file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPushout.map_iff
[]
[ 1067, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1064, 1 ]
Mathlib/MeasureTheory/Function/AEMeasurableSequence.lean
aeSeq.aeSeqSet_measurableSet
[]
[ 95, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Analysis/NormedSpace/Pointwise.lean
ediam_smul₀
[ { "state_after": "𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "state_before": "𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\n⊢ EMetric.diam (c • s) = ‖c‖₊ • EMetric.diam s", "tactic": "refine' le_antisymm (ediam_smul_le c s) _" }, { "state_after": "case inl\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\ns : Set E\n⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)\n\ncase inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\nhc : c ≠ 0\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "state_before": "𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "tactic": "obtain rfl | hc := eq_or_ne c 0" }, { "state_after": "case inl.inl\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\n⊢ ‖0‖₊ • EMetric.diam ∅ ≤ EMetric.diam (0 • ∅)\n\ncase inl.inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\ns : Set E\nhs : Set.Nonempty s\n⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)", "state_before": "case inl\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\ns : Set E\n⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)", "tactic": "obtain rfl | hs := s.eq_empty_or_nonempty" }, { "state_after": "no goals", "state_before": "case inl.inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\ns : Set E\nhs : Set.Nonempty s\n⊢ ‖0‖₊ • EMetric.diam s ≤ EMetric.diam (0 • s)", "tactic": "simp [zero_smul_set hs, ← Set.singleton_zero]" }, { "state_after": "no goals", "state_before": "case inl.inl\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\n⊢ ‖0‖₊ • EMetric.diam ∅ ≤ EMetric.diam (0 • ∅)", "tactic": "simp" }, { "state_after": "case inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\nhc : c ≠ 0\nthis : EMetric.diam ((fun x x_1 => x • x_1) c⁻¹ '' (c • s)) ≤ ↑‖c⁻¹‖₊ * EMetric.diam (c • s)\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "state_before": "case inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\nhc : c ≠ 0\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "tactic": "have := (lipschitzWith_smul c⁻¹).ediam_image_le (c • s)" }, { "state_after": "no goals", "state_before": "case inr\n𝕜 : Type u_2\nE : Type u_1\ninst✝³ : NormedDivisionRing 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : Module 𝕜 E\ninst✝ : BoundedSMul 𝕜 E\nc : 𝕜\ns : Set E\nhc : c ≠ 0\nthis : EMetric.diam ((fun x x_1 => x • x_1) c⁻¹ '' (c • s)) ≤ ↑‖c⁻¹‖₊ * EMetric.diam (c • s)\n⊢ ‖c‖₊ • EMetric.diam s ≤ EMetric.diam (c • s)", "tactic": "rwa [← smul_eq_mul, ← ENNReal.smul_def, Set.image_smul, inv_smul_smul₀ hc s, nnnorm_inv,\n ENNReal.le_inv_smul_iff (nnnorm_ne_zero_iff.mpr hc)] at this" } ]
[ 56, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/LinearAlgebra/Finrank.lean
finrank_eq_zero_of_not_exists_basis_finite
[]
[ 204, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
Real.image_tan_Ioo
[]
[ 106, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Basic.lean
MeasureTheory.QuasiMeasurePreserving.prod_of_right
[ { "state_after": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\n⊢ map f (Measure.prod μ ν) ≪ τ", "state_before": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\n⊢ QuasiMeasurePreserving f", "tactic": "refine' ⟨hf, _⟩" }, { "state_after": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ ↑↑(map f (Measure.prod μ ν)) s = 0", "state_before": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\n⊢ map f (Measure.prod μ ν) ≪ τ", "tactic": "refine' AbsolutelyContinuous.mk fun s hs h2s => _" }, { "state_after": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ (∫⁻ (x : α), ↑↑ν (Prod.mk x ⁻¹' (f ⁻¹' s)) ∂μ) = 0", "state_before": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ ↑↑(map f (Measure.prod μ ν)) s = 0", "tactic": "rw [map_apply hf hs, prod_apply (hf hs)]" }, { "state_after": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ (∫⁻ (x : α), ↑↑ν ((fun x_1 => f (x, x_1)) ⁻¹' s) ∂μ) = 0", "state_before": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ (∫⁻ (x : α), ↑↑ν (Prod.mk x ⁻¹' (f ⁻¹' s)) ∂μ) = 0", "tactic": "simp_rw [preimage_preimage]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nα' : Type ?u.4534735\nβ : Type u_2\nβ' : Type ?u.4534741\nγ : Type u_3\nE : Type ?u.4534747\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : MeasurableSpace α'\ninst✝⁴ : MeasurableSpace β\ninst✝³ : MeasurableSpace β'\ninst✝² : MeasurableSpace γ\nμ✝ μ' : Measure α\nν✝ ν' : Measure β\nτ✝ : Measure γ\ninst✝¹ : NormedAddCommGroup E\nf : α × β → γ\nμ : Measure α\nν : Measure β\nτ : Measure γ\nhf : Measurable f\ninst✝ : SigmaFinite ν\nh2f : ∀ᵐ (x : α) ∂μ, QuasiMeasurePreserving fun y => f (x, y)\ns : Set γ\nhs : MeasurableSet s\nh2s : ↑↑τ s = 0\n⊢ (∫⁻ (x : α), ↑↑ν ((fun x_1 => f (x, x_1)) ⁻¹' s) ∂μ) = 0", "tactic": "rw [lintegral_congr_ae (h2f.mono fun x hx => hx.preimage_null h2s), lintegral_zero]" } ]
[ 671, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 664, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.iSup_apply
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.67250\nR : Type ?u.67253\nR' : Type ?u.67256\nms : Set (OuterMeasure α)\nm : OuterMeasure α\nι : Sort u_1\nf : ι → OuterMeasure α\ns : Set α\n⊢ ↑(⨆ (i : ι), f i) s = ⨆ (i : ι), ↑(f i) s", "tactic": "rw [iSup, sSup_apply, iSup_range, iSup]" } ]
[ 419, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 418, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
fderiv_iteratedFDeriv
[ { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\n⊢ fderiv 𝕜 (iteratedFDeriv 𝕜 n f) =\n ↑(LinearIsometryEquiv.symm (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F)) ∘\n ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 n f)", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\n⊢ fderiv 𝕜 (iteratedFDeriv 𝕜 n f) =\n ↑(LinearIsometryEquiv.symm (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F)) ∘ iteratedFDeriv 𝕜 (n + 1) f", "tactic": "rw [iteratedFDeriv_succ_eq_comp_left]" }, { "state_after": "case h\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nx : E\n⊢ fderiv 𝕜 (iteratedFDeriv 𝕜 n f) x =\n (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F)) ∘\n ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 n f))\n x", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\n⊢ fderiv 𝕜 (iteratedFDeriv 𝕜 n f) =\n ↑(LinearIsometryEquiv.symm (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F)) ∘\n ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 n f)", "tactic": "ext1 x" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nn : ℕ\nx : E\n⊢ fderiv 𝕜 (iteratedFDeriv 𝕜 n f) x =\n (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F)) ∘\n ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (iteratedFDeriv 𝕜 n f))\n x", "tactic": "simp only [Function.comp_apply, LinearIsometryEquiv.symm_apply_apply]" } ]
[ 1553, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1547, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.coeff_pow_mul_natDegree
[ { "state_after": "case zero\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\n⊢ coeff (p ^ Nat.zero) (Nat.zero * natDegree p) = leadingCoeff p ^ Nat.zero\n\ncase succ\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\n⊢ coeff (p ^ Nat.succ i) (Nat.succ i * natDegree p) = leadingCoeff p ^ Nat.succ i", "state_before": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\nn : ℕ\n⊢ coeff (p ^ n) (n * natDegree p) = leadingCoeff p ^ n", "tactic": "induction' n with i hi" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\n⊢ coeff (p ^ Nat.zero) (Nat.zero * natDegree p) = leadingCoeff p ^ Nat.zero", "tactic": "simp" }, { "state_after": "case succ\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p", "state_before": "case succ\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\n⊢ coeff (p ^ Nat.succ i) (Nat.succ i * natDegree p) = leadingCoeff p ^ Nat.succ i", "tactic": "rw [pow_succ', pow_succ', Nat.succ_mul]" }, { "state_after": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p\n\ncase neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : ¬leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p", "state_before": "case succ\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p", "tactic": "by_cases hp1 : p.leadingCoeff ^ i = 0" }, { "state_after": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0", "state_before": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p", "tactic": "rw [hp1, zero_mul]" }, { "state_after": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0\n\ncase neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0", "state_before": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0", "tactic": "by_cases hp2 : p ^ i = 0" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0", "tactic": "rw [hp2, zero_mul, coeff_zero]" }, { "state_after": "case neg.h\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\n⊢ natDegree (p ^ i * p) < i * natDegree p + natDegree p", "state_before": "case neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = 0", "tactic": "apply coeff_eq_zero_of_natDegree_lt" }, { "state_after": "case neg.h\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh1 : natDegree (p ^ i) < i * natDegree p\n⊢ natDegree (p ^ i * p) < i * natDegree p + natDegree p", "state_before": "case neg.h\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\n⊢ natDegree (p ^ i * p) < i * natDegree p + natDegree p", "tactic": "have h1 : (p ^ i).natDegree < i * p.natDegree := by\n refine lt_of_le_of_ne natDegree_pow_le fun h => hp2 ?_\n rw [← h, hp1] at hi\n exact leadingCoeff_eq_zero.mp hi" }, { "state_after": "no goals", "state_before": "case neg.h\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh1 : natDegree (p ^ i) < i * natDegree p\n⊢ natDegree (p ^ i * p) < i * natDegree p + natDegree p", "tactic": "calc\n (p ^ i * p).natDegree ≤ (p ^ i).natDegree + p.natDegree := natDegree_mul_le\n _ < i * p.natDegree + p.natDegree := add_lt_add_right h1 _" }, { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh : natDegree (p ^ i) = i * natDegree p\n⊢ p ^ i = 0", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\n⊢ natDegree (p ^ i) < i * natDegree p", "tactic": "refine lt_of_le_of_ne natDegree_pow_le fun h => hp2 ?_" }, { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (natDegree (p ^ i)) = 0\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh : natDegree (p ^ i) = i * natDegree p\n⊢ p ^ i = 0", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh : natDegree (p ^ i) = i * natDegree p\n⊢ p ^ i = 0", "tactic": "rw [← h, hp1] at hi" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (natDegree (p ^ i)) = 0\nhp1 : leadingCoeff p ^ i = 0\nhp2 : ¬p ^ i = 0\nh : natDegree (p ^ i) = i * natDegree p\n⊢ p ^ i = 0", "tactic": "exact leadingCoeff_eq_zero.mp hi" }, { "state_after": "case neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : ¬leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (natDegree (p ^ i) + natDegree p) = leadingCoeff (p ^ i) * leadingCoeff p", "state_before": "case neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : ¬leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (i * natDegree p + natDegree p) = leadingCoeff p ^ i * leadingCoeff p", "tactic": "rw [← natDegree_pow' hp1, ← leadingCoeff_pow' hp1]" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np✝ q : R[X]\nι : Type ?u.697185\np : R[X]\ni : ℕ\nhi : coeff (p ^ i) (i * natDegree p) = leadingCoeff p ^ i\nhp1 : ¬leadingCoeff p ^ i = 0\n⊢ coeff (p ^ i * p) (natDegree (p ^ i) + natDegree p) = leadingCoeff (p ^ i) * leadingCoeff p", "tactic": "exact coeff_mul_degree_add_degree _ _" } ]
[ 1065, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1046, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.mem_list_cycles_iff
