file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Analysis/Seminorm.lean
Seminorm.smul_ball_preimage
[ { "state_after": "no goals", "state_before": "R : Type ?u.1269302\nR' : Type ?u.1269305\n𝕜 : Type u_1\n𝕜₂ : Type ?u.1269311\n𝕜₃ : Type ?u.1269314\n𝕝 : Type ?u.1269317\nE : Type u_2\nE₂ : Type ?u.1269323\nE₃ : Type ?u.1269326\nF : Type ?u.1269329\nG : Type ?u.1269332\nι : Type ?u.1269335\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\np✝ : Seminorm 𝕜 E\nA B : Set E\na✝ : 𝕜\nr✝ : ℝ\nx : E\np : Seminorm 𝕜 E\ny : E\nr : ℝ\na : 𝕜\nha : a ≠ 0\nx✝ : E\n⊢ x✝ ∈ (fun x x_1 => x • x_1) a ⁻¹' ball p y r ↔ x✝ ∈ ball p (a⁻¹ • y) (r / ‖a‖)", "tactic": "rw [mem_preimage, mem_ball, mem_ball, lt_div_iff (norm_pos_iff.mpr ha), mul_comm, ←\n map_smul_eq_mul p, smul_sub, smul_inv_smul₀ ha]" } ]
[ 1024, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1020, 1 ]
Mathlib/Analysis/NormedSpace/Multilinear.lean
ContinuousMultilinearMap.op_norm_le_bound
[]
[ 375, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Data/MvPolynomial/Comap.lean
MvPolynomial.comap_id
[ { "state_after": "case h\nσ : Type u_1\nτ : Type ?u.60359\nυ : Type ?u.60362\nR : Type u_2\ninst✝ : CommSemiring R\nx : σ → R\n⊢ comap (AlgHom.id R (MvPolynomial σ R)) x = id x", "state_before": "σ : Type u_1\nτ : Type ?u.60359\nυ : Type ?u.60362\nR : Type u_2\ninst✝ : CommSemiring R\n⊢ comap (AlgHom.id R (MvPolynomial σ R)) = id", "tactic": "funext x" }, { "state_after": "no goals", "state_before": "case h\nσ : Type u_1\nτ : Type ?u.60359\nυ : Type ?u.60362\nR : Type u_2\ninst✝ : CommSemiring R\nx : σ → R\n⊢ comap (AlgHom.id R (MvPolynomial σ R)) x = id x", "tactic": "exact comap_id_apply x" } ]
[ 60, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/Order/Interval.lean
Interval.length_add_le
[ { "state_after": "no goals", "state_before": "ι : Type ?u.386687\nα : Type u_1\ninst✝ : OrderedAddCommGroup α\ns t : Interval α\na : α\nx✝ : Interval α\n⊢ length (⊥ + x✝) ≤ length ⊥ + length x✝", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type ?u.386687\nα : Type u_1\ninst✝ : OrderedAddCommGroup α\ns t : Interval α\na : α\nx✝ : Interval α\n⊢ length (x✝ + ⊥) ≤ length x✝ + length ⊥", "tactic": "simp" } ]
[ 713, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 710, 1 ]
Mathlib/Algebra/Hom/Equiv/Basic.lean
MulEquiv.symm_comp_self
[]
[ 361, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiagonal'_map
[ { "state_after": "case a.h\nl : Type ?u.197342\nm : Type ?u.197345\nn : Type ?u.197348\no : Type u_5\np : Type ?u.197354\nq : Type ?u.197357\nm' : o → Type u_1\nn' : o → Type u_2\np' : o → Type ?u.197372\nR : Type ?u.197375\nS : Type ?u.197378\nα : Type u_3\nβ : Type u_4\ninst✝² : DecidableEq o\ninst✝¹ : Zero α\ninst✝ : Zero β\nM : (i : o) → Matrix (m' i) (n' i) α\nf : α → β\nhf : f 0 = 0\ni✝ : (i : o) × m' i\nx✝ : (i : o) × n' i\n⊢ map (blockDiagonal' M) f i✝ x✝ = blockDiagonal' (fun k => map (M k) f) i✝ x✝", "state_before": "l : Type ?u.197342\nm : Type ?u.197345\nn : Type ?u.197348\no : Type u_5\np : Type ?u.197354\nq : Type ?u.197357\nm' : o → Type u_1\nn' : o → Type u_2\np' : o → Type ?u.197372\nR : Type ?u.197375\nS : Type ?u.197378\nα : Type u_3\nβ : Type u_4\ninst✝² : DecidableEq o\ninst✝¹ : Zero α\ninst✝ : Zero β\nM : (i : o) → Matrix (m' i) (n' i) α\nf : α → β\nhf : f 0 = 0\n⊢ map (blockDiagonal' M) f = blockDiagonal' fun k => map (M k) f", "tactic": "ext" }, { "state_after": "case a.h\nl : Type ?u.197342\nm : Type ?u.197345\nn : Type ?u.197348\no : Type u_5\np : Type ?u.197354\nq : Type ?u.197357\nm' : o → Type u_1\nn' : o → Type u_2\np' : o → Type ?u.197372\nR : Type ?u.197375\nS : Type ?u.197378\nα : Type u_3\nβ : Type u_4\ninst✝² : DecidableEq o\ninst✝¹ : Zero α\ninst✝ : Zero β\nM : (i : o) → Matrix (m' i) (n' i) α\nf : α → β\nhf : f 0 = 0\ni✝ : (i : o) × m' i\nx✝ : (i : o) × n' i\n⊢ f (if h : i✝.fst = x✝.fst then M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd) else 0) =\n if h : i✝.fst = x✝.fst then f (M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd)) else 0", "state_before": "case a.h\nl : Type ?u.197342\nm : Type ?u.197345\nn : Type ?u.197348\no : Type u_5\np : Type ?u.197354\nq : Type ?u.197357\nm' : o → Type u_1\nn' : o → Type u_2\np' : o → Type ?u.197372\nR : Type ?u.197375\nS : Type ?u.197378\nα : Type u_3\nβ : Type u_4\ninst✝² : DecidableEq o\ninst✝¹ : Zero α\ninst✝ : Zero β\nM : (i : o) → Matrix (m' i) (n' i) α\nf : α → β\nhf : f 0 = 0\ni✝ : (i : o) × m' i\nx✝ : (i : o) × n' i\n⊢ map (blockDiagonal' M) f i✝ x✝ = blockDiagonal' (fun k => map (M k) f) i✝ x✝", "tactic": "simp only [map_apply, blockDiagonal'_apply, eq_comm]" }, { "state_after": "no goals", "state_before": "case a.h\nl : Type ?u.197342\nm : Type ?u.197345\nn : Type ?u.197348\no : Type u_5\np : Type ?u.197354\nq : Type ?u.197357\nm' : o → Type u_1\nn' : o → Type u_2\np' : o → Type ?u.197372\nR : Type ?u.197375\nS : Type ?u.197378\nα : Type u_3\nβ : Type u_4\ninst✝² : DecidableEq o\ninst✝¹ : Zero α\ninst✝ : Zero β\nM : (i : o) → Matrix (m' i) (n' i) α\nf : α → β\nhf : f 0 = 0\ni✝ : (i : o) × m' i\nx✝ : (i : o) × n' i\n⊢ f (if h : i✝.fst = x✝.fst then M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd) else 0) =\n if h : i✝.fst = x✝.fst then f (M i✝.fst i✝.snd (cast (_ : n' x✝.fst = n' i✝.fst) x✝.snd)) else 0", "tactic": "rw [apply_dite f, hf]" } ]
[ 672, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 668, 1 ]
Mathlib/Data/Polynomial/Monic.lean
Polynomial.Monic.isRegular
[ { "state_after": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\n⊢ IsLeftRegular p\n\ncase right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\n⊢ IsRightRegular p", "state_before": "R✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\n⊢ IsRegular p", "tactic": "constructor" }, { "state_after": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : (fun x => p * x) q = (fun x => p * x) r\n⊢ q = r", "state_before": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\n⊢ IsLeftRegular p", "tactic": "intro q r h" }, { "state_after": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : p * q = p * r\n⊢ q = r", "state_before": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : (fun x => p * x) q = (fun x => p * x) r\n⊢ q = r", "tactic": "dsimp only at h" }, { "state_after": "no goals", "state_before": "case left\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : p * q = p * r\n⊢ q = r", "tactic": "rw [← sub_eq_zero, ← hp.mul_right_eq_zero_iff, mul_sub, h, sub_self]" }, { "state_after": "case right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : (fun x => x * p) q = (fun x => x * p) r\n⊢ q = r", "state_before": "case right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\n⊢ IsRightRegular p", "tactic": "intro q r h" }, { "state_after": "case right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : q * p = r * p\n⊢ q = r", "state_before": "case right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : (fun x => x * p) q = (fun x => x * p) r\n⊢ q = r", "tactic": "simp only at h" }, { "state_after": "no goals", "state_before": "case right\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝¹ : Semiring R✝\np✝ : R✝[X]\nR : Type u_1\ninst✝ : Ring R\np : R[X]\nhp : Monic p\nq r : R[X]\nh : q * p = r * p\n⊢ q = r", "tactic": "rw [← sub_eq_zero, ← hp.mul_left_eq_zero_iff, sub_mul, h, sub_self]" } ]
[ 481, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 474, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
SubringClass.coe_intCast
[]
[ 174, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.setOf_wSameSide_eq_image2
[ { "state_after": "case h\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ y ∈ {y | WSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\n⊢ {y | WSameSide s x y} = Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s", "tactic": "ext y" }, { "state_after": "case h\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ WSameSide s x y ↔ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "state_before": "case h\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ y ∈ {y | WSameSide s x y} ↔ y ∈ Set.image2 (fun t q => t • (x -ᵥ p) +ᵥ q) (Set.Ici 0) ↑s", "tactic": "simp_rw [Set.mem_setOf, Set.mem_image2, Set.mem_Ici, mem_coe]" }, { "state_after": "case h.mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ WSameSide s x y → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y\n\ncase h.mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ (∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WSameSide s x y", "state_before": "case h\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ WSameSide s x y ↔ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "constructor" }, { "state_after": "case h.mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "state_before": "case h.mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ WSameSide s x y → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "rw [wSameSide_iff_exists_left hp, or_iff_right hx]" }, { "state_after": "case h.mp.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : x -ᵥ p = 0\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y\n\ncase h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y -ᵥ p₂ = 0\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y\n\ncase h.mp.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nh : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "state_before": "case h.mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ (∃ p₂, p₂ ∈ s ∧ SameRay R (x -ᵥ p) (y -ᵥ p₂)) → ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "rintro ⟨p₂, hp₂, h | h | ⟨r₁, r₂, hr₁, hr₂, h⟩⟩" }, { "state_after": "case h.mp.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : x = p\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "state_before": "case h.mp.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : x -ᵥ p = 0\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "rw [vsub_eq_zero_iff_eq] at h" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : x = p\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "exact False.elim (hx (h.symm ▸ hp))" }, { "state_after": "case h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y = p₂\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "state_before": "case h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y -ᵥ p₂ = 0\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "rw [vsub_eq_zero_iff_eq] at h" }, { "state_after": "case h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y = p₂\n⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y", "state_before": "case h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y = p₂\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "refine' ⟨0, p₂, le_refl _, hp₂, _⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.inr.inl\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nh : y = p₂\n⊢ 0 • (x -ᵥ p) +ᵥ p₂ = y", "tactic": "simp [h]" }, { "state_after": "case h.mp.