file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
DifferentiableOn.mul
[]
[ 334, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/Algebra/Order/Sub/Defs.lean
le_add_tsub'
[]
[ 233, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/Order/Lattice.lean
Prod.fst_sup
[]
[ 1269, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1268, 1 ]
Mathlib/Algebra/Category/GroupCat/EpiMono.lean
GroupCat.mono_iff_ker_eq_bot
[]
[ 90, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
pow_strictMono_right
[ { "state_after": "no goals", "state_before": "β : Type ?u.226813\nA : Type ?u.226816\nG : Type ?u.226819\nM : Type ?u.226822\nR : Type u_1\ninst✝ : StrictOrderedSemiring R\na x y : R\nn✝ m : ℕ\nh : 1 < a\nthis : 0 < a\nn : ℕ\n⊢ a ^ n < a ^ (n + 1)", "tactic": "simpa only [one_mul, pow_succ] using mul_lt_mul h (le_refl (a ^ n)) (pow_pos this _) this.le" } ]
[ 498, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 495, 1 ]
Mathlib/MeasureTheory/Function/SpecialFunctions/Basic.lean
Measurable.cos
[]
[ 153, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
Submodule.isOrtho_orthogonal_left
[]
[ 316, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Data/Polynomial/Cardinal.lean
Polynomial.cardinal_mk_le_max
[ { "state_after": "case inl\nR : Type u\ninst✝ : Semiring R\nh✝ : Subsingleton R\n⊢ (#R[X]) ≤ max (#R) ℵ₀\n\ncase inr\nR : Type u\ninst✝ : Semiring R\nh✝ : Nontrivial R\n⊢ (#R[X]) ≤ max (#R) ℵ₀", "state_before": "R : Type u\ninst✝ : Semiring R\n⊢ (#R[X]) ≤ max (#R) ℵ₀", "tactic": "cases subsingleton_or_nontrivial R" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u\ninst✝ : Semiring R\nh✝ : Subsingleton R\n⊢ (#R[X]) ≤ max (#R) ℵ₀", "tactic": "exact (mk_eq_one _).trans_le (le_max_of_le_right one_le_aleph0)" }, { "state_after": "no goals", "state_before": "case inr\nR : Type u\ninst✝ : Semiring R\nh✝ : Nontrivial R\n⊢ (#R[X]) ≤ max (#R) ℵ₀", "tactic": "exact cardinal_mk_eq_max.le" } ]
[ 40, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
exists_maximal_independent'
[ { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "let indep : Set ι → Prop := fun I => LinearIndependent R (s ∘ (↑) : I → M)" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "let X := { I : Set ι // indep I }" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "let r : X → X → Prop := fun I J => I.1 ⊆ J.1" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nkey : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)\ntrans : Transitive r\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nkey : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "have trans : Transitive r := fun I J K => Set.Subset.trans" }, { "state_after": "case intro.mk\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nkey : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)\ntrans : Transitive r\nI : Set ι\nhli : indep I\nhmax : ∀ (a : X), r { val := I, property := hli } a → r a { val := I, property := hli }\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nkey : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)\ntrans : Transitive r\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "obtain ⟨⟨I, hli : indep I⟩, hmax : ∀ a, r ⟨I, hli⟩ a → r a ⟨I, hli⟩⟩ :=\n @exists_maximal_of_chains_bounded _ r\n (fun c hc => ⟨⟨⋃ I ∈ c, (I : Set ι), key c hc⟩, fun I => Set.subset_biUnion_of_mem⟩) @trans" }, { "state_after": "no goals", "state_before": "case intro.mk\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nkey : ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)\ntrans : Transitive r\nI : Set ι\nhli : indep I\nhmax : ∀ (a : X), r { val := I, property := hli } a → r a { val := I, property := hli }\n⊢ ∃ I, (LinearIndependent R fun x => s ↑x) ∧ ∀ (J : Set ι), I ⊆ J → (LinearIndependent R fun x => s ↑x) → I = J", "tactic": "exact ⟨I, hli, fun J hsub hli => Set.Subset.antisymm hsub (hmax ⟨J, hli⟩ hsub)⟩" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ indep (⋃ (I : X) (_ : I ∈ c), ↑I)", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\n⊢ ∀ (c : Set X), IsChain r c → indep (⋃ (I : X) (_ : I ∈ c), ↑I)", "tactic": "intro c hc" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ LinearIndependent R (s ∘ Subtype.val)", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ indep (⋃ (I : X) (_ : I ∈ c), ↑I)", "tactic": "dsimp" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ ∀ (l : ι →₀ R),\n l ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) →\n ↑(Finsupp.total ι M R s) l = 0 → l = 0", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ LinearIndependent R (s ∘ Subtype.val)", "tactic": "rw [linearIndependent_comp_subtype]" }, { "state_after": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\n⊢ f = 0", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\n⊢ ∀ (l : ι →₀ R),\n l ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I) →\n ↑(Finsupp.total ι M R s) l = 0 → l = 0", "tactic": "intro f hsupport hsum" }, { "state_after": "case inl\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nf : ι →₀ R\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhc : IsChain r ∅\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ ∅), ↑I)\n⊢ f = 0\n\ncase inr\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\n⊢ f = 0", "state_before": "ι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\n⊢ f = 0", "tactic": "rcases eq_empty_or_nonempty c with (rfl | hn)" }, { "state_after": "case inr\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\nthis : IsRefl X r\n⊢ f = 0", "state_before": "case inr\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\n⊢ f = 0", "tactic": "haveI : IsRefl X r := ⟨fun _ => Set.Subset.refl _⟩" }, { "state_after": "case inr.intro.intro\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\nthis : IsRefl X r\nI : X\n_I_mem : I ∈ c\nhI : ↑f.support ⊆ ↑I\n⊢ f = 0", "state_before": "case inr\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\nthis : IsRefl X r\n⊢ f = 0", "tactic": "obtain ⟨I, _I_mem, hI⟩ : ∃ I ∈ c, (f.support : Set ι) ⊆ I :=\n hc.directedOn.exists_mem_subset_of_finset_subset_biUnion hn hsupport" }, { "state_after": "no goals", "state_before": "case inr.intro.intro\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nc : Set X\nhc : IsChain r c\nf : ι →₀ R\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ c), ↑I)\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhn : Set.Nonempty c\nthis : IsRefl X r\nI : X\n_I_mem : I ∈ c\nhI : ↑f.support ⊆ ↑I\n⊢ f = 0", "tactic": "exact linearIndependent_comp_subtype.mp I.2 f hI hsum" }, { "state_after": "no goals", "state_before": "case inl\nι : Type u'\nι' : Type ?u.501528\nR : Type u_1\nK : Type ?u.501534\nM : Type u_2\nM' : Type ?u.501540\nM'' : Type ?u.501543\nV : Type u\nV' : Type ?u.501548\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\ns : ι → M\nindep : Set ι → Prop := fun I => LinearIndependent R (s ∘ Subtype.val)\nX : Type u' := { I // indep I }\nr : X → X → Prop := fun I J => ↑I ⊆ ↑J\nf : ι →₀ R\nhsum : ↑(Finsupp.total ι M R s) f = 0\nhc : IsChain r ∅\nhsupport : f ∈ Finsupp.supported R R (⋃ (I : { I // LinearIndependent R (s ∘ Subtype.val) }) (_ : I ∈ ∅), ↑I)\n⊢ f = 0", "tactic": "simpa using hsupport" } ]
[ 894, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 872, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.comp_zero
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\n⊢ comp p 0 = ↑C (eval 0 p)", "tactic": "rw [← C_0, comp_C]" } ]
[ 564, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 564, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.direction_inf_of_mem
[ { "state_after": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns₁ s₂ : AffineSubspace k P\np : P\nh₁ : p ∈ s₁\nh₂ : p ∈ s₂\nv : V\n⊢ v ∈ direction (s₁ ⊓ s₂) ↔ v ∈ direction s₁ ⊓ direction s₂", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns₁ s₂ : AffineSubspace k P\np : P\nh₁ : p ∈ s₁\nh₂ : p ∈ s₂\n⊢ direction (s₁ ⊓ s₂) = direction s₁ ⊓ direction s₂", "tactic": "ext v" }, { "state_after": "no goals", "state_before": "case h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns₁ s₂ : AffineSubspace k P\np : P\nh₁ : p ∈ s₁\nh₂ : p ∈ s₂\nv : V\n⊢ v ∈ direction (s₁ ⊓ s₂) ↔ v ∈ direction s₁ ⊓ direction s₂", "tactic": "rw [Submodule.mem_inf, ← vadd_mem_iff_mem_direction v h₁, ← vadd_mem_iff_mem_direction v h₂, ←\n vadd_mem_iff_mem_direction v ((mem_inf_iff p s₁ s₂).2 ⟨h₁, h₂⟩), mem_inf_iff]" } ]
[ 913, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 909, 1 ]
Mathlib/Topology/Order/Basic.lean
disjoint_nhds_atTop
[ { "state_after": "case intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : NoMaxOrder α\nx y : α\nhy : x < y\n⊢ Disjoint (𝓝 x) atTop", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : NoMaxOrder α\nx : α\n⊢ Disjoint (𝓝 x) atTop", "tactic": "rcases exists_gt x with ⟨y, hy : x < y⟩" }, { "state_after": "case intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : NoMaxOrder α\nx y : α\nhy : x < y\n⊢ Disjoint (Iio y) {b | y ≤ b}", "state_before": "case intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : NoMaxOrder α\nx y : α\nhy : x < y\n⊢ Disjoint (𝓝 x) atTop", "tactic": "refine' disjoint_of_disjoint_of_mem _ (Iio_mem_nhds hy) (mem_atTop y)" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : NoMaxOrder α\nx y : α\nhy : x < y\n⊢ Disjoint (Iio y) {b | y ≤ b}", "tactic": "exact disjoint_left.mpr fun z => not_le.2" } ]
[ 1535, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1532, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.forall_iff
[]
[ 252, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiag_transpose
[]
[ 520, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 518, 1 ]
Mathlib/Order/Ideal.lean
Order.Ideal.lt_sup_principal_of_not_mem
[ { "state_after": "no goals", "state_before": "P : Type u_1\ninst✝¹ : SemilatticeSup P\ninst✝ : IsDirected P fun x x_1 => x ≥ x_1\nx : P\nI J K s t : Ideal P\nhx : ¬x ∈ I\nh : I = I ⊔ principal x\n⊢ x ∈ I", "tactic": "simpa only [left_eq_sup, principal_le_iff] using h" } ]
[ 427, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 426, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.natCoe_one
[ { "state_after": "case h\nR : Type u_1\ninst✝ : AddMonoidWithOne R\nn : ℕ\n⊢ ↑↑1 n = ↑1 n", "state_before": "R : Type u_1\ninst✝ : AddMonoidWithOne R\n⊢ ↑1 = 1", "tactic": "ext n" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝ : AddMonoidWithOne R\nn : ℕ\n⊢ ↑↑1 n = ↑1 n", "tactic": "simp [one_apply]" } ]
[ 198, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Probability/Kernel/Basic.lean
ProbabilityTheory.kernel.lintegral_deterministic
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nι : Type ?u.398136\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\nf : β → ℝ≥0∞\ng : α → β\na : α\nhg : Measurable g\ninst✝ : MeasurableSingletonClass β\n⊢ (∫⁻ (x : β), f x ∂↑(deterministic g hg) a) = f (g a)", "tactic": "rw [kernel.deterministic_apply, lintegral_dirac (g a) f]" } ]
[ 379, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 377, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.lift_spec
[]
[ 961, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 960, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.filter_inter
[]
[ 2070, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2063, 1 ]
Mathlib/Algebra/Order/LatticeGroup.lean
mul_inf
[]
[ 88, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/FieldTheory/Finite/Basic.lean
FiniteField.X_pow_card_sub_X_natDegree_eq