[ { "state_after": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\n⊢ IsCycle σ → (σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a)", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\n⊢ σ ∈ l ↔ IsCycle σ ∧ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "tactic": "suffices σ.IsCycle → (σ ∈ l ↔ ∀ (a : α) (_ : σ a ≠ a), σ a = l.prod a) by\n exact ⟨fun hσ => ⟨h1 σ hσ, (this (h1 σ hσ)).mp hσ⟩, fun hσ => (this hσ.1).mpr hσ.2⟩" }, { "state_after": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\n⊢ σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\n⊢ IsCycle σ → (σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a)", "tactic": "intro h3" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nthis : IsCycle σ → (σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a)\n⊢ σ ∈ l ↔ IsCycle σ ∧ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "tactic": "exact ⟨fun hσ => ⟨h1 σ hσ, (this (h1 σ hσ)).mp hσ⟩, fun hσ => (this hσ.1).mpr hσ.2⟩" }, { "state_after": "case intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\n⊢ σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "tactic": "cases nonempty_fintype α" }, { "state_after": "case intro.mp\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ σ ∈ l → ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\n\ncase intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ (∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a) → σ ∈ l", "state_before": "case intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ σ ∈ l ↔ ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "tactic": "constructor" }, { "state_after": "case intro.mp\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : σ ∈ l\na : α\nha : ↑σ a ≠ a\n⊢ ↑σ a = ↑(List.prod l) a", "state_before": "case intro.mp\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ σ ∈ l → ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a", "tactic": "intro h a ha" }, { "state_after": "no goals", "state_before": "case intro.mp\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : σ ∈ l\na : α\nha : ↑σ a ≠ a\n⊢ ↑σ a = ↑(List.prod l) a", "tactic": "exact eq_on_support_mem_disjoint h h2 _ (mem_support.mpr ha)" }, { "state_after": "case intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\n⊢ σ ∈ l", "state_before": "case intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\n⊢ (∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a) → σ ∈ l", "tactic": "intro h" }, { "state_after": "case intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\n⊢ σ ∈ l", "state_before": "case intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\n⊢ σ ∈ l", "tactic": "have hσl : σ.support ⊆ l.prod.support := by\n intro x hx\n rw [mem_support] at hx\n rwa [mem_support, ← h _ hx]" }, { "state_after": "case intro.mpr.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha : ↑σ a ≠ a\n⊢ σ ∈ l", "state_before": "case intro.mpr\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\n⊢ σ ∈ l", "tactic": "obtain ⟨a, ha, -⟩ := id h3" }, { "state_after": "case intro.mpr.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\n⊢ σ ∈ l", "state_before": "case intro.mpr.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha : ↑σ a ≠ a\n⊢ σ ∈ l", "tactic": "rw [← mem_support] at ha" }, { "state_after": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\n⊢ σ ∈ l", "state_before": "case intro.mpr.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\n⊢ σ ∈ l", "tactic": "obtain ⟨τ, hτ, hτa⟩ := exists_mem_support_of_mem_support_prod (hσl ha)" }, { "state_after": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\n⊢ σ ∈ l", "state_before": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\n⊢ σ ∈ l", "tactic": "have hτl : ∀ x ∈ τ.support, τ x = l.prod x := eq_on_support_mem_disjoint hτ h2" }, { "state_after": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ σ ∈ l", "state_before": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\n⊢ σ ∈ l", "tactic": "have key : ∀ x ∈ σ.support ∩ τ.support, σ x = τ x := by\n intro x hx\n rw [h x (mem_support.mp (mem_of_mem_inter_left hx)), hτl x (mem_of_mem_inter_right hx)]" }, { "state_after": "case h.e'_4\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ σ = τ", "state_before": "case intro.mpr.intro.intro.intro.intro\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ σ ∈ l", "tactic": "convert hτ" }, { "state_after": "case h.e'_4\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ ↑σ a = ↑τ a", "state_before": "case h.e'_4\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ σ = τ", "tactic": "refine' h3.eq_on_support_inter_nonempty_congr (h1 _ hτ) key _ ha" }, { "state_after": "no goals", "state_before": "case h.e'_4\nι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nkey : ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x\n⊢ ↑σ a = ↑τ a", "tactic": "exact key a (mem_inter_of_mem ha hτa)" }, { "state_after": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nx : α\nhx : x ∈ support σ\n⊢ x ∈ support (List.prod l)", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\n⊢ support σ ⊆ support (List.prod l)", "tactic": "intro x hx" }, { "state_after": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nx : α\nhx : ↑σ x ≠ x\n⊢ x ∈ support (List.prod l)", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nx : α\nhx : x ∈ support σ\n⊢ x ∈ support (List.prod l)", "tactic": "rw [mem_support] at hx" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nx : α\nhx : ↑σ x ≠ x\n⊢ x ∈ support (List.prod l)", "tactic": "rwa [mem_support, ← h _ hx]" }, { "state_after": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nx : α\nhx : x ∈ support σ ∩ support τ\n⊢ ↑σ x = ↑τ x", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\n⊢ ∀ (x : α), x ∈ support σ ∩ support τ → ↑σ x = ↑τ x", "tactic": "intro x hx" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2666441\nα✝ : Type ?u.2666444\nβ : Type ?u.2666447\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl : List (Perm α)\nh1 : ∀ (σ : Perm α), σ ∈ l → IsCycle σ\nh2 : List.Pairwise Disjoint l\nσ : Perm α\nh3 : IsCycle σ\nval✝ : Fintype α\nh : ∀ (a : α), ↑σ a ≠ a → ↑σ a = ↑(List.prod l) a\nhσl : support σ ⊆ support (List.prod l)\na : α\nha✝ : ↑σ a ≠ a\nha : a ∈ support σ\nτ : Perm α\nhτ : τ ∈ l\nhτa : a ∈ support τ\nhτl : ∀ (x : α), x ∈ support τ → ↑τ x = ↑(List.prod l) x\nx : α\nhx : x ∈ support σ ∩ support τ\n⊢ ↑σ x = ↑τ x", "tactic": "rw [h x (mem_support.mp (mem_of_mem_inter_left hx)), hτl x (mem_of_mem_inter_right hx)]" } ]
[ 1310, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1285, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.isBridge_iff
[]
[ 2447, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2446, 1 ]
Mathlib/Order/Filter/Partial.lean
Filter.rmap_rmap
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nr : Rel α β\ns : Rel β γ\nl : Filter α\n⊢ (rmap s (rmap r l)).sets = (rmap (Rel.comp r s) l).sets", "tactic": "simp [rmap_sets, Set.preimage, Rel.core_comp]" } ]
[ 83, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
balanced_empty
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕝 : Type ?u.11887\nE : Type u_2\nι : Sort ?u.11893\nκ : ι → Sort ?u.11898\ninst✝¹ : SeminormedRing 𝕜\ninst✝ : SMul 𝕜 E\ns t u v A B : Set E\nx✝¹ : 𝕜\nx✝ : ‖x✝¹‖ ≤ 1\n⊢ x✝¹ • ∅ ⊆ ∅", "tactic": "rw [smul_set_empty]" } ]
[ 175, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Topology/Inseparable.lean
SeparationQuotient.lift_comp_mk
[]
[ 537, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 536, 1 ]
Mathlib/Order/Filter/SmallSets.lean
Filter.smallSets_principal
[]
[ 110, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.neLocus_eq_empty
[ { "state_after": "no goals", "state_before": "α : Type u_1\nN : α → Type u_2\ninst✝² : DecidableEq α\ninst✝¹ : (a : α) → DecidableEq (N a)\ninst✝ : (a : α) → Zero (N a)\nf✝ g✝ f g : Π₀ (a : α), N a\nh : f = g\n⊢ neLocus f f = ∅", "tactic": "simp only [neLocus, Ne.def, eq_self_iff_true, not_true, Finset.filter_False]" } ]
[ 62, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_const_add_Iio
[]
[ 59, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean
Complex.cpow_sub
[ { "state_after": "no goals", "state_before": "x y z : ℂ\nhx : x ≠ 0\n⊢ x ^ (y - z) = x ^ y / x ^ z", "tactic": "rw [sub_eq_add_neg, cpow_add _ _ hx, cpow_neg, div_eq_mul_inv]" } ]
[ 111, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Data/List/Forall2.lean
List.rel_filter
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : (R ⇒ fun x x_1 => x ↔ x_1) (fun x => p x = true) fun x => q x = true\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "dsimp [LiftFun] at hpq" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : p a = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))\n\ncase neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : ¬p a = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "by_cases h : p a" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : p a = true\nthis : q b = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : p a = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "have : q b := by rwa [← hpq h₁]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : p a = true\nthis : q b = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "simp only [filter_cons_of_pos _ h, filter_cons_of_pos _ this, forall₂_cons, h₁, true_and_iff,\n rel_filter hpq h₂]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : p a = true\n⊢ q b = true", "tactic": "rwa [← hpq h₁]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : ¬p a = true\nthis : ¬q b = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : ¬p a = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "have : ¬q b := by rwa [← hpq h₁]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : ¬p a = true\nthis : ¬q b = true\n⊢ Forall₂ R (filter p (a :: as)) (filter q (b :: bs))", "tactic": "simp only [filter_cons_of_neg _ h, filter_cons_of_neg _ this, rel_filter hpq h₂]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.148999\nδ : Type ?u.149002\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\np : α → Bool\nq : β → Bool\nhpq : ∀ ⦃a : α⦄ ⦃b : β⦄, R a b → (p a = true ↔ q b = true)\na : α\nas : List α\nb : β\nbs : List β\nh₁ : R a b\nh₂ : Forall₂ R as bs\nh : ¬p a = true\n⊢ ¬q b = true", "tactic": "rwa [← hpq h₁]" } ]
[ 302, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Data/Finsupp/Lex.lean
Finsupp.lex_eq_invImage_dfinsupp_lex
[]
[ 52, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Algebra/Star/Subalgebra.lean
StarSubalgebra.mem_carrier
[]
[ 82, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Topology/Semicontinuous.lean
upperSemicontinuous_sum
[]
[ 987, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 985, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_mem_support_of_nonzero
[ { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.515454\nH : p ≠ 0\n⊢ coeff p (natDegree p) ≠ 0", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.515454\nH : p ≠ 0\n⊢ natDegree p ∈ support p", "tactic": "rw [mem_support_iff]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.515454\nH : p ≠ 0\n⊢ coeff p (natDegree p) ≠ 0", "tactic": "exact (not_congr leadingCoeff_eq_zero).mpr H" } ]
[ 677, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 675, 1 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.mapFun.zsmul
[ { "state_after": "no goals", "state_before": "p : ℕ\nR : Type u_2\nS : Type u_1\nT : Type ?u.411235\nhp : Fact (Nat.Prime p)\ninst✝² : CommRing R\ninst✝¹ : CommRing S\ninst✝ : CommRing T\nα : Type ?u.411250\nβ : Type ?u.411253\nf : R →+* S\nx y : 𝕎 R\nz : ℤ\n⊢ mapFun (↑f) (z • x) = z • mapFun (↑f) x", "tactic": "map_fun_tac" } ]
[ 130, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Data/Finset/Prod.lean
Finset.filter_product
[ { "state_after": "case a.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.23162\ns s' : Finset α\nt t' : Finset β\na✝ : α\nb✝ : β\np : α → Prop\nq : β → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\nb : β\n⊢ (a, b) ∈ filter (fun x => p x.fst ∧ q x.snd) (s ×ˢ t) ↔ (a, b) ∈ filter p s ×ˢ filter q t", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.23162\ns s' : Finset α\nt t' : Finset β\na : α\nb : β\np : α → Prop\nq : β → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\n⊢ filter (fun x => p x.fst ∧ q x.snd) (s ×ˢ t) = filter p s ×ˢ filter q t", "tactic": "ext ⟨a, b⟩" }, { "state_after": "no goals", "state_before": "case a.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.23162\ns s' : Finset α\nt t' : Finset β\na✝ : α\nb✝ : β\np : α → Prop\nq : β → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\na : α\nb : β\n⊢ (a, b) ∈ filter (fun x => p x.fst ∧ q x.snd) (s ×ˢ t) ↔ (a, b) ∈ filter p s ×ˢ filter q t", "tactic": "simp [mem_filter, mem_product, decide_eq_true_eq, and_comm, and_left_comm, and_assoc]" } ]
[ 149, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Algebra/ModEq.lean
AddCommGroup.modEq_iff_eq_mod_zmultiples
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddCommGroup α\np a a₁ a₂ b b₁ b₂ c : α\nn : ℕ\nz : ℤ\n⊢ a ≡ b [PMOD p] ↔ ↑b = ↑a", "tactic": "simp_rw [modEq_iff_eq_add_zsmul, QuotientAddGroup.eq_iff_sub_mem, AddSubgroup.mem_zmultiples_iff,\n eq_sub_iff_add_eq', eq_comm]" } ]
[ 302, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 300, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.prodMapL_apply
[]
[ 1067, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1065, 1 ]
Mathlib/Topology/MetricSpace/PiNat.lean
PiCountable.dist_eq_tsum
[]
[ 833, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 831, 1 ]
Mathlib/Order/Minimal.lean
IsAntichain.maximals_lowerClosure
[]
[ 244, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Order/WithBot.lean
WithTop.untop'_eq_untop'_iff
[]
[ 724, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 722, 1 ]
Mathlib/Algebra/Support.lean
Function.mulSupport_mul_inv
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.40597\nA : Type ?u.40600\nB : Type ?u.40603\nM : Type ?u.40606\nN : Type ?u.40609\nP : Type ?u.40612\nR : Type ?u.40615\nS : Type ?u.40618\nG : Type u_2\nM₀ : Type ?u.40624\nG₀ : Type ?u.40627\nι : Sort ?u.40630\ninst✝ : DivisionMonoid G\nf g : α → G\n⊢ (fun a b => a * b⁻¹) 1 1 = 1", "tactic": "simp" } ]
[ 292, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Topology/Constructions.lean
Filter.Tendsto.update
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.207058\nδ : Type ?u.207061\nε : Type ?u.207064\nζ : Type ?u.207067\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.207078\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\ninst✝ : DecidableEq ι\nl : Filter β\nf : β → (i : ι) → π i\nx : (i : ι) → π i\nhf : Tendsto f l (𝓝 x)\ni : ι\ng : β → π i\nxi : π i\nhg : Tendsto g l (𝓝 xi)\nj : ι\n⊢ Tendsto (fun i_1 => Function.update (f i_1) i (g i_1) j) l (𝓝 (Function.update x i xi j))", "tactic": "rcases eq_or_ne j i with (rfl | hj) <;> simp [*, hf.apply]" } ]
[ 1234, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1231, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.inf_of_right
[]
[ 757, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 756, 1 ]
Mathlib/Data/Real/Irrational.lean
Irrational.of_div_int
[]
[ 432, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 431, 1 ]
Mathlib/MeasureTheory/Group/Action.lean
MeasureTheory.map_smul
[]
[ 101, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
LocalHomeomorph.extend_symm_preimage_inter_range_eventuallyEq_aux
