Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- Non-dependent and dependent lenses
-- Nils Anders Danielsson
------------------------------------------------------------------------
{-# OPTIONS --cubical --guardedness #-}
module README where
-- Non-dependent lenses.
import Lens.Non-dependent
import Lens.Non-dependent.Traditional
import Lens.Non-dependent.Traditional.Combinators
import Lens.Non-dependent.Higher
import Lens.Non-dependent.Higher.Combinators
import Lens.Non-dependent.Higher.Capriotti.Variant
import Lens.Non-dependent.Higher.Capriotti
import Lens.Non-dependent.Higher.Coherently.Not-coinductive
import Lens.Non-dependent.Higher.Coherently.Coinductive
import Lens.Non-dependent.Higher.Coinductive
import Lens.Non-dependent.Higher.Coinductive.Small
import Lens.Non-dependent.Higher.Surjective-remainder
import Lens.Non-dependent.Equivalent-preimages
import Lens.Non-dependent.Bijection
-- Non-dependent lenses with erased proofs.
import Lens.Non-dependent.Traditional.Erased
import Lens.Non-dependent.Higher.Erased
import Lens.Non-dependent.Higher.Capriotti.Variant.Erased
import Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant
import Lens.Non-dependent.Higher.Coinductive.Erased
import Lens.Non-dependent.Higher.Coinductive.Small.Erased
import Lens.Non-dependent.Higher.Coherently.Coinductive.Erased
-- Dependent lenses.
import Lens.Dependent
-- Comparisons of different kinds of lenses, focusing on the
-- definition of composable record getters and setters.
import README.Record-getters-and-setters
-- Some code suggesting that types used in "programs" might not
-- necessarily be sets. (If lenses are only used in programs, and
-- types used in programs are always sets, then higher lenses might be
-- pointless.)
import README.Not-a-set
-- Pointers to code corresponding to many definitions and results from
-- the paper "Higher Lenses" by Paolo Capriotti, Nils Anders
-- Danielsson and Andrea Vezzosi.
import README.Higher-Lenses
-- The lenses fst and snd.
import README.Fst-snd
-- Pointers to code corresponding to some definitions and results from
-- the paper "Compiling Programs with Erased Univalence" by Andreas
-- Abel, Nils Anders Danielsson and Andrea Vezzosi.
import README.Compiling-Programs-with-Erased-Univalence
| {
"alphanum_fraction": 0.7626898048,
"avg_line_length": 33.8970588235,
"ext": "agda",
"hexsha": "c2fc39d12f084d08eefd99de018f58fb524f3097",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "README.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 501,
"size": 2305
} |
------------------------------------------------------------------------
-- A library of parser combinators
------------------------------------------------------------------------
module RecursiveDescent.Coinductive.Lib where
open import Utilities
open import RecursiveDescent.Coinductive
import RecursiveDescent.Coinductive.Internal as Internal
open import RecursiveDescent.Index
open import Data.Bool hiding (_≟_)
open import Data.Nat hiding (_≟_)
open import Data.Product.Record using (_,_)
open import Data.Product renaming (_,_ to pair)
open import Data.List hiding (any)
open import Data.Function
open import Data.Maybe
open import Data.Unit hiding (_≟_)
import Data.Char as C
open import Relation.Nullary
open import Relation.Binary
------------------------------------------------------------------------
-- Applicative functor parsers
-- We could get these for free with better library support.
infixl 50 _⊛_ _<⊛_ _⊛>_ _<$>_ _<$_
-- Note that all the resulting indices can be inferred.
_⊛_ : forall {tok i₁ i₂ r₁ r₂} ->
Parser tok i₁ (r₁ -> r₂) -> Parser tok i₂ r₁ -> Parser tok _ r₂
p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x)
_<$>_ : forall {tok r₁ r₂ i} ->
(r₁ -> r₂) -> Parser tok i r₁ -> Parser tok _ r₂
f <$> x = return f ⊛ x
_<⊛_ : forall {tok i₁ i₂ r₁ r₂} ->
Parser tok i₁ r₁ -> Parser tok i₂ r₂ -> Parser tok _ r₁
x <⊛ y = const <$> x ⊛ y
_⊛>_ : forall {tok i₁ i₂ r₁ r₂} ->
Parser tok i₁ r₁ -> Parser tok i₂ r₂ -> Parser tok _ r₂
x ⊛> y = flip const <$> x ⊛ y
_<$_ : forall {tok r₁ r₂ i} ->
r₁ -> Parser tok i r₂ -> Parser tok _ r₁
x <$ y = const x <$> y
------------------------------------------------------------------------
-- Parsers for sequences
infix 60 _⋆ _+
-- Not accepted by the productivity checker:
-- mutual
-- _⋆ : forall {tok r d} ->
-- Parser tok (false , d) r ->
-- Parser tok _ (List r)
-- p ⋆ ~ return [] ∣ p +
-- _+ : forall {tok r d} ->
-- Parser tok (false , d) r ->
-- Parser tok _ (List r)
-- p + ~ _∷_ <$> p ⊛ p ⋆
-- By inlining some definitions we can show that the definitions are
-- productive, though. The following definitions have also been
-- simplified:
mutual
_⋆ : forall {tok r d} ->
Parser tok (false , d) r ->
Parser tok _ (List r)
p ⋆ ~ Internal.alt₀ (return []) (p +)
_+ : forall {tok r d} ->
Parser tok (false , d) r ->
Parser tok _ (List r)
p + ~ Internal.bind₁ p \x ->
Internal.bind₀ (p ⋆) \xs ->
return (x ∷ xs)
-- p sepBy sep parses one or more ps separated by seps.
_sepBy_ : forall {tok r r' i d} ->
Parser tok i r -> Parser tok (false , d) r' ->
Parser tok _ (List r)
p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆
chain₁ : forall {tok d₁ i₂ r}
-> Assoc
-> Parser tok (false , d₁) r
-> Parser tok i₂ (r -> r -> r)
-> Parser tok _ r
chain₁ a p op = chain₁-combine a <$> (pair <$> p ⊛ op) ⋆ ⊛ p
chain : forall {tok d₁ i₂ r}
-> Assoc
-> Parser tok (false , d₁) r
-> Parser tok i₂ (r -> r -> r)
-> r
-> Parser tok _ r
chain a p op x = return x ∣ chain₁ a p op
------------------------------------------------------------------------
-- sat and friends
sat : forall {tok r} ->
(tok -> Maybe r) -> Parser tok _ r
sat {tok} {r} p = symbol !>>= \c -> ok (p c)
where
okIndex : Maybe r -> Index
okIndex nothing = _
okIndex (just _) = _
ok : (x : Maybe r) -> Parser tok (okIndex x) r
ok nothing = fail
ok (just x) = return x
sat' : forall {tok} -> (tok -> Bool) -> Parser tok _ ⊤
sat' p = sat (boolToMaybe ∘ p)
any : forall {tok} -> Parser tok _ tok
any = sat just
------------------------------------------------------------------------
-- Parsing a given token (symbol)
module Sym (a : DecSetoid) where
open DecSetoid a using (_≟_) renaming (carrier to tok)
sym : tok -> Parser tok _ tok
sym x = sat p
where
p : tok -> Maybe tok
p y with x ≟ y
... | yes _ = just y
... | no _ = nothing
------------------------------------------------------------------------
-- Character parsers
digit : Parser C.Char _ ℕ
digit = 0 <$ sym '0'
∣ 1 <$ sym '1'
∣ 2 <$ sym '2'
∣ 3 <$ sym '3'
∣ 4 <$ sym '4'
∣ 5 <$ sym '5'
∣ 6 <$ sym '6'
∣ 7 <$ sym '7'
∣ 8 <$ sym '8'
∣ 9 <$ sym '9'
where open Sym C.decSetoid
number : Parser C.Char _ ℕ
number = toNum <$> digit +
where
toNum = foldr (\n x -> 10 * x + n) 0 ∘ reverse
| {
"alphanum_fraction": 0.4984662577,
"avg_line_length": 27.1666666667,
"ext": "agda",
"hexsha": "6efe3027f1dc7a1ace79739acaa3815d74e39608",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Coinductive/Lib.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Coinductive/Lib.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Coinductive/Lib.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1370,
"size": 4564
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary
open import Cubical.Algebra.Semigroup
module Cubical.Algebra.Semigroup.Construct.Quotient {c ℓ} (S : Semigroup c) {R : Rel (Semigroup.Carrier S) ℓ} (isEq : IsEquivalence R)
(closed : Congruent₂ R (Semigroup._•_ S)) where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Properties
open import Cubical.HITs.SetQuotients
open Semigroup S
open IsEquivalence isEq
import Cubical.Algebra.Magma.Construct.Quotient magma isEq closed as QMagma
open QMagma public hiding (M/R-isMagma; M/R)
•ᴿ-assoc : Associative _•ᴿ_
•ᴿ-assoc = elimProp3 (λ _ _ _ → squash/ _ _) (λ x y z → cong [_] (assoc x y z))
S/R-isSemigroup : IsSemigroup Carrier/R _•ᴿ_
S/R-isSemigroup = record
{ isMagma = QMagma.M/R-isMagma
; assoc = •ᴿ-assoc
}
S/R : Semigroup (ℓ-max c ℓ)
S/R = record { isSemigroup = S/R-isSemigroup }
| {
"alphanum_fraction": 0.6891757696,
"avg_line_length": 31.46875,
"ext": "agda",
"hexsha": "897c3a5c3c006ca81c8d6e0cd87ca9ae6f1ad1af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Quotient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Quotient.agda",
"max_line_length": 134,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 319,
"size": 1007
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Fin.Properties where
open import Cubical.Core.Everything
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Data.Fin.Base as Fin
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.FinData.Base renaming (Fin to FinData) hiding (¬Fin0 ; toℕ)
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Induction.WellFounded
open import Cubical.Relation.Nullary
private
variable
a b ℓ : Level
n : ℕ
A : Type a
-- Fin 0 is empty, and thus a proposition.
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
-- Fin 1 has only one value.
isContrFin1 : isContr (Fin 1)
isContrFin1
= fzero , λ
{ (zero , _) → toℕ-injective refl
; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1))
}
Unit≃Fin1 : Unit ≃ Fin 1
Unit≃Fin1 =
isoToEquiv
(iso
(const fzero)
(const tt)
(isContrFin1 .snd)
(isContrUnit .snd)
)
-- Regardless of k, Fin k is a set.
isSetFin : ∀{k} → isSet (Fin k)
isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet m≤n-isProp)
discreteFin : ∀ {n} → Discrete (Fin n)
discreteFin {n} (x , hx) (y , hy) with discreteℕ x y
... | yes prf = yes (Σ≡Prop (λ _ → m≤n-isProp) prf)
... | no prf = no λ h → prf (cong fst h)
inject<-ne : ∀ {n} (i : Fin n) → ¬ inject< ≤-refl i ≡ (n , ≤-refl)
inject<-ne {n} (k , k<n) p = <→≢ k<n (cong fst p)
Fin-fst-≡ : ∀ {n} {i j : Fin n} → fst i ≡ fst j → i ≡ j
Fin-fst-≡ = Σ≡Prop (λ _ → m≤n-isProp)
private
subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) →
subst B x≡y (f x) ≡ f y
subst-app B f {x = x} =
J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x))
-- Computation rules for the eliminator.
module _ (P : ∀ {k} → Fin k → Type ℓ)
(fz : ∀ {k} → P {suc k} fzero)
(fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn))
{k : ℕ} where
elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz
elim-fzero =
subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩
subst P refl fz ≡⟨ substRefl {B = P} fz ⟩
fz ∎
elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk)
elim-fsuc fk =
subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′))
≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩
subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′))
≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩
fs (Fin.elim P fz fs fk)
∎
where
fk′ = fst fk , pred-≤-pred (snd (fsuc fk))
fk′≡fk : fk′ ≡ fk
fk′≡fk = toℕ-injective refl
-- Helper function for the reduction procedure below.
--
-- If n = expand o k m, then n is congruent to m modulo k.
expand : ℕ → ℕ → ℕ → ℕ
expand 0 k m = m
expand (suc o) k m = k + expand o k m
expand≡ : ∀ k m o → expand o k m ≡ o · k + m
expand≡ k m zero = refl
expand≡ k m (suc o)
= cong (k +_) (expand≡ k m o) ∙ +-assoc k (o · k) m
-- Expand a pair. This is useful because the whole function is
-- injective.
expand× : ∀{k} → (Fin k × ℕ) → ℕ
expand× {k} (f , o) = expand o k (toℕ f)
private
lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r
lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p
expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2
expand×Inj k {f1 , zero} {f2 , zero} p i
= toℕ-injective {fj = f1} {f2} p i , zero
expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p
= Empty.rec (<-asym r<sk (lemma₀ refl p))
expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p
= Empty.rec (<-asym r<sk (lemma₀ refl (sym p)))
expand×Inj k {f1 , suc o1} {f2 , suc o2}
= cong (λ { (f , o) → (f , suc o) })
∘ expand×Inj k {f1 , o1} {f2 , o2}
∘ inj-m+ {suc k}
expand×Emb : ∀ k → isEmbedding (expand× {k})
expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst
expand×Emb (suc k)
= injEmbedding (isSetΣ isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k)
-- A Residue is a family of types representing evidence that a
-- natural is congruent to a value of a finite type.
Residue : ℕ → ℕ → Type₀
Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n
-- There is at most one canonical finite value congruent to each
-- natural.
isPropResidue : ∀ k n → isProp (Residue k n)
isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k)
-- A value of a finite type is its own residue.
Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f)
Fin→Residue f = (f , 0) , refl
-- Fibers of numbers that differ by k are equivalent in a more obvious
-- way than via the fact that they are propositions.
Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n)
Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p
Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n
Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p)
Residue+k-k
: (k n : ℕ)
→ (R : Residue k (k + n))
→ Residue+k k n (Residue-k k n R) ≡ R
Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue+k-k k n ((f , suc o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) (k + n)) refl
Residue-k+k
: (k n : ℕ)
→ (R : Residue k n)
→ Residue-k k n (Residue+k k n R) ≡ R
Residue-k+k k n ((f , o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) n) refl
private
Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n)
Residue≃ k n
= Residue+k k n
, isoToIsEquiv (iso (Residue+k k n) (Residue-k k n)
(Residue+k-k k n) (Residue-k+k k n))
Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n)
Residue≡ k n = ua (Residue≃ k n)
-- For positive `k`, all `n` have a canonical residue mod `k`.
module Reduce (k₀ : ℕ) where
k : ℕ
k = suc k₀
base : ∀ n (n<k : n < k) → Residue k n
base n n<k = Fin→Residue (n , n<k)
step : ∀ n → Residue k n → Residue k (k + n)
step n = transport (Residue≡ k n)
reduce : ∀ n → Residue k n
reduce = +induction k₀ (Residue k) base step
reduce≡
: ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n)
reduce≡ n
= sym (+inductionStep k₀ _ base step n)
reduceP
: ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n))
reduceP n = toPathP (reduce≡ n)
open Reduce using (reduce; reduce≡) public
extract : ∀{k n} → Residue k n → Fin k
extract = fst ∘ fst
private
lemma₅
: ∀ k n (R : Residue k n)
→ extract R ≡ extract (transport (Residue≡ k n) R)
lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n)
-- The residue of n modulo k is the same as the residue of k + n.
extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n))
extract≡ k n
= lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n)
isContrResidue : ∀{k n} → isContr (Residue (suc k) n)
isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
-- the modulo operator on ℕ
_%_ : ℕ → ℕ → ℕ
n % zero = n
n % (suc k) = toℕ (extract (reduce k n))
_/_ : ℕ → ℕ → ℕ
n / zero = zero
n / (suc k) = reduce k n .fst .snd
moddiv : ∀ n k → (n / k) · k + n % k ≡ n
moddiv n zero = refl
moddiv n (suc k) = sym (expand≡ _ _ (n / suc k)) ∙ reduce k n .snd
n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o · k + n % k ≡ n
n%k≡n[modk] n k = (n / k) , moddiv n k
n%sk<sk : (n k : ℕ) → (n % suc k) < suc k
n%sk<sk n k = extract (reduce k n) .snd
fznotfs : ∀ {m : ℕ} {k : Fin m} → ¬ fzero ≡ fsuc k
fznotfs {m} p = subst F p tt
where
F : Fin (suc m) → Type₀
F (zero , _) = Unit
F (suc _ , _) = ⊥
fsuc-inj : {fj fk : Fin n} → fsuc fj ≡ fsuc fk → fj ≡ fk
fsuc-inj = toℕ-injective ∘ injSuc ∘ cong toℕ
punchOut : ∀ {m} {i j : Fin (suc m)} → (¬ i ≡ j) → Fin m
punchOut {_} {i} {j} p with fsplit i | fsplit j
punchOut {_} {i} {j} p | inl prfi | inl prfj =
Empty.elim (p (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut {_} {i} {j} p | inl prfi | inr (kj , prfj) =
kj
punchOut {zero} {i} {j} p | inr (ki , prfi) | inl prfj =
Empty.elim (p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inl prfj =
fzero
punchOut {zero} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
Empty.elim ((p (
i ≡⟨ sym (isContrFin1 .snd i) ⟩
c ≡⟨ isContrFin1 .snd j ⟩
j ∎)
))
where c = isContrFin1 .fst
punchOut {suc _} {i} {j} p | inr (ki , prfi) | inr (kj , prfj) =
fsuc (punchOut {i = ki} {j = kj}
(λ q → p (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎))
)
punchOut-inj
: ∀ {m} {i j k : Fin (suc m)} (i≢j : ¬ i ≡ j) (i≢k : ¬ i ≡ k)
→ punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-inj {_} {i} {j} {k} i≢j i≢k p with fsplit i | fsplit j | fsplit k
punchOut-inj {zero} {i} {j} {k} i≢j i≢k p | _ | _ | _ =
Empty.elim (i≢j (i ≡⟨ sym (isContrFin1 .snd i) ⟩ c ≡⟨ isContrFin1 .snd j ⟩ j ∎))
where c = isContrFin1 .fst
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inl prfj | _ =
Empty.elim (i≢j (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfj ⟩ j ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | _ | inl prfk =
Empty.elim (i≢k (i ≡⟨ sym prfi ⟩ fzero ≡⟨ prfk ⟩ k ∎))
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inl prfi | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc p ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inl prfk =
j ≡⟨ sym prfj ⟩
fzero ≡⟨ prfk ⟩
k ∎
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inr (kk , prfk) =
j ≡⟨ sym prfj ⟩
fsuc kj ≡⟨ cong fsuc lemma4 ⟩
fsuc kk ≡⟨ prfk ⟩
k ∎
where
lemma1 = λ q → i≢j (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kj ≡⟨ prfj ⟩ j ∎)
lemma2 = λ q → i≢k (i ≡⟨ sym prfi ⟩ fsuc ki ≡⟨ cong fsuc q ⟩ fsuc kk ≡⟨ prfk ⟩ k ∎)
lemma3 = fsuc-inj p
lemma4 = punchOut-inj lemma1 lemma2 lemma3
punchOut-inj {suc m} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inl prfj | inr (kk , prfk) =
Empty.rec (fznotfs p)
punchOut-inj {suc _} {i} {j} {k} i≢j i≢k p | inr (ki , prfi) | inr (kj , prfj) | inl prfk =
Empty.rec (fznotfs (sym p))
pigeonhole-special
: ∀ {n}
→ (f : Fin (suc n) → Fin n)
→ Σ[ i ∈ Fin (suc n) ] Σ[ j ∈ Fin (suc n) ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole-special {zero} f = Empty.rec (¬Fin0 (f fzero))
pigeonhole-special {suc n} f =
proof (any?
(λ (i : Fin (suc n)) →
discreteFin (f (inject< ≤-refl i)) (f (suc n , ≤-refl))
))
where
proof
: Dec (Σ (Fin (suc n)) (λ z → f (inject< ≤-refl z) ≡ f (suc n , ≤-refl)))
→ Σ[ i ∈ Fin (suc (suc n)) ] Σ[ j ∈ Fin (suc (suc n)) ] (¬ i ≡ j) × (f i ≡ f j)
proof (yes (i , prf)) = inject< ≤-refl i , (suc n , ≤-refl) , inject<-ne i , prf
proof (no h) =
let
g : Fin (suc n) → Fin n
g k = punchOut
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl k)}
(λ p → h (k , Fin-fst-≡ (sym (cong fst p))))
i , j , i≢j , p = pigeonhole-special g
in
inject< ≤-refl i
, inject< ≤-refl j
, (λ q → i≢j (Fin-fst-≡ (cong fst q)))
, punchOut-inj
{i = f (suc n , ≤-refl)}
{j = f (inject< ≤-refl i)}
{k = f (inject< ≤-refl j)}
(λ q → h (i , Fin-fst-≡ (sym (cong fst q))))
(λ q → h (j , Fin-fst-≡ (sym (cong fst q))))
(Fin-fst-≡ (cong fst p))
pigeonhole
: ∀ {m n}
→ m < n
→ (f : Fin n → Fin m)
→ Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j)
pigeonhole {m} {n} (zero , sm≡n) f =
transport transport-prf (pigeonhole-special f′)
where
f′ : Fin (suc m) → Fin m
f′ = subst (λ h → Fin h → Fin m) (sym sm≡n) f
f′≡f : PathP (λ i → Fin (sm≡n i) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) (sym sm≡n)) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc m) ] Σ[ j ∈ Fin (suc m) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (sm≡n φ) ] Σ[ j ∈ Fin (sm≡n φ) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
pigeonhole {m} {n} (suc k , prf) f =
let
g : Fin (suc n′) → Fin n′
g k = fst (f′ k) , <-trans (snd (f′ k)) m<n′
i , j , ¬q , r = pigeonhole-special g
in transport transport-prf (i , j , ¬q , Σ≡Prop (λ _ → m≤n-isProp) (cong fst r))
where
n′ : ℕ
n′ = k + suc m
n≡sn′ : n ≡ suc n′
n≡sn′ =
n ≡⟨ sym prf ⟩
suc (k + suc m) ≡⟨ refl ⟩
suc n′ ∎
m<n′ : m < n′
m<n′ = k , injSuc (suc (k + suc m) ≡⟨ prf ⟩ n ≡⟨ n≡sn′ ⟩ suc n′ ∎)
f′ : Fin (suc n′) → Fin m
f′ = subst (λ h → Fin h → Fin m) n≡sn′ f
f′≡f : PathP (λ i → Fin (n≡sn′ (~ i)) → Fin m) f′ f
f′≡f i = transport-fillerExt (cong (λ h → Fin h → Fin m) n≡sn′) (~ i) f
transport-prf
: (Σ[ i ∈ Fin (suc n′) ] Σ[ j ∈ Fin (suc n′) ] (¬ i ≡ j) × (f′ i ≡ f′ j))
≡ (Σ[ i ∈ Fin n ] Σ[ j ∈ Fin n ] (¬ i ≡ j) × (f i ≡ f j))
transport-prf φ =
Σ[ i ∈ Fin (n≡sn′ (~ φ)) ] Σ[ j ∈ Fin (n≡sn′ (~ φ)) ]
(¬ i ≡ j) × (f′≡f φ i ≡ f′≡f φ j)
Fin-inj′ : {n m : ℕ} → n < m → ¬ Fin m ≡ Fin n
Fin-inj′ n<m p =
let
i , j , i≢j , q = pigeonhole n<m (transport p)
in i≢j (
i ≡⟨ refl ⟩
fst (pigeonhole n<m (transport p)) ≡⟨ transport-p-inj {p = p} q ⟩
fst (snd (pigeonhole n<m (transport p))) ≡⟨ refl ⟩
j ∎
)
where
transport-p-inj
: ∀ {A B : Type ℓ} {x y : A} {p : A ≡ B}
→ transport p x ≡ transport p y
→ x ≡ y
transport-p-inj {x = x} {y = y} {p = p} q =
x ≡⟨ sym (transport⁻Transport p x) ⟩
transport (sym p) (transport p x) ≡⟨ cong (transport (sym p)) q ⟩
transport (sym p) (transport p y) ≡⟨ transport⁻Transport p y ⟩
y ∎
Fin-inj : (n m : ℕ) → Fin n ≡ Fin m → n ≡ m
Fin-inj n m p with n ≟ m
... | eq prf = prf
... | lt n<m = Empty.rec (Fin-inj′ n<m (sym p))
... | gt n>m = Empty.rec (Fin-inj′ n>m p)
≤-·sk-cancel : ∀ {m} {k} {n} → m · suc k ≤ n · suc k → m ≤ n
≤-·sk-cancel {m} {k} {n} (d , p) = o , inj-·sm {m = k} goal where
r = d % suc k
o = d / suc k
resn·k : Residue (suc k) (n · suc k)
resn·k = ((r , n%sk<sk d k) , (o + m)) , reason where
reason = expand× ((r , n%sk<sk d k) , o + m) ≡⟨ expand≡ (suc k) r (o + m) ⟩
(o + m) · suc k + r ≡[ i ]⟨ +-comm (·-distribʳ o m (suc k) (~ i)) r i ⟩
r + (o · suc k + m · suc k) ≡⟨ +-assoc r (o · suc k) (m · suc k) ⟩
(r + o · suc k) + m · suc k ≡⟨ cong (_+ m · suc k) (+-comm r (o · suc k) ∙ moddiv d (suc k)) ⟩
d + m · suc k ≡⟨ p ⟩
n · suc k ∎
residuek·n : ∀ k n → (r : Residue (suc k) (n · suc k)) → ((fzero , n) , expand≡ (suc k) 0 n ∙ +-zero _) ≡ r
residuek·n _ _ = isContr→isProp isContrResidue _
r≡0 : r ≡ 0
r≡0 = cong (toℕ ∘ extract) (sym (residuek·n k n resn·k))
d≡o·sk : d ≡ o · suc k
d≡o·sk = sym (moddiv d (suc k)) ∙∙ cong (o · suc k +_) r≡0 ∙∙ +-zero _
goal : (o + m) · suc k ≡ n · suc k
goal = sym (·-distribʳ o m (suc k)) ∙∙ cong (_+ m · suc k) (sym d≡o·sk) ∙∙ p
<-·sk-cancel : ∀ {m} {k} {n} → m · suc k < n · suc k → m < n
<-·sk-cancel {m} {k} {n} p = goal where
≤-helper : m ≤ n
≤-helper = ≤-·sk-cancel (pred-≤-pred (<≤-trans p (≤-suc ≤-refl)))
goal : m < n
goal = case <-split (suc-≤-suc ≤-helper) of λ
{ (inl g) → g
; (inr e) → Empty.rec (¬m<m (subst (λ m → m · suc k < n · suc k) e p))
}
factorEquiv : ∀ {n} {m} → Fin n × Fin m ≃ Fin (n · m)
factorEquiv {zero} {m} = uninhabEquiv (¬Fin0 ∘ fst) ¬Fin0
factorEquiv {suc n} {m} = intro , isEmbedding×isSurjection→isEquiv (isEmbeddingIntro , isSurjectionIntro) where
intro : Fin (suc n) × Fin m → Fin (suc n · m)
intro (nn , mm) = nm , subst (λ nm₁ → nm₁ < suc n · m) (sym (expand≡ _ (toℕ nn) (toℕ mm))) nm<n·m where
nm : ℕ
nm = expand× (nn , toℕ mm)
nm<n·m : toℕ mm · suc n + toℕ nn < suc n · m
nm<n·m =
toℕ mm · suc n + toℕ nn <≤⟨ <-k+ (snd nn) ⟩
toℕ mm · suc n + suc n ≡≤⟨ +-comm _ (suc n) ⟩
suc (toℕ mm) · suc n ≤≡⟨ ≤-·k (snd mm) ⟩
m · suc n ≡⟨ ·-comm _ (suc n) ⟩
suc n · m ∎ where open <-Reasoning
intro-injective : ∀ {o} {p} → intro o ≡ intro p → o ≡ p
intro-injective {o} {p} io≡ip = λ i → io′≡ip′ i .fst , toℕ-injective {fj = snd o} {fk = snd p} (cong snd io′≡ip′) i where
io′≡ip′ : (fst o , toℕ (snd o)) ≡ (fst p , toℕ (snd p))
io′≡ip′ = expand×Inj _ (cong fst io≡ip)
isEmbeddingIntro : isEmbedding intro
isEmbeddingIntro = injEmbedding (isSet× isSetFin isSetFin) isSetFin intro-injective
elimF : ∀ nm → fiber intro nm
elimF nm = ((nn , nn<n) , (mm , mm<m)) , toℕ-injective (reduce n (toℕ nm) .snd) where
mm = toℕ nm / suc n
nn = toℕ nm % suc n
nmmoddiv : mm · suc n + nn ≡ toℕ nm
nmmoddiv = moddiv _ (suc n)
nn<n : nn < suc n
nn<n = n%sk<sk (toℕ nm) _
nmsnd : mm · suc n + nn < suc n · m
nmsnd = subst (λ l → l < suc n · m) (sym nmmoddiv) (snd nm)
mm·sn<m·sn : mm · suc n < m · suc n
mm·sn<m·sn =
mm · suc n ≤<⟨ nn , +-comm nn (mm · suc n) ⟩
mm · suc n + nn <≡⟨ nmsnd ⟩
suc n · m ≡⟨ ·-comm (suc n) m ⟩
m · suc n ∎ where open <-Reasoning
mm<m : mm < m
mm<m = <-·sk-cancel mm·sn<m·sn
isSurjectionIntro : isSurjection intro
isSurjectionIntro = ∣_∣ ∘ elimF
-- Fin (m + n) ≡ Fin m ⊎ Fin n
-- ===========================
o<m→o<m+n : (m n o : ℕ) → o < m → o < (m + n)
o<m→o<m+n m n o (k , p) = (n + k) , (n + k + suc o ≡⟨ sym (+-assoc n k _) ⟩
n + (k + suc o) ≡⟨ cong (λ - → n + -) p ⟩
n + m ≡⟨ +-comm n m ⟩
m + n ∎)
∸-<-lemma : (m n o : ℕ) → o < m + n → m ≤ o → o ∸ m < n
∸-<-lemma zero n o o<m+n m<o = o<m+n
∸-<-lemma (suc m) n zero o<m+n m<o = Empty.rec (¬-<-zero m<o)
∸-<-lemma (suc m) n (suc o) o<m+n m<o =
∸-<-lemma m n o (pred-≤-pred o<m+n) (pred-≤-pred m<o)
-- A convenient wrapper on top of trichotomy, as we will be interested in
-- whether `m < n` or `n ≤ m`.
_≤?_ : (m n : ℕ) → (m < n) ⊎ (n ≤ m)
_≤?_ m n with m ≟ n
_≤?_ m n | lt m<n = inl m<n
_≤?_ m n | eq m=n = inr (subst (λ - → - ≤ m) m=n ≤-refl)
_≤?_ m n | gt n<m = inr (<-weaken n<m)
¬-<-and-≥ : {m n : ℕ} → m < n → ¬ n ≤ m
¬-<-and-≥ {m} {zero} m<n n≤m = ¬-<-zero m<n
¬-<-and-≥ {zero} {suc n} m<n n≤m = ¬-<-zero n≤m
¬-<-and-≥ {suc m} {suc n} m<n n≤m = ¬-<-and-≥ (pred-≤-pred m<n) (pred-≤-pred n≤m)
m+n∸n=m : (n m : ℕ) → (m + n) ∸ n ≡ m
m+n∸n=m zero k = +-zero k
m+n∸n=m (suc m) k = (k + suc m) ∸ suc m ≡⟨ cong (λ - → - ∸ suc m) (+-suc k m) ⟩
suc (k + m) ∸ (suc m) ≡⟨ refl ⟩
(k + m) ∸ m ≡⟨ m+n∸n=m m k ⟩
k ∎
∸-lemma : {m n : ℕ} → m ≤ n → m + (n ∸ m) ≡ n
∸-lemma {zero} {k} _ = refl {x = k}
∸-lemma {suc m} {zero} m≤k = Empty.rec (¬-<-and-≥ (suc-≤-suc zero-≤) m≤k)
∸-lemma {suc m} {suc k} m≤k =
suc m + (suc k ∸ suc m) ≡⟨ refl ⟩
suc (m + (suc k ∸ suc m)) ≡⟨ refl ⟩
suc (m + (k ∸ m)) ≡⟨ cong suc (∸-lemma (pred-≤-pred m≤k)) ⟩
suc k ∎
Fin+≅Fin⊎Fin : (m n : ℕ) → Iso (Fin (m + n)) (Fin m ⊎ Fin n)
Iso.fun (Fin+≅Fin⊎Fin m n) = f
where
f : Fin (m + n) → Fin m ⊎ Fin n
f (k , k<m+n) with k ≤? m
f (k , k<m+n) | inl k<m = inl (k , k<m)
f (k , k<m+n) | inr k≥m = inr (k ∸ m , ∸-<-lemma m n k k<m+n k≥m)
Iso.inv (Fin+≅Fin⊎Fin m n) = g
where
g : Fin m ⊎ Fin n → Fin (m + n)
g (inl (k , k<m)) = k , o<m→o<m+n m n k k<m
g (inr (k , k<n)) = m + k , <-k+ k<n
Iso.rightInv (Fin+≅Fin⊎Fin m n) = sec-f-g
where
sec-f-g : _
sec-f-g (inl (k , k<m)) with k ≤? m
sec-f-g (inl (k , k<m)) | inl _ = cong inl (Σ≡Prop (λ _ → m≤n-isProp) refl)
sec-f-g (inl (k , k<m)) | inr m≤k = Empty.rec (¬-<-and-≥ k<m m≤k)
sec-f-g (inr (k , k<n)) with (m + k) ≤? m
sec-f-g (inr (k , k<n)) | inl p = Empty.rec (¬m+n<m {m} {k} p)
sec-f-g (inr (k , k<n)) | inr k≥m = cong inr (Σ≡Prop (λ _ → m≤n-isProp) rem)
where
rem : (m + k) ∸ m ≡ k
rem = subst (λ - → - ∸ m ≡ k) (+-comm k m) (m+n∸n=m m k)
Iso.leftInv (Fin+≅Fin⊎Fin m n) = ret-f-g
where
ret-f-g : _
ret-f-g (k , k<m+n) with k ≤? m
ret-f-g (k , k<m+n) | inl _ = Σ≡Prop (λ _ → m≤n-isProp) refl
ret-f-g (k , k<m+n) | inr m≥k = Σ≡Prop (λ _ → m≤n-isProp) (∸-lemma m≥k)
Fin+≡Fin⊎Fin : (m n : ℕ) → Fin (m + n) ≡ Fin m ⊎ Fin n
Fin+≡Fin⊎Fin m n = isoToPath (Fin+≅Fin⊎Fin m n)
-- Equivalence between FinData and Fin
sucFin : {N : ℕ} → Fin N → Fin (suc N)
sucFin (k , n , p) = suc k , n , (+-suc _ _ ∙ cong suc p)
FinData→Fin : (N : ℕ) → FinData N → Fin N
FinData→Fin zero ()
FinData→Fin (suc N) zero = 0 , suc-≤-suc zero-≤
FinData→Fin (suc N) (suc k) = sucFin (FinData→Fin N k)
Fin→FinData : (N : ℕ) → Fin N → FinData N
Fin→FinData zero (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
Fin→FinData (suc N) (0 , n , p) = zero
Fin→FinData (suc N) ((suc k) , n , p) = suc (Fin→FinData N (k , n , p')) where
p' : n + suc k ≡ N
p' = injSuc (sym (+-suc n (suc k)) ∙ p)
secFin : (n : ℕ) → section (FinData→Fin n) (Fin→FinData n)
secFin 0 (k , n , p) = Empty.rec (snotz (sym (+-suc n k) ∙ p))
secFin (suc N) (0 , n , p) = Fin-fst-≡ refl
secFin (suc N) (suc k , n , p) = Fin-fst-≡ (cong suc (cong fst (secFin N (k , n , p')))) where
p' : n + suc k ≡ N
p' = injSuc (sym (+-suc n (suc k)) ∙ p)
retFin : (n : ℕ) → retract (FinData→Fin n) (Fin→FinData n)
retFin 0 ()
retFin (suc N) zero = refl
retFin (suc N) (suc k) = cong FinData.suc (cong (Fin→FinData N) (Fin-fst-≡ refl) ∙ retFin N k)
FinDataIsoFin : (N : ℕ) → Iso (FinData N) (Fin N)
Iso.fun (FinDataIsoFin N) = FinData→Fin N
Iso.inv (FinDataIsoFin N) = Fin→FinData N
Iso.rightInv (FinDataIsoFin N) = secFin N
Iso.leftInv (FinDataIsoFin N) = retFin N
FinData≃Fin : (N : ℕ) → FinData N ≃ Fin N
FinData≃Fin N = isoToEquiv (FinDataIsoFin N)
FinData≡Fin : (N : ℕ) → FinData N ≡ Fin N
FinData≡Fin N = ua (FinData≃Fin N)
| {
"alphanum_fraction": 0.5076366205,
"avg_line_length": 35.5635792779,
"ext": "agda",
"hexsha": "7234ad7f4f15a86542138e787d0266d143f1e108",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Data/Fin/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Data/Fin/Properties.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Data/Fin/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10169,
"size": 22654
} |
import Lvl
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.Subspaces.Kernel
{ℓₛ ℓₛₑ}
{S : Type{ℓₛ}}
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ₛ_ _⋅ₛ_ : S → S → S}
where
open import Logic.Predicate
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
open import Structure.Container.SetLike as SetLike using (SetElement)
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Properties
open import Structure.Operator.Vector
open import Structure.Operator.Vector.LinearMap
open import Structure.Operator.Vector.Proofs
open import Structure.Operator.Vector.Subspace
open import Structure.Relator.Properties
open import Syntax.Implication
open import Syntax.Transitivity
open VectorSpace ⦃ … ⦄
open VectorSpaceVObject ⦃ … ⦄ using (_+ᵥ_; _⋅ₛᵥ_)
open VectorSpaceVObject using (Vector)
private variable ℓ ℓᵥ ℓᵥₑ : Lvl.Level
private variable V W : VectorSpaceVObject {ℓᵥ = ℓᵥ} {ℓᵥₑ = ℓᵥₑ} ⦃ equiv-S = equiv-S ⦄ (_+ₛ_)(_⋅ₛ_)
private variable F : V →ˡⁱⁿᵉᵃʳᵐᵃᵖ W
kernel : (V →ˡⁱⁿᵉᵃʳᵐᵃᵖ W) → PredSet(Vector(V))
kernel {V = V}{W = W} ([∃]-intro f) = PredSet.unapply f(𝟎ᵥ)
kernel-subspace : Subspace(kernel(F))
SetLike.FunctionProperties._closed-under₂_.proof (Subspace.add-closure (kernel-subspace {_} {_} {V} {_} {_} {W} {F = F@([∃]-intro f)})) {x} {y} xkern ykern =
• (
xkern ⇒
x ∈ kernel(F) ⇒-[]
f(x) ≡ 𝟎ᵥ ⇒-end
)
• (
ykern ⇒
y ∈ kernel(F) ⇒-[]
f(y) ≡ 𝟎ᵥ ⇒-end
) ⇒₂-[ congruence₂{A₁ = Vector(W)}{A₂ = Vector(W)}(_+ᵥ_) ]
f(x) +ᵥ f(y) ≡ 𝟎ᵥ +ᵥ 𝟎ᵥ ⇒-[ _🝖 identityᵣ(_+ᵥ_)(𝟎ᵥ) ]
f(x) +ᵥ f(y) ≡ 𝟎ᵥ ⇒-[ preserving₂(f)(_+ᵥ_)(_+ᵥ_) 🝖_ ]
f(x +ᵥ y) ≡ 𝟎ᵥ ⇒-[]
(x +ᵥ y) ∈ kernel(F) ⇒-end
where
instance _ = V
instance _ = W
SetLike.FunctionProperties._closed-under₁_.proof (Subspace.mul-closure (kernel-subspace {_}{_}{V}{_}{_}{W} {F = F@([∃]-intro f)}) {s}) {v} vkern =
vkern ⇒
v ∈ kernel(F) ⇒-[]
f(v) ≡ 𝟎ᵥ ⇒-[ congruence₂ᵣ(_⋅ₛᵥ_)(s) ]
s ⋅ₛᵥ f(v) ≡ s ⋅ₛᵥ 𝟎ᵥ ⇒-[ _🝖 [⋅ₛᵥ]-absorberᵣ ]
s ⋅ₛᵥ f(v) ≡ 𝟎ᵥ ⇒-[ preserving₁(f)(s ⋅ₛᵥ_)(s ⋅ₛᵥ_) 🝖_ ]
f(s ⋅ₛᵥ v) ≡ 𝟎ᵥ ⇒-[]
(s ⋅ₛᵥ v) ∈ kernel(F) ⇒-end
where
instance _ = V
instance _ = W
| {
"alphanum_fraction": 0.6171875,
"avg_line_length": 34.3880597015,
"ext": "agda",
"hexsha": "c6620bd8f3dfb5674c2bf6c64647c2b59b2b6d92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/Subspaces/Kernel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/Subspaces/Kernel.agda",
"max_line_length": 157,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/Subspaces/Kernel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1044,
"size": 2304
} |
-- Andreas and James, Nov 2011 and Oct 2012
-- function with flexible arity
-- {-# OPTIONS -v tc.cover:20 #-}
module FlexibleInterpreter where
open import Common.Equality
open import Common.IO
open import Common.Nat renaming (zero to Z; suc to S) hiding (pred)
data Ty : Set where
nat : Ty
arr : Ty -> Ty -> Ty
data Exp : Ty -> Set where
zero : Exp nat
suc : Exp (arr nat nat)
pred : Exp (arr nat nat)
app : {a b : Ty} -> Exp (arr a b) -> Exp a -> Exp b
Sem : Ty -> Set
Sem nat = Nat
Sem (arr a b) = Sem a -> Sem b
module Flex where
-- Haskell does not seem to handle this
eval' : (a : Ty) -> Exp a -> Sem a
eval' ._ zero = Z
eval' ._ suc = S
eval' b (app f e) = eval' _ f (eval' _ e)
eval' .(arr nat nat) pred Z = Z
eval' ._ pred (S n) = n
eval : {a : Ty} -> Exp a -> Sem a
eval zero = Z
eval suc = S
eval pred Z = Z
eval pred (S n) = n
eval (app f e) = eval f (eval e)
testEvalSuc : ∀ {n} → eval suc n ≡ S n
testEvalSuc = refl
testEvalPredZero : eval pred Z ≡ Z
testEvalPredZero = refl
testEvalPredSuc : ∀ {n} → eval pred (S n) ≡ n
testEvalPredSuc = refl
module Rigid where
-- This executes fine
eval : {a : Ty} -> Exp a -> Sem a
eval zero = Z
eval suc = S
eval pred = λ { Z -> Z
; (S n) -> n
}
eval (app f e) = eval f (eval e)
open Flex
expr = (app pred (app suc (app suc zero)))
test = eval expr
main = printNat test
-- should print 1
| {
"alphanum_fraction": 0.5593895156,
"avg_line_length": 22.4925373134,
"ext": "agda",
"hexsha": "277c49e785f34fc1b83fcc07344c398931ee1517",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/FlexibleInterpreter.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/FlexibleInterpreter.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/FlexibleInterpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 509,
"size": 1507
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Nat.Coprime where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.NatPlusOne
open import Cubical.HITs.PropositionalTruncation as PropTrunc
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Divisibility
open import Cubical.Data.Nat.GCD
areCoprime : ℕ × ℕ → Type₀
areCoprime (m , n) = isGCD m n 1
-- Any pair (m , n) can be converted to a coprime pair (m' , n') s.t.
-- m' ∣ m, n' ∣ n if and only if one of m or n is nonzero
module _ ((m , n) : ℕ × ℕ₊₁) where
private
d = gcd m (ℕ₊₁→ℕ n)
d∣m = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .fst
d∣sn = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .snd
gr = gcdIsGCD m (ℕ₊₁→ℕ n) .snd
c₁ : ℕ
p₁ : c₁ * d ≡ m
c₁ = ∣-untrunc d∣m .fst; p₁ = ∣-untrunc d∣m .snd
c₂ : ℕ₊₁
p₂ : (ℕ₊₁→ℕ c₂) * d ≡ (ℕ₊₁→ℕ n)
c₂ = 1+ (∣s-untrunc d∣sn .fst); p₂ = ∣s-untrunc d∣sn .snd
toCoprime : ℕ × ℕ₊₁ → ℕ × ℕ₊₁
toCoprime (m , n) = (c₁ , c₂)
private
lem : ∀ a {b c d e} → a * b ≡ c → c * d ≡ e → a * (b * d) ≡ e
lem a p q = *-assoc a _ _ ∙ cong (_* _) p ∙ q
gr' : ∀ d' → prediv d' c₁ → prediv d' (ℕ₊₁→ℕ c₂) → (d' * d) ∣ d
gr' d' (b₁ , q₁) (b₂ , q₂) = gr (d' * d) ((∣ b₁ , lem b₁ q₁ p₁ ∣) ,
(∣ b₂ , lem b₂ q₂ p₂ ∣))
-- this only works because d > 0 (<=> m > 0 or n > 0)
d-cancelʳ : ∀ d' → (d' * d) ∣ d → d' ∣ 1
d-cancelʳ d' div = ∣-cancelʳ d-1 (∣-trans (subst (λ x → (d' * x) ∣ x) p div)
(∣-refl (sym (*-identityˡ _))))
where d-1 = m∣sn→z<m d∣sn .fst
p : d ≡ suc d-1
p = sym (+-comm 1 d-1 ∙ m∣sn→z<m d∣sn .snd)
toCoprimeAreCoprime : areCoprime (c₁ , ℕ₊₁→ℕ c₂)
fst toCoprimeAreCoprime = ∣-oneˡ c₁ , ∣-oneˡ (ℕ₊₁→ℕ c₂)
snd toCoprimeAreCoprime d' (d'∣c₁ , d'∣sc₂) = PropTrunc.rec isProp∣ (λ a →
PropTrunc.rec isProp∣ (λ b →
d-cancelʳ d' (gr' d' a b)) d'∣sc₂) d'∣c₁
toCoprime∣ : (c₁ ∣ m) × (ℕ₊₁→ℕ c₂ ∣ ℕ₊₁→ℕ n)
toCoprime∣ = ∣ d , *-comm d c₁ ∙ p₁ ∣ , ∣ d , *-comm d (ℕ₊₁→ℕ c₂) ∙ p₂ ∣
| {
"alphanum_fraction": 0.5054800526,
"avg_line_length": 35.0923076923,
"ext": "agda",
"hexsha": "55ee07dd23aedf9e71321702b85c7609cf09d9cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 1044,
"size": 2281
} |
-- Andreas, 2015-02-24
data Wrap (A : Set) : Set where
wrap : A → Wrap A
data D : Set → Set1 where
c : (A : Set) → D (Wrap A)
test : (A : Set) → D A → Set
test .(Wrap A) (c A) = A
-- this should crash Epic as long as A is considered forced in constructor c
-- should succeed now
| {
"alphanum_fraction": 0.6041666667,
"avg_line_length": 19.2,
"ext": "agda",
"hexsha": "f2104badcfde9f1fb19a56a78d1968511cf25e04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue1441-3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue1441-3.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue1441-3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 100,
"size": 288
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Comonads
------------------------------------------------------------------------
-- Note that currently the monad laws are not included here.
{-# OPTIONS --without-K --safe #-}
module Category.Comonad where
open import Level
open import Function
record RawComonad {f} (W : Set f → Set f) : Set (suc f) where
infixl 1 _=>>_ _=>=_
infixr 1 _<<=_ _=<=_
field
extract : ∀ {A} → W A → A
extend : ∀ {A B} → (W A → B) → (W A → W B)
duplicate : ∀ {A} → W A → W (W A)
duplicate = extend id
liftW : ∀ {A B} → (A → B) → W A → W B
liftW f = extend (f ∘′ extract)
_=>>_ : ∀ {A B} → W A → (W A → B) → W B
_=>>_ = flip extend
_=>=_ : ∀ {c A B} {C : Set c} → (W A → B) → (W B → C) → W A → C
f =>= g = g ∘′ extend f
_<<=_ : ∀ {A B} → (W A → B) → W A → W B
_<<=_ = extend
_=<=_ : ∀ {A B c} {C : Set c} → (W B → C) → (W A → B) → W A → C
_=<=_ = flip _=>=_
| {
"alphanum_fraction": 0.4098196393,
"avg_line_length": 23.7619047619,
"ext": "agda",
"hexsha": "53fa21ca930df8fb0bf619c9b191b75d9ceb7b12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Comonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Comonad.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Comonad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 362,
"size": 998
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A pointwise lifting of a relation to incorporate an additional point.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Point
open import Relation.Binary
module Relation.Binary.Construct.Add.Point.Equality
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
open import Level using (_⊔_)
open import Function
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary
open import Relation.Nullary.Construct.Add.Point
import Relation.Nullary.Decidable as Dec
------------------------------------------------------------------------
-- Definition
data _≈∙_ : Rel (Pointed A) (a ⊔ ℓ) where
∙≈∙ : ∙ ≈∙ ∙
[_] : {k l : A} → k ≈ l → [ k ] ≈∙ [ l ]
------------------------------------------------------------------------
-- Relational properties
[≈]-injective : ∀ {k l} → [ k ] ≈∙ [ l ] → k ≈ l
[≈]-injective [ k≈l ] = k≈l
≈∙-refl : Reflexive _≈_ → Reflexive _≈∙_
≈∙-refl ≈-refl {∙} = ∙≈∙
≈∙-refl ≈-refl {[ k ]} = [ ≈-refl ]
≈∙-sym : Symmetric _≈_ → Symmetric _≈∙_
≈∙-sym ≈-sym ∙≈∙ = ∙≈∙
≈∙-sym ≈-sym [ x≈y ] = [ ≈-sym x≈y ]
≈∙-trans : Transitive _≈_ → Transitive _≈∙_
≈∙-trans ≈-trans ∙≈∙ ∙≈z = ∙≈z
≈∙-trans ≈-trans [ x≈y ] [ y≈z ] = [ ≈-trans x≈y y≈z ]
≈∙-dec : Decidable _≈_ → Decidable _≈∙_
≈∙-dec _≟_ ∙ ∙ = yes ∙≈∙
≈∙-dec _≟_ ∙ [ l ] = no (λ ())
≈∙-dec _≟_ [ k ] ∙ = no (λ ())
≈∙-dec _≟_ [ k ] [ l ] = Dec.map′ [_] [≈]-injective (k ≟ l)
≈∙-irrelevant : Irrelevant _≈_ → Irrelevant _≈∙_
≈∙-irrelevant ≈-irr ∙≈∙ ∙≈∙ = P.refl
≈∙-irrelevant ≈-irr [ p ] [ q ] = P.cong _ (≈-irr p q)
≈∙-substitutive : ∀ {ℓ} → Substitutive _≈_ ℓ → Substitutive _≈∙_ ℓ
≈∙-substitutive ≈-subst P ∙≈∙ = id
≈∙-substitutive ≈-subst P [ p ] = ≈-subst (P ∘′ [_]) p
------------------------------------------------------------------------
-- Structures
≈∙-isEquivalence : IsEquivalence _≈_ → IsEquivalence _≈∙_
≈∙-isEquivalence ≈-isEquivalence = record
{ refl = ≈∙-refl refl
; sym = ≈∙-sym sym
; trans = ≈∙-trans trans
} where open IsEquivalence ≈-isEquivalence
≈∙-isDecEquivalence : IsDecEquivalence _≈_ → IsDecEquivalence _≈∙_
≈∙-isDecEquivalence ≈-isDecEquivalence = record
{ isEquivalence = ≈∙-isEquivalence isEquivalence
; _≟_ = ≈∙-dec _≟_
} where open IsDecEquivalence ≈-isDecEquivalence
| {
"alphanum_fraction": 0.4986138614,
"avg_line_length": 32.3717948718,
"ext": "agda",
"hexsha": "42ce4591bcec4518d46db71022cf18bbe779ecd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Point/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Point/Equality.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Point/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1002,
"size": 2525
} |
module _ where
module A where
postulate
_∷_ _∙_ bind : Set
infixr 5 _∷_
infixr 5 _∙_
infix 1 bind
syntax bind c (λ x → d) = x ← c , d
module B where
postulate
_∷_ _∙_ bind : Set
infix 5 _∷_
infixr 4 _∙_
infixl 2 bind
syntax bind c d = c ∙ d
module C where
postulate
bind : Set
infixr 2 bind
syntax bind c d = c ∙ d
open A
open B
open C
-- _∷_ is infix 5.
-- _∙_ has two fixities: infixr 4 and infixr 5.
-- A.bind's notation is infix 1.
-- B.bind and C.bind's notations are infix 2.
-- There is one instance of _∷_ in the grammar.
-- There are three instances of _∙_ in the grammar, one
-- corresponding to A._∙_, one corresponding to B._∙_, and one
-- corresponding to both B.bind and C.bind.