[ { "state_after": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\nh1 : degree X < degree (X ^ p)\n⊢ natDegree (X ^ p - X) = p", "state_before": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\n⊢ natDegree (X ^ p - X) = p", "tactic": "have h1 : (X : K'[X]).degree < (X ^ p : K'[X]).degree := by\n rw [degree_X_pow, degree_X]\n exact WithBot.coe_lt_coe.2 hp" }, { "state_after": "no goals", "state_before": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\nh1 : degree X < degree (X ^ p)\n⊢ natDegree (X ^ p - X) = p", "tactic": "rw [natDegree_eq_of_degree_eq (degree_sub_eq_left_of_degree_lt h1), natDegree_X_pow]" }, { "state_after": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\n⊢ 1 < ↑p", "state_before": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\n⊢ degree X < degree (X ^ p)", "tactic": "rw [degree_X_pow, degree_X]" }, { "state_after": "no goals", "state_before": "K : Type ?u.726863\nR : Type ?u.726866\ninst✝² : Field K\ninst✝¹ : Fintype K\nK' : Type u_1\ninst✝ : Field K'\np n : ℕ\nhp : 1 < p\n⊢ 1 < ↑p", "tactic": "exact WithBot.coe_lt_coe.2 hp" } ]
[ 238, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
Class.sInter_apply
[ { "state_after": "x : Class\ny : ZFSet\n⊢ (∀ (z : ZFSet), x z → y ∈ z) → (⋂₀ x) y", "state_before": "x : Class\ny : ZFSet\n⊢ (⋂₀ x) y ↔ ∀ (z : ZFSet), x z → y ∈ z", "tactic": "refine' ⟨fun hxy z hxz => hxy _ ⟨z, rfl, hxz⟩, _⟩" }, { "state_after": "case intro.intro\nx : Class\ny : ZFSet\nH : ∀ (z : ZFSet), x z → y ∈ z\nz : ZFSet\nhxz : x z\n⊢ y ∈ ↑z", "state_before": "x : Class\ny : ZFSet\n⊢ (∀ (z : ZFSet), x z → y ∈ z) → (⋂₀ x) y", "tactic": "rintro H - ⟨z, rfl, hxz⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nx : Class\ny : ZFSet\nH : ∀ (z : ZFSet), x z → y ∈ z\nz : ZFSet\nhxz : x z\n⊢ y ∈ ↑z", "tactic": "exact H _ hxz" } ]
[ 1703, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1700, 1 ]
Mathlib/NumberTheory/ADEInequality.lean
ADEInequality.lt_four
[ { "state_after": "q r : ℕ+\nhqr : q ≤ r\nH : 1 < sumInv {2, q, r}\nh4 : 0 < 4\n⊢ q < 4", "state_before": "q r : ℕ+\nhqr : q ≤ r\nH : 1 < sumInv {2, q, r}\n⊢ q < 4", "tactic": "have h4 : (0 : ℚ) < 4 := by norm_num" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\n⊢ sumInv {2, q, r} ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nH : 1 < sumInv {2, q, r}\nh4 : 0 < 4\n⊢ q < 4", "tactic": "contrapose! H" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\n⊢ sumInv {2, q, r} ≤ 1", "tactic": "rw [sumInv_pqr]" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\nh4r : 4 ≤ r\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "tactic": "have h4r := (not_lt.mp H).trans hqr" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nH : ¬q < 4\nh4r : 4 ≤ r\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "tactic": "simp at H" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "tactic": "have hq: (q : ℚ)⁻¹ ≤ 4⁻¹ := by\n rw [inv_le_inv _ h4]\n assumption_mod_cast\n norm_num" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\nhr : (↑↑r)⁻¹ ≤ 4⁻¹\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "tactic": "have hr: (r : ℚ)⁻¹ ≤ 4⁻¹ := by\n rw [inv_le_inv _ h4]\n assumption_mod_cast\n norm_num" }, { "state_after": "no goals", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\nhr : (↑↑r)⁻¹ ≤ 4⁻¹\n⊢ (↑↑2)⁻¹ + (↑↑q)⁻¹ + (↑↑r)⁻¹ ≤ 1", "tactic": "calc\n (2⁻¹ + (q : ℚ)⁻¹ + (r : ℚ)⁻¹) ≤ 2⁻¹ + 4⁻¹ + 4⁻¹ := add_le_add (add_le_add le_rfl hq) hr\n _ = 1 := by norm_num" }, { "state_after": "no goals", "state_before": "q r : ℕ+\nhqr : q ≤ r\nH : 1 < sumInv {2, q, r}\n⊢ 0 < 4", "tactic": "norm_num" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 4 ≤ ↑↑q\n\nq r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 0 < ↑↑q", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ (↑↑q)⁻¹ ≤ 4⁻¹", "tactic": "rw [inv_le_inv _ h4]" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 0 < ↑↑q", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 4 ≤ ↑↑q\n\nq r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 0 < ↑↑q", "tactic": "assumption_mod_cast" }, { "state_after": "no goals", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\n⊢ 0 < ↑↑q", "tactic": "norm_num" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 4 ≤ ↑↑r\n\nq r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 0 < ↑↑r", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ (↑↑r)⁻¹ ≤ 4⁻¹", "tactic": "rw [inv_le_inv _ h4]" }, { "state_after": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 0 < ↑↑r", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 4 ≤ ↑↑r\n\nq r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 0 < ↑↑r", "tactic": "assumption_mod_cast" }, { "state_after": "no goals", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\n⊢ 0 < ↑↑r", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "q r : ℕ+\nhqr : q ≤ r\nh4 : 0 < 4\nh4r : 4 ≤ r\nH : 4 ≤ q\nhq : (↑↑q)⁻¹ ≤ 4⁻¹\nhr : (↑↑r)⁻¹ ≤ 4⁻¹\n⊢ 2⁻¹ + 4⁻¹ + 4⁻¹ = 1", "tactic": "norm_num" } ]
[ 216, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 200, 1 ]
Mathlib/CategoryTheory/Sites/Plus.lean
CategoryTheory.GrothendieckTopology.diagramNatTrans_comp
[ { "state_after": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\n⊢ (diagramNatTrans J (η ≫ γ) X).app x✝ = (diagramNatTrans J η X ≫ diagramNatTrans J γ X).app x✝", "state_before": "C : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\n⊢ diagramNatTrans J (η ≫ γ) X = diagramNatTrans J η X ≫ diagramNatTrans J γ X", "tactic": "ext : 2" }, { "state_after": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\ni : (Cover.index x✝.unop R).L\n⊢ (diagramNatTrans J (η ≫ γ) X).app x✝ ≫ Multiequalizer.ι (Cover.index x✝.unop R) i =\n (diagramNatTrans J η X ≫ diagramNatTrans J γ X).app x✝ ≫ Multiequalizer.ι (Cover.index x✝.unop R) i", "state_before": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\n⊢ (diagramNatTrans J (η ≫ γ) X).app x✝ = (diagramNatTrans J η X ≫ diagramNatTrans J γ X).app x✝", "tactic": "refine' Multiequalizer.hom_ext _ _ _ (fun i => _)" }, { "state_after": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\ni : (Cover.index x✝.unop R).L\n⊢ Multiequalizer.lift (Cover.index x✝.unop R) (multiequalizer (Cover.index x✝.unop P))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op ≫ γ.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop R).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ (η ≫ γ).app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop R) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ (η ≫ γ).app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop R) i) ≫\n Multiequalizer.ι (Cover.index x✝.unop R) i =\n (Multiequalizer.lift (Cover.index x✝.unop Q) (multiequalizer (Cover.index x✝.unop P))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop Q).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop Q) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop Q) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop Q) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop Q) i) ≫\n Multiequalizer.lift (Cover.index x✝.unop R) (multiequalizer (Cover.index x✝.unop Q))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop R).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop R) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop R) i)) ≫\n Multiequalizer.ι (Cover.index x✝.unop R) i", "state_before": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\ni : (Cover.index x✝.unop R).L\n⊢ (diagramNatTrans J (η ≫ γ) X).app x✝ ≫ Multiequalizer.ι (Cover.index x✝.unop R) i =\n (diagramNatTrans J η X ≫ diagramNatTrans J γ X).app x✝ ≫ Multiequalizer.ι (Cover.index x✝.unop R) i", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "case w.h\nC : Type u\ninst✝² : Category C\nJ : GrothendieckTopology C\nD : Type w\ninst✝¹ : Category D\ninst✝ : ∀ (P : Cᵒᵖ ⥤ D) (X : C) (S : Cover J X), HasMultiequalizer (Cover.index S P)\nP✝ P Q R : Cᵒᵖ ⥤ D\nη : P ⟶ Q\nγ : Q ⟶ R\nX : C\nx✝ : (Cover J X)ᵒᵖ\ni : (Cover.index x✝.unop R).L\n⊢ Multiequalizer.lift (Cover.index x✝.unop R) (multiequalizer (Cover.index x✝.unop P))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op ≫ γ.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop R).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ (η ≫ γ).app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop R) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ (η ≫ γ).app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop R) i) ≫\n Multiequalizer.ι (Cover.index x✝.unop R) i =\n (Multiequalizer.lift (Cover.index x✝.unop Q) (multiequalizer (Cover.index x✝.unop P))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop Q).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop Q) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop Q) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop P) i ≫ η.app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop Q) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop Q) i) ≫\n Multiequalizer.lift (Cover.index x✝.unop R) (multiequalizer (Cover.index x✝.unop Q))\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (_ :\n ∀ (i : (Cover.index x✝.unop R).R),\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (MulticospanIndex.fstTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.fst (Cover.index x✝.unop R) i =\n (fun i => Multiequalizer.ι (Cover.index x✝.unop Q) i ≫ γ.app i.Y.op)\n (MulticospanIndex.sndTo (Cover.index x✝.unop R) i) ≫\n MulticospanIndex.snd (Cover.index x✝.unop R) i)) ≫\n Multiequalizer.ι (Cover.index x✝.unop R) i", "tactic": "simp" } ]
[ 100, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk_range_le
[]
[ 2008, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2007, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPullback.inl_snd'
[ { "state_after": "C : Type u₁\ninst✝² : Category C\nP X Y Z : C\nfst : P ⟶ X\nsnd : P ⟶ Y\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPullback (b.inl ≫ b.fst) 0 0 (0 ≫ 0)", "state_before": "C : Type u₁\ninst✝² : Category C\nP X Y Z : C\nfst : P ⟶ X\nsnd : P ⟶ Y\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPullback b.inl 0 b.snd 0", "tactic": "refine' of_right _ (by simp) (of_isBilimit h)" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nP X Y Z : C\nfst : P ⟶ X\nsnd : P ⟶ Y\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ IsPullback (b.inl ≫ b.fst) 0 0 (0 ≫ 0)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nP X Y Z : C\nfst : P ⟶ X\nsnd : P ⟶ Y\nf : X ⟶ Z\ng : Y ⟶ Z\ninst✝¹ : HasZeroObject C\ninst✝ : HasZeroMorphisms C\nb : BinaryBicone X Y\nh : BinaryBicone.IsBilimit b\n⊢ b.inl ≫ b.snd = 0 ≫ 0", "tactic": "simp" } ]
[ 574, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 571, 1 ]
Mathlib/GroupTheory/QuotientGroup.lean
QuotientGroup.quotientQuotientEquivQuotientAux_mk_mk
[]
[ 640, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 638, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigO_one_nat_atTop_iff
[ { "state_after": "no goals", "state_before": "α : Type ?u.689842\nβ : Type ?u.689845\nE : Type ?u.689848\nF : Type ?u.689851\nG : Type ?u.689854\nE' : Type ?u.689857\nF' : Type ?u.689860\nG' : Type ?u.689863\nE'' : Type u_1\nF'' : Type ?u.689869\nG'' : Type ?u.689872\nR : Type ?u.689875\nR' : Type ?u.689878\n𝕜 : Type ?u.689881\n𝕜' : Type ?u.689884\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf✝ : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nf : ℕ → E''\n⊢ (∃ C, ∀ (x : ℕ), ‖f x‖ ≤ C * ‖1‖) ↔ ∃ C, ∀ (n : ℕ), ‖f n‖ ≤ C", "tactic": "simp only [norm_one, mul_one]" } ]
