file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Algebra/GroupPower/Order.lean
pow_le_pow_of_le_one'
[]
[ 78, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Analysis/Calculus/Inverse.lean
HasStrictFDerivAt.localInverse_continuousAt
[]
[ 648, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 646, 1 ]
Mathlib/Topology/Semicontinuous.lean
lowerSemicontinuousOn_sum
[]
[ 536, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 533, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.piecewise_empty
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.42149\nδ : Type ?u.42152\ninst✝ : MeasurableSpace α\nf g : α →ₛ β\n⊢ Set.piecewise ∅ ↑f ↑g = ↑g", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.42149\nδ : Type ?u.42152\ninst✝ : MeasurableSpace α\nf g : α →ₛ β\n⊢ ↑(piecewise ∅ (_ : MeasurableSet ∅) f g) = ↑g", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.42149\nδ : Type ?u.42152\ninst✝ : MeasurableSpace α\nf g : α →ₛ β\n⊢ Set.piecewise ∅ ↑f ↑g = ↑g", "tactic": "convert Set.piecewise_empty f g" } ]
[ 267, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/Analysis/Analytic/Basic.lean
Asymptotics.IsBigO.continuousMultilinearMap_apply_eq_zero
[ { "state_after": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\n⊢ (↑p fun x => y) = 0", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\n⊢ (↑p fun x => y) = 0", "tactic": "obtain ⟨c, c_pos, hc⟩ := h.exists_pos" }, { "state_after": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nz_mem : 0 ∈ t\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\n⊢ (↑p fun x => y) = 0", "tactic": "obtain ⟨t, ht, t_open, z_mem⟩ := eventually_nhds_iff.mp (isBigOWith_iff.mp hc)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nz_mem : 0 ∈ t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nz_mem : 0 ∈ t\n⊢ (↑p fun x => y) = 0", "tactic": "obtain ⟨δ, δ_pos, δε⟩ := (Metric.isOpen_iff.mp t_open) 0 z_mem" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nh : (fun y => ↑p fun x => y) =O[𝓝 0] fun y => ‖y‖ ^ (n + 1)\ny : E\nc : ℝ\nc_pos : 0 < c\nhc : IsBigOWith c (𝓝 0) (fun y => ↑p fun x => y) fun y => ‖y‖ ^ (n + 1)\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nz_mem : 0 ∈ t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\n⊢ (↑p fun x => y) = 0", "tactic": "clear h hc z_mem" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.zero\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.zero + 1)‖\n⊢ (↑p fun x => y) = 0\n\ncase intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (n + 1)‖\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\n⊢ (↑p fun x => y) = 0", "tactic": "cases' n with n" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.zero\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.zero + 1)‖\n⊢ (↑p fun x => y) = 0", "tactic": "exact norm_eq_zero.mp (by\n simpa only [Nat.zero_eq, fin0_apply_norm, norm_eq_zero, norm_zero, zero_add, pow_one,\n mul_zero, norm_le_zero_iff] using ht 0 (δε (Metric.mem_ball_self δ_pos)))" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.zero + 1)‖\n⊢ ‖↑p fun x => y‖ = 0", "tactic": "simpa only [Nat.zero_eq, fin0_apply_norm, norm_eq_zero, norm_zero, zero_add, pow_one,\n mul_zero, norm_le_zero_iff] using ht 0 (δε (Metric.mem_ball_self δ_pos))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : ¬y = 0\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\n⊢ (↑p fun x => y) = 0", "tactic": "refine' Or.elim (Classical.em (y = 0))\n (fun hy => by simpa only [hy] using p.map_zero) fun hy => _" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\n⊢ (↑p fun x => y) = 0", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : ¬y = 0\n⊢ (↑p fun x => y) = 0", "tactic": "replace hy := norm_pos_iff.mpr hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\n⊢ (↑p fun x => y) = 0", "tactic": "refine' norm_eq_zero.mp (le_antisymm (le_of_forall_pos_le_add fun ε ε_pos => _) (norm_nonneg _))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "have h₀ := _root_.mul_pos c_pos (pow_pos hy (n.succ + 1))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "obtain ⟨k, k_pos, k_norm⟩ := NormedField.exists_norm_lt 𝕜\n (lt_min (mul_pos δ_pos (inv_pos.mpr hy)) (mul_pos ε_pos (inv_pos.mpr h₀)))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "have h₁ : ‖k • y‖ < δ := by\n rw [norm_smul]\n exact inv_mul_cancel_right₀ hy.ne.symm δ ▸\n mul_lt_mul_of_pos_right (lt_of_lt_of_le k_norm (min_le_left _ _)) hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "have h₂ :=\n calc\n ‖p fun _ => k • y‖ ≤ c * ‖k • y‖ ^ (n.succ + 1) := by\n simpa only [norm_pow, _root_.norm_norm] using ht (k • y) (δε (mem_ball_zero_iff.mpr h₁))\n _ = ‖k‖ ^ n.succ * (‖k‖ * (c * ‖y‖ ^ (n.succ + 1))) := by\n simp only [norm_smul, mul_pow, Nat.succ_eq_add_one]\n ring" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "have h₃ : ‖k‖ * (c * ‖y‖ ^ (n.succ + 1)) < ε :=\n inv_mul_cancel_right₀ h₀.ne.symm ε ▸\n mul_lt_mul_of_pos_right (lt_of_lt_of_le k_norm (min_le_right _ _)) h₀" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.succ.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖↑p fun x => y‖ ≤ 0 + ε", "tactic": "calc\n ‖p fun _ => y‖ = ‖k⁻¹ ^ n.succ‖ * ‖p fun _ => k • y‖ := by\n simpa only [inv_smul_smul₀ (norm_pos_iff.mp k_pos), norm_smul, Finset.prod_const,\n Finset.card_fin] using\n congr_arg norm (p.map_smul_univ (fun _ : Fin n.succ => k⁻¹) fun _ : Fin n.succ => k • y)\n _ ≤ ‖k⁻¹ ^ n.succ‖ * (‖k‖ ^ n.succ * (‖k‖ * (c * ‖y‖ ^ (n.succ + 1)))) := by gcongr\n _ = ‖(k⁻¹ * k) ^ n.succ‖ * (‖k‖ * (c * ‖y‖ ^ (n.succ + 1))) := by\n rw [← mul_assoc]\n simp [norm_mul, mul_pow]\n _ ≤ 0 + ε := by\n rw [inv_mul_cancel (norm_pos_iff.mp k_pos)]\n simpa using h₃.le" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : y = 0\n⊢ (↑p fun x => y) = 0", "tactic": "simpa only [hy] using p.map_zero" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\n⊢ ‖k‖ * ‖y‖ < δ", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\n⊢ ‖k • y‖ < δ", "tactic": "rw [norm_smul]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\n⊢ ‖k‖ * ‖y‖ < δ", "tactic": "exact inv_mul_cancel_right₀ hy.ne.symm δ ▸\n mul_lt_mul_of_pos_right (lt_of_lt_of_le k_norm (min_le_left _ _)) hy" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ ‖↑p fun x => k • y‖ ≤ c * ‖k • y‖ ^ (Nat.succ n + 1)", "tactic": "simpa only [norm_pow, _root_.norm_norm] using ht (k • y) (δε (mem_ball_zero_iff.mpr h₁))" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ c * (‖k‖ ^ (n + 1 + 1) * ‖y‖ ^ (n + 1 + 1)) = ‖k‖ ^ (n + 1) * (‖k‖ * (c * ‖y‖ ^ (n + 1 + 1)))", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ c * ‖k • y‖ ^ (Nat.succ n + 1) = ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))", "tactic": "simp only [norm_smul, mul_pow, Nat.succ_eq_add_one]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\n⊢ c * (‖k‖ ^ (n + 1 + 1) * ‖y‖ ^ (n + 1 + 1)) = ‖k‖ ^ (n + 1) * (‖k‖ * (c * ‖y‖ ^ (n + 1 + 1)))", "tactic": "ring" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖↑p fun x => y‖ = ‖k⁻¹ ^ Nat.succ n‖ * ‖↑p fun x => k • y‖", "tactic": "simpa only [inv_smul_smul₀ (norm_pos_iff.mp k_pos), norm_smul, Finset.prod_const,\n Finset.card_fin] using\n congr_arg norm (p.map_smul_univ (fun _ : Fin n.succ => k⁻¹) fun _ : Fin n.succ => k • y)" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖k⁻¹ ^ Nat.succ n‖ * ‖↑p fun x => k • y‖ ≤\n ‖k⁻¹ ^ Nat.succ n‖ * (‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))))", "tactic": "gcongr" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖k⁻¹ ^ Nat.succ n‖ * ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))) =\n ‖(k⁻¹ * k) ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖k⁻¹ ^ Nat.succ n‖ * (‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))) =\n ‖(k⁻¹ * k) ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))", "tactic": "rw [← mul_assoc]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖k⁻¹ ^ Nat.succ n‖ * ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))) =\n ‖(k⁻¹ * k) ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))", "tactic": "simp [norm_mul, mul_pow]" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖1 ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))) ≤ 0 + ε", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖(k⁻¹ * k) ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))) ≤ 0 + ε", "tactic": "rw [inv_mul_cancel (norm_pos_iff.mp k_pos)]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.1082661\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\ny : E\nc : ℝ\nc_pos : 0 < c\nt : Set E\nt_open : IsOpen t\nδ : ℝ\nδ_pos : δ > 0\nδε : Metric.ball 0 δ ⊆ t\nn : ℕ\np : ContinuousMultilinearMap 𝕜 (fun i => E) F\nht : ∀ (x : E), x ∈ t → ‖↑p fun x_1 => x‖ ≤ c * ‖‖x‖ ^ (Nat.succ n + 1)‖\nhy : 0 < ‖y‖\nε : ℝ\nε_pos : 0 < ε\nh₀ : 0 < c * ‖y‖ ^ (Nat.succ n + 1)\nk : 𝕜\nk_pos : 0 < ‖k‖\nk_norm : ‖k‖ < min (δ * ‖y‖⁻¹) (ε * (c * ‖y‖ ^ (Nat.succ n + 1))⁻¹)\nh₁ : ‖k • y‖ < δ\nh₂ : ‖↑p fun x => k • y‖ ≤ ‖k‖ ^ Nat.succ n * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)))\nh₃ : ‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1)) < ε\n⊢ ‖1 ^ Nat.succ n‖ * (‖k‖ * (c * ‖y‖ ^ (Nat.succ n + 1))) ≤ 0 + ε", "tactic": "simpa using h₃.le" } ]
[ 982, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 933, 1 ]
Mathlib/Order/Disjoint.lean
Disjoint.of_disjoint_inf_of_le
[]
[ 173, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/CategoryTheory/Limits/Cones.lean
CategoryTheory.Limits.Cocones.cocone_iso_of_hom_iso
[ { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝³ : Category J\nK✝ : Type u₂\ninst✝² : Category K✝\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF K : J ⥤ C\nc d : Cocone K\nf : c ⟶ d\ni : IsIso f.Hom\n⊢ f ≫ CoconeMorphism.mk (inv f.Hom) = 𝟙 c ∧ CoconeMorphism.mk (inv f.Hom) ≫ f = 𝟙 d", "tactic": "aesop_cat" } ]
[ 534, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/Combinatorics/Quiver/Cast.lean
Quiver.Hom.cast_eq_cast
[ { "state_after": "U : Type u_1\ninst✝ : Quiver U\nu' v' : U\ne : u' ⟶ v'\n⊢ cast (_ : u' = u') (_ : v' = v') e = _root_.cast (_ : (u' ⟶ v') = (u' ⟶ v')) e", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu v u' v' : U\nhu : u = u'\nhv : v = v'\ne : u ⟶ v\n⊢ cast hu hv e = _root_.cast (_ : (u ⟶ v) = (u' ⟶ v')) e", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu' v' : U\ne : u' ⟶ v'\n⊢ cast (_ : u' = u') (_ : v' = v') e = _root_.cast (_ : (u' ⟶ v') = (u' ⟶ v')) e", "tactic": "rfl" } ]
