file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/LinearAlgebra/LinearIndependent.lean
LinearIndependent.extend_subset
[]
[ 1309, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1306, 1 ]
Mathlib/FieldTheory/IntermediateField.lean
IntermediateField.add_mem
[]
[ 182, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 181, 11 ]
Mathlib/Algebra/Tropical/Basic.lean
Tropical.untrop_le_iff
[]
[ 177, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.filterMap
[ { "state_after": "no goals", "state_before": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\nf : α → Option β\nl₁ l₂ : List α\np : l₁ ~ l₂\n⊢ List.filterMap f l₁ ~ List.filterMap f l₂", "tactic": "induction p with\n| nil => simp\n| cons x _p IH =>\n simp only [filterMap]\n cases h : f x\n <;> simp [h, filterMap, IH, Perm.cons]\n| swap x y l₂ =>\n simp only [filterMap]\n cases hx : f x\n <;> cases hy : f y\n <;> simp [hx, hy, filterMap, swap]\n| trans _p₁ _p₂ IH₁ IH₂ =>\n exact IH₁.trans IH₂" }, { "state_after": "no goals", "state_before": "case nil\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\nf : α → Option β\nl₁ l₂ : List α\n⊢ List.filterMap f [] ~ List.filterMap f []", "tactic": "simp" }, { "state_after": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂ : List α\nx : α\nl₁✝ l₂✝ : List α\n_p : l₁✝ ~ l₂✝\nIH : List.filterMap f l₁✝ ~ List.filterMap f l₂✝\n⊢ List.filterMap f (x :: l₁✝) ~ List.filterMap f (x :: l₂✝)", "state_before": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂ : List α\nx : α\nl₁✝ l₂✝ : List α\n_p : l₁✝ ~ l₂✝\nIH : List.filterMap f l₁✝ ~ List.filterMap f l₂✝\n⊢ List.filterMap f (x :: l₁✝) ~ List.filterMap f (x :: l₂✝)", "tactic": "simp only [filterMap]" }, { "state_after": "no goals", "state_before": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂ : List α\nx : α\nl₁✝ l₂✝ : List α\n_p : l₁✝ ~ l₂✝\nIH : List.filterMap f l₁✝ ~ List.filterMap f l₂✝\n⊢ List.filterMap f (x :: l₁✝) ~ List.filterMap f (x :: l₂✝)", "tactic": "cases h : f x\n <;> simp [h, filterMap, IH, Perm.cons]" }, { "state_after": "case swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂✝ : List α\nx y : α\nl₂ : List α\n⊢ List.filterMap f (y :: x :: l₂) ~ List.filterMap f (x :: y :: l₂)", "state_before": "case swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂✝ : List α\nx y : α\nl₂ : List α\n⊢ List.filterMap f (y :: x :: l₂) ~ List.filterMap f (x :: y :: l₂)", "tactic": "simp only [filterMap]" }, { "state_after": "no goals", "state_before": "case swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂✝ : List α\nx y : α\nl₂ : List α\n⊢ List.filterMap f (y :: x :: l₂) ~ List.filterMap f (x :: y :: l₂)", "tactic": "cases hx : f x\n <;> cases hy : f y\n <;> simp [hx, hy, filterMap, swap]" }, { "state_after": "no goals", "state_before": "case trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\nf : α → Option β\nl₁ l₂ l₁✝ l₂✝ l₃✝ : List α\n_p₁ : l₁✝ ~ l₂✝\n_p₂ : l₂✝ ~ l₃✝\nIH₁ : List.filterMap f l₁✝ ~ List.filterMap f l₂✝\nIH₂ : List.filterMap f l₂✝ ~ List.filterMap f l₃✝\n⊢ List.filterMap f l₁✝ ~ List.filterMap f l₃✝", "tactic": "exact IH₁.trans IH₂" } ]
[ 254, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
InnerProductSpace.Core.inner_self_eq_zero
[ { "state_after": "𝕜 : Type u_1\nE : Type ?u.538902\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\n⊢ inner 0 0 = 0", "state_before": "𝕜 : Type u_1\nE : Type ?u.538902\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\nx : F\n⊢ x = 0 → inner x x = 0", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type ?u.538902\nF : Type u_2\ninst✝² : IsROrC 𝕜\ninst✝¹ : AddCommGroup F\ninst✝ : Module 𝕜 F\nc : Core 𝕜 F\n⊢ inner 0 0 = 0", "tactic": "exact inner_zero_left _" } ]
[ 261, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Split.lean
BoxIntegral.Box.splitUpper_eq_self
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nM : Type ?u.15762\nn : ℕ\nI : Box ι\ni : ι\nx : ℝ\ny : ι → ℝ\n⊢ splitUpper I i x = ↑I ↔ x ≤ lower I i", "tactic": "simp [splitUpper, update_eq_iff]" } ]
[ 128, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
tendsto_inv_nhdsWithin_Ioi
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝⁶ : TopologicalSpace G\ninst✝⁵ : Group G\ninst✝⁴ : TopologicalGroup G\ninst✝³ : TopologicalSpace α\nf : α → G\ns : Set α\nx : α\ninst✝² : TopologicalSpace H\ninst✝¹ : OrderedCommGroup H\ninst✝ : ContinuousInv H\na : H\n⊢ Tendsto (fun a => a⁻¹) (𝓟 (Ioi a)) (𝓟 (Iio a⁻¹))", "tactic": "simp [tendsto_principal_principal]" } ]
[ 561, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 560, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.IsAlt.ortho_comm
[]
[ 977, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 976, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ico_inter_Iio
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.204664\ninst✝¹ : LinearOrder α\ninst✝ : LinearOrder β\nf : α → β\na a₁ a₂ b b₁ b₂ c d : α\n⊢ ∀ (x : α), x ∈ Ico a b ∩ Iio c ↔ x ∈ Ico a (min b c)", "tactic": "simp (config := { contextual := true }) [iff_def]" } ]
[ 1832, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1831, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.isOpen_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.96096\nι : Type ?u.96099\ninst✝ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\n⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ ε, ε > 0 ∧ ball x ε ⊆ s", "tactic": "simp only [isOpen_iff_mem_nhds, mem_nhds_iff]" } ]
[ 1005, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1004, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Pointwise.lean
AffineSubspace.pointwise_vadd_span
[]
[ 78, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/GroupTheory/Nilpotent.lean
nilpotencyClass_quotient_center
[ { "state_after": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = n\n⊢ nilpotencyClass (G ⧸ center G) = n - 1", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\n⊢ nilpotencyClass (G ⧸ center G) = nilpotencyClass G - 1", "tactic": "generalize hn : Group.nilpotencyClass G = n" }, { "state_after": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nhn : nilpotencyClass G = Nat.zero\n⊢ nilpotencyClass (G ⧸ center G) = Nat.zero - 1\n\ncase succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = n\n⊢ nilpotencyClass (G ⧸ center G) = n - 1", "tactic": "rcases n with (rfl | n)" }, { "state_after": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nhn : Subsingleton G\n⊢ Subsingleton (G ⧸ center G)", "state_before": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nhn : nilpotencyClass G = Nat.zero\n⊢ nilpotencyClass (G ⧸ center G) = Nat.zero - 1", "tactic": "simp [nilpotencyClass_zero_iff_subsingleton] at *" }, { "state_after": "no goals", "state_before": "case zero\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nhn : Subsingleton G\n⊢ Subsingleton (G ⧸ center G)", "tactic": "exact Quotient.instSubsingletonQuotient (leftRel (center G))" }, { "state_after": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) = n", "state_before": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1", "tactic": "suffices Group.nilpotencyClass (G ⧸ center G) = n by simpa" }, { "state_after": "case succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) ≤ n\n\ncase succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ n ≤ nilpotencyClass (G ⧸ center G)", "state_before": "case succ\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) = n", "tactic": "apply le_antisymm" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\nthis : nilpotencyClass (G ⧸ center G) = n\n⊢ nilpotencyClass (G ⧸ center G) = Nat.succ n - 1", "tactic": "simpa" }, { "state_after": "case succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ upperCentralSeries (G ⧸ center G) n = ⊤", "state_before": "case succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ nilpotencyClass (G ⧸ center G) ≤ n", "tactic": "apply upperCentralSeries_eq_top_iff_nilpotencyClass_le.mp" }, { "state_after": "case succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = comap (mk' (center G)) ⊤", "state_before": "case succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ upperCentralSeries (G ⧸ center G) n = ⊤", "tactic": "apply @comap_injective G _ _ _ (mk' (center G)) (surjective_quot_mk _)" }, { "state_after": "case succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ upperCentralSeries G (nilpotencyClass G) = ⊤", "state_before": "case succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ comap (mk' (center G)) (upperCentralSeries (G ⧸ center G) n) = comap (mk' (center G)) ⊤", "tactic": "rw [comap_upperCentralSeries_quotient_center, comap_top, ← hn]" }, { "state_after": "no goals", "state_before": "case succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ upperCentralSeries G (nilpotencyClass G) = ⊤", "tactic": "exact upperCentralSeries_nilpotencyClass" }, { "state_after": "case succ.a.bc\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ n + ?succ.a.a ≤ nilpotencyClass (G ⧸ center G) + ?succ.a.a\n\ncase succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ ℕ", "state_before": "case succ.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ n ≤ nilpotencyClass (G ⧸ center G)", "tactic": "apply le_of_add_le_add_right" }, { "state_after": "no goals", "state_before": "case succ.a.bc\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ n + ?succ.a.a ≤ nilpotencyClass (G ⧸ center G) + ?succ.a.a\n\ncase succ.a.a\nG : Type u_1\ninst✝¹ : Group G\nH : Subgroup G\ninst✝ : Normal H\nhH : Group.IsNilpotent G\nn : ℕ\nhn : nilpotencyClass G = Nat.succ n\n⊢ ℕ", "tactic": "calc\n n + 1 = n.succ := rfl\n _ = Group.nilpotencyClass G := (symm hn)\n _ ≤ Group.nilpotencyClass (G ⧸ center G) + 1 :=\n nilpotencyClass_le_of_ker_le_center _ (le_of_eq (ker_mk' _)) _" } ]
[ 639, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 622, 1 ]
Mathlib/Data/List/Sigma.lean
List.nodupKeys_of_nodupKeys_cons
[]
[ 117, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.EventuallyLE.compl
[]
[ 1727, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1725, 1 ]
Mathlib/Algebra/Module/Submodule/Lattice.lean
Submodule.iInf_coe
[ { "state_after": "R : Type u_2\nS : Type ?u.139553\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\n⊢ (⋂ (p_1 : Submodule R M) (_ : p_1 ∈ Set.range fun i => p i), ↑p_1) = ⋂ (i : ι), ↑(p i)", "state_before": "R : Type u_2\nS : Type ?u.139553\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\n⊢ ↑(⨅ (i : ι), p i) = ⋂ (i : ι), ↑(p i)", "tactic": "rw [iInf, sInf_coe]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nS : Type ?u.139553\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\n⊢ (⋂ (p_1 : Submodule R M) (_ : p_1 ∈ Set.range fun i => p i), ↑p_1) = ⋂ (i : ι), ↑(p i)", "tactic": "simp only [Set.mem_range, Set.iInter_exists, Set.iInter_iInter_eq']" } ]
[ 259, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
UV.shadow_compression_subset_compression_shadow
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\n⊢ (∂ ) 𝒜' ⊆ 𝓒 u v ((∂ ) 𝒜)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n⊢ (∂ ) (𝓒 u v 𝒜) ⊆ 𝓒 u v ((∂ ) 𝒜)", "tactic": "set 𝒜' := 𝓒 u v 𝒜" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\n⊢ (∂ ) 𝒜' ⊆ 𝓒 u v ((∂ ) 𝒜)\n\ncase H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\n⊢ ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\n⊢ (∂ ) 𝒜' ⊆ 𝓒 u v ((∂ ) 𝒜)", "tactic": "suffices H : ∀ s ∈ (∂ ) 𝒜',\n s ∉ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ (s ∪ v) \\ u ∉ (∂ ) 𝒜'" }, { "state_after": "case H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\n⊢ ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "intro s hs𝒜' hs𝒜" }, { "state_after": "case H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have m : ∀ y, y ∉ s → insert y s ∉ 𝒜 := fun y h a => hs𝒜 (mem_shadow_iff_insert_mem.2 ⟨y, h, a⟩)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "obtain ⟨x, _, _⟩ := mem_shadow_iff_insert_mem.1 hs𝒜'" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hus : u ⊆ insert x s := le_of_mem_compression_of_not_mem ‹_ ∈ 𝒜'› (m _ ‹x ∉ s›)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hvs : Disjoint v (insert x s) := disjoint_of_mem_compression_of_not_mem ‹_› (m _ ‹x ∉ s›)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have : (insert x s ∪ v) \\ u ∈ 𝒜 := sup_sdiff_mem_of_mem_compression_of_not_mem ‹_› (m _ ‹x ∉ s›)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hsv : Disjoint s v := hvs.symm.mono_left (subset_insert _ _)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hvu : Disjoint v u := disjoint_of_subset_right hus hvs" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hxv : x ∉ v := disjoint_right.1 hvs (mem_insert_self _ _)" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have : v \\ u = v := ‹Disjoint v u›.sdiff_eq_left" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have : x ∉ u := by\n intro hxu\n obtain ⟨y, hyv, hxy⟩ := huv x hxu\n apply m y (disjoint_right.1 hsv hyv)\n have : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜 := by\n refine'\n sup_sdiff_mem_of_mem_compression (by rwa [hxy.eq]) _\n (disjoint_of_subset_left (erase_subset _ _) disjoint_sdiff)\n rw [union_sdiff_distrib, ‹v \\ u = v›]\n exact (erase_subset _ _).trans (subset_union_right _ _)\n convert this using 1\n rw [sdiff_union_erase_cancel (hus.trans <| subset_union_left _ _) ‹x ∈ u›, erase_union_distrib,\n erase_insert ‹x ∉ s›, erase_eq_of_not_mem ‹x ∉ v›, sdiff_erase (mem_union_right _ hyv),\n union_sdiff_cancel_right hsv]" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "have hus : u ⊆ s := by rwa [← erase_eq_of_not_mem ‹x ∉ u›, ← subset_insert_iff]" }, { "state_after": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝒜) ∧ ¬∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'", "tactic": "simp_rw [mem_shadow_iff_insert_mem]" }, { "state_after": "case H.intro.intro.