file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Data/Num/Lemmas.lean
Num.to_of_nat
[ { "state_after": "no goals", "state_before": "⊢ ↑↑0 = 0", "tactic": "rw [Nat.cast_zero, cast_zero]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ↑↑(n + 1) = n + 1", "tactic": "rw [Nat.cast_succ, add_one, succ_to_nat, to_of_nat n]" } ]
[ 492, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 490, 1 ]
Mathlib/Data/PNat/Interval.lean
PNat.card_fintype_Ico
[ { "state_after": "no goals", "state_before": "a b : ℕ+\n⊢ Fintype.card ↑(Set.Ico a b) = ↑b - ↑a", "tactic": "rw [← card_Ico, Fintype.card_ofFinset]" } ]
[ 102, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/RingTheory/IntegralClosure.lean
Algebra.IsIntegral.of_finite
[ { "state_after": "case h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ RingHom.Finite (algebraMap R A)", "state_before": "R : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ Algebra.IsIntegral R A", "tactic": "apply RingHom.Finite.to_isIntegral" }, { "state_after": "case h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ Module.Finite R A", "state_before": "case h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ RingHom.Finite (algebraMap R A)", "tactic": "rw [RingHom.Finite]" }, { "state_after": "case h.e'_5.h.e'_5\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ RingHom.toAlgebra (algebraMap R A) = inst✝¹", "state_before": "case h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ Module.Finite R A", "tactic": "convert h" }, { "state_after": "case h.e'_5.h.e'_5.h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\nr✝ : R\nx✝ : A\n⊢ (let_fun I := RingHom.toAlgebra (algebraMap R A);\n r✝ • x✝) =\n r✝ • x✝", "state_before": "case h.e'_5.h.e'_5\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\n⊢ RingHom.toAlgebra (algebraMap R A) = inst✝¹", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.e'_5.h.e'_5.h\nR : Type u_1\nA : Type u_2\nB : Type ?u.630412\nS : Type ?u.630415\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : CommRing S\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : R →+* S\nh : Module.Finite R A\nr✝ : R\nx✝ : A\n⊢ (let_fun I := RingHom.toAlgebra (algebraMap R A);\n r✝ • x✝) =\n r✝ • x✝", "tactic": "exact (Algebra.smul_def _ _).symm" } ]
[ 450, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 445, 1 ]
Mathlib/Analysis/Calculus/FDeriv/RestrictScalars.lean
differentiableWithinAt_iff_restrictScalars
[ { "state_after": "case mp\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\n⊢ DifferentiableWithinAt 𝕜' f s x → ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x\n\ncase mpr\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\n⊢ (∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x) → DifferentiableWithinAt 𝕜' f s x", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\n⊢ DifferentiableWithinAt 𝕜' f s x ↔ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x", "tactic": "constructor" }, { "state_after": "case mp.intro\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\ng' : E →L[𝕜'] F\nhg' : HasFDerivWithinAt f g' s x\n⊢ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x", "state_before": "case mp\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\n⊢ DifferentiableWithinAt 𝕜' f s x → ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x", "tactic": "rintro ⟨g', hg'⟩" }, { "state_after": "no goals", "state_before": "case mp.intro\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\ng' : E →L[𝕜'] F\nhg' : HasFDerivWithinAt f g' s x\n⊢ ∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x", "tactic": "exact ⟨g', hs.eq (hg'.restrictScalars 𝕜) hf.hasFDerivWithinAt⟩" }, { "state_after": "case mpr.intro\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf'✝ : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\nf' : E →L[𝕜'] F\nhf' : restrictScalars 𝕜 f' = fderivWithin 𝕜 f s x\n⊢ DifferentiableWithinAt 𝕜' f s x", "state_before": "case mpr\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf' : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\n⊢ (∃ g', restrictScalars 𝕜 g' = fderivWithin 𝕜 f s x) → DifferentiableWithinAt 𝕜' f s x", "tactic": "rintro ⟨f', hf'⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\n𝕜' : Type u_4\ninst✝⁹ : NontriviallyNormedField 𝕜'\ninst✝⁸ : NormedAlgebra 𝕜 𝕜'\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜' E\ninst✝⁴ : IsScalarTower 𝕜 𝕜' E\nF : Type u_3\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\nf : E → F\nf'✝ : E →L[𝕜'] F\ns : Set E\nx : E\nhf : DifferentiableWithinAt 𝕜 f s x\nhs : UniqueDiffWithinAt 𝕜 s x\nf' : E →L[𝕜'] F\nhf' : restrictScalars 𝕜 f' = fderivWithin 𝕜 f s x\n⊢ DifferentiableWithinAt 𝕜' f s x", "tactic": "exact ⟨f', hasFDerivWithinAt_of_restrictScalars 𝕜 hf.hasFDerivWithinAt hf'⟩" } ]
[ 116, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
exists_associated_pow_of_mul_eq_pow
[ { "state_after": "case inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Subsingleton α\n⊢ ∃ d, Associated (d ^ k) a\n\ncase inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "cases subsingleton_or_nontrivial α" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ ∃ d, Associated (d ^ k) a\n\ncase neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "case inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "by_cases ha : a = 0" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ ∃ d, Associated (d ^ k) a\n\ncase neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "case neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "by_cases hb : b = 0" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = c ^ 0\n⊢ ∃ d, Associated (d ^ 0) a\n\ncase neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "case neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "obtain rfl | hk := k.eq_zero_or_pos" }, { "state_after": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc : c ∣ a * b\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "have hc : c ∣ a * b := by\n rw [h]\n exact dvd_pow_self _ hk.ne'" }, { "state_after": "case neg.inr.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\n⊢ ∃ d, Associated (d ^ k) a", "state_before": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc : c ∣ a * b\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "obtain ⟨d₁, d₂, hd₁, hd₂, hc⟩ := exists_dvd_and_dvd_of_dvd_mul hc" }, { "state_after": "case neg.inr.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "use d₁" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\n⊢ Associated (d₁ ^ k) a", "tactic": "obtain ⟨h0₁, ⟨a', ha'⟩⟩ := pow_dvd_of_mul_eq_pow ha hab h hc hd₁" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₁ * d₂\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "tactic": "rw [mul_comm] at h hc" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "tactic": "rw [(gcd_comm' a b).isUnit_iff] at hab" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nhb' : b = d₂ ^ k * b'\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\n⊢ Associated (d₁ ^ k) a", "tactic": "obtain ⟨h0₂, ⟨b', hb'⟩⟩ := pow_dvd_of_mul_eq_pow hb hab h hc hd₂" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh : b * a = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nhb' : b = d₂ ^ k * b'\n⊢ Associated (d₁ ^ k) a", "tactic": "rw [ha', hb', hc, mul_pow] at h" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\nh' : a' * b' = 1\n⊢ Associated (d₁ ^ k) a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ Associated (d₁ ^ k) a", "tactic": "have h' : a' * b' = 1 := by\n apply (mul_right_inj' h0₁).mp\n rw [mul_one]\n apply (mul_right_inj' h0₂).mp\n rw [← h]\n rw [mul_assoc, mul_comm a', ← mul_assoc _ b', ← mul_assoc b', mul_comm b']" }, { "state_after": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\nh' : a' * b' = 1\n⊢ d₁ ^ k * ↑(Units.mkOfMulEqOne a' b' h') = a", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\nh' : a' * b' = 1\n⊢ Associated (d₁ ^ k) a", "tactic": "use Units.mkOfMulEqOne _ _ h'" }, { "state_after": "no goals", "state_before": "case neg.inr.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\nh' : a' * b' = 1\n⊢ d₁ ^ k * ↑(Units.mkOfMulEqOne a' b' h') = a", "tactic": "rw [Units.val_mkOfMulEqOne, ha']" }, { "state_after": "case inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Subsingleton α\n⊢ Associated (0 ^ k) a", "state_before": "case inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Subsingleton α\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "use 0" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Subsingleton α\n⊢ Associated (0 ^ k) a", "tactic": "rw [Subsingleton.elim a (0 ^ k)]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ Associated (0 ^ k) a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "use 0" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ Associated (0 ^ k) 0", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ Associated (0 ^ k) a", "tactic": "rw [ha]" }, { "state_after": "case pos.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\nh : a * b = c ^ 0\n⊢ Associated (0 ^ 0) 0\n\ncase pos.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\nhk : k > 0\n⊢ Associated (0 ^ k) 0", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\n⊢ Associated (0 ^ k) 0", "tactic": "obtain rfl | hk := k.eq_zero_or_pos" }, { "state_after": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\nh : a * b = c ^ 0\n⊢ False", "state_before": "case pos.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\nh : a * b = c ^ 0\n⊢ Associated (0 ^ 0) 0", "tactic": "exfalso" }, { "state_after": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\n⊢ a * b = c ^ 0 → False", "state_before": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\nh : a * b = c ^ 0\n⊢ False", "tactic": "revert h" }, { "state_after": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\n⊢ 0 = 1 → False", "state_before": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\n⊢ a * b = c ^ 0 → False", "tactic": "rw [ha, zero_mul, pow_zero]" }, { "state_after": "no goals", "state_before": "case pos.inl.h\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : a = 0\n⊢ 0 = 1 → False", "tactic": "apply zero_ne_one" }, { "state_after": "no goals", "state_before": "case pos.