; for k=2:numel(obj) subs = dims2index(obj(k),s(1)); temp{k} = builtin('subsref',objSubset(obj(k),subs),s(2:end)); end end varargout = {temp}; end end case '.' if length(obj) > 1 temp = builtin('subsref',obj(1),s); if isa(temp,'muellerData') for k=2:numel(obj) temp(k) = builtin('subsref',obj(k),s); end else temp = {temp}; for k=2:numel(obj) temp{k} = builtin('subsref',obj(k),s); end end varargout = {temp}; else varargout = {builtin('subsref',obj,s)}; end end end function n = numArgumentsFromSubscript(~,~,~) n = 1; % I don't like multiple outputs =P end function obj = merge(obj1,obj2) % merge two objects if ~(length(obj1.Size) == length(obj2.Size)) error(['Objects not compatible with merge.'.... ' Length of obj.Size must be equal for objects.']) end if isempty(obj1.Dims) || isempty(obj2.Dims) error('Objects not compatible with merge. Dims must be defined.') end idx = find(cell2mat(cellfun(@isequal,obj1.Dims,obj2.Dims,'uniformoutput',0))==0); if length(idx) > 1 || ~isempty(intersect(obj1.Dims{idx},obj2.Dims{idx})) error('Objects not compatible with merge. Dims must differ in 1 element only.') end idx2 = length(obj1.Size) - length(obj1.Dims) + idx; obj = muellerData(cat(idx2,obj1.Value,obj2.Value)); if ~isempty(obj1.ErValue) && ~isempty(obj2.ErValue) obj.ErValue = cat(idx2,obj1.ErValue,obj2.ErValue); end if ~isempty(obj1.HV) && ~isempty(obj2.HV) obj.HV = cat(idx,obj1.HV,obj2.HV); end if ~isempty(obj1.DC) && ~isempty(obj2.DC) obj.DC = cat(idx,obj1.DC,obj2.DC); end obj.Dims = obj1.Dims; obj.Dims{idx} = [obj1.Dims{idx} , obj2.Dims{idx}]; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; end function obj = squeeze(obj) obj.Value = squeeze(obj.Value); obj.ErValue = squeeze(obj.ErValue); obj.Size = size(obj.Value); if ~isempty(obj.Dims) logicalIdx = cellfun(@(x) ~isscalar(x),obj.Dims); obj.Dims = obj.Dims(logicalIdx); if ~isempty(obj.DimNames) obj.DimNames = obj.DimNames(logicalIdx); end end obj.HV = squeeze(obj.HV); obj.DC = squeeze(obj.DC); end function obj = plus(obj1,obj2) % overloading of + for muellerData. % to call, use: obj1 + obj2 % Dims and DimNames and reflection are copied from obj1 % It doesn't make sense to define HV and DC if isa(obj1,'muellerData') && isa(obj2,'muellerData') if isequal(obj1.Size,obj2.Size) obj = muellerData(obj1.Value + obj2.Value); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 + obj2 for muellerData. obj.Size must be equal for objects.') end elseif isa(obj1,'muellerData') && isscalar(obj2) obj = obj1; obj.Value = obj.Value + obj2; elseif isa(obj2,'muellerData') && isscalar(obj1) obj = obj2; obj.Value = obj.Value + obj1; end end function obj = minus(obj1,obj2) % overloading of - for muellerData. if isequal(obj1.Size,obj2.Size) obj = muellerData(obj1.Value - obj2.Value); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 - obj2 for muellerData. obj.Size must be equal for objects.') end end function obj = times(obj1,obj2) % overloading of .* for muellerData. if isequal(obj1.Size,obj2.Size) obj = muellerData(obj1.Value .* obj2.Value); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 .* obj2 for muellerData. obj.Size must be equal for objects.') end end function obj = rdivide(obj1,obj2) % overloading of ./ for muellerData. if isequal(obj1.Size,obj2.Size) obj = muellerData(obj1.Value ./ obj2.Value); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.') end end function obj = mtimes(obj1,obj2) % overloading of * for muellerData. ck1 = isa(obj1, 'muellerData'); ck2 = isa(obj2, 'muellerData'); if ck1 && ck2 if ndims(obj2.Value) > ndims(obj1.Value) obj = obj2; else obj = obj1; end obj.Value = multiprod(obj1.Value, obj2.Value, [1 2], [1 2]); elseif ck1 obj = obj1; obj.Value = multiprod(obj1.Value, obj2, [1 2], [1 2]); else obj = obj2; obj.Value = multiprod(obj1, obj2.Value, [1 2], [1 2]); end % if isequal(obj1.Size,obj2.Size) % val1 = shapeDown(obj1.Value); % val2 = shapeDown(obj2.Value); % for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i)*val2(:,:,i); end % obj = muellerData(shapeUp(val1,obj1.Size)); % obj.Dims = obj1.Dims; % obj.DimNames = obj1.DimNames; % obj.reflection = obj1.reflection; % else % error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.') % end end function obj = mrdivide(obj1,obj2) % overloading of / for muellerData. if isequal(obj1.Size,obj2.Size) val1 = shapeDown(obj1.Value); val2 = shapeDown(obj2.Value); for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i)/val2(:,:,i); end obj = muellerData(shapeUp(val1,obj1.Size)); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.') end end function obj = mldivide(obj1,obj2) % overloading of \ for muellerData. if isequal(obj1.Size,obj2.Size) val1 = shapeDown(obj1.Value); val2 = shapeDown(obj2.Value); for i=1:size(val1,3); val1(:,:,i) = val1(:,:,i) \ val2(:,:,i); end obj = muellerData(shapeUp(val1,obj1.Size)); obj.Dims = obj1.Dims; obj.DimNames = obj1.DimNames; obj.reflection = obj1.reflection; else error('Error in obj1 ./ obj2 for muellerData. obj.Size must be equal for objects.') end end function handles = plot(varargin) handles = prePlot(varargin{:}); end function handles = subplot(varargin) % Example: % obj.subplot( {'lb','lbp','cb';'ld','ldp','cd'} , 'legend','none' ) [obj,funcs] = varargin{:}; figure M = size(funcs,1); N = size(funcs,2); funcs = funcs(:); handles = gobjects(1,M*N); for idx=1:M*N ax = subplot(M,N,idx); fn = str2func(funcs{idx}); handles(idx) = plot(fn(obj),'handle',ax,varargin{3:end},... 'title',[', ',upper(funcs{idx})]); end end function handles = print(varargin) filePath = varargin{2}; % extract the filepath [pathStr,name] = fileparts(filePath); filePath = [pathStr,'/',varargin{1}.Label,name]; handles = prePlot(varargin{[1,3:end]}); % make the figure print(gcf,filePath,'-depsc'); % print figure as .eps file end % Calls to static methods on obj.Value, returns new class instance % function obj = optProp(obj) obj.Value = obj.s_optProp(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lm(varargin) obj = varargin{1}; if nargin == 1 obj.Value = obj.s_lm(obj.Value); else obj.Value = obj.s_lm(obj.Value,varargin{2}); end obj.ErValue = []; obj.Size = size(obj.Value); end function obj = logm(obj) obj.Value = obj.s_logm(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lu(obj) obj = obj.logm; g = diag([-1 1 1 1]); for n=1:size(obj.Value,3) obj.Value(:,:,n) = (obj.Value(:,:,n) + g*obj.Value(:,:,n).'*g)/2; end end function obj = lm2(obj) obj = obj.logm; g = diag([-1 1 1 1]); for n=1:size(obj.Value,3) obj.Value(:,:,n) = (obj.Value(:,:,n) - g*obj.Value(:,:,n).'*g)/2; end end function obj = expm(obj) obj.Value = obj.s_expm(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lb(obj) obj.Value = obj.s_lb(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = ld(obj) obj.Value = obj.s_ld(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lbp(obj) obj.Value = obj.s_lbp(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = ldp(obj) obj.Value = obj.s_ldp(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = cb(obj) obj.Value = obj.s_cb(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = cd(obj) obj.Value = obj.s_cd(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = a(obj) obj.Value = obj.s_a(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = a_aniso(obj) obj.Value = obj.s_a_aniso(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = a_iso(obj) obj.Value = obj.s_a_iso(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = ldmag(obj) obj.Value = obj.s_ldmag(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = ldang(obj) obj.Value = obj.s_ldang(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lbang(obj) obj.Value = obj.s_lbang(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lbmag(obj) obj.Value = obj.s_lbmag(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = di(obj) obj.Value = obj.s_di(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = jones(obj) obj.Value = obj.s_jones(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = nearestjones(obj) obj.Value = obj.s_nearestjones(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = mfilter(obj) obj.Value = obj.s_mfilter(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = covar(obj) obj.Value = obj.s_covar(obj.Value); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = mrotate(obj,angle_rad) obj.Value = obj.s_mrotate(obj.Value,angle_rad); obj.ErValue = []; obj.Size = size(obj.Value); end function obj = lm2optProp(obj) % [LB;LD;LBp;LDp;CB;CD;A] lm = obj.Value; sz = size(lm); lm = shapeDown(lm); val(1,:) = lm(4,3,:); val(2,:) = -lm(1,2,:); val(3,:) = lm(2,4,:); val(4,:) = -lm(1,3,:); val(5,:) = lm(2,3,:); val(6,:) = lm(1,4,:); val(7,:) = -lm(1,1,:); obj.Value = shapeUp(val, sz); end end methods(Static) % value = obj.Value function r = s_optProp(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); L=1i.*O.*( J(1,1,:) - J(2,2,:) ); Lp=1i.*O.*( J(1,2,:) + J(2,1,:) ); C=O.*( J(1,2,:) - J(2,1,:) ); LB=real(L); LD=-imag(L); LBp=real(Lp); LDp=-imag(Lp); CB=real(C); CD=-imag(C); A = -2*real(log(1./K)); % mean absorption r = shapeUp(squeeze([LB;LD;LBp;LDp;CB;CD;A]),sz); end function value = s_lm(varargin) value = varargin{1}; sz = size(value); if nargin == 1 value = shapeDown(value); %J = nearestJones(value); J = MJ2J(value); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); O = (T.*K)./(sin(T)); L=1i.*O.*( J(1,1,:) - J(2,2,:) ); Lp=1i.*O.*( J(1,2,:) + J(2,1,:) ); C=O.*( J(1,2,:) - J(2,1,:) ); LB=real(L); LD=-imag(L); LBp=real(Lp); LDp=-imag(Lp); CB=real(C); CD=-imag(C); A = 2*real(log(1./K)); % mean absorption value = shapeUp([A,-LD,-LDp,CD ; -LD,A,CB,LBp ; -LDp,-CB,A,-LB ; CD,-LBp,LB,A],sz); else n_int = varargin{2}; value = reshape(value,4,4,size(value,3),[]); for j = 1:size(value,4) M = value(:,:,:,j); M = flip(M,3); J = nearestJones(M); K=(J(1,1,1).*J(2,2,1) - J(1,2,1)*J(2,1,1)).^(-1/2); T=2*acos((K.*(J(1,1,1) + J(2,2,1)))./2); O=(T+2*pi*n_int).*K./(sin(T/2)*2); N = size(J,3); L = zeros(1,N); Lp = zeros(1,N); C = zeros(1,N); A = zeros(1,N); L(1) = 1i.*O.*(J(1,1,1) - J(2,2,1)); Lp(1) = 1i.*O.*(J(1,2,1) + J(2,1,1)); C(1) = O.*(J(1,2,1) - J(2,1,1)); A(1) = 2*real(log(1./K)); n = n_int; for i = 2:N if n==0 || n==-1 n_ar = [0,-1,1,-2,2]; else n_ar = [n-1,-n,n,-(n+1),n+1]; end K=(J(1,1,i).*J(2,2,i) - J(1,2,i)*J(2,1,i)).^(-1/2); T=2*acos((K.*(J(1,1,i) + J(2,2,i)))./2); O=(T+2*pi*n_ar).*K./(sin(T/2)*2); l = 1i.*O.*(J(1,1,i) - J(2,2,i)); lp = 1i.*O.*(J(1,2,i) + J(2,1,i)); c = O.*(J(1,2,i) - J(2,1,i)); diffs = sum([L(i-1)-l;Lp(i-1)-lp;C(i-1)-c],1); [~,I] = min(diffs); L(i) = l(I); Lp(i) = lp(I); C(i) = c(I); n = n_ar(I); A(i) = 2*real(log(1./K)); end LB=reshape(real(L),1,1,[]); LD=reshape(-imag(L),1,1,[]); LBp=reshape(real(Lp),1,1,[]); LDp=reshape(-imag(Lp),1,1,[]); CB=reshape(real(C),1,1,[]); CD=reshape(-imag(C),1,1,[]); A = reshape(A,1,1,[]); value(:,:,:,j) = ... flip([A,-LD,-LDp,CD ; -LD,A,CB,LBp ; -LDp,-CB,A,-LB ; CD,-LBp,LB,A],3); end value = reshape(value,sz); end end function r = s_logm(value) % log of Mueller matrix with filtering sz = size(value); value = shapeDown(value); Mfiltered = filterM(value); r = shapeUp(zeros(size(Mfiltered)),sz); for n=1:size(value,3); r(:,:,n) = logm(Mfiltered(:,:,n)); end end function r = s_expm(r) % log of Mueller matrix with filtering sz = size(r); r = shapeDown(r); for n=1:size(r,3); r(:,:,n) = expm(r(:,:,n)); end r = shapeUp(r,sz); end function r = s_lb(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = real(1i.*r.*( J(1,1,:) - J(2,2,:) )); r = shapeUp(r,sz); end % 0,90 linear retardance function r = s_ld(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = -imag(1i.*r.*( J(1,1,:) - J(2,2,:) )); r = shapeUp(r,sz); end % 0,90 linear extinction function r = s_lbp(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = real(1i.*r.*( J(1,2,:) + J(2,1,:) )); r = shapeUp(r,sz); end % 45,-45 linear retardance function r = s_ldp(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = -imag(1i.*r.*( J(1,2,:) + J(2,1,:) )); r = shapeUp(r,sz); end % 45,-45 linear extinction function r = s_cb(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = real(r.*( J(1,2,:) - J(2,1,:) )); r = shapeUp(r,sz); end % circular retardance function r = s_cd(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); r = jonesAnisotropy(J); r = -imag(r.*( J(1,2,:) - J(2,1,:) )); r = shapeUp(r,sz); end % circular extinction function r = s_a(value) % total mean extinction sz = size(value); value = shapeDown(value); J = nearestJones(value); r = -2*real(log( ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(1/2) )); r = shapeUp(r,sz); end function r = s_a_aniso(value) % anisotropic part of the mean extinction sz = size(value); value = shapeDown(value); J = nearestJones(value); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); CD = -imag(O.*( J(1,2,:) - J(2,1,:) )); r = shapeUp(sqrt(LD.^2 + LDp.^2 + CD.^2),sz); % not same as imag(2*T) ! end function r = s_a_iso(value) % isotropic part of the mean extinction sz = size(value); value = shapeDown(value); J = nearestJones(value); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); CD = -imag(O.*( J(1,2,:) - J(2,1,:) )); r = shapeUp(-2*real(log(1./K)) - sqrt(LD.^2 + LDp.^2 + CD.^2),sz); end function r = s_ldmag(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); O = jonesAnisotropy(J); LD = imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); r = shapeUp(sqrt(LD.^2 + LDp.^2),sz); end function r = s_ldang(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); O = jonesAnisotropy(J); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); r = shapeUp(atan2(LDp , LD)./2,sz); %out = out + pi*(out < 0); end function r = s_lbang(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); O = jonesAnisotropy(J); LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) )); LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) )); r = atan2(LBp , LB)./2; r = shapeUp(r + pi*(r < 0),sz); end function r = s_lbmag(value) sz = size(value); value = shapeDown(value); J = nearestJones(value); O = jonesAnisotropy(J); LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) )); LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) )); r = shapeUp(sqrt(LB.^2 + LBp.^2),sz); end function r = s_di(value) % Depolarization Index sz = size(value); value = shapeDown(value); r = shapeUp((sqrt(squeeze(sum(sum(value.^2,1),2))./squeeze(value(1,1,:)).^2-1)./sqrt(3)).',sz); end function r = s_jones(value) % Jones matrix of a Mueller-Jones matrix sz = size(value); value = shapeDown(value); r = shapeUp(MJ2J(value),sz); end function r = s_nearestjones(value) sz = size(value); value = shapeDown(value); r = nearestJones(value); % Jones matrix % next line just phases the Jones matrix so that the % imaginary part of J(1,1) = 0. i.e., it matches case 'jones' for n=1:size(r,3); r(:,:,n) = exp( -1i*angle(r(1,1,n)) ) * r(:,:,n); end r = shapeUp(r,sz); end function r = s_mfilter(value) % closest physical Mueller matrix sz = size(value); value = shapeDown(value); r = shapeUp(filterM(value),sz); end function r = s_covar(value) % Mueller to Cloude covariance sz = size(value); value = shapeDown(value); r = shapeUp(M2Cov(value),sz); end function r = plotter(varargin) r = linePlot(varargin{:}); end function r = s_mrotate(M,theta) % M is a Mueller matrix array of any dimension. The first two dimension % must be the Mueller matrix elements. MMout is a Mueller array with the % same dimension as the input array. % October 17, 2016: sign of theta changed so +LB transforms to +LB' with % theta = pi/4. sz = size(M); M = shapeDown(M); r = M; theta=-2*theta; C2=cos(theta); S2=sin(theta); r(1,2,:) = M(1,2,:)*C2 + M(1,3,:)*S2; r(1,3,:) = M(1,3,:)*C2 - M(1,2,:)*S2; r(2,1,:) = M(2,1,:)*C2 + M(3,1,:)*S2; r(3,1,:) = M(3,1,:)*C2 - M(2,1,:)*S2; r(2,4,:) = M(2,4,:)*C2 + M(3,4,:)*S2; r(3,4,:) = M(3,4,:)*C2 - M(2,4,:)*S2; r(4,2,:) = M(4,2,:)*C2 + M(4,3,:)*S2; r(4,3,:) = M(4,3,:)*C2 - M(4,2,:)*S2; r(2,2,:) = C2*(M(3,2,:)*S2 + M(2,2,:)*C2) + S2*(M(3,3,:)*S2 + M(2,3,:)*C2); r(2,3,:) = C2*(M(3,3,:)*S2 + M(2,3,:)*C2) - S2*(M(3,2,:)*S2 + M(2,2,:)*C2); r(3,2,:) = -C2*(M(2,2,:)*S2 - M(3,2,:)*C2) - S2*(M(2,3,:)*S2 - M(3,3,:)*C2); r(3,3,:) = S2*(M(2,2,:)*S2 - M(3,2,:)*C2) - C2*(M(2,3,:)*S2 - M(3,3,:)*C2); r = shapeUp(r,sz); end function fig = mergeAxes(h,sz) h = h(:); set(h,'Units','Pixels'); p = get(h,'Position'); ti = get(h,'TightInset'); extents = ... cellfun(@(p,ti) [ti(1) + ti(3) + p(3) , ti(2) + ti(4) + p(4)],p,ti,'uniformoutput',0); extents = max(cell2mat(extents)); [I,J] = ind2sub(sz,1:length(h)); hspace = 10; vspace = 10; figSz = (flip(sz)).*[hspace,vspace] + flip(sz).*extents ; fig = figure('Units','Pixels','Position',[0, 0, figSz(1), figSz(2)] ); for i=1:length(h) os1 = p{i}(1) - ti{i}(1); os2 = p{i}(2) - ti{i}(2); obj = h(i).Parent.Children; set(obj,'Units','Pixels'); pos = get(obj,'Position'); obj = copyobj(obj,fig); if length(obj) == 1 pos = pos + [J(i) * hspace + (J(i) - 1) * extents(1) - os1 ,... (sz(1)-I(i)) * vspace + (sz(1)-I(i)) * extents(2) - os2 ,... 0,0]; obj.Position = pos; else for j=1:length(obj) temp = pos{j} + ... [(J(i)-1) * hspace + (J(i) - 1) * extents(1) - os1 ,... (sz(1)-I(i)) * vspace + (sz(1)-I(i)) * extents(2) - os2 ,... 0,0]; obj(j).Position = temp; end end end end end end % LOCAL FUNCTIONS % ========================================================================= function s = dims2index(obj,s) % for indexing with Dims if isempty(obj.Dims) error('Error. obj.Dims not defined.'); end sz = length(s.subs) - length(obj.Dims); for i=1:length(obj.Dims) if s.subs{i+sz} ~= ':' [X,I] = sort(obj.Dims{i}); % added this to allow unsorted Dims indices = unique(round(fracIndex(X,s.subs{i+sz})),'first'); s.subs{i+sz} = I(indices); end end end function obj = objSubset(obj,s) % obj parsing obj.Value = obj.Value(s.subs{:}); obj.Size = size(obj.Value); if ~isempty(obj.ErValue) obj.ErValue = obj.ErValue(s.subs{:}); end obj.DimNames = obj.DimNames; lsubs = length(s.subs) + 1; if ~isempty(obj.HV) obj.HV = obj.HV(s.subs{(lsubs-sum(size(obj.HV) ~= 1)):end}); end if ~isempty(obj.DC) obj.DC = obj.DC(s.subs{(lsubs-sum(size(obj.DC) ~= 1)):end}); end if ~isempty(obj.Dims) sz = lsubs - length(obj.Dims) - 1; for i=1:length(obj.Dims) obj.Dims{i} = obj.Dims{i}(s.subs{i+sz}); end end end function out = shapeDown(out) if ndims(out) > 3 % reshape array into 4,4,N out = reshape(out,4,4,[]); end end % reshape function out = shapeUp(out,sz) % overly complicated reshaping sz2 = size(out); if length(sz)>=3 % reshape to match input dimensions out = reshape(out,[sz2(1:(length(sz2)-1)),sz(3:length(sz))]); end sz2 = size(out); if sz2(1) == 1 % remove leading singletons if necessary if sz2(2) == 1 out = shiftdim(out,2); % out = reshape(out,sz2(3:end)); else out = shiftdim(out,1); %out = reshape(out,sz2(2:end)); end end end function J = MJ2J(M) % Mueller-Jones to Jones J(1,1,:) = ((M(1,1,:)+M(1,2,:)+M(2,1,:)+M(2,2,:))/2).^(1/2); k = 1./(2.*J(1,1,:)); J(1,2,:) = k.*(M(1,3,:)+M(2,3,:)-1i.*(M(1,4,:)+M(2,4,:))); J(2,1,:) = k.*(M(3,1,:)+M(3,2,:)+1i.*(M(4,1,:)+M(4,2,:))); J(2,2,:) = k.*(M(3,3,:)+M(4,4,:)+1i.*(M(4,3,:)-M(3,4,:))); end function C = M2Cov(M) % Mueller to Cloude covariance C(1,1,:) = M(1,1,:) + M(1,2,:) + M(2,1,:) + M(2,2,:); C(1,2,:) = M(1,3,:) + M(1,4,:)*1i + M(2,3,:) + M(2,4,:)*1i; C(1,3,:) = M(3,1,:) + M(3,2,:) - M(4,1,:)*1i - M(4,2,:)*1i; C(1,4,:) = M(3,3,:) + M(3,4,:)*1i - M(4,3,:)*1i + M(4,4,:); C(2,1,:) = M(1,3,:) - M(1,4,:)*1i + M(2,3,:) - M(2,4,:)*1i; C(2,2,:) = M(1,1,:) - M(1,2,:) + M(2,1,:) - M(2,2,:); C(2,3,:) = M(3,3,:) - M(3,4,:)*1i - M(4,3,:)*1i - M(4,4,:); C(2,4,:) = M(3,1,:) - M(3,2,:) - M(4,1,:)*1i + M(4,2,:)*1i; C(3,1,:) = M(3,1,:) + M(3,2,:) + M(4,1,:)*1i + M(4,2,:)*1i; C(3,2,:) = M(3,3,:) + M(3,4,:)*1i + M(4,3,:)*1i - M(4,4,:); C(3,3,:) = M(1,1,:) + M(1,2,:) - M(2,1,:) - M(2,2,:); C(3,4,:) = M(1,3,:) + M(1,4,:)*1i - M(2,3,:) - M(2,4,:)*1i; C(4,1,:) = M(3,3,:) - M(3,4,:)*1i + M(4,3,:)*1i + M(4,4,:); C(4,2,:) = M(3,1,:) - M(3,2,:) + M(4,1,:)*1i - M(4,2,:)*1i; C(4,3,:) = M(1,3,:) - M(1,4,:)*1i - M(2,3,:) + M(2,4,:)*1i; C(4,4,:) = M(1,1,:) - M(1,2,:) - M(2,1,:) + M(2,2,:); C = C./2; end function M = Cov2M(C) % Cloude covariance to Mueller M(1,1,:) = C(1,1,:) + C(2,2,:) + C(3,3,:) + C(4,4,:); M(1,2,:) = C(1,1,:) - C(2,2,:) + C(3,3,:) - C(4,4,:); M(1,3,:) = C(1,2,:) + C(2,1,:) + C(3,4,:) + C(4,3,:); M(1,4,:) = ( -C(1,2,:) + C(2,1,:) - C(3,4,:) + C(4,3,:) )*1i; M(2,1,:) = C(1,1,:) + C(2,2,:) - C(3,3,:) - C(4,4,:); M(2,2,:) = C(1,1,:) - C(2,2,:) - C(3,3,:) + C(4,4,:); M(2,3,:) = C(1,2,:) + C(2,1,:) - C(3,4,:) - C(4,3,:); M(2,4,:) = ( -C(1,2,:) + C(2,1,:) + C(3,4,:) - C(4,3,:) )*1i; M(3,1,:) = C(1,3,:) + C(2,4,:) + C(3,1,:) + C(4,2,:); M(3,2,:) = C(1,3,:) - C(2,4,:) + C(3,1,:) - C(4,2,:); M(3,3,:) = C(1,4,:) + C(2,3,:) + C(3,2,:) + C(4,1,:); M(3,4,:) = ( -C(1,4,:) + C(2,3,:) - C(3,2,:) + C(4,1,:) )*1i; M(4,1,:) = ( C(1,3,:) + C(2,4,:) - C(3,1,:) - C(4,2,:) )*1i; M(4,2,:) = ( C(1,3,:) - C(2,4,:) - C(3,1,:) + C(4,2,:) )*1i; M(4,3,:) = ( C(1,4,:) + C(2,3,:) - C(3,2,:) - C(4,1,:) )*1i; M(4,4,:) = C(1,4,:) - C(2,3,:) - C(3,2,:) + C(4,1,:); M = real(M)./2; end function J = nearestJones(M) C = M2Cov(M); J = zeros(2,2,size(C,3)); for n=1:size(C,3) [V,D] = eig(C(:,:,n),'vector'); [~,mx] = max(D); J(:,:,n) = sqrt(D(mx))*reshape(V(:,mx),2,2).'; end end function M = filterM(M) % M to nearest physical M C_raw = M2Cov(M); C = zeros(size(C_raw)); for n=1:size(C_raw,3) [V,D] = eig(C_raw(:,:,n),'vector'); list = find(D > 0.00001).'; idx = 0; temp = zeros(4,4,length(list)); for j = list idx = idx + 1; temp(:,:,idx) = D(j)*V(:,j)*V(:,j)'; end C(:,:,n) = sum(temp,3); end M = Cov2M(C); end function O = jonesAnisotropy(J) K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); O = (T.*K)./(sin(T)); end function fracIndx = fracIndex(X,y) %fractional index % X: 1xN array of increasing values % y: array of values in the range of X % fracIndx is an array the length of y that contains the fractional % index of the y values in array X. % e.g., X = [2,4,6]; y = [4,5]; gives, fracIndx = [2,2.5]; fracIndx = zeros(1,length(y)); for idx = 1:length(y) if y(idx) >= X(length(X)) fracIndx(idx) = length(X); elseif y(idx) <= X(1) fracIndx(idx) = 1; else a = find(X <= y(idx)); a = a(length(a)); b = find(X > y(idx)); b = b(1); fracIndx(idx) = a+(y(idx)-X(a))/(X(b)-X(a)); end end end function handles = prePlot(varargin) obj = varargin{1}; if all(obj.Size(1:2) == 4) plotTool = @MMplot; else plotTool = @linePlot; end if ~isempty(obj.Label) if any(strcmpi('title',varargin)) idx = find(strcmpi('title',varargin)) + 1; varargin{idx} = [obj.Label, ' ',varargin{idx}]; else sz = length(varargin); varargin{sz+1} = 'title'; varargin{sz+2} = obj.Label; end end if ~any(strcmpi('legend',varargin)) if length(obj.Dims) >= 2 && ~isempty(obj.Dims{2}) if length(obj.Dims) >= 3 && ~isempty(obj.Dims{3}) idx = 1; Labels = cell(1,length(obj.Dims{2})*length(obj.Dims{3})); for i=1:length(obj.Dims{2}) for j=1:length(obj.Dims{3}) Labels{idx} = [num2str(obj.Dims{2}(i)),' ; ',num2str(obj.Dims{3}(j))]; idx = idx + 1; end end LabelNames = [obj.DimNames{2},' ; ',obj.DimNames{3}]; else Labels = obj.Dims{2}; LabelNames = obj.DimNames{2}; end sz = length(varargin); varargin{sz+1} = 'legend'; varargin{sz+2} = {LabelNames,Labels}; end end handles = plotTool(obj.Dims{1},obj.Value,obj.ErValue,varargin{2:end}); end function handles = MMplot(Lam,MMdata,MMerror,varargin) % Mueller matrix 2D plotting utility % Makes a 4 x 4 array of 2-D line plots with full control over line and % axes properties. % Outputs: [1 x 16] array of axis handles % % Required positional inputs: % Lam: [1 x n] array of wavelengths (X-axis) % MMdata: [4 x 4 x n x ...] Mueller matrix array % Optional positional inputs: % LineSpec: string containing a valid lineSpec. Type "doc LineSpec" in % command window for more info. Default is "-", a solid line. % Optional Name-Value pairs inputs: % ev: bool. converts X axis to eV. e.g., 'ev',true % handles: [1 x 16] array of plot handles. New handles are created if not given. % limY: scalar numeric. limits how small the range of the y-axes can be. % fontsize: sets font-size. Default is 12 pts. Changing the fontsize % of existing plots is not recommended. (Set on first call). % lineNV: a 1D cell array containing Name-Value pair arguments valid for % Chart Line Properties. % axNV: a 1D cell array containing Name-Value pairs arguments valid for % Axes Properties. % size: Size of the figure in pixels given as a two element vector [X Y]. % A warning is issued if the requested size is larger than the screen % size minus the height of the OSX status bar (on my machine). % Default size is [1000 700]. % title: string containing a title to place at the top of the figure. % legend: two-element cell array. First element is a string to use for % title of the legend. Second element is either a numeric array % containing values to use for labels of each plot, or a cell array % of strings to use as labels. Only set legend on last call, or just % write all plots at once (better). % vSpace: Adds extra space vertical between plots, in pixels % borderFactor: Increases white space around plots. This value is a % multiple of the largest line width on the plots. p = inputParser; % input validation functions valFun1 = @(x) ischar(x) && ... all(~strcmpi(x,{'ev','handles','lineNV','limY','fontsize','axNV','size',... 