[ { "state_after": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)]\n ↑(ModelWithCorners.symm I) ⁻¹' f.target ∩ (↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I)", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)]\n (extend f I).target ∩ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s", "tactic": "rw [f.extend_target, inter_assoc, inter_comm (range I)]" }, { "state_after": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(ModelWithCorners.symm I) ⁻¹' f.target ∈ 𝓝 (↑(extend f I) x)", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ univ ∩ (↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I) =ᶠ[𝓝 (↑(extend f I) x)]\n ↑(ModelWithCorners.symm I) ⁻¹' f.target ∩ (↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I)", "tactic": "refine' (eventuallyEq_univ.mpr _).symm.inter EventuallyEq.rfl" }, { "state_after": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(ModelWithCorners.symm I) (↑(extend f I) x) ∈ f.target", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(ModelWithCorners.symm I) ⁻¹' f.target ∈ 𝓝 (↑(extend f I) x)", "tactic": "refine' I.continuousAt_symm.preimage_mem_nhds (f.open_target.mem_nhds _)" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.162184\nM' : Type ?u.162187\nH' : Type ?u.162190\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhx : x ∈ f.source\n⊢ ↑(ModelWithCorners.symm I) (↑(extend f I) x) ∈ f.target", "tactic": "simp_rw [f.extend_coe, Function.comp_apply, I.left_inv, f.mapsTo hx]" } ]
[ 949, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 939, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.sec_spec'
[ { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.309265\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nz : N\n⊢ ↑(toMap f) (sec f z).fst = ↑(toMap f) ↑(sec f z).snd * z", "tactic": "rw [mul_comm, sec_spec]" } ]
[ 610, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Algebra/Order/LatticeGroup.lean
LatticeOrderedCommGroup.neg_of_inv_le_one
[]
[ 500, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 499, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.WalkingPair.swap_symm_apply_tt
[]
[ 76, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Std/Data/Int/Lemmas.lean
Int.zero_mul
[]
[ 408, 89 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 408, 19 ]
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
MeasureTheory.Measure.tendsto_add_haar_inter_smul_zero_of_density_zero_aux1
[ { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "have A : Tendsto (fun r : ℝ => μ (s ∩ ({x} + r • t)) / μ (closedBall x r)) (𝓝[>] 0) (𝓝 0) := by\n apply\n tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds h\n (eventually_of_forall fun b => zero_le _)\n filter_upwards [self_mem_nhdsWithin]\n rintro r (rpos : 0 < r)\n apply mul_le_mul_right' (measure_mono (inter_subset_inter_right _ _)) _\n intro y hy\n have : y - x ∈ r • closedBall (0 : E) 1 := by\n apply smul_set_mono t_bound\n simpa [neg_add_eq_sub] using hy\n simpa only [smul_closedBall _ _ zero_le_one, Real.norm_of_nonneg rpos.le,\n mem_closedBall_iff_norm, mul_one, sub_zero, smul_zero]" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "have B :\n Tendsto (fun r : ℝ => μ (closedBall x r) / μ ({x} + r • u)) (𝓝[>] 0)\n (𝓝 (μ (closedBall x 1) / μ ({x} + u))) := by\n apply tendsto_const_nhds.congr' _\n filter_upwards [self_mem_nhdsWithin]\n rintro r (rpos : 0 < r)\n have : closedBall x r = {x} + r • closedBall (0 : E) 1 := by\n simp only [_root_.smul_closedBall, Real.norm_of_nonneg rpos.le, zero_le_one, add_zero,\n mul_one, singleton_add_closedBall, smul_zero]\n simp only [this, add_haar_singleton_add_smul_div_singleton_add_smul μ rpos.ne']\n simp only [add_haar_closedBall_center, image_add_left, measure_preimage_add, singleton_add]" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 (0 * (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u))))\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "have C : Tendsto (fun r : ℝ =>\n μ (s ∩ ({x} + r • t)) / μ (closedBall x r) * (μ (closedBall x r) / μ ({x} + r • u)))\n (𝓝[>] 0) (𝓝 (0 * (μ (closedBall x 1) / μ ({x} + u)))) := by\n apply ENNReal.Tendsto.mul A _ B (Or.inr ENNReal.zero_ne_top)\n simp only [ne_eq, not_true, singleton_add, image_add_left, measure_preimage_add, false_or,\n ENNReal.div_eq_top, h'u, false_or_iff, not_and, and_false_iff]\n intro aux\n exact (measure_closedBall_lt_top.ne aux).elim" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 (0 * (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u))))\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "simp only [zero_mul] at C" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u))) =ᶠ[𝓝[Ioi 0] 0]\n fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "apply C.congr' _" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ ∀ (a : ℝ),\n a ∈ Ioi 0 →\n ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ (closedBall x a) * (↑↑μ (closedBall x a) / ↑↑μ ({x} + a • u)) =\n ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ ({x} + a • u)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u))) =ᶠ[𝓝[Ioi 0] 0]\n fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)", "tactic": "filter_upwards [self_mem_nhdsWithin]" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) =\n ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ ∀ (a : ℝ),\n a ∈ Ioi 0 →\n ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ (closedBall x a) * (↑↑μ (closedBall x a) / ↑↑μ ({x} + a • u)) =\n ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ ({x} + a • u)", "tactic": "rintro r (rpos : 0 < r)" }, { "state_after": "no goals", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) =\n ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)", "tactic": "calc\n μ (s ∩ ({x} + r • t)) / μ (closedBall x r) * (μ (closedBall x r) / μ ({x} + r • u)) =\n μ (closedBall x r) * (μ (closedBall x r))⁻¹ * (μ (s ∩ ({x} + r • t)) / μ ({x} + r • u)) :=\n by simp only [div_eq_mul_inv]; ring\n _ = μ (s ∩ ({x} + r • t)) / μ ({x} + r • u) := by\n rw [ENNReal.mul_inv_cancel (measure_closedBall_pos μ x rpos).ne'\n measure_closedBall_lt_top.ne,\n one_mul]" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioi 0] 0,\n ↑↑μ (s ∩ ({x} + b • t)) / ↑↑μ (closedBall x b) ≤ ↑↑μ (s ∩ closedBall x b) / ↑↑μ (closedBall x b)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)", "tactic": "apply\n tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds h\n (eventually_of_forall fun b => zero_le _)" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ ∀ (a : ℝ),\n a ∈ Ioi 0 → ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ (closedBall x a) ≤ ↑↑μ (s ∩ closedBall x a) / ↑↑μ (closedBall x a)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ ∀ᶠ (b : ℝ) in 𝓝[Ioi 0] 0,\n ↑↑μ (s ∩ ({x} + b • t)) / ↑↑μ (closedBall x b) ≤ ↑↑μ (s ∩ closedBall x b) / ↑↑μ (closedBall x b)", "tactic": "filter_upwards [self_mem_nhdsWithin]" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) ≤ ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\n⊢ ∀ (a : ℝ),\n a ∈ Ioi 0 → ↑↑μ (s ∩ ({x} + a • t)) / ↑↑μ (closedBall x a) ≤ ↑↑μ (s ∩ closedBall x a) / ↑↑μ (closedBall x a)", "tactic": "rintro r (rpos : 0 < r)" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\n⊢ {x} + r • t ⊆ closedBall x r", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) ≤ ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)", "tactic": "apply mul_le_mul_right' (measure_mono (inter_subset_inter_right _ _)) _" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\n⊢ y ∈ closedBall x r", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\n⊢ {x} + r • t ⊆ closedBall x r", "tactic": "intro y hy" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\nthis : y - x ∈ r • closedBall 0 1\n⊢ y ∈ closedBall x r", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\n⊢ y ∈ closedBall x r", "tactic": "have : y - x ∈ r • closedBall (0 : E) 1 := by\n apply smul_set_mono t_bound\n simpa [neg_add_eq_sub] using hy" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\nthis : y - x ∈ r • closedBall 0 1\n⊢ y ∈ closedBall x r", "tactic": "simpa only [smul_closedBall _ _ zero_le_one, Real.norm_of_nonneg rpos.le,\n mem_closedBall_iff_norm, mul_one, sub_zero, smul_zero]" }, { "state_after": "case a\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\n⊢ y - x ∈ r • t", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\n⊢ y - x ∈ r • closedBall 0 1", "tactic": "apply smul_set_mono t_bound" }, { "state_after": "no goals", "state_before": "case a\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nr : ℝ\nrpos : 0 < r\ny : E\nhy : y ∈ {x} + r • t\n⊢ y - x ∈ r • t", "tactic": "simpa [neg_add_eq_sub] using hy" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ (fun x_1 => ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)) =ᶠ[𝓝[Ioi 0] 0] fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))", "tactic": "apply tendsto_const_nhds.congr' _" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ ∀ (a : ℝ), a ∈ Ioi 0 → ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x a) / ↑↑μ ({x} + a • u)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ (fun x_1 => ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)) =ᶠ[𝓝[Ioi 0] 0] fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "tactic": "filter_upwards [self_mem_nhdsWithin]" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\n⊢ ∀ (a : ℝ), a ∈ Ioi 0 → ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x a) / ↑↑μ ({x} + a • u)", "tactic": "rintro r (rpos : 0 < r)" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\nthis : closedBall x r = {x} + r • closedBall 0 1\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "tactic": "have : closedBall x r = {x} + r • closedBall (0 : E) 1 := by\n simp only [_root_.smul_closedBall, Real.norm_of_nonneg rpos.le, zero_le_one, add_zero,\n mul_one, singleton_add_closedBall, smul_zero]" }, { "state_after": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\nthis : closedBall x r = {x} + r • closedBall 0 1\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall 0 1) / ↑↑μ u", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\nthis : closedBall x r = {x} + r • closedBall 0 1\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)", "tactic": "simp only [this, add_haar_singleton_add_smul_div_singleton_add_smul μ rpos.ne']" }, { "state_after": "no goals", "state_before": "case h\nE : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\nthis : closedBall x r = {x} + r • closedBall 0 1\n⊢ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) = ↑↑μ (closedBall 0 1) / ↑↑μ u", "tactic": "simp only [add_haar_closedBall_center, image_add_left, measure_preimage_add, singleton_add]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ closedBall x r = {x} + r • closedBall 0 1", "tactic": "simp only [_root_.smul_closedBall, Real.norm_of_nonneg rpos.le, zero_le_one, add_zero,\n mul_one, singleton_add_closedBall, smul_zero]" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ 0 ≠ 0 ∨ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) ≠ ⊤", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 (0 * (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u))))", "tactic": "apply ENNReal.Tendsto.mul A _ B (Or.inr ENNReal.zero_ne_top)" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ ↑↑μ (closedBall x 1) = ⊤ → ¬¬↑↑μ u = ⊤", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ 0 ≠ 0 ∨ ↑↑μ (closedBall x 1) / ↑↑μ ({x} + u) ≠ ⊤", "tactic": "simp only [ne_eq, not_true, singleton_add, image_add_left, measure_preimage_add, false_or,\n ENNReal.div_eq_top, h'u, false_or_iff, not_and, and_false_iff]" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\naux : ↑↑μ (closedBall x 1) = ⊤\n⊢ ¬¬↑↑μ u = ⊤", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\n⊢ ↑↑μ (closedBall x 1) = ⊤ → ¬¬↑↑μ u = ⊤", "tactic": "intro aux" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\naux : ↑↑μ (closedBall x 1) = ⊤\n⊢ ¬¬↑↑μ u = ⊤", "tactic": "exact (measure_closedBall_lt_top.ne aux).elim" }, { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (closedBall x r) * (↑↑μ ({x} + r • u))⁻¹) =\n ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (s ∩ ({x} + r • t)) * (↑↑μ ({x} + r • u))⁻¹)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) =\n ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u))", "tactic": "simp only [div_eq_mul_inv]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (s ∩ ({x} + r • t)) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (closedBall x r) * (↑↑μ ({x} + r • u))⁻¹) =\n ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (s ∩ ({x} + r • t)) * (↑↑μ ({x} + r • u))⁻¹)", "tactic": "ring" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.2104866\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ s : Set E\nx : E\nh : Tendsto (fun r => ↑↑μ (s ∩ closedBall x r) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nt u : Set E\nh'u : ↑↑μ u ≠ 0\nt_bound : t ⊆ closedBall 0 1\nA : Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r)) (𝓝[Ioi 0] 0) (𝓝 0)\nB : Tendsto (fun r => ↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)) (𝓝[Ioi 0] 0) (𝓝 (↑↑μ (closedBall x 1) / ↑↑μ ({x} + u)))\nC :\n Tendsto (fun r => ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r) / ↑↑μ ({x} + r • u)))\n (𝓝[Ioi 0] 0) (𝓝 0)\nr : ℝ\nrpos : 0 < r\n⊢ ↑↑μ (closedBall x r) * (↑↑μ (closedBall x r))⁻¹ * (↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)) =\n ↑↑μ (s ∩ ({x} + r • t)) / ↑↑μ ({x} + r • u)", "tactic": "rw [ENNReal.mul_inv_cancel (measure_closedBall_pos μ x rpos).ne'\n measure_closedBall_lt_top.ne,\n one_mul]" } ]
[ 657, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.inf
[ { "state_after": "α : Type u_2\nβ✝ : Type ?u.953675\nγ : Type ?u.953678\nδ : Type ?u.953681\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β✝\ninst✝¹ : NormedAddCommGroup γ\nβ : Type u_1\ninst✝ : NormedLatticeAddCommGroup β\nf g : α → β\nhf : Memℒp f 1\nhg : Memℒp g 1\n⊢ Memℒp (f ⊓ g) 1", "state_before": "α : Type u_2\nβ✝ : Type ?u.953675\nγ : Type ?u.953678\nδ : Type ?u.953681\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β✝\ninst✝¹ : NormedAddCommGroup γ\nβ : Type u_1\ninst✝ : NormedLatticeAddCommGroup β\nf g : α → β\nhf : Integrable f\nhg : Integrable g\n⊢ Integrable (f ⊓ g)", "tactic": "rw [← memℒp_one_iff_integrable] at hf hg⊢" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ✝ : Type ?u.953675\nγ : Type ?u.953678\nδ : Type ?u.953681\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝³ : MeasurableSpace δ\ninst✝² : NormedAddCommGroup β✝\ninst✝¹ : NormedAddCommGroup γ\nβ : Type u_1\ninst✝ : NormedLatticeAddCommGroup β\nf g : α → β\nhf : Memℒp f 1\nhg : Memℒp g 1\n⊢ Memℒp (f ⊓ g) 1", "tactic": "exact hf.inf hg" } ]