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ ¬x ∈ (s ∪ v) \\ u\n\ncase H.intro.intro.refine'_2\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ insert x ((s ∪ v) \\ u) ∈ 𝒜\n\ncase H.intro.intro.refine'_3\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ ¬∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜", "state_before": "case H.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ u ⊆ s ∧ Disjoint v s ∧ (∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝒜) ∧ ¬∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜", "tactic": "refine' ⟨hus, hsv.symm, ⟨x, _, _⟩, _⟩" }, { "state_after": "case H.intro.intro.refine'_3.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\n⊢ False", "state_before": "case H.intro.intro.refine'_3\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ ¬∃ a x, insert a ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜", "tactic": "rintro ⟨w, hwB, hw𝒜'⟩" }, { "state_after": "case H.intro.intro.refine'_3.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\n⊢ False", "state_before": "case H.intro.intro.refine'_3.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\n⊢ False", "tactic": "have : v ⊆ insert w ((s ∪ v) \\ u) :=\n (subset_sdiff.2 ⟨subset_union_right _ _, hvu⟩).trans (subset_insert _ _)" }, { "state_after": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\n⊢ False\n\ncase neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ False", "state_before": "case H.intro.intro.refine'_3.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\n⊢ False", "tactic": "by_cases hwu : w ∈ u" }, { "state_after": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ False", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ False", "tactic": "rw [mem_sdiff, ← not_imp, Classical.not_not] at hwB" }, { "state_after": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ insert w s ∈ 𝒜", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ False", "tactic": "apply m w (hwu ∘ hwB ∘ mem_union_left _)" }, { "state_after": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\nthis : (insert w ((s ∪ v) \\ u) ∪ u) \\ v ∈ 𝒜\n⊢ insert w s ∈ 𝒜", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\n⊢ insert w s ∈ 𝒜", "tactic": "have : (insert w ((s ∪ v) \\ u) ∪ u) \\ v ∈ 𝒜 :=\n sup_sdiff_mem_of_mem_compression ‹insert w ((s ∪ v) \\ u) ∈ 𝒜'› ‹_›\n (disjoint_insert_right.2 ⟨‹_›, disjoint_sdiff⟩)" }, { "state_after": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\nthis : (insert w ((s ∪ v) \\ u) ∪ u) \\ v ∈ 𝒜\n⊢ insert w s = (insert w ((s ∪ v) \\ u) ∪ u) \\ v", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\nthis : (insert w ((s ∪ v) \\ u) ∪ u) \\ v ∈ 𝒜\n⊢ insert w s ∈ 𝒜", "tactic": "convert this using 1" }, { "state_after": "no goals", "state_before": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : w ∈ s ∪ v → w ∈ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : ¬w ∈ u\nthis : (insert w ((s ∪ v) \\ u) ∪ u) \\ v ∈ 𝒜\n⊢ insert w s = (insert w ((s ∪ v) \\ u) ∪ u) \\ v", "tactic": "rw [insert_union, sdiff_union_of_subset (hus.trans <| subset_union_left _ _),\n insert_sdiff_of_not_mem _ (hwu ∘ hwB ∘ mem_union_right _), union_sdiff_cancel_right hsv]" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\n⊢ s ∈ 𝓒 u v ((∂ ) 𝒜)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\n⊢ (∂ ) 𝒜' ⊆ 𝓒 u v ((∂ ) 𝒜)", "tactic": "rintro s hs'" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\n⊢ s ∈ 𝓒 u v ((∂ ) 𝒜)", "tactic": "rw [mem_compression]" }, { "state_after": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s\n\ncase neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "tactic": "by_cases hs : s ∈ 𝒜.shadow" }, { "state_after": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s\n\ncase pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s\n\ncase neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "tactic": "swap" }, { "state_after": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ compress u v s ∈ (∂ ) 𝒜", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "tactic": "refine' Or.inl ⟨hs, _⟩" }, { "state_after": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ (if Disjoint u s ∧ v ≤ s then (s ⊔ u) \\ v else s) ∈ (∂ ) 𝒜", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ compress u v s ∈ (∂ ) 𝒜", "tactic": "rw [compress]" }, { "state_after": "case pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜\n\ncase pos.inr\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : ¬(Disjoint u s ∧ v ≤ s)\n⊢ s ∈ (∂ ) 𝒜", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\n⊢ (if Disjoint u s ∧ v ≤ s then (s ⊔ u) \\ v else s) ∈ (∂ ) 𝒜", "tactic": "split_ifs with huvs" }, { "state_after": "case pos.inr\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : ¬(Disjoint u s ∧ v ≤ s)\n⊢ s ∈ (∂ ) 𝒜\n\ncase pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜\n\ncase pos.inr\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : ¬(Disjoint u s ∧ v ≤ s)\n⊢ s ∈ (∂ ) 𝒜", "tactic": "swap" }, { "state_after": "case pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : ∃ t, t ∈ 𝒜' ∧ ∃ a, a ∈ t ∧ erase t a = s\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "rw [mem_shadow_iff] at hs'" }, { "state_after": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : ∃ t, t ∈ 𝒜' ∧ ∃ a, a ∈ t ∧ erase t a = s\nhs : s ∈ (∂ ) 𝒜\nhuvs : Disjoint u s ∧ v ≤ s\n⊢ (s ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "obtain ⟨t, Ht, a, hat, rfl⟩ := hs'" }, { "state_after": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "have hav : a ∉ v := not_mem_mono huvs.2 (not_mem_erase a t)" }, { "state_after": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "have hvt : v ≤ t := huvs.2.trans (erase_subset _ t)" }, { "state_after": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "have ht : t ∈ 𝒜 := mem_of_mem_compression Ht hvt (aux huv)" }, { "state_after": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜\n\ncase neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos.inl.intro.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "by_cases hau : a ∈ u" }, { "state_after": "case neg.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\nhus : u ⊆ s\nhvs : Disjoint v s\nh : (s ∪ v) \\ u ∈ (∂ ) 𝒜\nright✝ : ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "tactic": "obtain ⟨hus, hvs, h, _⟩ := H _ hs' hs" }, { "state_after": "no goals", "state_before": "case neg.intro.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : ¬s ∈ (∂ ) 𝒜\nhus : u ⊆ s\nhvs : Disjoint v s\nh : (s ∪ v) \\ u ∈ (∂ ) 𝒜\nright✝ : ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\n⊢ s ∈ (∂ ) 𝒜 ∧ compress u v s ∈ (∂ ) 𝒜 ∨ ¬s ∈ (∂ ) 𝒜 ∧ ∃ b, b ∈ (∂ ) 𝒜 ∧ compress u v b = s", "tactic": "exact Or.inr ⟨hs, _, h, compress_of_disjoint_of_le' hvs hus⟩" }, { "state_after": "no goals", "state_before": "case pos.inr\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\ns : Finset α\nhs' : s ∈ (∂ ) 𝒜'\nhs : s ∈ (∂ ) 𝒜\nhuvs : ¬(Disjoint u s ∧ v ≤ s)\n⊢ s ∈ (∂ ) 𝒜", "tactic": "exact hs" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\nb : α\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "obtain ⟨b, hbv, Hcomp⟩ := huv a hau" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\nb : α\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\nb : α\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "refine' mem_shadow_iff_insert_mem.2 ⟨b, not_mem_sdiff_of_mem_right hbv, _⟩" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nhau : a ∈ u\nb : α\nht : t ∈ 𝓒 (erase u a) (erase v b) 𝒜\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : a ∈ u\nb : α\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "tactic": "rw [← Hcomp.eq] at ht" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nhau : a ∈ u\nb : α\nht : t ∈ 𝓒 (erase u a) (erase v b) 𝒜\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\nhsb : (t ⊔ erase u a) \\ erase v b ∈ 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nhau : a ∈ u\nb : α\nht : t ∈ 𝓒 (erase u a) (erase v b) 𝒜\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "tactic": "have hsb :=\n sup_sdiff_mem_of_mem_compression ht ((erase_subset _ _).trans hvt)\n (disjoint_erase_comm.2 huvs.1)" }, { "state_after": "no goals", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nhau : a ∈ u\nb : α\nht : t ∈ 𝓒 (erase u a) (erase v b) 𝒜\nhbv : b ∈ v\nHcomp : IsCompressed (erase u a) (erase v b) 𝒜\nhsb : (t ⊔ erase u a) \\ erase v b ∈ 𝒜\n⊢ insert b ((erase t a ⊔ u) \\ v) ∈ 𝒜", "tactic": "rwa [sup_eq_union, sdiff_erase (mem_union_left _ <| hvt hbv), union_erase_of_mem hat, ←\n erase_union_of_mem hau] at hsb" }, { "state_after": "case neg.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ a ∈ (t ⊔ u) \\ v\n\ncase neg.refine'_2\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ erase ((t ⊔ u) \\ v) a = (erase t a ⊔ u) \\ v", "state_before": "case neg\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ (erase t a ⊔ u) \\ v ∈ (∂ ) 𝒜", "tactic": "refine'\n mem_shadow_iff.2\n ⟨(t ⊔ u) \\ v,\n sup_sdiff_mem_of_mem_compression Ht hvt <| disjoint_of_erase_right hau huvs.1, a, _, _⟩" }, { "state_after": "case neg.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ (a ∈ t ∨ a ∈ u) ∧ ¬a ∈ v", "state_before": "case neg.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ a ∈ (t ⊔ u) \\ v", "tactic": "rw [sup_eq_union, mem_sdiff, mem_union]" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ (a ∈ t ∨ a ∈ u) ∧ ¬a ∈ v", "tactic": "exact ⟨Or.inl hat, hav⟩" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a✝ u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\nH : ∀ (s : Finset α), s ∈ (∂ ) 𝒜' → ¬s ∈ (∂ ) 𝒜 → u ⊆ s ∧ Disjoint v s ∧ (s ∪ v) \\ u ∈ (∂ ) 𝒜 ∧ ¬(s ∪ v) \\ u ∈ (∂ ) 𝒜'\nt : Finset α\nHt : t ∈ 𝒜'\na : α\nhat : a ∈ t\nhs : erase t a ∈ (∂ ) 𝒜\nhuvs : Disjoint u (erase t a) ∧ v ≤ erase t a\nhav : ¬a ∈ v\nhvt : v ≤ t\nht : t ∈ 𝒜\nhau : ¬a ∈ u\n⊢ erase ((t ⊔ u) \\ v) a = (erase t a ⊔ u) \\ v", "tactic": "rw [← erase_sdiff_comm, sup_eq_union, erase_union_distrib, erase_eq_of_not_mem hau]" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\n⊢ False", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\n⊢ ¬x ∈ u", "tactic": "intro hxu" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ False", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\n⊢ False", "tactic": "obtain ⟨y, hyv, hxy⟩ := huv x hxu" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ insert y s ∈ 𝒜", "state_before": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ False", "tactic": "apply m y (disjoint_right.1 hsv hyv)" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\nthis : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜\n⊢ insert y s ∈ 𝒜", "state_before": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ insert y s ∈ 𝒜", "tactic": "have : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜 := by\n refine'\n sup_sdiff_mem_of_mem_compression (by rwa [hxy.eq]) _\n (disjoint_of_subset_left (erase_subset _ _) disjoint_sdiff)\n rw [union_sdiff_distrib, ‹v \\ u = v›]\n exact (erase_subset _ _).trans (subset_union_right _ _)" }, { "state_after": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\nthis : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜\n⊢ insert y s = ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y", "state_before": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\nthis : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜\n⊢ insert y s ∈ 𝒜", "tactic": "convert this using 1" }, { "state_after": "no goals", "state_before": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\nthis : ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜\n⊢ insert y s = ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y", "tactic": "rw [sdiff_union_erase_cancel (hus.trans <| subset_union_left _ _) ‹x ∈ u›, erase_union_distrib,\n erase_insert ‹x ∉ s›, erase_eq_of_not_mem ‹x ∉ v›, sdiff_erase (mem_union_right _ hyv),\n union_sdiff_cancel_right hsv]" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ erase v y ≤ (insert x s ∪ v) \\ u", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ ((insert x s ∪ v) \\ u ∪ erase u x) \\ erase v y ∈ 𝒜", "tactic": "refine'\n sup_sdiff_mem_of_mem_compression (by rwa [hxy.eq]) _\n (disjoint_of_subset_left (erase_subset _ _) disjoint_sdiff)" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ erase v y ≤ insert x s \\ u ∪ v", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ erase v y ≤ (insert x s ∪ v) \\ u", "tactic": "rw [union_sdiff_distrib, ‹v \\ u = v›]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ erase v y ≤ insert x s \\ u ∪ v", "tactic": "exact (erase_subset _ _).trans (subset_union_right _ _)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis : v \\ u = v\nhxu : x ∈ u\ny : α\nhyv : y ∈ v\nhxy : IsCompressed (erase u x) (erase v y) 𝒜\n⊢ (insert x s ∪ v) \\ u ∈ 𝓒 (erase u x) (erase v y) 𝒜", "tactic": "rwa [hxy.eq]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\n⊢ u ⊆ s", "tactic": "rwa [← erase_eq_of_not_mem ‹x ∉ u›, ← subset_insert_iff]" }, { "state_after": "no goals", "state_before": "case H.intro.intro.refine'_1\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ ¬x ∈ (s ∪ v) \\ u", "tactic": "exact not_mem_sdiff_of_not_mem_left (not_mem_union.2 ⟨‹x ∉ s›, ‹x ∉ v›⟩)" }, { "state_after": "no goals", "state_before": "case H.intro.intro.refine'_2\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝¹ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝ : v \\ u = v\nthis : ¬x ∈ u\nhus : u ⊆ s\n⊢ insert x ((s ∪ v) \\ u) ∈ 𝒜", "tactic": "rwa [← insert_sdiff_of_not_mem _ ‹x ∉ u›, ← insert_union]" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\n⊢ False", "state_before": "case pos\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\n⊢ False", "tactic": "obtain ⟨z, hz, hxy⟩ := huv w hwu" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\n⊢ insert z s ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\n⊢ False", "tactic": "apply m z (disjoint_right.1 hsv hz)" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ insert z s ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝² : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝¹ : v \\ u = v\nthis✝ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\n⊢ insert z s ∈ 𝒜", "tactic": "have : insert w ((s ∪ v) \\ u) ∈ 𝒜 := mem_of_mem_compression hw𝒜' ‹_› (aux huv)" }, { "state_after": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝⁴ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝³ : v \\ u = v\nthis✝² : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝¹ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis✝ : insert w ((s ∪ v) \\ u) ∈ 𝒜\nthis : (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜\n⊢ insert z s ∈ 𝒜", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ insert z s ∈ 𝒜", "tactic": "have : (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜 := by\n refine' sup_sdiff_mem_of_mem_compression (by rwa [hxy.eq]) ((erase_subset _ _).trans ‹_›) _\n rw [← sdiff_erase (mem_union_left _ <| hus hwu)]\n exact disjoint_sdiff" }, { "state_after": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝⁴ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝³ : v \\ u = v\nthis✝² : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝¹ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis✝ : insert w ((s ∪ v) \\ u) ∈ 𝒜\nthis : (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜\n⊢ insert z s = (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z", "state_before": "case pos.intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝⁴ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝³ : v \\ u = v\nthis✝² : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝¹ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis✝ : insert w ((s ∪ v) \\ u) ∈ 𝒜\nthis : (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜\n⊢ insert z s ∈ 𝒜", "tactic": "convert this using 1" }, { "state_after": "no goals", "state_before": "case h.e'_4\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝⁴ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝³ : v \\ u = v\nthis✝² : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝¹ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis✝ : insert w ((s ∪ v) \\ u) ∈ 𝒜\nthis : (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜\n⊢ insert z s = (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z", "tactic": "rw [insert_union_comm, insert_erase ‹w ∈ u›,\n sdiff_union_of_subset (hus.trans $ subset_union_left _ _),\n sdiff_erase (mem_union_right _ ‹z ∈ v›), union_sdiff_cancel_right hsv]" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ Disjoint (erase u w) (insert w ((s ∪ v) \\ u))", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ (insert w ((s ∪ v) \\ u) ∪ erase u w) \\ erase v z ∈ 𝒜", "tactic": "refine' sup_sdiff_mem_of_mem_compression (by rwa [hxy.eq]) ((erase_subset _ _).trans ‹_›) _" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ Disjoint (erase u w) ((s ∪ v) \\ erase u w)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ Disjoint (erase u w) (insert w ((s ∪ v) \\ u))", "tactic": "rw [← sdiff_erase (mem_union_left _ <| hus hwu)]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ Disjoint (erase u w) ((s ∪ v) \\ erase u w)", "tactic": "exact disjoint_sdiff" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 : Finset (Finset α)\nu✝ v✝ a u v : Finset α\nhuv : ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ IsCompressed (erase u x) (erase v y) 𝒜\n𝒜' : Finset (Finset α) := 𝓒 u v 𝒜\ns : Finset α\nhs𝒜' : s ∈ (∂ ) 𝒜'\nhs𝒜 : ¬s ∈ (∂ ) 𝒜\nm : ∀ (y : α), ¬y ∈ s → ¬insert y s ∈ 𝒜\nx : α\nw✝ : ¬x ∈ s\nh✝ : insert x s ∈ 𝒜'\nhus✝ : u ⊆ insert x s\nhvs : Disjoint v (insert x s)\nthis✝³ : (insert x s ∪ v) \\ u ∈ 𝒜\nhsv : Disjoint s v\nhvu : Disjoint v u\nhxv : ¬x ∈ v\nthis✝² : v \\ u = v\nthis✝¹ : ¬x ∈ u\nhus : u ⊆ s\nw : α\nhwB : ¬w ∈ (s ∪ v) \\ u\nhw𝒜' : insert w ((s ∪ v) \\ u) ∈ 𝓒 u v 𝒜\nthis✝ : v ⊆ insert w ((s ∪ v) \\ u)\nhwu : w ∈ u\nz : α\nhz : z ∈ v\nhxy : IsCompressed (erase u w) (erase v z) 𝒜\nthis : insert w ((s ∪ v) \\ u) ∈ 𝒜\n⊢ insert w ((s ∪ v) \\ u) ∈ 𝓒 (erase u w) (erase v z) 𝒜", "tactic": "rwa [hxy.eq]" } ]
[ 426, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
HasFDerivAt.const_smul
[]
[ 83, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 8 ]
Mathlib/Data/Rat/Defs.lean
Rat.num_den
[]
[ 106, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.comap_singleton_isClosed_of_isIntegral
[]
[ 643, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 638, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.valMinAbs_mul_two_eq_iff
[ { "state_after": "case zero\na : ZMod Nat.zero\n⊢ valMinAbs a * 2 = ↑Nat.zero ↔ 2 * val a = Nat.zero\n\ncase succ\nn : ℕ\na : ZMod (Nat.succ n)\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "state_before": "n : ℕ\na : ZMod n\n⊢ valMinAbs a * 2 = ↑n ↔ 2 * val a = n", "tactic": "cases' n with n" }, { "state_after": "case pos\nn : ℕ\na : ZMod (Nat.succ n)\nh : val a ≤ Nat.succ n / 2\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n\n\ncase neg\nn : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "state_before": "case succ\nn : ℕ\na : ZMod (Nat.succ n)\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "tactic": "by_cases h : a.val ≤ n.succ / 2" }, { "state_after": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ ¬valMinAbs a * 2 = ↑(Nat.succ n)\n\nn : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ 2 * val a = Nat.succ n → val a ≤ Nat.succ n / 2", "state_before": "case neg\nn : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "tactic": "apply iff_of_false _ (mt _ h)" }, { "state_after": "no goals", "state_before": "case zero\na : ZMod Nat.zero\n⊢ valMinAbs a * 2 = ↑Nat.zero ↔ 2 * val a = Nat.zero", "tactic": "simp" }, { "state_after": "case pos\nn : ℕ\na : ZMod (Nat.succ n)\nh : val a ≤ Nat.succ n / 2\n⊢ (if val a ≤ Nat.succ n / 2 then ↑(val a) else ↑(val a) - ↑(Nat.succ n)) * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "state_before": "case pos\nn : ℕ\na : ZMod (Nat.succ n)\nh : val a ≤ Nat.succ n / 2\n⊢ valMinAbs a * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "tactic": "dsimp [valMinAbs]" }, { "state_after": "no goals", "state_before": "case pos\nn : ℕ\na : ZMod (Nat.succ n)\nh : val a ≤ Nat.succ n / 2\n⊢ (if val a ≤ Nat.succ n / 2 then ↑(val a) else ↑(val a) - ↑(Nat.succ n)) * 2 = ↑(Nat.succ n) ↔ 2 * val a = Nat.succ n", "tactic": "rw [if_pos h, ← Int.coe_nat_inj', Nat.cast_mul, Nat.cast_two, mul_comm]" }, { "state_after": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ False", "state_before": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ ¬valMinAbs a * 2 = ↑(Nat.succ n)", "tactic": "intro he" }, { "state_after": "n : ℕ\na : ZMod (Nat.succ n)\nh✝ : ¬0 ≤ valMinAbs a\nh : ¬0 ≤ ↑(Nat.succ n)\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ False\n\nn : ℕ\na : ZMod (Nat.succ n)\nh : ¬0 ≤ valMinAbs a\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ 0 < 2", "state_before": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ False", "tactic": "rw [← a.valMinAbs_nonneg_iff, ← mul_nonneg_iff_left_nonneg_of_pos, he] at h" }, { "state_after": "no goals", "state_before": "n : ℕ\na : ZMod (Nat.succ n)\nh✝ : ¬0 ≤ valMinAbs a\nh : ¬0 ≤ ↑(Nat.succ n)\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ False\n\nn : ℕ\na : ZMod (Nat.succ n)\nh : ¬0 ≤ valMinAbs a\nhe : valMinAbs a * 2 = ↑(Nat.succ n)\n⊢ 0 < 2", "tactic": "exacts [h (Nat.cast_nonneg _), zero_lt_two]" }, { "state_after": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ val a * 2 = Nat.succ n → val a ≤ Nat.succ n / 2", "state_before": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ 2 * val a = Nat.succ n → val a ≤ Nat.succ n / 2", "tactic": "rw [mul_comm]" }, { "state_after": "no goals", "state_before": "n : ℕ\na : ZMod (Nat.succ n)\nh : ¬val a ≤ Nat.succ n / 2\n⊢ val a * 2 = Nat.succ n → val a ≤ Nat.succ n / 2", "tactic": "exact fun h => (Nat.le_div_iff_mul_le zero_lt_two).2 h.le" } ]
[ 952, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 941, 1 ]
Mathlib/RingTheory/Ideal/Over.lean
Ideal.coeff_zero_mem_comap_of_root_mem
[]
[ 56, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.integral_norm_eq_pos_sub_neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α), ‖f x‖ ∂μ) = (∫ (x : α) in {x | 0 ≤ f x}, ‖f x‖ ∂μ) + ∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ", "tactic": "rw [← integral_add_compl₀ h_meas hfi.norm]" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}, ‖f x‖ ∂μ) = ∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ ((∫ (x : α) in {x | 0 ≤ f x}, ‖f x‖ ∂μ) + ∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) =\n (∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) + ∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ", "tactic": "congr 1" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ ‖f x‖ = f x", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}, ‖f x‖ ∂μ) = ∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ", "tactic": "refine' set_integral_congr₀ h_meas fun x hx => _" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ ‖f x‖ = f x", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ ‖f x‖ = f x", "tactic": "dsimp only" }, { "state_after": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ 0 ≤ f x", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ ‖f x‖ = f x", "tactic": "rw [Real.norm_eq_abs, abs_eq_self.mpr _]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}\n⊢ 0 ≤ f x", "tactic": "exact hx" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) = -∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ ((∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) + ∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) =\n (∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ", "tactic": "congr 1" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) = ∫ (a : α) in {x | 0 ≤ f x}ᶜ, -f a ∂μ", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) = -∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ", "tactic": "rw [← integral_neg]" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ ‖f x‖ = -f x", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ (∫ (x : α) in {x | 0 ≤ f x}ᶜ, ‖f x‖ ∂μ) = ∫ (a : α) in {x | 0 ≤ f x}ᶜ, -f a ∂μ", "tactic": "refine' set_integral_congr₀ h_meas.compl fun x hx => _" }, { "state_after": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ ‖f x‖ = -f x", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ ‖f x‖ = -f x", "tactic": "dsimp only" }, { "state_after": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ f x ≤ 0", "state_before": "case e_a\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ ‖f x‖ = -f x", "tactic": "rw [Real.norm_eq_abs, abs_eq_neg_self.mpr _]" }, { "state_after": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : ¬0 ≤ f x\n⊢ f x ≤ 0", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : x ∈ {x | 0 ≤ f x}ᶜ\n⊢ f x ≤ 0", "tactic": "rw [Set.mem_compl_iff, Set.nmem_setOf_iff] at hx" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\nhx : ¬0 ≤ f x\n⊢ f x ≤ 0", "tactic": "linarith" }, { "state_after": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ ((∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ) =\n (∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | f x < 0}, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ ((∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ) =\n (∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | f x ≤ 0}, f x ∂μ", "tactic": "rw [← set_integral_neg_eq_set_integral_nonpos hfi.1]" }, { "state_after": "case e_a.e_μ.e_s\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ {x | 0 ≤ f x}ᶜ = {x | f x < 0}", "state_before": "α : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ ((∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | 0 ≤ f x}ᶜ, f x ∂μ) =\n (∫ (x : α) in {x | 0 ≤ f x}, f x ∂μ) - ∫ (x : α) in {x | f x < 0}, f x ∂μ", "tactic": "congr" }, { "state_after": "case e_a.e_μ.e_s.h\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\n⊢ x ∈ {x | 0 ≤ f x}ᶜ ↔ x ∈ {x | f x < 0}", "state_before": "case e_a.e_μ.e_s\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\n⊢ {x | 0 ≤ f x}ᶜ = {x | f x < 0}", "tactic": "ext1 x" }, { "state_after": "no goals", "state_before": "case e_a.e_μ.e_s.h\nα : Type u_1\nβ : Type ?u.110031\nE : Type ?u.110034\nF : Type ?u.110037\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : α → ℝ\nhfi : Integrable f\nh_meas : NullMeasurableSet {x | 0 ≤ f x}\nx : α\n⊢ x ∈ {x | 0 ≤ f x}ᶜ ↔ x ∈ {x | f x < 0}", "tactic": "simp" } ]
[ 444, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 422, 1 ]
src/lean/Init/Data/List/Basic.lean
List.reverse_append
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\n⊢ reverse (as ++ bs) = reverse bs ++ reverse as", "tactic": "induction as generalizing bs with\n| nil => simp\n| cons a as ih => simp [ih]; rw [append_assoc]" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u\nβ : Type v\nγ : Type w\nbs : List α\n⊢ reverse (nil ++ bs) = reverse bs ++ reverse nil", "tactic": "simp" }, { "state_after": "case cons\nα : Type u\nβ : Type v\nγ : Type w\na : α\nas : List α\nih : ∀ (bs : List α), reverse (as ++ bs) = reverse bs ++ reverse as\nbs : List α\n⊢ reverse bs ++ reverse as ++ a :: nil = reverse bs ++ (reverse as ++ a :: nil)", "state_before": "case cons\nα : Type u\nβ : Type v\nγ : Type w\na : α\nas : List α\nih : ∀ (bs : List α), reverse (as ++ bs) = reverse bs ++ reverse as\nbs : List α\n⊢ reverse (a :: as ++ bs) = reverse bs ++ reverse (a :: as)", "tactic": "simp [ih]" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u\nβ : Type v\nγ : Type w\na : α\nas : List α\nih : ∀ (bs : List α), reverse (as ++ bs) = reverse bs ++ reverse as\nbs : List α\n⊢ reverse bs ++ reverse as ++ a :: nil = reverse bs ++ (reverse as ++ a :: nil)", "tactic": "rw [append_assoc]" } ]