'title','legend','vSpace','borderFactor'})); valFun2 = @(x) isscalar(x)&&isnumeric(x); % setup input scheme addRequired(p,'Lam',@isnumeric); addRequired(p,'MMdata',@isnumeric); addRequired(p,'MMerror',@isnumeric); addOptional(p,'LineSpec','-',valFun1) addParameter(p,'ev',false,@islogical) addParameter(p,'handles',gobjects(1,16), @(x) all(ishandle(x))) addParameter(p,'limY',0,valFun2) addParameter(p,'fontsize',12,valFun2) addParameter(p,'axNV',{},@iscell) addParameter(p,'lineNV',{},@iscell) addParameter(p,'size',[1000 700],@(x) length(x) == 2 && isnumeric(x)) addParameter(p,'title','',@ischar) addParameter(p,'legend',{},@(x) iscell(x) || strcmp(x,'none')) addParameter(p,'vSpace',0,@isscalar) addParameter(p,'borderFactor',0,@isscalar) parse(p,Lam,MMdata,MMerror,varargin{:}) %parse inputs % create new figure if no valid handles were given handles = p.Results.handles; if any(strcmpi('handles',p.UsingDefaults)) % Determine how large to make the figure window, according to the screensize. scrsz = get(0,'screensize'); figPos = [1 5 p.Results.size]; if figPos(3) > scrsz(3) figPos(3) = scrsz(3); warning(['Figure horizontal dimension set to the maximum value of ',... num2str(figPos(3)),' pixels.']) end if figPos(4) > (scrsz(4) - 99) % 99 pixels is the height of the OSX status bar on my machine figPos(4) = (scrsz(4) - 99); warning(['Figure vertical dimension set to the maximum value of ',... num2str(figPos(4)),' pixels.']) end h_fig = figure('position',figPos,'units','pixels'); %create figure xLabel = uicontrol('style','text','BackgroundColor','w',... 'units','pixels','FontSize',p.Results.fontsize,... 'tag','xLabelObject'); % create x-label if p.Results.ev == true set(xLabel,'String','Energy (eV)'); else set(xLabel,'String','Wavelength (nm)'); end xLabel_sz = get(xLabel,'extent'); set(xLabel,'Position',[(figPos(3) - xLabel_sz(3) )./2, 0, xLabel_sz(3), xLabel_sz(4)]); if ~isempty(p.Results.title) % create title if given figTitle = uicontrol('style','text','BackgroundColor','w',... 'units','pixels','FontSize',p.Results.fontsize,... 'tag','titleObject'); set(figTitle,'String',p.Results.title) figTitle_sz = get(figTitle,'extent'); set(figTitle,'Position',[( figPos(3) - figTitle_sz(3) )./2,... ( figPos(4) - figTitle_sz(4) ), figTitle_sz(3), figTitle_sz(4)]); end % determine the horizontal extent of y-axis marker labels dummy = uicontrol('style','text','fontsize',p.Results.fontsize,'units','pixels'); set(dummy,'String','-0.000'); yAxSz = get(dummy,'extent'); delete(dummy) plotSzX = figPos(3)/4 - yAxSz(3) - yAxSz(3)./5; % X size of plot area in pixels plotSzY = ( figPos(4) - 4*yAxSz(4) )/4 - 6 - p.Results.vSpace; % Y size of plot area in pixels for i=1:4 for j=1:4 plotPos = [ ( (plotSzX + yAxSz(3) + 3)*(j-1) + yAxSz(3) +5)./figPos(3) ,... ((plotSzY + yAxSz(4)./2 + p.Results.vSpace)*(4-i)+yAxSz(4)*2 + 3)./figPos(4),... plotSzX./figPos(3), plotSzY./figPos(4)]; hand = subplot('Position',plotPos); hold(hand,'on') box(hand,'on') if i ~= 4 set(hand,'XTickLabel',[]) % keep X lables only for bottom row end handles(j+4*(i-1)) = hand; end end else h_fig = get(handles(1),'parent'); figPos = get(h_fig,'Position'); end %plot data and set Line properties. if p.Results.ev == true; Lam = 1239.8./Lam; end if isempty(MMerror) for j = 1:4 for k = 1:4 plot(handles(k+4*(j-1)),Lam,squeeze(MMdata(j,k,:,:)),... p.Results.LineSpec,p.Results.lineNV{:}) end end else for j = 1:4 for k = 1:4 errorbar(handles(k+4*(j-1)),Lam,squeeze(MMdata(j,k,:,:)),... squeeze(MMerror(j,k,:,:)),... p.Results.LineSpec,'CapSize',0,p.Results.lineNV{:}) end end end % set Axes properties axis(handles,'tight'); % first, axes are set to tight if ~isempty(p.Results.axNV) for j=1:16; set(handles(j),p.Results.axNV{:}); end end if p.Results.limY ~= 0 % modify axes bounds if limY is set lim = p.Results.limY; for j=1:16 Ylim = get(handles(j),'YLim'); if (Ylim(2) - Ylim(1)) < lim avg = (Ylim(2) + Ylim(1))./2; Ylim(2) = avg + lim/2; Ylim(1) = avg - lim/2; set(handles(j),'Ylim',Ylim); end end end % Adjust plot limits so that lines do not overlap axis borders. % *** If you like to use Markers, then perhaps change 'lineWidth' to 'MarkerSize' lineHandle = get(handles(1),'children'); lineWidth = zeros(size(lineHandle)); for j = 1:length(lineHandle) lineWidth(j) = get(lineHandle(j),'lineWidth'); end lineWidth = max(lineWidth)*p.Results.borderFactor; plotPos = get(handles(1),'Position'); for j=1:16 xlim = get(handles(j),'xLim'); ylim = get(handles(j),'yLim'); xStep = (xlim(2) - xlim(1))/plotPos(3)/figPos(3)*lineWidth/2; yStep = (ylim(2) - ylim(1))/plotPos(4)/figPos(3)*lineWidth; set(handles(j),'XLim',[xlim(1)-xStep,xlim(2)+xStep]); set(handles(j),'YLim',[ylim(1)-yStep,ylim(2)+yStep]); end % set font size of all graphics objects if fontsize was passed if ~any(strcmpi('fontsize',p.UsingDefaults)) set(get(gcf,'children'),'FontSize',p.Results.fontsize); end % optionally create legend (this will increase the width of the figure!) if ~any(strcmpi('legend',p.UsingDefaults)) if iscell(p.Results.legend) Labels = p.Results.legend{2}; if isnumeric(Labels) Labels = cellfun(@(x) num2str(x),num2cell(Labels),'uniformoutput',0); end pos = zeros(4,16); for i=1:16 set(handles(i),'units','pixels'); pos(:,i) = get(handles(i),'Position'); end lgd = legend(handles(4),Labels,'location','northeastoutside'); set(lgd,'units','pixels','fontsize',p.Results.fontsize); title(lgd,p.Results.legend{1},'FontSize',p.Results.fontsize); lgd_pos = get(lgd,'Position'); h_fig.Position = h_fig.Position + [0 0 lgd_pos(3) 0]; for i=1:16 set(handles(i),'Position',pos(:,i)); end end end end function handle = linePlot(X,Y,YEr,varargin) % this program just makes line-plots easier. Documentation is similar to % the MMplot program, except that this only makes 1 plot not a 4x4 plot array. % EXAMPLE: % % plotStuff = {... % 'size',[700,500],... % 'fontsize',16,... % 'title','Title of Graph',... % 'xLabel','X Axis',... % 'yLabel','Y Axis',... % 'limy',0.1,... % 'lineNV',{'lineWidth',2},... % 'axNV',{'XGrid','on','YGrid','on'}... % }; % % h = plotter(Lam,MMgetp(MM1,'ld'),'b',plotStuff{:}); % plotter(Lam,MMgetp(MM1,'ldp'),'r',plotStuff{:},'handle',h); % % or % % h = plotter(Lam,[MMgetp(MM1,'ld') ; MMgetp(MM1,'ldp')],plotStuff{:}); p = inputParser; % input validation functions valFun1 = @(x) ischar(x) && ... all(~strcmpi(x,... {'handle','lineNV','limY','fontsize','axNV','size','title','xLabel',... 'yLabel','legend','legendLocation'})); valFun2 = @(x) isscalar(x)&&isnumeric(x); % setup input scheme addRequired(p,'X',@isnumeric); addRequired(p,'Y',@isnumeric); addRequired(p,'YEr',@isnumeric); addOptional(p,'LineSpec','-',valFun1) addParameter(p,'handle',gobjects(1), @ishandle); addParameter(p,'limY',0,valFun2) addParameter(p,'fontsize',12,valFun2) addParameter(p,'axNV',{},@iscell) addParameter(p,'lineNV',{},@iscell) addParameter(p,'size',[700 500],@(x) length(x) == 2 && isnumeric(x)) addParameter(p,'title','',@ischar) addParameter(p,'xLabel','',@ischar) addParameter(p,'yLabel','',@ischar) addParameter(p,'legend',{},@(x) iscell(x) || strcmp(x,'none')) addParameter(p,'legendLocation','northeastoutside',@ischar) parse(p,X,Y,YEr,varargin{:}) %parse inputs % create new figure if no valid handles were given if any(strcmpi('handle',p.UsingDefaults)) % Determine how large to make the figure window, according to the screensize. scrsz = get(0,'screensize'); figPos = [1 5 p.Results.size]; if figPos(3) > scrsz(3) figPos(3) = scrsz(3); warning(['Figure horizontal dimension set to the maximum value of ',... num2str(figPos(3)),' pixels.']) end if figPos(4) > (scrsz(4) - 99) % 99 pixels is the height of the OSX status bar on my machine figPos(4) = (scrsz(4) - 99); warning(['Figure vertical dimension set to the maximum value of ',... num2str(figPos(4)),' pixels.']) end h_fig = figure('position',figPos,'units','pixels'); %create figure handle = axes; hold(handle,'on') box(handle,'on') else handle = p.Results.handle; h_fig = get(handle,'parent'); figPos = get(h_fig,'Position'); end % plot line and set Line Properties plot(handle,X,Y(:,:),p.Results.LineSpec,p.Results.lineNV{:}) % set Axes properties axis(handle,'tight'); % first, axes are set to tight if ~isempty(p.Results.axNV) set(handle,p.Results.axNV{:}); end if p.Results.limY ~= 0 % modify axes bounds if limY is set lim = p.Results.limY; Ylim = get(handle,'YLim'); if (Ylim(2) - Ylim(1)) < lim avg = (Ylim(2) + Ylim(1))./2; Ylim(2) = avg + lim/2; Ylim(1) = avg - lim/2; set(handle,'Ylim',Ylim); end end % Adjust plot limits so that lines do not overlap axis borders. lineHandle = get(handle,'children'); lineWidth = zeros(size(lineHandle)); for j = 1:length(lineHandle) if strcmp(get(lineHandle(j),'Marker'),'none') lineWidth(j) = get(lineHandle(j),'LineWidth'); else lineWidth(j) = get(lineHandle(j),'MarkerSize'); end end lineWidth = max(lineWidth); plotPos = get(handle,'Position'); xlim = get(handle,'xLim'); ylim = get(handle,'yLim'); xStep = (xlim(2) - xlim(1))/plotPos(3)/figPos(3)*lineWidth/2; yStep = (ylim(2) - ylim(1))/plotPos(4)/figPos(3)*lineWidth; set(handle,'XLim',[xlim(1)-xStep,xlim(2)+xStep]); set(handle,'YLim',[ylim(1)-yStep,ylim(2)+yStep]); % add the labels if passed if ~any(strcmpi('title',p.UsingDefaults)) title(p.Results.title,'FontSize',p.Results.fontsize,'FontWeight','normal'); end if ~any(strcmpi('xLabel',p.UsingDefaults)) xlabel(p.Results.xLabel,'FontSize',p.Results.fontsize); end if ~any(strcmpi('yLabel',p.UsingDefaults)) ylabel(p.Results.yLabel,'FontSize',p.Results.fontsize); end % set font size of all graphics objects if fontsize was passed if ~any(strcmpi('fontsize',p.UsingDefaults)) set(get(gcf,'children'),'FontSize',p.Results.fontsize); end % optionally create legend (this will increase the width of the figure!) if ~any(strcmpi('legend',p.UsingDefaults)) if iscell(p.Results.legend) Labels = p.Results.legend{2}; if isnumeric(Labels) Labels = cellfun(@(x) num2str(x),num2cell(Labels),'uniformoutput',0); end set(handle,'units','pixels'); pos = get(handle,'Position'); lgd = legend(handle,Labels,'location',p.Results.legendLocation); set(lgd,'units','pixels','fontsize',p.Results.fontsize); title(lgd,p.Results.legend{1},'FontSize',p.Results.fontsize); if ~isempty(regexp(p.Results.legendLocation,'.outside','ONCE')) lgd_pos = get(lgd,'Position'); h_fig.Position = h_fig.Position + [0 0 lgd_pos(3) 0]; set(handle,'Position',pos); end end end end % =========================================================================
github
shane-nichols/smn-thesis-master
MPlot3D.m
.m
smn-thesis-master/MPlot3D.m
15,677
utf_8
1a8b8381948165ef6054487ebde73297
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) MPlot3D < handle properties uniquezero = true palette = 'HotCold Bright' gs = 0 width fontsize = 14 limz = 1e-3 norm = true hSpacing = 3; vSpacing = 3; cbw = 10; end properties (SetAccess = protected) figHandle axesHandles = gobjects(4); colorbarHandles = gobjects(4); end properties (Hidden) maskHandles end methods function obj = MPlot3D(varargin) obj.figHandle = figure; obj.width = getFigWidth; plot(obj,varargin{:}); end function plot(obj,data,varargin) % \\ Required positional input: % data: [4,4,X,Y] array. X and Y are horizontal and vertical plot % dimensions. % \\ Optional Name-Value pairs that set object properties % 'uniquezero', logical: make zero white or black in colormaps % Default is true. % 'palette', string: name of a colormap, including custom % ones in local function colPalette % Default is 'Fireice' % 'gs', [min max]: GlobalScale. plot limits of all Z-scales between min, max. % If not given, each MM element maps to its own min and max value. % Only 1 colorbar is drawn with GlobalScale is set % 'fontsize', scalar: Size of font in colorbars % 'width', scalar: Width of figure in inches. Height is % computed automatically to ensure no streching of plots (figure can go % off page, in which case, reduce value of 'width'. Default is %60 of % the monitor or with dual displays of different size, who knowns... % 'limz', scalar: limits how small the range of the z-axes can be. % 'hSpacing', scalar: sets the horizontal space between plots in pixels % 'vSpacing', scalar: sets the vertical space between plots in pixels % 'cbw', scalar: Colorbar width in pixels. p = inputParser; % setup input scheme addRequired(p,'obj',@(x) isa(x,'MPlot3D')) addRequired(p,'data',@(x) isnumeric(x) && ndims(x) == 4) addParameter(p,'norm',obj.norm,@(x) x == 1 || x == 0) addParameter(p,'uniquezero',obj.uniquezero,@(x) x == 1 || x == 0) addParameter(p,'palette',obj.palette,@(x) ischar(x) ) addParameter(p,'limz',obj.limz,@(x) isscalar(x)&&isnumeric(x)) addParameter(p,'fontsize',obj.fontsize,@(x) isscalar(x)&&isnumeric(x)) addParameter(p,'width',obj.width,@(x) isscalar(x) && isnumeric(x)) % inches addParameter(p,'gs',obj.gs,@(x) length(x) == 2 && isnumeric(x)) addParameter(p,'hSpacing',obj.hSpacing,@isscalar) addParameter(p,'vSpacing',obj.vSpacing,@isscalar) addParameter(p,'cbw',obj.cbw,@isscalar) parse(p,obj,data,varargin{:}) %parse inputs sz = size(data); obj.norm = p.Results.norm; obj.uniquezero = p.Results.uniquezero; obj.palette = p.Results.palette; obj.gs = p.Results.gs; obj.limz = p.Results.limz; obj.fontsize = p.Results.fontsize; obj.width = p.Results.width; obj.hSpacing = p.Results.hSpacing; obj.vSpacing = p.Results.vSpacing; obj.cbw = p.Results.cbw; % normalize and replace NaN with 0 if obj.norm is set if obj.norm data = data ./ data(1,1,:,:); data(isnan(data)) = 0; end dummy = uicontrol('style', 'text', 'fontsize', obj.fontsize, 'units', 'pixels'); set(dummy,'String', '-0.000'); cblbextents = get(dummy, 'extent'); cblbsz = cblbextents(3); % colorbar label size delete(dummy) figWidth = (obj.width) * obj.figHandle.Parent.ScreenPixelsPerInch; if obj.gs==0 plotW = (figWidth - 9*obj.vSpacing-4*(obj.cbw + cblbsz))/4; plotH = sz(3)/sz(4)*plotW; figHeight = plotH*4+5*obj.hSpacing; totalPlotWidth = obj.vSpacing*2+obj.cbw+cblbsz+plotW; plotPosFun = @(j,k) [ (obj.vSpacing+(k-1)*totalPlotWidth)/figWidth... ,(obj.hSpacing+(4-j)*(plotH+obj.hSpacing))/figHeight,... plotW/figWidth,... plotH/figHeight]; set(obj.figHandle,'Position',[0,0,figWidth,figHeight],'units','pixels'); for j=1:4 for k=1:4 if isgraphics(obj.axesHandles(j,k)) subplot(obj.axesHandles(j,k), ... 'position',plotPosFun(j,k),'units','pixels'); else obj.axesHandles(j,k) = ... subplot('position',plotPosFun(j,k),'units','pixels'); end clim = [min(min(data(j,k,:,:))),max(max(data(j,k,:,:)))]; if obj.limz ~= 0 % modify axes bounds if limz is set if (clim(2) - clim(1)) < obj.limz avg = (clim(2) + clim(1))./2; clim(2) = avg + obj.limz/2; clim(1) = avg - obj.limz/2; end end pos = get(obj.axesHandles(j,k),'Position'); imagesc(squeeze(data(j,k,:,:)),'Parent',obj.axesHandles(j,k),clim) axis(obj.axesHandles(j,k),'off') colormap(obj.axesHandles(j,k),makeColormap(clim,obj.uniquezero,obj.palette)) obj.colorbarHandles(j,k) = colorbar(obj.axesHandles(j,k),'units','pixels',... 'Position',[pos(1)+pos(3)+obj.vSpacing,pos(2)+cblbextents(4)/4,... obj.cbw,pos(4)-cblbextents(4)/2],... 'fontsize',obj.fontsize); end end if any(strcmp('nonorm', p.UsingDefaults)) obj.axesHandles(1,1).CLim = [0 1]; end else plotW = (figWidth - 6*obj.vSpacing - 2*obj.cbw - cblbsz)/4; plotH = sz(3)/sz(4)*plotW; figHeight = plotH*4+5*obj.hSpacing; plotPosFun = @(j,k) [ (obj.vSpacing+(k-1)*(plotW+obj.vSpacing))/figWidth,... (obj.hSpacing+(4-j)*(plotH+obj.hSpacing))/figHeight,... plotW/figWidth,... plotH/figHeight]; set(obj.figHandle,'Position',[0,0,figWidth,figHeight],'units','pixels'); for j=1:4 for k=1:4 if isgraphics(obj.axesHandles(j,k)) subplot(obj.axesHandles(j,k),... 'position',plotPosFun(j,k),'units','pixels'); else obj.axesHandles(j,k) = ... subplot('position',plotPosFun(j,k),'units','pixels'); end pos = get(obj.axesHandles(j,k),'Position'); imagesc(squeeze(data(j,k,:,:)),'Parent',obj.axesHandles(j,k),obj.gs) colormap(obj.axesHandles(j,k),makeColormap(obj.gs,obj.uniquezero,obj.palette)) axis(obj.axesHandles(j,k),'off') end end obj.colorbarHandles(1,4) = colorbar(obj.axesHandles(1,4),'units','pixels',... 'Position',[pos(1)+pos(3)+obj.vSpacing,cblbextents(4)/4+6,... obj.cbw,figHeight-cblbextents(4)/2-12],... 'fontsize',obj.fontsize); end end function mmdata = getPlotData(obj) % h: [4,4] array of axis handles mmdata = zeros([4, 4, size(obj.axesHandles(1,1).Children.CData)], ... class(obj.axesHandles(1,1).Children.CData)); for j=1:4 for k=1:4 mmdata(j,k,:,:) = obj.axesHandles(j,k).Children.CData; end end end function replacePlotData(obj,mmdata) % MMreplace3DplotData replaces the data in 4x4 intensity plots. % h is a [4,4] array of axis handles % Data is a 4x4xNxM array. Data size should not be different than data in % plots. for j=1:4 for k=1:4 obj.axesHandles(j,k).Children.CData = squeeze(mmdata(j,k,:,:)); end end end function update(obj,varargin) obj.figHandle.Visible = 'off'; data = getPlotData(obj); delete(obj.colorbarHandles) obj.colorbarHandles = gobjects(4); plot(obj,data,varargin{:}); obj.figHandle.Visible = 'on'; end function drawMask(obj, i, j) sz = size(obj.axesHandles(1,1).Children.CData); h_im = obj.axesHandles(i,j).Children; e = imellipse(obj.axesHandles(i,j),... [sz(1)*0.1,sz(2)*0.1,0.8*sz(1),0.8*sz(1)]); obj.maskHandles = {e,h_im}; end function setElipse(obj, position) setPosition(obj.maskHandles{1}, position); end function applyMask(obj) mask = createMask(obj.maskHandles{1}, obj.maskHandles{2}); delete(obj.maskHandles{1}) for j=1:4 for k=1:4 obj.axesHandles(j,k).Children.CData = ... obj.axesHandles(j,k).Children.CData.*mask; end end end function applyMaskWithTrim(obj) mask = createMask(obj.maskHandles{1},obj.maskHandles{2}); pos = obj.maskHandles{1}.getPosition; pos = [floor(pos(1:2)),ceil(pos(3:4))]; delete(obj.maskHandles{1}) data = zeros(4,4,pos(4),pos(3),'single'); idx = {pos(2):(pos(2)+pos(4)-1),pos(1):(pos(1)+pos(3)-1)}; for j=1:4 for k=1:4 data(j,k,:,:) = ... obj.axesHandles(j,k).Children.CData(idx{:}).*mask(idx{:}); end end plot(obj,data) end function print(obj,filepath) print(obj.figHandle,filepath,'-depsc'); end function flipX(obj) replacePlotData(obj, flip(getPlotData(obj), 4)); end end end function width = getFigWidth % sets default width to 60% of display width scrsz = get(0,'screensize'); width = 0.6*scrsz(3)/get(0,'ScreenPixelsPerInch'); end function colAr = colPalette(palette) % these are custom colormaps. A colormap is just a Nx4 matrix. The % first column are values between 0 and 256 that position a color marker. % The 2nd, 3rd, and 4th columns are RGB color values. Names of matlab % colormaps can also be handed to this function. switch palette case 'HotCold Bright' colAr = ... [0 0 65 220;... 36 0 90 240;... 76 0 253 253;... 128 250 250 250;... 182 255 242 0;... 224 255 127 0;... 256 255 0 0]; case 'HotCold Dark' colAr = ... [0 0 253 253;... 36 1 114 239;... 76 0 90 240;... 128 0 0 0;... 182 255 0 0;... 224 255 127 0;... 256 255 242 0]; case 'TwoTone Bright' colAr = ... [0 0 0 255;... 128 255 255 255;... 256 255 0 0]; case 'TwoTone Dark' colAr = ... [0 0 0 255;... 128 0 0 0;... 256 255 0 0]; case 'Fireice' %Copyright (c) 2009, Joseph Kirk %All rights reserved. clrs = [0.75 1 1; 0 1 1; 0 0 1;... 0 0 0; 1 0 0; 1 1 0; 1 1 0.75]; y = -3:3; m = 64; if mod(m,2) delta = min(1,6/(m-1)); half = (m-1)/2; yi = delta*(-half:half)'; else delta = min(1,6/m); half = m/2; yi = delta*nonzeros(-half:half); end colAr = cat(2,(0:4:255).',255*interp2(1:3,y,clrs,1:3,yi)); case 'Spectral' colAr = cbrewer('div', 'Spectral', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'RdYlGn' colAr = cbrewer('div', 'RdYlGn', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'RdYlBu' colAr = cbrewer('div', 'RdYlBu', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'RdBu' colAr = cbrewer('div', 'RdBu', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'RdGy' colAr = cbrewer('div', 'RdGy', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'PuOr' colAr = cbrewer('div', 'PuOr', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'PRGn' colAr = cbrewer('div', 'PRGn', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'PiYG' colAr = cbrewer('div', 'PiYG', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; case 'BrBG' colAr = cbrewer('div', 'BrBG', 11) .* 255; t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; otherwise colAr = colormap(palette) .* 255; % to use other colormaps t1 = linspace(0,256,size(colAr, 1)).'; colAr = [t1, colAr]; end end function fracIndx = fracIndex(array,x) fracIndx = zeros(1,length(x)); for idx = 1:length(x) if x >= array(end) fracIndx(idx) = length(array); elseif x(idx) <= array(1) fracIndx(idx) = 1; else a = find(array <= x(idx)); a = a(length(a)); b = find(array > x(idx)); b = b(1); fracIndx(idx) = a+(x(idx)-array(a))/(array(b)-array(a)); end end end function cm = makeColormap(clim,b_uniqueZero,palette) dmin=clim(1); dmax=clim(2); if dmax == dmin dmax=1; dmin=0; end if b_uniqueZero == true Zscale = zeros(1,256); if abs(dmin) < abs(dmax) didx = (dmax - dmin)/(2*dmax); for idx = 0:255 Zscale(idx+1) = 256 - didx*idx; end else didx = (dmin-dmax)/(2*dmin); for idx = 0:255 Zscale(idx+1) = idx*didx; end Zscale = flip(Zscale); end else Zscale = flip(1:256); end colAr = colPalette(palette); cm = zeros(256,3); for n = 1:256 x = fracIndex(colAr(:,1),Zscale(n)); cm(n,1) = interp1(colAr(:,2),x); cm(n,2) = interp1(colAr(:,3),x); cm(n,3) = interp1(colAr(:,4),x); end cm = cm./255; cm = flip(cm,1); end
github
shane-nichols/smn-thesis-master
genop.m
.m
smn-thesis-master/dependencies/Multiprod_2009/Testing/genop.m
3,837
utf_8
2c087f1f1c6d8843c6f5198716d04526
function z = genop(op,x,y) %GENOP Generalized array operations. % GENOP(OP, X, Y) applies the function OP to the arguments X and Y where % singleton dimensions of X and Y have been expanded so that X and Y are % the same size, but this is done without actually copying any data. % % OP must be a function handle to a function that computes an % element-by-element function of its two arguments. % % X and Y can be any numeric arrays where non-singleton dimensions in one % must correspond to the same or unity size in the other. In other % words, singleton dimensions in one can be expanded to the size of % the other, otherwise the size of the dimensions must match. % % For example, to subtract the mean from each column, you could use % % X2 = X - repmat(mean(X),size(X,1),1); % % or, using GENOP, % % X2 = genop(@minus,X,mean(X)); % % where the single row of mean(x) has been logically expanded to match % the number of rows in X, but without actually copying any data. % % GENOP(OP) returns a function handle that can be used like above: % % f = genop(@minus); % X2 = f(X,mean(X)); % written by Douglas M. Schwarz % email: dmschwarz (at) urgrad (dot) rochester (dot) edu % 13 March 2006 % This function was inspired by an idea by Urs Schwarz (no relation) and % the idea for returning a function handle was shamelessly stolen from % Duane Hanselman. % Check inputs. if ~(nargin == 1 || nargin == 3) error('genop:zeroInputs','1 or 3 arguments required.') end if ~isa(op,'function_handle') error('genop:incorrectOperator','Operator must be a function handle.') end if nargin == 1 z = @(x,y) genop(op,x,y); return end % Compute sizes of x and y, possibly extended with ones so they match % in length. nd = max(ndims(x),ndims(y)); sx = size(x); sx(end+1:nd) = 1; sy = size(y); sy(end+1:nd) = 1; dz = sx ~= sy; dims = find(dz); num_dims = length(dims); % Eliminate some simple cases. if num_dims == 0 || numel(x) == 1 || numel(y) == 1 z = op(x,y); return end % Check for dimensional compatibility of inputs, compute size and class of % output array and allocate it. if ~(all(sx(dz) == 1 | sy(dz) == 1)) error('genop:argSizeError','Argument dimensions are not compatible.') end sz = max([sx;sy]); z1 = op(x(1),y(1)); if islogical(z1) z = repmat(logical(0),sz); else z = zeros(sz,class(z1)); end % The most efficient way to compute the result seems to require that we % loop through the unmatching dimensions (those where dz = 1), performing % the operation and assigning to the appropriately indexed output. Since % we don't know in advance which or how many dimensions don't match we have % to create the code as a string and then eval it. To see how this works, % uncomment the disp statement below to display the code before it is % evaluated. This could all be done with fixed code using subsref and % subsasgn, but that way seems to be much slower. % Compute code strings representing the subscripts of x, y and z. xsub = subgen(sy ~= sz); ysub = subgen(sx ~= sz); zsub = subgen(dz); % Generate the code. indent = 2; % spaces per indent level code_cells = cell(1,2*num_dims + 1); for i = 1:num_dims code_cells{i} = sprintf('%*sfor i%d = 1:sz(%d)\n',indent*(i-1),'',... dims([i i])); code_cells{end-i+1} = sprintf('%*send\n',indent*(i-1),''); end code_cells{num_dims+1} = sprintf('%*sz(%s) = op(x(%s),y(%s));\n',... indent*num_dims,'',zsub,xsub,ysub); code = [code_cells{:}]; % Evaluate the code. % disp(code) eval(code) function sub = subgen(select_flag) elements = {':,','i%d,'}; selected_elements = elements(select_flag + 1); format_str = [selected_elements{:}]; sub = sprintf(format_str(1:end-1),find(select_flag));
