file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/RingTheory/Ideal/Quotient.lean
Ideal.exists_sub_one_mem_and_mem
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∃ r x, r ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\n⊢ ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j", "tactic": "intro j hjs hji" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nhf : f i ⊔ f j = ⊤\n⊢ ∃ r x, r ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∃ r x, r ∈ f j", "tactic": "specialize hf i his j hjs hji.symm" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nhf : ∃ y, y ∈ f i ∧ ∃ z, z ∈ f j ∧ y + z = 1\n⊢ ∃ r x, r ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nhf : f i ⊔ f j = ⊤\n⊢ ∃ r x, r ∈ f j", "tactic": "rw [eq_top_iff_one, Submodule.mem_sup] at hf" }, { "state_after": "case intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ ∃ r x, r ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nhf : ∃ y, y ∈ f i ∧ ∃ z, z ∈ f j ∧ y + z = 1\n⊢ ∃ r x, r ∈ f j", "tactic": "rcases hf with ⟨r, hri, s, hsj, hrs⟩" }, { "state_after": "case intro.intro.intro.intro.refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ 1 - r - 1 ∈ f i\n\ncase intro.intro.intro.intro.refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ 1 - r ∈ f j", "state_before": "case intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ ∃ r x, r ∈ f j", "tactic": "refine' ⟨1 - r, _, _⟩" }, { "state_after": "case intro.intro.intro.intro.refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ -r ∈ f i", "state_before": "case intro.intro.intro.intro.refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ 1 - r - 1 ∈ f i", "tactic": "rw [sub_right_comm, sub_self, zero_sub]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ -r ∈ f i", "tactic": "exact (f i).neg_mem hri" }, { "state_after": "case intro.intro.intro.intro.refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ s ∈ f j", "state_before": "case intro.intro.intro.intro.refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ 1 - r ∈ f j", "tactic": "rw [← hrs, add_sub_cancel']" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns✝ : Finset ι\nf : ι → Ideal R\ni : ι\nhis : i ∈ s✝\nj : ι\nhjs : j ∈ s✝\nhji : j ≠ i\nr : R\nhri : r ∈ f i\ns : R\nhsj : s ∈ f j\nhrs : r + s = 1\n⊢ s ∈ f j", "tactic": "exact hsj" }, { "state_after": "case intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∃ r, r - 1 ∈ f i ∧ ∀ (j : ι), j ∈ s → j ≠ i → r ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\nthis : ∃ g, (∀ (j : ι), g j - 1 ∈ f i) ∧ ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∃ r, r - 1 ∈ f i ∧ ∀ (j : ι), j ∈ s → j ≠ i → r ∈ f j", "tactic": "rcases this with ⟨g, hgi, hgj⟩" }, { "state_after": "case intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, g x - 1 ∈ f i ∧ ∀ (j : ι), j ∈ s → j ≠ i → ∏ x in Finset.erase s i, g x ∈ f j", "state_before": "case intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∃ r, r - 1 ∈ f i ∧ ∀ (j : ι), j ∈ s → j ≠ i → r ∈ f j", "tactic": "use ∏ x in s.erase i, g x" }, { "state_after": "case intro.intro.left\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, g x - 1 ∈ f i\n\ncase intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∀ (j : ι), j ∈ s → j ≠ i → ∏ x in Finset.erase s i, g x ∈ f j", "state_before": "case intro.intro\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, g x - 1 ∈ f i ∧ ∀ (j : ι), j ∈ s → j ≠ i → ∏ x in Finset.erase s i, g x ∈ f j", "tactic": "constructor" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\n⊢ ∃ g, (∀ (j : ι), g j - 1 ∈ f i) ∧ ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\n⊢ ∃ g, (∀ (j : ι), g j - 1 ∈ f i) ∧ ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j", "tactic": "choose g hg1 hg2 using this" }, { "state_after": "case refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j - 1 ∈ f i\n\ncase refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ j ∈ s → j ≠ i → (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j ∈ f j", "state_before": "R : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\n⊢ ∃ g, (∀ (j : ι), g j - 1 ∈ f i) ∧ ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j", "tactic": "refine' ⟨fun j => if H : j ∈ s ∧ j ≠ i then g j H.1 H.2 else 1, fun j => _, fun j => _⟩" }, { "state_after": "case refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ (if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) - 1 ∈ f i", "state_before": "case refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j - 1 ∈ f i", "tactic": "dsimp only" }, { "state_after": "case refine'_1.inl\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : j ∈ s ∧ j ≠ i\n⊢ g j (_ : j ∈ s) (_ : j ≠ i) - 1 ∈ f i\n\ncase refine'_1.inr\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : ¬(j ∈ s ∧ j ≠ i)\n⊢ 1 - 1 ∈ f i", "state_before": "case refine'_1\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ (if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) - 1 ∈ f i", "tactic": "split_ifs with h" }, { "state_after": "case refine'_1.inr\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : ¬(j ∈ s ∧ j ≠ i)\n⊢ 0 ∈ f i", "state_before": "case refine'_1.inr\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : ¬(j ∈ s ∧ j ≠ i)\n⊢ 1 - 1 ∈ f i", "tactic": "rw [sub_self]" }, { "state_after": "no goals", "state_before": "case refine'_1.inr\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : ¬(j ∈ s ∧ j ≠ i)\n⊢ 0 ∈ f i", "tactic": "exact (f i).zero_mem" }, { "state_after": "no goals", "state_before": "case refine'_1.inl\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nh : j ∈ s ∧ j ≠ i\n⊢ g j (_ : j ∈ s) (_ : j ≠ i) - 1 ∈ f i", "tactic": "apply hg1" }, { "state_after": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j ∈ f j", "state_before": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\n⊢ j ∈ s → j ≠ i → (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j ∈ f j", "tactic": "intro hjs hji" }, { "state_after": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ (if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) ∈ f j", "state_before": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ (fun j => if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) j ∈ f j", "tactic": "dsimp only" }, { "state_after": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ g j (_ : j ∈ s) (_ : j ≠ i) ∈ f j\n\ncase refine'_2.hc\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ j ∈ s ∧ j ≠ i", "state_before": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ (if H : j ∈ s ∧ j ≠ i then g j (_ : j ∈ s) (_ : j ≠ i) else 1) ∈ f j", "tactic": "rw [dif_pos]" }, { "state_after": "no goals", "state_before": "case refine'_2.hc\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ j ∈ s ∧ j ≠ i", "tactic": "exact ⟨hjs, hji⟩" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\ng : (j : ι) → j ∈ s → j ≠ i → R\nhg1 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 - 1 ∈ f i\nhg2 : ∀ (j : ι) (a : j ∈ s) (a_1 : j ≠ i), g j a a_1 ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ g j (_ : j ∈ s) (_ : j ≠ i) ∈ f j", "tactic": "apply hg2" }, { "state_after": "case intro.intro.left\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f i)) (g x) = 1", "state_before": "case intro.intro.left\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, g x - 1 ∈ f i", "tactic": "rw [← Ideal.Quotient.mk_eq_mk_iff_sub_mem, map_one, map_prod]" }, { "state_after": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∀ (x : ι), x ∈ Finset.erase s i → ↑(Quotient.mk (f i)) (g x) = 1", "state_before": "case intro.intro.left\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f i)) (g x) = 1", "tactic": "apply Finset.prod_eq_one" }, { "state_after": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nx✝ : ι\na✝ : x✝ ∈ Finset.erase s i\n⊢ ↑(Quotient.mk (f i)) (g x✝) = 1", "state_before": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∀ (x : ι), x ∈ Finset.erase s i → ↑(Quotient.mk (f i)) (g x) = 1", "tactic": "intros" }, { "state_after": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nx✝ : ι\na✝ : x✝ ∈ Finset.erase s i\n⊢ g x✝ - 1 ∈ f i", "state_before": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nx✝ : ι\na✝ : x✝ ∈ Finset.erase s i\n⊢ ↑(Quotient.mk (f i)) (g x✝) = 1", "tactic": "rw [← RingHom.map_one, Ideal.Quotient.mk_eq_mk_iff_sub_mem]" }, { "state_after": "no goals", "state_before": "case intro.intro.left.h\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nx✝ : ι\na✝ : x✝ ∈ Finset.erase s i\n⊢ g x✝ - 1 ∈ f i", "tactic": "apply hgi" }, { "state_after": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∏ x in Finset.erase s i, g x ∈ f j", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\n⊢ ∀ (j : ι), j ∈ s → j ≠ i → ∏ x in Finset.erase s i, g x ∈ f j", "tactic": "intro j hjs hji" }, { "state_after": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f j)) (g x) = 0", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∏ x in Finset.erase s i, g x ∈ f j", "tactic": "rw [← Quotient.eq_zero_iff_mem, map_prod]" }, { "state_after": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f j)) (g x) = 0", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f j)) (g x) = 0", "tactic": "letI : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero" }, { "state_after": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ ↑(Quotient.mk (f j)) (g j) = 0", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ ∏ x in Finset.erase s i, ↑(Quotient.mk (f j)) (g x) = 0", "tactic": "refine' Finset.prod_eq_zero (Finset.mem_erase_of_ne_of_mem hji hjs) _" }, { "state_after": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ g j ∈ f j", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ ↑(Quotient.mk (f j)) (g j) = 0", "tactic": "rw [Quotient.eq_zero_iff_mem]" }, { "state_after": "no goals", "state_before": "case intro.intro.right\nR : Type u\ninst✝ : CommRing R\nI : Ideal R\na b : R\nS ι : Type v\ns : Finset ι\nf : ι → Ideal R\nhf : ∀ (i : ι), i ∈ s → ∀ (j : ι), j ∈ s → i ≠ j → f i ⊔ f j = ⊤\ni : ι\nhis : i ∈ s\nthis✝ : ∀ (j : ι), j ∈ s → j ≠ i → ∃ r x, r ∈ f j\ng : ι → R\nhgi : ∀ (j : ι), g j - 1 ∈ f i\nhgj : ∀ (j : ι), j ∈ s → j ≠ i → g j ∈ f j\nj : ι\nhjs : j ∈ s\nhji : j ≠ i\nthis : CommMonoidWithZero (R ⧸ f j) := CommSemiring.toCommMonoidWithZero\n⊢ g j ∈ f j", "tactic": "exact hgj j hjs hji" } ]