[ 181, 49 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 178, 9 ]
Mathlib/Data/List/Nodup.lean
List.Nodup.not_mem_erase
[]
[ 329, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/Analysis/Convex/SpecificFunctions/Deriv.lean
strictConcaveOn_sqrt_mul_log_Ioi
[ { "state_after": "⊢ ContinuousOn (fun x => sqrt x * log x) (Ioi 1)\n\nx : ℝ\nhx : x ∈ Ioi 1\n⊢ (deriv^[2]) (fun x => sqrt x * log x) x < 0", "state_before": "⊢ StrictConcaveOn ℝ (Ioi 1) fun x => sqrt x * log x", "tactic": "apply strictConcaveOn_of_deriv2_neg' (convex_Ioi 1) _ fun x hx => ?_" }, { "state_after": "no goals", "state_before": "⊢ ContinuousOn (fun x => sqrt x * log x) (Ioi 1)", "tactic": "exact continuous_sqrt.continuousOn.mul\n (continuousOn_log.mono fun x hx => ne_of_gt (zero_lt_one.trans hx))" }, { "state_after": "x : ℝ\nhx : x ∈ Ioi 1\n⊢ -log x / (↑4 * sqrt x ^ 3) < 0", "state_before": "x : ℝ\nhx : x ∈ Ioi 1\n⊢ (deriv^[2]) (fun x => sqrt x * log x) x < 0", "tactic": "rw [deriv2_sqrt_mul_log x]" }, { "state_after": "no goals", "state_before": "x : ℝ\nhx : x ∈ Ioi 1\n⊢ -log x / (↑4 * sqrt x ^ 3) < 0", "tactic": "exact div_neg_of_neg_of_pos (neg_neg_of_pos (log_pos hx))\n (mul_pos four_pos (pow_pos (sqrt_pos.mpr (zero_lt_one.trans hx)) 3))" } ]
[ 163, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
DifferentiableAt.inner
[]
[ 135, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
tsum_pi_single
[]
[ 542, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 541, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Periodic.const_add
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.82300\nf g : α → β\nc c₁ c₂ x✝ : α\ninst✝ : AddSemigroup α\nh : Periodic f c\na x : α\n⊢ (fun x => f (a + x)) (x + c) = (fun x => f (a + x)) x", "tactic": "simpa [add_assoc] using h (a + x)" } ]
[ 183, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.congr_fun
[]
[ 158, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/Analysis/SpecialFunctions/Stirling.lean
Stirling.stirlingSeq'_bounded_by_pos_constant
[ { "state_after": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\n⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n)", "state_before": "⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n)", "tactic": "cases' log_stirlingSeq_bounded_by_constant with c h" }, { "state_after": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\nn : ℕ\n⊢ exp c ≤ stirlingSeq (succ n)", "state_before": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\n⊢ ∃ a, 0 < a ∧ ∀ (n : ℕ), a ≤ stirlingSeq (succ n)", "tactic": "refine' ⟨exp c, exp_pos _, fun n => _⟩" }, { "state_after": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\nn : ℕ\n⊢ c ≤ Real.log (stirlingSeq (succ n))", "state_before": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\nn : ℕ\n⊢ exp c ≤ stirlingSeq (succ n)", "tactic": "rw [← le_log_iff_exp_le (stirlingSeq'_pos n)]" }, { "state_after": "no goals", "state_before": "case intro\nc : ℝ\nh : ∀ (n : ℕ), c ≤ Real.log (stirlingSeq (succ n))\nn : ℕ\n⊢ c ≤ Real.log (stirlingSeq (succ n))", "tactic": "exact h n" } ]
[ 196, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Data/List/Basic.lean
List.bind_eq_bind
[]
[ 532, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
uniformity_prod_eq_prod
[ { "state_after": "no goals", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.154039\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\n⊢ 𝓤 (α × β) = map (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 β)", "tactic": "rw [map_swap4_eq_comap, uniformity_prod_eq_comap_prod]" } ]
[ 1583, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1581, 1 ]
Mathlib/Data/Set/Sups.lean
Set.infs_comm
[]
[ 354, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/ModelTheory/Types.lean
FirstOrder.Language.Theory.CompleteType.mem_typeOf
[]
[ 194, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.mul_div_cancel_left
[ { "state_after": "no goals", "state_before": "m n : Nat\nH : 0 < n\n⊢ n * m / n = m", "tactic": "rw [Nat.mul_comm, Nat.mul_div_cancel _ H]" } ]
[ 593, 45 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 592, 11 ]
Mathlib/CategoryTheory/Abelian/Exact.lean
CategoryTheory.Abelian.exact_tfae
[ { "state_after": "case tfae_1_iff_2\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\n⊢ Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\n\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\n⊢ TFAE [Exact f g, f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0, imageSubobject f = kernelSubobject g]", "state_before": "C : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\n⊢ TFAE [Exact f g, f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0, imageSubobject f = kernelSubobject g]", "tactic": "tfae_have 1 ↔ 2" }, { "state_after": "case tfae_1_iff_3\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\n⊢ Exact f g ↔ imageSubobject f = kernelSubobject g\n\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\ntfae_1_iff_3 : Exact f g ↔ imageSubobject f = kernelSubobject g\n⊢ TFAE [Exact f g, f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0, imageSubobject f = kernelSubobject g]", "state_before": "C : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\n⊢ TFAE [Exact f g, f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0, imageSubobject f = kernelSubobject g]", "tactic": "tfae_have 1 ↔ 3" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\ntfae_1_iff_3 : Exact f g ↔ imageSubobject f = kernelSubobject g\n⊢ TFAE [Exact f g, f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0, imageSubobject f = kernelSubobject g]", "tactic": "tfae_finish" }, { "state_after": "no goals", "state_before": "case tfae_1_iff_2\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\n⊢ Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0", "tactic": "apply exact_iff" }, { "state_after": "no goals", "state_before": "case tfae_1_iff_3\nC : Type u₁\ninst✝¹ : Category C\ninst✝ : Abelian C\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\ntfae_1_iff_2 : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f = 0\n⊢ Exact f g ↔ imageSubobject f = kernelSubobject g", "tactic": "apply exact_iff_image_eq_kernel" } ]
[ 106, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Std/Data/Int/Lemmas.lean
Int.le_neg_of_le_neg
[ { "state_after": "a b : Int\nh✝ : a ≤ -b\nh : - -b ≤ -a\n⊢ b ≤ -a", "state_before": "a b : Int\nh : a ≤ -b\n⊢ b ≤ -a", "tactic": "have h := Int.neg_le_neg h" }, { "state_after": "no goals", "state_before": "a b : Int\nh✝ : a ≤ -b\nh : - -b ≤ -a\n⊢ b ≤ -a", "tactic": "rwa [Int.neg_neg] at h" } ]
[ 904, 25 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 902, 11 ]
Mathlib/Data/List/Basic.lean
List.insertNth_of_length_lt
[ { "state_after": "case nil\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn✝ : ℕ\nh✝ : length l < n✝\nn : ℕ\nh : length [] < n\n⊢ insertNth n x [] = []\n\ncase cons\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn✝ : ℕ\nh✝ : length l < n✝\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn : ℕ\nh : length (hd :: tl) < n\n⊢ insertNth n x (hd :: tl) = hd :: tl", "state_before": "ι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh : length l < n\n⊢ insertNth n x l = l", "tactic": "induction' l with hd tl IH generalizing n" }, { "state_after": "case nil.zero\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nh : length [] < zero\n⊢ insertNth zero x [] = []\n\ncase nil.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nn✝ : ℕ\nh : length [] < succ n✝\n⊢ insertNth (succ n✝) x [] = []", "state_before": "case nil\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn✝ : ℕ\nh✝ : length l < n✝\nn : ℕ\nh : length [] < n\n⊢ insertNth n x [] = []", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case nil.zero\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nh : length [] < zero\n⊢ insertNth zero x [] = []", "tactic": "simp at h" }, { "state_after": "no goals", "state_before": "case nil.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nn✝ : ℕ\nh : length [] < succ n✝\n⊢ insertNth (succ n✝) x [] = []", "tactic": "simp" }, { "state_after": "case cons.zero\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nh : length (hd :: tl) < zero\n⊢ insertNth zero x (hd :: tl) = hd :: tl\n\ncase cons.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn✝ : ℕ\nh : length (hd :: tl) < succ n✝\n⊢ insertNth (succ n✝) x (hd :: tl) = hd :: tl", "state_before": "case cons\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn✝ : ℕ\nh✝ : length l < n✝\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn : ℕ\nh : length (hd :: tl) < n\n⊢ insertNth n x (hd :: tl) = hd :: tl", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case cons.zero\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nh : length (hd :: tl) < zero\n⊢ insertNth zero x (hd :: tl) = hd :: tl", "tactic": "simp at h" }, { "state_after": "case cons.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn✝ : ℕ\nh : length tl < n✝\n⊢ insertNth (succ n✝) x (hd :: tl) = hd :: tl", "state_before": "case cons.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn✝ : ℕ\nh : length (hd :: tl) < succ n✝\n⊢ insertNth (succ n✝) x (hd :: tl) = hd :: tl", "tactic": "simp only [Nat.succ_lt_succ_iff, length] at h" }, { "state_after": "no goals", "state_before": "case cons.succ\nι : Type ?u.122867\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nl : List α\nx : α\nn : ℕ\nh✝ : length l < n\nhd : α\ntl : List α\nIH : ∀ (n : ℕ), length tl < n → insertNth n x tl = tl\nn✝ : ℕ\nh : length tl < n✝\n⊢ insertNth (succ n✝) x (hd :: tl) = hd :: tl", "tactic": "simpa using IH _ h" } ]
[ 1670, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1661, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineMap.homothety_neg_one_apply
[ { "state_after": "no goals", "state_before": "k : Type ?u.707847\nP₁ : Type u_1\nP₂ : Type ?u.707853\nP₃ : Type ?u.707856\nP₄ : Type ?u.707859\nV₁ : Type u_2\nV₂ : Type ?u.707865\nV₃ : Type ?u.707868\nV₄ : Type ?u.707871\ninst✝¹⁴ : Ring k\ninst✝¹³ : AddCommGroup V₁\ninst✝¹² : Module k V₁\ninst✝¹¹ : AffineSpace V₁ P₁\ninst✝¹⁰ : AddCommGroup V₂\ninst✝⁹ : Module k V₂\ninst✝⁸ : AffineSpace V₂ P₂\ninst✝⁷ : AddCommGroup V₃\ninst✝⁶ : Module k V₃\ninst✝⁵ : AffineSpace V₃ P₃\ninst✝⁴ : AddCommGroup V₄\ninst✝³ : Module k V₄\ninst✝² : AffineSpace V₄ P₄\nR' : Type u_3\ninst✝¹ : CommRing R'\ninst✝ : Module R' V₁\nc p : P₁\n⊢ ↑(homothety c (-1)) p = ↑(pointReflection R' c) p", "tactic": "simp [(homothety_apply), pointReflection_apply _, (neg_vsub_eq_vsub_rev)]" } ]
[ 657, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 655, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.distribMulActionHom_ext
[]
[ 1673, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1671, 1 ]
Mathlib/Init/Data/Int/Order.lean
Int.lt.elim
[]
[ 38, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csSup_empty
[]
[ 1015, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1014, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one
[ { "state_after": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nα : E\nS : Set E\nK L : IntermediateField F E\nh : ∀ (x : E), finrank F { x_1 // x_1 ∈ F⟮x⟯ } = 1\ny : E\n⊢ y ∈ ⊥ ↔ y ∈ ⊤", "state_before": "F : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nα : E\nS : Set E\nK L : IntermediateField F E\nh : ∀ (x : E), finrank F { x_1 // x_1 ∈ F⟮x⟯ } = 1\n⊢ ⊥ = ⊤", "tactic": "ext y" }, { "state_after": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nα : E\nS : Set E\nK L : IntermediateField F E\nh : ∀ (x : E), finrank F { x_1 // x_1 ∈ F⟮x⟯ } = 1\ny : E\n⊢ y ∈ ⊥", "state_before": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nα : E\nS : Set E\nK L : IntermediateField F E\nh : ∀ (x : E), finrank F { x_1 // x_1 ∈ F⟮x⟯ } = 1\ny : E\n⊢ y ∈ ⊥ ↔ y ∈ ⊤", "tactic": "rw [iff_true_right IntermediateField.mem_top]" }, { "state_after": "no goals", "state_before": "case h\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nα : E\nS : Set E\nK L : IntermediateField F E\nh : ∀ (x : E), finrank F { x_1 // x_1 ∈ F⟮x⟯ } = 1\ny : E\n⊢ y ∈ ⊥", "tactic": "exact finrank_adjoin_simple_eq_one_iff.mp (h y)" } ]
[ 760, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 756, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.pow_apply_mem_of_forall_mem