Foo : Set
Foo = ∷ ∙ ← ,
| {
"alphanum_fraction": 0.6317829457,
"avg_line_length": 15.1764705882,
"ext": "agda",
"hexsha": "85c3c0c73f52a70965dd24ebe241c5073398984e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1436-17.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1436-17.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1436-17.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 289,
"size": 774
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Orders.Partial.Definition
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
module Rings.Orders.Partial.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {p} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where
abstract
open PartiallyOrderedRing pRing
open Setoid S
open SetoidPartialOrder pOrder
open Ring R
open Group additiveGroup
open Equivalence eq
open import Rings.Lemmas R
ringAddInequalities : {w x y z : A} → w < x → y < z → (w + y) < (x + z)
ringAddInequalities {w = w} {x} {y} {z} w<x y<z = <Transitive (orderRespectsAddition w<x y) (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition y<z x))
ringCanMultiplyByPositive : {x y c : A} → (Ring.0R R) < c → x < y → (x * c) < (y * c)
ringCanMultiplyByPositive {x} {y} {c} 0<c x<y = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.identRight additiveGroup) q'
where
have : 0R < (y + Group.inverse additiveGroup x)
have = SetoidPartialOrder.<WellDefined pOrder (Group.invRight additiveGroup) reflexive (orderRespectsAddition x<y (Group.inverse additiveGroup x))
p1 : 0R < ((y * c) + ((Group.inverse additiveGroup x) * c))
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (transitive *DistributesOver+ ((Group.+WellDefined additiveGroup) *Commutative *Commutative))) (orderRespectsMultiplication have 0<c)
p' : 0R < ((y * c) + (Group.inverse additiveGroup (x * c)))
p' = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (transitive (transitive *Commutative ringMinusExtracts) (inverseWellDefined additiveGroup *Commutative))) p1
q : (0R + (x * c)) < (((y * c) + (Group.inverse additiveGroup (x * c))) + (x * c))
q = orderRespectsAddition p' (x * c)
q' : (x * c) < ((y * c) + 0R)
q' = SetoidPartialOrder.<WellDefined pOrder (Group.identLeft additiveGroup) (transitive (symmetric (Group.+Associative additiveGroup)) (Group.+WellDefined additiveGroup reflexive (Group.invLeft additiveGroup))) q
ringCanMultiplyByPositive' : {x y c : A} → (Ring.0R R) < c → x < y → (c * x) < (c * y)
ringCanMultiplyByPositive' {x} {y} {c} 0<c x<y = SetoidPartialOrder.<WellDefined pOrder *Commutative *Commutative (ringCanMultiplyByPositive 0<c x<y)
ringMultiplyPositives : {x y a b : A} → 0R < x → 0R < a → (x < y) → (a < b) → (x * a) < (y * b)
ringMultiplyPositives {x} {y} {a} {b} 0<x 0<a x<y a<b = SetoidPartialOrder.<Transitive pOrder (ringCanMultiplyByPositive 0<a x<y) (<WellDefined *Commutative *Commutative (ringCanMultiplyByPositive (SetoidPartialOrder.<Transitive pOrder 0<x x<y) a<b))
ringSwapNegatives : {x y : A} → (Group.inverse (Ring.additiveGroup R) x) < (Group.inverse (Ring.additiveGroup R) y) → y < x
ringSwapNegatives {x} {y} -x<-y = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric (Group.+Associative additiveGroup)) (transitive (Group.+WellDefined additiveGroup reflexive (Group.invLeft additiveGroup)) (Group.identRight additiveGroup))) (Group.identLeft additiveGroup) v
where
t : ((Group.inverse additiveGroup x) + y) < ((Group.inverse additiveGroup y) + y)
t = orderRespectsAddition -x<-y y
u : (y + (Group.inverse additiveGroup x)) < 0R
u = SetoidPartialOrder.<WellDefined pOrder (groupIsAbelian) (Group.invLeft additiveGroup) t
v : ((y + (Group.inverse additiveGroup x)) + x) < (0R + x)
v = orderRespectsAddition u x
ringSwapNegatives' : {x y : A} → x < y → (Group.inverse (Ring.additiveGroup R) y) < (Group.inverse (Ring.additiveGroup R) x)
ringSwapNegatives' {x} {y} x<y = ringSwapNegatives (<WellDefined (Equivalence.symmetric eq (invTwice additiveGroup _)) (Equivalence.symmetric eq (invTwice additiveGroup _)) x<y)
ringCanMultiplyByNegative : {x y c : A} → c < (Ring.0R R) → x < y → (y * c) < (x * c)
ringCanMultiplyByNegative {x} {y} {c} c<0 x<y = ringSwapNegatives u
where
open Equivalence eq
p1 : (c + Group.inverse additiveGroup c) < (0R + Group.inverse additiveGroup c)
p1 = orderRespectsAddition c<0 _
0<-c : 0R < (Group.inverse additiveGroup c)
0<-c = SetoidPartialOrder.<WellDefined pOrder (Group.invRight additiveGroup) (Group.identLeft additiveGroup) p1
t : (x * Group.inverse additiveGroup c) < (y * Group.inverse additiveGroup c)
t = ringCanMultiplyByPositive 0<-c x<y
u : (Group.inverse additiveGroup (x * c)) < Group.inverse additiveGroup (y * c)
u = SetoidPartialOrder.<WellDefined pOrder ringMinusExtracts ringMinusExtracts t
anyComparisonImpliesNontrivial : {a b : A} → a < b → (0R ∼ 1R) → False
anyComparisonImpliesNontrivial {a} {b} a<b 0=1 = irreflexive (<WellDefined (oneZeroImpliesAllZero 0=1) (oneZeroImpliesAllZero 0=1) a<b)
moveInequality : {a b : A} → a < b → 0R < (b + inverse a)
moveInequality {a} {b} a<b = <WellDefined invRight reflexive (orderRespectsAddition a<b (inverse a))
moveInequality' : {a b : A} → a < b → (a + inverse b) < 0R
moveInequality' {a} {b} a<b = <WellDefined reflexive invRight (orderRespectsAddition a<b (inverse b))
greaterImpliesNotEqual : {a b : A} → a < b → (a ∼ b → False)
greaterImpliesNotEqual {a} {b} a<b a=b = irreflexive (<WellDefined a=b reflexive a<b)
greaterImpliesNotEqual' : {a b : A} → a < b → (b ∼ a → False)
greaterImpliesNotEqual' {a} {b} a<b a=b = irreflexive (<WellDefined reflexive a=b a<b)
negativeInequality : {a : A} → a < 0G → 0G < inverse a
negativeInequality {a} a<0 = <WellDefined invRight identLeft (orderRespectsAddition a<0 (inverse a))
negativeInequality' : {a : A} → 0G < a → inverse a < 0G
negativeInequality' {a} 0<a = <WellDefined identLeft invRight (orderRespectsAddition 0<a (inverse a))
open import Rings.InitialRing R
fromNIncreasing : (0R < 1R) → (n : ℕ) → (fromN n) < (fromN (succ n))
fromNIncreasing 0<1 zero = <WellDefined reflexive (symmetric identRight) 0<1
fromNIncreasing 0<1 (succ n) = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNIncreasing 0<1 n) 1R)
fromNPreservesOrder : (0R < 1R) → {a b : ℕ} → (a <N b) → (fromN a) < (fromN b)
fromNPreservesOrder 0<1 {zero} {succ zero} a<b = fromNIncreasing 0<1 0
fromNPreservesOrder 0<1 {zero} {succ (succ b)} a<b = <Transitive (fromNPreservesOrder 0<1 (succIsPositive b)) (fromNIncreasing 0<1 (succ b))
fromNPreservesOrder 0<1 {succ a} {succ b} a<b = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNPreservesOrder 0<1 (canRemoveSuccFrom<N a<b)) 1R)
| {
"alphanum_fraction": 0.6982933179,
"avg_line_length": 64.0185185185,
"ext": "agda",
"hexsha": "54d01734c53af87717113c209f6e2cf678e243cf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Orders/Partial/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Orders/Partial/Lemmas.agda",
"max_line_length": 289,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Orders/Partial/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2286,
"size": 6914
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Endomorphisms on a Setoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Function.Endomorphism.Setoid {c e} (S : Setoid c e) where
open import Agda.Builtin.Equality
open import Algebra
open import Algebra.Structures
open import Algebra.Morphism; open Definitions
open import Function.Equality
open import Data.Nat.Base using (ℕ; _+_); open ℕ
open import Data.Nat.Properties
open import Data.Product
import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial
private
module E = Setoid (setoid S (Trivial.indexedSetoid S))
open E hiding (refl)
------------------------------------------------------------------------
-- Basic type and functions
Endo : Set _
Endo = S ⟶ S
_^_ : Endo → ℕ → Endo
f ^ zero = id
f ^ suc n = f ∘ (f ^ n)
^-cong₂ : ∀ f → (f ^_) Preserves _≡_ ⟶ _≈_
^-cong₂ f {n} refl = cong (f ^ n)
^-homo : ∀ f → Homomorphic₂ ℕ Endo _≈_ (f ^_) _+_ _∘_
^-homo f zero n x≈y = cong (f ^ n) x≈y
^-homo f (suc m) n x≈y = cong f (^-homo f m n x≈y)
------------------------------------------------------------------------
-- Structures
∘-isMagma : IsMagma _≈_ _∘_
∘-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = λ g f x → g (f x)
}
∘-magma : Magma _ _
∘-magma = record { isMagma = ∘-isMagma }
∘-isSemigroup : IsSemigroup _≈_ _∘_
∘-isSemigroup = record
{ isMagma = ∘-isMagma
; assoc = λ h g f x≈y → cong h (cong g (cong f x≈y))
}
∘-semigroup : Semigroup _ _
∘-semigroup = record { isSemigroup = ∘-isSemigroup }
∘-id-isMonoid : IsMonoid _≈_ _∘_ id
∘-id-isMonoid = record
{ isSemigroup = ∘-isSemigroup
; identity = cong , cong
}
∘-id-monoid : Monoid _ _
∘-id-monoid = record { isMonoid = ∘-id-isMonoid }
------------------------------------------------------------------------
-- Homomorphism
^-isSemigroupMorphism : ∀ f → IsSemigroupMorphism +-semigroup ∘-semigroup (f ^_)
^-isSemigroupMorphism f = record
{ ⟦⟧-cong = ^-cong₂ f
; ∙-homo = ^-homo f
}
^-isMonoidMorphism : ∀ f → IsMonoidMorphism +-0-monoid ∘-id-monoid (f ^_)
^-isMonoidMorphism f = record
{ sm-homo = ^-isSemigroupMorphism f
; ε-homo = λ x≈y → x≈y
}
| {
"alphanum_fraction": 0.5458853942,
"avg_line_length": 25.7888888889,
"ext": "agda",
"hexsha": "9897d8b32b437556110555039176084ab13a6a80",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Setoid.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 766,
"size": 2321
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.types.TLevel
open import lib.types.Sigma
open import lib.types.Pi
module lib.types.Groupoid where
record GroupoidStructure {i j} {El : Type i} (Arr : El → El → Type j)
(_ : ∀ x y → has-level 0 (Arr x y)) : Type (lmax i j) where
field
id : ∀ {x} → Arr x x
inv : ∀ {x y} → Arr x y → Arr y x
comp : ∀ {x y z} → Arr x y → Arr y z → Arr x z
unit-l : ∀ {x y} (a : Arr x y) → comp id a == a
unit-r : ∀ {x y} (a : Arr x y) → comp a id == a
assoc : ∀ {x y z w} (a : Arr x y) (b : Arr y z) (c : Arr z w)
→ comp (comp a b) c == comp a (comp b c)
inv-r : ∀ {x y} (a : Arr x y) → (comp a (inv a)) == id
inv-l : ∀ {x y } (a : Arr x y) → (comp (inv a) a) == id
record Groupoid {i j} : Type (lsucc (lmax i j)) where
constructor groupoid
field
El : Type i
Arr : El → El → Type j
Arr-level : ∀ x y → has-level 0 (Arr x y)
groupoid-struct : GroupoidStructure Arr Arr-level
| {
"alphanum_fraction": 0.5409356725,
"avg_line_length": 33.0967741935,
"ext": "agda",
"hexsha": "27cb7d3918d7d37d6f10ba8b155273c98d9461b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Groupoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Groupoid.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Groupoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 377,
"size": 1026
} |
{-# OPTIONS --without-K #-}
module Data.ByteString.Primitive where
open import Data.Word8.Primitive using (Word8)
open import Data.Nat using (ℕ; _<_)
open import Data.Colist using (Colist)
open import Data.List using (List; length)
open import Agda.Builtin.String using (String)
open import Agda.Builtin.Bool using (Bool)
open import Agda.Builtin.IO using (IO)
open import Data.Tuple.Base using (Pair)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe)
{-# FOREIGN GHC import qualified Data.ByteString.Lazy #-}
open import Data.ByteString.Primitive.Int
open import Data.ByteString.Primitive.Lazy
open import Data.ByteString.Primitive.Strict
-- properties
module _ where
List→Strict→List : (l : List Word8) → List←Strict (List→Strict l) ≡ l
List→Strict→List l = trustMe
Strict→List→Strict : (bs : ByteStringStrict) → List→Strict (List←Strict bs) ≡ bs
Strict→List→Strict bs = trustMe
∣Strict∣≡∣List∣ : (bs : ByteStringStrict) → IntToℕ (lengthStrict bs) ≡ length (List←Strict bs)
∣Strict∣≡∣List∣ bs = trustMe
2³¹ = 2147483648
∣List∣≡∣Strict∣ : (l : List Word8) → (l-small : length l < 2³¹) → IntToℕ (lengthStrict (List→Strict l)) ≡ length l
∣List∣≡∣Strict∣ l l-small = trustMe
postulate
toLazy : ByteStringStrict → ByteStringLazy
toStrict : ByteStringLazy → ByteStringStrict
lazy≟lazy : ByteStringLazy → ByteStringLazy → Bool
strict≟strict : ByteStringStrict → ByteStringStrict → Bool
{-# COMPILE GHC toLazy = (Data.ByteString.Lazy.fromStrict) #-}
{-# COMPILE GHC toStrict = (Data.ByteString.Lazy.toStrict) #-}
{-# COMPILE GHC lazy≟lazy = (==) #-}
{-# COMPILE GHC strict≟strict = (==) #-}
lazy≟strict : ByteStringLazy → ByteStringStrict → Bool
lazy≟strict l s = lazy≟lazy l (toLazy s)
strict≟lazy : ByteStringStrict → ByteStringLazy → Bool
strict≟lazy s l = lazy≟lazy (toLazy s) l
postulate
fromChunks : List ByteStringStrict → ByteStringLazy
toChunks : ByteStringLazy → List ByteStringStrict
{-# COMPILE GHC fromChunks = (Data.ByteString.Lazy.fromChunks) #-}
{-# COMPILE GHC toChunks = (Data.ByteString.Lazy.toChunks) #-}
| {
"alphanum_fraction": 0.7332713755,
"avg_line_length": 36.4745762712,
"ext": "agda",
"hexsha": "0629f93ac4df9c419d77e21c5840f2507c979818",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bytes-agda",
"max_forks_repo_path": "src/Data/ByteString/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bytes-agda",
"max_issues_repo_path": "src/Data/ByteString/Primitive.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bytes-agda",
"max_stars_repo_path": "src/Data/ByteString/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 621,
"size": 2152
} |
------------------------------------------------------------------------
-- Integers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Integer {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude as P hiding (suc) renaming (_+_ to _⊕_; _*_ to _⊛_)
open import Bijection eq using (_↔_)
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq hiding (_∘_)
open import Group eq using (Group; Abelian)
open import H-level eq
open import H-level.Closure eq
import Nat eq as Nat
open import Integer.Basics eq public
private
variable
i j : ℤ
------------------------------------------------------------------------
-- Some lemmas
-- The sum of i and - i is zero.
+-right-inverse : ∀ i → i + - i ≡ + 0
+-right-inverse = λ where
(+ zero) → refl _
(+ P.suc n) → lemma n
-[1+ n ] → lemma n
where
lemma : ∀ n → + P.suc n +-[1+ n ] ≡ + 0
lemma n
with P.suc n Nat.<= n | T[<=]↔≤ {m = P.suc n} {n = n}
… | false | _ = cong (+_) $ Nat.∸≡0 n
… | true | eq = ⊥-elim $ Nat.<-irreflexive (_↔_.to eq _)
-- The sum of - i and i is zero.
+-left-inverse : ∀ i → - i + i ≡ + 0
+-left-inverse i =
- i + i ≡⟨ +-comm (- i) ⟩
i + - i ≡⟨ +-right-inverse i ⟩∎
+ 0 ∎
-- + 0 is a left identity for addition.
+-left-identity : + 0 + i ≡ i
+-left-identity {i = + _} = refl _
+-left-identity {i = -[1+ _ ]} = refl _
-- + 0 is a right identity for addition.
+-right-identity : i + + 0 ≡ i
+-right-identity {i = + _} = cong (+_) Nat.+-right-identity
+-right-identity {i = -[1+ _ ]} = refl _
-- Addition is associative.
+-assoc : ∀ i {j k} → i + (j + k) ≡ (i + j) + k
+-assoc = λ where
(+ m) {j = + _} {k = + _} →
cong (+_) $ Nat.+-assoc m
-[1+ m ] {j = -[1+ n ]} {k = -[1+ o ]} →
cong (-[1+_] ∘ P.suc)
(m ⊕ P.suc (n ⊕ o) ≡⟨ sym $ Nat.suc+≡+suc m ⟩
P.suc m ⊕ (n ⊕ o) ≡⟨ Nat.+-assoc (P.suc m) ⟩∎
(P.suc m ⊕ n) ⊕ o ∎)
-[1+ m ] {j = + n} {k = + o} →
sym $ ++-[1+]++ _ n _
(+ m) {j = -[1+ n ]} {k = -[1+ o ]} →
sym $ ++-[1+]+-[1+] m _ _
(+ m) {j = + n} {k = -[1+ o ]} →
lemma₁ m _ _
(+ m) {j = -[1+ n ]} {k = + o} →
lemma₂ m _ _
-[1+ m ] {j = -[1+ n ]} {k = + o} →
lemma₃ _ o _
-[1+ m ] {j = + n} {k = -[1+ o ]} →
lemma₄ _ n _
where
++-[1+]++ : ∀ m n o → + n +-[1+ m ] + + o ≡ (+ (n ⊕ o) +-[1+ m ])
++-[1+]++ m zero o = refl _
++-[1+]++ zero (P.suc n) o = refl _
++-[1+]++ (P.suc m) (P.suc n) o = ++-[1+]++ m n o
++-[1+]+-[1+] :
∀ m n o → + m +-[1+ n ] + -[1+ o ] ≡ (+ m +-[1+ 1 ⊕ n ⊕ o ])
++-[1+]+-[1+] zero n o = refl _
++-[1+]+-[1+] (P.suc m) zero o = refl _
++-[1+]+-[1+] (P.suc m) (P.suc n) o = ++-[1+]+-[1+] m n o
lemma₁ : ∀ m n o → + m + (+ n +-[1+ o ]) ≡ (+ m ⊕ n +-[1+ o ])
lemma₁ m n o =
+ m + (+ n +-[1+ o ]) ≡⟨ +-comm (+ m) {j = + n +-[1+ o ]} ⟩
(+ n +-[1+ o ]) + + m ≡⟨ ++-[1+]++ _ n _ ⟩
(+ n ⊕ m +-[1+ o ]) ≡⟨ cong +_+-[1+ o ] $ Nat.+-comm n ⟩∎
(+ m ⊕ n +-[1+ o ]) ∎
lemma₂ : ∀ m n o → + m + (+ n +-[1+ o ]) ≡ (+ m +-[1+ o ]) + + n
lemma₂ m n o =
+ m + (+ n +-[1+ o ]) ≡⟨ lemma₁ m n o ⟩
(+ m ⊕ n +-[1+ o ]) ≡⟨ sym $ ++-[1+]++ _ m _ ⟩∎
(+ m +-[1+ o ]) + + n ∎
lemma₃ :
∀ m n o → -[1+ m ] + (+ n +-[1+ o ]) ≡ (+ n +-[1+ 1 ⊕ m ⊕ o ])
lemma₃ m n o =
-[1+ m ] + (+ n +-[1+ o ]) ≡⟨ +-comm -[1+ m ] {j = + n +-[1+ o ]} ⟩
(+ n +-[1+ o ]) + -[1+ m ] ≡⟨ ++-[1+]+-[1+] n o m ⟩
(+ n +-[1+ 1 ⊕ o ⊕ m ]) ≡⟨ cong + n +-[1+_] $ cong (1 ⊕_) $ Nat.+-comm o ⟩∎
(+ n +-[1+ 1 ⊕ m ⊕ o ]) ∎
lemma₄ :
∀ m n o → -[1+ m ] + (+ n +-[1+ o ]) ≡ (+ n +-[1+ m ]) + -[1+ o ]
lemma₄ m n o =
-[1+ m ] + (+ n +-[1+ o ]) ≡⟨ lemma₃ m n o ⟩
(+ n +-[1+ 1 ⊕ m ⊕ o ]) ≡⟨ sym $ ++-[1+]+-[1+] n _ _ ⟩∎
(+ n +-[1+ m ]) + -[1+ o ] ∎
------------------------------------------------------------------------
-- Successor and predecessor
-- The successor function.
suc : ℤ → ℤ
suc (+ n) = + P.suc n
suc -[1+ zero ] = + zero
suc -[1+ P.suc n ] = -[1+ n ]
-- The successor function adds one to its input.
suc≡1+ : ∀ i → suc i ≡ + 1 + i
suc≡1+ (+ _) = refl _
suc≡1+ -[1+ zero ] = refl _
suc≡1+ -[1+ P.suc _ ] = refl _
-- The predecessor function.
pred : ℤ → ℤ
pred (+ zero) = -[1+ zero ]
pred (+ P.suc n) = + n
pred -[1+ n ] = -[1+ P.suc n ]
-- The predecessor function adds minus one to its input.
pred≡-1+ : ∀ i → pred i ≡ -[ 1 ] + i
pred≡-1+ (+ zero) = refl _
pred≡-1+ (+ P.suc _) = refl _
pred≡-1+ -[1+ _ ] = refl _
-- An equivalence between ℤ and ℤ corresponding to the successor
-- function.
successor : ℤ ≃ ℤ
successor = Eq.↔→≃ suc pred suc-pred pred-suc
where
suc-pred : ∀ i → suc (pred i) ≡ i
suc-pred (+ zero) = refl _
suc-pred (+ P.suc _) = refl _
suc-pred -[1+ _ ] = refl _
pred-suc : ∀ i → pred (suc i) ≡ i
pred-suc (+ _) = refl _
pred-suc -[1+ zero ] = refl _
pred-suc -[1+ P.suc _ ] = refl _
------------------------------------------------------------------------
-- Positive, negative
-- The property of being positive.
Positive : ℤ → Type
Positive (+ zero) = ⊥
Positive (+ P.suc _) = ⊤
Positive -[1+ _ ] = ⊥
-- Positive is propositional.
Positive-propositional : Is-proposition (Positive i)
Positive-propositional {i = + zero} = ⊥-propositional
Positive-propositional {i = + P.suc _} = mono₁ 0 ⊤-contractible
Positive-propositional {i = -[1+ _ ]} = ⊥-propositional
-- The property of being negative.
Negative : ℤ → Type
Negative (+ _) = ⊥
Negative -[1+ _ ] = ⊤
-- Negative is propositional.
Negative-propositional : Is-proposition (Negative i)
Negative-propositional {i = + _} = ⊥-propositional
Negative-propositional {i = -[1+ _ ]} = mono₁ 0 ⊤-contractible
-- No integer is both positive and negative.
¬+- : Positive i → Negative i → ⊥₀
¬+- {i = + _} _ neg = neg
¬+- {i = -[1+ _ ]} pos _ = pos
-- No integer is both positive and equal to zero.
¬+0 : Positive i → i ≡ + 0 → ⊥₀
¬+0 {i = + zero} pos _ = pos
¬+0 {i = + P.suc _} _ ≡0 = Nat.0≢+ $ sym $ +-cancellative ≡0
¬+0 {i = -[1+ _ ]} pos _ = pos
-- No integer is both negative and equal to zero.
¬-0 : Negative i → i ≡ + 0 → ⊥₀
¬-0 {i = + _} neg _ = neg
¬-0 {i = -[1+ _ ]} _ ≡0 = +≢-[1+] $ sym ≡0
-- One can decide if an integer is negative, zero or positive.
-⊎0⊎+ : ∀ i → Negative i ⊎ i ≡ + 0 ⊎ Positive i
-⊎0⊎+ (+ zero) = inj₂ (inj₁ (refl _))
-⊎0⊎+ (+ P.suc _) = inj₂ (inj₂ _)
-⊎0⊎+ -[1+ _ ] = inj₁ _
-- If i and j are positive, then i + j is positive.
>0→>0→+>0 : ∀ i j → Positive i → Positive j → Positive (i + j)
>0→>0→+>0 (+ P.suc _) (+ P.suc _) _ _ = _
-- If i and j are negative, then i + j is negative.
<0→<0→+<0 : ∀ i j → Negative i → Negative j → Negative (i + j)
<0→<0→+<0 -[1+ _ ] -[1+ _ ] _ _ = _
------------------------------------------------------------------------
-- The group of integers
-- The group of integers.
ℤ-group : Group lzero
ℤ-group .Group.Carrier = ℤ
ℤ-group .Group.Carrier-is-set = ℤ-set
ℤ-group .Group._∘_ = _+_
ℤ-group .Group.id = + 0
ℤ-group .Group._⁻¹ = -_
ℤ-group .Group.left-identity _ = +-left-identity
ℤ-group .Group.right-identity _ = +-right-identity
ℤ-group .Group.assoc i _ _ = +-assoc i
ℤ-group .Group.right-inverse = +-right-inverse
ℤ-group .Group.left-inverse = +-left-inverse
-- The group of integers is abelian.
ℤ-abelian : Abelian ℤ-group
ℤ-abelian i _ = +-comm i
private
module ℤG = Group ℤ-group
open ℤG public
using ()
renaming (_^+_ to infixl 7 _*+_;
_^_ to infixl 7 _*_)
-- + 1 is a left identity for multiplication.
*-left-identity : ∀ i → + 1 * i ≡ i
*-left-identity = lemma
where
+lemma : ∀ n → + 1 *+ n ≡ + n
+lemma zero = refl _
+lemma (P.suc n) =
+ 1 + (+ 1) *+ n ≡⟨ cong (λ i → + 1 + i) $ +lemma n ⟩
+ 1 + + n ≡⟨⟩
+ P.suc n ∎
-lemma : ∀ n → -[ 1 ] *+ n ≡ -[ n ]
-lemma zero = refl _
-lemma (P.suc zero) = refl _
-lemma (P.suc (P.suc n)) =
-[ 1 ] + -[ 1 ] *+ P.suc n ≡⟨ cong (λ i → -[ 1 ] + i) $ -lemma (P.suc n) ⟩
-[ 1 ] + -[ P.suc n ] ≡⟨⟩
-[ P.suc (P.suc n) ] ∎
lemma : ∀ i → + 1 * i ≡ i
lemma (+ n) = +lemma n
lemma -[1+ n ] = -lemma (P.suc n)
-- _*+ n distributes over addition.
*+-distrib-+ : ∀ n → (i + j) *+ n ≡ i *+ n + j *+ n
*+-distrib-+ {i = i} n = ℤG.∘^+≡^+∘^+ (+-comm i) n
-- If a positive number is multiplied by a positive number, then
-- the result is positive.
>0→*+suc> : ∀ i m → Positive i → Positive (i *+ P.suc m)
>0→*+suc> i zero =
Positive i ↝⟨ subst Positive (sym $ ℤG.right-identity i) ⟩
Positive (i + + 0) ↔⟨⟩
Positive (i *+ 1) □
>0→*+suc> i (P.suc m) =
Positive i ↝⟨ (λ p → p , >0→*+suc> i m p) ⟩
Positive i × Positive (i *+ P.suc m) ↝⟨ uncurry (>0→>0→+>0 i (i *+ P.suc m)) ⟩
Positive (i + i *+ P.suc m) ↔⟨⟩
Positive (i *+ P.suc (P.suc m)) □
-- If a negative number is multiplied by a positive number, then
-- the result is negative.
<0→*+suc<0 : ∀ i m → Negative i → Negative (i *+ P.suc m)
<0→*+suc<0 i zero =
Negative i ↝⟨ subst Negative (sym $ ℤG.right-identity i) ⟩
Negative (i + + 0) ↔⟨⟩
Negative (i *+ 1) □
<0→*+suc<0 i (P.suc m) =
Negative i ↝⟨ (λ p → p , <0→*+suc<0 i m p) ⟩
Negative i × Negative (i *+ P.suc m) ↝⟨ uncurry (<0→<0→+<0 i (i *+ P.suc m)) ⟩
Negative (i + i *+ P.suc m) ↔⟨⟩
Negative (i *+ P.suc (P.suc m)) □
------------------------------------------------------------------------
-- Integer division by two
-- Division by two, rounded downwards.
⌊_/2⌋ : ℤ → ℤ
⌊ + n /2⌋ = + Nat.⌊ n /2⌋
⌊ -[1+ n ] /2⌋ = -[ Nat.⌈ P.suc n /2⌉ ]
-- A kind of distributivity property for ⌊_/2⌋ and _+_.
⌊+*+2/2⌋≡ : ∀ i {j} → ⌊ i + j *+ 2 /2⌋ ≡ ⌊ i /2⌋ + j
⌊+*+2/2⌋≡ = λ where
(+ m) {j = + n} → cong +_
(Nat.⌊ m ⊕ 2 ⊛ n /2⌋ ≡⟨ cong Nat.⌊_/2⌋ $ Nat.+-comm m ⟩
Nat.⌊ 2 ⊛ n ⊕ m /2⌋ ≡⟨ Nat.⌊2*+/2⌋≡ n ⟩
n ⊕ Nat.⌊ m /2⌋ ≡⟨ Nat.+-comm n ⟩∎
Nat.⌊ m /2⌋ ⊕ n ∎)
-[1+ zero ] {j = -[1+ n ]} → cong -[1+_]
(Nat.⌈ P.suc (n ⊕ n) /2⌉ ≡⟨ cong (Nat.⌈_/2⌉ ∘ P.suc) $ ⊕-lemma n ⟩
Nat.⌈ 1 ⊕ 2 ⊛ n /2⌉ ≡⟨ cong Nat.⌈_/2⌉ $ Nat.+-comm 1 ⟩
Nat.⌈ 2 ⊛ n ⊕ 1 /2⌉ ≡⟨ Nat.⌈2*+/2⌉≡ n ⟩
n ⊕ Nat.⌈ 1 /2⌉ ≡⟨ Nat.+-comm n ⟩∎
P.suc n ∎)
-[1+ P.suc m ] {j = -[1+ n ]} → cong -[1+_]
(Nat.⌈ P.suc m ⊕ P.suc (n ⊕ n) /2⌉ ≡⟨ cong (Nat.⌈_/2⌉ ∘ P.suc) $ sym $ Nat.suc+≡+suc m ⟩
P.suc Nat.⌈ m ⊕ (n ⊕ n) /2⌉ ≡⟨ cong (P.suc ∘ Nat.⌈_/2⌉ ∘ (m ⊕_)) $ ⊕-lemma n ⟩
P.suc Nat.⌈ m ⊕ 2 ⊛ n /2⌉ ≡⟨ cong (P.suc ∘ Nat.⌈_/2⌉) $ Nat.+-comm m ⟩
P.suc Nat.⌈ 2 ⊛ n ⊕ m /2⌉ ≡⟨ cong P.suc $ Nat.⌈2*+/2⌉≡ n ⟩
P.suc (n ⊕ Nat.⌈ m /2⌉) ≡⟨ cong P.suc $ Nat.+-comm n ⟩∎
P.suc (Nat.⌈ m /2⌉ ⊕ n) ∎)
(+ m) {j = -[1+ n ]} →
⌊ + m +-[1+ P.suc (n ⊕ n) ] /2⌋ ≡⟨ cong (λ n → ⌊ + m +-[1+ P.suc n ] /2⌋) $ ⊕-lemma n ⟩
⌊ + m +-[1+ P.suc (2 ⊛ n) ] /2⌋ ≡⟨ lemma₁ m n ⟩∎
+ Nat.⌊ m /2⌋ +-[1+ n ] ∎
-[1+ 0 ] {j = + 0} →
-[ 1 ] ≡⟨⟩
-[ 1 ] ∎
-[1+ 0 ] {j = + P.suc n} → cong +_
(Nat.⌊ n ⊕ P.suc (n ⊕ 0) /2⌋ ≡⟨ cong Nat.⌊_/2⌋ $ sym $ Nat.suc+≡+suc n ⟩
Nat.⌊ 1 ⊕ 2 ⊛ n /2⌋ ≡⟨ Nat.⌊1+2*/2⌋≡ n ⟩∎
n ∎)
-[1+ P.suc m ] {j = + n} →
⌊ + 2 ⊛ n +-[1+ P.suc m ] /2⌋ ≡⟨ lemma₂ m n ⟩∎
+ n +-[1+ Nat.⌈ m /2⌉ ] ∎
where
⊕-lemma : ∀ n → n ⊕ n ≡ 2 ⊛ n
⊕-lemma n = cong (n ⊕_) $ sym Nat.+-right-identity
lemma₁ :
∀ m n →
⌊ + m +-[1+ P.suc (2 ⊛ n) ] /2⌋ ≡
+ Nat.⌊ m /2⌋ +-[1+ n ]
lemma₁ zero n = cong -[1+_]
(Nat.⌈ 2 ⊛ n /2⌉ ≡⟨ Nat.⌈2*/2⌉≡ n ⟩∎
n ∎)
lemma₁ (P.suc zero) n =
-[ Nat.⌈ 1 ⊕ 2 ⊛ n /2⌉ ] ≡⟨ cong -[_] $ Nat.⌈1+2*/2⌉≡ n ⟩∎
-[1+ n ] ∎
lemma₁ (P.suc (P.suc m)) zero =
⌊ + m /2⌋ ≡⟨⟩
+ Nat.⌊ m /2⌋ ∎
lemma₁ (P.suc (P.suc m)) (P.suc n) =
⌊ + m +-[1+ n ⊕ P.suc (n ⊕ 0) ] /2⌋ ≡⟨ cong (⌊_/2⌋ ∘ + m +-[1+_]) $ sym $ Nat.suc+≡+suc n ⟩
⌊ + m +-[1+ P.suc (2 ⊛ n) ] /2⌋ ≡⟨ lemma₁ m n ⟩∎
+ Nat.⌊ m /2⌋ +-[1+ n ] ∎
mutual
lemma₂ :
∀ m n →
⌊ + 2 ⊛ n +-[1+ P.suc m ] /2⌋ ≡
+ n +-[1+ Nat.⌈ m /2⌉ ]
lemma₂ m zero =
⌊ -[1+ P.suc m ] /2⌋ ≡⟨⟩
-[1+ Nat.⌈ m /2⌉ ] ∎
lemma₂ m (P.suc n) =
⌊ + n ⊕ P.suc (n ⊕ 0) +-[1+ m ] /2⌋ ≡⟨ cong (⌊_/2⌋ ∘ +_+-[1+ m ]) $ sym $ Nat.suc+≡+suc n ⟩
⌊ + P.suc (2 ⊛ n) +-[1+ m ] /2⌋ ≡⟨ lemma₃ m n ⟩∎
+ P.suc n +-[1+ Nat.⌈ m /2⌉ ] ∎
lemma₃ :
∀ m n →
⌊ + P.suc (2 ⊛ n) +-[1+ m ] /2⌋ ≡
+ P.suc n +-[1+ Nat.⌈ m /2⌉ ]
lemma₃ zero n = cong +_
(Nat.⌊ 2 ⊛ n /2⌋ ≡⟨ Nat.⌊2*/2⌋≡ n ⟩∎
n ∎)
lemma₃ (P.suc zero) zero =
-[ 1 ] ≡⟨⟩
-[ 1 ] ∎
lemma₃ (P.suc zero) (P.suc n) = cong +_
(Nat.⌊ n ⊕ P.suc (n ⊕ zero) /2⌋ ≡⟨ cong Nat.⌊_/2⌋ $ sym $ Nat.suc+≡+suc n ⟩
Nat.⌊ 1 ⊕ 2 ⊛ n /2⌋ ≡⟨ Nat.⌊1+2*/2⌋≡ n ⟩∎
n ∎)
lemma₃ (P.suc (P.suc m)) n =
⌊ + 2 ⊛ n +-[1+ P.suc m ] /2⌋ ≡⟨ lemma₂ m n ⟩∎
+ n +-[1+ Nat.⌈ m /2⌉ ] ∎
-- If you double and then halve an integer, then you get back what you
-- started with.
⌊*+2/2⌋≡ : ∀ i → ⌊ i *+ 2 /2⌋ ≡ i
⌊*+2/2⌋≡ i =
⌊ i *+ 2 /2⌋ ≡⟨ cong ⌊_/2⌋ $ sym $ +-left-identity {i = i *+ 2} ⟩
⌊ + 0 + i *+ 2 /2⌋ ≡⟨ ⌊+*+2/2⌋≡ (+ 0) {j = i} ⟩
⌊ + 0 /2⌋ + i ≡⟨⟩
+ 0 + i ≡⟨ +-left-identity ⟩∎
i ∎
| {
"alphanum_fraction": 0.4047038577,
"avg_line_length": 31.5520361991,
"ext": "agda",
"hexsha": "41d5ee072c55102d3ac4ce8f2a3046cb1fef0f8e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Integer.agda",
"max_line_length": 98,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 6536,
"size": 13946
} |
open import Coinduction using ( ♯_ )
open import Data.Bool using ( Bool ; true ; false ; not )
open import Data.ByteString using ( null ) renaming ( span to #span )
open import Data.Natural using ( Natural )
open import Data.Product using ( _×_ ; _,_ )
open import Data.Word using ( Byte )
open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; π₁ ; π₂ ; _[&]_ )
open import System.IO.Transducers.Weight using ( weight )
open import System.IO.Transducers.Stateful using ( loop )
open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ )
open import System.IO.Transducers.Strict using ( _⇛_ )
module System.IO.Transducers.Bytes where
open System.IO.Transducers.Session public using ( Bytes ; Bytes' )
mutual
span' : (Byte → Bool) → Bytes' ⇛ (Bytes & Bytes)
span' φ x with #span φ x
span' φ x | (x₁ , x₂) with null x₁ | null x₂
span' φ x | (x₁ , x₂) | true | true = inp (♯ span φ)
span' φ x | (x₁ , x₂) | true | false = out false (out true (out x₂ done))
span' φ x | (x₁ , x₂) | false | true = out true (out x₁ (inp (♯ span φ)))
span' φ x | (x₁ , x₂) | false | false = out true (out x₁ (out false (out true (out x₂ done))))
span : (Byte → Bool) → Bytes ⇛ (Bytes & Bytes)
span φ false = out false (out false done)
span φ true = inp (♯ span' φ)
break : (Byte → Bool) → Bytes ⇛ (Bytes & Bytes)
break φ = span (λ x → not (φ x))
mutual
nonempty' : Bytes' & Bytes ⇛ ¿ Bytes & Bytes
nonempty' x with null x
nonempty' x | true = inp (♯ nonempty)
nonempty' x | false = out true (out true (out x done))
nonempty : Bytes & Bytes ⇛ ¿ Bytes & Bytes
nonempty true = inp (♯ nonempty')
nonempty false = out false done
split? : (Byte → Bool) → Bytes ⇒ (¿ Bytes & Bytes)
split? φ = inp (♯ span φ) ⟫ π₂ {Bytes} ⟫ inp (♯ break φ) ⟫ inp (♯ nonempty)
split : (Byte → Bool) → Bytes ⇒ * Bytes
split φ = loop {Bytes} (split? φ) ⟫ π₁
bytes : Bytes ⇒ ⟨ Natural ⟩
bytes = weight
| {
"alphanum_fraction": 0.6266050334,
"avg_line_length": 36.7358490566,
"ext": "agda",
"hexsha": "3044004f66adc0053010d8b4016de52087a34aa3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Bytes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Bytes.agda",
"max_line_length": 96,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Bytes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 641,
"size": 1947
} |
-- Andreas, 2016-02-02 added Ambiguous
module Issue480 where
module Simple where
data Q : Set where
a : Q
f : _ → Q
f a = a
postulate helper : ∀ {T : Set} → (T → T) → Q
test₁ : Q → Q
test₁ = λ { a → a }
test₂ : Q
test₂ = helper test₁
-- Same as test₂ and test₁, but stuck together.
test₃ : Q
test₃ = helper λ { a → a } -- this says "Type mismatch when checking that the pattern a has type _45"
module Ambiguous where
data Q : Set where
a : Q
data Overlap : Set where
a : Overlap
postulate helper : ∀ {T : Set} → (T → T) → T -- result type needs to be propagated
test₁ : Q → Q
test₁ = λ { a → a }
test₃ : Q
test₃ = helper λ { a → a }
_$_ : ∀ {T : Set} → (T → T) → T → T
f $ x = f x
test : Q
test = (λ { a → a }) $ a
test₂ : _
test₂ = (λ { a → a }) $ Q.a
module Example where
infixr 5 _∷_
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data List : Set₁ where
[] : List
_∷_ : Set → List → List
data Tree (L : Set) : List → Set₁ where
tip : Tree L []
node : ∀ {T Ts} → (cs : T → Tree L Ts) → Tree L (T ∷ Ts)
data Q (n : ℕ) : Set where
a : Q n
b : Q n
test₁ : Q zero → Tree ℕ (Q zero ∷ [])
test₁ = λ
{ a → node λ { a → tip ; b → tip }
; b → node λ { a → tip ; b → tip }
}
test₂ = node test₁
test₃ : Tree ℕ (Q zero ∷ Q zero ∷ [])
test₃ = node λ
{ a → node λ { a → tip ; b → tip }
; b → node λ { a → tip ; b → tip }
}
| {
"alphanum_fraction": 0.49932341,
"avg_line_length": 17.5952380952,
"ext": "agda",
"hexsha": "5732a40ace6430d9dfbaeb7b4d68cff2f318b054",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue480.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue480.agda",
"max_line_length": 103,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue480.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 567,
"size": 1478
} |
{-# OPTIONS --guardedness #-}
module Builtin.Coinduction where
open import Agda.Builtin.Coinduction public
| {
"alphanum_fraction": 0.787037037,
"avg_line_length": 21.6,
"ext": "agda",
"hexsha": "e7478a7e51afae45ecd213e0e2c997cc0d7269bf",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "UlfNorell/agda-prelude",
"max_forks_repo_path": "src/Builtin/Coinduction.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "UlfNorell/agda-prelude",
"max_issues_repo_path": "src/Builtin/Coinduction.agda",
"max_line_length": 43,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlfNorell/agda-prelude",
"max_stars_repo_path": "src/Builtin/Coinduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 25,
"size": 108
} |
module FFI.Data.Either where
{-# FOREIGN GHC import qualified Data.Either #-}
data Either (A B : Set) : Set where
Left : A → Either A B
Right : B → Either A B
{-# COMPILE GHC Either = data Data.Either.Either (Data.Either.Left|Data.Either.Right) #-}
swapLR : ∀ {A B} → Either A B → Either B A
swapLR (Left x) = Right x
swapLR (Right x) = Left x
mapL : ∀ {A B C} → (A → B) → Either A C → Either B C
mapL f (Left x) = Left (f x)
mapL f (Right x) = Right x
mapR : ∀ {A B C} → (B → C) → Either A B → Either A C
mapR f (Left x) = Left x
mapR f (Right x) = Right (f x)
mapLR : ∀ {A B C D} → (A → B) → (C → D) → Either A C → Either B D
mapLR f g (Left x) = Left (f x)
mapLR f g (Right x) = Right (g x)
cond : ∀ {A B C : Set} → (A → C) → (B → C) → (Either A B) → C
cond f g (Left x) = f x
cond f g (Right x) = g x
| {
"alphanum_fraction": 0.5698529412,
"avg_line_length": 28.1379310345,
"ext": "agda",
"hexsha": "8a5d3e6655a47f74c8514c7947dc52f9f6d41ca7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_forks_repo_path": "prototyping/FFI/Data/Either.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_issues_repo_path": "prototyping/FFI/Data/Either.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/FFI/Data/Either.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 316,
"size": 816
} |
-- Andreas, 2018-10-27, issue #3324 reported by Guillaume Brunerie
-- Missing 'reduce' leads to arbitrary rejection of pattern matching on props
{-# OPTIONS --prop #-}
-- {-# OPTIONS -v tc.cover:60 #-}
data Unit : Prop where
tt : Unit
-- Works
f : {A : Set} → Unit → Unit
f tt = tt
-- Should work
g : Unit → Unit
g tt = tt
| {
"alphanum_fraction": 0.6393939394,
"avg_line_length": 18.3333333333,
"ext": "agda",
"hexsha": "eecd10ae84ea0729cc08c0ec326d9cf02c6f9bba",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3324.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3324.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3324.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 99,
"size": 330
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Transitive closures
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Closure.Transitive where
open import Function
open import Function.Equivalence as Equiv using (_⇔_)
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
------------------------------------------------------------------------
-- Transitive closure
infix 4 Plus
syntax Plus R x y = x [ R ]⁺ y
data Plus {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) : Rel A (a ⊔ ℓ) where
[_] : ∀ {x y} (x∼y : x ∼ y) → x [ _∼_ ]⁺ y
_∼⁺⟨_⟩_ : ∀ x {y z} (x∼⁺y : x [ _∼_ ]⁺ y) (y∼⁺z : y [ _∼_ ]⁺ z) →
x [ _∼_ ]⁺ z
module _ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} where
[]-injective : ∀ {x y p q} → (x [ _∼_ ]⁺ y ∋ [ p ]) ≡ [ q ] → p ≡ q
[]-injective refl = refl
-- See also ∼⁺⟨⟩-injectiveˡ and ∼⁺⟨⟩-injectiveʳ in
-- Relation.Binary.Construct.Closure.Transitive.WithK.
-- "Equational" reasoning notation. Example:
--
-- lemma =
-- x ∼⁺⟨ [ lemma₁ ] ⟩
-- y ∼⁺⟨ lemma₂ ⟩∎
-- z ∎
finally : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} x y →
x [ _∼_ ]⁺ y → x [ _∼_ ]⁺ y
finally _ _ = id
syntax finally x y x∼⁺y = x ∼⁺⟨ x∼⁺y ⟩∎ y ∎
infixr 2 _∼⁺⟨_⟩_
infix 3 finally
-- Map.
map : ∀ {a a′ ℓ ℓ′} {A : Set a} {A′ : Set a′}
{_R_ : Rel A ℓ} {_R′_ : Rel A′ ℓ′} {f : A → A′} →
_R_ =[ f ]⇒ _R′_ → Plus _R_ =[ f ]⇒ Plus _R′_
map R⇒R′ [ xRy ] = [ R⇒R′ xRy ]
map R⇒R′ (x ∼⁺⟨ xR⁺z ⟩ zR⁺y) =
_ ∼⁺⟨ map R⇒R′ xR⁺z ⟩ map R⇒R′ zR⁺y
------------------------------------------------------------------------
-- Alternative definition of transitive closure
-- A generalisation of Data.List.Nonempty.List⁺.
infixr 5 _∷_ _++_
infix 4 Plus′
syntax Plus′ R x y = x ⟨ R ⟩⁺ y
data Plus′ {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) : Rel A (a ⊔ ℓ) where
[_] : ∀ {x y} (x∼y : x ∼ y) → x ⟨ _∼_ ⟩⁺ y
_∷_ : ∀ {x y z} (x∼y : x ∼ y) (y∼⁺z : y ⟨ _∼_ ⟩⁺ z) → x ⟨ _∼_ ⟩⁺ z
-- Transitivity.
_++_ : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} {x y z} →
x ⟨ _∼_ ⟩⁺ y → y ⟨ _∼_ ⟩⁺ z → x ⟨ _∼_ ⟩⁺ z
[ x∼y ] ++ y∼⁺z = x∼y ∷ y∼⁺z
(x∼y ∷ y∼⁺z) ++ z∼⁺u = x∼y ∷ (y∼⁺z ++ z∼⁺u)
-- Plus and Plus′ are equivalent.
equivalent : ∀ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} {x y} →
Plus _∼_ x y ⇔ Plus′ _∼_ x y
equivalent {_∼_ = _∼_} = Equiv.equivalence complete sound
where
complete : Plus _∼_ ⇒ Plus′ _∼_
complete [ x∼y ] = [ x∼y ]
complete (x ∼⁺⟨ x∼⁺y ⟩ y∼⁺z) = complete x∼⁺y ++ complete y∼⁺z
sound : Plus′ _∼_ ⇒ Plus _∼_
sound [ x∼y ] = [ x∼y ]
sound (x∼y ∷ y∼⁺z) = _ ∼⁺⟨ [ x∼y ] ⟩ sound y∼⁺z
| {
"alphanum_fraction": 0.4432765495,
"avg_line_length": 28.7395833333,
"ext": "agda",
"hexsha": "933016059883652f812f8215f3b5773585e989e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1261,
"size": 2759
} |
------------------------------------------------------------------------
-- Imports every module so that it is easy to see if everything builds
------------------------------------------------------------------------
module Everything where
import Parallel
import Parallel.Examples
import Parallel.Index
import Parallel.Lib
import RecursiveDescent.Coinductive
import RecursiveDescent.Coinductive.Examples
import RecursiveDescent.Coinductive.Internal
import RecursiveDescent.Coinductive.Lib
import RecursiveDescent.Hybrid
import RecursiveDescent.Hybrid.Examples
import RecursiveDescent.Hybrid.Lib
-- import RecursiveDescent.Hybrid.Memoised -- Agda is too slow...
import RecursiveDescent.Hybrid.Memoised.Monad
import RecursiveDescent.Hybrid.Mixfix
hiding (module Expr) -- Necessary due to an Agda bug.
import RecursiveDescent.Hybrid.Mixfix.Example
import RecursiveDescent.Hybrid.Mixfix.Expr
import RecursiveDescent.Hybrid.Mixfix.Fixity
import RecursiveDescent.Hybrid.PBM
import RecursiveDescent.Hybrid.Simple
import RecursiveDescent.Hybrid.Type
import RecursiveDescent.Index
import RecursiveDescent.Inductive
import RecursiveDescent.Inductive.Char
import RecursiveDescent.Inductive.Examples
import RecursiveDescent.Inductive.Internal
import RecursiveDescent.Inductive.Lib
import RecursiveDescent.Inductive.Semantics
import RecursiveDescent.Inductive.SimpleLib
import RecursiveDescent.Inductive.Token
import RecursiveDescent.InductiveWithFix
import RecursiveDescent.InductiveWithFix.Examples
import RecursiveDescent.InductiveWithFix.Internal
import RecursiveDescent.InductiveWithFix.Lib
import RecursiveDescent.InductiveWithFix.PBM
import Utilities
| {
"alphanum_fraction": 0.7996368039,
"avg_line_length": 38.4186046512,
"ext": "agda",
"hexsha": "c5c93ba809e480b2a797ed2a3e0c13ae7c9deacf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/Everything.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 355,
"size": 1652
} |
open import Prelude
open import Prelude.List.Relations.Any
open import Prelude.List.Relations.Properties
open import Tactic.Deriving.Eq
open import Tactic.Reflection
module DeriveEqTest where
module Test₀ where
eqVec : deriveEqType Vec
unquoteDef eqVec = deriveEqDef eqVec (quote Vec)
module Test₁ where
data D (A : Set) (B : A → Set) : Set where
c : (x : A) → B x → D A B
eqD : {A : Set} {B : A → Set} {{_ : Eq A}} {{_ : {x : A} → Eq (B x)}}
(p q : D A B) → Dec (p ≡ q)
unquoteDef eqD = deriveEqDef eqD (quote D)
module Test₂ where
data D (A B : Set) (C : A → B → Set) : B → Set where
c : (x : A)(y : B)(z : C x y) → D A B C y
eqD : {A B : Set} {C : A → B → Set} {{_ : Eq A}} {{_ : Eq B}} {{_ : ∀ {x y} → Eq (C x y)}} →
∀ {x} (p q : D A B C x) → Dec (p ≡ q)
unquoteDef eqD = deriveEqDef eqD (quote D)
module Test₃ where
data Test : Set where
test : {x : Nat} → Vec Nat x → Test
instance EqTest : Eq Test
EqTest = record { _==_ = eqTest }
where
eqTest : (p q : Test) → Dec (p ≡ q)
unquoteDef eqTest = deriveEqDef eqTest (quote Test)
module Test₄ where
data Test : Nat → Set where
test : (x : Nat) → Test x
unquoteDecl EqTest = deriveEq EqTest (quote Test)
module Test₅ where
data Test (B : Nat → Set) : Set where
test : B zero → Test B
unquoteDecl EqTest = deriveEq EqTest (quote Test)
prf : (x y : Test (Vec Nat)) → Dec (x ≡ y)
prf x y = x == y
module Test₆ where
data Test (A : Set) (xs : List A) (x : A) : Set where
test : x ∈ xs → Test A xs x
unquoteDecl EqTest = deriveEq EqTest (quote Test)
module Issue-#2 where
data Test : Set where
test : {x : Nat} → Vec Nat x → Test
unquoteDecl EqTest = deriveEq EqTest (quote Test)
module Issue-#3 where
data Test : Nat → Set where
test : (x : Nat) → Test x
unquoteDecl EqTest = deriveEq EqTest (quote Test)
| {
"alphanum_fraction": 0.5683308119,
"avg_line_length": 24.7875,
"ext": "agda",
"hexsha": "d72ab20a57bd8be0ca9cee40e6173ee94d647356",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "test/DeriveEqTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "test/DeriveEqTest.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "test/DeriveEqTest.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 680,
"size": 1983
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.MaybeEmb {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
-- Any level can be embedded into the highest level.
maybeEmb : ∀ {l A r Γ}
→ Γ ⊩⟨ l ⟩ A ^ r
→ Γ ⊩⟨ ∞ ⟩ A ^ r
maybeEmb {ι ⁰} [A] = emb ∞< (emb emb< [A])
maybeEmb {ι ¹} [A] = emb ∞< [A]
maybeEmb {∞} [A] = [A]
-- Any level can be embedded into the highest level.
maybeEmbTerm : ∀ {l A t r Γ}
→ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A]
→ Γ ⊩⟨ ∞ ⟩ t ∷ A ^ r / maybeEmb [A]
maybeEmbTerm {ι ⁰} [A] [t] = [t]
maybeEmbTerm {ι ¹} [A] [t] = [t]
maybeEmbTerm {∞} [A] [t] = [t]
-- The lowest level can be embedded in any level.