[ 446, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Data/Nat/Lattice.lean
Nat.iInf_lt_succ
[]
[ 190, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Logic/Basic.lean
ne_of_apply_ne
[]
[ 510, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Kernels.lean
CategoryTheory.Limits.kernel_not_iso_of_nonzero
[ { "state_after": "C : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : HasKernel f\nw : f ≠ 0\nI : IsIso (kernel.ι f)\n⊢ Epi (kernel.ι f)", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : HasKernel f\nw : f ≠ 0\nI : IsIso (kernel.ι f)\n⊢ Epi (kernel.ι f)", "tactic": "skip" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\nX Y : C\nf : X ⟶ Y\ninst✝ : HasKernel f\nw : f ≠ 0\nI : IsIso (kernel.ι f)\n⊢ Epi (kernel.ι f)", "tactic": "infer_instance" } ]
[ 397, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 394, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.IsThreeCycle.sign
[ { "state_after": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nh : IsThreeCycle σ\n⊢ (-1) ^ (sum {3} + ↑card {3}) = 1", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nh : IsThreeCycle σ\n⊢ ↑Perm.sign σ = 1", "tactic": "rw [Equiv.Perm.sign_of_cycleType, h.cycleType]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nh : IsThreeCycle σ\n⊢ (-1) ^ (sum {3} + ↑card {3}) = 1", "tactic": "rfl" } ]
[ 599, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 597, 1 ]
src/lean/Init/Data/List/Control.lean
List.forM_nil
[]
[ 191, 6 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 190, 9 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.hasBinaryBiproducts_of_finite_biproducts
[]
[ 1239, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1234, 1 ]
Mathlib/Data/Sum/Order.lean
Sum.inl_mono
[]
[ 188, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelEmbedding.wellFounded
[]
[ 400, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 399, 11 ]
Mathlib/Topology/MetricSpace/Basic.lean
Prod.dist_eq
[]
[ 1751, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1751, 1 ]
Mathlib/CategoryTheory/Preadditive/Mat.lean
CategoryTheory.Mat.comp_apply
[]
[ 616, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 614, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
measurable_of_restrict_of_restrict_compl
[]
[ 606, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.ne_zero_of_not_isOrtho_self
[]
[ 773, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 772, 1 ]
Mathlib/Data/Int/Order/Basic.lean
Int.toNat_le
[ { "state_after": "a✝ b : ℤ\nn✝ : ℕ\na : ℤ\nn : ℕ\n⊢ a ≤ ↑n ∧ 0 ≤ ↑n ↔ a ≤ ↑n", "state_before": "a✝ b : ℤ\nn✝ : ℕ\na : ℤ\nn : ℕ\n⊢ toNat a ≤ n ↔ a ≤ ↑n", "tactic": "rw [ofNat_le.symm, toNat_eq_max, max_le_iff]" }, { "state_after": "no goals", "state_before": "a✝ b : ℤ\nn✝ : ℕ\na : ℤ\nn : ℕ\n⊢ a ≤ ↑n ∧ 0 ≤ ↑n ↔ a ≤ ↑n", "tactic": "exact and_iff_left (ofNat_zero_le _)" } ]
[ 502, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 501, 1 ]
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
MeasureTheory.LocallyIntegrableOn.mono
[]
[ 54, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Ordered.lean
map_lt_lineMap_iff_slope_lt_slope_left
[]
[ 232, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Algebra/GCDMonoid/Multiset.lean
Multiset.gcd_dedup
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns : Multiset α\n⊢ gcd (dedup 0) = gcd 0", "tactic": "simp" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ gcd s = GCDMonoid.gcd a (gcd s)", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\n⊢ gcd (dedup (a ::ₘ s)) = gcd (a ::ₘ s)", "tactic": "by_cases h : a ∈ s <;> simp [IH, h]" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ fold GCDMonoid.gcd 0 s = GCDMonoid.gcd a (fold GCDMonoid.gcd 0 s)", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ gcd s = GCDMonoid.gcd a (gcd s)", "tactic": "unfold gcd" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ GCDMonoid.gcd a (fold GCDMonoid.gcd 0 (erase s a)) = GCDMonoid.gcd (↑normalize a) (fold GCDMonoid.gcd 0 (erase s a))", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ fold GCDMonoid.gcd 0 s = GCDMonoid.gcd a (fold GCDMonoid.gcd 0 s)", "tactic": "rw [← cons_erase h, fold_cons_left, ← gcd_assoc, gcd_same]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : NormalizedGCDMonoid α\ninst✝ : DecidableEq α\ns✝ : Multiset α\na : α\ns : Multiset α\nIH : gcd (dedup s) = gcd s\nh : a ∈ s\n⊢ GCDMonoid.gcd a (fold GCDMonoid.gcd 0 (erase s a)) = GCDMonoid.gcd (↑normalize a) (fold GCDMonoid.gcd 0 (erase s a))", "tactic": "apply (associated_normalize _).gcd_eq_left" } ]
[ 206, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
LinearEquiv.toLinearEquiv_toContinuousLinearEquiv
[ { "state_after": "case h\n𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁸ : AddCommGroup E\ninst✝¹⁷ : Module 𝕜 E\ninst✝¹⁶ : TopologicalSpace E\ninst✝¹⁵ : TopologicalAddGroup E\ninst✝¹⁴ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹³ : AddCommGroup F\ninst✝¹² : Module 𝕜 F\ninst✝¹¹ : TopologicalSpace F\ninst✝¹⁰ : TopologicalAddGroup F\ninst✝⁹ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁸ : AddCommGroup F'\ninst✝⁷ : Module 𝕜 F'\ninst✝⁶ : TopologicalSpace F'\ninst✝⁵ : TopologicalAddGroup F'\ninst✝⁴ : ContinuousSMul 𝕜 F'\ninst✝³ : CompleteSpace 𝕜\ninst✝² : T2Space E\ninst✝¹ : T2Space F\ninst✝ : FiniteDimensional 𝕜 E\ne : E ≃ₗ[𝕜] F\nx : E\n⊢ ↑(toContinuousLinearEquiv e).toLinearEquiv x = ↑e x", "state_before": "𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁸ : AddCommGroup E\ninst✝¹⁷ : Module 𝕜 E\ninst✝¹⁶ : TopologicalSpace E\ninst✝¹⁵ : TopologicalAddGroup E\ninst✝¹⁴ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹³ : AddCommGroup F\ninst✝¹² : Module 𝕜 F\ninst✝¹¹ : TopologicalSpace F\ninst✝¹⁰ : TopologicalAddGroup F\ninst✝⁹ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁸ : AddCommGroup F'\ninst✝⁷ : Module 𝕜 F'\ninst✝⁶ : TopologicalSpace F'\ninst✝⁵ : TopologicalAddGroup F'\ninst✝⁴ : ContinuousSMul 𝕜 F'\ninst✝³ : CompleteSpace 𝕜\ninst✝² : T2Space E\ninst✝¹ : T2Space F\ninst✝ : FiniteDimensional 𝕜 E\ne : E ≃ₗ[𝕜] F\n⊢ (toContinuousLinearEquiv e).toLinearEquiv = e", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u\nhnorm : NontriviallyNormedField 𝕜\nE : Type v\ninst✝¹⁸ : AddCommGroup E\ninst✝¹⁷ : Module 𝕜 E\ninst✝¹⁶ : TopologicalSpace E\ninst✝¹⁵ : TopologicalAddGroup E\ninst✝¹⁴ : ContinuousSMul 𝕜 E\nF : Type w\ninst✝¹³ : AddCommGroup F\ninst✝¹² : Module 𝕜 F\ninst✝¹¹ : TopologicalSpace F\ninst✝¹⁰ : TopologicalAddGroup F\ninst✝⁹ : ContinuousSMul 𝕜 F\nF' : Type x\ninst✝⁸ : AddCommGroup F'\ninst✝⁷ : Module 𝕜 F'\ninst✝⁶ : TopologicalSpace F'\ninst✝⁵ : TopologicalAddGroup F'\ninst✝⁴ : ContinuousSMul 𝕜 F'\ninst✝³ : CompleteSpace 𝕜\ninst✝² : T2Space E\ninst✝¹ : T2Space F\ninst✝ : FiniteDimensional 𝕜 E\ne : E ≃ₗ[𝕜] F\nx : E\n⊢ ↑(toContinuousLinearEquiv e).toLinearEquiv x = ↑e x", "tactic": "rfl" } ]
[ 394, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 391, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
NormedCommGroup.tendsto_nhds_one
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.107897\n𝕜 : Type ?u.107900\nα : Type u_1\nι : Type ?u.107906\nκ : Type ?u.107909\nE : Type u_2\nF : Type ?u.107915\nG : Type ?u.107918\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\nf : α → E\nl : Filter α\n⊢ (∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : α) in l, dist (f x) 1 < ε) ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : α) in l, ‖f x‖ < ε", "tactic": "simp only [dist_one_right]" } ]
[ 744, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 742, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.darts_append
[ { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w : V\np : Walk G u v\np' : Walk G v w\n⊢ darts (append p p') = darts p ++ darts p'", "tactic": "induction p <;> simp [*]" } ]
[ 709, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 707, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Trivialization.symm_coe_proj
[]
[ 587, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 585, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.comap_surjective_of_injective
[]
[ 572, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 571, 1 ]
Mathlib/RepresentationTheory/Action.lean
Action.rightDual_ρ
[ { "state_after": "V : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ ↑Xᘁ.ρ h = ↑X.ρ (inv h)ᘁ\n\ncase x\nV : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ SingleObj H.1\n\ncase y\nV : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ SingleObj H.1", "state_before": "V : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ ↑Xᘁ.ρ h = ↑X.ρ h⁻¹ᘁ", "tactic": "rw [← SingleObj.inv_as_inv]" }, { "state_after": "no goals", "state_before": "V : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ ↑Xᘁ.ρ h = ↑X.ρ (inv h)ᘁ\n\ncase x\nV : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ SingleObj H.1\n\ncase y\nV : Type (u + 1)\ninst✝² : LargeCategory V\nG : MonCat\ninst✝¹ : MonoidalCategory V\nH : GroupCat\nX : Action V ((forget₂ GroupCat MonCat).obj H)\ninst✝ : RightRigidCategory V\nh : ↑H\n⊢ SingleObj H.1", "tactic": "rfl" } ]
[ 748, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 747, 1 ]
Mathlib/Analysis/Convex/Between.lean
wbtw_one_zero_iff
[ { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type ?u.263675\nV' : Type ?u.263678\nP : Type ?u.263681\nP' : Type ?u.263684\ninst✝⁶ : OrderedRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx : R\n⊢ Wbtw R 1 x 0 ↔ x ∈ Set.Icc 0 1", "tactic": "rw [wbtw_comm, wbtw_zero_one_iff]" } ]
[ 453, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
le_abs_self
[]
[ 61, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Order/Concept.lean
extentClosure_empty
[]
[ 92, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.lhom_ext'
[]
[ 825, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 823, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPolynomial.coe_eq_one_iff
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ : MvPolynomial σ R\n⊢ ↑φ = 1 ↔ φ = 1", "tactic": "rw [← coe_one, coe_inj]" } ]
[ 1154, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1154, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.diagonal_iff
[]
[ 527, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 526, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.ofSet_target
[]
[ 658, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 657, 1 ]
Mathlib/RingTheory/FinitePresentation.lean
AlgHom.FinitePresentation.comp_surjective
[]
[ 516, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 514, 1 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.ElementarilyEquivalent.trans
[]
[ 1107, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1106, 8 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometryEquiv.coe_one
[]
[ 605, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.isAmalgamation_sieveExtend
[ { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR✝ : Presieve X\nJ J₂ : GrothendieckTopology C\nR : Presieve X\nx : FamilyOfElements P R\nt : P.obj X.op\nht : FamilyOfElements.IsAmalgamation x t\nY : C\nf : Y ⟶ X\nhf : (generate R).arrows f\n⊢ P.map f.op t = FamilyOfElements.sieveExtend x f hf", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR✝ : Presieve X\nJ J₂ : GrothendieckTopology C\nR : Presieve X\nx : FamilyOfElements P R\nt : P.obj X.op\nht : FamilyOfElements.IsAmalgamation x t\n⊢ FamilyOfElements.IsAmalgamation (FamilyOfElements.sieveExtend x) t", "tactic": "intro Y f hf" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR✝ : Presieve X\nJ J₂ : GrothendieckTopology C\nR : Presieve X\nx : FamilyOfElements P R\nt : P.obj X.op\nht : FamilyOfElements.IsAmalgamation x t\nY : C\nf : Y ⟶ X\nhf : (generate R).arrows f\n⊢ P.map f.op t =\n P.map (Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f)).op\n (x (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))\n (_ : R (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))))", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR✝ : Presieve X\nJ J₂ : GrothendieckTopology C\nR : Presieve X\nx : FamilyOfElements P R\nt : P.obj X.op\nht : FamilyOfElements.IsAmalgamation x t\nY : C\nf : Y ⟶ X\nhf : (generate R).arrows f\n⊢ P.map f.op t = FamilyOfElements.sieveExtend x f hf", "tactic": "dsimp [FamilyOfElements.sieveExtend]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR✝ : Presieve X\nJ J₂ : GrothendieckTopology C\nR : Presieve X\nx : FamilyOfElements P R\nt : P.obj X.op\nht : FamilyOfElements.IsAmalgamation x t\nY : C\nf : Y ⟶ X\nhf : (generate R).arrows f\n⊢ P.map f.op t =\n P.map (Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f)).op\n (x (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))\n (_ : R (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))))", "tactic": "rw [← ht _, ← FunctorToTypes.map_comp_apply, ← op_comp, hf.choose_spec.choose_spec.choose_spec.2]" } ]
[ 408, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
TendstoLocallyUniformlyOn.congr
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\n⊢ TendstoLocallyUniformlyOn G f p s", "tactic": "rintro u hu x hx" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\nt : Set α\nht : t ∈ 𝓝[s] x\nh : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u", "tactic": "obtain ⟨t, ht, h⟩ := hf u hu x hx" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\nt : Set α\nht : t ∈ 𝓝[s] x\nh : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u\n⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s ∩ t → (f y, G n y) ∈ u", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\nt : Set α\nht : t ∈ 𝓝[s] x\nh : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u\n⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u", "tactic": "refine' ⟨s ∩ t, inter_mem self_mem_nhdsWithin ht, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx✝ : α\np : Filter ι\np' : Filter α\ng : ι → α\ninst✝ : TopologicalSpace α\nG : ι → α → β\nhf : TendstoLocallyUniformlyOn F f p s\nhg : ∀ (n : ι), EqOn (F n) (G n) s\nu : Set (β × β)\nhu : u ∈ 𝓤 β\nx : α\nhx : x ∈ s\nt : Set α\nht : t ∈ 𝓝[s] x\nh : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u\n⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s ∩ t → (f y, G n y) ∈ u", "tactic": "filter_upwards [h]with i hi y hy using hg i hy.1 ▸ hi y hy.2" } ]
[ 790, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/MeasureTheory/Function/SimpleFuncDense.lean
MeasureTheory.SimpleFunc.nearestPt_zero
[]
[ 86, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.ceil_zero
[ { "state_after": "no goals", "state_before": "F : Type ?u.220824\nα : Type u_1\nβ : Type ?u.220830\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na : α\n⊢ ⌈0⌉ = 0", "tactic": "rw [← cast_zero, ceil_intCast]" } ]
[ 1196, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1196, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.sub_eq_sInf
[]
[ 1096, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1095, 1 ]
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.reflection_eq_self_iff
[ { "state_after": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p ↔ ↑(↑(orthogonalProjection s) p) = p", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(reflection s) p = p ↔ p ∈ s", "tactic": "rw [← orthogonalProjection_eq_self_iff, reflection_apply]" }, { "state_after": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p → ↑(↑(orthogonalProjection s) p) = p\n\ncase mpr\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) = p → ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p ↔ ↑(↑(orthogonalProjection s) p) = p", "tactic": "constructor" }, { "state_after": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) = p", "state_before": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p → ↑(↑(orthogonalProjection s) p) = p", "tactic": "intro h" }, { "state_after": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : 2 = 0 ∨ ↑(↑(orthogonalProjection s) p) -ᵥ p = 0\n⊢ ↑(↑(orthogonalProjection s) p) = p", "state_before": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) = p", "tactic": "rw [← @vsub_eq_zero_iff_eq V, vadd_vsub_assoc, ← two_smul ℝ (↑(orthogonalProjection s p) -ᵥ p),\n smul_eq_zero] at h" }, { "state_after": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) = p", "state_before": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : 2 = 0 ∨ ↑(↑(orthogonalProjection s) p) -ᵥ p = 0\n⊢ ↑(↑(orthogonalProjection s) p) = p", "tactic": "norm_num at h" }, { "state_after": "no goals", "state_before": "case mp\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) = p", "tactic": "exact h" }, { "state_after": "case mpr\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p", "state_before": "case mpr\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑(↑(orthogonalProjection s) p) = p → ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mpr\nV : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\nh : ↑(↑(orthogonalProjection s) p) = p\n⊢ ↑(↑(orthogonalProjection s) p) -ᵥ p +ᵥ ↑(↑(orthogonalProjection s) p) = p", "tactic": "simp [h]" } ]
[ 594, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 584, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.weightedVSubOfPoint_insert
[ { "state_after": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.53031\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\nw : ι → k\np : ι → P\ni : ι\n⊢ ∑ i_1 in insert i s, w i_1 • (p i_1 -ᵥ p i) = ∑ i_1 in s, w i_1 • (p i_1 -ᵥ p i)", "state_before": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.53031\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\nw : ι → k\np : ι → P\ni : ι\n⊢ ↑(weightedVSubOfPoint (insert i s) p (p i)) w = ↑(weightedVSubOfPoint s p (p i)) w", "tactic": "rw [weightedVSubOfPoint_apply, weightedVSubOfPoint_apply]" }, { "state_after": "case h\nk : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.53031\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\nw : ι → k\np : ι → P\ni : ι\n⊢ w i • (p i -ᵥ p i) = 0", "state_before": "k : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.53031\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\nw : ι → k\np : ι → P\ni : ι\n⊢ ∑ i_1 in insert i s, w i_1 • (p i_1 -ᵥ p i) = ∑ i_1 in s, w i_1 • (p i_1 -ᵥ p i)", "tactic": "apply sum_insert_zero" }, { "state_after": "no goals", "state_before": "case h\nk : Type u_3\nV : Type u_2\nP : Type u_4\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.53031\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\nw : ι → k\np : ι → P\ni : ι\n⊢ w i • (p i -ᵥ p i) = 0", "tactic": "rw [vsub_self, smul_zero]" } ]
[ 164, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
DifferentiableOn.csin
[]
[ 399, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 398, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.mem_factorSet_top