[ { "state_after": "case zero\nR : Type u_1\nR₁ : Type ?u.246811\nR₂ : Type ?u.246814\nR₃ : Type ?u.246817\nR₄ : Type ?u.246820\nS : Type ?u.246823\nK : Type ?u.246826\nK₂ : Type ?u.246829\nM : Type u_2\nM' : Type ?u.246835\nM₁ : Type ?u.246838\nM₂ : Type ?u.246841\nM₃ : Type ?u.246844\nM₄ : Type ?u.246847\nN : Type ?u.246850\nN₂ : Type ?u.246853\nι : Type ?u.246856\nV : Type ?u.246859\nV₂ : Type ?u.246862\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf' : M →ₗ[R] M\np : Submodule R M\nh : ∀ (x : M), x ∈ p → ↑f' x ∈ p\nx✝ : M\nhx✝ : x✝ ∈ p\nx : M\nhx : x ∈ p\n⊢ ↑(f' ^ Nat.zero) x ∈ p\n\ncase succ\nR : Type u_1\nR₁ : Type ?u.246811\nR₂ : Type ?u.246814\nR₃ : Type ?u.246817\nR₄ : Type ?u.246820\nS : Type ?u.246823\nK : Type ?u.246826\nK₂ : Type ?u.246829\nM : Type u_2\nM' : Type ?u.246835\nM₁ : Type ?u.246838\nM₂ : Type ?u.246841\nM₃ : Type ?u.246844\nM₄ : Type ?u.246847\nN : Type ?u.246850\nN₂ : Type ?u.246853\nι : Type ?u.246856\nV : Type ?u.246859\nV₂ : Type ?u.246862\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf' : M →ₗ[R] M\np : Submodule R M\nh : ∀ (x : M), x ∈ p → ↑f' x ∈ p\nx✝ : M\nhx✝ : x✝ ∈ p\nn : ℕ\nih : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p\nx : M\nhx : x ∈ p\n⊢ ↑(f' ^ Nat.succ n) x ∈ p", "state_before": "R : Type u_1\nR₁ : Type ?u.246811\nR₂ : Type ?u.246814\nR₃ : Type ?u.246817\nR₄ : Type ?u.246820\nS : Type ?u.246823\nK : Type ?u.246826\nK₂ : Type ?u.246829\nM : Type u_2\nM' : Type ?u.246835\nM₁ : Type ?u.246838\nM₂ : Type ?u.246841\nM₃ : Type ?u.246844\nM₄ : Type ?u.246847\nN : Type ?u.246850\nN₂ : Type ?u.246853\nι : Type ?u.246856\nV : Type ?u.246859\nV₂ : Type ?u.246862\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf' : M →ₗ[R] M\np : Submodule R M\nn : ℕ\nh : ∀ (x : M), x ∈ p → ↑f' x ∈ p\nx : M\nhx : x ∈ p\n⊢ ↑(f' ^ n) x ∈ p", "tactic": "induction' n with n ih generalizing x" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\nR₁ : Type ?u.246811\nR₂ : Type ?u.246814\nR₃ : Type ?u.246817\nR₄ : Type ?u.246820\nS : Type ?u.246823\nK : Type ?u.246826\nK₂ : Type ?u.246829\nM : Type u_2\nM' : Type ?u.246835\nM₁ : Type ?u.246838\nM₂ : Type ?u.246841\nM₃ : Type ?u.246844\nM₄ : Type ?u.246847\nN : Type ?u.246850\nN₂ : Type ?u.246853\nι : Type ?u.246856\nV : Type ?u.246859\nV₂ : Type ?u.246862\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf' : M →ₗ[R] M\np : Submodule R M\nh : ∀ (x : M), x ∈ p → ↑f' x ∈ p\nx✝ : M\nhx✝ : x✝ ∈ p\nn : ℕ\nih : ∀ (x : M), x ∈ p → ↑(f' ^ n) x ∈ p\nx : M\nhx : x ∈ p\n⊢ ↑(f' ^ Nat.succ n) x ∈ p", "tactic": "simpa only [iterate_succ, coe_comp, Function.comp_apply, restrict_apply] using ih _ (h _ hx)" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u_1\nR₁ : Type ?u.246811\nR₂ : Type ?u.246814\nR₃ : Type ?u.246817\nR₄ : Type ?u.246820\nS : Type ?u.246823\nK : Type ?u.246826\nK₂ : Type ?u.246829\nM : Type u_2\nM' : Type ?u.246835\nM₁ : Type ?u.246838\nM₂ : Type ?u.246841\nM₃ : Type ?u.246844\nM₄ : Type ?u.246847\nN : Type ?u.246850\nN₂ : Type ?u.246853\nι : Type ?u.246856\nV : Type ?u.246859\nV₂ : Type ?u.246862\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf' : M →ₗ[R] M\np : Submodule R M\nh : ∀ (x : M), x ∈ p → ↑f' x ∈ p\nx✝ : M\nhx✝ : x✝ ∈ p\nx : M\nhx : x ∈ p\n⊢ ↑(f' ^ Nat.zero) x ∈ p", "tactic": "simpa" } ]
[ 411, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.congr_symm_tmul
[]
[ 880, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 878, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.cycleType_mul_inv_mem_cycleFactorsFinset_eq_sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf g : Perm α\nhf : f ∈ cycleFactorsFinset g\n⊢ cycleType (g * f⁻¹) + cycleType f = cycleType g - cycleType f + cycleType f", "tactic": "rw [← (disjoint_mul_inv_of_mem_cycleFactorsFinset hf).cycleType, inv_mul_cancel_right,\n tsub_add_cancel_of_le (cycleType_le_of_mem_cycleFactorsFinset hf)]" } ]
[ 237, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/Order/Filter/Pointwise.lean
Filter.smul_le_smul_right
[]
[ 1049, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1048, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.parallel_bot_iff_eq_bot
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\nh : s ∥ ⊥\n⊢ s = ⊥", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\n⊢ s ∥ ⊥ ↔ s = ⊥", "tactic": "refine' ⟨fun h => _, fun h => h ▸ Parallel.refl _⟩" }, { "state_after": "case intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\nv : V\nh : ⊥ = map (↑(constVAdd k P v)) s\n⊢ s = ⊥", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\nh : s ∥ ⊥\n⊢ s = ⊥", "tactic": "rcases h with ⟨v, h⟩" }, { "state_after": "no goals", "state_before": "case intro\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\ns : AffineSubspace k P\nv : V\nh : ⊥ = map (↑(constVAdd k P v)) s\n⊢ s = ⊥", "tactic": "rwa [eq_comm, map_eq_bot_iff] at h" } ]
[ 1757, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1754, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_mul_const'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.946443\nγ : Type ?u.946446\nδ : Type ?u.946449\nm : MeasurableSpace α\nμ ν : Measure α\nr : ℝ≥0∞\nf : α → ℝ≥0∞\nhr : r ≠ ⊤\n⊢ (∫⁻ (a : α), f a * r ∂μ) = (∫⁻ (a : α), f a ∂μ) * r", "tactic": "simp_rw [mul_comm, lintegral_const_mul' r f hr]" } ]
[ 746, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 745, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.piecewise_congr
[]
[ 2476, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2474, 1 ]
Mathlib/Data/Set/Basic.lean
Set.mem_powerset
[]
[ 2134, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2134, 1 ]
Mathlib/MeasureTheory/Measure/VectorMeasure.lean
MeasureTheory.VectorMeasure.AbsolutelyContinuous.map
[ { "state_after": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\n⊢ VectorMeasure.map v f ≪ᵥ VectorMeasure.map w f\n\ncase neg\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : ¬Measurable f\n⊢ VectorMeasure.map v f ≪ᵥ VectorMeasure.map w f", "state_before": "α : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\n⊢ VectorMeasure.map v f ≪ᵥ VectorMeasure.map w f", "tactic": "by_cases hf : Measurable f" }, { "state_after": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nhws : ↑(VectorMeasure.map w f) s = 0\n⊢ ↑(VectorMeasure.map v f) s = 0", "state_before": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\n⊢ VectorMeasure.map v f ≪ᵥ VectorMeasure.map w f", "tactic": "refine' mk fun s hs hws => _" }, { "state_after": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nhws : ↑w (f ⁻¹' s) = 0\n⊢ ↑v (f ⁻¹' s) = 0", "state_before": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nhws : ↑(VectorMeasure.map w f) s = 0\n⊢ ↑(VectorMeasure.map v f) s = 0", "tactic": "rw [map_apply _ hf hs] at hws⊢" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nhws : ↑w (f ⁻¹' s) = 0\n⊢ ↑v (f ⁻¹' s) = 0", "tactic": "exact h hws" }, { "state_after": "case neg\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : ¬Measurable f\ns : Set β\na✝ : ↑(VectorMeasure.map w f) s = 0\n⊢ ↑(VectorMeasure.map v f) s = 0", "state_before": "case neg\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : ¬Measurable f\n⊢ VectorMeasure.map v f ≪ᵥ VectorMeasure.map w f", "tactic": "intro s _" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_2\nβ : Type u_1\nm : MeasurableSpace α\nL : Type ?u.642970\nM : Type u_3\nN : Type u_4\ninst✝⁶ : AddCommMonoid L\ninst✝⁵ : TopologicalSpace L\ninst✝⁴ : AddCommMonoid M\ninst✝³ : TopologicalSpace M\ninst✝² : AddCommMonoid N\ninst✝¹ : TopologicalSpace N\nv : VectorMeasure α M\nw : VectorMeasure α N\ninst✝ : MeasureSpace β\nh : v ≪ᵥ w\nf : α → β\nhf : ¬Measurable f\ns : Set β\na✝ : ↑(VectorMeasure.map w f) s = 0\n⊢ ↑(VectorMeasure.map v f) s = 0", "tactic": "rw [map_not_measurable v hf, zero_apply]" } ]
[ 1152, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1146, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
GroupTopology.continuous_mul'
[ { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis : TopologicalSpace α := g.toTopologicalSpace\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "letI := g.toTopologicalSpace" }, { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis✝ : TopologicalSpace α := g.toTopologicalSpace\nthis : TopologicalGroup α\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis : TopologicalSpace α := g.toTopologicalSpace\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "haveI := g.toTopologicalGroup" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝ : Group α\ng : GroupTopology α\nthis✝ : TopologicalSpace α := g.toTopologicalSpace\nthis : TopologicalGroup α\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "exact continuous_mul" } ]
[ 1857, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1852, 1 ]
Mathlib/CategoryTheory/ConnectedComponents.lean
CategoryTheory.inclusion_comp_decomposedTo
[]
[ 132, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.and
[]
[ 720, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 719, 11 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.mem_of_closed'
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.305337\nι : Type ?u.305340\ninst✝ : PseudoMetricSpace α\nx y z : α\nε ε₁ ε₂ : ℝ\ns✝ s : Set α\nhs : IsClosed s\na : α\n⊢ a ∈ s ↔ ∀ (ε : ℝ), ε > 0 → ∃ b, b ∈ s ∧ dist a b < ε", "tactic": "simpa only [hs.closure_eq] using @mem_closure_iff _ _ s a" } ]
[ 1915, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1913, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
Continuous.inv
[]
[ 243, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Data/Set/Intervals/ProjIcc.lean
Set.IccExtend_eq_self
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\n⊢ IccExtend h (f ∘ Subtype.val) = f", "tactic": "ext x" }, { "state_after": "case h.inl\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhxa : x < a\n⊢ IccExtend h (f ∘ Subtype.val) x = f x\n\ncase h.inr\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "state_before": "case h\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "tactic": "cases' lt_or_le x a with hxa hax" }, { "state_after": "no goals", "state_before": "case h.inl\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhxa : x < a\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "tactic": "simp [IccExtend_of_le_left _ _ hxa.le, ha x hxa]" }, { "state_after": "case h.inr.inl\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\nhxb : x ≤ b\n⊢ IccExtend h (f ∘ Subtype.val) x = f x\n\ncase h.inr.inr\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\nhbx : b < x\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "state_before": "case h.inr\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "tactic": "cases' le_or_lt x b with hxb hbx" }, { "state_after": "case h.inr.inl.intro\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : { x // x ∈ Icc a b }\nhax : a ≤ ↑x\nhxb : ↑x ≤ b\n⊢ IccExtend h (f ∘ Subtype.val) ↑x = f ↑x", "state_before": "case h.inr.inl\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\nhxb : x ≤ b\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "tactic": "lift x to Icc a b using ⟨hax, hxb⟩" }, { "state_after": "no goals", "state_before": "case h.inr.inl.intro\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : { x // x ∈ Icc a b }\nhax : a ≤ ↑x\nhxb : ↑x ≤ b\n⊢ IccExtend h (f ∘ Subtype.val) ↑x = f ↑x", "tactic": "rw [IccExtend_val, comp_apply]" }, { "state_after": "no goals", "state_before": "case h.inr.inr\nα : Type u_1\nβ : Type u_2\ninst✝ : LinearOrder α\na b : α\nh : a ≤ b\nx✝ : α\nf : α → β\nha : ∀ (x : α), x < a → f x = f a\nhb : ∀ (x : α), b < x → f x = f b\nx : α\nhax : a ≤ x\nhbx : b < x\n⊢ IccExtend h (f ∘ Subtype.val) x = f x", "tactic": "simp [IccExtend_of_right_le _ _ hbx.le, hb x hbx]" } ]
[ 152, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.closure_eq
[]
[ 984, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 983, 1 ]
Mathlib/Data/MvPolynomial/Rename.lean
MvPolynomial.rename_eq
[ { "state_after": "σ : Type u_1\nτ : Type u_3\nα : Type ?u.245747\nR : Type u_2\nS : Type ?u.245753\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nf : σ → τ\np : MvPolynomial σ R\n⊢ (sum p fun s a => ↑(monomial (sum s fun a b => Finsupp.single (f a) b)) a) =\n sum p fun a => Finsupp.single (sum a fun a => Finsupp.single (f a))", "state_before": "σ : Type u_1\nτ : Type u_3\nα : Type ?u.245747\nR : Type u_2\nS : Type ?u.245753\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nf : σ → τ\np : MvPolynomial σ R\n⊢ ↑(rename f) p = Finsupp.mapDomain (Finsupp.mapDomain f) p", "tactic": "simp only [rename, aeval_def, eval₂, Finsupp.mapDomain, algebraMap_eq, comp_apply,\n X_pow_eq_monomial, ← monomial_finsupp_sum_index]" }, { "state_after": "no goals", "state_before": "σ : Type u_1\nτ : Type u_3\nα : Type ?u.245747\nR : Type u_2\nS : Type ?u.245753\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S\nf : σ → τ\np : MvPolynomial σ R\n⊢ (sum p fun s a => ↑(monomial (sum s fun a b => Finsupp.single (f a) b)) a) =\n sum p fun a => Finsupp.single (sum a fun a => Finsupp.single (f a))", "tactic": "rfl" } ]
[ 114, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Order/CompleteLattice.lean
iInf_const_mono
[]
[ 885, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 884, 1 ]
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.denseInducing
[]
[ 791, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 789, 11 ]
Mathlib/Order/LiminfLimsup.lean
Filter.OrderIso.apply_bliminf
[]
[ 959, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 957, 1 ]
Std/Logic.lean
or_comm
[]
[ 263, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 263, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
NNReal.hasSum_iff_tendsto_nat
[ { "state_after": "α : Type ?u.312215\nβ : Type ?u.312218\nγ : Type ?u.312221\nf : ℕ → ℝ≥0\nr : ℝ≥0\n⊢ Tendsto (fun n => ∑ i in Finset.range n, ↑(f i)) atTop (𝓝 ↑r) ↔\n Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r)", "state_before": "α : Type ?u.312215\nβ : Type ?u.312218\nγ : Type ?u.312221\nf : ℕ → ℝ≥0\nr : ℝ≥0\n⊢ HasSum f r ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r)", "tactic": "rw [← ENNReal.hasSum_coe, ENNReal.hasSum_iff_tendsto_nat]" }, { "state_after": "α : Type ?u.312215\nβ : Type ?u.312218\nγ : Type ?u.312221\nf : ℕ → ℝ≥0\nr : ℝ≥0\n⊢ Tendsto (fun n => ↑(∑ a in Finset.range n, f a)) atTop (𝓝 ↑r) ↔\n Tendsto (fun n => ∑ a in Finset.range n, f a) atTop (𝓝 r)", "state_before": "α : Type ?u.312215\nβ : Type ?u.312218\nγ : Type ?u.312221\nf : ℕ → ℝ≥0\nr : ℝ≥0\n⊢ Tendsto (fun n => ∑ i in Finset.range n, ↑(f i)) atTop (𝓝 ↑r) ↔\n Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r)", "tactic": "simp only [← ENNReal.coe_finset_sum]" }, { "state_after": "no goals", "state_before": "α : Type ?u.312215\nβ : Type ?u.312218\nγ : Type ?u.312221\nf : ℕ → ℝ≥0\nr : ℝ≥0\n⊢ Tendsto (fun n => ↑(∑ a in Finset.range n, f a)) atTop (𝓝 ↑r) ↔\n Tendsto (fun n => ∑ a in Finset.range n, f a) atTop (𝓝 r)", "tactic": "exact ENNReal.tendsto_coe" } ]