maybeEmb′ : ∀ {l l' A r Γ}
→ l ≤ l'
→ Γ ⊩⟨ ι l ⟩ A ^ r
→ Γ ⊩⟨ ι l' ⟩ A ^ r
maybeEmb′ (<is≤ 0<1) [A] = emb emb< [A]
maybeEmb′ (≡is≤ PE.refl) [A] = [A]
maybeEmb″ : ∀ {l A r Γ}
→ Γ ⊩⟨ ι ⁰ ⟩ A ^ r
→ Γ ⊩⟨ l ⟩ A ^ r
maybeEmb″ {ι ⁰} [A] = [A]
maybeEmb″ {ι ¹} [A] = emb emb< [A]
maybeEmb″ {∞} [A] = emb ∞< (emb emb< [A])
| {
"alphanum_fraction": 0.5309803922,
"avg_line_length": 27.1276595745,
"ext": "agda",
"hexsha": "9bab37b0f41bb084c72ae500f2a614ffdee7c275",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_line_length": 80,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/MaybeEmb.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 519,
"size": 1275
} |
{-
Descriptor language for easily defining relational structures
-}
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Structures.Relational.Macro where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Structures.Relational.Constant
open import Cubical.Structures.Relational.Product
open import Cubical.Structures.Relational.Maybe
open import Cubical.Structures.Relational.Parameterized
open import Cubical.Structures.Relational.Pointed
open import Cubical.Structures.Relational.UnaryOp
open import Cubical.Structures.Macro
data RelDesc (ℓ : Level) : Typeω where
-- constant structure: X ↦ A
constant : ∀ {ℓ'} → hSet ℓ' → RelDesc ℓ
-- pointed structure: X ↦ X
var : RelDesc ℓ
-- join of structures S,T : X ↦ (S X × T X)
_,_ : RelDesc ℓ → RelDesc ℓ → RelDesc ℓ
-- structure S parameterized by constant A : X ↦ (A → S X)
param : ∀ {ℓ'} → (A : Type ℓ') → RelDesc ℓ → RelDesc ℓ
-- structure S parameterized by variable argument: X ↦ (X → S X)
recvar : RelDesc ℓ → RelDesc ℓ
-- Maybe on a structure S: X ↦ Maybe (S X)
maybe : RelDesc ℓ → RelDesc ℓ
infixr 4 _,_
{- Universe level calculations -}
relDesc→Desc : ∀ {ℓ} → RelDesc ℓ → Desc ℓ
relDesc→Desc (constant A) = constant (A .fst)
relDesc→Desc var = var
relDesc→Desc (d₀ , d₁) = relDesc→Desc d₀ , relDesc→Desc d₁
relDesc→Desc (param A d) = param A (relDesc→Desc d)
relDesc→Desc (recvar d) = recvar (relDesc→Desc d)
relDesc→Desc (maybe d) = maybe (relDesc→Desc d)
relMacroStrLevel : ∀ {ℓ} → RelDesc ℓ → Level
relMacroStrLevel d = macroStrLevel (relDesc→Desc d)
relMacroRelLevel : ∀ {ℓ} → RelDesc ℓ → Level
relMacroRelLevel d = macroEquivLevel (relDesc→Desc d)
RelMacroStructure : ∀ {ℓ} → (d : RelDesc ℓ) → Type ℓ → Type (relMacroStrLevel d)
RelMacroStructure d = MacroStructure (relDesc→Desc d)
preservesSetsRelMacro : ∀ {ℓ} → (d : RelDesc ℓ)
{X : Type ℓ} → isSet X → isSet (RelMacroStructure d X)
preservesSetsRelMacro (constant A) = preservesSetsConstant A
preservesSetsRelMacro var = preservesSetsPointed
preservesSetsRelMacro (d₀ , d₁) =
preservesSetsProduct (preservesSetsRelMacro d₀) (preservesSetsRelMacro d₁)
preservesSetsRelMacro (param A d) =
preservesSetsParam A (λ _ → preservesSetsRelMacro d)
preservesSetsRelMacro (recvar d) =
preservesSetsUnaryFun (preservesSetsRelMacro d)
preservesSetsRelMacro (maybe d) =
preservesSetsMaybe (preservesSetsRelMacro d)
-- Notion of structured relation defined by a descriptor
RelMacroRelStr : ∀ {ℓ} → (d : RelDesc ℓ) → StrRel {ℓ} (RelMacroStructure d) (relMacroRelLevel d)
RelMacroRelStr (constant A) = ConstantRelStr A
RelMacroRelStr var = PointedRelStr
RelMacroRelStr (d₀ , d₁) = ProductRelStr (RelMacroRelStr d₀) (RelMacroRelStr d₁)
RelMacroRelStr (param A d) = ParamRelStr A (λ _ → RelMacroRelStr d)
RelMacroRelStr (recvar d) = UnaryFunRelStr (RelMacroRelStr d)
RelMacroRelStr (maybe d) = MaybeRelStr (RelMacroRelStr d)
-- Proof that structure induced by descriptor is suitable
relMacroSuitableRel : ∀ {ℓ} → (d : RelDesc ℓ) → SuitableStrRel _ (RelMacroRelStr d)
relMacroSuitableRel (constant A) = constantSuitableRel A
relMacroSuitableRel var = pointedSuitableRel
relMacroSuitableRel (d₀ , d₁) = productSuitableRel (relMacroSuitableRel d₀) (relMacroSuitableRel d₁)
relMacroSuitableRel (param A d) = paramSuitableRel A (λ _ → relMacroSuitableRel d)
relMacroSuitableRel (recvar d) = unaryFunSuitableRel (preservesSetsRelMacro d) (relMacroSuitableRel d)
relMacroSuitableRel (maybe d) = maybeSuitableRel (relMacroSuitableRel d)
-- Proof that structured relations and equivalences agree
relMacroMatchesEquiv : ∀ {ℓ} → (d : RelDesc ℓ)
→ StrRelMatchesEquiv (RelMacroRelStr d) (MacroEquivStr (relDesc→Desc d))
relMacroMatchesEquiv (constant A) = constantRelMatchesEquiv A
relMacroMatchesEquiv var = pointedRelMatchesEquiv
relMacroMatchesEquiv (d₁ , d₂) =
productRelMatchesEquiv
(RelMacroRelStr d₁) (RelMacroRelStr d₂)
(relMacroMatchesEquiv d₁) (relMacroMatchesEquiv d₂)
relMacroMatchesEquiv (param A d) =
paramRelMatchesEquiv A (λ _ → RelMacroRelStr d) (λ _ → relMacroMatchesEquiv d)
relMacroMatchesEquiv (recvar d) =
unaryFunRelMatchesEquiv (RelMacroRelStr d) (relMacroMatchesEquiv d)
relMacroMatchesEquiv (maybe d) =
maybeRelMatchesEquiv (RelMacroRelStr d) (relMacroMatchesEquiv d)
-- Module for easy importing
module RelMacro ℓ (d : RelDesc ℓ) where
relation = RelMacroRelStr d
suitable = relMacroSuitableRel d
matches = relMacroMatchesEquiv d
open Macro ℓ (relDesc→Desc d) public
| {
"alphanum_fraction": 0.7623570041,
"avg_line_length": 41.7387387387,
"ext": "agda",
"hexsha": "ba7a09c3a9032b1ab1737cc52688d81c26f49ccb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1459,
"size": 4633
} |
infix 50 _∼_
postulate
A : Set
x : A
_∼_ : A → A → Set
record T : Set where
-- This fixity declaration should not be ignored.
infix 60 _∘_
_∘_ : A → A → A
_∘_ _ _ = x
field
law : x ∘ x ∼ x
-- Some more examples
record R : Set₁ where
infixl 6 _+_
field
_+_ : Set → Set → Set
Times : Set → Set → Set
Sigma : (A : Set) → (A → Set) → Set
One : Set
infixl 7 _*_
_*_ = _+_
infixr 3 Σ
syntax Σ A (λ a → B) = a ∈ A × B
Σ = Sigma
field
three : One + One * One * One + One
pair : x ∈ One × One + One
| {
"alphanum_fraction": 0.5115452931,
"avg_line_length": 15.2162162162,
"ext": "agda",
"hexsha": "26fb99f920181d75d239bfb31df0d21d3f985bc8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2634.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2634.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2634.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 236,
"size": 563
} |
{-# OPTIONS --prop --rewriting #-}
open import Examples.Sorting.Sequential.Comparable
module Examples.Sorting.Sequential.MergeSort.Merge (M : Comparable) where
open Comparable M
open import Examples.Sorting.Sequential.Core M
open import Calf costMonoid
open import Calf.Types.Bool
open import Calf.Types.Nat
open import Calf.Types.List
open import Calf.Types.Eq
open import Calf.Types.Bounded costMonoid
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning)
open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂)
open import Function
open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_)
import Data.Nat.Properties as N
open import Examples.Sorting.Sequential.MergeSort.Split M
merge/clocked : cmp (Π nat λ _ → Π pair λ _ → F (list A))
merge/clocked zero (l₁ , l₂ ) = ret (l₁ ++ l₂)
merge/clocked (suc k) ([] , l₂ ) = ret l₂
merge/clocked (suc k) (x ∷ xs , [] ) = ret (x ∷ xs)
merge/clocked (suc k) (x ∷ xs , y ∷ ys) =
bind (F (list A)) (x ≤ᵇ y) λ b →
if b
then (bind (F (list A)) (merge/clocked k (xs , y ∷ ys)) (ret ∘ (x ∷_)))
else (bind (F (list A)) (merge/clocked k (x ∷ xs , ys)) (ret ∘ (y ∷_)))
merge/clocked/correct : ∀ k l₁ l₂ →
◯ (∃ λ l → merge/clocked k (l₁ , l₂) ≡ ret l × (length l₁ + length l₂ Nat.≤ k → Sorted l₁ → Sorted l₂ → SortedOf (l₁ ++ l₂) l))
merge/clocked/correct zero l₁ l₂ u = l₁ ++ l₂ , refl , λ { h [] [] → refl , [] }
merge/clocked/correct (suc k) [] l₂ u = l₂ , refl , λ { h [] sorted₂ → refl , sorted₂ }
merge/clocked/correct (suc k) (x ∷ xs) [] u = x ∷ xs , refl , λ { h sorted₁ [] → ++-identityʳ (x ∷ xs) , sorted₁ }
merge/clocked/correct (suc k) (x ∷ xs) (y ∷ ys) u with h-cost x y
merge/clocked/correct (suc k) (x ∷ xs) (y ∷ ys) u | ⇓ b withCost q [ _ , h-eq ] rewrite eq/ref h-eq
with ≤ᵇ-reflects-≤ u (Eq.trans (eq/ref h-eq) (step/ext (F bool) (ret b) q u))
merge/clocked/correct (suc k) (x ∷ xs) (y ∷ ys) u | ⇓ false withCost q [ _ , h-eq ] | ofⁿ ¬p =
let (l , ≡ , h-sorted) = merge/clocked/correct k (x ∷ xs) ys u in
y ∷ l , (
let open ≡-Reasoning in
begin
step (F (list A)) q (bind (F (list A)) (merge/clocked k (x ∷ xs , ys)) (ret ∘ (y ∷_)))
≡⟨ step/ext (F (list A)) (bind (F (list A)) (merge/clocked k _) _) q u ⟩
bind (F (list A)) (merge/clocked k (x ∷ xs , ys)) (ret ∘ (y ∷_))
≡⟨ Eq.cong (λ e → bind (F (list A)) e _) ≡ ⟩
ret (y ∷ l)
∎
) , (
λ { (s≤s h) (h₁ ∷ sorted₁) (h₂ ∷ sorted₂) →
let h = Eq.subst (Nat._≤ k) (N.+-suc (length xs) (length ys)) h in
let (↭ , sorted) = h-sorted h (h₁ ∷ sorted₁) sorted₂ in
(
let open PermutationReasoning in
begin
(x ∷ xs ++ y ∷ ys)
↭⟨ ++-comm-↭ (x ∷ xs) (y ∷ ys) ⟩
(y ∷ ys ++ x ∷ xs)
≡⟨⟩
y ∷ (ys ++ x ∷ xs)
<⟨ ++-comm-↭ ys (x ∷ xs) ⟩
y ∷ (x ∷ xs ++ ys)
<⟨ ↭ ⟩
y ∷ l
∎
) , (
let p = ≰⇒≥ ¬p in
All-resp-↭ (↭) (++⁺-All (p ∷ ≤-≤* p h₁) h₂) ∷ sorted
)
}
)
merge/clocked/correct (suc k) (x ∷ xs) (y ∷ ys) u | ⇓ true withCost q [ _ , h-eq ] | ofʸ p =
let (l , ≡ , h-sorted) = merge/clocked/correct k xs (y ∷ ys) u in
x ∷ l , (
let open ≡-Reasoning in
begin
step (F (list A)) q (bind (F (list A)) (merge/clocked k (xs , y ∷ ys)) (ret ∘ (x ∷_)))
≡⟨ step/ext (F (list A)) (bind (F (list A)) (merge/clocked k _) _) q u ⟩
bind (F (list A)) (merge/clocked k (xs , y ∷ ys)) (ret ∘ (x ∷_))
≡⟨ Eq.cong (λ e → bind (F (list A)) e _) ≡ ⟩
ret (x ∷ l)
∎
) , (
λ { (s≤s h) (h₁ ∷ sorted₁) (h₂ ∷ sorted₂) →
let (↭ , sorted) = h-sorted h sorted₁ (h₂ ∷ sorted₂) in
prep x ↭ , All-resp-↭ (↭) (++⁺-All h₁ (p ∷ ≤-≤* p h₂)) ∷ sorted
}
)
merge/clocked/cost : cmp (Π nat λ _ → Π pair λ _ → cost)
merge/clocked/cost zero (l₁ , l₂ ) = zero
merge/clocked/cost (suc k) ([] , l₂ ) = zero
merge/clocked/cost (suc k) (x ∷ xs , [] ) = zero
merge/clocked/cost (suc k) (x ∷ xs , y ∷ ys) =
bind cost (x ≤ᵇ y) λ b →
1 + (
if b
then (bind cost (merge/clocked k (xs , y ∷ ys)) (λ l → merge/clocked/cost k (xs , y ∷ ys) + 0))
else (bind cost (merge/clocked k (x ∷ xs , ys)) (λ l → merge/clocked/cost k (x ∷ xs , ys) + 0))
)
merge/clocked/cost/closed : cmp (Π nat λ _ → Π pair λ _ → cost)
merge/clocked/cost/closed k _ = k
merge/clocked/cost≤merge/clocked/cost/closed : ∀ k p → ◯ (merge/clocked/cost k p Nat.≤ merge/clocked/cost/closed k p)
merge/clocked/cost≤merge/clocked/cost/closed zero (l₁ , l₂ ) u = N.≤-refl
merge/clocked/cost≤merge/clocked/cost/closed (suc k) ([] , l₂ ) u = z≤n
merge/clocked/cost≤merge/clocked/cost/closed (suc k) (x ∷ xs , [] ) u = z≤n
merge/clocked/cost≤merge/clocked/cost/closed (suc k) (x ∷ xs , y ∷ ys) u with h-cost x y
... | ⇓ false withCost q [ _ , h-eq ] rewrite eq/ref h-eq =
let (l , ≡ , _) = merge/clocked/correct k (x ∷ xs) ys u in
begin
step cost q (1 + bind cost (merge/clocked k (x ∷ xs , ys)) (λ l → merge/clocked/cost k (x ∷ xs , ys) + 0))
≡⟨ step/ext cost _ q u ⟩
1 + bind cost (merge/clocked k (x ∷ xs , ys)) (λ l → merge/clocked/cost k (x ∷ xs , ys) + 0)
≡⟨⟩
suc (bind cost (merge/clocked k (x ∷ xs , ys)) (λ l → merge/clocked/cost k (x ∷ xs , ys) + 0))
≡⟨ Eq.cong (λ e → suc (bind cost e λ l → merge/clocked/cost k (x ∷ xs , ys) + 0)) (≡) ⟩
suc (merge/clocked/cost k (x ∷ xs , ys) + 0)
≡⟨ Eq.cong suc (N.+-identityʳ _) ⟩
suc (merge/clocked/cost k (x ∷ xs , ys))
≤⟨ s≤s (merge/clocked/cost≤merge/clocked/cost/closed k (x ∷ xs , ys) u) ⟩
suc (merge/clocked/cost/closed k (x ∷ xs , ys))
≡⟨⟩
suc k
∎
where open ≤-Reasoning
... | ⇓ true withCost q [ _ , h-eq ] rewrite eq/ref h-eq =
let (l , ≡ , _) = merge/clocked/correct k xs (y ∷ ys) u in
begin
step cost q (1 + bind cost (merge/clocked k (xs , y ∷ ys)) (λ l → merge/clocked/cost k (xs , y ∷ ys) + 0))
≡⟨ step/ext cost _ q u ⟩
1 + bind cost (merge/clocked k (xs , y ∷ ys)) (λ l → merge/clocked/cost k (xs , y ∷ ys) + 0)
≡⟨⟩
suc (bind cost (merge/clocked k (xs , y ∷ ys)) (λ l → merge/clocked/cost k (xs , y ∷ ys) + 0))
≡⟨ Eq.cong (λ e → suc (bind cost e λ l → merge/clocked/cost k (xs , y ∷ ys) + 0)) (≡) ⟩
suc (merge/clocked/cost k (xs , y ∷ ys) + 0)
≡⟨ Eq.cong suc (N.+-identityʳ _) ⟩
suc (merge/clocked/cost k (xs , y ∷ ys))
≤⟨ s≤s (merge/clocked/cost≤merge/clocked/cost/closed k (xs , y ∷ ys) u) ⟩
suc (merge/clocked/cost/closed k (xs , y ∷ ys))
≡⟨⟩
suc k
∎
where open ≤-Reasoning
merge/clocked≤merge/clocked/cost : ∀ k p → IsBounded (list A) (merge/clocked k p) (merge/clocked/cost k p)
merge/clocked≤merge/clocked/cost zero (l₁ , l₂ ) = bound/ret
merge/clocked≤merge/clocked/cost (suc k) ([] , l₂ ) = bound/ret
merge/clocked≤merge/clocked/cost (suc k) (x ∷ xs , [] ) = bound/ret
merge/clocked≤merge/clocked/cost (suc k) (x ∷ xs , y ∷ ys) =
bound/bind 1 _ (h-cost x y) λ b →
bound/bool {p = λ b → if_then_else_ b _ _} b
(bound/bind (merge/clocked/cost k (x ∷ xs , ys)) _ (merge/clocked≤merge/clocked/cost k (x ∷ xs , ys)) λ l → bound/ret)
(bound/bind (merge/clocked/cost k (xs , y ∷ ys)) _ (merge/clocked≤merge/clocked/cost k (xs , y ∷ ys)) λ l → bound/ret)
merge/clocked≤merge/clocked/cost/closed : ∀ k p → IsBounded (list A) (merge/clocked k p) (merge/clocked/cost/closed k p)
merge/clocked≤merge/clocked/cost/closed k p = bound/relax (merge/clocked/cost≤merge/clocked/cost/closed k p) (merge/clocked≤merge/clocked/cost k p)
merge : cmp (Π pair λ _ → F (list A))
merge (l₁ , l₂) = merge/clocked (length l₁ + length l₂) (l₁ , l₂)
merge/correct : ∀ l₁ l₂ →
◯ (∃ λ l → merge (l₁ , l₂) ≡ ret l × (Sorted l₁ → Sorted l₂ → SortedOf (l₁ ++ l₂) l))
merge/correct l₁ l₂ u =
let (l , ≡ , h-sorted) = merge/clocked/correct (length l₁ + length l₂) l₁ l₂ u in
l , ≡ , h-sorted N.≤-refl
merge/cost : cmp (Π pair λ _ → cost)
merge/cost (l₁ , l₂) = merge/clocked/cost (length l₁ + length l₂) (l₁ , l₂)
merge/cost/closed : cmp (Π pair λ _ → cost)
merge/cost/closed (l₁ , l₂) = merge/clocked/cost/closed (length l₁ + length l₂) (l₁ , l₂)
merge≤merge/cost : ∀ p → IsBounded (list A) (merge p) (merge/cost p)
merge≤merge/cost (l₁ , l₂) = merge/clocked≤merge/clocked/cost (length l₁ + length l₂) (l₁ , l₂)
merge≤merge/cost/closed : ∀ p → IsBounded (list A) (merge p) (merge/cost/closed p)
merge≤merge/cost/closed (l₁ , l₂) = merge/clocked≤merge/clocked/cost/closed (length l₁ + length l₂) (l₁ , l₂)
| {
"alphanum_fraction": 0.5657542225,
"avg_line_length": 45.9090909091,
"ext": "agda",
"hexsha": "acc0042418bd928c7c82e75f1710e86174137ed1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Merge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Merge.agda",
"max_line_length": 147,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Merge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 3503,
"size": 8585
} |
-- Andreas, 2014-10-18 AIM XX
module EvalInTopLevel where
data Bool : Set where true false : Bool
not : Bool → Bool
not true = false
not false = true
-- Evaluate @not false@ in top level.
| {
"alphanum_fraction": 0.703125,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "4c116e40888dd011ed4c6ba5fb821677eae2683d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/EvalInTopLevel.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/EvalInTopLevel.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/EvalInTopLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 56,
"size": 192
} |
{-# OPTIONS --without-K #-}
module PathStructure.UnitNoEta where
open import Equivalence
open import Types
split-path : {x y : Unit} → x ≡ y → Unit
split-path _ = tt
merge-path : {x y : Unit} → Unit → x ≡ y
merge-path _ = 1-elim
(λ x → ∀ y → x ≡ y)
(1-elim (λ y → tt ≡ y) refl) _ _
split-merge-eq : {x y : Unit} → (x ≡ y) ≃ Unit
split-merge-eq
= split-path
, (merge-path , 1-elim (λ x → tt ≡ x) refl)
, (merge-path , J
(λ _ _ p → merge-path (split-path p) ≡ p)
(1-elim
(λ x → merge-path {x} {x} (split-path {x} {x} refl) ≡ refl)
refl)
_ _)
| {
"alphanum_fraction": 0.5425170068,
"avg_line_length": 23.52,
"ext": "agda",
"hexsha": "959abe90a03733996f12b1cd598ae0793ab43009",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/PathStructure/UnitNoEta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/PathStructure/UnitNoEta.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/PathStructure/UnitNoEta.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 225,
"size": 588
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.EilenbergMacLane
open import homotopy.EilenbergMacLane1
open import homotopy.EilenbergMacLaneFunctor
open import homotopy.EM1HSpaceAssoc
open import lib.types.TwoSemiCategory
open import lib.two-semi-categories.FunCategory
open import lib.two-semi-categories.FundamentalCategory
module cohomology.CupProduct.OnEM.InLowDegrees {i} {j} (G : AbGroup i) (H : AbGroup j) where
private
module G = AbGroup G
module H = AbGroup H
module G⊗H = TensorProduct G H
open G⊗H using (_⊗_)
open EMExplicit
⊙×-cp₀₀' : G.⊙El ⊙× H.⊙El ⊙→ G⊗H.⊙El
⊙×-cp₀₀' = uncurry G⊗H._⊗_ , G⊗H.⊗-unit-l H.ident
⊙×-cp₀₀-seq : (⊙EM G 0 ⊙× ⊙EM H 0) ⊙–→ ⊙EM G⊗H.abgroup 0
⊙×-cp₀₀-seq =
⊙–> (⊙emloop-equiv G⊗H.grp) ◃⊙∘
⊙×-cp₀₀' ◃⊙∘
⊙×-fmap (⊙<– (⊙emloop-equiv G.grp)) (⊙<– (⊙emloop-equiv H.grp)) ◃⊙idf
⊙×-cp₀₀ : ⊙EM G 0 ⊙× ⊙EM H 0 ⊙→ ⊙EM G⊗H.abgroup 0
⊙×-cp₀₀ = ⊙compose ⊙×-cp₀₀-seq
×-cp₀₀ : EM G 0 × EM H 0 → EM G⊗H.abgroup 0
×-cp₀₀ = fst ⊙×-cp₀₀
open EM₁HSpaceAssoc G⊗H.abgroup hiding (comp-functor) renaming (mult to EM₁-mult) public
cp₀₁ : G.El → EM₁ H.grp → EM₁ G⊗H.grp
cp₀₁ g = EM₁-fmap (G⊗H.ins-r-hom g)
abstract
cp₀₁-emloop-β : ∀ g h → ap (cp₀₁ g) (emloop h) == emloop (g ⊗ h)
cp₀₁-emloop-β g = EM₁-fmap-emloop-β (G⊗H.ins-r-hom g)
cp₀₁-distr-l : (g₁ g₂ : G.El) (y : EM₁ H.grp)
→ cp₀₁ (G.comp g₁ g₂) y == EM₁-mult (cp₀₁ g₁ y) (cp₀₁ g₂ y)
cp₀₁-distr-l g₁ g₂ =
EM₁-set-elim
{P = λ x → f x == g x}
{{λ x → has-level-apply (EM₁-level₁ G⊗H.grp) _ _}}
idp loop'
where
f : EM₁ H.grp → EM₁ G⊗H.grp
f x = cp₀₁ (G.comp g₁ g₂) x
g : EM₁ H.grp → EM₁ G⊗H.grp
g x = EM₁-mult (cp₀₁ g₁ x) (cp₀₁ g₂ x)
abstract
loop' : (h : H.El) → idp == idp [ (λ x → f x == g x) ↓ emloop h ]
loop' h = ↓-='-in {f = f} {g = g} {p = emloop h} {u = idp} {v = idp} $
idp ∙' ap g (emloop h)
=⟨ ∙'-unit-l (ap g (emloop h)) ⟩
ap g (emloop h)
=⟨ ! (ap2-diag (λ x y → EM₁-mult (cp₀₁ g₁ x) (cp₀₁ g₂ y)) (emloop h)) ⟩
ap2 (λ x y → EM₁-mult (cp₀₁ g₁ x) (cp₀₁ g₂ y)) (emloop h) (emloop h)
=⟨ =ₛ-out $ ap2-out (λ x y → EM₁-mult (cp₀₁ g₁ x) (cp₀₁ g₂ y)) (emloop h) (emloop h) ⟩
ap (λ x → EM₁-mult (cp₀₁ g₁ x) embase) (emloop h) ∙ ap (cp₀₁ g₂) (emloop h)
=⟨ ap2 _∙_ part (cp₀₁-emloop-β g₂ h) ⟩
emloop (g₁ ⊗ h) ∙ emloop (g₂ ⊗ h)
=⟨ ! (emloop-comp (g₁ ⊗ h) (g₂ ⊗ h)) ⟩
emloop (G⊗H.comp (g₁ ⊗ h) (g₂ ⊗ h))
=⟨ ap emloop (! (G⊗H.⊗-lin-l g₁ g₂ h)) ⟩
emloop (G.comp g₁ g₂ ⊗ h)
=⟨ ! (cp₀₁-emloop-β (G.comp g₁ g₂) h) ⟩
ap f (emloop h)
=⟨ ! (∙-unit-r (ap f (emloop h))) ⟩
ap f (emloop h) ∙ idp =∎
where
part : ap (λ x → EM₁-mult (cp₀₁ g₁ x) embase) (emloop h) == emloop (g₁ ⊗ h)
part =
ap (λ x → EM₁-mult (cp₀₁ g₁ x) embase) (emloop h)
=⟨ ap-∘ (λ u → EM₁-mult u embase) (cp₀₁ g₁) (emloop h) ⟩
ap (λ u → EM₁-mult u embase) (ap (cp₀₁ g₁) (emloop h))
=⟨ ap (ap (λ u → EM₁-mult u embase)) (cp₀₁-emloop-β g₁ h) ⟩
ap (λ u → EM₁-mult u embase) (emloop (g₁ ⊗ h))
=⟨ mult-emloop-β (g₁ ⊗ h) embase ⟩
emloop (g₁ ⊗ h) =∎
module _ (g₁ g₂ g₃ : G.El) (y : EM₁ H.grp) where
cp₀₁-distr-l₁ : cp₀₁ (G.comp (G.comp g₁ g₂) g₃) y =-=
EM₁-mult (cp₀₁ g₁ y) (EM₁-mult (cp₀₁ g₂ y) (cp₀₁ g₃ y))
cp₀₁-distr-l₁ =
cp₀₁ (G.comp (G.comp g₁ g₂) g₃) y
=⟪ cp₀₁-distr-l (G.comp g₁ g₂) g₃ y ⟫
EM₁-mult (cp₀₁ (G.comp g₁ g₂) y) (cp₀₁ g₃ y)
=⟪ ap (λ s → EM₁-mult s (cp₀₁ g₃ y)) (cp₀₁-distr-l g₁ g₂ y) ⟫
EM₁-mult (EM₁-mult (cp₀₁ g₁ y) (cp₀₁ g₂ y)) (cp₀₁ g₃ y)
=⟪ H-⊙EM₁-assoc (cp₀₁ g₁ y) (cp₀₁ g₂ y) (cp₀₁ g₃ y) ⟫
EM₁-mult (cp₀₁ g₁ y) (EM₁-mult (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ∎∎
cp₀₁-distr-l₂ : cp₀₁ (G.comp (G.comp g₁ g₂) g₃) y =-=
EM₁-mult (cp₀₁ g₁ y) (EM₁-mult (cp₀₁ g₂ y) (cp₀₁ g₃ y))
cp₀₁-distr-l₂ =
cp₀₁ (G.comp (G.comp g₁ g₂) g₃) y
=⟪ ap (λ s → cp₀₁ s y) (G.assoc g₁ g₂ g₃) ⟫
cp₀₁ (G.comp g₁ (G.comp g₂ g₃)) y
=⟪ cp₀₁-distr-l g₁ (G.comp g₂ g₃) y ⟫
EM₁-mult (cp₀₁ g₁ y) (cp₀₁ (G.comp g₂ g₃) y)
=⟪ ap (EM₁-mult (cp₀₁ g₁ y)) (cp₀₁-distr-l g₂ g₃ y) ⟫
EM₁-mult (cp₀₁ g₁ y) (EM₁-mult (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ∎∎
abstract
cp₀₁-distr-l-coh : (g₁ g₂ g₃ : G.El) (y : EM₁ H.grp)
→ cp₀₁-distr-l₁ g₁ g₂ g₃ y =ₛ cp₀₁-distr-l₂ g₁ g₂ g₃ y
cp₀₁-distr-l-coh g₁ g₂ g₃ =
EM₁-prop-elim
{P = λ y → cp₀₁-distr-l₁ g₁ g₂ g₃ y =ₛ cp₀₁-distr-l₂ g₁ g₂ g₃ y}
{{λ y → =ₛ-level (EM₁-level₁ G⊗H.grp)}} $
idp ◃∙ idp ◃∙ idp ◃∎
=ₛ₁⟨ 0 & 1 & ! (ap-cst embase (G.assoc g₁ g₂ g₃)) ⟩
ap (cst embase) (G.assoc g₁ g₂ g₃) ◃∙ idp ◃∙ idp ◃∎ ∎ₛ
cp₀₁-functor :
TwoSemiFunctor
(group-to-cat G.grp)
(fun-cat (EM₁ H.grp) EM₁-2-semi-category)
cp₀₁-functor =
record
{ F₀ = λ _ _ → unit
; F₁ = λ g x → cp₀₁ g x
; pres-comp = λ g₁ g₂ → λ= (cp₀₁-distr-l g₁ g₂)
; pres-comp-coh = λ g₁ g₂ g₃ → pres-comp-coh g₁ g₂ g₃
-- TODO: for some reason, this last field takes a really long time to check
-- it is recommended to comment it out
}
where
abstract
pres-comp-coh : ∀ g₁ g₂ g₃ →
λ= (cp₀₁-distr-l (G.comp g₁ g₂) g₃) ◃∙
ap (λ s y → EM₁-mult (s y) (cp₀₁ g₃ y)) (λ= (cp₀₁-distr-l g₁ g₂)) ◃∙
λ= (λ y → H-⊙EM₁-assoc (cp₀₁ g₁ y) (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ◃∎
=ₛ
ap (λ s → cp₀₁ s) (G.assoc g₁ g₂ g₃) ◃∙
λ= (cp₀₁-distr-l g₁ (G.comp g₂ g₃)) ◃∙
ap (λ s y → EM₁-mult (cp₀₁ g₁ y) (s y)) (λ= (cp₀₁-distr-l g₂ g₃)) ◃∎
pres-comp-coh g₁ g₂ g₃ =
λ= (cp₀₁-distr-l (G.comp g₁ g₂) g₃) ◃∙
ap (λ s y → EM₁-mult (s y) (cp₀₁ g₃ y)) (λ= (cp₀₁-distr-l g₁ g₂)) ◃∙
λ= (λ y → H-⊙EM₁-assoc (cp₀₁ g₁ y) (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ◃∎
=ₛ₁⟨ 1 & 1 & λ=-ap (λ y s → EM₁-mult s (cp₀₁ g₃ y)) (cp₀₁-distr-l g₁ g₂) ⟩
λ= (cp₀₁-distr-l (G.comp g₁ g₂) g₃) ◃∙
λ= (λ y → ap (λ s → EM₁-mult s (cp₀₁ g₃ y)) (cp₀₁-distr-l g₁ g₂ y)) ◃∙
λ= (λ y → H-⊙EM₁-assoc (cp₀₁ g₁ y) (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ◃∎
=ₛ⟨ ∙∙-λ= (cp₀₁-distr-l (G.comp g₁ g₂) g₃)
(λ y → ap (λ s → EM₁-mult s (cp₀₁ g₃ y)) (cp₀₁-distr-l g₁ g₂ y))
(λ y → H-⊙EM₁-assoc (cp₀₁ g₁ y) (cp₀₁ g₂ y) (cp₀₁ g₃ y)) ⟩
λ= (λ y → ↯ (cp₀₁-distr-l₁ g₁ g₂ g₃ y)) ◃∎
=ₛ₁⟨ ap λ= (λ= (λ y → =ₛ-out (cp₀₁-distr-l-coh g₁ g₂ g₃ y))) ⟩
λ= (λ y → ↯ (cp₀₁-distr-l₂ g₁ g₂ g₃ y)) ◃∎
=ₛ⟨ λ=-∙∙ (λ y → ap (λ s → cp₀₁ s y) (G.assoc g₁ g₂ g₃))
(cp₀₁-distr-l g₁ (G.comp g₂ g₃))
(λ y → ap (EM₁-mult (cp₀₁ g₁ y)) (cp₀₁-distr-l g₂ g₃ y)) ⟩
λ= (λ y → ap (λ s → cp₀₁ s y) (G.assoc g₁ g₂ g₃)) ◃∙
λ= (cp₀₁-distr-l g₁ (G.comp g₂ g₃)) ◃∙
λ= (λ y → ap (EM₁-mult (cp₀₁ g₁ y)) (cp₀₁-distr-l g₂ g₃ y)) ◃∎
=ₛ₁⟨ 0 & 1 & ap λ= (λ= (λ y → ap-∘ (λ f → f y) cp₀₁ (G.assoc g₁ g₂ g₃))) ⟩
λ= (app= (ap (λ s → cp₀₁ s) (G.assoc g₁ g₂ g₃))) ◃∙
λ= (cp₀₁-distr-l g₁ (G.comp g₂ g₃)) ◃∙
λ= (λ y → ap (EM₁-mult (cp₀₁ g₁ y)) (cp₀₁-distr-l g₂ g₃ y)) ◃∎
=ₛ₁⟨ 0 & 1 & ! (λ=-η (ap (λ s → cp₀₁ s) (G.assoc g₁ g₂ g₃))) ⟩
ap (λ s → cp₀₁ s) (G.assoc g₁ g₂ g₃) ◃∙
λ= (cp₀₁-distr-l g₁ (G.comp g₂ g₃)) ◃∙
λ= (λ y → ap (EM₁-mult (cp₀₁ g₁ y)) (cp₀₁-distr-l g₂ g₃ y)) ◃∎
=ₛ₁⟨ 2 & 1 & ! (λ=-ap (λ y s → EM₁-mult (cp₀₁ g₁ y) s) (cp₀₁-distr-l g₂ g₃)) ⟩
ap (λ s → cp₀₁ s) (G.assoc g₁ g₂ g₃) ◃∙
λ= (cp₀₁-distr-l g₁ (G.comp g₂ g₃)) ◃∙
ap (λ s y → EM₁-mult (cp₀₁ g₁ y) (s y)) (λ= (cp₀₁-distr-l g₂ g₃)) ◃∎ ∎ₛ
comp-functor :
TwoSemiFunctor
EM₁-2-semi-category
(=ₜ-fundamental-cat (Susp (EM₁ G⊗H.grp)))
comp-functor =
record
{ F₀ = λ _ → [ north ]
; F₁ = λ x → [ η x ]
; pres-comp = comp
; pres-comp-coh = comp-coh
}
-- this is *exactly* the same as
-- `EM₁HSpaceAssoc.comp-functor G⊗H.abgroup`
-- inlined but Agda chokes on this shorter definition
module _ where
private
T : TwoSemiCategory (lmax i j) (lmax i j)
T = fun-cat (EM₁ H.grp) (=ₜ-fundamental-cat (Susp (EM₁ G⊗H.grp)))
module T = TwoSemiCategory T
cst-north : T.El
cst-north = λ _ → [ north ]
T-comp' = T.comp {x = cst-north} {y = cst-north} {z = cst-north}
T-assoc' = T.assoc {x = cst-north} {y = cst-north} {z = cst-north} {w = cst-north}
group-to-EM₁→EM₂ : TwoSemiFunctor (group-to-cat G.grp) T
group-to-EM₁→EM₂ =
cp₀₁-functor –F→
fun-functor-map (EM₁ H.grp) comp-functor
abstract
app=-group-to-EM₁→EM₂-pres-comp-embase : ∀ g₁ g₂ →
app= (TwoSemiFunctor.pres-comp group-to-EM₁→EM₂ g₁ g₂) embase ==
comp embase embase
app=-group-to-EM₁→EM₂-pres-comp-embase g₁ g₂ = =ₛ-out $
app= (TwoSemiFunctor.pres-comp group-to-EM₁→EM₂ g₁ g₂) embase ◃∎
=ₛ⟨ ap-seq-=ₛ (λ f → f embase) (comp-functors-pres-comp-β cp₀₁-functor G₁₂ g₁ g₂) ⟩
app= (ap (TwoSemiFunctor.F₁ G₁₂) (TwoSemiFunctor.pres-comp cp₀₁-functor g₁ g₂)) embase ◃∙
app= (TwoSemiFunctor.pres-comp G₁₂ (cp₀₁ g₁) (cp₀₁ g₂)) embase ◃∎
=ₛ⟨ 0 & 1 & =ₛ-in {t = []} $
app= (ap (λ f x → [ η (f x) ]) (λ= (cp₀₁-distr-l g₁ g₂))) embase
=⟨ ap (λ w → app= w embase) (λ=-ap (λ _ y → [ η y ]) (cp₀₁-distr-l g₁ g₂)) ⟩
app= (λ= (λ a → ap (λ y → [ η y ]) (cp₀₁-distr-l g₁ g₂ a))) embase
=⟨ app=-β (λ a → ap (λ y → [ η y ]) (cp₀₁-distr-l g₁ g₂ a)) embase ⟩
idp =∎
⟩
app= (TwoSemiFunctor.pres-comp G₁₂ (cp₀₁ g₁) (cp₀₁ g₂)) embase ◃∎
=ₛ₁⟨ app=-β (λ y → comp (cp₀₁ g₁ y) (cp₀₁ g₂ y)) embase ⟩
comp embase embase ◃∎ ∎ₛ
where
G₁₂ = fun-functor-map (EM₁ H.grp) comp-functor
module CP₁₁ where
private
C : Type (lmax i j)
C = EM₁ H.grp → EM G⊗H.abgroup 2
C-level : has-level 2 C
C-level = Π-level (λ _ → EM-level G⊗H.abgroup 2)
D₀ : TwoSemiCategory lzero i
D₀ = group-to-cat G.grp
D₁' : TwoSemiCategory (lmax i j) (lmax i j)
D₁' = =ₜ-fundamental-cat (Susp (EM₁ G⊗H.grp))
D₁ : TwoSemiCategory (lmax i j) (lmax i j)
D₁ = fun-cat (EM₁ H.grp) D₁'
D₂' : TwoSemiCategory (lmax i j) (lmax i j)
D₂' = 2-type-fundamental-cat (EM G⊗H.abgroup 2)
D₂ : TwoSemiCategory (lmax i j) (lmax i j)
D₂ = fun-cat (EM₁ H.grp) D₂'
D₃ : TwoSemiCategory (lmax i j) (lmax i j)
D₃ = 2-type-fundamental-cat (EM₁ H.grp → EM G⊗H.abgroup 2) {{C-level}}
F₀₁ : TwoSemiFunctor D₀ D₁
F₀₁ = group-to-EM₁→EM₂
F₁₂' : TwoSemiFunctor D₁' D₂'
F₁₂' = =ₜ-to-2-type-fundamental-cat (Susp (EM₁ G⊗H.grp))
F₁₂ : TwoSemiFunctor D₁ D₂
F₁₂ = fun-functor-map (EM₁ H.grp) F₁₂'
F₀₂ : TwoSemiFunctor D₀ D₂
F₀₂ = F₀₁ –F→ F₁₂
module F₂₃-Funext = FunextFunctors (EM₁ H.grp) (EM G⊗H.abgroup 2) {{⟨⟩}}
F₂₃ : TwoSemiFunctor D₂ D₃
F₂₃ = F₂₃-Funext.λ=-functor
module F₀₂ = TwoSemiFunctor F₀₂
module F₂₃ = TwoSemiFunctor F₂₃
private
module F₀₃-Comp = FunctorComposition F₀₂ F₂₃
F₀₃ : TwoSemiFunctor D₀ D₃
F₀₃ = F₀₃-Comp.composition
module F₀₁ = TwoSemiFunctor F₀₁
module F₁₂ = TwoSemiFunctor F₁₂
module F₁₂' = TwoSemiFunctor F₁₂'
module F₀₃ = TwoSemiFunctor F₀₃
module CP₁₁-Rec = EM₁Rec {G = G.grp} {C = C} {{C-level}} F₀₃
abstract
cp₁₁ : EM₁ G.grp → EM₁ H.grp → EM G⊗H.abgroup 2
cp₁₁ = CP₁₁-Rec.f
cp₁₁-embase-β : cp₁₁ embase ↦ (λ _ → [ north ])
cp₁₁-embase-β = CP₁₁-Rec.embase-β
{-# REWRITE cp₁₁-embase-β #-}
cp₁₁-emloop-β : ∀ g → ap cp₁₁ (emloop g) == λ= (λ y → ap [_] (η (cp₀₁ g y)))
cp₁₁-emloop-β g = CP₁₁-Rec.emloop-β g
app=-F₀₂-pres-comp-embase-β : ∀ g₁ g₂ →
app= (F₀₂.pres-comp g₁ g₂) embase ◃∎
=ₛ
ap (ap [_]) (comp-l embase) ◃∙
ap-∙ [_] (η embase) (η embase) ◃∎
app=-F₀₂-pres-comp-embase-β g₁ g₂ =
app= (F₀₂.pres-comp g₁ g₂) embase ◃∎
=ₛ⟨ ap-seq-=ₛ (λ f → f embase) (comp-functors-pres-comp-β F₀₁ F₁₂ g₁ g₂) ⟩
app= (ap (λ α y → <– (=ₜ-equiv [ north ] [ north ]) (α y))
(F₀₁.pres-comp g₁ g₂)) embase ◃∙
app= (F₁₂.pres-comp {x = λ _ → [ north ]} {y = λ _ → [ north ]} {z = λ _ → [ north ]}
(λ y → [ η (cp₀₁ g₁ y) ]₁) (λ y → [ η (cp₀₁ g₂ y) ]₁)) embase ◃∎
=ₛ₁⟨ 0 & 1 & step₂ ⟩
ap (ap [_]) (comp-l embase) ◃∙
app= (F₁₂.pres-comp {x = λ _ → [ north ]} {y = λ _ → [ north ]} {z = λ _ → [ north ]}
(λ y → [ η (cp₀₁ g₁ y) ]₁) (λ y → [ η (cp₀₁ g₂ y) ]₁)) embase ◃∎
=ₛ₁⟨ 1 & 1 & step₃ ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap-∙ [_] (η embase) (η embase) ◃∎ ∎ₛ
where
step₂ :
app= (ap (λ α y → <– (=ₜ-equiv [ north ] [ north ]) (α y))
(F₀₁.pres-comp g₁ g₂)) embase
== ap (ap [_]) (comp-l embase)
step₂ =
app= (ap (λ α y → <– (=ₜ-equiv [ north ] [ north ]) (α y)) (F₀₁.pres-comp g₁ g₂)) embase
=⟨ ∘-ap (λ f → f embase)
(λ α y → <– (=ₜ-equiv [ north ] [ north ]) (α y))
(F₀₁.pres-comp g₁ g₂) ⟩
ap (λ α → <– (=ₜ-equiv [ north ] [ north ]) (α embase))
(F₀₁.pres-comp g₁ g₂)
=⟨ ap-∘ (<– (=ₜ-equiv [ north ] [ north ]))
(λ f → f embase)
(F₀₁.pres-comp g₁ g₂) ⟩
ap (<– (=ₜ-equiv [ north ] [ north ]))
(app= (F₀₁.pres-comp g₁ g₂) embase)
=⟨ ap (ap (<– (=ₜ-equiv [ north ] [ north ])))
(app=-group-to-EM₁→EM₂-pres-comp-embase g₁ g₂) ⟩
ap (<– (=ₜ-equiv [ north ] [ north ])) (comp embase embase)
=⟨ ap (ap (<– (=ₜ-equiv [ north ] [ north ])))
(comp-unit-l embase) ⟩
ap (<– (=ₜ-equiv [ north ] [ north ]))
(comp-l₁ embase)
=⟨ ∘-ap (<– (=ₜ-equiv [ north ] [ north ])) [_]₁ (comp-l embase) ⟩
ap (ap [_]) (comp-l embase) =∎
step₃ :
app= (F₁₂.pres-comp {x = λ _ → [ north ]₂} {y = λ _ → [ north ]₂} {z = λ _ → [ north ]₂}
(λ y → [ η (cp₀₁ g₁ y) ]₁) (λ y → [ η (cp₀₁ g₂ y) ]₁)) embase
== ap-∙ [_] (η embase) (η embase)
step₃ =
app= (F₁₂.pres-comp {x = λ _ → [ north ]} {y = λ _ → [ north ]} {z = λ _ → [ north ]}
(λ y → [ η (cp₀₁ g₁ y) ]₁) (λ y → [ η (cp₀₁ g₂ y) ]₁)) embase
=⟨ app=-β (λ y → F₁₂'.pres-comp {x = [ north ]} {y = [ north ]} {z = [ north ]}
[ η (cp₀₁ g₁ y) ]₁ [ η (cp₀₁ g₂ y) ]₁) embase ⟩
F₁₂'.pres-comp {x = [ north ]} {y = [ north ]} {z = [ north ]} [ η embase ]₁ [ η embase ]₁
=⟨ =ₜ-to-2-type-fundamental-cat-pres-comp-β (Susp (EM₁ G⊗H.grp)) (η embase) (η embase) ⟩
ap-∙ [_] (η embase) (η embase) =∎
app=-F₀₂-pres-comp-embase-coh : ∀ g₁ g₂ →
app= (F₀₂.pres-comp g₁ g₂) embase ◃∙
ap2 _∙_ (ap (ap [_]) (!-inv-r (merid embase)))
(ap (ap [_]) (!-inv-r (merid embase))) ◃∎
=ₛ
ap (ap [_]) (!-inv-r (merid embase)) ◃∎
app=-F₀₂-pres-comp-embase-coh g₁ g₂ =
app= (F₀₂.pres-comp g₁ g₂) embase ◃∙
ap2 _∙_ (ap (ap [_]) (!-inv-r (merid embase)))
(ap (ap [_]) (!-inv-r (merid embase))) ◃∎
=ₛ⟨ 0 & 1 & app=-F₀₂-pres-comp-embase-β g₁ g₂ ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap-∙ [_] (η embase) (η embase) ◃∙
ap2 _∙_ (ap (ap [_]) (!-inv-r (merid embase)))
(ap (ap [_]) (!-inv-r (merid embase))) ◃∎
=ₛ₁⟨ 2 & 1 & ap2-ap-lr _∙_ (ap [_]) (ap [_]) (!-inv-r (merid embase)) (!-inv-r (merid embase)) ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap-∙ [_] (η embase) (η embase) ◃∙
ap2 (λ s t → ap [_] s ∙ ap [_] t) (!-inv-r (merid embase)) (!-inv-r (merid embase)) ◃∎
=ₛ⟨ 1 & 2 & !ₛ $
homotopy-naturality2 (λ s t → ap [_] (s ∙ t))
(λ s t → ap [_] s ∙ ap [_] t)
(ap-∙ [_])
(!-inv-r (merid embase))
(!-inv-r (merid embase)) ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap2 (λ s t → ap [_] (s ∙ t)) (!-inv-r (merid embase)) (!-inv-r (merid embase)) ◃∙
idp ◃∎
=ₛ⟨ 2 & 1 & expand [] ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap2 (λ s t → ap [_] (s ∙ t)) (!-inv-r (merid embase)) (!-inv-r (merid embase)) ◃∎
=ₛ₁⟨ 1 & 1 & ! (ap-ap2 (ap [_]) _∙_ (!-inv-r (merid embase)) (!-inv-r (merid embase))) ⟩
ap (ap [_]) (comp-l embase) ◃∙
ap (ap [_]) (ap2 _∙_ (!-inv-r (merid embase)) (!-inv-r (merid embase))) ◃∎
=ₛ⟨ ap-seq-=ₛ (ap [_]) step₇' ⟩
ap (ap [_]) (!-inv-r (merid embase)) ◃∎ ∎ₛ
where
helper : ∀ {i} {A : Type i} {a₀ a₁ : A} (p : a₀ == a₁)
→ add-path-inverse-l (p ∙ ! p) p ◃∙ ap2 _∙_ (!-inv-r p) (!-inv-r p) ◃∎
=ₛ !-inv-r p ◃∎
helper idp = =ₛ-in idp
step₇' : comp-l embase ◃∙ ap2 _∙_ (!-inv-r (merid embase)) (!-inv-r (merid embase)) ◃∎
=ₛ !-inv-r (merid embase) ◃∎
step₇' = helper (merid embase)
app=-ap-cp₁₁-seq : ∀ g y → app= (ap cp₁₁ (emloop g)) y =-= ap [_] (η (cp₀₁ g y))
app=-ap-cp₁₁-seq g y =
app= (ap cp₁₁ (emloop g)) y
=⟪ ap (λ p → app= p y) (cp₁₁-emloop-β g) ⟫
app= (λ= (λ x → ap [_] (η (cp₀₁ g x)))) y
=⟪ app=-β (λ x → ap [_] (η (cp₀₁ g x))) y ⟫
ap [_] (η (cp₀₁ g y)) ∎∎
app=-ap-cp₁₁ : ∀ g y → app= (ap cp₁₁ (emloop g)) y == ap [_] (η (cp₀₁ g y))
app=-ap-cp₁₁ g y = ↯ (app=-ap-cp₁₁-seq g y)
app=-ap-cp₁₁-coh-seq₁ : ∀ g₁ g₂ y →
app= (ap cp₁₁ (emloop (G.comp g₁ g₂))) y =-= ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y))
app=-ap-cp₁₁-coh-seq₁ g₁ g₂ y =
app= (ap cp₁₁ (emloop (G.comp g₁ g₂))) y
=⟪ ap (λ u → app= (ap cp₁₁ u) y) (emloop-comp g₁ g₂) ⟫
app= (ap cp₁₁ (emloop g₁ ∙ emloop g₂)) y
=⟪ ap (λ u → app= u y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ⟫
app= (ap cp₁₁ (emloop g₁) ∙ ap cp₁₁ (emloop g₂)) y
=⟪ ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ⟫
app= (ap cp₁₁ (emloop g₁)) y ∙ app= (ap cp₁₁ (emloop g₂)) y
=⟪ ap2 _∙_ (app=-ap-cp₁₁ g₁ y) (app=-ap-cp₁₁ g₂ y) ⟫
ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y)) ∎∎
app=-ap-cp₁₁-coh-seq₂ : ∀ g₁ g₂ y →
app= (ap cp₁₁ (emloop (G.comp g₁ g₂))) y =-= ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y))
app=-ap-cp₁₁-coh-seq₂ g₁ g₂ y =
app= (ap cp₁₁ (emloop (G.comp g₁ g₂))) y
=⟪ app=-ap-cp₁₁ (G.comp g₁ g₂) y ⟫
ap [_] (η (cp₀₁ (G.comp g₁ g₂) y))
=⟪ app= (F₀₂.pres-comp g₁ g₂) y ⟫
ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y)) ∎∎
abstract
app=-ap-cp₁₁-coh : ∀ g₁ g₂ y →
app=-ap-cp₁₁-coh-seq₁ g₁ g₂ y =ₛ app=-ap-cp₁₁-coh-seq₂ g₁ g₂ y
app=-ap-cp₁₁-coh g₁ g₂ y =
ap (λ u → app= (ap cp₁₁ u) y) (emloop-comp g₁ g₂) ◃∙
ap (λ u → app= u y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ◃∙
ap2 _∙_ (app=-ap-cp₁₁ g₁ y) (app=-ap-cp₁₁ g₂ y) ◃∎
=ₛ⟨ 3 & 2 & ap2-seq-∙ _∙_ (app=-ap-cp₁₁-seq g₁ y) (app=-ap-cp₁₁-seq g₂ y) ⟩
ap (λ u → app= (ap cp₁₁ u) y) (emloop-comp g₁ g₂) ◃∙
ap (λ u → app= u y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ◃∙
ap2 _∙_ (ap (λ z → app= z y) (cp₁₁-emloop-β g₁)) (ap (λ z → app= z y) (cp₁₁-emloop-β g₂)) ◃∙
ap2 _∙_ (app=-β (λ x → ap [_] (η (cp₀₁ g₁ x))) y) (app=-β (λ x → ap [_] (η (cp₀₁ g₂ x))) y) ◃∎
=ₛ₁⟨ 3 & 1 & ap2-ap-lr _∙_ (λ z → app= z y) (λ z → app= z y) (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ⟩
ap (λ u → app= (ap cp₁₁ u) y) (emloop-comp g₁ g₂) ◃∙
ap (λ u → app= u y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ◃∙
ap2 (λ a b → app= a y ∙ app= b y) (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ◃∙
ap2 _∙_ (app=-β (λ x → ap [_] (η (cp₀₁ g₁ x))) y) (app=-β (λ x → ap [_] (η (cp₀₁ g₂ x))) y) ◃∎
=ₛ⟨ 2 & 2 & !ₛ $
homotopy-naturality2 (λ a b → app= (a ∙ b) y)
(λ a b → app= a y ∙ app= b y)
(ap-∙ (λ f → f y))
(cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ⟩
ap (λ u → app= (ap cp₁₁ u) y) (emloop-comp g₁ g₂) ◃∙
ap (λ u → app= u y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap2 (λ a b → app= (a ∙ b) y) (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ◃∙
ap-∙ (λ f → f y) (λ= (λ y' → ap [_] (η (cp₀₁ g₁ y')))) (λ= (λ y' → ap [_] (η (cp₀₁ g₂ y')))) ◃∙
ap2 _∙_ (app=-β (λ x → ap [_] (η (cp₀₁ g₁ x))) y) (app=-β (λ x → ap [_] (η (cp₀₁ g₂ x))) y) ◃∎
=ₛ⟨ 3 & 2 &
app=-β-coh (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))) y ⟩
ap (λ x → app= (ap cp₁₁ x) y) (emloop-comp g₁ g₂) ◃∙
ap (λ p → app= p y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap2 (λ a b → app= (a ∙ b) y) (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ◃∙
ap (λ p → app= p y) (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))))) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (λ p → app= p y) (ap cp₁₁) (emloop-comp g₁ g₂) ⟩
ap (λ p → app= p y) (ap (ap cp₁₁) (emloop-comp g₁ g₂)) ◃∙
ap (λ p → app= p y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap2 (λ a b → app= (a ∙ b) y) (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂) ◃∙
ap (λ p → app= p y) (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))))) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ₁⟨ 2 & 1 & ! (ap-ap2 (λ p → app= p y) _∙_ (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂)) ⟩
ap (λ p → app= p y) (ap (ap cp₁₁) (emloop-comp g₁ g₂)) ◃∙
ap (λ p → app= p y) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap (λ p → app= p y) (ap2 _∙_ (cp₁₁-emloop-β g₁) (cp₁₁-emloop-β g₂)) ◃∙
ap (λ p → app= p y) (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))))) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ⟨ 0 & 3 & ap-seq-=ₛ (λ p → app= p y) (CP₁₁-Rec.emloop-comp-path g₁ g₂) ⟩
ap (λ p → app= p y) (cp₁₁-emloop-β (G.comp g₁ g₂)) ◃∙
ap (λ p → app= p y) (F₀₃.pres-comp g₁ g₂) ◃∙
ap (λ p → app= p y) (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))))) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ⟨ 1 & 2 & step₈ ⟩
ap (λ p → app= p y) (cp₁₁-emloop-β (G.comp g₁ g₂)) ◃∙
ap (λ p → app= p y) (ap λ= (F₀₂.pres-comp g₁ g₂)) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ₁⟨ 1 & 1 & ∘-ap (λ p → app= p y) λ= (F₀₂.pres-comp g₁ g₂) ⟩
ap (λ p → app= p y) (cp₁₁-emloop-β (G.comp g₁ g₂)) ◃∙
ap (λ γ → app= (λ= γ) y) (F₀₂.pres-comp g₁ g₂) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ g₁ x)) ∙ ap [_] (η (cp₀₁ g₂ x))) y ◃∎
=ₛ⟨ 1 & 2 &
homotopy-naturality (λ γ → app= (λ= γ) y)
(λ γ → γ y)
(λ γ → app=-β γ y)
(F₀₂.pres-comp g₁ g₂) ⟩
ap (λ p → app= p y) (cp₁₁-emloop-β (G.comp g₁ g₂)) ◃∙
app=-β (λ x → ap [_] (η (cp₀₁ (G.comp g₁ g₂) x))) y ◃∙
app= (F₀₂.pres-comp g₁ g₂) y ◃∎
=ₛ⟨ 0 & 2 & contract ⟩
app=-ap-cp₁₁ (G.comp g₁ g₂) y ◃∙
app= (F₀₂.pres-comp g₁ g₂) y ◃∎ ∎ₛ
where
step₈ :
ap (λ p → app= p y) (F₀₃.pres-comp g₁ g₂) ◃∙
ap (λ p → app= p y) (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))))) ◃∎
=ₛ
ap (λ p → app= p y) (ap λ= (F₀₂.pres-comp g₁ g₂)) ◃∎
step₈ = ap-seq-=ₛ (λ p → app= p y) $
F₀₃.pres-comp g₁ g₂ ◃∙
=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x)))) ◃∎
=ₛ⟨ 0 & 1 & F₀₃-Comp.pres-comp-β g₁ g₂ ⟩
ap λ= (F₀₂.pres-comp g₁ g₂) ◃∙
F₂₃.pres-comp (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))) ◃∙
=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x)))) ◃∎
=ₛ₁⟨ 1 & 1 & F₂₃-Funext.λ=-functor-pres-comp=λ=-∙ (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x))) ⟩
ap λ= (F₀₂.pres-comp g₁ g₂) ◃∙
=ₛ-out (λ=-∙ (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x)))) ◃∙
=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x)))) ◃∎
=ₛ⟨ 1 & 2 & seq-!-inv-l (=ₛ-out (∙-λ= (λ x → ap [_] (η (cp₀₁ g₁ x))) (λ x → ap [_] (η (cp₀₁ g₂ x)))) ◃∎) ⟩
ap λ= (F₀₂.pres-comp g₁ g₂) ◃∎ ∎ₛ
ap-cp₁₁-seq : ∀ g y → ap (λ x → cp₁₁ x y) (emloop g) =-= ap [_] (η (cp₀₁ g y))
ap-cp₁₁-seq g y =
ap (λ x → cp₁₁ x y) (emloop g)
=⟪ ap-∘ (λ f → f y) cp₁₁ (emloop g) ⟫
ap (λ f → f y) (ap cp₁₁ (emloop g))
=⟪ app=-ap-cp₁₁ g y ⟫
ap [_] (η (cp₀₁ g y)) ∎∎
ap-cp₁₁ : ∀ g y → ap (λ x → cp₁₁ x y) (emloop g) == ap [_] (η (cp₀₁ g y))
ap-cp₁₁ g y = ↯ (ap-cp₁₁-seq g y)
ap-cp₁₁-coh-seq₁ : ∀ g₁ g₂ y →
ap (λ x → cp₁₁ x y) (emloop (G.comp g₁ g₂)) =-= ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y))
ap-cp₁₁-coh-seq₁ g₁ g₂ y =
ap (λ x → cp₁₁ x y) (emloop (G.comp g₁ g₂))
=⟪ ap (ap (λ x → cp₁₁ x y)) (emloop-comp g₁ g₂) ⟫
ap (λ x → cp₁₁ x y) (emloop g₁ ∙ emloop g₂)
=⟪ ap-∙ (λ x → cp₁₁ x y) (emloop g₁) (emloop g₂) ⟫
ap (λ x → cp₁₁ x y) (emloop g₁) ∙ ap (λ x → cp₁₁ x y) (emloop g₂)
=⟪ ap2 _∙_ (ap-cp₁₁ g₁ y) (ap-cp₁₁ g₂ y) ⟫
ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y)) ∎∎
ap-cp₁₁-coh-seq₂ : ∀ g₁ g₂ y →
ap (λ x → cp₁₁ x y) (emloop (G.comp g₁ g₂)) =-= ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y))
ap-cp₁₁-coh-seq₂ g₁ g₂ y =
ap (λ x → cp₁₁ x y) (emloop (G.comp g₁ g₂))
=⟪ ap-cp₁₁ (G.comp g₁ g₂) y ⟫
ap [_] (η (cp₀₁ (G.comp g₁ g₂) y))
=⟪ app= (F₀₂.pres-comp g₁ g₂) y ⟫
ap [_] (η (cp₀₁ g₁ y)) ∙ ap [_] (η (cp₀₁ g₂ y)) ∎∎
abstract
ap-cp₁₁-coh : ∀ g₁ g₂ y →
ap-cp₁₁-coh-seq₁ g₁ g₂ y =ₛ ap-cp₁₁-coh-seq₂ g₁ g₂ y
ap-cp₁₁-coh g₁ g₂ y =
ap (ap (λ x → cp₁₁ x y)) (emloop-comp g₁ g₂) ◃∙
ap-∙ (λ x → cp₁₁ x y) (emloop g₁) (emloop g₂) ◃∙
ap2 _∙_ (ap-cp₁₁ g₁ y) (ap-cp₁₁ g₂ y) ◃∎
=ₛ⟨ 2 & 1 & ap2-seq-∙ _∙_ (ap-cp₁₁-seq g₁ y) (ap-cp₁₁-seq g₂ y) ⟩
ap (ap (λ x → cp₁₁ x y)) (emloop-comp g₁ g₂) ◃∙
ap-∙ (λ x → cp₁₁ x y) (emloop g₁) (emloop g₂) ◃∙
ap2 _∙_ (ap-∘ (λ f → f y) cp₁₁ (emloop g₁)) (ap-∘ (λ f → f y) cp₁₁ (emloop g₂)) ◃∙
ap2 _∙_ (app=-ap-cp₁₁ g₁ y) (app=-ap-cp₁₁ g₂ y) ◃∎
=ₛ⟨ 1 & 2 & ap-∘-∙-coh (λ f → f y) cp₁₁ (emloop g₁) (emloop g₂) ⟩
ap (ap (λ x → cp₁₁ x y)) (emloop-comp g₁ g₂) ◃∙
ap-∘ (λ f → f y) cp₁₁ (emloop g₁ ∙ emloop g₂) ◃∙
ap (ap (λ f → f y)) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ◃∙
ap2 _∙_ (app=-ap-cp₁₁ g₁ y) (app=-ap-cp₁₁ g₂ y) ◃∎
=ₛ⟨ 0 & 2 & homotopy-naturality {A = embase' G.grp == embase} {B = cp₁₁ embase y == cp₁₁ embase y}
(ap (λ x → cp₁₁ x y)) (λ p → app= (ap cp₁₁ p) y)
(ap-∘ (λ f → f y) cp₁₁) (emloop-comp g₁ g₂) ⟩
ap-∘ (λ f → f y) cp₁₁ (emloop (G.comp g₁ g₂)) ◃∙
ap (λ p → app= (ap cp₁₁ p) y) (emloop-comp g₁ g₂) ◃∙
ap (ap (λ f → f y)) (ap-∙ cp₁₁ (emloop g₁) (emloop g₂)) ◃∙
ap-∙ (λ f → f y) (ap cp₁₁ (emloop g₁)) (ap cp₁₁ (emloop g₂)) ◃∙
ap2 _∙_ (app=-ap-cp₁₁ g₁ y) (app=-ap-cp₁₁ g₂ y) ◃∎
=ₛ⟨ 1 & 4 & app=-ap-cp₁₁-coh g₁ g₂ y ⟩
ap-∘ (λ f → f y) cp₁₁ (emloop (G.comp g₁ g₂)) ◃∙
app=-ap-cp₁₁ (G.comp g₁ g₂) y ◃∙
app= (F₀₂.pres-comp g₁ g₂) y ◃∎
=ₛ₁⟨ 0 & 2 & idp ⟩
ap-cp₁₁ (G.comp g₁ g₂) y ◃∙
app= (F₀₂.pres-comp g₁ g₂) y ◃∎ ∎ₛ
ap-cp₁₁-embase-seq : ∀ g →
ap (λ x → cp₁₁ x embase) (emloop g) =-= idp
ap-cp₁₁-embase-seq g =
ap (λ x → cp₁₁ x embase) (emloop g)
=⟪ ap-cp₁₁ g embase ⟫
ap [_] (η (cp₀₁ g embase))
=⟪idp⟫
ap [_] (η embase)
=⟪ ap (ap [_]) (!-inv-r (merid embase)) ⟫
ap [_] (idp {a = north})
=⟪idp⟫
idp ∎∎
ap-cp₁₁-embase : ∀ g →
ap (λ x → cp₁₁ x embase) (emloop g) == idp
ap-cp₁₁-embase g = ↯ (ap-cp₁₁-embase-seq g)
ap-cp₁₁-embase-coh-seq : ∀ g₁ g₂ →
ap (λ x → cp₁₁ x embase) (emloop (G.comp g₁ g₂)) =-= idp
ap-cp₁₁-embase-coh-seq g₁ g₂ =
ap (λ x → cp₁₁ x embase) (emloop (G.comp g₁ g₂))
=⟪ ap (ap (λ x → cp₁₁ x embase)) (emloop-comp g₁ g₂) ⟫
ap (λ x → cp₁₁ x embase) (emloop g₁ ∙ emloop g₂)
=⟪ ap-∙ (λ x → cp₁₁ x embase) (emloop g₁) (emloop g₂) ⟫
ap (λ x → cp₁₁ x embase) (emloop g₁) ∙ ap (λ x → cp₁₁ x embase) (emloop g₂)
=⟪ ap2 _∙_ (ap-cp₁₁-embase g₁) (ap-cp₁₁-embase g₂) ⟫
idp ∎∎
ap-cp₁₁-embase-coh : ∀ g₁ g₂ →
ap-cp₁₁-embase (G.comp g₁ g₂) ◃∎ =ₛ ap-cp₁₁-embase-coh-seq g₁ g₂
ap-cp₁₁-embase-coh g₁ g₂ =
ap-cp₁₁-embase (G.comp g₁ g₂) ◃∎
=ₛ⟨ expand (ap-cp₁₁-embase-seq (G.comp g₁ g₂)) ⟩
ap-cp₁₁ (G.comp g₁ g₂) embase ◃∙
ap (ap [_]) (!-inv-r (merid embase)) ◃∎
=ₛ⟨ 1 & 1 & !ₛ (app=-F₀₂-pres-comp-embase-coh g₁ g₂) ⟩
ap-cp₁₁ (G.comp g₁ g₂) embase ◃∙
app= (F₀₂.pres-comp g₁ g₂) embase ◃∙
ap2 _∙_ (ap (ap [_]) (!-inv-r (merid embase))) (ap (ap [_]) (!-inv-r (merid embase))) ◃∎
=ₛ⟨ 0 & 2 & !ₛ (ap-cp₁₁-coh g₁ g₂ embase) ⟩
ap (ap (λ x → cp₁₁ x embase)) (emloop-comp g₁ g₂) ◃∙
ap-∙ (λ x → cp₁₁ x embase) (emloop g₁) (emloop g₂) ◃∙
ap2 _∙_ (ap-cp₁₁ g₁ embase) (ap-cp₁₁ g₂ embase) ◃∙
ap2 _∙_ (ap (ap [_]) (!-inv-r (merid embase))) (ap (ap [_]) (!-inv-r (merid embase))) ◃∎
=ₛ⟨ 2 & 2 & ∙-ap2-seq _∙_ (ap-cp₁₁-embase-seq g₁) (ap-cp₁₁-embase-seq g₂) ⟩
ap (ap (λ x → cp₁₁ x embase)) (emloop-comp g₁ g₂) ◃∙
ap-∙ (λ x → cp₁₁ x embase) (emloop g₁) (emloop g₂) ◃∙
ap2 _∙_ (ap-cp₁₁-embase g₁) (ap-cp₁₁-embase g₂) ◃∎ ∎ₛ
open CP₁₁ public
| {
"alphanum_fraction": 0.4851759303,
"avg_line_length": 45.8421052632,
"ext": "agda",
"hexsha": "fd59ca1e8e8fd37e1ee0c998863e04aa91a08403",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees.agda",
"max_line_length": 123,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 14856,
"size": 29614
} |
------------------------------------------------------------------------
-- Strings
------------------------------------------------------------------------
module Data.String where
open import Data.List as List using (List)
open import Data.Vec as Vec using (Vec)
open import Data.Colist as Colist using (Colist)
open import Data.Char using (Char)
open import Data.Bool using (Bool; true; false)
open import Data.Function
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
------------------------------------------------------------------------
-- Types
-- Finite strings.