github
shane-nichols/smn-thesis-master
arraylab133.m
.m
smn-thesis-master/dependencies/Multiprod_2009/Testing/arraylab133.m
2,056
utf_8
46c91102f1666d2e8a3f0accd7d809ed
function c = arraylab133(a,b,d1,d2) % Several adjustments to ARRAYLAB13: % 1) Adjustment used in ARRAYLAB131 was not used here. % 2) Nested statement used in ARRAYLAB132 was used here. % 3) PERMUTE in subfunction MBYV was substituted with RESHAPE % (faster by one order of magnitude!). ndimsA = ndims(a); % NOTE - Since trailing singletons are removed, ndimsB = ndims(b); % not always NDIMSB = NDIMSA NsA = d2 - ndimsA; % Number of added trailing singletons NsB = d2 - ndimsB; sizA = [size(a) ones(1,NsA)]; sizB = [size(b) ones(1,NsB)]; p = sizA(d1); r = sizB(d1); s = sizB(d2); % Initializing C sizC = sizA; sizC(d2) = s; c = zeros(sizC); % Vectorized indices for B and C Nd = length(sizB); Bindices = cell(1,Nd); % preallocating (cell array) for d = 1 : Nd Bindices{d} = 1:sizB(d); end B2size = sizB; B2size([d1 d2]) = [1 r]; B2indices = Bindices; % B2 will be cloned P times along its singleton dimension D1 (see MBYV). B2indices([d1 d2]) = [{ones(1, p)} Bindices(d1)]; % "Cloned" index if sizB(d2) == 1 % PxQ IN A - Rx1 IN B % A * B c = mbyv(a, b, B2indices,B2size,d1,d2,p); else % PxQ IN A - RxS IN B Cindices = Bindices; Cindices{d1} = 1:p; % Building C for Ncol = 1:s Bindices{d2} = Ncol; Cindices{d2} = Ncol; c(Cindices{:}) = mbyv(a, b(Bindices{:}), B2indices,B2size,d1,d2,p); end end function c = mbyv(a, b2, indices, newsize, d1, d2, p) % This is an adjustment to a subfunction used within MULTIPROD 1.3 % 1 - Transposing: Qx1 matrices in B become 1xQ matrices b2 = reshape(b2, newsize); % 3 - Performing dot products along dimension DIM+1 % % NOTE: b(indices{:}) has same size as A % % NOTE: This nested statement is much faster than two separate ones. c = sum(a .* b2(indices{:}), d2);
github
shane-nichols/smn-thesis-master
timing_MX.m
.m
smn-thesis-master/dependencies/Multiprod_2009/Testing/timing_MX.m
1,472
utf_8
7db26cc2c4954f1026e93f2d0c44139a
function timing_MX % TIMING_MX Speed of MX as performed by MULTIPROD and by a nested loop. % TIMING_MX compares the speed of matrix expansion as performed by % MULTIPROD and an equivalent nested loop. The results are shown in the % manual (fig. 2). % Notice that MULTIPROD enables array expansion which generalizes matrix % expansion to arrays of any size, while the loop tested in this % function works only for this specific case, and would be much slower % if it were generalized to N-D arrays. % Checking whether needed software exists message = sysrequirements_for_testing('timeit'); if message disp ' ', error('testing_memory_usage:Missing_subfuncs', message) end % Matrix expansion example (fig. 2) disp ' ' disp 'Timing matrix expansion (see MULTIPROD manual, figure 2)' disp ' ' a = rand(2, 5); b = rand(5, 3, 1000, 10); fprintf ('Size of A: %0.0fx%0.0f\n', size(a)) fprintf ('Size of B: (%0.0fx%0.0f)x%0.0fx%0.0f\n', size(b)) disp ' ', disp 'Please wait...' disp ' ' f1 = @() loop(a,b); f2 = @() multiprod(a,b); t1 = timeit(f1)*1000; fprintf('LOOP(A, B): %10.4f milliseconds\n', t1) t2 = timeit(f2)*1000; fprintf('MULTIPROD(A, B): %10.4f milliseconds\n', t2) disp ' ' fprintf('MULTIPROD performed matrix expansion %6.0f times faster than a plain loop\n', t1/t2) disp ' ' function C = loop(A,B) for i = 1:1000 for j = 1:10 C(:,:,i,j) = A * B(:,:,i,j); end end
github
shane-nichols/smn-thesis-master
timing_matlab_commands.m
.m
smn-thesis-master/dependencies/Multiprod_2009/Testing/timing_matlab_commands.m
7,975
utf_8
5384e23295d7b37d3318825a1d5c3dfe
function timing_matlab_commands % TIMING_MATLAB_COMMANDS Testing for speed different MATLAB commands. % % Main conclusion: RESHAPE and * (i.e. MTIMES) are very quick! % Paolo de Leva % University of Rome, Foro Italico, Rome, Italy % 2008 Dec 24 clear all % Checking whether needed software exists if ~exist('bsxfun', 'builtin') message = sysrequirements_for_testing('bsxmex', 'timeit'); else message = sysrequirements_for_testing('timeit'); end if message disp ' ', error('timing_matlab_commands:Missing_subfuncs', message) end disp ' ' disp '---------------------------------- Experiment 1 ----------------------------------' N = 10000; P = 3; Q = 3; R = 1; timing(N,P,Q,R); disp '---------------------------------- Experiment 2 ----------------------------------' N = 1000; P = 3; Q = 30; R = 1; timing(N,P,Q,R); disp '---------------------------------- Experiment 3 ----------------------------------' N = 1000; P = 9; Q = 10; R = 3; timing(N,P,Q,R); disp '---------------------------------- Experiment 4 ----------------------------------' N = 100; P = 9; Q = 100; R = 3; timing(N,P,Q,R); disp '---------------------------------- Experiment 5 ----------------------------------' disp ' ' timing2(4, 10000); timing2(200, 200); timing2(10000, 4); disp '---------------------------- Experiment 6 ----------------------------' disp ' ' a = rand(4096, 4096); fprintf ('Size of A: %0.0f x %0.0f\n', size(a)) disp ' ' disp ' SUM(A,1) SUM(A,2)' f1 = @() sum(a, 1); f2 = @() sum(a, 2); disp ([timeit(f1), timeit(f2)]) clear all b = rand(256, 256, 256); fprintf ('Size of B: %0.0f x %0.0f x %0.0f\n', size(b)) disp ' ' disp ' SUM(B,1) SUM(B,2) SUM(B,3)' f1 = @() sum(b, 1); f2 = @() sum(b, 2); f3 = @() sum(b, 3); disp ([timeit(f1), timeit(f2), timeit(f3)]) disp '---------------------------- Experiment 7 ----------------------------' disp ' ' a = rand(101,102,103); fprintf ('Size of A: %0.0f x %0.0f x %0.0f\n', size(a)) disp ' ' disp 'Moving last dimension to first dimension:' disp 'PERMUTE(A,[3 2 1]) PERMUTE(A,[3 1 2]) SHIFTDIM(A,2)' disp '(SWAPPING) (SHIFTING) (SHIFTING)' f1 = @() permute(a, [3 2 1]); f2 = @() permute(a, [3 1 2]); f3 = @() shiftdim(a, 2); fprintf(1, '%8.2g ', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ', disp ' ' a2 = f1(); s = size(a2); a2 = f2(); s(2,:) = size(a2); a2 = f3(); s(3,:) = size(a2); disp (s) disp 'Moving first dimension to last dimension:' disp 'PERMUTE(A,[3 2 1]) PERMUTE(A,[2 3 1]) SHIFTDIM(A,1)' disp '(SWAPPING) (SHIFTING) (SHIFTING)' f1 = @() permute(a, [3 2 1]); f2 = @() permute(a, [2 3 1]); f3 = @() shiftdim(a, 1); fprintf(1, '%8.2g ', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ', disp ' ' a2 = f1(); s = size(a2); a2 = f2(); s(2,:) = size(a2); a2 = f3(); s(3,:) = size(a2); disp (s) disp ' ' a = rand(21,22,23,24,25); fprintf ('Size of A: %0.0f x %0.0f x %0.0f x %0.0f x %0.0f\n', size(a)) disp ' ' disp 'Moving 4th dimension to 1st dimension:' disp 'PERMUTE(A,[4 2 3 1 5]) PERMUTE(A,[4 1 2 3 5]) PERMUTE(A,[4 5 1 2 3])' disp '(SWAPPING) (PARTIAL SHIFTING) (SHIFTING)' f1 = @() permute(a, [4 2 3 1 5]); f2 = @() permute(a, [4 1 2 3 5]); f3 = @() permute(a, [4 5 1 2 3]); fprintf(1, '%8.2g ', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ', disp ' ' a2 = f1(); s = size(a2); a2 = f2(); s(2,:) = size(a2); a2 = f3(); s(3,:) = size(a2); disp (s) disp 'Moving 2nd dimension to 5th dimension:' disp 'PERMUTE(A,[1 5 3 4 2]) PERMUTE(A,[1 3 4 5 2]) PERMUTE(A,[3 4 5 1 2])' disp '(SWAPPING) (PARTIAL SHIFTING) (SHIFTING)' f1 = @() permute(a, [1 5 3 4 2]); f2 = @() permute(a, [1 3 4 5 2]); f3 = @() permute(a, [3 4 5 1 2]); fprintf(1, '%8.2g ', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ', disp ' ' a2 = f1(); s = size(a2); a2 = f2(); s(2,:) = size(a2); a2 = f3(); s(3,:) = size(a2); disp (s) disp '---------------------------- Experiment 8 ----------------------------' disp ' ' a =rand(101,102,103); order = [1 2 3]; shape = [101,102,103]; f1 = @() perm(a,order); f2 = @() ifpermute(a,order); f3 = @() ifpermute2(a,order); f4 = @() resh(a,shape); f5 = @() ifreshape(a,shape); f6 = @() ifreshape2(a,shape); disp 'COMPARING STATEMENTS THAT DO NOTHING!' disp ' ' fprintf ('Size of A: %0.0f x %0.0f x %0.0f\n', size(a)) disp ' ' disp 'ORDER = [1 2 3] % (keeping same order)' disp 'SHAPE = [101,102,103] % (keeping same shape)' disp ' ' fprintf (1,'PERMUTE(A,ORDER) .......................................... %0.4g\n', timeit(f1)) fprintf (1,'IF ~ISEQUAL(ORDER,1:LENGTH(ORDER)), A=PERMUTE(A,ORDER); END %0.4g\n', timeit(f2)) fprintf (1,'IF ~ISEQUAL(ORDER,1:3), A=PERMUTE(A,ORDER); END %0.4g\n', timeit(f3)) disp ' ' fprintf (1,'RESHAPE(A,SHAPE) .......................................... %0.4g\n', timeit(f4)) fprintf (1,'IF ~ISEQUAL(SHAPE,SIZE(A)), A=RESHAPE(A,SHAPE); END ....... %0.4g\n', timeit(f5)) fprintf (1,'IF ~ISEQUAL(SHAPE,SHAPE), A=RESHAPE(A,SHAPE); END ....... %0.4g\n', timeit(f5)) disp ' ' function a=perm(a, order) a=permute(a, order); function a=resh(a,shape) a=reshape(a,shape); function a=ifpermute(a, order) if ~isequal(order, 1:length(order)), a=permute(a,order); end function a=ifreshape(a, shape) if ~isequal(shape, size(a)), a=reshape(a,shape); end function a=ifpermute2(a, order) if ~isequal(order, 1:3), a=permute(a,order); end function a=ifreshape2(a, shape) if ~isequal(shape, shape), a=reshape(a,shape); end function timing(N,P,Q,R) a0 = rand(1, P, Q); b0 = rand(1, Q, R); a = a0(ones(1,N),:,:); % Cloning along first dimension b = b0(ones(1,N),:,:); % Cloning along first dimension [n1 p q1] = size(a); % reads third dim even if it is 1. [n2 q2 r] = size(b); % reads third dim even if it is 1. disp ' ' disp 'Array Size Size Number of elements' fprintf (1, 'A Nx(PxQ) %0.0f x (%0.0f x %0.0f) %8.0f\n', [n1 p q1 numel(a)]) fprintf (1, 'B Nx(QxR) %0.0f x (%0.0f x %0.0f) %8.0f\n', [n2 q2 r numel(b)]) f1 = @() permute(a, [2 3 1]); f2 = @() permute(a, [1 3 2]); f3 = @() permute(a, [2 1 3]); f4 = @() permute(a, [1 2 3]); f5 = @() permute(b, [2 3 1]); f6 = @() permute(b, [1 3 2]); f7 = @() permute(b, [2 1 3]); f8 = @() permute(b, [1 2 3]); disp ' ' disp ' PERMUTE(A,[2 3 1]) PERMUTE(A,[1 3 2]) PERMUTE(A,[2 1 3]) PERMUTE(A,[1 2 3])' fprintf(1, '%20.5f', [timeit(f1), timeit(f2), timeit(f3), timeit(f4)]) disp ' ' disp ' PERMUTE(B,[2 3 1]) PERMUTE(B,[1 3 2]) PERMUTE(B,[2 1 3]) PERMUTE(B,[1 2 3])' fprintf(1, '%20.5f', [timeit(f5), timeit(f6), timeit(f7), timeit(f8)]) disp ' ' disp ' ' disp ' RESHAPE(A,[N*P Q]) RESHAPE(B,[N R Q]) RESHAPE(B,[N 1 R Q])' f1 = @() reshape(a, [N*P Q]); f2 = @() reshape(b, [N R Q]); f3 = @() reshape(b, [N 1 R Q]); fprintf(1, '%20.5f', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ' f1 = @() a .* a; f2 = @() bsxfun(@times, a, a); f3 = @() b .* b; f4 = @() bsxfun(@times, b, b); disp ' ' disp ' A .* A BSXFUN(@TIMES,A,A)' fprintf(1, '%20.5f%20.5f\n', [timeit(f1), timeit(f2)]) disp ' B .* B BSXFUN(@TIMES,B,B)' fprintf(1, '%20.5f%20.5f\n', [timeit(f3), timeit(f4)]) if R==1 disp ' ' disp ' NOTE: If R=1 then RESHAPE(B,[N R Q]) is equivalent to' disp ' PERMUTE(B,[1 3 2]) but much faster!' disp ' (at least on my system)' end disp ' ' function timing2(P,Q) a = rand(P, Q); b = rand(Q, 1); fprintf ('Size of A: %0.0f x %0.0f\n', size(a)) fprintf ('Size of B: %0.0f x %0.0f\n', size(b)) disp ' ' disp ' A * B TONY''S TRICK BSXFUN' f1 = @() a * b; f2 = @() clone_multiply_sum(a, b', P); f3 = @() sum(bsxfun(@times, a, b'), 2); fprintf(1, '%13.5f', [timeit(f1), timeit(f2), timeit(f3)]) disp ' ' disp ' ' c = f1() - f2(); d = max(c(:)); if d > eps*20 disp 'There is an unexpected output difference:'; disp (d); end function c = clone_multiply_sum(a,b,P) c = sum(a .* b(ones(1,P),:), 2);
github
shane-nichols/smn-thesis-master
arraylab13.m
.m
smn-thesis-master/dependencies/Multiprod_2009/Testing/arraylab13.m
1,913
utf_8
942e4a25270936f264b83f4367d9b7fa
function c = arraylab13(a,b,d1,d2) % This is the engine used in MULTIPROD 1.3 for these cases: % PxQ IN A - Rx1 IN B % PxQ IN A - RxS IN B (slowest) ndimsA = ndims(a); % NOTE - Since trailing singletons are removed, ndimsB = ndims(b); % not always NDIMSB = NDIMSA NsA = d2 - ndimsA; % Number of added trailing singletons NsB = d2 - ndimsB; sizA = [size(a) ones(1,NsA)]; sizB = [size(b) ones(1,NsB)]; % Performing products if sizB(d2) == 1 % PxQ IN A - Rx1 IN B % A * B c = mbyv(a, b, d1); else % PxQ IN A - RxS IN B (least efficient) p = sizA(d1); s = sizB(d2); % Initializing C sizC = sizA; sizC(d2) = s; c = zeros(sizC); % Vectorized indices for B and C Nd = length(sizB); Bindices = cell(1,Nd); % preallocating (cell array) for d = 1 : Nd Bindices{d} = 1:sizB(d); end Cindices = Bindices; Cindices{d1} = 1:p; % Building C for Ncol = 1:s Bindices{d2} = Ncol; Cindices{d2} = Ncol; c(Cindices{:}) = mbyv(a, b(Bindices{:}), d1); end end function c = mbyv(a, b, dim) % NOTE: This function is part of MULTIPROD 1.3 % 1 - Transposing: Qx1 matrices in B become 1xQ matrices order = [1:dim-1, dim+1, dim, dim+2:ndims(b)]; b = permute(b, order); % 2 - Cloning B P times along its singleton dimension DIM. % Optimized code for B2 = REPMAT(B, [ONES(1,DIM-1), P]). % INDICES is a cell array containing vectorized indices. P = size(a, dim); siz = size(b); siz = [siz ones(1,dim-length(siz))]; % Ones are added if DIM > NDIMS(B) Nd = length(siz); indices = cell(1,Nd); % preallocating for d = 1 : Nd indices{d} = 1:siz(d); end indices{dim} = ones(1, P); % "Cloned" index for dimension DIM b2 = b(indices{:}); % B2 has same size as A % 3 - Performing dot products along dimension DIM+1 c = sum(a .* b2, dim+1);
github
shane-nichols/smn-thesis-master
materialLib.m
.m
smn-thesis-master/materialLib/materialLib.m
6,718
utf_8
6395189afc14d401689fa1ea8dc486c6
function [epsilon,alpha,mu] = materialLib(material, wavelengths, varargin) % small library of optical functions for anisotropic materials Nwl = length(wavelengths); epsilon = zeros(3,3,Nwl); mu = setDiag(ones(3,Nwl)); alpha = 0; switch material case 'rubrene' data = load('rubreneOptfun.mat'); data = data.filetosave; eV = (1239.8)./wavelengths; epsilon = setDiag( ((interp1(data(:,1),data(:,2:4),eV)).^2)' ); case '+EDS' alpha = zeros(3,3,Nwl); lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 1.06482*lam2./(lam2 - 0.0103027)... +2.3712*lam2./(lam2 - 92.3287) + 1.2728; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 1.07588*lam2./(lam2 - 0.0101915)... +2.64847*lam2./(lam2 - 94.8497) + 1.2751; lam2 = wavelengths.^2; alpha(1,1,:) = wavelengths.^3*(0.0146441)./(lam2 - 100.202^2).^2; alpha(3,3,:) = wavelengths.^3*(-0.0301548)./(lam2 - 100^2).^2; alpha(2,2,:) = alpha(1,1,:); case '-EDS' alpha = zeros(3,3,Nwl); lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 1.06482*lam2./(lam2 - 0.0103027)... +2.3712*lam2./(lam2 - 92.3287) + 1.2728; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 1.07588*lam2./(lam2 - 0.0101915)... +2.64847*lam2./(lam2 - 94.8497) + 1.2751; lam2 = wavelengths.^2; alpha(1,1,:) = wavelengths.^3*(-0.0146441)./(lam2 - 100.202^2).^2; alpha(3,3,:) = wavelengths.^3*(0.0301548)./(lam2 - 100^2).^2; alpha(2,2,:) = alpha(1,1,:); case 'SYEDS' if nargin > 2 c = varargin{1}; else c = 3.1547; end alpha = zeros(3,3,Nwl); lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 1.06482*lam2./(lam2 - 0.0103027)... +2.3712*lam2./(lam2 - 92.3287) + 1.2728; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 1.07588*lam2./(lam2 - 0.0101915)... +2.64847*lam2./(lam2 - 94.8497) + 1.2751; data = load('SYEDS'); data = data.SYEDS; data = ((interp1(real(data(1,:)).',[real(data(2,:));imag(data(2,:))].',wavelengths)))'; epsilon(1,1,:) = squeeze(c*(data(1,:) + 1i*data(2,:))) + squeeze(epsilon(1,1,:)).'; lam2 = wavelengths.^2; alpha(1,1,:) = -wavelengths.^3*(0.0146441)./(lam2 - 100.202^2).^2; alpha(3,3,:) = -wavelengths.^3*(-0.0301548)./(lam2 - 100^2).^2; alpha(2,2,:) = alpha(1,1,:); case '+quartz' alpha = zeros(3,3,Nwl); lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 1.07044083*lam2./(lam2 - 0.0100585997)... +1.10202242*lam2./(lam2 - 100) + 1.28604141; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 1.09509924*lam2./(lam2 - 0.0102101864)... +1.15662475*lam2./(lam2 - 100) + 1.28851804; lam2 = wavelengths.^2; alpha(1,1,:) = wavelengths.^3*(0.0198)./(lam2 - 93^2).^2; alpha(3,3,:) = wavelengths.^3*(-0.0408)./(lam2 - 87^2).^2; alpha(2,2,:) = alpha(1,1,:); case '-quartz' alpha = zeros(3,3,Nwl); lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 1.07044083*lam2./(lam2 - 0.0100585997)... +1.10202242*lam2./(lam2 - 100) + 1.28604141; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 1.09509924*lam2./(lam2 - 0.0102101864)... +1.15662475*lam2./(lam2 - 100) + 1.28851804; lam2 = wavelengths.^2; alpha(1,1,:) = -wavelengths.^3*(0.0198)./(lam2 - 93^2).^2; alpha(3,3,:) = -wavelengths.^3*(-0.0408)./(lam2 - 87^2).^2; alpha(2,2,:) = alpha(1,1,:); case 'sapphire' osc1A = [1.4313493,0.65054713,5.3414021]; osc1E = [0.0726631,0.1193242,18.028251].^2; osc2A = [1.5039759,0.55069141,6.5927379]; osc2E = [0.0740288,0.1216529,20.072248].^2; lam2 = (wavelengths/1000).^2; for n = 1:Nwl epsilon(1,1,n) = sum(lam2(n)*osc1A./(lam2(n) - osc1E))+1; epsilon(3,3,n) = sum(lam2(n)*osc2A./(lam2(n) - osc2E))+1; end epsilon(2,2,:) = epsilon(1,1,:); case 'aBBO' lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = -lam2*0.0155+0.0184./(lam2 - 0.0179)+2.7405; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = -lam2*0.0044+0.0128./(lam2 - 0.0156)+2.373; case 'KDPnoG' % potassium acid phthalate without gyration lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = lam2.*13.0052/(lam2 - 400)... +0.01008956./(lam2 - 0.0129426) + 2.259276; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = lam2.*3.2279924./(lam2 - 400)... +0.008637494./(lam2 - 0.012281) + 2.132668; case 'LiNbO3' osc1A = [2.6734,1.229,12.614]; osc1E = [0.01764,0.05914,474.6]; osc2A = [2.9804,0.5981,8.9543]; osc2E = [0.02047,0.0666,416.08]; lam2 = (wavelengths/1000).^2; for n = 1:Nwl epsilon(1,1,n) = sum(lam2(n)*osc1A./(lam2(n) - osc1E))+1; epsilon(3,3,n) = sum(lam2(n)*osc2A./(lam2(n) - osc2E))+1; end epsilon(2,2,:) = epsilon(1,1,:); case 'KDP' %This includes epsilon from Zernike (1964) and alpha from %Konstantinova (2000) lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = (13.00522*lam2./(lam2 - 400))+(0.01008956./(lam2 - 0.0129426))+2.259276; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = (3.2279924*lam2./(lam2 - 400))+(0.008637494./(lam2 - 0.0122810))+2.132668; lam2 = wavelengths.^2; alpha = zeros(3,3,Nwl); alpha(1,2,:) = wavelengths.^3.*(.023)./(lam2 - 10^2).^2; alpha(2,1,:) = alpha(1,2,:); case 'KAP' lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = (-0.013296131.*lam2)+(0.037318762./(lam2 - (0.175493731^2)))+2.663434655; epsilon(2,2,:) = 2.670444937+(0.031617528./(lam2-(0.208293225^2)))-(0.004014395.*lam2); epsilon(3,3,:) = 2.196073191+(0.015025722./(lam2-(0.190981743^2)))-(0.006100780.*lam2); case 'TiO2' lam2 = (wavelengths/1000).^2; epsilon(1,1,:) = 0.2441./(lam2 - 0.0803)+5.913; epsilon(2,2,:) = epsilon(1,1,:); epsilon(3,3,:) = 0.3322./(lam2 - 0.0843)+7.197; case 'test' epsilon(1,1,:) = ones(Nwl,1)*(2.2); epsilon(2,2,:) = ones(Nwl,1)*(2.2); epsilon(3,3,:) = ones(Nwl,1)*(2.2); end end function out = setDiag(diag) out = zeros(size(diag, 1), size(diag, 1), size(diag, 2)); for i=1:size(diag, 1) out(i,i,:) = diag(i,:); end end
github
shane-nichols/smn-thesis-master
MPlot4D.m
.m
smn-thesis-master/misc_utilities/MPlot4D.m
14,618
utf_8
8b22ef4fe9c79bd9e96465da950b8e1c
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) MPlot4D < handle % this is a more powerful but less polished version of MPlot3D. It can % accept arrays of dimension 5 and make videos that run over the 5th % dimension. The constructor requires an array xData, which is the physical % values ascribed to the 5th dimension of Data (usually wavelength). % These values are put into a text box above the MM plots. I never got % around to documenting this class... properties Data xData uniquezero = true palette = 'Fireice' gs = 0 width fontsize = 14 limz = 1e-3 norm = true hSpacing = 3 %vertical spacing of subplots vSpacing = 3 % horizonal spacing of subplots cbw = 10 end properties (SetAccess = protected) figHandle axesHandles = gobjects(4) colorbarHandles = gobjects(4) xDataTextBox end properties (Hidden) maskHandles end methods function obj = MPlot4D(data, xData, varargin) obj.figHandle = figure; obj.width = getFigWidth; obj.Data = data; obj.xData = xData; plot(obj, xData(1), varargin{:}); end function parseProperties(obj, varargin) % Optional Name-Value pairs % 'uniquezero',logical: make 0 white or black in color palettes % Default is true. % 'palette','colPalette': string giving name of a case in colPalette.m % Default is 'Fireice' % 'gs',[min max]: GlobalScale, plot limits of all Z-scales between min, max. % If not given, each MM element maps to its own min and max value. % Only 1 colorbar is drawn with GlobalScale is set % 'fontsize',scalar: Size of font in colorbars % 'width',scalar: Width of figure in inches (but probably not inches). Height is % computed automatically to ensure no streching of plots (figure can go % off page, in which case, reduce value of 'width'. Default is %60 of % monitor on a Mac. % 'limz',scalar: limits how small the range of the z-axes can be. % 'hSpacing',scalar: horizontal space between axes, in pixels. % 'vSpacing',scalar: vertical space between axes, in pixels. % 'cbw',scalar: Width of the colorbars, in pixels. p = inputParser; % setup input scheme addRequired(p,'obj',@(x) isa(x,'MPlot4D')) addParameter(p,'norm',obj.norm,@(x) strcmp(x,'nonorm')) addParameter(p,'uniquezero',obj.uniquezero,@islogical) addParameter(p,'palette',obj.palette,@ischar) addParameter(p,'limz',obj.limz,@(x) isscalar(x)&&isnumeric(x)) addParameter(p,'fontsize',obj.fontsize,@(x) isscalar(x)&&isnumeric(x)) addParameter(p,'width',obj.width,@(x) isscalar(x) && isnumeric(x)) % inches addParameter(p,'gs',obj.gs,@(x) length(x) == 2 && isnumeric(x)) addParameter(p,'hSpacing',obj.hSpacing,@isscalar) addParameter(p,'vSpacing',obj.vSpacing,@isscalar) addParameter(p,'cbw',obj.cbw,@isscalar) parse(p, obj, varargin{:}) %parse inputs obj.norm = p.Results.norm; obj.uniquezero = p.Results.uniquezero; obj.palette = p.Results.palette; obj.gs = p.Results.gs; obj.limz = p.Results.limz; obj.fontsize = p.Results.fontsize; obj.width = p.Results.width; obj.hSpacing = p.Results.hSpacing; obj.vSpacing = p.Results.vSpacing; obj.cbw = p.Results.cbw; end function normalize(obj) obj.Data = obj.Data ./ obj.Data(1,1,:,:,:); obj.Data(isnan(obj.Data)) = 0; end function plot(obj, xVal, varargin) if ~isempty(varargin) parseProperties(obj, varargin{:}) end dataIndex = round(fracIndex(obj.xData,xVal)); sz = size(obj.Data); dummy = uicontrol('style', 'text', 'fontsize', obj.fontsize, 'units', 'pixels'); set(dummy,'String', '-0.000'); cblbextents = get(dummy, 'extent'); cblbsz = cblbextents(3); % colorbar label size delete(dummy) figWidth = (obj.width) * obj.figHandle.Parent.ScreenPixelsPerInch; if obj.gs==0 plotW = (figWidth - 9*obj.hSpacing-4*(obj.cbw + cblbsz))/4; plotH = sz(3)/sz(4)*plotW; figHeight = plotH*4+5*obj.vSpacing + cblbextents(4); totalPlotWidth = obj.hSpacing*2+obj.cbw+cblbsz+plotW; plotPosFun = @(j,k) [ (obj.hSpacing+(k-1)*totalPlotWidth)/figWidth... ,(obj.vSpacing+(4-j)*(plotH+obj.vSpacing))/figHeight,... plotW/figWidth,... plotH/figHeight]; set(obj.figHandle,'Position',[0,0,figWidth,figHeight],'units','pixels'); for j=1:4 for k=1:4 obj.axesHandles(j,k) = ... subplot('position',plotPosFun(j,k),'units','pixels'); clim = [min(min(obj.Data(j,k,:,:,dataIndex))),max(max(obj.Data(j,k,:,:,dataIndex)))]; if obj.limz ~= 0 % modify axes bounds if limz is set if (clim(2) - clim(1)) < obj.limz avg = (clim(2) + clim(1))./2; clim(2) = avg + obj.limz/2; clim(1) = avg - obj.limz/2; end end pos = get(obj.axesHandles(j,k),'Position'); imagesc(squeeze(obj.Data(j,k,:,:,dataIndex)),'Parent',obj.axesHandles(j,k),clim) axis(obj.axesHandles(j,k),'off') colormap(obj.axesHandles(j,k),makeColormap(clim,obj.uniquezero,obj.palette)) obj.colorbarHandles(j,k) = colorbar(obj.axesHandles(j,k),'units','pixels',... 'Position',[pos(1)+pos(3)+obj.hSpacing,pos(2)+cblbextents(4)/4,... obj.cbw,pos(4)-cblbextents(4)/2],... 