[ 1129, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1125, 1 ]
Mathlib/MeasureTheory/Measure/VectorMeasure.lean
MeasureTheory.VectorMeasure.measurable_of_not_restrict_le_zero
[]
[ 1022, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1021, 1 ]
Mathlib/Data/Fin/Tuple/Sort.lean
Tuple.self_comp_sort
[ { "state_after": "no goals", "state_before": "n : ℕ\nα : Type u_1\ninst✝ : LinearOrder α\nf : Fin n → α\n⊢ graph.proj ∘ (↑(graphEquiv₁ f) ∘ ↑(graphEquiv₁ f).symm) ∘ ↑(graphEquiv₂ f).toEquiv = graph.proj ∘ ↑(graphEquiv₂ f)", "tactic": "simp" } ]
[ 99, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Order/Lattice.lean
Lattice.ext
[ { "state_after": "case mk\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\nB : Lattice α\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B", "state_before": "α✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\nA B : Lattice α\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ A = B", "tactic": "cases A" }, { "state_after": "case mk.mk\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝¹ : SemilatticeSup α\ntoInf✝¹ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "state_before": "case mk\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\nB : Lattice α\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝ inf_le_right✝ le_inf✝ = B", "tactic": "cases B" }, { "state_after": "case mk.mk.refl\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝¹ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "state_before": "case mk.mk\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝¹ : SemilatticeSup α\ntoInf✝¹ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "tactic": "cases SemilatticeSup.ext H" }, { "state_after": "case mk.mk.refl.refl\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "state_before": "case mk.mk.refl\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝¹ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ntoInf✝ : Inf α\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "tactic": "cases SemilatticeInf.ext H" }, { "state_after": "no goals", "state_before": "case mk.mk.refl.refl\nα✝ : Type u\nβ : Type v\ninst✝ : Lattice α✝\na b c d : α✝\nα : Type u_1\ntoSemilatticeSup✝ : SemilatticeSup α\ntoInf✝ : Inf α\ninf_le_left✝¹ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝¹ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝¹ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\ninf_le_left✝ : ∀ (a b : α), a ⊓ b ≤ a\ninf_le_right✝ : ∀ (a b : α), a ⊓ b ≤ b\nle_inf✝ : ∀ (a b c : α), a ≤ b → a ≤ c → a ≤ b ⊓ c\nH : ∀ (x y : α), x ≤ y ↔ x ≤ y\n⊢ mk inf_le_left✝¹ inf_le_right✝¹ le_inf✝¹ = mk inf_le_left✝ inf_le_right✝ le_inf✝", "tactic": "congr" } ]
[ 726, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 720, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm_le_snorm_top_mul_snorm
[ { "state_after": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ\n\ncase neg\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "tactic": "by_cases hp_top : p = ∞" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : p = 0\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ\n\ncase neg\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "state_before": "case neg\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "tactic": "by_cases hp_zero : p = 0" }, { "state_after": "case neg\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖b (f x) (g x)‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) ≤\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "state_before": "case neg\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "tactic": "simp_rw [snorm_eq_lintegral_rpow_nnnorm hp_zero hp_top, snorm_exponent_top, snormEssSup]" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\n⊢ snormEssSup (fun x => b (f x) (g x)) μ ≤ snormEssSup f μ * snormEssSup g μ", "state_before": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "tactic": "simp_rw [hp_top, snorm_exponent_top]" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ (fun x => ↑‖(fun x => b (f x) (g x)) x‖₊) a ≤ ((fun x => ↑‖f x‖₊) * fun x => ↑‖g x‖₊) a", "state_before": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\n⊢ snormEssSup (fun x => b (f x) (g x)) μ ≤ snormEssSup f μ * snormEssSup g μ", "tactic": "refine' le_trans (essSup_mono_ae <| h.mono fun a ha => _) (ENNReal.essSup_mul_le _ _)" }, { "state_after": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊", "state_before": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ (fun x => ↑‖(fun x => b (f x) (g x)) x‖₊) a ≤ ((fun x => ↑‖f x‖₊) * fun x => ↑‖g x‖₊) a", "tactic": "simp_rw [Pi.mul_apply, ← ENNReal.coe_mul, ENNReal.coe_le_coe]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : p = ⊤\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊", "tactic": "exact ha" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : p = 0\n⊢ snorm (fun x => b (f x) (g x)) p μ ≤ snorm f ⊤ μ * snorm g p μ", "tactic": "simp only [hp_zero, snorm_exponent_zero, MulZeroClass.mul_zero, le_zero_iff]" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖b (f x) (g x)‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖b (f x) (g x)‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) ≤\n (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "tactic": "refine' ENNReal.rpow_le_rpow _ (one_div_nonneg.mpr ENNReal.toReal_nonneg)" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ^ ENNReal.toReal p ≤ ↑‖f a‖₊ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖b (f x) (g x)‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ", "tactic": "refine' lintegral_mono_ae (h.mono fun a ha => _)" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ^ ENNReal.toReal p ≤ (↑‖f a‖₊ * ↑‖g a‖₊) ^ ENNReal.toReal p", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ^ ENNReal.toReal p ≤ ↑‖f a‖₊ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p", "tactic": "rw [← ENNReal.mul_rpow_of_nonneg _ _ ENNReal.toReal_nonneg]" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ≤ ↑‖f a‖₊ * ↑‖g a‖₊", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ^ ENNReal.toReal p ≤ (↑‖f a‖₊ * ↑‖g a‖₊) ^ ENNReal.toReal p", "tactic": "refine' ENNReal.rpow_le_rpow _ ENNReal.toReal_nonneg" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ↑‖b (f a) (g a)‖₊ ≤ ↑‖f a‖₊ * ↑‖g a‖₊", "tactic": "rw [← ENNReal.coe_mul, ENNReal.coe_le_coe]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\na : α\nha : ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊\n⊢ ‖b (f a) (g a)‖₊ ≤ ‖f a‖₊ * ‖g a‖₊", "tactic": "exact ha" }, { "state_after": "case refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ\n\ncase refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) ≤\n (∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p)", "tactic": "refine' ENNReal.rpow_le_rpow _ _" }, { "state_after": "case refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p\n\ncase refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ\n\ncase refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "tactic": "swap" }, { "state_after": "case refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ∀ᵐ (a : α) ∂μ,\n ↑‖f a‖₊ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p ≤\n essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ≤\n ∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ", "tactic": "refine' lintegral_mono_ae _" }, { "state_after": "case h\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\nx : α\nhx : ↑‖f x‖₊ ≤ essSup (fun x => ↑‖f x‖₊) μ\n⊢ ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ≤\n essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ∀ᵐ (a : α) ∂μ,\n ↑‖f a‖₊ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p ≤\n essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g a‖₊ ^ ENNReal.toReal p", "tactic": "filter_upwards [@ENNReal.ae_le_essSup _ _ μ fun x => (‖f x‖₊ : ℝ≥0∞)]with x hx" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\nx : α\nhx : ↑‖f x‖₊ ≤ essSup (fun x => ↑‖f x‖₊) μ\n⊢ ↑‖f x‖₊ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ≤\n essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p", "tactic": "exact mul_le_mul_right' (ENNReal.rpow_le_rpow hx ENNReal.toReal_nonneg) _" }, { "state_after": "case refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ ENNReal.toReal p", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "tactic": "rw [one_div_nonneg]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ ENNReal.toReal p", "tactic": "exact ENNReal.toReal_nonneg" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)\n\ncase hf\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ AEMeasurable fun x => ↑‖g x‖₊ ^ ENNReal.toReal p", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (∫⁻ (x : α), essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "tactic": "rw [lintegral_const_mul'']" }, { "state_after": "case hf\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ AEMeasurable fun x => ↑‖g x‖₊ ^ ENNReal.toReal p\n\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)\n\ncase hf\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ AEMeasurable fun x => ↑‖g x‖₊ ^ ENNReal.toReal p", "tactic": "swap" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) *\n (∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)\n\ncase hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p * ∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^\n (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "tactic": "rw [ENNReal.mul_rpow_of_nonneg]" }, { "state_after": "case hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p\n\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) *\n (∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) *\n (∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)\n\ncase hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "tactic": "swap" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ENNReal.toReal p ≠ 0", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ (essSup (fun x => ↑‖f x‖₊) μ ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p) *\n (∫⁻ (a : α), ↑‖g a‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p) =\n essSup (fun x => ↑‖f x‖₊) μ * (∫⁻ (x : α), ↑‖g x‖₊ ^ ENNReal.toReal p ∂μ) ^ (1 / ENNReal.toReal p)", "tactic": "rw [← ENNReal.rpow_mul, one_div, mul_inv_cancel, ENNReal.rpow_one]" }, { "state_after": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ¬p = 0 ∧ ¬p = ⊤", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ENNReal.toReal p ≠ 0", "tactic": "rw [Ne.def, ENNReal.toReal_eq_zero_iff, not_or]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ ¬p = 0 ∧ ¬p = ⊤", "tactic": "exact ⟨hp_zero, hp_top⟩" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ AEMeasurable fun x => ↑‖g x‖₊ ^ ENNReal.toReal p", "tactic": "exact hg.nnnorm.aemeasurable.coe_nnreal_ennreal.pow aemeasurable_const" }, { "state_after": "case hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ ENNReal.toReal p", "state_before": "case hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ 1 / ENNReal.toReal p", "tactic": "rw [one_div_nonneg]" }, { "state_after": "no goals", "state_before": "case hz\nα : Type u_1\nE : Type u_4\nF : Type u_2\nG : Type u_3\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → E\ng : α → F\nhg : AEStronglyMeasurable g μ\nb : E → F → G\nh : ∀ᵐ (x : α) ∂μ, ‖b (f x) (g x)‖₊ ≤ ‖f x‖₊ * ‖g x‖₊\nhp_top : ¬p = ⊤\nhp_zero : ¬p = 0\n⊢ 0 ≤ ENNReal.toReal p", "tactic": "exact ENNReal.toReal_nonneg" } ]
[ 1388, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1347, 1 ]
Mathlib/LinearAlgebra/Determinant.lean
AlternatingMap.eq_smul_basis_det
[ { "state_after": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\n⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)", "state_before": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\n⊢ f = ↑f ↑e • Basis.det e", "tactic": "refine' Basis.ext_alternating e fun i h => _" }, { "state_after": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\nσ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)\n⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)", "state_before": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\n⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)", "tactic": "let σ : Equiv.Perm ι := Equiv.ofBijective i (Finite.injective_iff_bijective.1 h)" }, { "state_after": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\nσ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)\n⊢ ↑f (↑e ∘ ↑σ) = ↑(↑f ↑e • Basis.det e) (↑e ∘ ↑σ)", "state_before": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\nσ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)\n⊢ (↑f fun i_1 => ↑e (i i_1)) = ↑(↑f ↑e • Basis.det e) fun i_1 => ↑e (i i_1)", "tactic": "change f (e ∘ σ) = (f e • e.det) (e ∘ σ)" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁶ : CommRing R\nM : Type u_2\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type ?u.2583010\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nι : Type u_3\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\ne : Basis ι R M\nf : AlternatingMap R M R ι\ni : ι → ι\nh : Injective i\nσ : Equiv.Perm ι := Equiv.ofBijective i (_ : Bijective i)\n⊢ ↑f (↑e ∘ ↑σ) = ↑(↑f ↑e • Basis.det e) (↑e ∘ ↑σ)", "tactic": "simp [AlternatingMap.map_perm, Basis.det_self]" } ]
[ 580, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 576, 1 ]
Mathlib/Topology/Sober.lean
genericPoint_specializes
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.5792\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : QuasiSober α\ninst✝ : IrreducibleSpace α\nx : α\n⊢ x ∈ closure univ", "tactic": "simp" } ]
[ 164, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/RingTheory/Ideal/Over.lean
Ideal.IntegralClosure.comap_lt_comap
[]
[ 343, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 340, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.typein_surj