postulate
String : Set
{-# BUILTIN STRING String #-}
{-# COMPILED_TYPE String String #-}
-- Possibly infinite strings.
Costring : Set
Costring = Colist Char
------------------------------------------------------------------------
-- Operations
private
primitive
primStringAppend : String → String → String
primStringToList : String → List Char
primStringFromList : List Char → String
primStringEquality : String → String → Bool
infixr 5 _++_
_++_ : String → String → String
_++_ = primStringAppend
toList : String → List Char
toList = primStringToList
fromList : List Char → String
fromList = primStringFromList
toVec : (s : String) → Vec Char (List.length (toList s))
toVec s = Vec.fromList (toList s)
toCostring : String → Costring
toCostring = Colist.fromList ∘ toList
infix 4 _==_
_==_ : String → String → Bool
_==_ = primStringEquality
_≟_ : Decidable {String} _≡_
s₁ ≟ s₂ with s₁ == s₂
... | true = yes trustMe
where postulate trustMe : _
... | false = no trustMe
where postulate trustMe : _
setoid : Setoid
setoid = PropEq.setoid String
decSetoid : DecSetoid
decSetoid = PropEq.decSetoid _≟_
| {
"alphanum_fraction": 0.6090351366,
"avg_line_length": 23.2857142857,
"ext": "agda",
"hexsha": "aa697becbed39b70a7749ff731ab6befda56be6b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/String.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/String.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/String.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 428,
"size": 1793
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Base.ByteString
module LibraBFT.Base.Encode where
-- An encoder for values of type A is
-- an injective mapping of 'A's into 'ByteString's
record Encoder {a}(A : Set a) : Set a where
constructor mkEncoder
field
encode : A → ByteString
encode-inj : ∀{a₁ a₂} → encode a₁ ≡ encode a₂ → a₁ ≡ a₂
open Encoder {{...}} public
≡-Encoder : ∀ {a} {A : Set a} → Encoder A → DecidableEquality A
≡-Encoder (mkEncoder enc enc-inj) x y
with enc x ≟ByteString enc y
...| yes enc≡ = yes (enc-inj enc≡)
...| no neq = no (⊥-elim ∘ neq ∘ cong enc)
postulate -- valid assumption
instance
encℕ : Encoder ℕ
encBS : Encoder ByteString
instance
encFin : {n : ℕ} → Encoder (Fin n)
encFin {n} = record { encode = encode ⦃ encℕ ⦄ ∘ toℕ ;
encode-inj = toℕ-injective ∘ encode-inj ⦃ encℕ ⦄ }
| {
"alphanum_fraction": 0.6482939633,
"avg_line_length": 32.6571428571,
"ext": "agda",
"hexsha": "4f5a85f1465e5490953773b365e3684621a20058",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Base/Encode.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Base/Encode.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Base/Encode.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 368,
"size": 1143
} |
data U : Set
T : U -> Set
record V u (t : T u) : Set -- note that u's Set is found by unification
| {
"alphanum_fraction": 0.6060606061,
"avg_line_length": 19.8,
"ext": "agda",
"hexsha": "035b58e869b76dfbf2c7129e086369f5a37ef6d6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/MissingDefinitionDataOrRec.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/MissingDefinitionDataOrRec.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/MissingDefinitionDataOrRec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 35,
"size": 99
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Functor.Compose where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.Instances.Functors
module _ {ℓC ℓC' ℓD ℓD' ℓE ℓE'}
{C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'}
(E : Precategory ℓE ℓE') ⦃ isCatE : isCategory E ⦄
(F : Functor C D)
where
open Functor
open NatTrans
precomposeF : Functor (FUNCTOR D E) (FUNCTOR C E)
precomposeF .F-ob G = funcComp G F
precomposeF .F-hom α .N-ob c = α .N-ob (F .F-ob c)
precomposeF .F-hom α .N-hom f = α .N-hom (F .F-hom f)
precomposeF .F-id = refl
precomposeF .F-seq f g = refl
module _ {ℓC ℓC' ℓD ℓD' ℓE ℓE'}
(C : Precategory ℓC ℓC')
{D : Precategory ℓD ℓD'} ⦃ isCatD : isCategory D ⦄
{E : Precategory ℓE ℓE'} ⦃ isCatE : isCategory E ⦄
(G : Functor D E)
where
open Functor
open NatTrans
postcomposeF : Functor (FUNCTOR C D) (FUNCTOR C E)
postcomposeF .F-ob F = funcComp G F
postcomposeF .F-hom α .N-ob c = G. F-hom (α .N-ob c)
postcomposeF .F-hom {F₀} {F₁} α .N-hom {x} {y} f =
sym (G .F-seq (F₀ ⟪ f ⟫) (α ⟦ y ⟧))
∙∙ cong (G ⟪_⟫) (α .N-hom f)
∙∙ G .F-seq (α ⟦ x ⟧) (F₁ ⟪ f ⟫)
postcomposeF .F-id = makeNatTransPath (funExt λ _ → G .F-id)
postcomposeF .F-seq f g = makeNatTransPath (funExt λ _ → G .F-seq _ _)
| {
"alphanum_fraction": 0.6479835954,
"avg_line_length": 30.4791666667,
"ext": "agda",
"hexsha": "5f4094dc0dc7d985b9707f489da834e17bfed88d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Categories/Functor/Compose.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Categories/Functor/Compose.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Categories/Functor/Compose.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 600,
"size": 1463
} |
module NoSuchModule where
open X
| {
"alphanum_fraction": 0.8235294118,
"avg_line_length": 8.5,
"ext": "agda",
"hexsha": "360da3588805192a112c0137c419b040f8961055",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NoSuchModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NoSuchModule.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NoSuchModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 34
} |
{-
Mapping cones or the homotopy cofiber/cokernel
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.MappingCones.Base where
open import Cubical.Foundations.Prelude
private
variable
ℓ ℓ' ℓ'' : Level
data Cone {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) : Type (ℓ-max ℓ ℓ') where
inj : Y → Cone f
hub : Cone f
spoke : (x : X) → hub ≡ inj (f x)
-- the attachment of multiple mapping cones
data Cones {X : Type ℓ} {Y : Type ℓ'} (A : Type ℓ'') (f : A → X → Y) : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') where
inj : Y → Cones A f
hub : A → Cones A f
spoke : (a : A) (x : X) → hub a ≡ inj (f a x)
| {
"alphanum_fraction": 0.5759493671,
"avg_line_length": 23.4074074074,
"ext": "agda",
"hexsha": "5e92923cd8051b9cd4a094292faacbe3cc5099be",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/MappingCones/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/MappingCones/Base.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/MappingCones/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 248,
"size": 632
} |
module Util.Equality where
open import Relation.Binary.PropositionalEquality
app-≡ : ∀ {A : Set} {B : A → Set} {f g : (x : A) → B x} (x : A) → f ≡ g → f x ≡ g x
app-≡ x refl = refl
| {
"alphanum_fraction": 0.5792349727,
"avg_line_length": 26.1428571429,
"ext": "agda",
"hexsha": "726f446a550168ea820d2dd7065939a3b68f88a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Util/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Util/Equality.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Util/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 73,
"size": 183
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Setoid.Morphism.Properties where
open import Fragment.Setoid.Morphism.Base
open import Fragment.Setoid.Morphism.Setoid
open import Level using (Level)
open import Relation.Binary using (Setoid)
private
variable
a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
A : Setoid a ℓ₁
B : Setoid b ℓ₂
C : Setoid c ℓ₃
D : Setoid d ℓ₄
id-unitˡ : ∀ {f : A ↝ B} → id · f ≗ f
id-unitˡ {B = B} = Setoid.refl B
id-unitʳ : ∀ {f : A ↝ B} → f · id ≗ f
id-unitʳ {B = B} = Setoid.refl B
·-assoc : ∀ (h : C ↝ D) (g : B ↝ C) (f : A ↝ B)
→ (h · g) · f ≗ h · (g · f)
·-assoc {D = D} _ _ _ = Setoid.refl D
·-congˡ : ∀ (h : B ↝ C) (f g : A ↝ B)
→ f ≗ g
→ h · f ≗ h · g
·-congˡ h _ _ f≗g = ∣ h ∣-cong f≗g
·-congʳ : ∀ (h : A ↝ B) (f g : B ↝ C)
→ f ≗ g
→ f · h ≗ g · h
·-congʳ _ _ _ f≗g = f≗g
| {
"alphanum_fraction": 0.509009009,
"avg_line_length": 23.3684210526,
"ext": "agda",
"hexsha": "7e52e558bc5303949bb5b39886f6e4b7db4bb6e7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Setoid/Morphism/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Setoid/Morphism/Properties.agda",
"max_line_length": 48,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Setoid/Morphism/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 397,
"size": 888
} |
module Thesis.SIRelBigStep.OpSem where
open import Data.Nat
open import Thesis.SIRelBigStep.Syntax public
data Val : Type → Set
import Base.Denotation.Environment
open Base.Denotation.Environment Type Val public
open import Base.Data.DependentList public
data Val where
closure : ∀ {Γ σ τ} → (t : Term (σ • Γ) τ) → (ρ : ⟦ Γ ⟧Context) → Val (σ ⇒ τ)
natV : ∀ (n : ℕ) → Val nat
pairV : ∀ {σ τ} → Val σ → Val τ → Val (pair σ τ)
eval-const : ∀ {τ} → Const τ → Val τ
eval-const (lit n) = natV n
eval : ∀ {Γ τ} (sv : SVal Γ τ) (ρ : ⟦ Γ ⟧Context) → Val τ
eval (var x) ρ = ⟦ x ⟧Var ρ
eval (abs t) ρ = closure t ρ
eval (cons sv1 sv2) ρ = pairV (eval sv1 ρ) (eval sv2 ρ)
eval (const c) ρ = eval-const c
eval-primitive : ∀ {σ τ} → Primitive (σ ⇒ τ) → Val σ → Val τ
eval-primitive succ (natV n) = natV (suc n)
eval-primitive add (pairV (natV n1) (natV n2)) = natV (n1 + n2)
-- Yann's idea.
data HasIdx : Set where
true : HasIdx
false : HasIdx
data Idx : HasIdx → Set where
i' : ℕ → Idx true
no : Idx false
i : {hasIdx : HasIdx} → ℕ → Idx hasIdx
i {false} j = no
i {true} j = i' j
module _ {hasIdx : HasIdx} where
data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : ∀ {τ} → Term Γ τ → Idx hasIdx → Val τ → Set where
val : ∀ {τ} (sv : SVal Γ τ) →
ρ ⊢ val sv ↓[ i 0 ] eval sv ρ
primapp : ∀ {σ τ} (p : Primitive (σ ⇒ τ)) (sv : SVal Γ σ) →
ρ ⊢ primapp p sv ↓[ i 1 ] eval-primitive p (eval sv ρ)
app : ∀ n {Γ′ σ τ ρ′} vtv {v} {vs : SVal Γ (σ ⇒ τ)} {vt : SVal Γ σ} {t : Term (σ • Γ′) τ} →
ρ ⊢ val vs ↓[ i 0 ] closure t ρ′ →
ρ ⊢ val vt ↓[ i 0 ] vtv →
(vtv • ρ′) ⊢ t ↓[ i n ] v →
ρ ⊢ app vs vt ↓[ i (suc n) ] v
lett :
∀ n1 n2 {σ τ} vsv {v} (s : Term Γ σ) (t : Term (σ • Γ) τ) →
ρ ⊢ s ↓[ i n1 ] vsv →
(vsv • ρ) ⊢ t ↓[ i n2 ] v →
ρ ⊢ lett s t ↓[ i (suc n1 + n2) ] v
| {
"alphanum_fraction": 0.5412342982,
"avg_line_length": 31.5689655172,
"ext": "agda",
"hexsha": "c43657202a477da9b598e6035e8d6a605340f0da",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/OpSem.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/OpSem.agda",
"max_line_length": 95,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/OpSem.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 796,
"size": 1831
} |
{-# OPTIONS --safe #-}
module Extraction where
open import Data.Empty
open import Data.Unit
open import Data.Product
open import Data.Sum
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.HeterogeneousEquality
open import Relation.Nullary
open import PiPointedFrac as Pi/ hiding (𝕌; ⟦_⟧; eval)
open import PiFracDyn
Inj𝕌 : Pi/.𝕌 → 𝕌
Inj𝕌 𝟘 = 𝟘
Inj𝕌 𝟙 = 𝟙
Inj𝕌 (t₁ +ᵤ t₂) = Inj𝕌 t₁ +ᵤ Inj𝕌 t₂
Inj𝕌 (t₁ ×ᵤ t₂) = Inj𝕌 t₁ ×ᵤ Inj𝕌 t₂
Inj𝕌≡ : (t : Pi/.𝕌) → Pi/.⟦ t ⟧ ≡ ⟦ Inj𝕌 t ⟧
Inj𝕌≡ 𝟘 = refl
Inj𝕌≡ 𝟙 = refl
Inj𝕌≡ (t₁ +ᵤ t₂) rewrite (Inj𝕌≡ t₁) | (Inj𝕌≡ t₂) = refl
Inj𝕌≡ (t₁ ×ᵤ t₂) rewrite (Inj𝕌≡ t₁) | (Inj𝕌≡ t₂) = refl
Inj⟦𝕌⟧ : {t : Pi/.𝕌} → Pi/.⟦ t ⟧ → ⟦ Inj𝕌 t ⟧
Inj⟦𝕌⟧ {𝟙} tt = tt
Inj⟦𝕌⟧ {t₁ +ᵤ t₂} (inj₁ x) = inj₁ (Inj⟦𝕌⟧ x)
Inj⟦𝕌⟧ {t₁ +ᵤ t₂} (inj₂ y) = inj₂ (Inj⟦𝕌⟧ y)
Inj⟦𝕌⟧ {t₁ ×ᵤ t₂} (x , y) = Inj⟦𝕌⟧ x , Inj⟦𝕌⟧ y
Inj⟦𝕌⟧≅ : {t : Pi/.𝕌} (x : Pi/.⟦ t ⟧) → x ≅ Inj⟦𝕌⟧ x
Inj⟦𝕌⟧≅ {𝟙} tt = refl
Inj⟦𝕌⟧≅ {t₁ +ᵤ t₂} (inj₁ x) = inj1 (Inj𝕌≡ t₂) (Inj⟦𝕌⟧≅ x)
where
inj1 : {A B A' B' : Set} {x : A} {x' : A'}
→ B ≡ B' → x ≅ x'
→ inj₁ {B = B} x ≅ inj₁ {B = B'} x'
inj1 refl refl = refl
Inj⟦𝕌⟧≅ {t₁ +ᵤ t₂} (inj₂ y) = inj2 (Inj𝕌≡ t₁) (Inj⟦𝕌⟧≅ y)
where
inj2 : {A B A' B' : Set} {y : B} {y' : B'}
→ A ≡ A' → y ≅ y'
→ inj₂ {A = A} y ≅ inj₂ {A = A'} y'
inj2 refl refl = refl
Inj⟦𝕌⟧≅ {t₁ ×ᵤ t₂} (x , y) = ⦅ Inj⟦𝕌⟧≅ x , Inj⟦𝕌⟧≅ y ⦆
where
⦅_,_⦆ : {A B A' B' : Set} {x : A} {y : B} {x' : A'} {y' : B'}
→ x ≅ x' → y ≅ y'
→ (x , y) ≅ (x' , y')
⦅ refl , refl ⦆ = refl
Inj⟷ : ∀ {t₁ t₂} → t₁ ⟷ t₂ → Inj𝕌 t₁ ↔ Inj𝕌 t₂
Inj⟷ unite₊l = unite₊l
Inj⟷ uniti₊l = uniti₊l
Inj⟷ unite₊r = unite₊r
Inj⟷ uniti₊r = uniti₊r
Inj⟷ swap₊ = swap₊
Inj⟷ assocl₊ = assocl₊
Inj⟷ assocr₊ = assocr₊
Inj⟷ unite⋆l = unite⋆l
Inj⟷ uniti⋆l = uniti⋆l
Inj⟷ unite⋆r = unite⋆r
Inj⟷ uniti⋆r = uniti⋆r
Inj⟷ swap⋆ = swap⋆
Inj⟷ assocl⋆ = assocl⋆
Inj⟷ assocr⋆ = assocr⋆
Inj⟷ absorbr = absorbr
Inj⟷ absorbl = absorbl
Inj⟷ factorzr = factorzr
Inj⟷ factorzl = factorzl
Inj⟷ dist = dist
Inj⟷ factor = factor
Inj⟷ distl = distl
Inj⟷ factorl = factorl
Inj⟷ id⟷ = id↔
Inj⟷ (c₁ ⊚ c₂) = Inj⟷ c₁ ⊚ Inj⟷ c₂
Inj⟷ (c₁ ⊕ c₂) = Inj⟷ c₁ ⊕ Inj⟷ c₂
Inj⟷ (c₁ ⊗ c₂) = Inj⟷ c₁ ⊗ Inj⟷ c₂
Ext𝕌 : ∙𝕌 → Σ[ t ∈ 𝕌 ] ⟦ t ⟧
Ext𝕌 (t # v) = (Inj𝕌 t , Inj⟦𝕌⟧ v)
Ext𝕌 (t₁ ∙×ᵤ t₂) with Ext𝕌 t₁ | Ext𝕌 t₂
... | (t₁' , v₁') | (t₂' , v₂') = t₁' ×ᵤ t₂' , v₁' , v₂'
Ext𝕌 (t₁ ∙+ᵤl t₂) with Ext𝕌 t₁ | Ext𝕌 t₂
... | (t₁' , v₁') | (t₂' , v₂') = t₁' +ᵤ t₂' , inj₁ v₁'
Ext𝕌 (t₁ ∙+ᵤr t₂) with Ext𝕌 t₁ | Ext𝕌 t₂
... | (t₁' , v₁') | (t₂' , v₂') = t₁' +ᵤ t₂' , inj₂ v₂'
Ext𝕌 (Singᵤ T) with Ext𝕌 T
... | (t , v) = t , v
Ext𝕌 (Recipᵤ T) with Ext𝕌 T
... | (t , v) = 𝟙/ v , ○
Ext∙⟶ : ∀ {t₁ t₂} → t₁ ∙⟶ t₂ → proj₁ (Ext𝕌 t₁) ↔ proj₁ (Ext𝕌 t₂)
Ext∙⟶ (∙c c) = Inj⟷ c
Ext∙⟶ ∙times# = id↔
Ext∙⟶ ∙#times = id↔
Ext∙⟶ ∙id⟷ = id↔
Ext∙⟶ (c₁ ∙⊚ c₂) = Ext∙⟶ c₁ ⊚ Ext∙⟶ c₂
Ext∙⟶ ∙unite⋆l = unite⋆l
Ext∙⟶ ∙uniti⋆l = uniti⋆l
Ext∙⟶ ∙unite⋆r = unite⋆r
Ext∙⟶ ∙uniti⋆r = uniti⋆r
Ext∙⟶ ∙swap⋆ = swap⋆
Ext∙⟶ ∙assocl⋆ = assocl⋆
Ext∙⟶ ∙assocr⋆ = assocr⋆
Ext∙⟶ (c₁ ∙⊗ c₂) = Ext∙⟶ c₁ ⊗ Ext∙⟶ c₂
Ext∙⟶ (c₁ ∙⊕ₗ c₂) = Ext∙⟶ c₁ ⊕ Ext∙⟶ c₂
Ext∙⟶ (c₁ ∙⊕ᵣ c₂) = Ext∙⟶ c₁ ⊕ Ext∙⟶ c₂
Ext∙⟶ (return T) = id↔
Ext∙⟶ (extract T) = id↔
Ext∙⟶ (η T) = η (proj₂ (Ext𝕌 T))
Ext∙⟶ (ε T) = ε (proj₂ (Ext𝕌 T))
Eval≡ : ∀ {t₁ t₂} {v} (c : t₁ ⟷ t₂) → interp (Inj⟷ c) (Inj⟦𝕌⟧ v) ≡ just (Inj⟦𝕌⟧ (Pi/.eval c v))
Eval≡ {_} {_} {inj₂ y} unite₊l = refl
Eval≡ {_} {_} {x} uniti₊l = refl
Eval≡ {_} {_} {inj₁ x} unite₊r = refl
Eval≡ {_} {_} {x} uniti₊r = refl
Eval≡ {_} {_} {inj₁ x} swap₊ = refl
Eval≡ {_} {_} {inj₂ y} swap₊ = refl
Eval≡ {_} {_} {inj₁ x} assocl₊ = refl
Eval≡ {_} {_} {inj₂ (inj₁ y)} assocl₊ = refl
Eval≡ {_} {_} {inj₂ (inj₂ z)} assocl₊ = refl
Eval≡ {_} {_} {inj₁ (inj₁ x)} assocr₊ = refl
Eval≡ {_} {_} {inj₁ (inj₂ y)} assocr₊ = refl
Eval≡ {_} {_} {inj₂ z} assocr₊ = refl
Eval≡ {_} {_} {x} unite⋆l = refl
Eval≡ {_} {_} {x} uniti⋆l = refl
Eval≡ {_} {_} {x} unite⋆r = refl
Eval≡ {_} {_} {x} uniti⋆r = refl
Eval≡ {_} {_} {x , y} swap⋆ = refl
Eval≡ {_} {_} {x , y , z} assocl⋆ = refl
Eval≡ {_} {_} {(x , y) , z} assocr⋆ = refl
Eval≡ {_} {_} {inj₁ x , z} dist = refl
Eval≡ {_} {_} {inj₂ y , z} dist = refl
Eval≡ {_} {_} {inj₁ (x , z)} factor = refl
Eval≡ {_} {_} {inj₂ (y , z)} factor = refl
Eval≡ {_} {_} {x , inj₁ y} distl = refl
Eval≡ {_} {_} {x , inj₂ z} distl = refl
Eval≡ {_} {_} {inj₁ (x , y)} factorl = refl
Eval≡ {_} {_} {inj₂ (x , z)} factorl = refl
Eval≡ {_} {_} {x} id⟷ = refl
Eval≡ {_} {_} {x} (c₁ ⊚ c₂) rewrite Eval≡ {v = x} c₁ = Eval≡ c₂
Eval≡ {_} {_} {inj₁ x} (c₁ ⊕ c₂) rewrite Eval≡ {v = x} c₁ = refl
Eval≡ {_} {_} {inj₂ y} (c₁ ⊕ c₂) rewrite Eval≡ {v = y} c₂ = refl
Eval≡ {_} {_} {x , y} (c₁ ⊗ c₂) rewrite Eval≡ {v = x} c₁ | Eval≡ {v = y} c₂ = refl
Ext≡ : ∀ {t₁ t₂} → (c : t₁ ∙⟶ t₂)
→ let c' = Ext∙⟶ c
(t₁' , v₁') = Ext𝕌 t₁
(t₂' , v₂') = Ext𝕌 t₂
in interp c' v₁' ≡ just v₂'
Ext≡ (∙c c) = Eval≡ c
Ext≡ (∙times# {t₁} {t₂}) = refl
Ext≡ (∙#times {t₁} {t₂}) = refl
Ext≡ ∙id⟷ = refl
Ext≡ (c₁ ∙⊚ c₂) rewrite Ext≡ c₁ | Ext≡ c₂ = refl
Ext≡ (c₁ ∙⊕ₗ c₂) rewrite Ext≡ c₁ = refl
Ext≡ (c₁ ∙⊕ᵣ c₂) rewrite Ext≡ c₂ = refl
Ext≡ ∙unite⋆l = refl
Ext≡ ∙uniti⋆l = refl
Ext≡ ∙unite⋆r = refl
Ext≡ ∙uniti⋆r = refl
Ext≡ ∙swap⋆ = refl
Ext≡ ∙assocl⋆ = refl
Ext≡ ∙assocr⋆ = refl
Ext≡ (c₁ ∙⊗ c₂) rewrite Ext≡ c₁ | Ext≡ c₂ = refl
Ext≡ (return T) = refl
Ext≡ (extract T) = refl
Ext≡ (η T) = refl
Ext≡ (ε T) with 𝕌dec _ (proj₂ (Ext𝕌 T)) (proj₂ (Ext𝕌 T))
Ext≡ (ε T) | yes p = refl
Ext≡ (ε T) | no ¬p = ⊥-elim (¬p refl)
𝔹 : Pi/.𝕌
𝔹 = 𝟙 +ᵤ 𝟙
infixr 2 _→⟨_⟩_
infix 3 _□
_→⟨_⟩_ : (T₁ : ∙𝕌) → {T₂ T₃ : ∙𝕌} →
(T₁ ∙⟶ T₂) → (T₂ ∙⟶ T₃) → (T₁ ∙⟶ T₃)
_ →⟨ α ⟩ β = α ∙⊚ β
_□ : (T : ∙𝕌) → {T : ∙𝕌} → (T ∙⟶ T)
_□ T = ∙id⟷
zigzag : ∀ b → 𝔹 # b ∙⟶ 𝔹 # b
zigzag b = ∙c uniti⋆l ∙⊚
∙times# ∙⊚
(∙id⟷ ∙⊗ return ((𝟙 +ᵤ 𝟙) # b)) ∙⊚
(η ((𝟙 +ᵤ 𝟙) # b) ∙⊗ ∙id⟷) ∙⊚
∙assocr⋆ ∙⊚
(∙id⟷ ∙⊗ ∙swap⋆) ∙⊚
(∙id⟷ ∙⊗ ε ((𝟙 +ᵤ 𝟙) # b)) ∙⊚
(extract ((𝟙 +ᵤ 𝟙) # b) ∙⊗ ∙id⟷) ∙⊚ ∙#times ∙⊚ ∙c unite⋆r ∙⊚ ∙id⟷
zigzag-ext : ∀ b → Σ[ c ∈ 𝟙 +ᵤ 𝟙 ↔ 𝟙 +ᵤ 𝟙 ] interp c (Inj⟦𝕌⟧ b) ≡ just (Inj⟦𝕌⟧ b)
zigzag-ext b = Ext∙⟶ (zigzag b) , Ext≡ (zigzag b)
| {
"alphanum_fraction": 0.5,
"avg_line_length": 30.855721393,
"ext": "agda",
"hexsha": "5be8188fd52c4e363f5b1f52ede696860feececa",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/Extraction.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/Extraction.agda",
"max_line_length": 95,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/Extraction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3875,
"size": 6202
} |
module UnquoteDef where
open import Common.Reflection
open import Common.Prelude
module Target where
mutual
even : Nat → Bool
even zero = true
even (suc n) = odd n
odd : Nat → Bool
odd zero = false
odd (suc n) = even n
pattern `false = con (quote false) []
pattern `true = con (quote true) []
pattern `zero = con (quote zero) []
pattern `suc n = con (quote suc) (vArg n ∷ [])
pattern _`→_ a b = pi (vArg a) (abs "A" b)
pattern `Nat = def (quote Nat) []
pattern `Bool = def (quote Bool) []
`idType = `Nat `→ `Nat
-- Simple non-mutual case
`id : QName → FunDef
`id f = funDef `idType
( clause (vArg `zero ∷ []) `zero
∷ clause (vArg (`suc (var "n")) ∷ []) (`suc (def f (vArg (var 0 []) ∷ [])))
∷ [])
`idDef : QName → List Clause
`idDef f =
clause (vArg `zero ∷ []) `zero
∷ clause (vArg (`suc (var "n")) ∷ []) (`suc (def f (vArg (var 0 []) ∷ [])))
∷ []
-- id : Nat → Nat
-- unquoteDef id = `idDef id
-- Now for the mutal ones
`evenOdd : Term → QName → List Clause
`evenOdd base step =
clause (vArg `zero ∷ []) base
∷ clause (vArg (`suc (var "n")) ∷ []) (def step (vArg (var 0 []) ∷ []))
∷ []
_>>_ : TC ⊤ → TC ⊤ → TC ⊤
m >> m₁ = bindTC m λ _ → m₁
even odd : Nat → Bool
unquoteDef even odd =
defineFun even (`evenOdd `true odd) >>
defineFun odd (`evenOdd `false even)
| {
"alphanum_fraction": 0.5458483755,
"avg_line_length": 23.8793103448,
"ext": "agda",
"hexsha": "c205bb18036369a2fda7cb388a98ff64f3b03851",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/UnquoteDef.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/UnquoteDef.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/UnquoteDef.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 486,
"size": 1385
} |
{-
Basic properties about Σ-types
- Characterization of equality in Σ-types using transport ([pathSigma≡sigmaPath])
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Sigma.Properties where
open import Cubical.Data.Sigma.Base
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Data.Unit.Base
private
variable
ℓ : Level
A A' : Type ℓ
B B' : (a : A) → Type ℓ
C : (a : A) (b : B a) → Type ℓ
mapʳ : (∀ {a} → B a → B' a) → Σ A B → Σ A B'
mapʳ f (a , b) = (a , f b)
mapˡ : {B : Type ℓ} → (f : A → A') → Σ A (λ _ → B) → Σ A' (λ _ → B)
mapˡ f (a , b) = (f a , b)
ΣPathP : ∀ {x y}
→ Σ (fst x ≡ fst y) (λ a≡ → PathP (λ i → B (a≡ i)) (snd x) (snd y))
→ x ≡ y
ΣPathP eq i = fst eq i , snd eq i
Σ-split-iso : {x y : Σ A B}
→ Iso (Σ[ q ∈ fst x ≡ fst y ] (PathP (λ i → B (q i)) (snd x) (snd y)))
(x ≡ y)
Iso.fun (Σ-split-iso) = ΣPathP
Iso.inv (Σ-split-iso) eq = (λ i → fst (eq i)) , (λ i → snd (eq i))
Iso.rightInv (Σ-split-iso) x = refl {x = x}
Iso.leftInv (Σ-split-iso) x = refl {x = x}
Σ≃ : {x y : Σ A B} →
Σ (fst x ≡ fst y) (λ p → PathP (λ i → B (p i)) (snd x) (snd y)) ≃
(x ≡ y)
Σ≃ {A = A} {B = B} {x} {y} = isoToEquiv (Σ-split-iso)
Σ≡ : {a a' : A} {b : B a} {b' : B a'} → (Σ (a ≡ a') (λ q → PathP (λ i → B (q i)) b b')) ≡ ((a , b) ≡ (a' , b'))
Σ≡ = isoToPath Σ-split-iso -- ua Σ≃
ΣProp≡ : ((x : A) → isProp (B x)) → {u v : Σ A B}
→ (p : u .fst ≡ v .fst) → u ≡ v
ΣProp≡ pB {u} {v} p i = (p i) , isProp→PathP (λ i → pB (p i)) (u .snd) (v .snd) i
-- Alternative version for path in Σ-types, as in the HoTT book
sigmaPathTransport : (a b : Σ A B) → Type _
sigmaPathTransport {B = B} a b =
Σ (fst a ≡ fst b) (λ p → transport (λ i → B (p i)) (snd a) ≡ snd b)
_Σ≡T_ : (a b : Σ A B) → Type _
a Σ≡T b = sigmaPathTransport a b
-- now we prove that the alternative path space a Σ≡ b is equal to the usual path space a ≡ b
-- forward direction
private
pathSigma-π1 : {a b : Σ A B} → a ≡ b → fst a ≡ fst b
pathSigma-π1 p i = fst (p i)
filler-π2 : {a b : Σ A B} → (p : a ≡ b) → I → (i : I) → B (fst (p i))
filler-π2 {B = B} {a = a} p i =
fill (λ i → B (fst (p i)))
(λ t → λ { (i = i0) → transport-filler (λ j → B (fst (p j))) (snd a) t
; (i = i1) → snd (p t) })
(inS (snd a))
pathSigma-π2 : {a b : Σ A B} → (p : a ≡ b) →
subst B (pathSigma-π1 p) (snd a) ≡ snd b
pathSigma-π2 p i = filler-π2 p i i1
pathSigma→sigmaPath : (a b : Σ A B) → a ≡ b → a Σ≡T b
pathSigma→sigmaPath _ _ p = (pathSigma-π1 p , pathSigma-π2 p)
-- backward direction
private
filler-comp : (a b : Σ A B) → a Σ≡T b → I → I → Σ A B
filler-comp {B = B} a b (p , q) i =
hfill (λ t → λ { (i = i0) → a
; (i = i1) → (p i1 , q t) })
(inS (p i , transport-filler (λ j → B (p j)) (snd a) i))
sigmaPath→pathSigma : (a b : Σ A B) → a Σ≡T b → (a ≡ b)
sigmaPath→pathSigma a b x i = filler-comp a b x i i1
-- first homotopy
private
homotopy-π1 : (a b : Σ A B) →
∀ (x : a Σ≡T b) → pathSigma-π1 (sigmaPath→pathSigma a b x) ≡ fst x
homotopy-π1 a b x i j = fst (filler-comp a b x j (~ i))
homotopy-π2 : (a b : Σ A B) → (p : a Σ≡T b) → (i : I) →
(transport (λ j → B (fst (filler-comp a b p j i))) (snd a) ≡ snd b)
homotopy-π2 {B = B} a b p i j =
comp (λ t → B (fst (filler-comp a b p t (i ∨ j))))
(λ t → λ { (j = i0) → transport-filler (λ t → B (fst (filler-comp a b p t i)))
(snd a) t
; (j = i1) → snd (sigmaPath→pathSigma a b p t)
; (i = i0) → snd (filler-comp a b p t j)
; (i = i1) → filler-π2 (sigmaPath→pathSigma a b p) j t })
(snd a)
pathSigma→sigmaPath→pathSigma : {a b : Σ A B} →
∀ (x : a Σ≡T b) → pathSigma→sigmaPath _ _ (sigmaPath→pathSigma a b x) ≡ x
pathSigma→sigmaPath→pathSigma {a = a} p i =
(homotopy-π1 a _ p i , homotopy-π2 a _ p (~ i))
-- second homotopy
sigmaPath→pathSigma→sigmaPath : {a b : Σ A B} →
∀ (x : a ≡ b) → sigmaPath→pathSigma a b (pathSigma→sigmaPath _ _ x) ≡ x
sigmaPath→pathSigma→sigmaPath {B = B} {a = a} {b = b} p i j =
hcomp (λ t → λ { (i = i1) → (fst (p j) , filler-π2 p t j)
; (i = i0) → filler-comp a b (pathSigma→sigmaPath _ _ p) j t
; (j = i0) → (fst a , snd a)
; (j = i1) → (fst b , filler-π2 p t i1) })
(fst (p j) , transport-filler (λ k → B (fst (p k))) (snd a) j)
pathSigma≡sigmaPath : (a b : Σ A B) → (a ≡ b) ≡ (a Σ≡T b)
pathSigma≡sigmaPath a b =
isoToPath (iso (pathSigma→sigmaPath a b)
(sigmaPath→pathSigma a b)
(pathSigma→sigmaPath→pathSigma {a = a})
sigmaPath→pathSigma→sigmaPath)
discreteΣ : Discrete A → ((a : A) → Discrete (B a)) → Discrete (Σ A B)
discreteΣ {B = B} Adis Bdis (a0 , b0) (a1 , b1) = discreteΣ' (Adis a0 a1)
where
discreteΣ' : Dec (a0 ≡ a1) → Dec ((a0 , b0) ≡ (a1 , b1))
discreteΣ' (yes p) = J (λ a1 p → ∀ b1 → Dec ((a0 , b0) ≡ (a1 , b1))) (discreteΣ'') p b1
where
discreteΣ'' : (b1 : B a0) → Dec ((a0 , b0) ≡ (a0 , b1))
discreteΣ'' b1 with Bdis a0 b0 b1
... | (yes q) = yes (transport (ua Σ≃) (refl , q))
... | (no ¬q) = no (λ r → ¬q (subst (λ X → PathP (λ i → B (X i)) b0 b1) (Discrete→isSet Adis a0 a0 (cong fst r) refl) (cong snd r)))
discreteΣ' (no ¬p) = no (λ r → ¬p (cong fst r))
Σ-contractFst : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} (c : isContr A)
→ Σ A B ≃ B (c .fst)
Σ-contractFst {B = B} c =
isoToEquiv
(iso
(λ {(a , b) → subst B (sym (c .snd a)) b})
(c .fst ,_)
(λ b →
cong (λ p → subst B p b) (isProp→isSet (isContr→isProp c) _ _ _ _)
∙ transportRefl _)
(λ {(a , b) →
sigmaPath→pathSigma _ _ (c .snd a , transportTransport⁻ (cong B (c .snd a)) _)}))
-- a special case of the above
ΣUnit : ∀ {ℓ} (A : Unit → Type ℓ) → Σ Unit A ≃ A tt
ΣUnit A = isoToEquiv (iso snd (λ { x → (tt , x) }) (λ _ → refl) (λ _ → refl))
assocΣ : (Σ[ (a , b) ∈ Σ A B ] C a b) ≃ (Σ[ a ∈ A ] Σ[ b ∈ B a ] C a b)
assocΣ = isoToEquiv (iso (λ { ((x , y) , z) → (x , (y , z)) })
(λ { (x , (y , z)) → ((x , y) , z) })
(λ _ → refl) (λ _ → refl))
congΣEquiv : (∀ a → B a ≃ B' a) → Σ A B ≃ Σ A B'
congΣEquiv h =
isoToEquiv (iso (λ { (x , y) → (x , equivFun (h x) y) })
(λ { (x , y) → (x , invEq (h x) y) })
(λ { (x , y) i → (x , retEq (h x) y i) })
(λ { (x , y) i → (x , secEq (h x) y i) }))
PiΣ : ((a : A) → Σ[ b ∈ B a ] C a b) ≃ (Σ[ f ∈ ((a : A) → B a) ] ∀ a → C a (f a))
PiΣ = isoToEquiv (iso (λ f → fst ∘ f , snd ∘ f)
(λ (f , g) → (λ x → f x , g x))
(λ _ → refl) (λ _ → refl))
swapΣEquiv : ∀ {ℓ'} (A : Type ℓ) (B : Type ℓ') → A × B ≃ B × A
swapΣEquiv A B = isoToEquiv (iso (λ x → x .snd , x .fst) (λ z → z .snd , z .fst) (\ _ → refl) (\ _ → refl))
Σ-ap-iso₁ : ∀ {ℓ} {ℓ'} {A A' : Type ℓ} {B : A' → Type ℓ'}
→ (isom : Iso A A')
→ Iso (Σ A (B ∘ (Iso.fun isom)))
(Σ A' B)
Iso.fun (Σ-ap-iso₁ isom) x = (Iso.fun isom) (x .fst) , x .snd
Iso.inv (Σ-ap-iso₁ {B = B} isom) x = (Iso.inv isom) (x .fst) , subst B (sym (ε' (x .fst))) (x .snd)
where
ε' = fst (vogt isom)
Iso.rightInv (Σ-ap-iso₁ {B = B} isom) (x , y) = ΣPathP (ε' x ,
transport
(sym (PathP≡Path (λ j → cong B (ε' x) j) (subst B (sym (ε' x)) y) y))
(subst B (ε' x) (subst B (sym (ε' x)) y)
≡⟨ sym (substComposite B (sym (ε' x)) (ε' x) y) ⟩
subst B ((sym (ε' x)) ∙ (ε' x)) y
≡⟨ (cong (λ a → subst B a y) (lCancel (ε' x))) ⟩
subst B refl y
≡⟨ substRefl {B = B} y ⟩
y ∎))
where
ε' = fst (vogt isom)
Iso.leftInv (Σ-ap-iso₁ {A = A} {B = B} isom@(iso f g ε η)) (x , y) = ΣPathP (η x ,
transport
(sym (PathP≡Path (λ j → cong B (cong f (η x)) j) (subst B (sym (ε' (f x))) y) y))
(subst B (cong f (η x)) (subst B (sym (ε' (f x))) y)
≡⟨ sym (substComposite B (sym (ε' (f x))) (cong f (η x)) y) ⟩
subst B (sym (ε' (f x)) ∙ (cong f (η x))) y
≡⟨ cong (λ a → subst B a y) (lem x) ⟩
subst B (refl) y
≡⟨ substRefl {B = B} y ⟩
y ∎))
where
ε' = fst (vogt isom)
γ = snd (vogt isom)
lem : (x : A) → sym (ε' (f x)) ∙ cong f (η x) ≡ refl
lem x = cong (λ a → sym (ε' (f x)) ∙ a) (γ x) ∙ lCancel (ε' (f x))
Σ-ap₁ : (isom : A ≡ A') → Σ A (B ∘ transport isom) ≡ Σ A' B
Σ-ap₁ isom = isoToPath (Σ-ap-iso₁ (pathToIso isom))
Σ-ap-iso₂ : ((x : A) → Iso (B x) (B' x)) → Iso (Σ A B) (Σ A B')
Iso.fun (Σ-ap-iso₂ isom) (x , y) = x , Iso.fun (isom x) y
Iso.inv (Σ-ap-iso₂ isom) (x , y') = x , Iso.inv (isom x) y'
Iso.rightInv (Σ-ap-iso₂ isom) (x , y) = ΣPathP (refl , Iso.rightInv (isom x) y)
Iso.leftInv (Σ-ap-iso₂ isom) (x , y') = ΣPathP (refl , Iso.leftInv (isom x) y')
Σ-ap₂ : ((x : A) → B x ≡ B' x) → Σ A B ≡ Σ A B'
Σ-ap₂ isom = isoToPath (Σ-ap-iso₂ (pathToIso ∘ isom))
Σ-ap-iso :
∀ {ℓ ℓ'} {A A' : Type ℓ}
→ {B : A → Type ℓ'} {B' : A' → Type ℓ'}
→ (isom : Iso A A')
→ ((x : A) → Iso (B x) (B' (Iso.fun isom x)))
------------------------
→ Iso (Σ A B) (Σ A' B')
Σ-ap-iso isom isom' = compIso (Σ-ap-iso₂ isom') (Σ-ap-iso₁ isom)
Σ-ap :
∀ {ℓ ℓ'} {X X' : Type ℓ} {Y : X → Type ℓ'} {Y' : X' → Type ℓ'}
→ (isom : X ≡ X')
→ ((x : X) → Y x ≡ Y' (transport isom x))
----------
→ (Σ X Y)
≡ (Σ X' Y')
Σ-ap isom isom' = isoToPath (Σ-ap-iso (pathToIso isom) (pathToIso ∘ isom'))
Σ-ap' :
∀ {ℓ ℓ'} {X X' : Type ℓ} {Y : X → Type ℓ'} {Y' : X' → Type ℓ'}
→ (isom : X ≡ X')
→ (PathP (λ i → isom i → Type ℓ') Y Y')
----------
→ (Σ X Y)
≡ (Σ X' Y')
Σ-ap' {ℓ} {ℓ'} isom isom' = cong₂ (λ (a : Type ℓ) (b : a → Type ℓ') → Σ a λ x → b x) isom isom'
| {
"alphanum_fraction": 0.4905512582,
"avg_line_length": 37.1381818182,
"ext": "agda",
"hexsha": "f170aa76e72fbb300e936a5e568ef97294f0d546",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Data/Sigma/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Data/Sigma/Properties.agda",
"max_line_length": 140,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Data/Sigma/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 4526,
"size": 10213
} |
-- Andreas, 2016-06-20 issue #2051
-- Try to preserve rhs when splitting a clause
data D : Set where
d : D
c : D → D
-- A simple RHS that should be preserved by splitting:
con : (x : D) → D
con x = c {!x!} -- C-c C-c
-- More delicate, a meta variable applied to something:
-- This means the hole is not at the rightmost position.
app : (x : D) → D
app x = {!x!} x
-- A let-binding (not represented in internal syntax):
test : (x : D) → D
test x = let y = c in {!x!} -- C-c C-c
-- Case splitting replaces entire RHS by hole
-- test c = ?
| {
"alphanum_fraction": 0.6148282098,
"avg_line_length": 21.2692307692,
"ext": "agda",
"hexsha": "2d85e9650889c53efea4b9a552735682fdc9770c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2051.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2051.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2051.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 177,
"size": 553
} |
module Prelude where
open import Agda.Builtin.IO public
using (IO)
open import Data.Empty public using ()
renaming (⊥ to 𝟘 ; ⊥-elim to elim𝟘)
open import Data.Nat public
using (ℕ ; zero ; suc ; decTotalOrder ; _⊔_)
renaming (_≤_ to _⊑_ ; z≤n to z⊑n ; s≤s to n⊑m→sn⊑sm ;
_≤′_ to _≤_ ; ≤′-refl to refl≤ ; ≤′-step to step≤ ;
_≤?_ to _⊑?_ ; _≰_ to _⋢_ ; _<′_ to _<_ ; _≟_ to _≡?_)
open import Data.Nat.Properties public using ()
renaming (≤⇒≤′ to ⊑→≤ ; ≤′⇒≤ to ≤→⊑ ; z≤′n to z≤n ; s≤′s to n≤m→sn≤sm)
open import Data.Nat.Show public
using (show)
open import Data.Product public
using (Σ ; _×_ ; _,_)
renaming (proj₁ to π₁ ; proj₂ to π₂)
open import Data.String public
using (String)
renaming (_≟_ to _≡ₛ?_ ; _++_ to _⧺_)
open import Data.Sum public
using (_⊎_)
renaming (inj₁ to ι₁ ; inj₂ to ι₂)
open import Data.Unit public using ()
renaming (⊤ to Unit ; tt to unit)
open import Function public
using (_∘_)
open import Relation.Binary public
using (Antisymmetric ; Decidable ; DecTotalOrder ; Reflexive ; Rel ;
Symmetric ; Total ; Transitive ; Trichotomous ; Tri)
renaming (tri< to τ₍ ; tri≈ to τ₌ ; tri> to τ₎)
open module NDTO = DecTotalOrder decTotalOrder public using ()
renaming (antisym to antisym⊑ ; trans to trans⊑ ; total to total⊑)
open import Relation.Binary.PropositionalEquality public
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; cong₂ ; subst)
open import Relation.Binary.HeterogeneousEquality public
using (_≅_ ; _≇_)
renaming (refl to refl≅ ; trans to trans≅ ; sym to sym≅ ; cong to cong≅ ;
cong₂ to cong₂≅ ; subst to subst≅ ; ≅-to-≡ to ≅→≡ ; ≡-to-≅ to ≡→≅)
open import Relation.Nullary public
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Negation public using ()
renaming (contradiction to _↯_)
-- I/O.
postulate
return : ∀ {a} {A : Set a} → A → IO A
_≫=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
{-# COMPILED return (\_ _ -> return) #-}
{-# COMPILED _≫=_ (\_ _ _ _ -> (>>=)) #-}
_≫_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → IO B → IO B
m₁ ≫ m₂ = m₁ ≫= λ _ → m₂
postulate
putStr : String → IO Unit
putStrLn : String → IO Unit
{-# COMPILED putStr putStr #-}
{-# COMPILED putStrLn putStrLn #-}
-- Notation for I/O.
infix -10 do_
do_ : ∀ {a} {A : Set a} → A → A
do x = x
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
infixr 0 do-bind
syntax do-bind m₁ (λ x → m₂) = x ← m₁ ⁏ m₂
do-bind = _≫=_
infixr 0 do-seq
syntax do-seq m₁ m₂ = m₁ ⁏ m₂
do-seq = _≫_
infixr 0 do-let
syntax do-let m₁ (λ x → m₂) = x := m₁ ⁏ m₂
do-let = case_of_
-- Properties of binary relations.