[ 44, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/Analysis/Calculus/Dslope.lean
differentiableAt_dslope_of_ne
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝² : NontriviallyNormedField 𝕜\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : 𝕜 → E\na b : 𝕜\ns : Set 𝕜\nh : b ≠ a\n⊢ DifferentiableAt 𝕜 (dslope f a) b ↔ DifferentiableAt 𝕜 f b", "tactic": "simp only [← differentiableWithinAt_univ, differentiableWithinAt_dslope_of_ne h]" } ]
[ 162, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Analysis/NormedSpace/PiLp.lean
PiLp.infty_equiv_isometry
[ { "state_after": "no goals", "state_before": "p : ℝ≥0∞\n𝕜 : Type ?u.215698\n𝕜' : Type ?u.215701\nι : Type u_2\nα : ι → Type ?u.215709\nβ : ι → Type u_1\ninst✝² : Fintype ι\ninst✝¹ : Fact (1 ≤ p)\ninst✝ : (i : ι) → PseudoEMetricSpace (β i)\nx y : PiLp ⊤ β\n⊢ edist (↑(PiLp.equiv ⊤ β) x) (↑(PiLp.equiv ⊤ β) y) ≤ edist x y", "tactic": "simpa only [ENNReal.coe_one, one_mul] using lipschitzWith_equiv ∞ β x y" }, { "state_after": "no goals", "state_before": "p : ℝ≥0∞\n𝕜 : Type ?u.215698\n𝕜' : Type ?u.215701\nι : Type u_2\nα : ι → Type ?u.215709\nβ : ι → Type u_1\ninst✝² : Fintype ι\ninst✝¹ : Fact (1 ≤ p)\ninst✝ : (i : ι) → PseudoEMetricSpace (β i)\nx y : PiLp ⊤ β\n⊢ edist x y ≤ edist (↑(PiLp.equiv ⊤ β) x) (↑(PiLp.equiv ⊤ β) y)", "tactic": "simpa only [ENNReal.div_top, ENNReal.zero_toReal, NNReal.rpow_zero, ENNReal.coe_one,\n one_mul] using antilipschitzWith_equiv ∞ β x y" } ]
[ 531, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 526, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.lift_mk
[]
[ 286, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Algebra/DirectSum/Module.lean
DirectSum.component.lof_self
[]
[ 225, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/Data/Part.lean
Part.inv_mem_inv
[ { "state_after": "α : Type u_1\nβ : Type ?u.58569\nγ : Type ?u.58572\ninst✝ : Inv α\na : Part α\nma : α\nha : ma ∈ a\n⊢ ∃ a_1, a_1 ∈ a ∧ a_1⁻¹ = ma⁻¹", "state_before": "α : Type u_1\nβ : Type ?u.58569\nγ : Type ?u.58572\ninst✝ : Inv α\na : Part α\nma : α\nha : ma ∈ a\n⊢ ma⁻¹ ∈ a⁻¹", "tactic": "simp [inv_def]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.58569\nγ : Type ?u.58572\ninst✝ : Inv α\na : Part α\nma : α\nha : ma ∈ a\n⊢ ∃ a_1, a_1 ∈ a ∧ a_1⁻¹ = ma⁻¹", "tactic": "aesop" } ]
[ 746, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 745, 1 ]
Mathlib/Analysis/NormedSpace/Star/Multiplier.lean
DoubleCentralizer.norm_fst
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nA : Type u_2\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NonUnitalNormedRing A\ninst✝⁴ : NormedSpace 𝕜 A\ninst✝³ : SMulCommClass 𝕜 A A\ninst✝² : IsScalarTower 𝕜 A A\ninst✝¹ : StarRing A\ninst✝ : CstarRing A\na : 𝓜(𝕜, A)\n⊢ ‖a.fst‖ = ‖a‖", "tactic": "simp only [norm_def, toProdHom_apply, Prod.norm_def, norm_fst_eq_snd, max_eq_right le_rfl]" } ]
[ 643, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/InverseDeriv.lean
Real.contDiffAt_arcsin_iff
[]
[ 133, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
BoxIntegral.Box.coe_subset_coe
[]
[ 170, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/AlgebraicTopology/DoldKan/PInfty.lean
AlgebraicTopology.DoldKan.PInfty_idem
[ { "state_after": "case h\nC : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\nn : ℕ\n⊢ HomologicalComplex.Hom.f (PInfty ≫ PInfty) n = HomologicalComplex.Hom.f PInfty n", "state_before": "C : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\n⊢ PInfty ≫ PInfty = PInfty", "tactic": "ext n" }, { "state_after": "no goals", "state_before": "case h\nC : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\nn : ℕ\n⊢ HomologicalComplex.Hom.f (PInfty ≫ PInfty) n = HomologicalComplex.Hom.f PInfty n", "tactic": "exact PInfty_f_idem n" } ]
[ 114, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.span_singleton_eq_span_singleton
[ { "state_after": "α✝ : Type u\nβ : Type v\na b : α✝\ninst✝² : CommSemiring α✝\nI : Ideal α✝\nα : Type u\ninst✝¹ : CommRing α\ninst✝ : IsDomain α\nx y : α\n⊢ span {y} ≤ span {x} ∧ span {x} ≤ span {y} ↔ x ∣ y ∧ y ∣ x", "state_before": "α✝ : Type u\nβ : Type v\na b : α✝\ninst✝² : CommSemiring α✝\nI : Ideal α✝\nα : Type u\ninst✝¹ : CommRing α\ninst✝ : IsDomain α\nx y : α\n⊢ span {x} = span {y} ↔ Associated x y", "tactic": "rw [← dvd_dvd_iff_associated, le_antisymm_iff, and_comm]" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\na b : α✝\ninst✝² : CommSemiring α✝\nI : Ideal α✝\nα : Type u\ninst✝¹ : CommRing α\ninst✝ : IsDomain α\nx y : α\n⊢ span {y} ≤ span {x} ∧ span {x} ≤ span {y} ↔ x ∣ y ∧ y ∣ x", "tactic": "apply and_congr <;> rw [span_singleton_le_span_singleton]" } ]
[ 514, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.mul_invOfUnit
[]
[ 1933, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1931, 1 ]
Mathlib/Topology/Order/Hom/Basic.lean
ContinuousOrderHom.coe_comp
[]
[ 166, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigO.smul
[ { "state_after": "case refine'_2\nα : Type u_1\nβ : Type ?u.566716\nE : Type ?u.566719\nF : Type ?u.566722\nG : Type ?u.566725\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.566734\nE'' : Type ?u.566737\nF'' : Type ?u.566740\nG'' : Type ?u.566743\nR : Type ?u.566746\nR' : Type ?u.566749\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =O[l] k₂\nh₂ : f' =O[l] g'\nx✝ : α\n⊢ ‖k₂ x✝‖ * ‖g' x✝‖ = ‖k₂ x✝ • g' x✝‖", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.566716\nE : Type ?u.566719\nF : Type ?u.566722\nG : Type ?u.566725\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.566734\nE'' : Type ?u.566737\nF'' : Type ?u.566740\nG'' : Type ?u.566743\nR : Type ?u.566746\nR' : Type ?u.566749\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =O[l] k₂\nh₂ : f' =O[l] g'\n⊢ ∀ (x : α), ‖k₂ x‖ * ‖g' x‖ = ‖k₂ x • g' x‖", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.566716\nE : Type ?u.566719\nF : Type ?u.566722\nG : Type ?u.566725\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.566734\nE'' : Type ?u.566737\nF'' : Type ?u.566740\nG'' : Type ?u.566743\nR : Type ?u.566746\nR' : Type ?u.566749\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =O[l] k₂\nh₂ : f' =O[l] g'\nx✝ : α\n⊢ ‖k₂ x✝‖ * ‖g' x✝‖ = ‖k₂ x✝ • g' x✝‖", "tactic": "simp only [norm_smul]" } ]
[ 1759, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1756, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.image_const_sub_Ici
[ { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ici b = Iic (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => a - x) '' Ici b = Iic (a - b)", "tactic": "have := image_comp (fun x => a + x) fun x => -x" }, { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ici b = Iic (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ici b = Iic (a - b)", "tactic": "dsimp [Function.comp] at this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ici b = Iic (a - b)", "tactic": "simp [sub_eq_add_neg, this, add_comm]" } ]
[ 323, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 321, 1 ]
Mathlib/Order/UpperLower/LocallyFinite.lean
Set.Finite.upperClosure
[ { "state_after": "α : Type u_1\ninst✝¹ : Preorder α\ns : Set α\ninst✝ : LocallyFiniteOrderTop α\nhs : Set.Finite s\n⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Ici a)", "state_before": "α : Type u_1\ninst✝¹ : Preorder α\ns : Set α\ninst✝ : LocallyFiniteOrderTop α\nhs : Set.Finite s\n⊢ Set.Finite ↑(upperClosure s)", "tactic": "rw [coe_upperClosure]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Preorder α\ns : Set α\ninst✝ : LocallyFiniteOrderTop α\nhs : Set.Finite s\n⊢ Set.Finite (⋃ (a : α) (_ : a ∈ s), Ici a)", "tactic": "exact hs.biUnion fun _ _ => finite_Ici _" } ]
[ 28, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 25, 11 ]
Mathlib/Data/Prod/PProd.lean
PProd.forall'
[]
[ 40, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 39, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.measure_inter_null_of_null_left
[]
[ 348, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Data/MvPolynomial/Monad.lean
MvPolynomial.aeval_eq_bind₁
[]
[ 110, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Data/List/Rotate.lean
List.isRotated_reverse_comm_iff
[ { "state_after": "case mpr\nα : Type u\nl l' : List α\nh : l ~r reverse l'\n⊢ reverse l ~r l'", "state_before": "case mpr\nα : Type u\nl l' : List α\n⊢ l ~r reverse l' → reverse l ~r l'", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mpr\nα : Type u\nl l' : List α\nh : l ~r reverse l'\n⊢ reverse l ~r l'", "tactic": "simpa using h.reverse" } ]
[ 526, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 523, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.two_nsmul_toReal_eq_two_mul_add_two_pi
[ { "state_after": "θ : Angle\n⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2", "state_before": "θ : Angle\n⊢ toReal (2 • θ) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2", "tactic": "nth_rw 1 [← coe_toReal θ]" }, { "state_after": "θ : Angle\n⊢ -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π ↔ toReal θ ≤ -π / 2", "state_before": "θ : Angle\n⊢ toReal (2 • ↑(toReal θ)) = 2 * toReal θ + 2 * π ↔ toReal θ ≤ -π / 2", "tactic": "rw [← coe_nsmul, two_nsmul, ← two_mul, toReal_coe_eq_self_add_two_pi_iff, Set.mem_Ioc]" }, { "state_after": "no goals", "state_before": "θ : Angle\n⊢ -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π ↔ toReal θ ≤ -π / 2", "tactic": "refine'\n ⟨fun h => by linarith, fun h =>\n ⟨by linarith [pi_pos, neg_pi_lt_toReal θ], (le_div_iff' (zero_lt_two' ℝ)).1 h⟩⟩" }, { "state_after": "no goals", "state_before": "θ : Angle\nh : -3 * π < 2 * toReal θ ∧ 2 * toReal θ ≤ -π\n⊢ toReal θ ≤ -π / 2", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "θ : Angle\nh : toReal θ ≤ -π / 2\n⊢ -3 * π < 2 * toReal θ", "tactic": "linarith [pi_pos, neg_pi_lt_toReal θ]" } ]
[ 718, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 712, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_sSup
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.255463\nι : Sort x\nf f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm✝ : α → β\nm' : β → γ\ns✝ : Set α\nt : Set β\ns : Set (Filter β)\nm : α → β\n⊢ comap m (sSup s) = ⨆ (f : Filter β) (_ : f ∈ s), comap m f", "tactic": "simp only [sSup_eq_iSup, comap_iSup, eq_self_iff_true]" } ]
[ 2240, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2239, 1 ]
Mathlib/Topology/PartitionOfUnity.lean
PartitionOfUnity.locallyFinite
[]
