Search is not available for this dataset
text
string
meta
dict
module IndexOnBuiltin where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} data Fin : Nat -> Set where fz : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) f : Fin 2 -> Fin 1 f fz = fz f (fs i) = i
{ "alphanum_fraction": 0.5384615385, "avg_line_length": 16.4210526316, "ext": "agda", "hexsha": "d030e1dbec3b9dda2e98e0782c16d5980adc2d8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/IndexOnBuiltin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/IndexOnBuiltin.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/IndexOnBuiltin.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 111, "size": 312 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module AgdaIntroduction where -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/Nat.agda). infixl 10 _*_ infixl 9 _+_ infixr 5 _∷_ _++_ infix 4 _≡_ -- Dependent function types id : (A : Set) → A → A id A x = x -- λ-notation id₂ : (A : Set) → A → A id₂ = λ A → λ x → x id₃ : (A : Set) → A → A id₃ = λ A x → x -- Implicit arguments id₄ : {A : Set} → A → A id₄ x = x id₅ : {A : Set} → A → A id₅ = λ x → x -- Inductively defined sets and families data Bool : Set where false true : Bool data ℕ : Set where zero : ℕ succ : ℕ → ℕ data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : {n : ℕ} → A → Vec A n → Vec A (succ n) data Fin : ℕ → Set where fzero : {n : ℕ} → Fin (succ n) fsucc : {n : ℕ} → Fin n → Fin (succ n) -- Structurally recursive functions and pattern matching _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs f : ℕ → ℕ f zero = zero {-# CATCHALL #-} f _ = succ zero -- The absurd pattern magic : {A : Set} → Fin zero → A magic () -- The with constructor filter : {A : Set} → (A → Bool) → List A → List A filter p [] = [] filter p (x ∷ xs) with p x ... | true = x ∷ filter p xs ... | false = filter p xs filter' : {A : Set} → (A → Bool) → List A → List A filter' p [] = [] filter' p (x ∷ xs) with p x filter' p (x ∷ xs) | true = x ∷ filter' p xs filter' p (x ∷ xs) | false = filter' p xs -- Mutual definitions even : ℕ → Bool odd : ℕ → Bool even zero = true even (succ n) = odd n odd zero = false odd (succ n) = even n data EvenList : Set data OddList : Set data EvenList where [] : EvenList _∷_ : ℕ → OddList → EvenList data OddList where _∷_ : ℕ → EvenList → OddList -- Normalisation data _≡_ {A : Set} : A → A → Set where refl : {a : A} → a ≡ a length : {A : Set} → List A → ℕ length [] = zero length (x ∷ xs) = succ zero + length xs _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys succCong : {m n : ℕ} → m ≡ n → succ m ≡ succ n succCong refl = refl length-++ : {A : Set}(xs ys : List A) → length (xs ++ ys) ≡ length xs + length ys length-++ [] ys = refl length-++ (x ∷ xs) ys = succCong (length-++ xs ys) -- Coverage and termination checkers head : {A : Set} → List A → A head [] = ? head (x ∷ xs) = x ack : ℕ → ℕ → ℕ ack zero n = succ n ack (succ m) zero = ack m (succ zero) ack (succ m) (succ n) = ack m (ack (succ m) n) -- Combinators for equational reasoning postulate sym : {A : Set}{a b : A} → a ≡ b → b ≡ a trans : {A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c subst : {A : Set}(P : A → Set){a b : A} → a ≡ b → P a → P b postulate _*_ : ℕ → ℕ → ℕ *-comm : ∀ m n → m * n ≡ n * m *-rightIdentity : ∀ n → n * succ zero ≡ n *-leftIdentity : ∀ n → succ zero * n ≡ n *-leftIdentity n = trans {ℕ} {succ zero * n} {n * succ zero} {n} (*-comm (succ zero) n) (*-rightIdentity n) module ER {A : Set} (_∼_ : A → A → Set) (∼-refl : ∀ {x} → x ∼ x) (∼-trans : ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z) where infixr 5 _∼⟨_⟩_ infix 6 _∎ _∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y ∼ z → x ∼ z _ ∼⟨ x∼y ⟩ y∼z = ∼-trans x∼y y∼z _∎ : ∀ x → x ∼ x _∎ _ = ∼-refl open module ≡-Reasoning = ER _≡_ (refl {ℕ}) (trans {ℕ}) renaming ( _∼⟨_⟩_ to _≡⟨_⟩_ ) *-leftIdentity' : ∀ n → succ zero * n ≡ n *-leftIdentity' n = succ zero * n ≡⟨ *-comm (succ zero) n ⟩ n * succ zero ≡⟨ *-rightIdentity n ⟩ n ∎
{ "alphanum_fraction": 0.5119356513, "avg_line_length": 21.7740112994, "ext": "agda", "hexsha": "89c620b0fbffddd0735d0df8e0ad2d0c1e70841e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/AgdaIntroduction.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/AgdaIntroduction.agda", "max_line_length": 90, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/AgdaIntroduction.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1552, "size": 3854 }
module Data.Option.Proofs where import Lvl open import Data open import Data.Option open import Data.Option.Functions open import Functional open import Structure.Setoid using (Equiv) open import Structure.Function.Domain open import Structure.Function import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Relator.Properties open import Type private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level private variable T A B C : Type{ℓ} private variable x : T private variable o : Option(T) module _ where open Structure.Setoid open import Function.Equals module _ ⦃ _ : let _ = A ; _ = B ; _ = C in Equiv{ℓₑ}(Option(C)) ⦄ {f : B → C}{g : A → B} where map-preserves-[∘] : (map(f ∘ g) ⊜ (map f) ∘ (map g)) _⊜_.proof map-preserves-[∘] {None} = reflexivity(_≡_) _⊜_.proof map-preserves-[∘] {Some x} = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ}(Option(A)) ⦄ where map-preserves-id : (map id ⊜ id) _⊜_.proof map-preserves-id {None} = reflexivity(_≡_) _⊜_.proof map-preserves-id {Some x} = reflexivity(_≡_) andThenᵣ-Some : ((_andThen Some) ⊜ id) _⊜_.proof andThenᵣ-Some {None} = reflexivity(_≡_) _⊜_.proof andThenᵣ-Some {Some x} = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ}(Option(A)) ⦄ where andThenᵣ-None : o andThen (const{Y = Option(A)} None) ≡ None andThenᵣ-None {o = None} = reflexivity(_≡_) andThenᵣ-None {o = Some x} = reflexivity(_≡_) module _ ⦃ _ : let _ = A in Equiv{ℓₑ}(Option(B)) ⦄ {f : A → Option(B)} where andThenₗ-None : (None andThen f ≡ None) andThenₗ-None = reflexivity(_≡_) andThenₗ-Some : (Some(x) andThen f ≡ f(x)) andThenₗ-Some = reflexivity(_≡_) module _ ⦃ _ : let _ = A ; _ = B in Equiv{ℓₑ}(Option(C)) ⦄ {f : A → Option(B)} {g : B → Option(C)} where andThen-associativity : (o andThen (p ↦ f(p) andThen g) ≡ (o andThen f) andThen g) andThen-associativity {None} = reflexivity(_≡_) andThen-associativity {Some x} = reflexivity(_≡_) module _ where open import Function.Equals module _ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-option-B : Equiv{ℓₑ}(Option B) ⦄ ⦃ some-func : Function(Some) ⦄ where map-function : Function(map {T₁ = A}{T₂ = B}) Dependent._⊜_.proof (Function.congruence map-function (Dependent.intro p)) {None} = reflexivity _ Dependent._⊜_.proof (Function.congruence map-function (Dependent.intro p)) {Some x} = congruence₁(Some) p module _ ⦃ equiv-option-B : Equiv{ℓₑ}(Option B) ⦄ where andThen-function : Function(Functional.swap(_andThen_ {T₁ = A}{T₂ = B})) Dependent._⊜_.proof (Function.congruence andThen-function {f} {g} _) {None} = reflexivity _ Dependent._⊜_.proof (Function.congruence andThen-function {f} {g} (Dependent.intro p)) {Some x} = p{x} module _ ⦃ equiv-T : Equiv{ℓₑ₁}(T) ⦄ ⦃ equiv-opt-T : Equiv{ℓₑ₂}(Option(T)) ⦄ ⦃ some-func : Function(Some) ⦄ {_▫_ : T → T → T} where open Structure.Setoid instance and-combine-associativity : ⦃ _ : Associativity(_▫_) ⦄ → Associativity(and-combine(_▫_)) and-combine-associativity = intro p where p : Names.Associativity(and-combine(_▫_)) p {None} {None} {None} = reflexivity(_≡_) p {None} {None} {Some _} = reflexivity(_≡_) p {None} {Some _} {None} = reflexivity(_≡_) p {None} {Some _} {Some _} = reflexivity(_≡_) p {Some _} {None} {None} = reflexivity(_≡_) p {Some _} {None} {Some _} = reflexivity(_≡_) p {Some _} {Some _} {None} = reflexivity(_≡_) p {Some _} {Some _} {Some _} = congruence₁(Some) (associativity(_▫_)) module _ where --instance or-combine-associativity : ∀{f} ⦃ idemp-f : Idempotent(f) ⦄ (_ : ∀{x y} → (f(x) ▫ y ≡ f(x ▫ y))) (_ : ∀{x y} → (x ▫ f(y) ≡ f(x ▫ y))) → ⦃ _ : Associativity(_▫_) ⦄ → Associativity(or-combine(_▫_) f f) -- TODO: What are the unnamed properties here in the assumptions called? Also, the constant function of an absorber have all these properties. The identity function also have it. or-combine-associativity {f = f} compatₗ compatᵣ = intro p where p : Names.Associativity(or-combine(_▫_) f f) p {None} {None} {None} = reflexivity(_≡_) p {None} {None} {Some z} = congruence₁(Some) (symmetry(_≡_) (idempotent(f))) p {None} {Some y} {None} = reflexivity(_≡_) p {None} {Some y} {Some z} = congruence₁(Some) compatₗ p {Some x} {None} {None} = congruence₁(Some) (idempotent(f)) p {Some x} {None} {Some z} = congruence₁(Some) (transitivity(_≡_) compatₗ (symmetry(_≡_) compatᵣ)) p {Some x} {Some y} {None} = congruence₁(Some) (symmetry(_≡_) compatᵣ) p {Some x} {Some y} {Some z} = congruence₁(Some) (associativity(_▫_))
{ "alphanum_fraction": 0.6318449874, "avg_line_length": 46.0970873786, "ext": "agda", "hexsha": "b86e827ee7a2b97f52ab755102172dbbaa4d193c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Proofs.agda", "max_line_length": 382, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1744, "size": 4748 }
module index where -- You probably want to start with this module: import README -- For a brief presentation of every single module, head over to import Everything -- Otherwise, here is an exhaustive, stern list of all the available modules:
{ "alphanum_fraction": 0.7755102041, "avg_line_length": 24.5, "ext": "agda", "hexsha": "4acb132ae08755470d029049b925d94d19befb56", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/travis/index.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/travis/index.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/travis/index.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 50, "size": 245 }
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.Glue where open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc) module Helpers where -- Homogeneous filling hfill : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → ouc u0 }) (ouc u0) -- Heterogeneous filling defined using comp fill : ∀ {ℓ : I → Level} (A : ∀ i → Set (ℓ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) → ∀ i → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) _ (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → ouc u0 }) (ouc {φ = φ} u0) module _ {ℓ} {A : Set ℓ} where refl : {x : A} → x ≡ x refl {x = x} = λ _ → x sym : {x y : A} → x ≡ y → y ≡ x sym p = λ i → p (~ i) cong : ∀ {ℓ'} {B : A → Set ℓ'} {x y : A} (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p = λ i → f (p i) isContr : ∀ {ℓ} → Set ℓ → Set ℓ isContr A = Σ A \ x → (∀ y → x ≡ y) fiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ ⊔ ℓ') fiber {A = A} f y = Σ A \ x → f x ≡ y open Helpers -- We make this a record so that isEquiv can be proved using -- copatterns. This is good because copatterns don't get unfolded -- unless a projection is applied so it should be more efficient. record isEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) \ f → (isEquiv f) equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B equivFun e = fst e -- Improved version of equivProof compared to Lemma 5 in CCHM. We put -- the (φ = i0) face in contr' making it be definitionally c in this -- case. This makes the computational behavior better, in particular -- for transp in Glue. equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A) → ∀ ψ → (Partial ψ (fiber (w .fst) a)) → fiber (w .fst) a equivProof A B w a ψ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) ψ fb where contr' : ∀ {ℓ} {A : Set ℓ} → isContr A → (φ : I) → (u : Partial φ A) → A contr' {A = A} (c , p) φ u = hcomp (λ i → λ { (φ = i1) → p (u 1=1) i ; (φ = i0) → c }) c {-# BUILTIN EQUIV _≃_ #-} {-# BUILTIN EQUIVFUN equivFun #-} {-# BUILTIN EQUIVPROOF equivProof #-} primitive primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ' prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → PartialP φ T → A → primGlue A T e prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- Needed for transp in Glue. primFaceForall : (I → I) → I module _ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) where private E : (i : I) → Set (ℓ i) E = λ i → P i ~E : (i : I) → Set (ℓ (~ i)) ~E = λ i → P (~ i) A = P i0 B = P i1 f : A → B f x = transp E i0 x g : B → A g y = transp ~E i0 y u : ∀ i → A → E i u i x = transp (λ j → E (i ∧ j)) (~ i) x v : ∀ i → B → E i v i y = transp (λ j → ~E ( ~ i ∧ j)) i y fiberPath : (y : B) → (xβ0 xβ1 : fiber f y) → xβ0 ≡ xβ1 fiberPath y (x0 , β0) (x1 , β1) k = ω , λ j → δ (~ j) where module _ (j : I) where private sys : A → ∀ i → PartialP (~ j ∨ j) (λ _ → E (~ i)) sys x i (j = i0) = v (~ i) y sys x i (j = i1) = u (~ i) x ω0 = comp ~E _ (sys x0) ((β0 (~ j))) ω1 = comp ~E _ (sys x1) ((β1 (~ j))) θ0 = fill ~E (sys x0) (inc (β0 (~ j))) θ1 = fill ~E (sys x1) (inc (β1 (~ j))) sys = λ {j (k = i0) → ω0 j ; j (k = i1) → ω1 j} ω = hcomp sys (g y) θ = hfill sys (inc (g y)) δ = λ (j : I) → comp E _ (λ i → λ { (j = i0) → v i y ; (k = i0) → θ0 j (~ i) ; (j = i1) → u i ω ; (k = i1) → θ1 j (~ i) }) (θ j) γ : (y : B) → y ≡ f (g y) γ y j = comp E _ (λ i → λ { (j = i0) → v i y ; (j = i1) → u i (g y) }) (g y) pathToisEquiv : isEquiv f pathToisEquiv .equiv-proof y .fst .fst = g y pathToisEquiv .equiv-proof y .fst .snd = sym (γ y) pathToisEquiv .equiv-proof y .snd = fiberPath y _ pathToEquiv : A ≃ B pathToEquiv .fst = f pathToEquiv .snd = pathToisEquiv {-# BUILTIN PATHTOEQUIV pathToEquiv #-}
{ "alphanum_fraction": 0.4496783958, "avg_line_length": 33.2452830189, "ext": "agda", "hexsha": "c7ed5e75ae186911881b15dc4df408ad918d67f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2149, "size": 5286 }
{-# OPTIONS --without-K #-} -- Copied from "https://code.google.com/p/agda/issues/attachmentText?id=846&aid=8460000000&name=DivModUtils.agda&token=GDo1rQ6ldpTKOCjtbzSWPu19HL0%3A1373287197978" module DivModUtils where open import Data.Nat open import Data.Bool open import Data.Nat.DivMod open import Relation.Nullary open import Data.Nat.Properties open import Data.Fin using (Fin; toℕ; zero; suc; fromℕ≤) open import Data.Fin.Properties open import Relation.Binary.PropositionalEquality open import Function open import Data.Product open import Relation.Binary open import Data.Empty open import Relation.Nullary.Negation open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; antisym to ≤-antisym) import Algebra open Algebra.CommutativeSemiring commutativeSemiring using (+-comm; +-assoc) ------------------------------------------------------------------------------ i+[j∸m]≡i+j∸m : ∀ i j m → m ≤ j → i + (j ∸ m) ≡ i + j ∸ m i+[j∸m]≡i+j∸m i zero zero lt = refl i+[j∸m]≡i+j∸m i zero (suc m) () i+[j∸m]≡i+j∸m i (suc j) zero lt = refl i+[j∸m]≡i+j∸m i (suc j) (suc m) (s≤s m≤j) = begin i + (j ∸ m) ≡⟨ i+[j∸m]≡i+j∸m i j m m≤j ⟩ suc (i + j) ∸ suc m ≡⟨ cong (λ y → y ∸ suc m) $ solve 2 (λ i' j' → con 1 :+ (i' :+ j') := i' :+ (con 1 :+ j')) refl i j ⟩ (i + suc j) ∸ suc m ∎ where open SemiringSolver -- Following code taken from -- https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210 -- the next few bits are lemmas to prove uniqueness of euclidean division -- first : for nonzero divisors, a nonzero quotient would require a larger -- dividend than is consistent with a zero quotient, regardless of -- remainders. large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) → toℕ r ≢ suc x * suc d + toℕ r′ large {d} {r} x r′ pf = irrefl pf ( start suc (toℕ r) ≤⟨ bounded r ⟩ suc d ≤⟨ m≤m+n (suc d) (x * suc d) ⟩ suc d + x * suc d -- same as (suc x * suc d) ≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩ suc x * suc d + toℕ r′ -- clearer in two steps, and we'd need assoc anyway □) where open ≤-Reasoning open Relation.Binary.StrictTotalOrder Data.Nat.Properties.strictTotalOrder -- a raw statement of the uniqueness, in the arrangement of terms that's -- easiest to work with computationally addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) → x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′ addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp) addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp)) addMul-lemma′ (suc x) (suc x′) d r r′ hyp rewrite +-assoc (suc d) (x * suc d) (toℕ r) | +-assoc (suc d) (x′ * suc d) (toℕ r′) with addMul-lemma′ x x′ d r r′ (cancel-+-left (suc d) hyp) ... | pf₁ , pf₂ = pf₁ , cong suc pf₂ -- and now rearranged to the order that Data.Nat.DivMod uses addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) → toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′ addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d) | +-comm (toℕ r′) (x′ * suc d) = addMul-lemma′ x x′ d r r′ hyp DivMod-lemma : ∀ x d (r : Fin (suc d)) → (res : DivMod (toℕ r + x * suc d) (suc d)) → res ≡ result x r refl DivMod-lemma x d r (result q r′ eq) with addMul-lemma x q d r r′ eq DivMod-lemma x d r (result .x .r eq) | refl , refl = cong (result x r) (proof-irrelevance eq refl) divMod-lemma : ∀ x d (r : Fin (suc d)) → (toℕ r + x * suc d) divMod suc d ≡ result x r refl divMod-lemma x d r with (toℕ r + x * suc d) divMod suc d divMod-lemma x d r | q rewrite DivMod-lemma x d r q = refl mod-lemma : ∀ x d (r : Fin (suc d)) → (toℕ r + x * suc d) mod suc d ≡ r mod-lemma x d r rewrite divMod-lemma x d r = refl ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5718810916, "avg_line_length": 39.4615384615, "ext": "agda", "hexsha": "84c21989e7d15a26af13d6567cc8cfd60b2dfa66", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/DivModUtils.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/DivModUtils.agda", "max_line_length": 163, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/DivModUtils.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1507, "size": 4104 }
module Chain {U : Set}(T : U -> Set) (_==_ : {a b : U} -> T a -> T b -> Set) (refl : {a : U}(x : T a) -> x == x) (trans : {a b c : U}(x : T a)(y : T b)(z : T c) -> x == y -> y == z -> x == z) where infix 30 _∼_ infix 3 proof_ infixl 2 _≡_by_ infix 1 _qed data _∼_ {a b : U}(x : T a)(y : T b) : Set where prf : x == y -> x ∼ y proof_ : {a : U}(x : T a) -> x ∼ x proof x = prf (refl x) _≡_by_ : {a b c : U}{x : T a}{y : T b} -> x ∼ y -> (z : T c) -> y == z -> x ∼ z prf p ≡ z by q = prf (trans _ _ _ p q) _qed : {a b : U}{x : T a}{y : T b} -> x ∼ y -> x == y prf p qed = p
{ "alphanum_fraction": 0.4108658744, "avg_line_length": 23.56, "ext": "agda", "hexsha": "cb402aca562b3db4110afe310a1e4ae9d0fc4f2f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "benchmark/cwf/Chain.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "benchmark/cwf/Chain.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "benchmark/cwf/Chain.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 298, "size": 589 }
-- Andreas, 2013-03-15 issue reported by Nisse -- {-# OPTIONS -v tc.proj:40 -v tc.conv.elim:40 #-} module Issue821 where import Common.Level data D (A : Set) : Set where c : D A → D A f : (A : Set) → D A → D A f A (c x) = x postulate A : Set P : D A → Set x : D A p : P x Q : P (f A x) → Set Foo : Set₁ Foo = Q p -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:466 -- Reason was that f is projection-like so the test x =?= f A x -- actually becomes x =?= x .f with unequal spine shapes (empty vs. non-empty). -- Agda thought this was impossible.