[ { "state_after": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ FactorSetMem p ⊤", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ p ∈ ⊤", "tactic": "dsimp only [Membership.mem]" }, { "state_after": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ if hp : Irreducible p then BfactorSetMem { val := p, property := hp } ⊤ else False", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ FactorSetMem p ⊤", "tactic": "dsimp only [FactorSetMem]" }, { "state_after": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ BfactorSetMem { val := p, property := hp } ⊤", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ if hp : Irreducible p then BfactorSetMem { val := p, property := hp } ⊤ else False", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\np : Associates α\nhp : Irreducible p\n⊢ BfactorSetMem { val := p, property := hp } ⊤", "tactic": "exact trivial" } ]
[ 1335, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1334, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.zero_smul_finset_subset
[]
[ 2117, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2116, 1 ]
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.xy_coprime
[ { "state_after": "a : ℕ\na1 : 1 < a\nn k : ℕ\nx✝ : Nat.Prime k\nkx : k ∣ xn a1 n\nky : k ∣ yn a1 n\np : xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n = 1 := pell_eq a1 n\n⊢ k ∣ 1", "state_before": "a : ℕ\na1 : 1 < a\nn k : ℕ\nx✝ : Nat.Prime k\nkx : k ∣ xn a1 n\nky : k ∣ yn a1 n\n⊢ k ∣ 1", "tactic": "let p := pell_eq a1 n" }, { "state_after": "a : ℕ\na1 : 1 < a\nn k : ℕ\nx✝ : Nat.Prime k\nkx : k ∣ xn a1 n\nky : k ∣ yn a1 n\np : xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n = 1 := pell_eq a1 n\n⊢ k ∣ xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n", "state_before": "a : ℕ\na1 : 1 < a\nn k : ℕ\nx✝ : Nat.Prime k\nkx : k ∣ xn a1 n\nky : k ∣ yn a1 n\np : xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n = 1 := pell_eq a1 n\n⊢ k ∣ 1", "tactic": "rw [← p]" }, { "state_after": "no goals", "state_before": "a : ℕ\na1 : 1 < a\nn k : ℕ\nx✝ : Nat.Prime k\nkx : k ∣ xn a1 n\nky : k ∣ yn a1 n\np : xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n = 1 := pell_eq a1 n\n⊢ k ∣ xn a1 n * xn a1 n - Pell.d a1 * yn a1 n * yn a1 n", "tactic": "exact Nat.dvd_sub (le_of_lt <| Nat.lt_of_sub_eq_succ p) (kx.mul_left _) (ky.mul_left _)" } ]
[ 401, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 397, 1 ]
Mathlib/Algebra/FreeAlgebra.lean
FreeAlgebra.lift_ι_apply
[ { "state_after": "R : Type u_2\ninst✝² : CommSemiring R\nX : Type u_3\nA : Type u_1\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nf : X → A\nx : X\n⊢ ↑(↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R,\n left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f),\n right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) }\n f)\n (Quot.mk (Rel R X) (Pre.of x)) =\n f x", "state_before": "R : Type u_2\ninst✝² : CommSemiring R\nX : Type u_3\nA : Type u_1\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nf : X → A\nx : X\n⊢ ↑(↑(lift R) f) (ι R x) = f x", "tactic": "rw [ι_def, lift]" }, { "state_after": "no goals", "state_before": "R : Type u_2\ninst✝² : CommSemiring R\nX : Type u_3\nA : Type u_1\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nf : X → A\nx : X\n⊢ ↑(↑{ toFun := FreeAlgebra.liftAux R, invFun := fun F => ↑F ∘ ι R,\n left_inv := (_ : ∀ (f : X → A), (fun F => ↑F ∘ ι R) (FreeAlgebra.liftAux R f) = f),\n right_inv := (_ : ∀ (F : FreeAlgebra R X →ₐ[R] A), FreeAlgebra.liftAux R ((fun F => ↑F ∘ ι R) F) = F) }\n f)\n (Quot.mk (Rel R X) (Pre.of x)) =\n f x", "tactic": "rfl" } ]
[ 349, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.image_mul_product
[]
[ 319, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.span_empty
[]
[ 735, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 734, 1 ]
Mathlib/Data/Nat/Parity.lean
Nat.div_two_mul_two_of_even
[]
[ 227, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieSubalgebra.exists_lieIdeal_coe_eq_iff
[ { "state_after": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nK : LieSubalgebra R L\n⊢ (∀ (x m : L), m ∈ K.toSubmodule → ⁅x, m⁆ ∈ K.toSubmodule) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nK : LieSubalgebra R L\n⊢ (∃ I, ↑R L I = K) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K", "tactic": "simp only [← coe_to_submodule_eq_iff, LieIdeal.coe_to_lieSubalgebra_to_submodule,\n Submodule.exists_lieSubmodule_coe_eq_iff L]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nK : LieSubalgebra R L\n⊢ (∀ (x m : L), m ∈ K.toSubmodule → ⁅x, m⁆ ∈ K.toSubmodule) ↔ ∀ (x y : L), y ∈ K → ⁅x, y⁆ ∈ K", "tactic": "simp only [mem_coe_submodule]" } ]
[ 327, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/GroupTheory/GroupAction/Group.lean
smul_inv
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁴ : Group α\ninst✝³ : MulAction α β\ninst✝² : Group β\ninst✝¹ : SMulCommClass α β β\ninst✝ : IsScalarTower α β β\nc : α\nx : β\n⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹", "tactic": "rw [inv_eq_iff_mul_eq_one, smul_mul_smul, mul_right_inv, mul_right_inv, one_smul]" } ]
[ 125, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
AEMeasurable.add_measure
[]
[ 130, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Data/Nat/PartENat.lean
PartENat.lt_add_one_iff_lt
[ { "state_after": "x y : PartENat\nhx : x ≠ ⊤\nh : x ≤ y\n⊢ x < y + 1", "state_before": "x y : PartENat\nhx : x ≠ ⊤\n⊢ x < y + 1 ↔ x ≤ y", "tactic": "refine ⟨le_of_lt_add_one, fun h => ?_⟩" }, { "state_after": "case intro\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh : ↑m ≤ y\n⊢ ↑m < y + 1", "state_before": "x y : PartENat\nhx : x ≠ ⊤\nh : x ≤ y\n⊢ x < y + 1", "tactic": "rcases ne_top_iff.mp hx with ⟨m, rfl⟩" }, { "state_after": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nh : ↑m ≤ ⊤\n⊢ ↑m < ⊤ + 1\n\ncase intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ ↑m < ↑n + 1", "state_before": "case intro\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh : ↑m ≤ y\n⊢ ↑m < y + 1", "tactic": "induction' y using PartENat.casesOn with n" }, { "state_after": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ m < n + 1", "state_before": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ ↑m < ↑n + 1", "tactic": "norm_cast" }, { "state_after": "case intro.a.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ m ≤ n", "state_before": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ m < n + 1", "tactic": "apply Nat.lt_succ_of_le" }, { "state_after": "no goals", "state_before": "case intro.a.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nn : ℕ\nh : ↑m ≤ ↑n\n⊢ m ≤ n", "tactic": "norm_cast at h" }, { "state_after": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nh : ↑m ≤ ⊤\n⊢ ↑m < ⊤", "state_before": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nh : ↑m ≤ ⊤\n⊢ ↑m < ⊤ + 1", "tactic": "rw [top_add]" }, { "state_after": "no goals", "state_before": "case intro.a\ny : PartENat\nm : ℕ\nhx : ↑m ≠ ⊤\nh✝ : ↑m ≤ y\nh : ↑m ≤ ⊤\n⊢ ↑m < ⊤", "tactic": "apply natCast_lt_top" } ]
[ 522, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/Algebra/DirectSum/Module.lean
DirectSum.coeLinearMap_of
[]
[ 324, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Std/Data/Int/Lemmas.lean
Int.toNat_sub
[ { "state_after": "m n : Nat\n⊢ toNat (subNatNat m n) = m - n", "state_before": "m n : Nat\n⊢ toNat (↑m - ↑n) = m - n", "tactic": "rw [← Int.subNatNat_eq_coe]" }, { "state_after": "case refine_1\nm n✝ i n : Nat\n⊢ (fun m n i => toNat i = m - n) (n + i) n ↑i\n\ncase refine_2\nm n✝ i n : Nat\n⊢ (fun m n i => toNat i = m - n) n (n + i + 1) -[i+1]", "state_before": "m n : Nat\n⊢ toNat (subNatNat m n) = m - n", "tactic": "refine subNatNat_elim m n (fun m n i => toNat i = m - n) (fun i n => ?_) (fun i n => ?_)" }, { "state_after": "no goals", "state_before": "case refine_1\nm n✝ i n : Nat\n⊢ (fun m n i => toNat i = m - n) (n + i) n ↑i", "tactic": "exact (Nat.add_sub_cancel_left ..).symm" }, { "state_after": "case refine_2\nm n✝ i n : Nat\n⊢ toNat -[i+1] = n - (n + i + 1)", "state_before": "case refine_2\nm n✝ i n : Nat\n⊢ (fun m n i => toNat i = m - n) n (n + i + 1) -[i+1]", "tactic": "dsimp" }, { "state_after": "case refine_2\nm n✝ i n : Nat\n⊢ toNat -[i+1] = 0", "state_before": "case refine_2\nm n✝ i n : Nat\n⊢ toNat -[i+1] = n - (n + i + 1)", "tactic": "rw [Nat.add_assoc, Nat.sub_eq_zero_of_le (Nat.le_add_right ..)]" }, { "state_after": "no goals", "state_before": "case refine_2\nm n✝ i n : Nat\n⊢ toNat -[i+1] = 0", "tactic": "rfl" } ]
[ 518, 80 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 514, 1 ]
Mathlib/Data/Option/Basic.lean
Option.join_pmap_eq_pmap_join
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.13574\nδ : Type ?u.13577\np : α → Prop\nf✝ : (a : α) → p a → β\nx✝ : Option α\nf : (a : α) → p a → β\nx : Option (Option α)\nH : ∀ (a : Option α), a ∈ x → ∀ (a_2 : α), a_2 ∈ a → p a_2\n⊢ join (pmap (pmap f) x H) = pmap f (join x) (_ : ∀ (a : α), a ∈ join x → p a)", "tactic": "rcases x with (_ | _ | x) <;> simp" } ]
[ 259, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Order/SuccPred/Limit.lean
Order.isPredLimit_of_pred_ne
[]
[ 340, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 339, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.range_val
[]
[ 2980, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2979, 1 ]
Mathlib/NumberTheory/Zsqrtd/Basic.lean
Zsqrtd.ofNat_re
[]
[ 283, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Data/Sum/Basic.lean
Sum.getLeft_inr
[]
[ 100, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 9 ]
Mathlib/Topology/MetricSpace/Baire.lean
dense_iUnion_interior_of_closed
[]
[ 349, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Order/Lattice.lean
toDual_inf
[]
[ 963, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 962, 1 ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_eq_zero_iff