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : a = 0\nhk : k > 0\n⊢ Associated (0 ^ k) 0", "tactic": "rw [zero_pow hk]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (1 ^ k) a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ ∃ d, Associated (d ^ k) a", "tactic": "use 1" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated 1 a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (1 ^ k) a", "tactic": "rw [one_pow]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (gcd a b) a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated 1 a", "tactic": "apply (associated_one_iff_isUnit.mpr hab).symm.trans" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (gcd a 0) a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (gcd a b) a", "tactic": "rw [hb]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : b = 0\n⊢ Associated (gcd a 0) a", "tactic": "exact gcd_zero_right' a" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = c ^ 0\n⊢ Associated (1 ^ 0) a", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = c ^ 0\n⊢ ∃ d, Associated (d ^ 0) a", "tactic": "use 1" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = 1\n⊢ Associated 1 a", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = c ^ 0\n⊢ Associated (1 ^ 0) a", "tactic": "rw [pow_zero] at h⊢" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = 1\n⊢ 1 * ↑(Units.mkOfMulEqOne a b h) = a", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = 1\n⊢ Associated 1 a", "tactic": "use Units.mkOfMulEqOne _ _ h" }, { "state_after": "no goals", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nh : a * b = 1\n⊢ 1 * ↑(Units.mkOfMulEqOne a b h) = a", "tactic": "rw [Units.val_mkOfMulEqOne, one_mul]" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\n⊢ c ∣ c ^ k", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\n⊢ c ∣ a * b", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd a b)\nk : ℕ\nh : a * b = c ^ k\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\n⊢ c ∣ c ^ k", "tactic": "exact dvd_pow_self _ hk.ne'" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₁ ^ k * (a' * b') = d₁ ^ k * 1", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ a' * b' = 1", "tactic": "apply (mul_right_inj' h0₁).mp" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₁ ^ k * (a' * b') = d₁ ^ k", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₁ ^ k * (a' * b') = d₁ ^ k * 1", "tactic": "rw [mul_one]" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * d₁ ^ k", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₁ ^ k * (a' * b') = d₁ ^ k", "tactic": "apply (mul_right_inj' h0₂).mp" }, { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * b' * (d₁ ^ k * a')", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * d₁ ^ k", "tactic": "rw [← h]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b c : α\nhab : IsUnit (gcd b a)\nk : ℕ\nh✝ : Nontrivial α\nha : ¬a = 0\nhb : ¬b = 0\nhk : k > 0\nhc✝ : c ∣ a * b\nd₁ d₂ : α\nhd₁ : d₁ ∣ a\nhd₂ : d₂ ∣ b\nhc : c = d₂ * d₁\nh0₁ : d₁ ^ k ≠ 0\na' : α\nha' : a = d₁ ^ k * a'\nh0₂ : d₂ ^ k ≠ 0\nb' : α\nh : d₂ ^ k * b' * (d₁ ^ k * a') = d₂ ^ k * d₁ ^ k\nhb' : b = d₂ ^ k * b'\n⊢ d₂ ^ k * (d₁ ^ k * (a' * b')) = d₂ ^ k * b' * (d₁ ^ k * a')", "tactic": "rw [mul_assoc, mul_comm a', ← mul_assoc _ b', ← mul_assoc b', mul_comm b']" } ]
[ 656, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 614, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.update_comp_eq_of_forall_ne'
[]
[ 621, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 619, 1 ]
Mathlib/Algebra/GeomSum.lean
mul_geom_sum
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : Ring α\nx : α\nn : ℕ\n⊢ op ((x - 1) * ∑ i in range n, x ^ i) = op (x ^ n - 1)", "tactic": "simpa using geom_sum_mul (op x) n" } ]
[ 226, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/RingTheory/Localization/NumDen.lean
IsFractionRing.mk'_num_den
[]
[ 71, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.HasColimit.mk
[]
[ 649, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 648, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
InnerProductGeometry.norm_div_sin_angle_sub_of_inner_eq_zero
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x (-y) = 0\nh0 : x = 0 ∨ y ≠ 0\n⊢ ‖y‖ / Real.sin (angle x (x - y)) = ‖x - y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x = 0 ∨ y ≠ 0\n⊢ ‖y‖ / Real.sin (angle x (x - y)) = ‖x - y‖", "tactic": "rw [← neg_eq_zero, ← inner_neg_right] at h" }, { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x (-y) = 0\nh0 : x = 0 ∨ -y ≠ 0\n⊢ ‖y‖ / Real.sin (angle x (x - y)) = ‖x - y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x (-y) = 0\nh0 : x = 0 ∨ y ≠ 0\n⊢ ‖y‖ / Real.sin (angle x (x - y)) = ‖x - y‖", "tactic": "rw [← neg_ne_zero] at h0" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x (-y) = 0\nh0 : x = 0 ∨ -y ≠ 0\n⊢ ‖y‖ / Real.sin (angle x (x - y)) = ‖x - y‖", "tactic": "rw [sub_eq_add_neg, ← norm_neg, norm_div_sin_angle_add_of_inner_eq_zero h h0]" } ]
[ 345, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 341, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.subtypeDomain_def
[ { "state_after": "case h\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\n⊢ ↑(subtypeDomain p f) i = ↑(mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i) i", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\n⊢ subtypeDomain p f = mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i", "tactic": "ext i" }, { "state_after": "no goals", "state_before": "case h\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\n⊢ ↑(subtypeDomain p f) i = ↑(mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i) i", "tactic": "by_cases h2 : f i ≠ 0 <;> try simp at h2; dsimp; simp [h2]" }, { "state_after": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\nh2 : ↑f ↑i = 0\n⊢ ↑(subtypeDomain p f) i = ↑(mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i) i", "state_before": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\nh2 : ¬↑f ↑i ≠ 0\n⊢ ↑(subtypeDomain p f) i = ↑(mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i) i", "tactic": "simp at h2" }, { "state_after": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\nh2 : ↑f ↑i = 0\n⊢ ↑f ↑i = if i ∈ Finset.subtype p (support f) then ↑f ↑i else 0", "state_before": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\nh2 : ↑f ↑i = 0\n⊢ ↑(subtypeDomain p f) i = ↑(mk (Finset.subtype p (support f)) fun i => ↑f ↑↑i) i", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : (i : ι) → Zero (β i)\ninst✝¹ : (i : ι) → (x : β i) → Decidable (x ≠ 0)\np : ι → Prop\ninst✝ : DecidablePred p\nf : Π₀ (i : ι), β i\ni : Subtype p\nh2 : ↑f ↑i = 0\n⊢ ↑f ↑i = if i ∈ Finset.subtype p (support f) then ↑f ↑i else 0", "tactic": "simp [h2]" } ]
[ 1261, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1259, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
SubgroupClass.coe_inv
[]
[ 229, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_sup_eq
[]
[ 1234, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1232, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.toAddEquiv_toNatLinearEquiv
[]
[ 818, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 816, 1 ]
Mathlib/Data/Finsupp/Order.lean
Finsupp.add_eq_zero_iff
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝ : CanonicallyOrderedAddMonoid α\nf g : ι →₀ α\n⊢ f + g = 0 ↔ f = 0 ∧ g = 0", "tactic": "simp [FunLike.ext_iff, forall_and]" } ]
[ 154, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/Topology/Maps.lean
IsOpenMap.preimage_frontier_subset_frontier_preimage
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.196325\nδ : Type ?u.196328\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nf : α → β\nhf : IsOpenMap f\ns : Set β\n⊢ f ⁻¹' frontier s ⊆ frontier (f ⁻¹' s)", "tactic": "simpa only [frontier_eq_closure_inter_closure, preimage_inter] using\n inter_subset_inter hf.preimage_closure_subset_closure_preimage\n hf.preimage_closure_subset_closure_preimage" } ]
[ 434, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/Data/Set/Pairwise/Basic.lean
Set.pairwiseDisjoint_image_right_iff
[ { "state_after": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ x = y\n\ncase refine'_2\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\n⊢ (Disjoint on fun a => f a '' t) x y", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\n⊢ (PairwiseDisjoint s fun a => f a '' t) ↔ InjOn (fun p => f p.fst p.snd) (s ×ˢ t)", "tactic": "refine' ⟨fun hs x hx y hy (h : f _ _ = _) => _, fun hs x hx y hy h => _⟩" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ x.fst = y.fst", "state_before": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ x = y", "tactic": "suffices x.1 = y.1 by exact Prod.ext this (hf _ hx.1 <| h.trans <| by rw [this])" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ f x.fst x.snd ∈ f y.fst '' t", "state_before": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ x.fst = y.fst", "tactic": "refine' hs.elim hx.1 hy.1 (not_disjoint_iff.2 ⟨_, mem_image_of_mem _ hx.2, _⟩)" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ (fun p => f p.fst p.snd) y ∈ f y.fst '' t", "state_before": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ f x.fst x.snd ∈ f y.fst '' t", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\n⊢ (fun p => f p.fst p.snd) y ∈ f y.fst '' t", "tactic": "exact mem_image_of_mem _ hy.2" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\nthis : x.fst = y.fst\n⊢ x = y", "tactic": "exact Prod.ext this (hf _ hx.1 <| h.trans <| by rw [this])" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : PairwiseDisjoint s fun a => f a '' t\nx : α × β\nhx : x ∈ s ×ˢ t\ny : α × β\nhy : y ∈ s ×ˢ t\nh : f x.fst x.snd = (fun p => f p.fst p.snd) y\nthis : x.fst = y.fst\n⊢ (fun p => f p.fst p.snd) y = f x.fst y.snd", "tactic": "rw [this]" }, { "state_after": "case refine'_2\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\n⊢ (fun a => f a '' t) x ⊓ (fun a => f a '' t) y ≤ ⊥", "state_before": "case refine'_2\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\n⊢ (Disjoint on fun a => f a '' t) x y", "tactic": "refine' disjoint_iff_inf_le.mpr _" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\na : β\nha : a ∈ t\nb : β\nhb : b ∈ t\nhab : f x a = f y b\n⊢ f y b ∈ ⊥", "state_before": "case refine'_2\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\n⊢ (fun a => f a '' t) x ⊓ (fun a => f a '' t) y ≤ ⊥", "tactic": "rintro _ ⟨⟨a, ha, hab⟩, b, hb, rfl⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nι : Type ?u.40777\nι' : Type ?u.40780\nr p q : α → α → Prop\nf : α → β → γ\ns : Set α\nt : Set β\nhf : ∀ (a : α), a ∈ s → Injective (f a)\nhs : InjOn (fun p => f p.fst p.snd) (s ×ˢ t)\nx : α\nhx : x ∈ s\ny : α\nhy : y ∈ s\nh : x ≠ y\na : β\nha : a ∈ t\nb : β\nhb : b ∈ t\nhab : f x a = f y b\n⊢ f y b ∈ ⊥", "tactic": "exact h (congr_arg Prod.fst <| hs (mk_mem_prod hx ha) (mk_mem_prod hy hb) hab)" } ]
[ 376, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 366, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.card_relations_sum
[ { "state_after": "no goals", "state_before": "L : Language\nL' : Language\ni : ℕ\n⊢ (#Relations (Language.sum L L') i) = lift (#Relations L i) + lift (#Relations L' i)", "tactic": "simp [Language.sum]" } ]
[ 263, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Topology/PartitionOfUnity.lean
BumpCovering.toPouFun_zero_of_zero
[ { "state_after": "no goals", "state_before": "ι : Type u\nX : Type v\ninst✝ : TopologicalSpace X\ns : Set X\nf : BumpCovering ι X s\ni : ι\nx : X\nh : ↑(toFun s f i) x = 0\n⊢ toPouFun f i x = 0", "tactic": "rw [toPouFun, h, MulZeroClass.zero_mul]" } ]
[ 382, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
mul_le_mul_of_nonneg_of_nonpos
[]
[ 365, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 363, 1 ]
Mathlib/Data/List/Basic.lean
List.Sublist.antisymm
[]
[ 1100, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1099, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.mem_centralizer_iff
[]
[ 866, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 865, 1 ]
Mathlib/Order/Hom/Lattice.lean
LatticeHom.coe_id
[]
[ 1091, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1090, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
Algebra.smul_leftMulMatrix