Irreflexive : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _
Irreflexive _∼_ = ∀ {x} → ¬ (x ∼ x)
-- Properties of _≡_.
n≡m→sn≡sm : ∀ {n m} → n ≡ m → suc n ≡ suc m
n≡m→sn≡sm refl = refl
sn≡sm→n≡m : ∀ {n m} → suc n ≡ suc m → n ≡ m
sn≡sm→n≡m refl = refl
n≢m→sn≢sm : ∀ {n m} → n ≢ m → suc n ≢ suc m
n≢m→sn≢sm n≢m refl = refl ↯ n≢m
sn≢sm→n≢m : ∀ {n m} → suc n ≢ suc m → n ≢ m
sn≢sm→n≢m sn≢sm refl = refl ↯ sn≢sm
sym≢ : ∀ {a} {A : Set a} → Symmetric (_≢_ {A = A})
sym≢ x≢y refl = refl ↯ x≢y
-- Properties of _≤_.
_≰_ : ℕ → ℕ → Set
n ≰ m = ¬ (n ≤ m)
sn≤m→n≤m : ∀ {n m} → suc n ≤ m → n ≤ m
sn≤m→n≤m refl≤ = step≤ refl≤
sn≤m→n≤m (step≤ sn≤m) = step≤ (sn≤m→n≤m sn≤m)
sn≤sm→n≤m : ∀ {n m} → suc n ≤ suc m → n ≤ m
sn≤sm→n≤m refl≤ = refl≤
sn≤sm→n≤m (step≤ sn≤m) = sn≤m→n≤m sn≤m
n≰m→sn≰sm : ∀ {n m} → n ≰ m → suc n ≰ suc m
n≰m→sn≰sm n≰m refl≤ = refl≤ ↯ n≰m
n≰m→sn≰sm n≰m (step≤ sn≤m) = sn≤m→n≤m sn≤m ↯ n≰m
sn≰sm→n≰m : ∀ {n m} → suc n ≰ suc m → n ≰ m
sn≰sm→n≰m sn≰sm refl≤ = refl≤ ↯ sn≰sm
sn≰sm→n≰m sn≰sm (step≤ n≤m) = sn≰sm→n≰m (sn≰sm ∘ step≤) n≤m
sn≰n : ∀ {n} → suc n ≰ n
sn≰n {zero} = λ ()
sn≰n {suc n} = n≰m→sn≰sm sn≰n
n≤m⊔n : (n m : ℕ) → n ≤ m ⊔ n
n≤m⊔n zero zero = refl≤
n≤m⊔n zero (suc m) = z≤n
n≤m⊔n (suc n) zero = refl≤
n≤m⊔n (suc n) (suc m) = n≤m→sn≤sm (n≤m⊔n n m)
-- Properties of _<_.
_≮_ : ℕ → ℕ → Set
n ≮ m = ¬ (n < m)
z<sn : ∀ {n} → zero < suc n
z<sn = n≤m→sn≤sm z≤n
n<m→sn<sm : ∀ {n m} → n < m → suc n < suc m
n<m→sn<sm = n≤m→sn≤sm
sn<m→n<m : ∀ {n m} → suc n < m → n < m
sn<m→n<m = sn≤m→n≤m
sn<sm→n<m : ∀ {n m} → suc n < suc m → n < m
sn<sm→n<m = sn≤sm→n≤m
n≮m→sn≮sm : ∀ {n m} → n ≮ m → suc n ≮ suc m
n≮m→sn≮sm = n≰m→sn≰sm
sn≮sm→n≮m : ∀ {n m} → suc n ≮ suc m → n ≮ m
sn≮sm→n≮m = sn≰sm→n≰m
n<s[n⊔m] : (n m : ℕ) → n < suc (n ⊔ m)
n<s[n⊔m] zero zero = refl≤
n<s[n⊔m] zero (suc m) = n≤m→sn≤sm z≤n
n<s[n⊔m] (suc n) zero = refl≤
n<s[n⊔m] (suc n) (suc m) = n≤m→sn≤sm (n<s[n⊔m] n m)
-- Conversion between _⊑_, ⊏, _≤_, _<_, and _≡_.
≰→⋢ : ∀ {n m} → n ≰ m → n ⋢ m
≰→⋢ {zero} {zero} n≰m = refl≤ ↯ n≰m
≰→⋢ {suc n} {zero} n≰m = λ ()
≰→⋢ {n} {suc m} n≰m = λ n⊑m → ⊑→≤ n⊑m ↯ n≰m
⋢→≰ : ∀ {n m} → n ⋢ m → n ≰ m
⋢→≰ {zero} {m} n⋢m = z⊑n ↯ n⋢m
⋢→≰ {suc n} {zero} n⋢m = λ ()
⋢→≰ {suc n} {suc m} n⋢m = λ n≤m → ≤→⊑ n≤m ↯ n⋢m
≤×≢→< : ∀ {n m} → n ≤ m → n ≢ m → n < m
≤×≢→< refl≤ n≢m = refl ↯ n≢m
≤×≢→< (step≤ n≤m) n≢m = n≤m→sn≤sm n≤m
≤→<⊎≡ : ∀ {n m} → n ≤ m → n < m ⊎ n ≡ m
≤→<⊎≡ refl≤ = ι₂ refl
≤→<⊎≡ (step≤ n≤m) with ≤→<⊎≡ n≤m
≤→<⊎≡ (step≤ n≤m) | ι₁ sn≤m = ι₁ (step≤ sn≤m)
≤→<⊎≡ (step≤ n≤m) | ι₂ refl = ι₁ refl≤
<→≤ : ∀ {n m} → n < m → n ≤ m
<→≤ n<m = sn≤m→n≤m n<m
≡→≤ : ∀ {n m} → n ≡ m → n ≤ m
≡→≤ refl = refl≤
-- _≤_ is a decidable non-strict total order on naturals.
antisym≤ : Antisymmetric _≡_ _≤_
antisym≤ n≤m m≤n = antisym⊑ (≤→⊑ n≤m) (≤→⊑ m≤n)
total≤ : Total _≤_
total≤ n m with total⊑ n m
total≤ n m | ι₁ n⊑m = ι₁ (⊑→≤ n⊑m)
total≤ n m | ι₂ m⊑n = ι₂ (⊑→≤ m⊑n)
trans≤ : Transitive _≤_
trans≤ n≤m m≤z = ⊑→≤ (trans⊑ (≤→⊑ n≤m) (≤→⊑ m≤z))
_≤?_ : Decidable _≤_
n ≤? m with n ⊑? m
n ≤? m | yes n⊑m = yes (⊑→≤ n⊑m)
n ≤? m | no n⋢m = no (⋢→≰ n⋢m)
-- _<_ is a decidable strict total order on naturals.
trans< : Transitive _<_
trans< n<m m<l = trans≤ (step≤ n<m) m<l
tri< : Trichotomous _≡_ _<_
tri< zero zero = τ₌ (λ ()) refl (λ ())
tri< zero (suc m) = τ₍ z<sn (λ ()) (λ ())
tri< (suc n) zero = τ₎ (λ ()) (λ ()) z<sn
tri< (suc n) (suc m) with tri< n m
tri< (suc n) (suc m) | τ₍ n<m n≢m m≮n = τ₍ (n<m→sn<sm n<m) (n≢m→sn≢sm n≢m) (n≮m→sn≮sm m≮n)
tri< (suc n) (suc m) | τ₌ n≮m n≡m m≮n = τ₌ (n≮m→sn≮sm n≮m) (n≡m→sn≡sm n≡m) (n≮m→sn≮sm m≮n)
tri< (suc n) (suc m) | τ₎ n≮m n≢m m<n = τ₎ (n≮m→sn≮sm n≮m) (n≢m→sn≢sm n≢m) (n<m→sn<sm m<n)
irrefl< : Irreflexive _<_
irrefl< = sn≰n
_<?_ : Decidable _<_
n <? m = suc n ≤? m
| {
"alphanum_fraction": 0.5132307692,
"avg_line_length": 25.2918287938,
"ext": "agda",
"hexsha": "813d6c2916c80790bae51ef11cabf01ff025d9c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/lamport-timestamps",
"max_forks_repo_path": "Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/lamport-timestamps",
"max_issues_repo_path": "Prelude.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/lamport-timestamps",
"max_stars_repo_path": "Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3572,
"size": 6500
} |
{-# OPTIONS --without-K --safe #-}
-- Define Strong Monad; use the Wikipedia definition
-- https://en.wikipedia.org/wiki/Strong_monad
-- At the nLab, https://ncatlab.org/nlab/show/strong+monad
-- there are two further definitions; the 2-categorical version is too complicated
-- and the Moggi definition is a special case of the one here
module Categories.Monad.Strong where
open import Level
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Functor renaming (id to idF)
open import Categories.Category.Monoidal
open import Categories.Category.Product
open import Categories.NaturalTransformation hiding (id)
-- open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Monad
private
variable
o ℓ e : Level
record Strength {C : Category o ℓ e} (V : Monoidal C) (m : Monad C) : Set (o ⊔ ℓ ⊔ e) where
open Category C
open Monoidal V
open Monad m using (F)
module M = Monad m
open NaturalTransformation M.η using (η)
open NaturalTransformation M.μ renaming (η to μ)
open Functor F
field
strengthen : NaturalTransformation (⊗ ∘F (idF ⁂ F)) (F ∘F ⊗)
private
module t = NaturalTransformation strengthen
field
-- strengthening with 1 is irrelevant
identityˡ : {A : Obj} → F₁ (unitorˡ.from) ∘ t.η (unit , A) ≈ unitorˡ.from
-- commutes with unit (of monad)
η-comm : {A B : Obj} → t.η (A , B) ∘ (id ⊗₁ η B) ≈ η (A ⊗₀ B)
-- strength commutes with multiplication
μ-η-comm : {A B : Obj} → μ (A ⊗₀ B) ∘ F₁ (t.η (A , B)) ∘ t.η (A , F₀ B)
≈ t.η (A , B) ∘ id ⊗₁ μ B
-- consecutive applications of strength commute (i.e. strength is associative)
strength-assoc : {A B C : Obj} → F₁ associator.from ∘ t.η (A ⊗₀ B , C)
≈ t.η (A , B ⊗₀ C) ∘ id ⊗₁ t.η (B , C) ∘ associator.from
record StrongMonad {C : Category o ℓ e} (V : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where
field
m : Monad C
strength : Strength V m
| {
"alphanum_fraction": 0.6724756535,
"avg_line_length": 34.8392857143,
"ext": "agda",
"hexsha": "1ead12ae2237f7f87bf9f5f966716193a23102c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-categories",
"max_forks_repo_path": "Categories/Monad/Strong.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-categories",
"max_issues_repo_path": "Categories/Monad/Strong.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-categories",
"max_stars_repo_path": "Categories/Monad/Strong.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 619,
"size": 1951
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary.Raw
module Cubical.Relation.Binary.Reasoning.Base.Single {a ℓ} {A : Type a}
(_∼_ : RawRel A ℓ) (isPreorder : IsPreorder _∼_)
where
open IsPreorder isPreorder
------------------------------------------------------------------------
-- Reasoning combinators
-- Re-export combinators from partial reasoning
open import Cubical.Relation.Binary.Reasoning.Base.Partial _∼_ transitive public
hiding (_∎⟨_⟩)
-- Redefine the terminating combinator now that we have reflexivity
infix 2 _∎
_∎ : ∀ x → x ∼ x
x ∎ = reflexive
| {
"alphanum_fraction": 0.6523076923,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "ffccd5a089e2fe1c939aacd14115867c1cc8cd70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Single.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Single.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Single.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 178,
"size": 650
} |
module PatternSyn where
data ⊤
: Set
where
tt
: ⊤
data D
(A : Set)
: Set
where
d
: A
→ A
→ D A
pattern p
= tt
pattern q
= tt
pattern _,_ x y
= d x y
f
: ⊤
→ ⊤
f p
= tt
g
: {A : Set}
→ D A
→ A
g (x , _)
= x
| {
"alphanum_fraction": 0.4060150376,
"avg_line_length": 6.3333333333,
"ext": "agda",
"hexsha": "71fc096d17f57857cde8dc94986a0be74e991e88",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/PatternSyn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/PatternSyn.agda",
"max_line_length": 23,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/PatternSyn.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 129,
"size": 266
} |
open import Agda.Primitive using (_⊔_)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
open import MultiSorted.AlgebraicTheory
import MultiSorted.Product as Product
module MultiSorted.Interpretation
{o ℓ e}
{𝓈 ℴ}
(Σ : Signature {𝓈} {ℴ})
{𝒞 : Category.Category o ℓ e}
(cartesian-𝒞 : Cartesian.Cartesian 𝒞) where
open Signature Σ
open Category.Category 𝒞
-- An interpretation of Σ in 𝒞
record Interpretation : Set (o ⊔ ℓ ⊔ e ⊔ 𝓈 ⊔ ℴ) where
field
interp-sort : sort → Obj
interp-ctx : Product.Producted 𝒞 {Σ = Σ} interp-sort
interp-oper : ∀ (f : oper) → Product.Producted.prod interp-ctx (oper-arity f) ⇒ interp-sort (oper-sort f)
open Product.Producted interp-ctx
-- the interpretation of a term
interp-term : ∀ {Γ : Context} {A} → Term Γ A → prod Γ ⇒ interp-sort A
interp-term (tm-var x) = π x
interp-term (tm-oper f ts) = interp-oper f ∘ tuple (oper-arity f) (λ i → interp-term (ts i))
-- the interpretation of a substitution
interp-subst : ∀ {Γ Δ} → Γ ⇒s Δ → prod Γ ⇒ prod Δ
interp-subst {Γ} {Δ} σ = tuple Δ λ i → interp-term (σ i)
-- the equality of interpretations
⊨_ : (ε : Equation Σ) → Set e
open Equation
⊨ ε = interp-term (eq-lhs ε) ≈ interp-term (eq-rhs ε)
-- interpretation commutes with substitution
open HomReasoning
interp-[]s : ∀ {Γ Δ} {A} {t : Term Δ A} {σ : Γ ⇒s Δ} →
interp-term (t [ σ ]s) ≈ interp-term t ∘ interp-subst σ
interp-[]s {Γ} {Δ} {A} {tm-var x} {σ} = ⟺ (project {Γ = Δ})
interp-[]s {Γ} {Δ} {A} {tm-oper f ts} {σ} = (∘-resp-≈ʳ
(tuple-cong
{fs = λ i → interp-term (ts i [ σ ]s)}
{gs = λ z → interp-term (ts z) ∘ interp-subst σ}
(λ i → interp-[]s {t = ts i} {σ = σ})
○ (∘-distribʳ-tuple
{Γ = oper-arity f}
{fs = λ z → interp-term (ts z)}
{g = interp-subst σ})))
○ (Equiv.refl ○ sym-assoc)
-- -- Every signature has the trivial interpretation
open Product 𝒞
Trivial : Interpretation
Trivial =
let open Cartesian.Cartesian cartesian-𝒞 in
record
{ interp-sort = (λ _ → ⊤)
; interp-ctx = StandardProducted (λ _ → ⊤) cartesian-𝒞
; interp-oper = λ f → ! }
record _⇒I_ (I J : Interpretation) : Set (o ⊔ ℓ ⊔ e ⊔ 𝓈 ⊔ ℴ) where
open Interpretation
open Producted
field
hom-morphism : ∀ {A} → interp-sort I A ⇒ interp-sort J A
hom-commute :
∀ (f : oper) →
hom-morphism ∘ interp-oper I f ≈
interp-oper J f ∘ tuple (interp-ctx J) (oper-arity f) (λ i → hom-morphism ∘ π (interp-ctx I) i)
infix 4 _⇒I_
-- The identity homomorphism
id-I : ∀ {A : Interpretation} → A ⇒I A
id-I {A} =
let open Interpretation A in
let open HomReasoning in
let open Producted interp-sort in
record
{ hom-morphism = id
; hom-commute = λ f →
begin
(id ∘ interp-oper f) ≈⟨ identityˡ ⟩
interp-oper f ≈˘⟨ identityʳ ⟩
(interp-oper f ∘ id) ≈˘⟨ refl⟩∘⟨ unique interp-ctx (λ i → identityʳ ○ ⟺ identityˡ) ⟩
(interp-oper f ∘
Product.Producted.tuple interp-ctx (oper-arity f)
(λ i → id ∘ Product.Producted.π interp-ctx i)) ∎
}
-- Compositon of homomorphisms
_∘I_ : ∀ {A B C : Interpretation} → B ⇒I C → A ⇒I B → A ⇒I C
_∘I_ {A} {B} {C} ϕ ψ =
let open _⇒I_ in
record { hom-morphism = hom-morphism ϕ ∘ hom-morphism ψ
; hom-commute =
let open Interpretation in
let open Producted in
let open HomReasoning in
λ f →
begin
(((hom-morphism ϕ) ∘ hom-morphism ψ) ∘ interp-oper A f) ≈⟨ assoc ⟩
(hom-morphism ϕ ∘ hom-morphism ψ ∘ interp-oper A f) ≈⟨ (refl⟩∘⟨ hom-commute ψ f) ⟩
(hom-morphism ϕ ∘
interp-oper B f ∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i)) ≈˘⟨ assoc ⟩
((hom-morphism ϕ ∘ interp-oper B f) ∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i)) ≈⟨ (hom-commute ϕ f ⟩∘⟨refl) ⟩
((interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ i → hom-morphism ϕ ∘ π (interp-ctx B) i))
∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i)) ≈⟨ assoc ⟩
(interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ i → hom-morphism ϕ ∘ π (interp-ctx B) i)
∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i)) ≈⟨ (refl⟩∘⟨ ⟺ (∘-distribʳ-tuple (interp-sort C) (interp-ctx C))) ⟩
(interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ x →
(hom-morphism ϕ ∘ π (interp-ctx B) x) ∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i))) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-sort C) (interp-ctx C) λ i → assoc) ⟩
(interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ z →
hom-morphism ϕ ∘
π (interp-ctx B) z ∘
tuple (interp-ctx B) (oper-arity f)
(λ i → hom-morphism ψ ∘ π (interp-ctx A) i))) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-sort C) (interp-ctx C) λ i → refl⟩∘⟨ project (interp-ctx B)) ⟩
(interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ z → hom-morphism ϕ ∘ hom-morphism ψ ∘ π (interp-ctx A) z)) ≈⟨ (refl⟩∘⟨ tuple-cong (interp-sort C) (interp-ctx C) λ i → sym-assoc) ⟩
(interp-oper C f ∘
tuple (interp-ctx C) (oper-arity f)
(λ z → (hom-morphism ϕ ∘ hom-morphism ψ) ∘ π (interp-ctx A) z)) ∎}
| {
"alphanum_fraction": 0.4633284242,
"avg_line_length": 44.3790849673,
"ext": "agda",
"hexsha": "0389cc51aa9145cc847ebcea63429d67e29733c8",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/Interpretation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/Interpretation.agda",
"max_line_length": 164,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/Interpretation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 2074,
"size": 6790
} |
-- Andreas, 2018-10-18, issue #3289 reported by Ulf
-- Andreas, 2021-02-10, fix rhs occurrence
--
-- For postfix projections, we have no hiding info
-- for the eliminated record value.
-- Thus, contrary to the prefix case, it cannot be
-- taken into account (e.g. for projection disambiguation).
open import Agda.Builtin.Nat
record R : Set where
field
p : Nat
open R {{...}}
lhs : R
lhs .p = 0
rhs : R → Nat
rhs r = r .p
-- Error WAS: Wrong hiding used for projection R.p
-- Should work now.
| {
"alphanum_fraction": 0.6732283465,
"avg_line_length": 18.8148148148,
"ext": "agda",
"hexsha": "00eb0d98e7d7aae6f5db8a09507a91c1b22543fb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3289.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3289.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3289.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 153,
"size": 508
} |
open import Nat
open import Prelude
open import dynamics-core
open import contexts
module type-assignment-unicity where
-- type assignment only assigns one type
type-assignment-unicity : {Γ : tctx} {d : ihexp} {τ' τ : htyp} {Δ : hctx} →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ d :: τ' →
τ == τ'
type-assignment-unicity TANum TANum = refl
type-assignment-unicity (TAPlus x x₁) (TAPlus x₂ x₃) = refl
type-assignment-unicity {Γ = Γ} (TAVar x₁) (TAVar x₂) = ctxunicity {Γ = Γ} x₁ x₂
type-assignment-unicity (TALam _ d1) (TALam _ d2)
with type-assignment-unicity d1 d2
... | refl = refl
type-assignment-unicity (TAAp x x₁) (TAAp y y₁)
with type-assignment-unicity x y
... | refl = refl
type-assignment-unicity (TAInl x) (TAInl y)
with type-assignment-unicity x y
... | refl = refl
type-assignment-unicity (TAInr x) (TAInr y)
with type-assignment-unicity x y
... | refl = refl
type-assignment-unicity (TACase d _ x _ y) (TACase d₁ _ x₁ _ y₁)
with type-assignment-unicity d d₁
... | refl with type-assignment-unicity x x₁
... | refl = refl
type-assignment-unicity (TAEHole {Δ = Δ} x y) (TAEHole x₁ x₂)
with ctxunicity {Γ = Δ} x x₁
... | refl = refl
type-assignment-unicity (TANEHole {Δ = Δ} x d1 y) (TANEHole x₁ d2 x₂)
with ctxunicity {Γ = Δ} x₁ x
... | refl = refl
type-assignment-unicity (TACast d1 x) (TACast d2 x₁)
with type-assignment-unicity d1 d2
... | refl = refl
type-assignment-unicity (TAFailedCast x x₁ x₂ x₃) (TAFailedCast y x₄ x₅ x₆)
with type-assignment-unicity x y
... | refl = refl
type-assignment-unicity (TAPair x x₁) (TAPair y y₁)
with type-assignment-unicity x y
... | refl with type-assignment-unicity x₁ y₁
... | refl = refl
type-assignment-unicity (TAFst x) (TAFst y)
with type-assignment-unicity x y
... | refl = refl
type-assignment-unicity (TASnd x) (TASnd y)
with type-assignment-unicity x y
... | refl = refl
| {
"alphanum_fraction": 0.6308225966,
"avg_line_length": 38.0754716981,
"ext": "agda",
"hexsha": "cf7123494d08a7a7fefd3904a4eb2f6b08988ada",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "type-assignment-unicity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "type-assignment-unicity.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "type-assignment-unicity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 745,
"size": 2018
} |
{-# OPTIONS --without-K #-}
open import SDG.Extra.OrderedAlgebra
module SDG.SDG {r₁ r₂} (R : OrderedCommutativeRing r₁ r₂) where
open OrderedCommutativeRing R renaming (Carrier to Rc)
open import Data.Product
open import Data.Sum
open import Algebra
-- note: SDG should probably be a record if i need to
-- use some particular topos model
--nilsqr : {!!}
nilsqr = λ x → (x * x) ≈ 0#
nilsqr-0# : nilsqr 0#
nilsqr-0# = zeroˡ 0#
--D : {!!}
D = Σ[ x ∈ Rc ] (nilsqr x)
D→R : D → Rc
D→R d = proj₁ d
R→D : (x : Rc) → nilsqr x → D
R→D x nilsqr = x , nilsqr
d0 : D
d0 = R→D 0# nilsqr-0#
postulate
kock-lawvere : ∀ (g : D → Rc) →
∃! _≈_ (λ b → ∀ (d : D) → ((g d) ≈ ((g d0) + (D→R d * b))))
-- these definitions are modified from previous development based on Bell:
gₓ : ∀ (f : Rc → Rc) (x : Rc) → (D → Rc)
gₓ f x d = f (x + D→R d)
∃!b : ∀ (f : Rc → Rc) (x : Rc) → ∃! _≈_ (λ b → ∀ (d : D) → ((gₓ f x d) ≈ ((gₓ f x d0) + (D→R d * b))))
∃!b f x = kock-lawvere (gₓ f x)
_′ : (f : Rc → Rc) → (Rc → Rc)
(f ′) x = proj₁ (∃!b f x)
| {
"alphanum_fraction": 0.5373699149,
"avg_line_length": 21.5714285714,
"ext": "agda",
"hexsha": "587a0fc6fd1221bbbb6342d1757fbb08c84ab058",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-sdg",
"max_forks_repo_path": "SDG/SDG.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_issues_repo_issues_event_max_datetime": "2019-09-18T15:47:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-07-18T20:00:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-sdg",
"max_issues_repo_path": "SDG/SDG.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-sdg",
"max_stars_repo_path": "SDG/SDG.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-13T09:36:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-11-13T09:36:38.000Z",
"num_tokens": 456,
"size": 1057
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.FinData where
open import Cubical.Data.FinData.Base public
open import Cubical.Data.FinData.Properties public
| {
"alphanum_fraction": 0.7802197802,
"avg_line_length": 30.3333333333,
"ext": "agda",
"hexsha": "fc4048cb312e632bbc8aa92a02f0bfe4092ee84c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/FinData.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/FinData.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/FinData.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 45,
"size": 182
} |
module Extensions.Fin where
open import Prelude
open import Data.Fin hiding (_<_)
open import Data.Nat
| {
"alphanum_fraction": 0.7980769231,
"avg_line_length": 17.3333333333,
"ext": "agda",
"hexsha": "04657132a85f6b9b0267073316911f70c4e674fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Extensions/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Extensions/Fin.agda",
"max_line_length": 33,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Extensions/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 25,
"size": 104
} |
------------------------------------------------------------------------------
-- Arithmetic properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
-- Totality properties
pred-N : ∀ {n} → N n → N (pred₁ n)
pred-N nzero = prf
where postulate prf : N (pred₁ zero)
{-# ATP prove prf #-}
pred-N (nsucc {n} Nn) = prf
where postulate prf : N (pred₁ (succ₁ n))
{-# ATP prove prf #-}
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} nzero Nn = prf
where postulate prf : N (zero + n)
{-# ATP prove prf #-}
+-N {n = n} (nsucc {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) → N (succ₁ m + n)
{-# ATP prove prf #-}
∸-N : ∀ {m n} → N m → N n → N (m ∸ n)
∸-N {m} Nm nzero = prf
where postulate prf : N (m ∸ zero)
{-# ATP prove prf #-}
∸-N {m} Nm (nsucc {n} Nn) = prf (∸-N Nm Nn)
where postulate prf : N (m ∸ n) → N (m ∸ succ₁ n)
{-# ATP prove prf pred-N #-}
*-N : ∀ {m n} → N m → N n → N (m * n)
*-N {n = n} nzero Nn = prf
where postulate prf : N (zero * n)
{-# ATP prove prf #-}
*-N {n = n} (nsucc {m} Nm) Nn = prf (*-N Nm Nn)
where postulate prf : N (m * n) → N (succ₁ m * n)
{-# ATP prove prf +-N #-}
------------------------------------------------------------------------------
Sx≢x : ∀ {n} → N n → succ₁ n ≢ n
Sx≢x nzero h = prf
where postulate prf : ⊥
{-# ATP prove prf #-}
Sx≢x (nsucc {n} Nn) h = prf (Sx≢x Nn)
where postulate prf : succ₁ n ≢ n → ⊥
{-# ATP prove prf #-}
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity n = +-0x n
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity nzero = +-leftIdentity zero
+-rightIdentity (nsucc {n} Nn) = prf (+-rightIdentity Nn)
where postulate prf : n + zero ≡ n → succ₁ n + zero ≡ succ₁ n
{-# ATP prove prf #-}
+-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o)
+-assoc nzero n o = prf
where postulate prf : zero + n + o ≡ zero + (n + o)
{-# ATP prove prf #-}
+-assoc (nsucc {m} Nm) n o = prf (+-assoc Nm n o)
where postulate prf : m + n + o ≡ m + (n + o) →
succ₁ m + n + o ≡ succ₁ m + (n + o)
{-# ATP prove prf #-}
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n)
x+Sy≡S[x+y] nzero n = prf
where postulate prf : zero + succ₁ n ≡ succ₁ (zero + n)
{-# ATP prove prf #-}
x+Sy≡S[x+y] (nsucc {m} Nm) n = prf (x+Sy≡S[x+y] Nm n)
where postulate prf : m + succ₁ n ≡ succ₁ (m + n) →
succ₁ m + succ₁ n ≡ succ₁ (succ₁ m + n)
{-# ATP prove prf #-}
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} nzero Nn = prf
where postulate prf : zero + n ≡ n + zero
{-# ATP prove prf +-rightIdentity #-}
+-comm {n = n} (nsucc {m} Nm) Nn = prf (+-comm Nm Nn)
where postulate prf : m + n ≡ n + m → succ₁ m + n ≡ n + succ₁ m
{-# ATP prove prf x+Sy≡S[x+y] #-}
x+S0≡Sx : ∀ {n} → N n → n + succ₁ zero ≡ succ₁ n
x+S0≡Sx nzero = +-leftIdentity (succ₁ zero)
x+S0≡Sx (nsucc {n} Nn) = prf (x+S0≡Sx Nn)
where postulate prf : n + succ₁ zero ≡ succ₁ n →
succ₁ n + succ₁ zero ≡ succ₁ (succ₁ n)
{-# ATP prove prf #-}
0∸x : ∀ {n} → N n → zero ∸ n ≡ zero
0∸x nzero = ∸-x0 zero
0∸x (nsucc {n} Nn) = prf (0∸x Nn)
where postulate prf : zero ∸ n ≡ zero → zero ∸ succ₁ n ≡ zero
{-# ATP prove prf #-}
S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n
S∸S {m} Nm nzero = prf
where postulate prf : succ₁ m ∸ succ₁ zero ≡ m ∸ zero
{-# ATP prove prf #-}
S∸S {m} Nm (nsucc {n} Nn) = prf (S∸S Nm Nn)
where postulate prf : succ₁ m ∸ succ₁ n ≡ m ∸ n →
succ₁ m ∸ succ₁ (succ₁ n) ≡ m ∸ succ₁ n
{-# ATP prove prf #-}
x∸x≡0 : ∀ {n} → N n → n ∸ n ≡ zero
x∸x≡0 nzero = ∸-x0 zero
x∸x≡0 (nsucc {n} Nn) = prf (x∸x≡0 Nn)
where postulate prf : n ∸ n ≡ zero → succ₁ n ∸ succ₁ n ≡ zero
{-# ATP prove prf S∸S #-}
Sx∸x≡S0 : ∀ {n} → N n → succ₁ n ∸ n ≡ succ₁ zero
Sx∸x≡S0 nzero = prf
where postulate prf : succ₁ zero ∸ zero ≡ succ₁ zero
{-# ATP prove prf #-}
Sx∸x≡S0 (nsucc {n} Nn) = prf (Sx∸x≡S0 Nn)
where postulate prf : succ₁ n ∸ n ≡ succ₁ zero →
succ₁ (succ₁ n) ∸ succ₁ n ≡ succ₁ zero
{-# ATP prove prf S∸S #-}
[x+Sy]∸y≡Sx : ∀ {m n} → N m → N n → (m + succ₁ n) ∸ n ≡ succ₁ m
[x+Sy]∸y≡Sx {n = n} nzero Nn = prf
where postulate prf : zero + succ₁ n ∸ n ≡ succ₁ zero
{-# ATP prove prf Sx∸x≡S0 #-}
[x+Sy]∸y≡Sx (nsucc {m} Nm) nzero = prf
where postulate prf : succ₁ m + succ₁ zero ∸ zero ≡ succ₁ (succ₁ m)
{-# ATP prove prf x+S0≡Sx #-}
[x+Sy]∸y≡Sx (nsucc {m} Nm) (nsucc {n} Nn) = prf ([x+Sy]∸y≡Sx (nsucc Nm) Nn)
where postulate prf : succ₁ m + succ₁ n ∸ n ≡ succ₁ (succ₁ m) →
succ₁ m + succ₁ (succ₁ n) ∸ succ₁ n ≡ succ₁ (succ₁ m)
{-# ATP prove prf S∸S +-N x+Sy≡S[x+y] #-}
[x+y]∸[x+z]≡y∸z : ∀ {m n o} → N m → N n → N o → (m + n) ∸ (m + o) ≡ n ∸ o
[x+y]∸[x+z]≡y∸z {n = n} {o} nzero Nn No = prf
where postulate prf : (zero + n) ∸ (zero + o) ≡ n ∸ o
{-# ATP prove prf #-}
[x+y]∸[x+z]≡y∸z {n = n} {o} (nsucc {m} Nm) Nn No = prf ([x+y]∸[x+z]≡y∸z Nm Nn No)
where postulate prf : (m + n) ∸ (m + o) ≡ n ∸ o →
(succ₁ m + n) ∸ (succ₁ m + o) ≡ n ∸ o
{-# ATP prove prf +-N S∸S #-}
*-leftZero : ∀ n → zero * n ≡ zero
*-leftZero = *-0x
*-rightZero : ∀ {n} → N n → n * zero ≡ zero
*-rightZero nzero = *-leftZero zero
*-rightZero (nsucc {n} Nn) = prf (*-rightZero Nn)
where postulate prf : n * zero ≡ zero → succ₁ n * zero ≡ zero
{-# ATP prove prf #-}
postulate *-leftIdentity : ∀ {n} → N n → succ₁ zero * n ≡ n
{-# ATP prove *-leftIdentity +-rightIdentity #-}
x*Sy≡x+xy : ∀ {m n} → N m → N n → m * succ₁ n ≡ m + m * n
x*Sy≡x+xy {n = n} nzero Nn = prf
where postulate prf : zero * succ₁ n ≡ zero + zero * n
{-# ATP prove prf #-}
x*Sy≡x+xy {n = n} (nsucc {m} Nm) Nn = prf (x*Sy≡x+xy Nm Nn)
(+-assoc Nn m (m * n))
(+-assoc Nm n (m * n))
where
-- N.B. We had to feed the ATP with the instances of the associate law
postulate prf : m * succ₁ n ≡ m + m * n →
(n + m) + (m * n) ≡ n + (m + (m * n)) → -- Associative law
(m + n) + (m * n) ≡ m + (n + (m * n)) → -- Associateve law
succ₁ m * succ₁ n ≡ succ₁ m + succ₁ m * n
{-# ATP prove prf +-comm #-}
*-comm : ∀ {m n} → N m → N n → m * n ≡ n * m
*-comm {n = n} nzero Nn = prf
where postulate prf : zero * n ≡ n * zero
{-# ATP prove prf *-rightZero #-}
*-comm {n = n} (nsucc {m} Nm) Nn = prf (*-comm Nm Nn)
where postulate prf : m * n ≡ n * m → succ₁ m * n ≡ n * succ₁ m
{-# ATP prove prf x*Sy≡x+xy #-}
*-rightIdentity : ∀ {n} → N n → n * succ₁ zero ≡ n
*-rightIdentity nzero = prf
where postulate prf : zero * succ₁ zero ≡ zero
{-# ATP prove prf #-}
*-rightIdentity (nsucc {n} Nn) = prf (*-rightIdentity Nn)
where postulate prf : n * succ₁ zero ≡ n →
succ₁ n * succ₁ zero ≡ succ₁ n
{-# ATP prove prf #-}
*∸-leftDistributive : ∀ {m n o} → N m → N n → N o → (m ∸ n) * o ≡ m * o ∸ n * o
*∸-leftDistributive {m} {o = o} Nm nzero No = prf
where postulate prf : (m ∸ zero) * o ≡ m * o ∸ zero * o
{-# ATP prove prf #-}
*∸-leftDistributive {o = o} nzero (nsucc {n} Nn) No = prf
where postulate prf : (zero ∸ succ₁ n) * o ≡ zero * o ∸ succ₁ n * o
{-# ATP prove prf 0∸x *-N #-}
*∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) nzero = prf
where
postulate prf : (succ₁ m ∸ succ₁ n) * zero ≡ succ₁ m * zero ∸ succ₁ n * zero
{-# ATP prove prf ∸-N *-comm #-}
*∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) =
prf (*∸-leftDistributive Nm Nn (nsucc No))
where
postulate prf : (m ∸ n) * succ₁ o ≡ m * succ₁ o ∸ n * succ₁ o →
(succ₁ m ∸ succ₁ n) * succ₁ o ≡
succ₁ m * succ₁ o ∸ succ₁ n * succ₁ o
{-# ATP prove prf [x+y]∸[x+z]≡y∸z S∸S *-N #-}
*+-leftDistributive : ∀ {m n o} → N m → N n → N o → (m + n) * o ≡ m * o + n * o
*+-leftDistributive {m} {n} Nm Nn nzero = prf
where postulate prf : (m + n) * zero ≡ m * zero + n * zero
{-# ATP prove prf *-comm +-rightIdentity *-N +-N #-}
*+-leftDistributive {n = n} nzero Nn (nsucc {o} No) = prf
where postulate prf : (zero + n) * succ₁ o ≡ zero * succ₁ o + n * succ₁ o
{-# ATP prove prf #-}
*+-leftDistributive (nsucc {m} Nm) nzero (nsucc {o} No) = prf
where
postulate prf : (succ₁ m + zero) * succ₁ o ≡ succ₁ m * succ₁ o + zero * succ₁ o
{-# ATP prove prf +-rightIdentity *-N #-}
*+-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) =
prf (*+-leftDistributive Nm (nsucc Nn) (nsucc No))
where
postulate
prf : (m + succ₁ n) * succ₁ o ≡ m * succ₁ o + succ₁ n * succ₁ o →
(succ₁ m + succ₁ n) * succ₁ o ≡ succ₁ m * succ₁ o + succ₁ n * succ₁ o
{-# ATP prove prf +-assoc *-N #-}
xy≡0→x≡0∨y≡0 : ∀ {m n} → N m → N n → m * n ≡ zero → m ≡ zero ∨ n ≡ zero
xy≡0→x≡0∨y≡0 {n = n} nzero Nn h = prf
where postulate prf : zero ≡ zero ∨ n ≡ zero
{-# ATP prove prf #-}
xy≡0→x≡0∨y≡0 (nsucc {m} Nm) nzero h = prf
where postulate prf : succ₁ m ≡ zero ∨ zero ≡ zero
{-# ATP prove prf #-}
xy≡0→x≡0∨y≡0 (nsucc {m} Nm) (nsucc {n} Nn) SmSn≡0 = ⊥-elim (0≢S prf)
where postulate prf : zero ≡ succ₁ (n + m * succ₁ n)
{-# ATP prove prf #-}
xy≡1→x≡1 : ∀ {m n} → N m → N n → m * n ≡ 1' → m ≡ 1'
xy≡1→x≡1 {n = n} nzero Nn h = ⊥-elim prf
where postulate prf : ⊥
{-# ATP prove prf #-}
xy≡1→x≡1 (nsucc nzero) Nn h = refl
xy≡1→x≡1 (nsucc (nsucc {m} Nm)) nzero h = ⊥-elim prf
where postulate prf : ⊥
{-# ATP prove prf *-rightZero #-}
xy≡1→x≡1 (nsucc (nsucc {m} Nm)) (nsucc {n} Nn) h = ⊥-elim (0≢S prf)
where postulate prf : zero ≡ succ₁ (m + n * succ₁ (succ₁ m))
{-# ATP prove prf *-comm #-}
| {
"alphanum_fraction": 0.4856202188,
"avg_line_length": 38.5335820896,
"ext": "agda",
"hexsha": "9924060cb13ef5194dab73d460efdf337ede92d6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/PropertiesATP.agda",
"max_line_length": 81,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 4344,
"size": 10327
} |
-- Sometimes we can't infer a record type
module InferRecordTypes-3 where
postulate A : Set
record R : Set₁ where
field
x₁ : Set
x₂ : Set
record R′ : Set₁ where
field
x₁ : Set
x₃ : Set
bad = record { x₂ = A; x₃ = A }
| {
"alphanum_fraction": 0.6131687243,
"avg_line_length": 13.5,
"ext": "agda",
"hexsha": "1d9c2a4fe0d8365eb72cd4266c37579f134ac780",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/InferRecordTypes-3.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/InferRecordTypes-3.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/InferRecordTypes-3.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 86,
"size": 243
} |
{-# OPTIONS --without-K #-}
open import Base
open import Algebra.Groups
open import Integers
module Algebra.GroupIntegers where
_+_ : ℤ → ℤ → ℤ
O + m = m
pos O + m = succ m
pos (S n) + m = succ (pos n + m)
neg O + m = pred m
neg (S n) + m = pred (neg n + m)
-_ : ℤ → ℤ
- O = O
- (pos m) = neg m
- (neg m) = pos m
+-succ : (m n : ℤ) → succ m + n ≡ succ (m + n)
+-succ O n = refl _
+-succ (pos m) n = refl _
+-succ (neg O) n = ! (succ-pred n)
+-succ (neg (S m)) n = ! (succ-pred _)
+-pred : (m n : ℤ) → pred m + n ≡ pred (m + n)
+-pred O n = refl _
+-pred (pos O) n = ! (pred-succ n)
+-pred (pos (S m)) n = ! (pred-succ _)
+-pred (neg m) n = refl _
+-assoc : (m n p : ℤ) → (m + n) + p ≡ m + (n + p)
+-assoc O n p = refl _
+-assoc (pos O) n p = +-succ n p
+-assoc (pos (S m)) n p = +-succ (pos m + n) p ∘ map succ (+-assoc (pos m) n p)
+-assoc (neg O) n p = +-pred n p
+-assoc (neg (S m)) n p = +-pred (neg m + n) p ∘ map pred (+-assoc (neg m) n p)
O-right-unit : (m : ℤ) → m + O ≡ m
O-right-unit O = refl _
O-right-unit (pos O) = refl _
O-right-unit (pos (S m)) = map succ (O-right-unit (pos m))
O-right-unit (neg O) = refl _
O-right-unit (neg (S m)) = map pred (O-right-unit (neg m))
succ-+-right : (m n : ℤ) → succ (m + n) ≡ m + succ n
succ-+-right O n = refl _
succ-+-right (pos O) n = refl _
succ-+-right (pos (S m)) n = map succ (succ-+-right (pos m) n)
succ-+-right (neg O) n = succ-pred n ∘ ! (pred-succ n)
succ-+-right (neg (S m)) n = (succ-pred (neg m + n) ∘ ! (pred-succ (neg m + n)))
∘ map pred (succ-+-right (neg m) n)
pred-+-right : (m n : ℤ) → pred (m + n) ≡ m + pred n
pred-+-right O n = refl _
pred-+-right (pos O) n = pred-succ n ∘ ! (succ-pred n)
pred-+-right (pos (S m)) n = (pred-succ (pos m + n) ∘ ! (succ-pred (pos m + n)))
∘ map succ (pred-+-right (pos m) n)
pred-+-right (neg O) n = refl _
pred-+-right (neg (S m)) n = map pred (pred-+-right (neg m) n)
opp-right-inverse : (m : ℤ) → m + (- m) ≡ O
opp-right-inverse O = refl O
opp-right-inverse (pos O) = refl O
opp-right-inverse (pos (S m)) = succ-+-right (pos m) (neg (S m))
∘ opp-right-inverse (pos m)
opp-right-inverse (neg O) = refl O
opp-right-inverse (neg (S m)) = pred-+-right (neg m) (pos (S m))
∘ opp-right-inverse (neg m)
opp-left-inverse : (m : ℤ) → (- m) + m ≡ O
opp-left-inverse O = refl O
opp-left-inverse (pos O) = refl O
opp-left-inverse (pos (S m)) = pred-+-right (neg m) (pos (S m))
∘ opp-left-inverse (pos m)
opp-left-inverse (neg O) = refl O
opp-left-inverse (neg (S m)) = succ-+-right (pos m) (neg (S m))
∘ opp-left-inverse (neg m)
-- pred-+-right (neg m) (pos (S m)) ∘ opp-left-inverse (pos m)
ℤ-group : Group _
ℤ-group = group (pregroup
ℤ
_+_ O -_
+-assoc O-right-unit (λ m → refl _) opp-right-inverse opp-left-inverse)
ℤ-is-set
| {
"alphanum_fraction": 0.5193482688,
"avg_line_length": 33.4772727273,
"ext": "agda",
"hexsha": "95f73622fc740400bc5c071f7c029666426d7995",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Algebra/GroupIntegers.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Algebra/GroupIntegers.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Algebra/GroupIntegers.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1086,
"size": 2946
} |
------------------------------------------------------------------------------
-- Testing the erasing of proof terms
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module ProofTerm2 where
postulate
D : Set
N : D → Set
_≡_ : D → D → Set
postulate foo : ∀ {m n} → (Nm : N m) → (Nn : N n) → m ≡ m
{-# ATP prove foo #-}
| {
"alphanum_fraction": 0.3558052434,
"avg_line_length": 28.1052631579,
"ext": "agda",
"hexsha": "9076d2ec165d73846e6582ebccfc9ce6f2dc49ed",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/ProofTerm2.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/ProofTerm2.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/ProofTerm2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 115,
"size": 534
} |
module LateMetaVariableInstantiation where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
postulate
yippie : (A : Set) → A
slow : (A : Set) → ℕ → A
slow A zero = yippie A
slow A (suc n) = slow _ n
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
foo : slow ℕ 1000 ≡ yippie ℕ
foo = refl
-- Consider the function slow. Previously normalisation of slow n
-- seemed to take time proportional to n². The reason was that, even
-- though the meta-variable corresponding to the underscore was
-- solved, the stored code still contained a meta-variable:
-- slow A (suc n) = slow (_173 A n) n
-- (For some value of 173.) The evaluation proceeded as follows:
-- slow A 1000 =
-- slow (_173 A 999) 999 =
-- slow (_173 (_173 A 999) 998) 998 =
-- ...
-- Furthermore, in every iteration the Set argument was traversed, to
-- see if there was any de Bruijn index to raise.
| {
"alphanum_fraction": 0.6497297297,
"avg_line_length": 24.3421052632,
"ext": "agda",
"hexsha": "876ad1c707f3ccebf11e500bb53b8b73552bd3f4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/misc/LateMetaVariableInstantiation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 293,
"size": 925
} |
module _ where
open import Agda.Primitive
open import Agda.Builtin.List
open import Agda.Builtin.Nat hiding (_==_)
open import Agda.Builtin.Equality
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
infix -1 _,_
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field fst : A
snd : B
open _×_
data Constraint : Set₁ where
mkConstraint : {A : Set} (x y : A) → x ≡ y → Constraint
infix 0 _==_
pattern _==_ x y = mkConstraint x y refl
T : Bool → Set
T false = Nat
T true = Nat → Nat
bla : (Nat → Nat) → Nat → Nat
bla f zero = zero
bla f = f -- underapplied clause!
pred : Nat → Nat
pred zero = zero
pred (suc n) = n
-- 0 and 1 are both solutions, so should not be solved.
bad! : Constraint
bad! = bla pred _ == zero
-- Should not fail, since 2 is a solution!
more-bad! : Constraint
more-bad! = bla pred _ == 1
-- Same thing for projections
blabla : Nat → Nat × Nat
blabla zero = 1 , 1
blabla (suc n) = 0 , n
-- Don't fail: 0 is a valid solution
oops : Constraint
oops = fst (blabla _) == 1
bla₂ : Bool → Nat × Nat
bla₂ false = 0 , 1
bla₂ true .fst = 0
bla₂ true .snd = 1
-- Don't solve: false and true are both solutions
wrong : Constraint
wrong = bla₂ _ .fst == 0
| {
"alphanum_fraction": 0.6512570965,
"avg_line_length": 19.8870967742,
"ext": "agda",
"hexsha": "06d30e15542d2eb3b625e0dcfb0f494f80aa1277",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2944.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2944.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2944.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 425,
"size": 1233
} |
{-# OPTIONS --cubical --safe #-}
module Multidimensional.Data.Extra.Nat where
open import Multidimensional.Data.Extra.Nat.Base public
open import Multidimensional.Data.Extra.Nat.Properties public
| {
"alphanum_fraction": 0.803030303,
"avg_line_length": 28.2857142857,
"ext": "agda",
"hexsha": "4cd29a7595da762cbf4f3296b3106a224871bf20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_forks_repo_path": "Multidimensional/Data/Extra/Nat.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_issues_repo_path": "Multidimensional/Data/Extra/Nat.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_stars_repo_path": "Multidimensional/Data/Extra/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 46,
"size": 198
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.CircleCover {j} where
record S¹Cover : Type (lsucc j) where
constructor s¹cover
field
El : Type j
{{El-level}} : is-set El
El-auto : El ≃ El
S¹cover-to-S¹-cover : S¹Cover → Cover S¹ j
S¹cover-to-S¹-cover sc = record {
Fiber = S¹-rec El (ua El-auto);
Fiber-level = λ {a} → S¹-elim {P = λ a → is-set (S¹-rec El (ua El-auto) a)} El-level prop-has-all-paths-↓ a}
where open S¹Cover sc
S¹-cover-to-S¹cover : Cover S¹ j → S¹Cover
S¹-cover-to-S¹cover c = record {
El = Fiber base;
El-auto = coe-equiv (ap Fiber loop)}
where open Cover c
S¹cover-equiv-S¹-cover : S¹Cover ≃ Cover S¹ j
S¹cover-equiv-S¹-cover = equiv to from to-from from-to where
to = S¹cover-to-S¹-cover
from = S¹-cover-to-S¹cover
to-from : ∀ c → to (from c) == c
to-from c = cover=' $ λ= $
S¹-elim idp $ ↓-='-in' $ ! $
ap (S¹-rec (Fiber base) (ua (coe-equiv (ap Fiber loop)))) loop
=⟨ S¹Rec.loop-β _ _ ⟩
ua (coe-equiv (ap Fiber loop))
=⟨ ua-η _ ⟩
ap Fiber loop
=∎
where open Cover c
from-to : ∀ sc → from (to sc) == sc
from-to sc = ap (λ eq → s¹cover El eq) $
coe-equiv (ap (S¹-rec El (ua El-auto)) loop)
=⟨ ap coe-equiv $ S¹Rec.loop-β _ _ ⟩
coe-equiv (ua El-auto)
=⟨ coe-equiv-β El-auto ⟩
El-auto
=∎
where open S¹Cover sc
| {
"alphanum_fraction": 0.5945165945,
"avg_line_length": 28.2857142857,
"ext": "agda",
"hexsha": "2ab272663861e1e37087f85a17ce07062b6d5954",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/CircleCover.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/CircleCover.agda",
"max_line_length": 110,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/CircleCover.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 500,
"size": 1386
} |
-- This module closely follows a section of Martín Escardó's HoTT lecture notes:
-- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#equivalenceinduction
{-# OPTIONS --without-K #-}
module Util.HoTT.Equiv.Induction where
open import Util.HoTT.HLevel.Core
open import Util.HoTT.Equiv
open import Util.HoTT.Univalence.ContrFormulation
open import Util.Prelude
private
variable
α β γ : Level
G-≃ : {A : Set α} (P : Σ[ B ∈ Set α ] (A ≃ B) → Set β)
→ P (A , ≃-refl)
→ ∀ {B} (A≃B : A ≃ B)
→ P (B , A≃B)
G-≃ {A = A} P p {B} A≃B = subst P (univalenceProp A (A , ≃-refl) (B , A≃B)) p
abstract
G-≃-β : {A : Set α} (P : Σ[ B ∈ Set α ] (A ≃ B) → Set β)
→ (p : P (A , ≃-refl))
→ G-≃ P p ≃-refl ≡ p
G-≃-β {A = A} P p = subst (λ q → subst P q p ≡ p) (sym go) refl
where
go : univalenceProp A (A , ≃-refl) (A , ≃-refl) ≡ refl
go = IsContr→IsSet (univalenceContr A) _ _
H-≃ : {A : Set α} (P : (B : Set α) → A ≃ B → Set β)
→ P A ≃-refl
→ ∀ {B} (A≃B : A ≃ B)
→ P B A≃B
H-≃ P p A≃B = G-≃ (λ { (B , A≃B) → P B A≃B }) p A≃B
abstract
H-≃-β : {A : Set α} (P : (B : Set α) → A ≃ B → Set β)
→ (p : P A ≃-refl)
→ H-≃ P p ≃-refl ≡ p
H-≃-β P p = G-≃-β (λ { (B , A≃B) → P B A≃B }) p
J-≃ : (P : (A B : Set α) → A ≃ B → Set β)
→ (∀ A → P A A ≃-refl)
→ ∀ {A B} (A≃B : A ≃ B)
→ P A B A≃B
J-≃ P p {A} {B} A≃B = H-≃ (λ B A≃B → P A B A≃B) (p A) A≃B
abstract
J-≃-β : (P : (A B : Set α) → A ≃ B → Set β)
→ (p : ∀ A → P A A ≃-refl)
→ ∀ {A}
→ J-≃ P p ≃-refl ≡ p A
J-≃-β P p {A} = H-≃-β (λ B A≃B → P A B A≃B) (p A)
H-IsEquiv : {A : Set α} (P : (B : Set α) → (A → B) → Set β)
→ P A id
→ ∀ {B} (f : A → B)
→ IsEquiv f
→ P B f
H-IsEquiv P p f f-equiv
= H-≃ (λ B A≃B → P B (A≃B .forth)) p
(record { forth = f ; isEquiv = f-equiv })
J-IsEquiv : (P : (A B : Set α) → (A → B) → Set β)
→ (∀ A → P A A id)
→ ∀ {A B} (f : A → B)
→ IsEquiv f
→ P A B f
J-IsEquiv P p f f-equiv
= J-≃ (λ A B A≃B → P A B (A≃B .forth)) p
(record { forth = f ; isEquiv = f-equiv })
| {
"alphanum_fraction": 0.4685686654,
"avg_line_length": 25.5308641975,
"ext": "agda",
"hexsha": "d8537922917c4f29781878c0ff12df39aa34f817",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/HoTT/Equiv/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/HoTT/Equiv/Induction.agda",
"max_line_length": 102,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/HoTT/Equiv/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 1058,
"size": 2068
} |
{-# OPTIONS --warning=error #-}
A : Set₁
A = Set
{-# POLARITY A #-}
| {
"alphanum_fraction": 0.5285714286,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "00b17446f4ca99e0562511f86e842687b05c2103",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Polarity-pragma-for-defined-name.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 70
} |
module UnSized.Console where
open import UnSizedIO.Base hiding (main)
open import UnSizedIO.Console hiding (main)
open import NativeIO
{-# TERMINATING #-}
myProgram : IOConsole Unit
force myProgram = exec' getLine λ line →
delay (exec' (putStrLn line) λ _ →
delay (exec' (putStrLn line) λ _ →
myProgram
))
main : NativeIO Unit
main = translateIOConsole myProgram
| {
"alphanum_fraction": 0.5856236786,
"avg_line_length": 24.8947368421,
"ext": "agda",
"hexsha": "ba24cde61625ff29d2318f21fbe88cc7f63fbbf2",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/UnSized/Console.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/UnSized/Console.agda",
"max_line_length": 58,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/UnSized/Console.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 121,
"size": 473
} |
module Prelude.Variables where
open import Agda.Primitive
open import Agda.Builtin.Nat
variable
ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A B : Set ℓ
x y : A
n m : Nat
| {
"alphanum_fraction": 0.6923076923,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "c7099e53930a80e73aa6e4eadffb236fc35a5fb7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1984cf0341835b2f7bfe678098bd57cfe16ea11f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jespercockx/agda-prelude",
"max_forks_repo_path": "src/Prelude/Variables.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1984cf0341835b2f7bfe678098bd57cfe16ea11f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jespercockx/agda-prelude",
"max_issues_repo_path": "src/Prelude/Variables.agda",
"max_line_length": 30,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1984cf0341835b2f7bfe678098bd57cfe16ea11f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/agda-prelude",
"max_stars_repo_path": "src/Prelude/Variables.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 61,
"size": 156
} |
open import core
module focus-formation where
-- every ε is an evaluation context -- trivially, here, since we don't
-- include any of the premises in red brackets about finality
focus-formation : ∀{d d' ε} → d == ε ⟦ d' ⟧ → ε evalctx
focus-formation FHOuter = ECDot
focus-formation (FHAp1 sub) = ECAp1 (focus-formation sub)
focus-formation (FHAp2 sub) = ECAp2 (focus-formation sub)
focus-formation (FHNEHole sub) = ECNEHole (focus-formation sub)
focus-formation (FHCast sub) = ECCast (focus-formation sub)
focus-formation (FHFailedCast x) = ECFailedCast (focus-formation x)
| {
"alphanum_fraction": 0.7255892256,
"avg_line_length": 45.6923076923,
"ext": "agda",
"hexsha": "97d13d9d8809e56600098892991058959dc56677",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "focus-formation.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "focus-formation.agda",
"max_line_length": 72,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "focus-formation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 183,
"size": 594
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.PtdAdjoint
open import homotopy.SuspAdjointLoop
open import cohomology.Exactness
open import cohomology.FunctionOver
open import cohomology.MayerVietoris
open import cohomology.Theory
{- Standard Mayer-Vietoris exact sequence (algebraic) derived from
- the result in cohomology.MayerVietoris (topological).