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nh : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)\n⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y", "state_before": "case h.mp.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nh : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)\n⊢ ∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y", "tactic": "refine' ⟨r₁ / r₂, p₂, (div_pos hr₁ hr₂).le, hp₂, _⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.inr.inr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny p₂ : P\nhp₂ : p₂ ∈ s\nr₁ r₂ : R\nhr₁ : 0 < r₁\nhr₂ : 0 < r₂\nh : r₁ • (x -ᵥ p) = r₂ • (y -ᵥ p₂)\n⊢ (r₁ / r₂) • (x -ᵥ p) +ᵥ p₂ = y", "tactic": "rw [div_eq_inv_mul, ← smul_smul, h, smul_smul, inv_mul_cancel hr₂.ne.symm, one_smul,\n vsub_vadd]" }, { "state_after": "case h.mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\nt : R\np' : P\nht : 0 ≤ t\nhp' : p' ∈ ↑s\n⊢ WSameSide s x (t • (x -ᵥ p) +ᵥ p')", "state_before": "case h.mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\ny : P\n⊢ (∃ a b, 0 ≤ a ∧ b ∈ ↑s ∧ a • (x -ᵥ p) +ᵥ b = y) → WSameSide s x y", "tactic": "rintro ⟨t, p', ht, hp', rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.400251\nP : Type u_3\nP' : Type ?u.400257\ninst✝⁶ : LinearOrderedField R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx p : P\nhx : ¬x ∈ s\nhp : p ∈ s\nt : R\np' : P\nht : 0 ≤ t\nhp' : p' ∈ ↑s\n⊢ WSameSide s x (t • (x -ᵥ p) +ᵥ p')", "tactic": "exact wSameSide_smul_vsub_vadd_right x hp hp' ht" } ]
[ 784, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 768, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
geom_le
[ { "state_after": "no goals", "state_before": "α : Type ?u.35577\nβ : Type ?u.35580\nι : Type ?u.35583\nu : ℕ → ℝ\nc : ℝ\nhc : 0 ≤ c\nn : ℕ\nh : ∀ (k : ℕ), k < n → c * u k ≤ u (k + 1)\n⊢ c ^ n * u 0 ≤ u n", "tactic": "apply (monotone_mul_left_of_nonneg hc).seq_le_seq n _ _ h <;>\n simp [_root_.pow_succ, mul_assoc, le_refl]" } ]
[ 138, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.δ_comp_σ_succ
[ { "state_after": "case a.h.h.h\nn : ℕ\ni : Fin (n + 1)\nj : Fin (len [n] + 1)\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ i)) j) = ↑(↑(Hom.toOrderHom (𝟙 [n])) j)", "state_before": "n : ℕ\ni : Fin (n + 1)\n⊢ δ (Fin.succ i) ≫ σ i = 𝟙 [n]", "tactic": "ext j" }, { "state_after": "case a.h.h.h.mk\nn : ℕ\nj : Fin (len [n] + 1)\ni : ℕ\nisLt✝ : i < n + 1\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝ }) ≫ σ { val := i, isLt := isLt✝ })) j) =\n ↑(↑(Hom.toOrderHom (𝟙 [n])) j)", "state_before": "case a.h.h.h\nn : ℕ\ni : Fin (n + 1)\nj : Fin (len [n] + 1)\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ i)) j) = ↑(↑(Hom.toOrderHom (𝟙 [n])) j)", "tactic": "rcases i with ⟨i, _⟩" }, { "state_after": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝¹ }) ≫ σ { val := i, isLt := isLt✝¹ }))\n { val := j, isLt := isLt✝ }) =\n ↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := isLt✝ })", "state_before": "case a.h.h.h.mk\nn : ℕ\nj : Fin (len [n] + 1)\ni : ℕ\nisLt✝ : i < n + 1\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝ }) ≫ σ { val := i, isLt := isLt✝ })) j) =\n ↑(↑(Hom.toOrderHom (𝟙 [n])) j)", "tactic": "rcases j with ⟨j, _⟩" }, { "state_after": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(if h :\n { val := i, isLt := (_ : i < Nat.succ (n + 1)) } <\n if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then\n Fin.pred\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠\n 0)\n else\n Fin.castLT\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n ↑(if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <\n n + 1)) =\n j", "state_before": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝¹ }) ≫ σ { val := i, isLt := isLt✝¹ }))\n { val := j, isLt := isLt✝ }) =\n ↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := isLt✝ })", "tactic": "dsimp [δ, σ, Fin.succAbove, Fin.predAbove]" }, { "state_after": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(if h :\n { val := i, isLt := (_ : i < Nat.succ (n + 1)) } <\n if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then\n Fin.pred\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠\n 0)\n else\n Fin.castLT\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n ↑(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <\n n + 1)) =\n j", "state_before": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(if h :\n { val := i, isLt := (_ : i < Nat.succ (n + 1)) } <\n if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then\n Fin.pred\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠\n 0)\n else\n Fin.castLT\n (if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n ↑(if\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) } <\n { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ (n + 1)) } then\n { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <\n n + 1)) =\n j", "tactic": "simp only [Fin.mk_lt_mk]" }, { "state_after": "no goals", "state_before": "case a.h.h.h.mk.mk\nn i : ℕ\nisLt✝¹ : i < n + 1\nj : ℕ\nisLt✝ : j < len [n] + 1\n⊢ ↑(if h :\n { val := i, isLt := (_ : i < Nat.succ (n + 1)) } <\n if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then\n Fin.pred\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠\n 0)\n else\n Fin.castLT\n (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })\n (_ :\n ↑(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }\n else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <\n n + 1)) =\n j", "tactic": "split_ifs <;> simp <;> simp at * <;> linarith" } ]
[ 301, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 295, 1 ]
Mathlib/RingTheory/Localization/Ideal.lean
IsLocalization.comap_map_of_isPrime_disjoint
[ { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\n⊢ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I) ≤ I", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\n⊢ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I) = I", "tactic": "refine' le_antisymm _ Ideal.le_comap_map" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\n⊢ a ∈ I", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\n⊢ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I) ≤ I", "tactic": "refine' (fun a ha => _)" }, { "state_after": "case intro.mk\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) a * ↑(algebraMap R S) ↑(b, s).snd = ↑(algebraMap R S) ↑(b, s).fst\n⊢ a ∈ I", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\n⊢ a ∈ I", "tactic": "obtain ⟨⟨b, s⟩, h⟩ := (mem_map_algebraMap_iff M S).1 (Ideal.mem_comap.1 ha)" }, { "state_after": "case intro.mk\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\n⊢ a ∈ I", "state_before": "case intro.mk\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) a * ↑(algebraMap R S) ↑(b, s).snd = ↑(algebraMap R S) ↑(b, s).fst\n⊢ a ∈ I", "tactic": "replace h : algebraMap R S (s * a) = algebraMap R S b := by\n simpa only [← map_mul, mul_comm] using h" }, { "state_after": "case intro.mk.intro\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\n⊢ a ∈ I", "state_before": "case intro.mk\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\n⊢ a ∈ I", "tactic": "obtain ⟨c, hc⟩ := (eq_iff_exists M S).1 h" }, { "state_after": "case intro.mk.intro\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\nthis : ↑c * ↑s * a ∈ I\n⊢ a ∈ I", "state_before": "case intro.mk.intro\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\n⊢ a ∈ I", "tactic": "have : ↑c * ↑s * a ∈ I := by\n rw [mul_assoc, hc]\n exact I.mul_mem_left c b.2" }, { "state_after": "no goals", "state_before": "case intro.mk.intro\nR : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\nthis : ↑c * ↑s * a ∈ I\n⊢ a ∈ I", "tactic": "exact (hI.mem_or_mem this).resolve_left fun hsc => hM.le_bot ⟨(c * s).2, hsc⟩" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) a * ↑(algebraMap R S) ↑(b, s).snd = ↑(algebraMap R S) ↑(b, s).fst\n⊢ ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b", "tactic": "simpa only [← map_mul, mul_comm] using h" }, { "state_after": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\n⊢ ↑c * ↑b ∈ I", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\n⊢ ↑c * ↑s * a ∈ I", "tactic": "rw [mul_assoc, hc]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝³ : CommSemiring R\nM : Submonoid R\nS : Type u_2\ninst✝² : CommSemiring S\ninst✝¹ : Algebra R S\ninst✝ : IsLocalization M S\nI : Ideal R\nhI : Ideal.IsPrime I\nhM : Disjoint ↑M ↑I\na : R\nha : a ∈ Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I)\nb : { x // x ∈ I }\ns : { x // x ∈ M }\nh : ↑(algebraMap R S) (↑s * a) = ↑(algebraMap R S) ↑b\nc : { x // x ∈ M }\nhc : ↑c * (↑s * a) = ↑c * ↑b\n⊢ ↑c * ↑b ∈ I", "tactic": "exact I.mul_mem_left c b.2" } ]
[ 92, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
Orthonormal.orthogonalFamily
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.3602007\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : InnerProductSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type u_3\ndec_ι : DecidableEq ι\nG : ι → Type ?u.3602070\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV : (i : ι) → G i →ₗᵢ[𝕜] E\nhV : OrthogonalFamily 𝕜 G V\ndec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)\nv : ι → E\nhv : Orthonormal 𝕜 v\ni j : ι\nhij : i ≠ j\na : (fun _i => 𝕜) i\nb : (fun _i => 𝕜) j\n⊢ inner (↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) i) a)\n (↑((fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)) j) b) =\n 0", "tactic": "simp [inner_smul_left, inner_smul_right, hv.2 hij]" } ]
[ 2002, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2000, 1 ]
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