[ { "state_after": "no goals", "state_before": "R : Type u_3\nS : Type u_5\nT : Type u_4\ninst✝¹⁰ : CommRing R\ninst✝⁹ : CommRing S\ninst✝⁸ : Ring T\ninst✝⁷ : Algebra R S\ninst✝⁶ : Algebra S T\ninst✝⁵ : Algebra R T\ninst✝⁴ : IsScalarTower R S T\nm : Type u_1\nn : Type u_2\ninst✝³ : Fintype m\ninst✝² : Fintype n\ninst✝¹ : DecidableEq m\ninst✝ : DecidableEq n\nb : Basis m R S\nc : Basis n S T\nx : T\nik jk : m × n\n⊢ ↑(leftMulMatrix (Basis.smul b c)) x ik jk = ↑(leftMulMatrix b) (↑(leftMulMatrix c) x ik.snd jk.snd) ik.fst jk.fst", "tactic": "simp only [leftMulMatrix_apply, LinearMap.toMatrix_apply, mul_comm, Basis.smul_apply,\n Basis.smul_repr, Finsupp.smul_apply, id.smul_eq_mul, LinearEquiv.map_smul, mul_smul_comm,\n coe_lmul_eq_mul, LinearMap.mul_apply']" } ]
[ 932, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 928, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
ContinuousOn.intervalIntegrable
[]
[ 359, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 1 ]
Mathlib/Algebra/Homology/Homology.lean
HomologicalComplex.cycles_eq_kernelSubobject
[]
[ 56, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Analysis/SumIntegralComparisons.lean
AntitoneOn.integral_le_sum
[ { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\n⊢ ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))", "tactic": "intro k hk" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ uIcc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))", "tactic": "refine' (hf.mono _).intervalIntegrable" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ Icc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a)\n\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ + ↑k ≤ x₀ + ↑(k + 1)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ uIcc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a)", "tactic": "rw [uIcc_of_le]" }, { "state_after": "case h₁\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ ≤ x₀ + ↑k\n\ncase h₂\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ + ↑(k + 1) ≤ x₀ + ↑a", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ Icc (x₀ + ↑k) (x₀ + ↑(k + 1)) ⊆ Icc x₀ (x₀ + ↑a)", "tactic": "apply Icc_subset_Icc" }, { "state_after": "no goals", "state_before": "case h₁\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ ≤ x₀ + ↑k", "tactic": "simp only [le_add_iff_nonneg_right, Nat.cast_nonneg]" }, { "state_after": "no goals", "state_before": "case h₂\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ + ↑(k + 1) ≤ x₀ + ↑a", "tactic": "simp only [add_le_add_iff_left, Nat.cast_le, Nat.succ_le_of_lt hk]" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nk : ℕ\nhk : k < a\n⊢ x₀ + ↑k ≤ x₀ + ↑(k + 1)", "tactic": "simp only [add_le_add_iff_left, Nat.cast_le, Nat.le_succ]" }, { "state_after": "case h.e'_2.h.e'_6\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\n⊢ x₀ = x₀ + ↑0", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\n⊢ (∫ (x : ℝ) in x₀..x₀ + ↑a, f x) = ∑ i in Finset.range a, ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x", "tactic": "convert (intervalIntegral.sum_integral_adjacent_intervals hint).symm" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\n⊢ x₀ = x₀ + ↑0", "tactic": "simp only [Nat.cast_zero, add_zero]" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\n⊢ (∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x) ≤ ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\n⊢ (∑ i in Finset.range a, ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x) ≤\n ∑ i in Finset.range a, ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)", "tactic": "apply Finset.sum_le_sum fun i hi => ?_" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\n⊢ (∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x) ≤ ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\n⊢ (∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x) ≤ ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)", "tactic": "have ia : i < a := Finset.mem_range.1 hi" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ f x ≤ f (x₀ + ↑i)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\n⊢ (∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f x) ≤ ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)", "tactic": "refine' intervalIntegral.integral_mono_on (by simp) (hint _ ia) (by simp) fun x hx => _" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x₀ + ↑i ∈ Icc x₀ (x₀ + ↑a)\n\nx₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x ∈ Icc x₀ (x₀ + ↑a)", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ f x ≤ f (x₀ + ↑i)", "tactic": "apply hf _ _ hx.1" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\n⊢ x₀ + ↑i ≤ x₀ + ↑(i + 1)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\n⊢ IntervalIntegrable (fun x => f (x₀ + ↑i)) volume (x₀ + ↑i) (x₀ + ↑(i + 1))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x₀ + ↑i ∈ Icc x₀ (x₀ + ↑a)", "tactic": "simp only [ia.le, mem_Icc, le_add_iff_nonneg_right, Nat.cast_nonneg, add_le_add_iff_left,\n Nat.cast_le, and_self_iff]" }, { "state_after": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x₀ + ↑(i + 1) ≤ x₀ + ↑a", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x ∈ Icc x₀ (x₀ + ↑a)", "tactic": "refine' mem_Icc.2 ⟨le_trans (by simp) hx.1, le_trans hx.2 _⟩" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x₀ + ↑(i + 1) ≤ x₀ + ↑a", "tactic": "simp only [add_le_add_iff_left, Nat.cast_le, Nat.succ_le_of_lt ia]" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\ni : ℕ\nhi : i ∈ Finset.range a\nia : i < a\nx : ℝ\nhx : x ∈ Icc (x₀ + ↑i) (x₀ + ↑(i + 1))\n⊢ x₀ ≤ x₀ + ↑i", "tactic": "simp" }, { "state_after": "no goals", "state_before": "x₀ : ℝ\na b : ℕ\nf : ℝ → ℝ\nhf : AntitoneOn f (Icc x₀ (x₀ + ↑a))\nhint : ∀ (k : ℕ), k < a → IntervalIntegrable f volume (x₀ + ↑k) (x₀ + ↑(k + 1))\n⊢ (∑ i in Finset.range a, ∫ (x : ℝ) in x₀ + ↑i..x₀ + ↑(i + 1), f (x₀ + ↑i)) = ∑ i in Finset.range a, f (x₀ + ↑i)", "tactic": "simp" } ]
[ 76, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.subset_coe_filter_of_subset_forall
[]
[ 2746, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2745, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.isBoundedUnder_ge_inv
[]
[ 273, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.coe_filter
[]
[ 1924, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1923, 1 ]
Mathlib/RingTheory/Filtration.lean
Ideal.Filtration.mem_submodule
[]
[ 282, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 1 ]
Mathlib/Data/MvPolynomial/Division.lean
MvPolynomial.monomial_dvd_monomial
[ { "state_after": "case mp\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\n⊢ ↑(monomial i) r ∣ ↑(monomial j) s → (s = 0 ∨ i ≤ j) ∧ r ∣ s\n\ncase mpr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s → ↑(monomial i) r ∣ ↑(monomial j) s", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\n⊢ ↑(monomial i) r ∣ ↑(monomial j) s ↔ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "constructor" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ↑(monomial j) s = ↑(monomial i) r * x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\n⊢ ↑(monomial i) r ∣ ↑(monomial j) s → (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "rintro ⟨x, hx⟩" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ↑(monomial j) s = ↑(monomial i) r * x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "rw [MvPolynomial.ext_iff] at hx" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhj : coeff j (↑(monomial j) s) = coeff j (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "have hj := hx j" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhj : coeff j (↑(monomial j) s) = coeff j (↑(monomial i) r * x)\nhi : coeff i (↑(monomial j) s) = coeff i (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhj : coeff j (↑(monomial j) s) = coeff j (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "have hi := hx i" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi : (if j = i then s else 0) = coeff i (↑(monomial i) r * x)\nhj : s = coeff j (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhj : coeff j (↑(monomial j) s) = coeff j (↑(monomial i) r * x)\nhi : coeff i (↑(monomial j) s) = coeff i (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "simp_rw [coeff_monomial, if_pos] at hj hi" }, { "state_after": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhj : s = if i ≤ j then r * coeff (j - i) x else 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi : (if j = i then s else 0) = coeff i (↑(monomial i) r * x)\nhj : s = coeff j (↑(monomial i) r * x)\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "simp_rw [coeff_monomial_mul'] at hi hj" }, { "state_after": "case mp.intro.inl.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝¹ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi✝ : j = i\nhi : i ≤ j\nhj : s = r * coeff (j - i) x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s\n\ncase mp.intro.inl.inr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝¹ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi✝ : j = i\nhi : ¬i ≤ j\nhj : s = 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s\n\ncase mp.intro.inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi : ¬j = i\nh✝ : i ≤ j\nhj : s = r * coeff (j - i) x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s\n\ncase mp.intro.inr.inr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi : ¬j = i\nh✝ : ¬i ≤ j\nhj : s = 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "state_before": "case mp.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhj : s = if i ≤ j then r * coeff (j - i) x else 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "split_ifs at hi hj with hi hi" }, { "state_after": "no goals", "state_before": "case mp.intro.inl.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝¹ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi✝ : j = i\nhi : i ≤ j\nhj : s = r * coeff (j - i) x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "exact ⟨Or.inr hi, _, hj⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.inl.inr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝¹ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi✝ : j = i\nhi : ¬i ≤ j\nhj : s = 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "exact ⟨Or.inl hj, hj.symm ▸ dvd_zero _⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.inr.inl\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi : ¬j = i\nh✝ : i ≤ j\nhj : s = r * coeff (j - i) x\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "simp_all only [or_true, dvd_mul_right]" }, { "state_after": "no goals", "state_before": "case mp.intro.inr.inr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\nx : MvPolynomial σ R\nhx : ∀ (m : σ →₀ ℕ), coeff m (↑(monomial j) s) = coeff m (↑(monomial i) r * x)\nhi✝ : (if j = i then s else 0) = if i ≤ i then r * coeff (i - i) x else 0\nhi : ¬j = i\nh✝ : ¬i ≤ j\nhj : s = 0\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s", "tactic": "simp_all only [ite_self, le_refl, ite_true, dvd_mul_right]" }, { "state_after": "case mpr.intro.inl.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nd : R\nh : r * d = 0\n⊢ ↑(monomial i) r ∣ ↑(monomial j) (r * d)\n\ncase mpr.intro.inr.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nhij : i ≤ j\nd : R\n⊢ ↑(monomial i) r ∣ ↑(monomial j) (r * d)", "state_before": "case mpr\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr s : R\ni j : σ →₀ ℕ\n⊢ (s = 0 ∨ i ≤ j) ∧ r ∣ s → ↑(monomial i) r ∣ ↑(monomial j) s", "tactic": "rintro ⟨h | hij, d, rfl⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.inl.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nd : R\nh : r * d = 0\n⊢ ↑(monomial i) r ∣ ↑(monomial j) (r * d)", "tactic": "simp_rw [h, monomial_zero, dvd_zero]" }, { "state_after": "case mpr.intro.inr.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nhij : i ≤ j\nd : R\n⊢ ↑(monomial j) (r * d) = ↑(monomial i) r * ↑(monomial (j - i)) d", "state_before": "case mpr.intro.inr.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nhij : i ≤ j\nd : R\n⊢ ↑(monomial i) r ∣ ↑(monomial j) (r * d)", "tactic": "refine' ⟨monomial (j - i) d, _⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.inr.intro\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nr : R\ni j : σ →₀ ℕ\nhij : i ≤ j\nd : R\n⊢ ↑(monomial j) (r * d) = ↑(monomial i) r * ↑(monomial (j - i)) d", "tactic": "rw [monomial_mul, add_tsub_cancel_of_le hij]" } ]