- This is a whole bunch of algebra which is not very interesting.
-}
module cohomology.MayerVietorisExact {i} (CT : CohomologyTheory i)
(n : ℤ) (ps : ⊙Span {i} {i} {i}) where
open MayerVietorisFunctions ps
module MV = MayerVietoris ps
open ⊙Span ps
open CohomologyTheory CT
open import cohomology.BaseIndependence CT
open import cohomology.Functor CT
open import cohomology.InverseInSusp CT
open import cohomology.LongExactSequence CT n ⊙reglue
open import cohomology.Wedge CT
mayer-vietoris-seq : HomSequence _ _
mayer-vietoris-seq =
C n (⊙Pushout ps)
⟨ ×ᴳ-hom-in (CF-hom n (⊙left ps)) (CF-hom n (⊙right ps)) ⟩→
C n X ×ᴳ C n Y
⟨ ×ᴳ-sum-hom (C-abelian _ _) (CF-hom n f)
(inv-hom _ (C-abelian _ _) ∘ᴳ (CF-hom n g)) ⟩→
C n Z
⟨ CF-hom (succ n) ⊙ext-glue ∘ᴳ fst ((C-Susp n Z)⁻¹ᴳ) ⟩→
C (succ n) (⊙Pushout ps)
⟨ ×ᴳ-hom-in (CF-hom _ (⊙left ps)) (CF-hom _ (⊙right ps)) ⟩→
C (succ n) X ×ᴳ C (succ n) Y ⊣|
mayer-vietoris-exact : is-exact-seq mayer-vietoris-seq
mayer-vietoris-exact =
transport (λ {(r , s) → is-exact-seq s})
(pair= _ $ sequence= _ _ $
idp
∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙wedge-rec-over n X Y _ _) ⟩∥
CWedge.path n X Y
∥⟨ ↓-over-×-in' _→ᴳ_
(ap↓ (λ φ → φ ∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ))
(CF-↓cod= (succ n) MV.ext-over)
∙ᵈ codomain-over-iso {χ = diff'} (codomain-over-equiv _ _))
(CWedge.wedge-hom-η n X Y _
▹ ap2 (×ᴳ-sum-hom (C-abelian n Z)) inl-lemma inr-lemma) ⟩∥
ap (C (succ n)) MV.⊙path ∙ group-ua (C-Susp n Z)
∥⟨ ↓-over-×-in _→ᴳ_
(CF-↓dom= (succ n) MV.cfcod-over
∙ᵈ domain-over-iso
(! (ap (λ h → CF _ ⊙ext-glue ∘ h)
(λ= (is-equiv.g-f (snd (C-Susp n Z)))))
◃ domain-over-equiv _ _))
idp ⟩∥
idp
∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙wedge-rec-over (succ n) X Y _ _) ⟩∥
CWedge.path (succ n) X Y ∥⊣|)
long-cofiber-exact
where
{- shorthand -}
diff' = fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff
∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)
{- Variations on suspension axiom naturality -}
natural-lemma₁ : {X Y : Ptd i} (n : ℤ) (f : fst (X ⊙→ Y))
→ (fst (C-Susp n X) ∘ᴳ CF-hom _ (⊙susp-fmap f)) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)
== CF-hom n f
natural-lemma₁ {X} {Y} n f =
ap (λ φ → φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (C-SuspF n f)
∙ hom= _ _ (λ= (ap (CF n f) ∘ is-equiv.f-g (snd (C-Susp n Y))))
natural-lemma₂ : {X Y : Ptd i} (n : ℤ) (f : fst (X ⊙→ Y))
→ CF-hom _ (⊙susp-fmap f) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)
== fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ CF-hom n f
natural-lemma₂ {X} {Y} n f =
hom= _ _ (λ= (! ∘ is-equiv.g-f (snd (C-Susp n X))
∘ CF _ (⊙susp-fmap f)
∘ GroupHom.f (fst (C-Susp n Y ⁻¹ᴳ))))
∙ ap (λ φ → fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ φ) (natural-lemma₁ n f)
{- Associativity lemmas -}
assoc-lemma : ∀ {i} {G H K L J : Group i}
(φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H)
→ (φ ∘ᴳ ψ) ∘ᴳ χ ∘ᴳ ξ == φ ∘ᴳ ((ψ ∘ᴳ χ) ∘ᴳ ξ)
assoc-lemma _ _ _ _ = hom= _ _ idp
assoc-lemma₂ : ∀ {i} {G H K L J : Group i}
(φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H)
→ (φ ∘ᴳ ψ ∘ᴳ χ) ∘ᴳ ξ == φ ∘ᴳ ψ ∘ᴳ χ ∘ᴳ ξ
assoc-lemma₂ _ _ _ _ = hom= _ _ idp
inl-lemma : diff' ∘ᴳ CF-hom n (⊙projl X Y) == CF-hom n f
inl-lemma =
assoc-lemma₂
(fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff)
(fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projl X Y))
∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ)
(! (natural-lemma₂ n (⊙projl X Y)))
∙ ! (assoc-lemma₂
(fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff)
(CF-hom _ (⊙susp-fmap (⊙projl X Y)))
(fst (C-Susp n X ⁻¹ᴳ)))
∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ))
(! (CF-comp _ (⊙susp-fmap (⊙projl X Y)) MV.⊙mv-diff))
∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ))
(CF-λ= (succ n) projl-mv-diff)
∙ natural-lemma₁ n f
where
{- Compute the left projection of mv-diff -}
projl-mv-diff : (σz : fst (⊙Susp Z))
→ susp-fmap (projl X Y) (MV.mv-diff σz)
== susp-fmap (fst f) σz
projl-mv-diff = Suspension-elim _ idp (merid _ (snd X)) $
↓-='-from-square ∘ λ z →
(ap-∘ (susp-fmap (projl X Y)) MV.mv-diff (merid _ z)
∙ ap (ap (susp-fmap (projl X Y))) (MV.MVDiff.glue-β z)
∙ ap-∙ (susp-fmap (projl X Y))
(merid _ (winl (fst f z))) (! (merid _ (winr (fst g z))))
∙ (SuspFmap.glue-β (projl X Y) (winl (fst f z))
∙2 (ap-! (susp-fmap _) (merid _ (winr (fst g z)))
∙ ap ! (SuspFmap.glue-β (projl X Y) (winr (fst g z))))))
∙v⊡ (vid-square {p = merid _ (fst f z)}
⊡h rt-square (merid _ (snd X)))
⊡v∙ (∙-unit-r _ ∙ ! (SuspFmap.glue-β (fst f) z))
inr-lemma : diff' ∘ᴳ CF-hom n (⊙projr X Y)
== inv-hom _ (C-abelian n Z) ∘ᴳ CF-hom n g
inr-lemma =
assoc-lemma₂
(fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff)
(fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projr X Y))
∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ)
(! (natural-lemma₂ n (⊙projr X Y)))
∙ ! (assoc-lemma₂
(fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff)
(CF-hom _ (⊙susp-fmap (⊙projr X Y)))
(fst (C-Susp n Y ⁻¹ᴳ)))
∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ))
(! (CF-comp _ (⊙susp-fmap (⊙projr X Y)) MV.⊙mv-diff))
∙ ∘ᴳ-assoc (fst (C-Susp n Z))
(CF-hom _ (⊙susp-fmap (⊙projr X Y) ⊙∘ MV.⊙mv-diff))
(fst (C-Susp n Y ⁻¹ᴳ))
∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ))
(CF-λ= (succ n) projr-mv-diff)
∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ))
(CF-comp _ (⊙susp-fmap g) (⊙flip-susp Z))
∙ ! (assoc-lemma (fst (C-Susp n Z)) (CF-hom _ (⊙flip-susp Z))
(CF-hom _ (⊙susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ)))
∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ)
∘ᴳ CF-hom _ (⊙susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ))
(C-flip-susp-is-inv (succ n))
∙ ap (λ φ → φ ∘ᴳ CF-hom _ (⊙susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ))
(inv-hom-natural (C-abelian _ _) (C-abelian _ _)
(fst (C-Susp n Z)))
∙ assoc-lemma (inv-hom _ (C-abelian n Z)) (fst (C-Susp n Z))
(CF-hom _ (⊙susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ))
∙ ap (λ φ → inv-hom _ (C-abelian n Z) ∘ᴳ φ) (natural-lemma₁ n g)
where
{- Compute the right projection of mv-diff -}
projr-mv-diff : (σz : fst (⊙Susp Z))
→ susp-fmap (projr X Y) (MV.mv-diff σz)
== susp-fmap (fst g) (flip-susp σz)
projr-mv-diff = Suspension-elim _ (merid _ (snd Y)) idp $
↓-='-from-square ∘ λ z →
(ap-∘ (susp-fmap (projr X Y)) MV.mv-diff (merid _ z)
∙ ap (ap (susp-fmap (projr X Y))) (MV.MVDiff.glue-β z)
∙ ap-∙ (susp-fmap (projr X Y))
(merid _ (winl (fst f z))) (! (merid _ (winr (fst g z))))
∙ (SuspFmap.glue-β (projr X Y) (winl (fst f z))
∙2 (ap-! (susp-fmap (projr X Y))
(merid _ (winr (fst g z)))
∙ ap ! (SuspFmap.glue-β (projr X Y) (winr (fst g z))))))
∙v⊡ ((lt-square (merid _ (snd Y))
⊡h vid-square {p = ! (merid _ (fst g z))}))
⊡v∙ ! (ap-∘ (susp-fmap (fst g)) flip-susp (merid _ z)
∙ ap (ap (susp-fmap (fst g))) (FlipSusp.glue-β z)
∙ ap-! (susp-fmap (fst g)) (merid _ z)
∙ ap ! (SuspFmap.glue-β (fst g) z))
| {
"alphanum_fraction": 0.5036623215,
"avg_line_length": 42.8457446809,
"ext": "agda",
"hexsha": "2fadf9a4840cd810a8e5b1b595764be7069440ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "cohomology/MayerVietorisExact.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "cohomology/MayerVietorisExact.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "cohomology/MayerVietorisExact.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 3653,
"size": 8055
} |
--- Sample Sit file
{-# OPTIONS --experimental-irrelevance #-}
{-# OPTIONS --sized-types #-}
open import Base
--; --- Leibniz-equality
Eq : forall (A : Set) (a b : A) -> Set1 --;
Eq = \ A a b -> (P : A -> Set) -> (P a) -> P b
--; --- Reflexivity
refl : forall (A : Set) (a : A) -> Eq A a a --;
refl = \ A a P pa -> pa
--; --- Symmetry
sym : forall (A : Set) (a b : A) -> Eq A a b -> Eq A b a --;
sym = \ A a b eq P pb -> eq (\ x -> P x -> P a) (\ pa -> pa) pb
--; --- Transitivity
trans : forall (A : Set) (a b c : A) -> Eq A a b -> Eq A b c -> Eq A a c --;
trans = \ A a b c p q P pa -> q P (p P pa)
--; --- Congruence
cong : forall (A B : Set) (f : A -> B) (a a' : A) -> Eq A a a' -> Eq B (f a) (f a') --;
cong = \ A B f a a' eq P pfa -> eq (\ x -> P (f x)) pfa
--; --- Addition
plus : forall .i -> Nat i -> Nat oo -> Nat oo --;
plus = \ i x y ->
fix (\ i x -> Nat oo)
(\ _ f -> \
{ (zero _) -> y
; (suc _ x) -> suc oo (f x)
})
x
--; --- Unit tests for plus
inc : Nat oo -> Nat oo --;
inc = \ x -> suc oo x --;
one : Nat oo --;
one = inc (zero oo) --;
two : Nat oo --;
two = inc one --;
three : Nat oo --;
three = inc two --;
four : Nat oo --;
four = inc three --;
five : Nat oo --;
five = inc four --;
six : Nat oo --;
six = inc five --;
plus_one_zero : Eq (Nat oo) (plus oo one (zero oo)) one --;
plus_one_zero = refl (Nat oo) one --;
plus_one_one : Eq (Nat oo) (plus oo one one) two --;
plus_one_one = refl (Nat oo) two --;
--; --- Reduction rules for plus
plus_red_zero : forall .i (y : Nat oo) -> Eq (Nat oo) (plus (i + 1) (zero i) y) y --;
plus_red_zero = \ i y -> refl (Nat oo) y --;
plus_red_suc : forall .i (x : Nat i) (y : Nat oo) -> Eq (Nat oo) (plus (i + 1) (suc i x) y) (suc oo (plus i x y)) --;
plus_red_suc = \ i x y -> refl (Nat oo) (suc oo (plus i x y)) --;
--; --- Law: x + 0 = x
plus_zero : forall .i (x : Nat i) -> Eq (Nat oo) (plus i x (zero oo)) x --;
plus_zero = \ i x ->
fix (\ i x -> Eq (Nat oo) (plus i x (zero oo)) x)
(\ j f -> \
{ (zero _) -> refl (Nat oo) (zero oo)
; (suc _ y) -> cong (Nat oo) (Nat oo) inc (plus j y (zero oo)) y (f y)
})
x
--; --- Law: x + suc y = suc x + y
plus_suc : forall .i (x : Nat i) (y : Nat oo) -> Eq (Nat oo) (plus i x (inc y)) (inc (plus i x y)) --;
plus_suc = \ i x y ->
fix (\ i x -> Eq (Nat oo) (plus i x (inc y)) (inc (plus i x y)))
(\ j f -> \
{ (zero _) -> refl (Nat oo) (inc y)
; (suc _ x') -> cong (Nat oo) (Nat oo) inc (plus j x' (inc y)) (inc (plus j x' y)) (f x')
})
x
--; --- Another definition of addition
plus' : forall .i -> Nat i -> Nat oo -> Nat oo --;
plus' = \ i x ->
fix (\ i x -> Nat oo -> Nat oo)
(\ _ f -> \
{ (zero _) -> \ y -> y
; (suc _ x) -> \ y -> suc oo (f x y)
})
x
--; --- Predecessor
pred : forall .i -> Nat i -> Nat i --;
pred = \ i n ->
fix (\ i _ -> Nat i)
(\ i _ -> \{ (zero _) -> zero i ; (suc _ y) -> y })
n
--; --- Subtraction
sub : forall .j -> Nat j -> forall .i -> Nat i -> Nat i --;
sub = \ j y ->
fix (\ _ _ -> forall .i -> Nat i -> Nat i)
(\ _ f -> \
{ (zero _) -> \ i x -> x
; (suc _ y) -> \ i x -> f y i (pred i x)
}) --- pred i (f y i x) })
y
--; --- Lemma: x - x == 0
sub_diag : forall .i (x : Nat i) -> Eq (Nat oo) (sub i x i x) (zero oo) --;
sub_diag = \ i x ->
fix (\ i x -> Eq (Nat oo) (sub i x i x) (zero oo))
(\ _ f -> \
{ (zero _) -> refl (Nat oo) (zero oo)
; (suc _ y) -> f y
})
x
--- Large eliminations
--; --- Varying arity
Fun : forall .i (n : Nat i) (A : Set) (B : Set) -> Set --;
Fun = \ i n A B ->
fix (\ _ _ -> Set)
(\ _ f -> \
{ (zero _) -> B
; (suc _ x) -> A -> f x
})
n
--; --- Type of n-ary Sum function
Sum : forall .i (n : Nat i) -> Set --;
Sum = \ i n -> Nat oo -> Fun i n (Nat oo) (Nat oo)
--; --- n-ary summation function
sum : forall .i (n : Nat i) -> Sum i n --;
sum = \ _ n ->
fix (\ i n -> Sum i n)
(\ _ f -> \
{ (zero _) -> \ acc -> acc
; (suc _ x) -> \ acc -> \ k -> f x (plus oo k acc)
})
n
--; --- Testing sum
sum123 : Eq (Nat oo) (sum oo three (zero oo) one two three) six --;
sum123 = refl (Nat oo) six
| {
"alphanum_fraction": 0.4337294333,
"avg_line_length": 24.7231638418,
"ext": "agda",
"hexsha": "36abe0234eb5abf4650d025c1e52c3554d82d951",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/Sit",
"max_forks_repo_path": "test/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/Sit",
"max_issues_repo_path": "test/Test.agda",
"max_line_length": 118,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/S",
"max_stars_repo_path": "test/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-07T19:52:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-16T02:28:36.000Z",
"num_tokens": 1598,
"size": 4376
} |
module PosNat where
open import Nats
open import Data.Product
open import Equality
data ℕ⁺ : Set where
psuc : ℕ → ℕ⁺
_→ℕ : ℕ⁺ → ℕ
psuc zero →ℕ = suc zero
psuc (suc x) →ℕ = suc (psuc x →ℕ)
_⟨_⟩→ℕ⁺ : (a : ℕ) → ∃ (λ x → a ≡ suc x) → ℕ⁺
.(suc x) ⟨ x , refl ⟩→ℕ⁺ = psuc x
| {
"alphanum_fraction": 0.559566787,
"avg_line_length": 17.3125,
"ext": "agda",
"hexsha": "4d59644e80600bd6b8bf4fea1e511c6667957982",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/PosNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/PosNat.agda",
"max_line_length": 44,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/PosNat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 136,
"size": 277
} |
module _ where
module M where
postulate
[_] : Set → Set
Foo = [ M.undefined ]
| {
"alphanum_fraction": 0.6091954023,
"avg_line_length": 9.6666666667,
"ext": "agda",
"hexsha": "f152fedce22d5de31016a85ada351033bfd6b1ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1977.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1977.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1977.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 87
} |
open import Common.Prelude
record Number (A : Set) : Set where
field fromNat : Nat → A
record Negative (A : Set) : Set where
field fromNeg : Nat → A
open Number {{...}} public
open Negative {{...}} public
{-# BUILTIN FROMNAT fromNat #-}
{-# BUILTIN FROMNEG fromNeg #-}
instance
NumberNat : Number Nat
NumberNat = record { fromNat = λ n → n }
data Int : Set where
pos : Nat → Int
neg : Nat → Int
instance
NumberInt : Number Int
NumberInt = record { fromNat = pos }
NegativeInt : Negative Int
NegativeInt = record { fromNeg = λ { zero → pos 0 ; (suc n) → neg n } }
minusFive : Int
minusFive = -5
open import Common.Equality
thm : -5 ≡ neg 4
thm = refl
| {
"alphanum_fraction": 0.6451612903,
"avg_line_length": 17.9473684211,
"ext": "agda",
"hexsha": "9598fba6b260dd1a20a8958d25d3a9724775de64",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/NegativeLiterals.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/NegativeLiterals.agda",
"max_line_length": 73,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/NegativeLiterals.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 208,
"size": 682
} |
import Lvl
open import Type
module Type.Functions.Inverse.Proofs {ℓₗ : Lvl.Level}{ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where
open import Function.Domains
open import Relator.Equals
open import Type.Functions {ℓₗ}
open import Type.Functions.Inverse {ℓₗ}
open import Type.Properties.Empty
open import Type.Properties.Singleton {ℓₒ₁}{ℓₒ₂}
postulate inv-bijective : ∀{f : X → Y} → ⦃ proof : Bijective(f) ⦄ → Bijective(inv f)
-- inv-bijective {f} ⦃ Bijective.intro(proof) ⦄
private
_≡₁_ = _≡_ {ℓₗ Lvl.⊔ ℓₒ₁}
invᵣ-is-inverseᵣ : (f : X → Y) → ⦃ _ : Surjective(f) ⦄ → ∀{y} → (f(invᵣ f(y)) ≡ y)
invᵣ-is-inverseᵣ f ⦃ Surjective.intro(proof) ⦄ {y} with proof{y}
... | ◊.intro ⦃ Unapply.intro _ ⦃ out ⦄ ⦄ = out
inv-is-inverseᵣ : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → ∀{y} → (f(inv f(y)) ≡ y)
inv-is-inverseᵣ f ⦃ Bijective.intro(proof) ⦄ {y} with proof{y}
... | IsUnit.intro (Unapply.intro _ ⦃ out ⦄) _ = out
inv-is-inverseₗ : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → ∀{x} → (inv f(f(x)) ≡₁ x)
inv-is-inverseₗ f ⦃ Bijective.intro(proof) ⦄ {x} with proof{f(x)}
... | IsUnit.intro _ uniqueness with uniqueness {Unapply.intro x ⦃ [≡]-intro ⦄}
... | [≡]-intro = [≡]-intro
| {
"alphanum_fraction": 0.6240409207,
"avg_line_length": 35.5454545455,
"ext": "agda",
"hexsha": "351d4d726c1a69d13fe00f11ba41910949ebaf45",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Type/Functions/Inverse/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Type/Functions/Inverse/Proofs.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Type/Functions/Inverse/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 516,
"size": 1173
} |
{-# OPTIONS --without-K #-}
open import Types
open import Functions
open import Paths
open import HLevel
module Equivalences where
hfiber : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) (y : B) → Set (max i j)
hfiber {A = A} f y = Σ A (λ x → f x ≡ y)
is-equiv : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
is-equiv {B = B} f = (y : B) → is-contr (hfiber f y)
_~_ : ∀ {i j} {A : Set i} {B : Set j} (f g : A → B) → Set (max i j)
_~_ {A = A} f g = (x : A) → (f x ≡ g x)
is-iso : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
is-iso {A = A} {B = B} f = Σ (B → A) (λ g → ((f ◯ g) ~ id B) × ((g ◯ f) ~ id A))
is-hae : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
is-hae {A = A} {B = B} f =
Σ (B → A) (λ g →
Σ ((g ◯ f) ~ id A) (λ η →
Σ ((f ◯ g) ~ id B) (λ ε →
(x : A) → ap f (η x) ≡ ε (f x))))
iso-is-hae : ∀ {i j} {A : Set i} {B : Set j} → (f : A → B) → is-iso f → is-hae f
iso-is-hae {A = A} {B = B} f (g , (ε , η)) = g , (η , (ε' , τ)) where
ε' : (f ◯ g) ~ id B
ε' b = ! (ε (f (g b))) ∘ ap f (η (g b)) ∘ ε b
lem : (a : A) → η (g (f a)) ≡ ap (g ◯ f) (η a)
lem a =
η (g (f a))
≡⟨ ! (refl-right-unit (η (g (f a))) ) ⟩
η (g (f a)) ∘ refl
≡⟨ ap (λ p → η (g (f a)) ∘ p) (! (opposite-right-inverse (η a))) ⟩
η (g (f a)) ∘ (η a ∘ (! (η a)))
≡⟨ ! (concat-assoc (η (g (f a))) (η a) (! (η a))) ⟩
(η (g (f a)) ∘ η a) ∘ (! (η a))
≡⟨ ap (λ p → p ∘ (! (η a)) ) (! (homotopy-naturality-toid (g ◯ f) η (η a))) ⟩
(ap (g ◯ f) (η a) ∘ η a) ∘ (! (η a))
≡⟨ concat-assoc (ap (g ◯ f) (η a)) (η a) (! (η a)) ⟩
ap (g ◯ f) (η a) ∘ (η a ∘ (! (η a)))
≡⟨ ap (λ p → ap (g ◯ f) (η a) ∘ p) (opposite-right-inverse (η a)) ⟩
ap (g ◯ f) (η a) ∘ refl
≡⟨ refl-right-unit (ap (g ◯ f) (η a)) ⟩
ap (g ◯ f) (η a)
∎
lem₂ : (a : A) → ε (f (g (f a))) ∘ ap f (η a) ≡ ap f (η (g (f a))) ∘ ε (f a)
lem₂ a =
! (ap f (η (g (f a))) ∘ ε (f a)
≡⟨ ap (λ p → ap f p ∘ ε (f a)) (lem a) ⟩
ap f (ap (g ◯ f) (η a)) ∘ ε (f a)
≡⟨ ap (λ p → p ∘ ε (f a)) (compose-ap f (g ◯ f) (η a)) ⟩
ap (f ◯ (g ◯ f)) (η a) ∘ ε (f a)
≡⟨ homotopy-naturality (f ◯ (g ◯ f)) f (λ x → ε (f x)) (η a) ⟩
ε (f (g (f a))) ∘ ap f (η a)
∎)
τ : (a : A) → ap f (η a) ≡ ε' (f a)
τ a =
ap f (η a)
≡⟨ refl ⟩
refl ∘ ap f (η a)
≡⟨ ap (λ p → p ∘ ap f (η a)) (! (opposite-left-inverse (ε (f (g (f a)))))) ⟩
(! (ε (f (g (f a)))) ∘ (ε (f (g (f a))))) ∘ ap f (η a)
≡⟨ concat-assoc (! (ε (f (g (f a))))) (ε (f (g (f a)))) (ap f (η a)) ⟩
! (ε (f (g (f a)))) ∘ ((ε (f (g (f a)))) ∘ ap f (η a))
≡⟨ ap (λ p → ! (ε (f (g (f a)))) ∘ p) (lem₂ a) ⟩
! (ε (f (g (f a)))) ∘ (ap f (η (g (f a))) ∘ ε (f a))
∎
hae-is-eq : ∀ {i j} {A : Set i} {B : Set j} → (f : A → B) → is-hae f → is-equiv f
hae-is-eq f (g , (η , (ε , τ))) y = (g y , ε y) , contr where
contr : (xp : hfiber f y) → xp ≡ g y , ε y
contr (x , p) = total-Σ-eq ( ((! (η x)) ∘ ap g p) , t) where
t : transport (λ z → f z ≡ y) (! (η x) ∘ ap g p) p ≡ ε y
t =
transport (λ z → f z ≡ y) (! (η x) ∘ ap g p) p
≡⟨ trans-app≡cst f y (! (η x) ∘ ap g p) p ⟩
! (ap f (! (η x) ∘ ap g p)) ∘ p
≡⟨ ap (λ q → q ∘ p) (opposite-ap f (! (η x) ∘ ap g p)) ⟩
ap f (! (! (η x) ∘ ap g p)) ∘ p
≡⟨ ap (λ q → ap f q ∘ p) (opposite-concat (! (η x)) (ap g p)) ⟩
ap f (! (ap g p) ∘ ! (! (η x))) ∘ p
≡⟨ ap (λ q → ap f (! (ap g p) ∘ q) ∘ p) (opposite-opposite (η x)) ⟩
ap f (! (ap g p) ∘ η x) ∘ p
≡⟨ ap (λ q → q ∘ p) (ap-concat f (! (ap g p)) (η x)) ⟩
(ap f (! (ap g p)) ∘ ap f (η x)) ∘ p
≡⟨ ap (λ q → (q ∘ ap f (η x)) ∘ p) (ap-opposite f (ap g p)) ⟩
(! (ap f (ap g p)) ∘ ap f (η x)) ∘ p
≡⟨ ap (λ q → (! q ∘ ap f (η x)) ∘ p) (compose-ap f g p) ⟩
(! (ap (f ◯ g) p) ∘ ap f (η x)) ∘ p
≡⟨ ap (λ q → ((! (ap (f ◯ g) p)) ∘ q) ∘ p ) (τ x) ⟩
(! (ap (f ◯ g) p) ∘ ε (f x)) ∘ p
≡⟨ ap (λ q → (q ∘ ε (f x)) ∘ p) (opposite-ap (f ◯ g) p) ⟩
(ap (f ◯ g) (! p) ∘ ε (f x)) ∘ p
≡⟨ ap (λ q → q ∘ p) (homotopy-naturality-toid (f ◯ g) ε (! p)) ⟩
(ε y ∘ ! p) ∘ p
≡⟨ concat-assoc (ε y) (! p) p ⟩
ε y ∘ ((! p) ∘ p)
≡⟨ ap (λ q → ε y ∘ q) (opposite-left-inverse p) ⟩
ε y ∘ refl
≡⟨ refl-right-unit (ε y) ⟩
ε y
∎
_≃_ : ∀ {i j} (A : Set i) (B : Set j) → Set (max i j) -- \simeq
A ≃ B = Σ (A → B) is-equiv
id-is-equiv : ∀ {i} (A : Set i) → is-equiv (id A)
id-is-equiv A = pathto-is-contr
id-equiv : ∀ {i} (A : Set i) → A ≃ A
id-equiv A = (id A , id-is-equiv A)
path-to-eq : ∀ {i} {A B : Set i} → (A ≡ B → A ≃ B)
path-to-eq refl = id-equiv _
module _ {i} {j} {A : Set i} {B : Set j} where
-- Notation for the application of an equivalence to an argument
_☆_ : (f : A ≃ B) (x : A) → B
f ☆ x = (π₁ f) x
inverse : (f : A ≃ B) → B → A
inverse (f , e) = λ y → π₁ (π₁ (e y))
abstract
inverse-right-inverse : (f : A ≃ B) (y : B) → f ☆ (inverse f y) ≡ y
inverse-right-inverse (f , e) y = π₂ (π₁ (e y))
inverse-left-inverse : (f : A ≃ B) (x : A) → inverse f (f ☆ x) ≡ x
inverse-left-inverse (f , e) x =
! (base-path (π₂ (e (f x)) (x , refl)))
hfiber-triangle : (f : A → B) (z : B) {x y : hfiber f z} (p : x ≡ y)
→ ap f (base-path p) ∘ π₂ y ≡ π₂ x
hfiber-triangle f z {x} {.x} refl = refl
inverse-triangle : (f : A ≃ B) (x : A) →
inverse-right-inverse f (f ☆ x) ≡ ap (π₁ f) (inverse-left-inverse f x)
inverse-triangle (f , e) x = move1!-left-on-left _ _
(hfiber-triangle f _ (π₂ (e (f x)) (x , refl)))
∘ opposite-ap f _
iso-is-eq' : (f : A → B) → is-iso f → is-equiv f
iso-is-eq' f iso = hae-is-eq f (iso-is-hae f iso)
iso-is-eq : (f : A → B) → (g : B → A) → (∀ y → f (g y) ≡ y) → (∀ x → g (f x) ≡ x) → is-equiv f
iso-is-eq f g η ε = iso-is-eq' _ (g , (η , ε))
inverse-iso-is-eq : (f : A → B) → (iso : is-iso f) → inverse (f , iso-is-eq' f iso) ≡ π₁ iso
inverse-iso-is-eq f iso = refl
-- The inverse of an equivalence is an equivalence
inverse-is-equiv : ∀ {i} {j} {A : Set i} {B : Set j} (f : A ≃ B)
→ is-equiv (inverse f)
inverse-is-equiv f =
iso-is-eq (inverse f) (π₁ f) (inverse-left-inverse f) (inverse-right-inverse f)
_⁻¹ : ∀ {i} {j} {A : Set i} {B : Set j} (f : A ≃ B) → B ≃ A -- \^-\^1
_⁻¹ f = (inverse f , inverse-is-equiv f)
-- Equivalences are injective
equiv-is-inj : ∀ {i} {j} {A : Set i} {B : Set j} (f : A ≃ B) (x y : A)
→ (f ☆ x ≡ f ☆ y → x ≡ y)
equiv-is-inj f x y p = ! (inverse-left-inverse f x)
∘ (ap (inverse f) p ∘ inverse-left-inverse f y)
-- Any contractible type is equivalent to the unit type
contr-equiv-unit : ∀ {i j} {A : Set i} → (is-contr A → A ≃ unit {j})
contr-equiv-unit e = ((λ _ → tt) , iso-is-eq _ (λ _ → π₁ e) (λ _ → refl) (λ x → ! (π₂ e x)))
-- The composite of two equivalences is an equivalence
compose-is-equiv : ∀ {i j k} {A : Set i} {B : Set j} {C : Set k}
(f : A ≃ B) (g : B ≃ C) → is-equiv (π₁ g ◯ π₁ f)
compose-is-equiv f g =
iso-is-eq _
(inverse f ◯ inverse g)
(λ y → ap (π₁ g) (inverse-right-inverse f (inverse g y)) ∘ inverse-right-inverse g y)
(λ x → ap (inverse f) (inverse-left-inverse g (π₁ f x)) ∘ inverse-left-inverse f x)
equiv-compose : ∀ {i j k} {A : Set i} {B : Set j} {C : Set k}
→ (A ≃ B → B ≃ C → A ≃ C)
equiv-compose f g = ((π₁ g ◯ π₁ f) , compose-is-equiv f g)
-- An equivalence induces an equivalence on the path spaces
-- The proofs here can probably be simplified
module _ {i j} {A : Set i} {B : Set j} (f : A ≃ B) (x y : A) where
private
ap-is-inj : (p : f ☆ x ≡ f ☆ y) → x ≡ y
ap-is-inj p = equiv-is-inj f x y p
abstract
left-inverse : (p : x ≡ y) → ap-is-inj (ap (π₁ f) p) ≡ p
left-inverse p =
move!-right-on-left (inverse-left-inverse f x) _ p
(move-right-on-right (ap (inverse f) (ap (π₁ f) p)) _ _
(compose-ap (inverse f) (π₁ f) p
∘ move!-left-on-right (ap (inverse f ◯ π₁ f) p)
(inverse-left-inverse f x ∘ p)
(inverse-left-inverse f y)
(homotopy-naturality-toid (inverse f ◯ π₁ f)
(inverse-left-inverse f) p)))
right-inverse : (p : f ☆ x ≡ f ☆ y) → ap (π₁ f) (ap-is-inj p) ≡ p
right-inverse p =
ap-concat (π₁ f) (! (inverse-left-inverse f x)) _
∘ (ap (λ u → u ∘ ap (π₁ f) (ap (inverse f) p
∘ inverse-left-inverse f y))
(ap-opposite (π₁ f) (inverse-left-inverse f x))
∘ move!-right-on-left (ap (π₁ f) (inverse-left-inverse f x)) _ p
(ap-concat (π₁ f) (ap (inverse f) p) (inverse-left-inverse f y)
∘ (ap (λ u → u ∘ ap (π₁ f) (inverse-left-inverse f y))
(compose-ap (π₁ f) (inverse f) p)
∘ (whisker-left (ap (π₁ f ◯ inverse f) p)
(! (inverse-triangle f y))
∘ (homotopy-naturality-toid (π₁ f ◯ inverse f)
(inverse-right-inverse f)
p
∘ whisker-right p (inverse-triangle f x))))))
equiv-ap : (x ≡ y) ≃ (f ☆ x ≡ f ☆ y)
equiv-ap = (ap (π₁ f) , iso-is-eq _ ap-is-inj right-inverse left-inverse)
abstract
total-Σ-eq-is-equiv : ∀ {i j} {A : Set i} {P : A → Set j} {x y : Σ A P}
→ is-equiv (total-Σ-eq {xu = x} {yv = y})
total-Σ-eq-is-equiv {P = P} =
iso-is-eq _
(λ totp → base-path totp , fiber-path totp)
Σ-eq-base-path-fiber-path
(λ p → Σ-eq (base-path-Σ-eq (π₁ p) (π₂ p)) (fiber-path-Σ-eq {P = P} (π₁ p) (π₂ p)))
total-Σ-eq-equiv : ∀ {i j} {A : Set i} {P : A → Set j} {x y : Σ A P}
→ (Σ (π₁ x ≡ π₁ y) (λ p → transport P p (π₂ x) ≡ (π₂ y))) ≃ (x ≡ y)
total-Σ-eq-equiv = (total-Σ-eq , total-Σ-eq-is-equiv)
| {
"alphanum_fraction": 0.4404531075,
"avg_line_length": 39.9959183673,
"ext": "agda",
"hexsha": "cfabd229b6b34309fac3333a999a7072bae1bbfe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Equivalences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Equivalences.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Equivalences.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 4374,
"size": 9799
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Functor.Construction.SubCategory {o ℓ e} (C : Category o ℓ e) where
open import Categories.Category.SubCategory C
open Category C
open Equiv
open import Level
open import Function.Base using () renaming (id to id→)
open import Data.Product
open import Categories.Functor using (Functor)
private
variable
ℓ′ i : Level
I : Set i
U : I → Obj
Sub : ∀ (sub : SubCat {i} {ℓ′} I) → Functor (SubCategory sub) C
Sub (record {U = U}) = record
{ F₀ = U
; F₁ = proj₁
; identity = refl
; homomorphism = refl
; F-resp-≈ = id→
}
FullSub : Functor (FullSubCategory U) C
FullSub {U = U} = record
{ F₀ = U
; F₁ = id→
; identity = refl
; homomorphism = refl
; F-resp-≈ = id→
}
| {
"alphanum_fraction": 0.6455696203,
"avg_line_length": 19.2682926829,
"ext": "agda",
"hexsha": "5992cb2243f111147c2a5930dff6166d30989518",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Construction/SubCategory.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Construction/SubCategory.agda",
"max_line_length": 85,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Construction/SubCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 260,
"size": 790
} |
-- Andreas, 2014-10-05
{-# OPTIONS --cubical-compatible --sized-types #-}
-- {-# OPTIONS -v tc.size:20 #-}
open import Agda.Builtin.Size
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {↑ size}
suc : {size : Size} -> Nat {size} -> Nat {↑ size}
-- subtraction is non size increasing
sub : {size : Size} -> Nat {size} -> Nat {∞} -> Nat {size}
sub zero n = zero
sub (suc m) zero = suc m
sub (suc m) (suc n) = sub m n
-- div' m n computes ceiling(m/(n+1))
div' : {size : Size} -> Nat {size} -> Nat -> Nat {size}
div' zero n = zero
div' (suc m) n = suc (div' (sub m n) n)
-- should termination check even --cubical-compatible
-- -}
| {
"alphanum_fraction": 0.5680473373,
"avg_line_length": 25.037037037,
"ext": "agda",
"hexsha": "0deda07c7040ba0d112a957ff111340e5532d522",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1292b.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1292b.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1292b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 232,
"size": 676
} |
module FlatDomInequality-1 where
postulate
A : Set
g : A → A
g x = x
h : (@♭ x : A) → A
h = g
| {
"alphanum_fraction": 0.5454545455,
"avg_line_length": 9,
"ext": "agda",
"hexsha": "6e67a260f378952e668a01d30b73cbb914ed64b7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/FlatDomInequality-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/FlatDomInequality-1.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/FlatDomInequality-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 99
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Object.BinaryProducts.Abstract where
open import Categories.Support.PropositionalEquality
open import Categories.Category
open import Categories.Object.BinaryProducts
open import Categories.Morphisms
module AbstractBinaryProducts {o ℓ e} (C : Category o ℓ e) (BP : BinaryProducts C) where
private module P = BinaryProducts C BP
open P public using (_×_; π₁; π₂)
private open Category C
private import Categories.Object.Product as Product
mutual
first : ∀ {A B C} → (A ⇒ B) → ((A × C) ⇒ (B × C))
first f = f ⁂ id
second : ∀ {A C D} → (C ⇒ D) → ((A × C) ⇒ (A × D))
second g = id ⁂ g
abstract
infix 10 _⁂_
_⁂_ : ∀ {A B C D} → (A ⇒ B) → (C ⇒ D) → ((A × C) ⇒ (B × D))
_⁂_ = P._⁂_
⟨_,_⟩ : ∀ {A B Q} → (Q ⇒ A) → (Q ⇒ B) → (Q ⇒ (A × B))
⟨_,_⟩ = P.⟨_,_⟩
⁂-convert : ∀ {A B C D} (f : A ⇒ B) (g : C ⇒ D) → f ⁂ g ≣ ⟨ f ∘ π₁ , g ∘ π₂ ⟩
⁂-convert f g = ≣-refl
assocˡ : ∀ {A B C} → (((A × B) × C) ⇒ (A × (B × C)))
assocˡ = P.assocˡ
assocˡ-convert : ∀ {A B C} → assocˡ {A} {B} {C} ≣ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
assocˡ-convert = ≣-refl
assocʳ : ∀ {A B C} → ((A × (B × C)) ⇒ ((A × B) × C))
assocʳ = P.assocʳ
assocʳ-convert : ∀ {A B C} → assocʳ {A} {B} {C} ≣ ⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ , π₂ ∘ π₂ ⟩
assocʳ-convert = ≣-refl
.assoc-iso : ∀ {A B C′} → Iso C (assocʳ {A} {B} {C′}) assocˡ
assoc-iso = _≅_.iso C P.×-assoc
.⁂∘⁂ : ∀ {A B C D E F} → {f : B ⇒ C} → {f′ : A ⇒ B} {g : E ⇒ F} {g′ : D ⇒ E} → (f ⁂ g) ∘ (f′ ⁂ g′) ≡ (f ∘ f′) ⁂ (g ∘ g′)
⁂∘⁂ = P.⁂∘⁂
.⁂∘⟨⟩ : ∀ {A B C D E} → {f : B ⇒ C} {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D} → (f ⁂ g) ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f ∘ f′ , g ∘ g′ ⟩
⁂∘⟨⟩ = P.⁂∘⟨⟩
.π₁∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → π₁ ∘ (f ⁂ g) ≡ f ∘ π₁
π₁∘⁂ = P.π₁∘⁂
.π₂∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → π₂ ∘ (f ⁂ g) ≡ g ∘ π₂
π₂∘⁂ = P.π₂∘⁂
.⟨⟩-cong₂ : ∀ {A B C} → {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≡ f′ → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g′ ⟩
⟨⟩-cong₂ = P.⟨⟩-cong₂
.⟨⟩∘ : ∀ {A B C D} {f : A ⇒ B} {g : A ⇒ C} {q : D ⇒ A} → ⟨ f , g ⟩ ∘ q ≡ ⟨ f ∘ q , g ∘ q ⟩
⟨⟩∘ = P.⟨⟩∘
.first∘⟨⟩ : ∀ {A B C D} → {f : B ⇒ C} {f′ : A ⇒ B} {g′ : A ⇒ D} → first f ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f ∘ f′ , g′ ⟩
first∘⟨⟩ = P.first∘⟨⟩
.second∘⟨⟩ : ∀ {A B D E} → {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D} → second g ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f′ , g ∘ g′ ⟩
second∘⟨⟩ = P.second∘⟨⟩
.η : ∀ {A B} → ⟨ π₁ , π₂ ⟩ ≡ id {A × B}
η = P.η
.commute₁ : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} → π₁ ∘ ⟨ f , g ⟩ ≡ f
commute₁ = P.commute₁
.commute₂ : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} → π₂ ∘ ⟨ f , g ⟩ ≡ g
commute₂ = P.commute₂
.universal : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} {i : C ⇒ (A × B)}
→ π₁ ∘ i ≡ f → π₂ ∘ i ≡ g → ⟨ f , g ⟩ ≡ i
universal = P.universal
module HomReasoningP {A B : Obj} where
open HomReasoning {A} {B} public
-- sort of a hack, if you specify the codomain for your top-level
-- reasoning you will NOT get what you want from the below
infix 3 ⟨_⟩,⟨_⟩
.⟨_⟩,⟨_⟩ : ∀ {C} → {f f′ : A ⇒ B} {g g′ : A ⇒ C} → f ≡ f′ → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g′ ⟩
⟨_⟩,⟨_⟩ x y = ⟨⟩-cong₂ x y | {
"alphanum_fraction": 0.401510574,
"avg_line_length": 35.5913978495,
"ext": "agda",
"hexsha": "8f654d302efebe88144eca0651aefb2fb8f7252b",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/BinaryProducts/Abstract.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/BinaryProducts/Abstract.agda",
"max_line_length": 126,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/BinaryProducts/Abstract.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1642,
"size": 3310
} |
------------------------------------------------------------------------------
-- Inequalities on partial natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Nat.Inequalities where
open import LTC-PCF.Base
infix 4 _<_ _≮_ _>_ _≯_ _≤_ _≰_ _≥_ _≱_
------------------------------------------------------------------------------
-- The function terms.
lth : D → D
lth lt = lam (λ m → lam (λ n →
if (iszero₁ n)
then false
else (if (iszero₁ m) then true else (lt · pred₁ m · pred₁ n))))
lt : D → D → D
lt m n = fix lth · m · n
le : D → D → D
le m n = lt m (succ₁ n)
gt : D → D → D
gt m n = lt n m
ge : D → D → D
ge m n = le n m
------------------------------------------------------------------------
-- The relations.
_<_ : D → D → Set
m < n = lt m n ≡ true
_≮_ : D → D → Set
m ≮ n = lt m n ≡ false
_>_ : D → D → Set
m > n = gt m n ≡ true
_≯_ : D → D → Set
m ≯ n = gt m n ≡ false
_≤_ : D → D → Set
m ≤ n = le m n ≡ true
_≰_ : D → D → Set
m ≰ n = le m n ≡ false
_≥_ : D → D → Set
m ≥ n = ge m n ≡ true
_≱_ : D → D → Set
m ≱ n = ge m n ≡ false
------------------------------------------------------------------------------
-- The lexicographical order.
Lexi : D → D → D → D → Set
Lexi m n m' n' = m < m' ∨ m ≡ m' ∧ n < n'
| {
"alphanum_fraction": 0.3640583554,
"avg_line_length": 22.5074626866,
"ext": "agda",
"hexsha": "4bb8434406315484e1eb24c1acc2770945dbd33a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 465,
"size": 1508
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for types of functions.
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Function.Definitions
{a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(_≈₁_ : Rel A ℓ₁) -- Equality over the domain
(_≈₂_ : Rel B ℓ₂) -- Equality over the codomain
where
open import Data.Product using (∃; _×_)
import Function.Definitions.Core1 as Core₁
import Function.Definitions.Core2 as Core₂
open import Level using (_⊔_)
------------------------------------------------------------------------
-- Definitions
Congruent : (A → B) → Set (a ⊔ ℓ₁ ⊔ ℓ₂)
Congruent f = ∀ {x y} → x ≈₁ y → f x ≈₂ f y
Injective : (A → B) → Set (a ⊔ ℓ₁ ⊔ ℓ₂)
Injective f = ∀ {x y} → f x ≈₂ f y → x ≈₁ y
open Core₂ _≈₂_ public
using (Surjective)
Bijective : (A → B) → Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
Bijective f = Injective f × Surjective f
open Core₂ _≈₂_ public
using (Inverseˡ)
open Core₁ _≈₁_ public
using (Inverseʳ)
Inverseᵇ : (A → B) → (B → A) → Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
Inverseᵇ f g = Inverseˡ f g × Inverseʳ f g
| {
"alphanum_fraction": 0.5313741064,
"avg_line_length": 26.7872340426,
"ext": "agda",
"hexsha": "2c139cf3184c7b13677dcf2f8ed143808d375efe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Definitions.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 404,
"size": 1259
} |
-- Andreas, 2015-07-16, issue reported by Nisse
postulate
A : Set₁
P : A → Set₁
T : Set₁ → Set₁
Σ : (A : Set₁) → (A → Set₁) → Set₁
T-Σ : {A : Set₁} {B : A → Set₁} → (∀ x → T (B x)) → T (Σ A B)
t : T (Σ Set λ _ → Σ (A → A) λ f → Σ (∀ x₁ → P (f x₁)) λ _ → Set)
t = T-Σ λ _ → T-Σ λ _ → T-Σ {!!}
-- WAS:
-- Goal type and context:
--
-- Goal: (x : (x₁ : A) → P (x₁ x₁)) → T Set
-- ————————————————————————————————————————————————————————————
-- x₁ : A → A
-- x : Set
--
-- Note the application "x₁ x₁".