[ 2131, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2128, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.IsThreeCycle.isCycle
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nh : IsThreeCycle σ\n⊢ IsCycle σ", "tactic": "rw [← card_cycleType_eq_one, h.cycleType, card_singleton]" } ]
[ 594, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 593, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.mkNormedAddGroupHom_norm_le'
[ { "state_after": "case h\nV : Type ?u.279839\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.279848\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g : NormedAddGroupHom V₁ V₂\nf : V₁ →+ V₂\nC : ℝ\nh : ∀ (x : V₁), ‖↑f x‖ ≤ C * ‖x‖\nx : V₁\n⊢ C ≤ max C 0", "state_before": "V : Type ?u.279839\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.279848\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g : NormedAddGroupHom V₁ V₂\nf : V₁ →+ V₂\nC : ℝ\nh : ∀ (x : V₁), ‖↑f x‖ ≤ C * ‖x‖\nx : V₁\n⊢ C * ‖x‖ ≤ max C 0 * ‖x‖", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case h\nV : Type ?u.279839\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.279848\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g : NormedAddGroupHom V₁ V₂\nf : V₁ →+ V₂\nC : ℝ\nh : ∀ (x : V₁), ‖↑f x‖ ≤ C * ‖x‖\nx : V₁\n⊢ C ≤ max C 0", "tactic": "apply le_max_left" } ]
[ 318, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Topology/Algebra/Order/Group.lean
Filter.Tendsto.abs
[]
[ 68, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 11 ]
Mathlib/Order/Bounds/Basic.lean
MonotoneOn.map_isLeast
[]
[ 1197, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1196, 1 ]
Mathlib/Algebra/Order/WithZero.lean
ne_zero_of_lt
[]
[ 111, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/MeasureTheory/Measure/MutuallySingular.lean
MeasureTheory.Measure.MutuallySingular.smul
[]
[ 122, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.map_comp
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nf : α → β\ng : β → γ\nx✝ : α\n⊢ ↑(AddMonoidHom.comp (map g) (map f)) (of x✝) = ↑(map (g ∘ f)) (of x✝)", "tactic": "simp [map]" } ]
[ 385, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Data/Multiset/Range.lean
Multiset.range_zero
[]
[ 34, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/Algebra/Invertible.lean
mul_mul_invOf_self_cancel'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : Monoid α\na b : α\nx✝ : Invertible b\n⊢ a * b * ⅟b = a", "tactic": "simp [mul_assoc]" } ]
[ 144, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/MeasureTheory/PiSystem.lean
piiUnionInter_singleton
[ { "state_after": "case h\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ piiUnionInter π {i} ↔ s ∈ π i ∪ {univ}", "state_before": "α : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\n⊢ piiUnionInter π {i} = π i ∪ {univ}", "tactic": "ext1 s" }, { "state_after": "case h\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x} ↔ s ∈ π i ∨ s ∈ {univ}", "state_before": "case h\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ piiUnionInter π {i} ↔ s ∈ π i ∪ {univ}", "tactic": "simp only [piiUnionInter, exists_prop, mem_union]" }, { "state_after": "case h.refine'_1\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x} → s ∈ π i ∨ s ∈ {univ}\n\ncase h.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nh : s ∈ π i ∨ s ∈ {univ}\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}", "state_before": "case h\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x} ↔ s ∈ π i ∨ s ∈ {univ}", "tactic": "refine' ⟨_, fun h => _⟩" }, { "state_after": "case h.refine'_1.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nhti : ↑t ⊆ {i}\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "state_before": "case h.refine'_1\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x} → s ∈ π i ∨ s ∈ {univ}", "tactic": "rintro ⟨t, hti, f, hfπ, rfl⟩" }, { "state_after": "case h.refine'_1.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "state_before": "case h.refine'_1.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nhti : ↑t ⊆ {i}\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "simp only [subset_singleton_iff, Finset.mem_coe] at hti" }, { "state_after": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}\n\ncase neg\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "state_before": "case h.refine'_1.intro.intro.intro.intro\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "by_cases hi : i ∈ t" }, { "state_after": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nht_eq_i : t = {i}\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "state_before": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "have ht_eq_i : t = {i} := by\n ext1 x\n rw [Finset.mem_singleton]\n exact ⟨fun h => hti x h, fun h => h.symm ▸ hi⟩" }, { "state_after": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nht_eq_i : t = {i}\n⊢ f i ∈ π i ∨ f i ∈ {univ}", "state_before": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nht_eq_i : t = {i}\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "simp only [ht_eq_i, Finset.mem_singleton, iInter_iInter_eq_left]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nht_eq_i : t = {i}\n⊢ f i ∈ π i ∨ f i ∈ {univ}", "tactic": "exact Or.inl (hfπ i hi)" }, { "state_after": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nx : ι\n⊢ x ∈ t ↔ x ∈ {i}", "state_before": "α : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\n⊢ t = {i}", "tactic": "ext1 x" }, { "state_after": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nx : ι\n⊢ x ∈ t ↔ x = i", "state_before": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nx : ι\n⊢ x ∈ t ↔ x ∈ {i}", "tactic": "rw [Finset.mem_singleton]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : i ∈ t\nx : ι\n⊢ x ∈ t ↔ x = i", "tactic": "exact ⟨fun h => hti x h, fun h => h.symm ▸ hi⟩" }, { "state_after": "case neg\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nht_empty : t = ∅\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "state_before": "case neg\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "have ht_empty : t = ∅ := by\n ext1 x\n simp only [Finset.not_mem_empty, iff_false_iff]\n exact fun hx => hi (hti x hx ▸ hx)" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nht_empty : t = ∅\n⊢ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ π i ∨ (⋂ (x : ι) (_ : x ∈ t), f x) ∈ {univ}", "tactic": "simp [ht_empty, Finset.not_mem_empty, iInter_false, iInter_univ, Set.mem_singleton univ,\n or_true_iff]" }, { "state_after": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nx : ι\n⊢ x ∈ t ↔ x ∈ ∅", "state_before": "α : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\n⊢ t = ∅", "tactic": "ext1 x" }, { "state_after": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nx : ι\n⊢ ¬x ∈ t", "state_before": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nx : ι\n⊢ x ∈ t ↔ x ∈ ∅", "tactic": "simp only [Finset.not_mem_empty, iff_false_iff]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\nt : Finset ι\nf : ι → Set α\nhfπ : ∀ (x : ι), x ∈ t → f x ∈ π x\nhti : ∀ (y : ι), y ∈ t → y = i\nhi : ¬i ∈ t\nx : ι\n⊢ ¬x ∈ t", "tactic": "exact fun hx => hi (hti x hx ▸ hx)" }, { "state_after": "case h.refine'_2.inl\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}\n\ncase h.refine'_2.inr\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ {univ}\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}", "state_before": "case h.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nh : s ∈ π i ∨ s ∈ {univ}\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}", "tactic": "cases' h with hs hs" }, { "state_after": "case h.refine'_2.inl.refine'_1\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ ↑{i} ⊆ {i}\n\ncase h.refine'_2.inl.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\nx : ι\nhx : x ∈ {i}\n⊢ (fun x => s) x ∈ π x\n\ncase h.refine'_2.inl.refine'_3\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ s = ⋂ (x : ι) (_ : x ∈ {i}), (fun x => s) x", "state_before": "case h.refine'_2.inl\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}", "tactic": "refine' ⟨{i}, _, fun _ => s, ⟨fun x hx => _, _⟩⟩" }, { "state_after": "no goals", "state_before": "case h.refine'_2.inl.refine'_1\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ ↑{i} ⊆ {i}", "tactic": "rw [Finset.coe_singleton]" }, { "state_after": "case h.refine'_2.inl.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\nx : ι\nhx : x = i\n⊢ (fun x => s) x ∈ π x", "state_before": "case h.refine'_2.inl.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\nx : ι\nhx : x ∈ {i}\n⊢ (fun x => s) x ∈ π x", "tactic": "rw [Finset.mem_singleton] at hx" }, { "state_after": "no goals", "state_before": "case h.refine'_2.inl.refine'_2\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\nx : ι\nhx : x = i\n⊢ (fun x => s) x ∈ π x", "tactic": "rwa [hx]" }, { "state_after": "no goals", "state_before": "case h.refine'_2.inl.refine'_3\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ π i\n⊢ s = ⋂ (x : ι) (_ : x ∈ {i}), (fun x => s) x", "tactic": "simp only [Finset.mem_singleton, iInter_iInter_eq_left]" }, { "state_after": "case h.refine'_2.inr\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ {univ}\n⊢ ↑∅ ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ ∅ → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ ∅), f x", "state_before": "case h.refine'_2.inr\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ {univ}\n⊢ s ∈ {s | ∃ t, ↑t ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ t → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ t), f x}", "tactic": "refine' ⟨∅, _⟩" }, { "state_after": "no goals", "state_before": "case h.refine'_2.inr\nα : Type u_1\nι : Type u_2\nπ : ι → Set (Set α)\ni : ι\ns : Set α\nhs : s ∈ {univ}\n⊢ ↑∅ ⊆ {i} ∧ ∃ f, (∀ (x : ι), x ∈ ∅ → f x ∈ π x) ∧ s = ⋂ (x : ι) (_ : x ∈ ∅), f x", "tactic": "simpa only [Finset.coe_empty, subset_singleton_iff, mem_empty_iff_false, IsEmpty.forall_iff,\n imp_true_iff, Finset.not_mem_empty, iInter_false, iInter_univ, true_and_iff,\n exists_const] using hs" } ]
[ 396, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 366, 1 ]
Mathlib/Order/Filter/Prod.lean
Filter.Eventually.prod_inl
[]
[ 159, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/Order/Heyting/Basic.lean
le_sup_sdiff
[]
[ 534, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 533, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
MulLECancellable.inj
[]
[ 1611, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1609, 11 ]
Mathlib/Algebra/Star/SelfAdjoint.lean
isSelfAdjoint_iff
[]
[ 79, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.infEdist_ne_top
[ { "state_after": "case intro\nι : Sort ?u.57852\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y✝ : α\nΦ : α → β\ny : α\nhy : y ∈ s\n⊢ infEdist x s ≠ ⊤", "state_before": "ι : Sort ?u.57852\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nh : Set.Nonempty s\n⊢ infEdist x s ≠ ⊤", "tactic": "rcases h with ⟨y, hy⟩" }, { "state_after": "no goals", "state_before": "case intro\nι : Sort ?u.57852\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y✝ : α\nΦ : α → β\ny : α\nhy : y ∈ s\n⊢ infEdist x s ≠ ⊤", "tactic": "exact ne_top_of_le_ne_top (edist_ne_top _ _) (infEdist_le_edist_of_mem hy)" } ]
[ 491, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 489, 1 ]
Mathlib/Algebra/Order/UpperLower.lean