'fontsize',obj.fontsize); end end % if any(strcmp('nonorm', p.UsingDefaults)) % obj.axesHandles(1,1).CLim = [0 1]; % end else plotW = (figWidth - 6*obj.hSpacing - 2*obj.cbw - cblbsz)/4; plotH = sz(3)/sz(4)*plotW; figHeight = plotH*4+5*obj.vSpacing + cblbextents(4); plotPosFun = @(j,k) [ (obj.hSpacing+(k-1)*(plotW+obj.hSpacing))/figWidth,... (obj.vSpacing+(4-j)*(plotH+obj.vSpacing))/figHeight,... plotW/figWidth,... plotH/figHeight]; set(obj.figHandle,'Position',[0,0,figWidth,figHeight],'units','pixels'); for j=1:4 for k=1:4 obj.axesHandles(j,k) = ... subplot('position',plotPosFun(j,k),'units','pixels'); pos = get(obj.axesHandles(j,k),'Position'); imagesc(squeeze(obj.Data(j,k,:,:,dataIndex)),'Parent',obj.axesHandles(j,k),obj.gs) colormap(obj.axesHandles(j,k),makeColormap(obj.gs,obj.uniquezero,obj.palette)) axis(obj.axesHandles(j,k),'off') end end obj.colorbarHandles(1,4) = colorbar(obj.axesHandles(1,4),'units','pixels',... 'Position',[pos(1)+pos(3)+obj.hSpacing, cblbextents(4)/4+6,... obj.cbw,figHeight-3*cblbextents(4)/2-12],... 'fontsize',obj.fontsize); end obj.xDataTextBox = ... uicontrol('style', 'text', 'fontsize', obj.fontsize, 'units', 'pixels', ... 'position', [figWidth/2-cblbextents(3), figHeight-cblbextents(4), cblbextents(3:4)]); set(obj.xDataTextBox, 'String', num2str(obj.xData(dataIndex))); end function mmdata = getPlotData(obj) % h: [4,4] array of axis handles mmdata = zeros([4, 4, size(obj.axesHandles(1,1).Children.CData)], ... class(obj.axesHandles(1,1).Children.CData)); for j=1:4 for k=1:4 mmdata(j,k,:,:) = obj.axesHandles(j,k).Children.CData; end end end function replacePlotData(obj, idx) % MMreplace3DplotData replaces the data in 4x4 intensity plots. % h is a [4,4] array of axis handles % Data is a 4x4xNxM array. Data size should not be different than data in % plots. if obj.gs == 0 for j=1:4 for k=1:4 obj.axesHandles(j,k).Children.CData = squeeze(obj.Data(j,k,:,:,idx)); clim = [min(min(obj.Data(j,k,:,:,idx))),max(max(obj.Data(j,k,:,:,idx)))]; if obj.limz ~= 0 % modify axes bounds if limz is set if (clim(2) - clim(1)) < obj.limz avg = (clim(2) + clim(1))./2; clim(2) = avg + obj.limz/2; clim(1) = avg - obj.limz/2; end end obj.axesHandles(j,k).CLim = clim; colormap(obj.axesHandles(j,k),makeColormap(clim,obj.uniquezero,obj.palette)) end end else for j=1:4 for k=1:4 obj.axesHandles(j,k).Children.CData = squeeze(obj.Data(j,k,:,:,idx)); end end end % end function makeAVI(obj, xRange, AVIfilename) if isempty(obj.xData) xVals = xRange; else [X,I] = sort(obj.xData); % added this to allow unsorted xData indices = unique(round(fracIndex(X,xRange)),'first'); xVals = I(indices); end v = VideoWriter(AVIfilename); v.FrameRate = 10; open(v); for i=xVals replacePlotData(obj, i) set(obj.xDataTextBox, 'String', num2str(obj.xData(i))); writeVideo(v, getframe(obj.figHandle)); end close(v); end function update(obj, varargin) obj.figHandle.Visible = 'off'; data = getPlotData(obj); delete(obj.axesHandles); delete(obj.colorbarHandles) obj.axesHandles = gobjects(4); obj.colorbarHandles = gobjects(4); plot(obj,data,varargin{:}); obj.figHandle.Visible = 'on'; end end end function width = getFigWidth % sets default width to 60% of display width scrsz = get(0,'screensize'); width = 0.6*scrsz(3)/get(0,'ScreenPixelsPerInch'); end function colAr = colPalette(palette) % these are custom color palettes. A palette is just a Nx4 matrix. The % first column are values between 0 and 256 that position a color marker. % The 2nd, 3rd, and 4th columns are RGB color values. switch palette case 'Rainbow' colAr = ... [0 255 0 241;... 36 0 65 220;... 86 0 253 253;... 128 0 255 15;... 171 255 242 0;... 234 255 127 0;... 256 255 0 0]; case 'HotCold Bright' colAr = ... [0 0 65 220;... 36 0 90 240;... 76 0 253 253;... 128 250 250 250;... 182 255 242 0;... 224 255 127 0;... 256 255 0 0]; case 'HotCold Dark' colAr = ... [0 0 253 253;... 36 1 114 239;... 76 0 90 240;... 128 0 0 0;... 182 255 0 0;... 224 255 127 0;... 256 255 242 0]; case 'TwoTone Bright' colAr = ... [0 0 0 255;... 128 255 255 255;... 256 255 0 0]; case 'TwoTone Dark' colAr = ... [0 0 0 255;... 128 0 0 0;... 256 255 0 0]; case 'Fireice' clrs = [0.75 1 1; 0 1 1; 0 0 1;... 0 0 0; 1 0 0; 1 1 0; 1 1 0.75]; y = -3:3; m = 64; if mod(m,2) delta = min(1,6/(m-1)); half = (m-1)/2; yi = delta*(-half:half)'; else delta = min(1,6/m); half = m/2; yi = delta*nonzeros(-half:half); end colAr = cat(2,(0:4:255).',255*interp2(1:3,y,clrs,1:3,yi)); end end function fracIndx = fracIndex(array,x) fracIndx = zeros(1,length(x)); for idx = 1:length(x) if x(idx) >= array(end) fracIndx(idx) = length(array); elseif x(idx) <= array(1) fracIndx(idx) = 1; else a = find(array <= x(idx)); a = a(length(a)); b = find(array > x(idx)); b = b(1); fracIndx(idx) = a+(x(idx)-array(a))/(array(b)-array(a)); end end end function cm = makeColormap(clim,b_uniqueZero,palette) dmin=clim(1); dmax=clim(2); if dmax == dmin dmax=1; dmin=0; end if b_uniqueZero == true Zscale = zeros(1,256); if abs(dmin) < abs(dmax) didx = (dmax - dmin)/(2*dmax); for idx = 0:255 Zscale(idx+1) = 256 - didx*idx; end else didx = (dmin-dmax)/(2*dmin); for idx = 0:255 Zscale(idx+1) = idx*didx; end Zscale = flip(Zscale); end else Zscale = flip(1:256); end colAr = colPalette(palette); cm = zeros(256,3); for n = 1:256 x = fracIndex(colAr(:,1),Zscale(n)); cm(n,1) = interp1(colAr(:,2),x); cm(n,2) = interp1(colAr(:,3),x); cm(n,3) = interp1(colAr(:,4),x); end cm = cm./255; cm = flip(cm,1); end
github
shane-nichols/smn-thesis-master
MMgetp.m
.m
smn-thesis-master/misc_utilities/MMgetp.m
8,872
utf_8
65bcc2600efa3ab7e9f30ba08f232327
function out = MMgetp(M,parameter) % This function contains many parameters that one can compute from a % Mueller matrix (M). In general, M is assumed to be an % experimental one. Hence, a Mueller-Jones matrix or even a physical M is % not assumed. For most parameters, M is first converted to its closest % Mueller-Jones matrix, or its Nearest Jones matrix. if ndims(M) > 3 % reshape array into 4,4,N sz = size(M); M = reshape(M,4,4,[]); else sz = 0; end switch lower(parameter) case 'opt prop' J = nearestJones(M); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); L=1i.*O.*( J(1,1,:) - J(2,2,:) ); Lp=1i.*O.*( J(1,2,:) + J(2,1,:) ); C=O.*( J(1,2,:) - J(2,1,:) ); LB=real(L); LD=-imag(L); LBp=real(Lp); LDp=-imag(Lp); CB=real(C); CD=-imag(C); A = -2*real(log(1./K)); % mean absorption out = squeeze([LB;LD;LBp;LDp;CB;CD;A]); case 'lm' J = nearestJones(M); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); O = (T.*K)./(sin(T)); L=1i.*O.*( J(1,1,:) - J(2,2,:) ); Lp=1i.*O.*( J(1,2,:) + J(2,1,:) ); C=O.*( J(1,2,:) - J(2,1,:) ); LB=real(L); LD=-imag(L); LBp=real(Lp); LDp=-imag(Lp); CB=real(C); CD=-imag(C); A = 2*real(log(1./K)); % mean absorption out = [A,-LD,-LDp,CD ; -LD,A,CB,LBp ; -LDp,-CB,A,-LB ; CD,-LBp,LB,A]; case 'logm' %log of Mueller matrix with filtering Mfiltered = filterM(M); out = zeros(size(M)); for n=1:size(M,3); out(:,:,n) = logm(Mfiltered(:,:,n)); end case 'expm' %log of Mueller matrix with filtering out = zeros(size(M)); for n=1:size(M,3); out(:,:,n) = expm(M(:,:,n)); end case 'lb' J = nearestJones(M); O = jonesAnisotropy(J); out = real(1i.*O.*( J(1,1,:) - J(2,2,:) )); case 'ld' J = nearestJones(M); O = jonesAnisotropy(J); out = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); case 'lbp' J = nearestJones(M); O = jonesAnisotropy(J); out = real(1i.*O.*( J(1,2,:) + J(2,1,:) )); case 'ldp' J = nearestJones(M); O = jonesAnisotropy(J); out = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); case 'cb' J = nearestJones(M); O = jonesAnisotropy(J); out = real(O.*( J(1,2,:) - J(2,1,:) )); case 'cd' J = nearestJones(M); O = jonesAnisotropy(J); out = -imag(O.*( J(1,2,:) - J(2,1,:) )); case 'a' % total mean extinction J = nearestJones(M); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); out = -2*real(log(1./K)); case 'a_aniso' % anisotropic part of the mean extinction J = nearestJones(M); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); CD = -imag(O.*( J(1,2,:) - J(2,1,:) )); out = sqrt(LD.^2 + LDp.^2 + CD.^2); % not same as imag(2*T) ! case 'a_iso' % isotropic part of the mean extinction J = nearestJones(M); K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); % 2*T = sqrt(L.^2 + Lp.^2 + C.^2) O = (T.*K)./(sin(T)); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); CD = -imag(O.*( J(1,2,:) - J(2,1,:) )); out = -2*real(log(1./K)) - sqrt(LD.^2 + LDp.^2 + CD.^2); case 'ldmag' J = nearestJones(M); O = jonesAnisotropy(J); LD = imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); out = sqrt(LD.^2 + LDp.^2); case 'ldang' J = nearestJones(M); O = jonesAnisotropy(J); LD = -imag(1i.*O.*( J(1,1,:) - J(2,2,:) )); LDp = -imag(1i.*O.*( J(1,2,:) + J(2,1,:) )); out = atan2(LDp , LD)./2; %out = out + pi*(out < 0); case 'lbang' J = nearestJones(M); O = jonesAnisotropy(J); LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) )); LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) )); out = atan2(LBp , LB)./2; out = out + pi*(out < 0); case 'lbmag' J = nearestJones(M); O = jonesAnisotropy(J); LB = real(1i.*O.*( J(1,1,:) - J(2,2,:) )); LBp = real(1i.*O.*( J(1,2,:) + J(2,1,:) )); out = sqrt(LB.^2 + LBp.^2); case 'di' % Depolarization Index out = (sqrt(squeeze(sum(sum(M.^2,1),2))./squeeze(M(1,1,:)).^2-1)./sqrt(3)).'; case 'jones' % Jones matrix of a Mueller-Jones matrix out = MJ2J(M); case 'nearestjones' out = nearestJones(M); % Jones matrix % next line just phases the Jones matrix so that the % imaginary part of J(1,1) = 0. i.e., it matches case 'jones' for n=1:size(out,3); out(:,:,n) = exp( -1i*angle(out(1,1,n)) ) * out(:,:,n); end case 'covar' % Cloude carvariance matrix out = M2Cov(M); case 'covar2m' % Cloude carvariance matrix out = Cov2M(M); case 'mfiltered' % closest physical Mueller matrix out = filterM(M); end if size(out,1) == 1 && size(out,2) == 1 %remove extra singletons out = squeeze(out).'; end if sz ~= 0 % reshape to match input dimensions sz2 = size(out); out = reshape(out,[sz2(1:(length(sz2)-1)),sz(3:length(sz))]); end end % end parent function % \\ LOCAL FUNCTIONS \\ function J = MJ2J(M) % Mueller-Jones to Jones J(1,1,:) = ((M(1,1,:)+M(1,2,:)+M(2,1,:)+M(2,2,:))/2).^(1/2); k = 1./(2.*J(1,1,:)); J(1,2,:) = k.*(M(1,3,:)+M(2,3,:)-1i.*(M(1,4,:)+M(2,4,:))); J(2,1,:) = k.*(M(3,1,:)+M(3,2,:)+1i.*(M(4,1,:)+M(4,2,:))); J(2,2,:) = k.*(M(3,3,:)+M(4,4,:)+1i.*(M(4,3,:)-M(3,4,:))); end function C = M2Cov(M) % Mueller to Cloude covariance C(1,1,:) = M(1,1,:) + M(1,2,:) + M(2,1,:) + M(2,2,:); C(1,2,:) = M(1,3,:) + M(1,4,:)*1i + M(2,3,:) + M(2,4,:)*1i; C(1,3,:) = M(3,1,:) + M(3,2,:) - M(4,1,:)*1i - M(4,2,:)*1i; C(1,4,:) = M(3,3,:) + M(3,4,:)*1i - M(4,3,:)*1i + M(4,4,:); C(2,1,:) = M(1,3,:) - M(1,4,:)*1i + M(2,3,:) - M(2,4,:)*1i; C(2,2,:) = M(1,1,:) - M(1,2,:) + M(2,1,:) - M(2,2,:); C(2,3,:) = M(3,3,:) - M(3,4,:)*1i - M(4,3,:)*1i - M(4,4,:); C(2,4,:) = M(3,1,:) - M(3,2,:) - M(4,1,:)*1i + M(4,2,:)*1i; C(3,1,:) = M(3,1,:) + M(3,2,:) + M(4,1,:)*1i + M(4,2,:)*1i; C(3,2,:) = M(3,3,:) + M(3,4,:)*1i + M(4,3,:)*1i - M(4,4,:); C(3,3,:) = M(1,1,:) + M(1,2,:) - M(2,1,:) - M(2,2,:); C(3,4,:) = M(1,3,:) + M(1,4,:)*1i - M(2,3,:) - M(2,4,:)*1i; C(4,1,:) = M(3,3,:) - M(3,4,:)*1i + M(4,3,:)*1i + M(4,4,:); C(4,2,:) = M(3,1,:) - M(3,2,:) + M(4,1,:)*1i - M(4,2,:)*1i; C(4,3,:) = M(1,3,:) - M(1,4,:)*1i - M(2,3,:) + M(2,4,:)*1i; C(4,4,:) = M(1,1,:) - M(1,2,:) - M(2,1,:) + M(2,2,:); C = C./2; end function M = Cov2M(C) % Cloude covariance to Mueller M(1,1,:) = C(1,1,:) + C(2,2,:) + C(3,3,:) + C(4,4,:); M(1,2,:) = C(1,1,:) - C(2,2,:) + C(3,3,:) - C(4,4,:); M(1,3,:) = C(1,2,:) + C(2,1,:) + C(3,4,:) + C(4,3,:); M(1,4,:) = ( -C(1,2,:) + C(2,1,:) - C(3,4,:) + C(4,3,:) )*1i; M(2,1,:) = C(1,1,:) + C(2,2,:) - C(3,3,:) - C(4,4,:); M(2,2,:) = C(1,1,:) - C(2,2,:) - C(3,3,:) + C(4,4,:); M(2,3,:) = C(1,2,:) + C(2,1,:) - C(3,4,:) - C(4,3,:); M(2,4,:) = ( -C(1,2,:) + C(2,1,:) + C(3,4,:) - C(4,3,:) )*1i; M(3,1,:) = C(1,3,:) + C(2,4,:) + C(3,1,:) + C(4,2,:); M(3,2,:) = C(1,3,:) - C(2,4,:) + C(3,1,:) - C(4,2,:); M(3,3,:) = C(1,4,:) + C(2,3,:) + C(3,2,:) + C(4,1,:); M(3,4,:) = ( -C(1,4,:) + C(2,3,:) - C(3,2,:) + C(4,1,:) )*1i; M(4,1,:) = ( C(1,3,:) + C(2,4,:) - C(3,1,:) - C(4,2,:) )*1i; M(4,2,:) = ( C(1,3,:) - C(2,4,:) - C(3,1,:) + C(4,2,:) )*1i; M(4,3,:) = ( C(1,4,:) + C(2,3,:) - C(3,2,:) - C(4,1,:) )*1i; M(4,4,:) = C(1,4,:) - C(2,3,:) - C(3,2,:) + C(4,1,:); M = real(M)./2; end function J = nearestJones(M) C = M2Cov(M); J = zeros(2,2,size(C,3)); for n=1:size(C,3) [V,D] = eig(C(:,:,n),'vector'); [~,mx] = max(D); J(:,:,n) = sqrt(D(mx))*reshape(V(:,mx),2,2).'; end end function Mfiltered = filterM(M) % M to nearest physical M C_raw = M2Cov(M); C = zeros(size(C_raw)); for n=1:size(C_raw,3) [V,D] = eig(C_raw(:,:,n),'vector'); list = find(D > 0.00001).'; idx = 0; temp = zeros(4,4,length(list)); for j = list idx = idx + 1; temp(:,:,idx) = D(j)*V(:,j)*V(:,j)'; end C(:,:,n) = sum(temp,3); end Mfiltered = Cov2M(C); end function O = jonesAnisotropy(J) K = ( J(1,1,:).*J(2,2,:) - J(1,2,:).*J(2,1,:)).^(-1/2); T = acos( K.*( J(1,1,:) + J(2,2,:) )./2); O = (T.*K)./(sin(T)); end
github
shane-nichols/smn-thesis-master
PEMphaseVoltCali.m
.m
smn-thesis-master/misc_utilities/4PEM/PEMphaseVoltCali.m
1,767
utf_8
f8a6fe7fc71e93e6c0a55a006b32a851
function [p_out,phase_out] = PEMphaseVoltCali(t,f,p) % p_out = [m,b,s] array of fitting values. % phase_out = phase of the PEM % this function demostrates how to find a linear relation relating the % PEM voltage to the amplitude of modulation. volts = 0:0.01:2; % create an array of voltages to apply to the PEM Amps = 0.045 + 2.1*volts; % convert volts to amps using a linear equation. % the values b = 0.045 and m = 2.1 are what we are % trying to find. for i = 1:length(Amps) I = 100*(1 + 0.95*sin( Amps(i)*sin(2*pi*t*f(1)+p(1)) )); % simulaiton of the waveform with scale factor % c = 100; C1 = sum(exp( 1i*2*pi*t*f(1)).*I)./length(t); % get amplitude of C_v1 C2 = sum(exp( 1i*2*pi*t*3*f(1)).*I)./length(t); % get amplitude of C_v2 [phase1(i),mag1(i)] = cart2pol(real(C1),imag(C1)); % convert to mag and phase [phase2(i),mag2(i)] = cart2pol(real(C2),imag(C2)); % convert to mag and phase end % add pi to any phases less than zero, average over the phases, then subtract from % pi/2. phase_out = pi/2 - sum(phase1+pi*(phase1<0))./length(phase1) figure plot(volts,mag1,volts,mag2) % plot the magnitudes p0 = [1,0,100]; % define initial parameters vector with slope of 1 and offset of 0 % and scale factor 100 that one can estimate by looking at the plotted data. % perform non-linear least-square regression to determine parameters. p_out = lsqcurvefit(@(param,volts)fitMags(param,volts),p0,volts,[mag1;mag2]); end function mags_out = fitMags(param,volts) % model function Amps = volts*param(1)+param(2); % convert volts to amps mags_out = param(3)*abs([besselj(1,Amps) ; besselj(3,Amps)]); %array to compare to data end
github
Saswati18/projectile_motion_matlab-master
quadDiff.m
.m
projectile_motion_matlab-master/quadDiff.m
111
utf_8
237d26155a5fb105383e2b0461272448
%% Equation of motion function xdot = mo(t, x, u) % xdotdot = a xdot = [0 1; 0 0]*x + [0 ; 1]*u ; end
github
Saswati18/projectile_motion_matlab-master
mo.m
.m
projectile_motion_matlab-master/mo.m
117
utf_8
8378ff91202eb369f2cf3029b7a10bea
%% Equation of motion function xdot = motion(t, x, u) % xdotdot = a xdot = [0 1; 0 0].*x + [0 ; 1].*u ; end
github
emsr/maths_burkhardt-master
bivnor.m
.m
maths_burkhardt-master/bivnor.m
4,663
utf_8
aeeb07fb4759e7959064b8129dc6a95f
function value = bivnor ( ah, ak, r ) %*****************************************************************************80 % %% BIVNOR computes the bivariate normal CDF. % % Discussion: % % BIVNOR computes the probability for two normal variates X and Y % whose correlation is R, that AH <= X and AK <= Y. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 13 April 2012 % % Author: % % Original FORTRAN77 version by Thomas Donnelly. % MATLAB version by John Burkardt. % % Reference: % % Thomas Donnelly, % Algorithm 462: Bivariate Normal Distribution, % Communications of the ACM, % October 1973, Volume 16, Number 10, page 638. % % Parameters: % % Input, real AH, AK, the lower limits of integration. % % Input, real R, the correlation between X and Y. % % Output, real VALUE, the bivariate normal CDF. % % Local Parameters: % % Local, integer IDIG, the number of significant digits % to the right of the decimal point desired in the answer. % idig = 15; b = 0.0; gh = gauss ( - ah ) / 2.0; gk = gauss ( - ak ) / 2.0; if ( r == 0.0 ) b = 4.00 * gh * gk; b = max ( b, 0.0 ); b = min ( b, 1.0 ); value = b; return end rr = ( 1.0 + r ) * ( 1.0 - r ); if ( rr < 0.0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'BIVNOR - Fatal error!\n' ); fprintf ( 1, ' 1 < |R|.\n' ); error ( 'BIVNOR - Fatal error!' ); end if ( rr == 0.0 ) if ( r < 0.0 ) if ( ah + ak < 0.0 ) b = 2.0 * ( gh + gk ) - 1.0; end else if ( ah - ak < 0.0 ) b = 2.0 * gk; else b = 2.0 * gh; end end b = max ( b, 0.0 ); b = min ( b, 1.0 ); value = b; return end sqr = sqrt ( rr ); if ( idig == 15 ) con = 2.0 * pi * 1.0E-15 / 2.0; else con = pi; for i = 1 : idig con = con / 10.0; end end % % (0,0) % if ( ah == 0.0 && ak == 0.0 ) b = 0.25 + 0.5 * asin ( r ) / pi; b = max ( b, 0.0 ); b = min ( b, 1.0 ); value = b; return end % % (0,nonzero) % if ( ah == 0.0 && ak ~= 0.0 ) b = gk; wh = -ak; wk = ( ah / ak - r ) / sqr; gw = 2.0 * gk; is = 1; % % (nonzero,0) % elseif ( ah ~= 0.0 && ak == 0.0 ) b = gh; wh = -ah; wk = ( ak / ah - r ) / sqr; gw = 2.0 * gh; is = -1; % % (nonzero,nonzero) % elseif ( ah ~= 0.0 && ak ~= 0.0 ) b = gh + gk; if ( ah * ak < 0.0 ) b = b - 0.5; end wh = - ah; wk = ( ak / ah - r ) / sqr; gw = 2.0 * gh; is = -1; end while ( 1 ) sgn = -1.0; t = 0.0; if ( wk ~= 0.0 ) if ( abs ( wk ) == 1.0 ) t = wk * gw * ( 1.0 - gw ) / 2.0; b = b + sgn * t; else if ( 1.0 < abs ( wk ) ) sgn = -sgn; wh = wh * wk; g2 = gauss ( wh ); wk = 1.0 / wk; if ( wk < 0.0 ) b = b + 0.5; end b = b - ( gw + g2 ) / 2.0 + gw * g2; end h2 = wh * wh; a2 = wk * wk; h4 = h2 / 2.0; ex = exp ( - h4 ); w2 = h4 * ex; ap = 1.0; s2 = ap - ex; sp = ap; s1 = 0.0; sn = s1; conex = abs ( con / wk ); while ( 1 ) cn = ap * s2 / ( sn + sp ); s1 = s1 + cn; if ( abs ( cn ) <= conex ) break end sn = sp; sp = sp + 1.0; s2 = s2 - w2; w2 = w2 * h4 / sp; ap = - ap * a2; end t = 0.5 * ( atan ( wk ) - wk * s1 ) / pi; b = b + sgn * t; end end if ( 0 <= is ) break end if ( ak == 0.0 ) break end wh = -ak; wk = ( ah / ak - r ) / sqr; gw = 2.0 * gk; is = 1; end b = max ( b, 0.0 ); b = min ( b, 1.0 ); value = b; return end function value = gauss ( t ) %*****************************************************************************80 % %% GAUSS is a univariate lower normal tail area. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 13 April 2012 % % Author: % % Original FORTRAN77 version by Thomas Donnelly. % MATLAB version by John Burkardt. % % Reference: % % Thomas Donnelly, % Algorithm 462: Bivariate Normal Distribution, % Communications of the ACM, % October 1973, Volume 16, Number 10, page 638. % % Parameters: % % Input, real T, the evaluation point. % % Output, real VALUE, the area of the lower tail of the normal PDF % from -oo to T. % value = ( 1.0 + erf ( t / sqrt ( 2.0 ) ) ) / 2.0; return end
github
bsxfan/meta-embeddings-master
SGME_MXE.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_MXE.m
2,114
utf_8
829ff4b78c816bad28ac1dd5db3afbb8
function [y,back] = SGME_MXE(A,B,D,As,Bs,labels,logPrior) if nargin==0 test_this(); return; end dA = zeros(size(A)); dB = zeros(size(B)); dD = zeros(size(D)); dAs = zeros(size(As)); dBs = zeros(size(Bs)); [LEc,back1] = SGME_logexpectation(A,B,D); [LEs,back2] = SGME_logexpectation(As,Bs,D); dLEc = zeros(size(LEc)); dLEs = zeros(size(LEs)); m = length(LEs); % #speakers n = length(LEc); % #recordings scal = 1/(n*log(m+1)); logPost = zeros(m+1,1); logPost(m+1) = logPrior(m+1); y = 0; for j=1:n AA = bsxfun(@plus,As,A(:,j)); BB = bsxfun(@plus,Bs,B(:,j)); [LEboth,back3] = SGME_logexpectation(AA,BB,D); logPost(1:m) = logPrior(1:m) + LEboth.' - LEs.' - LEc(j); [yj,back4] = sumlogsoftmax(logPost,labels(j)); y = y - yj; dlogPost = back4(-1); dLEs = dLEs - dlogPost(1:m).'; dLEc(j) = dLEc(j) - sum(dlogPost(1:m)); dLEboth = dlogPost(1:m).'; [dAA,dBB,dDj] = back3(dLEboth); dD = dD + dDj; dAs = dAs + dAA; dBs = dBs + dBB; dA(:,j) = sum(dAA,2); dB(:,j) = sum(dBB,2); end y = y*scal; back = @(dy) back_this(dy,dA,dB,dD,dAs,dBs); function [dA,dB,dD,dAs,dBs] = back_this(dy,dA,dB,dD,dAs,dBs) %[LEc,back1] = SGME_logexpectation(A,B,D); %[LEs,back2] = SGME_logexpectation(As,Bs,D).'; [dA1,dB1,dD1] = back1(dLEc); [dAs2,dBs2,dD2] = back2(dLEs); dA = (dy*scal) * (dA + dA1); dB = (dy*scal) * (dB + dB1); dD = (dy*scal) * (dD + dD1 + dD2); dAs = (dy*scal) * (dAs + dAs2); dBs = (dy*scal) * (dBs + dBs2); end end function test_this() m = 3; n = 5; dim = 2; A = randn(dim,n); As = randn(dim,m); B = rand(1,n); Bs = rand(1,m); D = rand(dim,1); logPrior = randn(m+1,1); labels = randi(m,1,n); f = @(A,B,D,As,Bs) SGME_MXE(A,B,D,As,Bs,labels,logPrior); testBackprop(f,{A,B,D,As,Bs}); end
github
bsxfan/meta-embeddings-master
SGME_train.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_train.m
2,349
utf_8
875c864d98e47717be58a0d88a2550ab
function model = SGME_train(R,labels,nu,zdim,niters,test) if nargin==0 test_this(); return; end [rdim,n] = size(R); m = max(labels); blocks = sparse(labels,1:n,true,m+1,n); num = find(blocks(:)); %Can we choose maximum likelihood prior parameters, given labels? %For now: prior expected number of speakers = m prior = create_PYCRP([],0,m,n); logPrior = prior.GibbsMatrix(labels); delta = rdim - zdim; assert(delta>0); %initialize P0 = randn(zdim,rdim); H0 = randn(delta,rdim); sqrtd0 = rand(zdim,1); szP = numel(P0); szH = numel(H0); w0 = pack(P0,H0,sqrtd0); if exist('test','var') && test testBackprop(@objective,w0); return; end mem = 20; stpsz0 = 1e-3; timeout = 5*60; w = L_BFGS(@objective,w0,niters,timeout,mem,stpsz0); [P,H,sqrtd] = unpack(w); d = sqrtd.^2; model.logexpectation = @(A,b) SGME_logexpectation(A,b,d); model.extract = @(R) SGME_extract(P,H,nu,R); model.objective = @(P,H,d) objective(pack(P,H,d)); model.d = d; function w = pack(P,H,d) w = [P(:);H(:);d(:)]; end function [P,H,d] = unpack(w) at = 1:szP; P = reshape(w(at),zdim,rdim); at = szP + (1:szH); H = reshape(w(at),delta,rdim); at = szP + szH + (1:zdim); d = w(at); end function [y,back] = objective(w) [P,H,sqrtd] = unpack(w); [A,b,back1] = SGME_extract(P,H,nu,R); d = sqrtd.^2; [PsL,back2] = SGME_logPsL(A,b,d,blocks,labels,num,logPrior); y = -PsL; back = @back_this; function [dw] = back_this(dy) %dPsL = -dy; [dA,db,dd] = back2(-dy); dsqrtd = 2*sqrtd.*dd; [dP,dH] = back1(dA,db); dw = pack(dP,dH,dsqrtd); end end end function test_this() zdim = 2; rdim = 4; n = 5; m = 3; prior = create_PYCRP([],0,m,n); labels = prior.sample(n); nu = pi; R = randn(rdim,n); test = true; niters = []; SGME_train(R,labels,nu,zdim,niters,test); end
github
bsxfan/meta-embeddings-master
scaled_GME_precision.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/scaled_GME_precision.m
2,566
utf_8
59c037444c1e57e933d5346bc36263b6
function [SGMEP,meand] = scaled_GME_precision(B) if nargin==0 test_this(); return; end dim = size(B,1); [V,D] = eig(B); % B = VDV' d = diag(D); meand = mean(d); %D = sparse(D); %I = speye(dim); SGMEP.logdet = @logdet; SGMEP.solve = @solve; function [y,back] = logdet(beta) betad = bsxfun(@times,beta,d); y = sum(log1p(betad),1); back = @(dy) dy*sum(d./(1+betad),1); end function [Y,back] = solve(RHS,beta) betad = beta*d; Y = V*bsxfun(@ldivide,betad+1,V.'*RHS); back = @(dY) back_solve(dY,Y,beta); end function [dRHS,dbeta] = back_solve(dY,Y,beta) dRHS = solve(dY,beta); if nargout >= 2 %dA = (-dRHS)*Y.'; %dbeta = trace(dA*B.'); dbeta = -trace(Y.'*B.'*dRHS); end end end function [y,back] = logdettestfun(SGMEP,gamma) beta = gamma^2; [y,back1] = SGMEP.logdet(beta); back =@(dy) 2*gamma*back1(dy); end function [Y,back] = solvetestfun(SGMEP,RHS,gamma) beta = gamma^2; [Y,back1] = SGMEP.solve(RHS,beta); back =@(dY) back_solvetestfun(dY); function [dRHS,dgamma] = back_solvetestfun(dY) [dRHS,dbeta] = back1(dY); dgamma = 2*gamma*dbeta; end end function test_this() close all; fprintf('Test function values:\n'); dim = 5; RHS = rand(dim,1); %R = randn(dim,floor(1.1*dim));B = R*R.';B = B/trace(B); R = randn(dim,dim);B = R*R.';B = B/trace(B); I = eye(dim); [SGMEP,meand] = scaled_GME_precision(B); beta = rand/rand; [log(det(I+beta*B)),SGMEP.logdet(beta)] [(I+beta*B)\RHS,SGMEP.solve(RHS,beta)] doplot = false; if doplot beta = 0.01:0.01:200; y = zeros(size(beta)); for i=1:length(beta) y(i) = SGMEP.logdet(beta(i)); end 1/meand plot(log(1/meand+beta),y); end gamma = rand/rand; fprintf('\n\n\nTest logdet backprop (complex step) :\n'); testBackprop(@(gamma) logdettestfun(SGMEP,gamma),gamma); fprintf('\n\n\nTest logdet backprop (real step) :\n'); testBackprop_rs(@(gamma) logdettestfun(SGMEP,gamma),gamma,1e-4); fprintf('\n\n\nTest solve backprop (complex step) :\n'); testBackprop(@(RHS,gamma) solvetestfun(SGMEP,RHS,gamma),{RHS,gamma},{1,1}); fprintf('\n\n\nTest solve backprop (real step) :\n'); testBackprop_rs(@(RHS,gamma) solvetestfun(SGMEP,RHS,gamma),{RHS,gamma},1e-4,{1,1}); end