[ 699, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 696, 1 ]
Mathlib/Analysis/InnerProductSpace/l2Space.lean
lp.summable_inner
[ { "state_after": "case refine'_1\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\n⊢ Real.IsConjugateExponent (ENNReal.toReal 2) (ENNReal.toReal 2)\n\ncase refine'_2\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\n⊢ ∀ (i : ι), ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i", "state_before": "ι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\n⊢ Summable fun i => inner (↑f i) (↑g i)", "tactic": "refine' summable_of_norm_bounded (fun i => ‖f i‖ * ‖g i‖) (lp.summable_mul _ f g) _" }, { "state_after": "case refine'_2\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\ni : ι\n⊢ ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i", "state_before": "case refine'_2\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\n⊢ ∀ (i : ι), ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i", "tactic": "intro i" }, { "state_after": "no goals", "state_before": "case refine'_2\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\ni : ι\n⊢ ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i", "tactic": "exact norm_inner_le_norm (𝕜 := 𝕜) _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Type u_1\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\nE : Type ?u.47553\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ncplt : CompleteSpace E\nG : ι → Type u_2\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nf g : { x // x ∈ lp G 2 }\n⊢ Real.IsConjugateExponent (ENNReal.toReal 2) (ENNReal.toReal 2)", "tactic": "rw [Real.isConjugateExponent_iff] <;> norm_num" } ]
[ 122, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/LinearAlgebra/QuotientPi.lean
Submodule.piQuotientLift_mk
[ { "state_after": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type ?u.16262\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\nq : Submodule R N\nf : (i : ι) → Ms i →ₗ[R] N\nhf : ∀ (i : ι), p i ≤ comap (f i) q\nx : (i : ι) → Ms i\n⊢ (Finset.sum Finset.univ fun d =>\n ↑(comp (mapQ (p d) q (f d) (_ : p d ≤ comap (f d) q)) (proj d)) fun i => Quotient.mk (x i)) =\n Finset.sum Finset.univ fun x_1 => ↑(mkQ q) (↑(comp (f x_1) (proj x_1)) x)", "state_before": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type ?u.16262\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\nq : Submodule R N\nf : (i : ι) → Ms i →ₗ[R] N\nhf : ∀ (i : ι), p i ≤ comap (f i) q\nx : (i : ι) → Ms i\n⊢ (↑(piQuotientLift p q f hf) fun i => Quotient.mk (x i)) = Quotient.mk (↑(↑(lsum R (fun i => Ms i) R) f) x)", "tactic": "rw [piQuotientLift, lsum_apply, sum_apply, ← mkQ_apply, lsum_apply, sum_apply, _root_.map_sum]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nR : Type u_2\ninst✝⁸ : CommRing R\nMs : ι → Type u_3\ninst✝⁷ : (i : ι) → AddCommGroup (Ms i)\ninst✝⁶ : (i : ι) → Module R (Ms i)\nN : Type u_4\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\nNs : ι → Type ?u.16262\ninst✝³ : (i : ι) → AddCommGroup (Ns i)\ninst✝² : (i : ι) → Module R (Ns i)\ninst✝¹ : Fintype ι\ninst✝ : DecidableEq ι\np : (i : ι) → Submodule R (Ms i)\nq : Submodule R N\nf : (i : ι) → Ms i →ₗ[R] N\nhf : ∀ (i : ι), p i ≤ comap (f i) q\nx : (i : ι) → Ms i\n⊢ (Finset.sum Finset.univ fun d =>\n ↑(comp (mapQ (p d) q (f d) (_ : p d ≤ comap (f d) q)) (proj d)) fun i => Quotient.mk (x i)) =\n Finset.sum Finset.univ fun x_1 => ↑(mkQ q) (↑(comp (f x_1) (proj x_1)) x)", "tactic": "simp only [coe_proj, mapQ_apply, mkQ_apply, comp_apply]" } ]
[ 52, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/Analysis/Calculus/BumpFunctionInner.lean
expNegInvGlue.differentiable_polynomial_eval_inv_mul
[]
[ 142, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.lintegral_nnnorm_add_left
[]
[ 92, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/AlgebraicGeometry/StructureSheaf.lean
AlgebraicGeometry.StructureSheaf.toBasicOpen_surjective
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\n⊢ Function.Surjective ↑(toBasicOpen R f)", "tactic": "intro s" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "let ι : Type u := PrimeSpectrum.basicOpen f" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "choose a' h' iDh' hxDh' s_eq' using locally_const_basicOpen R (PrimeSpectrum.basicOpen f) s" }, { "state_after": "case intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h' i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "obtain ⟨t, ht_cover'⟩ :=\n (PrimeSpectrum.isCompact_basicOpen f).elim_finite_subcover\n (fun i : ι => PrimeSpectrum.basicOpen (h' i)) (fun i => PrimeSpectrum.isOpen_basicOpen)\n fun x hx => by rw [Set.mem_iUnion]; exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩" }, { "state_after": "case intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' :\n PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h' i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "simp only [← Opens.coe_iSup, SetLike.coe_subset_coe] at ht_cover'" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' :\n PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' :\n PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "obtain ⟨a, h, iDh, ht_cover, ah_ha, s_eq⟩ :=\n normalize_finite_fraction_representation R (PrimeSpectrum.basicOpen f)\n s t a' h' iDh' ht_cover' s_eq'" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nt : Finset ι\nht_cover' :\n PrimeSpectrum.basicOpen f ≤ ⨆ (i : { x // x ∈ PrimeSpectrum.basicOpen f }) (_ : i ∈ t), PrimeSpectrum.basicOpen (h' i)\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "clear s_eq' iDh' hxDh' ht_cover' a' h'" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : PrimeSpectrum.basicOpen f ≤ ⨆ (i : ι) (_ : i ∈ t), PrimeSpectrum.basicOpen (h i)\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "rw [← SetLike.coe_subset_coe, Opens.coe_iSup] at ht_cover" }, { "state_after": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n\ncase intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "replace ht_cover : (PrimeSpectrum.basicOpen f : Set <| PrimeSpectrum R) ⊆\n ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.basicOpen (h i) : Set _)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n\ncase intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": ". convert ht_cover using 2\n exact funext fun j => by rw [Opens.coe_iSup]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : f ^ n ∈ Ideal.span (h '' ↑t)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "obtain ⟨n, hn⟩ : f ∈ (Ideal.span (h '' ↑t)).radical := by\n rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span]\n replace ht_cover : (PrimeSpectrum.zeroLocus {f})ᶜ ⊆\n ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ\n . convert ht_cover\n . rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]\n . simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]\n rw [Set.compl_subset_comm] at ht_cover\n simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion,\n ← Finset.set_biUnion_coe, ← Set.image_eq_iUnion] at ht_cover\n apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover\n exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus {f} (Set.mem_singleton f)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : f * f ^ n ∈ Ideal.span (h '' ↑t)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : f ^ n ∈ Ideal.span (h '' ↑t)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "replace hn := Ideal.mul_mem_left _ f hn" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : ∃ l, l ∈ Finsupp.supported R R ↑t ∧ ↑(Finsupp.total ι R R h) l = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : f * f ^ n ∈ Ideal.span (h '' ↑t)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "erw [← pow_succ, Finsupp.mem_span_image_iff_total] at hn" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ↑(Finsupp.total ι R R h) b = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nhn : ∃ l, l ∈ Finsupp.supported R R ↑t ∧ ↑(Finsupp.total ι R R h) l = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "rcases hn with ⟨b, b_supp, hb⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i • h i = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ↑(Finsupp.total ι R R h) b = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "rw [Finsupp.total_apply_of_mem_supported R b_supp] at hb" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i • h i = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "dsimp at hb" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ ↑(toBasicOpen R f)\n (IsLocalization.mk' (Localization.Away f) (∑ i in t, ↑b i * a i)\n { val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) =\n s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ ∃ a, ↑(toBasicOpen R f) a = s", "tactic": "use\n IsLocalization.mk' (Localization.Away f) (∑ i : ι in t, b i * a i)\n (⟨f ^ (n + 1), n + 1, rfl⟩ : Submonoid.powers _)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal) =\n s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ ↑(toBasicOpen R f)\n (IsLocalization.mk' (Localization.Away f) (∑ i in t, ↑b i * a i)\n { val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) }) =\n s", "tactic": "rw [toBasicOpen_mk']" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal) =\n s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\n⊢ const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal) =\n s", "tactic": "let tt := ((t : Set (PrimeSpectrum.basicOpen f)) : Type u)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ PrimeSpectrum.basicOpen f ≤ ⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i)\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ ∀ (i : tt),\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑i).op)\n (const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal)) =\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑i).op) s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal) =\n s", "tactic": "apply\n (structureSheaf R).eq_of_locally_eq' (fun i : tt => PrimeSpectrum.basicOpen (h i))\n (PrimeSpectrum.basicOpen f) fun i : tt => iDh i" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op)\n (const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal)) =\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op) s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ ∀ (i : tt),\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑i).op)\n (const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal)) =\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑i).op) s", "tactic": "rintro ⟨i, hi⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ↑((structureSheaf R).val.map (iDh i).op)\n (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =\n ↑((structureSheaf R).val.map (iDh i).op) s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op)\n (const R (∑ i in t, ↑b i * a i)\n (↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) })\n (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)),\n x ∈ PrimeSpectrum.basicOpen f →\n ↑{ val := f ^ (n + 1), property := (_ : ∃ y, (fun x x_1 => x ^ x_1) f y = f ^ (n + 1)) } ∈\n Ideal.primeCompl x.asIdeal)) =\n (forget CommRingCat).map ((structureSheaf R).val.map (iDh ↑{ val := i, property := hi }).op) s", "tactic": "dsimp" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ↑((structureSheaf R).val.map (iDh i).op)\n (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =\n ↑((structureSheaf R).val.map (iDh i).op) s", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ↑((structureSheaf R).val.map (iDh i).op)\n (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =\n ↑((structureSheaf R).val.map (iDh i).op) s", "tactic": "change (structureSheaf R).1.map _ _ = (structureSheaf R).1.map _ _" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i))\n ?intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ↑((structureSheaf R).val.map (iDh i).op)\n (const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen f)\n (_ :\n ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen f → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal)) =\n ↑((structureSheaf R).val.map (iDh i).op) s", "tactic": "rw [s_eq i hi, res_const]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i))\n ?intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i))\n ?intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal", "tactic": "swap" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ (∑ i in t, ↑b i * a i) * h i = a i * f ^ (n + 1)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ const R (∑ i in t, ↑b i * a i) (f ^ (n + 1)) (PrimeSpectrum.basicOpen (h i))\n (_ :\n ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))) =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))", "tactic": "apply const_ext" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∑ x in t, ↑b x * a x * h i = ∑ x in t, a i * (↑b x * h x)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ (∑ i in t, ↑b i * a i) * h i = a i * f ^ (n + 1)", "tactic": "rw [← hb, Finset.sum_mul, Finset.mul_sum]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), x ∈ t → ↑b x * a x * h i = a i * (↑b x * h x)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∑ x in t, ↑b x * a x * h i = ∑ x in t, a i * (↑b x * h x)", "tactic": "apply Finset.sum_congr rfl" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\nj : { x // x ∈ PrimeSpectrum.basicOpen f }\nhj : j ∈ t\n⊢ ↑b j * a j * h i = a i * (↑b j * h j)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), x ∈ t → ↑b x * a x * h i = a i * (↑b x * h x)", "tactic": "intro j hj" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\nj : { x // x ∈ PrimeSpectrum.basicOpen f }\nhj : j ∈ t\n⊢ ↑b j * (h j * a i) = a i * (↑b j * h j)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\nj : { x // x ∈ PrimeSpectrum.basicOpen f }\nhj : j ∈ t\n⊢ ↑b j * a j * h i = a i * (↑b j * h j)", "tactic": "rw [mul_assoc, ah_ha j hj i hi]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\nj : { x // x ∈ PrimeSpectrum.basicOpen f }\nhj : j ∈ t\n⊢ ↑b j * (h j * a i) = a i * (↑b j * h j)", "tactic": "ring" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nx : PrimeSpectrum R\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ ∃ i, x ∈ (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nx : PrimeSpectrum R\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ x ∈ ⋃ (i : ι), (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i", "tactic": "rw [Set.mem_iUnion]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\na' h' : { x // x ∈ PrimeSpectrum.basicOpen f } → R\niDh' : (x : { x // x ∈ PrimeSpectrum.basicOpen f }) → PrimeSpectrum.basicOpen (h' x) ⟶ PrimeSpectrum.basicOpen f\nhxDh' : ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }), ↑x ∈ PrimeSpectrum.basicOpen (h' x)\ns_eq' :\n ∀ (x : { x // x ∈ PrimeSpectrum.basicOpen f }),\n const R (a' x) (h' x) (PrimeSpectrum.basicOpen (h' x))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h' x) → y ∈ PrimeSpectrum.basicOpen (h' x)) =\n ↑((structureSheaf R).val.map (iDh' x).op) s\nx : PrimeSpectrum R\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ ∃ i, x ∈ (fun i => ↑(PrimeSpectrum.basicOpen (h' i))) i", "tactic": "exact ⟨⟨x, hx⟩, hxDh' ⟨x, hx⟩⟩" }, { "state_after": "case h.e'_4.h.h.e'_3.