MeasureTheory.IntegrableAtFilter.inf_ae_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\n⊢ IntegrableAtFilter f (l ⊓ Measure.ae μ) → IntegrableAtFilter f l", "state_before": "α : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\n⊢ IntegrableAtFilter f (l ⊓ Measure.ae μ) ↔ IntegrableAtFilter f l", "tactic": "refine' ⟨_, fun h => h.filter_mono inf_le_left⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\n⊢ IntegrableAtFilter f l", "state_before": "α : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\n⊢ IntegrableAtFilter f (l ⊓ Measure.ae μ) → IntegrableAtFilter f l", "tactic": "rintro ⟨s, ⟨t, ht, u, hu, rfl⟩, hf⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\n⊢ IntegrableOn f t", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\n⊢ IntegrableAtFilter f l", "tactic": "refine' ⟨t, ht, _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\n⊢ ↑↑(Measure.restrict μ t) v ≤ ↑↑(Measure.restrict μ (t ∩ u)) v", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\n⊢ IntegrableOn f t", "tactic": "refine' hf.integrable.mono_measure fun v hv => _" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\n⊢ ↑↑μ (v ∩ t) ≤ ↑↑μ (v ∩ (t ∩ u))", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\n⊢ ↑↑(Measure.restrict μ t) v ≤ ↑↑(Measure.restrict μ (t ∩ u)) v", "tactic": "simp only [Measure.restrict_apply hv]" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\nx : α\nhx : x ∈ u\n⊢ x ∈ {x | (fun x => (v ∩ t) x ≤ (v ∩ (t ∩ u)) x) x}", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\n⊢ ↑↑μ (v ∩ t) ≤ ↑↑μ (v ∩ (t ∩ u))", "tactic": "refine' measure_mono_ae (mem_of_superset hu fun x hx => _)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.1660656\nE : Type u_2\nF : Type ?u.1660662\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t✝ : Set α\nμ ν : Measure α\nl✝ l' l : Filter α\nt : Set α\nht : t ∈ l\nu : Set α\nhu : u ∈ Measure.ae μ\nhf : IntegrableOn f (t ∩ u)\nv : Set α\nhv : MeasurableSet v\nx : α\nhx : x ∈ u\n⊢ x ∈ {x | (fun x => (v ∩ t) x ≤ (v ∩ (t ∩ u)) x) x}", "tactic": "exact fun ⟨hv, ht⟩ => ⟨hv, ⟨ht, hx⟩⟩" } ]
[ 431, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.cycleOf_self_apply_pow
[]
[ 1064, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1063, 1 ]
Mathlib/Algebra/Group/Units.lean
Units.eq_inv_of_mul_eq_one_right
[]
[ 373, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 11 ]
Mathlib/Topology/MetricSpace/Contracting.lean
ContractingWith.efixedPoint_isFixedPt
[]
[ 130, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.sInter_eq_compl_sUnion_compl
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.147900\nγ : Type ?u.147903\nι : Sort ?u.147906\nι' : Sort ?u.147909\nι₂ : Sort ?u.147912\nκ : ι → Sort ?u.147917\nκ₁ : ι → Sort ?u.147922\nκ₂ : ι → Sort ?u.147927\nκ' : ι' → Sort ?u.147932\nS : Set (Set α)\n⊢ ⋂₀ S = (⋃₀ (compl '' S))ᶜ", "tactic": "rw [← compl_compl (⋂₀ S), compl_sInter]" } ]
[ 1254, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1253, 1 ]
Mathlib/RingTheory/Valuation/ValuationRing.lean
ValuationRing.iff_dvd_total
[ { "state_after": "case refine_1\nR : Type u_1\ninst✝⁴ : CommRing R\ninst✝³ : IsDomain R\nK : Type ?u.522037\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nH : ValuationRing R\na b : R\n⊢ a ∣ b ∨ b ∣ a\n\ncase refine_2\nR : Type u_1\ninst✝⁴ : CommRing R\ninst✝³ : IsDomain R\nK : Type ?u.522037\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nH : IsTotal R fun x x_1 => x ∣ x_1\na b : R\n⊢ ∃ c, a * c = b ∨ b * c = a", "state_before": "R : Type u_1\ninst✝⁴ : CommRing R\ninst✝³ : IsDomain R\nK : Type ?u.522037\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\n⊢ ValuationRing R ↔ IsTotal R fun x x_1 => x ∣ x_1", "tactic": "refine ⟨fun H => ⟨fun a b => ?_⟩, fun H => ⟨fun a b => ?_⟩⟩" }, { "state_after": "no goals", "state_before": "case refine_1\nR : Type u_1\ninst✝⁴ : CommRing R\ninst✝³ : IsDomain R\nK : Type ?u.522037\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nH : ValuationRing R\na b : R\n⊢ a ∣ b ∨ b ∣ a", "tactic": "obtain ⟨c, rfl | rfl⟩ := ValuationRing.cond a b <;> simp" }, { "state_after": "no goals", "state_before": "case refine_2\nR : Type u_1\ninst✝⁴ : CommRing R\ninst✝³ : IsDomain R\nK : Type ?u.522037\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nH : IsTotal R fun x x_1 => x ∣ x_1\na b : R\n⊢ ∃ c, a * c = b ∨ b * c = a", "tactic": "obtain ⟨c, rfl⟩ | ⟨c, rfl⟩ := @IsTotal.total _ _ H a b <;> use c <;> simp" } ]
[ 291, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/Data/List/Basic.lean
List.nthLe_succ_scanl
[ { "state_after": "case zero.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\nb : β\nh : zero + 1 < length (scanl f b [])\n⊢ nthLe (scanl f b []) (zero + 1) h =\n f (nthLe (scanl f b []) zero (_ : zero < length (scanl f b []))) (nthLe [] zero (_ : zero < length []))\n\ncase zero.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\nb : β\nhead✝ : α\ntail✝ : List α\nh : zero + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f b (head✝ :: tail✝)) (zero + 1) h =\n f (nthLe (scanl f b (head✝ :: tail✝)) zero (_ : zero < length (scanl f b (head✝ :: tail✝))))\n (nthLe (head✝ :: tail✝) zero (_ : zero < length (head✝ :: tail✝)))", "state_before": "case zero\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\nb : β\nl : List α\nh : zero + 1 < length (scanl f b l)\n⊢ nthLe (scanl f b l) (zero + 1) h =\n f (nthLe (scanl f b l) zero (_ : zero < length (scanl f b l))) (nthLe l zero (_ : zero < length l))", "tactic": "cases l" }, { "state_after": "no goals", "state_before": "case zero.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\nb : β\nh : zero + 1 < length (scanl f b [])\n⊢ nthLe (scanl f b []) (zero + 1) h =\n f (nthLe (scanl f b []) zero (_ : zero < length (scanl f b []))) (nthLe [] zero (_ : zero < length []))", "tactic": "simp only [length, zero_add, scanl_nil] at h" }, { "state_after": "no goals", "state_before": "case zero.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\nb : β\nhead✝ : α\ntail✝ : List α\nh : zero + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f b (head✝ :: tail✝)) (zero + 1) h =\n f (nthLe (scanl f b (head✝ :: tail✝)) zero (_ : zero < length (scanl f b (head✝ :: tail✝))))\n (nthLe (head✝ :: tail✝) zero (_ : zero < length (head✝ :: tail✝)))", "tactic": "simp [scanl_cons, singleton_append, nthLe_zero_scanl, nthLe_cons]" }, { "state_after": "case succ.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nh : succ i + 1 < length (scanl f b [])\n⊢ nthLe (scanl f b []) (succ i + 1) h =\n f (nthLe (scanl f b []) (succ i) (_ : succ i < length (scanl f b []))) (nthLe [] (succ i) (_ : succ i < length []))\n\ncase succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f b (head✝ :: tail✝)) (succ i + 1) h =\n f (nthLe (scanl f b (head✝ :: tail✝)) (succ i) (_ : succ i < length (scanl f b (head✝ :: tail✝))))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "state_before": "case succ\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nl : List α\nh : succ i + 1 < length (scanl f b l)\n⊢ nthLe (scanl f b l) (succ i + 1) h =\n f (nthLe (scanl f b l) (succ i) (_ : succ i < length (scanl f b l))) (nthLe l (succ i) (_ : succ i < length l))", "tactic": "cases l" }, { "state_after": "case succ.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nh✝ : succ i + 1 < length (scanl f b [])\nh : succ i < 0\n⊢ nthLe (scanl f b []) (succ i + 1) h✝ =\n f (nthLe (scanl f b []) (succ i) (_ : succ i < length (scanl f b []))) (nthLe [] (succ i) (_ : succ i < length []))", "state_before": "case succ.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nh : succ i + 1 < length (scanl f b [])\n⊢ nthLe (scanl f b []) (succ i + 1) h =\n f (nthLe (scanl f b []) (succ i) (_ : succ i < length (scanl f b []))) (nthLe [] (succ i) (_ : succ i < length []))", "tactic": "simp only [length, add_lt_iff_neg_right, scanl_nil] at h" }, { "state_after": "no goals", "state_before": "case succ.nil\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nh✝ : succ i + 1 < length (scanl f b [])\nh : succ i < 0\n⊢ nthLe (scanl f b []) (succ i + 1) h✝ =\n f (nthLe (scanl f b []) (succ i) (_ : succ i < length (scanl f b []))) (nthLe [] (succ i) (_ : succ i < length []))", "tactic": "exact absurd h (not_lt_of_lt Nat.succ_pos')" }, { "state_after": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i + 1) (_ : succ i + 1 < length ([b] ++ scanl f (f b head✝) tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "state_before": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f b (head✝ :: tail✝)) (succ i + 1) h =\n f (nthLe (scanl f b (head✝ :: tail✝)) (succ i) (_ : succ i < length (scanl f b (head✝ :: tail✝))))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "tactic": "simp_rw [scanl_cons]" }, { "state_after": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f (f b head✝) tail✝) (succ i + 1 - length [b])\n (_ : succ i + 1 - length [b] < length (scanl f (f b head✝) tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))\n\ncase succ.cons.h₁\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ length [b] ≤ succ i + 1", "state_before": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i + 1) (_ : succ i + 1 < length ([b] ++ scanl f (f b head✝) tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "tactic": "rw [nthLe_append_right]" }, { "state_after": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ f (nthLe (scanl f (f b head✝) tail✝) i (_ : i < length (scanl f (f b head✝) tail✝)))\n (nthLe tail✝ i (_ : i < length tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "state_before": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ nthLe (scanl f (f b head✝) tail✝) (succ i + 1 - length [b])\n (_ : succ i + 1 - length [b] < length (scanl f (f b head✝) tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "tactic": "simp only [length, zero_add 1, succ_add_sub_one, hi]" }, { "state_after": "no goals", "state_before": "case succ.cons\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ f (nthLe (scanl f (f b head✝) tail✝) i (_ : i < length (scanl f (f b head✝) tail✝)))\n (nthLe tail✝ i (_ : i < length tail✝)) =\n f (nthLe ([b] ++ scanl f (f b head✝) tail✝) (succ i) (_ : succ i < length ([b] ++ scanl f (f b head✝) tail✝)))\n (nthLe (head✝ :: tail✝) (succ i) (_ : succ i < length (head✝ :: tail✝)))", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case succ.cons.h₁\nι : Type ?u.243601\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nf : β → α → β\na : α\ni : ℕ\nhi :\n ∀ {b : β} {l : List α} {h : i + 1 < length (scanl f b l)},\n nthLe (scanl f b l) (i + 1) h =\n f (nthLe (scanl f b l) i (_ : i < length (scanl f b l))) (nthLe l i (_ : i < length l))\nb : β\nhead✝ : α\ntail✝ : List α\nh : succ i + 1 < length (scanl f b (head✝ :: tail✝))\n⊢ length [b] ≤ succ i + 1", "tactic": "simp only [length, Nat.zero_le, le_add_iff_nonneg_left]" } ]