{ "alphanum_fraction": 0.6342592593, "avg_line_length": 22.3448275862, "ext": "agda", "hexsha": "ea231db2b4fa100d3acf8ee3da2a7b9d3442a300", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue821.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue821.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue821.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 217, "size": 648 }
module Data.Num.Next where open import Data.Num.Core open import Data.Num.Maximum open import Data.Num.Bounded open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) -------------------------------------------------------------------------------- -- next-numeral: NullBase -------------------------------------------------------------------------------- next-numeral-NullBase : ∀ {d o} → (xs : Numeral 0 (suc d) o) → ¬ (Maximum xs) → Numeral 0 (suc d) o next-numeral-NullBase xs ¬max with Greatest? (lsd xs) next-numeral-NullBase xs ¬max | yes greatest = contradiction (Maximum-NullBase-Greatest xs greatest) ¬max next-numeral-NullBase (x ∙) ¬max | no ¬greatest = digit+1 x ¬greatest ∙ next-numeral-NullBase (x ∷ xs) ¬max | no ¬greatest = digit+1 x ¬greatest ∷ xs next-numeral-NullBase-lemma : ∀ {d o} → (xs : Numeral 0 (suc d) o) → (¬max : ¬ (Maximum xs)) → ⟦ next-numeral-NullBase xs ¬max ⟧ ≡ suc ⟦ xs ⟧ next-numeral-NullBase-lemma {d} {o} xs ¬max with Greatest? (lsd xs) next-numeral-NullBase-lemma {d} {o} xs ¬max | yes greatest = contradiction (Maximum-NullBase-Greatest xs greatest) ¬max next-numeral-NullBase-lemma {d} {o} (x ∙) ¬max | no ¬greatest = begin Digit-toℕ (digit+1 x ¬greatest) o ≡⟨ digit+1-toℕ x ¬greatest ⟩ suc (Fin.toℕ x + o) ∎ next-numeral-NullBase-lemma {d} {o} (x ∷ xs) ¬max | no ¬greatest = begin ⟦ digit+1 x ¬greatest ∷ xs ⟧ ≡⟨ refl ⟩ Digit-toℕ (digit+1 x ¬greatest) o + ⟦ xs ⟧ * zero ≡⟨ cong (λ w → w + ⟦ xs ⟧ * zero) (digit+1-toℕ x ¬greatest) ⟩ suc (Fin.toℕ x + o + ⟦ xs ⟧ * zero) ≡⟨ refl ⟩ suc ⟦ x ∷ xs ⟧ ∎ next-numeral-is-greater-NullBase : ∀ {d o} → (xs : Numeral 0 (suc d) o) → (¬max : ¬ (Maximum xs)) → ⟦ next-numeral-NullBase xs ¬max ⟧ > ⟦ xs ⟧ next-numeral-is-greater-NullBase xs ¬max = start suc ⟦ xs ⟧ ≈⟨ sym (next-numeral-NullBase-lemma xs ¬max) ⟩ ⟦ next-numeral-NullBase xs ¬max ⟧ □ next-numeral-is-immediate-NullBase : ∀ {d o} → (xs : Numeral 0 (suc d) o) → (ys : Numeral 0 (suc d) o) → (¬max : ¬ (Maximum xs)) → ⟦ ys ⟧ > ⟦ xs ⟧ → ⟦ ys ⟧ ≥ ⟦ next-numeral-NullBase xs ¬max ⟧ next-numeral-is-immediate-NullBase xs ys ¬max prop = start ⟦ next-numeral-NullBase xs ¬max ⟧ ≈⟨ next-numeral-NullBase-lemma xs ¬max ⟩ suc ⟦ xs ⟧ ≤⟨ prop ⟩ ⟦ ys ⟧ □ -------------------------------------------------------------------------------- -- next-numeral: Proper -------------------------------------------------------------------------------- mutual Gapped#0 : ∀ b d o → Set Gapped#0 b d o = suc d < carry o * suc b Gapped#N : ∀ b d o → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Set Gapped#N b d o xs proper = suc d < (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b where next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper Gapped#0? : ∀ b d o → Dec (Gapped#0 b d o) Gapped#0? b d o = suc (suc d) ≤? carry o * suc b Gapped#N? : ∀ b d o → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Dec (Gapped#N b d o xs proper) Gapped#N? b d o xs proper = suc (suc d) ≤? (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b where next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper -- Gap#N Gapped : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Set Gapped {b} {d} {o} (x ∙) proper = Gapped#0 b d o Gapped {b} {d} {o} (x ∷ xs) proper = Gapped#N b d o xs proper Gapped? : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Dec (Gapped {b} {d} {o} xs proper) Gapped? {b} {d} {o} (x ∙) proper = Gapped#0? b d o Gapped? {b} {d} {o} (x ∷ xs) proper = Gapped#N? b d o xs proper data NextView : (b d o : ℕ) (xs : Numeral b d o) (proper : 2 ≤ d + o) → Set where Interval : ∀ b d o → {xs : Numeral (suc b) (suc d) o} → {proper : 2 ≤ suc (d + o)} → (¬greatest : ¬ (Greatest (lsd xs))) → NextView (suc b) (suc d) o xs proper GappedEndpoint : ∀ b d o → {xs : Numeral (suc b) (suc d) o} → {proper : 2 ≤ suc (d + o)} → (greatest : Greatest (lsd xs)) → (gapped : Gapped xs proper) → NextView (suc b) (suc d) o xs proper UngappedEndpoint : ∀ b d o → {xs : Numeral (suc b) (suc d) o} → {proper : 2 ≤ suc (d + o)} → (greatest : Greatest (lsd xs)) → (¬gapped : ¬ (Gapped xs proper)) → NextView (suc b) (suc d) o xs proper nextView : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → NextView (suc b) (suc d) o xs proper nextView {b} {d} {o} xs proper with Greatest? (lsd xs) nextView {b} {d} {o} xs proper | yes greatest with Gapped? xs proper nextView {b} {d} {o} xs proper | yes greatest | yes gapped = GappedEndpoint b d o greatest gapped nextView {b} {d} {o} xs proper | yes greatest | no ¬gapped = UngappedEndpoint b d o greatest ¬gapped nextView {b} {d} {o} xs proper | no ¬greatest = Interval b d o ¬greatest next-numeral-Proper-Interval : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (¬greatest : ¬ (Greatest (lsd xs))) → (proper : 2 ≤ suc (d + o)) → Numeral (suc b) (suc d) o next-numeral-Proper-Interval (x ∙) ¬greatest proper = digit+1 x ¬greatest ∙ next-numeral-Proper-Interval (x ∷ xs) ¬greatest proper = digit+1 x ¬greatest ∷ xs next-numeral-Proper-GappedEndpoint : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → (gapped : Gapped xs proper) → Numeral (suc b) (suc d) o next-numeral-Proper-GappedEndpoint {b} {d} {o} (x ∙) proper gapped = z ∷ carry-digit d o proper ∙ next-numeral-Proper-GappedEndpoint {b} {d} {o} (x ∷ xs) proper gapped = z ∷ next-numeral-Proper xs proper next-numeral-Proper-UngappedEndpoint : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (greatest : Greatest (lsd xs)) → (proper : 2 ≤ suc (d + o)) → (¬gapped : ¬ (Gapped xs proper)) → Numeral (suc b) (suc d) o next-numeral-Proper-UngappedEndpoint {b} {d} {o} (x ∙) greatest proper gapped = digit+1-n x greatest (carry o * suc b) lower-bound ∷ carry-digit d o proper ∙ where lower-bound : carry o * suc b > 0 lower-bound = start 1 ≤⟨ m≤m*1+n 1 b ⟩ 1 * suc b ≤⟨ *n-mono (suc b) (m≤m⊔n 1 o) ⟩ carry o * suc b □ next-numeral-Proper-UngappedEndpoint {b} {d} {o} (x ∷ xs) greatest proper gapped = digit+1-n x greatest gap lower-bound ∷ next-xs where next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper gap : ℕ gap = (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b lower-bound : gap > 0 lower-bound = start 1 ≤⟨ m≤m*1+n 1 b ⟩ 1 * suc b ≤⟨ *n-mono (suc b) (m≥n+o⇒m∸o≥n ⟦ next-xs ⟧ 1 ⟦ xs ⟧ (next-numeral-is-greater-Proper xs proper)) ⟩ (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b □ next-numeral-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Numeral (suc b) (suc d) o next-numeral-Proper xs proper with nextView xs proper next-numeral-Proper xs proper | Interval b d o ¬greatest = next-numeral-Proper-Interval xs ¬greatest proper next-numeral-Proper xs proper | GappedEndpoint b d o greatest gapped = next-numeral-Proper-GappedEndpoint xs proper gapped next-numeral-Proper xs proper | UngappedEndpoint b d o greatest ¬gapped = next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped next-numeral-Proper-Interval-lemma : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (¬greatest : ¬ (Greatest (lsd xs))) → (proper : 2 ≤ suc (d + o)) → ⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ ≡ suc ⟦ xs ⟧ next-numeral-Proper-Interval-lemma {b} {d} {o} (x ∙) ¬greatest proper = -- ⟦ digit+1 x ¬greatest ∙ ⟧ ≡ suc ⟦ x ∙ ⟧ begin Digit-toℕ (digit+1 x ¬greatest) o ≡⟨ digit+1-toℕ x ¬greatest ⟩ suc (Digit-toℕ x o) ∎ next-numeral-Proper-Interval-lemma {b} {d} {o} (x ∷ xs) ¬greatest proper = -- ⟦ digit+1 x ¬greatest ∷ xs ⟧ ≡ suc ⟦ x ∷ xs ⟧ begin Digit-toℕ (digit+1 x ¬greatest) o + ⟦ xs ⟧ * suc b ≡⟨ cong (λ w → w + ⟦ xs ⟧ * suc b) (digit+1-toℕ x ¬greatest) ⟩ suc (Digit-toℕ x o) + ⟦ xs ⟧ * suc b ∎ next-numeral-Proper-GappedEndpoint-lemma : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (greatest : Greatest (lsd xs)) → (proper : 2 ≤ suc (d + o)) → (gapped : Gapped xs proper) → ⟦ next-numeral-Proper-GappedEndpoint xs proper gapped ⟧ > suc ⟦ xs ⟧ next-numeral-Proper-GappedEndpoint-lemma {b} {d} {o} (x ∙) greatest proper gapped = -- ⟦ z ∷ carry-digit d o proper ∙ ⟧ > suc ⟦ x ∙ ⟧ start suc (suc (Fin.toℕ x + o)) ≈⟨ cong (λ w → suc w + o) greatest ⟩ suc (suc d) + o ≈⟨ +-comm (suc (suc d)) o ⟩ o + suc (suc d) ≤⟨ n+-mono o gapped ⟩ o + carry o * suc b ≈⟨ cong (λ w → o + w * suc b) (sym (carry-digit-toℕ d o proper)) ⟩ o + (Digit-toℕ (carry-digit d o proper) o) * suc b □ next-numeral-Proper-GappedEndpoint-lemma {b} {d} {o} (x ∷ xs) greatest proper gapped = proof where next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper next-xs>xs : ⟦ next-xs ⟧ > ⟦ xs ⟧ next-xs>xs = next-numeral-is-greater-Proper xs proper next : Numeral (suc b) (suc d) o next = z ∷ next-xs -- ⟦ z ∷ next-numeral-Proper xs (Maximum-Proper xs proper) proper ⟧ > suc ⟦ x ∷ xs ⟧ proof : ⟦ next ⟧ > suc ⟦ x ∷ xs ⟧ proof = start suc (suc (Digit-toℕ x o)) + ⟦ xs ⟧ * suc b ≈⟨ cong (λ w → suc (suc w) + ⟦ xs ⟧ * suc b) (greatest-digit-toℕ x greatest) ⟩ suc (suc d) + o + ⟦ xs ⟧ * suc b ≈⟨ +-assoc (suc (suc d)) o (⟦ xs ⟧ * suc b) ⟩ suc (suc d) + (o + ⟦ xs ⟧ * suc b) ≈⟨ a+[b+c]≡b+[a+c] (suc (suc d)) o (⟦ xs ⟧ * suc b) ⟩ o + (suc (suc d) + ⟦ xs ⟧ * suc b) ≤⟨ n+-mono o (+n-mono (⟦ xs ⟧ * suc b) gapped) ⟩ o + ((⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b + ⟦ xs ⟧ * suc b) ≈⟨ cong (λ w → o + w) (sym (distribʳ-*-+ (suc b) (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) ⟦ xs ⟧)) ⟩ o + (⟦ next-xs ⟧ ∸ ⟦ xs ⟧ + ⟦ xs ⟧) * suc b ≈⟨ cong (λ w → o + w * suc b) (m∸n+n≡m (<⇒≤ next-xs>xs)) ⟩ o + ⟦ next-xs ⟧ * suc b ≈⟨ refl ⟩ ⟦ z ∷ next-xs ⟧ □ next-numeral-Proper-UngappedEndpoint-lemma : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (greatest : Greatest (lsd xs)) → (proper : 2 ≤ suc (d + o)) → (¬gapped : ¬ (Gapped xs proper)) → ⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ ≡ suc ⟦ xs ⟧ next-numeral-Proper-UngappedEndpoint-lemma {b} {d} {o} (x ∙) greatest proper ¬gapped = proof -- ⟦ digit+1-n x greatest (carry o * suc b) lower-bound ∷ carry-digit d o proper ∙ ⟧ ≡ suc ⟦ x ∙ ⟧ where lower-bound : carry o * suc b > 0 lower-bound = start 1 ≤⟨ m≤m*1+n 1 b ⟩ 1 * suc b ≤⟨ *n-mono (suc b) (m≤m⊔n 1 o) ⟩ carry o * suc b □ upper-bound : carry o * suc b ≤ suc d upper-bound = ≤-pred $ ≰⇒> ¬gapped upper-bound' : carry o * suc b ≤ suc (Fin.toℕ x + o) upper-bound' = start carry o * suc b ≤⟨ upper-bound ⟩ suc d ≈⟨ sym greatest ⟩ suc (Fin.toℕ x) ≤⟨ m≤m+n (suc (Fin.toℕ x)) o ⟩ suc (Fin.toℕ x + o) □ next : Numeral (suc b) (suc d) o next = digit+1-n x greatest (carry o * suc b) lower-bound ∷ carry-digit d o proper ∙ proof : ⟦ next ⟧ ≡ suc (Digit-toℕ x o) proof = begin Digit-toℕ (digit+1-n x greatest (carry o * suc b) lower-bound) o + Digit-toℕ (carry-digit d o proper) o * suc b ≡⟨ cong (λ w → Digit-toℕ (digit+1-n x greatest (carry o * suc b) lower-bound) o + w * suc b) (carry-digit-toℕ d o proper) ⟩ Digit-toℕ (digit+1-n x greatest (carry o * suc b) lower-bound) o + carry o * suc b ≡⟨ cong (λ w → w + carry o * suc b) (digit+1-n-toℕ x greatest (carry o * suc b) lower-bound upper-bound) ⟩ suc (Fin.toℕ x + o) ∸ carry o * suc b + carry o * suc b ≡⟨ m∸n+n≡m upper-bound' ⟩ suc (Digit-toℕ x o) ∎ next-numeral-Proper-UngappedEndpoint-lemma {b} {d} {o} (x ∷ xs) greatest proper ¬gapped = proof -- ⟦ digit+1-n x greatest gap gap>0 ∷ next ∙ ⟧ ≡ suc ⟦ x ∷ xs ⟧ where ¬max-xs : ¬ (Maximum xs) ¬max-xs = Maximum-Proper xs proper next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper lower-bound : (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b > 0 lower-bound = start 1 ≤⟨ m≤m*1+n 1 b ⟩ 1 * suc b ≤⟨ *n-mono (suc b) (m≥n+o⇒m∸o≥n ⟦ next-xs ⟧ 1 ⟦ xs ⟧ (next-numeral-is-greater-Proper xs proper)) ⟩ (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b □ upper-bound : (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b ≤ suc d upper-bound = ≤-pred $ ≰⇒> ¬gapped next : Numeral (suc b) (suc d) o next = digit+1-n x greatest ((⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b) lower-bound ∷ next-xs ⟦next-xs⟧>⟦xs⟧ : ⟦ next-xs ⟧ > ⟦ xs ⟧ ⟦next-xs⟧>⟦xs⟧ = next-numeral-is-greater-Proper xs proper upper-bound' : ⟦ next-xs ⟧ * suc b ∸ ⟦ xs ⟧ * suc b ≤ suc (Digit-toℕ x o) upper-bound' = start ⟦ next-xs ⟧ * suc b ∸ ⟦ xs ⟧ * suc b ≈⟨ sym (*-distrib-∸ʳ (suc b) ⟦ next-xs ⟧ ⟦ xs ⟧) ⟩ (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b ≤⟨ upper-bound ⟩ suc d ≤⟨ m≤m+n (suc d) o ⟩ suc d + o ≈⟨ cong (λ w → w + o) (sym greatest) ⟩ suc (Digit-toℕ x o) □ proof : ⟦ next ⟧ ≡ suc ⟦ x ∷ xs ⟧ proof = begin ⟦ next ⟧ ≡⟨ cong (λ w → w + ⟦ next-xs ⟧ * suc b) (digit+1-n-toℕ x greatest ((⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b) lower-bound upper-bound) ⟩ suc (Digit-toℕ x o) ∸ (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b + ⟦ next-xs ⟧ * suc b ≡⟨ cong (λ w → suc (Digit-toℕ x o) ∸ w + ⟦ next-xs ⟧ * suc b) (*-distrib-∸ʳ (suc b) ⟦ next-xs ⟧ ⟦ xs ⟧) ⟩ suc (Digit-toℕ x o) ∸ (⟦ next-xs ⟧ * suc b ∸ ⟦ xs ⟧ * suc b) + ⟦ next-xs ⟧ * suc b ≡⟨ m∸[o∸n]+o≡m+n (suc (Digit-toℕ x o)) (⟦ xs ⟧ * suc b) (⟦ next-xs ⟧ * suc b) (*n-mono (suc b) (<⇒≤ ⟦next-xs⟧>⟦xs⟧)) upper-bound' ⟩ suc ⟦ x ∷ xs ⟧ ∎ next-numeral-is-greater-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → ⟦ next-numeral-Proper xs proper ⟧ > ⟦ xs ⟧ next-numeral-is-greater-Proper xs proper with nextView xs proper next-numeral-is-greater-Proper xs proper | Interval b d o ¬greatest = start suc ⟦ xs ⟧ ≈⟨ sym (next-numeral-Proper-Interval-lemma xs ¬greatest proper) ⟩ ⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ □ next-numeral-is-greater-Proper xs proper | GappedEndpoint b d o greatest gapped = start suc ⟦ xs ⟧ ≤⟨ n≤1+n (suc ⟦ xs ⟧) ⟩ suc (suc ⟦ xs ⟧) ≤⟨ next-numeral-Proper-GappedEndpoint-lemma xs greatest proper gapped ⟩ ⟦ next-numeral-Proper-GappedEndpoint xs proper gapped ⟧ □ next-numeral-is-greater-Proper xs proper | UngappedEndpoint b d o greatest ¬gapped = start suc ⟦ xs ⟧ ≈⟨ sym (next-numeral-Proper-UngappedEndpoint-lemma xs greatest proper ¬gapped) ⟩ ⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ □ -- gap : ∀ {b d o} -- → (xs : Numeral (suc b) (suc d) o) -- → (proper : 2 ≤ suc (d + o)) -- → ℕ -- gap {b} {d} {o} (x ∙) proper = carry o * suc b -- gap {b} {d} {o} (x ∷ xs) proper = (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b -- where -- next-xs : Numeral (suc b) (suc d) o -- next-xs = next-numeral-Proper xs proper -- -- gap>0 : ∀ {b d o} -- → (xs : Numeral (suc b) (suc d) o) -- → (proper : 2 ≤ suc (d + o)) -- → gap xs proper > 0 -- gap>0 {b} {d} {o} (x ∙) proper = -- start -- 1 -- ≤⟨ m≤m*1+n 1 b ⟩ -- 1 * suc b -- ≤⟨ *n-mono (suc b) (m≤m⊔n 1 o) ⟩ -- carry o * suc b -- □ -- gap>0 {b} {d} {o} (x ∷ xs) proper = -- start -- 1 -- ≤⟨ m≤m*1+n 1 b ⟩ -- 1 * suc b -- ≤⟨ *n-mono (suc b) (m≥n+o⇒m∸o≥n ⟦ next-xs ⟧ 1 ⟦ xs ⟧ (next-numeral-is-greater-Proper xs proper)) ⟩ -- (⟦ next-xs ⟧ ∸ ⟦ xs ⟧) * suc b -- □ -- where -- next-xs : Numeral (suc b) (suc d) o -- next-xs = next-numeral-Proper xs proper -------------------------------------------------------------------------------- -- Properties of next-numeral on Proper Numbers -------------------------------------------------------------------------------- next-numeral-Proper-refine-target : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → NextView (suc b) (suc d) o xs proper → Set next-numeral-Proper-refine-target xs proper (Interval b d o ¬greatest) = next-numeral-Proper xs proper ≡ next-numeral-Proper-Interval xs ¬greatest proper next-numeral-Proper-refine-target xs proper (GappedEndpoint b d o greatest gapped) = next-numeral-Proper xs proper ≡ next-numeral-Proper-GappedEndpoint xs proper gapped next-numeral-Proper-refine-target xs proper (UngappedEndpoint b d o greatest ¬gapped) = next-numeral-Proper xs proper ≡ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped next-numeral-Proper-refine : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → (view : NextView (suc b) (suc d) o xs proper) → next-numeral-Proper-refine-target xs proper view next-numeral-Proper-refine xs proper (Interval b d o ¬greatest) with nextView xs proper next-numeral-Proper-refine xs proper (Interval b d o ¬greatest) | Interval _ _ _ _ = refl next-numeral-Proper-refine xs proper (Interval b d o ¬greatest) | GappedEndpoint _ _ _ greatest _ = contradiction greatest ¬greatest next-numeral-Proper-refine xs proper (Interval b d o ¬greatest) | UngappedEndpoint _ _ _ greatest _ = contradiction greatest ¬greatest next-numeral-Proper-refine xs proper (GappedEndpoint b d o greatest gapped) with nextView xs proper next-numeral-Proper-refine xs proper (GappedEndpoint b d o greatest gapped) | Interval _ _ _ ¬greatest = contradiction greatest ¬greatest next-numeral-Proper-refine xs proper (GappedEndpoint b d o greatest gapped) | GappedEndpoint _ _ _ _ _ = refl next-numeral-Proper-refine xs proper (GappedEndpoint b d o greatest gapped) | UngappedEndpoint _ _ _ _ ¬gapped = contradiction gapped ¬gapped next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped) with nextView xs proper next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped) | Interval _ _ _ ¬greatest = contradiction greatest ¬greatest next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped) | GappedEndpoint _ _ _ _ gapped = contradiction gapped ¬gapped