[ 144, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 11 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iio_injective
[]
[ 1120, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1119, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.card_support_eq_zero
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.20446\nγ : Type ?u.20449\nι : Type ?u.20452\nM : Type u_2\nM' : Type ?u.20458\nN : Type ?u.20461\nP : Type ?u.20464\nG : Type ?u.20467\nH : Type ?u.20470\nR : Type ?u.20473\nS : Type ?u.20476\ninst✝ : Zero M\nf : α →₀ M\n⊢ card f.support = 0 ↔ f = 0", "tactic": "simp" } ]
[ 229, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Algebra/Algebra/Unitization.lean
Unitization.inl_zero
[]
[ 258, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Algebra/Module/LinearMap.lean
IsLinearMap.map_neg
[]
[ 724, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 723, 1 ]
Mathlib/Data/Finset/Fold.lean
Finset.fold_cons
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2814\nop : β → β → β\nhc : IsCommutative β op\nha : IsAssociative β op\nf : α → β\nb : β\ns : Finset α\na : α\nh : ¬a ∈ s\n⊢ Multiset.fold op b (Multiset.map f (cons a s h).val) = op (f a) (Multiset.fold op b (Multiset.map f s.val))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2814\nop : β → β → β\nhc : IsCommutative β op\nha : IsAssociative β op\nf : α → β\nb : β\ns : Finset α\na : α\nh : ¬a ∈ s\n⊢ fold op b f (cons a s h) = op (f a) (fold op b f s)", "tactic": "dsimp only [fold]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2814\nop : β → β → β\nhc : IsCommutative β op\nha : IsAssociative β op\nf : α → β\nb : β\ns : Finset α\na : α\nh : ¬a ∈ s\n⊢ Multiset.fold op b (Multiset.map f (cons a s h).val) = op (f a) (Multiset.fold op b (Multiset.map f s.val))", "tactic": "rw [cons_val, Multiset.map_cons, fold_cons_left]" } ]
[ 51, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/GroupTheory/Complement.lean
Subgroup.smul_toFun
[]
[ 466, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 461, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.degreeOf_mul_X_ne
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ degreeOf i (f * X j) = degreeOf i f", "tactic": "classical\nrepeat' rw [degreeOf_eq_sup (R:=R) i]\nrw [support_mul_X]\nsimp only [Finset.sup_map]\ncongr\next\nsimp only [Finsupp.single, Nat.one_ne_zero, add_right_eq_self, addRightEmbedding_apply, coe_mk,\n Pi.add_apply, comp_apply, ite_eq_right_iff, Finsupp.coe_add, Pi.single_eq_of_ne h]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (support (f * X j)) fun m => ↑m i) = Finset.sup (support f) fun m => ↑m i", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ degreeOf i (f * X j) = degreeOf i f", "tactic": "repeat' rw [degreeOf_eq_sup (R:=R) i]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (Finset.map (addRightEmbedding (Finsupp.single j 1)) (support f)) fun m => ↑m i) =\n Finset.sup (support f) fun m => ↑m i", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (support (f * X j)) fun m => ↑m i) = Finset.sup (support f) fun m => ↑m i", "tactic": "rw [support_mul_X]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ Finset.sup (support f) ((fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1))) =\n Finset.sup (support f) fun m => ↑m i", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (Finset.map (addRightEmbedding (Finsupp.single j 1)) (support f)) fun m => ↑m i) =\n Finset.sup (support f) fun m => ↑m i", "tactic": "simp only [Finset.sup_map]" }, { "state_after": "case e_f\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1)) = fun m => ↑m i", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ Finset.sup (support f) ((fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1))) =\n Finset.sup (support f) fun m => ↑m i", "tactic": "congr" }, { "state_after": "case e_f.h\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\nx✝ : σ →₀ ℕ\n⊢ ((fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1))) x✝ = ↑x✝ i", "state_before": "case e_f\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1)) = fun m => ↑m i", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case e_f.h\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\nx✝ : σ →₀ ℕ\n⊢ ((fun m => ↑m i) ∘ ↑(addRightEmbedding (Finsupp.single j 1))) x✝ = ↑x✝ i", "tactic": "simp only [Finsupp.single, Nat.one_ne_zero, add_right_eq_self, addRightEmbedding_apply, coe_mk,\n Pi.add_apply, comp_apply, ite_eq_right_iff, Finsupp.coe_add, Pi.single_eq_of_ne h]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (support (f * X j)) fun m => ↑m i) = Finset.sup (support f) fun m => ↑m i", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.313675\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ni j : σ\nf : MvPolynomial σ R\nh : i ≠ j\n⊢ (Finset.sup (support (f * X j)) fun m => ↑m i) = Finset.sup (support f) fun m => ↑m i", "tactic": "rw [degreeOf_eq_sup (R:=R) i]" } ]
[ 563, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 554, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Filter.lean
BoxIntegral.IntegrationParams.henstock_le_mcShane
[ { "state_after": "no goals", "state_before": "ι : Type ?u.20611\ninst✝ : Fintype ι\nI J : Box ι\nc c₁ c₂ : ℝ≥0\nr r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)\nπ π₁ π₂ : TaggedPrepartition I\nl l₁ l₂ : IntegrationParams\n⊢ Henstock ≤ McShane", "tactic": "trivial" } ]
[ 282, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Data/PFun.lean
PFun.preimage_inter
[]
[ 447, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/Algebra/Homology/ImageToKernel.lean
image_le_kernel
[ { "state_after": "no goals", "state_before": "ι : Type ?u.449\nV : Type u\ninst✝³ : Category V\ninst✝² : HasZeroMorphisms V\nA B C : V\nf : A ⟶ B\ninst✝¹ : HasImage f\ng : B ⟶ C\ninst✝ : HasKernel g\nw : f ≫ g = 0\n⊢ kernel.lift g f w ≫ kernel.ι g = f", "tactic": "simp" } ]
[ 43, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Data/List/Basic.lean
List.getLast_cons_cons
[]
[ 732, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 730, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.finiteDimensional
[]
[ 85, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.sup_eq_lsub_or_sup_succ_eq_lsub
[ { "state_after": "case inl\nα : Type ?u.322539\nβ : Type ?u.322542\nγ : Type ?u.322545\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : sup f = lsub f\n⊢ sup f = lsub f ∨ succ (sup f) = lsub f\n\ncase inr\nα : Type ?u.322539\nβ : Type ?u.322542\nγ : Type ?u.322545\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : sup f < lsub f\n⊢ sup f = lsub f ∨ succ (sup f) = lsub f", "state_before": "α : Type ?u.322539\nβ : Type ?u.322542\nγ : Type ?u.322545\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\n⊢ sup f = lsub f ∨ succ (sup f) = lsub f", "tactic": "cases' eq_or_lt_of_le (sup_le_lsub.{_, v} f) with h h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type ?u.322539\nβ : Type ?u.322542\nγ : Type ?u.322545\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : sup f = lsub f\n⊢ sup f = lsub f ∨ succ (sup f) = lsub f", "tactic": "exact Or.inl h" }, { "state_after": "no goals", "state_before": "case inr\nα : Type ?u.322539\nβ : Type ?u.322542\nγ : Type ?u.322545\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nι : Type u\nf : ι → Ordinal\nh : sup f < lsub f\n⊢ sup f = lsub f ∨ succ (sup f) = lsub f", "tactic": "exact Or.inr ((succ_le_of_lt h).antisymm (lsub_le_sup_succ f))" } ]
[ 1621, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1617, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
contDiff_inner
[]
[ 64, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Topology/Covering.lean
IsCoveringMap.continuous
[]
[ 165, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 11 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean
HomogeneousLocalization.NumDenSameDeg.deg_add
[]
[ 194, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Topology/Instances/Real.lean
Function.Periodic.compact_of_continuous
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : TopologicalSpace α\nf : ℝ → α\nc : ℝ\nhp : Periodic f c\nhc : c ≠ 0\nhf : Continuous f\n⊢ IsCompact (f '' [[0, 0 + c]])", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : TopologicalSpace α\nf : ℝ → α\nc : ℝ\nhp : Periodic f c\nhc : c ≠ 0\nhf : Continuous f\n⊢ IsCompact (range f)", "tactic": "rw [← hp.image_uIcc hc 0]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : TopologicalSpace α\nf : ℝ → α\nc : ℝ\nhp : Periodic f c\nhc : c ≠ 0\nhf : Continuous f\n⊢ IsCompact (f '' [[0, 0 + c]])", "tactic": "exact isCompact_uIcc.image hf" } ]
[ 207, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/GroupTheory/Subgroup/ZPowers.lean
Int.mem_zmultiples_iff
[ { "state_after": "no goals", "state_before": "G : Type ?u.32208\ninst✝² : Group G\nA : Type ?u.32214\ninst✝¹ : AddGroup A\nN : Type ?u.32220\ninst✝ : Group N\na b k : ℤ\n⊢ (fun x => x • a) k = b ↔ b = a * k", "tactic": "rw [mul_comm, eq_comm, ← smul_eq_mul]" } ]
[ 162, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Basic.lean
MeasureTheory.Measure.prod_sum
[ { "state_after": "α : Type u_3\nα' : Type ?u.4493903\nβ : Type u_2\nβ' : Type ?u.4493909\nγ : Type ?u.4493912\nE : Type ?u.4493915\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : MeasurableSpace α'\ninst✝⁷ : MeasurableSpace β\ninst✝⁶ : MeasurableSpace β'\ninst✝⁵ : MeasurableSpace γ\nμ μ' : Measure α\nν✝ ν' : Measure β\nτ : Measure γ\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SigmaFinite ν✝\ninst✝² : SigmaFinite μ\nι : Type u_1\ninst✝¹ : Finite ι\nν : ι → Measure β\ninst✝ : ∀ (i : ι), SigmaFinite (ν i)\ns : Set α\nt : Set β\nhs : MeasurableSet s\nht : MeasurableSet t\n⊢ ↑↑(sum fun i => Measure.prod μ (ν i)) (s ×ˢ t) = ↑↑μ s * ↑↑(sum ν) t", "state_before": "α : Type u_3\nα' : Type ?u.4493903\nβ : Type u_2\nβ' : Type ?u.4493909\nγ : Type ?u.4493912\nE : Type ?u.4493915\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : MeasurableSpace α'\ninst✝⁷ : MeasurableSpace β\ninst✝⁶ : MeasurableSpace β'\ninst✝⁵ : MeasurableSpace γ\nμ μ' : Measure α\nν✝ ν' : Measure β\nτ : Measure γ\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SigmaFinite ν✝\ninst✝² : SigmaFinite μ\nι : Type u_1\ninst✝¹ : Finite ι\nν : ι → Measure β\ninst✝ : ∀ (i : ι), SigmaFinite (ν i)\n⊢ Measure.prod μ (sum ν) = sum fun i => Measure.prod μ (ν i)", "tactic": "refine' prod_eq fun s t hs ht => _" }, { "state_after": "no goals", "state_before": "α : Type u_3\nα' : Type ?u.4493903\nβ : Type u_2\nβ' : Type ?u.4493909\nγ : Type ?u.4493912\nE : Type ?u.4493915\ninst✝⁹ : MeasurableSpace α\ninst✝⁸ : MeasurableSpace α'\ninst✝⁷ : MeasurableSpace β\ninst✝⁶ : MeasurableSpace β'\ninst✝⁵ : MeasurableSpace γ\nμ μ' : Measure α\nν✝ ν' : Measure β\nτ : Measure γ\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SigmaFinite ν✝\ninst✝² : SigmaFinite μ\nι : Type u_1\ninst✝¹ : Finite ι\nν : ι → Measure β\ninst✝ : ∀ (i : ι), SigmaFinite (ν i)\ns : Set α\nt : Set β\nhs : MeasurableSet s\nht : MeasurableSet t\n⊢ ↑↑(sum fun i => Measure.prod μ (ν i)) (s ×ˢ t) = ↑↑μ s * ↑↑(sum ν) t", "tactic": "simp_rw [sum_apply _ (hs.prod ht), sum_apply _ ht, prod_prod, ENNReal.tsum_mul_left]" } ]