github
bsxfan/meta-embeddings-master
dsolve.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/dsolve.m
980
utf_8
8734dea4d3f28af88579fef7b106d892
function [Y,back] = dsolve(RHS,A) % SOLVE: Y= A\RHS, with backpropagation into both arguments % % This is mostly for debugging purposes. It can be done more efficiently % by caching a matrix factorization to re-use for derivative (and also for % the determinant if needed). if nargin==0 test_this(); return; end Y = A\RHS; back = @back_this; function [dRHS,dA] = back_this(dY) dRHS = A.'\dY; % A\dY = dsolve(dY,A) can be re-used for symmetric A if nargout>=2 dA = -dRHS*Y.'; end end end % function [Y,back] = IbetaB(beta,B) % dim = size(B,1); % Y = speye(dim)+beta*B; % back = @(dY) trace(dY*B.'); % end function test_this() m = 5; n = 2; A = randn(m,m); RHS = randn(m,n); testBackprop(@dsolve,{RHS,A}); testBackprop_rs(@dsolve,{RHS,A},1e-4); % beta = rand/rand; % testBackprop(@(beta) IbetaB(beta,A),{beta}); end
github
bsxfan/meta-embeddings-master
labels2blocks.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/labels2blocks.m
1,058
utf_8
4c8472730d7214ee98dda298830f8849
function [subsets,counts] = labels2blocks(labels) % Inputs: % labels: n-vector with elements in 1..m, maps each of n customers to a % table number. There are m tables. Empty tables not allowed. % % Ouputs: % subsets: n-by-m logical, with one-hot rows % counts: m-vector, maps table number to customer count if nargin==0 test_this(); return; end m = max(labels); %m tables n = length(labels); %n customers assert(min(labels)==1,'illegal argument ''labels'': tables must be consecutively numbered from 1'); assert(m <= n,'illegal argument ''labels'': there are more tables than customers'); subsets = bsxfun(@eq,1:m,labels(:)); %subsets = sparse(1:n,labels,true,n,m,n); counts = sum(subsets,1); assert(sum(counts)==n,'illegal argument ''labels'': table counts must add up to length(labels)'); assert(all(counts),'illegal argument ''labels'': empty tables not allowed'); end function test_this() labels = [2,3,3,3,4]; [subsets,counts] = labels2blocks(labels) end
github
bsxfan/meta-embeddings-master
create_BXE_calculator.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/create_BXE_calculator.m
2,055
utf_8
494fcd9ff939f75d131309b403080ae5
function calc = create_BXE_calculator(log_expectations,prior,poi) calc.BXE = @BXE; calc.get_tar_non = @get_tar_non; n = length(poi); spoi = sparse(poi); tar = bsxfun(@eq,spoi,spoi.'); ntar = 0; nnon = 0; for k=1:n-1 jj = k+1:n; tari = full(tar(k,jj)); ntari = sum(tari); ntar = ntar + ntari; nnon = nnon + length(jj) - ntari; end if isempty(prior) prior = ntar/(ntar+nnon); end plo = log(prior) - log1p(-prior); function y = BXE(A,B) LEc = log_expectations(A,B); yt = 0; yn = 0; for i=1:n-1 jj = i+1:n; AA = bsxfun(@plus,A(:,i),A(:,jj)); BB = bsxfun(@plus,B(:,i),B(:,jj)); tari = full(tar(i,jj)); LE2 = log_expectations(AA,BB); llr = LE2 - LEc(i) - LEc(jj); log_post = plo + llr; yt = yt + sum(softplus(-log_post(tari))); yn = yn + sum(softplus(log_post(~tari))); end y = prior*yt/ntar + (1-prior)*yn/(nnon); end function [tars,nons] = get_tar_non(A,B) LEc = log_expectations(A,B); tars = zeros(1,ntar); nons = zeros(1,nnon); tcount = 0; ncount = 0; for i=1:n-1 jj = i+1:n; AA = bsxfun(@plus,A(:,i),A(:,jj)); BB = bsxfun(@plus,B(:,i),B(:,jj)); tari = full(tar(i,jj)); LE2 = log_expectations(AA,BB); llr = LE2 - LEc(i) - LEc(jj); llr_tar = llr(tari); count = length(llr_tar); tars(tcount+(1:count)) = llr_tar; tcount = tcount + count; llr_non = llr(~tari); count = length(llr_non); nons(ncount+(1:count)) = llr_non; ncount = ncount + count; end end end function y = softplus(x) % y = log(1+exp(x)); y = x; f = find(x<30); y(f) = log1p(exp(x(f))); end
github
bsxfan/meta-embeddings-master
PLDA_mixture_responsibilities.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/PLDA_mixture_responsibilities.m
1,346
utf_8
78dfbb4de92f575f08845cbc7e0010fb
function P = PLDA_mixture_responsibilities(w,F,W,R) if nargin==0 P = test_this(); return end K = length(w); if iscell(F) [D,d] = size(F{1}); else [D,d] = size(F); end N = size(R,2); P = zeros(K,N); Id = eye(d); for k=1:K if iscell(F) Fk = F{k}; else Fk = F; end Wk = W{k}; Bk = Fk.'*Wk*Fk; Gk = Wk - Wk*Fk*((Id+Bk)\Fk.'*Wk); RGR = sum(R.*(Gk*R),1); logdetW = 2*sum(log(diag(chol(Wk)))); logdetIB = 2*sum(log(diag(chol(Id+Bk)))); P(k,:) = log(w(k)) + (logdetW - logdetIB - RGR)/2; end P = exp(bsxfun(@minus,P,max(P,[],1))); P = bsxfun(@rdivide,P,sum(P,1)); end function P = test_this() close all; d = 100; D = 400; N = 1000; K = 5; w = ones(1,K)/K; W = cell(1,K); W{1} = eye(D); for k=2:K W{k} = 2*W{k-1}; end %F = randn(D,d); F = cell(1,K); for k=1:K F{k} = randn(D,d); end Z = randn(d,N*K); R = randn(D,N*K); jj = 1:N; for k=1:K R(:,jj) = F{k}*Z(:,jj) + chol(W{k})\randn(D,N); jj = jj + N; end P = PLDA_mixture_responsibilities(w,F,W,R); plot(P'); end
github
bsxfan/meta-embeddings-master
create_partition_posterior_calculator.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/create_partition_posterior_calculator.m
4,076
utf_8
32fda68f00bdccc246e56e3db2e0babe
function calc = create_partition_posterior_calculator(log_expectations,prior,poi) % Inputs: % log_expectations: function handle, maps matrices of additive natural % parameters to log-expectations % prior: Exchangeable prior over partitions, for example CRP. It needs to % implement prior.logprob(counts), where counts are the number of % customers per table (partition block sizes). % poi: partition of interest, given as an n-vector of table assignments, % where there are n customers. The tables are numbered 1 to m. if nargin==0 test_this(); return; end n = length(poi); %number of customers %Generate flags for all possible (non-empty) subsets ns = 2^n-1; %number of non-empty customer subsets subsets = logical(mod(fix(bsxfun(@rdivide,0:ns,2.^(0:n-1)')),2)); subsets = subsets(:,2:end); % dump empty subset %subsets = sparse(subsets); %maps partition to flags indicating subsets (blocks) % also returns table counts function [flags,counts] = labels2weights(labels) [blocks,counts] = labels2blocks(labels); %blocks = sparse(blocks); [tf,loc] = ismember(blocks',subsets','rows'); %seems faster with full matrices assert(all(tf)); flags = false(ns,1); flags(loc) = true; end [poi_weights,counts] = labels2weights(poi); log_prior_poi = prior.logprob(counts); %precompute weights and prior for every partition Bn = Bell(n); PI = create_partition_iterator(n); Weights = false(ns,Bn); log_prior = zeros(1,Bn); for j=1:Bn labels = PI.next(); [Weights(:,j),counts] = labels2weights(labels); log_prior(j) = prior.logprob(counts); end Weights = sparse(Weights); subsets = sparse(subsets); poi_weights = sparse(poi_weights); calc.logPost = @logPost; calc.logPostPoi = @logPostPoi; function y = logPostPoi(A,B) % Inputs: % A,B: n-column matrices of natural parameters for n meta-embeddings % Output: % y: log P(poi | A,B, prior) assert(size(B,2)==n && size(A,2)==n); %compute subset likelihoods log_ex = log_expectations(A*subsets,B*subsets); %compute posterior num = log_prior_poi + log_ex*poi_weights; dens = log_prior + log_ex*Weights; maxden = max(dens); den = maxden+log(sum(exp(dens-maxden))); y = num - den; end function f = logPost(A,B) % Inputs: % A,B: n-column matrices of natural parameters for n meta-embeddings % Output: % y: log P(poi | A,B, prior) assert(size(B,2)==n && size(A,2)==n); %compute subset likelihoods log_ex = log_expectations(A*subsets,B*subsets); llh = log_ex*Weights; den = log_prior + llh; maxden = max(den); den = maxden+log(sum(exp(den-maxden))); function y = logpost_this(poi) [poi_weights,counts] = labels2weights(poi); log_prior_poi = prior.logprob(counts); num = log_prior_poi + log_ex*poi_weights; y = num - den; end f = @logpost_this; end end function test_this Mu = [-1 0 -1.1; 0 -3 0]; C = [3 1 3; 1 1 1]; A = Mu./C; B = zeros(4,3); B(1,:) = 1./C(1,:); B(4,:) = 1./C(2,:); scale = 3; B = B * scale; C = C / scale; close all; figure;hold; plotGaussian(Mu(:,1),diag(C(:,1)),'blue','b'); plotGaussian(Mu(:,2),diag(C(:,2)),'red','r'); plotGaussian(Mu(:,3),diag(C(:,3)),'green','g'); axis('square'); axis('equal'); poi = [1 1 2]; %prior = create_PYCRP(0,[],2,3); %prior = create_PYCRP([],0,2,3); create_flat_partition_prior(length(poi)); calc = create_partition_posterior_calculator(prior,poi); f = calc.logPost(A,B); exp([f([1 1 2]), f([1 1 1]), f([1 2 3]), f([1 2 2]), f([1 2 1])]) end
github
bsxfan/meta-embeddings-master
SGME_train_BXE.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_train_BXE.m
2,434
utf_8
4fb4ed77b580dc09d69346bc07a2cd16
function model = SGME_train_BXE(R,labels,nu,zdim,niters,timeout,test) if nargin==0 test_this(); return; end [rdim,n] = size(R); spoi = sparse(labels); tar = bsxfun(@eq,spoi,spoi.'); ntar = 0; nnon = 0; for k=1:n-1 jj = k+1:n; tari = full(tar(k,jj)); ntari = sum(tari); ntar = ntar + ntari; nnon = nnon + length(jj) - ntari; end prior = ntar/(ntar+nnon); plo = log(prior) - log1p(-prior); wt = prior/ntar; wn = (1-prior)/nnon; delta = rdim - zdim; assert(delta>0); %initialize P0 = randn(zdim,rdim); H0 = randn(delta,rdim); sqrtd0 = rand(zdim,1); szP = numel(P0); szH = numel(H0); w0 = pack(P0,H0,sqrtd0); if exist('test','var') && test testBackprop(@objective,w0); return; end mem = 20; stpsz0 = 1e-3; %timeout = 5*60; w = L_BFGS(@objective,w0,niters,timeout,mem,stpsz0); [P,H,sqrtd] = unpack(w); d = sqrtd.^2; model.logexpectation = @(A,b) SGME_logexpectation(A,b,d); model.extract = @(R) SGME_extract(P,H,nu,R); model.d = d; function w = pack(P,H,d) w = [P(:);H(:);d(:)]; end function [P,H,d] = unpack(w) at = 1:szP; P = reshape(w(at),zdim,rdim); at = szP + (1:szH); H = reshape(w(at),delta,rdim); at = szP + szH + (1:zdim); d = w(at); end function [y,back] = objective(w) [P,H,sqrtd] = unpack(w); [A,b,back1] = SGME_extract(P,H,nu,R); d = sqrtd.^2; [y,back2] = SGME_BXE(A,b,d,plo,wt,wn,tar); back = @back_this; function [dw] = back_this(dy) [dA,db,dd] = back2(dy); dsqrtd = 2*sqrtd.*dd; [dP,dH] = back1(dA,db); dw = pack(dP,dH,dsqrtd); end end end function test_this() zdim = 2; rdim = 4; n = 10; m = 3; prior = create_PYCRP([],0,m,n); while true labels = prior.sample(n); if max(labels) > 1 break; end end nu = pi; R = randn(rdim,n); test = true; niters = []; timeout = []; SGME_train_BXE(R,labels,nu,zdim,niters,timeout,test); end
github
bsxfan/meta-embeddings-master
SGME_extract.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_extract.m
1,065
utf_8
b9106e80e9a78235222680c566b510fd
function [A,b,back] = SGME_extract(P,H,nu,R) if nargin==0 test_this(); return; end [zdim,rdim] = size(P); nuprime = nu + rdim - zdim; HR = H*R; q = sum(HR.^2,1); den = nu + q; b = nuprime./den; M = P*R; A = bsxfun(@times,b,M); back = @back_this; function [dP,dH] = back_this(dA,db) %A = bsxfun(@times,b,M); db = db + sum(dA.*M,1); dM = bsxfun(@times,b,dA); %M = P*R; dP = dM*R.'; %b = nuprime./den; dden = -db.*b./den; %den = nu + q; dq = dden; %q = sum(HR.^2,1); dHR = bsxfun(@times,2*dq,HR); %HR = H*R; dH = dHR*R.'; end end function test_this() zdim = 2; rdim = 4; n = 5; P = randn(zdim,rdim); H = randn(rdim-zdim,rdim); nu = pi; R = randn(rdim,n); f = @(P,H) SGME_extract(P,H,nu,R); testBackprop_multi(f,2,{P,H}); end
github
bsxfan/meta-embeddings-master
sumlogsumexp.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/sumlogsumexp.m
455
utf_8
cccd5f3ae0b7894b95682910eba4a060
function [y,back] = sumlogsumexp(X) if nargin==0 test_this(); return; end mx = max(real(X),[],1); yy = mx + log(sum(exp(bsxfun(@minus,X,mx)),1)); y = sum(yy,2); back = @back_this; function dX = back_this(dy) dX = dy*exp(bsxfun(@minus,X,yy)); end end function test_this() m = 3; n = 5; X = randn(m,n); testBackprop(@(X)sumlogsumexp(X),X); end
github
bsxfan/meta-embeddings-master
SGME_logexpectation.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_logexpectation.m
1,796
utf_8
46f79c08a985ae0a1833cad86fb74983
function [y,back] = SGME_logexpectation(A,b,d) % log expected values (w.r.t. standard normal) of diagonalized SGMEs % Inputs: % A: dim-by-n, natural parameters (precision *mean) for n SGMEs % b: 1-by-n, precision scale factors for these SGMEs % d: dim-by-1, common diagonal precision % % Note: % bsxfun(@times,b,d) is dim-by-n precision diagonals for the n SGMEs % % Outputs: % y: 1-by-n, log expectations % back: backpropagation handle, [dA,db,dd] = back(dy) if nargin==0 test_this(); return; end bd = bsxfun(@times,b,d); logdets = sum(log1p(bd),1); den = 1 + bd; Aden = A./den; Q = sum(A.*Aden,1); %Q = sum((A.^2)./den,1); y = (Q-logdets)/2; back = @back_this; function [dA,db,dd] = back_this(dy) dQ = dy/2; %dlogdets = - dQ; dAden = bsxfun(@times,dQ,A); dA = bsxfun(@times,dQ,Aden); dA2 = dAden./den; dA = dA + dA2; dden = -Aden.*dA2; dbd = dden - bsxfun(@rdivide,dQ,den); %dlogdets = -dQ db = d.' * dbd; dd = dbd * b.'; end end function test_this0() m = 3; n = 5; A = randn(m,n); b = rand(1,n); d = rand(m,1); testBackprop(@SGME_logexpectation,{A,b,d},{1,1,1}); end function test_this() %em = 4; n = 7; dim = 2; %prior = create_PYCRP([],0,em,n); %poi = prior.sample(n); %m = max(poi); %blocks = sparse(poi,1:n,true,m+1,n); %num = find(blocks(:)); %logPrior = prior.GibbsMatrix(poi); d = rand(dim,1); A = randn(dim,n); b = rand(1,n); f = @(A,b,d) SGME_logexpectation(A,b,d); testBackprop(f,{A,b,d},{1,1,1}); end
github
bsxfan/meta-embeddings-master
SGME_train_MXE.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_train_MXE.m
2,514
utf_8
939eef34cb61a4493dfe9c98a11d633c
function model = SGME_train_MXE(R,labels,nu,zdim,niters,timeout,test) if nargin==0 test_this(); return; end [rdim,n] = size(R); m = max(labels); blocks = sparse(labels,1:n,true,m,n); counts = sum(blocks,2); logPrior = [log(counts);-inf]; delta = rdim - zdim; assert(delta>0); %initialize P0 = randn(zdim,rdim); H0 = randn(delta,rdim); sqrtd0 = rand(zdim,1); As0 = randn(zdim,m); sqrtBs0 = randn(1,m); szP = numel(P0); szH = numel(H0); szd = numel(sqrtd0); szAs = numel(As0); szBs = numel(sqrtBs0); w0 = pack(P0,H0,sqrtd0,As0,sqrtBs0); if exist('test','var') && test testBackprop(@objective,w0); return; end mem = 20; stpsz0 = 1e-3; %timeout = 5*60; w = L_BFGS(@objective,w0,niters,timeout,mem,stpsz0); [P,H,sqrtd,As,sqrtBs] = unpack(w); d = sqrtd.^2; model.logexpectation = @(A,b) SGME_logexpectation(A,b,d); model.extract = @(R) SGME_extract(P,H,nu,R); model.d = d; function w = pack(P,H,d,As,Bs) w = [P(:);H(:);d(:);As(:);Bs(:)]; end function [P,H,d,As,Bs] = unpack(w) at = 1:szP; P = reshape(w(at),zdim,rdim); at = szP + (1:szH); H = reshape(w(at),delta,rdim); at = szP + szH + (1:szd); d = w(at); at = szP + szH + szd + (1:szAs); As = reshape(w(at),zdim,m); at = szP + szH + szd + szAs + (1:szBs); Bs = w(at).'; end function [y,back] = objective(w) [P,H,sqrtd,As,sqrtBs] = unpack(w); [A,b,back1] = SGME_extract(P,H,nu,R); d = sqrtd.^2; Bs = sqrtBs.^2; [y,back2] = SGME_MXE(A,b,d,As,Bs,labels,logPrior); back = @back_this; function [dw] = back_this(dy) [dA,db,dd,dAs,dBs] = back2(dy); dsqrtd = 2*sqrtd.*dd; dsqrtBs = 2*sqrtBs.*dBs; [dP,dH] = back1(dA,db); dw = pack(dP,dH,dsqrtd,dAs,dsqrtBs); end end end function test_this() zdim = 2; rdim = 4; n = 5; m = 3; prior = create_PYCRP([],0,m,n); labels = prior.sample(n); nu = pi; R = randn(rdim,n); test = true; niters = []; timeout = []; SGME_train_MXE(R,labels,nu,zdim,niters,timeout,test); end
github
bsxfan/meta-embeddings-master
SGME_BXE.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_BXE.m
1,927
utf_8
43f8a07c46e1df00ef02abdfbbc38dde
function [y,back] = SGME_BXE(A,B,D,plo,wt,wn,tar) if nargin==0 test_this(); return; end n = size(A,2); [LEc,back1] = SGME_logexpectation(A,B,D); y = 0; dA = zeros(size(A)); dB = zeros(size(B)); dLEc = zeros(size(LEc)); dD = zeros(size(D)); for i=1:n-1 jj = i+1:n; AA = bsxfun(@plus,A(:,i),A(:,jj)); BB = bsxfun(@plus,B(:,i),B(:,jj)); tari = full(tar(i,jj)); [LE2,back2] = SGME_logexpectation(AA,BB,D); llr = LE2 - LEc(i) - LEc(jj); arg_tar = -plo - llr(tari); noni = ~tari; arg_non = plo + llr(noni); y = y + wt*sum(softplus(arg_tar)); y = y + wn*sum(softplus(arg_non)); dllr = zeros(size(llr)); dllr(tari) = (-wt)*sigmoid(arg_tar); dllr(noni) = wn*sigmoid(arg_non); dLE2 = dllr; dLEc(i) = dLEc(i) - sum(dllr); dLEc(jj) = dLEc(jj) - dllr; [dAA,dBB,dD2] = back2(dLE2); dD = dD + dD2; dA(:,i) = dA(:,i) + sum(dAA,2); dB(:,i) = dB(:,i) + sum(dBB,2); dA(:,jj) = dA(:,jj) + dAA; dB(:,jj) = dB(:,jj) + dBB; end back = @(dy) back_this(dy,dA,dB,dLEc,dD); function [dA,dB,dD] = back_this(dy,dA,dB,dLEc,dD) [dA1,dB1,dD1] = back1(dLEc); dA = dy*(dA + dA1); dB = dy*(dB + dB1); dD = dy*(dD + dD1); end end function y = sigmoid(x) y = 1./(1+exp(-x)); end function y = softplus(x) % y = log(1+exp(x)); y = x; f = find(x<30); y(f) = log1p(exp(x(f))); end function test_this() zdim = 2; n = 5; A = randn(zdim,n); B = rand(1,n); plo = randn; wt = rand; wn = rand; tar = sparse(randn(n)>0); D = rand(zdim,1); f = @(A,B,D) SGME_BXE(A,B,D,plo,wt,wn,tar); testBackprop(f,{A,B,D}); end
github
bsxfan/meta-embeddings-master
plotGaussian.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/plotGaussian.m
1,323
utf_8
16ea9cd804af31a79f3ccd3cf5687a49
function tikz = plotGaussian(mu,C,colr,c) if nargin==0 test_this(); return; end if isempty(C) %assume mu is a GME [mu,C] = mu.get_mu_cov(); end [V,D] = eig(C); v1 = V(:,1); v2 = V(:,2); if all(v1>=0) r1 = sqrt(D(1,1)); r2 = sqrt(D(2,2)); rotate = acos(v1(1))*180/pi; elseif all(-v1>=0) r1 = sqrt(D(1,1)); r2 = sqrt(D(2,2)); rotate = acos(-v1(1))*180/pi; elseif all(v2>=0) r1 = sqrt(D(2,2)); r2 = sqrt(D(1,1)); rotate = acos(v2(1))*180/pi; else r1 = sqrt(D(2,2)); r2 = sqrt(D(1,1)); rotate = acos(-v2(1))*180/pi; end if ~isempty(colr) tikz = sprintf('\\draw[rotate around ={%4.3g:(%4.3g,%4.3g)},%s] (%4.3g,%4.3g) ellipse [x radius=%4.3g, y radius=%4.3g];\n',rotate,mu(1),mu(2),colr,mu(1),mu(2),r1,r2); fprintf('%s',tikz); end theta = (0:100)*2*pi/100; circle = [cos(theta);sin(theta)]; ellipse = bsxfun(@plus,mu,V*sqrt(D)*circle); plot(ellipse(1,:),ellipse(2,:),c); end function test_this close all; %B = 2*eye(2) + ones(2); B = 2*eye(2) + [1,-1;-1,1]; mu = [1;2]; figure;hold; axis('equal'); axis('square'); plotGaussian(mu,B,'blue','b') end
github
bsxfan/meta-embeddings-master
create_HTPLDA_extractor.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/create_HTPLDA_extractor.m
5,955
utf_8
1304b09dbdcd66e16a53851e8e270761
function HTPLDA = create_HTPLDA_extractor(F,nu,W) if nargin==0 test_PsL(); %test_this(); return; end [rdim,zdim] = size(F); assert(rdim>zdim); nu_prime = nu + rdim - zdim; if ~exist('W','var') || isempty(W) W = speye(rdim); end E = F.'*W*F; G = W - W*F*(E\F.')*W; SGME = create_SGME_calculator(E); V = SGME.V; % E = VDV' VFW = V.'*F.'*W; HTPLDA.extractSGMEs = @extractSGMEs; HTPLDA.SGME = SGME; HTPLDA.plot_database = @plot_database; HTPLDA.getPHd = @getPHd; function [P,H,d] = getPHd() P = VFW; H = G; %HH = H'*H; d = SGME.d; end function [A,b] = extractSGMEs(R) q = sum(R.*(G*R),1); b = nu_prime./(nu+q); A = bsxfun(@times,b,VFW*R); end matlab_colours = {'r','g','b','m','c','k',':r',':g',':b',':m',':c',':k'}; tikz_colours = {'red','green','blue','magenta','cyan','black','red, dotted','green, dotted','blue, dotted','magenta, dotted','cyan, dotted','black, dotted'}; function plot_database(R,labels,Z) assert(max(labels) <= length(matlab_colours),'not enough colours to plot all speakers'); [A,b] = extractSGMEs(R); %SGME.plotAll(A,b,matlab_colours(labels), tikz_colours(labels)); SGME.plotAll(A,b,matlab_colours(labels), []); if exist('Z','var') && ~isempty(Z) for i=1:size(Z,2) plot(Z(1,i),Z(2,i),[matlab_colours{i},'*']); end end end end function test_this() zdim = 2; xdim = 20; %required: xdim > zdim nu = 3; %required: nu >= 1, integer, DF fscal = 3; %increase fscal to move speakers apart F = randn(xdim,zdim)*fscal; HTPLDA = create_HTPLDA_extractor(F,nu); SGME = HTPLDA.SGME; %labels = [1,2,2]; %[R,Z,precisions] = sample_HTPLDA_database(nu,F,labels); n = 8; m = 5; %prior = create_PYCRP(0,[],m,n); prior = create_PYCRP([],0,m,n); [R,Z,precisions,labels] = sample_HTPLDA_database(nu,F,prior,n); fprintf('there are %i speakers\n',max(labels)); [A,b] = HTPLDA.extractSGMEs(R); rotate = true; [Ap,Bp] = SGME.SGME2GME(A,b,rotate); close all; figure;hold; plotGaussian(zeros(zdim,1),eye(zdim),'black, dashed','k--'); %matlab_colours = {'b','r','r'}; %tikz_colours = {'blue','red','red'}; %SGME.plotAll(A,b,matlab_colours, tikz_colours, rotate); HTPLDA.plot_database(R,labels,Z); axis('square');axis('equal'); calc1 = create_partition_posterior_calculator(SGME.log_expectations,prior,labels); calc2 = create_pseudolikelihood_calculator(SGME.log_expectations,prior,labels); calc3 = create_BXE_calculator(SGME.log_expectations,[],labels); scale = exp(-5:0.1:5); MCL = zeros(size(scale)); PsL = zeros(size(scale)); slowPsL = zeros(size(scale)); BXE = zeros(size(scale)); tic; for i=1:length(scale) MCL(i) = - calc1.logPostPoi(scale(i)*A,scale(i)*b); end toc tic; for i=1:length(scale) BXE(i) = calc3.BXE(scale(i)*A,scale(i)*b); end toc tic; for i=1:length(scale) slowPsL(i) = - calc2.slow_log_pseudo_likelihood(scale(i)*A,scale(i)*b); end toc tic; for i=1:length(scale) PsL(i) = - calc2.log_pseudo_likelihood(scale(i)*A,scale(i)*b); end toc figure; %subplot(2,1,1);semilogx(scale,MCL);title('MCL') %subplot(2,1,2);semilogx(scale,PsL);title('PsL'); subplot(2,1,1);semilogx(scale,MCL,scale,slowPsL,scale,PsL,'--');legend('MCL','slowPsL','PsL'); subplot(2,1,2);semilogx(scale,BXE);legend('BXE'); %[precisions;b] %[plain_GME_log_expectations(Ap,Bp);SGME.log_expectations(A,b)] end function test_PsL() zdim = 2; xdim = 20; %required: xdim > zdim nu = 3; %required: nu >= 1, integer, DF fscal = 3; %increase fscal to move speakers apart F = randn(xdim,zdim)*fscal; HTPLDA = create_HTPLDA_extractor(F,nu); SGME = HTPLDA.SGME; n = 1000; m = 100; %prior = create_PYCRP(0,[],m,n); prior = create_PYCRP([],0,m,n); [R,Z,precisions,labels] = sample_HTPLDA_database(nu,F,prior,n); fprintf('there are %i speakers\n',max(labels)); [A,b] = HTPLDA.extractSGMEs(R); rotate = true; [Ap,Bp] = SGME.SGME2GME(A,b,rotate); close all; if zdim==2 && max(labels)<=12 figure;hold; plotGaussian(zeros(zdim,1),eye(zdim),'black, dashed','k--'); HTPLDA.plot_database(R,labels,Z); axis('square');axis('equal'); end tic;calc0 = create_pseudolikelihood_calculator_old(SGME.log_expectations,prior,labels);toc tic;calc1 = create_pseudolikelihood_calculator(SGME.log_expectations,prior,labels);toc; tic;calc2 = create_BXE_calculator(SGME.log_expectations,[],labels);toc scale = exp(-5:0.1:5); oldPsL = zeros(size(scale)); PsL = zeros(size(scale)); BXE = zeros(size(scale)); % tic; % for i=1:length(scale) % slowPsL(i) = - calc1.slow_log_pseudo_likelihood(scale(i)*A,scale(i)*b); % end % toc tic; for i=1:length(scale) oldPsL(i) = - calc0.log_pseudo_likelihood(scale(i)*A,scale(i)*b); end toc tic; for i=1:length(scale) PsL(i) = - calc1.log_pseudo_likelihood(scale(i)*A,scale(i)*b); end toc % tic; % for i=1:length(scale) % BXE(i) = calc2.BXE(scale(i)*A,scale(i)*b); % end % toc figure; subplot(2,1,1);semilogx(scale,oldPsL,scale,PsL,'r--');legend('oldPsL','PsL'); subplot(2,1,2);semilogx(scale,BXE);title('BXE'); %[precisions;b] %[plain_GME_log_expectations(Ap,Bp);SGME.log_expectations(A,b)] end
github
bsxfan/meta-embeddings-master
SGME_MXE2.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_MXE2.m
1,787
utf_8
353320c477be13a9cd785ec811fdd210
function [y,back] = SGME_MXE2(A,B,D,As,Bs,labels,logPrior) if nargin==0 test_this(); return; end dA = zeros(size(A)); dB = zeros(size(B)); dD = zeros(size(D)); dAs = zeros(size(As)); dBs = zeros(size(Bs)); [LEs,back2] = SGME_logexpectation(As,Bs,D); dLEs = zeros(size(LEs)); m = length(LEs); % #speakers n = size(A,2); % #recordings scal = 1/(n*log(m)); y = 0; for j=1:n AA = bsxfun(@plus,As,A(:,j)); BB = bsxfun(@plus,Bs,B(:,j)); [LEboth,back3] = SGME_logexpectation(AA,BB,D); logPost = logPrior + LEboth.' - LEs.'; [yj,back4] = sumlogsoftmax(logPost,labels(j)); y = y - yj; dlogPost = back4(-1); dLEs = dLEs - dlogPost.'; dLEboth = dlogPost.'; [dAA,dBB,dDj] = back3(dLEboth); dD = dD + dDj; dAs = dAs + dAA; dBs = dBs + dBB; dA(:,j) = sum(dAA,2); dB(:,j) = sum(dBB,2); end y = y*scal; back = @(dy) back_this(dy,dA,dB,dD,dAs,dBs); function [dA,dB,dD,dAs,dBs] = back_this(dy,dA,dB,dD,dAs,dBs) %[LEs,back2] = SGME_logexpectation(As,Bs,D).'; [dAs2,dBs2,dD2] = back2(dLEs); dA = (dy*scal) * dA; dB = (dy*scal) * dB; dD = (dy*scal) * (dD + dD2); dAs = (dy*scal) * (dAs + dAs2); dBs = (dy*scal) * (dBs + dBs2); end end function test_this() m = 3; n = 5; dim = 2; A = randn(dim,n); As = randn(dim,m); B = rand(1,n); Bs = rand(1,m); D = rand(dim,1); logPrior = randn(m,1); labels = randi(m,1,n); f = @(A,B,D,As,Bs) SGME_MXE2(A,B,D,As,Bs,labels,logPrior); testBackprop(f,{A,B,D,As,Bs}); end