next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped) | UngappedEndpoint _ _ _ _ _ = refl -------------------------------------------------------------------------------- -- next-numeral-is-immediate-Proper -------------------------------------------------------------------------------- next-numeral-is-immediate-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (ys : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → ⟦ ys ⟧ > ⟦ xs ⟧ → ⟦ ys ⟧ ≥ ⟦ next-numeral-Proper xs proper ⟧ next-numeral-is-immediate-Proper xs ys proper prop with nextView xs proper next-numeral-is-immediate-Proper xs ys proper prop | Interval b d o ¬greatest = start ⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ ≈⟨ next-numeral-Proper-Interval-lemma xs ¬greatest proper ⟩ suc ⟦ xs ⟧ ≤⟨ prop ⟩ ⟦ ys ⟧ □ next-numeral-is-immediate-Proper xs (y ∙) proper prop | GappedEndpoint b d o greatest gapped = contradiction prop $ >⇒≰ $ start suc (Digit-toℕ y o) ≤⟨ s≤s (greatest-of-all o (lsd xs) y greatest) ⟩ suc (Digit-toℕ (lsd xs) o) ≤⟨ s≤s (lsd-toℕ xs) ⟩ suc ⟦ xs ⟧ □ next-numeral-is-immediate-Proper (x ∙) (y ∷ ys) proper prop | GappedEndpoint b d o greatest gapped = start o + (Digit-toℕ (carry-digit d o proper) o) * suc b ≈⟨ cong (λ w → o + w * suc b) (carry-digit-toℕ d o proper) ⟩ o + carry o * suc b ≤⟨ n+-mono o (*n-mono (suc b) ys-lower-bound) ⟩ o + ⟦ ys ⟧ * suc b ≤⟨ +n-mono (⟦ ys ⟧ * suc b) (n≤m+n (Fin.toℕ y) o) ⟩ Digit-toℕ y o + ⟦ ys ⟧ * suc b □ where ≥carry : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → ⟦ xs ⟧ > 0 → ⟦ xs ⟧ ≥ carry o ≥carry {_} {_} {zero} xs proper prop = prop ≥carry {_} {_} {suc o} (x ∙) proper prop = n≤m+n (Fin.toℕ x) (suc o) ≥carry {b} {_} {suc o} (x ∷ xs) proper prop = start suc o ≤⟨ n≤m+n (Fin.toℕ x) (suc o) ⟩ Fin.toℕ x + suc o ≤⟨ m≤m+n (Fin.toℕ x + suc o) (⟦ xs ⟧ * suc b) ⟩ Fin.toℕ x + suc o + ⟦ xs ⟧ * suc b □ ys-lower-bound : ⟦ ys ⟧ ≥ carry o ys-lower-bound = ≥carry ys proper (tail-mono-strict-Null x y ys greatest prop) next-numeral-is-immediate-Proper (x ∷ xs) (y ∷ ys) proper prop | GappedEndpoint b d o greatest gapped = start o + ⟦ next-xs ⟧ * suc b ≤⟨ n+-mono o (*n-mono (suc b) ⟦next-xs⟧≤⟦ys⟧) ⟩ o + ⟦ ys ⟧ * suc b ≤⟨ +n-mono (⟦ ys ⟧ * suc b) (n≤m+n (Fin.toℕ y) o) ⟩ Digit-toℕ y o + ⟦ ys ⟧ * suc b □ where next-xs : Numeral (suc b) (suc d) o next-xs = next-numeral-Proper xs proper ⟦xs⟧<⟦ys⟧ : ⟦ xs ⟧ < ⟦ ys ⟧ ⟦xs⟧<⟦ys⟧ = tail-mono-strict x xs y ys greatest prop ⟦next-xs⟧≤⟦ys⟧ : ⟦ next-xs ⟧ ≤ ⟦ ys ⟧ ⟦next-xs⟧≤⟦ys⟧ = next-numeral-is-immediate-Proper xs ys proper ⟦xs⟧<⟦ys⟧ next-numeral-is-immediate-Proper xs ys proper prop | UngappedEndpoint b d o greatest ¬gapped = start ⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ ≈⟨ next-numeral-Proper-UngappedEndpoint-lemma xs greatest proper ¬gapped ⟩ suc ⟦ xs ⟧ ≤⟨ prop ⟩ ⟦ ys ⟧ □ -------------------------------------------------------------------------------- -- next-numeral -------------------------------------------------------------------------------- next-numeral : ∀ {b d o} → (xs : Numeral b d o) → ¬ (Maximum xs) → Numeral b d o next-numeral {b} {d} {o} xs ¬max with numView b d o next-numeral xs ¬max | NullBase d o = next-numeral-NullBase xs ¬max next-numeral xs ¬max | NoDigits b o = NoDigits-explode xs next-numeral xs ¬max | AllZeros b = contradiction (Maximum-AllZeros xs) ¬max next-numeral xs ¬max | Proper b d o proper = next-numeral-Proper xs proper -------------------------------------------------------------------------------- -- next-numeral-is-greater -------------------------------------------------------------------------------- next-numeral-is-greater : ∀ {b d o} → (xs : Numeral b d o) → (¬max : ¬ (Maximum xs)) → ⟦ next-numeral xs ¬max ⟧ > ⟦ xs ⟧ next-numeral-is-greater {b} {d} {o} xs ¬max with numView b d o next-numeral-is-greater xs ¬max | NullBase d o = next-numeral-is-greater-NullBase xs ¬max next-numeral-is-greater xs ¬max | NoDigits b o = NoDigits-explode xs next-numeral-is-greater xs ¬max | AllZeros b = contradiction (Maximum-AllZeros xs) ¬max next-numeral-is-greater xs ¬max | Proper b d o proper = next-numeral-is-greater-Proper xs proper -------------------------------------------------------------------------------- -- next-numeral-is-immediate -------------------------------------------------------------------------------- next-numeral-is-immediate : ∀ {b d o} → (xs : Numeral b d o) → (ys : Numeral b d o) → (¬max : ¬ (Maximum xs)) → ⟦ ys ⟧ > ⟦ xs ⟧ → ⟦ ys ⟧ ≥ ⟦ next-numeral xs ¬max ⟧ next-numeral-is-immediate {b} {d} {o} xs ys ¬max prop with numView b d o next-numeral-is-immediate xs ys ¬max prop | NullBase d o = next-numeral-is-immediate-NullBase xs ys ¬max prop next-numeral-is-immediate xs ys ¬max prop | NoDigits b o = NoDigits-explode xs next-numeral-is-immediate xs ys ¬max prop | AllZeros b = contradiction (Maximum-AllZeros xs) ¬max next-numeral-is-immediate xs ys ¬max prop | Proper b d o proper = next-numeral-is-immediate-Proper xs ys proper prop -------------------------------------------------------------------------------- -- properties of the gaps -------------------------------------------------------------------------------- Gapped#N⇒Gapped#0 : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Gapped#N b d o xs proper → Gapped#0 b d o Gapped#N⇒Gapped#0 xs proper gapped#N with nextView xs proper Gapped#N⇒Gapped#0 xs proper gapped#N | Interval b d o ¬greatest = start suc (suc d) ≤⟨ gapped#N ⟩ (⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ ∸ ⟦ xs ⟧) * suc b ≤⟨ *n-mono (suc b) $ start ⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ ∸ ⟦ xs ⟧ ≈⟨ cong (λ w → w ∸ ⟦ xs ⟧) (next-numeral-Proper-Interval-lemma xs ¬greatest proper) ⟩ suc ⟦ xs ⟧ ∸ ⟦ xs ⟧ ≈⟨ m+n∸n≡m (suc zero) ⟦ xs ⟧ ⟩ suc zero ≤⟨ m≤m⊔n 1 o ⟩ suc zero ⊔ o □ ⟩ (suc zero ⊔ o) * suc b □ Gapped#N⇒Gapped#0 (x ∙) proper gapped#N | GappedEndpoint b d o greatest gapped#0 = gapped#0 Gapped#N⇒Gapped#0 (x ∷ xs) proper _ | GappedEndpoint b d o greatest gapped#N = Gapped#N⇒Gapped#0 xs proper gapped#N Gapped#N⇒Gapped#0 xs proper gapped#N | UngappedEndpoint b d o greatest ¬gapped = start suc (suc d) ≤⟨ gapped#N ⟩ (⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ ∸ ⟦ xs ⟧) * suc b ≤⟨ *n-mono (suc b) $ start ⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ ∸ ⟦ xs ⟧ ≈⟨ cong (λ w → w ∸ ⟦ xs ⟧) (next-numeral-Proper-UngappedEndpoint-lemma xs greatest proper ¬gapped) ⟩ suc ⟦ xs ⟧ ∸ ⟦ xs ⟧ ≈⟨ m+n∸n≡m (suc zero) ⟦ xs ⟧ ⟩ suc zero ≤⟨ m≤m⊔n 1 o ⟩ suc zero ⊔ o □ ⟩ (suc zero ⊔ o) * suc b □ -- ¬Gapped#0⇒¬Gapped#N : ∀ {b d o} -- → (xs : Numeral (suc b) (suc d) o) -- → (proper : 2 ≤ suc (d + o)) -- → ¬ (Gapped#0 b d o) -- → ¬ (Gapped#N b d o xs proper) -- ¬Gapped#0⇒¬Gapped#N xs proper ¬Gapped#0 = contraposition (Gapped#N⇒Gapped#0 xs proper) ¬Gapped#0 ¬Gapped#0⇒¬Gapped : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → ¬ (Gapped#0 b d o) → ¬ (Gapped xs proper) ¬Gapped#0⇒¬Gapped (x ∙) proper ¬Gapped#0 = ¬Gapped#0 ¬Gapped#0⇒¬Gapped (x ∷ xs) proper ¬Gapped#0 = contraposition (Gapped#N⇒Gapped#0 xs proper) ¬Gapped#0
{ "alphanum_fraction": 0.5012573914, "avg_line_length": 42.3395683453, "ext": "agda", "hexsha": "32fd09dc9dfd8024a86370640f037890dedd6fba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Next.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Next.agda", "max_line_length": 183, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Next.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 10273, "size": 29426 }
module #14 where {- Why do the induction principles for identity types not allow us to construct a function f : ∏(x:A) ∏(p:x=x) (p = refl[x]) with the defining equation f(x,refl[x]) :≡ refl[refl[x]] ? -} {- To use induction here we need proof that refl x ≡ p then use refl as a relation to prove that refl x ≡ p again. It's a circular construction. -} open import Relation.Binary.PropositionalEquality {- Closest I could get this into Agda. Does not compile. f : {A : Set} → (x : A) → (p : x ≡ x) → p ≡ refl x f x (refl x) = refl (refl x) -}
{ "alphanum_fraction": 0.6346153846, "avg_line_length": 28.6, "ext": "agda", "hexsha": "00e15315c3a7a5299734f91b273693dff94b45ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#14.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#14.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#14.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 185, "size": 572 }
module Generic.Test where import Generic.Test.Data import Generic.Test.DeriveEq import Generic.Test.Elim import Generic.Test.Eq import Generic.Test.Experiment import Generic.Test.ReadData import Generic.Test.Reify
{ "alphanum_fraction": 0.8465116279, "avg_line_length": 21.5, "ext": "agda", "hexsha": "d1efe7c1611fab46d2433f4df4626e57a317e2b0", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test.agda", "max_line_length": 30, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 48, "size": 215 }
module Pi-.Category where open import Relation.Binary.PropositionalEquality open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided open import Categories.Category.Monoidal.Symmetric open import Categories.Category.Monoidal.Rigid open import Categories.Category.Monoidal.CompactClosed open import Categories.Functor.Bifunctor open import Categories.Category open import Categories.Category.Inverse open import Categories.Category.Product open import Data.Product open import Data.Sum open import Data.Empty open import Relation.Nullary open import Base open import Pi-.Syntax open import Pi-.Opsem open import Pi-.Eval open import Pi-.NoRepeat open import Pi-.Interp open import Pi-.Properties open import Pi-.Invariants open import Pi-.Examples Pi- : Category _ _ _ Pi- = record { Obj = 𝕌 ; _⇒_ = _↔_ ; _≈_ = λ c₁ c₂ → eval c₁ ∼ eval c₂ ; id = id↔ ; _∘_ = λ f g → g ⨾ f ; assoc = assoc ; sym-assoc = λ x → sym (assoc x) ; identityˡ = identityˡ _ ; identityʳ = identityʳ _ ; identity² = λ {(v ⃗) → refl ; (v ⃖) → refl} ; equiv = record { refl = λ a → refl ; sym = λ f~g a → sym (f~g a) ; trans = λ f~g g~h a → trans (f~g a) (g~h a) } ; ∘-resp-≈ = ∘-resp-≈ } where identityˡ : ∀ {A B} (c : A ↔ B) (v : Val A B) → eval (c ⨾ id↔) v ≡ eval c v identityˡ c v rewrite eval≡interp (c ⨾ id↔) v | eval≡interp c v = lem c v where lem : ∀ {A B} (c : A ↔ B) (v : Val A B) → interp (c ⨾ id↔) v ≡ interp c v lem c (x ⃗) with interp c (x ⃗) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl lem c (x ⃖) with interp c (x ⃖) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl identityʳ : ∀ {A B} (c : A ↔ B) (v : Val A B) → eval (id↔ ⨾ c) v ≡ eval c v identityʳ c v rewrite eval≡interp (id↔ ⨾ c) v | eval≡interp c v = lem c v where lem : ∀ {A B} (c : A ↔ B) (v : Val A B) → interp (id↔ ⨾ c) v ≡ interp c v lem c (x ⃗) with interp c (x ⃗) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl lem c (x ⃖) with interp c (x ⃖) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl Pi-Monoidal : Monoidal Pi- Pi-Monoidal = record { ⊗ = record { F₀ = λ {(A , B) → A +ᵤ B} ; F₁ = λ {(c₁ , c₂) → c₁ ⊕ c₂ } ; identity = λ { (inj₁ v ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ v ⃖) → refl} ; homomorphism = homomorphism ; F-resp-≈ = λ {(A , B)} {(C , D)} {(f , g)} {(f' , g')} (f~f' , g~g') → F-resp-≈ f f' g g' f~f' g~g'} ; unit = 𝟘 ; unitorˡ = record { from = unite₊l ; to = uniti₊l ; iso = record { isoˡ = λ { (inj₂ v ⃗) → refl ; (inj₂ v ⃖) → refl} ; isoʳ = λ { (v ⃗) → refl ; (v ⃖) → refl}}} ; unitorʳ = record { from = unite₊r ; to = uniti₊r ; iso = record { isoˡ = λ { (inj₁ v ⃗) → refl ; (inj₁ v ⃖) → refl} ; isoʳ = λ { (v ⃗) → refl ; (v ⃖) → refl}}} ; associator = record { from = assocr₊ ; to = assocl₊ ; iso = record { isoˡ = λ { (inj₁ (inj₁ v) ⃗) → refl ; (inj₁ (inj₂ v) ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ (inj₁ v) ⃖) → refl ; (inj₁ (inj₂ v) ⃖) → refl ; (inj₂ v ⃖) → refl} ; isoʳ = λ { (inj₁ v ⃗) → refl ; (inj₂ (inj₁ v) ⃗) → refl ; (inj₂ (inj₂ v) ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ (inj₁ v) ⃖) → refl ; (inj₂ (inj₂ v) ⃖) → refl}}} ; unitorˡ-commute-from = unitorˡ-commute-from _ ; unitorˡ-commute-to = unitorˡ-commute-to _ ; unitorʳ-commute-from = unitorʳ-commute-from _ ; unitorʳ-commute-to = unitorʳ-commute-to _ ; assoc-commute-from = assoc-commute-from _ _ _ ; assoc-commute-to = assoc-commute-to _ _ _ ; triangle = λ { (inj₁ (inj₁ v) ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ v ⃖) → refl} ; pentagon = λ { (inj₁ (inj₁ (inj₁ v)) ⃗) → refl ; (inj₁ (inj₁ (inj₂ v)) ⃗) → refl ; (inj₁ (inj₂ v) ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ (inj₁ v) ⃖) → refl ; (inj₂ (inj₂ (inj₁ v)) ⃖) → refl ; (inj₂ (inj₂ (inj₂ v)) ⃖) → refl} } where F-resp-≈ : ∀ {A B C D} (f f' : A ↔ B) (g g' : C ↔ D) → (eval f ∼ eval f') → (eval g ∼ eval g') → (eval (f ⊕ g) ∼ eval (f' ⊕ g')) F-resp-≈ f f' g g' f~f' g~g' x rewrite eval≡interp (f ⊕ g) x | eval≡interp (f' ⊕ g') x = lem f f' g g' (λ x → trans (sym (eval≡interp f x)) (trans (f~f' x) (eval≡interp f' x))) (λ x → trans (sym (eval≡interp g x)) (trans (g~g' x) (eval≡interp g' x))) x where lem : ∀ {A B C D} (f f' : A ↔ B) (g g' : C ↔ D) → (interp f ∼ interp f') → (interp g ∼ interp g') → (interp (f ⊕ g) ∼ interp (f' ⊕ g')) lem f f' g g' f~f' g~g' (inj₁ x ⃗) with f~f' (x ⃗) | interp f' (x ⃗) | inspect (interp f') (x ⃗) ... | eq | x' ⃗ | [ eq' ] rewrite eq | eq' = refl ... | eq | x' ⃖ | [ eq' ] rewrite eq | eq' = refl lem f f' g g' f~f' g~g' (inj₂ y ⃗) with g~g' (y ⃗) | interp g' (y ⃗) | inspect (interp g') (y ⃗) ... | eq | y' ⃗ | [ eq' ] rewrite eq | eq' = refl ... | eq | y' ⃖ | [ eq' ] rewrite eq | eq' = refl lem f f' g g' f~f' g~g' (inj₁ x ⃖) with f~f' (x ⃖) | interp f' (x ⃖) | inspect (interp f') (x ⃖) ... | eq | x' ⃗ | [ eq' ] rewrite eq | eq' = refl ... | eq | x' ⃖ | [ eq' ] rewrite eq | eq' = refl lem f f' g g' f~f' g~g' (inj₂ y ⃖) with g~g' (y ⃖) | interp g' (y ⃖) | inspect (interp g') (y ⃖) ... | eq | y' ⃗ | [ eq' ] rewrite eq | eq' = refl ... | eq | y' ⃖ | [ eq' ] rewrite eq | eq' = refl unitorˡ-commute-from : ∀ {A B} (f : A ↔ B) (x : _) → eval ((id↔ ⊕ f) ⨾ unite₊l) x ≡ eval (unite₊l ⨾ f) x unitorˡ-commute-from f x rewrite eval≡interp ((id↔ ⊕ f) ⨾ unite₊l) x | eval≡interp (unite₊l ⨾ f) x = lem f x where lem : ∀ {A B} (f : A ↔ B) (x : _) → interp ((id↔ ⊕ f) ⨾ unite₊l) x ≡ interp (unite₊l ⨾ f) x lem f (inj₂ y ⃗) with interp f (y ⃗) ... | x ⃗ = refl ... | x ⃖ = refl lem f (x ⃖) with interp f (x ⃖) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl unitorˡ-commute-to : ∀ {A B} (f : A ↔ B) (x : _) → eval (f ⨾ uniti₊l) x ≡ eval (uniti₊l ⨾ (id↔ ⊕ f)) x unitorˡ-commute-to f x rewrite eval≡interp (f ⨾ uniti₊l) x | eval≡interp (uniti₊l ⨾ (id↔ ⊕ f)) x = lem f x where lem : ∀ {A B} (f : A ↔ B) (x : _) → interp (f ⨾ uniti₊l) x ≡ interp (uniti₊l ⨾ (id↔ ⊕ f)) x lem f (x ⃗) with interp f (x ⃗) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl lem f (inj₂ y ⃖) with interp f (y ⃖) ... | x ⃗ = refl ... | x ⃖ = refl unitorʳ-commute-from : ∀ {A B} (f : A ↔ B) (x : _) → eval ((f ⊕ id↔) ⨾ swap₊ ⨾ unite₊l) x ≡ eval ((swap₊ ⨾ unite₊l) ⨾ f) x unitorʳ-commute-from f x rewrite eval≡interp ((f ⊕ id↔) ⨾ swap₊ ⨾ unite₊l) x | eval≡interp ((swap₊ ⨾ unite₊l) ⨾ f) x = lem f x where lem : ∀ {A B} (f : A ↔ B) (x : _) → interp ((f ⊕ id↔) ⨾ swap₊ ⨾ unite₊l) x ≡ interp ((swap₊ ⨾ unite₊l) ⨾ f) x lem f (inj₁ x ⃗) with interp f (x ⃗) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl lem f (x ⃖) with interp f (x ⃖) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl unitorʳ-commute-to : ∀ {A B} (f : A ↔ B) (x : _) → eval (f ⨾ uniti₊l ⨾ swap₊) x ≡ eval ((uniti₊l ⨾ swap₊) ⨾ (f ⊕ id↔)) x unitorʳ-commute-to f x rewrite eval≡interp (f ⨾ uniti₊l ⨾ swap₊) x | eval≡interp ((uniti₊l ⨾ swap₊) ⨾ (f ⊕ id↔)) x = lem f x where lem : ∀ {A B} (f : A ↔ B) (x : _) → interp (f ⨾ uniti₊l ⨾ swap₊) x ≡ interp ((uniti₊l ⨾ swap₊) ⨾ (f ⊕ id↔)) x lem f (x ⃗) with interp f (x ⃗) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl lem f (inj₁ x ⃖) with interp f (x ⃖) ... | x₁ ⃗ = refl ... | x₁ ⃖ = refl assoc-commute-from : ∀ {A B C D E F} (f : A ↔ B) (g : C ↔ D) (h : E ↔ F) (x : _) → eval (((f ⊕ g) ⊕ h) ⨾ assocr₊) x ≡ eval (assocr₊ ⨾ (f ⊕ (g ⊕ h))) x assoc-commute-from f g h x rewrite eval≡interp (((f ⊕ g) ⊕ h) ⨾ assocr₊) x | eval≡interp (assocr₊ ⨾ (f ⊕ (g ⊕ h))) x = lem f g h x where lem : ∀ {A B C D E F} (f : A ↔ B) (g : C ↔ D) (h : E ↔ F) (x : _) → interp (((f ⊕ g) ⊕ h) ⨾ assocr₊) x ≡ interp (assocr₊ ⨾ (f ⊕ (g ⊕ h))) x lem f g h (inj₁ (inj₁ x) ⃗) with interp f (x ⃗) ... | x' ⃗ = refl ... | x' ⃖ = refl lem f g h (inj₁ (inj₂ y) ⃗) with interp g (y ⃗) ... | y' ⃗ = refl ... | y' ⃖ = refl lem f g h (inj₂ z ⃗) with interp h (z ⃗) ... | z' ⃗ = refl ... | z' ⃖ = refl lem f g h (inj₁ x ⃖) with interp f (x ⃖) ... | x' ⃗ = refl ... | x' ⃖ = refl lem f g h (inj₂ (inj₁ y) ⃖) with interp g (y ⃖) ... | y' ⃗ = refl ... | y' ⃖ = refl lem f g h (inj₂ (inj₂ z) ⃖) with interp h (z ⃖) ... | z' ⃗ = refl ... | z' ⃖ = refl assoc-commute-to : ∀ {A B C D E F} (f : A ↔ B) (g : C ↔ D) (h : E ↔ F) (x : _) → eval ((f ⊕ (g ⊕ h)) ⨾ assocl₊) x ≡ eval (assocl₊ ⨾ ((f ⊕ g) ⊕ h)) x assoc-commute-to f g h x rewrite eval≡interp ((f ⊕ (g ⊕ h)) ⨾ assocl₊) x | eval≡interp (assocl₊ ⨾ ((f ⊕ g) ⊕ h)) x = lem f g h x where lem : ∀ {A B C D E F} (f : A ↔ B) (g : C ↔ D) (h : E ↔ F) (x : _) → interp ((f ⊕ (g ⊕ h)) ⨾ assocl₊) x ≡ interp (assocl₊ ⨾ ((f ⊕ g) ⊕ h)) x lem f g h (inj₁ x ⃗) with interp f (x ⃗) ... | x' ⃗ = refl ... | x' ⃖ = refl lem f g h (inj₂ (inj₁ y) ⃗) with interp g (y ⃗) ... | y' ⃗ = refl ... | y' ⃖ = refl lem f g h (inj₂ (inj₂ z) ⃗) with interp h (z ⃗) ... | z' ⃗ = refl ... | z' ⃖ = refl lem f g h (inj₁ (inj₁ x) ⃖) with interp f (x ⃖) ... | x' ⃗ = refl ... | x' ⃖ = refl lem f g h (inj₁ (inj₂ y) ⃖) with interp g (y ⃖) ... | y' ⃗ = refl ... | y' ⃖ = refl lem f g h (inj₂ z ⃖) with interp h (z ⃖) ... | z' ⃗ = refl ... | z' ⃖ = refl Pi-Braided : Braided Pi-Monoidal Pi-Braided = record { braiding = record { F⇒G = record { η = λ _ → swap₊ ; commute = λ {(f , g) x → commute f g x} ; sym-commute = λ {(f , g) x → sym (commute f g x)}} ; F⇐G = record { η = λ _ → swap₊ ; commute = λ { (f , g) x → commute g f x} ; sym-commute = λ {(f , g) x → sym (commute g f x)}} ; iso = λ _ → record { isoˡ = λ { (inj₁ v ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ v ⃖) → refl} ; isoʳ = λ { (inj₁ v ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ v ⃖) → refl} } } ; hexagon₁ = λ { (inj₁ (inj₁ v) ⃗) → refl ; (inj₁ (inj₂ v) ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ (inj₁ v) ⃖) → refl ; (inj₂ (inj₂ v) ⃖) → refl} ; hexagon₂ = λ { (inj₁ (inj₁ v) ⃖) → refl ; (inj₁ (inj₂ v) ⃖) → refl ; (inj₂ v ⃖) → refl ; (inj₁ v ⃗) → refl ; (inj₂ (inj₁ v) ⃗) → refl ; (inj₂ (inj₂ v) ⃗) → refl}} where commute : ∀ {A B C D} (f : A ↔ C) (g : B ↔ D) (x : _) → eval ((f ⊕ g) ⨾ swap₊) x ≡ eval (swap₊ ⨾ (g ⊕ f)) x commute f g x rewrite eval≡interp ((f ⊕ g) ⨾ swap₊) x | eval≡interp (swap₊ ⨾ (g ⊕ f)) x = lem f g x where lem : ∀ {A B C D} (f : A ↔ C) (g : B ↔ D) (x : _) → interp ((f ⊕ g) ⨾ swap₊) x ≡ interp (swap₊ ⨾ (g ⊕ f)) x lem f g (inj₁ x ⃗) with interp f (x ⃗) ... | _ ⃗ = refl ... | _ ⃖ = refl lem f g (inj₂ y ⃗) with interp g (y ⃗) ... | _ ⃗ = refl ... | _ ⃖ = refl lem f g (inj₁ y ⃖) with interp g (y ⃖) ... | _ ⃗ = refl ... | _ ⃖ = refl lem f g (inj₂ x ⃖) with interp f (x ⃖) ... | _ ⃗ = refl ... | _ ⃖ = refl Pi-Symmetric : Symmetric Pi-Monoidal Pi-Symmetric = record { braided = Pi-Braided ; commutative = λ { (inj₁ v ⃗) → refl ; (inj₂ v ⃗) → refl ; (inj₁ v ⃖) → refl ; (inj₂ v ⃖) → refl}} Pi-Rigid : LeftRigid Pi-Monoidal Pi-Rigid = record { _⁻¹ = -_ ; η = η₊ ; ε = swap₊ ⨾ ε₊ ; snake₁ = λ { (v ⃗) → refl ; (v ⃖) → refl} ; snake₂ = λ { ((- v) ⃗) → refl ; ((- v) ⃖) → refl}} Pi-CompactClosed : CompactClosed Pi-Monoidal Pi-CompactClosed = record { symmetric = Pi-Symmetric ; rigid = inj₁ Pi-Rigid} ¬Pi-Inverse : ¬(Inverse Pi-) ¬Pi-Inverse record { _⁻¹ = _⁻¹ } with (ε₊ {𝟙} ⊕ id↔ {𝟙}) ⁻¹ ... | c , (_ , _) , uniq = contr where c₁ c₂ : 𝟘 +ᵤ 𝟙 ↔ (𝟙 +ᵤ - 𝟙) +ᵤ 𝟙 c₁ = η₊ ⊕ id↔ c₂ = (η₊ ⊕ id↔) ⨾ swap₊ ⨾ (id↔ ⊕ swap₊) ⨾ assocl₊ c₁pinv : (eval (((ε₊ {𝟙} ⊕ id↔) ⨾ c₁) ⨾ (ε₊ ⊕ id↔)) ∼ eval (ε₊ ⊕ id↔)) × (eval ((c₁ ⨾ (ε₊ ⊕ id↔)) ⨾ c₁) ∼ eval c₁) c₁pinv = p₁ , p₂ where p₁ : eval (((ε₊ {𝟙} ⊕ id↔) ⨾ c₁) ⨾ (ε₊ ⊕ id↔)) ∼ eval (ε₊ ⊕ id↔) p₁ (inj₁ (inj₁ tt) ⃗) = refl p₁ (inj₁ (inj₂ (- tt)) ⃗) = refl p₁ (inj₂ tt ⃗) = refl p₁ (inj₂ tt ⃖) = refl p₂ : eval ((c₁ ⨾ (ε₊ ⊕ id↔)) ⨾ c₁) ∼ eval c₁ p₂ (inj₂ tt ⃗) = refl p₂ (inj₁ (inj₁ tt) ⃖) = refl p₂ (inj₁ (inj₂ (- tt)) ⃖) = refl p₂ (inj₂ tt ⃖) = refl c₂pinv : (eval (((ε₊ {𝟙} ⊕ id↔) ⨾ c₂) ⨾ (ε₊ ⊕ id↔)) ∼ eval (ε₊ ⊕ id↔)) × (eval ((c₂ ⨾ (ε₊ ⊕ id↔)) ⨾ c₂) ∼ eval c₂) c₂pinv = p₁ , p₂ where p₁ : eval (((ε₊ {𝟙} ⊕ id↔) ⨾ c₂) ⨾ (ε₊ ⊕ id↔)) ∼ eval (ε₊ ⊕ id↔) p₁ (inj₁ (inj₁ tt) ⃗) = refl p₁ (inj₁ (inj₂ (- tt)) ⃗) = refl p₁ (inj₂ tt ⃗) = refl p₁ (inj₂ tt ⃖) = refl p₂ : eval ((c₂ ⨾ (ε₊ ⊕ id↔)) ⨾ c₂) ∼ eval c₂ p₂ (inj₂ tt ⃗) = refl p₂ (inj₁ (inj₁ tt) ⃖) = refl p₂ (inj₁ (inj₂ (- tt)) ⃖) = refl p₂ (inj₂ tt ⃖) = refl c∼c₁ : eval c ∼ eval c₁ c∼c₁ = uniq c₁pinv c∼c₂ : eval c ∼ eval c₂ c∼c₂ = uniq c₂pinv contr : ⊥ contr with trans (sym (c∼c₁ (inj₂ _ ⃗))) (c∼c₂ (inj₂ _ ⃗)) ... | () IHom : ∀ {A B C} → C ↔ (- A +ᵤ B) → (C +ᵤ A) ↔ B IHom f = (f ⊕ id↔) ⨾ [A+B]+C=[A+C]+B ⨾ (swap₊ ⊕ id↔) ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l IHom' : ∀ {A B C} → C +ᵤ A ↔ B → C ↔ - A +ᵤ B IHom' f = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ (swap₊ ⊕ id↔) ⨾ (assocr₊ ⨾ id↔ ⊕ swap₊) ⨾ id↔ ⊕ f IHom'∘IHom : ∀ {A B C} → (f : C ↔ (- A +ᵤ B)) → interp f ∼ interp (IHom' (IHom f)) IHom'∘IHom f (c ⃗) with interp f (c ⃗) IHom'∘IHom f (c ⃗) | inj₁ (- a) ⃗ = refl IHom'∘IHom f (c ⃗) | inj₂ b ⃗ = refl IHom'∘IHom f (c ⃗) | (c' ⃖) = refl IHom'∘IHom f (inj₁ (- a) ⃖) with interp f (inj₁ (- a) ⃖) IHom'∘IHom f (inj₁ (- a) ⃖) | inj₁ (- a') ⃗ = refl IHom'∘IHom f (inj₁ (- a) ⃖) | inj₂ b ⃗ = refl IHom'∘IHom f (inj₁ (- a) ⃖) | c ⃖ = refl IHom'∘IHom f (inj₂ b ⃖) with interp f (inj₂ b ⃖) IHom'∘IHom f (inj₂ b ⃖) | inj₁ (- a) ⃗ = refl IHom'∘IHom f (inj₂ b ⃖) | inj₂ b' ⃗ = refl IHom'∘IHom f (inj₂ b ⃖) | c ⃖ = refl IHom∘IHom' : ∀ {A B C} → (f : (C +ᵤ A) ↔ B) → interp f ∼ interp (IHom (IHom' f)) IHom∘IHom' f (inj₁ c ⃗) with interp f (inj₁ c ⃗) IHom∘IHom' f (inj₁ c ⃗) | b ⃗ = refl IHom∘IHom' f (inj₁ c ⃗) | inj₁ c' ⃖ = refl IHom∘IHom' f (inj₁ c ⃗) | inj₂ a ⃖ = refl IHom∘IHom' f (inj₂ a ⃗) with interp f (inj₂ a ⃗) IHom∘IHom' f (inj₂ a ⃗) | b ⃗ = refl IHom∘IHom' f (inj₂ a ⃗) | inj₁ c ⃖ = refl IHom∘IHom' f (inj₂ a ⃗) | inj₂ a' ⃖ = refl IHom∘IHom' f (b ⃖) with interp f (b ⃖) IHom∘IHom' f (b ⃖) | b' ⃗ = refl IHom∘IHom' f (b ⃖) | inj₁ c ⃖ = refl IHom∘IHom' f (b ⃖) | inj₂ a ⃖ = refl Ev : ∀ {A B} → (- A +ᵤ B) +ᵤ A ↔ B Ev = [A+B]+C=[A+C]+B ⨾ ((swap₊ ⨾ ε₊) ⊕ id↔) ⨾ unite₊l hof : ∀ {A B} → (𝟘 ↔ (- A +ᵤ B)) → (A ↔ B) hof f = uniti₊l ⨾ (f ⊕ id↔) ⨾ [A+B]+C=[A+C]+B ⨾ (swap₊ ⨾ ε₊) ⊕ id↔ ⨾ unite₊l hof' : ∀ {A B} → (A ↔ B) → (𝟘 ↔ (- A +ᵤ B)) hof' f = η₊ ⨾ (f ⊕ id↔) ⨾ swap₊ hof'∘hof : ∀ {A B} → (f : 𝟘 ↔ (- A +ᵤ B)) → interp f ∼ interp (hof' (hof f)) hof'∘hof f (inj₁ (- a) ⃖) with interp f (inj₁ (- a) ⃖) hof'∘hof f (inj₁ (- a) ⃖) | inj₁ (- a') ⃗ = refl hof'∘hof f (inj₁ (- a) ⃖) | inj₂ b ⃗ = refl hof'∘hof f (inj₂ b ⃖) with interp f (inj₂ b ⃖) hof'∘hof f (inj₂ b ⃖) | inj₁ (- a) ⃗ = refl hof'∘hof f (inj₂ b ⃖) | inj₂ b' ⃗ = refl hof∘hof' : ∀ {A B} → (f : A ↔ B) → interp f ∼ interp (hof (hof' f)) hof∘hof' f (a ⃗) with interp f (a ⃗) hof∘hof' f (a ⃗) | b ⃗ = refl hof∘hof' f (a ⃗) | a' ⃖ = refl hof∘hof' f (b ⃖) with interp f (b ⃖) hof∘hof' f (b ⃖) | b' ⃗ = refl hof∘hof' f (b ⃖) | a ⃖ = refl
{ "alphanum_fraction": 0.3881241565, "avg_line_length": 45.0729927007, "ext": "agda", "hexsha": "2c41c4fbf624b192cf69583c34ed6de2b4ca1b42", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/Category.agda", "max_line_length": 152, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/Category.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 8057, "size": 18525 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Group {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I open import Fields.FieldOfFractions.Addition I fieldOfFractionsGroup : Group fieldOfFractionsSetoid fieldOfFractionsPlus Group.+WellDefined fieldOfFractionsGroup {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} {record { num = g ; denom = h ; denomNonzero = h!=0 }} af=be ch=dg = need where open Setoid S open Ring R open Equivalence eq have1 : (c * h) ∼ (d * g) have1 = ch=dg have2 : (a * f) ∼ (b * e) have2 = af=be need : (((a * d) + (b * c)) * (f * h)) ∼ ((b * d) * (((e * h) + (f * g)))) need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R)) Group.0G fieldOfFractionsGroup = record { num = Ring.0R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I } Group.inverse fieldOfFractionsGroup record { num = a ; denom = b ; denomNonzero = p } = record { num = Group.inverse (Ring.additiveGroup R) a ; denom = b ; denomNonzero = p } Group.+Associative fieldOfFractionsGroup {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} = need where open Setoid S open Equivalence eq need : (((a * (d * f)) + (b * ((c * f) + (d * e)))) * ((b * d) * f)) ∼ ((b * (d * f)) * ((((a * d) + (b * c)) * f) + ((b * d) * e))) need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.*Associative R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.*DistributesOver+ R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Associative R) (Ring.*Associative R))) (transitive (Group.+Associative (Ring.additiveGroup R)) (Group.+WellDefined (Ring.additiveGroup R) (transitive (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Associative R) (Ring.*Commutative R)) (Ring.*Commutative R)) (symmetric (Ring.*DistributesOver+ R))) (Ring.*Commutative R)) reflexive))))) Group.identRight fieldOfFractionsGroup {record { num = a ; denom = b ; denomNonzero = b!=0 }} = need where open Setoid S open Equivalence eq need : (((a * Ring.1R R) + (b * Group.0G (Ring.additiveGroup R))) * b) ∼ ((b * Ring.1R R) * a) need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.timesZero R)) (Group.identRight (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (symmetric (Ring.*WellDefined R (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive)) Group.identLeft fieldOfFractionsGroup {record { num = a ; denom = b }} = need where open Setoid S open Equivalence eq need : (((Group.0G (Ring.additiveGroup R) * b) + (Ring.1R R * a)) * b) ∼ ((Ring.1R R * b) * a) need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.timesZero R)) reflexive) (Group.identLeft (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive) Group.invLeft fieldOfFractionsGroup {record { num = a ; denom = b }} = need where open Setoid S open Equivalence eq need : (((Group.inverse (Ring.additiveGroup R) a * b) + (b * a)) * Ring.1R R) ∼ ((b * b) * Group.0G (Ring.additiveGroup R)) need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R)) Group.invRight fieldOfFractionsGroup {record { num = a ; denom = b }} = need where open Setoid S open Equivalence eq need : (((a * b) + (b * Group.inverse (Ring.additiveGroup R) a)) * Ring.1R R) ∼ ((b * b) * Group.0G (Ring.additiveGroup R)) need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invRight (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
{ "alphanum_fraction": 0.6965769359, "avg_line_length": 102, "ext": "agda", "hexsha": "5d755fc182d677fbcd12b8f1e02c5a65aba640fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/FieldOfFractions/Group.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/FieldOfFractions/Group.agda", "max_line_length": 970, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/FieldOfFractions/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1853, "size": 6018 }
open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; _≟_) open import Data.Nat using (suc; zero) open import Data.Nat.Properties using (suc-injective; 0≢1+n) open import Data.Product using (∃-syntax; _×_; _,_; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Data.Vec using (lookup; _[_]≔_) open import Data.Vec.Properties using (lookup∘update; lookup∘update′) open import Relation.Binary.PropositionalEquality using (refl; sym; cong; trans; _≡_; _≢_; module ≡-Reasoning) open import Relation.Nullary using (yes; no) open ≡-Reasoning open import Common open import Global open import Local open import Projection completeness : ∀{ n } { act : Action n } { c c′ g g-size } -> { g-size-is-size-g : g-size ≡ size-g g } -> g ↔ c -> c - act →c c′ -> ∃[ g′ ] g - act →g g′ × g′ ↔ c′ completeness assoc (→c-comm c p≢q lp≡c[p] lq≡c[q] c→c′ (→l-send p _ _) (→l-send .p _ _)) = ⊥-elim (p≢q refl) completeness assoc (→c-comm c p≢q lp≡c[p] lq≡c[q] c→c′ (→l-recv p _ _) (→l-send .p _ _)) = ⊥-elim (p≢q refl) completeness assoc (→c-comm c p≢q lp≡c[p] lq≡c[q] c→c′ (→l-recv p _ _) (→l-recv .p _ _)) = ⊥-elim (p≢q refl) completeness {n} {act} {c′ = c′} {g = g} {g-size = g-size} {g-size-is-size-g = g-size-is-size-g} assoc (→c-comm {p} {q} {l} c p≢q lp≡c[p] lq≡c[q] refl lpReduce@(→l-send {lp = lp} {lpSub = lp′} .p refl p≢q-p) lqReduce@(→l-recv {lp = lq} {lpSub = lq′} .q refl p≢q-q) ) with proj-inv-send-recv {g = g} (trans (sym (_↔_.isProj assoc p)) (sym lp≡c[p])) (trans (sym (_↔_.isProj assoc q)) (sym lq≡c[q])) ... | inj₁ (p≢q , g′ , refl , refl , refl) = g′ , →g-prefix , record { isProj = isProj-g′ } where isProj-g′ : (r : Fin n) -> lookup c′ r ≡ project g′ r isProj-g′ r with r ≟ p | r ≟ q ... | yes refl | yes refl = ⊥-elim (p≢q refl) ... | no r≢p | yes refl rewrite lookup∘update q (c [ p ]≔ lp′) lq′ = refl ... | yes refl | no r≢q rewrite lookup∘update′ p≢q (c [ p ]≔ lp′) lq′ rewrite lookup∘update p c lp′ = refl ... | no r≢p | no r≢q rewrite lookup∘update′ r≢q (c [ p ]≔ lp′) lq′ rewrite lookup∘update′ r≢p c lp′ rewrite sym (proj-prefix-other {l = l} p q r {p≢q} g′ (¬≡-flip r≢p) (¬≡-flip r≢q)) rewrite _↔_.isProj assoc r = refl ... | inj₂ (r , s , r≢s , l′ , gSub , refl , r≢p , s≢p , r≢q , s≢q , gSub-proj-p , gSub-proj-q) with g-size ... | zero = ⊥-elim (0≢1+n g-size-is-size-g) ... | suc gSub-size = g′ , gReduce , record { isProj = isProj-g′ } where lrSub = project gSub r lsSub = project gSub s remove-prefix-g : ∃[ cSub ] cSub ≡ (c [ r ]≔ lrSub) [ s ]≔ lsSub × gSub ↔ cSub remove-prefix-g = config-gt-remove-prefix g c assoc refl completeness-gSub : ∃[ gSub′ ] gSub - act →g gSub′ × gSub′ ↔ ((((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) [ q ]≔ lq′) completeness-gSub with remove-prefix-g ... | cSub , refl , gSub↔cSub = completeness {g = gSub} {g-size = gSub-size} {gSub-size-is-size-gSub} gSub↔cSub cSub→cSub′ where gSub-size-is-size-gSub : gSub-size ≡ size-g gSub gSub-size-is-size-gSub = suc-injective g-size-is-size-g cSub′ = (cSub [ p ]≔ lp′) [ q ]≔ lq′ cSub→cSub′ : cSub - act →c cSub′ cSub→cSub′ with remove-prefix-g ... | cSub , refl , gSub↔cSub = →c-comm cSub p≢q lp≡cSub[p] lq≡cSub[q] refl lpReduce lqReduce where lp≡cSub[p] : lp ≡ lookup cSub p lp≡cSub[p] rewrite lp≡c[p] rewrite sym (lookup∘update′ (¬≡-flip r≢p) c lrSub) rewrite sym (lookup∘update′ (¬≡-flip s≢p) (c [ r ]≔ lrSub) lsSub) = refl lq≡cSub[q] : lq ≡ lookup cSub q lq≡cSub[q] rewrite lq≡c[q] rewrite sym (lookup∘update′ (¬≡-flip r≢q) c lrSub) rewrite sym (lookup∘update′ (¬≡-flip s≢q) (c [ r ]≔ lrSub) lsSub) = refl g′ : Global n g′ with completeness-gSub ... | gSub′ , _ , _ = msgSingle r s r≢s l′ gSub′ gReduce : g - act →g g′ gReduce with completeness-gSub ... | gSub′ , gSubReduce , gSub′↔cSub′ = →g-cont gSubReduce (¬≡-flip r≢p) (¬≡-flip r≢q) (¬≡-flip s≢p) (¬≡-flip s≢q) isProj-g′ : (t : Fin n) -> lookup c′ t ≡ project g′ t isProj-g′ t with remove-prefix-g | completeness-gSub ... | cSub , un-c′ , g′↔c′ | gSub′ , gSubReduce , gSub′↔cSub′ with r ≟ t | s ≟ t ... | yes refl | yes refl = ⊥-elim (r≢s refl) ... | no r≢t | yes refl rewrite sym (_↔_.isProj gSub′↔cSub′ s) rewrite lookup∘update′ s≢q (c [ p ]≔ lp′) lq′ rewrite lookup∘update′ s≢p c lp′ rewrite _↔_.isProj assoc s rewrite proj-prefix-recv {l = l′} r s gSub r≢s rewrite lookup∘update′ s≢q (((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) lq′ rewrite lookup∘update′ s≢p ((c [ r ]≔ lrSub) [ s ]≔ lsSub) lp′ rewrite lookup∘update s (c [ r ]≔ lrSub) lsSub = refl ... | yes refl | no s≢t rewrite sym (_↔_.isProj gSub′↔cSub′ r) rewrite lookup∘update′ r≢q (c [ p ]≔ lp′) lq′ rewrite lookup∘update′ r≢p c lp′ rewrite _↔_.isProj assoc r rewrite proj-prefix-send {l = l′} r s gSub r≢s rewrite lookup∘update′ r≢q (((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) lq′ rewrite lookup∘update′ r≢p ((c [ r ]≔ lrSub) [ s ]≔ lsSub) lp′ rewrite lookup∘update′ r≢s (c [ r ]≔ lrSub) lsSub rewrite lookup∘update r c lrSub = refl ... | no r≢t | no s≢t rewrite proj-prefix-other {l = l′} r s t {r≢s} gSub′ r≢t s≢t with p ≟ t | q ≟ t ... | yes refl | yes refl = ⊥-elim (p≢q refl) ... | yes refl | no q≢t rewrite lookup∘update′ p≢q (c [ p ]≔ lp′) lq′ rewrite lookup∘update p c lp′ rewrite sym (_↔_.isProj gSub′↔cSub′ p) rewrite lookup∘update′ p≢q (((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) lq′ rewrite lookup∘update p ((c [ r ]≔ lrSub) [ s ]≔ lsSub) lp′ = refl ... | no p≢t | yes refl rewrite lookup∘update q (c [ p ]≔ lp′) lq′ rewrite sym (_↔_.isProj gSub′↔cSub′ q) rewrite lookup∘update q (((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) lq′ = refl ... | no p≢t | no q≢t rewrite lookup∘update′ (¬≡-flip q≢t) (c [ p ]≔ lp′) lq′ rewrite lookup∘update′ (¬≡-flip p≢t) c lp′ rewrite sym (_↔_.isProj gSub′↔cSub′ t) rewrite lookup∘update′ (¬≡-flip q≢t) (((c [ r ]≔ lrSub) [ s ]≔ lsSub) [ p ]≔ lp′) lq′ rewrite lookup∘update′ (¬≡-flip p≢t) ((c [ r ]≔ lrSub) [ s ]≔ lsSub) lp′ rewrite lookup∘update′ (¬≡-flip s≢t) (c [ r ]≔ lrSub) lsSub rewrite lookup∘update′ (¬≡-flip r≢t) c lrSub = refl
{ "alphanum_fraction": 0.4837579189, "avg_line_length": 46.9556962025, "ext": "agda", "hexsha": "9058d0ad1c7a2a5dc075b1a1fff3eedb90f56f2d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fangyi-zhou/mpst-in-agda", "max_forks_repo_path": "Completeness.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fangyi-zhou/mpst-in-agda", "max_issues_repo_path": "Completeness.agda", "max_line_length": 128, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fangyi-zhou/mpst-in-agda", "max_stars_repo_path": "Completeness.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z", "num_tokens": 2821, "size": 7419 }
-- Andreas, 2019-08-20, issue #4016 -- Debug printing should not crash Agda even if there are -- __IMPOSSIBLE__s buried inside values that get printed. {-# OPTIONS -v scope.decl.trace:80 #-} -- KEEP! -- The following is some random code (see issue #4010) -- that happened to trigger an internal error with verbosity 80. open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List data D : Set where c : D module M where private unquoteDecl g = do ty ← quoteTC D _ ← declareDef (arg (arg-info visible relevant) g) ty qc ← quoteTC c defineFun g (clause [] [] qc ∷ []) -- Should print lots of debug stuff and succeed.