IsUpperSet.smul_subset
[]
[ 31, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/Topology/Sober.lean
quasiSober_of_open_cover
[ { "state_after": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\n⊢ ∀ {S : Set α}, IsIrreducible S → IsClosed S → ∃ x, IsGenericPoint x S", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\n⊢ QuasiSober α", "tactic": "rw [quasiSober_iff]" }, { "state_after": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\n⊢ ∃ x, IsGenericPoint x t", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\n⊢ ∀ {S : Set α}, IsIrreducible S → IsClosed S → ∃ x, IsGenericPoint x S", "tactic": "intro t h h'" }, { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\n⊢ ∃ x, IsGenericPoint x t", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\n⊢ ∃ x, IsGenericPoint x t", "tactic": "obtain ⟨x, hx⟩ := h.1" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\n⊢ ∃ x, IsGenericPoint x t", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\n⊢ ∃ x, IsGenericPoint x t", "tactic": "obtain ⟨U, hU, hU'⟩ : x ∈ ⋃₀ S := by\n rw [hS'']\n trivial" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\n⊢ ∃ x, IsGenericPoint x t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\n⊢ ∃ x, IsGenericPoint x t", "tactic": "haveI : QuasiSober U := hS' ⟨U, hU⟩" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsPreirreducible (Subtype.val ⁻¹' t)\n⊢ ∃ x, IsGenericPoint x t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\n⊢ ∃ x, IsGenericPoint x t", "tactic": "have H : IsPreirreducible ((↑) ⁻¹' t : Set U) :=\n h.2.preimage (hS ⟨U, hU⟩).openEmbedding_subtype_val" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\n⊢ ∃ x, IsGenericPoint x t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsPreirreducible (Subtype.val ⁻¹' t)\n⊢ ∃ x, IsGenericPoint x t", "tactic": "replace H : IsIrreducible ((↑) ⁻¹' t : Set U) := ⟨⟨⟨x, hU'⟩, by simpa using hx⟩, H⟩" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\n⊢ ∃ x, IsGenericPoint x t", "tactic": "use H.genericPoint" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' closure t\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "tactic": "have := continuous_subtype_val.closure_preimage_subset _ H.genericPoint_spec.mem" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' closure t\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "tactic": "rw [h'.closure_eq] at this" }, { "state_after": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ closure {↑(IsIrreducible.genericPoint H)} ≤ t\n\ncase intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ≤ closure {↑(IsIrreducible.genericPoint H)}", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ IsGenericPoint (↑(IsIrreducible.genericPoint H)) t", "tactic": "apply le_antisymm" }, { "state_after": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ≤ closure (Subtype.val '' closure (Subtype.val ⁻¹' t))", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ≤ closure {↑(IsIrreducible.genericPoint H)}", "tactic": "rw [← image_singleton, ← closure_image_closure continuous_subtype_val, H.genericPoint_spec.def]" }, { "state_after": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ∩ ↑{ val := U, property := hU } ⊆ Subtype.val '' closure (Subtype.val ⁻¹' t)", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ≤ closure (Subtype.val '' closure (Subtype.val ⁻¹' t))", "tactic": "refine' (subset_closure_inter_of_isPreirreducible_of_isOpen h.2 (hS ⟨U, hU⟩) ⟨x, hx, hU'⟩).trans\n (closure_mono _)" }, { "state_after": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ Subtype.val '' (Subtype.val ⁻¹' t) ⊆ Subtype.val '' closure (Subtype.val ⁻¹' t)", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ t ∩ ↑{ val := U, property := hU } ⊆ Subtype.val '' closure (Subtype.val ⁻¹' t)", "tactic": "rw [← Subtype.image_preimage_coe]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ Subtype.val '' (Subtype.val ⁻¹' t) ⊆ Subtype.val '' closure (Subtype.val ⁻¹' t)", "tactic": "exact Set.image_subset _ subset_closure" }, { "state_after": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\n⊢ x ∈ ⊤", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\n⊢ x ∈ ⋃₀ S", "tactic": "rw [hS'']" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\n⊢ x ∈ ⊤", "tactic": "trivial" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis : QuasiSober ↑U\nH : IsPreirreducible (Subtype.val ⁻¹' t)\n⊢ { val := x, property := hU' } ∈ Subtype.val ⁻¹' t", "tactic": "simpa using hx" }, { "state_after": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ {↑(IsIrreducible.genericPoint H)} ⊆ t", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ closure {↑(IsIrreducible.genericPoint H)} ≤ t", "tactic": "apply h'.closure_subset_iff.mpr" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.a\nα : Type u_1\nβ : Type ?u.12585\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nS : Set (Set α)\nhS : ∀ (s : ↑S), IsOpen ↑s\nhS' : ∀ (s : ↑S), QuasiSober ↑↑s\nhS'' : ⋃₀ S = ⊤\nt : Set α\nh : IsIrreducible t\nh' : IsClosed t\nx : α\nhx : x ∈ t\nU : Set α\nhU : U ∈ S\nhU' : x ∈ U\nthis✝ : QuasiSober ↑U\nH : IsIrreducible (Subtype.val ⁻¹' t)\nthis : IsIrreducible.genericPoint H ∈ Subtype.val ⁻¹' t\n⊢ {↑(IsIrreducible.genericPoint H)} ⊆ t", "tactic": "simpa using this" } ]
[ 242, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Probability/ProbabilityMassFunction/Uniform.lean
Pmf.toOuterMeasure_ofMultiset_apply
[ { "state_after": "α : Type u_1\nβ : Type ?u.184861\nγ : Type ?u.184864\ns : Multiset α\nhs : s ≠ 0\nt : Set α\n⊢ (∑' (x : α), Set.indicator t (↑(ofMultiset s hs)) x) =\n ∑' (i : α), ↑(Multiset.count i (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹", "state_before": "α : Type u_1\nβ : Type ?u.184861\nγ : Type ?u.184864\ns : Multiset α\nhs : s ≠ 0\nt : Set α\n⊢ ↑(toOuterMeasure (ofMultiset s hs)) t =\n (∑' (x : α), ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s))) / ↑(↑Multiset.card s)", "tactic": "simp_rw [div_eq_mul_inv, ← ENNReal.tsum_mul_right, toOuterMeasure_apply]" }, { "state_after": "α : Type u_1\nβ : Type ?u.184861\nγ : Type ?u.184864\ns : Multiset α\nhs : s ≠ 0\nt : Set α\nx : α\n⊢ Set.indicator t (↑(ofMultiset s hs)) x =\n ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹", "state_before": "α : Type u_1\nβ : Type ?u.184861\nγ : Type ?u.184864\ns : Multiset α\nhs : s ≠ 0\nt : Set α\n⊢ (∑' (x : α), Set.indicator t (↑(ofMultiset s hs)) x) =\n ∑' (i : α), ↑(Multiset.count i (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹", "tactic": "refine' tsum_congr fun x => _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.184861\nγ : Type ?u.184864\ns : Multiset α\nhs : s ≠ 0\nt : Set α\nx : α\n⊢ Set.indicator t (↑(ofMultiset s hs)) x =\n ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹", "tactic": "by_cases hx : x ∈ t <;> simp [Set.indicator, hx, div_eq_mul_inv]" } ]
[ 208, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.image_closedBall
[]
[ 1060, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1059, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.supported_eq_span_single
[ { "state_after": "case refine'_1\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\n⊢ (fun i => single i 1) '' s ⊆ ↑(supported R R s)\n\ncase refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\n⊢ l ∈ span R ((fun i => single i 1) '' s)", "state_before": "α : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\n⊢ supported R R s = span R ((fun i => single i 1) '' s)", "tactic": "refine' (span_eq_of_le _ _ (SetLike.le_def.2 fun l hl => _)).symm" }, { "state_after": "case refine'_1.intro.intro\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nw✝ : α\nhp : w✝ ∈ s\n⊢ (fun i => single i 1) w✝ ∈ ↑(supported R R s)", "state_before": "case refine'_1\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\n⊢ (fun i => single i 1) '' s ⊆ ↑(supported R R s)", "tactic": "rintro _ ⟨_, hp, rfl⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.intro\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nw✝ : α\nhp : w✝ ∈ s\n⊢ (fun i => single i 1) w✝ ∈ ↑(supported R R s)", "tactic": "exact single_mem_supported R 1 hp" }, { "state_after": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\n⊢ sum l single ∈ span R ((fun i => single i 1) '' s)", "state_before": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\n⊢ l ∈ span R ((fun i => single i 1) '' s)", "tactic": "rw [← l.sum_single]" }, { "state_after": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i (↑l i) ∈ span R ((fun i => single i 1) '' s)", "state_before": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\n⊢ sum l single ∈ span R ((fun i => single i 1) '' s)", "tactic": "refine' sum_mem fun i il => _" }, { "state_after": "case h.e'_4\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i (↑l i) = ↑l i • single i 1\n\ncase refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i 1 ∈ span R ((fun i => single i 1) '' s)", "state_before": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i (↑l i) ∈ span R ((fun i => single i 1) '' s)", "tactic": "convert smul_mem (M := α →₀ R) (x := single i 1) (span R ((fun i => single i 1) '' s)) (l i) ?_" }, { "state_after": "no goals", "state_before": "case h.e'_4\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i (↑l i) = ↑l i • single i 1", "tactic": "simp [span]" }, { "state_after": "case refine'_2.a\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i 1 ∈ (fun i => single i 1) '' s", "state_before": "case refine'_2\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i 1 ∈ span R ((fun i => single i 1) '' s)", "tactic": "apply subset_span" }, { "state_after": "no goals", "state_before": "case refine'_2.a\nα : Type u_1\nM : Type ?u.63004\nN : Type ?u.63007\nP : Type ?u.63010\nR : Type u_2\nS : Type ?u.63016\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns : Set α\nl : α →₀ R\nhl : l ∈ supported R R s\ni : α\nil : i ∈ l.support\n⊢ single i 1 ∈ (fun i => single i 1) '' s", "tactic": "apply Set.mem_image_of_mem _ (hl il)" } ]
[ 229, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/Algebra/Homology/QuasiIso.lean
HomologicalComplex.Hom.fromSingle₀KernelAtZeroIso_inv_eq