-- EXPECTED:
-- Goal: (x : (x₁ : A) → P (.x₁ x₁)) → T Set
-- ————————————————————————————————————————————————————————————
-- .x₁ : A → A
-- .x : Set
id : (x : A) → A
-- id _ = {!!} -- Context displays .x
id = λ _ → {!!} -- Context should display .x
| {
"alphanum_fraction": 0.3634053367,
"avg_line_length": 23.8484848485,
"ext": "agda",
"hexsha": "c20a9479890a8e4b0755cda75ae07edc6a196209",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1534.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1534.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1534.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 329,
"size": 787
} |
module Successor where
open import OscarPrelude
record Successor {ℓᴬ} (A : Set ℓᴬ) {ℓᴮ} (B : Set ℓᴮ) : Set (ℓᴬ ⊔ ℓᴮ)
where
field
⊹ : A → B
open Successor ⦃ … ⦄ public
instance SuccessorNat : Successor Nat Nat
Successor.⊹ SuccessorNat = suc
instance SuccessorLevel : Successor Level Level
Successor.⊹ SuccessorLevel = lsuc
| {
"alphanum_fraction": 0.7104477612,
"avg_line_length": 18.6111111111,
"ext": "agda",
"hexsha": "0c22eb7475071af36911e97259d6a2d088fda18b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Successor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Successor.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Successor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 135,
"size": 335
} |
open import Nat
open import Prelude
open import core
open import judgemental-erase
open import aasubsume-min
module determinism where
-- the same action applied to the same type makes the same type
actdet-type : {t t' t'' : τ̂} {α : action} →
(t + α +> t') →
(t + α +> t'') →
(t' == t'')
actdet-type TMArrChild1 TMArrChild1 = refl
actdet-type TMArrChild2 TMArrChild2 = refl
actdet-type TMArrParent1 TMArrParent1 = refl
actdet-type TMArrParent1 (TMArrZip1 ())
actdet-type TMArrParent2 TMArrParent2 = refl
actdet-type TMArrParent2 (TMArrZip2 ())
actdet-type TMDel TMDel = refl
actdet-type TMConArrow TMConArrow = refl
actdet-type TMConNum TMConNum = refl
actdet-type (TMArrZip1 ()) TMArrParent1
actdet-type (TMArrZip1 p1) (TMArrZip1 p2) with actdet-type p1 p2
... | refl = refl
actdet-type (TMArrZip2 ()) TMArrParent2
actdet-type (TMArrZip2 p1) (TMArrZip2 p2) with actdet-type p1 p2
... | refl = refl
-- all expressions only move to one other expression
movedet : {e e' e'' : ê} {δ : direction} →
(e + move δ +>e e') →
(e + move δ +>e e'') →
e' == e''
movedet EMAscChild1 EMAscChild1 = refl
movedet EMAscChild2 EMAscChild2 = refl
movedet EMAscParent1 EMAscParent1 = refl
movedet EMAscParent2 EMAscParent2 = refl
movedet EMLamChild1 EMLamChild1 = refl
movedet EMLamParent EMLamParent = refl
movedet EMPlusChild1 EMPlusChild1 = refl
movedet EMPlusChild2 EMPlusChild2 = refl
movedet EMPlusParent1 EMPlusParent1 = refl
movedet EMPlusParent2 EMPlusParent2 = refl
movedet EMApChild1 EMApChild1 = refl
movedet EMApChild2 EMApChild2 = refl
movedet EMApParent1 EMApParent1 = refl
movedet EMApParent2 EMApParent2 = refl
movedet EMNEHoleChild1 EMNEHoleChild1 = refl
movedet EMNEHoleParent EMNEHoleParent = refl
-- non-movement lemmas; theses show up pervasively throughout and save a
-- lot of pattern matching.
lem-nomove-part : ∀ {t t'} → ▹ t ◃ + move parent +> t' → ⊥
lem-nomove-part ()
lem-nomove-pars : ∀{Γ e t e' t'} → Γ ⊢ ▹ e ◃ => t ~ move parent ~> e' => t' → ⊥
lem-nomove-pars (SAMove ())
lem-nomove-para : ∀{Γ e t e'} → Γ ⊢ ▹ e ◃ ~ move parent ~> e' ⇐ t → ⊥
lem-nomove-para (AASubsume e x x₁ x₂) = lem-nomove-pars x₁
lem-nomove-para (AAMove ())
-- if a move action on a synthetic action makes a new form, it's unique
synthmovedet : {Γ : ·ctx} {e e' e'' : ê} {t' t'' : τ̇} {δ : direction} →
(Γ ⊢ e => t' ~ move δ ~> e'' => t'') →
(e + move δ +>e e') →
e'' == e'
synthmovedet (SAMove m1) m2 = movedet m1 m2
-- all these cases lead to absurdities based on movement
synthmovedet (SAZipAsc1 x) EMAscParent1 = abort (lem-nomove-para x)
synthmovedet (SAZipAsc2 x _ _ _) EMAscParent2 = abort (lem-nomove-part x)
synthmovedet (SAZipApArr _ _ _ x _) EMApParent1 = abort (lem-nomove-pars x)
synthmovedet (SAZipApAna _ _ x) EMApParent2 = abort (lem-nomove-para x)
synthmovedet (SAZipPlus1 x) EMPlusParent1 = abort (lem-nomove-para x)
synthmovedet (SAZipPlus2 x) EMPlusParent2 = abort (lem-nomove-para x)
synthmovedet (SAZipHole _ _ x) EMNEHoleParent = abort (lem-nomove-pars x)
anamovedet : {Γ : ·ctx} {e e' e'' : ê} {t : τ̇} {δ : direction} →
(Γ ⊢ e ~ move δ ~> e'' ⇐ t) →
(e + move δ +>e e') →
e'' == e'
anamovedet (AASubsume x₂ x x₃ x₁) m = synthmovedet x₃ m
anamovedet (AAMove x) m = movedet x m
anamovedet (AAZipLam x₁ x₂ d) EMLamParent = abort (lem-nomove-para d)
mutual
-- an action on an expression in a synthetic position produces one
-- resultant expression and type.
actdet-synth : {Γ : ·ctx} {e e' e'' : ê} {e◆ : ė} {t t' t'' : τ̇} {α : action} →
(E : erase-e e e◆) →
(Γ ⊢ e◆ => t) →
(d1 : Γ ⊢ e => t ~ α ~> e' => t') →
(d2 : Γ ⊢ e => t ~ α ~> e'' => t'') →
{p1 : aasubmin-synth d1} →
{p2 : aasubmin-synth d2} →
(e' == e'' × t' == t'')
actdet-synth EETop (SAsc x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth EETop (SAsc x) SADel SADel = refl , refl
actdet-synth EETop (SAsc x) SAConAsc SAConAsc = refl , refl
actdet-synth EETop (SAsc x) (SAConPlus1 x₁) (SAConPlus1 x₂) = refl , refl
actdet-synth EETop (SAsc x) (SAConPlus1 x₁) (SAConPlus2 x₂) = abort (x₂ x₁)
actdet-synth EETop (SAsc x) (SAConPlus2 x₁) (SAConPlus1 x₂) = abort (x₁ x₂)
actdet-synth EETop (SAsc x) (SAConPlus2 x₁) (SAConPlus2 x₂) = refl , refl
actdet-synth EETop (SAsc x) (SAConApArr x₁) (SAConApArr x₂) with matcharrunicity x₁ x₂
... | refl = refl , refl
actdet-synth EETop (SAsc x) (SAConApArr x₁) (SAConApOtw x₂) = abort (x₂ (matchconsist x₁))
actdet-synth EETop (SAsc x) (SAConApOtw x₁) (SAConApArr x₂) = abort (x₁ (matchconsist x₂))
actdet-synth EETop (SAsc x) (SAConApOtw x₁) (SAConApOtw x₂) = refl , refl
actdet-synth EETop (SAsc x) SAConNEHole SAConNEHole = refl , refl
actdet-synth (EEAscL E) (SAsc x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth (EEAscL E) (SAsc x) (SAMove EMAscParent1) (SAZipAsc1 x₂) = abort (lem-nomove-para x₂)
actdet-synth (EEAscL E) (SAsc x) (SAZipAsc1 x₁) (SAMove EMAscParent1) = abort (lem-nomove-para x₁)
actdet-synth (EEAscL E) (SAsc x) (SAZipAsc1 x₁) (SAZipAsc1 x₂) {p1} {p2}
with actdet-ana E x x₁ x₂ {p1} {p2}
... | refl = refl , refl
actdet-synth (EEAscR x) (SAsc x₁) (SAMove x₂) (SAMove x₃) = movedet x₂ x₃ , refl
actdet-synth (EEAscR x) (SAsc x₁) (SAMove EMAscParent2) (SAZipAsc2 a _ _ _) = abort (lem-nomove-part a)
actdet-synth (EEAscR x) (SAsc x₁) (SAZipAsc2 a _ _ _) (SAMove EMAscParent2) = abort (lem-nomove-part a)
actdet-synth (EEAscR x) (SAsc x₂) (SAZipAsc2 a e1 _ _) (SAZipAsc2 b e2 _ _)
with actdet-type a b
... | refl = refl , eraset-det e1 e2
actdet-synth EETop (SVar x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth EETop (SVar x) SADel SADel = refl , refl
actdet-synth EETop (SVar x) SAConAsc SAConAsc = refl , refl
actdet-synth EETop (SVar x) (SAConPlus1 x₁) (SAConPlus1 x₂) = refl , refl
actdet-synth EETop (SVar x) (SAConPlus1 x₁) (SAConPlus2 x₂) = abort (x₂ x₁)
actdet-synth EETop (SVar x) (SAConPlus2 x₁) (SAConPlus1 x₂) = abort (x₁ x₂)
actdet-synth EETop (SVar x) (SAConPlus2 x₁) (SAConPlus2 x₂) = refl , refl
actdet-synth EETop (SVar x) (SAConApArr x₁) (SAConApArr x₂) with matcharrunicity x₁ x₂
... | refl = refl , refl
actdet-synth EETop (SVar x) (SAConApArr x₁) (SAConApOtw x₂) = abort (x₂ (matchconsist x₁))
actdet-synth EETop (SVar x) (SAConApOtw x₁) (SAConApArr x₂) = abort (x₁ (matchconsist x₂))
actdet-synth EETop (SVar x) (SAConApOtw x₁) (SAConApOtw x₂) = refl , refl
actdet-synth EETop (SVar x) SAConNEHole SAConNEHole = refl , refl
actdet-synth EETop (SAp m wt x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth EETop (SAp m wt x) SADel SADel = refl , refl
actdet-synth EETop (SAp m wt x) SAConAsc SAConAsc = refl , refl
actdet-synth EETop (SAp m wt x) (SAConPlus1 x₁) (SAConPlus1 x₂) = refl , refl
actdet-synth EETop (SAp m wt x) (SAConPlus1 x₁) (SAConPlus2 x₂) = abort (x₂ x₁)
actdet-synth EETop (SAp m wt x) (SAConPlus2 x₁) (SAConPlus1 x₂) = abort (x₁ x₂)
actdet-synth EETop (SAp m wt x) (SAConPlus2 x₁) (SAConPlus2 x₂) = refl , refl
actdet-synth EETop (SAp m wt x) (SAConApArr x₁) (SAConApArr x₂) with matcharrunicity x₁ x₂
... | refl = refl , refl
actdet-synth EETop (SAp m wt x) (SAConApArr x₁) (SAConApOtw x₂) = abort (x₂ (matchconsist x₁))
actdet-synth EETop (SAp m wt x) (SAConApOtw x₁) (SAConApArr x₂) = abort (x₁ (matchconsist x₂))
actdet-synth EETop (SAp m wt x) (SAConApOtw x₁) (SAConApOtw x₂) = refl , refl
actdet-synth EETop (SAp m wt x) SAConNEHole SAConNEHole = refl , refl
actdet-synth (EEApL E) (SAp m wt x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth (EEApL E) (SAp m wt x) (SAMove EMApParent1) (SAZipApArr _ x₂ x₃ d2 x₄) = abort (lem-nomove-pars d2)
actdet-synth (EEApL E) (SAp m wt x) (SAZipApArr _ x₁ x₂ d1 x₃) (SAMove EMApParent1) = abort (lem-nomove-pars d1)
actdet-synth (EEApL E) (SAp m wt x) (SAZipApArr a x₁ x₂ d1 x₃) (SAZipApArr b x₄ x₅ d2 x₆) {p1} {p2}
with erasee-det x₁ x₄
... | refl with synthunicity x₂ x₅
... | refl with erasee-det E x₁
... | refl with actdet-synth E x₅ d1 d2 {p1} {p2}
... | refl , refl with matcharrunicity a b
... | refl = refl , refl
actdet-synth (EEApR E) (SAp m wt x) (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth (EEApR E) (SAp m wt x) (SAMove EMApParent2) (SAZipApAna x₂ x₃ x₄) = abort (lem-nomove-para x₄)
actdet-synth (EEApR E) (SAp m wt x) (SAZipApAna x₁ x₂ x₃) (SAMove EMApParent2) = abort (lem-nomove-para x₃)
actdet-synth (EEApR E) (SAp m wt x) (SAZipApAna x₁ x₂ d1) (SAZipApAna x₄ x₅ d2) {p1} {p2}
with synthunicity m x₂
... | refl with matcharrunicity x₁ wt
... | refl with synthunicity m x₅
... | refl with matcharrunicity x₄ wt
... | refl with actdet-ana E x d1 d2 {p1} {p2}
... | refl = refl , refl
actdet-synth EETop SNum (SAMove x) (SAMove x₁) = movedet x x₁ , refl
actdet-synth EETop SNum SADel SADel = refl , refl
actdet-synth EETop SNum SAConAsc SAConAsc = refl , refl
actdet-synth EETop SNum (SAConPlus1 x) (SAConPlus1 x₁) = refl , refl
actdet-synth EETop SNum (SAConPlus1 x) (SAConPlus2 x₁) = abort (x₁ x)
actdet-synth EETop SNum (SAConPlus2 x) (SAConPlus1 x₁) = abort (x x₁)
actdet-synth EETop SNum (SAConPlus2 x) (SAConPlus2 x₁) = refl , refl
actdet-synth EETop SNum (SAConApArr x) (SAConApArr x₁) with matcharrunicity x x₁
... | refl = refl , refl
actdet-synth EETop SNum (SAConApArr x) (SAConApOtw x₁) = abort (x₁ (matchconsist x))
actdet-synth EETop SNum (SAConApOtw x) (SAConApArr x₁) = abort (x (matchconsist x₁))
actdet-synth EETop SNum (SAConApOtw x) (SAConApOtw x₁) = refl , refl
actdet-synth EETop SNum SAConNEHole SAConNEHole = refl , refl
actdet-synth EETop (SPlus x x₁) (SAMove x₂) (SAMove x₃) = movedet x₂ x₃ , refl
actdet-synth EETop (SPlus x x₁) SADel SADel = refl , refl
actdet-synth EETop (SPlus x x₁) SAConAsc SAConAsc = refl , refl
actdet-synth EETop (SPlus x x₁) (SAConPlus1 x₂) (SAConPlus1 x₃) = refl , refl
actdet-synth EETop (SPlus x x₁) (SAConPlus1 x₂) (SAConPlus2 x₃) = abort (x₃ x₂)
actdet-synth EETop (SPlus x x₁) (SAConPlus2 x₂) (SAConPlus1 x₃) = abort (x₂ x₃)
actdet-synth EETop (SPlus x x₁) (SAConPlus2 x₂) (SAConPlus2 x₃) = refl , refl
actdet-synth EETop (SPlus x x₁) (SAConApArr x₂) (SAConApArr x₃) with matcharrunicity x₂ x₃
... | refl = refl , refl
actdet-synth EETop (SPlus x x₁) (SAConApArr x₂) (SAConApOtw x₃) = abort (matchnotnum x₂)
actdet-synth EETop (SPlus x x₁) (SAConApOtw x₂) (SAConApArr x₃) = abort (matchnotnum x₃)
actdet-synth EETop (SPlus x x₁) (SAConApOtw x₂) (SAConApOtw x₃) = refl , refl
actdet-synth EETop (SPlus x x₁) SAConNEHole SAConNEHole = refl , refl
actdet-synth (EEPlusL E) (SPlus x x₁) (SAMove x₂) (SAMove x₃) = movedet x₂ x₃ , refl
actdet-synth (EEPlusL E) (SPlus x x₁) (SAMove EMPlusParent1) (SAZipPlus1 d2) = abort (lem-nomove-para d2)
actdet-synth (EEPlusL E) (SPlus x x₁) (SAZipPlus1 x₂) (SAMove EMPlusParent1) = abort (lem-nomove-para x₂)
actdet-synth (EEPlusL E) (SPlus x x₁) (SAZipPlus1 x₂) (SAZipPlus1 x₃) {p1} {p2}
= ap1 (λ x₄ → x₄ ·+₁ _) (actdet-ana E x x₂ x₃ {p1} {p2}) , refl
actdet-synth (EEPlusR E) (SPlus x x₁) (SAMove x₂) (SAMove x₃) = movedet x₂ x₃ , refl
actdet-synth (EEPlusR E) (SPlus x x₁) (SAMove EMPlusParent2) (SAZipPlus2 x₃) = abort (lem-nomove-para x₃)
actdet-synth (EEPlusR E) (SPlus x x₁) (SAZipPlus2 x₂) (SAMove EMPlusParent2) = abort (lem-nomove-para x₂)
actdet-synth (EEPlusR E) (SPlus x x₁) (SAZipPlus2 x₂) (SAZipPlus2 x₃) {p1} {p2}
= ap1 (_·+₂_ _) (actdet-ana E x₁ x₂ x₃ {p1} {p2}) , refl
actdet-synth EETop SEHole (SAMove x) (SAMove x₁) = movedet x x₁ , refl
actdet-synth EETop SEHole SADel SADel = refl , refl
actdet-synth EETop SEHole SAConAsc SAConAsc = refl , refl
actdet-synth EETop SEHole (SAConVar {Γ = G} p) (SAConVar p₁) = refl , (ctxunicity {Γ = G} p p₁)
actdet-synth EETop SEHole (SAConLam x₁) (SAConLam x₂) = refl , refl
actdet-synth EETop SEHole SAConNumlit SAConNumlit = refl , refl
actdet-synth EETop SEHole (SAConPlus1 x) (SAConPlus1 x₁) = refl , refl
actdet-synth EETop SEHole (SAConPlus1 x) (SAConPlus2 x₁) = abort (x₁ x)
actdet-synth EETop SEHole (SAConPlus2 x) (SAConPlus1 x₁) = abort (x x₁)
actdet-synth EETop SEHole (SAConPlus2 x) (SAConPlus2 x₁) = refl , refl
actdet-synth EETop SEHole (SAConApArr x) (SAConApArr x₁) with matcharrunicity x x₁
... | refl = refl , refl
actdet-synth EETop SEHole (SAConApArr x) (SAConApOtw x₁) = abort (x₁ TCHole2)
actdet-synth EETop SEHole (SAConApOtw x) (SAConApArr x₁) = abort (x TCHole2)
actdet-synth EETop SEHole (SAConApOtw x) (SAConApOtw x₁) = refl , refl
actdet-synth EETop SEHole SAConNEHole SAConNEHole = refl , refl
actdet-synth EETop (SNEHole wt) (SAMove x) (SAMove x₁) = movedet x x₁ , refl
actdet-synth EETop (SNEHole wt) SADel SADel = refl , refl
actdet-synth EETop (SNEHole wt) SAConAsc SAConAsc = refl , refl
actdet-synth EETop (SNEHole wt) (SAConPlus1 x) (SAConPlus1 x₁) = refl , refl
actdet-synth EETop (SNEHole wt) (SAConPlus1 x) (SAConPlus2 x₁) = abort (x₁ x)
actdet-synth EETop (SNEHole wt) (SAConPlus2 x) (SAConPlus1 x₁) = abort (x x₁)
actdet-synth EETop (SNEHole wt) (SAConPlus2 x) (SAConPlus2 x₁) = refl , refl
actdet-synth EETop (SNEHole wt) (SAFinish x) (SAFinish x₁) = refl , synthunicity x x₁
actdet-synth EETop (SNEHole wt) (SAConApArr x) (SAConApArr x₁) with matcharrunicity x x₁
... | refl = refl , refl
actdet-synth EETop (SNEHole wt) (SAConApArr x) (SAConApOtw x₁) = abort (x₁ TCHole2)
actdet-synth EETop (SNEHole wt) (SAConApOtw x) (SAConApArr x₁) = abort (x TCHole2)
actdet-synth EETop (SNEHole wt) (SAConApOtw x) (SAConApOtw x₁) = refl , refl
actdet-synth EETop (SNEHole wt) SAConNEHole SAConNEHole = refl , refl
actdet-synth (EENEHole E) (SNEHole wt) (SAMove x) (SAMove x₁) = movedet x x₁ , refl
actdet-synth (EENEHole E) (SNEHole wt) (SAMove EMNEHoleParent) (SAZipHole _ x₁ d2) = abort (lem-nomove-pars d2)
actdet-synth (EENEHole E) (SNEHole wt) (SAZipHole _ x d1) (SAMove EMNEHoleParent) = abort (lem-nomove-pars d1)
actdet-synth (EENEHole E) (SNEHole wt) (SAZipHole a x d1) (SAZipHole b x₁ d2) {p1} {p2}
with erasee-det a b
... | refl with synthunicity x x₁
... | refl with actdet-synth a x d1 d2 {p1} {p2}
... | refl , refl = refl , refl
-- an action on an expression in an analytic position produces one
-- resultant expression and type.
actdet-ana : {Γ : ·ctx} {e e' e'' : ê} {e◆ : ė} {t : τ̇} {α : action} →
(erase-e e e◆) →
(Γ ⊢ e◆ <= t) →
(d1 : Γ ⊢ e ~ α ~> e' ⇐ t) →
(d2 : Γ ⊢ e ~ α ~> e'' ⇐ t) →
{p1 : aasubmin-ana d1} →
{p2 : aasubmin-ana d2} →
e' == e''
---- lambda cases first
-- an erased lambda can't be typechecked with subsume
actdet-ana (EELam _) (ASubsume () _) _ _
-- for things paired with movements, punt to the move determinism case
actdet-ana _ _ D (AAMove y) = anamovedet D y
actdet-ana _ _ (AAMove y) D = ! (anamovedet D y)
-- lambdas never match with subsumption actions, because it won't be well typed.
actdet-ana EETop (ALam x₁ x₂ wt) (AASubsume EETop () x₅ x₆) _
actdet-ana (EELam _) (ALam x₁ x₂ wt) (AASubsume (EELam x₃) () x₅ x₆) _
actdet-ana EETop (ALam x₁ x₂ wt) _ (AASubsume EETop () x₅ x₆)
actdet-ana (EELam _) (ALam x₁ x₂ wt) _ (AASubsume (EELam x₃) () x₅ x₆)
-- with the cursor at the top, there are only two possible actions
actdet-ana EETop (ALam x₁ x₂ wt) AADel AADel = refl
actdet-ana EETop (ALam x₁ x₂ wt) AAConAsc AAConAsc = refl
-- and for the remaining case, recurr on the smaller derivations
actdet-ana (EELam er) (ALam x₁ x₂ wt) (AAZipLam x₃ x₄ d1) (AAZipLam x₅ x₆ d2) {p1} {p2}
with matcharrunicity x₄ x₆
... | refl with matcharrunicity x₄ x₂
... | refl with actdet-ana er wt d1 d2 {p1} {p2}
... | refl = refl
---- now the subsumption cases
-- subsume / subsume, so pin things down then recurr
actdet-ana er (ASubsume a b) (AASubsume x x₁ x₂ x₃) (AASubsume x₄ x₅ x₆ x₇) {p1} {p2}
with erasee-det x₄ x
... | refl with erasee-det er x₄
... | refl with synthunicity x₅ x₁
... | refl = π1 (actdet-synth x x₅ x₂ x₆ {min-ana-lem x₂ p1} {min-ana-lem x₆ p2})
-- (these are all repeated below, irritatingly.)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x SADel x₁) AADel = refl
actdet-ana EETop (ASubsume a b) (AASubsume EETop x SAConAsc x₁) AAConAsc {p1} = abort p1
actdet-ana EETop (ASubsume SEHole b) (AASubsume EETop SEHole (SAConVar {Γ = Γ} p) x₂) (AAConVar x₅ p₁)
with ctxunicity {Γ = Γ} p p₁
... | refl = abort (x₅ x₂)
actdet-ana EETop (ASubsume SEHole b) (AASubsume EETop SEHole (SAConLam x₄) x₂) (AAConLam1 x₅ m) {p1} = abort p1
actdet-ana EETop (ASubsume a b) (AASubsume EETop x₁ (SAConLam x₃) x₂) (AAConLam2 x₅ x₆) = abort (x₆ x₂)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x₁ SAConNumlit x₂) (AAConNumlit x₄) = abort (x₄ x₂)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x (SAFinish x₂) x₁) (AAFinish x₄) = refl
-- subsume / del
actdet-ana er (ASubsume a b) AADel (AASubsume x x₁ SADel x₃) = refl
actdet-ana er (ASubsume a b) AADel AADel = refl
-- subsume / conasc
actdet-ana EETop (ASubsume a b) AAConAsc (AASubsume EETop x₁ SAConAsc x₃) {p2 = p2} = abort p2
actdet-ana er (ASubsume a b) AAConAsc AAConAsc = refl
-- subsume / convar
actdet-ana EETop (ASubsume SEHole b) (AAConVar x₁ p) (AASubsume EETop SEHole (SAConVar {Γ = Γ} p₁) x₅)
with ctxunicity {Γ = Γ} p p₁
... | refl = abort (x₁ x₅)
actdet-ana er (ASubsume a b) (AAConVar x₁ p) (AAConVar x₂ p₁) = refl
-- subsume / conlam1
actdet-ana EETop (ASubsume SEHole b) (AAConLam1 x₁ x₂) (AASubsume EETop SEHole (SAConLam x₃) x₆) {p2 = p2} = abort p2
actdet-ana er (ASubsume a b) (AAConLam1 x₁ MAHole) (AAConLam2 x₃ x₄) = abort (x₄ TCHole2)
actdet-ana er (ASubsume a b) (AAConLam1 x₁ MAArr) (AAConLam2 x₃ x₄) = abort (x₄ (TCArr TCHole1 TCHole1))
actdet-ana er (ASubsume a b) (AAConLam1 x₁ x₂) (AAConLam1 x₃ x₄) = refl
-- subsume / conlam2
actdet-ana EETop (ASubsume SEHole TCRefl) (AAConLam2 x₁ x₂) (AASubsume EETop SEHole x₅ x₆) = abort (x₂ TCHole2)
actdet-ana EETop (ASubsume SEHole TCHole1) (AAConLam2 x₁ x₂) (AASubsume EETop SEHole (SAConLam x₃) x₆) = abort (x₂ x₆)
actdet-ana EETop (ASubsume SEHole TCHole2) (AAConLam2 x₁ x₂) (AASubsume EETop SEHole x₅ x₆) = abort (x₂ TCHole2)
actdet-ana EETop (ASubsume a b) (AAConLam2 x₂ x₁) (AAConLam1 x₃ MAHole) = abort (x₁ TCHole2)
actdet-ana EETop (ASubsume a b) (AAConLam2 x₂ x₁) (AAConLam1 x₃ MAArr) = abort (x₁ (TCArr TCHole1 TCHole1))
actdet-ana er (ASubsume a b) (AAConLam2 x₂ x) (AAConLam2 x₃ x₄) = refl
-- subsume / numlit
actdet-ana er (ASubsume a b) (AAConNumlit x) (AASubsume x₁ x₂ SAConNumlit x₄) = abort (x x₄)
actdet-ana er (ASubsume a b) (AAConNumlit x) (AAConNumlit x₁) = refl
-- subsume / finish
actdet-ana er (ASubsume a b) (AAFinish x) (AASubsume x₁ x₂ (SAFinish x₃) x₄) = refl
actdet-ana er (ASubsume a b) (AAFinish x) (AAFinish x₁) = refl
| {
"alphanum_fraction": 0.6524887336,
"avg_line_length": 57.0780346821,
"ext": "agda",
"hexsha": "843b20c8eb610acceb389e9ccb8aee7f9fa726ff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "determinism.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "determinism.agda",
"max_line_length": 122,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "determinism.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 8383,
"size": 19749
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.RadicalIdeal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Sum hiding (map)
open import Cubical.Data.FinData hiding (elim)
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
; _choose_ to _ℕchoose_ ; snotz to ℕsnotz)
open import Cubical.Data.Nat.Order
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module _ (R' : CommRing ℓ) where
private R = fst R'
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
open Sum (CommRing→Ring R')
open CommRingTheory R'
open Exponentiation R'
open BinomialThm R'
open isCommIdeal
√ : ℙ R → ℙ R --\surd
√ I x = (∃[ n ∈ ℕ ] x ^ n ∈ I) , isPropPropTrunc
^∈√→∈√ : ∀ (I : ℙ R) (x : R) (n : ℕ) → x ^ n ∈ √ I → x ∈ √ I
^∈√→∈√ I x n =
map (λ { (m , [xⁿ]ᵐ∈I) → (n ·ℕ m) , subst-∈ I (sym (^-rdist-·ℕ x n m)) [xⁿ]ᵐ∈I })
∈→∈√ : ∀ (I : ℙ R) (x : R) → x ∈ I → x ∈ √ I
∈→∈√ I _ x∈I = ∣ 1 , subst-∈ I (sym (·Rid _)) x∈I ∣
√OfIdealIsIdeal : ∀ (I : ℙ R) → isCommIdeal R' I → isCommIdeal R' (√ I)
+Closed (√OfIdealIsIdeal I ici) {x = x} {y = y} = map2 +ClosedΣ
where
+ClosedΣ : Σ[ n ∈ ℕ ] x ^ n ∈ I → Σ[ n ∈ ℕ ] y ^ n ∈ I → Σ[ n ∈ ℕ ] (x + y) ^ n ∈ I
+ClosedΣ (n , xⁿ∈I) (m , yᵐ∈I) = (n +ℕ m)
, subst-∈ I (sym (BinomialThm (n +ℕ m) _ _)) ∑Binomial∈I
where
binomialCoeff∈I : ∀ i → ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i) ∈ I
binomialCoeff∈I i with ≤-+-split n m (toℕ i) (pred-≤-pred (toℕ<n i))
... | inl n≤i = subst-∈ I (sym path) (·Closed ici _ xⁿ∈I)
where
useSolver : ∀ a b c d → a · (b · c) · d ≡ a · b · d · c
useSolver = solve R'
path : ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡ ((n +ℕ m) choose toℕ i) · x ^ (toℕ i ∸ n) · y ^ (n +ℕ m ∸ toℕ i) · x ^ n
path = ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ k → ((n +ℕ m) choose toℕ i) · x ^ k · y ^ (n +ℕ m ∸ toℕ i))
(sym (≤-∸-+-cancel n≤i)) ⟩
((n +ℕ m) choose toℕ i) · x ^ ((toℕ i ∸ n) +ℕ n) · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ z → ((n +ℕ m) choose toℕ i) · z · y ^ (n +ℕ m ∸ toℕ i))
(sym (·-of-^-is-^-of-+ x (toℕ i ∸ n) n)) ⟩
((n +ℕ m) choose toℕ i) · (x ^ (toℕ i ∸ n) · x ^ n) · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ useSolver _ _ _ _ ⟩
((n +ℕ m) choose toℕ i) · x ^ (toℕ i ∸ n) · y ^ (n +ℕ m ∸ toℕ i) · x ^ n ∎
... | inr m≤n+m-i = subst-∈ I (sym path) (·Closed ici _ yᵐ∈I)
where
path : ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡ ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m
path = ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ k → ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ k)
(sym (≤-∸-+-cancel m≤n+m-i)) ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (((n +ℕ m ∸ toℕ i) ∸ m) +ℕ m)
≡⟨ cong (((n +ℕ m) choose toℕ i) · x ^ toℕ i ·_)
(sym (·-of-^-is-^-of-+ y ((n +ℕ m ∸ toℕ i) ∸ m) m)) ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · (y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m)
≡⟨ ·Assoc _ _ _ ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m ∎
∑Binomial∈I : ∑ (BinomialVec (n +ℕ m) x y) ∈ I
∑Binomial∈I = ∑Closed R' (I , ici) (BinomialVec (n +ℕ m) _ _) binomialCoeff∈I
contains0 (√OfIdealIsIdeal I ici) =
∣ 1 , subst-∈ I (sym (0LeftAnnihilates 1r)) (ici .contains0) ∣
·Closed (√OfIdealIsIdeal I ici) r =
map λ { (n , xⁿ∈I) → n , subst-∈ I (sym (^-ldist-· r _ n)) (ici .·Closed (r ^ n) xⁿ∈I) }
-- important lemma for characterization of the Zariski lattice
√FGIdealChar : {n : ℕ} (V : FinVec R n) (I : CommIdeal R')
→ √ (fst ⟨ V ⟩[ R' ]) ⊆ √ (fst I) ≃ (∀ i → V i ∈ √ (fst I))
√FGIdealChar V I = isEquivPropBiimpl→Equiv (⊆-isProp (√ (fst ⟨ V ⟩[ R' ])) (√ (fst I)))
(isPropΠ (λ _ → √ (fst I) _ .snd)) .fst
(ltrImpl , rtlImpl)
where
open KroneckerDelta (CommRing→Ring R')
ltrImpl : √ (fst ⟨ V ⟩[ R' ]) ⊆ √ (fst I) → (∀ i → V i ∈ √ (fst I))
ltrImpl √⟨V⟩⊆√I i = √⟨V⟩⊆√I _ (∈→∈√ (fst ⟨ V ⟩[ R' ]) (V i)
∣ (λ j → δ i j) , sym (∑Mul1r _ _ i) ∣)
rtlImpl : (∀ i → V i ∈ √ (fst I)) → √ (fst ⟨ V ⟩[ R' ]) ⊆ √ (fst I)
rtlImpl ∀i→Vi∈√I x = PT.elim (λ _ → √ (fst I) x .snd)
λ { (n , xⁿ∈⟨V⟩) → ^∈√→∈√ (fst I) x n (elimHelper _ xⁿ∈⟨V⟩) }
where
isCommIdeal√I = √OfIdealIsIdeal (fst I) (snd I)
elimHelper : ∀ (y : R) → y ∈ (fst ⟨ V ⟩[ R' ]) → y ∈ √ (fst I)
elimHelper y = PT.elim (λ _ → √ (fst I) y .snd)
λ { (α , y≡∑αV) → subst-∈ (√ (fst I)) (sym y≡∑αV)
(∑Closed R' (√ (fst I) , isCommIdeal√I)
(λ i → α i · V i)
(λ i → isCommIdeal√I .·Closed (α i) (∀i→Vi∈√I i))) }
| {
"alphanum_fraction": 0.4719140083,
"avg_line_length": 46.8943089431,
"ext": "agda",
"hexsha": "8c847e53c1a2c05cca8a442cfddc660046c44b5e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XiaohuWang0921/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XiaohuWang0921/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "XiaohuWang0921/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2535,
"size": 5768
} |
{-# OPTIONS --cubical --allow-unsolved-metas #-}
open import Agda.Primitive.Cubical
module _ where
postulate
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATHP PathP #-}
data D {ℓ} (A : Set ℓ) : Set ℓ where
c : PathP _ _ _
| {
"alphanum_fraction": 0.604,
"avg_line_length": 19.2307692308,
"ext": "agda",
"hexsha": "c744807096bd5d3aa1dcdb722ea2ecfc5ca4986b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3659.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3659.agda",
"max_line_length": 53,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3659.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 97,
"size": 250
} |
-- "Ordinal notations via simultaneous definitions"
module Experiment.Ord where
open import Level renaming (zero to lzero; suc to lsuc)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Sum
data Ord : Set
data _<_ : Rel Ord lzero
_≥_ : Rel Ord lzero
fst : Ord → Ord
data Ord where
𝟎 : Ord
ω^_+_[_] : (a b : Ord) → a ≥ fst b → Ord
data _<_ where
<₁ : {a : Ord} → a ≢ 𝟎 → 𝟎 < a
<₂ : {a b c d : Ord} (r : a ≥ fst c) (s : b ≥ fst d) →
a < b → ω^ a + c [ r ] < ω^ b + d [ s ]
<₃ : {a b c : Ord} → (r : a ≥ fst b) (s : a ≥ fst c) → b < c → ω^ a + b [ r ] < ω^ a + c [ s ]
fst 𝟎 = 𝟎
fst (ω^ α + _ [ _ ]) = α
a ≥ b = (b < a) ⊎ (a ≡ b)
_+_ : Ord → Ord → Ord
𝟎 + b = b
a@(ω^ _ + _ [ _ ]) + 𝟎 = a
ω^ a + c [ r ] + ω^ b + d [ s ] = {! !}
_*_ : Ord → Ord → Ord
a * b = {! !}
| {
"alphanum_fraction": 0.491745283,
"avg_line_length": 25.696969697,
"ext": "agda",
"hexsha": "a92c48ce805cf0d34f77ff86cc12fd23a82ca42f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Ord.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Ord.agda",
"max_line_length": 96,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Ord.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 368,
"size": 848
} |
module list where
open import level
open import bool
open import eq
open import maybe
open import nat
open import unit
open import product
open import empty
open import sum
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data 𝕃 {ℓ} (A : Set ℓ) : Set ℓ where
[] : 𝕃 A
_::_ : (x : A) (xs : 𝕃 A) → 𝕃 A
{-# BUILTIN LIST 𝕃 #-}
{-# COMPILE GHC 𝕃 = data [] ([] | (:)) #-}
list = 𝕃
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixr 6 _::_ _++_
infixr 5 _shorter_ _longer_
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
[_] : ∀ {ℓ} {A : Set ℓ} → A → 𝕃 A
[ x ] = x :: []
is-empty : ∀{ℓ}{A : Set ℓ} → 𝕃 A → 𝔹
is-empty [] = tt
is-empty (_ :: _) = ff
tail : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A
tail [] = []
tail (x :: xs) = xs
head : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → is-empty l ≡ ff → A
head [] ()
head (x :: xs) _ = x
head2 : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → maybe A
head2 [] = nothing
head2 (a :: _) = just a
last : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → is-empty l ≡ ff → A
last [] ()
last (x :: []) _ = x
last (x :: (y :: xs)) _ = last (y :: xs) refl
_++_ : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
concat : ∀{ℓ}{A : Set ℓ} → 𝕃 (𝕃 A) → 𝕃 A
concat [] = []
concat (l :: ls) = l ++ concat ls
repeat : ∀{ℓ}{A : Set ℓ} → ℕ → A → 𝕃 A
repeat 0 a = []
repeat (suc n) a = a :: (repeat n a)
map : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A → B) → 𝕃 A → 𝕃 B
map f [] = []
map f (x :: xs) = f x :: map f xs
-- The hom part of the list functor.
list-funct : {ℓ : Level}{A B : Set ℓ} → (A → B) → (𝕃 A → 𝕃 B)
list-funct f l = map f l
{- (maybe-map f xs) returns (just ys) if f returns (just y_i) for each
x_i in the list xs. Otherwise, (maybe-map f xs) returns nothing. -}
𝕃maybe-map : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A → maybe B) → 𝕃 A → maybe (𝕃 B)
𝕃maybe-map f [] = just []
𝕃maybe-map f (x :: xs) with f x
𝕃maybe-map f (x :: xs) | nothing = nothing
𝕃maybe-map f (x :: xs) | just y with 𝕃maybe-map f xs
𝕃maybe-map f (x :: xs) | just y | nothing = nothing
𝕃maybe-map f (x :: xs) | just y | just ys = just (y :: ys)
foldr : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (A → B → B) → B → 𝕃 A → B
foldr f b [] = b
foldr f b (a :: as) = f a (foldr f b as)
length : ∀{ℓ}{A : Set ℓ} → 𝕃 A → ℕ
length [] = 0
length (x :: xs) = suc (length xs)
reverse-helper : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A
reverse-helper h [] = h
reverse-helper h (x :: xs) = reverse-helper (x :: h) xs
reverse : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A
reverse l = reverse-helper [] l
reverse-bad : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A
reverse-bad [] = []
reverse-bad (x :: l) = reverse-bad l ++ [ x ]
list-member : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l : 𝕃 A) → 𝔹
list-member eq a [] = ff
list-member eq a (x :: xs) with eq a x
... | tt = tt
... | ff = list-member eq a xs
list-member-prop : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l : 𝕃 A) → Set
list-member-prop eq a [] = ⊥
list-member-prop eq a (x :: xs) with eq a x
... | tt = ⊤
... | ff = list-member-prop eq a xs
list-minus : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(l1 l2 : 𝕃 A) → 𝕃 A
list-minus eq [] l2 = []
list-minus eq (x :: xs) l2 =
let r = list-minus eq xs l2 in
if list-member eq x l2 then r else x :: r
_longer_ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → 𝔹
[] longer y = ff
(x :: xs) longer [] = tt
(x :: xs) longer (y :: ys) = xs longer ys
_shorter_ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → 𝔹
x shorter y = y longer x
-- return tt iff all elements in the list satisfy the given predicate pred.
list-all : ∀{ℓ}{A : Set ℓ}(pred : A → 𝔹)(l : 𝕃 A) → 𝔹
list-all pred [] = tt
list-all pred (x :: xs) = pred x && list-all pred xs
all-pred : {ℓ : Level}{X : Set ℓ} → (X → Set ℓ) → 𝕃 X → Set ℓ
all-pred f [] = ⊤
all-pred f (x₁ :: xs) = (f x₁) ∧ (all-pred f xs)
-- return tt iff at least one element in the list satisfies the given predicate pred.
list-any : ∀{ℓ}{A : Set ℓ}(pred : A → 𝔹)(l : 𝕃 A) → 𝔹
list-any pred [] = ff
list-any pred (x :: xs) = pred x || list-any pred xs
list-and : (l : 𝕃 𝔹) → 𝔹
list-and [] = tt
list-and (x :: xs) = x && (list-and xs)
list-or : (l : 𝕃 𝔹) → 𝔹
list-or [] = ff
list-or (x :: l) = x || list-or l
list-max : ∀{ℓ}{A : Set ℓ} (lt : A → A → 𝔹) → 𝕃 A → A → A
list-max lt [] x = x
list-max lt (y :: ys) x = list-max lt ys (if lt y x then x else y)
isSublist : ∀{ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A → (A → A → 𝔹) → 𝔹
isSublist l1 l2 eq = list-all (λ a → list-member eq a l2) l1
=𝕃 : ∀{ℓ}{A : Set ℓ} → (A → A → 𝔹) → (l1 : 𝕃 A) → (l2 : 𝕃 A) → 𝔹
=𝕃 eq (a :: as) (b :: bs) = eq a b && =𝕃 eq as bs
=𝕃 eq [] [] = tt
=𝕃 eq _ _ = ff
filter : ∀{ℓ}{A : Set ℓ} → (A → 𝔹) → 𝕃 A → 𝕃 A
filter p [] = []
filter p (x :: xs) = let r = filter p xs in
if p x then x :: r else r
-- remove all elements equal to the given one
remove : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l : 𝕃 A) → 𝕃 A
remove eq a l = filter (λ x → ~ (eq a x)) l
{- nthTail n l returns the part of the list after the first n elements,
or [] if the list has fewer than n elements -}
nthTail : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A
nthTail 0 l = l
nthTail n [] = []
nthTail (suc n) (x :: l) = nthTail n l
nth : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → maybe A
nth _ [] = nothing
nth 0 (x :: xs) = just x
nth (suc n) (x :: xs) = nth n xs
-- nats-down N returns N :: (N-1) :: ... :: 0 :: []
nats-down : ℕ → 𝕃 ℕ
nats-down 0 = [ 0 ]
nats-down (suc x) = suc x :: nats-down x
zip : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂} → 𝕃 A → 𝕃 B → 𝕃 (A × B)
zip [] [] = []
zip [] (x :: l₂) = []
zip (x :: l₁) [] = []
zip (x :: l₁) (y :: l₂) = (x , y) :: zip l₁ l₂
unzip : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂} → 𝕃 (A × B) → (𝕃 A × 𝕃 B)
unzip [] = ([] , [])
unzip ((x , y) :: ps) with unzip ps
... | (xs , ys) = x :: xs , y :: ys
inPairListFst : {A B : Set} → (A → A → 𝔹) → A → 𝕃 (A ∧ B) → Set
inPairListFst _ w [] = ⊥
inPairListFst _=A_ w ((a , b) :: c) with w =A a
... | tt = ⊤
... | ff = inPairListFst _=A_ w c
map-⊎ : {ℓ₁ ℓ₂ ℓ₃ : Level} → {A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → (A → C) → (B → C) → 𝕃 (A ⊎ B) → 𝕃 C
map-⊎ f g [] = []
map-⊎ f g (inj₁ x :: l) = f x :: map-⊎ f g l
map-⊎ f g (inj₂ y :: l) = g y :: map-⊎ f g l
proj-⊎₁ : {ℓ ℓ' : Level}{A : Set ℓ}{B : Set ℓ'} → 𝕃 (A ⊎ B) → (𝕃 A)
proj-⊎₁ [] = []
proj-⊎₁ (inj₁ x :: l) = x :: proj-⊎₁ l
proj-⊎₁ (inj₂ y :: l) = proj-⊎₁ l
proj-⊎₂ : {ℓ ℓ' : Level}{A : Set ℓ}{B : Set ℓ'} → 𝕃 (A ⊎ B) → (𝕃 B)
proj-⊎₂ [] = []
proj-⊎₂ (inj₁ x :: l) = proj-⊎₂ l
proj-⊎₂ (inj₂ y :: l) = y :: proj-⊎₂ l
drop-nothing : ∀{ℓ}{A : Set ℓ} → 𝕃 (maybe A) → 𝕃 A
drop-nothing [] = []
drop-nothing (nothing :: aa) = drop-nothing aa
drop-nothing (just a :: aa) = a :: drop-nothing aa
index : ∀{ℓ}{A : Set ℓ} → A → (A → A → 𝔹) → ℕ → 𝕃 A → maybe ℕ
index x _ c [] = nothing
index x _eq_ c (y :: l) with x eq y
... | tt = just c
... | ff = index x _eq_ (suc c) l
| {
"alphanum_fraction": 0.4659723213,
"avg_line_length": 29.4495798319,
"ext": "agda",
"hexsha": "cdc62e900513349939389b58da2e6ff12473bd93",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "list.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "list.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "list.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3094,
"size": 7009
} |
{-
Joseph Eremondi
Utrecht University Capita Selecta
UU# 4229924
July 22, 2015
-}
module SemiLinRE where
open import Data.Vec
open import Data.Nat
import Data.Fin as Fin
open import Data.List
import Data.List.All
open import Data.Bool
open import Data.Char
open import Data.Maybe
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary.Core
open import Category.Monad
open import Data.Nat.Properties.Simple
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Utils
open import Function
import RETypes
open import Data.Sum
open import SemiLin
open import Data.Vec.Equality
open import Data.Nat.Properties.Simple
module VecNatEq = Data.Vec.Equality.DecidableEquality (Relation.Binary.PropositionalEquality.decSetoid Data.Nat._≟_)
--Find the Parikh vector of a given word
--Here cmap is the mapping of each character to its position
--in the Parikh vector
wordParikh : {n : ℕ} -> (Char -> Fin.Fin n) -> (w : List Char) -> Parikh n
wordParikh cmap [] = v0
wordParikh cmap (x ∷ w) = (basis (cmap x)) +v (wordParikh cmap w)
--Show that the Parikh of concatenating two words
--Is the sum of their Parikhs
wordParikhPlus : {n : ℕ}
-> (cmap : Char -> Fin.Fin n)
-> (u : List Char)
-> (v : List Char)
-> wordParikh cmap (u Data.List.++ v) ≡ (wordParikh cmap u) +v (wordParikh cmap v)
wordParikhPlus cmap [] v = sym v0identLeft
wordParikhPlus {n} cmap (x ∷ u) v =
begin
basis (cmap x) +v wordParikh cmap (u ++l v)
≡⟨ cong (λ y → basis (cmap x) +v y) (wordParikhPlus cmap u v) ⟩
basis (cmap x) +v (wordParikh cmap u +v wordParikh cmap v)
≡⟨ sym vAssoc ⟩
((basis (cmap x) +v wordParikh cmap u) +v wordParikh cmap v ∎)
where
_++l_ = Data.List._++_
--The algorithm mapping regular expressions to the Parikh set of
--the language matched by the RE
--We prove this correct below
reSemiLin : {n : ℕ} {null? : RETypes.Null?} -> (Char -> Fin.Fin n) -> RETypes.RE null? -> SemiLinSet n
reSemiLin cmap RETypes.ε = Data.List.[ v0 , 0 , [] ]
reSemiLin cmap RETypes.∅ = []
reSemiLin cmap (RETypes.Lit x) = Data.List.[ basis (cmap x ) , 0 , [] ]
reSemiLin cmap (r1 RETypes.+ r2) = reSemiLin cmap r1 Data.List.++ reSemiLin cmap r2
reSemiLin cmap (r1 RETypes.· r2) = reSemiLin cmap r1 +s reSemiLin cmap r2
reSemiLin cmap (r RETypes.*) = starSemiLin (reSemiLin cmap r)
{-
Show that s* ⊆ s +v s*
Not implemented due to time restrictions,
but should be possible, given that linStarExtend is implemented
in SemiLin.agda
-}
starExtend
: {n : ℕ}
-> (v1 v2 : Parikh n )
-> ( s ss : SemiLinSet n)
-> ss ≡ starSemiLin s
-> InSemiLin v1 s
-> InSemiLin v2 ss
-> InSemiLin (v1 +v v2) (starSemiLin s)
starExtend v1 v2 s ss spf inS inSS = {!!}
{-
Show that s* ⊇ s +v s*
Not completely implemented due to time restrictions,
but should be possible, given that linStarDecomp is implemented
in SemiLin.agda.
There are also some hard parts, for example, dealing with the proofs
that the returned vectors are non-zero (otherwise, we'd just trivially return v0 and v)
-}
starDecomp
: {n : ℕ}
-> (v : Parikh n)
-> (s ss : SemiLinSet n)
-> v ≢ v0
-> ss ≡ starSemiLin s
-> InSemiLin v ss
-> (∃ λ v1 -> ∃ λ v2 -> v1 +v v2 ≡ v × InSemiLin v1 s × InSemiLin v2 ss × v1 ≢ v0 )
starDecomp v s ss vpf spf inSemi = {!!}
{-
starDecomp v sh st .(sh ∷ st) .((v0 , 0 , []) ∷ starSum sh st ∷ []) vnz refl refl (InHead .v .(v0 , 0 , []) .(starSum sh st ∷ []) x) with emptyCombZero v x | vnz (emptyCombZero v x)
starDecomp .v0 sh st .(sh ∷ st) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh st ∷ []) vnz refl refl (InHead .v0 .(v0 , zero , []) .(starSum sh st ∷ []) x) | refl | ()
starDecomp v sh [] .(sh ∷ []) .((v0 , 0 , []) ∷ (proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) with linStarDecomp v sh _ vnz {!!} refl starComb
starDecomp v sh [] .(sh ∷ []) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh [] ∷ []) vnz refl refl (InTail .v .(v0 , zero , []) .(starSum sh [] ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) | inj₁ lComb = v , v0 , v0identRight , InHead v sh [] lComb , InHead v0 (v0 , zero , []) _ (v0 , refl) , vnz
starDecomp v sh [] .(sh ∷ []) .((v0 , zero , []) ∷ [] Data.List.++ starSum sh [] ∷ []) vnz refl refl (InTail .v .(v0 , zero , []) .(starSum sh [] ∷ []) (InHead .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] starComb)) | inj₂ (v1 , v2 , sumPf , comb1 , comb2 , zpf ) = v1 , v2 , sumPf , InHead v1 sh [] comb1 , InTail v2 (v0 , zero , []) _ (InHead v2 _ [] comb2) , zpf
starDecomp v sh [] .(sh ∷ []) .((v0 , 0 , []) ∷ (proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) ∷ []) (InTail .v .(proj₁ sh , suc (proj₁ (proj₂ sh)) , proj₁ sh ∷ proj₂ (proj₂ sh)) .[] ()))
starDecomp v sh (x ∷ st) .(sh ∷ x ∷ st) .((v0 , 0 , []) ∷ (proj₁ x +v proj₁ (starSum sh st) , suc (proj₁ (proj₂ x) + proj₁ (proj₂ (starSum sh st))) , proj₁ x ∷ proj₂ (proj₂ x) Data.Vec.++ proj₂ (proj₂ (starSum sh st))) ∷ []) vnz refl refl (InTail .v .(v0 , 0 , []) .((proj₁ x +v proj₁ (starSum sh st) , suc (proj₁ (proj₂ x) + proj₁ (proj₂ (starSum sh st))) , proj₁ x ∷ proj₂ (proj₂ x) Data.Vec.++ proj₂ (proj₂ (starSum sh st))) ∷ []) inSemi) = {!!} -}
--Stolen from the stdlib
listIdentity : {A : Set} -> (x : List A) -> (x Data.List.++ [] ) ≡ x
listIdentity [] = refl
listIdentity (x ∷ xs) = cong (_∷_ x) (listIdentity xs)
{-
Show that +s is actually the sum of two sets, that is,
if v1 is in S1, and v2 is in S2, then v1 +v v2
is in S1 +s S2
-}
sumPreserved :
{n : ℕ}
-> (u : Parikh n)
-> (v : Parikh n)
-- -> (uv : Parikh n)
-> (su : SemiLinSet n)
-> (sv : SemiLinSet n)
-- -> (suv : SemiLinSet n)
-- -> (uv ≡ u +v v)
-- -> (suv ≡ su +s sv)
-> InSemiLin u su
-> InSemiLin v sv
-> InSemiLin (u +v v) (su +s sv)
sumPreserved u v .((ub , um , uvecs) ∷ st) .((vb , vm , vvecs) ∷ st₁) (InHead .u (ub , um , uvecs) st (uconsts , upf)) (InHead .v (vb , vm , vvecs) st₁ (vconsts , vpf))
rewrite upf | vpf
= InHead (u +v v) (ub +v vb , um + vm , uvecs Data.Vec.++ vvecs) (Data.List.map (_+l_ (ub , um , uvecs)) st₁ Data.List.++
Data.List.foldr Data.List._++_ []
(Data.List.map
(λ z → z +l (vb , vm , vvecs) ∷ Data.List.map (_+l_ z) st₁) st))
((uconsts Data.Vec.++ vconsts) , trans (combSplit ub vb um vm uvecs vvecs uconsts vconsts)
(sym (subst (λ x → u +v v ≡ x +v applyLinComb vb vm vvecs vconsts) (sym upf) (cong (λ x → u +v x) (sym vpf)))) )
sumPreserved u v .(sh ∷ st) .(sh₁ ∷ st₁) (InHead .u sh st x) (InTail .v sh₁ st₁ vIn) =
let
subCall1 : InSemiLin (u +v v) ((sh ∷ []) +s st₁)
subCall1 = sumPreserved u v (sh ∷ []) ( st₁) (InHead u sh [] x) vIn
eqTest : (sh ∷ []) +s ( st₁) ≡ Data.List.map (λ l2 → sh +l l2) st₁
eqTest =
begin
(sh ∷ []) +s (st₁)
≡⟨ refl ⟩
Data.List.map (λ l2 → sh +l l2) ( st₁) Data.List.++ []
≡⟨ listIdentity (Data.List.map (_+l_ sh) st₁) ⟩
Data.List.map (λ l2 → sh +l l2) (st₁)
≡⟨ refl ⟩
(Data.List.map (λ l2 → sh +l l2) st₁ ∎)
newCall = slExtend (u +v v) (Data.List.map (_+l_ sh) st₁) (subst (InSemiLin (u +v v)) eqTest subCall1) (sh +l sh₁) --
in slConcatRight (u +v v) (Data.List.map (λ l2 → sh +l l2) (sh₁ ∷ st₁)) newCall (Data.List.foldr Data.List._++_ []
(Data.List.map (λ z → z +l sh₁ ∷ Data.List.map (_+l_ z) st₁) st))
sumPreserved u v .(sh ∷ st) sv (InTail .u sh st uIn) vIn =
(slConcatLeft (u +v v) (st +s sv) (sumPreserved u v st sv uIn vIn) (Data.List.map (λ x → sh +l x) sv))
--A useful lemma, avoids having to dig into the List monoid instance
rightCons : {A : Set} -> (l : List A) -> (l Data.List.++ [] ≡ l)
rightCons [] = refl
rightCons (x ∷ l) rewrite rightCons l = refl
{-
Show that, if a vector is in the union of two semi-linear sets,
then it must be in one of those sets.
Used in the proof for Union.
Called concat because we represent semi-linear sets as lists,
so union is just concatenating two semi-linear sets
-}
decomposeConcat
: {n : ℕ}
-> (v : Parikh n)
-> (s1 s2 s3 : SemiLinSet n)
-> (s3 ≡ s1 Data.List.++ s2 )
-> InSemiLin v s3
-> InSemiLin v s1 ⊎ InSemiLin v s2
decomposeConcat v [] s2 .s2 refl inSemi = inj₂ inSemi
decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InHead .v .x .(s1 Data.List.++ s2) x₁) = inj₁ (InHead v x s1 x₁)
decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InTail .v .x .(s1 Data.List.++ s2) inSemi) with decomposeConcat v s1 s2 _ refl inSemi
decomposeConcat v (x₁ ∷ s1) s2 .(x₁ ∷ s1 Data.List.++ s2) refl (InTail .v .x₁ .(s1 Data.List.++ s2) inSemi) | inj₁ x = inj₁ (InTail v x₁ s1 x)
decomposeConcat v (x ∷ s1) s2 .(x ∷ s1 Data.List.++ s2) refl (InTail .v .x .(s1 Data.List.++ s2) inSemi) | inj₂ y = inj₂ y
concatEq : {n : ℕ} -> (l : LinSet n) -> (s : SemiLinSet n) -> (l ∷ []) +s s ≡ (Data.List.map (_+l_ l) s)
concatEq l [] = refl
concatEq l (x ∷ s) rewrite concatEq l s | listIdentity (l ∷ []) = refl
{-
Show that if v is in l1 +l l2, then v = v1 +v v2 for some
v1 in l1 and v2 in l2.
This is the other half of the correcness proof of our sum functions, +l and +s
-}
decomposeLin
: {n : ℕ}
-> (v : Parikh n)
-> (l1 l2 l3 : LinSet n)
-> (l3 ≡ l1 +l l2 )
-> LinComb v l3
-> ∃ λ v1 → ∃ λ v2 -> (v1 +v v2 ≡ v) × (LinComb v1 l1) × (LinComb v2 l2 )
decomposeLin .(applyLinComb (b1 +v b2) (m1 + m2) (vecs1 Data.Vec.++ vecs2) coeffs) (b1 , m1 , vecs1) (b2 , m2 , vecs2) .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl (coeffs , refl) with Data.Vec.splitAt m1 coeffs
decomposeLin .(applyLinComb (b1 +v b2) (m1 + m2) (vecs1 Data.Vec.++ vecs2) (coeffs1 Data.Vec.++ coeffs2)) (b1 , m1 , vecs1) (b2 , m2 , vecs2) .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl (.(coeffs1 Data.Vec.++ coeffs2) , refl) | coeffs1 , coeffs2 , refl rewrite combSplit b1 b2 m1 m2 vecs1 vecs2 coeffs1 coeffs2
= applyLinComb b1 m1 vecs1 coeffs1 , (applyLinComb b2 m2 vecs2 coeffs2 , (refl , ((coeffs1 , refl) , (coeffs2 , refl))))
{-
Show that our Parikh function is a superset of the actual Parikh image of a Regular Expression.
We do this by showing that, for every word matching an RE, its Parikh vector
is in the Parikh Image of the RE
-}
reParikhCorrect :
{n : ℕ}
-> {null? : RETypes.Null?}
-> (cmap : Char -> Fin.Fin n)
-> (r : RETypes.RE null?)