[ 2663, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2647, 1 ]
Mathlib/Topology/PathConnected.lean
Path.extend_range
[]
[ 286, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Algebra/Order/CompleteField.lean
LinearOrderedField.inducedMap_inducedMap
[ { "state_after": "no goals", "state_before": "F : Type ?u.23494\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\ninst✝³ : LinearOrderedField α\ninst✝² : ConditionallyCompleteLinearOrderedField β\ninst✝¹ : ConditionallyCompleteLinearOrderedField γ\ninst✝ : Archimedean α\na✝ : α\nb : β\nq✝ : ℚ\na : α\nq : ℚ\n⊢ ↑q < inducedMap β γ (inducedMap α β a) ↔ ↑q < inducedMap α γ a", "tactic": "rw [coe_lt_inducedMap_iff, coe_lt_inducedMap_iff, Iff.comm, coe_lt_inducedMap_iff]" } ]
[ 242, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/Order/Atoms.lean
GaloisInsertion.isAtom_of_u_bot
[]
[ 720, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 717, 1 ]
Mathlib/Algebra/Star/Basic.lean
star_inv
[]
[ 217, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Algebra/Order/Hom/Basic.lean
map_ne_zero_iff_ne_one
[]
[ 302, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.singleton_mul_singleton
[]
[ 412, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 411, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
arity_zero
[]
[ 79, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.BoundedFormula.mapTermRel_id_id_id
[ { "state_after": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) falsum = falsum\n\ncase equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (equal t₁✝ t₂✝) = equal t₁✝ t₂✝\n\ncase rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (rel R✝ ts✝) = rel R✝ ts✝\n\ncase imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₁✝ = f₁✝\nih2 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₂✝ = f₂✝\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (imp f₁✝ f₂✝) = imp f₁✝ f₂✝\n\ncase all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f✝ = f✝\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (all f✝) = all f✝", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝ n : ℕ\nφ : BoundedFormula L α n\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) φ = φ", "tactic": "induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3" }, { "state_after": "no goals", "state_before": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) falsum = falsum", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (equal t₁✝ t₂✝) = equal t₁✝ t₂✝", "tactic": "simp [mapTermRel]" }, { "state_after": "no goals", "state_before": "case rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (rel R✝ ts✝) = rel R✝ ts✝", "tactic": "simp [mapTermRel]" }, { "state_after": "no goals", "state_before": "case imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₁✝ = f₁✝\nih2 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f₂✝ = f₂✝\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (imp f₁✝ f₂✝) = imp f₁✝ f₂✝", "tactic": "simp [mapTermRel, ih1, ih2]" }, { "state_after": "no goals", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.67505\nP : Type ?u.67508\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.67536\nn✝¹ n n✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : mapTermRel (fun x => id) (fun x => id) (fun x => id) f✝ = f✝\n⊢ mapTermRel (fun x => id) (fun x => id) (fun x => id) (all f✝) = all f✝", "tactic": "simp [mapTermRel, ih3]" } ]
[ 556, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 549, 1 ]
Mathlib/Computability/Language.lean
Language.one_add_kstar_mul_self_eq_kstar
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.123028\nγ : Type ?u.123031\nl✝ m : Language α\na b x : List α\nl : Language α\n⊢ 1 + l∗ * l = l∗", "tactic": "rw [mul_self_kstar_comm, one_add_self_mul_kstar_eq_kstar]" } ]
[ 292, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Dynamics/Ergodic/MeasurePreserving.lean
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
[]
[ 97, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 11 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
MulHom.srangeRestrict_surjective
[]
[ 857, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 856, 1 ]
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
circleIntegrable_zero_radius
[ { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : ℂ → E\nc : ℂ\n⊢ CircleIntegrable f c 0", "tactic": "simp [CircleIntegrable]" } ]
[ 273, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Std/Data/RBMap/Lemmas.lean
Std.RBNode.lowerBound?_mem_lb
[]
[ 248, 87 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 246, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
tendsto_inverse_atTop_nhds_0_nat
[]
[ 35, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 34, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
pos_and_pos_or_neg_and_neg_of_mul_pos
[ { "state_after": "case inl\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : a < 0\n⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0\n\ncase inr.inl\nα : Type u_1\nb c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < 0 * b\n⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0\n\ncase inr.inr\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : 0 < a\n⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0", "state_before": "α : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\n⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0", "tactic": "rcases lt_trichotomy a 0 with (ha | rfl | ha)" }, { "state_after": "case inl\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : a < 0\nhb : 0 ≤ b\n⊢ a * b ≤ 0", "state_before": "case inl\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : a < 0\n⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0", "tactic": "refine' Or.inr ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : a < 0\nhb : 0 ≤ b\n⊢ a * b ≤ 0", "tactic": "exact mul_nonpos_of_nonpos_of_nonneg ha.le hb" }, { "state_after": "case inr.inl\nα : Type u_1\nb c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < 0\n⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0", "state_before": "case inr.inl\nα : Type u_1\nb c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < 0 * b\n⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0", "tactic": "rw [zero_mul] at hab" }, { "state_after": "no goals", "state_before": "case inr.inl\nα : Type u_1\nb c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < 0\n⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0", "tactic": "exact hab.false.elim" }, { "state_after": "case inr.inr\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : 0 < a\nhb : b ≤ 0\n⊢ a * b ≤ 0", "state_before": "case inr.inr\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : 0 < a\n⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0", "tactic": "refine' Or.inl ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : LinearOrder α\ninst✝¹ : PosMulMono α\ninst✝ : MulPosMono α\nhab : 0 < a * b\nha : 0 < a\nhb : b ≤ 0\n⊢ a * b ≤ 0", "tactic": "exact mul_nonpos_of_nonneg_of_nonpos ha.le hb" } ]
[ 567, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 559, 1 ]
Mathlib/Order/Cover.lean
Wcovby.sup_eq
[]
[ 196, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.map_add_left_Ioo
[ { "state_after": "ι : Type ?u.226888\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ ↑(addLeftEmbedding c) '' Set.Ioo a b = Set.Ioo (c + a) (c + b)", "state_before": "ι : Type ?u.226888\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ map (addLeftEmbedding c) (Ioo a b) = Ioo (c + a) (c + b)", "tactic": "rw [← coe_inj, coe_map, coe_Ioo, coe_Ioo]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.226888\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ ↑(addLeftEmbedding c) '' Set.Ioo a b = Set.Ioo (c + a) (c + b)", "tactic": "exact Set.image_const_add_Ioo _ _ _" } ]
[ 1086, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1083, 1 ]
Mathlib/Combinatorics/Composition.lean
CompositionAsSet.boundary_length
[ { "state_after": "case h.e'_3\nn : ℕ\nc : CompositionAsSet n\n⊢ Fin.last n = Finset.max' c.boundaries (_ : Finset.Nonempty c.boundaries)", "state_before": "n : ℕ\nc : CompositionAsSet n\n⊢ ↑(boundary c) { val := length c, isLt := (_ : length c < Finset.card c.boundaries) } = Fin.last n", "tactic": "convert Finset.orderEmbOfFin_last rfl c.card_boundaries_pos" }, { "state_after": "no goals", "state_before": "case h.e'_3\nn : ℕ\nc : CompositionAsSet n\n⊢ Fin.last n = Finset.max' c.boundaries (_ : Finset.Nonempty c.boundaries)", "tactic": "exact le_antisymm (Finset.le_max' _ _ c.getLast_mem) (Fin.le_last _)" } ]
[ 921, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 919, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.exists_measurable_superset_of_trim_eq_zero
[ { "state_after": "case intro.intro.intro\nα : Type u_1\ninst✝ : MeasurableSpace α\nm✝ m : OuterMeasure α\ns : Set α\nh : ↑(trim m) s = 0\nt : Set α\nhst : s ⊆ t\nht : MeasurableSet t\nhm : ↑m t = ↑(trim m) s\n⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑m t = 0", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm✝ m : OuterMeasure α\ns : Set α\nh : ↑(trim m) s = 0\n⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑m t = 0", "tactic": "rcases exists_measurable_superset_eq_trim m s with ⟨t, hst, ht, hm⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nα : Type u_1\ninst✝ : MeasurableSpace α\nm✝ m : OuterMeasure α\ns : Set α\nh : ↑(trim m) s = 0\nt : Set α\nhst : s ⊆ t\nht : MeasurableSet t\nhm : ↑m t = ↑(trim m) s\n⊢ ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑m t = 0", "tactic": "exact ⟨t, hst, ht, h ▸ hm⟩" } ]
[ 1721, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1718, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.adjoin.finiteDimensional
[]
[ 869, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 868, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.le_of_mul_le_mul_left
[]
[ 841, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 840, 1 ]
Mathlib/Algebra/FreeMonoid/Basic.lean
FreeMonoid.toList_prod
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.8378\nγ : Type ?u.8381\nM : Type ?u.8384\ninst✝¹ : Monoid M\nN : Type ?u.8390\ninst✝ : Monoid N\nxs : List (FreeMonoid α)\n⊢ ↑toList (List.prod xs) = List.join (List.map (↑toList) xs)", "tactic": "induction xs <;> simp [*, List.join]" } ]
[ 118, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.nat_cast_zmod_surjective
[]