[ { "state_after": "ι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type ?u.70126\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0", "state_before": "ι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type ?u.70126\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0", "tactic": "rw [f.2 0 1 rfl]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type ?u.70126\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0", "tactic": "exact zero_comp" }, { "state_after": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ (fromSingle₀KernelAtZeroIso f).inv ≫ equalizer.ι (d X 0 1) 0 =\n kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫\n equalizer.ι (d X 0 1) 0", "state_before": "ι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ (fromSingle₀KernelAtZeroIso f).inv =\n kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0)", "tactic": "apply equalizer.hom_ext" }, { "state_after": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ ((Iso.mk\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).hom\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))\n (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv\n (_ :\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫\n (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫\n kernelSubobjectIso (d X 0 1)).symm ≪≫\n (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).symm ≪≫\n (NatIso.ofComponents fun X =>\n homology.congr\n (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)\n (_ : 0 ≫ 0 = 0)\n (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)\n (_ : 0 = 0) ≪≫\n homologyZeroZero).app\n Y).inv ≫\n equalizer.ι (d X 0 1) 0 =\n kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫\n equalizer.ι (d X 0 1) 0", "state_before": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ (fromSingle₀KernelAtZeroIso f).inv ≫ equalizer.ι (d X 0 1) 0 =\n kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫\n equalizer.ι (d X 0 1) 0", "tactic": "dsimp only [fromSingle₀KernelAtZeroIso, CochainComplex.homologyZeroIso, homologyOfZeroLeft,\n homology.mapIso, CochainComplex.homologyFunctor0Single₀, kernel.map]" }, { "state_after": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ (NatIso.ofComponents fun X =>\n homology.congr\n (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)\n (_ : 0 ≫ 0 = 0)\n (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)\n (_ : 0 = 0) ≪≫\n homologyZeroZero).inv.app\n Y ≫\n (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).hom ≫\n (Iso.mk\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).hom\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))\n (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv\n (_ :\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫\n (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫\n kernelSubobjectIso (d X 0 1)).hom ≫\n kernel.ι (d X 0 1) =\n HomologicalComplex.Hom.f f 0", "state_before": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ ((Iso.mk\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).hom\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))\n (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv\n (_ :\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫\n (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫\n kernelSubobjectIso (d X 0 1)).symm ≪≫\n (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).symm ≪≫\n (NatIso.ofComponents fun X =>\n homology.congr\n (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)\n (_ : 0 ≫ 0 = 0)\n (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)\n (_ : 0 = 0) ≪≫\n homologyZeroZero).app\n Y).inv ≫\n equalizer.ι (d X 0 1) 0 =\n kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫\n equalizer.ι (d X 0 1) 0", "tactic": "simp only [Iso.trans_inv, Iso.app_inv, Iso.symm_inv, Category.assoc, equalizer_as_kernel,\n kernel.lift_ι]" }, { "state_after": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ ((inv (Subobject.arrow (kernelSubobject 0)) ≫ homology.π 0 0 (_ : 0 ≫ 0 = 0)) ≫\n homology.map (_ : 0 ≫ 0 = 0)\n (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)\n (CommaMorphism.mk (𝟙 (xPrev ((CochainComplex.single₀ W).obj Y) 0)) (𝟙 Y))\n (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0)))\n (_ :\n (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =\n (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right)) ≫\n homology.map (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)\n (_ : dTo X 0 ≫ dFrom X 0 = 0) (sqTo f 0) (sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (HomologicalComplex.X X 0))).hom\n (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)) ≫\n ((cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0)).hom ≫\n cokernelZeroIsoTarget.hom) ≫\n (kernelSubobjectIso (d X 0 1)).hom) ≫\n kernel.ι (d X 0 1) =\n HomologicalComplex.Hom.f f 0", "state_before": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ (NatIso.ofComponents fun X =>\n homology.congr\n (_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)\n (_ : 0 ≫ 0 = 0)\n (_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)\n (_ : 0 = 0) ≪≫\n homologyZeroZero).inv.app\n Y ≫\n (asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).hom ≫\n (Iso.mk\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).hom\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))\n (homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv\n (_ :\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =\n (Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫\n (cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫\n kernelSubobjectIso (d X 0 1)).hom ≫\n kernel.ι (d X 0 1) =\n HomologicalComplex.Hom.f f 0", "tactic": "dsimp [asIso]" }, { "state_after": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0))) ≫\n kernelSubobjectMap (sqFrom f 0) ≫\n kernelSubobjectMap\n (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom ≫\n homology.π 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫\n cokernel.desc (imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0))\n (𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))))\n (_ :\n imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫\n 𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))) =\n 0) ≫\n Subobject.arrow (kernelSubobject (d X 0 1)) =\n Subobject.arrow (kernelSubobject 0) ≫ HomologicalComplex.Hom.f f 0", "state_before": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ ((inv (Subobject.arrow (kernelSubobject 0)) ≫ homology.π 0 0 (_ : 0 ≫ 0 = 0)) ≫\n homology.map (_ : 0 ≫ 0 = 0)\n (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)\n (CommaMorphism.mk (𝟙 (xPrev ((CochainComplex.single₀ W).obj Y) 0)) (𝟙 Y))\n (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0)))\n (_ :\n (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =\n (CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right)) ≫\n homology.map (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)\n (_ : dTo X 0 ≫ dFrom X 0 = 0) (sqTo f 0) (sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫\n (homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)\n (Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)\n (Iso.refl (HomologicalComplex.X X 0))).hom\n (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom\n (_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)) ≫\n ((cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0)).hom ≫\n cokernelZeroIsoTarget.hom) ≫\n (kernelSubobjectIso (d X 0 1)).hom) ≫\n kernel.ι (d X 0 1) =\n HomologicalComplex.Hom.f f 0", "tactic": "simp only [Category.assoc, homology.π_map, cokernelZeroIsoTarget_hom,\n cokernelIsoOfEq_hom_comp_desc, kernelSubobject_arrow, homology.π_map_assoc, IsIso.inv_comp_eq]" }, { "state_after": "no goals", "state_before": "case h\nι : Type ?u.69952\nV : Type u\ninst✝⁸ : Category V\ninst✝⁷ : HasZeroMorphisms V\ninst✝⁶ : HasZeroObject V\ninst✝⁵ : HasEqualizers V\ninst✝⁴ : HasImages V\ninst✝³ : HasImageMaps V\ninst✝² : HasCokernels V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nW : Type u_2\ninst✝¹ : Category W\ninst✝ : Abelian W\nX : CochainComplex W ℕ\nY : W\nf : (CochainComplex.single₀ W).obj Y ⟶ X\nhf : QuasiIso f\n⊢ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0))) ≫\n kernelSubobjectMap (sqFrom f 0) ≫\n kernelSubobjectMap\n (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))\n (xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom ≫\n homology.π 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫\n cokernel.desc (imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0))\n (𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))))\n (_ :\n imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫\n 𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))) =\n 0) ≫\n Subobject.arrow (kernelSubobject (d X 0 1)) =\n Subobject.arrow (kernelSubobject 0) ≫ HomologicalComplex.Hom.f f 0", "tactic": "simp [homology.π, kernelSubobjectMap_comp, Iso.refl_hom (X.X 0), Category.comp_id]" } ]
[ 175, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.subgroupOf_inj
[ { "state_after": "no goals", "state_before": "G : Type u_1\nG' : Type ?u.291162\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.291171\ninst✝² : AddGroup A\nH K✝ : Subgroup G\nk : Set G\nN : Type ?u.291192\ninst✝¹ : Group N\nP : Type ?u.291198\ninst✝ : Group P\nH₁ H₂ K : Subgroup G\n⊢ subgroupOf H₁ K = subgroupOf H₂ K ↔ H₁ ⊓ K = H₂ ⊓ K", "tactic": "simpa only [SetLike.ext_iff, mem_inf, mem_subgroupOf, and_congr_left_iff] using Subtype.forall" } ]
[ 1670, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1668, 1 ]
Mathlib/FieldTheory/Subfield.lean
Subfield.coe_toSubring
[]
[ 227, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.X_pow_eq
[]
[ 1452, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1451, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Antiperiodic.mul_const_inv
[]
[ 500, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 498, 1 ]
Mathlib/RingTheory/Ideal/Prod.lean
Ideal.map_snd_prod
[ { "state_after": "case h\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : S\n⊢ x ∈ map (RingHom.snd R S) (prod I J) ↔ x ∈ J", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\n⊢ map (RingHom.snd R S) (prod I J) = J", "tactic": "ext x" }, { "state_after": "case h\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : S\n⊢ (∃ x_1, x_1 ∈ prod I J ∧ ↑(RingHom.snd R S) x_1 = x) ↔ x ∈ J", "state_before": "case h\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : S\n⊢ x ∈ map (RingHom.snd R S) (prod I J) ↔ x ∈ J", "tactic": "rw [mem_map_iff_of_surjective (RingHom.snd R S) Prod.snd_surjective]" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : S\n⊢ (∃ x_1, x_1 ∈ prod I J ∧ ↑(RingHom.snd R S) x_1 = x) ↔ x ∈ J", "tactic": "exact\n ⟨by\n rintro ⟨x, ⟨h, rfl⟩⟩\n exact h.2, fun h => ⟨⟨0, x⟩, ⟨⟨Ideal.zero_mem _, h⟩, rfl⟩⟩⟩" }, { "state_after": "case intro.intro\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : R × S\nh : x ∈ prod I J\n⊢ ↑(RingHom.snd R S) x ∈ J", "state_before": "R : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : S\n⊢ (∃ x_1, x_1 ∈ prod I J ∧ ↑(RingHom.snd R S) x_1 = x) → x ∈ J", "tactic": "rintro ⟨x, ⟨h, rfl⟩⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u\nS : Type v\ninst✝¹ : Ring R\ninst✝ : Ring S\nI✝ I' : Ideal R\nJ✝ J' : Ideal S\nI : Ideal R\nJ : Ideal S\nx : R × S\nh : x ∈ prod I J\n⊢ ↑(RingHom.snd R S) x ∈ J", "tactic": "exact h.2" } ]
[ 81, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Set/Intervals/OrdConnected.lean
Set.ordConnected_pi
[]
[ 126, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.coe_mk
[]
[ 159, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Data/Finset/Prod.lean
Finset.nonempty_product
[]
[ 207, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Combinatorics/Configuration.lean
Configuration.HasLines.lineCount_eq_pointCount
[ { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\n⊢ lineCount L p = pointCount P l", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\n⊢ lineCount L p = pointCount P l", "tactic": "obtain ⟨f, hf1, hf2⟩ := HasLines.exists_bijective_of_card_eq hPL" }, { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\n⊢ lineCount L p = pointCount P l", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\n⊢ lineCount L p = pointCount P l", "tactic": "let s : Finset (P × L) := Set.toFinset { i | i.1 ∈ i.2 }" }, { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\n⊢ lineCount L p = pointCount P l", "tactic": "have step1 : (∑ i : P × L, lineCount L i.1) = ∑ i : P × L, pointCount P i.2 := by\n rw [← Finset.univ_product_univ, Finset.sum_product_right, Finset.sum_product]\n simp_rw [Finset.sum_const, Finset.card_univ, hPL, sum_lineCount_eq_sum_pointCount]" }, { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\nstep3 : ∑ i in sᶜ, lineCount L i.fst = ∑ i in sᶜ, pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "tactic": "have step3 : (∑ i in sᶜ, lineCount L i.1) = ∑ i in sᶜ, pointCount P i.2 := by\n rwa [← s.sum_add_sum_compl, ← s.sum_add_sum_compl, step2, add_left_cancel_iff] at step1" }, { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\nstep3 :\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), lineCount L i.fst =\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\nstep3 : ∑ i in sᶜ, lineCount L i.fst = ∑ i in sᶜ, pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "tactic": "rw [← Set.toFinset_compl] at step3" }, { "state_after": "no goals", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\nstep3 :\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), lineCount L i.fst =\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), pointCount P i.snd\n⊢ lineCount L p = pointCount P l", "tactic": "exact\n ((Finset.sum_eq_sum_iff_of_le fun i hi =>\n HasLines.pointCount_le_lineCount (by exact Set.mem_toFinset.mp hi)).mp\n step3.symm (p, l) (Set.mem_toFinset.mpr hpl)).symm" }, { "state_after": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\n⊢ ∑ y : L, ∑ x : P, lineCount L (x, y).fst = ∑ x : P, ∑ y : L, pointCount P (x, y).snd", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\n⊢ ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd", "tactic": "rw [← Finset.univ_product_univ, Finset.sum_product_right, Finset.sum_product]" }, { "state_after": "no goals", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\n⊢ ∑ y : L, ∑ x : P, lineCount L (x, y).fst = ∑ x : P, ∑ y : L, pointCount P (x, y).snd", "tactic": "simp_rw [Finset.sum_const, Finset.card_univ, hPL, sum_lineCount_eq_sum_pointCount]" }, { "state_after": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∑ c : P, ∑ a in Set.toFinset {l | c ∈ l}, lineCount L (c, a).fst = ∑ i in s, pointCount P i.snd\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd", "tactic": "rw [s.sum_finset_product Finset.univ fun p => Set.toFinset { l | p ∈ l }]" }, { "state_after": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∑ c : P, ∑ a in Set.toFinset {l | c ∈ l}, lineCount L (c, a).fst =\n ∑ c : L, ∑ a in Set.toFinset {p | p ∈ c}, pointCount P (a, c).snd\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.snd ∈ Finset.univ ∧ p.fst ∈ Set.toFinset {p_1 | p_1 ∈ p.snd}\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∑ c : P, ∑ a in Set.toFinset {l | c ∈ l}, lineCount L (c, a).fst = ∑ i in s, pointCount P i.snd\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "tactic": "rw [s.sum_finset_product_right Finset.univ fun l => Set.toFinset { p | p ∈ l }]" }, { "state_after": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ ∑ a in Set.toFinset {p | p ∈ l}, pointCount P (a, l).snd =\n ∑ a in Set.toFinset {l_1 | (fun l x => f l) l hl ∈ l_1}, lineCount L ((fun l x => f l) l hl, a).fst\n\ncase refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np✝ : P\nl : L\nhpl : ¬p✝ ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\np : P\nx✝ : p ∈ Finset.univ\n⊢ ∃ a ha, p = (fun l x => f l) a ha\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.snd ∈ Finset.univ ∧ p.fst ∈ Set.toFinset {p_1 | p_1 ∈ p.snd}\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∑ c : P, ∑ a in Set.toFinset {l | c ∈ l}, lineCount L (c, a).fst =\n ∑ c : L, ∑ a in Set.toFinset {p | p ∈ c}, pointCount P (a, c).snd\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.snd ∈ Finset.univ ∧ p.fst ∈ Set.toFinset {p_1 | p_1 ∈ p.snd}\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "tactic": "refine'\n (Finset.sum_bij (fun l _ => f l) (fun l _ => Finset.mem_univ (f l)) (fun l hl => _)\n (fun _ _ _ _ h => hf1.1 h) fun p _ => _).symm" }, { "state_after": "no goals", "state_before": "case h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.snd ∈ Finset.univ ∧ p.fst ∈ Set.toFinset {p_1 | p_1 ∈ p.snd}\n\ncase h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "tactic": "all_goals simp_rw [Finset.mem_univ, true_and_iff, Set.mem_toFinset]; exact fun p => Iff.rfl" }, { "state_after": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ Nat.card ↑{p | p ∈ l} • pointCount P l = Nat.card ↑{l_1 | f l ∈ l_1} • lineCount L (f l)", "state_before": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ ∑ a in Set.toFinset {p | p ∈ l}, pointCount P (a, l).snd =\n ∑ a in Set.toFinset {l_1 | (fun l x => f l) l hl ∈ l_1}, lineCount L ((fun l x => f l) l hl, a).fst", "tactic": "simp_rw [Finset.sum_const, Set.toFinset_card, ← Nat.card_eq_fintype_card]" }, { "state_after": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ pointCount P l • pointCount P l = lineCount L (f l) • lineCount L (f l)", "state_before": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ Nat.card ↑{p | p ∈ l} • pointCount P l = Nat.card ↑{l_1 | f l ∈ l_1} • lineCount L (f l)", "tactic": "change pointCount P l • pointCount P l = lineCount L (f l) • lineCount L (f l)" }, { "state_after": "no goals", "state_before": "case refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl✝ : L\nhpl : ¬p ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nl : L\nhl : l ∈ Finset.univ\n⊢ pointCount P l • pointCount P l = lineCount L (f l) • lineCount L (f l)", "tactic": "rw [hf2]" }, { "state_after": "case refine'_2.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np✝ : P\nl✝ : L\nhpl : ¬p✝ ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\np : P\nx✝ : p ∈ Finset.univ\nl : L\nhl : f l = p\n⊢ ∃ a ha, p = (fun l x => f l) a ha", "state_before": "case refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np✝ : P\nl : L\nhpl : ¬p✝ ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\np : P\nx✝ : p ∈ Finset.univ\n⊢ ∃ a ha, p = (fun l x => f l) a ha", "tactic": "obtain ⟨l, hl⟩ := hf1.2 p" }, { "state_after": "no goals", "state_before": "case refine'_2.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np✝ : P\nl✝ : L\nhpl : ¬p✝ ∈ l✝\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\np : P\nx✝ : p ∈ Finset.univ\nl : L\nhl : f l = p\n⊢ ∃ a ha, p = (fun l x => f l) a ha", "tactic": "exact ⟨l, Finset.mem_univ l, hl.symm⟩" }, { "state_after": "case h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ {i | i.fst ∈ i.snd} ↔ p.snd ∈ {l | p.fst ∈ l}", "state_before": "case h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ s ↔ p.fst ∈ Finset.univ ∧ p.snd ∈ Set.toFinset {l | p.fst ∈ l}", "tactic": "simp_rw [Finset.mem_univ, true_and_iff, Set.mem_toFinset]" }, { "state_after": "no goals", "state_before": "case h\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\n⊢ ∀ (p : P × L), p ∈ {i | i.fst ∈ i.snd} ↔ p.snd ∈ {l | p.fst ∈ l}", "tactic": "exact fun p => Iff.rfl" }, { "state_after": "no goals", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\n⊢ ∑ i in sᶜ, lineCount L i.fst = ∑ i in sᶜ, pointCount P i.snd", "tactic": "rwa [← s.sum_add_sum_compl, ← s.sum_add_sum_compl, step2, add_left_cancel_iff] at step1" }, { "state_after": "no goals", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhPL : Fintype.card P = Fintype.card L\np : P\nl : L\nhpl : ¬p ∈ l\nf : L → P\nhf1 : Function.Bijective f\nhf2 : ∀ (l : L), pointCount P l = lineCount L (f l)\ns : Finset (P × L) := Set.toFinset {i | i.fst ∈ i.snd}\nstep1 : ∑ i : P × L, lineCount L i.fst = ∑ i : P × L, pointCount P i.snd\nstep2 : ∑ i in s, lineCount L i.fst = ∑ i in s, pointCount P i.snd\nstep3 :\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), lineCount L i.fst =\n ∑ i in Set.toFinset ({i | i.fst ∈ i.snd}ᶜ), pointCount P i.snd\ni : P × L\nhi : i ∈ Set.toFinset ({i | i.fst ∈ i.snd}ᶜ)\n⊢ ¬i.fst ∈ i.snd", "tactic": "exact Set.mem_toFinset.mp hi" } ]
[ 312, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Data/Fin/VecNotation.lean
Matrix.head_sub
[]
[ 517, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 516, 1 ]
Mathlib/RingTheory/DedekindDomain/Ideal.lean
Ideal.pow_succ_lt_pow
[]
[ 772, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 769, 1 ]
Mathlib/Data/Bool/Basic.lean
Bool.and_intro
[ { "state_after": "no goals", "state_before": "⊢ ∀ {a b : Bool}, a = true → b = true → (a && b) = true", "tactic": "decide" } ]
[ 176, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Order/Filter/NAry.lean
Filter.map₂_left_identity
[ { "state_after": "no goals", "state_before": "α : Type u_2\nα' : Type ?u.45119\nβ : Type u_1\nβ' : Type ?u.45125\nγ : Type ?u.45128\nγ' : Type ?u.45131\nδ : Type ?u.45134\nδ' : Type ?u.45137\nε : Type ?u.45140\nε' : Type ?u.45143\nm : α → β → γ\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nh✝ h₁ h₂ : Filter γ\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\nu : Set γ\nv : Set δ\na✝ : α\nb : β\nc : γ\nf : α → β → β\na : α\nh : ∀ (b : β), f a b = b\nl : Filter β\n⊢ map₂ f (pure a) l = l", "tactic": "rw [map₂_pure_left, show f a = id from funext h, map_id]" } ]
[ 414, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 1 ]
Mathlib/Analysis/Calculus/DiffContOnCl.lean
IsClosed.diffContOnCl_iff
[]
[ 48, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Algebra/Squarefree.lean
UniqueFactorizationMonoid.dvd_pow_iff_dvd_of_squarefree
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : UniqueFactorizationMonoid R\nx y : R\nn : ℕ\nhsq : Squarefree x\nh0 : n ≠ 0\n⊢ x ∣ y ^ n ↔ x ∣ y", "tactic": "classical\n haveI := UniqueFactorizationMonoid.toGCDMonoid R\n exact ⟨hsq.isRadical n y, fun h => h.pow h0⟩" }, { "state_after": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : UniqueFactorizationMonoid R\nx y : R\nn : ℕ\nhsq : Squarefree x\nh0 : n ≠ 0\nthis : GCDMonoid R\n⊢ x ∣ y ^ n ↔ x ∣ y", "state_before": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : UniqueFactorizationMonoid R\nx y : R\nn : ℕ\nhsq : Squarefree x\nh0 : n ≠ 0\n⊢ x ∣ y ^ n ↔ x ∣ y", "tactic": "haveI := UniqueFactorizationMonoid.toGCDMonoid R" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : CancelCommMonoidWithZero R\ninst✝ : UniqueFactorizationMonoid R\nx y : R\nn : ℕ\nhsq : Squarefree x\nh0 : n ≠ 0\nthis : GCDMonoid R\n⊢ x ∣ y ^ n ↔ x ∣ y", "tactic": "exact ⟨hsq.isRadical n y, fun h => h.pow h0⟩" } ]
[ 264, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/NumberTheory/Fermat4.lean
Fermat42.minimal_comm
[]
[ 114, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Mathlib/Algebra/GroupPower/Basic.lean
ofMul_pow
[]
[ 458, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 457, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.disjoint_principal_principal
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.57128\nγ : Type ?u.57131\nι : Sort ?u.57134\nι' : Sort ?u.57137\nl l' : Filter α\np : ι → Prop\ns✝ : ι → Set α\nt✝ : Set α\ni : ι\np' : ι' → Prop\ns' : ι' → Set α\ni' : ι'\ns t : Set α\n⊢ Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t", "tactic": "rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal]" } ]
[ 709, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
dvd_gcd_mul_of_dvd_mul
[]
[ 512, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Products.lean
CategoryTheory.Limits.Pi.reindex_inv_π
[ { "state_after": "no goals", "state_before": "β : Type w\nC : Type u\ninst✝² : Category C\nγ : Type v\nε : β ≃ γ\nf : γ → C\ninst✝¹ : HasProduct f\ninst✝ : HasProduct (f ∘ ↑ε)\nb : β\n⊢ (reindex ε f).inv ≫ π (f ∘ ↑ε) b = π f (↑ε b)", "tactic": "simp [Iso.inv_comp_eq]" } ]
[ 416, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 415, 1 ]