{ "alphanum_fraction": 0.6806358382, "avg_line_length": 23.8620689655, "ext": "agda", "hexsha": "ff68586a3a254665092f189c92a9d564a1ea8083", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4016.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4016.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4016.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 192, "size": 692 }
-- Andreas, 2018-10-18, issue #3285, reported by ice1000 -- Testcase by Frederik NF f : Set → Set f x = x syntax f a = a -- WAS: internal error -- -- Now: parse error: Malformed syntax declaration
{ "alphanum_fraction": 0.675, "avg_line_length": 16.6666666667, "ext": "agda", "hexsha": "9d2d8c571ca6114b51ecfc5d7fb95edbc8dd0e59", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3285.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3285.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3285.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 65, "size": 200 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Freudenthal module homotopy.IterSuspensionStable where {- π (S k) (Ptd-Susp^ (S n) X) == π k (Ptd-Susp^ n X), where k = S k' Susp^Stable below assumes k ≠ O instead of taking k' as the argument -} module Susp^StableSucc {i} (k n : ℕ) (Skle : S k ≤ n *2) (X : Ptd i) {{_ : is-connected ⟨ n ⟩ (de⊙ X)}} where {- some numeric computations -} private Skle' : ⟨ S k ⟩ ≤T ⟨ n ⟩₋₁ +2+ ⟨ n ⟩₋₁ Skle' = ≤T-trans (⟨⟩-monotone-≤ Skle) (inl (lemma n)) where lemma : (n : ℕ) → ⟨ n *2 ⟩ == ⟨ n ⟩₋₁ +2+ ⟨ n ⟩₋₁ lemma O = idp lemma (S n') = ap S (ap S (lemma n') ∙ ! (+2+-βr ⟨ S n' ⟩₋₂ ⟨ S n' ⟩₋₂)) private module F = FreudenthalIso ⟨ n ⟩₋₂ k Skle' X stable : πS (S k) (⊙Susp X) ≃ᴳ πS k X stable = πS (S k) (⊙Susp X) ≃ᴳ⟨ πS-Ω-split-iso k (⊙Susp X) ⟩ πS k (⊙Ω (⊙Susp X)) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso k (⊙Ω (⊙Susp X)) ⁻¹ᴳ ⟩ Ω^S-group k (⊙Trunc ⟨ S k ⟩ (⊙Ω (⊙Susp X))) ≃ᴳ⟨ F.iso ⁻¹ᴳ ⟩ Ω^S-group k (⊙Trunc ⟨ S k ⟩ X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso k X ⟩ πS k X ≃ᴳ∎
{ "alphanum_fraction": 0.4961767205, "avg_line_length": 31.8108108108, "ext": "agda", "hexsha": "9fc226b944cde6972907de0caba2f8f8363d4cec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/IterSuspensionStable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/IterSuspensionStable.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/IterSuspensionStable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 565, "size": 1177 }
module eq where open import level ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 4 _≡_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- sym : ∀ {ℓ}{A : Set ℓ}{x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {ℓ}{A : Set ℓ}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(p : A → B) {x y : A} → x ≡ y → p x ≡ p y cong p refl = refl congf : ∀{l l' : Level}{A : Set l}{B : Set l'}{f f' : A → B}{b c : A} → f ≡ f' → b ≡ c → (f b) ≡ (f' c) congf refl refl = refl congf2 : ∀{l l' l'' : Level}{A : Set l}{B : Set l'}{C : Set l''}{f f' : A → B → C}{b c : A}{d e : B} → f ≡ f' → b ≡ c → d ≡ e → (f b d) ≡ (f' c e) congf2 refl refl refl = refl cong2 : ∀{i j k}{A : Set i}{B : Set j}{C : Set k}{a a' : A}{b b' : B} → (f : A → B → C) → a ≡ a' → b ≡ b' → f a b ≡ f a' b' cong2 f refl refl = refl cong3 : ∀{i j k l}{A : Set i}{B : Set j}{C : Set k}{D : Set l}{a a' : A}{b b' : B}{c c' : C} → (f : A → B → C → D) → a ≡ a' → b ≡ b' → c ≡ c' → f a b c ≡ f a' b' c' cong3 f refl refl refl = refl
{ "alphanum_fraction": 0.3146214099, "avg_line_length": 28.9056603774, "ext": "agda", "hexsha": "03e17b1bdf2f9855874175b68dba45332dc5dc25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "eq.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 562, "size": 1532 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters import LibraBFT.Impl.Consensus.ConsensusTypes.Properties.QuorumCert as QC import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert open import LibraBFT.Impl.Consensus.ConsensusTypes.SyncInfo as SI open import LibraBFT.Impl.Properties.Util open import LibraBFT.Impl.Types.BlockInfo as BI open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open Invariants open RoundManagerTransProps module LibraBFT.Impl.Consensus.ConsensusTypes.Properties.SyncInfo where module verifyMSpec (self : SyncInfo) (validator : ValidatorVerifier) where epoch = self ^∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biEpoch record SIVerifyProps (pre : RoundManager) : Set where field sivpEp≡ : epoch ≡ self ^∙ siHighestCommitCert ∙ qcCertifiedBlock ∙ biEpoch sivpTcEp≡ : maybeS (self ^∙ siHighestTimeoutCert) Unit $ λ tc -> epoch ≡ tc ^∙ tcEpoch sivpHqc≥Hcc : (self ^∙ siHighestQuorumCert) [ _≥_ ]L self ^∙ siHighestCommitCert at qcCertifiedBlock ∙ biRound sivpHqc≢empty : self ^∙ siHighestCommitCert ∙ qcCommitInfo ≢ BI.empty sivpHqcVer : QC.Contract (self ^∙ siHighestQuorumCert) validator sivpHccVer : maybeS (self ^∙ sixxxHighestCommitCert) Unit $ λ qc → QC.Contract qc validator -- Waiting on TimeoutCertificate Contract : sivpHtcVer : maybeS (self ^∙ siHighestTimeoutCert ) Unit $ λ tc → {!!} module _ (pre : RoundManager) where record Contract (r : Either ErrLog Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General properties / invariants rmInv : Preserves RoundManagerInv pre post noStateChange : pre ≡ post -- Output noMsgOuts : OutputProps.NoMsgs outs -- Syncing syncResCorr : r ≡ Right unit → SIVerifyProps pre -- NOTE: Since the output contains no messages and the state does not -- change, nothing needs to be said about the quorum certificats in the -- output and post state verifyCorrect : SI.verify self validator ≡ Right unit → SIVerifyProps pre verifyCorrect verify≡ with epoch ≟ self ^∙ siHighestCommitCert ∙ qcCertifiedBlock ∙ biEpoch ...| no ep≢ = absurd (Left _ ≡ Right _) case verify≡ of λ () ...| yes sivpEp≡ with sivpTcEp≡ verify≡ where sivpTcEp≡ : SI.verify.step₁ self validator ≡ Right unit → maybeS (self ^∙ siHighestTimeoutCert) Unit (\tc -> epoch ≡ tc ^∙ tcEpoch) × SI.verify.step₂ self validator ≡ Right unit sivpTcEp≡ verify≡₁ with self ^∙ siHighestTimeoutCert ...| nothing = unit , verify≡₁ ...| just tc with epoch ≟ tc ^∙ tcEpoch ...| yes tce≡ = tce≡ , verify≡₁ ...| no tce≢ = absurd (Left _ ≡ Right _) case verify≡₁ of λ () ...| sivpTcEp≡ , verify≡₂ with sivpHqc≥Hcc verify≡₂ where sivpHqc≥Hcc : (SI.verify.step₂ self validator ≡ Right unit) → (self ^∙ siHighestQuorumCert) [ _≥_ ]L self ^∙ siHighestCommitCert at qcCertifiedBlock ∙ biRound × SI.verify.step₃ self validator ≡ Right unit sivpHqc≥Hcc verify≡₂ with self ^∙ siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound ≥? self ^∙ siHighestCommitCert ∙ qcCertifiedBlock ∙ biRound ...| yes hqc≥hcc = hqc≥hcc , verify≡₂ ...| no hqc<hcc = absurd Left _ ≡ Right _ case verify≡₂ of λ () ...| sivpHqc≥Hcc , verify≡₃ with sivpHqc≢empty verify≡₃ where sivpHqc≢empty : (SI.verify.step₃ self validator ≡ Right unit) → self ^∙ siHighestCommitCert ∙ qcCommitInfo ≢ BI.empty × SI.verify.step₄ self validator ≡ Right unit sivpHqc≢empty verify≡₃ with self ^∙ siHighestCommitCert ∙ qcCommitInfo ≟ BI.empty ...| no ≢empty = ≢empty , verify≡₃ ...| yes ≡empty = absurd Left _ ≡ Right _ case verify≡₃ of λ () ...| sivpHqc≢empty , verify≡₄ with sivpHqcVer verify≡₄ where sivpHqcVer : (SI.verify.step₄ self validator ≡ Right unit) → QC.Contract (self ^∙ siHighestQuorumCert) validator × SI.verify.step₅ self validator ≡ Right unit sivpHqcVer verify≡₄ with QuorumCert.verify (self ^∙ siHighestQuorumCert) validator | inspect (QuorumCert.verify (self ^∙ siHighestQuorumCert)) validator ...| Left _ | _ = absurd Left _ ≡ Right _ case verify≡₄ of λ () ...| Right unit | [ R ] with QC.contract (self ^∙ siHighestQuorumCert) validator (Right unit) refl R ...| qcCon = qcCon , verify≡₄ ...| sivpHqcVer , verify≡₅ with sivpHccVer verify≡₅ where sivpHccVer : (SI.verify.step₅ self validator ≡ Right unit) → (maybeS (self ^∙ sixxxHighestCommitCert) Unit $ λ qc → QC.Contract qc validator) × SI.verify.step₆ self validator ≡ Right unit sivpHccVer verify≡₅ with self ^∙ sixxxHighestCommitCert ...| nothing = unit , verify≡₅ ...| just qc with QuorumCert.verify qc validator | inspect (QuorumCert.verify qc) validator ...| Left _ | _ = absurd Left _ ≡ Right _ case verify≡₅ of λ () ...| Right unit | [ R ] = QC.contract qc validator (Right unit) refl R , verify≡₅ ...| sivpHccVer , verify≡₆ = -- TODO: continue case analysis for remaining fields record { sivpEp≡ = sivpEp≡ ; sivpTcEp≡ = sivpTcEp≡ ; sivpHqc≥Hcc = sivpHqc≥Hcc ; sivpHqc≢empty = sivpHqc≢empty ; sivpHqcVer = sivpHqcVer ; sivpHccVer = sivpHccVer -- ; sivpHtcVer = } contract : ∀ Q → (RWS-Post-⇒ Contract Q) → LBFT-weakestPre (SI.verifyM self validator) Q pre contract Q pf = LBFT-⇒ (SI.verifyM self validator) pre (mkContract id refl refl verifyCorrect) pf
{ "alphanum_fraction": 0.6524022864, "avg_line_length": 47.2481751825, "ext": "agda", "hexsha": "e5754c08804d651fd18fa6e233d18139e81c41e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/SyncInfo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/SyncInfo.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/SyncInfo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2056, "size": 6473 }
module Rationals.Add.Assoc where open import Equality open import Function open import Nats using (zero; ℕ) renaming (suc to s; _+_ to _:+:_; _*_ to _:*:_) open import Rationals open import Rationals.Properties open import Nats.Add.Comm open import Nats.Add.Assoc open import Nats.Multiply.Distrib open import Nats.Multiply.Assoc open import Nats.Multiply.Comm ------------------------------------------------------------------------ -- internal stuffs private a+b+c=a+/b+c/ : ∀ a b c → a + (b + c) ≡ (a + b) + c a+b+c=a+/b+c/ (ax ÷ ay) (bx ÷ by) (cx ÷ cy) rewrite ax ÷ ay ↑ (by :*: cy) | bx ÷ by ↑ (ay :*: cy) | cx ÷ cy ↑ (ay :*: by) | nat-multiply-assoc ay by cy | sym $ nat-multiply-distrib (bx :*: cy) (cx :*: by) ay | sym $ nat-multiply-distrib (ax :*: by) (bx :*: ay) cy | sym $ nat-add-assoc (ax :*: (by :*: cy)) (bx :*: cy :*: ay) (cx :*: by :*: ay) | nat-multiply-assoc ax by cy | nat-multiply-comm ay by | nat-multiply-assoc cx by ay | nat-multiply-assoc bx cy ay | nat-multiply-assoc bx ay cy | nat-multiply-comm cy ay = refl rational-add-assoc : ∀ a b c → a + (b + c) ≡ (a + b) + c rational-add-assoc = a+b+c=a+/b+c/
{ "alphanum_fraction": 0.502265861, "avg_line_length": 32.2926829268, "ext": "agda", "hexsha": "48c5f7c31d3e761da158048f435a2145de0ccb80", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Rationals/Add/Assoc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Rationals/Add/Assoc.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Rationals/Add/Assoc.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 412, "size": 1324 }
-- Intuitionistic propositional calculus. -- Gentzen-style formalisation of syntax. -- Normal forms and neutrals. module IPC.Syntax.GentzenNormalForm where open import IPC.Syntax.Gentzen public -- Derivations. mutual -- Normal forms, or introductions. infix 3 _⊢ⁿᶠ_ data _⊢ⁿᶠ_ (Γ : Cx Ty) : Ty → Set where neⁿᶠ : ∀ {A} → Γ ⊢ⁿᵉ A → Γ ⊢ⁿᶠ A lamⁿᶠ : ∀ {A B} → Γ , A ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ▻ B pairⁿᶠ : ∀ {A B} → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ∧ B unitⁿᶠ : Γ ⊢ⁿᶠ ⊤ inlⁿᶠ : ∀ {A B} → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ A ∨ B inrⁿᶠ : ∀ {A B} → Γ ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ∨ B -- Neutrals, or eliminations. infix 3 _⊢ⁿᵉ_ data _⊢ⁿᵉ_ (Γ : Cx Ty) : Ty → Set where varⁿᵉ : ∀ {A} → A ∈ Γ → Γ ⊢ⁿᵉ A appⁿᵉ : ∀ {A B} → Γ ⊢ⁿᵉ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᵉ B fstⁿᵉ : ∀ {A B} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ A sndⁿᵉ : ∀ {A B} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ B boomⁿᵉ : ∀ {C} → Γ ⊢ⁿᵉ ⊥ → Γ ⊢ⁿᵉ C caseⁿᵉ : ∀ {A B C} → Γ ⊢ⁿᵉ A ∨ B → Γ , A ⊢ⁿᶠ C → Γ , B ⊢ⁿᶠ C → Γ ⊢ⁿᵉ C infix 3 _⊢⋆ⁿᶠ_ _⊢⋆ⁿᶠ_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ⁿᶠ ∅ = 𝟙 Γ ⊢⋆ⁿᶠ Ξ , A = Γ ⊢⋆ⁿᶠ Ξ × Γ ⊢ⁿᶠ A infix 3 _⊢⋆ⁿᵉ_ _⊢⋆ⁿᵉ_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ⁿᵉ ∅ = 𝟙 Γ ⊢⋆ⁿᵉ Ξ , A = Γ ⊢⋆ⁿᵉ Ξ × Γ ⊢ⁿᵉ A -- Translation to simple terms. mutual nf→tm : ∀ {A Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ A nf→tm (neⁿᶠ t) = ne→tm t nf→tm (lamⁿᶠ t) = lam (nf→tm t) nf→tm (pairⁿᶠ t u) = pair (nf→tm t) (nf→tm u) nf→tm unitⁿᶠ = unit nf→tm (inlⁿᶠ t) = inl (nf→tm t) nf→tm (inrⁿᶠ t) = inr (nf→tm t) ne→tm : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ A ne→tm (varⁿᵉ i) = var i ne→tm (appⁿᵉ t u) = app (ne→tm t) (nf→tm u) ne→tm (fstⁿᵉ t) = fst (ne→tm t) ne→tm (sndⁿᵉ t) = snd (ne→tm t) ne→tm (boomⁿᵉ t) = boom (ne→tm t) ne→tm (caseⁿᵉ t u v) = case (ne→tm t) (nf→tm u) (nf→tm v) nf→tm⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᶠ Ξ → Γ ⊢⋆ Ξ nf→tm⋆ {∅} ∙ = ∙ nf→tm⋆ {Ξ , A} (ts , t) = nf→tm⋆ ts , nf→tm t ne→tm⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᵉ Ξ → Γ ⊢⋆ Ξ ne→tm⋆ {∅} ∙ = ∙ ne→tm⋆ {Ξ , A} (ts , t) = ne→tm⋆ ts , ne→tm t -- Monotonicity with respect to context inclusion. mutual mono⊢ⁿᶠ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᶠ A → Γ′ ⊢ⁿᶠ A mono⊢ⁿᶠ η (neⁿᶠ t) = neⁿᶠ (mono⊢ⁿᵉ η t) mono⊢ⁿᶠ η (lamⁿᶠ t) = lamⁿᶠ (mono⊢ⁿᶠ (keep η) t) mono⊢ⁿᶠ η (pairⁿᶠ t u) = pairⁿᶠ (mono⊢ⁿᶠ η t) (mono⊢ⁿᶠ η u) mono⊢ⁿᶠ η unitⁿᶠ = unitⁿᶠ mono⊢ⁿᶠ η (inlⁿᶠ t) = inlⁿᶠ (mono⊢ⁿᶠ η t) mono⊢ⁿᶠ η (inrⁿᶠ t) = inrⁿᶠ (mono⊢ⁿᶠ η t) mono⊢ⁿᵉ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᵉ A → Γ′ ⊢ⁿᵉ A mono⊢ⁿᵉ η (varⁿᵉ i) = varⁿᵉ (mono∈ η i) mono⊢ⁿᵉ η (appⁿᵉ t u) = appⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ η u) mono⊢ⁿᵉ η (fstⁿᵉ t) = fstⁿᵉ (mono⊢ⁿᵉ η t) mono⊢ⁿᵉ η (sndⁿᵉ t) = sndⁿᵉ (mono⊢ⁿᵉ η t) mono⊢ⁿᵉ η (boomⁿᵉ t) = boomⁿᵉ (mono⊢ⁿᵉ η t) mono⊢ⁿᵉ η (caseⁿᵉ t u v) = caseⁿᵉ (mono⊢ⁿᵉ η t) (mono⊢ⁿᶠ (keep η) u) (mono⊢ⁿᶠ (keep η) v) mono⊢⋆ⁿᶠ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ⁿᶠ Ξ → Γ′ ⊢⋆ⁿᶠ Ξ mono⊢⋆ⁿᶠ {∅} η ∙ = ∙ mono⊢⋆ⁿᶠ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᶠ η ts , mono⊢ⁿᶠ η t mono⊢⋆ⁿᵉ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ⁿᵉ Ξ → Γ′ ⊢⋆ⁿᵉ Ξ mono⊢⋆ⁿᵉ {∅} η ∙ = ∙ mono⊢⋆ⁿᵉ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᵉ η ts , mono⊢ⁿᵉ η t -- Reflexivity. refl⊢⋆ⁿᵉ : ∀ {Γ} → Γ ⊢⋆ⁿᵉ Γ refl⊢⋆ⁿᵉ {∅} = ∙ refl⊢⋆ⁿᵉ {Γ , A} = mono⊢⋆ⁿᵉ weak⊆ refl⊢⋆ⁿᵉ , varⁿᵉ top
{ "alphanum_fraction": 0.4815740162, "avg_line_length": 30.4952380952, "ext": "agda", "hexsha": "921ea78063e2eacb74b34781560921a3f5cb2a07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Syntax/GentzenNormalForm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Syntax/GentzenNormalForm.agda", "max_line_length": 91, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Syntax/GentzenNormalForm.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2401, "size": 3202 }
module Issue1296.SolvedMeta where open import Common.Prelude open import Common.Equality test : zero ≡ {!!} test = refl
{ "alphanum_fraction": 0.762295082, "avg_line_length": 15.25, "ext": "agda", "hexsha": "d552e2ebff9af371055415d52c3292cd40aa6712", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1296/SolvedMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1296/SolvedMeta.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1296/SolvedMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 122 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Semilattice where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Semilattice open import Cubical.Categories.Category open import Cubical.Categories.Instances.Poset open Category module _ {ℓ} (L : Semilattice ℓ) where open JoinSemilattice L JoinSemilatticeCategory : Category ℓ ℓ JoinSemilatticeCategory = PosetCategory IndPoset module _ {ℓ} (L : Semilattice ℓ) where open MeetSemilattice L MeetSemilatticeCategory : Category ℓ ℓ MeetSemilatticeCategory = PosetCategory IndPoset
{ "alphanum_fraction": 0.7982758621, "avg_line_length": 22.3076923077, "ext": "agda", "hexsha": "e698f39ae2c120961de2829833a6c3d0d0de817e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Semilattice.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 162, "size": 580 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Decidable where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Conversion open import Definition.Conversion.Decidable open import Definition.Conversion.Soundness open import Definition.Conversion.Stability open import Definition.Conversion.Consequences.Completeness open import Tools.Nullary -- Decidability of conversion of well-formed types dec : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Dec (Γ ⊢ A ≡ B) dec ⊢A ⊢B = map soundnessConv↑ completeEq (decConv↑ (completeEq (refl ⊢A)) (completeEq (refl ⊢B))) -- Decidability of conversion of well-formed terms decTerm : ∀ {t u A Γ} → Γ ⊢ t ∷ A → Γ ⊢ u ∷ A → Dec (Γ ⊢ t ≡ u ∷ A) decTerm ⊢t ⊢u = map soundnessConv↑Term completeEqTerm (decConv↑Term (completeEqTerm (refl ⊢t)) (completeEqTerm (refl ⊢u)))
{ "alphanum_fraction": 0.6652935118, "avg_line_length": 34.6785714286, "ext": "agda", "hexsha": "954034a8fc6fa0e520ee41a911d91516a841abcc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Decidable.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Decidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 263, "size": 971 }
test : Set → Set test record{} = record{} -- Record pattern at non-record type Set -- when checking that the clause test record {} = record {} has -- type Set → Set
{ "alphanum_fraction": 0.6646706587, "avg_line_length": 23.8571428571, "ext": "agda", "hexsha": "161a4368fcb99c5353c85c86f19fdbf28968f9c8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/RecordPattern0.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/RecordPattern0.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/RecordPattern0.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 167 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Logic using ([_]; _∈_) open import Cubical.Algebra.Ring private variable ℓ : Level module _ (R' : Ring {ℓ}) where open Ring R' renaming (Carrier to R) {- by default, 'ideal' means two-sided ideal -} record isIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I ·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I Ideal : Type _ Ideal = Σ[ I ∈ (R → hProp ℓ) ] isIdeal I record isLeftIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I record isRightIdeal (I : R → hProp ℓ) : Type ℓ where field +-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I -closed : {x : R} → x ∈ I → - x ∈ I 0r-closed : 0r ∈ I ·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I {- Examples of ideals -} zeroSubset : (x : R) → hProp ℓ zeroSubset x = (x ≡ 0r) , isSetRing R' _ _ open Theory R' isIdealZeroIdeal : isIdeal zeroSubset isIdealZeroIdeal = record { +-closed = λ x≡0 y≡0 → _ + _ ≡⟨ cong (λ u → u + _) x≡0 ⟩ 0r + _ ≡⟨ +-lid _ ⟩ _ ≡⟨ y≡0 ⟩ 0r ∎ ; -closed = λ x≡0 → - _ ≡⟨ cong (λ u → - u) x≡0 ⟩ - 0r ≡⟨ 0-selfinverse ⟩ 0r ∎ ; 0r-closed = refl ; ·-closedLeft = λ r x≡0 → r · _ ≡⟨ cong (λ u → r · u) x≡0 ⟩ r · 0r ≡⟨ 0-rightNullifies r ⟩ 0r ∎ ; ·-closedRight = λ r x≡0 → _ · r ≡⟨ cong (λ u → u · r) x≡0 ⟩ 0r · r ≡⟨ 0-leftNullifies r ⟩ 0r ∎ } zeroIdeal : Ideal zeroIdeal = zeroSubset , isIdealZeroIdeal
{ "alphanum_fraction": 0.4021952176, "avg_line_length": 35.4305555556, "ext": "agda", "hexsha": "c78376d7f8313ea856a07cf7ec0ab9e223341862", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/Ideal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/Ideal.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/Ideal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 870, "size": 2551 }
module Lemmachine.Utils where open import Lemmachine.Request open import Lemmachine.Response open import Data.Maybe open import Data.Bool hiding (_≟_) open import Data.String open import Data.Function open import Data.Product open import Relation.Nullary open import Data.List hiding (any) open import Data.List.Any open Membership-≡ Application = Request → Response Middleware = Application → Application fetch : String → List (String × String) → Maybe String fetch x xs with any (_≟_ x ∘ proj₁) xs ... | yes p = just (proj₂ (proj₁ (find p))) ... | no _ = nothing private fromHeaders : RequestHeaders → List (String × String) fromHeaders xs = Data.List.map f xs where f : RequestHeader → String × String f (k , v) = k , v fetchHeader : String → RequestHeaders → Maybe String fetchHeader x xs with any (_≟_ x ∘ headerKey) xs ... | yes p = just (headerValue (proj₁ (find p))) ... | no _ = nothing fetchContentType : String → List String → Maybe String fetchContentType _ [] = nothing fetchContentType "*" (y ∷ _) = just y fetchContentType "*/*" (y ∷ _) = just y fetchContentType x (y ∷ ys) with x == y ... | true = just y ... | false = fetchContentType x ys fetchAccept : RequestHeaders → List String → Maybe String fetchAccept hs cs with fetchHeader "Accept" hs fetchAccept hs _ | nothing = nothing fetchAccept _ [] | just _ = nothing fetchAccept _ xss | just y = fetchContentType y xss postulate isDate : String → Bool isModified : String → String → Bool now : String
{ "alphanum_fraction": 0.7128514056, "avg_line_length": 29.2941176471, "ext": "agda", "hexsha": "07380ae9e89942004574cbddba086aae8cbc0a1c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Utils.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Utils.agda", "max_line_length": 57, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 398, "size": 1494 }
open import Agda.Builtin.Bool data ⊥ : Set where record ⊤ : Set where IsTrue : Bool → Set IsTrue false = ⊥ IsTrue true = ⊤ record Squash {ℓ} (A : Set ℓ) : Set ℓ where field .unsquash : A open Squash f : .Bool → Squash Set₁ f b .unsquash = Set module M where IsTrue' : Set IsTrue' = IsTrue b g : Squash Set₁ g .unsquash = Set module N where open M h : IsTrue' true → Set₁ h p = Set
{ "alphanum_fraction": 0.6172248804, "avg_line_length": 14.4137931034, "ext": "agda", "hexsha": "8601fa1a3c87bd72ac9706ebce88a2dd3eb5692e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3627.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3627.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3627.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 159, "size": 418 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Boolean.Definition module Boolean.Lemmas where notNot : (x : Bool) → not (not x) ≡ x notNot BoolTrue = refl notNot BoolFalse = refl notXor : (x y : Bool) → not (xor x y) ≡ xor (not x) y notXor BoolTrue BoolTrue = refl notXor BoolTrue BoolFalse = refl notXor BoolFalse BoolTrue = refl notXor BoolFalse BoolFalse = refl
{ "alphanum_fraction": 0.7266949153, "avg_line_length": 26.2222222222, "ext": "agda", "hexsha": "b093ef6c63d0e19358a3683a83684004d169776b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Boolean/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Boolean/Lemmas.agda", "max_line_length": 58, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Boolean/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 150, "size": 472 }
module Module where record R : Set where module M where module N where module O where postulate A : Set x : R x = record {M} module P = N
{ "alphanum_fraction": 0.5857988166, "avg_line_length": 6.5, "ext": "agda", "hexsha": "143d96925bac7170dcc4137ec41f1e04d10f679a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Module.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Module.agda", "max_line_length": 19, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Module.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 58, "size": 169 }
-- Andreas, 2018-08-14, issue #3176, reported by identicalsnowflake -- -- Absurd lambdas should be equal. -- In this case, they were only considered equal during give, but not upon reload. open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Equality record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public ∃ : ∀ {A : Set} → (A → Set) → Set ∃ = Σ _ _×_ : ∀ _ _ → _ _×_ a b = ∃ λ (_ : a) → b record Fin (n : ℕ) : Set where field m : ℕ .p : ∃ λ k → (ℕ.suc k + m) ≡ n module _ (n : ℕ) where data S : Set where V : S K : Fin n → S _X_ : S → S → S [_] : ∀ {n} → S n → (Fin n → Set) → Set → Set [ V ] k t = t [ K i ] k _ = k i [ s₁ X s₂ ] k t = [ s₁ ] k t × [ s₂ ] k t postulate ignore : ∀ {t : Set} → t _<*>_ : ∀ {s : S 0} {t₁ t₂} → [ s ] (λ ()) (t₁ → t₂) → [ s ] (λ ()) t₁ → [ s ] (λ ()) t₂ _<*>_ {s₁ X s₂} {t₁} {t₂} (f , _) (x , _) = let v : [ s₁ ] (λ ()) t₂ v = _<*>_ {s = s₁} {t₁ = t₁} {t₂ = t₂} f x in ignore _<*>_ f x = ignore -- Should succeed.
{ "alphanum_fraction": 0.4895168642, "avg_line_length": 19.9454545455, "ext": "agda", "hexsha": "83985da2c1b7fe326fc217f9e9cfcf6b2ad8c6dc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/Issue3176.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue3176.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue3176.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 473, "size": 1097 }
module Hello where -- Oh, you made it! Well done! This line is a comment. -- In the beginning, Agda knows nothing, but we can teach it about numbers. data Nat : Set where zero : Nat suc : Nat -> Nat -- data Nat = Zero | Suc Nat -- in Haskell -- Now we can say how to add numbers. _+N_ : Nat -> Nat -> Nat m +N zero = m m +N suc n = suc (m +N n) -- Now we can try adding some numbers. four : Nat four = (suc (suc zero)) +N (suc (suc zero)) -- To make it go, select "Evaluate term to normal form" from the -- Agda menu, then type "four", without the quotes, and press return. -- Hopefully, you should get a response -- suc (suc (suc (suc zero))) -- Done? -- Now you can start Ex1.agda -- WARNING Ex1.agda requires you to give a definition of addition. -- There are lots of ways to define addition, and by the end of the -- exercise, it will matter which you choose. If you start just by -- copying the above definition, you will reach a point where you -- may wish to reconsider it, and hopefully learn something useful -- about the way Agda works.