[ { "state_after": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ∨ s = -(2 * a * x + b) ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a)", "state_before": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ a * x * x + b * x + c = 0 ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a)", "tactic": "rw [quadratic_eq_zero_iff_discrim_eq_sq ha, h, sq, mul_self_eq_mul_self_iff]" }, { "state_after": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ∨ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b + s ∨ x * (2 * a) = -b - s", "state_before": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ∨ s = -(2 * a * x + b) ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a)", "tactic": "field_simp" }, { "state_after": "case h₁\nK : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ↔ x * (2 * a) = -b + s\n\ncase h₂\nK : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b - s", "state_before": "K : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ∨ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b + s ∨ x * (2 * a) = -b - s", "tactic": "apply or_congr" }, { "state_after": "no goals", "state_before": "case h₁\nK : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = 2 * a * x + b ↔ x * (2 * a) = -b + s", "tactic": "constructor <;> intro h' <;> linear_combination -h'" }, { "state_after": "no goals", "state_before": "case h₂\nK : Type u_1\ninst✝¹ : Field K\ninst✝ : NeZero 2\na b c x✝ : K\nha : a ≠ 0\ns : K\nh : discrim a b c = s * s\nx : K\n⊢ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b - s", "tactic": "constructor <;> intro h' <;> linear_combination h'" } ]
[ 95, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.vsub_subset_vsub_right
[]
[ 1527, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1526, 1 ]
Mathlib/Data/Polynomial/RingDivision.lean
Polynomial.leadingCoeff_divByMonic_of_monic
[ { "state_after": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff p", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff p", "tactic": "nontriviality" }, { "state_after": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff p", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff p", "tactic": "have h : q.leadingCoeff * (p /ₘ q).leadingCoeff ≠ 0 := by\n simpa [divByMonic_eq_zero_iff hmonic, hmonic.leadingCoeff,\n Nat.WithBot.one_le_iff_zero_lt] using hdegree" }, { "state_after": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff (p %ₘ q + q * (p /ₘ q))", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff p", "tactic": "nth_rw 2 [← modByMonic_add_div p hmonic]" }, { "state_after": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree (p %ₘ q) < degree (q * (p /ₘ q))", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ leadingCoeff (p /ₘ q) = leadingCoeff (p %ₘ q + q * (p /ₘ q))", "tactic": "rw [leadingCoeff_add_of_degree_lt, leadingCoeff_monic_mul hmonic]" }, { "state_after": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree (p %ₘ q) < degree p", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree (p %ₘ q) < degree (q * (p /ₘ q))", "tactic": "rw [degree_mul' h, degree_add_divByMonic hmonic hdegree]" }, { "state_after": "no goals", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\nh : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0\n⊢ degree (p %ₘ q) < degree p", "tactic": "exact (degree_modByMonic_lt p hmonic).trans_le hdegree" }, { "state_after": "no goals", "state_before": "R✝ : Type u\nS : Type v\nT : Type w\na b : R✝\nn : ℕ\ninst✝² : CommRing R✝\ninst✝¹ : IsDomain R✝\np✝ q✝ : R✝[X]\nR : Type u\ninst✝ : CommRing R\np q : R[X]\nhmonic : Monic q\nhdegree : degree q ≤ degree p\n✝ : Nontrivial R\n⊢ leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0", "tactic": "simpa [divByMonic_eq_zero_iff hmonic, hmonic.leadingCoeff,\n Nat.WithBot.one_le_iff_zero_lt] using hdegree" } ]
[ 1014, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1005, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.natDegree_lt_coeff_mul
[]
[ 163, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Order/CompactlyGenerated.lean
CompleteLattice.IsSupClosedCompact.wellFounded
[ { "state_after": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ False", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\n⊢ WellFounded fun x x_1 => x > x_1", "tactic": "refine' RelEmbedding.wellFounded_iff_no_descending_seq.mpr ⟨fun a => _⟩" }, { "state_after": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ sSup (Set.range ↑a) ∈ Set.range ↑a", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ False", "tactic": "suffices sSup (Set.range a) ∈ Set.range a by\n obtain ⟨n, hn⟩ := Set.mem_range.mp this\n have h' : sSup (Set.range a) < a (n + 1) := by\n change _ > _\n simp [← hn, a.map_rel_iff]\n apply lt_irrefl (a (n + 1))\n apply lt_of_le_of_lt _ h'\n apply le_sSup\n apply Set.mem_range_self" }, { "state_after": "case x\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ Set.Nonempty (Set.range ↑a)\n\ncase a\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ ∀ (a_1 : α), a_1 ∈ Set.range ↑a → ∀ (b : α), b ∈ Set.range ↑a → a_1 ⊔ b ∈ Set.range ↑a", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ sSup (Set.range ↑a) ∈ Set.range ↑a", "tactic": "apply h (Set.range a)" }, { "state_after": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\n⊢ False", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\n⊢ False", "tactic": "obtain ⟨n, hn⟩ := Set.mem_range.mp this" }, { "state_after": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ False", "state_before": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\n⊢ False", "tactic": "have h' : sSup (Set.range a) < a (n + 1) := by\n change _ > _\n simp [← hn, a.map_rel_iff]" }, { "state_after": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) < ↑a (n + 1)", "state_before": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ False", "tactic": "apply lt_irrefl (a (n + 1))" }, { "state_after": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) ≤ sSup (Set.range ↑a)", "state_before": "case intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) < ↑a (n + 1)", "tactic": "apply lt_of_le_of_lt _ h'" }, { "state_after": "case a\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) ∈ Set.range ↑a", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) ≤ sSup (Set.range ↑a)", "tactic": "apply le_sSup" }, { "state_after": "no goals", "state_before": "case a\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\nh' : sSup (Set.range ↑a) < ↑a (n + 1)\n⊢ ↑a (n + 1) ∈ Set.range ↑a", "tactic": "apply Set.mem_range_self" }, { "state_after": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\n⊢ ↑a (n + 1) > sSup (Set.range ↑a)", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\n⊢ sSup (Set.range ↑a) < ↑a (n + 1)", "tactic": "change _ > _" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nthis : sSup (Set.range ↑a) ∈ Set.range ↑a\nn : ℕ\nhn : ↑a n = sSup (Set.range ↑a)\n⊢ ↑a (n + 1) > sSup (Set.range ↑a)", "tactic": "simp [← hn, a.map_rel_iff]" }, { "state_after": "case x\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ ↑a 37 ∈ Set.range ↑a", "state_before": "case x\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ Set.Nonempty (Set.range ↑a)", "tactic": "use a 37" }, { "state_after": "no goals", "state_before": "case x\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ ↑a 37 ∈ Set.range ↑a", "tactic": "apply Set.mem_range_self" }, { "state_after": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ x ⊔ y ∈ Set.range ↑a", "state_before": "case a\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\n⊢ ∀ (a_1 : α), a_1 ∈ Set.range ↑a → ∀ (b : α), b ∈ Set.range ↑a → a_1 ⊔ b ∈ Set.range ↑a", "tactic": "rintro x ⟨m, hm⟩ y ⟨n, hn⟩" }, { "state_after": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ ↑a (m ⊔ n) = x ⊔ y", "state_before": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ x ⊔ y ∈ Set.range ↑a", "tactic": "use m ⊔ n" }, { "state_after": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ ↑a (m ⊔ n) = ↑a m ⊔ ↑a n", "state_before": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ ↑a (m ⊔ n) = x ⊔ y", "tactic": "rw [← hm, ← hn]" }, { "state_after": "no goals", "state_before": "case a.intro.intro\nι : Sort ?u.27269\nα : Type u_1\ninst✝ : CompleteLattice α\nf : ι → α\nh : IsSupClosedCompact α\na : (fun x x_1 => x > x_1) ↪r fun x x_1 => x > x_1\nx : α\nm : ℕ\nhm : ↑a m = x\ny : α\nn : ℕ\nhn : ↑a n = y\n⊢ ↑a (m ⊔ n) = ↑a m ⊔ ↑a n", "tactic": "apply RelHomClass.map_sup a" } ]
[ 246, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.intervalIntegral_tendsto_integral_Iic
[ { "state_after": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\n⊢ Tendsto (fun i => ∫ (x : ℝ) in a i..b, f x ∂μ) l (𝓝 (∫ (x : ℝ) in Iic b, f x ∂μ))", "state_before": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\n⊢ Tendsto (fun i => ∫ (x : ℝ) in a i..b, f x ∂μ) l (𝓝 (∫ (x : ℝ) in Iic b, f x ∂μ))", "tactic": "let φ i := Ioi (a i)" }, { "state_after": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\n⊢ Tendsto (fun i => ∫ (x : ℝ) in a i..b, f x ∂μ) l (𝓝 (∫ (x : ℝ) in Iic b, f x ∂μ))", "state_before": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\n⊢ Tendsto (fun i => ∫ (x : ℝ) in a i..b, f x ∂μ) l (𝓝 (∫ (x : ℝ) in Iic b, f x ∂μ))", "tactic": "have hφ : AECover (μ.restrict <| Iic b) l φ := aecover_Ioi ha" }, { "state_after": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\n⊢ (fun i => ∫ (x : ℝ) in φ i, f x ∂Measure.restrict μ (Iic b)) =ᶠ[l] fun i => ∫ (x : ℝ) in a i..b, f x ∂μ", "state_before": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\n⊢ Tendsto (fun i => ∫ (x : ℝ) in a i..b, f x ∂μ) l (𝓝 (∫ (x : ℝ) in Iic b, f x ∂μ))", "tactic": "refine' (hφ.integral_tendsto_of_countably_generated hfi).congr' _" }, { "state_after": "case h\nι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\ni : ι\nhai : a i ≤ b\n⊢ (∫ (x : ℝ) in Ioi (a i), f x ∂Measure.restrict μ (Iic b)) = ∫ (x : ℝ) in a i..b, f x ∂μ", "state_before": "ι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\n⊢ (fun i => ∫ (x : ℝ) in φ i, f x ∂Measure.restrict μ (Iic b)) =ᶠ[l] fun i => ∫ (x : ℝ) in a i..b, f x ∂μ", "tactic": "filter_upwards [ha.eventually (eventually_le_atBot <| b)] with i hai" }, { "state_after": "case h\nι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\ni : ι\nhai : a i ≤ b\n⊢ (∫ (x : ℝ) in φ i ∩ Iic b, f x ∂μ) = ∫ (x : ℝ) in Ioc (a i) b, f x ∂μ", "state_before": "case h\nι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\ni : ι\nhai : a i ≤ b\n⊢ (∫ (x : ℝ) in Ioi (a i), f x ∂Measure.restrict μ (Iic b)) = ∫ (x : ℝ) in a i..b, f x ∂μ", "tactic": "rw [intervalIntegral.integral_of_le hai, Measure.restrict_restrict (hφ.measurableSet i)]" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_2\nE : Type u_1\nμ : Measure ℝ\nl : Filter ι\ninst✝³ : IsCountablyGenerated l\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\na b✝ : ι → ℝ\nf : ℝ → E\nb : ℝ\nhfi : IntegrableOn f (Iic b)\nha : Tendsto a l atBot\nφ : ι → Set ℝ := fun i => Ioi (a i)\nhφ : AECover (Measure.restrict μ (Iic b)) l φ\ni : ι\nhai : a i ≤ b\n⊢ (∫ (x : ℝ) in φ i ∩ Iic b, f x ∂μ) = ∫ (x : ℝ) in Ioc (a i) b, f x ∂μ", "tactic": "rfl" } ]