Mathlib/Data/Nat/GCD/Basic.lean
Nat.coprime_add_mul_right_left
[ { "state_after": "no goals", "state_before": "m n k : ℕ\n⊢ coprime (m + k * n) n ↔ coprime m n", "tactic": "rw [coprime, coprime, gcd_add_mul_right_left]" } ]
[ 174, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
LinearMap.toMatrix'_toLin'
[]
[ 330, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/Data/Finset/Preimage.lean
Finset.preimage_empty
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nf : α → β\n⊢ InjOn f (f ⁻¹' ↑∅)", "tactic": "simp [InjOn]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nf : α → β\n⊢ ↑(preimage ∅ f (_ : ∀ (a : α), a ∈ f ⁻¹' ↑∅ → ∀ (a_2 : α), a_2 ∈ f ⁻¹' ↑∅ → f a = f a_2 → a = a_2)) = ↑∅", "tactic": "simp" } ]
[ 50, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.StableUnderBaseChange.diagonal
[ { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\nX Y S : C\nf : X ⟶ S\ng : Y ⟶ S\nh : MorphismProperty.diagonal P g\n⊢ MorphismProperty.diagonal P pullback.fst", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\n⊢ ∀ (X Y S : C) (f : X ⟶ S) (g : Y ⟶ S), MorphismProperty.diagonal P g → MorphismProperty.diagonal P pullback.fst", "tactic": "introv h" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\nX Y S : C\nf : X ⟶ S\ng : Y ⟶ S\nh : MorphismProperty.diagonal P g\n⊢ P ((baseChange f).map (Over.homMk (pullback.diagonal g))).left", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\nX Y S : C\nf : X ⟶ S\ng : Y ⟶ S\nh : MorphismProperty.diagonal P g\n⊢ MorphismProperty.diagonal P pullback.fst", "tactic": "rw [diagonal_iff, diagonal_pullback_fst, hP'.cancel_left_isIso, hP'.cancel_right_isIso]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\nX Y S : C\nf : X ⟶ S\ng : Y ⟶ S\nh : MorphismProperty.diagonal P g\n⊢ P ((baseChange f).map (Over.homMk (pullback.diagonal g))).left", "tactic": "exact hP.baseChange_map f _ (by simpa)" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.79385\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderBaseChange P\nhP' : RespectsIso P\nX Y S : C\nf : X ⟶ S\ng : Y ⟶ S\nh : MorphismProperty.diagonal P g\n⊢ P (Over.homMk (pullback.diagonal g)).left", "tactic": "simpa" } ]
[ 555, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 549, 1 ]
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.mem_iInf
[ { "state_after": "no goals", "state_before": "M : Type u_2\nN : Type ?u.9228\nA : Type ?u.9231\ninst✝¹ : Mul M\ns : Set M\ninst✝ : Add A\nt : Set A\nS✝ : Subsemigroup M\nι : Sort u_1\nS : ι → Subsemigroup M\nx : M\n⊢ (x ∈ ⨅ (i : ι), S i) ↔ ∀ (i : ι), x ∈ S i", "tactic": "simp only [iInf, mem_sInf, Set.forall_range_iff]" } ]
[ 256, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.not_dvd_of_between_consec_multiples
[ { "state_after": "case intro\nn k l d : ℕ\nh1 : n * k < n * d\nh2 : n * d < n * (k + 1)\n⊢ False", "state_before": "m n k l : ℕ\nh1 : n * k < m\nh2 : m < n * (k + 1)\n⊢ ¬n ∣ m", "tactic": "rintro ⟨d, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro\nn k l d : ℕ\nh1 : n * k < n * d\nh2 : n * d < n * (k + 1)\n⊢ False", "tactic": "exact Monotone.ne_of_lt_of_lt_nat (Covariant.monotone_of_const n) k h1 h2 d rfl" } ]
[ 564, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 562, 1 ]
Mathlib/RingTheory/Polynomial/Pochhammer.lean
pochhammer_mul
[ { "state_after": "case zero\nS : Type u\ninst✝ : Semiring S\nn : ℕ\n⊢ pochhammer S n * comp (pochhammer S Nat.zero) (X + ↑n) = pochhammer S (n + Nat.zero)\n\ncase succ\nS : Type u\ninst✝ : Semiring S\nn m : ℕ\nih : pochhammer S n * comp (pochhammer S m) (X + ↑n) = pochhammer S (n + m)\n⊢ pochhammer S n * comp (pochhammer S (Nat.succ m)) (X + ↑n) = pochhammer S (n + Nat.succ m)", "state_before": "S : Type u\ninst✝ : Semiring S\nn m : ℕ\n⊢ pochhammer S n * comp (pochhammer S m) (X + ↑n) = pochhammer S (n + m)", "tactic": "induction' m with m ih" }, { "state_after": "no goals", "state_before": "case zero\nS : Type u\ninst✝ : Semiring S\nn : ℕ\n⊢ pochhammer S n * comp (pochhammer S Nat.zero) (X + ↑n) = pochhammer S (n + Nat.zero)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case succ\nS : Type u\ninst✝ : Semiring S\nn m : ℕ\nih : pochhammer S n * comp (pochhammer S m) (X + ↑n) = pochhammer S (n + m)\n⊢ pochhammer S n * comp (pochhammer S (Nat.succ m)) (X + ↑n) = pochhammer S (n + Nat.succ m)", "tactic": "rw [pochhammer_succ_right, Polynomial.mul_X_add_nat_cast_comp, ← mul_assoc, ih,\n Nat.succ_eq_add_one, ← add_assoc, pochhammer_succ_right, Nat.cast_add, add_assoc]" } ]
[ 143, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Data/Real/Basic.lean
Real.sSup_le
[ { "state_after": "case inl\nx y a : ℝ\nha : 0 ≤ a\nhS : ∀ (x : ℝ), x ∈ ∅ → x ≤ a\n⊢ sSup ∅ ≤ a\n\ncase inr\nx y : ℝ\nS : Set ℝ\na : ℝ\nhS : ∀ (x : ℝ), x ∈ S → x ≤ a\nha : 0 ≤ a\nhS₂ : Set.Nonempty S\n⊢ sSup S ≤ a", "state_before": "x y : ℝ\nS : Set ℝ\na : ℝ\nhS : ∀ (x : ℝ), x ∈ S → x ≤ a\nha : 0 ≤ a\n⊢ sSup S ≤ a", "tactic": "rcases S.eq_empty_or_nonempty with (rfl | hS₂)" }, { "state_after": "no goals", "state_before": "case inl\nx y a : ℝ\nha : 0 ≤ a\nhS : ∀ (x : ℝ), x ∈ ∅ → x ≤ a\n⊢ sSup ∅ ≤ a\n\ncase inr\nx y : ℝ\nS : Set ℝ\na : ℝ\nhS : ∀ (x : ℝ), x ∈ S → x ≤ a\nha : 0 ≤ a\nhS₂ : Set.Nonempty S\n⊢ sSup S ≤ a", "tactic": "exacts [sSup_empty.trans_le ha, csSup_le hS₂ hS]" } ]
[ 878, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 876, 11 ]
Mathlib/Analysis/Asymptotics/AsymptoticEquivalent.lean
Asymptotics.IsEquivalent.tendsto_nhds_iff
[]
[ 165, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Data/Nat/Size.lean
Nat.size_le_size
[]
[ 175, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.inv_unique
[ { "state_after": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.575607\ninst✝ : CommMonoid P\nf : M →* N\nh : ∀ (y : { x // x ∈ S }), IsUnit (↑f ↑y)\ny : { x // x ∈ S }\nz : N\nH : ↑f ↑y * z = 1\n⊢ ↑1 = ↑f ↑y * z", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.575607\ninst✝ : CommMonoid P\nf : M →* N\nh : ∀ (y : { x // x ∈ S }), IsUnit (↑f ↑y)\ny : { x // x ∈ S }\nz : N\nH : ↑f ↑y * z = 1\n⊢ ↑(↑(IsUnit.liftRight (MonoidHom.restrict f S) h) y)⁻¹ = z", "tactic": "rw [← one_mul _⁻¹, Units.val_mul, mul_inv_left]" }, { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.575607\ninst✝ : CommMonoid P\nf : M →* N\nh : ∀ (y : { x // x ∈ S }), IsUnit (↑f ↑y)\ny : { x // x ∈ S }\nz : N\nH : ↑f ↑y * z = 1\n⊢ ↑1 = ↑f ↑y * z", "tactic": "exact H.symm" } ]
[ 674, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 671, 1 ]
Mathlib/Algebra/Hom/Group.lean
MulHom.comp_mul
[ { "state_after": "case h\nα : Type ?u.204587\nβ : Type ?u.204590\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.204602\nH : Type ?u.204605\nF : Type ?u.204608\ninst✝² : Mul M\ninst✝¹ : CommSemigroup N\ninst✝ : CommSemigroup P\ng : N →ₙ* P\nf₁ f₂ : M →ₙ* N\nx✝ : M\n⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝", "state_before": "α : Type ?u.204587\nβ : Type ?u.204590\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.204602\nH : Type ?u.204605\nF : Type ?u.204608\ninst✝² : Mul M\ninst✝¹ : CommSemigroup N\ninst✝ : CommSemigroup P\ng : N →ₙ* P\nf₁ f₂ : M →ₙ* N\n⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nα : Type ?u.204587\nβ : Type ?u.204590\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.204602\nH : Type ?u.204605\nF : Type ?u.204608\ninst✝² : Mul M\ninst✝¹ : CommSemigroup N\ninst✝ : CommSemigroup P\ng : N →ₙ* P\nf₁ f₂ : M →ₙ* N\nx✝ : M\n⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝", "tactic": "simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]" } ]
[ 1475, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1472, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.blimsup_congr
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\n⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = blimsup v f p", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\n⊢ blimsup u f p = blimsup v f p", "tactic": "rw [blimsup_eq]" }, { "state_after": "case e_a.h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\n⊢ b ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ b ∈ {a | ∀ᶠ (x : β) in f, p x → v x ≤ a}", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\n⊢ sInf {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} = blimsup v f p", "tactic": "congr with b" }, { "state_after": "case e_a.h.refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → u x ≤ b\nh₂ : p x\n⊢ v x ≤ b\n\ncase e_a.h.refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → v x ≤ b\nh₂ : p x\n⊢ u x ≤ b", "state_before": "case e_a.h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\n⊢ b ∈ {a | ∀ᶠ (x : β) in f, p x → u x ≤ a} ↔ b ∈ {a | ∀ᶠ (x : β) in f, p x → v x ≤ a}", "tactic": "refine' eventually_congr (h.mono fun x hx => ⟨fun h₁ h₂ => _, fun h₁ h₂ => _⟩)" }, { "state_after": "case e_a.h.refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → u x ≤ b\nh₂ : p x\n⊢ u x ≤ b", "state_before": "case e_a.h.refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → u x ≤ b\nh₂ : p x\n⊢ v x ≤ b", "tactic": "rw [← hx h₂]" }, { "state_after": "no goals", "state_before": "case e_a.h.refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → u x ≤ b\nh₂ : p x\n⊢ u x ≤ b", "tactic": "exact h₁ h₂" }, { "state_after": "case e_a.h.refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → v x ≤ b\nh₂ : p x\n⊢ v x ≤ b", "state_before": "case e_a.h.refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → v x ≤ b\nh₂ : p x\n⊢ u x ≤ b", "tactic": "rw [hx h₂]" }, { "state_after": "no goals", "state_before": "case e_a.h.refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.81206\nι : Type ?u.81209\ninst✝ : ConditionallyCompleteLattice α\nf : Filter β\nu v : β → α\np : β → Prop\nh : ∀ᶠ (a : β) in f, p a → u a = v a\nb : α\nx : β\nhx : p x → u x = v x\nh₁ : p x → v x ≤ b\nh₂ : p x\n⊢ v x ≤ b", "tactic": "exact h₁ h₂" } ]
[ 586, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 578, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.shiftLeft_eq
[ { "state_after": "no goals", "state_before": "a b✝ b : Nat\n⊢ 2 * a * 2 ^ b = a * 2 ^ (b + 1)", "tactic": "simp [pow_succ, Nat.mul_assoc, Nat.mul_left_comm, Nat.mul_comm]" } ]
[ 803, 68 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 799, 9 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
UniformCauchySeqOnFilter.mono_left
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\n⊢ UniformCauchySeqOnFilter F p'' p'", "tactic": "intro u hu" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nthis : ∀ᶠ (x : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u\n⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\nu : Set (β × β)\nhu : u ∈ 𝓤 β\n⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u", "tactic": "have := (hf u hu).filter_mono (p'.prod_mono_left (Filter.prod_mono hp hp))" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nthis : ∀ᶠ (x : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u\n⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u", "tactic": "exact this.mono (by simp)" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\np'' : Filter ι\nhf : UniformCauchySeqOnFilter F p p'\nhp : p'' ≤ p\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nthis : ∀ᶠ (x : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u\n⊢ ∀ (x : (ι × ι) × α), (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u → (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u", "tactic": "simp" } ]