[ 243, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/Analysis/Normed/Group/Completion.lean
UniformSpace.Completion.norm_coe
[]
[ 39, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/Computability/PartrecCode.lean
Nat.Partrec.Code.evaln_prim
[ { "state_after": "x✝ : Unit\np : ℕ\n⊢ List.map\n (fun n =>\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst)\n (List.range (unpair p).fst) =\n List.map (evaln (unpair p).fst (ofNat Code (unpair p).snd)) (List.range (unpair p).fst)", "state_before": "x✝ : Unit\np : ℕ\n⊢ Nat.Partrec.Code.G\n (x✝,\n List.map\n (fun n =>\n let a := ofNat (ℕ × Code) n;\n List.map (evaln a.fst a.snd) (List.range a.fst))\n (List.range p)).snd =\n some\n (let a := ofNat (ℕ × Code) p;\n List.map (evaln a.fst a.snd) (List.range a.fst))", "tactic": "simp only [G, prod_ofNat_val, ofNat_nat, List.length_map, List.length_range,\n Nat.pair_unpair, Option.some_inj]" }, { "state_after": "x✝ : Unit\np n : ℕ\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "state_before": "x✝ : Unit\np : ℕ\n⊢ List.map\n (fun n =>\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst)\n (List.range (unpair p).fst) =\n List.map (evaln (unpair p).fst (ofNat Code (unpair p).snd)) (List.range (unpair p).fst)", "tactic": "refine List.map_congr fun n => ?_" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "state_before": "x✝ : Unit\np n : ℕ\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "tactic": "have : List.range p = List.range (Nat.pair p.unpair.1 (encode (ofNat Code p.unpair.2))) := by\n simp" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range p))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "tactic": "rw [this]" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\n⊢ n ∈ List.range k →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n k =\n evaln k (ofNat Code (unpair p).snd) n", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\n⊢ n ∈ List.range (unpair p).fst →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n ((unpair p).fst, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n (unpair p).fst =\n evaln (unpair p).fst (ofNat Code (unpair p).snd) n", "tactic": "generalize p.unpair.1 = k" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\nc : Code\n⊢ n ∈ List.range k →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n k =\n evaln k c n", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\n⊢ n ∈ List.range k →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (ofNat Code (unpair p).snd)))))\n (n_1, ofNat Code (unpair p).snd) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n (ofNat Code (unpair p).snd))\n k =\n evaln k (ofNat Code (unpair p).snd) n", "tactic": "generalize ofNat Code p.unpair.2 = c" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\nc : Code\nnk : n ∈ List.range k\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n k =\n evaln k c n", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\nc : Code\n⊢ n ∈ List.range k →\n Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n k =\n evaln k c n", "tactic": "intro nk" }, { "state_after": "case zero\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nnk : n ∈ List.range Nat.zero\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n Nat.zero =\n evaln Nat.zero c n\n\ncase succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n (Nat.succ k') =\n evaln (Nat.succ k') c n", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk : ℕ\nc : Code\nnk : n ∈ List.range k\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n k =\n evaln k c n", "tactic": "cases' k with k'" }, { "state_after": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\nk : ℕ := k' + 1\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n (Nat.succ k') =\n evaln (Nat.succ k') c n", "state_before": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n (Nat.succ k') =\n evaln (Nat.succ k') c n", "tactic": "let k := k' + 1" }, { "state_after": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\nk : ℕ := k' + 1\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "state_before": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\nk : ℕ := k' + 1\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (Nat.succ k', cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (Nat.succ k') (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n (Nat.succ k') =\n evaln (Nat.succ k') c n", "tactic": "simp only [show k'.succ = k from rfl]" }, { "state_after": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "state_before": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nnk : n ∈ List.range (Nat.succ k')\nk : ℕ := k' + 1\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "tactic": "simp [Nat.lt_succ_iff] at nk" }, { "state_after": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode c) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k', c') n =\n evaln k' c' n\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "state_before": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "tactic": "have hg :\n ∀ {k' c' n},\n Nat.pair k' (encode c') < Nat.pair k (encode c) →\n lup ((List.range (Nat.pair k (encode c))).map fun n =>\n (List.range n.unpair.1).map (evaln n.unpair.1 (ofNat Code n.unpair.2))) (k', c') n =\n evaln k' c' n := by\n intro k₁ c₁ n₁ hl\n simp [lup, List.get?_range hl, evaln_map, Bind.bind]" }, { "state_after": "case succ.pair\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cf) n)\n fun x =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cg) n)\n fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)\n\ncase succ.comp\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cg) n)\n fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x\n\ncase succ.prec\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd\n\ncase succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k' + 1, cf) n)\n fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode c) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k', c') n =\n evaln k' c' n\n⊢ rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) n\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst n_1)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k' + 1, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode c))))\n (k', c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c =\n evaln (k' + 1) c n", "tactic": "cases' c with cf cg cf cg cf cg cf <;>\n simp [evaln, nk, Bind.bind, Functor.map, Seq.seq, pure]" }, { "state_after": "no goals", "state_before": "x✝ : Unit\np n : ℕ\n⊢ List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case zero\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nnk : n ∈ List.range Nat.zero\n⊢ Nat.rec Option.none\n (fun n_1 n_ih =>\n rec (some 0) (some (Nat.succ n)) (some (unpair n).fst) (some (unpair n).snd)\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) n\n let y ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) n\n some (Nat.pair x y))\n (fun cf cg x x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) n\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) x)\n (fun cf cg x x =>\n Nat.rec\n (Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) (unpair n).fst)\n (fun n_2 n_ih => do\n let i ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n =>\n List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst n_2)\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cg) (Nat.pair (unpair n).fst (Nat.pair n_2 i)))\n (unpair n).snd)\n (fun cf x => do\n let x ←\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (Nat.zero, cf) n\n Nat.rec (some (unpair n).snd)\n (fun n_2 n_ih =>\n Nat.Partrec.Code.lup\n (List.map\n (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair Nat.zero (encode c))))\n (n_1, c) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x)\n c)\n Nat.zero =\n evaln Nat.zero c n", "tactic": "simp [evaln]" }, { "state_after": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\nk₁ : ℕ\nc₁ : Code\nn₁ : ℕ\nhl : Nat.pair k₁ (encode c₁) < Nat.pair k (encode c)\n⊢ Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k₁, c₁) n₁ =\n evaln k₁ c₁ n₁", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\n⊢ ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode c) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k', c') n =\n evaln k' c' n", "tactic": "intro k₁ c₁ n₁ hl" }, { "state_after": "no goals", "state_before": "x✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nc : Code\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\nk₁ : ℕ\nc₁ : Code\nn₁ : ℕ\nhl : Nat.pair k₁ (encode c₁) < Nat.pair k (encode c)\n⊢ Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode c))))\n (k₁, c₁) n₁ =\n evaln k₁ c₁ n₁", "tactic": "simp [lup, List.get?_range hl, evaln_map, Bind.bind]" }, { "state_after": "case succ.pair.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cf) n)\n fun x =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cg) n)\n fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)", "state_before": "case succ.pair\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cf) n)\n fun x =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cg) n)\n fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)", "tactic": "cases' encode_lt_pair cf cg with lf lg" }, { "state_after": "case succ.pair.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind (evaln k cf n) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)", "state_before": "case succ.pair.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cf) n)\n fun x =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (pair cf cg)))))\n (k' + 1, cg) n)\n fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)", "tactic": "rw [hg (Nat.pair_lt_pair_right _ lf), hg (Nat.pair_lt_pair_right _ lg)]" }, { "state_after": "case succ.pair.intro.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind Option.none fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair Option.none) fun y => Option.map y (evaln (k' + 1) cg n)\n\ncase succ.pair.intro.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\nval✝ : ℕ\n⊢ (Option.bind (some val✝) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (some val✝)) fun y => Option.map y (evaln (k' + 1) cg n)", "state_before": "case succ.pair.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind (evaln k cf n) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (evaln (k' + 1) cf n)) fun y => Option.map y (evaln (k' + 1) cg n)", "tactic": "cases evaln k cf n" }, { "state_after": "no goals", "state_before": "case succ.pair.intro.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\nval✝ : ℕ\n⊢ (Option.bind (some val✝) fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair (some val✝)) fun y => Option.map y (evaln (k' + 1) cg n)", "tactic": "cases evaln k cg n <;> rfl" }, { "state_after": "no goals", "state_before": "case succ.pair.intro.