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\ne_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R)\ne_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R)\n⊢ (fun i => ⋃ (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))) = fun i => ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))", "state_before": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\n⊢ ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))", "tactic": "convert ht_cover using 2" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.h.e'_3.h\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\ne_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R)\ne_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R)\n⊢ (fun i => ⋃ (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))) = fun i => ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))", "tactic": "exact funext fun j => by rw [Opens.coe_iSup]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι), ↑(⨆ (_ : i ∈ t), PrimeSpectrum.basicOpen (h i))\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\ne_1✝¹ : Set (PrimeSpectrum R) = Set ↑(PrimeSpectrum.Top R)\ne_1✝ : PrimeSpectrum R = ↑(PrimeSpectrum.Top R)\nj : ι\n⊢ (⋃ (_ : j ∈ t), ↑(PrimeSpectrum.basicOpen (h j))) = ↑(⨆ (_ : j ∈ t), PrimeSpectrum.basicOpen (h j))", "tactic": "rw [Opens.coe_iSup]" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ f ∈ Ideal.radical (Ideal.span (h '' ↑t))", "tactic": "rw [← PrimeSpectrum.vanishingIdeal_zeroLocus_eq_radical, PrimeSpectrum.zeroLocus_span]" }, { "state_after": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "tactic": "replace ht_cover : (PrimeSpectrum.zeroLocus {f})ᶜ ⊆\n ⋃ (i : ι) (x : i ∈ t), (PrimeSpectrum.zeroLocus {h i})ᶜ" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "state_before": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "tactic": ". convert ht_cover\n . rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]\n . simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : (⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ)ᶜ ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "tactic": "rw [Set.compl_subset_comm] at ht_cover" }, { "state_after": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : (⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ)ᶜ ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "tactic": "simp_rw [Set.compl_iUnion, compl_compl, ← PrimeSpectrum.zeroLocus_iUnion,\n ← Finset.set_biUnion_coe, ← Set.image_eq_iUnion] at ht_cover" }, { "state_after": "case a\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus {f})", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus (h '' ↑t))", "tactic": "apply PrimeSpectrum.vanishingIdeal_anti_mono ht_cover" }, { "state_after": "no goals", "state_before": "case a\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : PrimeSpectrum.zeroLocus ((fun i => h i) '' ↑t) ⊆ PrimeSpectrum.zeroLocus {f}\n⊢ f ∈ PrimeSpectrum.vanishingIdeal (PrimeSpectrum.zeroLocus {f})", "tactic": "exact PrimeSpectrum.subset_vanishingIdeal_zeroLocus {f} (Set.mem_singleton f)" }, { "state_after": "case h.e'_3\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ = ↑(PrimeSpectrum.basicOpen f)\n\ncase h.e'_4.h.e'_3.h.f\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nx✝¹ : ι\nx✝ : x✝¹ ∈ t\n⊢ PrimeSpectrum.zeroLocus {h x✝¹}ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))", "state_before": "case ht_cover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ ⊆ ⋃ (i : ι) (_ : i ∈ t), PrimeSpectrum.zeroLocus {h i}ᶜ", "tactic": "convert ht_cover" }, { "state_after": "case h.e'_4.h.e'_3.h.f\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nx✝¹ : ι\nx✝ : x✝¹ ∈ t\n⊢ PrimeSpectrum.zeroLocus {h x✝¹}ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))", "state_before": "case h.e'_3\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ = ↑(PrimeSpectrum.basicOpen f)\n\ncase h.e'_4.h.e'_3.h.f\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nx✝¹ : ι\nx✝ : x✝¹ ∈ t\n⊢ PrimeSpectrum.zeroLocus {h x✝¹}ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))", "tactic": ". rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_3.h.f\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nx✝¹ : ι\nx✝ : x✝¹ ∈ t\n⊢ PrimeSpectrum.zeroLocus {h x✝¹}ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))", "tactic": ". simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]" }, { "state_after": "no goals", "state_before": "case h.e'_3\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ PrimeSpectrum.zeroLocus {f}ᶜ = ↑(PrimeSpectrum.basicOpen f)", "tactic": "rw [PrimeSpectrum.basicOpen_eq_zeroLocus_compl]" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_3.h.f\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nx✝¹ : ι\nx✝ : x✝¹ ∈ t\n⊢ PrimeSpectrum.zeroLocus {h x✝¹}ᶜ = ↑(PrimeSpectrum.basicOpen (h x✝¹))", "tactic": "simp only [Opens.iSup_mk, Opens.carrier_eq_coe, PrimeSpectrum.basicOpen_eq_zeroLocus_compl]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ x ∈ ↑(⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i))", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\n⊢ PrimeSpectrum.basicOpen f ≤ ⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i)", "tactic": "intro x hx" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ x ∈ ↑(⨆ (i : tt), PrimeSpectrum.basicOpen (h ↑i))", "tactic": "erw [TopologicalSpace.Opens.mem_iSup]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\nthis : x ∈ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "tactic": "have := ht_cover hx" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\nthis : ∃ i j, x ∈ ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\nthis : x ∈ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "tactic": "rw [← Finset.set_biUnion_coe, Set.mem_iUnion₂] at this" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\ni : ι\ni_mem : i ∈ ↑t\nx_mem : x ∈ ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\nthis : ∃ i j, x ∈ ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "tactic": "rcases this with ⟨i, i_mem, x_mem⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.hcover.intro.intro\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\nx : ↑(PrimeSpectrum.Top R)\nhx : x ∈ ↑(PrimeSpectrum.basicOpen f)\ni : ι\ni_mem : i ∈ ↑t\nx_mem : x ∈ ↑(PrimeSpectrum.basicOpen (h i))\n⊢ ∃ i, x ∈ PrimeSpectrum.basicOpen (h ↑i)", "tactic": "refine ⟨⟨i, i_mem⟩, x_mem⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ f ^ (n + 1) ∈ Ideal.primeCompl y.asIdeal", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\n⊢ ∀ (x : ↑(PrimeSpectrum.Top R)), x ∈ PrimeSpectrum.basicOpen (h i) → f ^ (n + 1) ∈ Ideal.primeCompl x.asIdeal", "tactic": "intro y hy" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ f ^ (n + 1) ∈ Ideal.primeCompl y.asIdeal", "tactic": "change y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ y ∈ PrimeSpectrum.basicOpen f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ y ∈ PrimeSpectrum.basicOpen (f ^ (n + 1))", "tactic": "rw [PrimeSpectrum.basicOpen_pow f (n + 1) (by linarith)]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.hv\nR : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ y ∈ PrimeSpectrum.basicOpen f", "tactic": "exact (leOfHom (iDh i) : _) hy" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nf : R\ns : ↑((structureSheaf R).val.obj (PrimeSpectrum.basicOpen f).op)\nι : Type u := { x // x ∈ PrimeSpectrum.basicOpen f }\nt : Finset ι\na h : ι → R\niDh : (i : ι) → PrimeSpectrum.basicOpen (h i) ⟶ PrimeSpectrum.basicOpen f\nah_ha : ∀ (i : ι), i ∈ t → ∀ (j : ι), j ∈ t → a i * h j = h i * a j\ns_eq :\n ∀ (i : ι),\n i ∈ t →\n ↑((structureSheaf R).val.map (iDh i).op) s =\n const R (a i) (h i) (PrimeSpectrum.basicOpen (h i))\n (_ : ∀ (y : ↑(PrimeSpectrum.Top R)), y ∈ PrimeSpectrum.basicOpen (h i) → y ∈ PrimeSpectrum.basicOpen (h i))\nht_cover : ↑(PrimeSpectrum.basicOpen f) ⊆ ⋃ (i : ι) (_ : i ∈ t), ↑(PrimeSpectrum.basicOpen (h i))\nn : ℕ\nb : ι →₀ R\nb_supp : b ∈ Finsupp.supported R R ↑t\nhb : ∑ i in t, ↑b i * h i = f ^ (n + 1)\ntt : Type u := ↑↑t\ni : ι\nhi : i ∈ ↑t\ny : ↑(PrimeSpectrum.Top R)\nhy : y ∈ PrimeSpectrum.basicOpen (h i)\n⊢ 0 < n + 1", "tactic": "linarith" } ]
[ 912, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 826, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.constVAdd_add
[]
[ 497, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 495, 1 ]
Mathlib/RingTheory/Polynomial/Basic.lean
Polynomial.sup_aeval_range_eq_top_of_coprime
[ { "state_after": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\n⊢ ⊤ ≤ LinearMap.range (↑(aeval f) p) ⊔ LinearMap.range (↑(aeval f) q)", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\n⊢ LinearMap.range (↑(aeval f) p) ⊔ LinearMap.range (↑(aeval f) q) = ⊤", "tactic": "rw [eq_top_iff]" }, { "state_after": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\nv : M\na✝ : v ∈ ⊤\n⊢ v ∈ LinearMap.range (↑(aeval f) p) ⊔ LinearMap.range (↑(aeval f) q)", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\n⊢ ⊤ ≤ LinearMap.range (↑(aeval f) p) ⊔ LinearMap.range (↑(aeval f) q)", "tactic": "intro v _" }, { "state_after": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\nv : M\na✝ : v ∈ ⊤\n⊢ ∃ y, y ∈ LinearMap.range (↑(aeval f) p) ∧ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ y + z = v", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\nv : M\na✝ : v ∈ ⊤\n⊢ v ∈ LinearMap.range (↑(aeval f) p) ⊔ LinearMap.range (↑(aeval f) q)", "tactic": "rw [Submodule.mem_sup]" }, { "state_after": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ∃ y, y ∈ LinearMap.range (↑(aeval f) p) ∧ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ y + z = v", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nhpq : IsCoprime p q\nv : M\na✝ : v ∈ ⊤\n⊢ ∃ y, y ∈ LinearMap.range (↑(aeval f) p) ∧ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ y + z = v", "tactic": "rcases hpq with ⟨p', q', hpq'⟩" }, { "state_after": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (p * p')) v ∈ LinearMap.range (↑(aeval f) p) ∧\n ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + z = v", "state_before": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ∃ y, y ∈ LinearMap.range (↑(aeval f) p) ∧ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ y + z = v", "tactic": "use aeval f (p * p') v" }, { "state_after": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + z = v", "state_before": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (p * p')) v ∈ LinearMap.range (↑(aeval f) p) ∧\n ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + z = v", "tactic": "use LinearMap.mem_range.2 ⟨aeval f p' v, by simp only [LinearMap.mul_apply, aeval_mul]⟩" }, { "state_after": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (q * q')) v ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + ↑(↑(aeval f) (q * q')) v = v", "state_before": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ∃ z, z ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + z = v", "tactic": "use aeval f (q * q') v" }, { "state_after": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (p * p')) v + ↑(↑(aeval f) (q * q')) v = v", "state_before": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (q * q')) v ∈ LinearMap.range (↑(aeval f) q) ∧ ↑(↑(aeval f) (p * p')) v + ↑(↑(aeval f) (q * q')) v = v", "tactic": "use LinearMap.mem_range.2 ⟨aeval f q' v, by simp only [LinearMap.mul_apply, aeval_mul]⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) (p * p')) v + ↑(↑(aeval f) (q * q')) v = v", "tactic": "simpa only [mul_comm p p', mul_comm q q', aeval_one, aeval_add] using\n congr_arg (fun p : R[X] => aeval f p v) hpq'" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) p) (↑(↑(aeval f) p') v) = ↑(↑(aeval f) (p * p')) v", "tactic": "simp only [LinearMap.mul_apply, aeval_mul]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type ?u.696957\nσ : Type v\nM : Type w\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nf : M →ₗ[R] M\np q : R[X]\nv : M\na✝ : v ∈ ⊤\np' q' : R[X]\nhpq' : p' * p + q' * q = 1\n⊢ ↑(↑(aeval f) q) (↑(↑(aeval f) q') v) = ↑(↑(aeval f) (q * q')) v", "tactic": "simp only [LinearMap.mul_apply, aeval_mul]" } ]
[ 1017, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1006, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Multiset.disjoint_finset_sum_left
[ { "state_after": "case h.e'_2.a\nι : Type ?u.896168\nβ✝ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β✝\nβ : Type u_1\ni : Finset β\nf : β → Multiset α\na : Multiset α\n⊢ (∀ (b : β), b ∈ i → Disjoint (f b) a) ↔ ∀ (b : Multiset α), b ∈ map f i.val → Disjoint b a", "state_before": "ι : Type ?u.896168\nβ✝ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β✝\nβ : Type u_1\ni : Finset β\nf : β → Multiset α\na : Multiset α\n⊢ Disjoint (Finset.sum i f) a ↔ ∀ (b : β), b ∈ i → Disjoint (f b) a", "tactic": "convert @disjoint_sum_left _ a (map f i.val)" }, { "state_after": "no goals", "state_before": "case h.e'_2.a\nι : Type ?u.896168\nβ✝ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β✝\nβ : Type u_1\ni : Finset β\nf : β → Multiset α\na : Multiset α\n⊢ (∀ (b : β), b ∈ i → Disjoint (f b) a) ↔ ∀ (b : Multiset α), b ∈ map f i.val → Disjoint b a", "tactic": "simp [and_congr_left_iff, iff_self_iff]" } ]