[ 574, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 571, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.FinMeasAdditive.zero
[ { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.12375\nF : Type ?u.12378\nF' : Type ?u.12381\nG : Type ?u.12384\n𝕜 : Type ?u.12387\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nβ : Type u_2\ninst✝ : AddCommMonoid β\nT T' : Set α → β\ns t : Set α\nx✝⁴ : MeasurableSet s\nx✝³ : MeasurableSet t\nx✝² : ↑↑μ s ≠ ⊤\nx✝¹ : ↑↑μ t ≠ ⊤\nx✝ : s ∩ t = ∅\n⊢ OfNat.ofNat 0 (s ∪ t) = OfNat.ofNat 0 s + OfNat.ofNat 0 t", "tactic": "simp" } ]
[ 106, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Algebra/Ring/Semiconj.lean
SemiconjBy.sub_right
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : Type x\ninst✝ : NonUnitalNonAssocRing R\na b x y x' y' : R\nh : SemiconjBy a x y\nh' : SemiconjBy a x' y'\n⊢ SemiconjBy a (x - x') (y - y')", "tactic": "simpa only [sub_eq_add_neg] using h.add_right h'.neg_right" } ]
[ 94, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/MeasureTheory/Function/Jacobian.lean
MeasureTheory.addHaar_image_le_lintegral_abs_det_fderiv_aux2
[ { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 ((∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑0 * ↑↑μ s))\n⊢ ↑↑μ (f '' s) ≤ ∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ ↑↑μ (f '' s) ≤ ∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ", "tactic": "have :\n Tendsto (fun ε : ℝ≥0 => (∫⁻ x in s, ENNReal.ofReal (|(f' x).det|) ∂μ) + 2 * ε * μ s) (𝓝[>] 0)\n (𝓝 ((∫⁻ x in s, ENNReal.ofReal (|(f' x).det|) ∂μ) + 2 * (0 : ℝ≥0) * μ s)) := by\n apply Tendsto.mono_left _ nhdsWithin_le_nhds\n refine' tendsto_const_nhds.add _\n refine' ENNReal.Tendsto.mul_const _ (Or.inr h's)\n exact ENNReal.Tendsto.const_mul (ENNReal.tendsto_coe.2 tendsto_id) (Or.inr ENNReal.coe_ne_top)" }, { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ↑↑μ (f '' s) ≤ ∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 ((∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑0 * ↑↑μ s))\n⊢ ↑↑μ (f '' s) ≤ ∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ", "tactic": "simp only [add_zero, MulZeroClass.zero_mul, MulZeroClass.mul_zero, ENNReal.coe_zero] at this" }, { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ∀ᶠ (c : ℝ≥0) in 𝓝[Ioi 0] 0,\n ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑c * ↑↑μ s", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ↑↑μ (f '' s) ≤ ∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ", "tactic": "apply ge_of_tendsto this" }, { "state_after": "case h\nE : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ∀ (a : ℝ≥0),\n a ∈ Ioi 0 →\n ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑a * ↑↑μ s", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ∀ᶠ (c : ℝ≥0) in 𝓝[Ioi 0] 0,\n ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑c * ↑↑μ s", "tactic": "filter_upwards [self_mem_nhdsWithin]" }, { "state_after": "case h\nE : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\nε : ℝ≥0\nεpos : 0 < ε\n⊢ ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s", "state_before": "case h\nE : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\n⊢ ∀ (a : ℝ≥0),\n a ∈ Ioi 0 →\n ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑a * ↑↑μ s", "tactic": "rintro ε (εpos : 0 < ε)" }, { "state_after": "no goals", "state_before": "case h\nE : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\nthis :\n Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ))\nε : ℝ≥0\nεpos : 0 < ε\n⊢ ↑↑μ (f '' s) ≤ (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s", "tactic": "exact addHaar_image_le_lintegral_abs_det_fderiv_aux1 μ hs hf' εpos" }, { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s) (𝓝 0)\n (𝓝 ((∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑0 * ↑↑μ s))", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s)\n (𝓝[Ioi 0] 0) (𝓝 ((∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑0 * ↑↑μ s))", "tactic": "apply Tendsto.mono_left _ nhdsWithin_le_nhds" }, { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => 2 * ↑ε * ↑↑μ s) (𝓝 0) (𝓝 (2 * ↑0 * ↑↑μ s))", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => (∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑ε * ↑↑μ s) (𝓝 0)\n (𝓝 ((∫⁻ (x : E) in s, ENNReal.ofReal (abs (ContinuousLinearMap.det (f' x))) ∂μ) + 2 * ↑0 * ↑↑μ s))", "tactic": "refine' tendsto_const_nhds.add _" }, { "state_after": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => 2 * ↑ε) (𝓝 0) (𝓝 (2 * ↑0))", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => 2 * ↑ε * ↑↑μ s) (𝓝 0) (𝓝 (2 * ↑0 * ↑↑μ s))", "tactic": "refine' ENNReal.Tendsto.mul_const _ (Or.inr h's)" }, { "state_after": "no goals", "state_before": "E : Type u_1\nF : Type ?u.785438\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : FiniteDimensional ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ns : Set E\nf : E → E\nf' : E → E →L[ℝ] E\ninst✝² : MeasurableSpace E\ninst✝¹ : BorelSpace E\nμ : Measure E\ninst✝ : IsAddHaarMeasure μ\nhs : MeasurableSet s\nh's : ↑↑μ s ≠ ⊤\nhf' : ∀ (x : E), x ∈ s → HasFDerivWithinAt f (f' x) s x\n⊢ Tendsto (fun ε => 2 * ↑ε) (𝓝 0) (𝓝 (2 * ↑0))", "tactic": "exact ENNReal.Tendsto.const_mul (ENNReal.tendsto_coe.2 tendsto_id) (Or.inr ENNReal.coe_ne_top)" } ]
[ 903, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 888, 1 ]
Mathlib/Data/PNat/Factors.lean
PNat.factorMultiset_pow
[ { "state_after": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\n⊢ factorMultiset (Pow.pow n m) = m • factorMultiset n", "state_before": "n : ℕ+\nm : ℕ\n⊢ factorMultiset (Pow.pow n m) = m • factorMultiset n", "tactic": "let u := factorMultiset n" }, { "state_after": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\nthis : n = PrimeMultiset.prod u\n⊢ factorMultiset (Pow.pow n m) = m • factorMultiset n", "state_before": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\n⊢ factorMultiset (Pow.pow n m) = m • factorMultiset n", "tactic": "have : n = u.prod := (prod_factorMultiset n).symm" }, { "state_after": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\nthis : n = PrimeMultiset.prod u\n⊢ factorMultiset (PrimeMultiset.prod (m • u)) = m • factorMultiset (PrimeMultiset.prod u)", "state_before": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\nthis : n = PrimeMultiset.prod u\n⊢ factorMultiset (Pow.pow n m) = m • factorMultiset n", "tactic": "rw [this, ← PrimeMultiset.prod_smul]" }, { "state_after": "no goals", "state_before": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\nthis : n = PrimeMultiset.prod u\n⊢ factorMultiset (PrimeMultiset.prod (m • u)) = m • factorMultiset (PrimeMultiset.prod u)", "tactic": "repeat' rw [PrimeMultiset.factorMultiset_prod]" }, { "state_after": "no goals", "state_before": "n : ℕ+\nm : ℕ\nu : PrimeMultiset := factorMultiset n\nthis : n = PrimeMultiset.prod u\n⊢ m • u = m • factorMultiset (PrimeMultiset.prod u)", "tactic": "rw [PrimeMultiset.factorMultiset_prod]" } ]
[ 314, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/Topology/Homotopy/Basic.lean
ContinuousMap.Homotopy.congr_arg
[]
[ 203, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Topology/Constructions.lean
Continuous.fst
[]
[ 332, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.map_iInf_comap
[ { "state_after": "α : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\n⊢ ↑(⨅ (i : ι), ↑(map f) (↑(comap f) (m i))) s ≤ ↑(↑(map f) (⨅ (i : ι), ↑(comap f) (m i))) s", "state_before": "α : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\n⊢ ↑(map f) (⨅ (i : ι), ↑(comap f) (m i)) = ⨅ (i : ι), ↑(map f) (↑(comap f) (m i))", "tactic": "refine' (map_iInf_le _ _).antisymm fun s => _" }, { "state_after": "α : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\n⊢ ∀ (i : ℕ → Set α),\n f ⁻¹' s ⊆ iUnion i →\n (⨅ (t : ℕ → Set β) (_ : s ⊆ iUnion t), ∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' (f ⁻¹' t n))) ≤\n ∑' (n : ℕ), ⨅ (i_2 : ι), ↑(m i_2) (f '' i n)", "state_before": "α : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\n⊢ ↑(⨅ (i : ι), ↑(map f) (↑(comap f) (m i))) s ≤ ↑(↑(map f) (⨅ (i : ι), ↑(comap f) (m i))) s", "tactic": "simp only [map_apply, comap_apply, iInf_apply, le_iInf_iff]" }, { "state_after": "case refine'_1\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ s ⊆ ⋃ (n : ℕ), f '' t n ∪ range fᶜ\n\ncase refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ (∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' (f ⁻¹' (fun n => f '' t n ∪ range fᶜ) n))) ≤\n ∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' t n)", "state_before": "α : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\n⊢ ∀ (i : ℕ → Set α),\n f ⁻¹' s ⊆ iUnion i →\n (⨅ (t : ℕ → Set β) (_ : s ⊆ iUnion t), ∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' (f ⁻¹' t n))) ≤\n ∑' (n : ℕ), ⨅ (i_2 : ι), ↑(m i_2) (f '' i n)", "tactic": "refine' fun t ht => iInf_le_of_le (fun n => f '' t n ∪ range fᶜ) (iInf_le_of_le _ _)" }, { "state_after": "case refine'_1\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ f '' (f ⁻¹' s) ⊆ f '' ⋃ (i : ℕ), t i", "state_before": "case refine'_1\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ s ⊆ ⋃ (n : ℕ), f '' t n ∪ range fᶜ", "tactic": "rw [← iUnion_union, Set.union_comm, ← inter_subset, ← image_iUnion, ←\n image_preimage_eq_inter_range]" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ f '' (f ⁻¹' s) ⊆ f '' ⋃ (i : ℕ), t i", "tactic": "exact image_subset _ ht" }, { "state_after": "case refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\nn : ℕ\ni : ι\n⊢ f '' (f ⁻¹' (fun n => f '' t n ∪ range fᶜ) n) ⊆ f '' t n", "state_before": "case refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\n⊢ (∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' (f ⁻¹' (fun n => f '' t n ∪ range fᶜ) n))) ≤\n ∑' (n : ℕ), ⨅ (i : ι), ↑(m i) (f '' t n)", "tactic": "refine' ENNReal.tsum_le_tsum fun n => iInf_mono fun i => (m i).mono _" }, { "state_after": "case refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\nn : ℕ\ni : ι\n⊢ f ⁻¹' (f '' t n) ⊆ f ⁻¹' (f '' t n)", "state_before": "case refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\nn : ℕ\ni : ι\n⊢ f '' (f ⁻¹' (fun n => f '' t n ∪ range fᶜ) n) ⊆ f '' t n", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_3\nι : Sort u_1\nβ : Type u_2\ninst✝ : Nonempty ι\nf : α → β\nm : ι → OuterMeasure β\ns : Set β\nt : ℕ → Set α\nht : f ⁻¹' s ⊆ iUnion t\nn : ℕ\ni : ι\n⊢ f ⁻¹' (f '' t n) ⊆ f ⁻¹' (f '' t n)", "tactic": "exact subset_refl _" } ]