[ 642, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 634, 1 ]
Mathlib/Topology/MetricSpace/Polish.lean
Equiv.polishSpace_induced
[]
[ 169, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 166, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
LinearMap.lift_rank_comp_le_right
[ { "state_after": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1114972\ninst✝⁸ : Ring K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V'\ninst✝² : Module K V'\ninst✝¹ : AddCommGroup V''\ninst✝ : Module K V''\ng : V →ₗ[K] V'\nf : V' →ₗ[K] V''\n⊢ lift (Module.rank K { x // x ∈ Submodule.map f (range g) }) ≤ lift (Module.rank K { x // x ∈ range g })", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1114972\ninst✝⁸ : Ring K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V'\ninst✝² : Module K V'\ninst✝¹ : AddCommGroup V''\ninst✝ : Module K V''\ng : V →ₗ[K] V'\nf : V' →ₗ[K] V''\n⊢ lift (rank (comp f g)) ≤ lift (rank g)", "tactic": "rw [rank, rank, LinearMap.range_comp]" }, { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1114972\ninst✝⁸ : Ring K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\ninst✝⁵ : AddCommGroup V₁\ninst✝⁴ : Module K V₁\ninst✝³ : AddCommGroup V'\ninst✝² : Module K V'\ninst✝¹ : AddCommGroup V''\ninst✝ : Module K V''\ng : V →ₗ[K] V'\nf : V' →ₗ[K] V''\n⊢ lift (Module.rank K { x // x ∈ Submodule.map f (range g) }) ≤ lift (Module.rank K { x // x ∈ range g })", "tactic": "exact lift_rank_map_le _ _" } ]
[ 1341, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1339, 1 ]
Mathlib/Analysis/NormedSpace/Multilinear.lean
ContinuousMultilinearMap.norm_map_cons_le
[ { "state_after": "𝕜 : Type u\nι : Type v\nι' : Type v'\nn : ℕ\nE : ι → Type wE\nE₁ : ι → Type wE₁\nE' : ι' → Type wE'\nEi : Fin (Nat.succ n) → Type wEi\nG : Type wG\nG' : Type wG'\ninst✝¹⁴ : Fintype ι\ninst✝¹³ : Fintype ι'\ninst✝¹² : NontriviallyNormedField 𝕜\ninst✝¹¹ : (i : ι) → NormedAddCommGroup (E i)\ninst✝¹⁰ : (i : ι) → NormedSpace 𝕜 (E i)\ninst✝⁹ : (i : ι) → NormedAddCommGroup (E₁ i)\ninst✝⁸ : (i : ι) → NormedSpace 𝕜 (E₁ i)\ninst✝⁷ : (i : ι') → NormedAddCommGroup (E' i)\ninst✝⁶ : (i : ι') → NormedSpace 𝕜 (E' i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → NormedAddCommGroup (Ei i)\ninst✝⁴ : (i : Fin (Nat.succ n)) → NormedSpace 𝕜 (Ei i)\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf : ContinuousMultilinearMap 𝕜 Ei G\nx : Ei 0\nm : (i : Fin n) → Ei (succ i)\n⊢ ‖f‖ * (‖Fin.cons x m 0‖ * ∏ i : Fin n, ‖Fin.cons x m (succ i)‖) = ‖f‖ * ‖x‖ * ∏ i : Fin n, ‖m i‖", "state_before": "𝕜 : Type u\nι : Type v\nι' : Type v'\nn : ℕ\nE : ι → Type wE\nE₁ : ι → Type wE₁\nE' : ι' → Type wE'\nEi : Fin (Nat.succ n) → Type wEi\nG : Type wG\nG' : Type wG'\ninst✝¹⁴ : Fintype ι\ninst✝¹³ : Fintype ι'\ninst✝¹² : NontriviallyNormedField 𝕜\ninst✝¹¹ : (i : ι) → NormedAddCommGroup (E i)\ninst✝¹⁰ : (i : ι) → NormedSpace 𝕜 (E i)\ninst✝⁹ : (i : ι) → NormedAddCommGroup (E₁ i)\ninst✝⁸ : (i : ι) → NormedSpace 𝕜 (E₁ i)\ninst✝⁷ : (i : ι') → NormedAddCommGroup (E' i)\ninst✝⁶ : (i : ι') → NormedSpace 𝕜 (E' i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → NormedAddCommGroup (Ei i)\ninst✝⁴ : (i : Fin (Nat.succ n)) → NormedSpace 𝕜 (Ei i)\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf : ContinuousMultilinearMap 𝕜 Ei G\nx : Ei 0\nm : (i : Fin n) → Ei (succ i)\n⊢ ‖f‖ * ∏ i : Fin (n + 1), ‖Fin.cons x m i‖ = ‖f‖ * ‖x‖ * ∏ i : Fin n, ‖m i‖", "tactic": "rw [prod_univ_succ]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\nι : Type v\nι' : Type v'\nn : ℕ\nE : ι → Type wE\nE₁ : ι → Type wE₁\nE' : ι' → Type wE'\nEi : Fin (Nat.succ n) → Type wEi\nG : Type wG\nG' : Type wG'\ninst✝¹⁴ : Fintype ι\ninst✝¹³ : Fintype ι'\ninst✝¹² : NontriviallyNormedField 𝕜\ninst✝¹¹ : (i : ι) → NormedAddCommGroup (E i)\ninst✝¹⁰ : (i : ι) → NormedSpace 𝕜 (E i)\ninst✝⁹ : (i : ι) → NormedAddCommGroup (E₁ i)\ninst✝⁸ : (i : ι) → NormedSpace 𝕜 (E₁ i)\ninst✝⁷ : (i : ι') → NormedAddCommGroup (E' i)\ninst✝⁶ : (i : ι') → NormedSpace 𝕜 (E' i)\ninst✝⁵ : (i : Fin (Nat.succ n)) → NormedAddCommGroup (Ei i)\ninst✝⁴ : (i : Fin (Nat.succ n)) → NormedSpace 𝕜 (Ei i)\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf : ContinuousMultilinearMap 𝕜 Ei G\nx : Ei 0\nm : (i : Fin n) → Ei (succ i)\n⊢ ‖f‖ * (‖Fin.cons x m 0‖ * ∏ i : Fin n, ‖Fin.cons x m (succ i)‖) = ‖f‖ * ‖x‖ * ∏ i : Fin n, ‖m i‖", "tactic": "simp [mul_assoc]" } ]
[ 1307, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1301, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.Subsingleton.congr
[ { "state_after": "case h\nα : Type u_1\ns : Cycle α\nh✝ : Subsingleton s\nl : List α\nh : Subsingleton (Quot.mk Setoid.r l)\n⊢ ∀ ⦃x : α⦄, x ∈ Quot.mk Setoid.r l → ∀ ⦃y : α⦄, y ∈ Quot.mk Setoid.r l → x = y", "state_before": "α : Type u_1\ns : Cycle α\nh : Subsingleton s\n⊢ ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → x = y", "tactic": "induction' s using Quot.inductionOn with l" }, { "state_after": "case h\nα : Type u_1\ns : Cycle α\nh✝ : Subsingleton s\nl : List α\nh : l = [] ∨ ∃ a, l = [a]\n⊢ ∀ ⦃x : α⦄, x ∈ Quot.mk Setoid.r l → ∀ ⦃y : α⦄, y ∈ Quot.mk Setoid.r l → x = y", "state_before": "case h\nα : Type u_1\ns : Cycle α\nh✝ : Subsingleton s\nl : List α\nh : Subsingleton (Quot.mk Setoid.r l)\n⊢ ∀ ⦃x : α⦄, x ∈ Quot.mk Setoid.r l → ∀ ⦃y : α⦄, y ∈ Quot.mk Setoid.r l → x = y", "tactic": "simp only [length_subsingleton_iff, length_coe, mk_eq_coe, le_iff_lt_or_eq, Nat.lt_add_one_iff,\n length_eq_zero, length_eq_one, Nat.not_lt_zero, false_or_iff] at h" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\ns : Cycle α\nh✝ : Subsingleton s\nl : List α\nh : l = [] ∨ ∃ a, l = [a]\n⊢ ∀ ⦃x : α⦄, x ∈ Quot.mk Setoid.r l → ∀ ⦃y : α⦄, y ∈ Quot.mk Setoid.r l → x = y", "tactic": "rcases h with (rfl | ⟨z, rfl⟩) <;> simp" } ]
[ 614, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Algebra/Tropical/Basic.lean
Tropical.succ_nsmul
[ { "state_after": "case zero\nR✝ : Type u\ninst✝² : LinearOrderedAddCommMonoidWithTop R✝\nR : Type u_1\ninst✝¹ : LinearOrder R\ninst✝ : OrderTop R\nx : Tropical R\n⊢ (Nat.zero + 1) • x = x\n\ncase succ\nR✝ : Type u\ninst✝² : LinearOrderedAddCommMonoidWithTop R✝\nR : Type u_1\ninst✝¹ : LinearOrder R\ninst✝ : OrderTop R\nx : Tropical R\nn : ℕ\nIH : (n + 1) • x = x\n⊢ (Nat.succ n + 1) • x = x", "state_before": "R✝ : Type u\ninst✝² : LinearOrderedAddCommMonoidWithTop R✝\nR : Type u_1\ninst✝¹ : LinearOrder R\ninst✝ : OrderTop R\nx : Tropical R\nn : ℕ\n⊢ (n + 1) • x = x", "tactic": "induction' n with n IH" }, { "state_after": "no goals", "state_before": "case zero\nR✝ : Type u\ninst✝² : LinearOrderedAddCommMonoidWithTop R✝\nR : Type u_1\ninst✝¹ : LinearOrder R\ninst✝ : OrderTop R\nx : Tropical R\n⊢ (Nat.zero + 1) • x = x", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case succ\nR✝ : Type u\ninst✝² : LinearOrderedAddCommMonoidWithTop R✝\nR : Type u_1\ninst✝¹ : LinearOrder R\ninst✝ : OrderTop R\nx : Tropical R\nn : ℕ\nIH : (n + 1) • x = x\n⊢ (Nat.succ n + 1) • x = x", "tactic": "rw [add_nsmul, IH, one_nsmul, add_self]" } ]
[ 571, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 568, 1 ]
Mathlib/Data/Fintype/Sum.lean
Set.MapsTo.exists_equiv_extend_of_card_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "classical\n let s' : Finset α := s.toFinset\n have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst\n have hfs' : Set.InjOn f s' := by simpa using hfs\n obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs'\n refine' ⟨g, fun i hi => _⟩\n apply hg\n simpa using hi" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "let s' : Finset α := s.toFinset" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "have hfst' : s'.image f ⊆ t := by simpa [← Finset.coe_subset] using hfst" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "have hfs' : Set.InjOn f s' := by simpa using hfs" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "obtain ⟨g, hg⟩ := Finset.exists_equiv_extend_of_card_eq hαt hfst' hfs'" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\ni : α\nhi : i ∈ s\n⊢ ↑(↑g i) = f i", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\n⊢ ∃ g, ∀ (i : α), i ∈ s → ↑(↑g i) = f i", "tactic": "refine' ⟨g, fun i hi => _⟩" }, { "state_after": "case intro.a\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\ni : α\nhi : i ∈ s\n⊢ i ∈ s'", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\ni : α\nhi : i ∈ s\n⊢ ↑(↑g i) = f i", "tactic": "apply hg" }, { "state_after": "no goals", "state_before": "case intro.a\nα : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\nhfs' : InjOn f ↑s'\ng : α ≃ { x // x ∈ t }\nhg : ∀ (i : α), i ∈ s' → ↑(↑g i) = f i\ni : α\nhi : i ∈ s\n⊢ i ∈ s'", "tactic": "simpa using hi" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\n⊢ Finset.image f s' ⊆ t", "tactic": "simpa [← Finset.coe_subset] using hfst" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝ : Fintype α\nt : Finset β\nhαt : Fintype.card α = card t\ns : Set α\nf : α → β\nhfst : MapsTo f s ↑t\nhfs : InjOn f s\ns' : Finset α := toFinset s\nhfst' : Finset.image f s' ⊆ t\n⊢ InjOn f ↑s'", "tactic": "simpa using hfs" } ]