-> (w : List Char )
-> RETypes.REMatch w r
-> (wordPar : Parikh n)
-> (wordParikh cmap w ≡ wordPar)
-> (langParikh : SemiLinSet n)
-> (langParikh ≡ reSemiLin cmap r )
-> (InSemiLin wordPar langParikh )
reParikhCorrect cmap .RETypes.ε .[] RETypes.EmptyMatch .v0 refl .((v0 , 0 , []) ∷ []) refl = InHead v0 (v0 , zero , []) [] ([] , refl)
reParikhCorrect cmap .(RETypes.Lit c) .(c ∷ []) (RETypes.LitMatch c) .(basis (cmap c) +v v0) refl .((basis (cmap c) , 0 , []) ∷ []) refl =
InHead (basis (cmap c) +v v0) (basis (cmap c) , zero , []) [] (subst (λ x → LinComb x (basis (cmap c) , zero , [])) (sym v0identRight) (v0 , (v0apply (basis (cmap c)) [])))
reParikhCorrect cmap (r1 RETypes.+ .r2) w (RETypes.LeftPlusMatch r2 match) wordPar wpf langParikh lpf =
let
leftParikh = reSemiLin cmap r1
leftInSemi = reParikhCorrect cmap r1 w match wordPar wpf leftParikh refl
--Idea: show that langParikh is leftParikh ++ rightParikh
--And that this means that it must be in the concatentation
extendToConcat : InSemiLin wordPar ((reSemiLin cmap r1 ) Data.List.++ (reSemiLin cmap r2))
extendToConcat = slConcatRight wordPar (reSemiLin cmap r1) leftInSemi (reSemiLin cmap r2)
in subst (λ x → InSemiLin wordPar x) (sym lpf) extendToConcat
reParikhCorrect cmap (.r1 RETypes.+ r2) w (RETypes.RightPlusMatch r1 match) wordPar wpf langParikh lpf = let
rightParikh = reSemiLin cmap r2
rightInSemi = reParikhCorrect cmap r2 w match wordPar wpf rightParikh refl
--Idea: show that langParikh is leftParikh ++ rightParikh
--And that this means that it must be in the concatentation
extendToConcat : InSemiLin wordPar ((reSemiLin cmap r1 ) Data.List.++ (reSemiLin cmap r2))
extendToConcat = slConcatLeft wordPar (reSemiLin cmap r2) rightInSemi (reSemiLin cmap r1)
in subst (λ x → InSemiLin wordPar x) (sym lpf) extendToConcat
reParikhCorrect cmap (r1 RETypes.· r2) s3 (RETypes.ConcatMatch {s1 = s1} {s2 = s2} {spf = spf} match1 match2) .(wordParikh cmap s3) refl ._ refl rewrite (sym spf) | (wordParikhPlus cmap s1 s2) =
let
leftParikh = reSemiLin cmap r1
leftInSemi : InSemiLin (wordParikh cmap s1) leftParikh
leftInSemi = reParikhCorrect cmap r1 s1 match1 (wordParikh cmap s1) refl (reSemiLin cmap r1) refl
rightParikh = reSemiLin cmap r2
rightInSemi : InSemiLin (wordParikh cmap s2) rightParikh
rightInSemi = reParikhCorrect cmap r2 s2 match2 (wordParikh cmap s2) refl (reSemiLin cmap r2) refl
wordParikhIsPlus : (wordParikh cmap s1) +v (wordParikh cmap s2) ≡ (wordParikh cmap (s1 Data.List.++ s2 ))
wordParikhIsPlus = sym (wordParikhPlus cmap s1 s2)
in sumPreserved (wordParikh cmap s1) (wordParikh cmap s2) leftParikh rightParikh leftInSemi rightInSemi
reParikhCorrect cmap (r RETypes.*) [] RETypes.EmptyStarMatch .v0 refl .(starSemiLin (reSemiLin cmap r)) refl = zeroInStar (reSemiLin cmap r) (starSemiLin (reSemiLin cmap r)) refl
reParikhCorrect cmap (r RETypes.*) .(s1 Data.List.++ s2 ) (RETypes.StarMatch {s1 = s1} {s2 = s2} {spf = refl} m1 m2) ._ refl .(starSemiLin (reSemiLin cmap r)) refl rewrite wordParikhPlus cmap s1 s2 =
starExtend (wordParikh cmap s1) (wordParikh cmap s2) (reSemiLin cmap r) _ refl (reParikhCorrect cmap r s1 m1 (wordParikh cmap s1) refl (reSemiLin cmap r) refl) (reParikhCorrect cmap (r RETypes.*) s2 m2 (wordParikh cmap s2) refl (starSemiLin (reSemiLin cmap r)) refl)
{-
Show that if v is in s1 +s s2, then v = v1 +v v2 for some
v1 in s1 and v2 in s2.
This is the other half of the correcness proof of our sum functions, +l and +s
-}
decomposeSum
: {n : ℕ}
-> (v : Parikh n)
-> (s1 s2 s3 : SemiLinSet n)
-> (s3 ≡ s1 +s s2 )
-> InSemiLin v s3
-> ∃ λ (v1 : Parikh n) → ∃ λ (v2 : Parikh n) -> (v1 +v v2 ≡ v) × (InSemiLin v1 s1) × (InSemiLin v2 s2 )
decomposeSum v [] [] .[] refl ()
decomposeSum v [] (x ∷ s2) .[] refl ()
decomposeSum v (x ∷ s1) [] .(Data.List.foldr Data.List._++_ [] (Data.List.map (λ l1 → []) s1)) refl ()
decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) ._ refl (InHead .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) ._ lcomb) =
let
(v1 , v2 , plusPf , comb1 , comb2 ) = decomposeLin v (b1 , m1 , vecs1) (b2 , m2 , vecs2) (b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) refl lcomb
in v1 , v2 , plusPf , InHead v1 (b1 , m1 , vecs1) s1 comb1 , InHead v2 (b2 , m2 , vecs2) s2 comb2
decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) ._ refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) ._ inSemi) with decomposeConcat v (Data.List.map (_+l_ (b1 , m1 , vecs1)) s2) (Data.List.foldr Data.List._++_ []
(Data.List.map
(λ z → z +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ z) s2) s1)) (Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++
Data.List.foldr Data.List._++_ []
(Data.List.map
(λ z → z +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ z) s2) s1)) refl inSemi
decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) .((b1 , m1 , vecs1) +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) .(Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) inSemi) | inj₁ inSub =
let
subCall1 = decomposeSum v ((b1 , m1 , vecs1) ∷ []) s2 _ refl (subst (λ x → InSemiLin v x) (sym (concatEq (b1 , m1 , vecs1) s2)) inSub)
v1 , v2 , pf , xIn , yIn = subCall1
in v1 , (v2 , (pf , (slCons v1 s1 (b1 , m1 , vecs1) xIn , slExtend v2 s2 yIn (b2 , m2 , vecs2))))
decomposeSum v ((b1 , m1 , vecs1) ∷ s1) ((b2 , m2 , vecs2) ∷ s2) .((b1 , m1 , vecs1) +l (b2 , m2 , vecs2) ∷ Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) refl (InTail .v .(b1 +v b2 , m1 + m2 , vecs1 Data.Vec.++ vecs2) .(Data.List.map (_+l_ (b1 , m1 , vecs1)) s2 Data.List.++ Data.List.foldr Data.List._++_ [] (Data.List.map _ s1)) inSemi) | inj₂ inSub =
let
subCall1 = decomposeSum v s1 ((b2 , m2 , vecs2) ∷ s2) _ refl inSub
v1 , v2 , pf , xIn , yIn = subCall1
in v1 , v2 , pf , slExtend v1 s1 xIn (b1 , m1 , vecs1) , yIn
{-
Show that the generated Parikh image is a subset of the actual Parikh image.
We do this by showing that, for every vector in the generated Parikh image,
there's some word matched by the RE whose Parikh vector is that vector.
-}
--We have to convince the compiler that this is terminating
--Since I didn't have time to implement the proofs of non-zero vectors
--Which show that we only recurse on strictly smaller vectors in the Star case
{-# TERMINATING #-}
reParikhComplete : {n : ℕ} -> {null? : RETypes.Null?}
-> (cmap : Char -> Fin.Fin n)
-- -> (imap : Fin.Fin n -> Char)
-- -> (invPf1 : (x : Char ) -> imap (cmap x) ≡ x)
-- -> (invPf2 : (x : Fin.Fin n ) -> cmap (imap x) ≡ x )
-> (r : RETypes.RE null?)
-> (v : Parikh n )
-> (langParikh : SemiLinSet n)
-> langParikh ≡ (reSemiLin cmap r )
-> (InSemiLin v langParikh )
-> ∃ (λ w -> (v ≡ wordParikh cmap w) × (RETypes.REMatch w r) )
reParikhComplete cmap RETypes.ε .v0 .((v0 , 0 , []) ∷ []) refl (InHead .v0 .(v0 , 0 , []) .[] (combConsts , refl)) = [] , refl , RETypes.EmptyMatch
reParikhComplete cmap RETypes.ε v .((v0 , 0 , []) ∷ []) refl (InTail .v .(v0 , 0 , []) .[] ())
--reParikhComplete cmap RETypes.ε v .(sh ∷ st) lpf (InTail .v sh st inSemi) = {!!}
reParikhComplete cmap RETypes.∅ v [] lpf ()
reParikhComplete cmap RETypes.∅ v (h ∷ t) () inSemi
reParikhComplete cmap (RETypes.Lit x) langParikh [] inSemi ()
reParikhComplete cmap (RETypes.Lit x) .(basis (cmap x)) .((basis (cmap x) , 0 , []) ∷ []) refl (InHead .(basis (cmap x)) .(basis (cmap x) , 0 , []) .[] (consts , refl)) = (x ∷ []) , (sym v0identRight , RETypes.LitMatch x)
reParikhComplete cmap (RETypes.Lit x) v .((basis (cmap x) , 0 , []) ∷ []) refl (InTail .v .(basis (cmap x) , 0 , []) .[] ())
--reParikhComplete cmap (RETypes.Lit x) v .((basis (cmap x) , 0 , []) ∷ []) refl (InTail .v .(basis (cmap x) , 0 , []) .[] ())
reParikhComplete {null? = null?} cmap (r1 RETypes.+ r2) v langParikh lpf inSemi with decomposeConcat v (reSemiLin cmap r1) (reSemiLin cmap r2) langParikh lpf inSemi
... | inj₁ in1 =
let
(subw , subPf , subMatch) = reParikhComplete cmap r1 v (reSemiLin cmap r1) refl in1
in subw , (subPf , (RETypes.LeftPlusMatch r2 subMatch))
... | inj₂ in2 =
let
(subw , subPf , subMatch) = reParikhComplete cmap r2 v (reSemiLin cmap r2) refl in2
in subw , (subPf , (RETypes.RightPlusMatch r1 subMatch))
reParikhComplete cmap (r1 RETypes.· r2) v ._ refl inSemi with decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2) (reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi | reParikhComplete cmap r1 (proj₁ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2)
(reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi)) (reSemiLin cmap r1) refl (proj₁ (proj₂ (proj₂ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2)
(reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi))))) | reParikhComplete cmap r2 (proj₁ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2)
(reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi))) (reSemiLin cmap r2) refl (proj₂ (proj₂ (proj₂ (proj₂ (decomposeSum v (reSemiLin cmap r1) (reSemiLin cmap r2)
(reSemiLin cmap r1 +s reSemiLin cmap r2) refl inSemi)))))
reParikhComplete cmap (r1 RETypes.· r2) .(wordParikh cmap w1 +v wordParikh cmap w2) .(Data.List.foldr Data.List._++_ [] (Data.List.map _ (reSemiLin cmap r1))) refl inSemi | .(wordParikh cmap w1) , .(wordParikh cmap w2) , refl , inSemi1 , inSemi2 | w1 , refl , match1 | w2 , refl , match2 = (w1 Data.List.++ w2) , ((sym (wordParikhPlus cmap w1 w2)) , (RETypes.ConcatMatch match1 match2))
reParikhComplete cmap (r RETypes.*) v langParikh lpf inSemi with (reSemiLin cmap r )
reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ []) refl (InHead .v .(v0 , 0 , []) .[] x) | [] = [] , ((sym (proj₂ x)) , RETypes.EmptyStarMatch)
reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ []) refl (InTail .v .(v0 , 0 , []) .[] ()) | []
reParikhComplete cmap (r RETypes.*) v .((v0 , 0 , []) ∷ starSum x rsl ∷ []) refl inSemi | x ∷ rsl =
let
--The first hole is the non-zero proofs that I couldn't work out
--I'm not totally sure about the second, but I think I just need to apply some associativity to inSemi to get it to fit
--into the second hole.
splitVec = starDecomp v (reSemiLin cmap r) _ {!!} refl {!!}
v1 , v2 , vpf , inS , inSS , _ = splitVec
subCall1 = reParikhComplete cmap r v1 _ refl inS
w1 , wpf1 , match = subCall1
subCall2 = reParikhComplete cmap (r RETypes.*) v2 _ refl inSS
w2 , wpf2 , match2 = subCall2
in (w1 Data.List.++ w2) , (trans (sym vpf) (sym (wordParikhPlus cmap w1 w2)) , RETypes.StarMatch match match2)
| {
"alphanum_fraction": 0.5539221642,
"avg_line_length": 60.2268292683,
"ext": "agda",
"hexsha": "18ee8850dd3be541c6427a92ba88311a3e42ed04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/agda-parikh",
"max_forks_repo_path": "SemiLinRE.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/agda-parikh",
"max_issues_repo_path": "SemiLinRE.agda",
"max_line_length": 590,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/agda-parikh",
"max_stars_repo_path": "SemiLinRE.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8494,
"size": 24693
} |
open import Level
open import Ordinals
module cardinal {n : Level } (O : Ordinals {n}) where
open import zf
open import logic
import OD
import ODC
import OPair
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core
open inOrdinal O
open OD O
open OD.OD
open OPair O
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O
open _∧_
open _∨_
open Bool
open _==_
open HOD
-- _⊗_ : (A B : HOD) → HOD
-- A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))
Func : OD
Func = record { def = λ x → def ZFProduct x
∧ ( (a b c : Ordinal) → odef (* x) (& < * a , * b >) ∧ odef (* x) (& < * a , * c >) → b ≡ c ) }
FuncP : ( A B : HOD ) → HOD
FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x
∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) }
; odmax = odmax (ZFP A B) ; <odmax = λ lt → <odmax (ZFP A B) (proj1 lt) }
record Injection (A B : Ordinal ) : Set n where
field
i→ : (x : Ordinal ) → odef (* A) x → Ordinal
iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt )
iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y
record Bijection (A B : Ordinal ) : Set n where
field
fun← : (x : Ordinal ) → odef (* A) x → Ordinal
fun→ : (x : Ordinal ) → odef (* B) x → Ordinal
funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt )
funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt )
fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x
fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x
Bernstein : {a b : Ordinal } → Injection a b → Injection b a → Bijection a b
Bernstein = {!!}
_=c=_ : ( A B : HOD ) → Set n
A =c= B = Bijection ( & A ) ( & B )
_c<_ : ( A B : HOD ) → Set n
A c< B = ¬ ( Injection (& A) (& B) )
Card : OD
Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x }
record Cardinal (a : Ordinal ) : Set (suc n) where
field
card : Ordinal
ciso : Bijection a card
cmax : (x : Ordinal) → card o< x → ¬ Bijection a x
Cardinal∈ : { s : HOD } → { t : Ordinal } → Ord t ∋ s → s c< Ord t
Cardinal∈ = {!!}
Cardinal⊆ : { s t : HOD } → s ⊆ t → ( s c< t ) ∨ ( s =c= t )
Cardinal⊆ = {!!}
Cantor1 : { u : HOD } → u c< Power u
Cantor1 = {!!}
Cantor2 : { u : HOD } → ¬ ( u =c= Power u )
Cantor2 = {!!}
| {
"alphanum_fraction": 0.5336823735,
"avg_line_length": 29.84375,
"ext": "agda",
"hexsha": "f4d8e704180215b9dbffe0714afb796146746fc9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/cardinal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/cardinal.agda",
"max_line_length": 118,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/cardinal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 1124,
"size": 2865
} |
{-# OPTIONS --without-K #-}
import Level as L
open import Type
open import Function
open import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Nat.NP hiding (_^_)
open import Data.Nat.Properties
open import Data.One hiding (_≤_)
open import Data.Sum
open import Data.Maybe.NP
open import Data.Product
open import Data.Bits
open import Data.Zero
open import Data.Bool.NP as Bool
import Function.Equality as FE
open FE using (_⟨$⟩_ ; ≡-setoid)
import Function.Injection as Finj
import Function.Inverse as FI
open FI using (_↔_; module Inverse)
open import Function.LeftInverse using (_RightInverseOf_)
import Function.Related as FR
open import Function.Related.TypeIsomorphisms.NP
open import Relation.Binary.NP
open import Relation.Binary.Sum
open import Relation.Binary.Product.Pointwise
open import Relation.Unary.Logical
open import Relation.Binary.Logical
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_; _≗_)
open import Search.Type
module sum-setoid where
SearchExtFun-úber : ∀ {A B} → (SF : Search (A → B)) → SearchInd SF → SearchExtFun SF
SearchExtFun-úber sf sf-ind op {f = f}{g} f≈g = sf-ind (λ s → s op f ≡ s op g) (≡.cong₂ op) (λ x → f≈g (λ _ → ≡.refl))
SearchExtFun-úber' : ∀ {A B} → (SF : Search (A → B)) → SearchInd SF → SearchExtFun SF
SearchExtFun-úber' sf sf-ind op {f = f}{g} f≈g = sf-ind (λ s → s op f ≡ s op g) (≡.cong₂ op) (λ x → f≈g (λ _ → ≡.refl))
SearchExtoid : ∀ {A : Setoid L.zero L.zero} → Search (Setoid.Carrier A) → ★₁
SearchExtoid {A} sᴬ = ∀ {M} op {f g : A FE.⟶ ≡.setoid M} → Setoid._≈_ (A FE.⇨ ≡.setoid M) f g → sᴬ op (_⟨$⟩_ f) ≡ sᴬ op (_⟨$⟩_ g)
sum-lin⇒sum-zero : ∀ {A} → {sum : Sum A} → SumLin sum → SumZero sum
sum-lin⇒sum-zero sum-lin = sum-lin (λ _ → 0) 0
sum-mono⇒sum-ext : ∀ {A} → {sum : Sum A} → SumMono sum → SumExt sum
sum-mono⇒sum-ext sum-mono f≗g = ℕ≤.antisym (sum-mono (ℕ≤.reflexive ∘ f≗g)) (sum-mono (ℕ≤.reflexive ∘ ≡.sym ∘ f≗g))
sum-ext+sum-hom⇒sum-mono : ∀ {A} → {sum : Sum A} → SumExt sum → SumHom sum → SumMono sum
sum-ext+sum-hom⇒sum-mono {sum = sum} sum-ext sum-hom {f} {g} f≤°g =
sum f ≤⟨ m≤m+n _ _ ⟩
sum f + sum (λ x → g x ∸ f x) ≡⟨ ≡.sym (sum-hom _ _) ⟩
sum (λ x → f x + (g x ∸ f x)) ≡⟨ sum-ext (m+n∸m≡n ∘ f≤°g) ⟩
sum g ∎ where open ≤-Reasoning
record SumPropoid (As : Setoid L.zero L.zero) : ★₁ where
constructor _,_
module ≈ᴬ = Setoid As
open ≈ᴬ using () renaming (_≈_ to _≈ᴬ_; Carrier to A)
field
search : Search A
search-ind : SearchInd search
⟦search⟧ : ∀ {Aᵣ : A → A → ★}
(Aᵣ-refl : Reflexive Aᵣ)
→ ⟦Search⟧₁ Aᵣ search
⟦search⟧ Aᵣ-refl Mᵣ ∙ᵣ fᵣ = search-ind (λ s → Mᵣ (s _ _) (s _ _))
(λ η → ∙ᵣ η)
(λ _ → fᵣ Aᵣ-refl)
-- this one is given for completness but the asking for the Aₚ predicate
-- to be trivial makes this result useless.
[search] : ∀ (Aₚ : A → ★)
(Aₚ-triv : ∀ x → Aₚ x)
→ [Search] Aₚ search
[search] Aₚ Aₚ-triv {M} Mₚ ∙ₚ fₚ =
search-ind (λ s → Mₚ (s _ _)) (λ η → ∙ₚ η) (λ x → fₚ (Aₚ-triv x))
search-sg-ext : SearchSgExt search
search-sg-ext sg {f} {g} f≈°g = search-ind (λ s → s _ f ≈ s _ g) ∙-cong f≈°g
where open Sgrp sg
foo : ∀ {A : ★} {R : A → A → ★} → Reflexive R → _≡_ ⇒ R
foo R-refl ≡.refl = R-refl
search-ext : SearchExt search
-- search-ext op {g = g} pf = ⟦search⟧ {_≡_} ≡.refl _≡_ (λ η → ≡.cong₂ op η) (≡.trans (pf _) ∘ ≡.cong g) -- (foo (λ {x} → pf x))
search-ext op pf = ⟦search⟧ {_≡_} ≡.refl _≡_ (λ η → ≡.cong₂ op η)
(foo (λ {x} → pf x))
-- (λ { {x} .{x} ≡.refl → pf _ })
-- {!search-extoid op = ⟦search⟧ {_≈ᴬ_} ≈ᴬ.refl _≡_ (λ η → ≡.cong₂ op η)!}
search-mono : SearchMono search
search-mono _⊆_ _∙-mono_ {f} {g} f⊆°g = search-ind (λ s → s _ f ⊆ s _ g) _∙-mono_ f⊆°g
search-swap : SearchSwap search
search-swap sg f {sᴮ} pf = search-ind (λ s → s _ (sᴮ ∘ f) ≈ sᴮ (s _ ∘ flip f)) (λ p q → trans (∙-cong p q) (sym (pf _ _))) (λ _ → refl)
where open Sgrp sg
searchMon : SearchMon A
searchMon m = search _∙_
where open Mon m
search-ε : Searchε searchMon
search-ε m = search-ind (λ s → s _ (const ε) ≈ ε) (λ x≈ε y≈ε → trans (∙-cong x≈ε y≈ε) (proj₁ identity ε)) (λ _ → refl)
where open Mon m
search-hom : SearchMonHom searchMon
search-hom cm f g = search-ind (λ s → s _ (f ∙° g) ≈ s _ f ∙ s _ g)
(λ p₀ p₁ → trans (∙-cong p₀ p₁) (∙-interchange _ _ _ _)) (λ _ → refl)
where open CMon cm
search-hom′ :
∀ {S T}
(_+_ : Op₂ S)
(_*_ : Op₂ T)
(f : S → T)
(g : A → S)
(hom : ∀ x y → f (x + y) ≡ f x * f y)
→ f (search _+_ g) ≡ search _*_ (f ∘ g)
search-hom′ _+_ _*_ f g hom = search-ind (λ s → f (s _+_ g) ≡ s _*_ (f ∘ g))
(λ p q → ≡.trans (hom _ _) (≡.cong₂ _*_ p q))
(λ _ → ≡.refl)
StableUnder : As FE.⟶ As → ★₁
StableUnder p = ∀ {B} (op : Op₂ B) f → search op f ≡ search op (f ∘ _⟨$⟩_ p)
sum : Sum A
sum = search _+_
sum-ind : SumInd sum
sum-ind P P+ Pf = search-ind (λ s → P (s _+_)) P+ Pf
sum-ext : SumExt sum
sum-ext = search-ext _+_
sum-zero : SumZero sum
sum-zero = search-ε ℕ+.monoid
sum-hom : SumHom sum
sum-hom = search-hom ℕ°.+-commutativeMonoid
sum-mono : SumMono sum
sum-mono = search-mono _≤_ _+-mono_
sum-lin : SumLin sum
sum-lin f zero = sum-zero
sum-lin f (suc k) = ≡.trans (sum-hom f (λ x → k * f x)) (≡.cong₂ _+_ (≡.refl {x = sum f}) (sum-lin f k))
SumStableUnder : As FE.⟶ As → ★
SumStableUnder p = ∀ (f : As FE.⟶ ≡.setoid ℕ) → sum (_⟨$⟩_ f) ≡ sum (_⟨$⟩_ (f FE.∘ p))
sumStableUnder : ∀ {p} → StableUnder p → SumStableUnder p
sumStableUnder SU-p f = SU-p _+_ (_⟨$⟩_ f)
Card : ℕ
Card = sum (const 1)
count : Count A
count f = sum (Bool.toℕ ∘ f)
count-ext : CountExt count
count-ext f≗g = sum-ext (≡.cong Bool.toℕ ∘ f≗g)
CountStableUnder : As FE.⟶ As → ★
CountStableUnder p = ∀ (f : As FE.⟶ ≡.setoid Bool) → count (_⟨$⟩_ f) ≡ count (_⟨$⟩_ (f FE.∘ p))
countStableUnder : ∀ {p} → SumStableUnder p → CountStableUnder p
countStableUnder sumSU-p f = sumSU-p (≡.:→-to-Π Bool.toℕ FE.∘ f)
search-extoid : SearchExtoid {As} search
-- search-extoid op {f = f}{g} f≈g = search-ind (λ s₁ → s₁ op (_⟨$⟩_ f) ≡ s₁ op (_⟨$⟩_ g)) (≡.cong₂ op) (λ x → f≈g (Setoid.refl As))
search-extoid op = ⟦search⟧ {_≈ᴬ_} ≈ᴬ.refl _≡_ (λ η → ≡.cong₂ op η)
SumProp : ★ → ★₁
SumProp A = SumPropoid (≡.setoid A)
open SumPropoid public
search-swap' : ∀ {A B} cm (μA : SumPropoid A) (μB : SumPropoid B) f →
let open CMon cm
sᴬ = search μA _∙_
sᴮ = search μB _∙_ in
sᴬ (sᴮ ∘ f) ≈ sᴮ (sᴬ ∘ flip f)
search-swap' cm μA μB f = search-swap μA sg f (search-hom μB cm)
where open CMon cm
sum-swap : ∀ {A B} (μA : SumPropoid A) (μB : SumPropoid B) f →
sum μA (sum μB ∘ f) ≡ sum μB (sum μA ∘ flip f)
sum-swap = search-swap' ℕ°.+-commutativeMonoid
_≈Sum_ : ∀ {A} → (sum₀ sum₁ : Sum A) → ★
sum₀ ≈Sum sum₁ = ∀ f → sum₀ f ≡ sum₁ f
_≈Search_ : ∀ {A} → (s₀ s₁ : Search A) → ★₁
s₀ ≈Search s₁ = ∀ {B} (op : Op₂ B) f → s₀ op f ≡ s₁ op f
μ𝟙 : SumProp 𝟙
μ𝟙 = srch , ind
where
srch : Search 𝟙
srch _ f = f _
ind : SearchInd srch
ind _ _ Pf = Pf _
μBit : SumProp Bit
μBit = searchBit , ind
where
searchBit : Search Bit
searchBit _∙_ f = f 0b ∙ f 1b
ind : SearchInd searchBit
ind _ _P∙_ Pf = Pf 0b P∙ Pf 1b
infixr 4 _+Search_
_+Search_ : ∀ {A B} → Search A → Search B → Search (A ⊎ B)
(searchᴬ +Search searchᴮ) _∙_ f = searchᴬ _∙_ (f ∘ inj₁) ∙ searchᴮ _∙_ (f ∘ inj₂)
_+SearchInd_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B} →
SearchInd sᴬ → SearchInd sᴮ → SearchInd (sᴬ +Search sᴮ)
(Psᴬ +SearchInd Psᴮ) P P∙ Pf
= P∙ (Psᴬ (λ s → P (λ _ f → s _ (f ∘ inj₁))) P∙ (Pf ∘ inj₁))
(Psᴮ (λ s → P (λ _ f → s _ (f ∘ inj₂))) P∙ (Pf ∘ inj₂))
infixr 4 _+Sum_
_+Sum_ : ∀ {A B} → Sum A → Sum B → Sum (A ⊎ B)
(sumᴬ +Sum sumᴮ) f = sumᴬ (f ∘ inj₁) + sumᴮ (f ∘ inj₂)
_+μ_ : ∀ {A B} → SumPropoid A → SumPropoid B → SumPropoid (A ⊎-setoid B)
μA +μ μB = _ , search-ind μA +SearchInd search-ind μB
infixr 4 _×Search_
-- liftM2 _,_ in the continuation monad
_×Search_ : ∀ {A B} → Search A → Search B → Search (A × B)
(searchᴬ ×Search searchᴮ) op f = searchᴬ op (λ x → searchᴮ op (curry f x))
_×SearchInd_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B}
→ SearchInd sᴬ → SearchInd sᴮ → SearchInd (sᴬ ×Search sᴮ)
(Psᴬ ×SearchInd Psᴮ) P P∙ Pf =
Psᴬ (λ s → P (λ _ _ → s _ _)) P∙ (Psᴮ (λ s → P (λ _ _ → s _ _)) P∙ ∘ curry Pf)
_×SearchExt_ : ∀ {A B} {sᴬ : Search A} {sᴮ : Search B} →
SearchExt sᴬ → SearchExt sᴮ → SearchExt (sᴬ ×Search sᴮ)
(sᴬ-ext ×SearchExt sᴮ-ext) sg f≗g = sᴬ-ext sg (sᴮ-ext sg ∘ curry f≗g)
infixr 4 _×Sum_
-- liftM2 _,_ in the continuation monad
_×Sum_ : ∀ {A B} → Sum A → Sum B → Sum (A × B)
(sumᴬ ×Sum sumᴮ) f = sumᴬ (λ x₀ →
sumᴮ (λ x₁ →
f (x₀ , x₁)))
infixr 4 _×μ_
_×μ_ : ∀ {A B} → SumPropoid A → SumPropoid B → SumPropoid (A ×-setoid B)
μA ×μ μB = _ , search-ind μA ×SearchInd search-ind μB
sum-const : ∀ {A} (μA : SumProp A) → ∀ k → sum μA (const k) ≡ Card μA * k
sum-const μA k
rewrite ℕ°.*-comm (Card μA) k
| ≡.sym (sum-lin μA (const 1) k)
| proj₂ ℕ°.*-identity k = ≡.refl
infixr 4 _×Sum-proj₁_ _×Sum-proj₁'_ _×Sum-proj₂_ _×Sum-proj₂'_
_×Sum-proj₁_ : ∀ {A B}
(μA : SumProp A)
(μB : SumProp B)
f →
sum (μA ×μ μB) (f ∘ proj₁) ≡ Card μB * sum μA f
(μA ×Sum-proj₁ μB) f
rewrite sum-ext μA (sum-const μB ∘ f)
= sum-lin μA f (Card μB)
_×Sum-proj₂_ : ∀ {A B}
(μA : SumProp A)
(μB : SumProp B)
f →
sum (μA ×μ μB) (f ∘ proj₂) ≡ Card μA * sum μB f
(μA ×Sum-proj₂ μB) f = sum-const μA (sum μB f)
_×Sum-proj₁'_ : ∀ {A B}
(μA : SumProp A) (μB : SumProp B)
{f} {g} →
sum μA f ≡ sum μA g →
sum (μA ×μ μB) (f ∘ proj₁) ≡ sum (μA ×μ μB) (g ∘ proj₁)
(μA ×Sum-proj₁' μB) {f} {g} sumf≡sumg
rewrite (μA ×Sum-proj₁ μB) f
| (μA ×Sum-proj₁ μB) g
| sumf≡sumg = ≡.refl
_×Sum-proj₂'_ : ∀ {A B}
(μA : SumProp A) (μB : SumProp B)
{f} {g} →
sum μB f ≡ sum μB g →
sum (μA ×μ μB) (f ∘ proj₂) ≡ sum (μA ×μ μB) (g ∘ proj₂)
(μA ×Sum-proj₂' μB) sumf≡sumg = sum-ext μA (const sumf≡sumg)
μ-view : ∀ {A B} → (A FE.⟶ B) → SumPropoid A → SumPropoid B
μ-view {A}{B} A→B μA = searchᴮ , ind
where
searchᴮ : Search (Setoid.Carrier B)
searchᴮ m f = search μA m (f ∘ _⟨$⟩_ A→B)
ind : SearchInd searchᴮ
ind P P∙ Pf = search-ind μA (λ s → P (λ _ f → s _ (f ∘ _⟨$⟩_ A→B))) P∙ (Pf ∘ _⟨$⟩_ A→B)
μ-iso : ∀ {A B} → (FI.Inverse A B) → SumPropoid A → SumPropoid B
μ-iso A↔B = μ-view (Inverse.to A↔B)
μ-view-preserve : ∀ {A B} (A→B : A FE.⟶ B)(B→A : B FE.⟶ A)(A≈B : A→B RightInverseOf B→A)
(f : A FE.⟶ ≡.setoid ℕ) (μA : SumPropoid A)
→ sum μA (_⟨$⟩_ f) ≡ sum (μ-view A→B μA) (_⟨$⟩_ (f FE.∘ B→A))
μ-view-preserve {A}{B} A→B B→A A≈B f μA = sum-ext μA (λ x → FE.cong f (Setoid.sym A (A≈B x) ))
μ-iso-preserve : ∀ {A B} (A↔B : A ↔ B) f (μA : SumProp A) → sum μA f ≡ sum (μ-iso A↔B μA) (f ∘ _⟨$⟩_ (Inverse.from A↔B))
μ-iso-preserve A↔B f μA = μ-view-preserve (Inverse.to A↔B) (Inverse.from A↔B)
(Inverse.left-inverse-of A↔B)
(≡.:→-to-Π f) μA
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec.NP as Vec using (Vec; tabulate; _++_) renaming (map to vmap; sum to vsum; foldr to vfoldr; foldr₁ to vfoldr₁)
vmsum : ∀ m {n} → let open Mon m in
Vec C n → C
vmsum m = vfoldr _ _∙_ ε
where open Monoid m
vsgsum : ∀ sg {n} → let open Sgrp sg in
Vec C (suc n) → C
vsgsum sg = vfoldr₁ _∙_
where open Sgrp sg
-- let's recall that: tabulate f ≗ vmap f (allFin n)
-- searchMonFin : ∀ n → SearchMon (Fin n)
-- searchMonFin n m f = vmsum m (tabulate f)
searchFinSuc : ∀ n → Search (Fin (suc n))
searchFinSuc n _∙_ f = vfoldr₁ _∙_ (tabulate f)
μMaybe : ∀ {A} → SumProp A → SumProp (Maybe A)
μMaybe μA = srch , ind where
srch : Search (Maybe _)
srch _∙_ f = f nothing ∙ search μA _∙_ (f ∘ just)
ind : SearchInd srch
ind P _P∙_ Pf = Pf nothing
P∙ search-ind μA (λ s → P (λ op f → s op (f ∘ just)) ) _P∙_ (Pf ∘ just)
μMaybeIso : ∀ {A} → SumProp A → SumProp (Maybe A)
μMaybeIso μA = μ-iso (FI.sym Maybe↔𝟙⊎ FI.∘ lift-⊎) (μ𝟙 +μ μA)
μMaybe^ : ∀ {A} n → SumProp A → SumProp (Maybe^ n A)
μMaybe^ zero μA = μA
μMaybe^ (suc n) μA = μMaybe (μMaybe^ n μA)
μFinSuc : ∀ n → SumProp (Fin (suc n))
μFinSuc n = searchFinSuc n , ind n
where ind : ∀ n → SearchInd (searchFinSuc n)
ind zero P P∙ Pf = Pf zero
ind (suc n) P P∙ Pf = P∙ (Pf zero) (ind n (λ s → P (λ op f → s op (f ∘ suc))) P∙ (Pf ∘ suc))
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.5428809326,
"avg_line_length": 34.8575197889,
"ext": "agda",
"hexsha": "74b9379ec865d4609e9bc69ec2f0c9bb6cf29bb5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Old/Sum/sum-setoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Old/Sum/sum-setoid.agda",
"max_line_length": 137,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Old/Sum/sum-setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 5703,
"size": 13211
} |
open import Agda.Primitive
open import Equality
module Quotient where
is-prop : ∀ {ℓ} (A : Set ℓ) → Set ℓ
is-prop A = ∀ (x y : A) → x ≡ y
record is-equivalence {ℓ k} {A : Set ℓ} (E : A → A → Set k) : Set (ℓ ⊔ k) where
field
equiv-prop : ∀ {x y} → is-prop (E x y)
equiv-refl : ∀ {x} → E x x
equiv-symm : ∀ {x y} → E x y → E y x
equiv-tran : ∀ {x y z} → E x y → E y z → E x z
record Equivalence {ℓ} (A : Set ℓ) : Set (lsuc ℓ) where
field
equiv-relation : A → A → Set ℓ
equiv-is-equivalence : is-equivalence equiv-relation
is-set : ∀ {ℓ} (A : Set ℓ) → Set ℓ
is-set A = ∀ (x y : A) (p q : x ≡ y) → p ≡ q
record HSet ℓ : Set (lsuc ℓ) where
field
hset-type : Set ℓ
hset-is-set : is-set hset-type
record Quotient {ℓ} (A : Set ℓ) (E : Equivalence A) : Set (lsuc ℓ) where
open Equivalence
field
quot-type : Set ℓ
quot-class : ∀ (x : A) → quot-type
quot-≡ : ∀ {x y : A} → equiv-relation E x y → quot-class x ≡ quot-class y
quot-is-set : is-set quot-type
quot-elim :
∀ (B : ∀ quot-type → Set ℓ)
(f : ∀ (x : A) → B (quot-class x)) →
(∀ (x y : A) {ε : equiv-relation E x y} → transport B (quot-≡ ε) (f x) ≡ f y) →
∀ (ξ : quot-type) → B ξ
quot-compute :
∀ (B : ∀ quot-type → Set ℓ) →
(f : ∀ (x : A) → B (quot-class x)) →
(η : ∀ (x y : A) {ε : equiv-relation E x y} → transport B (quot-≡ ε) (f x) ≡ f y) →
(quot-elim ? quot-class η)
| {
"alphanum_fraction": 0.4901574803,
"avg_line_length": 31.75,
"ext": "agda",
"hexsha": "510462dc35b80708c339795b59c0d27dc5a25a19",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/Quotient.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/Quotient.agda",
"max_line_length": 93,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 600,
"size": 1524
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import lib.cubical.elims.CubeMove
open import lib.cubical.elims.CofWedge
module lib.cubical.elims.SuspSmash where
module _ {i j k} {X : Ptd i} {Y : Ptd j} {C : Type k}
(f : Suspension (X ∧ Y) → C) (g : Suspension (X ∧ Y) → C)
(north* : f (north _) == g (north _))
(south* : f (south _) == g (south _))
(cod* : (s : fst X × fst Y) → Square north* (ap f (merid _ (cfcod _ s)))
(ap g (merid _ (cfcod _ s))) south*)
where
private
base* = transport
(λ κ → Square north* (ap f (merid _ κ)) (ap g (merid _ κ)) south*)
(! (cfglue _ (winl (snd X))))
(cod* (snd X , snd Y))
CubeType : (w : X ∨ Y)
→ Square north* (ap f (merid _ (cfcod _ (∨-in-× X Y w))))
(ap g (merid _ (cfcod _ (∨-in-× X Y w)))) south*
→ Type _
CubeType w sq =
Cube base* sq
(natural-square (λ _ → north*) (cfglue _ w))
(natural-square (ap f ∘ merid _) (cfglue _ w))
(natural-square (ap g ∘ merid _) (cfglue _ w))
(natural-square (λ _ → south*) (cfglue _ w))
fill : (w : X ∨ Y)
(sq : Square north* (ap f (merid _ (cfcod _ (∨-in-× X Y w))))
(ap g (merid _ (cfcod _ (∨-in-× X Y w)))) south*)
→ Σ (Square north* idp idp north*) (λ p → CubeType w (p ⊡h sq))
fill w sq =
(fst fill' ,
cube-right-from-front (fst fill') sq (snd fill'))
where
fill' = fill-cube-right _ _ _ _ _
fill0 = fill (winl (snd X)) (cod* (snd X , snd Y))
fillX = λ x → fill (winl x) (fst fill0 ⊡h cod* (x , snd Y))
fillY = λ y → fill (winr y) (fst fill0 ⊡h cod* (snd X , y))
fillX0 : fst (fillX (snd X)) == hid-square
fillX0 = ⊡h-unit-l-unique _ (fst fill0 ⊡h cod* (snd X , snd Y))
(fill-cube-right-unique (snd (fillX (snd X)))
∙ ! (fill-cube-right-unique (snd fill0)))
fillY0 : fst (fillY (snd Y)) == hid-square
fillY0 = ⊡h-unit-l-unique _ (fst fill0 ⊡h cod* (snd X , snd Y))
(fill-cube-right-unique (snd (fillY (snd Y)))
∙ ! (fill-cube-right-unique
(snd (fill (winr (snd Y)) (cod* (snd X , snd Y)))))
∙ ! (ap (λ w → fst (fill w (cod* (∨-in-× X Y w)))
⊡h cod* (snd X , snd Y))
wglue))
where
fill-square : (w : X ∨ Y)
→ Square north* (ap f (merid _ (cfcod _ (∨-in-× X Y w))))
(ap g (merid _ (cfcod _ (∨-in-× X Y w)))) south*
fill-square w =
fst (fill-cube-right base*
(natural-square (λ _ → north*) (cfglue _ w))
(natural-square (ap f ∘ merid _) (cfglue _ w))
(natural-square (ap g ∘ merid _) (cfglue _ w))
(natural-square (λ _ → south*) (cfglue _ w)))
abstract
coh : (s : X ∧ Y)
→ north* == south* [ (λ z → f z == g z) ↓ merid _ s ]
coh = ↓-='-from-square ∘ cof-wedge-square-elim _ _ _ _
base*
(λ {(x , y) →
fst (fillX x) ⊡h fst (fillY y) ⊡h fst fill0 ⊡h cod* (x , y)})
(λ x → transport (λ sq → CubeType (winl x) (fst (fillX x) ⊡h sq))
(! (ap (λ sq' → sq' ⊡h fst fill0 ⊡h cod* (x , snd Y)) fillY0
∙ ⊡h-unit-l (fst fill0 ⊡h cod* (x , snd Y))))
(snd (fillX x)))
(λ y → transport (CubeType (winr y))
(! (ap (λ sq' → sq' ⊡h fst (fillY y) ⊡h fst fill0 ⊡h cod* (snd X , y))
fillX0
∙ ⊡h-unit-l (fst (fillY y) ⊡h fst fill0 ⊡h cod* (snd X , y))))
(snd (fillY y)))
susp-smash-path-elim : ((σ : Suspension (X ∧ Y)) → f σ == g σ)
susp-smash-path-elim = Suspension-elim _ north* south* coh
| {
"alphanum_fraction": 0.4793633666,
"avg_line_length": 40.7362637363,
"ext": "agda",
"hexsha": "d38668c86f31aadffd61bada92ffc430ebd25507",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/cubical/elims/SuspSmash.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/cubical/elims/SuspSmash.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/cubical/elims/SuspSmash.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1315,
"size": 3707
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors where at least one element satisfies a given property
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Relation.Unary.Any {a} {A : Set a} where
open import Data.Empty
open import Data.Fin
open import Data.Nat using (zero; suc)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Vec as Vec using (Vec; []; [_]; _∷_)
open import Data.Product as Prod using (∃; _,_)
open import Level using (_⊔_)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
import Relation.Nullary.Decidable as Dec
open import Relation.Unary
------------------------------------------------------------------------
-- Any P xs means that at least one element in xs satisfies P.
data Any {p} (P : A → Set p) : ∀ {n} → Vec A n → Set (a ⊔ p) where
here : ∀ {n x} {xs : Vec A n} (px : P x) → Any P (x ∷ xs)
there : ∀ {n x} {xs : Vec A n} (pxs : Any P xs) → Any P (x ∷ xs)
------------------------------------------------------------------------
-- Operations on Any
module _ {p} {P : A → Set p} {n x} {xs : Vec A n} where
-- If the tail does not satisfy the predicate, then the head will.
head : ¬ Any P xs → Any P (x ∷ xs) → P x
head ¬pxs (here px) = px
head ¬pxs (there pxs) = contradiction pxs ¬pxs
-- If the head does not satisfy the predicate, then the tail will.
tail : ¬ P x → Any P (x ∷ xs) → Any P xs
tail ¬px (here px) = ⊥-elim (¬px px)
tail ¬px (there pxs) = pxs
-- Convert back and forth with sum
toSum : Any P (x ∷ xs) → P x ⊎ Any P xs
toSum (here px) = inj₁ px
toSum (there pxs) = inj₂ pxs
fromSum : P x ⊎ Any P xs → Any P (x ∷ xs)
fromSum = [ here , there ]′
map : ∀ {p q} {P : A → Set p} {Q : A → Set q} →
P ⊆ Q → ∀ {n} → Any P {n} ⊆ Any Q {n}
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
index : ∀ {p} {P : A → Set p} {n} {xs : Vec A n} → Any P xs → Fin n
index (here px) = zero
index (there pxs) = suc (index pxs)
-- If any element satisfies P, then P is satisfied.
satisfied : ∀ {p} {P : A → Set p} {n} {xs : Vec A n} → Any P xs → ∃ P
satisfied (here px) = _ , px
satisfied (there pxs) = satisfied pxs
------------------------------------------------------------------------
-- Properties of predicates preserved by Any
module _ {p} {P : A → Set p} where
any : Decidable P → ∀ {n} → Decidable (Any P {n})
any P? [] = no λ()
any P? (x ∷ xs) with P? x
... | yes px = yes (here px)
... | no ¬px = Dec.map′ there (tail ¬px) (any P? xs)
satisfiable : Satisfiable P → ∀ {n} → Satisfiable (Any P {suc n})
satisfiable (x , p) {zero} = x ∷ [] , here p
satisfiable (x , p) {suc n} = Prod.map (x ∷_) there (satisfiable (x , p))
| {
"alphanum_fraction": 0.5176715177,
"avg_line_length": 35.1951219512,
"ext": "agda",
"hexsha": "1842f4d7047a05afc31e0a68ece5d47bc38653db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 926,
"size": 2886
} |
{-# OPTIONS --sized-types #-}
module BBHeap.Height {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_ hiding (#)
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import SNat
# : {b : Bound} → BBHeap b → SNat
# leaf = zero
# (left {l = l} {r = r} _ _) = succ (# l + # r)
# (right {l = l} {r = r} _ _) = succ (# l + # r)
height : {b : Bound} → BBHeap b → SNat
height leaf = zero
height (left {l = l} _ _) = succ (height l)
height (right {l = l} _ _) = succ (height l)
#' : {b : Bound} → BBHeap b → SNat
#' leaf = zero
#' (left {r = r} _ _) = succ (#' r + #' r)
#' (right {r = r} _ _) = succ (#' r + #' r)
height' : {b : Bound} → BBHeap b → SNat
height' leaf = zero
height' (left {r = r} _ _) = succ (height' r)
height' (right {r = r} _ _) = succ (height' r)
| {
"alphanum_fraction": 0.5393401015,
"avg_line_length": 26.2666666667,
"ext": "agda",
"hexsha": "8b43eba04cbad30261357ffd41b04d83bf5cf7cc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Height.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Height.agda",
"max_line_length": 55,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Height.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 297,
"size": 788
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Relation.Binary.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.SetQuotients.Base
module BinaryRelation {ℓ ℓ' : Level} {A : Type ℓ} (R : A → A → Type ℓ') where
isRefl : Type (ℓ-max ℓ ℓ')
isRefl = (a : A) → R a a
isSym : Type (ℓ-max ℓ ℓ')
isSym = (a b : A) → R a b → R b a
isTrans : Type (ℓ-max ℓ ℓ')
isTrans = (a b c : A) → R a b → R b c → R a c
record isEquivRel : Type (ℓ-max ℓ ℓ') where
constructor EquivRel
field
reflexive : isRefl
symmetric : isSym
transitive : isTrans
isPropValued : Type (ℓ-max ℓ ℓ')
isPropValued = (a b : A) → isProp (R a b)
isEffective : Type (ℓ-max ℓ ℓ')
isEffective = (a b : A) →
let x : A / R
x = [ a ]
y : A / R
y = [ b ]
in (x ≡ y) ≃ R a b
| {
"alphanum_fraction": 0.5837897043,
"avg_line_length": 24.0263157895,
"ext": "agda",
"hexsha": "9aaa364f784d33abfae3f2fd8fc3eeede3ddc349",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 346,
"size": 913
} |
{-# OPTIONS --rewriting #-}
module Properties where
import Properties.Contradiction
import Properties.Dec
import Properties.DecSubtyping
import Properties.Equality
import Properties.Functions
import Properties.Remember
import Properties.Step
import Properties.StrictMode
import Properties.Subtyping
import Properties.TypeCheck
import Properties.TypeNormalization
| {
"alphanum_fraction": 0.8630136986,
"avg_line_length": 22.8125,
"ext": "agda",
"hexsha": "f883a3ea6dc2b6f033bfeba16dd9fb58cc0ba81f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sthagen/Roblox-luau",
"max_forks_repo_path": "prototyping/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sthagen/Roblox-luau",
"max_issues_repo_path": "prototyping/Properties.agda",
"max_line_length": 35,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Libertus-Lab/luau",
"max_stars_repo_path": "prototyping/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z",
"num_tokens": 65,
"size": 365
} |
{-# OPTIONS --rewriting #-}
{-# OPTIONS --confluence-check #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
module _ (A : Set) where
postulate
D : Set
f : D → D → D
r : (x y z : D) → f x (f y z) ≡ f x z
{-# REWRITE r #-}
-- WAS:
-- Confluence check failed: f x (f y (f y₁ z)) reduces to both
-- f x (f y₁ z) and f x (f y z) which are not equal because
-- y != y₁ of type D
-- when checking confluence of the rewrite rule r with itself
module _ (x y y₁ z : D) where
-- SUCCEEDS:
_ : f x (f y₁ z) ≡ f x (f y z)
_ = refl
| {
"alphanum_fraction": 0.5683333333,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "676cc247515daa5a0a9c72577323cf3e3d9d68e3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Soares/agda",
"max_forks_repo_path": "test/Succeed/Issue4383.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Soares/agda",
"max_issues_repo_path": "test/Succeed/Issue4383.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Soares/agda",
"max_stars_repo_path": "test/Succeed/Issue4383.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 213,
"size": 600
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Util.PKCS
open import Util.Prelude
open import Yasm.Types
-- This module defines the types used to define a SystemModel.
module Yasm.Base (ℓ-PeerState : Level) where
-- Our system is configured through a value of type
-- SystemParameters where we specify:
record SystemTypeParameters : Set (ℓ+1 ℓ-PeerState) where
constructor mkSysTypeParms
field
PeerId : Set
_≟PeerId_ : ∀ (p₁ p₂ : PeerId) → Dec (p₁ ≡ p₂)
Bootstrap : Set
-- A relation specifying what Signatures are included in bootstrapInfo
∈BootstrapInfo : Bootstrap → Signature → Set
PeerState : Set ℓ-PeerState
Msg : Set
Part : Set -- Types of interest that can be represented in Msgs
-- The messages must be able to carry signatures
instance Part-sig : WithSig Part
-- A relation specifying what Parts are included in a Msg.
-- TODO-2: I changed the name of this to append the G because of the pain disambiguating it from
-- NetworkMsg.⊂Msg. This issue https://github.com/agda/agda/issues/2175 suggests I should have
-- been able to get this right without renaming, but... I'd like to underastand how to do this
-- right, but for expedience, not now.
_⊂MsgG_ : Part → Msg → Set
module _ (systypes : SystemTypeParameters) where
open SystemTypeParameters systypes
record SystemInitAndHandlers : Set (ℓ+1 ℓ-PeerState) where
constructor mkSysInitAndHandlers
field
-- The same bootstrap information is given to any uninitialised peer before
-- it can handle any messages.
bootstrapInfo : Bootstrap
-- Represents an uninitialised PeerState, about which we know nothing whatsoever
initPS : PeerState
-- Bootstraps a peer. Our current system model is simplistic in that unsuccessful
-- initialisation of a peer has no side effects. In future, we could change the return type
-- of bootstrap to Maybe PeerState × List (Action Msg), allowing for it to return nothing, but
-- to include actions such as sending messages, logging, etc. We are not doing so now as it
-- is disruptive to existing proofs and modeling and verifying properties about unsuccessful
-- initialisation is not a priority.
bootstrap : PeerId → Bootstrap → Maybe (PeerState × List (Action Msg))
-- Handles a message on a previously initialized peer.
handle : PeerId → Msg → PeerState → PeerState × List (Action Msg)
| {
"alphanum_fraction": 0.7125416204,
"avg_line_length": 43.5967741935,
"ext": "agda",
"hexsha": "e36d73fcc1af73a0f37358b20700abea894e3766",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Yasm/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Yasm/Base.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Yasm/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 674,
"size": 2703
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Nullary.HLevels where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Functions.Fixpoint
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A : Type ℓ
isPropPopulated : isProp (Populated A)
isPropPopulated = isPropΠ λ x → 2-Constant→isPropFixpoint (x .fst) (x .snd)
isPropHSeparated : isProp (HSeparated A)
isPropHSeparated f g i x y a = HSeparated→isSet f x y (f x y a) (g x y a) i
isPropCollapsible≡ : isProp (Collapsible≡ A)
isPropCollapsible≡ {A = A} f = (isPropΠ2 λ x y → isPropCollapsiblePointwise) f where
sA : isSet A
sA = Collapsible≡→isSet f
gA : isGroupoid A
gA = isSet→isGroupoid sA
isPropCollapsiblePointwise : ∀ {x y} → isProp (Collapsible (x ≡ y))
isPropCollapsiblePointwise {x} {y} (a , ca) (b , cb) = λ i → endoFunction i , endoFunctionIsConstant i where
endoFunction : a ≡ b
endoFunction = funExt λ p → sA _ _ (a p) (b p)
isProp2-Constant : (k : I) → isProp (2-Constant (endoFunction k))
isProp2-Constant k = isPropΠ2 λ r s → gA x y (endoFunction k r) (endoFunction k s)
endoFunctionIsConstant : PathP (λ i → 2-Constant (endoFunction i)) ca cb
endoFunctionIsConstant = isProp→PathP isProp2-Constant ca cb
| {
"alphanum_fraction": 0.7168141593,
"avg_line_length": 37.6666666667,
"ext": "agda",
"hexsha": "37ee4f8bb3b99af8b9ab22b6065cf1350ca3d457",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Relation/Nullary/HLevels.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Relation/Nullary/HLevels.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Relation/Nullary/HLevels.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 473,
"size": 1356
} |
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
module Test₁ where
macro
Unify-with-⊤ : Term → TC ⊤
Unify-with-⊤ goal = unify goal (quoteTerm ⊤)
⊤′ : Set
⊤′ = Unify-with-⊤
unit-test : ⊤′
unit-test = tt
module Test₂ where
macro
Unify-with-⊤ : Term → TC ⊤
Unify-with-⊤ goal = noConstraints (unify goal (quoteTerm ⊤))
⊤′ : Set
⊤′ = Unify-with-⊤
unit-test : ⊤′
unit-test = tt
module Test₃ where
P : Bool → Set
P true = Bool
P false = Bool
f : (b : Bool) → P b
f true = true
f false = false
pattern varg x = arg (arg-info visible relevant) x
create-constraint : TC Set
create-constraint =
unquoteTC (def (quote P)
(varg (def (quote f) (varg unknown ∷ [])) ∷ []))
macro
Unify-with-⊤ : Term → TC ⊤
Unify-with-⊤ goal =
catchTC (noConstraints (bindTC create-constraint λ _ →
returnTC tt))
(unify goal (quoteTerm ⊤))
⊤′ : Set
⊤′ = Unify-with-⊤
unit-test : ⊤′
unit-test = tt
| {
"alphanum_fraction": 0.577540107,
"avg_line_length": 17.53125,
"ext": "agda",
"hexsha": "a5c7af64b9643b80f1f1c697316664b792db5a17",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/NoConstraints.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/NoConstraints.agda",
"max_line_length": 65,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/NoConstraints.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 395,
"size": 1122
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.