[ 1253, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1243, 1 ]
Mathlib/Order/Ideal.lean
Order.Ideal.coe_ssubset_coe
[]
[ 159, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Data/Nat/Multiplicity.lean
Nat.Prime.multiplicity_choose_prime_pow_add_multiplicity
[ { "state_after": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\n⊢ multiplicity p (choose (p ^ n) k) + multiplicity p k ≤ ↑n", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\n⊢ multiplicity p (choose (p ^ n) k) + multiplicity p k ≤ ↑n", "tactic": "have hdisj :\n Disjoint ((Ico 1 n.succ).filter fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i)\n ((Ico 1 n.succ).filter fun i => p ^ i ∣ k) := by\n simp (config := { contextual := true }) [disjoint_right, *, dvd_iff_mod_eq_zero,\n Nat.mod_lt _ (pow_pos hp.pos _)]" }, { "state_after": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\n⊢ card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ n", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\n⊢ multiplicity p (choose (p ^ n) k) + multiplicity p k ≤ ↑n", "tactic": "rw [multiplicity_choose hp hkn (lt_succ_self _),\n multiplicity_eq_card_pow_dvd (ne_of_gt hp.one_lt) hk0.bot_lt\n (lt_succ_of_le (log_mono_right hkn)),\n ← Nat.cast_add, PartENat.coe_le_coe, log_pow hp.one_lt, ← card_disjoint_union hdisj,\n filter_union_right]" }, { "state_after": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\nfilter_le_Ico :\n card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ card (Ico 1 (succ n))\n⊢ card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ n", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\n⊢ card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ n", "tactic": "have filter_le_Ico := (Ico 1 n.succ).card_filter_le\n fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k" }, { "state_after": "no goals", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\nhdisj :\n Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))\nfilter_le_Ico :\n card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ card (Ico 1 (succ n))\n⊢ card (filter (fun x => p ^ x ≤ k % p ^ x + (p ^ n - k) % p ^ x ∨ p ^ x ∣ k) (Ico 1 (succ n))) ≤ n", "tactic": "rwa [card_Ico 1 n.succ] at filter_le_Ico" }, { "state_after": "no goals", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\n⊢ Disjoint (filter (fun i => p ^ i ≤ k % p ^ i + (p ^ n - k) % p ^ i) (Ico 1 (succ n)))\n (filter (fun i => p ^ i ∣ k) (Ico 1 (succ n)))", "tactic": "simp (config := { contextual := true }) [disjoint_right, *, dvd_iff_mod_eq_zero,\n Nat.mod_lt _ (pow_pos hp.pos _)]" }, { "state_after": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\n⊢ multiplicity p (p ^ n) ≤ multiplicity p (choose (p ^ n) k) + multiplicity p k", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\n⊢ ↑n ≤ multiplicity p (choose (p ^ n) k) + multiplicity p k", "tactic": "rw [← hp.multiplicity_pow_self]" }, { "state_after": "no goals", "state_before": "p n k : ℕ\nhp : Prime p\nhkn : k ≤ p ^ n\nhk0 : k ≠ 0\n⊢ multiplicity p (p ^ n) ≤ multiplicity p (choose (p ^ n) k) + multiplicity p k", "tactic": "exact multiplicity_le_multiplicity_choose_add hp _ _" } ]
[ 240, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.multiplicative_of_coprime
[ { "state_after": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\n⊢ f (a * b) = f a * f b", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\n⊢ f (a * b) = f a * f b", "tactic": "letI := Classical.decEq α" }, { "state_after": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : a = 0\n⊢ f (a * b) = f a * f b\n\ncase neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\n⊢ f (a * b) = f a * f b", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\n⊢ f (a * b) = f a * f b", "tactic": "by_cases ha0 : a = 0" }, { "state_after": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : b = 0\n⊢ f (a * b) = f a * f b\n\ncase neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\n⊢ f (a * b) = f a * f b", "state_before": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\n⊢ f (a * b) = f a * f b", "tactic": "by_cases hb0 : b = 0" }, { "state_after": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ f (a * b) = f a * f b\n\ncase neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\n⊢ f (a * b) = f a * f b", "state_before": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\n⊢ f (a * b) = f a * f b", "tactic": "by_cases hf1 : f 1 = 0" }, { "state_after": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis : Nontrivial α\n⊢ f (a * b) = f a * f b", "state_before": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\n⊢ f (a * b) = f a * f b", "tactic": "haveI : Nontrivial α := ⟨⟨_, _, ha0⟩⟩" }, { "state_after": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ f (a * b) = f a * f b", "state_before": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis : Nontrivial α\n⊢ f (a * b) = f a * f b", "tactic": "letI : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid" }, { "state_after": "case neg.refine'_1\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α), p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) → Prime p\n\ncase neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ∀ (q : α), q ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) → p ∣ q → p = q", "state_before": "case neg\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))", "tactic": "refine' multiplicative_prime_power _ _ _ _ _ @h1 @hpr @hcp" }, { "state_after": "case neg.refine'_1\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α), p ∈ normalizedFactors a ∨ p ∈ normalizedFactors b → Prime p\n\ncase neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ normalizedFactors a ∨ p ∈ normalizedFactors b →\n ∀ (q : α), q ∈ normalizedFactors a ∨ q ∈ normalizedFactors b → p ∣ q → p = q", "state_before": "case neg.refine'_1\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α), p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) → Prime p\n\ncase neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ∀ (q : α), q ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) → p ∣ q → p = q", "tactic": "all_goals simp only [Multiset.mem_toFinset, Finset.mem_union]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : a = 0\n⊢ f (a * b) = f a * f b", "tactic": "rw [ha0, MulZeroClass.zero_mul, h0, MulZeroClass.zero_mul]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : b = 0\n⊢ f (a * b) = f a * f b", "tactic": "rw [hb0, MulZeroClass.mul_zero, h0, MulZeroClass.mul_zero]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ f (a * b) = f a * f b", "tactic": "calc\n f (a * b) = f (a * b * 1) := by rw [mul_one]\n _ = 0 := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]\n _ = f a * f (b * 1) := by simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]\n _ = f a * f b := by rw [mul_one]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ f (a * b) = f (a * b * 1)", "tactic": "rw [mul_one]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ f (a * b * 1) = 0", "tactic": "simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ 0 = f a * f (b * 1)", "tactic": "simp only [h1 isUnit_one, hf1, MulZeroClass.mul_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : f 1 = 0\n⊢ f a * f (b * 1) = f a * f b", "tactic": "rw [mul_one]" }, { "state_after": "case intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\n⊢ f (a * b) = f a * f b", "state_before": "α : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\n⊢ f (a * b) = f a * f b", "tactic": "obtain ⟨ua, a_eq⟩ := normalizedFactors_prod ha0" }, { "state_after": "case intro.intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (a * b) = f a * f b", "state_before": "case intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\n⊢ f (a * b) = f a * f b", "tactic": "obtain ⟨ub, b_eq⟩ := normalizedFactors_prod hb0" }, { "state_after": "case intro.intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (Multiset.prod (normalizedFactors a) * Multiset.prod (normalizedFactors b)) * f ↑ub * f ↑ua =\n f (Multiset.prod (normalizedFactors a)) * f (Multiset.prod (normalizedFactors b)) * f ↑ub * f ↑ua", "state_before": "case intro.intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (a * b) = f a * f b", "tactic": "rw [← a_eq, ← b_eq, mul_right_comm (Multiset.prod (normalizedFactors a)) ua\n (Multiset.prod (normalizedFactors b) * ub), h1 ua.isUnit, h1 ub.isUnit, h1 ua.isUnit, ←\n mul_assoc, h1 ub.isUnit, mul_right_comm _ (f ua), ← mul_assoc]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (Multiset.prod (normalizedFactors a) * Multiset.prod (normalizedFactors b)) =\n f (Multiset.prod (normalizedFactors a)) * f (Multiset.prod (normalizedFactors b))", "state_before": "case intro.intro\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (Multiset.prod (normalizedFactors a) * Multiset.prod (normalizedFactors b)) * f ↑ub * f ↑ua =\n f (Multiset.prod (normalizedFactors a)) * f (Multiset.prod (normalizedFactors b)) * f ↑ub * f ↑ua", "tactic": "congr" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors a) * id x ^ Multiset.count x (normalizedFactors b)) =\n f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors a)) *\n f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors b))\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors b) → id x ^ Multiset.count x (normalizedFactors b) = 1\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors a) → id x ^ Multiset.count x (normalizedFactors a) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f (Multiset.prod (normalizedFactors a) * Multiset.prod (normalizedFactors b)) =\n f (Multiset.prod (normalizedFactors a)) * f (Multiset.prod (normalizedFactors b))", "tactic": "rw [← (normalizedFactors