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (pair cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (pair cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (pair cf cg)\nlg : encode cg < encode (pair cf cg)\n⊢ (Option.bind Option.none fun x => Option.bind (evaln k cg n) fun y => some (Nat.pair x y)) =\n Option.bind (Option.map Nat.pair Option.none) fun y => Option.map y (evaln (k' + 1) cg n)", "tactic": "rfl" }, { "state_after": "case succ.comp.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cg) n)\n fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x", "state_before": "case succ.comp\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cg) n)\n fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x", "tactic": "cases' encode_lt_comp cf cg with lf lg" }, { "state_after": "case succ.comp.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind (evaln k cg n) fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x", "state_before": "case succ.comp.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cg) n)\n fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x", "tactic": "rw [hg (Nat.pair_lt_pair_right _ lg)]" }, { "state_after": "case succ.comp.intro.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind Option.none fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind Option.none fun x => evaln (k' + 1) cf x\n\ncase succ.comp.intro.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\nval✝ : ℕ\n⊢ (Option.bind (some val✝) fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (some val✝) fun x => evaln (k' + 1) cf x", "state_before": "case succ.comp.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind (evaln k cg n) fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (evaln (k' + 1) cg n) fun x => evaln (k' + 1) cf x", "tactic": "cases evaln k cg n" }, { "state_after": "no goals", "state_before": "case succ.comp.intro.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\nval✝ : ℕ\n⊢ (Option.bind (some val✝) fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind (some val✝) fun x => evaln (k' + 1) cf x", "tactic": "simp [hg (Nat.pair_lt_pair_right _ lf)]" }, { "state_after": "no goals", "state_before": "case succ.comp.intro.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (comp cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (comp cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (comp cf cg)\nlg : encode cg < encode (comp cf cg)\n⊢ (Option.bind Option.none fun x =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (comp cf cg)))))\n (k' + 1, cf) x) =\n Option.bind Option.none fun x => evaln (k' + 1) cf x", "tactic": "rfl" }, { "state_after": "case succ.prec.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd", "state_before": "case succ.prec\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\n⊢ Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd", "tactic": "cases' encode_lt_prec cf cg with lf lg" }, { "state_after": "case succ.prec.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd", "state_before": "case succ.prec.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cf) (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd", "tactic": "rw [hg (Nat.pair_lt_pair_right _ lf)]" }, { "state_after": "case succ.prec.intro.zero\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n Nat.zero =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n Nat.zero\n\ncase succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (Nat.succ n✝) =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (Nat.succ n✝)", "state_before": "case succ.prec.intro\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (unpair n).snd", "tactic": "cases n.unpair.2" }, { "state_after": "case succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n✝))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "state_before": "case succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (Nat.succ n✝) =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n (Nat.succ n✝)", "tactic": "simp" }, { "state_after": "case succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "state_before": "case succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n✝))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "tactic": "rw [hg (Nat.pair_lt_pair_left _ k'.lt_succ_self)]" }, { "state_after": "case succ.prec.intro.succ.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind Option.none fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind Option.none fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))\n\ncase succ.prec.intro.succ.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ val✝ : ℕ\n⊢ (Option.bind (some val✝) fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (some val✝) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "state_before": "case succ.prec.intro.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n✝)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "tactic": "cases evaln k' _ _" }, { "state_after": "no goals", "state_before": "case succ.prec.intro.succ.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ val✝ : ℕ\n⊢ (Option.bind (some val✝) fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind (some val✝) fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "tactic": "simp [hg (Nat.pair_lt_pair_right _ lg)]" }, { "state_after": "no goals", "state_before": "case succ.prec.intro.zero\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\n⊢ Nat.rec (evaln k cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k', prec cf cg) (Nat.pair (unpair n).fst n_1))\n fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n Nat.zero =\n Nat.rec (evaln (k' + 1) cf (unpair n).fst)\n (fun n_1 n_ih =>\n Option.bind (evaln k' (prec cf cg) (Nat.pair (unpair n).fst n_1)) fun i =>\n evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n_1 i)))\n Nat.zero", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case succ.prec.intro.succ.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf cg : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (prec cf cg)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (prec cf cg)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (prec cf cg)\nlg : encode cg < encode (prec cf cg)\nn✝ : ℕ\n⊢ (Option.bind Option.none fun i =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (prec cf cg)))))\n (k' + 1, cg) (Nat.pair (unpair n).fst (Nat.pair n✝ i))) =\n Option.bind Option.none fun i => evaln (k' + 1) cg (Nat.pair (unpair n).fst (Nat.pair n✝ i))", "tactic": "rfl" }, { "state_after": "case succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k' + 1, cf) n)\n fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k' + 1, cf) n)\n fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "have lf := encode_lt_rfind' cf" }, { "state_after": "case succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind (evaln k cf n) fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind\n (Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k' + 1, cf) n)\n fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "rw [hg (Nat.pair_lt_pair_right _ lf)]" }, { "state_after": "case succ.rfind'.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind Option.none fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind Option.none fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))\n\ncase succ.rfind'.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nx : ℕ\n⊢ (Option.bind (some x) fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (some x) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ.rfind'\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind (evaln k cf n) fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (evaln (k' + 1) cf n) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "cases' evaln k cf n with x" }, { "state_after": "case succ.rfind'.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nx : ℕ\n⊢ Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x =\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ.rfind'.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nx : ℕ\n⊢ (Option.bind (some x) fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind (some x) fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "simp" }, { "state_after": "case succ.rfind'.some.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nn✝ : ℕ\n⊢ Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) =\n evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "state_before": "case succ.rfind'.some\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nx : ℕ\n⊢ Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x =\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "cases x <;> simp [Nat.succ_ne_zero]" }, { "state_after": "no goals", "state_before": "case succ.rfind'.some.succ\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\nn✝ : ℕ\n⊢ Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)) =\n evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "rw [hg (Nat.pair_lt_pair_left _ k'.lt_succ_self)]" }, { "state_after": "no goals", "state_before": "case succ.rfind'.none\nx✝ : Unit\np n : ℕ\nthis : List.range p = List.range (Nat.pair (unpair p).fst (encode (ofNat Code (unpair p).snd)))\nk' : ℕ\nk : ℕ := k' + 1\nnk : n ≤ k'\ncf : Code\nhg :\n ∀ {k' : ℕ} {c' : Code} {n : ℕ},\n Nat.pair k' (encode c') < Nat.pair k (encode (rfind' cf)) →\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair k (encode (rfind' cf)))))\n (k', c') n =\n evaln k' c' n\nlf : encode cf < encode (rfind' cf)\n⊢ (Option.bind Option.none fun x =>\n Nat.rec (some (unpair n).snd)\n (fun n_1 n_ih =>\n Nat.Partrec.Code.lup\n (List.map (fun n => List.map (evaln (unpair n).fst (ofNat Code (unpair n).snd)) (List.range (unpair n).fst))\n (List.range (Nat.pair (k' + 1) (encode (rfind' cf)))))\n (k', rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1)))\n x) =\n Option.bind Option.none fun x =>\n if x = 0 then some (unpair n).snd else evaln k' (rfind' cf) (Nat.pair (unpair n).fst ((unpair n).snd + 1))", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "this :\n Primrec₂ fun x n =>\n let a := ofNat (ℕ × Code) n;\n List.map (evaln a.fst a.snd) (List.range a.fst)\nx✝ : (ℕ × Code) × ℕ\nk : ℕ\nc : Code\nn : ℕ\n⊢ (Option.bind\n (List.get?\n (let a := ofNat (ℕ × Code) (encode ((k, c), n).fst);\n List.map (evaln a.fst a.snd) (List.range a.fst))\n ((k, c), n).snd)\n fun b => (((k, c), n), b).snd) =\n evaln ((k, c), n).fst.fst ((k, c), n).fst.snd ((k, c), n).snd", "tactic": "simp [evaln_map]" } ]
[ 1146, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1087, 1 ]
Mathlib/Logic/Equiv/List.lean
Denumerable.raise_sorted
[]
[ 324, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.ext_iff
[]
[ 177, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Data/Nat/Dist.lean
Nat.dist_mul_left
[ { "state_after": "no goals", "state_before": "k n m : ℕ\n⊢ dist (k * n) (k * m) = k * dist n m", "tactic": "rw [mul_comm k n, mul_comm k m, dist_mul_right, mul_comm]" } ]
[ 108, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/CategoryTheory/Sites/Grothendieck.lean
CategoryTheory.GrothendieckTopology.Cover.Relation.map_fst
[]
[ 550, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 548, 1 ]
Mathlib/Order/Minimal.lean
maximals_swap
[]
[ 77, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 1 ]