github
bsxfan/meta-embeddings-master
SGME_train_MXE2.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_train_MXE2.m
2,510
utf_8
b71a75273c325f1e45edf8af7e971f30
function model = SGME_train_MXE2(R,labels,nu,zdim,niters,timeout,test) if nargin==0 test_this(); return; end [rdim,n] = size(R); m = max(labels); blocks = sparse(labels,1:n,true,m,n); counts = sum(blocks,2); logPrior = log(counts); delta = rdim - zdim; assert(delta>0); %initialize P0 = randn(zdim,rdim); H0 = randn(delta,rdim); sqrtd0 = rand(zdim,1); As0 = randn(zdim,m); sqrtBs0 = randn(1,m); szP = numel(P0); szH = numel(H0); szd = numel(sqrtd0); szAs = numel(As0); szBs = numel(sqrtBs0); w0 = pack(P0,H0,sqrtd0,As0,sqrtBs0); if exist('test','var') && test testBackprop(@objective,w0); return; end mem = 20; stpsz0 = 1e-3; %timeout = 5*60; w = L_BFGS(@objective,w0,niters,timeout,mem,stpsz0); [P,H,sqrtd,As,sqrtBs] = unpack(w); d = sqrtd.^2; model.logexpectation = @(A,b) SGME_logexpectation(A,b,d); model.extract = @(R) SGME_extract(P,H,nu,R); model.d = d; function w = pack(P,H,d,As,Bs) w = [P(:);H(:);d(:);As(:);Bs(:)]; end function [P,H,d,As,Bs] = unpack(w) at = 1:szP; P = reshape(w(at),zdim,rdim); at = szP + (1:szH); H = reshape(w(at),delta,rdim); at = szP + szH + (1:szd); d = w(at); at = szP + szH + szd + (1:szAs); As = reshape(w(at),zdim,m); at = szP + szH + szd + szAs + (1:szBs); Bs = w(at).'; end function [y,back] = objective(w) [P,H,sqrtd,As,sqrtBs] = unpack(w); [A,b,back1] = SGME_extract(P,H,nu,R); d = sqrtd.^2; Bs = sqrtBs.^2; [y,back2] = SGME_MXE2(A,b,d,As,Bs,labels,logPrior); back = @back_this; function [dw] = back_this(dy) [dA,db,dd,dAs,dBs] = back2(dy); dsqrtd = 2*sqrtd.*dd; dsqrtBs = 2*sqrtBs.*dBs; [dP,dH] = back1(dA,db); dw = pack(dP,dH,dsqrtd,dAs,dsqrtBs); end end end function test_this() zdim = 2; rdim = 4; n = 5; m = 3; prior = create_PYCRP([],0,m,n); labels = prior.sample(n); nu = pi; R = randn(rdim,n); test = true; niters = []; timeout = []; SGME_train_MXE2(R,labels,nu,zdim,niters,timeout,test); end
github
bsxfan/meta-embeddings-master
asChol.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/asChol.m
2,365
utf_8
ea86b12ae1d2edfe698ac2881861b35f
function CA = asChol(A) if nargin==0 test_this(); return; end if isreal(A) C = chol(A); %C'C = A r = true; else [L,U] = lu(A); % LU = A r = false; end dim = size(A,1); CA.logdet = @logdet; CA.solve = @solve; function [y,back] = logdet() if r y = 2*sum(log(diag(C))); else y = sum(log(diag(U).^2))/2; end back = @(dy) solve(dy*speye(dim)); end function [Y,back] = solve(RHS) if r Y = C\(C'\RHS); else Y = U\(L\RHS); end back = @(dY) back_solve(dY,Y); end function Y = solveT(RHS) %A'\RHS, for LU case Y = L.'\(U.'\RHS); end function [dRHS,dA] = back_solve(dY,Y) if r dRHS = solve(dY); if nargout >= 2 dA = (-dRHS)*Y.'; end else dRHS = solveT(dY); if nargout >= 2 dA = (-dRHS)*Y.'; end end end end function [y,back] = logdettestfun(A) CA = asChol(A*A.'); [y,back1] = CA.logdet(); sym = @(DY) DY + DY.'; back =@(dy) sym(back1(dy))*A; end function [Y,back] = solvetestfun(RHS,A) CA = asChol(A*A.'); [Y,back1] = CA.solve(RHS); back =@(dY) back_solvetestfun(dY); function [dRHS,dA] = back_solvetestfun(dY) [dRHS,dAA] = back1(dY); dA = (dAA+dAA.')*A; end end function test_this() fprintf('Test function values:\n'); dim = 5; RHS = rand(dim,1); A = randn(dim);A = A*A'; CA = asChol(A); [log(det(A)),CA.logdet()] [A\RHS,CA.solve(RHS)] A = complex(randn(dim),zeros(dim)); CA = asChol(A); [log(abs(det(A))),CA.logdet()] [A\RHS,CA.solve(RHS)] A = randn(dim,2*dim);A = A*A'; fprintf('\n\n\nTest logdet backprop (complex step) :\n'); testBackprop(@logdettestfun,A); fprintf('\n\n\nTest logdet backprop (real step) :\n'); testBackprop_rs(@logdettestfun,A,1e-4); fprintf('\n\n\nTest solve backprop (complex step) :\n'); testBackprop(@solvetestfun,{RHS,A},{1,1}); fprintf('\n\n\nTest solve backprop (real step) :\n'); testBackprop_rs(@solvetestfun,{RHS,A},1e-4,{1,1}); end
github
bsxfan/meta-embeddings-master
SGME_logPsL.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/SGME_logPsL.m
3,902
utf_8
2459f9858e466eb1e4b939681dce8f05
function [y,back] = SGME_logPsL(A,B,d,blocks,poi,num,logPrior) if nargin==0 test_this(); return; end if isempty(blocks) m = max(poi); n = length(poi); blocks = sparse(poi,1:n,true,m+1,n); num = find(blocks(:)); else m = size(blocks,1) - 1; end if isstruct(logPrior) % then it is prior prior = logPrior; logPrior = prior.GibbsMatrix(poi); end At = A*blocks.'; Bt = B*blocks.'; [LEt,back1] = SGME_logexpectation(At,Bt,d); [LEc,back2] = SGME_logexpectation(A,B,d); Amin = At(:,poi) - A; Bmin = Bt(:,poi) - B; [LEmin,back3] = SGME_logexpectation(Amin,Bmin,d); LLR = zeros(size(blocks)); for i=1:m tar = full(blocks(i,:)); LLR(i,tar) = LEt(i) - LEmin(tar) - LEc(tar); non = ~tar; Aplus = bsxfun(@plus,A(:,non),At(:,i)); Bplus = bsxfun(@plus,B(:,non),Bt(:,i)); LLR(i,non) = SGME_logexpectation(Aplus,Bplus,d) - LEt(i) - LEc(non); end %y = LLR; [y,back5] = sumlogsoftmax(LLR + logPrior,num); back = @back_this; function [dA,dB,dd] = back_this(dy) dA = zeros(size(A)); dB = zeros(size(B)); dd = zeros(size(d)); dLEt = zeros(size(LEt)); dLEmin = zeros(size(LEmin)); dLEc = zeros(size(LEmin)); dAt = zeros(size(At)); dBt = zeros(size(Bt)); %[y,back5] = sumlogsoftmax(LLR + logPrior,num); dLLR = back5(dy); for k=1:m tar = full(blocks(k,:)); %LLR(k,tar) = LEt(k) - LEmin(tar) - LEc(tar); row = dLLR(k,tar); dLEt(k) = dLEt(k) + sum(row); dLEmin(tar) = dLEmin(tar) - row; dLEc(tar) = dLEc(tar) - row; non = ~tar; Aplus = bsxfun(@plus,A(:,non),At(:,k)); Bplus = bsxfun(@plus,B(:,non),Bt(:,k)); %LLR(k,non) = SGME_logexpectation(Aplus,Bplus,d) - LEt(k) - LEc(non); [~,back4] = SGME_logexpectation(Aplus,Bplus,d); row = dLLR(k,non); [dAplus,dBplus,dd4] = back4(row); dLEt(k) = dLEt(k) - sum(row); dLEc(non) = dLEc(non) - row; dd = dd + dd4; dA(:,non) = dA(:,non) + dAplus; dB(:,non) = dB(:,non) + dBplus; dAt(:,k) = dAt(:,k) + sum(dAplus,2); dBt(:,k) = dBt(:,k) + sum(dBplus,2); end %[LEmin,back3] = SGME_logexpectation(Amin,Bmin,d); [dAmin,dBmin,dd3] = back3(dLEmin); dd = dd + dd3; %Amin = At(:,poi) - A; %Bmin = Bt(:,poi) - B; dA = dA - dAmin; dB = dB - dBmin; dAt = dAt + dAmin*blocks.'; dBt = dBt + dBmin*blocks.'; %[LEc,back2] = SGME_logexpectation(A,B,d); [dA2,dB2,dd2] = back2(dLEc); dA = dA + dA2; dB = dB + dB2; dd = dd + dd2; %[LEt,back1] = SGME_logexpectation(At,Bt,d); [dAt1,dBt1,dd1] = back1(dLEt); dAt = dAt + dAt1; dBt = dBt + dBt1; dd = dd + dd1; %At = A*blocks.'; %Bt = B*blocks.'; dA = dA + dAt*blocks; dB = dB + dBt*blocks; end end function test_this() em = 4; n = 7; dim = 2; prior = create_PYCRP([],0,em,n); poi = prior.sample(n); m = max(poi); blocks = sparse(poi,1:n,true,m+1,n); num = find(blocks(:)); logPrior = prior.GibbsMatrix(poi); d = rand(dim,1); A = randn(dim,n); b = rand(1,n); %f = @(A,b,d) SGME_logexpectation(A,b,d); %testBackprop(f,{A,b,d},{1,1,1}); g = @(A,b,d) SGME_logPsL(A,b,d,blocks,poi,num,logPrior); testBackprop(g,{A,b,d},{1,1,1}); end
github
bsxfan/meta-embeddings-master
sumlogsoftmax.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/sumlogsoftmax.m
517
utf_8
5591b4f9a440f97900ac26aefd1faf62
function [y,back] = sumlogsoftmax(X,num) if nargin==0 test_this(); return; end [den,back1] = sumlogsumexp(X); y = sum(X(num)) - den; back = @back_this; function dX = back_this(dy) dX = back1(-dy); dX(num) = dX(num) + dy; end end function test_this() m = 3; n = 5; X = randn(m,n); labels = randi(m,1,n); num = sub2ind(size(X),labels,1:n); testBackprop(@(X)sumlogsoftmax(X,num),X); end
github
bsxfan/meta-embeddings-master
create_SGME_calculator.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/create_SGME_calculator.m
3,098
utf_8
22c43d447699e600cb1e2c8a1f4c4a2d
function [SGME,LEfun] = create_SGME_calculator(E) if nargin==0 test_this(); return; end [V,D] = eig(E); % E = VDV' d = diag(D); % eigenvalues dd = zeros(size(d)); %gradient w.r.t. d backpropagated from log_expectations zdim = length(d); ii = reshape(logical(eye(zdim)),[],1); SGME.SGME2GME = @SGME2GME; SGME.log_expectations = @log_expectations; SGME.logLR = @logLR; SGME.plotAll = @plotAll; SGME.V = V; SGME.d = d; LEfun = @LE; SGME.reset_parameter_gradient = @reset_parameter_gradient; SGME.get_parameter_gradient = @get_parameter_gradient; function reset_parameter_gradient() dd(:) = 0; end function dd1 = get_parameter_gradient() dd1 = dd; end function plotAll(A,b,matlab_colours, tikz_colours, rotate) if ~exist('rotate','var') || isempty(rotate) rotate = true; end if ~exist('tikz_colours','var') tikz_colours = []; end [A,B] = SGME2GME(A,b,rotate); n = length(b); for i=1:n Bi = reshape(B(:,i),zdim,zdim); mu = Bi\A(:,i); if ~isempty(tikz_colours) plotGaussian(mu,inv(Bi),tikz_colours{i},matlab_colours{i}); else plotGaussian(mu,inv(Bi),[],matlab_colours{i}); end end end function [A,B] = SGME2GME(A,b,rotate) B = zeros(zdim*zdim,length(b)); B(ii,:) = bsxfun(@times,b,d); if ~exist('rotate','var') || isempty(rotate) || rotate %rotate by default A = V*A; for j = 1:size(B,2) BR = V*reshape(B(:,j),zdim,zdim)*V.'; B(:,j) = BR(:); end end end function [y,back] = log_expectations(A,b) [y,back0] = LE(A,b,d); back = @back_this; function [dA,db] = back_this(dy) [dA,db,dd0] = back0(dy); dd = dd + dd0; end end function Y = logLR(left,right) B = bsxfun(@plus,left.b.',right.b); [m,n] = size(B); Y = zeros(m,n); for i=1:m AA = bsxfun(@plus,left.A(:,i),right.A); Y(i,:) = log_expectations(AA,B(i,:)); end end end function [y,back] = LE(A,b,d) bd = bsxfun(@times,b,d); logdets = sum(log1p(bd),1); den = 1 + bd; Aden = A./den; Q = sum(A.*Aden,1); %Q = sum((A.^2)./den,1); y = (Q-logdets)/2; back = @back_LE; function [dA,db,dd] = back_LE(dy) dQ = dy/2; %dlogdets = - dQ; dAden = bsxfun(@times,dQ,A); dA = bsxfun(@times,dQ,Aden); dA2 = dAden./den; dA = dA + dA2; dden = -Aden.*dA2; dbd = dden - bsxfun(@rdivide,dQ,den); %dlogdets = -dQ db = d.' * dbd; dd = dbd * b.'; end end function test_this() m = 3; n = 5; A = randn(m,n); b = rand(1,n); d = rand(m,1); testBackprop(@LE,{A,b,d},{1,1,1}); end
github
bsxfan/meta-embeddings-master
logsumexp.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/logsumexp.m
456
utf_8
ba0f6dd080d4fa7a7cd270a5055c5980
function [y,back] = logsumexp(X) if nargin==0 test_this(); return; end mx = max(X,[],1); y = bsxfun(@plus,log(sum(exp(bsxfun(@minus,X,mx)),1)),mx); back = @back_this; function dX = back_this(dy) dX = bsxfun(@times,dy,exp(bsxfun(@minus,X,y))); end end function test_this() m = 3; n = 5; X = randn(m,n); testBackprop(@(X)logsumexp(X),X); end
github
bsxfan/meta-embeddings-master
sample_speaker.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/synthdata/sample_speaker.m
1,520
utf_8
f0f62cb9af06dc368f90cf9c9d6c92d3
function [X,precisions] = sample_speaker(z,F,k,n,chi_sq) % Sample n heavy-tailed observations of speaker with identity variable z. % Inputs: % z: d-by-1 speaker identity variable % F: D-by-d factor loading matrix % k: integer, k>=1, where nu=2k is degrees of freedom of resulting % t-distribution % n: number of samples % chi_sq: [optional] If given and true, then precisions are sampled from % chi^2 with DF: nu = k*2. In this case, k*2 must be an integer, % so for example k=0.5 is valid and gives Cauchy samples. % % Output: % X: D-by-n samples % precisions: 1-by-n, the hidden precisions if nargin==0 test_this(); return; end if ~exist('n','var') || isempty(n) n = size(z,2); end if exist('chi_sq','var') && ~isempty(chi_sq) && chi_sq % sample Chi^2, with DF = nu=2k, scaled by 1/nu, so that mean = 1. nu = 2*k; precisions = mean(randn(nu,n).^2,1); else %Gamma % Sample n precisions independently from Gamma(k,k), which has mean = 1 % mode = (k-1)/k. precisions = -mean(log(rand(k,n)),1); end std = 1./sqrt(precisions); dim = size(F,1); Y = bsxfun(@times,std,randn(dim,n)); X = bsxfun(@plus,F*z,Y); end function test_this() close all; z = 0; F = zeros(100,1); k = 5; [X,precisions] = sample_speaker(z,F,k,1000); figure; plot(X(1,:),X(2,:),'.'); figure; plot(sum(X.^2,1),1./precisions,'.'); end
github
bsxfan/meta-embeddings-master
sample_HTnoise.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/synthdata/sample_HTnoise.m
695
utf_8
9ffb422905007acca5d9b5c71ee828a9
function [X,precisions] = sample_HTnoise(nu,dim,n) % Sample n heavy-tailed observations of speaker with identity variable z. % Inputs: % nu: integer nu >=1, degrees of freedom of resulting t-distribution % n: number of samples % % Output: % X: dim-by-n samples % precisions: 1-by-n, the hidden precisions if nargin==0 test_this(); return; end precisions = mean(randn(nu,n).^2,1); std = 1./sqrt(precisions); X = bsxfun(@times,std,randn(dim,n)); end function test_this() close all; [X,precisions] = sample_HTnoise(2,2,1000); figure; plot(X(1,:),X(2,:),'.'); figure; plot(sum(X.^2,1),1./precisions,'.'); end
github
bsxfan/meta-embeddings-master
qfuser_linear.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/fusion/funcs/qfuser_linear.m
2,337
utf_8
0fe31df563db3c6f4f08ea791e83c340
function [fusion,w0] = qfuser_linear(w,scores,scrQ,ndx,w_init) % This function does the actual quality fusion (and is passed to % the training function when training the quality fusion weights). % The scores from the linear fusion are added to the combined % quality measure for each trial to produce the final score. % Inputs: % w: The trained quality fusion weights. If empty, this function % returns a function handle. % scores: A matrix of scores where the number of rows is the % number of systems to be fused and the number of columns % is the number of scores. % scrQ: An object of type Quality containing the quality measures % for models and segments. % ndx: A Key or Ndx object indicating trials. % w_init: The trained weights from the linear fusion (without % quality measures) training. % Outputs: % fusion: If w is supplied, fusion is a vector of fused scores. % If w is not supplied, fusion is a function handle to a % function that takes w as input and produces a vector of fused % scores as output. This function wraps the scores and quality % measures. % w0: Initial weights for starting the quality fusion training. if nargin==0 test_this(); return end assert(isa(scrQ,'Quality')) assert(isa(ndx,'Ndx')||isa(ndx,'Key')) if ~exist('w_init','var') assert(~isempty(w),'If w=[], then w_init must be supplied.'); w_init = w; end [m,n] = size(scores); wlin_sz = m+1; % linear fuser f1 = linear_fuser([],scores); w1 = w_init(1:wlin_sz); [wlin,wq] = splitvec_fh(wlin_sz); f1 = f1(wlin); [q,n1] = size(scrQ.modelQ); [q2,n2] = size(scrQ.segQ); assert(q==q2); scrQ.modelQ = [scrQ.modelQ;ones(1,n1)]; scrQ.segQ = [scrQ.segQ;ones(1,n2)]; q = q + 1; f2 = AWB_sparse(scrQ,ndx,tril_to_symm_fh(q)); f2 = f2(wq); wq_sz = q*(q+1)/2; w3 = zeros(wq_sz,1); % assemble fusion = sum_of_functions(w,[1,1],f1,f2); w0 = [w1;w3]; end function test_this() k = 2; m = 3; n = 4; q = 2; qual = Quality(); qual.modelQ = randn(q,m); qual.segQ = randn(q,n); ndx = Ndx(); ndx.trialmask = false(m,n); ndx.trialmask(1,1:2) = true; ndx.trialmask(2:3,3:4) = true; scores = randn(k,sum(ndx.trialmask(:))); w_init = [randn(k+1,1)]; % linear init [fusion,w0] = qfuser_linear([],scores,qual,ndx,w_init); test_MV2DF(fusion,w0); [fusion(w0),linear_fuser(w_init,scores)] end
github
bsxfan/meta-embeddings-master
AWB_sparse.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/fusion/funcs/AWB_sparse.m
2,062
utf_8
dcb6e85fdcca1dfb1b5cdee3eb6ab112
function fh = AWB_sparse(qual,ndx,w) % Produces trial quality measures from segment quality measures % using the weighting matrix 'w'. % This is almost an MV2DF, but it does not return derivatives on numeric % input, w. % % Algorithm: Y = A*reshape(w,..)*B % Inputs: % qual: A Quality object containing quality measures in modelQ % and segQ fields. % ndx: A Key or Ndx object indicating trials. % w: The combination weights for making trial quality measures. % Outputs: % fh: If 'w' is given, vector of quality scores --- one for each % trial. If 'w' is empty, a function handle that produces % these scores given a 'w'. if nargin==0 test_this(); return end assert(isa(qual,'Quality')) assert(isa(ndx,'Ndx')||isa(ndx,'Key')) [q,m] = size(qual.modelQ); [q1,n] = size(qual.segQ); assert(q==q1); if isa(ndx,'Ndx') trials = ndx.trialmask; else trials = ndx.tar | ndx.non; end ftrials = find(trials(:)); k = length(ftrials); assert(m==size(trials,1)&n==size(trials,2)); [ii,jj] = ind2sub([m,n],ftrials); function y = map_this(w) WR = reshape(w,q,q)*qual.segQ; y = zeros(1,k); done = 0; for j=1:n right = WR(:,j); col = right.'*qual.modelQ(:,trials(:,j)); len = length(col); y(done+1:done+len) = col; done = done + len; end assert(done==k); end function w = transmap_this(y) Y = sparse(ii,jj,y,m,n); w = qual.modelQ*Y*qual.segQ.'; end map = @(y) map_this(y); transmap = @(y) transmap_this(y); fh = linTrans([],map,transmap); if exist('w','var') && ~isempty(w) fh = fh(w); end end function test_this() m = 3; n = 4; q = 2; qual = Quality(); qual.modelQ = randn(q,m); qual.segQ = randn(q,n); ndx = Ndx(); ndx.trialmask = false(m,n); ndx.trialmask(1,1:2) = true; ndx.trialmask(2:3,3:4) = true; ndx.trialmask f = AWB_sparse(qual,ndx); w = randn(q*q,1); test_MV2DF(f,w); W = reshape(w,q,q) AWB = qual.modelQ'*W*qual.segQ [f(w),AWB(ndx.trialmask(:))] end
github
bsxfan/meta-embeddings-master
dcfplot.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/plotting/dcfplot.m
1,889
utf_8
9fbbba6b08ba70f285386536481e29d5
function dcfplot(devkeyname,evalkeyname,devscrfilename,evalscrfilename,outfilename,plot_title,xmin,xmax,ymin,ymax,prior) % Makes a Norm_DCF plot of the dev and eval scores for a system. % Inputs: % devkeyname: The name of the file containing the Key for % the dev scores. % evalkeyname: The name of the file containing the Key for % the eval scores. % devscrfilename: The name of the file containing the Scores % for the dev trials. % evalscrfilename: The name of the file containing the % Scores the eval trials. % outfilename: The name for the PDF file that the plot will be % written in. % plot_title: A string for the plot title. (optional) % xmin, xmax, ymin, ymax: The boundaries of the plot. (optional) % prior: The effective target prior. (optional) assert(isa(devkeyname,'char')) assert(isa(evalkeyname,'char')) assert(isa(devscrfilename,'char')) assert(isa(evalscrfilename,'char')) assert(isa(outfilename,'char')) if ~exist('plot_title','var') || isempty(plot_title) plot_title = ''; end if ~exist('xmin','var') xmin = -10; xmax = 0; ymin = 0; ymax = 1.2; prior = 0.001; end [dev_tar,dev_non] = get_tar_non_scores(devscrfilename,devkeyname); [eval_tar,eval_non] = get_tar_non_scores(evalscrfilename,evalkeyname); close all plot_obj = Norm_DCF_Plot([xmin,xmax,ymin,ymax],plot_title); plot_obj.set_system(dev_tar,dev_non,'dev') plot_obj.plot_operating_point(logit(prior),'m--','new DCF point') plot_obj.plot_curves([0 0 0 1 1 1 0 0],{{'b--'},{'g--'},{'r--'}}) plot_obj.set_system(eval_tar,eval_non,'eval') plot_obj.plot_curves([0 0 1 1 1 1 0 1],{{'r','LineWidth',2},{'b'},{'g'},{'r'},{'k*'}}) plot_obj.display_legend() plot_obj.save_as_pdf(outfilename) end function [tar,non] = get_tar_non_scores(scrfilename,keyname) key = Key.read(keyname); scr = Scores.read(scrfilename); [tar,non] = scr.get_tar_non(key); end
github
bsxfan/meta-embeddings-master
fast_actDCF.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/stats/fast_actDCF.m
3,032
utf_8
5e62c5e1058f0ba3f5a59149249da2a9
function [dcf,Pmiss,Pfa] = fast_actDCF(tar,non,plo,normalize) % Computes the actual average cost of making Bayes decisions with scores % calibrated to act as log-likelihood-ratios. The average cost (DCF) is % computed for a given range of target priors and for unity cost of error. % If un-normalized, DCF is just the Bayes error-rate. % % Usage examples: dcf = fast_actDCF(tar,non,-10:0.01:0) % norm_dcf = fast_actDCF(tar,non,-10:0.01:0,true) % [dcf,pmiss,pfa] = fast_actDCF(tar,non,-10:0.01:0) % % Inputs: % tar: a vector of T calibrated target scores % non: a vector of N calibrated non-target scores % Both are assumed to be of the form % % log P(data | target) % llr = ----------------------- % log P(data | non-target) % % where log is the natural logarithm. % % plo: an ascending vector of log-prior-odds, plo = logit(Ptar) % = log(Ptar) - log(1-Ptar) % % normalize: (optional, default false) return normalized dcf if true. % % % Outputs: % dcf: a vector of DCF values, one for every value of plo. % % dcf(plo) = Ptar(plo)*Pmiss(plo) + (1-Ptar(plo))*Pfa(plo) % % where Ptar(plo) = sigmoid(plo) = 1./(1+exp(-plo)) and % where Pmiss and Pfa are computed by counting miss and false-alarm % rates, when comparing 'tar' and 'non' scores to the Bayes decision % threshold, which is just -plo. If 'normalize' is true, then dcf is % normalized by dividing by min(Ptar,1-Ptar). % % Pmiss: empirical actual miss rate, one value per element of plo. % Pmiss is not altered by parameter 'normalize'. % % Pfa: empirical actual false-alarm rate, one value per element of plo. % Pfa is not altered by parameter 'normalize'. % % Note, the decision rule applied here is to accept if % % llr >= Bayes threshold. % % or reject otherwise. The >= is a consequence of the stability of the % sort algorithm , where equal values remain in the original order. % % if nargin==0 test_this(); return end assert(isvector(tar)) assert(isvector(non)) assert(isvector(plo)) assert(issorted(plo),'Parameter plo must be in ascending order.'); tar = tar(:)'; non = non(:)'; plo = plo(:)'; if ~exist('normalize','var') || isempty(normalize) normalize = false; end D = length(plo); T = length(tar); N = length(non); [s,ii] = sort([-plo,tar]); % -plo are thresholds r = zeros(1,T+D); r(ii) = 1:T+D; r = r(1:D); % rank of thresholds Pmiss = r-(D:-1:1); [s,ii] = sort([-plo,non]); % -plo are thresholds r = zeros(1,N+D); r(ii) = 1:N+D; r = r(1:D); % rank of thresholds Pfa = N - r + (D:-1:1); Pmiss = Pmiss / T; Pfa = Pfa / N; Ptar = sigmoid(plo); Pnon = sigmoid(-plo); dcf = Ptar.*Pmiss + Pnon.*Pfa; if normalize dcf = dcf ./ min(Ptar,Pnon); end end function test_this() tar = [1 2 5 7]; non = [-7 -5 -2 -1]; plo = -6:6; [dcf,Pmiss,Pfa] = fast_actDCF(tar,non,plo) end
github
bsxfan/meta-embeddings-master
fast_minDCF.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/stats/fast_minDCF.m
2,585
utf_8
6a709a2b121037d7919f57c87d835531
function [minDCF,Pmiss,Pfa,prbep,eer] = fast_minDCF(tar,non,plo,normalize) % Inputs: % % tar: vector of target scores % non: vector of non-target scores % plo: vector of prior-log-odds: plo = logit(Ptar) % = log(Ptar) - log(1-Ptar) % % normalize: if true, return normalized minDCF, else un-normalized. % (optional, default = false) % % Output: % minDCF: a vector with one value for every element of plo % Note that minDCF is parametrized by plo: % % minDCF(Ptar) = min_t Ptar * Pmiss(t) + (1-Ptar) * Pfa(t) % % where t is the adjustable decision threshold and % Ptar = sigmoid(plo) = 1./(1+exp(-plo)) % If normalize == true, then the returned value is % minDCF(Ptar) / min(Ptar,1-Ptar). % % % Pmiss: a vector with one value for every element of plo. % This is Pmiss(tmin), where tmin is the minimizing threshold % for minDCF, at every value of plo. Pmiss is not altered by % parameter 'normalize'. % % Pfa: a vector with one value for every element of plo. % This is Pfa(tmin), where tmin is the minimizing threshold for % minDCF, at every value of plo. Pfa is not altered by % parameter 'normalize'. % % prbep: precision-recall break-even point: Where #FA == #miss % % eer: the equal error rate. % % Note, for the un-normalized case: % minDCF(plo) = sigmoid(plo).*Pfa(plo) + sigmoid(-plo).*Pmiss(plo) if nargin==0 test_this(); return end assert(isvector(tar)) assert(isvector(non)) assert(isvector(plo)) if ~exist('normalize','var') || isempty(normalize) normalize = false; end plo = plo(:); [Pmiss,Pfa] = rocch(tar,non); if nargout > 3 Nmiss = Pmiss * length(tar); Nfa = Pfa * length(non); prbep = rocch2eer(Nmiss,Nfa); end if nargout > 4 eer = rocch2eer(Pmiss,Pfa); end Ptar = sigmoid(plo); Pnon = sigmoid(-plo); cdet = [Ptar,Pnon]*[Pmiss(:)';Pfa(:)']; [minDCF,ii] = min(cdet,[],2); if nargout>1 Pmiss = Pmiss(ii); Pfa = Pfa(ii); end if normalize minDCF = minDCF ./ min(Ptar,Pnon); end end function test_this close all; plo = -20:0.01:20; tar = randn(1,1e4)+4; non = randn(1,1e4); minDCF = fast_minDCF(tar,non,plo,true); %sminDCF = slow_minDCF(tar,non,plo,true); %plot(plo,minDCF,'r',plo,sminDCF,'k'); plot(plo,minDCF,'r'); hold on; tar = randn(1,1e5)+4; non = randn(1,1e5); minDCF = fast_minDCF(tar,non,plo,true); plot(plo,minDCF,'g') tar = randn(1,1e6)+4; non = randn(1,1e6); minDCF = fast_minDCF(tar,non,plo,true); plot(plo,minDCF,'b') hold off; end