a).map_id, ← (normalizedFactors b).map_id,\n Finset.prod_multiset_map_count, Finset.prod_multiset_map_count,\n Finset.prod_subset (Finset.subset_union_left _ (normalizedFactors b).toFinset),\n Finset.prod_subset (Finset.subset_union_right _ (normalizedFactors b).toFinset), ←\n Finset.prod_mul_distrib]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors b) → id x ^ Multiset.count x (normalizedFactors b) = 1\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors a) → id x ^ Multiset.count x (normalizedFactors a) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors a) * id x ^ Multiset.count x (normalizedFactors b)) =\n f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors a)) *\n f\n (∏ x in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n id x ^ Multiset.count x (normalizedFactors b))\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors b) → id x ^ Multiset.count x (normalizedFactors b) = 1\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors a) → id x ^ Multiset.count x (normalizedFactors a) = 1", "tactic": "simp_rw [id.def, ← pow_add, this]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ normalizedFactors b → id x ^ Multiset.count x (normalizedFactors b) = 1\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ normalizedFactors a → id x ^ Multiset.count x (normalizedFactors a) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors b) → id x ^ Multiset.count x (normalizedFactors b) = 1\n\ncase intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors a) → id x ^ Multiset.count x (normalizedFactors a) = 1", "tactic": "all_goals simp only [Multiset.mem_toFinset]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ normalizedFactors a → id x ^ Multiset.count x (normalizedFactors a) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ Multiset.toFinset (normalizedFactors a) → id x ^ Multiset.count x (normalizedFactors a) = 1", "tactic": "simp only [Multiset.mem_toFinset]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\np : α\na✝ : p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b)\nhpb : ¬p ∈ normalizedFactors b\n⊢ id p ^ Multiset.count p (normalizedFactors b) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ normalizedFactors b → id x ^ Multiset.count x (normalizedFactors b) = 1", "tactic": "intro p _ hpb" }, { "state_after": "no goals", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\np : α\na✝ : p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b)\nhpb : ¬p ∈ normalizedFactors b\n⊢ id p ^ Multiset.count p (normalizedFactors b) = 1", "tactic": "simp [hpb]" }, { "state_after": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\np : α\na✝ : p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b)\nhpa : ¬p ∈ normalizedFactors a\n⊢ id p ^ Multiset.count p (normalizedFactors a) = 1", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\n⊢ ∀ (x : α),\n x ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ¬x ∈ normalizedFactors a → id x ^ Multiset.count x (normalizedFactors a) = 1", "tactic": "intro p _ hpa" }, { "state_after": "no goals", "state_before": "case intro.intro.e_a.e_a\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝² : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝¹ : Nontrivial α\nthis✝ : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\nthis :\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ (Multiset.count p (normalizedFactors a) + Multiset.count p (normalizedFactors b))) =\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors a)) *\n f\n (∏ p in Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b),\n p ^ Multiset.count p (normalizedFactors b))\nua : αˣ\na_eq : Multiset.prod (normalizedFactors a) * ↑ua = a\nub : αˣ\nb_eq : Multiset.prod (normalizedFactors b) * ↑ub = b\np : α\na✝ : p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b)\nhpa : ¬p ∈ normalizedFactors a\n⊢ id p ^ Multiset.count p (normalizedFactors a) = 1", "tactic": "simp [hpa]" }, { "state_after": "case neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ normalizedFactors a ∨ p ∈ normalizedFactors b →\n ∀ (q : α), q ∈ normalizedFactors a ∨ q ∈ normalizedFactors b → p ∣ q → p = q", "state_before": "case neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) →\n ∀ (q : α), q ∈ Multiset.toFinset (normalizedFactors a) ∪ Multiset.toFinset (normalizedFactors b) → p ∣ q → p = q", "tactic": "simp only [Multiset.mem_toFinset, Finset.mem_union]" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α), p ∈ normalizedFactors a ∨ p ∈ normalizedFactors b → Prime p", "tactic": "rintro p (hpa | hpb) <;> apply prime_of_normalized_factor <;> assumption" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nα : Type u_2\nR : Type ?u.1916855\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : UniqueFactorizationMonoid α\nβ : Type u_1\ninst✝ : CancelCommMonoidWithZero β\nf : α → β\na b : α\nh0 : f 0 = 0\nh1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y\nhpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i\nhcp : ∀ {x y : α}, (∀ (p : α), p ∣ x → p ∣ y → IsUnit p) → f (x * y) = f x * f y\nthis✝¹ : DecidableEq α := Classical.decEq α\nha0 : ¬a = 0\nhb0 : ¬b = 0\nhf1 : ¬f 1 = 0\nthis✝ : Nontrivial α\nthis : NormalizationMonoid α := UniqueFactorizationMonoid.normalizationMonoid\n⊢ ∀ (p : α),\n p ∈ normalizedFactors a ∨ p ∈ normalizedFactors b →\n ∀ (q : α), q ∈ normalizedFactors a ∨ q ∈ normalizedFactors b → p ∣ q → p = q", "tactic": "rintro p (hp | hp) q (hq | hq) hdvd <;>\n rw [← normalize_normalized_factor _ hp, ← normalize_normalized_factor _ hq] <;>\n exact\n normalize_eq_normalize hdvd\n ((prime_of_normalized_factor _ hp).irreducible.dvd_symm\n (prime_of_normalized_factor _ hq).irreducible hdvd)" } ]
[ 1189, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/Order/JordanHolder.lean
CompositionSeries.lt_top_of_mem_eraseTop
[]
[ 441, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.lt_or_eq_of_le
[]
[ 389, 51 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 388, 11 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
AddMonoidAlgebra.lift_symm_apply
[]
[ 1985, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1983, 1 ]
Mathlib/Data/Polynomial/Lifts.lean
Polynomial.base_mul_mem_lifts
[ { "state_after": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nr : R\nhp : ∃ x, ↑(mapRingHom f) x = p\n⊢ ∃ x, ↑(mapRingHom f) x = ↑C (↑f r) * p", "state_before": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nr : R\nhp : p ∈ lifts f\n⊢ ↑C (↑f r) * p ∈ lifts f", "tactic": "simp only [lifts, RingHom.mem_rangeS] at hp⊢" }, { "state_after": "case intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nr : R\np₁ : R[X]\n⊢ ∃ x, ↑(mapRingHom f) x = ↑C (↑f r) * ↑(mapRingHom f) p₁", "state_before": "R : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\np : S[X]\nr : R\nhp : ∃ x, ↑(mapRingHom f) x = p\n⊢ ∃ x, ↑(mapRingHom f) x = ↑C (↑f r) * p", "tactic": "obtain ⟨p₁, rfl⟩ := hp" }, { "state_after": "case intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nr : R\np₁ : R[X]\n⊢ ↑(mapRingHom f) (↑C r * p₁) = ↑C (↑f r) * ↑(mapRingHom f) p₁", "state_before": "case intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nr : R\np₁ : R[X]\n⊢ ∃ x, ↑(mapRingHom f) x = ↑C (↑f r) * ↑(mapRingHom f) p₁", "tactic": "use C r * p₁" }, { "state_after": "no goals", "state_before": "case intro\nR : Type u\ninst✝¹ : Semiring R\nS : Type v\ninst✝ : Semiring S\nf : R →+* S\nr : R\np₁ : R[X]\n⊢ ↑(mapRingHom f) (↑C r * p₁) = ↑C (↑f r) * ↑(mapRingHom f) p₁", "tactic": "simp only [coe_mapRingHom, map_C, map_mul]" } ]
[ 119, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.subset_mapRange_neLocus
[ { "state_after": "no goals", "state_before": "α : Type u_3\nN : α → Type u_1\ninst✝⁵ : DecidableEq α\nM : α → Type u_2\nP : α → Type ?u.12530\ninst✝⁴ : (a : α) → Zero (N a)\ninst✝³ : (a : α) → Zero (M a)\ninst✝² : (a : α) → Zero (P a)\ninst✝¹ : (a : α) → DecidableEq (N a)\ninst✝ : (a : α) → DecidableEq (M a)\nf g : Π₀ (a : α), N a\nF : (a : α) → N a → M a\nF0 : ∀ (a : α), F a 0 = 0\na : α\n⊢ a ∈ neLocus (mapRange F F0 f) (mapRange F F0 g) → a ∈ neLocus f g", "tactic": "simpa only [mem_neLocus, mapRange_apply, not_imp_not] using congr_arg (F a)" } ]
[ 94, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
[ { "state_after": "𝕜 : Type ?u.3103380\nE : Type ?u.3103383\nF : Type u_1\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : F\n⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0", "state_before": "𝕜 : Type ?u.3103380\nE : Type ?u.3103383\nF : Type u_1\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : F\n⊢ ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ inner x y = 0", "tactic": "rw [@norm_add_mul_self ℝ, add_right_cancel_iff, add_right_eq_self, mul_eq_zero]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.3103380\nE : Type ?u.3103383\nF : Type u_1\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : F\n⊢ 2 = 0 ∨ ↑re (inner x y) = 0 ↔ inner x y = 0", "tactic": "norm_num" } ]
[ 1463, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1460, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
hasSum_le_inj
[ { "state_after": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\n⊢ a₁ ≤ a₂", "state_before": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum f a₁\nhg : HasSum g a₂\n⊢ a₁ ≤ a₂", "tactic": "rw [← hasSum_extend_zero he] at hf" }, { "state_after": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\n⊢ extend e f 0 c ≤ g c", "state_before": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\n⊢ a₁ ≤ a₂", "tactic": "refine hasSum_le (fun c => ?_) hf hg" }, { "state_after": "case inl.intro\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\ni : ι\n⊢ extend e f 0 (e i) ≤ g (e i)\n\ncase inr\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh✝ : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\nh : ¬c ∈ Set.range e\n⊢ extend e f 0 c ≤ g c", "state_before": "ι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\n⊢ extend e f 0 c ≤ g c", "tactic": "obtain ⟨i, rfl⟩ | h := em (c ∈ Set.range e)" }, { "state_after": "case inl.intro\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\ni : ι\n⊢ f i ≤ g (e i)", "state_before": "case inl.intro\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\ni : ι\n⊢ extend e f 0 (e i) ≤ g (e i)", "tactic": "rw [he.extend_apply]" }, { "state_after": "no goals", "state_before": "case inl.intro\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\ni : ι\n⊢ f i ≤ g (e i)", "tactic": "exact h _" }, { "state_after": "case inr\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh✝ : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\nh : ¬c ∈ Set.range e\n⊢ OfNat.ofNat 0 c ≤ g c", "state_before": "case inr\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh✝ : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\nh : ¬c ∈ Set.range e\n⊢ extend e f 0 c ≤ g c", "tactic": "rw [extend_apply' _ _ _ h]" }, { "state_after": "no goals", "state_before": "case inr\nι : Type u_1\nκ : Type u_2\nα : Type u_3\ninst✝² : OrderedAddCommMonoid α\ninst✝¹ : TopologicalSpace α\ninst✝ : OrderClosedTopology α\nf g✝ : ι → α\na a₁ a₂ : α\ng : κ → α\ne : ι → κ\nhe : Injective e\nhs : ∀ (c : κ), ¬c ∈ Set.range e → 0 ≤ g c\nh✝ : ∀ (i : ι), f i ≤ g (e i)\nhf : HasSum (extend e f 0) a₁\nhg : HasSum g a₂\nc : κ\nh : ¬c ∈ Set.range e\n⊢ OfNat.ofNat 0 c ≤ g c", "tactic": "exact hs _ h" } ]