[ 205, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Order/WithBot.lean
WithTop.strictAnti_iff
[]
[ 1146, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1144, 1 ]
Mathlib/Algebra/RingQuot.lean
RingCon.coe_algebraMap
[]
[ 49, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Algebra/Module/Submodule/Lattice.lean
Submodule.top_coe
[]
[ 145, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Data/Fintype/Fin.lean
Fin.card_filter_univ_succ'
[ { "state_after": "α : Type ?u.9629\nβ : Type ?u.9632\nn : ℕ\np : Fin (n + 1) → Prop\ninst✝ : DecidablePred p\n⊢ Finset.card (if p 0 then {0} else ∅) +\n Finset.card (filter (p ∘ ↑{ toFun := succ, inj' := (_ : Function.Injective succ) }) univ) =\n (if p 0 then 1 else 0) + Finset.card (filter (p ∘ succ) univ)", "state_before": "α : Type ?u.9629\nβ : Type ?u.9632\nn : ℕ\np : Fin (n + 1) → Prop\ninst✝ : DecidablePred p\n⊢ Finset.card (filter p univ) = (if p 0 then 1 else 0) + Finset.card (filter (p ∘ succ) univ)", "tactic": "rw [Fin.univ_succ, filter_cons, card_disjUnion, filter_map, card_map]" }, { "state_after": "no goals", "state_before": "α : Type ?u.9629\nβ : Type ?u.9632\nn : ℕ\np : Fin (n + 1) → Prop\ninst✝ : DecidablePred p\n⊢ Finset.card (if p 0 then {0} else ∅) +\n Finset.card (filter (p ∘ ↑{ toFun := succ, inj' := (_ : Function.Injective succ) }) univ) =\n (if p 0 then 1 else 0) + Finset.card (filter (p ∘ succ) univ)", "tactic": "split_ifs <;> simp" } ]
[ 78, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.erase_insert_of_ne
[ { "state_after": "α : Type u_1\nβ : Type ?u.210334\nγ : Type ?u.210337\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na✝ b✝ a b : α\ns : Finset α\nh : a ≠ b\nx : α\nthis : x ≠ b ∧ x = a ↔ x = a\n⊢ x ∈ erase (insert a s) b ↔ x ∈ insert a (erase s b)", "state_before": "α : Type u_1\nβ : Type ?u.210334\nγ : Type ?u.210337\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na✝ b✝ a b : α\ns : Finset α\nh : a ≠ b\nx : α\n⊢ x ∈ erase (insert a s) b ↔ x ∈ insert a (erase s b)", "tactic": "have : x ≠ b ∧ x = a ↔ x = a := and_iff_right_of_imp fun hx => hx.symm ▸ h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.210334\nγ : Type ?u.210337\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na✝ b✝ a b : α\ns : Finset α\nh : a ≠ b\nx : α\nthis : x ≠ b ∧ x = a ↔ x = a\n⊢ x ∈ erase (insert a s) b ↔ x ∈ insert a (erase s b)", "tactic": "simp only [mem_erase, mem_insert, and_or_left, this]" } ]
[ 1921, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1917, 1 ]
Mathlib/Data/Setoid/Partition.lean
Setoid.eqv_class_mem'
[ { "state_after": "case h.e'_4.h.e'_2.h.a\nα : Type u_1\nc : Set (Set α)\nH : ∀ (a : α), ∃! b x, a ∈ b\nx x✝ : α\n⊢ Rel (mkClasses c H) x x✝ ↔ Rel (mkClasses c H) x✝ x", "state_before": "α : Type u_1\nc : Set (Set α)\nH : ∀ (a : α), ∃! b x, a ∈ b\nx : α\n⊢ {y | Rel (mkClasses c H) x y} ∈ c", "tactic": "convert @Setoid.eqv_class_mem _ _ H x using 3" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_2.h.a\nα : Type u_1\nc : Set (Set α)\nH : ∀ (a : α), ∃! b x, a ∈ b\nx x✝ : α\n⊢ Rel (mkClasses c H) x x✝ ↔ Rel (mkClasses c H) x✝ x", "tactic": "rw [Setoid.comm']" } ]
[ 163, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.any_def
[]
[ 117, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Std/Classes/LawfulMonad.lean
SatisfiesM.imp
[ { "state_after": "m : Type u_1 → Type u_2\nα : Type u_1\np q : α → Prop\ninst✝¹ : Functor m\ninst✝ : LawfulFunctor m\nx✝ : m α\nh✝ : SatisfiesM p x✝\nH : ∀ {a : α}, p a → q a\nx : m { a // p a }\nh : Subtype.val <$> x = x✝\n⊢ (Subtype.val ∘ fun x =>\n match x with\n | { val := a, property := h } => { val := a, property := (_ : q a) }) <$>\n x =\n Subtype.val <$> x", "state_before": "m : Type u_1 → Type u_2\nα : Type u_1\np q : α → Prop\ninst✝¹ : Functor m\ninst✝ : LawfulFunctor m\nx✝ : m α\nh✝ : SatisfiesM p x✝\nH : ∀ {a : α}, p a → q a\nx : m { a // p a }\nh : Subtype.val <$> x = x✝\n⊢ Subtype.val <$>\n (fun x =>\n match x with\n | { val := a, property := h } => { val := a, property := (_ : q a) }) <$>\n x =\n x✝", "tactic": "rw [← h, ← comp_map]" }, { "state_after": "no goals", "state_before": "m : Type u_1 → Type u_2\nα : Type u_1\np q : α → Prop\ninst✝¹ : Functor m\ninst✝ : LawfulFunctor m\nx✝ : m α\nh✝ : SatisfiesM p x✝\nH : ∀ {a : α}, p a → q a\nx : m { a // p a }\nh : Subtype.val <$> x = x✝\n⊢ (Subtype.val ∘ fun x =>\n match x with\n | { val := a, property := h } => { val := a, property := (_ : q a) }) <$>\n x =\n Subtype.val <$> x", "tactic": "rfl" } ]
[ 89, 82 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 87, 1 ]
Mathlib/Algebra/Star/StarAlgHom.lean
NonUnitalStarAlgHom.coe_mk
[]
[ 174, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/Order/SymmDiff.lean
inf_sup_symmDiff
[ { "state_after": "no goals", "state_before": "ι : Type ?u.33973\nα : Type u_1\nβ : Type ?u.33979\nπ : ι → Type ?u.33984\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\n⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b", "tactic": "rw [sup_comm, symmDiff_sup_inf]" } ]
[ 204, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
AEMeasurable.real_toNNReal
[]
[ 1759, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1757, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.NonemptyCompacts.coe_prod
[]
[ 305, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/Data/Num/Lemmas.lean
ZNum.mul_comm
[ { "state_after": "no goals", "state_before": "α : Type ?u.1029930\n⊢ ∀ (a b : ZNum), a * b = b * a", "tactic": "transfer" } ]
[ 1491, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1491, 9 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.setToFun_congr_smul_measure
[ { "state_after": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul f\n\ncase neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul f", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul f", "tactic": "by_cases hc0 : c = 0" }, { "state_after": "case neg.refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ c⁻¹ ≠ ⊤\n\ncase neg.refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ μ = c⁻¹ • c • μ", "state_before": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul f", "tactic": "refine' setToFun_congr_measure c⁻¹ c _ hc_ne_top (le_of_eq _) le_rfl hT hT_smul f" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul✝ f", "state_before": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul f", "tactic": "simp [hc0] at hT_smul" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul✝ f", "state_before": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul✝ f", "tactic": "have h : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0 := fun s hs _ => hT_smul.eq_zero hs" }, { "state_after": "case pos.h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = 0\n⊢ c • μ = 0", "state_before": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = 0\n⊢ setToFun μ T hT f = setToFun (c • μ) T hT_smul✝ f", "tactic": "rw [setToFun_zero_left' _ h, setToFun_measure_zero]" }, { "state_after": "no goals", "state_before": "case pos.h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul✝ : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : c = 0\nhT_smul : DominatedFinMeasAdditive 0 T C'\nh : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → T s = 0\n⊢ c • μ = 0", "tactic": "simp [hc0]" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ c⁻¹ ≠ ⊤", "tactic": "simp [hc0]" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1677900\nG : Type ?u.1677903\n𝕜 : Type ?u.1677906\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nc : ℝ≥0∞\nhc_ne_top : c ≠ ⊤\nhT : DominatedFinMeasAdditive μ T C\nhT_smul : DominatedFinMeasAdditive (c • μ) T C'\nf : α → E\nhc0 : ¬c = 0\n⊢ μ = c⁻¹ • c • μ", "tactic": "rw [smul_smul, ENNReal.inv_mul_cancel hc0 hc_ne_top, one_smul]" } ]
[ 1691, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1681, 1 ]
Mathlib/Data/Finset/Powerset.lean
Finset.mem_powerset
[ { "state_after": "case mk\nα : Type u_1\ns t✝ t : Finset α\nval✝ : Multiset α\nnodup✝ : Nodup val✝\n⊢ { val := val✝, nodup := nodup✝ } ∈ powerset t ↔ { val := val✝, nodup := nodup✝ } ⊆ t", "state_before": "α : Type u_1\ns✝ t✝ s t : Finset α\n⊢ s ∈ powerset t ↔ s ⊆ t", "tactic": "cases s" }, { "state_after": "no goals", "state_before": "case mk\nα : Type u_1\ns t✝ t : Finset α\nval✝ : Multiset α\nnodup✝ : Nodup val✝\n⊢ { val := val✝, nodup := nodup✝ } ∈ powerset t ↔ { val := val✝, nodup := nodup✝ } ⊆ t", "tactic": "simp [powerset, mem_mk, mem_pmap, mk.injEq, mem_powerset, exists_prop, exists_eq_right,\n ← val_le_iff]" } ]
[ 40, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Std/Data/Nat/Gcd.lean
Nat.gcd_rec
[ { "state_after": "m n : Nat\nthis : n = n % 0\n⊢ gcd 0 n = gcd (n % 0) 0", "state_before": "m n : Nat\n⊢ gcd 0 n = gcd (n % 0) 0", "tactic": "have := (mod_zero n).symm" }, { "state_after": "no goals", "state_before": "m n : Nat\nthis : n = n % 0\n⊢ gcd 0 n = gcd (n % 0) 0", "tactic": "rwa [gcd_zero_right]" }, { "state_after": "no goals", "state_before": "m n n✝ : Nat\n⊢ gcd (n✝ + 1) n = gcd (n % (n✝ + 1)) (n✝ + 1)", "tactic": "simp [gcd_succ]" } ]
[ 18, 32 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 15, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.card_incidenceFinset_eq_degree
[ { "state_after": "ι : Sort ?u.275939\n𝕜 : Type ?u.275942\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ninst✝¹ : Fintype ↑(neighborSet G v)\ninst✝ : DecidableEq V\n⊢ card (incidenceFinset G v) = Fintype.card ↑(incidenceSet G v)", "state_before": "ι : Sort ?u.275939\n𝕜 : Type ?u.275942\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ninst✝¹ : Fintype ↑(neighborSet G v)\ninst✝ : DecidableEq V\n⊢ card (incidenceFinset G v) = degree G v", "tactic": "rw [← G.card_incidenceSet_eq_degree]" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.275939\n𝕜 : Type ?u.275942\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ninst✝¹ : Fintype ↑(neighborSet G v)\ninst✝ : DecidableEq V\n⊢ card (incidenceFinset G v) = Fintype.card ↑(incidenceSet G v)", "tactic": "apply Set.toFinset_card" } ]
[ 1417, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1414, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
continuous_edist