{ "alphanum_fraction": 0.6797385621, "avg_line_length": 26.775, "ext": "agda", "hexsha": "cf0e98cb1e5b6149e01bc2bb4332032e8282c71e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Hello.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Hello.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Hello.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 300, "size": 1071 }
module Terms where import Level open import Data.Unit as Unit open import Data.List as List open import Data.Product as Product open import Categories.Category using (Category) data Type : Set where Nat : Type _ˢ : Type → Type _⇒_ : Type → Type → Type infixr 5 _⇒_ open import Common.Context Type using (Ctx; Var; zero; ctx-cat; ctx-bin-coproducts) renaming (succ to succ) open Categories.Category.Category ctx-cat renaming ( _⇒_ to _▹_ ; _≡_ to _≈_ ; _∘_ to _●_ ; id to ctx-id ) open import Categories.Object.BinaryCoproducts ctx-cat open BinaryCoproducts ctx-bin-coproducts data Term (Γ : Ctx) : (σ : Type) → Set where var : ∀{σ : Type} (x : Var Γ σ) → Term Γ σ abs : ∀{σ τ : Type} (t : Term (σ ∷ Γ) τ) → Term Γ (σ ⇒ τ) app : ∀{σ τ : Type} (t : Term Γ (σ ⇒ τ)) (s : Term Γ σ) → Term Γ τ -- Constants for recursion over ℕ 𝟘 : Term Γ Nat s⁺ : Term Γ (Nat ⇒ Nat) R : ∀{σ : Type} → Term Γ (σ ⇒ (Nat ⇒ σ ⇒ σ) ⇒ Nat ⇒ σ) -- Constants for corecursion over streams hd : ∀{σ : Type} → Term Γ (σ ˢ ⇒ σ) tl : ∀{σ : Type} → Term Γ (σ ˢ ⇒ σ ˢ) C : ∀{σ τ : Type} → Term Γ ((σ ⇒ τ) ⇒ (σ ⇒ σ) ⇒ σ ⇒ τ ˢ) -- Improve readability _⟨$⟩_ : ∀{Γ σ τ} (t : Term Γ (σ ⇒ τ)) (s : Term Γ σ) → Term Γ τ t ⟨$⟩ s = app t s infixl 0 _⟨$⟩_ hd′ : ∀{Γ σ} → Term Γ (σ ˢ) → Term Γ σ hd′ s = hd ⟨$⟩ s tl′ : ∀{Γ σ} → Term Γ (σ ˢ) → Term Γ (σ ˢ) tl′ s = tl ⟨$⟩ s C′ : ∀{Γ σ τ} → Term Γ (σ ⇒ τ) → Term Γ (σ ⇒ σ) → Term Γ (σ ⇒ τ ˢ) C′ h t = (C ⟨$⟩ h) ⟨$⟩ t R′ : ∀{Γ σ} → Term Γ σ → Term Γ (Nat ⇒ σ ⇒ σ) → Term Γ (Nat ⇒ σ) R′ x f = R ⟨$⟩ x ⟨$⟩ f ƛ : ∀{Γ σ τ} → (Var (σ ∷ Γ) σ → Term (σ ∷ Γ) τ) → Term Γ (σ ⇒ τ) ƛ f = abs (f zero) abs₁ : ∀{Γ τ σ} → (Term (τ ∷ Γ) τ → Term (τ ∷ Γ) σ) → Term Γ (τ ⇒ σ) abs₁ f = abs (f (var zero)) abs₂ : ∀{Γ τ₁ τ₂ σ} → (Term (τ₂ ∷ τ₁ ∷ Γ) τ₁ → Term (τ₂ ∷ τ₁ ∷ Γ) τ₂ → Term (τ₂ ∷ τ₁ ∷ Γ) σ) → Term Γ (τ₁ ⇒ τ₂ ⇒ σ) abs₂ {Γ} {τ₁} f = abs (abs (f x₁ x₂)) where x₁ = var (succ τ₁ zero) x₂ = var zero abs₃ : ∀{Γ τ₁ τ₂ τ₃ σ} → (Term (τ₃ ∷ τ₂ ∷ τ₁ ∷ Γ) τ₁ → Term (τ₃ ∷ τ₂ ∷ τ₁ ∷ Γ) τ₂ → Term (τ₃ ∷ τ₂ ∷ τ₁ ∷ Γ) τ₃ → Term (τ₃ ∷ τ₂ ∷ τ₁ ∷ Γ) σ) → Term Γ (τ₁ ⇒ τ₂ ⇒ τ₃ ⇒ σ) abs₃ {Γ} {τ₁} {τ₂} f = abs (abs (abs (f x₁ x₂ x₃))) where x₁ = var (succ τ₁ (succ τ₁ zero)) x₂ = var (succ τ₂ zero) x₃ = var zero -------------------------------------- ---- Examples --- π₁ : ∀{Γ σ τ} → Term Γ (σ ⇒ τ ⇒ σ) π₁ = abs₂ (λ x₁ x₂ → x₁) π₂ : ∀{Γ σ τ} → Term Γ (σ ⇒ τ ⇒ τ) π₂ = abs₂ (λ x₁ x₂ → x₂) -- | Prepend element to a stream -- hd (cons x s) = x -- tl (cons x s) = s -- This needs to use continuations. conc : ∀{Γ σ} → Term Γ (σ ⇒ σ ˢ ⇒ σ ˢ) conc {Γ} {σ} = abs (abs (C′ f g ⟨$⟩ i)) where -- | State space S = (σ ⇒ σ ˢ ⇒ σ) ⇒ σ -- | local context Γ′ = σ ˢ ∷ σ ∷ Γ f : Term Γ′ (S ⇒ σ) f = abs₁ (λ v → v ⟨$⟩ π₁) g : Term Γ′ (S ⇒ S) g = abs₂ (λ v _h → v ⟨$⟩ (abs₂ (λ _ s → h ⟨$⟩ (hd′ s) ⟨$⟩ (tl′ s)) ) ) where Γ′′ = σ ˢ ∷ σ ∷ (σ ⇒ σ ˢ ⇒ σ) ∷ S ∷ Γ′ h : Term Γ′′ (σ ⇒ σ ˢ ⇒ σ) h = var (succ (σ ⇒ σ ˢ ⇒ σ) (succ (σ ⇒ σ ˢ ⇒ σ) zero)) i : Term Γ′ S i = abs₁ (λ h → h ⟨$⟩ x ⟨$⟩ s) where s : Term ((σ ⇒ σ ˢ ⇒ σ) ∷ Γ′) (σ ˢ) s = var (succ (σ ˢ) zero) x : Term ((σ ⇒ σ ˢ ⇒ σ) ∷ Γ′) σ x = var (succ σ (succ σ zero)) _∺_ : ∀{Γ σ} → Term Γ σ → Term Γ (σ ˢ) → Term Γ (σ ˢ) x ∺ s = conc ⟨$⟩ x ⟨$⟩ s id′ : ∀{Γ σ} → Term Γ (σ ⇒ σ) id′ = abs₁ (λ x → x) repeat : ∀{Γ σ} → Term Γ (σ ⇒ σ ˢ) repeat = C′ id′ id′ -- | Extend a stream that is defined up to n by an element on the right, i.e., -- ext x 0 s = repeat x -- hd (ext x (n+1) s) = hd s -- tl (ext x (n+1) s) = ext x n (tl s) -- Thus ext is given by a recursion, followed by a corecursion: -- ext x = R (λ_. repeat x) f -- f _ h s = hd s ∷ (h (tl s)) ext : ∀{Γ σ} → Term Γ (σ ⇒ Nat ⇒ σ ˢ ⇒ σ ˢ) ext {Γ} {σ} = abs (R′ (abs (repeat ⟨$⟩ x)) f) where Γ′ = σ ∷ Γ x : Term (σ ˢ ∷ Γ′) σ x = var (succ σ zero) f : Term Γ′ (Nat ⇒ (σ ˢ ⇒ σ ˢ) ⇒ σ ˢ ⇒ σ ˢ) f = abs₃ (λ _ h s → (hd′ s) ∺ (h ⟨$⟩ (tl′ s)))
{ "alphanum_fraction": 0.4474544605, "avg_line_length": 26.9308176101, "ext": "agda", "hexsha": "b0744ec39fd1eae592ae113f15c1af7cb7b9a685", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/SystemT+Corec/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/SystemT+Corec/Terms.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/SystemT+Corec/Terms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1936, "size": 4282 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- this module characterizes a category of all equalizer indexed by I. -- this notion formalizes a category with all equalizer up to certain cardinal. module Categories.Diagram.Equalizer.Indexed {o ℓ e} (C : Category o ℓ e) where open import Level open Category C record IndexedEqualizerOf {i} {I : Set i} {A B : Obj} (M : I → A ⇒ B) : Set (i ⊔ o ⊔ e ⊔ ℓ) where field E : Obj arr : E ⇒ A -- a reference morphism ref : E ⇒ B equality : ∀ i → M i ∘ arr ≈ ref equalize : ∀ {X} (h : X ⇒ A) (r : X ⇒ B) → (∀ i → M i ∘ h ≈ r) → X ⇒ E universal : ∀ {X} (h : X ⇒ A) (r : X ⇒ B) (eq : ∀ i → M i ∘ h ≈ r) → h ≈ arr ∘ equalize h r eq unique : ∀ {X} {l : X ⇒ E} (h : X ⇒ A) (r : X ⇒ B) (eq : ∀ i → M i ∘ h ≈ r) → h ≈ arr ∘ l → l ≈ equalize h r eq record IndexedEqualizer {i} (I : Set i) : Set (i ⊔ o ⊔ e ⊔ ℓ) where field A B : Obj M : I → A ⇒ B equalizerOf : IndexedEqualizerOf M open IndexedEqualizerOf equalizerOf public AllEqualizers : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i) AllEqualizers i = (I : Set i) → IndexedEqualizer I AllEqualizersOf : ∀ i → Set (o ⊔ ℓ ⊔ e ⊔ suc i) AllEqualizersOf i = ∀ {I : Set i} {A B : Obj} (M : I → A ⇒ B) → IndexedEqualizerOf M
{ "alphanum_fraction": 0.5560711524, "avg_line_length": 34.0263157895, "ext": "agda", "hexsha": "a2c34df002cf704cd81d193ae58d257a0a8a19cf", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Equalizer/Indexed.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Equalizer/Indexed.agda", "max_line_length": 118, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Equalizer/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 491, "size": 1293 }
-- Andreas, 2016-11-19 issue #2309 -- No-eta-equality needs to be respected in pattern matching -- also before the clause compiler. record Unit : Set where constructor unit no-eta-equality record R : Set₁ where field Fst : Unit → Set Snd : (x : Unit) → Fst x open R Test : (A : Set) (a : A) → R Fst (Test A a) unit = A Snd (Test A a) x = a -- should not be accepted
{ "alphanum_fraction": 0.6408268734, "avg_line_length": 22.7647058824, "ext": "agda", "hexsha": "9e8c6dd16d4e29e5b0fca3b8e07ac72adeea634c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2309.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue2309.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue2309.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 130, "size": 387 }
{- functions related to lift types. The main function is do-lift, which is called from hnf -} module lift where open import lib open import cedille-types open import ctxt open import syntax-util open import subst liftingType-to-kind : liftingType → kind liftingType-to-kind (LiftArrow l1 l2) = KndArrow (liftingType-to-kind l1) (liftingType-to-kind l2) liftingType-to-kind (LiftStar _) = star liftingType-to-kind (LiftParens _ l _) = liftingType-to-kind l liftingType-to-kind (LiftTpArrow tp l) = KndTpArrow tp (liftingType-to-kind l) liftingType-to-kind (LiftPi _ x tp l) = KndPi posinfo-gen posinfo-gen x (Tkt tp) (liftingType-to-kind l) liftingType-to-type : var → liftingType → type liftingType-to-type X (LiftArrow l1 l2) = TpArrow (liftingType-to-type X l1) NotErased (liftingType-to-type X l2) liftingType-to-type X (LiftTpArrow tp l) = TpArrow tp NotErased (liftingType-to-type X l) liftingType-to-type X (LiftStar _) = TpVar posinfo-gen X liftingType-to-type X (LiftParens _ l _) = liftingType-to-type X l liftingType-to-type X (LiftPi _ x tp l) = Abs posinfo-gen Pi posinfo-gen x (Tkt tp) (liftingType-to-type X l) {- create a type-level redex of the form (↑ X . (λ xs . t) : ls → l) xs where xs and ls are packaged as the input list of tuples, l is the input liftingType, and t is the input term. -} lift-freeze : var → 𝕃 (var × liftingType) → liftingType → term → type lift-freeze X tobind l t = let xs = map fst tobind in TpApp* (Lft posinfo-gen posinfo-gen X (Lam* xs t) (LiftArrow* (map snd tobind) l)) (map (λ p → TpVar posinfo-gen (fst p)) tobind) do-liftargs : ctxt → type → liftingType → 𝕃 term → var → 𝕃 (var × liftingType) → type do-liftargs Γ tp (LiftArrow l1 l2) (arg :: args) X tobind = do-liftargs Γ (TpApp tp (lift-freeze X tobind l1 arg)) l2 args X tobind do-liftargs Γ tp (LiftTpArrow l1 l2) (arg :: args) X tobind = do-liftargs Γ (TpAppt tp arg) l2 args X tobind do-liftargs Γ tp (LiftPi _ x _ l) (arg :: args) X tobind = do-liftargs Γ (TpAppt tp arg) (subst Γ arg x l) args X tobind do-liftargs Γ tp (LiftParens _ l _) args X tobind = do-liftargs Γ tp l args X tobind do-liftargs Γ tp _ _ _ _ = tp -- tobind are the variables we have seen going through the lifting type (they are also mapped by the trie) do-lifth : ctxt → trie liftingType → 𝕃 (var × liftingType) → type → var → liftingType → (term → term) → -- function to put terms in hnf term → type do-lifth Γ m tobind origtp X (LiftParens _ l _) hnf t = do-lifth Γ m tobind origtp X l hnf t do-lifth Γ m tobind origtp X (LiftArrow l1 l2) hnf (Lam _ _ _ x _ t) = do-lifth Γ (trie-insert m x l1) ((x , l1) :: tobind) origtp X l2 hnf t do-lifth Γ m tobind origtp X (LiftTpArrow tp l2) hnf (Lam _ _ _ x _ t) = TpLambda posinfo-gen posinfo-gen x (Tkt tp) (do-lifth Γ m tobind origtp X l2 hnf t) do-lifth Γ m tobind origtp X l hnf t with decompose-apps (hnf t) do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args with trie-lookup m x do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args | nothing = origtp -- the term being lifted is not headed by one of the bound vars do-lifth Γ m tobind origtp X l hnf t | (Var _ x) , args | just l' = rebind tobind (do-liftargs Γ (TpVar posinfo-gen x) l' (reverse args) X tobind) where rebind : 𝕃 (var × liftingType) → type → type rebind ((x , l'):: xs) tp = rebind xs (TpLambda posinfo-gen posinfo-gen x (Tkk (liftingType-to-kind l')) tp) rebind [] tp = tp do-lifth Γ m tobind origtp X l hnf t | _ , args = origtp -- lift a term to a type at the given liftingType, if possible. do-lift : ctxt → type → var → liftingType → (term → term) {- hnf -} → term → type do-lift Γ origtp X l hnf t = do-lifth Γ empty-trie [] origtp X l hnf t
{ "alphanum_fraction": 0.6825270949, "avg_line_length": 52.5416666667, "ext": "agda", "hexsha": "056ccdeb8d7a550832c7d090541ecaf5c641bf22", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/lift.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/lift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1285, "size": 3783 }
{-- -- normalize a finite type to (1 + (1 + (1 + ... + (1 + 0) ... ))) -- a bunch of ones ending with zero with left biased + in between toℕ : U → ℕ toℕ ZERO = 0 toℕ ONE = 1 toℕ (PLUS t₁ t₂) = toℕ t₁ + toℕ t₂ toℕ (TIMES t₁ t₂) = toℕ t₁ * toℕ t₂ fromℕ : ℕ → U fromℕ 0 = ZERO fromℕ (suc n) = PLUS ONE (fromℕ n) normalℕ : U → U normalℕ = fromℕ ∘ toℕ -- invert toℕ: give t and n such that toℕ t = n, return constraints on components of t reflectPlusZero : {m n : ℕ} → (m + n ≡ 0) → m ≡ 0 × n ≡ 0 reflectPlusZero {0} {0} refl = (refl , refl) reflectPlusZero {0} {suc n} () reflectPlusZero {suc m} {0} () reflectPlusZero {suc m} {suc n} () -- nbe nbe : {t₁ t₂ : U} → (p : toℕ t₁ ≡ toℕ t₂) → (⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (t₁ ⟷ t₂) nbe {ZERO} {ZERO} refl f = id⟷ nbe {ZERO} {ONE} () nbe {ZERO} {PLUS t₁ t₂} p f = {!!} nbe {ZERO} {TIMES t₂ t₃} p f = {!!} nbe {ONE} {ZERO} () nbe {ONE} {ONE} p f = id⟷ nbe {ONE} {PLUS t₂ t₃} p f = {!!} nbe {ONE} {TIMES t₂ t₃} p f = {!!} nbe {PLUS t₁ t₂} {ZERO} p f = {!!} nbe {PLUS t₁ t₂} {ONE} p f = {!!} nbe {PLUS t₁ t₂} {PLUS t₃ t₄} p f = {!!} nbe {PLUS t₁ t₂} {TIMES t₃ t₄} p f = {!!} nbe {TIMES t₁ t₂} {ZERO} p f = {!!} nbe {TIMES t₁ t₂} {ONE} p f = {!!} nbe {TIMES t₁ t₂} {PLUS t₃ t₄} p f = {!!} nbe {TIMES t₁ t₂} {TIMES t₃ t₄} p f = {!!} -- build a combinator that does the normalization assocrU : {m : ℕ} (n : ℕ) → (PLUS (fromℕ n) (fromℕ m)) ⟷ fromℕ (n + m) assocrU 0 = unite₊ assocrU (suc n) = assocr₊ ◎ (id⟷ ⊕ assocrU n) distrU : (m : ℕ) {n : ℕ} → TIMES (fromℕ m) (fromℕ n) ⟷ fromℕ (m * n) distrU 0 = distz distrU (suc n) {m} = dist ◎ (unite⋆ ⊕ distrU n) ◎ assocrU m normalU : (t : U) → t ⟷ normalℕ t normalU ZERO = id⟷ normalU ONE = uniti₊ ◎ swap₊ normalU (PLUS t₁ t₂) = (normalU t₁ ⊕ normalU t₂) ◎ assocrU (toℕ t₁) normalU (TIMES t₁ t₂) = (normalU t₁ ⊗ normalU t₂) ◎ distrU (toℕ t₁) -- a few lemmas fromℕplus : {m n : ℕ} → fromℕ (m + n) ⟷ PLUS (fromℕ m) (fromℕ n) fromℕplus {0} {n} = fromℕ n ⟷⟨ uniti₊ ⟩ PLUS ZERO (fromℕ n) □ fromℕplus {suc m} {n} = fromℕ (suc (m + n)) ⟷⟨ id⟷ ⟩ PLUS ONE (fromℕ (m + n)) ⟷⟨ id⟷ ⊕ fromℕplus {m} {n} ⟩ PLUS ONE (PLUS (fromℕ m) (fromℕ n)) ⟷⟨ assocl₊ ⟩ PLUS (PLUS ONE (fromℕ m)) (fromℕ n) ⟷⟨ id⟷ ⟩ PLUS (fromℕ (suc m)) (fromℕ n) □ normalℕswap : {t₁ t₂ : U} → normalℕ (PLUS t₁ t₂) ⟷ normalℕ (PLUS t₂ t₁) normalℕswap {t₁} {t₂} = fromℕ (toℕ t₁ + toℕ t₂) ⟷⟨ fromℕplus {toℕ t₁} {toℕ t₂} ⟩ PLUS (normalℕ t₁) (normalℕ t₂) ⟷⟨ swap₊ ⟩ PLUS (normalℕ t₂) (normalℕ t₁) ⟷⟨ ! (fromℕplus {toℕ t₂} {toℕ t₁}) ⟩ fromℕ (toℕ t₂ + toℕ t₁) □ assocrUS : {m : ℕ} {t : U} → PLUS t (fromℕ m) ⟷ fromℕ (toℕ t + m) assocrUS {m} {ZERO} = unite₊ assocrUS {m} {ONE} = id⟷ assocrUS {m} {t} = PLUS t (fromℕ m) ⟷⟨ normalU t ⊕ id⟷ ⟩ PLUS (normalℕ t) (fromℕ m) ⟷⟨ ! fromℕplus ⟩ fromℕ (toℕ t + m) □ -- convert each combinator to a normal form normal⟷ : {t₁ t₂ : U} → (c₁ : t₁ ⟷ t₂) → Σ[ c₂ ∈ normalℕ t₁ ⟷ normalℕ t₂ ] (c₁ ⇔ (normalU t₁ ◎ c₂ ◎ (! (normalU t₂)))) normal⟷ {PLUS ZERO t} {.t} unite₊ = (id⟷ , (unite₊ ⇔⟨ idr◎r ⟩ unite₊ ◎ id⟷ ⇔⟨ resp◎⇔ id⇔ linv◎r ⟩ unite₊ ◎ (normalU t ◎ (! (normalU t))) ⇔⟨ assoc◎l ⟩ (unite₊ ◎ normalU t) ◎ (! (normalU t)) ⇔⟨ resp◎⇔ unitel₊⇔ id⇔ ⟩ ((id⟷ ⊕ normalU t) ◎ unite₊) ◎ (! (normalU t)) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ ((id⟷ ⊕ normalU t) ◎ unite₊) ◎ (id⟷ ◎ (! (normalU t))) ⇔⟨ id⇔ ⟩ normalU (PLUS ZERO t) ◎ (id⟷ ◎ (! (normalU t))) ▤)) normal⟷ {t} {PLUS ZERO .t} uniti₊ = (id⟷ , (uniti₊ ⇔⟨ idl◎r ⟩ id⟷ ◎ uniti₊ ⇔⟨ resp◎⇔ linv◎r id⇔ ⟩ (normalU t ◎ (! (normalU t))) ◎ uniti₊ ⇔⟨ assoc◎r ⟩ normalU t ◎ ((! (normalU t)) ◎ uniti₊) ⇔⟨ resp◎⇔ id⇔ unitir₊⇔ ⟩ normalU t ◎ (uniti₊ ◎ (id⟷ ⊕ (! (normalU t)))) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ normalU t ◎ (id⟷ ◎ (uniti₊ ◎ (id⟷ ⊕ (! (normalU t))))) ⇔⟨ id⇔ ⟩ normalU t ◎ (id⟷ ◎ (! ((id⟷ ⊕ (normalU t)) ◎ unite₊))) ⇔⟨ id⇔ ⟩ normalU t ◎ (id⟷ ◎ (! (normalU (PLUS ZERO t)))) ▤)) normal⟷ {PLUS ZERO t₂} {PLUS .t₂ ZERO} swap₊ = (normalℕswap {ZERO} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ (unite₊ ◎ normalU t₂) ◎ (normalℕswap {ZERO} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ id⟷))) ⇔⟨ resp◎⇔ unitel₊⇔ id⇔ ⟩ ((id⟷ ⊕ normalU t₂) ◎ unite₊) ◎ (normalℕswap {ZERO} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ id⟷))) ⇔⟨ id⇔ ⟩ normalU (PLUS ZERO t₂) ◎ (normalℕswap {ZERO} {t₂} ◎ (! (normalU (PLUS t₂ ZERO)))) ▤)) normal⟷ {PLUS ONE t₂} {PLUS .t₂ ONE} swap₊ = (normalℕswap {ONE} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ ((normalU ONE ⊕ normalU t₂) ◎ assocrU (toℕ ONE)) ◎ (normalℕswap {ONE} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ ! (normalU ONE)))) ⇔⟨ id⇔ ⟩ normalU (PLUS ONE t₂) ◎ (normalℕswap {ONE} {t₂} ◎ (! (normalU (PLUS t₂ ONE)))) ▤)) normal⟷ {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ = (normalℕswap {t₁} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ ((normalU t₁ ⊕ normalU t₂) ◎ assocrU (toℕ t₁)) ◎ (normalℕswap {t₁} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ ! (normalU t₁)))) ⇔⟨ id⇔ ⟩ normalU (PLUS t₁ t₂) ◎ (normalℕswap {t₁} {t₂} ◎ (! (normalU (PLUS t₂ t₁)))) ▤)) normal⟷ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = {!!} normal⟷ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = {!!} normal⟷ {TIMES ONE t} {.t} unite⋆ = {!!} normal⟷ {t} {TIMES ONE .t} uniti⋆ = {!!} normal⟷ {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = {!!