[ 2082, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2079, 1 ]
src/lean/Init/Core.lean
mt
[]
[ 517, 23 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 516, 1 ]
Mathlib/Topology/Instances/EReal.lean
EReal.continuousAt_add_coe_top
[]
[ 195, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm_const_lt_top_iff
[ { "state_after": "α : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "α : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "have hp : 0 < p.toReal := ENNReal.toReal_pos hp_ne_zero hp_ne_top" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : μ = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤\n\ncase neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "α : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "by_cases hμ : μ = 0" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : c = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤\n\ncase neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "by_cases hc : c = 0" }, { "state_after": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "rw [snorm_const' c hp_ne_zero hp_ne_top]" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤\n\ncase neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "by_cases hμ_top : μ Set.univ = ∞" }, { "state_after": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ < ⊤ ∧ ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ∨ ↑‖c‖₊ = 0 ∨ ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) = 0 ↔\n c = 0 ∨ ↑↑μ Set.univ < ⊤", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "rw [ENNReal.mul_lt_top_iff]" }, { "state_after": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑↑μ Set.univ ^ (ENNReal.toReal p)⁻¹ < ⊤", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ < ⊤ ∧ ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ∨ ↑‖c‖₊ = 0 ∨ ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) = 0 ↔\n c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "simp only [true_and_iff, one_div, ENNReal.rpow_eq_zero_iff, hμ, false_or_iff, or_false_iff,\n ENNReal.coe_lt_top, nnnorm_eq_zero, ENNReal.coe_eq_zero,\n MeasureTheory.Measure.measure_univ_eq_zero, hp, inv_lt_zero, hc, and_false_iff, false_and_iff,\n _root_.inv_pos, or_self_iff, hμ_top, Ne.lt_top hμ_top, iff_true_iff]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ¬↑↑μ Set.univ = ⊤\n⊢ ↑↑μ Set.univ ^ (ENNReal.toReal p)⁻¹ < ⊤", "tactic": "exact ENNReal.rpow_lt_top_of_nonneg (inv_nonneg.mpr hp.le) hμ_top" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : μ = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "simp only [hμ, Measure.coe_zero, Pi.zero_apply, or_true_iff, WithTop.zero_lt_top,\n snorm_measure_zero]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : c = 0\n⊢ snorm (fun x => c) p μ < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "simp only [hc, true_or_iff, eq_self_iff_true, WithTop.zero_lt_top, snorm_zero']" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.1263233\nF : Type u_2\nG : Type ?u.1263239\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : F\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\nhp : 0 < ENNReal.toReal p\nhμ : ¬μ = 0\nhc : ¬c = 0\nhμ_top : ↑↑μ Set.univ = ⊤\n⊢ ↑‖c‖₊ * ↑↑μ Set.univ ^ (1 / ENNReal.toReal p) < ⊤ ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "simp [hc, hμ_top, hp]" } ]
[ 319, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/Topology/Constructions.lean
ContinuousAt.fst'
[]
[ 353, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 351, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.inv_submatrix_equiv
[ { "state_after": "case pos\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁\n\ncase neg\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : ¬IsUnit A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "state_before": "l : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "by_cases h : IsUnit A" }, { "state_after": "case pos.intro\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\nval✝ : Invertible A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "state_before": "case pos\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "cases h.nonempty_invertible" }, { "state_after": "case pos.intro\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\nval✝ : Invertible A\nthis : Invertible (submatrix A ↑e₁ ↑e₂) := submatrixEquivInvertible A e₁ e₂\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "state_before": "case pos.intro\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\nval✝ : Invertible A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "letI := submatrixEquivInvertible A e₁ e₂" }, { "state_after": "no goals", "state_before": "case pos.intro\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : IsUnit A\nval✝ : Invertible A\nthis : Invertible (submatrix A ↑e₁ ↑e₂) := submatrixEquivInvertible A e₁ e₂\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "rw [← invOf_eq_nonsing_inv, ← invOf_eq_nonsing_inv, invOf_submatrix_equiv_eq A]" }, { "state_after": "case neg\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : ¬IsUnit A\nthis : ¬IsUnit (submatrix A ↑e₁ ↑e₂)\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "state_before": "case neg\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : ¬IsUnit A\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "have := (isUnit_submatrix_equiv e₁ e₂).not.mpr h" }, { "state_after": "no goals", "state_before": "case neg\nl : Type ?u.401048\nm : Type u\nn : Type u'\nα : Type v\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq n\ninst✝² : CommRing α\nA✝ B : Matrix n n α\ninst✝¹ : Fintype m\ninst✝ : DecidableEq m\nA : Matrix m m α\ne₁ e₂ : n ≃ m\nh : ¬IsUnit A\nthis : ¬IsUnit (submatrix A ↑e₁ ↑e₂)\n⊢ (submatrix A ↑e₁ ↑e₂)⁻¹ = submatrix A⁻¹ ↑e₂ ↑e₁", "tactic": "simp_rw [nonsing_inv_eq_ring_inverse, Ring.inverse_non_unit _ h, Ring.inverse_non_unit _ this,\n submatrix_zero, Pi.zero_apply]" } ]
[ 687, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 1 ]
Mathlib/Logic/Basic.lean
ite_ne_right_iff
[ { "state_after": "α : Sort u_1\nβ : Sort ?u.36612\nσ : α → Sort ?u.36608\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (∃ h, a ≠ b) ↔ P ∧ a ≠ b", "state_before": "α : Sort u_1\nβ : Sort ?u.36612\nσ : α → Sort ?u.36608\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (∃ h, (fun x => a) h ≠ b) ↔ P ∧ a ≠ b", "tactic": "simp only" }, { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort ?u.36612\nσ : α → Sort ?u.36608\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (∃ h, a ≠ b) ↔ P ∧ a ≠ b", "tactic": "rw [exists_prop]" } ]
[ 1173, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1172, 1 ]
Mathlib/LinearAlgebra/Dfinsupp.lean
Dfinsupp.sum_mapRange_index.linearMap
[ { "state_after": "no goals", "state_before": "ι : Type u_5\nR : Type u_3\nS : Type ?u.164559\nM : ι → Type ?u.164564\nN : Type u_4\ndec_ι : DecidableEq ι\ninst✝¹² : Semiring R\ninst✝¹¹ : (i : ι) → AddCommMonoid (M i)\ninst✝¹⁰ : (i : ι) → Module R (M i)\ninst✝⁹ : AddCommMonoid N\ninst✝⁸ : Module R N\nβ : ι → Type ?u.164654\nβ₁ : ι → Type u_1\nβ₂ : ι → Type u_2\ninst✝⁷ : (i : ι) → AddCommMonoid (β i)\ninst✝⁶ : (i : ι) → AddCommMonoid (β₁ i)\ninst✝⁵ : (i : ι) → AddCommMonoid (β₂ i)\ninst✝⁴ : (i : ι) → Module R (β i)\ninst✝³ : (i : ι) → Module R (β₁ i)\ninst✝² : (i : ι) → Module R (β₂ i)\ninst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0)\ninst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0)\nf : (i : ι) → β₁ i →ₗ[R] β₂ i\nh : (i : ι) → β₂ i →ₗ[R] N\nl : Π₀ (i : ι), β₁ i\n⊢ ↑(↑(lsum ℕ) h) (↑(mapRange.linearMap f) l) = ↑(↑(lsum ℕ) fun i => LinearMap.comp (h i) (f i)) l", "tactic": "simpa [Dfinsupp.sumAddHom_apply] using sum_mapRange_index fun i => by simp" }, { "state_after": "no goals", "state_before": "ι : Type u_5\nR : Type u_3\nS : Type ?u.164559\nM : ι → Type ?u.164564\nN : Type u_4\ndec_ι : DecidableEq ι\ninst✝¹² : Semiring R\ninst✝¹¹ : (i : ι) → AddCommMonoid (M i)\ninst✝¹⁰ : (i : ι) → Module R (M i)\ninst✝⁹ : AddCommMonoid N\ninst✝⁸ : Module R N\nβ : ι → Type ?u.164654\nβ₁ : ι → Type u_1\nβ₂ : ι → Type u_2\ninst✝⁷ : (i : ι) → AddCommMonoid (β i)\ninst✝⁶ : (i : ι) → AddCommMonoid (β₁ i)\ninst✝⁵ : (i : ι) → AddCommMonoid (β₂ i)\ninst✝⁴ : (i : ι) → Module R (β i)\ninst✝³ : (i : ι) → Module R (β₁ i)\ninst✝² : (i : ι) → Module R (β₂ i)\ninst✝¹ : (i : ι) → (x : β₁ i) → Decidable (x ≠ 0)\ninst✝ : (i : ι) → (x : β₂ i) → Decidable (x ≠ 0)\nf : (i : ι) → β₁ i →ₗ[R] β₂ i\nh : (i : ι) → β₂ i →ₗ[R] N\nl : Π₀ (i : ι), β₁ i\ni : ι\n⊢ ↑(h i) 0 = 0", "tactic": "simp" } ]
[ 227, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Analysis/InnerProductSpace/Adjoint.lean
LinearMap.eq_adjoint_iff_basis_left
[ { "state_after": "𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type ?u.2011794\ninst✝⁹ : IsROrC 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : InnerProductSpace 𝕜 F\ninst✝³ : InnerProductSpace 𝕜 G\ninst✝² : FiniteDimensional 𝕜 E\ninst✝¹ : FiniteDimensional 𝕜 F\ninst✝ : FiniteDimensional 𝕜 G\nι : Type u_1\nb : Basis ι 𝕜 E\nA : E →ₗ[𝕜] F\nB : F →ₗ[𝕜] E\nh : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)\ni : ι\n⊢ ↑A (↑b i) = ↑(↑adjoint B) (↑b i)", "state_before": "𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type ?u.2011794\ninst✝⁹ : IsROrC 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : InnerProductSpace 𝕜 F\ninst✝³ : InnerProductSpace 𝕜 G\ninst✝² : FiniteDimensional 𝕜 E\ninst✝¹ : FiniteDimensional 𝕜 F\ninst✝ : FiniteDimensional 𝕜 G\nι : Type u_1\nb : Basis ι 𝕜 E\nA : E →ₗ[𝕜] F\nB : F →ₗ[𝕜] E\n⊢ A = ↑adjoint B ↔ ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)", "tactic": "refine' ⟨fun h x y => by rw [h, adjoint_inner_left], fun h => Basis.ext b fun i => _⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type ?u.2011794\ninst✝⁹ : IsROrC 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : InnerProductSpace 𝕜 F\ninst✝³ : InnerProductSpace 𝕜 G\ninst✝² : FiniteDimensional 𝕜 E\ninst✝¹ : FiniteDimensional 𝕜 F\ninst✝ : FiniteDimensional 𝕜 G\nι : Type u_1\nb : Basis ι 𝕜 E\nA : E →ₗ[𝕜] F\nB : F →ₗ[𝕜] E\nh : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)\ni : ι\n⊢ ↑A (↑b i) = ↑(↑adjoint B) (↑b i)", "tactic": "exact ext_inner_right 𝕜 fun y => by simp only [h i, adjoint_inner_left]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type ?u.2011794\ninst✝⁹ : IsROrC 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : InnerProductSpace 𝕜 F\ninst✝³ : InnerProductSpace 𝕜 G\ninst✝² : FiniteDimensional 𝕜 E\ninst✝¹ : FiniteDimensional 𝕜 F\ninst✝ : FiniteDimensional 𝕜 G\nι : Type u_1\nb : Basis ι 𝕜 E\nA : E →ₗ[𝕜] F\nB : F →ₗ[𝕜] E\nh : A = ↑adjoint B\nx : ι\ny : (fun x => F) (↑b x)\n⊢ inner (↑A (↑b x)) y = inner (↑b x) (↑B y)", "tactic": "rw [h, adjoint_inner_left]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type u_3\nF : Type u_4\nG : Type ?u.2011794\ninst✝⁹ : IsROrC 𝕜\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedAddCommGroup G\ninst✝⁵ : InnerProductSpace 𝕜 E\ninst✝⁴ : InnerProductSpace 𝕜 F\ninst✝³ : InnerProductSpace 𝕜 G\ninst✝² : FiniteDimensional 𝕜 E\ninst✝¹ : FiniteDimensional 𝕜 F\ninst✝ : FiniteDimensional 𝕜 G\nι : Type u_1\nb : Basis ι 𝕜 E\nA : E →ₗ[𝕜] F\nB : F →ₗ[𝕜] E\nh : ∀ (i : ι) (y : (fun x => F) (↑b i)), inner (↑A (↑b i)) y = inner (↑b i) (↑B y)\ni : ι\ny : (fun x => F) (↑b i)\n⊢ inner (↑A (↑b i)) y = inner (↑(↑adjoint B) (↑b i)) y", "tactic": "simp only [h i, adjoint_inner_left]" } ]
[ 445, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 442, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.foldl_induction'
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.134478\nf : β → α → β\nH : RightCommutative f\nx : β\nq : α → Prop\np : β → Prop\ns : Multiset α\nhpqf : ∀ (a : α) (b : β), q a → p b → p (f b a)\npx : p x\nq_s : ∀ (a : α), a ∈ s → q a\n⊢ p (foldr (fun x y => f y x) (_ : ∀ (_x _y : α) (_z : β), f (f _z _y) _x = f (f _z _x) _y) x s)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.134478\nf : β → α → β\nH : RightCommutative f\nx : β\nq : α → Prop\np : β → Prop\ns : Multiset α\nhpqf : ∀ (a : α) (b : β), q a → p b → p (f b a)\npx : p x\nq_s : ∀ (a : α), a ∈ s → q a\n⊢ p (foldl f H x s)", "tactic": "rw [foldl_swap]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.134478\nf : β → α → β\nH : RightCommutative f\nx : β\nq : α → Prop\np : β → Prop\ns : Multiset α\nhpqf : ∀ (a : α) (b : β), q a → p b → p (f b a)\npx : p x\nq_s : ∀ (a : α), a ∈ s → q a\n⊢ p (foldr (fun x y => f y x) (_ : ∀ (_x _y : α) (_z : β), f (f _z _y) _x = f (f _z _x) _y) x s)", "tactic": "exact foldr_induction' (fun x y => f y x) (fun x y z => (H _ _ _).symm) x q p s hpqf px q_s" } ]
[ 1451, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1447, 1 ]
Mathlib/Algebra/Algebra/Basic.lean
NoZeroSMulDivisors.iff_algebraMap_injective
[]
[ 831, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 829, 1 ]
Mathlib/Analysis/InnerProductSpace/PiL2.lean
EuclideanSpace.norm_single
[]
[ 286, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/CategoryTheory/Sites/InducedTopology.lean
CategoryTheory.over_forget_locallyCoverDense