[ { "state_after": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\n⊢ ∀ (x y : α × α), edist x.fst x.snd ≤ edist y.fst y.snd + 2 * edist x y", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\n⊢ Continuous fun p => edist p.fst p.snd", "tactic": "apply continuous_of_le_add_edist 2 (by norm_num)" }, { "state_after": "case mk.mk\nα : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist (x, y).fst (x, y).snd ≤ edist (x', y').fst (x', y').snd + 2 * edist (x, y) (x', y')", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\n⊢ ∀ (x y : α × α), edist x.fst x.snd ≤ edist y.fst y.snd + 2 * edist x y", "tactic": "rintro ⟨x, y⟩ ⟨x', y'⟩" }, { "state_after": "no goals", "state_before": "case mk.mk\nα : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist (x, y).fst (x, y).snd ≤ edist (x', y').fst (x', y').snd + 2 * edist (x, y) (x', y')", "tactic": "calc\n edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _\n _ = edist x' y' + (edist x x' + edist y y') := by simp only [edist_comm]; ac_rfl\n _ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) :=\n (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _)\n _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\n⊢ 2 ≠ ⊤", "tactic": "norm_num" }, { "state_after": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist x x' + edist x' y' + edist y y' = edist x' y' + (edist x x' + edist y y')", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist x x' + edist x' y' + edist y' y = edist x' y' + (edist x x' + edist y y')", "tactic": "simp only [edist_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist x x' + edist x' y' + edist y y' = edist x' y' + (edist x x' + edist y y')", "tactic": "ac_rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.422280\nγ : Type ?u.422283\ninst✝ : PseudoEMetricSpace α\nx y x' y' : α\n⊢ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) = edist x' y' + 2 * edist (x, y) (x', y')", "tactic": "rw [← mul_two, mul_comm]" } ]
[ 1453, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1445, 1 ]
Mathlib/Data/Part.lean
Part.get_eq_iff_mem
[]
[ 240, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/Data/Set/NAry.lean
Set.image2_image2_left
[ { "state_after": "case h\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image2 f (image2 g s t) u ↔ x✝ ∈ image3 (fun a b c => f (g a b) c) s t u", "state_before": "α : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\n⊢ image2 f (image2 g s t) u = image3 (fun a b c => f (g a b) c) s t u", "tactic": "ext" }, { "state_after": "case h.mp\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image2 f (image2 g s t) u → x✝ ∈ image3 (fun a b c => f (g a b) c) s t u\n\ncase h.mpr\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image3 (fun a b c => f (g a b) c) s t u → x✝ ∈ image2 f (image2 g s t) u", "state_before": "case h\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image2 f (image2 g s t) u ↔ x✝ ∈ image3 (fun a b c => f (g a b) c) s t u", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc✝ c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nc : γ\na : α\nb : β\nha : a ∈ s\nhb : b ∈ t\nhc : c ∈ u\n⊢ f (g a b) c ∈ image3 (fun a b c => f (g a b) c) s t u", "state_before": "case h.mp\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image2 f (image2 g s t) u → x✝ ∈ image3 (fun a b c => f (g a b) c) s t u", "tactic": "rintro ⟨_, c, ⟨a, b, ha, hb, rfl⟩, hc, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc✝ c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nc : γ\na : α\nb : β\nha : a ∈ s\nhb : b ∈ t\nhc : c ∈ u\n⊢ f (g a b) c ∈ image3 (fun a b c => f (g a b) c) s t u", "tactic": "refine' ⟨a, b, c, ha, hb, hc, rfl⟩" }, { "state_after": "case h.mpr.intro.intro.intro.intro.intro.intro\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc✝ c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\na : α\nb : β\nc : γ\nha : a ∈ s\nhb : b ∈ t\nhc : c ∈ u\n⊢ (fun a b c => f (g a b) c) a b c ∈ image2 f (image2 g s t) u", "state_before": "case h.mpr\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\nx✝ : ε\n⊢ x✝ ∈ image3 (fun a b c => f (g a b) c) s t u → x✝ ∈ image2 f (image2 g s t) u", "tactic": "rintro ⟨a, b, c, ha, hb, hc, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro.intro.intro.intro.intro\nα : Type u_4\nα' : Type ?u.31876\nβ : Type u_5\nβ' : Type ?u.31882\nγ : Type u_3\nγ' : Type ?u.31888\nδ : Type u_2\nδ' : Type ?u.31894\nε : Type u_1\nε' : Type ?u.31900\nζ : Type ?u.31903\nζ' : Type ?u.31906\nν : Type ?u.31909\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc✝ c' : γ\nd d' : δ\nf : δ → γ → ε\ng : α → β → δ\na : α\nb : β\nc : γ\nha : a ∈ s\nhb : b ∈ t\nhc : c ∈ u\n⊢ (fun a b c => f (g a b) c) a b c ∈ image2 f (image2 g s t) u", "tactic": "refine' ⟨_, c, ⟨a, b, ha, hb, rfl⟩, hc, rfl⟩" } ]
[ 261, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Order/Minimal.lean
IsLeast.mem_minimals
[]
[ 218, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 217, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.LocalInvariantProp.liftPropAt_congr_iff_of_eventuallyEq
[ { "state_after": "no goals", "state_before": "H : Type u_3\nM : Type u_1\nH' : Type u_4\nM' : Type u_2\nX : Type ?u.44946\ninst✝⁶ : TopologicalSpace H\ninst✝⁵ : TopologicalSpace M\ninst✝⁴ : ChartedSpace H M\ninst✝³ : TopologicalSpace H'\ninst✝² : TopologicalSpace M'\ninst✝¹ : ChartedSpace H' M'\ninst✝ : TopologicalSpace X\nG : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns t : Set M\nx : M\nQ : (H → H) → Set H → H → Prop\nhG : LocalInvariantProp G G' P\nh₁ : g' =ᶠ[𝓝 x] g\n⊢ g' =ᶠ[𝓝[univ] x] g", "tactic": "simp_rw [nhdsWithin_univ, h₁]" } ]
[ 431, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 429, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousIdeal.lean
Ideal.homogeneousHull_eq_sInf
[]
[ 629, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 627, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.trans_assoc
[]
[ 855, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 853, 1 ]
Mathlib/Topology/Spectral/Hom.lean
SpectralMap.comp_id
[]
[ 208, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Data/Set/Image.lean
Set.image_eq_image
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.54851\nι : Sort ?u.54854\nι' : Sort ?u.54857\nf✝ : α → β\ns t : Set α\nf : α → β\nhf : Injective f\neq : f '' s = f '' t\n⊢ s = t", "tactic": "rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq]" } ]
[ 558, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 555, 1 ]
Mathlib/Algebra/CharP/Basic.lean
add_pow_char_of_commute
[ { "state_after": "R : Type u_1\ninst✝¹ : Semiring R\np : ℕ\nhp : Fact (Nat.Prime p)\ninst✝ : CharP R p\nx y : R\nh : Commute x y\nr : R\nhr : (x + y) ^ p = x ^ p + y ^ p + ↑p * r\n⊢ (x + y) ^ p = x ^ p + y ^ p", "state_before": "R : Type u_1\ninst✝¹ : Semiring R\np : ℕ\nhp : Fact (Nat.Prime p)\ninst✝ : CharP R p\nx y : R\nh : Commute x y\n⊢ (x + y) ^ p = x ^ p + y ^ p", "tactic": "let ⟨r, hr⟩ := h.exists_add_pow_prime_eq hp.out" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Semiring R\np : ℕ\nhp : Fact (Nat.Prime p)\ninst✝ : CharP R p\nx y : R\nh : Commute x y\nr : R\nhr : (x + y) ^ p = x ^ p + y ^ p + ↑p * r\n⊢ (x + y) ^ p = x ^ p + y ^ p", "tactic": "simp [hr]" } ]
[ 251, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Logic/Equiv/Fin.lean
finRotate_apply_zero
[ { "state_after": "no goals", "state_before": "m n : ℕ\n⊢ ↑(finRotate (Nat.succ n)) 0 = 1", "tactic": "rw [finRotate_succ_apply, zero_add]" } ]
[ 447, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/MeasureTheory/Function/AEEqFun.lean
MeasureTheory.AEEqFun.inf_le_right
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\n⊢ ↑(f ⊓ g) ≤ᵐ[μ] ↑g", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\n⊢ f ⊓ g ≤ g", "tactic": "rw [← coeFn_le]" }, { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\na✝ : α\nha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝\n⊢ ↑(f ⊓ g) a✝ ≤ ↑g a✝", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\n⊢ ↑(f ⊓ g) ≤ᵐ[μ] ↑g", "tactic": "filter_upwards [coeFn_inf f g] with _ ha" }, { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\na✝ : α\nha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝\n⊢ ↑f a✝ ⊓ ↑g a✝ ≤ ↑g a✝", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\na✝ : α\nha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝\n⊢ ↑(f ⊓ g) a✝ ≤ ↑g a✝", "tactic": "rw [ha]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.465891\nδ : Type ?u.465894\ninst✝⁵ : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : SemilatticeInf β\ninst✝ : ContinuousInf β\nf g : α →ₘ[μ] β\na✝ : α\nha : ↑(f ⊓ g) a✝ = ↑f a✝ ⊓ ↑g a✝\n⊢ ↑f a✝ ⊓ ↑g a✝ ≤ ↑g a✝", "tactic": "exact inf_le_right" } ]
[ 515, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 11 ]
Mathlib/GroupTheory/Perm/Fin.lean
support_finRotate_of_le
[ { "state_after": "case intro\nm : ℕ\nh : 2 ≤ 2 + m\n⊢ support (finRotate (2 + m)) = Finset.univ", "state_before": "n : ℕ\nh : 2 ≤ n\n⊢ support (finRotate n) = Finset.univ", "tactic": "obtain ⟨m, rfl⟩ := exists_add_of_le h" }, { "state_after": "no goals", "state_before": "case intro\nm : ℕ\nh : 2 ≤ 2 + m\n⊢ support (finRotate (2 + m)) = Finset.univ", "tactic": "rw [add_comm, support_finRotate]" } ]
[ 122, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Topology/Filter.lean
Continuous.nhds
[]
[ 248, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 18 ]
Mathlib/Topology/Inseparable.lean
specializes_iff_mem_closure
[]
[ 140, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Std/Data/Int/Lemmas.lean
Int.natAbs_mul_natAbs_eq
[ { "state_after": "no goals", "state_before": "a b : Int\nc : Nat\nh : a * b = ↑c\n⊢ natAbs a * natAbs b = c", "tactic": "rw [← natAbs_mul, h, natAbs]" } ]
[ 176, 89 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 175, 1 ]
Mathlib/Logic/Equiv/List.lean
Denumerable.denumerable_list_aux