[]
[ 490, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 488, 1 ]
Mathlib/Order/SuccPred/Relation.lean
reflTransGen_of_pred_of_ge
[]
[ 103, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/FieldTheory/Separable.lean
Polynomial.separable_X_pow_sub_C
[]
[ 404, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 402, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.valMinAbs_nonneg_iff
[ { "state_after": "n : ℕ\ninst✝ : NeZero n\nx : ZMod n\n⊢ (0 ≤ if val x ≤ n / 2 then ↑(val x) else ↑(val x) - ↑n) ↔ val x ≤ n / 2", "state_before": "n : ℕ\ninst✝ : NeZero n\nx : ZMod n\n⊢ 0 ≤ valMinAbs x ↔ val x ≤ n / 2", "tactic": "rw [valMinAbs_def_pos]" }, { "state_after": "case inl\nn : ℕ\ninst✝ : NeZero n\nx : ZMod n\nh : val x ≤ n / 2\n⊢ 0 ≤ ↑(val x) ↔ val x ≤ n / 2\n\ncase inr\nn : ℕ\ninst✝ : NeZero n\nx : ZMod n\nh : ¬val x ≤ n / 2\n⊢ 0 ≤ ↑(val x) - ↑n ↔ val x ≤ n / 2", "state_before": "n : ℕ\ninst✝ : NeZero n\nx : ZMod n\n⊢ (0 ≤ if val x ≤ n / 2 then ↑(val x) else ↑(val x) - ↑n) ↔ val x ≤ n / 2", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nn : ℕ\ninst✝ : NeZero n\nx : ZMod n\nh : val x ≤ n / 2\n⊢ 0 ≤ ↑(val x) ↔ val x ≤ n / 2", "tactic": "exact iff_of_true (Nat.cast_nonneg _) h" }, { "state_after": "no goals", "state_before": "case inr\nn : ℕ\ninst✝ : NeZero n\nx : ZMod n\nh : ¬val x ≤ n / 2\n⊢ 0 ≤ ↑(val x) - ↑n ↔ val x ≤ n / 2", "tactic": "exact iff_of_false (sub_lt_zero.2 <| Int.ofNat_lt.2 x.val_lt).not_le h" } ]
[ 938, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 935, 1 ]
Mathlib/Algebra/GeomSum.lean
geom_sum_Ico_mul_neg
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : Ring α\nx : α\nm n : ℕ\nhmn : m ≤ n\n⊢ (∑ i in Ico m n, x ^ i) * (1 - x) = x ^ m - x ^ n", "tactic": "rw [sum_Ico_eq_sub _ hmn, sub_mul, geom_sum_mul_neg, geom_sum_mul_neg, sub_sub_sub_cancel_left]" } ]
[ 340, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.basicOpen_eq_bot_iff
[ { "state_after": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R\n⊢ zeroLocus {f}ᶜ = ↑⊥ ↔ IsNilpotent f", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R\n⊢ basicOpen f = ⊥ ↔ IsNilpotent f", "tactic": "rw [← TopologicalSpace.Opens.coe_inj, basicOpen_eq_zeroLocus_compl]" }, { "state_after": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R\n⊢ (∀ (x : PrimeSpectrum R), f ∈ x.asIdeal) ↔ ∀ (J : Ideal R), Ideal.IsPrime J → f ∈ J", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R\n⊢ zeroLocus {f}ᶜ = ↑⊥ ↔ IsNilpotent f", "tactic": "simp only [Set.eq_univ_iff_forall, Set.singleton_subset_iff, TopologicalSpace.Opens.coe_bot,\n nilpotent_iff_mem_prime, Set.compl_empty_iff, mem_zeroLocus, SetLike.mem_coe]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nf : R\n⊢ (∀ (x : PrimeSpectrum R), f ∈ x.asIdeal) ↔ ∀ (J : Ideal R), Ideal.IsPrime J → f ∈ J", "tactic": "exact ⟨fun h I hI => h ⟨I, hI⟩, fun h ⟨I, hI⟩ => h I hI⟩" } ]
[ 874, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 870, 1 ]
Mathlib/Order/Filter/Extr.lean
IsMinFilter.sup
[]
[ 534, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_mem_insert
[]
[ 865, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 863, 1 ]
Mathlib/InformationTheory/Hamming.lean
Hamming.toHamming_neg
[]
[ 360, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/Data/Nat/Bits.lean
Nat.bit1_mod_two
[ { "state_after": "n : ℕ\n⊢ (bif bodd (bit1 n) then 1 else 0) = 1", "state_before": "n : ℕ\n⊢ bit1 n % 2 = 1", "tactic": "rw [Nat.mod_two_of_bodd]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ (bif bodd (bit1 n) then 1 else 0) = 1", "tactic": "simp" } ]
[ 113, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Combinatorics/SimpleGraph/AdjMatrix.lean
Matrix.IsAdjMatrix.adjMatrix_toGraph_eq
[ { "state_after": "case a.h\nV : Type u_2\nα : Type u_1\nβ : Type ?u.79711\ninst✝² : MulZeroOneClass α\ninst✝¹ : Nontrivial α\nA : Matrix V V α\nh : IsAdjMatrix A\ninst✝ : DecidableEq α\ni j : V\n⊢ adjMatrix α (toGraph h) i j = A i j", "state_before": "V : Type u_2\nα : Type u_1\nβ : Type ?u.79711\ninst✝² : MulZeroOneClass α\ninst✝¹ : Nontrivial α\nA : Matrix V V α\nh : IsAdjMatrix A\ninst✝ : DecidableEq α\n⊢ adjMatrix α (toGraph h) = A", "tactic": "ext (i j)" }, { "state_after": "no goals", "state_before": "case a.h\nV : Type u_2\nα : Type u_1\nβ : Type ?u.79711\ninst✝² : MulZeroOneClass α\ninst✝¹ : Nontrivial α\nA : Matrix V V α\nh : IsAdjMatrix A\ninst✝ : DecidableEq α\ni j : V\n⊢ adjMatrix α (toGraph h) i j = A i j", "tactic": "obtain h' | h' := h.zero_or_one i j <;> simp [h']" } ]
[ 297, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 295, 1 ]
Mathlib/Data/List/Perm.lean
List.perm_replicate_append_replicate
[ { "state_after": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ (count a l = count a (replicate m a ++ replicate n b) ∧\n (b ≠ a → count b l = count b (replicate m a ++ replicate n b)) ∧\n ∀ (b_1 : α), b_1 ≠ b → b_1 ≠ a → count b_1 l = count b_1 (replicate m a ++ replicate n b)) ↔\n count a l = m ∧ count b l = n ∧ l ⊆ [a, b]", "state_before": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ l ~ replicate m a ++ replicate n b ↔ count a l = m ∧ count b l = n ∧ l ⊆ [a, b]", "tactic": "rw [perm_iff_count, ← Decidable.and_forall_ne a, ← Decidable.and_forall_ne b]" }, { "state_after": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\nthis : l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l\n⊢ (count a l = count a (replicate m a ++ replicate n b) ∧\n (b ≠ a → count b l = count b (replicate m a ++ replicate n b)) ∧\n ∀ (b_1 : α), b_1 ≠ b → b_1 ≠ a → count b_1 l = count b_1 (replicate m a ++ replicate n b)) ↔\n count a l = m ∧ count b l = n ∧ l ⊆ [a, b]\n\ncase this\nα : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l", "state_before": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ (count a l = count a (replicate m a ++ replicate n b) ∧\n (b ≠ a → count b l = count b (replicate m a ++ replicate n b)) ∧\n ∀ (b_1 : α), b_1 ≠ b → b_1 ≠ a → count b_1 l = count b_1 (replicate m a ++ replicate n b)) ↔\n count a l = m ∧ count b l = n ∧ l ⊆ [a, b]", "tactic": "suffices : l ⊆ [a, b] ↔ ∀ c, c ≠ b → c ≠ a → c ∉ l" }, { "state_after": "case this\nα : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l", "state_before": "α : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\nthis : l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l\n⊢ (count a l = count a (replicate m a ++ replicate n b) ∧\n (b ≠ a → count b l = count b (replicate m a ++ replicate n b)) ∧\n ∀ (b_1 : α), b_1 ≠ b → b_1 ≠ a → count b_1 l = count b_1 (replicate m a ++ replicate n b)) ↔\n count a l = m ∧ count b l = n ∧ l ⊆ [a, b]\n\ncase this\nα : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l", "tactic": "{ simp (config := { contextual := true }) [count_replicate, h, h.symm, this] }" }, { "state_after": "no goals", "state_before": "case this\nα : Type uu\nβ : Type vv\nl₁ l₂ : List α\ninst✝ : DecidableEq α\nl : List α\na b : α\nm n : ℕ\nh : a ≠ b\n⊢ l ⊆ [a, b] ↔ ∀ (c : α), c ≠ b → c ≠ a → ¬c ∈ l", "tactic": "simp_rw [Ne.def, ← and_imp, ← not_or, Decidable.not_imp_not, subset_def, mem_cons,\n not_mem_nil, or_false, or_comm]" } ]
[ 890, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 884, 1 ]
Mathlib/Topology/Order/Basic.lean
nhdsWithin_Iic_basis
[]
[ 1127, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1125, 1 ]
Mathlib/Data/Rat/Order.lean
Rat.nonneg_total
[ { "state_after": "case mk'\nb c : ℚ\nn : ℤ\nden✝ : ℕ\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs n) den✝\n⊢ Rat.Nonneg (mk' n den✝) ∨ Rat.Nonneg (-mk' n den✝)", "state_before": "a b c : ℚ\n⊢ Rat.Nonneg a ∨ Rat.Nonneg (-a)", "tactic": "cases' a with n" }, { "state_after": "no goals", "state_before": "case mk'\nb c : ℚ\nn : ℤ\nden✝ : ℕ\nden_nz✝ : den✝ ≠ 0\nreduced✝ : Nat.coprime (Int.natAbs n) den✝\n⊢ Rat.Nonneg (mk' n den✝) ∨ Rat.Nonneg (-mk' n den✝)", "tactic": "exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)" } ]
[ 86, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 11 ]
src/lean/Init/Control/Lawful.lean
ExceptT.run_pure
[]
[ 108, 102 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 108, 9 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply
[]
[ 636, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 634, 1 ]
Mathlib/Algebra/Symmetrized.lean
SymAlg.sym_one
[]
[ 163, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/Probability/Kernel/Basic.lean
ProbabilityTheory.kernel.comapRight_apply
[]
[ 563, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 561, 1 ]
Mathlib/Analysis/Convex/Segment.lean
openSegment_symm
[]
[ 88, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Order/Bounds/Basic.lean
isLeast_Ico
[]
[ 724, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 723, 1 ]
Mathlib/Data/List/Basic.lean
List.indexOf_eq_length
[ { "state_after": "case nil\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\n⊢ indexOf a [] = length [] ↔ ¬a ∈ []\n\ncase cons\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\n⊢ indexOf a (b :: l) = length (b :: l) ↔ ¬a ∈ b :: l", "state_before": "ι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\nl : List α\n⊢ indexOf a l = length l ↔ ¬a ∈ l", "tactic": "induction' l with b l ih" }, { "state_after": "case cons\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\n⊢ (if a = b then 0 else succ (indexOf a l)) = length l + 1 ↔ ¬(a = b ∨ a ∈ l)", "state_before": "case cons\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\n⊢ indexOf a (b :: l) = length (b :: l) ↔ ¬a ∈ b :: l", "tactic": "simp only [length, mem_cons, indexOf_cons]" }, { "state_after": "case cons.inl\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : a = b\n⊢ 0 = length l + 1 ↔ ¬(a = b ∨ a ∈ l)\n\ncase cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ ¬(a = b ∨ a ∈ l)", "state_before": "case cons\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\n⊢ (if a = b then 0 else succ (indexOf a l)) = length l + 1 ↔ ¬(a = b ∨ a ∈ l)", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case nil\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\n⊢ indexOf a [] = length [] ↔ ¬a ∈ []", "tactic": "exact iff_of_true rfl (not_mem_nil _)" }, { "state_after": "no goals", "state_before": "case cons.inl\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : a = b\n⊢ 0 = length l + 1 ↔ ¬(a = b ∨ a ∈ l)", "tactic": "exact iff_of_false (by rintro ⟨⟩) fun H => H <| Or.inl h" }, { "state_after": "no goals", "state_before": "ι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : a = b\n⊢ ¬0 = length l + 1", "tactic": "rintro ⟨⟩" }, { "state_after": "case cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ ¬a ∈ l", "state_before": "case cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ ¬(a = b ∨ a ∈ l)", "tactic": "simp only [h, false_or_iff]" }, { "state_after": "case cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ indexOf a l = length l", "state_before": "case cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ ¬a ∈ l", "tactic": "rw [← ih]" }, { "state_after": "no goals", "state_before": "case cons.inr\nι : Type ?u.79233\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l = length l ↔ ¬a ∈ l\nh : ¬a = b\n⊢ succ (indexOf a l) = length l + 1 ↔ indexOf a l = length l", "tactic": "exact succ_inj'" } ]
[ 1190, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1183, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
ContDiffAt.of_le
[]
[ 1349, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1348, 1 ]
Mathlib/Data/Real/GoldenRatio.lean
goldConj_irrational
[ { "state_after": "this : Irrational (sqrt ↑5)\n⊢ Irrational ψ", "state_before": "⊢ Irrational ψ", "tactic": "have := Nat.Prime.irrational_sqrt (show Nat.Prime 5 by norm_num)" }, { "state_after": "this✝ : Irrational (sqrt ↑5)\nthis : Irrational (↑1 - sqrt ↑5)\n⊢ Irrational ψ", "state_before": "this : Irrational (sqrt ↑5)\n⊢ Irrational ψ", "tactic": "have := this.rat_sub 1" }, { "state_after": "this✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ Irrational ψ", "state_before": "this✝ : Irrational (sqrt ↑5)\nthis : Irrational (↑1 - sqrt ↑5)\n⊢ Irrational ψ", "tactic": "have := this.rat_mul (show (0.5 : ℚ) ≠ 0 by norm_num)" }, { "state_after": "case h.e'_1\nthis✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ ψ = ↑0.5 * (↑1 - sqrt ↑5)", "state_before": "this✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ Irrational ψ", "tactic": "convert this" }, { "state_after": "case h.e'_1\nthis✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ ψ = 1 / 2 * (1 - sqrt 5)", "state_before": "case h.e'_1\nthis✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ ψ = ↑0.5 * (↑1 - sqrt ↑5)", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case h.e'_1\nthis✝¹ : Irrational (sqrt ↑5)\nthis✝ : Irrational (↑1 - sqrt ↑5)\nthis : Irrational (↑0.5 * (↑1 - sqrt ↑5))\n⊢ ψ = 1 / 2 * (1 - sqrt 5)", "tactic": "field_simp" }, { "state_after": "no goals", "state_before": "⊢ Nat.Prime 5", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "this✝ : Irrational (sqrt ↑5)\nthis : Irrational (↑1 - sqrt ↑5)\n⊢ 0.5 ≠ 0", "tactic": "norm_num" } ]
[ 157, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_liminf_le
[]
[ 1019, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1017, 1 ]
Mathlib/Data/Sym/Basic.lean
Sym.mem_map
[]
[ 360, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 358, 1 ]
Mathlib/Data/List/NodupEquivFin.lean
List.sublist_iff_exists_fin_orderEmbedding_get_eq