} normal⟷ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} assocl⋆ = {!!} normal⟷ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} assocr⋆ = {!!} normal⟷ {TIMES ZERO t} {ZERO} distz = {!!} normal⟷ {ZERO} {TIMES ZERO t} factorz = {!!} normal⟷ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} dist = {!!} normal⟷ {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {TIMES (PLUS t₁ t₂) t₃} factor = {!!} normal⟷ {t} {.t} id⟷ = (id⟷ , (id⟷ ⇔⟨ linv◎r ⟩ normalU t ◎ (! (normalU t)) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ normalU t ◎ (id⟷ ◎ (! (normalU t))) ▤)) normal⟷ {t₁} {t₃} (_◎_ {t₂ = t₂} c₁ c₂) = {!!} normal⟷ {PLUS t₁ t₂} {PLUS t₃ t₄} (c₁ ⊕ c₂) = {!!} normal⟷ {TIMES t₁ t₂} {TIMES t₃ t₄} (c₁ ⊗ c₂) = {!!} -- if c₁ c₂ : t₁ ⟷ t₂ and c₁ ∼ c₂ then we want a canonical combinator -- normalℕ t₁ ⟷ normalℕ t₂. If we have that then we should be able to -- decide whether c₁ ∼ c₂ by normalizing and looking at the canonical -- combinator. -- Use ⇔ to normalize a path {-# NO_TERMINATION_CHECK #-} normalize : {t₁ t₂ : U} → (c₁ : t₁ ⟷ t₂) → Σ[ c₂ ∈ t₁ ⟷ t₂ ] (c₁ ⇔ c₂) normalize unite₊ = (unite₊ , id⇔) normalize uniti₊ = (uniti₊ , id⇔) normalize swap₊ = (swap₊ , id⇔) normalize assocl₊ = (assocl₊ , id⇔) normalize assocr₊ = (assocr₊ , id⇔) normalize unite⋆ = (unite⋆ , id⇔) normalize uniti⋆ = (uniti⋆ , id⇔) normalize swap⋆ = (swap⋆ , id⇔) normalize assocl⋆ = (assocl⋆ , id⇔) normalize assocr⋆ = (assocr⋆ , id⇔) normalize distz = (distz , id⇔) normalize factorz = (factorz , id⇔) normalize dist = (dist , id⇔) normalize factor = (factor , id⇔) normalize id⟷ = (id⟷ , id⇔) normalize (c₁ ◎ c₂) with normalize c₁ | normalize c₂ ... | (c₁' , α) | (c₂' , β) = {!!} normalize (c₁ ⊕ c₂) with normalize c₁ | normalize c₂ ... | (c₁' , α) | (c₂₁ ⊕ c₂₂ , β) = (assocl₊ ◎ ((c₁' ⊕ c₂₁) ⊕ c₂₂) ◎ assocr₊ , trans⇔ (resp⊕⇔ α β) assoc⊕l) ... | (c₁' , α) | (c₂' , β) = (c₁' ⊕ c₂' , resp⊕⇔ α β) normalize (c₁ ⊗ c₂) with normalize c₁ | normalize c₂ ... | (c₁₁ ⊕ c₁₂ , α) | (c₂' , β) = (dist ◎ ((c₁₁ ⊗ c₂') ⊕ (c₁₂ ⊗ c₂')) ◎ factor , trans⇔ (resp⊗⇔ α β) dist⇔) ... | (c₁' , α) | (c₂₁ ⊗ c₂₂ , β) = (assocl⋆ ◎ ((c₁' ⊗ c₂₁) ⊗ c₂₂) ◎ assocr⋆ , trans⇔ (resp⊗⇔ α β) assoc⊗l) ... | (c₁' , α) | (c₂' , β) = (c₁' ⊗ c₂' , resp⊗⇔ α β) record Permutation (t t' : U) : Set where field t₀ : U -- no occurrences of TIMES .. (TIMES .. ..) phase₀ : t ⟷ t₀ t₁ : U -- no occurrences of TIMES (PLUS .. ..) phase₁ : t₀ ⟷ t₁ t₂ : U -- no occurrences of TIMES phase₂ : t₁ ⟷ t₂ t₃ : U -- no nested left PLUS, all PLUS of form PLUS simple (PLUS ...) phase₃ : t₂ ⟷ t₃ t₄ : U -- no occurrences PLUS ZERO phase₄ : t₃ ⟷ t₄ t₅ : U -- do actual permutation using swapij phase₅ : t₄ ⟷ t₅ rest : t₅ ⟷ t' -- blah blah p◎id∼p : ∀ {t₁ t₂} {c : t₁ ⟷ t₂} → (c ◎ id⟷ ∼ c) p◎id∼p {t₁} {t₂} {c} v = (begin (proj₁ (perm2path (c ◎ id⟷) v)) ≡⟨ {!!} ⟩ (proj₁ (perm2path id⟷ (proj₁ (perm2path c v)))) ≡⟨ {!!} ⟩ (proj₁ (perm2path c v)) ∎) -- perm2path {t} id⟷ v = (v , edge •[ t , v ] •[ t , v ]) --perm2path (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v₁ with perm2path c₁ v₁ --... | (v₂ , p) with perm2path c₂ v₂ --... | (v₃ , q) = (v₃ , seq p q) -- Equivalences between paths leading to 2path structure -- Two paths are the same if they go through the same points _∼_ : ∀ {t₁ t₂ v₁ v₂} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → Set (edge ._ ._) ∼ (edge ._ ._) = ⊤ (edge ._ ._) ∼ (seq p q) = {!!} (edge ._ ._) ∼ (left p) = {!!} (edge ._ ._) ∼ (right p) = {!!} (edge ._ ._) ∼ (par p q) = {!!} seq p p₁ ∼ edge ._ ._ = {!!} seq p₁ p ∼ seq q q₁ = {!!} seq p p₁ ∼ left q = {!!} seq p p₁ ∼ right q = {!!} seq p p₁ ∼ par q q₁ = {!!} left p ∼ edge ._ ._ = {!!} left p ∼ seq q q₁ = {!!} left p ∼ left q = {!!} right p ∼ edge ._ ._ = {!!} right p ∼ seq q q₁ = {!!} right p ∼ right q = {!!} par p p₁ ∼ edge ._ ._ = {!!} par p p₁ ∼ seq q q₁ = {!!} par p p₁ ∼ par q q₁ = {!!} -- Equivalences between paths leading to 2path structure -- Following the HoTT approach two paths are considered the same if they -- map the same points to equal points infix 4 _∼_ _∼_ : ∀ {t₁ t₂ v₁ v₂ v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁ , v₁ ] •[ t₂ , v₂' ]) → Set _∼_ {t₁} {t₂} {v₁} {v₂} {v₂'} p q = (v₂ ≡ v₂') -- Lemma 2.4.2 p∼p : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ p p∼p {p = path c} _ = refl p∼q→q∼p : {t₁ t₂ : U} {p q : Path t₁ t₂} → (p ∼ q) → (q ∼ p) p∼q→q∼p {p = path c₁} {q = path c₂} α v = sym (α v) p∼q∼r→p∼r : {t₁ t₂ : U} {p q r : Path t₁ t₂} → (p ∼ q) → (q ∼ r) → (p ∼ r) p∼q∼r→p∼r {p = path c₁} {q = path c₂} {r = path c₃} α β v = trans (α v) (β v) -- lift inverses and compositions to paths inv : {t₁ t₂ : U} → Path t₁ t₂ → Path t₂ t₁ inv (path c) = path (! c) infixr 10 _●_ _●_ : {t₁ t₂ t₃ : U} → Path t₁ t₂ → Path t₂ t₃ → Path t₁ t₃ path c₁ ● path c₂ = path (c₁ ◎ c₂) -- Lemma 2.1.4 p∼p◎id : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ p ● path id⟷ p∼p◎id {t₁} {t₂} {path c} v = (begin (perm2path c v) ≡⟨ refl ⟩ (perm2path c (perm2path id⟷ v)) ≡⟨ refl ⟩ (perm2path (c ◎ id⟷) v) ∎) p∼id◎p : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ path id⟷ ● p p∼id◎p {t₁} {t₂} {path c} v = (begin (perm2path c v) ≡⟨ refl ⟩ (perm2path id⟷ (perm2path c v)) ≡⟨ refl ⟩ (perm2path (id⟷ ◎ c) v) ∎) !p◎p∼id : {t₁ t₂ : U} {p : Path t₁ t₂} → (inv p) ● p ∼ path id⟷ !p◎p∼id {t₁} {t₂} {path c} v = (begin (perm2path ((! c) ◎ c) v) ≡⟨ refl ⟩ (perm2path c (perm2path (! c) v)) ≡⟨ invr {t₁} {t₂} {c} {v} ⟩ (perm2path id⟷ v) ∎) p◎!p∼id : {t₁ t₂ : U} {p : Path t₁ t₂} → p ● (inv p) ∼ path id⟷ p◎!p∼id {t₁} {t₂} {path c} v = (begin (perm2path (c ◎ (! c)) v) ≡⟨ refl ⟩ (perm2path (! c) (perm2path c v)) ≡⟨ invl {t₁} {t₂} {c} {v} ⟩ (perm2path id⟷ v) ∎) !!p∼p : {t₁ t₂ : U} {p : Path t₁ t₂} → inv (inv p) ∼ p !!p∼p {t₁} {t₂} {path c} v = begin (perm2path (! (! c)) v ≡⟨ cong (λ x → perm2path x v) (!! {c = c}) ⟩ perm2path c v ∎) assoc◎ : {t₁ t₂ t₃ t₄ : U} {p : Path t₁ t₂} {q : Path t₂ t₃} {r : Path t₃ t₄} → p ● (q ● r) ∼ (p ● q) ● r assoc◎ {t₁} {t₂} {t₃} {t₄} {path c₁} {path c₂} {path c₃} v = begin (perm2path (c₁ ◎ (c₂ ◎ c₃)) v ≡⟨ refl ⟩ perm2path (c₂ ◎ c₃) (perm2path c₁ v) ≡⟨ refl ⟩ perm2path c₃ (perm2path c₂ (perm2path c₁ v)) ≡⟨ refl ⟩ perm2path c₃ (perm2path (c₁ ◎ c₂) v) ≡⟨ refl ⟩ perm2path ((c₁ ◎ c₂) ◎ c₃) v ∎) resp◎ : {t₁ t₂ t₃ : U} {p q : Path t₁ t₂} {r s : Path t₂ t₃} → p ∼ q → r ∼ s → (p ● r) ∼ (q ● s) resp◎ {t₁} {t₂} {t₃} {path c₁} {path c₂} {path c₃} {path c₄} α β v = begin (perm2path (c₁ ◎ c₃) v ≡⟨ refl ⟩ perm2path c₃ (perm2path c₁ v) ≡⟨ cong (λ x → perm2path c₃ x) (α v) ⟩ perm2path c₃ (perm2path c₂ v) ≡⟨ β (perm2path c₂ v) ⟩ perm2path c₄ (perm2path c₂ v) ≡⟨ refl ⟩ perm2path (c₂ ◎ c₄) v ∎) -- Recall that two perminators are the same if they denote the same -- permutation; in that case there is a 2path between them in the relevant -- path space data _⇔_ {t₁ t₂ : U} : Path t₁ t₂ → Path t₁ t₂ → Set where 2path : {p q : Path t₁ t₂} → (p ∼ q) → (p ⇔ q) -- Examples p q r : Path BOOL BOOL p = path id⟷ q = path swap₊ r = path (swap₊ ◎ id⟷) α : q ⇔ r α = 2path (p∼p◎id {p = path swap₊}) -- The equivalence of paths makes U a 1groupoid: the points are types t : U; -- the 1paths are ⟷; and the 2paths between them are ⇔ G : 1Groupoid G = record { set = U ; _↝_ = Path ; _≈_ = _⇔_ ; id = path id⟷ ; _∘_ = λ q p → p ● q ; _⁻¹ = inv ; lneutr = λ p → 2path (p∼q→q∼p p∼p◎id) ; rneutr = λ p → 2path (p∼q→q∼p p∼id◎p) ; assoc = λ r q p → 2path assoc◎ ; equiv = record { refl = 2path p∼p ; sym = λ { (2path α) → 2path (p∼q→q∼p α) } ; trans = λ { (2path α) (2path β) → 2path (p∼q∼r→p∼r α β) } } ; linv = λ p → 2path p◎!p∼id ; rinv = λ p → 2path !p◎p∼id ; ∘-resp-≈ = λ { (2path β) (2path α) → 2path (resp◎ α β) } } ------------------------------------------------------------------------------ data ΩU : Set where ΩZERO : ΩU -- empty set of paths ΩONE : ΩU -- a trivial path ΩPLUS : ΩU → ΩU → ΩU -- disjoint union of paths ΩTIMES : ΩU → ΩU → ΩU -- pairs of paths PATH : (t₁ t₂ : U) → ΩU -- level 0 paths between values -- values Ω⟦_⟧ : ΩU → Set Ω⟦ ΩZERO ⟧ = ⊥ Ω⟦ ΩONE ⟧ = ⊤ Ω⟦ ΩPLUS t₁ t₂ ⟧ = Ω⟦ t₁ ⟧ ⊎ Ω⟦ t₂ ⟧ Ω⟦ ΩTIMES t₁ t₂ ⟧ = Ω⟦ t₁ ⟧ × Ω⟦ t₂ ⟧ Ω⟦ PATH t₁ t₂ ⟧ = Path t₁ t₂ -- two perminators are the same if they denote the same permutation -- 2paths data _⇔_ : ΩU → ΩU → Set where unite₊ : {t : ΩU} → ΩPLUS ΩZERO t ⇔ t uniti₊ : {t : ΩU} → t ⇔ ΩPLUS ΩZERO t swap₊ : {t₁ t₂ : ΩU} → ΩPLUS t₁ t₂ ⇔ ΩPLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : ΩU} → ΩPLUS t₁ (ΩPLUS t₂ t₃) ⇔ ΩPLUS (ΩPLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : ΩU} → ΩPLUS (ΩPLUS t₁ t₂) t₃ ⇔ ΩPLUS t₁ (ΩPLUS t₂ t₃) unite⋆ : {t : ΩU} → ΩTIMES ΩONE t ⇔ t uniti⋆ : {t : ΩU} → t ⇔ ΩTIMES ΩONE t swap⋆ : {t₁ t₂ : ΩU} → ΩTIMES t₁ t₂ ⇔ ΩTIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : ΩU} → ΩTIMES t₁ (ΩTIMES t₂ t₃) ⇔ ΩTIMES (ΩTIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : ΩU} → ΩTIMES (ΩTIMES t₁ t₂) t₃ ⇔ ΩTIMES t₁ (ΩTIMES t₂ t₃) distz : {t : ΩU} → ΩTIMES ΩZERO t ⇔ ΩZERO factorz : {t : ΩU} → ΩZERO ⇔ ΩTIMES ΩZERO t dist : {t₁ t₂ t₃ : ΩU} → ΩTIMES (ΩPLUS t₁ t₂) t₃ ⇔ ΩPLUS (ΩTIMES t₁ t₃) (ΩTIMES t₂ t₃) factor : {t₁ t₂ t₃ : ΩU} → ΩPLUS (ΩTIMES t₁ t₃) (ΩTIMES t₂ t₃) ⇔ ΩTIMES (ΩPLUS t₁ t₂) t₃ id⇔ : {t : ΩU} → t ⇔ t _◎_ : {t₁ t₂ t₃ : ΩU} → (t₁ ⇔ t₂) → (t₂ ⇔ t₃) → (t₁ ⇔ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : ΩU} → (t₁ ⇔ t₃) → (t₂ ⇔ t₄) → (ΩPLUS t₁ t₂ ⇔ ΩPLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : ΩU} → (t₁ ⇔ t₃) → (t₂ ⇔ t₄) → (ΩTIMES t₁ t₂ ⇔ ΩTIMES t₃ t₄) _∼⇔_ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → PATH t₁ t₂ ⇔ PATH t₁ t₂ -- two spaces are equivalent if there is a path between them; this path -- automatically has an inverse which is an equivalence. It is a -- quasi-equivalence but for finite types that's the same as an equivalence. infix 4 _≃_ _≃_ : (t₁ t₂ : U) → Set t₁ ≃ t₂ = (t₁ ⟷ t₂) -- Univalence says (t₁ ≃ t₂) ≃ (t₁ ⟷ t₂) but as shown above, we actually have -- this by definition instead of up to ≃ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ another idea is to look at c and massage it as follows: rewrite every swap+ ; c to c' ; swaps ; c'' general start with id || id || c examine c and move anything that's not swap to left. If we get to c' || id || id we are done if we get to: c' || id || swap+;c then we rewrite c';c1 || swaps || c2;c and we keep going module Phase₁ where -- no occurrences of (TIMES (TIMES t₁ t₂) t₃) approach that maintains the invariants in proofs invariant : (t : U) → Bool invariant ZERO = true invariant ONE = true invariant (PLUS t₁ t₂) = invariant t₁ ∧ invariant t₂ invariant (TIMES ZERO t₂) = invariant t₂ invariant (TIMES ONE t₂) = invariant t₂ invariant (TIMES (PLUS t₁ t₂) t₃) = (invariant t₁ ∧ invariant t₂) ∧ invariant t₃ invariant (TIMES (TIMES t₁ t₂) t₃) = false Invariant : (t : U) → Set Invariant t = invariant t ≡ true invariant? : Decidable Invariant invariant? t with invariant t ... | true = yes refl ... | false = no (λ ()) conj : ∀ {b₁ b₂} → (b₁ ≡ true) → (b₂ ≡ true) → (b₁ ∧ b₂ ≡ true) conj {true} {true} p q = refl conj {true} {false} p () conj {false} {true} () conj {false} {false} () phase₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (True (invariant? t₂) × t₁ ⟷ t₂) phase₁ ZERO = (ZERO , (fromWitness {Q = invariant? ZERO} refl , id⟷)) phase₁ ONE = (ONE , (fromWitness {Q = invariant? ONE} refl , id⟷)) phase₁ (PLUS t₁ t₂) with phase₁ t₁ | phase₁ t₂ ... | (t₁' , (p₁ , c₁)) | (t₂' , (p₂ , c₂)) with toWitness p₁ | toWitness p₂ ... | t₁'ok | t₂'ok = (PLUS t₁' t₂' , (fromWitness {Q = invariant? (PLUS t₁' t₂')} (conj t₁'ok t₂'ok) , c₁ ⊕ c₂)) phase₁ (TIMES ZERO t) with phase₁ t ... | (t' , (p , c)) with toWitness p ... | t'ok = (TIMES ZERO t' , (fromWitness {Q = invariant? (TIMES ZERO t')} t'ok , id⟷ ⊗ c)) phase₁ (TIMES ONE t) with phase₁ t ... | (t' , (p , c)) with toWitness p ... | t'ok = (TIMES ONE t' , (fromWitness {Q = invariant? (TIMES ONE t')} t'ok , id⟷ ⊗ c)) phase₁ (TIMES (PLUS t₁ t₂) t₃) with phase₁ t₁ | phase₁ t₂ | phase₁ t₃ ... | (t₁' , (p₁ , c₁)) | (t₂' , (p₂ , c₂)) | (t₃' , (p₃ , c₃)) with toWitness p₁ | toWitness p₂ | toWitness p₃ ... | t₁'ok | t₂'ok | t₃'ok = (TIMES (PLUS t₁' t₂') t₃' , (fromWitness {Q = invariant? (TIMES (PLUS t₁' t₂') t₃')} (conj (conj t₁'ok t₂'ok) t₃'ok) , (c₁ ⊕ c₂) ⊗ c₃)) phase₁ (TIMES (TIMES t₁ t₂) t₃) = {!!} -- invariants are informal -- rewrite (TIMES (TIMES t₁ t₂) t₃) to TIMES t₁ (TIMES t₂ t₃) invariant : (t : U) → Bool invariant ZERO = true invariant ONE = true invariant (PLUS t₁ t₂) = invariant t₁ ∧ invariant t₂ invariant (TIMES ZERO t₂) = invariant t₂ invariant (TIMES ONE t₂) = invariant t₂ invariant (TIMES (PLUS t₁ t₂) t₃) = invariant t₁ ∧ invariant t₂ ∧ invariant t₃ invariant (TIMES (TIMES t₁ t₂) t₃) = false step₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (t₁ ⟷ t₂) step₁ ZERO = (ZERO , id⟷) step₁ ONE = (ONE , id⟷) step₁ (PLUS t₁ t₂) with step₁ t₁ | step₁ t₂ ... | (t₁' , c₁) | (t₂' , c₂) = (PLUS t₁' t₂' , c₁ ⊕ c₂) step₁ (TIMES (TIMES t₁ t₂) t₃) with step₁ t₁ | step₁ t₂ | step₁ t₃ ... | (t₁' , c₁) | (t₂' , c₂) | (t₃' , c₃) = (TIMES t₁' (TIMES t₂' t₃') , ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) step₁ (TIMES ZERO t₂) with step₁ t₂ ... | (t₂' , c₂) = (TIMES ZERO t₂' , id⟷ ⊗ c₂) step₁ (TIMES ONE t₂) with step₁ t₂ ... | (t₂' , c₂) = (TIMES ONE t₂' , id⟷ ⊗ c₂) step₁ (TIMES (PLUS t₁ t₂) t₃) with step₁ t₁ | step₁ t₂ | step₁ t₃ ... | (t₁' , c₁) | (t₂' , c₂) | (t₃' , c₃) = (TIMES (PLUS t₁' t₂') t₃' , (c₁ ⊕ c₂) ⊗ c₃) {-# NO_TERMINATION_CHECK #-} phase₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (t₁ ⟷ t₂) phase₁ t with invariant t ... | true = (t , id⟷) ... | false with step₁ t ... | (t' , c) with phase₁ t' ... | (t'' , c') = (t'' , c ◎ c') test₁ = phase₁ (TIMES (TIMES (TIMES ONE ONE) (TIMES ONE ONE)) ONE) TIMES ONE (TIMES ONE (TIMES ONE (TIMES ONE ONE))) , (((id⟷ ⊗ id⟷) ⊗ (id⟷ ⊗ id⟷)) ⊗ id⟷ ◎ assocr⋆) ◎ ((id⟷ ⊗ id⟷) ⊗ ((id⟷ ⊗ id⟷) ⊗ id⟷ ◎ assocr⋆) ◎ assocr⋆) ◎ id⟷ -- Now any perminator (t₁ ⟷ t₂) can be transformed to a canonical -- representation in which we first associate all the TIMES to the right -- and then do the rest of the perminator normalize₁ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (Σ[ t₁' ∈ U ] (t₁ ⟷ t₁' × t₁' ⟷ t₂)) normalize₁ {ZERO} {t} c = ZERO , id⟷ , c normalize₁ {ONE} c = ONE , id⟷ , c normalize₁ {PLUS .ZERO t₂} unite₊ with phase₁ t₂ ... | (t₂n , cn) = PLUS ZERO t₂n , id⟷ ⊕ cn , unite₊ ◎ ! cn normalize₁ {PLUS t₁ t₂} uniti₊ = {!!} normalize₁ {PLUS t₁ t₂} swap₊ = {!!} normalize₁ {PLUS t₁ ._} assocl₊ = {!!} normalize₁ {PLUS ._ t₂} assocr₊ = {!!} normalize₁ {PLUS t₁ t₂} uniti⋆ = {!!} normalize₁ {PLUS ._ ._} factor = {!!} normalize₁ {PLUS t₁ t₂} id⟷ = {!!} normalize₁ {PLUS t₁ t₂} (c ◎ c₁) = {!!} normalize₁ {PLUS t₁ t₂} (c ⊕ c₁) = {!!} normalize₁ {TIMES t₁ t₂} c = {!!} record Permutation (t t' : U) : Set where field t₀ : U -- no occurrences of TIMES .. (TIMES .. ..) phase₀ : t ⟷ t₀ t₁ : U -- no occurrences of TIMES (PLUS .. ..) phase₁ : t₀ ⟷ t₁ t₂ : U -- no occurrences of TIMES phase₂ : t₁ ⟷ t₂ t₃ : U -- no nested left PLUS, all PLUS of form PLUS simple (PLUS ...) phase₃ : t₂ ⟷ t₃ t₄ : U -- no occurrences PLUS ZERO phase₄ : t₃ ⟷ t₄ t₅ : U -- do actual permutation using swapij phase₅ : t₄ ⟷ t₅ rest : t₅ ⟷ t' -- blah blah canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → Permutation t₁ t₂ canonical c = {!!