[ 72, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Algebra/Invertible.lean
Commute.invOf_left
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : Monoid α\na b : α\ninst✝ : Invertible b\nh : Commute b a\n⊢ ⅟b * a = ⅟b * (a * b * ⅟b)", "tactic": "simp [mul_assoc]" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : Monoid α\na b : α\ninst✝ : Invertible b\nh : Commute b a\n⊢ ⅟b * (a * b * ⅟b) = ⅟b * (b * a * ⅟b)", "tactic": "rw [h.eq]" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : Monoid α\na b : α\ninst✝ : Invertible b\nh : Commute b a\n⊢ ⅟b * (b * a * ⅟b) = a * ⅟b", "tactic": "simp [mul_assoc]" } ]
[ 336, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/FieldTheory/SeparableDegree.lean
Polynomial.HasSeparableContraction.dvd_degree
[]
[ 90, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Data/List/Sublists.lean
List.sublistsLenAux_zero
[ { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\nα : Type u_1\nl : List α\nf : List α → β\nr : List β\n⊢ sublistsLenAux 0 l f r = f [] :: r", "tactic": "cases l <;> rfl" } ]
[ 259, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
Submonoid.mem_prod
[]
[ 860, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 858, 1 ]
Mathlib/Combinatorics/SimpleGraph/Matching.lean
SimpleGraph.Subgraph.IsMatching.even_card
[ { "state_after": "no goals", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh : IsMatching M\n⊢ Even (Finset.card (Set.toFinset M.verts))", "tactic": "classical\nrw [isMatching_iff_forall_degree] at h\nuse M.coe.edgeFinset.card\nrw [← two_mul, ← M.coe.sum_degrees_eq_twice_card_edges]\nconvert_to _ = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v using 3\nsimp [h, Finset.card_univ]" }, { "state_after": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Even (Finset.card (Set.toFinset M.verts))", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh : IsMatching M\n⊢ Even (Finset.card (Set.toFinset M.verts))", "tactic": "rw [isMatching_iff_forall_degree] at h" }, { "state_after": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) =\n Finset.card (edgeFinset (Subgraph.coe M)) + Finset.card (edgeFinset (Subgraph.coe M))", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Even (Finset.card (Set.toFinset M.verts))", "tactic": "use M.coe.edgeFinset.card" }, { "state_after": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) =\n Finset.card (edgeFinset (Subgraph.coe M)) + Finset.card (edgeFinset (Subgraph.coe M))", "tactic": "rw [← two_mul, ← M.coe.sum_degrees_eq_twice_card_edges]" }, { "state_after": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v", "tactic": "convert_to _ = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v using 3" }, { "state_after": "no goals", "state_before": "V : Type u\nG : SimpleGraph V\nM✝ M : Subgraph G\ninst✝ : Fintype ↑M.verts\nh✝ : IsMatching M\nh : ∀ (v : V), v ∈ M.verts → degree M v = 1\n⊢ Finset.card (Set.toFinset M.verts) = Finset.sum Finset.univ fun v => SimpleGraph.degree (Subgraph.coe M) v", "tactic": "simp [h, Finset.card_univ]" } ]
[ 114, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Topology/Constructions.lean
comap_sigmaMk_nhds
[]
[ 1511, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1510, 1 ]
Mathlib/Topology/Instances/Rat.lean
Rat.uniformContinuous_neg
[ { "state_after": "ε : ℝ\nε0 : ε > 0\na✝ b✝ : ℚ\nh : dist b✝ a✝ < ε\n⊢ dist (-a✝) (-b✝) < ε", "state_before": "ε : ℝ\nε0 : ε > 0\na✝ b✝ : ℚ\nh : dist a✝ b✝ < ε\n⊢ dist (-a✝) (-b✝) < ε", "tactic": "rw [dist_comm] at h" }, { "state_after": "no goals", "state_before": "ε : ℝ\nε0 : ε > 0\na✝ b✝ : ℚ\nh : dist b✝ a✝ < ε\n⊢ dist (-a✝) (-b✝) < ε", "tactic": "simpa only [dist_eq, cast_neg, neg_sub_neg] using h" } ]
[ 100, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/LinearAlgebra/Dual.lean
Submodule.dualCoannihilator_bot
[]
[ 866, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 865, 1 ]
Mathlib/CategoryTheory/Abelian/Homology.lean
homology.condition_ι
[ { "state_after": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ ((homologyIsoKernelDesc f g w).hom ≫ kernel.ι (cokernel.desc f g w)) ≫ cokernel.desc f g w = 0", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ ι f g w ≫ cokernel.desc f g w = 0", "tactic": "dsimp [ι]" }, { "state_after": "no goals", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ ((homologyIsoKernelDesc f g w).hom ≫ kernel.ι (cokernel.desc f g w)) ≫ cokernel.desc f g w = 0", "tactic": "simp" } ]
[ 162, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Data/Set/Sigma.lean
Set.mk_preimage_sigma
[]
[ 183, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.range_comp_incl_top
[ { "state_after": "V : Type ?u.494024\nW : Type ?u.494027\nV₁ : Type u_2\nV₂ : Type u_1\nV₃ : Type ?u.494036\ninst✝⁴ : SeminormedAddCommGroup V\ninst✝³ : SeminormedAddCommGroup W\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf : NormedAddGroupHom V₁ V₂\ng : NormedAddGroupHom V₂ V₃\n⊢ AddMonoidHom.range (toAddMonoidHom f) = range f", "state_before": "V : Type ?u.494024\nW : Type ?u.494027\nV₁ : Type u_2\nV₂ : Type u_1\nV₃ : Type ?u.494036\ninst✝⁴ : SeminormedAddCommGroup V\ninst✝³ : SeminormedAddCommGroup W\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf : NormedAddGroupHom V₁ V₂\ng : NormedAddGroupHom V₂ V₃\n⊢ range (NormedAddGroupHom.comp f (incl ⊤)) = range f", "tactic": "simp [comp_range, incl_range, ← AddMonoidHom.range_eq_map]" }, { "state_after": "no goals", "state_before": "V : Type ?u.494024\nW : Type ?u.494027\nV₁ : Type u_2\nV₂ : Type u_1\nV₃ : Type ?u.494036\ninst✝⁴ : SeminormedAddCommGroup V\ninst✝³ : SeminormedAddCommGroup W\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf : NormedAddGroupHom V₁ V₂\ng : NormedAddGroupHom V₂ V₃\n⊢ AddMonoidHom.range (toAddMonoidHom f) = range f", "tactic": "rfl" } ]
[ 814, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 813, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.NonemptyCompacts.nonempty
[]
[ 233, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 11 ]
Mathlib/Order/Antichain.lean
IsAntichain.eq
[]
[ 64, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 11 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.Parallel.trans
[ { "state_after": "case intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ s₃ : AffineSubspace k P\nv₁₂ : V\nh₂₃ : map (↑(constVAdd k P v₁₂)) s₁ ∥ s₃\n⊢ s₁ ∥ s₃", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ s₂ s₃ : AffineSubspace k P\nh₁₂ : s₁ ∥ s₂\nh₂₃ : s₂ ∥ s₃\n⊢ s₁ ∥ s₃", "tactic": "rcases h₁₂ with ⟨v₁₂, rfl⟩" }, { "state_after": "case intro.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ : AffineSubspace k P\nv₁₂ v₂₃ : V\n⊢ s₁ ∥ map (↑(constVAdd k P v₂₃)) (map (↑(constVAdd k P v₁₂)) s₁)", "state_before": "case intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ s₃ : AffineSubspace k P\nv₁₂ : V\nh₂₃ : map (↑(constVAdd k P v₁₂)) s₁ ∥ s₃\n⊢ s₁ ∥ s₃", "tactic": "rcases h₂₃ with ⟨v₂₃, rfl⟩" }, { "state_after": "case intro.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ : AffineSubspace k P\nv₁₂ v₂₃ : V\n⊢ map (↑(constVAdd k P v₂₃)) (map (↑(constVAdd k P v₁₂)) s₁) = map (↑(constVAdd k P (v₂₃ + v₁₂))) s₁", "state_before": "case intro.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ : AffineSubspace k P\nv₁₂ v₂₃ : V\n⊢ s₁ ∥ map (↑(constVAdd k P v₂₃)) (map (↑(constVAdd k P v₁₂)) s₁)", "tactic": "refine' ⟨v₂₃ + v₁₂, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns₁ : AffineSubspace k P\nv₁₂ v₂₃ : V\n⊢ map (↑(constVAdd k P v₂₃)) (map (↑(constVAdd k P v₁₂)) s₁) = map (↑(constVAdd k P (v₂₃ + v₁₂))) s₁", "tactic": "rw [map_map, ← coe_trans_to_affineMap, ← constVAdd_add]" } ]
[ 1744, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1739, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.disjoint_left
[]
[ 915, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 912, 1 ]
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_mem_of_eqOn_one
[ { "state_after": "α : Type u_1\nβ : Type ?u.222676\nι : Type ?u.222679\nG : Type ?u.222682\nM : Type u_2\nN : Type ?u.222688\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf g : α → M\na b : α\ns t : Set α\nhf : EqOn f 1 s\n⊢ (∏ᶠ (i : α) (_ : i ∈ s), f i) = ∏ᶠ (i : α) (_ : i ∈ s), 1", "state_before": "α : Type u_1\nβ : Type ?u.222676\nι : Type ?u.222679\nG : Type ?u.222682\nM : Type u_2\nN : Type ?u.222688\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf g : α → M\na b : α\ns t : Set α\nhf : EqOn f 1 s\n⊢ (∏ᶠ (i : α) (_ : i ∈ s), f i) = 1", "tactic": "rw [← finprod_mem_one s]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.222676\nι : Type ?u.222679\nG : Type ?u.222682\nM : Type u_2\nN : Type ?u.222688\ninst✝¹ : CommMonoid M\ninst✝ : CommMonoid N\nf g : α → M\na b : α\ns t : Set α\nhf : EqOn f 1 s\n⊢ (∏ᶠ (i : α) (_ : i ∈ s), f i) = ∏ᶠ (i : α) (_ : i ∈ s), 1", "tactic": "exact finprod_mem_congr rfl hf" } ]
[ 654, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 652, 1 ]
Mathlib/Data/Nat/Basic.lean
Nat.add_mod_eq_add_mod_right
[ { "state_after": "no goals", "state_before": "m✝ n✝ k✝ m n k i : ℕ\nH : m % n = k % n\n⊢ (m + i) % n = (k + i) % n", "tactic": "rw [← mod_add_mod, ← mod_add_mod k, H]" } ]
[ 758, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 756, 1 ]
Mathlib/Algebra/Category/GroupCat/Colimits.lean
AddCommGroupCat.Colimits.quot_add
[]
[ 193, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.range_le_bot_iff