github
bsxfan/meta-embeddings-master
rocch.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/det/rocch.m
2,725
utf_8
68aaac9f8a1f40d0d5eac901abc533d5
function [pmiss,pfa] = rocch(tar_scores,nontar_scores) % ROCCH: ROC Convex Hull. % Usage: [pmiss,pfa] = rocch(tar_scores,nontar_scores) % (This function has the same interface as compute_roc.) % % Note: pmiss and pfa contain the coordinates of the vertices of the % ROC Convex Hull. % % For a demonstration that plots ROCCH against ROC for a few cases, just % type 'rocch' at the MATLAB command line. % % Inputs: % tar_scores: scores for target trials % nontar_scores: scores for non-target trials if nargin==0 test_this(); return end assert(nargin==2) assert(isvector(tar_scores)) assert(isvector(nontar_scores)) Nt = length(tar_scores); Nn = length(nontar_scores); N = Nt+Nn; scores = [tar_scores(:)',nontar_scores(:)']; Pideal = [ones(1,Nt),zeros(1,Nn)]; %ideal, but non-monotonic posterior %It is important here that scores that are the same (i.e. already in order) should NOT be swapped. %MATLAB's sort algorithm has this property. [scores,perturb] = sort(scores); Pideal = Pideal(perturb); [Popt,width] = pavx(Pideal); nbins = length(width); pmiss = zeros(1,nbins+1); pfa = zeros(1,nbins+1); %threshold leftmost: accept eveything, miss nothing left = 0; %0 scores to left of threshold fa = Nn; miss = 0; for i=1:nbins pmiss(i) = miss/Nt; pfa(i) = fa/Nn; left = left + width(i); miss = sum(Pideal(1:left)); fa = N - left - sum(Pideal(left+1:end)); end pmiss(nbins+1) = miss/Nt; pfa(nbins+1) = fa/Nn; end function test_this() figure(); subplot(2,3,1); tar = [1]; non = [0]; [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g--v'); axis('square');grid;legend('ROCCH','ROC'); title('2 scores: non < tar'); subplot(2,3,2); tar = [0]; non = [1]; [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g-v'); axis('square');grid; title('2 scores: tar < non'); subplot(2,3,3); tar = [0]; non = [-1,1]; [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g--v'); axis('square');grid; title('3 scores: non < tar < non'); subplot(2,3,4); tar = [-1,1]; non = [0]; [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g--v'); axis('square');grid; title('3 scores: tar < non < tar'); xlabel('P_{fa}'); ylabel('P_{miss}'); subplot(2,3,5); tar = randn(1,100)+1; non = randn(1,100); [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g'); axis('square');grid; title('45^{\circ} DET'); subplot(2,3,6); tar = randn(1,100)*2+1; non = randn(1,100); [pmiss,pfa] = rocch(tar,non); [pm,pf] = compute_roc(tar,non); plot(pfa,pmiss,'r-^',pf,pm,'g'); axis('square');grid; title('flatter DET'); end
github
bsxfan/meta-embeddings-master
compute_roc.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/det/compute_roc.m
1,956
utf_8
16907ef9816ee330ac64b4eeb708366b
function [Pmiss, Pfa] = compute_roc(true_scores, false_scores) % compute_roc computes the (observed) miss/false_alarm probabilities % for a set of detection output scores. % % true_scores (false_scores) are detection output scores for a set of % detection trials, given that the target hypothesis is true (false). % (By convention, the more positive the score, % the more likely is the target hypothesis.) % % this code is matlab-tized for speed. % speedup: Old routine 54 secs -> new routine 5.71 secs. % for 109776 points. %------------------------- %Compute the miss/false_alarm error probabilities assert(nargin==2) assert(isvector(true_scores)) assert(isvector(false_scores)) num_true = length(true_scores); num_false = length(false_scores); assert(num_true>0) assert(num_false>0) total=num_true+num_false; Pmiss = zeros(num_true+num_false+1, 1); %preallocate for speed Pfa = zeros(num_true+num_false+1, 1); %preallocate for speed scores(1:num_false,1) = false_scores; scores(1:num_false,2) = 0; scores(num_false+1:total,1) = true_scores; scores(num_false+1:total,2) = 1; scores=DETsort(scores); sumtrue=cumsum(scores(:,2),1); sumfalse=num_false - ([1:total]'-sumtrue); Pmiss(1) = 0; Pfa(1) = 1.0; Pmiss(2:total+1) = sumtrue ./ num_true; Pfa(2:total+1) = sumfalse ./ num_false; end function [y,ndx] = DETsort(x,col) % DETsort Sort rows, the first in ascending, the remaining in decending % thereby postponing the false alarms on like scores. % based on SORTROWS if nargin<1, error('Not enough input arguments.'); end if ndims(x)>2, error('X must be a 2-D matrix.'); end if nargin<2, col = 1:size(x,2); end if isempty(x), y = x; ndx = []; return, end ndx = (1:size(x,1))'; % sort 2nd column ascending [v,ind] = sort(x(ndx,2)); ndx = ndx(ind); % reverse to decending order ndx(1:size(x,1)) = ndx(size(x,1):-1:1); % now sort first column ascending [v,ind] = sort(x(ndx,1)); ndx = ndx(ind); y = x(ndx,:); end
github
bsxfan/meta-embeddings-master
rocchdet.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/det/rocchdet.m
5,471
utf_8
2452dd1f98aad313c79879d410214cb2
function [x,y,eer,mindcf] = rocchdet(tar,non,dcfweights,pfa_min,pfa_max,pmiss_min,pmiss_max,dps) % ROCCHDET: Computes ROC Convex Hull and then maps that to the DET axes. % % (For demo, type 'rocchdet' on command line.) % % Inputs: % % tar: vector of target scores % non: vector of non-target scores % % dcfweights: 2-vector, such that: DCF = [pmiss,pfa]*dcfweights(:). % (Optional, provide only if mindcf is desired, otherwise % omit or use [].) % % pfa_min,pfa_max,pmiss_min,pmiss_max: limits of DET-curve rectangle. % The DET-curve is infinite, non-trivial limits (away from 0 and 1) % are mandatory. % (Uses min = 0.0005 and max = 0.5 if omitted.) % % dps: number of returned (x,y) dots (arranged in a curve) in DET space, % for every straight line-segment (edge) of the ROC Convex Hull. % (Uses dps = 100 if omitted.) % % Outputs: % % x: probit(Pfa) % y: probit(Pmiss) % eer: ROCCH EER = max_p mindcf(dcfweights=[p,1-p]), which is also % equal to the intersection of the ROCCH with the line pfa = pmiss. % % mindcf: Identical to result using traditional ROC, but % computed by mimimizing over the ROCCH vertices, rather than % over all the ROC points. if nargin==0 test_this(); return end assert(isvector(tar)) assert(isvector(non)) if ~exist('pmiss_max','var') || isempty(pmiss_max) pfa_min = 0.0005; pfa_max = 0.5; pmiss_min = 0.0005; pmiss_max = 0.5; end if ~exist('dps','var') || isempty(dps) dps = 100; end assert(pfa_min>0 && pfa_max<1 && pmiss_min>0 && pmiss_max<1,'limits must be strictly inside (0,1)'); assert(pfa_min<pfa_max && pmiss_min < pmiss_max); [pmiss,pfa] = rocch(tar,non); if nargout>3 dcf = dcfweights(:)'*[pmiss(:)';pfa(:)']; mindcf = min(dcf); end %pfa is decreasing %pmiss is increasing box.left = pfa_min; box.right = pfa_max; box.top = pmiss_max; box.bottom = pmiss_min; x = []; y = []; eer = 0; for i=1:length(pfa)-1 xx = pfa(i:i+1); yy = pmiss(i:i+1); [xdots,ydots,eerseg] = plotseg(xx,yy,box,dps); x = [x,xdots]; y = [y,ydots]; eer = max(eer,eerseg); end end function [x,y,eer] = plotseg(xx,yy,box,dps) %xx and yy should be sorted: assert(xx(2)<=xx(1)&&yy(1)<=yy(2)); XY = [xx(:),yy(:)]; dd = [1,-1]*XY; if min(abs(dd))==0 eer = 0; else %find line coefficieents seg s.t. seg'[xx(i);yy(i)] = 1, %when xx(i),yy(i) is on the line. seg = XY\[1;1]; eer = 1/(sum(seg)); %candidate for EER, eer is highest candidate end %segment completely outside of box if xx(1)<box.left || xx(2)>box.right || yy(2)<box.bottom || yy(1)>box.top x = []; y = []; return end if xx(2)<box.left xx(2) = box.left; yy(2) = (1-seg(1)*box.left)/seg(2); end if xx(1)>box.right xx(1) = box.right; yy(1) = (1-seg(1)*box.right)/seg(2); end if yy(1)<box.bottom yy(1) = box.bottom; xx(1) = (1-seg(2)*box.bottom)/seg(1); end if yy(2)>box.top yy(2) = box.top; xx(2) = (1-seg(2)*box.top)/seg(1); end dx = xx(2)-xx(1); xdots = xx(1)+dx*(0:dps)/dps; ydots = (1-seg(1)*xdots)/seg(2); x = probit(xdots); y = probit(ydots); end function test_this subplot(2,3,1); hold on; make_det_axes(); tar = randn(1,100)+2; non = randn(1,100); [x,y,eer] = rocchdet(tar,non); [pmiss,pfa] = compute_roc(tar,non); plot(x,y,'g',probit(pfa),probit(pmiss),'r'); legend(sprintf('ROCCH-DET (EER = %3.1f%%)',eer*100),'classical DET',... 'Location','SouthWest'); title('EER read off ROCCH-DET'); subplot(2,3,2); show_eer(pmiss,pfa,eer); subplot(2,3,3); [pmiss,pfa] = rocch(tar,non); show_eer(pmiss,pfa,eer); subplot(2,3,4); hold on; make_det_axes(); tar = randn(1,100)*2+3; non = randn(1,100); [x,y,eer] = rocchdet(tar,non); [pmiss,pfa] = compute_roc(tar,non); plot(x,y,'b',probit(pfa),probit(pmiss),'k'); legend(sprintf('ROCCH-DET (EER = %3.1f%%)',eer*100),'classical DET',... 'Location','SouthWest'); title('EER read off ROCCH-DET'); subplot(2,3,5); show_eer(pmiss,pfa,eer); subplot(2,3,6); [pmiss,pfa] = rocch(tar,non); show_eer(pmiss,pfa,eer); end function show_eer(pmiss,pfa,eer) p = 0:0.001:1; x = p; y = zeros(size(p)); for i=1:length(p); %y(i) = mincdet @ ptar = p(i), cmiss = cfa = 1 y(i) = min(p(i)*pmiss+(1-p(i))*pfa); end plot([min(x),max(x)],[eer,eer],x,y); grid; legend('EER','minDCF(P_{tar},C_{miss}=C_{fa}=1)','Location','South'); xlabel('P_{tar}'); title('EER via minDCF on classical DET'); end function make_det_axes() % make_det_axes creates a plot for displaying detection performance % with the axes scaled and labeled so that a normal Gaussian % distribution will plot as a straight line. % % The y axis represents the miss probability. % The x axis represents the false alarm probability. % % Creates a new figure, switches hold on, embellishes and returns handle. pROC_limits = [0.0005 0.5]; pticks = [0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.4]; ticklabels = ['0.1';'0.2';'0.5';' 1 ';' 2 ';' 5 ';'10 ';'20 ';'30 ';'40 ']; axis('square'); set (gca, 'xlim', probit(pROC_limits)); set (gca, 'xtick', probit(pticks)); set (gca, 'xticklabel', ticklabels); set (gca, 'xgrid', 'on'); xlabel ('False Alarm probability (in %)'); set (gca, 'ylim', probit(pROC_limits)); set (gca, 'ytick', probit(pticks)); set (gca, 'yticklabel', ticklabels); set (gca, 'ygrid', 'on') ylabel ('Miss probability (in %)') end
github
bsxfan/meta-embeddings-master
map_mod_names.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/manip/map_mod_names.m
3,127
utf_8
6aa97cdf9b5df6095e803bd14f612e52
function ndx = map_mod_names(ndx,src_map,dst_map) % Changes the model names in an index using two maps. The one map % lists the training segment for each model name and the other map % lists the new model name for each training segment. Existing % model names are replaced by new model names that are mapped to % the same training segment. If a model name is not present in the % src_map, it is left unchanged in the output ndx. If a train seg % is not present in the dst_map, the source model is dropped from % the output ndx (along with all its trials). % Inputs: % ndx: the Key or Ndx for which the model names must be changed % scr_map: the map from current model names to trn seg names % dst_map: the map from trn seg names to new model names % Outputs: % ndx: the Key or Ndx with a modified modelset field if nargin == 0 test_this() return end assert(nargin==3) assert(isa(ndx,'Ndx')||isa(ndx,'Key')) assert(isstruct(src_map)) assert(isstruct(dst_map)) assert(isfield(src_map,'keySet')) assert(isfield(dst_map,'keySet')) assert(isfield(src_map,'values')) assert(isfield(dst_map,'values')) [trnsegs,is_present1] = maplookup(src_map,ndx.modelset); num_unchanged = length(is_present1) - sum(is_present1); if num_unchanged ~= 0 log_warning('Keeping %d model name(s) unchanged.\n',num_unchanged); end [newnames,is_present2] = maplookup(dst_map,trnsegs); num_dropped = length(is_present2) - sum(is_present2); if num_dropped ~= 0 log_warning('Discarding %d row(s) in score matrix.\n',num_dropped); end keepndxs = true(length(ndx.modelset),1); keepndxs(is_present1) = is_present2; newmodnames = cell(length(is_present2),1); newmodnames(is_present2) = newnames; ndx.modelset(is_present1) = newmodnames; ndx.modelset = ndx.modelset(keepndxs); if isa(ndx,'Ndx') ndx.trialmask = ndx.trialmask(keepndxs,:); else ndx.tar = ndx.tar(keepndxs,:); ndx.non = ndx.non(keepndxs,:); end function test_this() src_map.keySet = {'mod1','mod2','mod3','mod4','mod8'}; src_map.values = {'seg1','seg2','seg3','seg5','seg8'}; dst_map.keySet = {'seg1','seg2','seg3','seg4','seg5','seg6'}; dst_map.values = {'new1','new2','new3','new4','new5','new6'}; ndx = Ndx(); fprintf('Test1\n'); ndx.modelset = {'mod2','mod3','mod4'}; ndx.trialmask = true(3,4); fprintf('Input:\n'); disp(ndx.modelset) fprintf('Output should be:\n'); out = {'new2','new3','new5'}; disp(out) fprintf('Output is:\n'); newndx = map_mod_names(ndx,src_map,dst_map); disp(newndx.modelset) fprintf('Test2\n'); ndx.modelset = {'mod2','mod3','mod10','mod4','mod6'}; ndx.trialmask = true(5,4); fprintf('Input:\n'); disp(ndx.modelset) fprintf('Output should be:\n'); out = {'new2','new3','mod10','new5','mod6'}; disp(out) fprintf('Output is:\n'); newndx = map_mod_names(ndx,src_map,dst_map); disp(newndx.modelset) fprintf('Test3\n'); ndx.modelset = {'mod2','mod3','mod10','mod4','mod8','mod6'}; ndx.trialmask = true(6,4); fprintf('Input:\n'); disp(ndx.modelset) fprintf('Output should be:\n'); out = {'new2','new3','mod10','new5','mod6'}; disp(out) fprintf('Output is:\n'); newndx = map_mod_names(ndx,src_map,dst_map); disp(newndx.modelset)
github
bsxfan/meta-embeddings-master
maplookup.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/manip/maplookup.m
3,084
utf_8
9e8a55e6a2201b6a0e975469dfe9c299
function [values,is_present] = maplookup(map,keys) % Does a map lookup, to map mutliple keys to multiple values in one call. % The parameter 'map' represents a function, where each key maps to a % unique value. Each value may be mapped to by one or more keys. % % Inputs: % map.keySet: a one-dimensional cell array; % or one-dimensional numeric array; % or a two dimensional char array, where each row is an % element. % The elements should be unique. If there are repeated elements, % the last one of each will be used. % % map.values: The values that each member of keySet maps to, in the same % order. % % keys: The array of keys to look up in the map. The class should agree % with map.keySet. % % Outputs: % values: a one-dimensional cell array; or one dimensional numeric array; % or a two dimensional char array, where rows are string values. % Each value corresponds to one of the elements in keys. % % is_present: logical array of same size as keys, indicating which keys % are in map.keySet. % Optional: if not asked, then maplookup crashes if one or % more keys are not in the map. If is_present is asked, % then maplookup does not crash for missing keys. The keys % that are in the map are: keys(is_present). if nargin==0 test_this(); return; end assert(nargin==2) assert(isstruct(map)) assert(isfield(map,'keySet')) assert(isfield(map,'values')) if ischar(map.keySet) keySetSize = size(map.keySet,1); else keySetSize = length(map.keySet); end if ischar(map.values) valueSize = size(map.values,1); else valueSize = length(map.keySet); end if ~valueSize==keySetSize error('bad map: sizes of keySet and values are different') end if ~strcmp(class(map.keySet),class(keys)) error('class(keys) = ''%s'', should be class(map.keySet) = ''%s''',class(keys),class(map.keySet)); end if ischar(keys) [is_present,at] = ismember(keys,map.keySet,'rows'); else [is_present,at] = ismember(keys,map.keySet); end missing = length(is_present) - sum(is_present); if missing>0 if nargout<2 error('%i of keys not in map',missing); else if ischar(map.values) values = map.values(at(is_present),:); else values = map.values(at(is_present)); end end else if ischar(map.values) values = map.values(at,:); else values = map.values(at); end end end function test_this() map.keySet = ['one ';'two ';'three']; map.values = ['a';'b';'c']; maplookup(map,['one ';'one ';'three']) map.keySet = {'one','two','three'}; map.values = [1,2,3]; maplookup(map,{'one','one','three'}) map.values = {'a','b','c'}; maplookup(map,{'one','one','three'}) map.keySet = [1 2 3]; maplookup(map,[1 1 3]) %maplookup(map,{1 2 3}) [values,is_present] = maplookup(map,[1 1 3 4 5]) fprintf('Now testing error message:\n'); maplookup(map,[1 1 3 4 5]) end
github
bsxfan/meta-embeddings-master
test_binary_classifier.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/test_binary_classifier.m
1,332
utf_8
9683ce2757d7eb67c8a8ec37954cbab4
function obj_val = test_binary_classifier(objective_function,classf, ... prior,system,input_data) % Returns the result of the objective function evaluated on the % scores. % % Inputs: % objective_function: a function handle to the objective function % to feed the scores into % classf: length T vector where T is the number of trials with entries +1 for target scores; -1 % for non-target scores % prior: the prior (given to the system that produced the scores) % system: a function handle to the system to be run % input_data: the data to run the system on (to produce scores) % % Outputs % obj_val: the value returned by the objective function if nargin==0 test_this(); return; end scores = system(input_data); obj_val = evaluate_objective(objective_function,scores,classf,prior); end function test_this() num_trials = 100; input_data = randn(20,num_trials); prior = 0.5; maxiters = 1000; classf = [ones(1,num_trials/2),-ones(1,num_trials/2)]; tar = input_data(:,1:num_trials/2); non = input_data(:,num_trials/2+1:end); [sys,run_sys,w0] = linear_fusion_factory(tar,non); w = train_binary_classifier(@cllr_obj,classf,sys,[],w0,[],maxiters,[],prior,[],true); system = @(data) run_sys(w,data); test_binary_classifier(@cllr_obj,classf,prior,system,input_data) end
github
bsxfan/meta-embeddings-master
evaluate_objective.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/evaluate_objective.m
1,417
utf_8
70262971965caac5629612bd125dd0a2
function obj_val = evaluate_objective(objective_function,scores,classf, ... prior) % Returns the result of the objective function evaluated on the % scores. % % Inputs: % objective_function: a function handle to the objective function % to feed the scores into % scores: length T vector of scores to be evaluated where T is % the number of trials % classf: length T vector with entries +1 for target scores; -1 % for non-target scores % prior: the prior (given to the system that produced the scores) % % Outputs % obj_val: the value returned by the objective function if nargin==0 test_this(); return; end if ~exist('objective_function','var') || isempty(objective_function) objective_function = @(w,T,weights,logit_prior) cllr_obj(w,T,weights,logit_prior); end logit_prior = logit(prior); prior_entropy = objective_function([0;0],[1,-1],[prior,1-prior],logit_prior); ntar = length(find(classf>0)); nnon = length(find(classf<0)); N = nnon+ntar; weights = zeros(1,N); weights(classf>0) = prior/(ntar*prior_entropy); weights(classf<0) = (1-prior)/(nnon*prior_entropy); obj_val = objective_function(scores,classf,weights,logit_prior); end function test_this() num_trials = 20; scores = randn(1,num_trials); classf = [ones(1,num_trials/2),-ones(1,num_trials/2)]; prior = 0.5; res = evaluate_objective(@cllr_obj,scores,classf,prior) end
github
bsxfan/meta-embeddings-master
train_binary_classifier.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/train_binary_classifier.m
3,938
utf_8
de96b98d88aa8e3d0c36785a2f9a3a94
function [w,cxe,w_pen,optimizerState,converged] = ... train_binary_classifier(classifier,classf,w0,objective_function,prior,... penalizer,lambda,maxiters,maxCG,optimizerState,... quiet,cstepHessian) % % Supervised training of a regularized fusion. % % % Inputs: % % classifier: MV2DF function handle that maps parameters to llr-scores. % Note: The training data is already wrapped in this handle. % % classf: 1-by-N row of class labels: % -1 for non_target, % +1 for target, % 0 for ignore % % w0: initial parameters. This is NOT optional. % % objective_function: A function handle to an Mv2DF function that % maps the output (llr-scores) of classifier, to % the to-be-minimized objective (called cxe). % optional, use [] to invoke 'cllr_obj'. % % prior: a prior probability for target to set the 'operating point' % of the objective function. % optional: use [] to invoke default of 0.5 % % penalizer: MV2DF function handle that maps parameters to a positive % regularization penalty. % % lambda: a weighting for the penalizer % % maxiters: the maximum number of Newton Trust Region optimization % iterations to perform. Note, the user can make maxiters % small, examine the solution and then continue training: % -- see w0 and optimizerState. % % % % optimizerState: In this implementation, it is the trust region radius. % optional: % omit or use [] % If not supplied when resuming iteration, % this may cost some extra iterations. % Resume further iteration thus: % [w1,...,optimizerState] = train_binary_classifier(...); % ... examine solution w1 ... % [w2,...,optimizerState] = train_binary_classifier(...,w1,...,optimizerState); % % % quiet: if false, outputs more info during training % % % Outputs: % w: the solution. % cxe: normalized multiclass cross-entropy of the solution. % The range is 0 (good) to 1(useless). % % optimizerState: see above, can be used to resume iteration. % if nargin==0 test_this(); return; end if ~exist('maxCG','var') || isempty(maxCG) maxCG = 100; end if ~exist('optimizerState','var') optimizerState=[]; end if ~exist('prior','var') || isempty(prior) prior = 0.5; end if ~exist('objective_function','var') || isempty(objective_function) objective_function = @(w,T,weights,logit_prior) cllr_obj(w,T,weights,logit_prior); end %prior_entropy = -prior*log(prior)-(1-prior)*log(1-prior); prior_entropy = objective_function([0;0],[1,-1],[prior,1-prior],logit(prior)); classf = classf(:)'; ntar = length(find(classf>0)); nnon = length(find(classf<0)); N = nnon+ntar; weights = zeros(size(classf)); weights(classf>0) = prior/(ntar*prior_entropy); weights(classf<0) = (1-prior)/(nnon*prior_entropy); %weights remain 0, where classf==0 w=[]; if exist('penalizer','var') && ~isempty(penalizer) obj1 = objective_function(classifier,classf,weights,logit(prior)); obj2 = penalizer(w); obj = sum_of_functions(w,[1,lambda],obj1,obj2); else obj = objective_function(classifier,classf,weights,logit(prior)); end w0 = w0(:); if exist('cstepHessian','var') &&~ isempty(cstepHessian) obj = replace_hessian([],obj,cstepHessian); end [w,y,optimizerState,converged] = trustregion_newton_cg(obj,w0,maxiters,maxCG,optimizerState,[],1,quiet); if exist('penalizer','var') && ~isempty(penalizer) w_pen = lambda*obj2(w); else w_pen = 0; end cxe = y-w_pen; if ~quiet fprintf('cxe = %g, pen = %g\n',cxe,w_pen); end function test_this() %invoke test for linear_fuser, which calls train_binary_classifier linear_fuser();
github
bsxfan/meta-embeddings-master
qfuser_v5.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v5.m
921
utf_8
f82cbe0c178dae2a667496466b612770
function [fusion,w0] = qfuser_v5(w,scores,wfuse) if nargin==0 test_this(); return; end % block 1 f1 = linear_fuser([],scores.scores); w1 = wfuse; [whead,wtail] = splitvec_fh(length(w1)); f1 = f1(whead); % block 2 modelQ = scores.modelQ; [q,n1] = size(modelQ); modelQ = [modelQ;ones(1,n1)]; segQ = scores.segQ; [q2,n2] = size(segQ); segQ = [segQ;ones(1,n2)]; assert(q==q2); q = q + 1; wq = q*(q+1)/2; f2 = AWB_fh(modelQ',segQ,tril_to_symm_fh(q,wtail)); w2 = zeros(wq,1); % assemble fusion = sum_of_functions(w,[1,1],f1,f2); w0 = [w1;w2]; end function test_this() m = 5; k = 2; n1 = 4; n2 = 5; scores.sindx = [1,2,3]; scores.qindx = [4,5]; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); wfuse = [1,2,3,4]'; [fusion,w0] = qfuser_v4([],scores,wfuse); %test_MV2DF(fusion,w0); [fusion(w0),linear_fuser(wfuse,scores.scores(scores.sindx,:))] %fusion(w0) end
github
bsxfan/meta-embeddings-master
qfuser_v2.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v2.m
1,166
utf_8
e10bf159cbd2dacaf85be8d4a90554f6