[ 118, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Algebra/Module/Injective.lean
Module.Baer.extensionOfMax_adjoin.aux1
[ { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\nmem1 : ↑x ∈ ↑(supExtensionOfMaxSingleton i f y)\n⊢ ∃ a b, ↑x = ↑a + b • y", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "have mem1 : x.1 ∈ (_ : Set _) := x.2" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\nmem1 : ↑x ∈ ↑(extensionOfMax i f).toLinearPMap.domain + ↑(Submodule.span R {y})\n⊢ ∃ a b, ↑x = ↑a + b • y", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\nmem1 : ↑x ∈ ↑(supExtensionOfMaxSingleton i f y)\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "rw [Submodule.coe_sup] at mem1" }, { "state_after": "case intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\nb_mem : b ∈ Submodule.span R {y}\neq1 : (fun x x_1 => x + x_1) a b = ↑x\n⊢ ∃ a b, ↑x = ↑a + b • y", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\nmem1 : ↑x ∈ ↑(extensionOfMax i f).toLinearPMap.domain + ↑(Submodule.span R {y})\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "rcases mem1 with ⟨a, b, a_mem, b_mem : b ∈ (Submodule.span R _ : Submodule R N), eq1⟩" }, { "state_after": "case intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\nb_mem : ∃ a, a • y = b\neq1 : (fun x x_1 => x + x_1) a b = ↑x\n⊢ ∃ a b, ↑x = ↑a + b • y", "state_before": "case intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\nb_mem : b ∈ Submodule.span R {y}\neq1 : (fun x x_1 => x + x_1) a b = ↑x\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "rw [Submodule.mem_span_singleton] at b_mem" }, { "state_after": "case intro.intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\neq1 : (fun x x_1 => x + x_1) a b = ↑x\nz : R\neq2 : z • y = b\n⊢ ∃ a b, ↑x = ↑a + b • y", "state_before": "case intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\nb_mem : ∃ a, a • y = b\neq1 : (fun x x_1 => x + x_1) a b = ↑x\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "rcases b_mem with ⟨z, eq2⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\nR : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\neq1 : (fun x x_1 => x + x_1) a b = ↑x\nz : R\neq2 : z • y = b\n⊢ ∃ a b, ↑x = ↑a + b • y", "tactic": "exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\ny : N\nx : { x // x ∈ supExtensionOfMaxSingleton i f y }\na b : N\na_mem : a ∈ ↑(extensionOfMax i f).toLinearPMap.domain\neq1 : (fun x x_1 => x + x_1) a b = ↑x\nz : R\neq2 : z • y = b\n⊢ ↑x = ↑{ val := a, property := a_mem } + z • y", "tactic": "rw [← eq1, ← eq2]" } ]
[ 268, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 9 ]
Mathlib/Data/Setoid/Partition.lean
Setoid.card_classes_ker_le
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.1538\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Fintype β\nf : α → β\ninst✝ : Fintype ↑(classes (ker f))\n⊢ Fintype.card ↑(classes (ker f)) ≤ Fintype.card β", "tactic": "classical exact\n le_trans (Set.card_le_of_subset (classes_ker_subset_fiber_set f)) (Fintype.card_range_le _)" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.1538\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Fintype β\nf : α → β\ninst✝ : Fintype ↑(classes (ker f))\n⊢ Fintype.card ↑(classes (ker f)) ≤ Fintype.card β", "tactic": "exact\nle_trans (Set.card_le_of_subset (classes_ker_subset_fiber_set f)) (Fintype.card_range_le _)" } ]
[ 95, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Algebra/Associated.lean
Associates.bot_eq_one
[]
[ 786, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/RingTheory/Polynomial/Chebyshev.lean
Polynomial.Chebyshev.U_eq_X_mul_U_add_T
[ { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\n⊢ U R (0 + 1) = X * U R 0 + T R (0 + 1)", "tactic": "simp only [T, U, two_mul, mul_one]" }, { "state_after": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\n⊢ 2 * X * (2 * X) - 1 = X * (2 * X) + (2 * X * X - 1)", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\n⊢ U R (1 + 1) = X * U R 1 + T R (1 + 1)", "tactic": "simp only [T, U]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\n⊢ 2 * X * (2 * X) - 1 = X * (2 * X) + (2 * X * X - 1)", "tactic": "ring" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))", "tactic": "rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) =\n X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1))", "tactic": "ring" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.12813\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nn : ℕ\n⊢ X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) = X * U R (n + 2) + T R (n + 2 + 1)", "tactic": "simp only [U_add_two, T_add_two]" } ]
[ 135, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Order/SuccPred/Basic.lean
Order.lt_succ_iff_eq_or_lt_of_not_isMax
[]
[ 445, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
Seminorm.const_isBounded
[ { "state_after": "case mp\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : IsBounded (fun x => p) q f\ni : ι'\n⊢ ∃ C, comp (q i) f ≤ C • p\n\ncase mpr\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : ∀ (i : ι'), ∃ C, comp (q i) f ≤ C • p\ni : ι'\n⊢ ∃ s C, comp (q i) f ≤ C • Finset.sup s fun x => p", "state_before": "𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\n⊢ IsBounded (fun x => p) q f ↔ ∀ (i : ι'), ∃ C, comp (q i) f ≤ C • p", "tactic": "constructor <;> intro h i" }, { "state_after": "case mpr\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : ∀ (i : ι'), ∃ C, comp (q i) f ≤ C • p\ni : ι'\n⊢ ∃ C, comp (q i) f ≤ C • Finset.sup {Classical.arbitrary ι} fun x => p", "state_before": "case mpr\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : ∀ (i : ι'), ∃ C, comp (q i) f ≤ C • p\ni : ι'\n⊢ ∃ s C, comp (q i) f ≤ C • Finset.sup s fun x => p", "tactic": "use {Classical.arbitrary ι}" }, { "state_after": "no goals", "state_before": "case mpr\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : ∀ (i : ι'), ∃ C, comp (q i) f ≤ C • p\ni : ι'\n⊢ ∃ C, comp (q i) f ≤ C • Finset.sup {Classical.arbitrary ι} fun x => p", "tactic": "simp only [h, Finset.sup_singleton]" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh✝ : IsBounded (fun x => p) q f\ni : ι'\ns : Finset ι\nC : ℝ≥0\nh : comp (q i) f ≤ C • Finset.sup s fun x => p\n⊢ ∃ C, comp (q i) f ≤ C • p", "state_before": "case mp\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh : IsBounded (fun x => p) q f\ni : ι'\n⊢ ∃ C, comp (q i) f ≤ C • p", "tactic": "rcases h i with ⟨s, C, h⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.intro\n𝕜 : Type u_2\n𝕜₂ : Type u_4\n𝕝 : Type ?u.123266\n𝕝₂ : Type ?u.123269\nE : Type u_3\nF : Type u_5\nG : Type ?u.123278\nι✝ : Type ?u.123281\nι' : Type u_6\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : NormedField 𝕜₂\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜₂ F\nσ₁₂ : 𝕜 →+* 𝕜₂\ninst✝¹ : RingHomIsometric σ₁₂\nι : Type u_1\ninst✝ : Nonempty ι\np : Seminorm 𝕜 E\nq : ι' → Seminorm 𝕜₂ F\nf : E →ₛₗ[σ₁₂] F\nh✝ : IsBounded (fun x => p) q f\ni : ι'\ns : Finset ι\nC : ℝ≥0\nh : comp (q i) f ≤ C • Finset.sup s fun x => p\n⊢ ∃ C, comp (q i) f ≤ C • p", "tactic": "exact ⟨C, le_trans h (smul_le_smul (Finset.sup_le fun _ _ => le_rfl) le_rfl)⟩" } ]
[ 243, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Data/Int/Bitwise.lean
Int.bodd_zero
[]
[ 31, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/CategoryTheory/Sites/Closed.lean
CategoryTheory.topology_eq_iff_same_sheaves
[ { "state_after": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\n⊢ J₁ = J₂ → ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n\ncase mpr\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\n⊢ (∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P) → J₁ = J₂", "state_before": "C : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\n⊢ J₁ = J₂ ↔ ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P", "tactic": "constructor" }, { "state_after": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂ J₁ : GrothendieckTopology C\n⊢ ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₁ P", "state_before": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\n⊢ J₁ = J₂ → ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P", "tactic": "rintro rfl" }, { "state_after": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂ J₁ : GrothendieckTopology C\nP : Cᵒᵖ ⥤ Type (max v u)\n⊢ Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₁ P", "state_before": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂ J₁ : GrothendieckTopology C\n⊢ ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₁ P", "tactic": "intro P" }, { "state_after": "no goals", "state_before": "case mp\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂ J₁ : GrothendieckTopology C\nP : Cᵒᵖ ⥤ Type (max v u)\n⊢ Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₁ P", "tactic": "rfl" }, { "state_after": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₁ = J₂", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\n⊢ (∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P) → J₁ = J₂", "tactic": "intro h" }, { "state_after": "case mpr.a\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₁ ≤ J₂\n\ncase mpr.a\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₂ ≤ J₁", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₁ = J₂", "tactic": "apply le_antisymm" }, { "state_after": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₁ (Functor.closedSieves J₂)", "state_before": "case mpr.a\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₁ ≤ J₂", "tactic": "apply le_topology_of_closedSieves_isSheaf" }, { "state_after": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₂ (Functor.closedSieves J₂)", "state_before": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₁ (Functor.closedSieves J₂)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₂ (Functor.closedSieves J₂)", "tactic": "apply classifier_isSheaf" }, { "state_after": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₂ (Functor.closedSieves J₁)", "state_before": "case mpr.a\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ J₂ ≤ J₁", "tactic": "apply le_topology_of_closedSieves_isSheaf" }, { "state_after": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₁ (Functor.closedSieves J₁)", "state_before": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₂ (Functor.closedSieves J₁)", "tactic": "rw [← h]" }, { "state_after": "no goals", "state_before": "case mpr.a.h\nC : Type u\ninst✝ : Category C\nJ₁✝ J₂✝ J₁ J₂ : GrothendieckTopology C\nh : ∀ (P : Cᵒᵖ ⥤ Type (max v u)), Presieve.IsSheaf J₁ P ↔ Presieve.IsSheaf J₂ P\n⊢ Presieve.IsSheaf J₁ (Functor.closedSieves J₁)", "tactic": "apply classifier_isSheaf" } ]