[ { "state_after": "C : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\n⊢ Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T) ∈\n GrothendieckTopology.sieves J ((Over.forget X).obj Y)", "state_before": "C : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\n⊢ LocallyCoverDense J (Over.forget X)", "tactic": "intro Y T" }, { "state_after": "case h.e'_4\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\n⊢ Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T) = ↑T", "state_before": "C : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\n⊢ Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T) ∈\n GrothendieckTopology.sieves J ((Over.forget X).obj Y)", "tactic": "convert T.property" }, { "state_after": "case h.e'_4.h\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\n⊢ ∀ (f : Z ⟶ (Over.forget X).obj Y),\n (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f ↔ (↑T).arrows f", "state_before": "case h.e'_4\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\n⊢ Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T) = ↑T", "tactic": "ext Z" }, { "state_after": "case h.e'_4.h\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f ↔ (↑T).arrows f", "state_before": "case h.e'_4.h\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\n⊢ ∀ (f : Z ⟶ (Over.forget X).obj Y),\n (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f ↔ (↑T).arrows f", "tactic": "intro f" }, { "state_after": "case h.e'_4.h.mp\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f → (↑T).arrows f\n\ncase h.e'_4.h.mpr\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (↑T).arrows f → (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f", "state_before": "case h.e'_4.h\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f ↔ (↑T).arrows f", "tactic": "constructor" }, { "state_after": "case h.e'_4.h.mp.intro.intro.intro.intro\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nw✝¹ : Over X\nw✝ : w✝¹ ⟶ Y\ng' : Z ⟶ (Over.forget X).obj w✝¹\nhg : (Sieve.functorPullback (Over.forget X) ↑T).arrows w✝\n⊢ (↑T).arrows (g' ≫ (Over.forget X).map w✝)", "state_before": "case h.e'_4.h.mp\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f → (↑T).arrows f", "tactic": "rintro ⟨_, _, g', hg, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.mp.intro.intro.intro.intro\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nw✝¹ : Over X\nw✝ : w✝¹ ⟶ Y\ng' : Z ⟶ (Over.forget X).obj w✝¹\nhg : (Sieve.functorPullback (Over.forget X) ↑T).arrows w✝\n⊢ (↑T).arrows (g' ≫ (Over.forget X).map w✝)", "tactic": "exact T.val.downward_closed hg g'" }, { "state_after": "case h.e'_4.h.mpr\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\nhf : (↑T).arrows f\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f", "state_before": "case h.e'_4.h.mpr\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\n⊢ (↑T).arrows f → (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f", "tactic": "intro hf" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.mpr\nC : Type u_1\ninst✝² : Category C\nD : Type ?u.13308\ninst✝¹ : Category D\nG : C ⥤ D\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nA : Type v\ninst✝ : Category A\nX : C\nY : Over X\nT : ↑(GrothendieckTopology.sieves J ((Over.forget X).obj Y))\nZ : C\nf : Z ⟶ (Over.forget X).obj Y\nhf : (↑T).arrows f\n⊢ (Sieve.functorPushforward (Over.forget X) (Sieve.functorPullback (Over.forget X) ↑T)).arrows f", "tactic": "exact ⟨Over.mk (f ≫ Y.hom), Over.homMk f, 𝟙 _, hf, (Category.id_comp _).symm⟩" } ]
[ 143, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Topology/ContinuousFunction/CocompactMap.lean
CocompactMap.isCompact_preimage
[ { "state_after": "case intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.10402\nδ : Type ?u.10405\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : T2Space β\nf : CocompactMap α β\ns : Set β\nhs : IsCompact s\nt : Set ?m.10680\nht : IsCompact t\nhts : ?m.10705ᶜ ⊆ t\n⊢ IsCompact (↑f ⁻¹' s)", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.10402\nδ : Type ?u.10405\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : T2Space β\nf : CocompactMap α β\ns : Set β\nhs : IsCompact s\n⊢ IsCompact (↑f ⁻¹' s)", "tactic": "obtain ⟨t, ht, hts⟩ :=\n mem_cocompact'.mp\n (by\n simpa only [preimage_image_preimage, preimage_compl] using\n mem_map.mp\n (cocompact_tendsto f <|\n mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩))" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.10402\nδ : Type ?u.10405\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : T2Space β\nf : CocompactMap α β\ns : Set β\nhs : IsCompact s\nt : Set ?m.10680\nht : IsCompact t\nhts : ?m.10705ᶜ ⊆ t\n⊢ IsCompact (↑f ⁻¹' s)", "tactic": "exact\n isCompact_of_isClosed_subset ht (hs.isClosed.preimage <| map_continuous f) (by simpa using hts)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.10402\nδ : Type ?u.10405\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : T2Space β\nf : CocompactMap α β\ns : Set β\nhs : IsCompact s\n⊢ ?m.10705 ∈ cocompact α", "tactic": "simpa only [preimage_image_preimage, preimage_compl] using\n mem_map.mp\n (cocompact_tendsto f <|\n mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.10402\nδ : Type ?u.10405\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : T2Space β\nf : CocompactMap α β\ns : Set β\nhs : IsCompact s\nt : Set α\nht : IsCompact t\nhts : (↑f ⁻¹' s)ᶜᶜ ⊆ t\n⊢ ↑f ⁻¹' s ⊆ t", "tactic": "simpa using hts" } ]
[ 194, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.center_toSubmonoid
[]
[ 2075, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2074, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/InverseDeriv.lean
Real.differentiableWithinAt_arcsin_Iic
[ { "state_after": "x : ℝ\nh : DifferentiableWithinAt ℝ arcsin (Iic x) x\n⊢ x ≠ 1", "state_before": "x : ℝ\n⊢ DifferentiableWithinAt ℝ arcsin (Iic x) x ↔ x ≠ 1", "tactic": "refine' ⟨fun h => _, fun h => (hasDerivWithinAt_arcsin_Iic h).differentiableWithinAt⟩" }, { "state_after": "x : ℝ\nh : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x)\n⊢ x ≠ 1", "state_before": "x : ℝ\nh : DifferentiableWithinAt ℝ arcsin (Iic x) x\n⊢ x ≠ 1", "tactic": "rw [← neg_neg x, ← image_neg_Ici] at h" }, { "state_after": "x : ℝ\nh : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x)\nthis : DifferentiableWithinAt ℝ (fun y => -(arcsin ∘ Neg.neg) y) (Ici (-x)) (-x)\n⊢ x ≠ 1", "state_before": "x : ℝ\nh : DifferentiableWithinAt ℝ arcsin (Neg.neg '' Ici (-x)) (- -x)\n⊢ x ≠ 1", "tactic": "have := (h.comp (-x) differentiableWithinAt_id.neg (mapsTo_image _ _)).neg" } ]
[ 101, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
BilinForm.toMatrix_compRight
[ { "state_after": "no goals", "state_before": "R : Type ?u.1541084\nM : Type ?u.1541087\ninst✝²⁰ : Semiring R\ninst✝¹⁹ : AddCommMonoid M\ninst✝¹⁸ : Module R M\nR₁ : Type ?u.1541123\nM₁ : Type ?u.1541126\ninst✝¹⁷ : Ring R₁\ninst✝¹⁶ : AddCommGroup M₁\ninst✝¹⁵ : Module R₁ M₁\nR₂ : Type u_1\nM₂ : Type u_2\ninst✝¹⁴ : CommSemiring R₂\ninst✝¹³ : AddCommMonoid M₂\ninst✝¹² : Module R₂ M₂\nR₃ : Type ?u.1541925\nM₃ : Type ?u.1541928\ninst✝¹¹ : CommRing R₃\ninst✝¹⁰ : AddCommGroup M₃\ninst✝⁹ : Module R₃ M₃\nV : Type ?u.1542516\nK : Type ?u.1542519\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module K V\nB✝ : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_3\no : Type ?u.1543736\ninst✝⁵ : Fintype n\ninst✝⁴ : Fintype o\ninst✝³ : DecidableEq n\nb : Basis n R₂ M₂\nM₂' : Type ?u.1543895\ninst✝² : AddCommMonoid M₂'\ninst✝¹ : Module R₂ M₂'\nc : Basis o R₂ M₂'\ninst✝ : DecidableEq o\nB : BilinForm R₂ M₂\nf : M₂ →ₗ[R₂] M₂\n⊢ ↑(toMatrix b) (compRight B f) = ↑(toMatrix b) B ⬝ ↑(LinearMap.toMatrix b b) f", "tactic": "simp only [BilinForm.compRight, BilinForm.toMatrix_comp b b, toMatrix_id, transpose_one,\n Matrix.one_mul]" } ]
[ 395, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 392, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
one_le_sq_iff
[]
[ 593, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 592, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Pretrivialization.target_inter_preimage_symm_source_eq
[ { "state_after": "no goals", "state_before": "ι : Type ?u.10841\nB : Type u_1\nF : Type u_2\nE : B → Type ?u.10852\nZ : Type u_3\ninst✝¹ : TopologicalSpace B\ninst✝ : TopologicalSpace F\nproj : Z → B\ne✝ : Pretrivialization F proj\nx : Z\ne f : Pretrivialization F proj\n⊢ f.target ∩ ↑(LocalEquiv.symm f.toLocalEquiv) ⁻¹' e.source = (e.baseSet ∩ f.baseSet) ×ˢ univ", "tactic": "rw [inter_comm, f.target_eq, e.source_eq, f.preimage_symm_proj_inter]" } ]
[ 203, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Algebra/Algebra/Operations.lean
Submodule.one_eq_span
[ { "state_after": "case h\nι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n : A\n⊢ ∀ (x : A), x ∈ 1 ↔ x ∈ span R {1}", "state_before": "ι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n : A\n⊢ 1 = span R {1}", "tactic": "apply Submodule.ext" }, { "state_after": "case h\nι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n a : A\n⊢ a ∈ 1 ↔ a ∈ span R {1}", "state_before": "case h\nι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n : A\n⊢ ∀ (x : A), x ∈ 1 ↔ x ∈ span R {1}", "tactic": "intro a" }, { "state_after": "no goals", "state_before": "case h\nι : Sort uι\nR : Type u\ninst✝² : CommSemiring R\nA : Type v\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nS T : Set A\nM N P Q : Submodule R A\nm n a : A\n⊢ a ∈ 1 ↔ a ∈ span R {1}", "tactic": "simp only [mem_one, mem_span_singleton, Algebra.smul_def, mul_one]" } ]
[ 114, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
HasStrictDerivAt.cos
[]
[ 799, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 797, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iic_union_Ioc
[ { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : c ≤ d\nh : c < b\n⊢ Iic b ∪ Ioc c d = Iic (max b d)\n\ncase inr\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : d ≤ c\nh : d < b\n⊢ Iic b ∪ Ioc c d = Iic (max b d)", "state_before": "α : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh : min c d < b\n⊢ Iic b ∪ Ioc c d = Iic (max b d)", "tactic": "cases' le_total c d with hcd hcd <;> simp [hcd] at h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : c ≤ d\nh : c < b\n⊢ Iic b ∪ Ioc c d = Iic (max b d)", "tactic": "exact Iic_union_Ioc' h" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : d ≤ c\nh : d < b\n⊢ Iic b ∪ Ioc c d = Iic (max d b)", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : d ≤ c\nh : d < b\n⊢ Iic b ∪ Ioc c d = Iic (max b d)", "tactic": "rw [max_comm]" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.101649\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nhcd : d ≤ c\nh : d < b\n⊢ Iic b ∪ Ioc c d = Iic (max d b)", "tactic": "simp [*, max_eq_right_of_lt h]" } ]
[ 1421, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1417, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
Matrix.toLin'_one
[]
[ 358, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.IsLimit.one_lt
[ { "state_after": "no goals", "state_before": "α : Type ?u.93011\nβ : Type ?u.93014\nγ : Type ?u.93017\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nh : IsLimit o\n⊢ 1 < o", "tactic": "simpa only [succ_zero] using h.2 _ h.pos" } ]
[ 292, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.bliminf_sup_le_and_aux_right
[]
[ 916, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 915, 1 ]
Mathlib/GroupTheory/GroupAction/Basic.lean
MulAction.smul_orbit
[]
[ 228, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/CategoryTheory/Functor/EpiMono.lean
CategoryTheory.Functor.isSplitEpi_iff
[ { "state_after": "case mp\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\n⊢ IsSplitEpi (F.map f) → IsSplitEpi f\n\ncase mpr\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\n⊢ IsSplitEpi f → IsSplitEpi (F.map f)", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\n⊢ IsSplitEpi (F.map f) ↔ IsSplitEpi f", "tactic": "constructor" }, { "state_after": "case mp\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\nh : IsSplitEpi (F.map f)\n⊢ IsSplitEpi f", "state_before": "case mp\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\n⊢ IsSplitEpi (F.map f) → IsSplitEpi f", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\nh : IsSplitEpi (F.map f)\n⊢ IsSplitEpi f", "tactic": "exact IsSplitEpi.mk' ((splitEpiEquiv F f).invFun h.exists_splitEpi.some)" }, { "state_after": "case mpr\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\nh : IsSplitEpi f\n⊢ IsSplitEpi (F.map f)", "state_before": "case mpr\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\n⊢ IsSplitEpi f → IsSplitEpi (F.map f)", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mpr\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nE : Type u₃\ninst✝² : Category E\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝¹ : Full F\ninst✝ : Faithful F\nh : IsSplitEpi f\n⊢ IsSplitEpi (F.map f)", "tactic": "exact IsSplitEpi.mk' ((splitEpiEquiv F f).toFun h.exists_splitEpi.some)" } ]
[ 249, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 1 ]
Mathlib/NumberTheory/Liouville/LiouvilleWith.lean
LiouvilleWith.sub_nat
[]
[ 287, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Algebra/Algebra/Unitization.lean
Unitization.fst_inr
[]
[ 123, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Analysis/SpecialFunctions/Exponential.lean
hasStrictFDerivAt_exp_smul_const_of_mem_ball'
[ { "state_after": "𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\n⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x))\n (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t", "state_before": "𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\n⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x))\n (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t", "tactic": "let ⟨_, _⟩ := analyticAt_exp_of_mem_ball (t • x) htx" }, { "state_after": "case h.e'_10\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\n⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) =\n exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x", "state_before": "𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\n⊢ HasStrictFDerivAt (fun u => exp 𝕂 (u • x))\n (ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t", "tactic": "convert hasStrictFDerivAt_exp_smul_const_of_mem_ball 𝕂 _ _ htx using 1" }, { "state_after": "case h.e'_10.h\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\nt' : 𝕊\n⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' =\n ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t'", "state_before": "case h.e'_10\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\n⊢ ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x)) =\n exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x", "tactic": "ext t'" }, { "state_after": "case h.e'_10.h\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\nt' : 𝕊\n⊢ Commute (t' • x) (exp 𝕂 (t • x))", "state_before": "case h.e'_10.h\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\nt' : 𝕊\n⊢ ↑(ContinuousLinearMap.smulRight (ContinuousLinearMap.smulRight 1 x) (exp 𝕂 (t • x))) t' =\n ↑(exp 𝕂 (t • x) • ContinuousLinearMap.smulRight 1 x) t'", "tactic": "show Commute (t' • x) (exp 𝕂 (t • x))" }, { "state_after": "no goals", "state_before": "case h.e'_10.h\n𝕂 : Type u_3\n𝕊 : Type u_2\n𝔸 : Type u_1\ninst✝⁹ : NontriviallyNormedField 𝕂\ninst✝⁸ : CharZero 𝕂\ninst✝⁷ : NormedCommRing 𝕊\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedSpace 𝕂 𝕊\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : Algebra 𝕊 𝔸\ninst✝² : ContinuousSMul 𝕊 𝔸\ninst✝¹ : IsScalarTower 𝕂 𝕊 𝔸\ninst✝ : CompleteSpace 𝔸\nx : 𝔸\nt : 𝕊\nhtx : t • x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\nw✝ : FormalMultilinearSeries 𝕂 𝔸 𝔸\nh✝ : HasFPowerSeriesAt (exp 𝕂) w✝ (t • x)\nt' : 𝕊\n⊢ Commute (t' • x) (exp 𝕂 (t • x))", "tactic": "exact (((Commute.refl x).smul_left t').smul_right t).exp_right 𝕂" } ]