[ { "state_after": "α : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\n⊢ ∃ a, a ∈ some [] ∧ encodeList a = 0", "state_before": "α : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\n⊢ ∃ a, a ∈ decodeList 0 ∧ encodeList a = 0", "tactic": "rw [decodeList]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\n⊢ ∃ a, a ∈ some [] ∧ encodeList a = 0", "tactic": "exact ⟨_, rfl, rfl⟩" }, { "state_after": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "state_before": "α : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv : ℕ\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "cases' e : unpair v with v₁ v₂" }, { "state_after": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (unpair v).snd ≤ v\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "state_before": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "have h := unpair_right_le v" }, { "state_after": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "state_before": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (unpair v).snd ≤ v\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "rw [e] at h" }, { "state_after": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : a ∈ decodeList v₂\nh₂ : encodeList a = v₂\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "state_before": "case mk\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "rcases have : v₂ < succ v := lt_succ_of_le h\n denumerable_list_aux v₂ with\n ⟨a, h₁, h₂⟩" }, { "state_after": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : decodeList v₂ = some a\nh₂ : encodeList a = v₂\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "state_before": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : a ∈ decodeList v₂\nh₂ : encodeList a = v₂\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "rw [Option.mem_def] at h₁" }, { "state_after": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : decodeList v₂ = some a\nh₂ : encodeList a = v₂\n⊢ ofNat α v₁ :: a ∈ decodeList (succ v) ∧ encodeList (ofNat α v₁ :: a) = succ v", "state_before": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : decodeList v₂ = some a\nh₂ : encodeList a = v₂\n⊢ ∃ a, a ∈ decodeList (succ v) ∧ encodeList a = succ v", "tactic": "use ofNat α v₁ :: a" }, { "state_after": "no goals", "state_before": "case mk.intro.intro\nα : Type u_1\nβ : Type ?u.30505\ninst✝¹ : Denumerable α\ninst✝ : Denumerable β\nv v₁ v₂ : ℕ\ne : unpair v = (v₁, v₂)\nh : (v₁, v₂).snd ≤ v\na : List α\nh₁ : decodeList v₂ = some a\nh₂ : encodeList a = v₂\n⊢ ofNat α v₁ :: a ∈ decodeList (succ v) ∧ encodeList (ofNat α v₁ :: a) = succ v", "tactic": "simp [decodeList, e, h₂, h₁, encodeList, pair_unpair' e]" } ]
[ 263, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPushout.inl_snd'
[ { "state_after": "case h\nC : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPushout 0 b.inl 0 b.snd", "state_before": "C : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPushout b.inl 0 b.snd 0", "tactic": "apply flip" }, { "state_after": "case h\nC : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPushout (0 ≫ 0) 0 0 (b.inr ≫ b.snd)", "state_before": "case h\nC : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPushout 0 b.inl 0 b.snd", "tactic": "refine' of_right _ (by simp) (of_isBilimit h)" }, { "state_after": "no goals", "state_before": "case h\nC : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPushout (0 ≫ 0) 0 0 (b.inr ≫ b.snd)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ 0 ≫ 0 = b.inl ≫ b.snd", "tactic": "simp" } ]
[ 787, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 783, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.sumFinsuppLEquivProdFinsupp_symm_inr
[]
[ 961, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 959, 1 ]
Mathlib/Algebra/GroupWithZero/Basic.lean
eq_zero_of_one_div_eq_zero
[]
[ 421, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
nnnorm_ofDual
[]
[ 2334, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2333, 1 ]
Mathlib/Data/Polynomial/Monic.lean
Polynomial.monic_X_pow_sub
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nm n✝ : ℕ\nι : Type y\ninst✝ : Ring R\np : R[X]\nn : ℕ\nH : degree p ≤ ↑n\n⊢ Monic (X ^ (n + 1) - p)", "tactic": "simpa [sub_eq_add_neg] using monic_X_pow_add (show degree (-p) ≤ n by rwa [← degree_neg p] at H)" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nm n✝ : ℕ\nι : Type y\ninst✝ : Ring R\np : R[X]\nn : ℕ\nH : degree p ≤ ↑n\n⊢ degree (-p) ≤ ↑n", "tactic": "rwa [← degree_neg p] at H" } ]
[ 380, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 379, 1 ]
Mathlib/Data/Num/Lemmas.lean
Num.zneg_toZNum
[ { "state_after": "no goals", "state_before": "α : Type ?u.446504\nn : Num\n⊢ -toZNum n = toZNumNeg n", "tactic": "cases n <;> rfl" } ]
[ 775, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
Class.univ_not_mem_univ
[]
[ 1564, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1563, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
Real.volume_pi_Ico_toReal
[ { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝ : Fintype ι\na b : ι → ℝ\nh : a ≤ b\n⊢ ENNReal.toReal (↑↑volume (Set.pi univ fun i => Ico (a i) (b i))) = ∏ i : ι, (b i - a i)", "tactic": "simp only [volume_pi_Ico, ENNReal.toReal_prod, ENNReal.toReal_ofReal (sub_nonneg.2 (h _))]" } ]
[ 256, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
IsCompact.nhdsSet_basis_uniformity
[ { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\n⊢ U ∈ 𝓝ˢ K ↔ ∃ i, p i ∧ (⋃ (x : α) (_ : x ∈ K), ball x (s i)) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\n⊢ HasBasis (𝓝ˢ K) p fun i => ⋃ (x : α) (_ : x ∈ K), ball x (s i)", "tactic": "refine' ⟨fun U => _⟩" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\n⊢ (∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U) ↔ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\n⊢ U ∈ 𝓝ˢ K ↔ ∃ i, p i ∧ (⋃ (x : α) (_ : x ∈ K), ball x (s i)) ⊆ U", "tactic": "simp only [mem_nhdsSet_iff_forall, (nhds_basis_uniformity' hU).mem_iff, iUnion₂_subset_iff]" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\n⊢ (∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U) ↔ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "refine' ⟨fun H => _, fun ⟨i, hpi, hi⟩ x hx => ⟨i, hpi, hi x hx⟩⟩" }, { "state_after": "case H\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\n⊢ ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U\n\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "replace H : ∀ x ∈ K, ∃ i : { i // p i }, ball x (s i ○ s i) ⊆ U" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U\nthis : Nonempty { a // p a }\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "have : Nonempty { a // p a } := nonempty_subtype.2 hU.ex_mem" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U\nthis : Nonempty { a // p a }\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "choose! I hI using H" }, { "state_after": "case intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "rcases hK.elim_nhds_subcover (fun x => ball x <| s (I x)) fun x _ =>\n ball_mem_nhds _ <| hU.mem_of_mem (I x).2 with\n ⟨t, htK, ht⟩" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\n⊢ ∃ i, p i ∧ s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n\ncase intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "case intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "obtain ⟨i, hpi, hi⟩ : ∃ i, p i ∧ s i ⊆ ⋂ x ∈ t, s (I x)" }, { "state_after": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\n⊢ ∃ i, p i ∧ s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n\ncase intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "exact hU.mem_iff.1 ((biInter_finset_mem t).2 fun x _ => hU.mem_of_mem (I x).2)" }, { "state_after": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "state_before": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "rw [subset_iInter₂_iff] at hi" }, { "state_after": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\nx : α\nhx : x ∈ K\n⊢ ball x (s i) ⊆ U", "state_before": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\n⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U", "tactic": "refine' ⟨i, hpi, fun x hx => _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\nx : α\nhx : x ∈ K\nz : α\nhzt : z ∈ t\nhzx : x ∈ ball z (s ↑(I z))\n⊢ ball x (s i) ⊆ U", "state_before": "case intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\nx : α\nhx : x ∈ K\n⊢ ball x (s i) ⊆ U", "tactic": "rcases mem_iUnion₂.1 (ht hx) with ⟨z, hzt : z ∈ t, hzx : x ∈ ball z (s (I z))⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nthis : Nonempty { a // p a }\nI : α → { i // p i }\nhI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U\nt : Finset α\nhtK : ∀ (x : α), x ∈ t → x ∈ K\nht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x))\ni : ι\nhpi : p i\nhi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1)\nx : α\nhx : x ∈ K\nz : α\nhzt : z ∈ t\nhzx : x ∈ ball z (s ↑(I z))\n⊢ ball x (s i) ⊆ U", "tactic": "calc\n ball x (s i) ⊆ ball z (s (I z) ○ s (I z)) := fun y hy => ⟨x, hzx, hi z hzt hy⟩\n _ ⊆ U := hI z (htK z hzt)" }, { "state_after": "case H\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "state_before": "case H\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\n⊢ ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "tactic": "intro x hx" }, { "state_after": "case H.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "state_before": "case H\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "tactic": "rcases H x hx with ⟨i, hpi, hi⟩" }, { "state_after": "case H.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\nt : Set (α × α)\nht_mem : t ∈ 𝓤 α\nht : t ○ t ⊆ s i\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "state_before": "case H.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "tactic": "rcases comp_mem_uniformity_sets (hU.mem_of_mem hpi) with ⟨t, ht_mem, ht⟩" }, { "state_after": "case H.intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\nt : Set (α × α)\nht_mem : t ∈ 𝓤 α\nht : t ○ t ⊆ s i\nj : ι\nhpj : p j\nhj : s j ⊆ t\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "state_before": "case H.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\nt : Set (α × α)\nht_mem : t ∈ 𝓤 α\nht : t ○ t ⊆ s i\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "tactic": "rcases hU.mem_iff.1 ht_mem with ⟨j, hpj, hj⟩" }, { "state_after": "no goals", "state_before": "case H.intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort u_1\ninst✝ : UniformSpace α\np : ι → Prop\ns : ι → Set (α × α)\nhU : HasBasis (𝓤 α) p s\nK : Set α\nhK : IsCompact K\nU : Set α\nH : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U\nx : α\nhx : x ∈ K\ni : ι\nhpi : p i\nhi : ball x (s i) ⊆ U\nt : Set (α × α)\nht_mem : t ∈ 𝓤 α\nht : t ○ t ⊆ s i\nj : ι\nhpj : p j\nhj : s j ⊆ t\n⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U", "tactic": "exact ⟨⟨j, hpj⟩, Subset.trans (ball_mono ((compRel_mono hj hj).trans ht) _) hi⟩" } ]
[ 834, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 810, 1 ]
Mathlib/Analysis/Complex/Isometry.lean
LinearIsometry.im_apply_eq_im_or_neg_of_re_apply_eq_re