[ 287, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsLittleO.smul
[ { "state_after": "case refine'_2\nα : Type u_1\nβ : Type ?u.584464\nE : Type ?u.584467\nF : Type ?u.584470\nG : Type ?u.584473\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.584482\nE'' : Type ?u.584485\nF'' : Type ?u.584488\nG'' : Type ?u.584491\nR : Type ?u.584494\nR' : Type ?u.584497\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =o[l] k₂\nh₂ : f' =o[l] g'\nx✝ : α\n⊢ ‖k₂ x✝‖ * ‖g' x✝‖ = ‖k₂ x✝ • g' x✝‖", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.584464\nE : Type ?u.584467\nF : Type ?u.584470\nG : Type ?u.584473\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.584482\nE'' : Type ?u.584485\nF'' : Type ?u.584488\nG'' : Type ?u.584491\nR : Type ?u.584494\nR' : Type ?u.584497\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =o[l] k₂\nh₂ : f' =o[l] g'\n⊢ ∀ (x : α), ‖k₂ x‖ * ‖g' x‖ = ‖k₂ x • g' x‖", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.584464\nE : Type ?u.584467\nF : Type ?u.584470\nG : Type ?u.584473\nE' : Type u_4\nF' : Type u_5\nG' : Type ?u.584482\nE'' : Type ?u.584485\nF'' : Type ?u.584488\nG'' : Type ?u.584491\nR : Type ?u.584494\nR' : Type ?u.584497\n𝕜 : Type u_2\n𝕜' : Type u_3\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\ninst✝¹ : NormedSpace 𝕜 E'\ninst✝ : NormedSpace 𝕜' F'\nk₁ : α → 𝕜\nk₂ : α → 𝕜'\nh₁ : k₁ =o[l] k₂\nh₂ : f' =o[l] g'\nx✝ : α\n⊢ ‖k₂ x✝‖ * ‖g' x✝‖ = ‖k₂ x✝ • g' x✝‖", "tactic": "simp only [norm_smul]" } ]
[ 1777, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1774, 1 ]
Mathlib/Algebra/Module/Submodule/Bilinear.lean
Submodule.map₂_sup_left
[]
[ 133, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.smul_extend
[ { "state_after": "case h\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\n⊢ (c • extend m) s = extend (fun s h => c • m s h) s", "state_before": "α : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\n⊢ c • extend m = extend fun s h => c • m s h", "tactic": "ext1 s" }, { "state_after": "case h\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h", "state_before": "case h\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\n⊢ (c • extend m) s = extend (fun s h => c • m s h) s", "tactic": "dsimp [extend]" }, { "state_after": "case pos\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\nh : P s\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h\n\ncase neg\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\nh : ¬P s\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h", "state_before": "case h\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h", "tactic": "by_cases h : P s" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\nh : P s\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h", "tactic": "simp [h]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_2\nP : α → Prop\nm : (s : α) → P s → ℝ≥0∞\nR : Type u_1\ninst✝³ : Zero R\ninst✝² : SMulWithZero R ℝ≥0∞\ninst✝¹ : IsScalarTower R ℝ≥0∞ ℝ≥0∞\ninst✝ : NoZeroSMulDivisors R ℝ≥0∞\nc : R\nhc : c ≠ 0\ns : α\nh : ¬P s\n⊢ (c • ⨅ (h : P s), m s h) = ⨅ (h : P s), c • m s h", "tactic": "simp [h, ENNReal.smul_top, hc]" } ]
[ 1335, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1328, 1 ]
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.Term.relabel_comp_relabel
[]
[ 135, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Analysis/PSeries.lean
NNReal.summable_rpow
[ { "state_after": "no goals", "state_before": "p : ℝ\n⊢ (Summable fun n => ↑n ^ p) ↔ p < -1", "tactic": "simp [← NNReal.summable_coe]" } ]
[ 281, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Algebra/Module/Basic.lean
Convex.combo_eq_smul_sub_add
[ { "state_after": "no goals", "state_before": "α : Type ?u.85204\nR : Type u_1\nk : Type ?u.85210\nS : Type ?u.85213\nM : Type u_2\nM₂ : Type ?u.85219\nM₃ : Type ?u.85222\nι : Type ?u.85225\ninst✝² : Semiring R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx y : M\na b : R\nh : a + b = 1\n⊢ a • x + b • y = b • y - b • x + (a • x + b • x)", "tactic": "abel" }, { "state_after": "no goals", "state_before": "α : Type ?u.85204\nR : Type u_1\nk : Type ?u.85210\nS : Type ?u.85213\nM : Type u_2\nM₂ : Type ?u.85219\nM₃ : Type ?u.85222\nι : Type ?u.85225\ninst✝² : Semiring R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nx y : M\na b : R\nh : a + b = 1\n⊢ b • y - b • x + (a • x + b • x) = b • (y - x) + x", "tactic": "rw [smul_sub, Convex.combo_self h]" } ]
[ 282, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 278, 1 ]
Mathlib/Topology/Basic.lean
isClosed_empty
[]
[ 208, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 9 ]
Mathlib/CategoryTheory/Limits/EssentiallySmall.lean
CategoryTheory.Limits.hasColimitsOfShape_of_essentiallySmall
[]
[ 39, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 37, 1 ]
Mathlib/Algebra/BigOperators/Finsupp.lean
Finsupp.liftAddHom_apply_single
[]
[ 489, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 487, 1 ]
Mathlib/Algebra/CharP/Basic.lean
CharP.char_is_prime_or_zero
[]
[ 551, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 547, 1 ]
Mathlib/Topology/Constructions.lean
openEmbedding_sigmaMk
[]
[ 1489, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1487, 1 ]
Mathlib/Analysis/Convex/Hull.lean
convexHull_singleton
[]
[ 131, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Analysis/Asymptotics/AsymptoticEquivalent.lean
Asymptotics.isEquivalent_of_tendsto_one'
[]
[ 222, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Data/Finset/Image.lean
Equiv.finsetCongr_symm
[]
[ 796, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 795, 1 ]
Mathlib/Topology/LocallyFinite.lean
LocallyFinite.comp_injOn
[ { "state_after": "ι : Type u_1\nι' : Type u_3\nα : Type ?u.1343\nX : Type u_2\nY : Type ?u.1349\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf g✝ : ι → Set X\ng : ι' → ι\nhf : LocallyFinite f\nhg : InjOn g {i | Set.Nonempty (f (g i))}\nx : X\nt : Set X\nhtx : t ∈ 𝓝 x\nhtf : Set.Finite {i | Set.Nonempty (f i ∩ t)}\n⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((f ∘ g) i ∩ t)}", "state_before": "ι : Type u_1\nι' : Type u_3\nα : Type ?u.1343\nX : Type u_2\nY : Type ?u.1349\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf g✝ : ι → Set X\ng : ι' → ι\nhf : LocallyFinite f\nhg : InjOn g {i | Set.Nonempty (f (g i))}\nx : X\n⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((f ∘ g) i ∩ t)}", "tactic": "let ⟨t, htx, htf⟩ := hf x" }, { "state_after": "ι : Type u_1\nι' : Type u_3\nα : Type ?u.1343\nX : Type u_2\nY : Type ?u.1349\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf g✝ : ι → Set X\ng : ι' → ι\nhf : LocallyFinite f\nhg : InjOn g {i | Set.Nonempty (f (g i))}\nx : X\nt : Set X\nhtx : t ∈ 𝓝 x\nhtf : Set.Finite {i | Set.Nonempty (f i ∩ t)}\n⊢ InjOn (fun i => g i) ((fun i => g i) ⁻¹' {i | Set.Nonempty (f i ∩ t)})", "state_before": "ι : Type u_1\nι' : Type u_3\nα : Type ?u.1343\nX : Type u_2\nY : Type ?u.1349\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf g✝ : ι → Set X\ng : ι' → ι\nhf : LocallyFinite f\nhg : InjOn g {i | Set.Nonempty (f (g i))}\nx : X\nt : Set X\nhtx : t ∈ 𝓝 x\nhtf : Set.Finite {i | Set.Nonempty (f i ∩ t)}\n⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((f ∘ g) i ∩ t)}", "tactic": "refine ⟨t, htx, htf.preimage <| ?_⟩" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type u_3\nα : Type ?u.1343\nX : Type u_2\nY : Type ?u.1349\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nf g✝ : ι → Set X\ng : ι' → ι\nhf : LocallyFinite f\nhg : InjOn g {i | Set.Nonempty (f (g i))}\nx : X\nt : Set X\nhtx : t ∈ 𝓝 x\nhtf : Set.Finite {i | Set.Nonempty (f i ∩ t)}\n⊢ InjOn (fun i => g i) ((fun i => g i) ⁻¹' {i | Set.Nonempty (f i ∩ t)})", "tactic": "exact hg.mono fun i (hi : Set.Nonempty _) => hi.left" } ]
[ 54, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/CategoryTheory/Extensive.lean
CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan
[]
[ 273, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
le_mul_of_one_le_of_le_of_nonneg
[]
[ 930, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 928, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.mem_of_span_eq_top_of_smul_pow_mem
[]
[ 1464, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1460, 1 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.seq_sub
[]
[ 320, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]