function [fusion,params] = qfuser_v2(w,scores) % % Inputs: % % scores: the primary detection scores, for training % D-by-T matrix of T scores for D input systems % % quality_input: K-by-T matrix of quality measures % % Output: % fusion: is numeric if w is numeric, or a handle to an MV2DF, representing: % % y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta) % if nargin==0 test_this(); return; end % Create building blocks [Cal,params1] = parallel_cal_augm([],scores.scores); m = size(scores.scores,1)+1; [P,params2] = QQtoP(params1.tail,scores.modelQ,scores.segQ,m); %params.get_w0 = @(wfuse) [params1.get_w0() ;params2.get_w0()]; params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;params2.get_w0()]; params.tail = params2.tail; % Assemble building blocks % modulate linear fusion with quality fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal)); end function test_this() m = 3; k = 2; n1 = 4; n2 = 5; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); [fusion,params] = qfuser_v2([],scores); w0 = params.get_w0(); test_MV2DF(fusion,w0); fusion(w0) end
github
bsxfan/meta-embeddings-master
linear_fuser.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/linear_fuser.m
2,654
utf_8
627fab3e121d1d87d9fad2a3234d26f8
function [fusion,params] = linear_fuser(w,scores) % % Does affine fusion of scores: It does a weighted sum of scores and adds % an offset. % % Inputs: % scores: M-by-N matrix of N scores for each of M input systems. % w: Optional: % - when supplied, the output 'fusion' is the vector of fused scores. % - when w=[], the output 'fusion' is a function handle, to be used % for training the fuser. % w is a (K+1)-vector, with one weight per system, followed by the % offset. % % fusion: if w is given, fusion is a vector of N fused scores. % if w is not given, fusion is a function handle, so that % fusion(w) = @(w) linear_fusion(scores,w). % w0: default values for w, to initialize training. % % For training use: % [fuser,params] = linear_fuser(train_scores); % w0 = get_w0(); % w = train_binary_classifier(fuser,...,w0,...); % % For test use: % fused_scores = linear_fuser(test_scores,w); % if nargin==0 test_this(); return; end if ~exist('scores','var') || isempty(scores) fusion = sprintf(['linear fuser:',repmat(' %g',1,length(w))],w); return; end wsz = size(scores,1)+1; [whead,wtail] = splitvec_fh(wsz,w); params.get_w0 = @() zeros(wsz,1); %params.get_w0 = @() randn(wsz,1); params.tail = wtail; fusion = fusion_mv2df(whead,scores); end function test_this() N = 100; dim = 2; % number of used systems % ----------------synthesize training data ------------------- randn('state',0); means = randn(dim,2)*8; %signal [tar,non] = make_data(N,means); % ------------- create system ------------------------------ [fuser,params] = linear_fuser([],[tar,non]); % ------------- train it ------------------------------ ntar = size(tar,2); nnon = size(non,2); classf = [ones(1,ntar),-ones(1,nnon)]; prior = 0.1; maxiters = 50; quiet = true; objfun = []; w0 = params.get_w0(); [w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet); fprintf('train Cxe = %g\n',cxe); % ------------- test it ------------------------------ [tar,non] = make_data(N,means); scores = [tar,non]; tail = [1;2;3]; wbig = [w;tail]; [fused_scores,params] = linear_fuser(wbig,scores); check_tails = [tail,params.tail], cxe = evaluate_objective(objfun,fused_scores,classf,prior); fprintf('test Cxe = %g\n',cxe); plot(fused_scores); end function [tar,non] = make_data(N,means) [dim,K] = size(means); X = 5*randn(dim,K*N); % noise ii = 1:N; for k=1:K X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii)); ii = ii+N; end N = K*N; tar = X(:,1:N/2); non = X(:,N/2+(1:N/2)); end
github
bsxfan/meta-embeddings-master
qfuser_v3.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v3.m
1,290
utf_8
a2245f6284afa9f203096fc932e8cf07
function [fusion,params] = qfuser_v3(w,scores) % % Inputs: % % scores: the primary detection scores, for training % D-by-T matrix of T scores for D input systems % % quality_input: K-by-T matrix of quality measures % % Output: % fusion: is numeric if w is numeric, or a handle to an MV2DF, representing: % % y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta) % if nargin==0 test_this(); return; end % Create building blocks [Cal,params1] = parallel_cal([],scores.scores); m = size(scores.scores,1); [LLH,params2] = QQtoLLH(params1.tail,scores.modelQ,scores.segQ,m); P = LLH; %P = exp_mv2df(logsoftmax_trunc_mv2df(LLH,m)); W = reshape(params2.get_w0(),[],m); W(:) = 0; W(end,:) = 0.5/(m+1); %params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;params2.get_w0()]; params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;W(:)]; params.tail = params2.tail; % Assemble building blocks % modulate linear fusion with quality fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal)); end function test_this() m = 3; k = 2; n1 = 4; n2 = 5; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); [fusion,params] = qfuser_v3([],scores); w0 = params.get_w0([1 2 3 4]'); test_MV2DF(fusion,w0); fusion(w0) end
github
bsxfan/meta-embeddings-master
qfuser_v6.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v6.m
1,013
utf_8
0bcb6e5fbd79494afd1c1c36eff1e95c
function [fusion,w0] = qfuser_v6(w,scores,wfuse) if nargin==0 test_this(); return; end % block 1 f1 = linear_fuser([],scores.scores); w1 = wfuse; [whead,wtail] = splitvec_fh(length(w1)); f1 = f1(whead); % block 2 modelQ = scores.modelQ; [q,n1] = size(modelQ); modelQ = [modelQ;ones(1,n1)]; segQ = scores.segQ; [q2,n2] = size(segQ); segQ = [segQ;ones(1,n2)]; assert(q==q2); q = q + 1; wq = q*(q+1)/2; r = AWB_fh(modelQ',segQ,tril_to_symm_fh(q)); [whead,wtail] = splitvec_fh(wq,wtail); r = r(whead); w2 = zeros(wq,1);w2(end) = -5; % block 3 s = AWB_fh(modelQ',segQ,tril_to_symm_fh(q,wtail)); w3 = w2; % assemble rs = stack([],r,s); fusion = scalibration_fh(stack(w,f1,rs)); w0 = [w1;w2;w3]; end function test_this() m = 3; k = 2; n1 = 4; n2 = 5; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); wfuse = [1,2,3,4]'; [fusion,w0] = qfuser_v6([],scores,wfuse); test_MV2DF(fusion,w0); [fusion(w0),linear_fuser(wfuse,scores.scores)] %fusion(w0) end
github
bsxfan/meta-embeddings-master
qfuser_v1.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v1.m
1,137
utf_8
8dcda09e63d0f7e6a3f1fc2298b84d7e
function [fusion,params] = qfuser_v1(w,scores) % % Inputs: % % scores: the primary detection scores, for training % D-by-T matrix of T scores for D input systems % % quality_input: K-by-T matrix of quality measures % % Output: % fusion: is numeric if w is numeric, or a handle to an MV2DF, representing: % % y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta) % if nargin==0 test_this(); return; end % Create building blocks [linfusion,params1] = linear_fuser([],scores.scores); [Q,params2] = outerprod_of_sigmoids(params1.tail,scores.modelQ,scores.segQ); params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)]; params.tail = params2.tail; % Assemble building blocks % modulate linear fusion with quality fusion = dottimes_of_functions([],Q,linfusion); if ~isempty(w) fusion = fusion(w); end end function test_this() m = 3; k = 2; n1 = 4; n2 = 5; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); ssat = 0.99; [fusion,params] = qfuser_v1([],scores); w0 = params.get_w0(ssat); test_MV2DF(fusion,w0); fusion(w0) end
github
bsxfan/meta-embeddings-master
qfuser_v7.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v7.m
1,107
utf_8
8d156ad2d97a7aa1b90d702cb2f0a195
function [fusion,w0] = qfuser_v7(w,scores,wfuse) if nargin==0 test_this(); return; end % block 1 f1 = linear_fuser([],scores.scores); w1 = wfuse; [whead,wtail] = splitvec_fh(length(w1)); f1 = f1(whead); % block 2 modelQ = scores.modelQ; [q,n1] = size(modelQ); modelQ = [modelQ;ones(1,n1)]; segQ = scores.segQ; [q2,n2] = size(segQ); segQ = [segQ;ones(1,n2)]; assert(q==q2); q = q + 1; wq = q*(q+1)/2; f2 = AWB_fh(modelQ',segQ,tril_to_symm_fh(q)); w2 = zeros(wq,1); [whead,rs] = splitvec_fh(wq,wtail); f2 = f2(whead); % block 3 n = size(scores.scores,2); map = @(rs) repmat(rs,n,1); transmap =@(RS) sum(reshape(RS,2,[]),2); RS = linTrans(rs,map,transmap); w3 = [-10;-10]; % assemble f12 = sum_of_functions([],[1,1],f1,f2); XRS = stack(w,f12,RS); fusion = scalibration_fh(XRS); w0 = [w1;w2;w3]; end function test_this() m = 3; k = 2; n1 = 4; n2 = 5; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); wfuse = [1,2,3,4]'; [fusion,w0] = qfuser_v7([],scores,wfuse); test_MV2DF(fusion,w0); [fusion(w0),linear_fuser(wfuse,scores.scores)] end
github
bsxfan/meta-embeddings-master
qfuser_v4.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v4.m
1,388
utf_8
cd65aea99057c92c142fc7e024dc1d53
function [fusion,w0] = qfuser_v4(w,scores,wfuse) % qindx: index set for rows of scores.scores which are per-trial quality % measures. % % sindx: index set for rows of scores.scores which are normal discriminative % scores. if nargin==0 test_this(); return; end sindx = scores.sindx; qindx = scores.qindx; m =length(sindx); % Create building blocks [Cal,w1] = parallel_cal([],scores.scores(sindx,:),wfuse); [whead,wtail] = splitvec_fh(length(w1)); Cal = Cal(whead); [LLH1,w2] = QQtoLLH([],scores.modelQ,scores.segQ,m); [whead,wtail] = splitvec_fh(length(w2),wtail); LLH1 = LLH1(whead); W2 = reshape(w2,[],m); W2(:) = 0; W2(end,:) = 0.5/(m+1); w2 = W2(:); [LLH2,w3] = QtoLLH([],scores.scores(qindx,:),m); LLH2 = LLH2(wtail); LLH = sum_of_functions([],[1,1],LLH1,LLH2); %LLH = LLH1; P = LLH; %P = exp_mv2df(logsoftmax_trunc_mv2df(LLH,m)); w0 = [w1;w2;w3]; % Assemble building blocks % modulate linear fusion with quality fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal)); end function test_this() m = 5; k = 2; n1 = 4; n2 = 5; scores.sindx = [1,2,3]; scores.qindx = [4,5]; scores.scores = randn(m,n1*n2); scores.modelQ = randn(k,n1); scores.segQ = randn(k,n2); wfuse = [1,2,3,4]'; [fusion,w0] = qfuser_v4([],scores,wfuse); %test_MV2DF(fusion,w0); [fusion(w0),linear_fuser(wfuse,scores.scores(scores.sindx,:))] %fusion(w0) end
github
bsxfan/meta-embeddings-master
scal_fuser.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_fuser.m
2,918
utf_8
7e49185b74a064be721d9c243a08c07f
function [fusion,params] = scal_fuser(w,scores) % % Does scal calibration % % Inputs: % scores: M-by-N matrix of N scores for each of M input systems. % w: Optional: % - when supplied, the output 'fusion' is the vector of fused scores. % - when w=[], the output 'fusion' is a function handle, to be used % for training the fuser. % w is a (K+1)-vector, with one weight per system, followed by the % offset. % % fusion: if w is given, fusion is a vector of N fused scores. % if w is not given, fusion is a function handle, so that % fusion(w) = @(w) linear_fusion(scores,w). % w0: default values for w, to initialize training. % % For training use: % [fuser,params] = scal_fuser(train_scores); % w0 = params.get_w0(); % w = train_binary_classifier(fuser,...,w0,...); % % For test use: % fused_scores = scal_fuser(test_scores,w); % if nargin==0 test_this(); return; end if ~exist('scores','var') || isempty(scores) fusion = sprintf(['scal fuser:',repmat(' %g',1,length(w))],w); return; end [m,n] = size(scores); wsz = size(scores,1)+1; [wlin,wtail] = splitvec_fh(wsz); [rs,wtail] = splitvec_fh(2,wtail); x = fusion_mv2df(wlin,scores); xrs = stack([],x,rs); fusion = scal_simple_fh(xrs); if ~isempty(w) fusion = fusion(w); wtail = wtail(w); end params.get_w0 = @() [zeros(wsz,1);-10;-10]; params.tail = wtail; end function test_this() N = 10; dim = 2; % number of used systems % ----------------synthesize training data ------------------- randn('state',0); means = randn(dim,2)*8; %signal [tar,non] = make_data(N,means); tar = [tar,[min(non(1,:));min(non(2,:))]]; non = [non,[max(tar(1,:));max(tar(2,:))]]; % ------------- create system ------------------------------ [fuser,params] = scal_fuser([],[tar,non]); w0 = params.get_w0(); test_mv2df(fuser,w0); return; % ------------- train it ------------------------------ ntar = size(tar,2); nnon = size(non,2); classf = [ones(1,ntar),-ones(1,nnon)]; prior = 0.1; maxiters = 50; quiet = false; objfun = []; w0 = params.get_w0(); [w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet); fprintf('train Cxe = %g\n',cxe); % ------------- test it ------------------------------ [tar,non] = make_data(N,means); ntar = size(tar,2); nnon = size(non,2); classf = [ones(1,ntar),-ones(1,nnon)]; scores = [tar,non]; tail = [1;2;3]; wbig = [w;tail]; [fused_scores,params] = scal_fuser(wbig,scores); check_tails = [tail,params.tail], cxe = evaluate_objective(objfun,fused_scores,classf,prior); fprintf('test Cxe = %g\n',cxe); plot(fused_scores); end function [tar,non] = make_data(N,means) [dim,K] = size(means); X = 5*randn(dim,K*N); % noise ii = 1:N; for k=1:K X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii)); ii = ii+N; end N = K*N; tar = X(:,1:N/2); non = X(:,N/2+(1:N/2)); end
github
bsxfan/meta-embeddings-master
scal_fuser_slow.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_fuser_slow.m
2,972
utf_8
abc2a78dc2b6cf08cfdd508f4dabdb71
function [fusion,params] = scal_fuser_slow(w,scores) % % Does scal calibration % % Inputs: % scores: M-by-N matrix of N scores for each of M input systems. % w: Optional: % - when supplied, the output 'fusion' is the vector of fused scores. % - when w=[], the output 'fusion' is a function handle, to be used % for training the fuser. % w is a (K+1)-vector, with one weight per system, followed by the % offset. % % fusion: if w is given, fusion is a vector of N fused scores. % if w is not given, fusion is a function handle, so that % fusion(w) = @(w) linear_fusion(scores,w). % w0: default values for w, to initialize training. % % For training use: % [fuser,params] = scal_fuser(train_scores); % w0 = params.get_w0(); % w = train_binary_classifier(fuser,...,w0,...); % % For test use: % fused_scores = scal_fuser(test_scores,w); % if nargin==0 test_this(); return; end if ~exist('scores','var') || isempty(scores) fusion = sprintf(['scal fuser:',repmat(' %g',1,length(w))],w); return; end [m,n] = size(scores); wsz = size(scores,1)+1; [wlin,wtail] = splitvec_fh(wsz); [rs,wtail] = splitvec_fh(2,wtail); map = @(rs) repmat(rs,n,1); transmap =@(RS) sum(reshape(RS,2,[]),2); RS = linTrans(rs,map,transmap); X = fusion_mv2df(wlin,scores); XRS = stack([],X,RS); fusion = scalibration_fh(XRS); if ~isempty(w) fusion = fusion(w); wtail = wtail(w); end params.get_w0 = @() [zeros(wsz,1);-5;-5]; params.tail = wtail; end function test_this() N = 1000; dim = 2; % number of used systems % ----------------synthesize training data ------------------- randn('state',0); means = randn(dim,2)*8; %signal [tar,non] = make_data(N,means); tar = [tar,[min(non(1,:));min(non(2,:))]]; non = [non,[max(tar(1,:));max(tar(2,:))]]; % ------------- create system ------------------------------ [fuser,params] = scal_fuser([],[tar,non]); % ------------- train it ------------------------------ ntar = size(tar,2); nnon = size(non,2); classf = [ones(1,ntar),-ones(1,nnon)]; prior = 0.1; maxiters = 50; quiet = false; objfun = []; w0 = params.get_w0(); [w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet); fprintf('train Cxe = %g\n',cxe); % ------------- test it ------------------------------ [tar,non] = make_data(N,means); ntar = size(tar,2); nnon = size(non,2); classf = [ones(1,ntar),-ones(1,nnon)]; scores = [tar,non]; tail = [1;2;3]; wbig = [w;tail]; [fused_scores,params] = scal_fuser(wbig,scores); check_tails = [tail,params.tail], cxe = evaluate_objective(objfun,fused_scores,classf,prior); fprintf('test Cxe = %g\n',cxe); plot(fused_scores); end function [tar,non] = make_data(N,means) [dim,K] = size(means); X = 5*randn(dim,K*N); % noise ii = 1:N; for k=1:K X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii)); ii = ii+N; end N = K*N; tar = X(:,1:N/2); non = X(:,N/2+(1:N/2)); end
github
bsxfan/meta-embeddings-master
logsumexp_special.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/logsumexp_special.m
1,102
utf_8
a15ffa60b181fdc8b0a1e3fb4bcfd403
function [y,deriv] = logsumexp_special(w) % This is a MV2DF. See MV2DF_API_DEFINITION.readme. % % If w = [x;r], where r is scalar and x vector, then % y = log(exp(x)+exp(r)) if nargin==0 test_this(); return; end if isempty(w) y = @(w)logsumexp_special(w); return; end if isa(w,'function_handle') outer = logsumexp_special([]); y = compose_mv(outer,w,[]); return; end [r,x] = get_rx(w); rmax = (r>x); rnotmax = ~rmax; y = zeros(size(x)); y(rmax) = log(exp(x(rmax)-r)+1)+r; y(rnotmax) = log(exp(r-x(rnotmax))+1)+x(rnotmax); if nargout>1 deriv = @(Dy) deriv_this(Dy,r,x,y); end end function [r,x] = get_rx(w) w = w(:); r = w(end); x = w(1:end-1); end function [g,hess,linear] = deriv_this(dy,r,x,y) gr = exp(r-y); gx = exp(x-y); g = [gx.*dy(:);gr.'*dy(:)]; linear = false; hess = @(dw) hess_this(dw,dy,gr,gx); end function [h,Jv] = hess_this(dw,dy,gr,gx) [dr,dx] = get_rx(dw); p = gr.*gx.*dy; h = [p.*(dx-dr);dr*sum(p)-dx.'*p]; if nargout>1 Jv = gx.*dx+dr*gr; end end function test_this() f = logsumexp_special([]); test_MV2DF(f,randn(5,1)); end
github
bsxfan/meta-embeddings-master
scalibration_fh.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scalibration_fh.m
1,735
utf_8
b9918a8e2a9fa07dfcef33933013931b
function f = scalibration_fh(w) % This is a factory for a function handle to an MV2DF, which represents % the vectorization of the s-calibration function. The whole mapping works like % this, in MATLAB-style pseudocode: % % If y = f([x;r;s]), where x,r,s are column vectors of size m, then y % is a column vector of size m and % % y = log( exp(x) + exp(r) ) + log( exp(-s) + 1 ) % - log( exp(x) + exp(-s) ) - log( exp(r) + 1 ) % % Viewed as a data-dependent calibration transform from x to y, with % parameters r and s, then: % % r: is the log-odds that x is a typical non-target score, given that % there really is a target. % % s: is the log-odds that x is a typical target score, given that % there really is a non-target. % % Ideally r and s should be large negative, in which case this is almost % an identity transform from x to y, but with saturation at large % positive and negative values. Increasing r increases the lower % saturation level. Increasing s decreases the upper saturation level. if nargin==0 test_this(); return; end x = columnJofN_fh(1,3); r = columnJofN_fh(2,3); s = columnJofN_fh(3,3); neg = @(x)-x; negr = linTrans(r,neg,neg); negs = linTrans(s,neg,neg); num1 = logsumexp_fh(2,2,stack([],x,r)); num2 = neglogsigmoid_fh(s); den1 = neglogsigmoid_fh(negr); den2 = logsumexp_fh(2,2,stack([],x,negs)); f = sum_of_functions([],[1 1],num1,num2); f = sum_of_functions([],[1 -1],f,den1); f = sum_of_functions([],[1 -1],f,den2); if exist('w','var') && ~isempty(w) f = f(w); end end function test_this() n = 3; x = randn(n,1); r = randn(n,1); s = randn(n,1); X = [x;r;s]; f = scalibration_fh([]); test_MV2DF(f,X(:)); end
github
bsxfan/meta-embeddings-master
scalibration_fragile_fh.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scalibration_fragile_fh.m
2,389
utf_8
8eec3ccf6bcd5f130a3d399194acd676
function f = scalibration_fragile_fh(direction,w) % % Don't use this function, it is just for reference. It will break for % large argument values. % % This is a factory for a function handle to an MV2DF, which represents % the vectorization of the logsumexp function. The whole mapping works like % this, in MATLAB-style psuedocode: % % F: R^(m*n) --> R^n, where y = F(x) is computed thus: % % n = length(x)/m % If direction=1, X = reshape(x,m,n), or % if direction=1, X = reshape(x,n,m). % y = log(sum(exp(X),direction)) % % Inputs: % m: the number of inputs to each individual logsumexp calculation. % direction: 1 sums down columns, or 2 sums accross rows. % w: optional, if ssupplied % % Outputs: % f: a function handle to the MV2DF described above. % % see: MV2DF_API_DEFINITION.readme if nargin==0 test_this(); return; end f = vectorized_function([],@(X)F0(X,direction),3,direction); if exist('w','var') && ~isempty(w) f = f(w); end end function [y,f1] = F0(X,dr) if dr==1 x = X(1,:); p = X(2,:); q = X(3,:); else x = X(:,1); p = X(:,2); q = X(:,3); end expx = exp(x); num = (expx-1).*p+1; den = (expx-1).*q+1; y = log(num)-log(den); f1 = @() F1(expx,p,q,num,den,dr); end function [J,f2,linear] = F1(expx,p,q,num,den,dr) linear = false; if dr==1 J = [expx.*(p-q)./(num.*den);(expx-1)./num;-(expx-1)./den]; else J = [expx.*(p-q)./(num.*den),(expx-1)./num,-(expx-1)./den]; end f2 = @(dX) F2(dX,expx,p,q,num,den,dr); end function H = F2(dX,expx,p,q,num,den,dr) d2dx2 = -expx.*(p-q).*(p+q+p.*q.*(expx.^2-1)-1)./(num.^2.*den.^2); d2dxdp = expx./num.^2; d2dxdq = -expx./den.^2; d2dp2 = -(expx-1).^2./num.^2; d2dq2 = (expx-1).^2./den.^2; if dr==1 dx = dX(1,:); dp = dX(2,:); dq = dX(3,:); H = [ dx.*d2dx2+dp.*d2dxdp+dq.*d2dxdq; ... dx.*d2dxdp+dp.*d2dp2; ... dx.*d2dxdq+dq.*d2dq2... ]; else dx = dX(:,1); dp = dX(:,2); dq = dX(:,3); H = [ dx.*d2dx2+dp.*d2dxdp+dq.*d2dxdq, ... dx.*d2dxdp+dp.*d2dp2, ... dx.*d2dxdq+dq.*d2dq2... ]; end end function test_this() n = 10; x = randn(1,n); p = rand(1,n); q = rand(1,n); X = [x;p;q]; fprintf('testing dir==1:\n'); f = scalibration_fragile_fh(1); test_MV2DF(f,X(:)); fprintf('\n\n\ntesting dir==2:\n'); f = scalibration_fragile_fh(2); X = X'; test_MV2DF(f,X(:)); end
github
bsxfan/meta-embeddings-master
scal_simple_fh.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_simple_fh.m
1,903
utf_8
b6e3992c13b4424d2129302a3c51424c
function f = scal_simple_fh(w) % This is a factory for a function handle to an MV2DF, which represents % the vectorization of the s-calibration function. The whole mapping works like % this, in MATLAB-style pseudocode: % % If y = f([x;r;s]), where r,s are scalar, x is column vector of size m, % then y is a column vector of size m and % % y_i = log( exp(x_i) + exp(r) ) + log( exp(-s) + 1 ) % - log( exp(x_i) + exp(-s) ) - log( exp(r) + 1 ) % % Viewed as a data-dependent calibration transform from x to y, with % parameters r and s, then: % % r: is the log-odds that x is a typical non-target score, given that % there really is a target. % % s: is the log-odds that x is a typical target score, given that % there really is a non-target. % % Ideally r and s should be large negative, in which case this is almost % an identity transform from x to y, but with saturation at large % positive and negative values. Increasing r increases the lower % saturation level. Increasing s decreases the upper saturation level. if nargin==0 test_this(); return; end [x,rs] = splitvec_fh(-2); [r,s] = splitvec_fh(-1,rs); neg = @(t)-t; negr = linTrans(r,neg,neg); negs = linTrans(s,neg,neg); linmap = linTrans([],@(x)map(x),@(y)transmap(y)); %add last element to others num1 = logsumexp_special(stack([],x,r)); num2 = neglogsigmoid_fh(s); num = linmap(stack([],num1,num2)); den1 = neglogsigmoid_fh(negr); den2 = logsumexp_special(stack([],x,negs)); den = linmap(stack([],den2,den1)); f = sum_of_functions([],[1 -1],num,den); if exist('w','var') && ~isempty(w) f = f(w); end end function y = map(x) y = x(1:end-1)+x(end); end function x = transmap(y) x = [y(:);sum(y)]; end function test_this() n = 3; x = randn(n,1); r = randn(1,1); s = randn(1,1); X = [x;r;s]; f = scal_simple_fh([]); test_MV2DF(f,X(:)); end
github
bsxfan/meta-embeddings-master
quality_fuser_v3.m
.m
meta-embeddings-master/code/snapshot_for_anya/matlab/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/aside/quality_fuser_v3.m
1,843
utf_8
1be42594eb854e9b0b4d89daa27c0759
function [fusion,params] = quality_fuser_v3(w,scores,train_vecs,test_vecs,train_ndx,test_ndx,ddim) % % Inputs: % % scores: the primary detection scores, for training % D-by-T matrix of T scores for D input systems % % train_vecs: K1-by-M matrix, one column-vector for each of M training % segemnts % % test_vecs: K2-by-N matrix, one column-vector for each of N training % segemnts % % train_ndx: 1-by-T index where train_ndx(t) is the index into train_vecs % for trial t. % % test_ndx: 1-by-T index where test_ndx(t) is the index into test_vecs % for trial t. % ddim: dimension of subspace for quality distandce calculation, % where ddim <= min(K1,K2) % % Outputs: % if nargin==0 test_this(); return; end % Check data dimensions [K1,M] = size(train_vecs); [K2,N] = size(test_vecs); assert(ddim<min(K1,K2)); [D,T] = size(scores); assert(T == length(train_ndx)); assert(T == length(test_ndx)); assert(max(train_ndx)<=M); assert(max(test_ndx)<=N); % Create building blocks [linfusion,params1] = linear_fuser([],scores); [quality,params2] = sigmoid_log_sumsqdist(params1.tail,train_vecs,test_vecs,train_ndx,test_ndx,ddim); params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)]; params.tail = params2.tail; % Assemble building blocks % modulate linear fusion with quality fusion = dottimes_of_functions([],quality,linfusion); if ~isempty(w) fusion = fusion(w); end end function test_this() D = 2; N = 5; T = 3; Q = 4; ndx = ceil(T.*rand(1,N)); scores = randn(D,N); train = randn(Q,T); test = randn(Q,T); ddim = 2; ssat = 0.99; [fusion,params] = quality_fuser_v3([],scores,train,test,ndx,ndx,ddim); w0 = params.get_w0(ssat); test_MV2DF(fusion,w0); quality_fuser_v3(w0,scores,train,test,ndx,ndx,ddim), end