[ { "state_after": "f : ℂ →ₗᵢ[ℝ] ℂ\nh₂ : ∀ (z : ℂ), (↑f z).re = z.re\nz : ℂ\nh₁ : ‖↑f z‖ = ‖z‖\n⊢ (↑f z).im = z.im ∨ (↑f z).im = -z.im", "state_before": "f : ℂ →ₗᵢ[ℝ] ℂ\nh₂ : ∀ (z : ℂ), (↑f z).re = z.re\nz : ℂ\n⊢ (↑f z).im = z.im ∨ (↑f z).im = -z.im", "tactic": "have h₁ := f.norm_map z" }, { "state_after": "f : ℂ →ₗᵢ[ℝ] ℂ\nh₂ : ∀ (z : ℂ), (↑f z).re = z.re\nz : ℂ\nh₁ : Real.sqrt (↑normSq (↑f z)) = Real.sqrt (↑normSq z)\n⊢ (↑f z).im = z.im ∨ (↑f z).im = -z.im", "state_before": "f : ℂ →ₗᵢ[ℝ] ℂ\nh₂ : ∀ (z : ℂ), (↑f z).re = z.re\nz : ℂ\nh₁ : ‖↑f z‖ = ‖z‖\n⊢ (↑f z).im = z.im ∨ (↑f z).im = -z.im", "tactic": "simp only [Complex.abs_def, norm_eq_abs] at h₁" }, { "state_after": "no goals", "state_before": "f : ℂ →ₗᵢ[ℝ] ℂ\nh₂ : ∀ (z : ℂ), (↑f z).re = z.re\nz : ℂ\nh₁ : Real.sqrt (↑normSq (↑f z)) = Real.sqrt (↑normSq z)\n⊢ (↑f z).im = z.im ∨ (↑f z).im = -z.im", "tactic": "rwa [Real.sqrt_inj (normSq_nonneg _) (normSq_nonneg _), normSq_apply (f z), normSq_apply z,\n h₂, add_left_cancel_iff, mul_self_eq_mul_self_iff] at h₁" } ]
[ 104, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Data/Polynomial/Derivative.lean
Polynomial.iterate_derivative_comp_one_sub_X
[ { "state_after": "case zero\nR : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ p : R[X]\n⊢ (↑derivative^[Nat.zero]) (comp p (1 - X)) = (-1) ^ Nat.zero * comp ((↑derivative^[Nat.zero]) p) (1 - X)\n\ncase succ\nR : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ : R[X]\nk : ℕ\nih : ∀ (p : R[X]), (↑derivative^[k]) (comp p (1 - X)) = (-1) ^ k * comp ((↑derivative^[k]) p) (1 - X)\np : R[X]\n⊢ (↑derivative^[Nat.succ k]) (comp p (1 - X)) = (-1) ^ Nat.succ k * comp ((↑derivative^[Nat.succ k]) p) (1 - X)", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np : R[X]\nk : ℕ\n⊢ (↑derivative^[k]) (comp p (1 - X)) = (-1) ^ k * comp ((↑derivative^[k]) p) (1 - X)", "tactic": "induction' k with k ih generalizing p" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ p : R[X]\n⊢ (↑derivative^[Nat.zero]) (comp p (1 - X)) = (-1) ^ Nat.zero * comp ((↑derivative^[Nat.zero]) p) (1 - X)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ : R[X]\nk : ℕ\nih : ∀ (p : R[X]), (↑derivative^[k]) (comp p (1 - X)) = (-1) ^ k * comp ((↑derivative^[k]) p) (1 - X)\np : R[X]\n⊢ (↑derivative^[Nat.succ k]) (comp p (1 - X)) = (-1) ^ Nat.succ k * comp ((↑derivative^[Nat.succ k]) p) (1 - X)", "tactic": "simp [ih (derivative p), iterate_derivative_neg, derivative_comp, pow_succ]" } ]
[ 650, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 646, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iInter_coe_set
[]
[ 994, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 992, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.norm_integral_le_integral_norm
[ { "state_after": "no goals", "state_before": "ι : Type ?u.12055077\n𝕜 : Type ?u.12055080\nE : Type u_1\nF : Type ?u.12055086\nA : Type ?u.12055089\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na b : ℝ\nf g : ℝ → E\nμ : MeasureTheory.Measure ℝ\nh : a ≤ b\n⊢ (∫ (x : ℝ) in Ι a b, ‖f x‖ ∂μ) = ∫ (x : ℝ) in a..b, ‖f x‖ ∂μ", "tactic": "rw [uIoc_of_le h, integral_of_le h]" } ]
[ 556, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 554, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
Polynomial.card_roots_toFinset_le_derivative
[]
[ 375, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/MeasureTheory/Measure/MutuallySingular.lean
MeasureTheory.Measure.MutuallySingular.sum_right
[]
[ 100, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Algebra/Order/Monoid/Units.lean
Units.val_lt_val
[]
[ 34, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.tendsto_def
[]
[ 2829, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2827, 1 ]
Mathlib/Data/List/Duplicate.lean
List.not_duplicate_nil
[]
[ 71, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Analysis/Complex/LocallyUniformLimit.lean
Complex.exists_cthickening_tendstoUniformlyOn
[ { "state_after": "case intro.intro\nE : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhK : IsCompact K\nhU : IsOpen U\nhKU : K ⊆ U\nδ : ℝ\nhδ : 0 < δ\nhKδ : cthickening δ K ⊆ U\n⊢ ∃ δ, δ > 0 ∧ cthickening δ K ⊆ U ∧ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "state_before": "E : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhK : IsCompact K\nhU : IsOpen U\nhKU : K ⊆ U\n⊢ ∃ δ, δ > 0 ∧ cthickening δ K ⊆ U ∧ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "tactic": "obtain ⟨δ, hδ, hKδ⟩ := hK.exists_cthickening_subset_open hU hKU" }, { "state_after": "no goals", "state_before": "case intro.intro\nE : Type u_1\nι : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU K : Set ℂ\nz : ℂ\nM r δ✝ : ℝ\nφ : Filter ι\nF : ι → ℂ → E\nf g : ℂ → E\nhf : TendstoLocallyUniformlyOn F f φ U\nhF : ∀ᶠ (n : ι) in φ, DifferentiableOn ℂ (F n) U\nhK : IsCompact K\nhU : IsOpen U\nhKU : K ⊆ U\nδ : ℝ\nhδ : 0 < δ\nhKδ : cthickening δ K ⊆ U\n⊢ ∃ δ, δ > 0 ∧ cthickening δ K ⊆ U ∧ TendstoUniformlyOn (deriv ∘ F) (cderiv δ f) φ K", "tactic": "exact ⟨δ, hδ, hKδ, tendstoUniformlyOn_deriv_of_cthickening_subset hf hF hδ hK hU hKδ⟩" } ]
[ 141, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearEquiv.coe_apply
[]
[ 1794, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1793, 1 ]
Mathlib/Data/Real/Irrational.lean
irrational_nrt_of_n_not_dvd_multiplicity
[ { "state_after": "case inl\nx : ℝ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ 0 = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % 0 ≠ 0\n⊢ Irrational x\n\ncase inr\nx : ℝ\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ n = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\n⊢ Irrational x", "state_before": "x : ℝ\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ n = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\n⊢ Irrational x", "tactic": "rcases Nat.eq_zero_or_pos n with (rfl | hnpos)" }, { "state_after": "case inr\nx : ℝ\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ n = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\n⊢ ¬∃ y, x = ↑y", "state_before": "case inr\nx : ℝ\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ n = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\n⊢ Irrational x", "tactic": "refine' irrational_nrt_of_notint_nrt _ _ hxr _ hnpos" }, { "state_after": "case inr.intro\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\ny : ℤ\nhxr : ↑y ^ n = ↑m\n⊢ False", "state_before": "case inr\nx : ℝ\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ n = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\n⊢ ¬∃ y, x = ↑y", "tactic": "rintro ⟨y, rfl⟩" }, { "state_after": "case inr.intro\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\ny : ℤ\nhxr : y ^ n = m\n⊢ False", "state_before": "case inr.intro\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\ny : ℤ\nhxr : ↑y ^ n = ↑m\n⊢ False", "tactic": "rw [← Int.cast_pow, Int.cast_inj] at hxr" }, { "state_after": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (y ^ n)) (_ : multiplicity.Finite (↑p) (y ^ n)) % n ≠ 0\n⊢ False", "state_before": "case inr.intro\nn : ℕ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % n ≠ 0\nhnpos : n > 0\ny : ℤ\nhxr : y ^ n = m\n⊢ False", "tactic": "subst m" }, { "state_after": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (y ^ n)) (_ : multiplicity.Finite (↑p) (y ^ n)) % n ≠ 0\nthis : y ≠ 0\n⊢ False", "state_before": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (y ^ n)) (_ : multiplicity.Finite (↑p) (y ^ n)) % n ≠ 0\n⊢ False", "tactic": "have : y ≠ 0 := by\n rintro rfl\n rw [zero_pow hnpos] at hm\n exact hm rfl" }, { "state_after": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nthis : y ≠ 0\nhv : 0 ≠ 0\n⊢ False", "state_before": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (y ^ n)) (_ : multiplicity.Finite (↑p) (y ^ n)) % n ≠ 0\nthis : y ≠ 0\n⊢ False", "tactic": "erw [multiplicity.pow' (Nat.prime_iff_prime_int.1 hp.1) (finite_int_iff.2 ⟨hp.1.ne_one, this⟩),\n Nat.mul_mod_right] at hv" }, { "state_after": "no goals", "state_before": "case inr.intro\nn p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nthis : y ≠ 0\nhv : 0 ≠ 0\n⊢ False", "tactic": "exact hv rfl" }, { "state_after": "case inl\nx : ℝ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : m = 1\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % 0 ≠ 0\n⊢ Irrational x", "state_before": "case inl\nx : ℝ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : x ^ 0 = ↑m\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % 0 ≠ 0\n⊢ Irrational x", "tactic": "rw [eq_comm, pow_zero, ← Int.cast_one, Int.cast_inj] at hxr" }, { "state_after": "no goals", "state_before": "case inl\nx : ℝ\nm : ℤ\nhm : m ≠ 0\np : ℕ\nhp : Fact (Nat.Prime p)\nhxr : m = 1\nhv : Part.get (multiplicity (↑p) m) (_ : multiplicity.Finite (↑p) m) % 0 ≠ 0\n⊢ Irrational x", "tactic": "simp [hxr,\n multiplicity.one_right (mt isUnit_iff_dvd_one.1 (mt Int.coe_nat_dvd.1 hp.1.not_dvd_one)),\n Nat.zero_mod] at hv" }, { "state_after": "n p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\nhm : 0 ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (0 ^ n)) (_ : multiplicity.Finite (↑p) (0 ^ n)) % n ≠ 0\n⊢ False", "state_before": "n p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\ny : ℤ\nhm : y ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (y ^ n)) (_ : multiplicity.Finite (↑p) (y ^ n)) % n ≠ 0\n⊢ y ≠ 0", "tactic": "rintro rfl" }, { "state_after": "n p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\nhm✝ : 0 ^ n ≠ 0\nhm : 0 ≠ 0\nhv : Part.get (multiplicity (↑p) (0 ^ n)) (_ : multiplicity.Finite (↑p) (0 ^ n)) % n ≠ 0\n⊢ False", "state_before": "n p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\nhm : 0 ^ n ≠ 0\nhv : Part.get (multiplicity (↑p) (0 ^ n)) (_ : multiplicity.Finite (↑p) (0 ^ n)) % n ≠ 0\n⊢ False", "tactic": "rw [zero_pow hnpos] at hm" }, { "state_after": "no goals", "state_before": "n p : ℕ\nhp : Fact (Nat.Prime p)\nhnpos : n > 0\nhm✝ : 0 ^ n ≠ 0\nhm : 0 ≠ 0\nhv : Part.get (multiplicity (↑p) (0 ^ n)) (_ : multiplicity.Finite (↑p) (0 ^ n)) % n ≠ 0\n⊢ False", "tactic": "exact hm rfl" } ]
[ 92, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.image_eq_preimage
[]
[ 349, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/AlgebraicTopology/SimplicialObject.lean
CategoryTheory.SimplicialObject.δ_comp_σ_succ'
[ { "state_after": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 1)\n⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj [n].op)", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\nj : Fin (n + 2)\ni : Fin (n + 1)\nH : j = Fin.succ i\n⊢ σ X i ≫ δ X j = 𝟙 (X.obj [n].op)", "tactic": "subst H" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 1)\n⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj [n].op)", "tactic": "rw [δ_comp_σ_succ]" } ]
[ 180, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 177, 1 ]