[ 338, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.push_pull
[ { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\n⊢ map f (F ⊓ comap f G) ≤ map f F ⊓ G\n\ncase a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\n⊢ map f F ⊓ G ≤ map f (F ⊓ comap f G)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\n⊢ map f (F ⊓ comap f G) = map f F ⊓ G", "tactic": "apply le_antisymm" }, { "state_after": "no goals", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\n⊢ map f (F ⊓ comap f G) ≤ map f F ⊓ G", "tactic": "calc\n map f (F ⊓ comap f G) ≤ map f F ⊓ (map f <| comap f G) := map_inf_le\n _ ≤ map f F ⊓ G := inf_le_inf_left (map f F) map_comap_le" }, { "state_after": "case a.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ U ∈ map f F ⊓ G", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\n⊢ map f F ⊓ G ≤ map f (F ⊓ comap f G)", "tactic": "rintro U ⟨V, V_in, W, ⟨Z, Z_in, hZ⟩, h⟩" }, { "state_after": "case a.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ f '' V ∩ Z ⊆ U", "state_before": "case a.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ U ∈ map f F ⊓ G", "tactic": "apply mem_inf_of_inter (image_mem_map V_in) Z_in" }, { "state_after": "no goals", "state_before": "case a.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ f '' V ∩ Z ⊆ U", "tactic": "calc\n f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z) := by rw [image_inter_preimage]\n _ ⊆ f '' (V ∩ W) := image_subset _ (inter_subset_inter_right _ ‹_›)\n _ = f '' (f ⁻¹' U) := by rw [h]\n _ ⊆ U := image_preimage_subset f U" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ f '' V ∩ Z = f '' (V ∩ f ⁻¹' Z)", "tactic": "rw [image_inter_preimage]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.286447\nι : Sort x\nf : α → β\nF : Filter α\nG : Filter β\nU : Set β\nV : Set α\nV_in : V ∈ F\nW : Set α\nh : f ⁻¹' U = V ∩ W\nZ : Set β\nZ_in : Z ∈ G\nhZ : f ⁻¹' Z ⊆ W\n⊢ f '' (V ∩ W) = f '' (f ⁻¹' U)", "tactic": "rw [h]" } ]
[ 2577, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2564, 11 ]
Mathlib/Order/UpperLower/Basic.lean
lowerClosure_union
[]
[ 1439, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1438, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.algHom_ext'
[]
[ 489, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
AffineMap.ext_iff
[]
[ 150, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/CategoryTheory/Monoidal/OfHasFiniteProducts.lean
CategoryTheory.monoidalOfHasFiniteProducts.tensorObj
[]
[ 94, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Data/Set/Image.lean
Subtype.exists_set_subtype
[ { "state_after": "no goals", "state_before": "α : Type u_1\nt : Set α\np : Set α → Prop\n⊢ (∃ s, p (val '' s)) ↔ ∃ s, s ⊆ t ∧ p s", "tactic": "rw [← exists_subset_range_and_iff, range_coe]" } ]
[ 1458, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1456, 1 ]
Mathlib/GroupTheory/SpecificGroups/Alternating.lean
Equiv.Perm.IsThreeCycle.mem_alternatingGroup
[]
[ 86, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Data/Int/Log.lean
Int.lt_zpow_succ_log_self
[ { "state_after": "case inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : r ≤ 0\n⊢ r < ↑b ^ (log b r + 1)\n\ncase inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\n⊢ r < ↑b ^ (log b r + 1)", "state_before": "R : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\n⊢ r < ↑b ^ (log b r + 1)", "tactic": "cases' le_or_lt r 0 with hr hr" }, { "state_after": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑b ^ (log b r + 1)\n\ncase inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\n⊢ r < ↑b ^ (log b r + 1)", "state_before": "case inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\n⊢ r < ↑b ^ (log b r + 1)", "tactic": "cases' le_or_lt 1 r with hr1 hr1" }, { "state_after": "case inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : r ≤ 0\n⊢ r < ↑b", "state_before": "case inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : r ≤ 0\n⊢ r < ↑b ^ (log b r + 1)", "tactic": "rw [log_of_right_le_zero _ hr, zero_add, zpow_one]" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : r ≤ 0\n⊢ r < ↑b", "tactic": "exact hr.trans_lt (zero_lt_one.trans_le <| by exact_mod_cast hb.le)" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : r ≤ 0\n⊢ 1 ≤ ↑b", "tactic": "exact_mod_cast hb.le" }, { "state_after": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑b ^ (↑(Nat.log b ⌊r⌋₊) + 1)", "state_before": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑b ^ (log b r + 1)", "tactic": "rw [log_of_one_le_right _ hr1]" }, { "state_after": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑(b ^ Nat.succ (Nat.log b ⌊r⌋₊))", "state_before": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑b ^ (↑(Nat.log b ⌊r⌋₊) + 1)", "tactic": "rw [Int.ofNat_add_one_out, zpow_ofNat, ← Nat.cast_pow]" }, { "state_after": "case inr.inl.h\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ ⌊r⌋₊ < b ^ Nat.succ (Nat.log b ⌊r⌋₊)", "state_before": "case inr.inl\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ r < ↑(b ^ Nat.succ (Nat.log b ⌊r⌋₊))", "tactic": "apply Nat.lt_of_floor_lt" }, { "state_after": "no goals", "state_before": "case inr.inl.h\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : 1 ≤ r\n⊢ ⌊r⌋₊ < b ^ Nat.succ (Nat.log b ⌊r⌋₊)", "tactic": "exact Nat.lt_pow_succ_log_self hb _" }, { "state_after": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\n⊢ r < ↑b ^ (log b r + 1)", "tactic": "rw [log_of_right_le_one _ hr1.le]" }, { "state_after": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "tactic": "have hcri : 1 < r⁻¹ := one_lt_inv hr hr1" }, { "state_after": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "tactic": "have : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊ :=\n Nat.succ_le_of_lt (Nat.clog_pos hb <| Nat.one_lt_cast.1 <| hcri.trans_le (Nat.le_ceil _))" }, { "state_after": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ ↑(b ^ (Nat.clog b ⌈r⁻¹⌉₊ - 1)) < r⁻¹", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ r < ↑b ^ (-↑(Nat.clog b ⌈r⁻¹⌉₊) + 1)", "tactic": "rw [neg_add_eq_sub, ← neg_sub, ← Int.ofNat_one, ← Int.ofNat_sub this, zpow_neg, zpow_ofNat,\n lt_inv hr (pow_pos (Nat.cast_pos.mpr <| zero_lt_one.trans hb) _), ← Nat.cast_pow]" }, { "state_after": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ b ^ (Nat.clog b ⌈r⁻¹⌉₊ - 1) < ⌈r⁻¹⌉₊", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ ↑(b ^ (Nat.clog b ⌈r⁻¹⌉₊ - 1)) < r⁻¹", "tactic": "refine' Nat.lt_ceil.1 _" }, { "state_after": "no goals", "state_before": "case inr.inr\nR : Type u_1\ninst✝¹ : LinearOrderedSemifield R\ninst✝ : FloorSemiring R\nb : ℕ\nhb : 1 < b\nr : R\nhr : 0 < r\nhr1 : r < 1\nhcri : 1 < r⁻¹\nthis : 1 ≤ Nat.clog b ⌈r⁻¹⌉₊\n⊢ b ^ (Nat.clog b ⌈r⁻¹⌉₊ - 1) < ⌈r⁻¹⌉₊", "tactic": "exact Nat.pow_pred_clog_lt_self hb <| Nat.one_lt_cast.1 <| hcri.trans_le <| Nat.le_ceil _" } ]
[ 121, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
pow_mono
[ { "state_after": "β : Type ?u.218801\nA : Type ?u.218804\nG : Type ?u.218807\nM : Type ?u.218810\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m : ℕ\nh : 1 ≤ a\nn : ℕ\n⊢ a ^ n ≤ a * a ^ n", "state_before": "β : Type ?u.218801\nA : Type ?u.218804\nG : Type ?u.218807\nM : Type ?u.218810\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m : ℕ\nh : 1 ≤ a\nn : ℕ\n⊢ a ^ n ≤ a ^ (n + 1)", "tactic": "rw [pow_succ]" }, { "state_after": "no goals", "state_before": "β : Type ?u.218801\nA : Type ?u.218804\nG : Type ?u.218807\nM : Type ?u.218810\nR : Type u_1\ninst✝ : OrderedSemiring R\na x y : R\nn✝ m : ℕ\nh : 1 ≤ a\nn : ℕ\n⊢ a ^ n ≤ a * a ^ n", "tactic": "exact le_mul_of_one_le_left (pow_nonneg (zero_le_one.trans h) _) h" } ]
[ 447, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
Function.Surjective.summable_iff_of_hasSum_iff
[]
[ 306, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/LinearAlgebra/Dual.lean
Subspace.dualLift_rightInverse
[]
[ 1044, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1042, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ComplexDeriv.lean
Complex.hasDerivAt_tan
[]
[ 37, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/Data/Set/Intervals/ProjIcc.lean
Set.IccExtend_val
[]
[ 139, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
Submodule.IsOrtho.ge
[]
[ 324, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 323, 1 ]
Mathlib/Algebra/CharP/Basic.lean
CharP.char_is_prime
[]
[ 570, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 569, 1 ]
Mathlib/Algebra/Group/UniqueProds.lean
UniqueMul.set_subsingleton
[ { "state_after": "case mk.mk\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0✝ b0✝ : G\nA B : Finset G\na0 b0 : G\nh : UniqueMul A B a0 b0\nx1 y1 : G\nhx : x1 ∈ A ∧ y1 ∈ B ∧ x1 * y1 = a0 * b0\nx2 y2 : G\nhy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = a0 * b0\n⊢ (x1, y1) = (x2, y2)", "state_before": "G : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0✝ b0✝ : G\nA B : Finset G\na0 b0 : G\nh : UniqueMul A B a0 b0\n⊢ Set.Subsingleton {ab | ab.fst ∈ A ∧ ab.snd ∈ B ∧ ab.fst * ab.snd = a0 * b0}", "tactic": "rintro ⟨x1, y1⟩ (hx : x1 ∈ A ∧ y1 ∈ B ∧ x1 * y1 = a0 * b0) ⟨x2, y2⟩\n (hy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = a0 * b0)" }, { "state_after": "case mk.mk.intro\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0 b0 : G\nA B : Finset G\nx1 y1 x2 y2 : G\nh : UniqueMul A B x1 y1\nhx : x1 ∈ A ∧ y1 ∈ B ∧ x1 * y1 = x1 * y1\nhy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = x1 * y1\n⊢ (x1, y1) = (x2, y2)", "state_before": "case mk.mk\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0✝ b0✝ : G\nA B : Finset G\na0 b0 : G\nh : UniqueMul A B a0 b0\nx1 y1 : G\nhx : x1 ∈ A ∧ y1 ∈ B ∧ x1 * y1 = a0 * b0\nx2 y2 : G\nhy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = a0 * b0\n⊢ (x1, y1) = (x2, y2)", "tactic": "rcases h hx.1 hx.2.1 hx.2.2 with ⟨rfl, rfl⟩" }, { "state_after": "case mk.mk.intro.intro\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0 b0 : G\nA B : Finset G\nx2 y2 : G\nh : UniqueMul A B x2 y2\nhx hy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = x2 * y2\n⊢ (x2, y2) = (x2, y2)", "state_before": "case mk.mk.intro\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0 b0 : G\nA B : Finset G\nx1 y1 x2 y2 : G\nh : UniqueMul A B x1 y1\nhx : x1 ∈ A ∧ y1 ∈ B ∧ x1 * y1 = x1 * y1\nhy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = x1 * y1\n⊢ (x1, y1) = (x2, y2)", "tactic": "rcases h hy.1 hy.2.1 hy.2.2 with ⟨rfl, rfl⟩" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro\nG : Type u_1\nH : Type ?u.1533\ninst✝¹ : Mul G\ninst✝ : Mul H\nA✝ B✝ : Finset G\na0 b0 : G\nA B : Finset G\nx2 y2 : G\nh : UniqueMul A B x2 y2\nhx hy : x2 ∈ A ∧ y2 ∈ B ∧ x2 * y2 = x2 * y2\n⊢ (x2, y2) = (x2, y2)", "tactic": "rfl" } ]
[ 79, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Std/Data/Nat/Gcd.lean
Nat.gcd_eq_right_iff_dvd
[ { "state_after": "m n : Nat\n⊢ m ∣ n ↔ gcd m n = m", "state_before": "m n : Nat\n⊢ m ∣ n ↔ gcd n m = m", "tactic": "rw [gcd_comm]" }, { "state_after": "no goals", "state_before": "m n : Nat\n⊢ m ∣ n ↔ gcd m n = m", "tactic": "exact gcd_eq_left_iff_dvd" } ]
[ 68, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 67, 1 ]
Mathlib/Analysis/NormedSpace/Extr.lean
IsMaxFilter.norm_add_self
[]
[ 52, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/CategoryTheory/Subobject/FactorThru.lean
CategoryTheory.Subobject.factorThru_comp_arrow
[ { "state_after": "case h\nC : Type u₁\ninst✝¹ : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝ : Category D\nX Y : C\nP : Subobject Y\nf : X ⟶ underlying.obj P\nh : Factors P (f ≫ arrow P)\n⊢ factorThru P (f ≫ arrow P) h ≫ arrow P = f ≫ arrow P", "state_before": "C : Type u₁\ninst✝¹ : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝ : Category D\nX Y : C\nP : Subobject Y\nf : X ⟶ underlying.obj P\nh : Factors P (f ≫ arrow P)\n⊢ factorThru P (f ≫ arrow P) h = f", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nC : Type u₁\ninst✝¹ : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝ : Category D\nX Y : C\nP : Subobject Y\nf : X ⟶ underlying.obj P\nh : Factors P (f ≫ arrow P)\n⊢ factorThru P (f ≫ arrow P) h ≫ arrow P = f ≫ arrow P", "tactic": "simp" } ]
[ 146, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Combinatorics/Pigeonhole.lean
Finset.exists_lt_sum_fiber_of_maps_to_of_nsmul_lt_sum
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nM : Type w\ninst✝¹ : DecidableEq β\ns : Finset α\nt : Finset β\nf : α → β\nw : α → M\nb : M\nn : ℕ\ninst✝ : LinearOrderedCancelAddCommMonoid M\nhf : ∀ (a : α), a ∈ s → f a ∈ t\nhb : card t • b < ∑ x in s, w x\n⊢ ∑ i in t, b < ∑ i in t, ∑ x in filter (fun x => f x = i) s, w x", "tactic": "simpa only [sum_fiberwise_of_maps_to hf, sum_const]" } ]
[ 122, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Order/Hom/Bounded.lean
BoundedOrderHom.copy_eq
[]
[ 615, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 614, 1 ]