Std/Data/Int/DivMod.lean
Int.dvd_refl
[]
[ 595, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 595, 11 ]
Mathlib/GroupTheory/OrderOfElement.lean
orderOf_pow_dvd
[ { "state_after": "no goals", "state_before": "G : Type u\nA : Type v\nx y : G\na b : A\nn✝ m : ℕ\ninst✝¹ : Monoid G\ninst✝ : AddMonoid A\nn : ℕ\n⊢ orderOf (x ^ n) ∣ orderOf x", "tactic": "rw [orderOf_dvd_iff_pow_eq_one, pow_right_comm, pow_orderOf_eq_one, one_pow]" } ]
[ 254, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/NumberTheory/VonMangoldt.lean
Nat.ArithmeticFunction.vonMangoldt_sum
[ { "state_after": "case refine'_1\nn : ℕ\n⊢ ∑ i in divisors 0, ↑Λ i = Real.log ↑0\n\ncase refine'_2\nn : ℕ\n⊢ ∀ (p n : ℕ), Prime p → ∑ i in divisors (p ^ n), ↑Λ i = Real.log ↑(p ^ n)\n\ncase refine'_3\nn : ℕ\n⊢ ∀ (a b : ℕ),\n 1 < a →\n 1 < b →\n coprime a b →\n ∑ i in divisors a, ↑Λ i = Real.log ↑a →\n ∑ i in divisors b, ↑Λ i = Real.log ↑b → ∑ i in divisors (a * b), ↑Λ i = Real.log ↑(a * b)", "state_before": "n : ℕ\n⊢ ∑ i in divisors n, ↑Λ i = Real.log ↑n", "tactic": "refine' recOnPrimeCoprime _ _ _ n" }, { "state_after": "case refine'_3\nn a b : ℕ\nha' : 1 < a\nhb' : 1 < b\nhab : coprime a b\nha : ∑ i in divisors a, ↑Λ i = Real.log ↑a\nhb : ∑ i in divisors b, ↑Λ i = Real.log ↑b\n⊢ ∑ i in divisors (a * b), ↑Λ i = Real.log ↑(a * b)", "state_before": "case refine'_3\nn : ℕ\n⊢ ∀ (a b : ℕ),\n 1 < a →\n 1 < b →\n coprime a b →\n ∑ i in divisors a, ↑Λ i = Real.log ↑a →\n ∑ i in divisors b, ↑Λ i = Real.log ↑b → ∑ i in divisors (a * b), ↑Λ i = Real.log ↑(a * b)", "tactic": "intro a b ha' hb' hab ha hb" }, { "state_after": "case refine'_3\nn a b : ℕ\nha' : 1 < a\nhb' : 1 < b\nhab : coprime a b\nha : ∑ a in filter (fun a => IsPrimePow a) (divisors a), Real.log ↑(minFac a) = Real.log ↑a\nhb : ∑ a in filter (fun a => IsPrimePow a) (divisors b), Real.log ↑(minFac a) = Real.log ↑b\n⊢ ∑ a in filter (fun a => IsPrimePow a) (divisors (a * b)), Real.log ↑(minFac a) = Real.log ↑(a * b)", "state_before": "case refine'_3\nn a b : ℕ\nha' : 1 < a\nhb' : 1 < b\nhab : coprime a b\nha : ∑ i in divisors a, ↑Λ i = Real.log ↑a\nhb : ∑ i in divisors b, ↑Λ i = Real.log ↑b\n⊢ ∑ i in divisors (a * b), ↑Λ i = Real.log ↑(a * b)", "tactic": "simp only [vonMangoldt_apply, ← sum_filter] at ha hb⊢" }, { "state_after": "no goals", "state_before": "case refine'_3\nn a b : ℕ\nha' : 1 < a\nhb' : 1 < b\nhab : coprime a b\nha : ∑ a in filter (fun a => IsPrimePow a) (divisors a), Real.log ↑(minFac a) = Real.log ↑a\nhb : ∑ a in filter (fun a => IsPrimePow a) (divisors b), Real.log ↑(minFac a) = Real.log ↑b\n⊢ ∑ a in filter (fun a => IsPrimePow a) (divisors (a * b)), Real.log ↑(minFac a) = Real.log ↑(a * b)", "tactic": "rw [mul_divisors_filter_prime_pow hab, filter_union,\n sum_union (disjoint_divisors_filter_isPrimePow hab), ha, hb, Nat.cast_mul,\n Real.log_mul (cast_ne_zero.2 (pos_of_gt ha').ne') (cast_ne_zero.2 (pos_of_gt hb').ne')]" }, { "state_after": "no goals", "state_before": "case refine'_1\nn : ℕ\n⊢ ∑ i in divisors 0, ↑Λ i = Real.log ↑0", "tactic": "simp" }, { "state_after": "case refine'_2\nn p k : ℕ\nhp : Prime p\n⊢ ∑ i in divisors (p ^ k), ↑Λ i = Real.log ↑(p ^ k)", "state_before": "case refine'_2\nn : ℕ\n⊢ ∀ (p n : ℕ), Prime p → ∑ i in divisors (p ^ n), ↑Λ i = Real.log ↑(p ^ n)", "tactic": "intro p k hp" }, { "state_after": "case refine'_2\nn p k : ℕ\nhp : Prime p\n⊢ ∑ k in range k, ↑Λ (p ^ (k + 1)) + 0 = ↑k * Real.log ↑p", "state_before": "case refine'_2\nn p k : ℕ\nhp : Prime p\n⊢ ∑ i in divisors (p ^ k), ↑Λ i = Real.log ↑(p ^ k)", "tactic": "rw [sum_divisors_prime_pow hp, cast_pow, Real.log_pow, Finset.sum_range_succ', pow_zero,\n vonMangoldt_apply_one]" }, { "state_after": "no goals", "state_before": "case refine'_2\nn p k : ℕ\nhp : Prime p\n⊢ ∑ k in range k, ↑Λ (p ^ (k + 1)) + 0 = ↑k * Real.log ↑p", "tactic": "simp [vonMangoldt_apply_pow (Nat.succ_ne_zero _), vonMangoldt_apply_prime hp]" } ]
[ 123, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Algebra/Order/SMul.lean
strictMono_smul_left
[]
[ 142, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_neg_of_nonpos_of_neg
[]
[ 841, 52 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 840, 11 ]
Mathlib/Order/Hom/CompleteLattice.lean
CompleteLatticeHom.symm_dual_id
[]
[ 895, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 893, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Multiequalizer.lean
CategoryTheory.Limits.Multicofork.sigma_condition
[ { "state_after": "case h\nC : Type u\ninst✝² : Category C\nI : MultispanIndex C\nK : Multicofork I\ninst✝¹ : HasCoproduct I.left\ninst✝ : HasCoproduct I.right\nb✝ : I.L\n⊢ Sigma.ι I.left b✝ ≫ MultispanIndex.fstSigmaMap I ≫ Sigma.desc (π K) =\n Sigma.ι I.left b✝ ≫ MultispanIndex.sndSigmaMap I ≫ Sigma.desc (π K)", "state_before": "C : Type u\ninst✝² : Category C\nI : MultispanIndex C\nK : Multicofork I\ninst✝¹ : HasCoproduct I.left\ninst✝ : HasCoproduct I.right\n⊢ MultispanIndex.fstSigmaMap I ≫ Sigma.desc (π K) = MultispanIndex.sndSigmaMap I ≫ Sigma.desc (π K)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nC : Type u\ninst✝² : Category C\nI : MultispanIndex C\nK : Multicofork I\ninst✝¹ : HasCoproduct I.left\ninst✝ : HasCoproduct I.right\nb✝ : I.L\n⊢ Sigma.ι I.left b✝ ≫ MultispanIndex.fstSigmaMap I ≫ Sigma.desc (π K) =\n Sigma.ι I.left b✝ ≫ MultispanIndex.sndSigmaMap I ≫ Sigma.desc (π K)", "tactic": "simp" } ]
[ 610, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 1 ]
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
SimpleGraph.Colorable.mono_left
[]
[ 322, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/Data/Set/Image.lean
Set.range_inl
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.78850\nι : Sort ?u.78853\nι' : Sort ?u.78856\nf : ι → α\ns t : Set α\n⊢ range Sum.inl = {x | Sum.isLeft x = true}", "tactic": "ext (_|_) <;> simp" } ]
[ 884, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 884, 1 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
Subsemigroup.eq_top_iff'
[]
[ 946, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 945, 1 ]
Mathlib/Algebra/Hom/Group.lean
MonoidHom.ext_iff
[]
[ 765, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 764, 1 ]
Mathlib/Algebra/Algebra/Equiv.lean
AlgEquiv.symm_trans_apply
[]
[ 407, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/LinearAlgebra/LinearPMap.lean
LinearPMap.map_sub
[]
[ 109, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/CategoryTheory/Adhesive.lean
CategoryTheory.Adhesive.van_kampen'
[]
[ 236, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Localization.mk_left_injective
[ { "state_after": "α : Type u_1\ninst✝ : CancelCommMonoid α\ns : Submonoid α\na₁ b₁ : α\na₂ b₂ b : { x // x ∈ s }\nc d : α\nh : (fun a => mk a b) c = (fun a => mk a b) d\nthis : Nonempty { x // x ∈ s }\n⊢ c = d", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoid α\ns : Submonoid α\na₁ b₁ : α\na₂ b₂ b : { x // x ∈ s }\nc d : α\nh : (fun a => mk a b) c = (fun a => mk a b) d\n⊢ c = d", "tactic": "have : Nonempty s := One.nonempty" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoid α\ns : Submonoid α\na₁ b₁ : α\na₂ b₂ b : { x // x ∈ s }\nc d : α\nh : (fun a => mk a b) c = (fun a => mk a b) d\nthis : Nonempty { x // x ∈ s }\n⊢ c = d", "tactic": "simpa [-mk_eq_monoidOf_mk', mk_eq_mk_iff, r_iff_exists] using h" } ]
[ 1889, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1886, 1 ]
Mathlib/Topology/Algebra/Module/Multilinear.lean
ContinuousMultilinearMap.neg_apply
[]
[ 438, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 437, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Real.log_neg_eq_log
[ { "state_after": "no goals", "state_before": "x✝ y x : ℝ\n⊢ log (-x) = log x", "tactic": "rw [← log_abs x, ← log_abs (-x), abs_neg]" } ]
[ 114, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Deprecated/Subgroup.lean
Group.subset_closure
[]
[ 544, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 544, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
Left.pow_lt_one_iff
[]
[ 349, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pushout.congrHom_inv
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁", "tactic": "simp [h₁]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁", "tactic": "simp [h₂]" }, { "state_after": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl ≫ (congrHom h₁ h₂).inv =\n inl ≫ map f₂ g₂ f₁ g₁ (𝟙 Y) (𝟙 Z) (𝟙 X) (_ : f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁) (_ : g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁)\n\ncase h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr ≫ (congrHom h₁ h₂).inv =\n inr ≫ map f₂ g₂ f₁ g₁ (𝟙 Y) (𝟙 Z) (𝟙 X) (_ : f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁) (_ : g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁)", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ (congrHom h₁ h₂).inv = map f₂ g₂ f₁ g₁ (𝟙 Y) (𝟙 Z) (𝟙 X) (_ : f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁) (_ : g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁)", "tactic": "ext" }, { "state_after": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl ≫ (congrHom h₁ h₂).inv = 𝟙 Y ≫ inl", "state_before": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl ≫ (congrHom h₁ h₂).inv =\n inl ≫ map f₂ g₂ f₁ g₁ (𝟙 Y) (𝟙 Z) (𝟙 X) (_ : f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁) (_ : g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁)", "tactic": "erw [pushout.inl_desc]" }, { "state_after": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl = inl ≫ (congrHom h₁ h₂).hom", "state_before": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl ≫ (congrHom h₁ h₂).inv = 𝟙 Y ≫ inl", "tactic": "rw [Iso.comp_inv_eq, Category.id_comp]" }, { "state_after": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl = 𝟙 Y ≫ inl", "state_before": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl = inl ≫ (congrHom h₁ h₂).hom", "tactic": "erw [pushout.inl_desc]" }, { "state_after": "no goals", "state_before": "case h₀\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inl = 𝟙 Y ≫ inl", "tactic": "rw [Category.id_comp]" }, { "state_after": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr ≫ (congrHom h₁ h₂).inv = 𝟙 Z ≫ inr", "state_before": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr ≫ (congrHom h₁ h₂).inv =\n inr ≫ map f₂ g₂ f₁ g₁ (𝟙 Y) (𝟙 Z) (𝟙 X) (_ : f₂ ≫ 𝟙 Y = 𝟙 X ≫ f₁) (_ : g₂ ≫ 𝟙 Z = 𝟙 X ≫ g₁)", "tactic": "erw [pushout.inr_desc]" }, { "state_after": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr = inr ≫ (congrHom h₁ h₂).hom", "state_before": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr ≫ (congrHom h₁ h₂).inv = 𝟙 Z ≫ inr", "tactic": "rw [Iso.comp_inv_eq, Category.id_comp]" }, { "state_after": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr = 𝟙 Z ≫ inr", "state_before": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr = inr ≫ (congrHom h₁ h₂).hom", "tactic": "erw [pushout.inr_desc]" }, { "state_after": "no goals", "state_before": "case h₁\nC : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW X✝ Y✝ Z✝ X Y Z : C\nf₁ f₂ : X ⟶ Y\ng₁ g₂ : X ⟶ Z\nh₁ : f₁ = f₂\nh₂ : g₁ = g₂\ninst✝¹ : HasPushout f₁ g₁\ninst✝ : HasPushout f₂ g₂\n⊢ inr = 𝟙 Z ≫ inr", "tactic": "rw [Category.id_comp]" } ]
[ 1420, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1408, 1 ]
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
EuclideanGeometry.subset_sphere