[ { "state_after": "R : Type u_1\nR₁ : Type ?u.1255386\nR₂ : Type u_2\nR₃ : Type ?u.1255392\nR₄ : Type ?u.1255395\nS : Type ?u.1255398\nK : Type ?u.1255401\nK₂ : Type ?u.1255404\nM : Type u_3\nM' : Type ?u.1255410\nM₁ : Type ?u.1255413\nM₂ : Type u_4\nM₃ : Type ?u.1255419\nM₄ : Type ?u.1255422\nN : Type ?u.1255425\nN₂ : Type ?u.1255428\nι : Type ?u.1255431\nV : Type ?u.1255434\nV₂ : Type ?u.1255437\ninst✝¹¹ : Semiring R\ninst✝¹⁰ : Semiring R₂\ninst✝⁹ : Semiring R₃\ninst✝⁸ : AddCommMonoid M\ninst✝⁷ : AddCommMonoid M₂\ninst✝⁶ : AddCommMonoid M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : Module R M\ninst✝³ : Module R₂ M₂\ninst✝² : Module R₃ M₃\nσ₂₁ : R₂ →+* R\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type ?u.1255847\nsc : SemilinearMapClass F τ₁₂ M M₂\ninst✝ : RingHomSurjective τ₁₂\nf : M →ₛₗ[τ₁₂] M₂\n⊢ comap f ⊥ = ⊤ ↔ f = 0", "state_before": "R : Type u_1\nR₁ : Type ?u.1255386\nR₂ : Type u_2\nR₃ : Type ?u.1255392\nR₄ : Type ?u.1255395\nS : Type ?u.1255398\nK : Type ?u.1255401\nK₂ : Type ?u.1255404\nM : Type u_3\nM' : Type ?u.1255410\nM₁ : Type ?u.1255413\nM₂ : Type u_4\nM₃ : Type ?u.1255419\nM₄ : Type ?u.1255422\nN : Type ?u.1255425\nN₂ : Type ?u.1255428\nι : Type ?u.1255431\nV : Type ?u.1255434\nV₂ : Type ?u.1255437\ninst✝¹¹ : Semiring R\ninst✝¹⁰ : Semiring R₂\ninst✝⁹ : Semiring R₃\ninst✝⁸ : AddCommMonoid M\ninst✝⁷ : AddCommMonoid M₂\ninst✝⁶ : AddCommMonoid M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : Module R M\ninst✝³ : Module R₂ M₂\ninst✝² : Module R₃ M₃\nσ₂₁ : R₂ →+* R\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type ?u.1255847\nsc : SemilinearMapClass F τ₁₂ M M₂\ninst✝ : RingHomSurjective τ₁₂\nf : M →ₛₗ[τ₁₂] M₂\n⊢ range f ≤ ⊥ ↔ f = 0", "tactic": "rw [range_le_iff_comap]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type ?u.1255386\nR₂ : Type u_2\nR₃ : Type ?u.1255392\nR₄ : Type ?u.1255395\nS : Type ?u.1255398\nK : Type ?u.1255401\nK₂ : Type ?u.1255404\nM : Type u_3\nM' : Type ?u.1255410\nM₁ : Type ?u.1255413\nM₂ : Type u_4\nM₃ : Type ?u.1255419\nM₄ : Type ?u.1255422\nN : Type ?u.1255425\nN₂ : Type ?u.1255428\nι : Type ?u.1255431\nV : Type ?u.1255434\nV₂ : Type ?u.1255437\ninst✝¹¹ : Semiring R\ninst✝¹⁰ : Semiring R₂\ninst✝⁹ : Semiring R₃\ninst✝⁸ : AddCommMonoid M\ninst✝⁷ : AddCommMonoid M₂\ninst✝⁶ : AddCommMonoid M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : Module R M\ninst✝³ : Module R₂ M₂\ninst✝² : Module R₃ M₃\nσ₂₁ : R₂ →+* R\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝¹ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type ?u.1255847\nsc : SemilinearMapClass F τ₁₂ M M₂\ninst✝ : RingHomSurjective τ₁₂\nf : M →ₛₗ[τ₁₂] M₂\n⊢ comap f ⊥ = ⊤ ↔ f = 0", "tactic": "exact ker_eq_top" } ]
[ 1416, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1415, 1 ]
Mathlib/Topology/Semicontinuous.lean
upperSemicontinuous_iff_isOpen_preimage
[]
[ 786, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 783, 1 ]
Mathlib/Algebra/Module/Submodule/Basic.lean
Submodule.coe_set_mk
[]
[ 88, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
summable_one_div_pow_of_le
[ { "state_after": "α : Type ?u.462750\nβ : Type ?u.462753\nι : Type ?u.462756\nm : ℝ\nf : ℕ → ℕ\nhm : 1 < m\nfi : ∀ (i : ℕ), i ≤ f i\na : ℕ\n⊢ 1 / m ^ f a ≤ (1 / m) ^ a", "state_before": "α : Type ?u.462750\nβ : Type ?u.462753\nι : Type ?u.462756\nm : ℝ\nf : ℕ → ℕ\nhm : 1 < m\nfi : ∀ (i : ℕ), i ≤ f i\n⊢ Summable fun i => 1 / m ^ f i", "tactic": "refine'\n summable_of_nonneg_of_le (fun a => one_div_nonneg.mpr (pow_nonneg (zero_le_one.trans hm.le) _))\n (fun a => _)\n (summable_geometric_of_lt_1 (one_div_nonneg.mpr (zero_le_one.trans hm.le))\n ((one_div_lt (zero_lt_one.trans hm) zero_lt_one).mpr (one_div_one.le.trans_lt hm)))" }, { "state_after": "α : Type ?u.462750\nβ : Type ?u.462753\nι : Type ?u.462756\nm : ℝ\nf : ℕ → ℕ\nhm : 1 < m\nfi : ∀ (i : ℕ), i ≤ f i\na : ℕ\n⊢ 1 / m ^ f a ≤ 1 / m ^ a", "state_before": "α : Type ?u.462750\nβ : Type ?u.462753\nι : Type ?u.462756\nm : ℝ\nf : ℕ → ℕ\nhm : 1 < m\nfi : ∀ (i : ℕ), i ≤ f i\na : ℕ\n⊢ 1 / m ^ f a ≤ (1 / m) ^ a", "tactic": "rw [div_pow, one_pow]" }, { "state_after": "no goals", "state_before": "α : Type ?u.462750\nβ : Type ?u.462753\nι : Type ?u.462756\nm : ℝ\nf : ℕ → ℕ\nhm : 1 < m\nfi : ∀ (i : ℕ), i ≤ f i\na : ℕ\n⊢ 1 / m ^ f a ≤ 1 / m ^ a", "tactic": "refine' (one_div_le_one_div _ _).mpr (pow_le_pow hm.le (fi a)) <;>\n exact pow_pos (zero_lt_one.trans hm) _" } ]
[ 445, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 436, 1 ]
Mathlib/Data/Real/Irrational.lean
irrational_add_rat_iff
[]
[ 548, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 547, 1 ]
Mathlib/Algebra/Opposites.lean
MulOpposite.unop_inj
[]
[ 182, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 181, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
ContinuousMap.coe_comp
[]
[ 241, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
src/lean/Init/Data/Array/Basic.lean
Array.size_pop
[ { "state_after": "no goals", "state_before": "α : Type u_1\na : Array α\n⊢ size (pop a) = size a - 1", "tactic": "match a with\n| ⟨[]⟩ => rfl\n| ⟨a::as⟩ => simp [pop, Nat.succ_sub_succ_eq_sub, size]" }, { "state_after": "no goals", "state_before": "α : Type u_1\na : Array α\n⊢ size (pop { data := List.nil }) = size { data := List.nil } - 1", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\na✝ : Array α\na : α\nas : List α\n⊢ size (pop { data := a :: as }) = size { data := a :: as } - 1", "tactic": "simp [pop, Nat.succ_sub_succ_eq_sub, size]" } ]
[ 630, 58 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 627, 9 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_range_zero
[ { "state_after": "no goals", "state_before": "ι : Type ?u.450036\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝ : CommMonoid β\nf : ℕ → β\n⊢ ∏ k in range 0, f k = 1", "tactic": "rw [range_zero, prod_empty]" } ]
[ 1261, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1261, 1 ]
Mathlib/Combinatorics/SimpleGraph/StronglyRegular.lean
SimpleGraph.sdiff_compl_neighborFinset_inter_eq
[ { "state_after": "case a\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj G v w\na✝ : V\n⊢ a✝ ∈ (neighborFinset G vᶜ ∩ neighborFinset G wᶜ) \\ ({w} ∪ {v}) ↔ a✝ ∈ neighborFinset G vᶜ ∩ neighborFinset G wᶜ", "state_before": "V : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj G v w\n⊢ (neighborFinset G vᶜ ∩ neighborFinset G wᶜ) \\ ({w} ∪ {v}) = neighborFinset G vᶜ ∩ neighborFinset G wᶜ", "tactic": "ext" }, { "state_after": "case a\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj G v w\na✝ : V\n⊢ ¬Adj G v a✝ → ¬Adj G w a✝ → ¬(a✝ = w ∨ a✝ = v)", "state_before": "case a\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj G v w\na✝ : V\n⊢ a✝ ∈ (neighborFinset G vᶜ ∩ neighborFinset G wᶜ) \\ ({w} ∪ {v}) ↔ a✝ ∈ neighborFinset G vᶜ ∩ neighborFinset G wᶜ", "tactic": "simp only [and_imp, mem_union, mem_sdiff, mem_compl, and_iff_left_iff_imp, mem_neighborFinset,\n mem_inter, mem_singleton]" }, { "state_after": "case a.inl\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv a✝ : V\nhnv : ¬Adj G v a✝\nh : Adj G v a✝\nhnw : ¬Adj G a✝ a✝\n⊢ False\n\ncase a.inr\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nw a✝ : V\nhnw : ¬Adj G w a✝\nh : Adj G a✝ w\nhnv : ¬Adj G a✝ a✝\n⊢ False", "state_before": "case a\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj G v w\na✝ : V\n⊢ ¬Adj G v a✝ → ¬Adj G w a✝ → ¬(a✝ = w ∨ a✝ = v)", "tactic": "rintro hnv hnw (rfl | rfl)" }, { "state_after": "no goals", "state_before": "case a.inl\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv a✝ : V\nhnv : ¬Adj G v a✝\nh : Adj G v a✝\nhnw : ¬Adj G a✝ a✝\n⊢ False", "tactic": "exact hnv h" }, { "state_after": "case a.inr\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nw a✝ : V\nhnw : ¬Adj G w a✝\nh : Adj G a✝ w\nhnv : ¬Adj G a✝ a✝\n⊢ Adj G w a✝", "state_before": "case a.inr\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nw a✝ : V\nhnw : ¬Adj G w a✝\nh : Adj G a✝ w\nhnv : ¬Adj G a✝ a✝\n⊢ False", "tactic": "apply hnw" }, { "state_after": "no goals", "state_before": "case a.inr\nV : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nw a✝ : V\nhnw : ¬Adj G w a✝\nh : Adj G a✝ w\nhnv : ¬Adj G a✝ a✝\n⊢ Adj G w a✝", "tactic": "rwa [adj_comm]" } ]
[ 134, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/Data/List/Basic.lean
List.length_le_length_insertNth
[ { "state_after": "case inl\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : n ≤ length l\n⊢ length l ≤ length (insertNth n x l)\n\ncase inr\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : length l < n\n⊢ length l ≤ length (insertNth n x l)", "state_before": "ι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\n⊢ length l ≤ length (insertNth n x l)", "tactic": "cases' le_or_lt n l.length with hn hn" }, { "state_after": "case inl\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : n ≤ length l\n⊢ length l ≤ length l + 1", "state_before": "case inl\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : n ≤ length l\n⊢ length l ≤ length (insertNth n x l)", "tactic": "rw [length_insertNth _ _ hn]" }, { "state_after": "no goals", "state_before": "case inl\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : n ≤ length l\n⊢ length l ≤ length l + 1", "tactic": "exact (Nat.lt_succ_self _).le" }, { "state_after": "no goals", "state_before": "case inr\nι : Type ?u.123956\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nhn : length l < n\n⊢ length l ≤ length (insertNth n x l)", "tactic": "rw [insertNth_of_length_lt _ _ _ hn]" } ]
[ 1685, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1680, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_subtype''
[]
[ 1216, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1215, 1 ]
Mathlib/CategoryTheory/Functor/Const.lean
CategoryTheory.Functor.const.opObjUnop_hom_app
[]
[ 76, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Topology/Sheaves/PUnit.lean
TopCat.Presheaf.isSheaf_on_pUnit_iff_isTerminal
[]
[ 62, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean
Matrix.SpecialLinearGroup.coe_matrix_coe
[]
[ 254, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Topology/VectorBundle/Basic.lean
Trivialization.coordChangeL_apply'
[ { "state_after": "no goals", "state_before": "R : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ ↑(coordChangeL R e e' b) y = (↑e' (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, y))).snd", "tactic": "rw [e.coordChangeL_apply e' hb, e.mk_symm hb.1]" } ]
[ 359, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 356, 1 ]