[ { "state_after": "α : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)) ↔ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "state_before": "α : Type u_1\nl l' : List α\n⊢ l <+ l' ↔ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "tactic": "rw [sublist_iff_exists_orderEmbedding_get?_eq]" }, { "state_after": "case mp\nα : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)) → ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n\ncase mpr\nα : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)) → ∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)", "state_before": "α : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)) ↔ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "tactic": "constructor" }, { "state_after": "case mp.intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\n⊢ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "state_before": "case mp\nα : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)) → ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "tactic": "rintro ⟨f, hf⟩" }, { "state_after": "case mp.intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "state_before": "case mp.intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\n⊢ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "tactic": "have h : ∀ {i : ℕ} (_ : i < l.length), f i < l'.length := by\n intro i hi\n specialize hf i\n rw [get?_eq_get hi, eq_comm, get?_eq_some] at hf\n obtain ⟨h, -⟩ := hf\n exact h" }, { "state_after": "case mp.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∀ (a b : Fin (length l)),\n (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') }) a ≤\n (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') }) b ↔\n a ≤ b\n\ncase mp.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∀ (ix : Fin (length l)),\n get l ix =\n get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n ?mp.intro.refine'_1)\n ix)", "state_before": "case mp.intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)", "tactic": "refine' ⟨OrderEmbedding.ofMapLEIff (fun ix => ⟨f ix, h ix.is_lt⟩) _, _⟩" }, { "state_after": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\ni : ℕ\nhi : i < length l\n⊢ ↑f i < length l'", "state_before": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\n⊢ ∀ {i : ℕ}, i < length l → ↑f i < length l'", "tactic": "intro i hi" }, { "state_after": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nhf : get? l i = get? l' (↑f i)\n⊢ ↑f i < length l'", "state_before": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\ni : ℕ\nhi : i < length l\n⊢ ↑f i < length l'", "tactic": "specialize hf i" }, { "state_after": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nhf : ∃ h, get l' { val := ↑f i, isLt := h } = get l { val := i, isLt := hi }\n⊢ ↑f i < length l'", "state_before": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nhf : get? l i = get? l' (↑f i)\n⊢ ↑f i < length l'", "tactic": "rw [get?_eq_get hi, eq_comm, get?_eq_some] at hf" }, { "state_after": "case intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nh : ↑f i < length l'\n⊢ ↑f i < length l'", "state_before": "α : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nhf : ∃ h, get l' { val := ↑f i, isLt := h } = get l { val := i, isLt := hi }\n⊢ ↑f i < length l'", "tactic": "obtain ⟨h, -⟩ := hf" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\ni : ℕ\nhi : i < length l\nh : ↑f i < length l'\n⊢ ↑f i < length l'", "tactic": "exact h" }, { "state_after": "no goals", "state_before": "case mp.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∀ (a b : Fin (length l)),\n (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') }) a ≤\n (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') }) b ↔\n a ≤ b", "tactic": "simp" }, { "state_after": "case mp.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\ni : Fin (length l)\n⊢ get l i =\n get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n (_ :\n ∀ (a a_1 : Fin (length l)),\n { val := ↑f ↑a, isLt := (_ : ↑f ↑a < length l') } ≤\n { val := ↑f ↑a_1, isLt := (_ : ↑f ↑a_1 < length l') } ↔\n a ≤ a_1))\n i)", "state_before": "case mp.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\n⊢ ∀ (ix : Fin (length l)),\n get l ix =\n get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n (_ :\n ∀ (a a_1 : Fin (length l)),\n { val := ↑f ↑a, isLt := (_ : ↑f ↑a < length l') } ≤\n { val := ↑f ↑a_1, isLt := (_ : ↑f ↑a_1 < length l') } ↔\n a ≤ a_1))\n ix)", "tactic": "intro i" }, { "state_after": "case mp.intro.refine'_2.a\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\ni : Fin (length l)\n⊢ some (get l i) =\n some\n (get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n (_ :\n ∀ (a a_1 : Fin (length l)),\n { val := ↑f ↑a, isLt := (_ : ↑f ↑a < length l') } ≤\n { val := ↑f ↑a_1, isLt := (_ : ↑f ↑a_1 < length l') } ↔\n a ≤ a_1))\n i))", "state_before": "case mp.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\ni : Fin (length l)\n⊢ get l i =\n get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n (_ :\n ∀ (a a_1 : Fin (length l)),\n { val := ↑f ↑a, isLt := (_ : ↑f ↑a < length l') } ≤\n { val := ↑f ↑a_1, isLt := (_ : ↑f ↑a_1 < length l') } ↔\n a ≤ a_1))\n i)", "tactic": "apply Option.some_injective" }, { "state_after": "no goals", "state_before": "case mp.intro.refine'_2.a\nα : Type u_1\nl l' : List α\nf : ℕ ↪o ℕ\nhf : ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)\nh : ∀ {i : ℕ}, i < length l → ↑f i < length l'\ni : Fin (length l)\n⊢ some (get l i) =\n some\n (get l'\n (↑(OrderEmbedding.ofMapLEIff (fun ix => { val := ↑f ↑ix, isLt := (_ : ↑f ↑ix < length l') })\n (_ :\n ∀ (a a_1 : Fin (length l)),\n { val := ↑f ↑a, isLt := (_ : ↑f ↑a < length l') } ≤\n { val := ↑f ↑a_1, isLt := (_ : ↑f ↑a_1 < length l') } ↔\n a ≤ a_1))\n i))", "tactic": "simpa [get?_eq_get i.2, get?_eq_get (h i.2)] using hf i" }, { "state_after": "case mpr.intro\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ ∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)", "state_before": "case mpr\nα : Type u_1\nl l' : List α\n⊢ (∃ f, ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)) → ∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)", "tactic": "rintro ⟨f, hf⟩" }, { "state_after": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ StrictMono fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l'\n\ncase mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ ∀ (ix : ℕ),\n get? l ix =\n get? l'\n (↑(OrderEmbedding.ofStrictMono\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l')\n ?mpr.intro.refine'_1)\n ix)", "state_before": "case mpr.intro\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ ∃ f, ∀ (ix : ℕ), get? l ix = get? l' (↑f ix)", "tactic": "refine'\n ⟨OrderEmbedding.ofStrictMono (fun i => if hi : i < l.length then f ⟨i, hi⟩ else i + l'.length)\n _,\n _⟩" }, { "state_after": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\n⊢ (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') i <\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') j", "state_before": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ StrictMono fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l'", "tactic": "intro i j h" }, { "state_after": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\n⊢ (if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') <\n if hi : j < length l then ↑(↑f { val := j, isLt := hi }) else j + length l'", "state_before": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\n⊢ (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') i <\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') j", "tactic": "dsimp only" }, { "state_after": "case mpr.intro.refine'_1.inl.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < ↑(↑f { val := j, isLt := hj })\n\ncase mpr.intro.refine'_1.inl.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : ¬j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < j + length l'\n\ncase mpr.intro.refine'_1.inr.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : ¬i < length l\nhj : j < length l\n⊢ i + length l' < ↑(↑f { val := j, isLt := hj })\n\ncase mpr.intro.refine'_1.inr.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : ¬i < length l\nhj : ¬j < length l\n⊢ i + length l' < j + length l'", "state_before": "case mpr.intro.refine'_1\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\n⊢ (if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') <\n if hi : j < length l then ↑(↑f { val := j, isLt := hi }) else j + length l'", "tactic": "split_ifs with hi hj hj" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_1.inl.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < ↑(↑f { val := j, isLt := hj })", "tactic": "rwa [Fin.val_fin_lt, f.lt_iff_lt]" }, { "state_after": "case mpr.intro.refine'_1.inl.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : ¬j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < length l' + j", "state_before": "case mpr.intro.refine'_1.inl.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : ¬j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < j + length l'", "tactic": "rw [add_comm]" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_1.inl.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : i < length l\nhj : ¬j < length l\n⊢ ↑(↑f { val := i, isLt := hi }) < length l' + j", "tactic": "exact lt_add_of_lt_of_pos (Fin.is_lt _) (i.zero_le.trans_lt h)" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_1.inr.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : ¬i < length l\nhj : j < length l\n⊢ i + length l' < ↑(↑f { val := j, isLt := hj })", "tactic": "exact absurd (h.trans hj) hi" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_1.inr.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni j : ℕ\nh : i < j\nhi : ¬i < length l\nhj : ¬j < length l\n⊢ i + length l' < j + length l'", "tactic": "simpa using h" }, { "state_after": "case mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\n⊢ get? l i =\n get? l'\n (↑(OrderEmbedding.ofStrictMono\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l')\n (_ :\n ∀ ⦃i j : ℕ⦄,\n i < j →\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') i <\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') j))\n i)", "state_before": "case mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\n⊢ ∀ (ix : ℕ),\n get? l ix =\n get? l'\n (↑(OrderEmbedding.ofStrictMono\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l')\n (_ :\n ∀ ⦃i j : ℕ⦄,\n i < j →\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') i <\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') j))\n ix)", "tactic": "intro i" }, { "state_after": "case mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\n⊢ get? l i = get? l' (if h : i < length l then ↑(↑f { val := i, isLt := (_ : i < length l) }) else i + length l')", "state_before": "case mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\n⊢ get? l i =\n get? l'\n (↑(OrderEmbedding.ofStrictMono\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l')\n (_ :\n ∀ ⦃i j : ℕ⦄,\n i < j →\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') i <\n (fun i => if hi : i < length l then ↑(↑f { val := i, isLt := hi }) else i + length l') j))\n i)", "tactic": "simp only [OrderEmbedding.coe_ofStrictMono]" }, { "state_after": "case mpr.intro.refine'_2.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : i < length l\n⊢ get? l i = get? l' ↑(↑f { val := i, isLt := (_ : i < length l) })\n\ncase mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ get? l i = get? l' (i + length l')", "state_before": "case mpr.intro.refine'_2\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\n⊢ get? l i = get? l' (if h : i < length l then ↑(↑f { val := i, isLt := (_ : i < length l) }) else i + length l')", "tactic": "split_ifs with hi" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_2.inl\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : i < length l\n⊢ get? l i = get? l' ↑(↑f { val := i, isLt := (_ : i < length l) })", "tactic": "rw [get?_eq_get hi, get?_eq_get, ← hf]" }, { "state_after": "case mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ length l' ≤ i + length l'\n\ncase mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ length l ≤ i", "state_before": "case mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ get? l i = get? l' (i + length l')", "tactic": "rw [get?_eq_none.mpr, get?_eq_none.mpr]" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ length l' ≤ i + length l'", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case mpr.intro.refine'_2.inr\nα : Type u_1\nl l' : List α\nf : Fin (length l) ↪o Fin (length l')\nhf : ∀ (ix : Fin (length l)), get l ix = get l' (↑f ix)\ni : ℕ\nhi : ¬i < length l\n⊢ length l ≤ i", "tactic": "simpa using hi" } ]
[ 209, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/MeasureTheory/Measure/Stieltjes.lean
StieltjesFunction.measure_Iic
[ { "state_after": "f : StieltjesFunction\nl : ℝ\nhf : Tendsto (↑f) atBot (𝓝 l)\nx : ℝ\n⊢ Tendsto (fun x_1 => ↑↑(StieltjesFunction.measure f) (Ioc x_1 x)) atBot (𝓝 (ofReal (↑f x - l)))", "state_before": "f : StieltjesFunction\nl : ℝ\nhf : Tendsto (↑f) atBot (𝓝 l)\nx : ℝ\n⊢ ↑↑(StieltjesFunction.measure f) (Iic x) = ofReal (↑f x - l)", "tactic": "refine' tendsto_nhds_unique (tendsto_measure_Ioc_atBot _ _) _" }, { "state_after": "f : StieltjesFunction\nl : ℝ\nhf : Tendsto (↑f) atBot (𝓝 l)\nx : ℝ\n⊢ Tendsto (fun x_1 => ofReal (↑f x - ↑f x_1)) atBot (𝓝 (ofReal (↑f x - l)))", "state_before": "f : StieltjesFunction\nl : ℝ\nhf : Tendsto (↑f) atBot (𝓝 l)\nx : ℝ\n⊢ Tendsto (fun x_1 => ↑↑(StieltjesFunction.measure f) (Ioc x_1 x)) atBot (𝓝 (ofReal (↑f x - l)))", "tactic": "simp_rw [measure_Ioc]" }, { "state_after": "no goals", "state_before": "f : StieltjesFunction\nl : ℝ\nhf : Tendsto (↑f) atBot (𝓝 l)\nx : ℝ\n⊢ Tendsto (fun x_1 => ofReal (↑f x - ↑f x_1)) atBot (𝓝 (ofReal (↑f x - l)))", "tactic": "exact ENNReal.tendsto_ofReal (Tendsto.const_sub _ hf)" } ]
[ 590, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 586, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.prod_nonneg
[]
[ 589, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]