[]
[ 107, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Topology/MetricSpace/Completion.lean
Isometry.completion_map
[]
[ 215, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
HasDerivAt.cpow_const
[]
[ 190, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/MeasureTheory/PiSystem.lean
isPiSystem_Ioc
[]
[ 194, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.comp
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_1\nσ : Type u_2\ninst✝² : Primcodable α\ninst✝¹ : Primcodable β\ninst✝ : Primcodable σ\nf : β → σ\ng : α → β\nhf : Primrec f\nhg : Primrec g\nn : ℕ\n⊢ (Nat.casesOn (encode (decode n)) 0 fun n =>\n encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) =\n encode (Option.map (fun a => f (g a)) (decode n))", "tactic": "cases @decode α _ n <;> simp [encodek]" } ]
[ 264, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Data/Finset/Image.lean
Finset.image_symmDiff
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.94769\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns✝ : Finset α\nt✝ : Finset β\na : α\nb c : β\ninst✝ : DecidableEq α\nf : α → β\ns t : Finset α\nhf : Injective f\n⊢ f '' ↑s ∆ ↑t = (f '' ↑s) ∆ (f '' ↑t)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.94769\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns✝ : Finset α\nt✝ : Finset β\na : α\nb c : β\ninst✝ : DecidableEq α\nf : α → β\ns t : Finset α\nhf : Injective f\n⊢ ↑(image f (s ∆ t)) = ↑(image f s ∆ image f t)", "tactic": "push_cast" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.94769\ninst✝¹ : DecidableEq β\nf✝ g : α → β\ns✝ : Finset α\nt✝ : Finset β\na : α\nb c : β\ninst✝ : DecidableEq α\nf : α → β\ns t : Finset α\nhf : Injective f\n⊢ f '' ↑s ∆ ↑t = (f '' ↑s) ∆ (f '' ↑t)", "tactic": "exact Set.image_symm_diff hf _ _" } ]
[ 542, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
src/lean/Init/SimpLemmas.lean
ite_self
[ { "state_after": "no goals", "state_before": "α : Sort u\nc : Prop\nd : Decidable c\na : α\n⊢ ite c a a = a", "tactic": "cases d <;> rfl" } ]
[ 81, 113 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 81, 9 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sub_coe_pi_eq_add_coe_pi
[ { "state_after": "no goals", "state_before": "θ : Angle\n⊢ θ - ↑π = θ + ↑π", "tactic": "rw [sub_eq_add_neg, neg_coe_pi]" } ]
[ 161, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoMod_add_zsmul
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ toIcoMod hp a (b + m • p) = toIcoMod hp a b", "tactic": "rw [toIcoMod, toIcoDiv_add_zsmul, toIcoMod, add_smul]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p", "tactic": "abel" } ]
[ 407, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
Associates.dvd_out_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizationMonoid α\na : α\nb : Associates α\n⊢ ∀ (a_1 : α),\n a ∣ Associates.out (Quotient.mk (Associated.setoid α) a_1) ↔ Associates.mk a ≤ Quotient.mk (Associated.setoid α) a_1", "tactic": "simp [Associates.out_mk, Associates.quotient_mk_eq_mk, mk_le_mk_iff_dvd_iff]" } ]
[ 238, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Analysis/Convex/Gauge.lean
gauge_ball
[ { "state_after": "case symmetric\n𝕜 : Type ?u.286698\nE : Type u_1\nF : Type ?u.286704\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\ns : Set E\nr : ℝ\nx✝ : E\nhr : 0 < r\nx : E\n⊢ ∀ (x : E), x ∈ Metric.ball 0 1 → -x ∈ Metric.ball 0 1", "state_before": "𝕜 : Type ?u.286698\nE : Type u_1\nF : Type ?u.286704\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\ns : Set E\nr : ℝ\nx✝ : E\nhr : 0 < r\nx : E\n⊢ gauge (Metric.ball 0 r) x = ‖x‖ / r", "tactic": "rw [← smul_unitBall_of_pos hr, gauge_smul_left, Pi.smul_apply, gauge_unit_ball, smul_eq_mul,\n abs_of_nonneg hr.le, div_eq_inv_mul]" }, { "state_after": "case symmetric\n𝕜 : Type ?u.286698\nE : Type u_1\nF : Type ?u.286704\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\ns : Set E\nr : ℝ\nx✝ : E\nhr : 0 < r\nx : E\n⊢ ∀ (x : E), ‖x‖ < 1 → ‖x‖ < 1", "state_before": "case symmetric\n𝕜 : Type ?u.286698\nE : Type u_1\nF : Type ?u.286704\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\ns : Set E\nr : ℝ\nx✝ : E\nhr : 0 < r\nx : E\n⊢ ∀ (x : E), x ∈ Metric.ball 0 1 → -x ∈ Metric.ball 0 1", "tactic": "simp_rw [mem_ball_zero_iff, norm_neg]" }, { "state_after": "no goals", "state_before": "case symmetric\n𝕜 : Type ?u.286698\nE : Type u_1\nF : Type ?u.286704\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\ns : Set E\nr : ℝ\nx✝ : E\nhr : 0 < r\nx : E\n⊢ ∀ (x : E), ‖x‖ < 1 → ‖x‖ < 1", "tactic": "exact fun _ => id" } ]
[ 464, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 460, 1 ]
Mathlib/Algebra/Hom/Iterate.lean
RingHom.iterate_map_add
[]
[ 140, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/Algebra/Parity.lean
Even.mul_right
[]
[ 287, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.associated_comp
[ { "state_after": "case H\nS : Type u_3\nR : Type u_1\nR₁ : Type ?u.408596\nM : Type u_2\ninst✝⁹ : Ring R\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : Module R₁ M\ninst✝⁴ : CommSemiring S\ninst✝³ : Algebra S R\ninst✝² : Invertible 2\nB₁ : BilinForm R M\nQ : QuadraticForm R M\nN : Type v\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\nf : N →ₗ[R] M\nx✝ y✝ : N\n⊢ bilin (↑(associatedHom S) (comp Q f)) x✝ y✝ = bilin (BilinForm.comp (↑(associatedHom S) Q) f f) x✝ y✝", "state_before": "S : Type u_3\nR : Type u_1\nR₁ : Type ?u.408596\nM : Type u_2\ninst✝⁹ : Ring R\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : Module R₁ M\ninst✝⁴ : CommSemiring S\ninst✝³ : Algebra S R\ninst✝² : Invertible 2\nB₁ : BilinForm R M\nQ : QuadraticForm R M\nN : Type v\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\nf : N →ₗ[R] M\n⊢ ↑(associatedHom S) (comp Q f) = BilinForm.comp (↑(associatedHom S) Q) f f", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case H\nS : Type u_3\nR : Type u_1\nR₁ : Type ?u.408596\nM : Type u_2\ninst✝⁹ : Ring R\ninst✝⁸ : CommRing R₁\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : Module R₁ M\ninst✝⁴ : CommSemiring S\ninst✝³ : Algebra S R\ninst✝² : Invertible 2\nB₁ : BilinForm R M\nQ : QuadraticForm R M\nN : Type v\ninst✝¹ : AddCommGroup N\ninst✝ : Module R N\nf : N →ₗ[R] M\nx✝ y✝ : N\n⊢ bilin (↑(associatedHom S) (comp Q f)) x✝ y✝ = bilin (BilinForm.comp (↑(associatedHom S) Q) f f) x✝ y✝", "tactic": "simp only [QuadraticForm.comp_apply, BilinForm.comp_apply, associated_apply, LinearMap.map_add]" } ]
[ 793, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 790, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.isWf_empty
[]
[ 192, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.polar_neg_left
[ { "state_after": "no goals", "state_before": "S : Type ?u.154687\nR : Type u_1\nR₁ : Type ?u.154693\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : CommRing R₁\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nQ : QuadraticForm R M\nx y : M\n⊢ polar (↑Q) (-x) y = -polar (↑Q) x y", "tactic": "rw [← neg_one_smul R x, polar_smul_left, neg_one_mul]" } ]
[ 278, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Combinatorics/SimpleGraph/Metric.lean
SimpleGraph.dist_le
[]
[ 69, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Topology/UniformSpace/CompleteSeparated.lean
DenseInducing.continuous_extend_of_cauchy
[]
[ 48, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Algebra/Lie/Solvable.lean
LieIdeal.derivedSeries_eq_bot_iff
[ { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\nL' : Type w₁\ninst✝⁴ : CommRing R\ninst✝³ : LieRing L\ninst✝² : LieAlgebra R L\ninst✝¹ : LieRing L'\ninst✝ : LieAlgebra R L'\nI J : LieIdeal R L\nf : L' →ₗ⁅R⁆ L\nk : ℕ\n⊢ derivedSeries R { x // x ∈ ↑I } k = ⊥ ↔ derivedSeriesOfIdeal R L k I = ⊥", "tactic": "rw [← derivedSeries_eq_derivedSeriesOfIdeal_map, map_eq_bot_iff, ker_incl, eq_bot_iff]" } ]
[ 171, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Data/Set/Basic.lean
Set.Subsingleton.anti
[]
[ 2337, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2336, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.lintegral_add
[]
[ 1046, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1045, 1 ]
Mathlib/Data/Int/Parity.lean
Int.ediv_two_mul_two_add_one_of_odd
[ { "state_after": "case intro\nm c : ℤ\n⊢ (2 * c + 1) / 2 * 2 + 1 = 2 * c + 1", "state_before": "m n : ℤ\n⊢ Odd n → n / 2 * 2 + 1 = n", "tactic": "rintro ⟨c, rfl⟩" }, { "state_after": "case h.e'_2.h.e'_6\nm c : ℤ\n⊢ 1 = (2 * c + 1) % 2", "state_before": "case intro\nm c : ℤ\n⊢ (2 * c + 1) / 2 * 2 + 1 = 2 * c + 1", "tactic": "convert Int.ediv_add_emod' (2 * c + 1) 2" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nm c : ℤ\n⊢ 1 = (2 * c + 1) % 2", "tactic": "simp [Int.add_emod]" } ]
[ 270, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/LinearAlgebra/Matrix/Trace.lean
Matrix.trace_smul
[]
[ 65, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.monotone_filter_right
[]
[ 2737, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2735, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_le_natDegree
[]
[ 237, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/CategoryTheory/Abelian/Homology.lean
homology.hom_from_ext
[ { "state_after": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ a = b", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh : π' f g w ≫ a = π' f g w ≫ b\n⊢ a = b", "tactic": "dsimp [π'] at h" }, { "state_after": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b\n\ncase inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ Function.Injective fun e => (homologyIsoCokernelLift f g w).inv ≫ e", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ a = b", "tactic": "apply_fun fun e => (homologyIsoCokernelLift f g w).inv ≫ e" }, { "state_after": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ Function.Injective fun e => (homologyIsoCokernelLift f g w).inv ≫ e\n\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b\n\ncase inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ Function.Injective fun e => (homologyIsoCokernelLift f g w).inv ≫ e", "tactic": "swap" }, { "state_after": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv ≫ a =\n cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b", "tactic": "simp only [Category.assoc] at h" }, { "state_after": "no goals", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv ≫ a =\n cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv ≫ b\n⊢ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) a = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) b", "tactic": "exact coequalizer.hom_ext h" }, { "state_after": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\ni j : homology f g w ⟶ W\nhh : (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) i = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) j\n⊢ i = j", "state_before": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\n⊢ Function.Injective fun e => (homologyIsoCokernelLift f g w).inv ≫ e", "tactic": "intro i j hh" }, { "state_after": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\ni j : homology f g w ⟶ W\nhh :\n (homologyIsoCokernelLift f g w).hom ≫ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) i =\n (homologyIsoCokernelLift f g w).hom ≫ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) j\n⊢ i = j", "state_before": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\ni j : homology f g w ⟶ W\nhh : (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) i = (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) j\n⊢ i = j", "tactic": "apply_fun fun e => (homologyIsoCokernelLift f g w).hom ≫ e at hh" }, { "state_after": "no goals", "state_before": "case inj\nA : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\nW : A\na b : homology f g w ⟶ W\nh :\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ a =\n (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫ b\ni j : homology f g w ⟶ W\nhh :\n (homologyIsoCokernelLift f g w).hom ≫ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) i =\n (homologyIsoCokernelLift f g w).hom ≫ (fun e => (homologyIsoCokernelLift f g w).inv ≫ e) j\n⊢ i = j", "tactic": "simpa using hh" } ]