[ 481, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 477, 1 ]
Mathlib/Analysis/Convex/Extreme.lean
IsExtreme.inter
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\n⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x : E⦄, x ∈ B ∩ C → x ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\n⊢ IsExtreme 𝕜 A (B ∩ C)", "tactic": "use Subset.trans (inter_subset_left _ _) hAB.1" }, { "state_after": "case intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\n⊢ ∀ ⦃x₁ : E⦄, x₁ ∈ A → ∀ ⦃x₂ : E⦄, x₂ ∈ A → ∀ ⦃x : E⦄, x ∈ B ∩ C → x ∈ openSegment 𝕜 x₁ x₂ → x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "tactic": "rintro x₁ hx₁A x₂ hx₂A x ⟨hxB, hxC⟩ hx" }, { "state_after": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\nhx₁B : x₁ ∈ B\nhx₂B : x₂ ∈ B\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "state_before": "case intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "tactic": "obtain ⟨hx₁B, hx₂B⟩ := hAB.2 hx₁A hx₂A hxB hx" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\nhx₁B : x₁ ∈ B\nhx₂B : x₂ ∈ B\nhx₁C : x₁ ∈ C\nhx₂C : x₂ ∈ C\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "state_before": "case intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\nhx₁B : x₁ ∈ B\nhx₂B : x₂ ∈ B\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "tactic": "obtain ⟨hx₁C, hx₂C⟩ := hAC.2 hx₁A hx₂A hxC hx" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.2321\nι : Type ?u.2324\nπ : ι → Type ?u.2329\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : AddCommMonoid E\ninst✝ : SMul 𝕜 E\nA B C : Set E\nx✝ : E\nhAB : IsExtreme 𝕜 A B\nhAC : IsExtreme 𝕜 A C\nx₁ : E\nhx₁A : x₁ ∈ A\nx₂ : E\nhx₂A : x₂ ∈ A\nx : E\nhxB : x ∈ B\nhxC : x ∈ C\nhx : x ∈ openSegment 𝕜 x₁ x₂\nhx₁B : x₁ ∈ B\nhx₂B : x₂ ∈ B\nhx₁C : x₁ ∈ C\nhx₂C : x₂ ∈ C\n⊢ x₁ ∈ B ∩ C ∧ x₂ ∈ B ∩ C", "tactic": "exact ⟨⟨hx₁B, hx₁C⟩, hx₂B, hx₂C⟩" } ]
[ 105, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometry.map_eq_iff
[]
[ 288, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 287, 1 ]
Mathlib/Algebra/Order/Ring/WithTop.lean
WithTop.coe_mul
[ { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : a = 0\n⊢ ↑(a * b) = ↑a * ↑b\n\ncase neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\n⊢ ↑(a * b) = ↑a * ↑b", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\n⊢ ↑(a * b) = ↑a * ↑b", "tactic": "by_cases ha : a = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : a = 0\n⊢ ↑(a * b) = ↑a * ↑b", "tactic": "simp [ha]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : b = 0\n⊢ ↑(a * b) = ↑a * ↑b\n\ncase neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ↑(a * b) = ↑a * ↑b", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\n⊢ ↑(a * b) = ↑a * ↑b", "tactic": "by_cases hb : b = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : b = 0\n⊢ ↑(a * b) = ↑a * ↑b", "tactic": "simp [hb]" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ↑(a * b) = Option.map₂ (fun x x_1 => x * x_1) ↑a ↑b", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ↑(a * b) = ↑a * ↑b", "tactic": "simp [*, mul_def]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : MulZeroClass α\na b : α\nha : ¬a = 0\nhb : ¬b = 0\n⊢ ↑(a * b) = Option.map₂ (fun x x_1 => x * x_1) ↑a ↑b", "tactic": "rfl" } ]
[ 98, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.some_eq_coe'
[]
[ 155, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 9 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.neg_mulVec
[ { "state_after": "case h\nl : Type ?u.908864\nm : Type u_2\nn : Type u_1\no : Type ?u.908873\nm' : o → Type ?u.908878\nn' : o → Type ?u.908883\nR : Type ?u.908886\nS : Type ?u.908889\nα : Type v\nβ : Type w\nγ : Type ?u.908896\ninst✝¹ : NonUnitalNonAssocRing α\ninst✝ : Fintype n\nv : n → α\nA : Matrix m n α\nx✝ : m\n⊢ mulVec (-A) v x✝ = (-mulVec A v) x✝", "state_before": "l : Type ?u.908864\nm : Type u_2\nn : Type u_1\no : Type ?u.908873\nm' : o → Type ?u.908878\nn' : o → Type ?u.908883\nR : Type ?u.908886\nS : Type ?u.908889\nα : Type v\nβ : Type w\nγ : Type ?u.908896\ninst✝¹ : NonUnitalNonAssocRing α\ninst✝ : Fintype n\nv : n → α\nA : Matrix m n α\n⊢ mulVec (-A) v = -mulVec A v", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nl : Type ?u.908864\nm : Type u_2\nn : Type u_1\no : Type ?u.908873\nm' : o → Type ?u.908878\nn' : o → Type ?u.908883\nR : Type ?u.908886\nS : Type ?u.908889\nα : Type v\nβ : Type w\nγ : Type ?u.908896\ninst✝¹ : NonUnitalNonAssocRing α\ninst✝ : Fintype n\nv : n → α\nA : Matrix m n α\nx✝ : m\n⊢ mulVec (-A) v x✝ = (-mulVec A v) x✝", "tactic": "apply neg_dotProduct" } ]
[ 1908, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1906, 1 ]
Mathlib/Topology/Order/Basic.lean
nhds_basis_Ioo
[]
[ 1335, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1333, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_map'
[ { "state_after": "case e_μ\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.1148988\nδ : Type ?u.1148991\nm : MeasurableSpace α\nμ ν : Measure α\nmβ : MeasurableSpace β\nf : β → ℝ≥0∞\ng : α → β\nhf : AEMeasurable f\nhg : AEMeasurable g\n⊢ Measure.map g μ = Measure.map (AEMeasurable.mk g hg) μ", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1148988\nδ : Type ?u.1148991\nm : MeasurableSpace α\nμ ν : Measure α\nmβ : MeasurableSpace β\nf : β → ℝ≥0∞\ng : α → β\nhf : AEMeasurable f\nhg : AEMeasurable g\n⊢ (∫⁻ (a : β), AEMeasurable.mk f hf a ∂Measure.map g μ) =\n ∫⁻ (a : β), AEMeasurable.mk f hf a ∂Measure.map (AEMeasurable.mk g hg) μ", "tactic": "congr 1" }, { "state_after": "no goals", "state_before": "case e_μ\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.1148988\nδ : Type ?u.1148991\nm : MeasurableSpace α\nμ ν : Measure α\nmβ : MeasurableSpace β\nf : β → ℝ≥0∞\ng : α → β\nhf : AEMeasurable f\nhg : AEMeasurable g\n⊢ Measure.map g μ = Measure.map (AEMeasurable.mk g hg) μ", "tactic": "exact Measure.map_congr hg.ae_eq_mk" } ]
[ 1279, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1268, 1 ]
Mathlib/Algebra/Quaternion.lean
Quaternion.smul_imJ
[]
[ 1041, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1041, 9 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.mono_iff_injective
[ { "state_after": "n m : SimplexCategory\nf : n ⟶ m\n⊢ Mono (skeletalEquivalence.functor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)", "state_before": "n m : SimplexCategory\nf : n ⟶ m\n⊢ Mono f ↔ Function.Injective ↑(Hom.toOrderHom f)", "tactic": "rw [← Functor.mono_map_iff_mono skeletalEquivalence.functor.{0}]" }, { "state_after": "n m : SimplexCategory\nf : n ⟶ m\n⊢ Mono (skeletalFunctor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)", "state_before": "n m : SimplexCategory\nf : n ⟶ m\n⊢ Mono (skeletalEquivalence.functor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)", "tactic": "dsimp only [skeletalEquivalence, Functor.asEquivalence_functor]" }, { "state_after": "no goals", "state_before": "n m : SimplexCategory\nf : n ⟶ m\n⊢ Mono (skeletalFunctor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)", "tactic": "rw [NonemptyFinLinOrdCat.mono_iff_injective, skeletalFunctor.coe_map,\n Function.Injective.of_comp_iff ULift.up_injective,\n Function.Injective.of_comp_iff' _ ULift.down_bijective]" } ]
[ 483, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 477, 1 ]
Mathlib/Topology/Connected.lean
isConnected_singleton
[]
[ 89, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Algebra/Order/Sub/Canonical.lean
tsub_tsub_tsub_cancel_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : AddCommSemigroup α\ninst✝⁴ : PartialOrder α\ninst✝³ : ExistsAddOfLE α\ninst✝² : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\ninst✝¹ : Sub α\ninst✝ : OrderedSub α\na b c d : α\nh : c ≤ b\n⊢ a - c - (b - c) = a - b", "tactic": "rw [tsub_tsub, add_tsub_cancel_of_le h]" } ]
[ 71, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/RingTheory/QuotientNilpotent.lean
Ideal.isRadical_iff_quotient_reduced
[ { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ IsRadical (RingHom.ker (Quotient.mk I)) ↔ IsReduced (R ⧸ I)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ IsRadical I ↔ IsReduced (R ⧸ I)", "tactic": "conv_lhs => rw [← @Ideal.mk_ker R _ I]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ IsRadical (RingHom.ker (Quotient.mk I)) ↔ IsReduced (R ⧸ I)", "tactic": "exact RingHom.ker_isRadical_iff_reduced_of_surjective (@Ideal.Quotient.mk_surjective R _ I)" } ]
[ 21, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 18, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
Associates.out_dvd_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizationMonoid α\na : α\nb : Associates α\n⊢ ∀ (a_1 : α),\n Associates.out (Quotient.mk (Associated.setoid α) a_1) ∣ a ↔ Quotient.mk (Associated.setoid α) a_1 ≤ Associates.mk a", "tactic": "simp [Associates.out_mk, Associates.quotient_mk_eq_mk, mk_le_mk_iff_dvd_iff]" } ]
[ 243, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Mathlib/Data/Nat/Factorial/Basic.lean
Nat.ascFactorial_le_pow_add
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ascFactorial n 0 ≤ (n + 0) ^ 0", "tactic": "rw [ascFactorial_zero, pow_zero]" }, { "state_after": "n k : ℕ\n⊢ succ (n + k) * ascFactorial n k ≤ succ (n + k) * succ (n + k) ^ k", "state_before": "n k : ℕ\n⊢ ascFactorial n (k + 1) ≤ (n + (k + 1)) ^ (k + 1)", "tactic": "rw [ascFactorial_succ, pow_succ, ← add_assoc,\n← Nat.succ_eq_add_one (n + k), mul_comm _ (succ (n + k))]" }, { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ succ (n + k) * ascFactorial n k ≤ succ (n + k) * succ (n + k) ^ k", "tactic": "exact\n Nat.mul_le_mul_of_nonneg_left\n ((ascFactorial_le_pow_add _ k).trans (Nat.pow_le_pow_of_le_left (le_succ _) _))" } ]
[ 312, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Data/Vector/Basic.lean
Vector.get_zero
[]
[ 258, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Std/Data/List/Init/Lemmas.lean
List.append_bind
[ { "state_after": "case nil\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\n⊢ List.bind ([] ++ ys) f = List.bind [] f ++ List.bind ys f\n\ncase cons\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : List.bind (tail✝ ++ ys) f = List.bind tail✝ f ++ List.bind ys f\n⊢ List.bind (head✝ :: tail✝ ++ ys) f = List.bind (head✝ :: tail✝) f ++ List.bind ys f", "state_before": "α : Type u_1\nβ : Type u_2\nxs ys : List α\nf : α → List β\n⊢ List.bind (xs ++ ys) f = List.bind xs f ++ List.bind ys f", "tactic": "induction xs" }, { "state_after": "case cons\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : List.bind (tail✝ ++ ys) f = List.bind tail✝ f ++ List.bind ys f\n⊢ List.bind (head✝ :: tail✝ ++ ys) f = List.bind (head✝ :: tail✝) f ++ List.bind ys f", "state_before": "case nil\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\n⊢ List.bind ([] ++ ys) f = List.bind [] f ++ List.bind ys f\n\ncase cons\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : List.bind (tail✝ ++ ys) f = List.bind tail✝ f ++ List.bind ys f\n⊢ List.bind (head✝ :: tail✝ ++ ys) f = List.bind (head✝ :: tail✝) f ++ List.bind ys f", "tactic": "{rfl}" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u_1\nβ : Type u_2\nys : List α\nf : α → List β\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : List.bind (tail✝ ++ ys) f = List.bind tail✝ f ++ List.bind ys f\n⊢ List.bind (head✝ :: tail✝ ++ ys) f = List.bind (head✝ :: tail✝) f ++ List.bind ys f", "tactic": "simp_all [cons_bind, append_assoc]" } ]
[ 107, 58 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 105, 9 ]