[ 175, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 166, 1 ]
Mathlib/GroupTheory/GroupAction/Prod.lean
Prod.pow_snd
[]
[ 99, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.Subsingleton.stronglyMeasurable
[ { "state_after": "case refine_2\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nf_sf : α →ₛ β :=\n { toFun := f, measurableSet_fiber' := (_ : ∀ (x : β), MeasurableSet (f ⁻¹' {x})),\n finite_range' := (_ : Set.Finite (range f)) }\n⊢ StronglyMeasurable f\n\ncase refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\n⊢ MeasurableSet (f ⁻¹' {x})", "state_before": "α✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\n⊢ StronglyMeasurable f", "tactic": "let f_sf : α →ₛ β := ⟨f, fun x => ?_, Set.Subsingleton.finite Set.subsingleton_of_subsingleton⟩" }, { "state_after": "no goals", "state_before": "case refine_2\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nf_sf : α →ₛ β :=\n { toFun := f, measurableSet_fiber' := (_ : ∀ (x : β), MeasurableSet (f ⁻¹' {x})),\n finite_range' := (_ : Set.Finite (range f)) }\n⊢ StronglyMeasurable f", "tactic": "exact ⟨fun _ => f_sf, fun x => tendsto_const_nhds⟩" }, { "state_after": "case refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\nh_univ : f ⁻¹' {x} = univ\n⊢ MeasurableSet (f ⁻¹' {x})", "state_before": "case refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\n⊢ MeasurableSet (f ⁻¹' {x})", "tactic": "have h_univ : f ⁻¹' {x} = Set.univ := by\n ext1 y\n simp" }, { "state_after": "case refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\nh_univ : f ⁻¹' {x} = univ\n⊢ MeasurableSet univ", "state_before": "case refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\nh_univ : f ⁻¹' {x} = univ\n⊢ MeasurableSet (f ⁻¹' {x})", "tactic": "rw [h_univ]" }, { "state_after": "no goals", "state_before": "case refine_1\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\nh_univ : f ⁻¹' {x} = univ\n⊢ MeasurableSet univ", "tactic": "exact MeasurableSet.univ" }, { "state_after": "case h\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\ny : α\n⊢ y ∈ f ⁻¹' {x} ↔ y ∈ univ", "state_before": "α✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\n⊢ f ⁻¹' {x} = univ", "tactic": "ext1 y" }, { "state_after": "no goals", "state_before": "case h\nα✝ : Type ?u.13198\nβ✝ : Type ?u.13201\nγ : Type ?u.13204\nι : Type ?u.13207\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton β\nf : α → β\nx : β\ny : α\n⊢ y ∈ f ⁻¹' {x} ↔ y ∈ univ", "tactic": "simp" } ]
[ 147, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.BoundedFormula.realize_all_liftAt_one_self
[ { "state_after": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\n⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\n⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs", "tactic": "inhabit M" }, { "state_after": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\n⊢ (∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)) ↔ Realize φ v xs", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\n⊢ Realize (∀'liftAt 1 n φ) v xs ↔ Realize φ v xs", "tactic": "simp only [realize_all, realize_liftAt_one_self]" }, { "state_after": "case refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : ∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)\n⊢ Realize φ v xs\n\ncase refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : Realize φ v xs\na : M\n⊢ Realize φ v (snoc xs a ∘ ↑castSucc)", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\n⊢ (∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)) ↔ Realize φ v xs", "tactic": "refine' ⟨fun h => _, fun h a => _⟩" }, { "state_after": "case refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : ∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)\ni : Fin n\n⊢ (snoc xs default ∘ ↑castSucc) i = xs i", "state_before": "case refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : ∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)\n⊢ Realize φ v xs", "tactic": "refine' (congr rfl (funext fun i => _)).mp (h default)" }, { "state_after": "no goals", "state_before": "case refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : ∀ (a : M), Realize φ v (snoc xs a ∘ ↑castSucc)\ni : Fin n\n⊢ (snoc xs default ∘ ↑castSucc) i = xs i", "tactic": "simp" }, { "state_after": "case refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : Realize φ v xs\na : M\ni : Fin n\n⊢ xs i = (snoc xs a ∘ ↑castSucc) i", "state_before": "case refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : Realize φ v xs\na : M\n⊢ Realize φ v (snoc xs a ∘ ↑castSucc)", "tactic": "refine' (congr rfl (funext fun i => _)).mp h" }, { "state_after": "no goals", "state_before": "case refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.165049\nP : Type ?u.165052\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Nonempty M\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nxs : Fin n → M\ninhabited_h : Inhabited M\nh : Realize φ v xs\na : M\ni : Fin n\n⊢ xs i = (snoc xs a ∘ ↑castSucc) i", "tactic": "simp" } ]
[ 509, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 501, 1 ]
Mathlib/CategoryTheory/Preadditive/Biproducts.lean
CategoryTheory.Limits.inr_of_isLimit
[ { "state_after": "case x\nC : Type u\ninst✝² : Category C\ninst✝¹ : Preadditive C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nt : BinaryBicone X Y\nht : IsLimit (BinaryBicone.toCone t)\n⊢ ∀ (j : Discrete WalkingPair), t.inr ≫ (BinaryBicone.toCone t).π.app j = (BinaryFan.mk 0 (𝟙 Y)).π.app j", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Preadditive C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nt : BinaryBicone X Y\nht : IsLimit (BinaryBicone.toCone t)\n⊢ t.inr = IsLimit.lift ht (BinaryFan.mk 0 (𝟙 Y))", "tactic": "apply ht.uniq (BinaryFan.mk 0 (𝟙 Y))" }, { "state_after": "no goals", "state_before": "case x\nC : Type u\ninst✝² : Category C\ninst✝¹ : Preadditive C\nJ : Type\ninst✝ : Fintype J\nX Y : C\nt : BinaryBicone X Y\nht : IsLimit (BinaryBicone.toCone t)\n⊢ ∀ (j : Discrete WalkingPair), t.inr ≫ (BinaryBicone.toCone t).π.app j = (BinaryFan.mk 0 (𝟙 Y)).π.app j", "tactic": "rintro ⟨⟨⟩⟩ <;> dsimp <;> simp" } ]
[ 357, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
map_mul_right_nhds_one
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝³ : TopologicalSpace G\ninst✝² : Group G\ninst✝¹ : TopologicalGroup G\ninst✝ : TopologicalSpace α\nf : α → G\ns : Set α\nx✝ : α\nx : G\n⊢ map (fun y => y * x) (𝓝 1) = 𝓝 x", "tactic": "simp" } ]
[ 837, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 837, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.extend_injective
[ { "state_after": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\n⊢ g₁ = g₂", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\n⊢ Injective fun g => extend f g e'", "tactic": "intro g₁ g₂ hg" }, { "state_after": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\n⊢ g₁ x = g₂ x", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\n⊢ g₁ = g₂", "tactic": "refine' funext fun x ↦ _" }, { "state_after": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\nH : (fun g => extend f g e') g₁ (f x) = (fun g => extend f g e') g₂ (f x)\n⊢ g₁ x = g₂ x", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\n⊢ g₁ x = g₂ x", "tactic": "have H := congr_fun hg (f x)" }, { "state_after": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\nH : g₁ x = g₂ x\n⊢ g₁ x = g₂ x", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\nH : (fun g => extend f g e') g₁ (f x) = (fun g => extend f g e') g₂ (f x)\n⊢ g₁ x = g₂ x", "tactic": "simp only [hf.extend_apply] at H" }, { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort u_2\nγ : Sort u_3\nf : α → β\nhf : Injective f\ne' : β → γ\ng₁ g₂ : α → γ\nhg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂\nx : α\nH : g₁ x = g₂ x\n⊢ g₁ x = g₂ x", "tactic": "exact H" } ]
[ 771, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 766, 1 ]
Mathlib/Data/Set/Basic.lean
Set.union_subset_union_left
[]
[ 838, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 837, 1 ]
Mathlib/Data/Set/Image.lean
Set.preimage_id'
[]
[ 130, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.range
[]
[ 2135, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2134, 11 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sin_coe_pi
[ { "state_after": "no goals", "state_before": "⊢ sin ↑π = 0", "tactic": "rw [sin_coe, Real.sin_pi]" } ]
[ 362, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.closure_mono
[]
[ 293, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/RingTheory/Polynomial/Pochhammer.lean
Polynomial.mul_X_add_nat_cast_comp
[ { "state_after": "no goals", "state_before": "S : Type u\ninst✝ : Semiring S\np q : S[X]\nn : ℕ\n⊢ comp (p * (X + ↑n)) q = comp p q * (q + ↑n)", "tactic": "rw [mul_add, add_comp, mul_X_comp, ← Nat.cast_comm, nat_cast_mul_comp, Nat.cast_comm, mul_add]" } ]
[ 134, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.mem_iInf_of_mem
[]
[ 586, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 585, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
[ { "state_after": "α : Type u_1\nβ : Type ?u.732836\nγ : Type ?u.732839\nδ : Type ?u.732842\nι : Type ?u.732845\nR : Type ?u.732848\nR' : Type ?u.732851\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∀ (n : ℕ), ↑↑μ (s ∩ spanningSets μ n) = 0) ↔ ↑↑μ (⋃ (n : ℕ), s ∩ spanningSets μ n) = 0", "state_before": "α : Type u_1\nβ : Type ?u.732836\nγ : Type ?u.732839\nδ : Type ?u.732842\nι : Type ?u.732845\nR : Type ?u.732848\nR' : Type ?u.732851\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∀ (n : ℕ), ↑↑μ (s ∩ spanningSets μ n) = 0) ↔ ↑↑μ s = 0", "tactic": "nth_rw 2 [show s = ⋃ n, s ∩ spanningSets μ n by\n rw [← inter_iUnion, iUnion_spanningSets, inter_univ] ]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.732836\nγ : Type ?u.732839\nδ : Type ?u.732842\nι : Type ?u.732845\nR : Type ?u.732848\nR' : Type ?u.732851\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∀ (n : ℕ), ↑↑μ (s ∩ spanningSets μ n) = 0) ↔ ↑↑μ (⋃ (n : ℕ), s ∩ spanningSets μ n) = 0", "tactic": "rw [measure_iUnion_null_iff]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.732836\nγ : Type ?u.732839\nδ : Type ?u.732842\nι : Type ?u.732845\nR : Type ?u.732848\nR' : Type ?u.732851\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ s = ⋃ (n : ℕ), s ∩ spanningSets μ n", "tactic": "rw [← inter_iUnion, iUnion_spanningSets, inter_univ]" } ]
[ 3560, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3556, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.cosh_neg
[ { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ ↑(cosh (-x)) = ↑(cosh x)", "tactic": "simp" } ]
[ 1370, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1369, 1 ]