} ------------------------------------------------------------------------------ -- These paths do NOT reach "inside" the finite sets. For example, there is -- NO PATH between false and true in BOOL even though there is a path between -- BOOL and BOOL that "twists the space around." -- -- In more detail how do these paths between types relate to the whole -- discussion about higher groupoid structure of type formers (Sec. 2.5 and -- on). -- Then revisit the early parts of Ch. 2 about higher groupoid structure for -- U, how functions from U to U respect the paths in U, type families and -- dependent functions, homotopies and equivalences, and then Sec. 2.5 and -- beyond again. should this be on the code as done now or on their interpreation i.e. data _⟷_ : ⟦ U ⟧ → ⟦ U ⟧ → Set where can add recursive types rec : U ⟦_⟧ takes an additional argument X that is passed around ⟦ rec ⟧ X = X fixpoitn data μ (t : U) : Set where ⟨_⟩ : ⟦ t ⟧ (μ t) → μ t -- We identify functions with the paths above. Since every function is -- reversible, every function corresponds to a path and there is no -- separation between functions and paths and no need to mediate between them -- using univalence. -- -- Note that none of the above functions are dependent functions. ------------------------------------------------------------------------------ -- Now we consider homotopies, i.e., paths between functions. Since our -- functions are identified with the paths ⟷, the homotopies are paths -- between elements of ⟷ -- First, a sanity check. Our notion of paths matches the notion of -- equivalences in the conventional HoTT presentation -- Homotopy between two functions (paths) -- That makes id ∼ not which is bad. The def. of ∼ should be parametric... _∼_ : {t₁ t₂ t₃ : U} → (f : t₁ ⟷ t₂) → (g : t₁ ⟷ t₃) → Set _∼_ {t₁} {t₂} {t₃} f g = t₂ ⟷ t₃ -- Every f and g of the right type are related by ∼ homotopy : {t₁ t₂ t₃ : U} → (f : t₁ ⟷ t₂) → (g : t₁ ⟷ t₃) → (f ∼ g) homotopy f g = (! f) ◎ g -- Equivalences -- -- If f : t₁ ⟷ t₂ has two inverses g₁ g₂ : t₂ ⟷ t₁ then g₁ ∼ g₂. More -- generally, any two paths of the same type are related by ∼. equiv : {t₁ t₂ : U} → (f g : t₁ ⟷ t₂) → (f ∼ g) equiv f g = id⟷ -- It follows that any two types in U are equivalent if there is a path -- between them _≃_ : (t₁ t₂ : U) → Set t₁ ≃ t₂ = t₁ ⟷ t₂ -- Now we want to understand the type of paths between paths ------------------------------------------------------------------------------ elems : (t : U) → List ⟦ t ⟧ elems ZERO = [] elems ONE = [ tt ] elems (PLUS t₁ t₂) = map inj₁ (elems t₁) ++ map inj₂ (elems t₂) elems (TIMES t₁ t₂) = concat (map (λ v₂ → map (λ v₁ → (v₁ , v₂)) (elems t₁)) (elems t₂)) _≟_ : {t : U} → ⟦ t ⟧ → ⟦ t ⟧ → Bool _≟_ {ZERO} () _≟_ {ONE} tt tt = true _≟_ {PLUS t₁ t₂} (inj₁ v) (inj₁ w) = v ≟ w _≟_ {PLUS t₁ t₂} (inj₁ v) (inj₂ w) = false _≟_ {PLUS t₁ t₂} (inj₂ v) (inj₁ w) = false _≟_ {PLUS t₁ t₂} (inj₂ v) (inj₂ w) = v ≟ w _≟_ {TIMES t₁ t₂} (v₁ , w₁) (v₂ , w₂) = v₁ ≟ v₂ ∧ w₁ ≟ w₂ findLoops : {t t₁ t₂ : U} → (PLUS t t₁ ⟷ PLUS t t₂) → List ⟦ t ⟧ → List (Σ[ t ∈ U ] ⟦ t ⟧) findLoops c [] = [] findLoops {t} c (v ∷ vs) = ? with perm2path c (inj₁ v) ... | (inj₂ _ , loops) = loops ++ findLoops c vs ... | (inj₁ v' , loops) with v ≟ v' ... | true = (t , v) ∷ loops ++ findLoops c vs ... | false = loops ++ findLoops c vs traceLoopsEx : {t : U} → List (Σ[ t ∈ U ] ⟦ t ⟧) traceLoopsEx {t} = findLoops traceBodyEx (elems (PLUS t (PLUS t t))) -- traceLoopsEx {ONE} ==> (PLUS ONE (PLUS ONE ONE) , inj₂ (inj₁ tt)) ∷ [] -- Each permutation is a "path" between types. We can think of this path as -- being indexed by "time" where "time" here is in discrete units -- corresponding to the sequencing of combinators. A homotopy between paths p -- and q is a map that, for each "time unit", maps the specified type along p -- to a corresponding type along q. At each such time unit, the mapping -- between types is itself a path. So a homotopy is essentially a collection -- of paths. As an example, given two paths starting at t₁ and ending at t₂ -- and going through different intermediate points: -- p = t₁ -> t -> t' -> t₂ -- q = t₁ -> u -> u' -> t₂ -- A possible homotopy between these two paths is a path from t to u and -- another path from t' to u'. Things get slightly more complicated if the -- number of intermediate points is not the same etc. but that's the basic idea. -- The vertical paths must commute with the horizontal ones. -- -- Postulate the groupoid laws and use them to prove commutativity etc. -- -- Bool -id-- Bool -id-- Bool -id-- Bool -- | | | | -- | not id | the last square does not commute -- | | | | -- Bool -not- Bool -not- Bool -not- Bool -- -- If the large rectangle commutes then the smaller squares commute. For a -- proof, let p o q o r o s be the left-bottom path and p' o q' o r' o s' be -- the top-right path. Let's focus on the square: -- -- A-- r'--C -- | | -- ? s' -- | | -- B-- s --D -- -- We have a path from A to B that is: !q' o !p' o p o q o r. -- Now let's see if r' o s' is equivalent to -- !q' o !p' o p o q o r o s -- We know p o q o r o s ⇔ p' o q' o r' o s' -- If we know that ⇔ is preserved by composition then: -- !q' o !p' o p o q o r o s ⇔ !q' o !p' o p' o q' o r' o s' -- and of course by inverses and id being unit of composition: -- !q' o !p' o p o q o r o s ⇔ r' o s' -- and we are done. {-# NO_TERMINATION_CHECK #-} Path∼ : ∀ {t₁ t₂ t₁' t₂' v₁ v₂ v₁' v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁' , v₁' ] •[ t₂' , v₂' ]) → Set -- sequential composition Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p₁ p₂) (_●_ {t₂ = t₂'} {v₂ = v₂'} q₁ q₂) = (Path∼ p₁ q₁ × Path∼ p₂ q₂) ⊎ (Path∼ {t₁} {t₂} {t₁'} {t₁'} {v₁} {v₂} {v₁'} {v₁'} p₁ id⟷• × Path∼ p₂ (q₁ ● q₂)) ⊎ (Path∼ p₁ (q₁ ● q₂) × Path∼ {t₂} {t₃} {t₃'} {t₃'} {v₂} {v₃} {v₃'} {v₃'} p₂ id⟷•) ⊎ (Path∼ {t₁} {t₁} {t₁'} {t₂'} {v₁} {v₁} {v₁'} {v₂'} id⟷• q₁ × Path∼ (p₁ ● p₂) q₂) ⊎ (Path∼ (p₁ ● p₂) q₁ × Path∼ {t₃} {t₃} {t₂'} {t₃'} {v₃} {v₃} {v₂'} {v₃'} id⟷• q₂) Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p q) c = (Path∼ {t₁} {t₂} {t₁'} {t₁'} {v₁} {v₂} {v₁'} {v₁'} p id⟷• × Path∼ q c) ⊎ (Path∼ p c × Path∼ {t₂} {t₃} {t₃'} {t₃'} {v₂} {v₃} {v₃'} {v₃'} q id⟷•) Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} c (_●_ {t₂ = t₂'} {v₂ = v₂'} p q) = (Path∼ {t₁} {t₁} {t₁'} {t₂'} {v₁} {v₁} {v₁'} {v₂'} id⟷• p × Path∼ c q) ⊎ (Path∼ c p × Path∼ {t₃} {t₃} {t₂'} {t₃'} {v₃} {v₃} {v₂'} {v₃'} id⟷• q) -- choices Path∼ (⊕1• p) (⊕1• q) = Path∼ p q Path∼ (⊕1• p) _ = ⊥ Path∼ _ (⊕1• p) = ⊥ Path∼ (⊕2• p) (⊕2• q) = Path∼ p q Path∼ (⊕2• p) _ = ⊥ Path∼ _ (⊕2• p) = ⊥ -- parallel paths Path∼ (p₁ ⊗• p₂) (q₁ ⊗• q₂) = Path∼ p₁ q₁ × Path∼ p₂ q₂ Path∼ (p₁ ⊗• p₂) _ = ⊥ Path∼ _ (q₁ ⊗• q₂) = ⊥ -- simple edges connecting two points Path∼ {t₁} {t₂} {t₁'} {t₂'} {v₁} {v₂} {v₁'} {v₂'} c₁ c₂ = Path •[ t₁ , v₁ ] •[ t₁' , v₁' ] × Path •[ t₂ , v₂ ] •[ t₂' , v₂' ] -- In the setting of finite types (in particular with no loops) every pair of -- paths with related start and end points is equivalent. In other words, we -- really have no interesting 2-path structure. allequiv : ∀ {t₁ t₂ t₁' t₂' v₁ v₂ v₁' v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁' , v₁' ] •[ t₂' , v₂' ]) → (start : Path •[ t₁ , v₁ ] •[ t₁' , v₁' ]) → (end : Path •[ t₂ , v₂ ] •[ t₂' , v₂' ]) → Path∼ p q allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p₁ p₂) (_●_ {t₂ = t₂'} {v₂ = v₂'} q₁ q₂) start end = {!!} allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p q) c start end = {!!} allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} c (_●_ {t₂ = t₂'} {v₂ = v₂'} p q) start end = {!!} allequiv (⊕1• p) (⊕1• q) start end = {!!} allequiv (⊕1• p) _ start end = {!!} allequiv _ (⊕1• p) start end = {!!} allequiv (⊕2• p) (⊕2• q) start end = {!!} allequiv (⊕2• p) _ start end = {!!} allequiv _ (⊕2• p) start end = {!!} -- parallel paths allequiv (p₁ ⊗• p₂) (q₁ ⊗• q₂) start end = {!!} allequiv (p₁ ⊗• p₂) _ start end = {!!} allequiv _ (q₁ ⊗• q₂) start end = {!!} -- simple edges connecting two points allequiv {t₁} {t₂} {t₁'} {t₂'} {v₁} {v₂} {v₁'} {v₂'} c₁ c₂ start end = {!!} refl∼ : ∀ {t₁ t₂ v₁ v₂} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → Path∼ p p refl∼ unite•₊ = id⟷• , id⟷• refl∼ uniti•₊ = id⟷• , id⟷• refl∼ swap1•₊ = id⟷• , id⟷• refl∼ swap2•₊ = id⟷• , id⟷• refl∼ assocl1•₊ = id⟷• , id⟷• refl∼ assocl2•₊ = id⟷• , id⟷• refl∼ assocl3•₊ = id⟷• , id⟷• refl∼ assocr1•₊ = id⟷• , id⟷• refl∼ assocr2•₊ = id⟷• , id⟷• refl∼ assocr3•₊ = id⟷• , id⟷• refl∼ unite•⋆ = id⟷• , id⟷• refl∼ uniti•⋆ = id⟷• , id⟷• refl∼ swap•⋆ = id⟷• , id⟷• refl∼ assocl•⋆ = id⟷• , id⟷• refl∼ assocr•⋆ = id⟷• , id⟷• refl∼ distz• = id⟷• , id⟷• refl∼ factorz• = id⟷• , id⟷• refl∼ dist1• = id⟷• , id⟷• refl∼ dist2• = id⟷• , id⟷• refl∼ factor1• = id⟷• , id⟷• refl∼ factor2• = id⟷• , id⟷• refl∼ id⟷• = id⟷• , id⟷• refl∼ (p ● q) = inj₁ (refl∼ p , refl∼ q) refl∼ (⊕1• p) = refl∼ p refl∼ (⊕2• q) = refl∼ q refl∼ (p ⊗• q) = refl∼ p , refl∼ q -- Extensional view -- First we enumerate all the values of a given finite type size : U → ℕ size ZERO = 0 size ONE = 1 size (PLUS t₁ t₂) = size t₁ + size t₂ size (TIMES t₁ t₂) = size t₁ * size t₂ enum : (t : U) → ⟦ t ⟧ → Fin (size t) enum ZERO () -- absurd enum ONE tt = zero enum (PLUS t₁ t₂) (inj₁ v₁) = inject+ (size t₂) (enum t₁ v₁) enum (PLUS t₁ t₂) (inj₂ v₂) = raise (size t₁) (enum t₂ v₂) enum (TIMES t₁ t₂) (v₁ , v₂) = fromℕ≤ (pr {s₁} {s₂} {n₁} {n₂}) where n₁ = enum t₁ v₁ n₂ = enum t₂ v₂ s₁ = size t₁ s₂ = size t₂ pr : {s₁ s₂ : ℕ} → {n₁ : Fin s₁} {n₂ : Fin s₂} → ((toℕ n₁ * s₂) + toℕ n₂) < (s₁ * s₂) pr {0} {_} {()} pr {_} {0} {_} {()} pr {suc s₁} {suc s₂} {zero} {zero} = {!z≤n!} pr {suc s₁} {suc s₂} {zero} {Fsuc n₂} = {!!} pr {suc s₁} {suc s₂} {Fsuc n₁} {zero} = {!!} pr {suc s₁} {suc s₂} {Fsuc n₁} {Fsuc n₂} = {!!} vals3 : Fin 3 × Fin 3 × Fin 3 vals3 = (enum THREE LL , enum THREE LR , enum THREE R) where THREE = PLUS (PLUS ONE ONE) ONE LL = inj₁ (inj₁ tt) LR = inj₁ (inj₂ tt) R = inj₂ tt --} xxx : {s₁ s₂ : ℕ} → (i : Fin s₁) → (j : Fin s₂) → suc (toℕ i * s₂ + toℕ j) ≤ s₁ * s₂ xxx {0} {_} () xxx {suc s₁} {s₂} i j = {!!} -- i : Fin (suc s₁) -- j : Fin s₂ -- ?0 : suc (toℕ i * s₂ + toℕ j) ≤ suc s₁ * s₂ -- (suc (toℕ i) * s₂ + toℕ j ≤ s₂ + s₁ * s₂ -- (suc (toℕ i) * s₂ + toℕ j ≤ s₁ * s₂ + s₂ utoVecℕ : (t : U) → Vec (Fin (utoℕ t)) (utoℕ t) utoVecℕ ZERO = [] utoVecℕ ONE = [ zero ] utoVecℕ (PLUS t₁ t₂) = map (inject+ (utoℕ t₂)) (utoVecℕ t₁) ++ map (raise (utoℕ t₁)) (utoVecℕ t₂) utoVecℕ (TIMES t₁ t₂) = concat (map (λ i → map (λ j → inject≤ (fromℕ (toℕ i * utoℕ t₂ + toℕ j)) (xxx i j)) (utoVecℕ t₂)) (utoVecℕ t₁)) -- Vector representation of types so that we can test permutations utoVec : (t : U) → Vec ⟦ t ⟧ (utoℕ t) utoVec ZERO = [] utoVec ONE = [ tt ] utoVec (PLUS t₁ t₂) = map inj₁ (utoVec t₁) ++ map inj₂ (utoVec t₂) utoVec (TIMES t₁ t₂) = concat (map (λ v₁ → map (λ v₂ → (v₁ , v₂)) (utoVec t₂)) (utoVec t₁)) -- Examples permutations and their actions on a simple ordered vector module PermExamples where -- ordered vector: position i has value i ordered : ∀ {n} → Vec (Fin n) n ordered = tabulate id -- empty permutation p₀ { } p₀ : Perm 0 p₀ = [] v₀ = permute p₀ ordered -- permutation p₁ { 0 -> 0 } p₁ : Perm 1 p₁ = 0F ∷ p₀ where 0F = fromℕ 0 v₁ = permute p₁ ordered -- permutations p₂ { 0 -> 0, 1 -> 1 } -- q₂ { 0 -> 1, 1 -> 0 } p₂ q₂ : Perm 2 p₂ = 0F ∷ p₁ where 0F = inject+ 1 (fromℕ 0) q₂ = 1F ∷ p₁ where 1F = fromℕ 1 v₂ = permute p₂ ordered w₂ = permute q₂ ordered -- permutations p₃ { 0 -> 0, 1 -> 1, 2 -> 2 } -- s₃ { 0 -> 0, 1 -> 2, 2 -> 1 } -- q₃ { 0 -> 1, 1 -> 0, 2 -> 2 } -- r₃ { 0 -> 1, 1 -> 2, 2 -> 0 } -- t₃ { 0 -> 2, 1 -> 0, 2 -> 1 } -- u₃ { 0 -> 2, 1 -> 1, 2 -> 0 } p₃ q₃ r₃ s₃ t₃ u₃ : Perm 3 p₃ = 0F ∷ p₂ where 0F = inject+ 2 (fromℕ 0) s₃ = 0F ∷ q₂ where 0F = inject+ 2 (fromℕ 0) q₃ = 1F ∷ p₂ where 1F = inject+ 1 (fromℕ 1) r₃ = 2F ∷ p₂ where 2F = fromℕ 2 t₃ = 1F ∷ q₂ where 1F = inject+ 1 (fromℕ 1) u₃ = 2F ∷ q₂ where 2F = fromℕ 2 v₃ = permute p₃ ordered y₃ = permute s₃ ordered w₃ = permute q₃ ordered x₃ = permute r₃ ordered z₃ = permute t₃ ordered α₃ = permute u₃ ordered -- end module PermExamples ------------------------------------------------------------------------------ -- Testing t₁ = PLUS ZERO BOOL t₂ = BOOL m₁ = matchP {t₁} {t₂} unite₊ -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ (inj₂ (inj₂ tt) , inj₂ tt) ∷ [] m₂ = matchP {t₂} {t₁} uniti₊ -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ (inj₂ tt , inj₂ (inj₂ tt)) ∷ [] t₃ = PLUS BOOL ONE t₄ = PLUS ONE BOOL m₃ = matchP {t₃} {t₄} swap₊ -- (inj₂ tt , inj₁ tt) ∷ -- (inj₁ (inj₁ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₁ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ [] m₄ = matchP {t₄} {t₃} swap₊ -- (inj₂ (inj₁ tt) , inj₁ (inj₁ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₁ (inj₂ tt)) ∷ -- (inj₁ tt , inj₂ tt) ∷ [] t₅ = PLUS ONE (PLUS BOOL ONE) t₆ = PLUS (PLUS ONE BOOL) ONE m₅ = matchP {t₅} {t₆} assocl₊ -- (inj₁ tt , inj₁ (inj₁ tt)) ∷ -- (inj₂ (inj₁ (inj₁ tt)) , inj₁ (inj₂ (inj₁ tt))) ∷ -- (inj₂ (inj₁ (inj₂ tt)) , inj₁ (inj₂ (inj₂ tt))) ∷ -- (inj₂ (inj₂ tt) , inj₂ tt) ∷ [] m₆ = matchP {t₆} {t₅} assocr₊ -- (inj₁ (inj₁ tt) , inj₁ tt) ∷ -- (inj₁ (inj₂ (inj₁ tt)) , inj₂ (inj₁ (inj₁ tt))) ∷ -- (inj₁ (inj₂ (inj₂ tt)) , inj₂ (inj₁ (inj₂ tt))) ∷ -- (inj₂ tt , inj₂ (inj₂ tt)) ∷ [] t₇ = TIMES ONE BOOL t₈ = BOOL m₇ = matchP {t₇} {t₈} unite⋆ -- ((tt , inj₁ tt) , inj₁ tt) ∷ ((tt , inj₂ tt) , inj₂ tt) ∷ [] m₈ = matchP {t₈} {t₇} uniti⋆ -- (inj₁ tt , (tt , inj₁ tt)) ∷ (inj₂ tt , (tt , inj₂ tt)) ∷ [] t₉ = TIMES BOOL ONE t₁₀ = TIMES ONE BOOL m₉ = matchP {t₉} {t₁₀} swap⋆ -- ((inj₁ tt , tt) , (tt , inj₁ tt)) ∷ -- ((inj₂ tt , tt) , (tt , inj₂ tt)) ∷ [] m₁₀ = matchP {t₁₀} {t₉} swap⋆ -- ((tt , inj₁ tt) , (inj₁ tt , tt)) ∷ -- ((tt , inj₂ tt) , (inj₂ tt , tt)) ∷ [] t₁₁ = TIMES BOOL (TIMES ONE BOOL) t₁₂ = TIMES (TIMES BOOL ONE) BOOL m₁₁ = matchP {t₁₁} {t₁₂} assocl⋆ -- ((inj₁ tt , (tt , inj₁ tt)) , ((inj₁ tt , tt) , inj₁ tt)) ∷ -- ((inj₁ tt , (tt , inj₂ tt)) , ((inj₁ tt , tt) , inj₂ tt)) ∷ -- ((inj₂ tt , (tt , inj₁ tt)) , ((inj₂ tt , tt) , inj₁ tt)) ∷ -- ((inj₂ tt , (tt , inj₂ tt)) , ((inj₂ tt , tt) , inj₂ tt)) ∷ [] m₁₂ = matchP {t₁₂} {t₁₁} assocr⋆ -- (((inj₁ tt , tt) , inj₁ tt) , (inj₁ tt , (tt , inj₁ tt)) ∷ -- (((inj₁ tt , tt) , inj₂ tt) , (inj₁ tt , (tt , inj₂ tt)) ∷ -- (((inj₂ tt , tt) , inj₁ tt) , (inj₂ tt , (tt , inj₁ tt)) ∷ -- (((inj₂ tt , tt) , inj₂ tt) , (inj₂ tt , (tt , inj₂ tt)) ∷ [] t₁₃ = TIMES ZERO BOOL t₁₄ = ZERO m₁₃ = matchP {t₁₃} {t₁₄} distz -- [] m₁₄ = matchP {t₁₄} {t₁₃} factorz -- [] t₁₅ = TIMES (PLUS BOOL ONE) BOOL t₁₆ = PLUS (TIMES BOOL BOOL) (TIMES ONE BOOL) m₁₅ = matchP {t₁₅} {t₁₆} dist -- ((inj₁ (inj₁ tt) , inj₁ tt) , inj₁ (inj₁ tt , inj₁ tt)) ∷ -- ((inj₁ (inj₁ tt) , inj₂ tt) , inj₁ (inj₁ tt , inj₂ tt)) ∷ -- ((inj₁ (inj₂ tt) , inj₁ tt) , inj₁ (inj₂ tt , inj₁ tt)) ∷ -- ((inj₁ (inj₂ tt) , inj₂ tt) , inj₁ (inj₂ tt , inj₂ tt)) ∷ -- ((inj₂ tt , inj₁ tt) , inj₂ (tt , inj₁ tt)) ∷ -- ((inj₂ tt , inj₂ tt) , inj₂ (tt , inj₂ tt)) ∷ [] m₁₆ = matchP {t₁₆} {t₁₅} factor -- (inj₁ (inj₁ tt , inj₁ tt) , (inj₁ (inj₁ tt) , inj₁ tt)) ∷ -- (inj₁ (inj₁ tt , inj₂ tt) , (inj₁ (inj₁ tt) , inj₂ tt)) ∷ -- (inj₁ (inj₂ tt , inj₁ tt) , (inj₁ (inj₂ tt) , inj₁ tt)) ∷ -- (inj₁ (inj₂ tt , inj₂ tt) , (inj₁ (inj₂ tt) , inj₂ tt)) ∷ -- (inj₂ (tt , inj₁ tt) , (inj₂ tt , inj₁ tt)) ∷ -- (inj₂ (tt , inj₂ tt) , (inj₂ tt , inj₂ tt)) ∷ [] t₁₇ = BOOL t₁₈ = BOOL m₁₇ = matchP {t₁₇} {t₁₈} id⟷ -- (inj₁ tt , inj₁ tt) ∷ (inj₂ tt , inj₂ tt) ∷ [] --◎ --⊕ --⊗ ------------------------------------------------------------------------------ mergeS :: SubPerm → SubPerm (suc m * n) (m * n) → SubPerm (suc m * suc n) (m * suc n) mergeS = ? subP : ∀ {m n} → Fin (suc m) → Perm n → SubPerm (suc m * n) (m * n) subP {m} {0} i β = {!!} subP {m} {suc n} i (j ∷ β) = mergeS ? (subP {m} {n} i β) -- injectP (Perm n) (m * n) -- ... -- SP (suc m * n) (m * n) -- SP (n + m * n) (m * n) --SP (suc m * n) (m * n) -- -- --==> -- --(suc m * suc n) (m * suc n) --m : ℕ --n : ℕ --i : Fin (suc m) --j : Fin (suc n) --β : Perm n --?1 : SubPerm (suc m * suc n) (m * suc n) tcompperm : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompperm [] β = [] tcompperm (i ∷ α) β = merge (subP i β) (tcompperm α β) -- shift m=3 n=4 i=ax:F3 β=[ay:F4,by:F3,cy:F2,dy:F1] γ=[r4,...,r11]:P8 -- ==> [F12,F11,F10,F9...γ] -- m = 3 -- n = 4 -- 3 * 4 -- x = [ ax, bx, cx ] : P 3, y : [ay, by, cy, dy] : P 4 -- (shift ax 4 y) || -- ( (shift bx 4 y) || -- ( (shift cx 4 y) || -- []))) -- -- ax : F3, bx : F2, cx : F1 -- ay : F4, by : F3, cy : F2, dy : F1 -- -- suc m = 3, m = 2 -- F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 -- [ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 ] -- --------------- -- ax : F3 with y=[F4,F3,F2,F1] -- -------------- -- bx : F2 -- ------------------ -- cx : F1 -- β should be something like i * n + entry in β {-- 0 * n = 0 (suc m) * n = n + (m * n) comb2perm (c₁ ⊗ c₂) = tcompperm (comb2perm c₁) (comb2perm c₂) c1 = swap+ (f->t,t->f) [1,0] c2 = id (f->f,t->t) [0,0] c1xc2 (f,f)->(t,f), (f,t)->(t,t), (t,f)->(f,f), (t,t)->(f,t) [ ff ft tf tt 2 2 0 0 index in α * n + index in β --} pex qex pqex qpex : Perm 3 pex = inject+ 1 (fromℕ 1) ∷ fromℕ 1 ∷ zero ∷ [] qex = zero ∷ fromℕ 1 ∷ zero ∷ [] pqex = fromℕ 2 ∷ fromℕ 1 ∷ zero ∷ [] qpex = inject+ 1 (fromℕ 1) ∷ zero ∷ zero ∷ [] pqexv = (permute qex ∘ permute pex) (tabulate id) pqexv' = permute pqex (tabulate id) qpexv = (permute pex ∘ permute qex) (tabulate id) qpexv' = permute qpex (tabulate id) -- [1,1,0] -- [z] => [z] -- [y,z] => [z,y] -- [x,y,z] => [z,x,y] -- [0,1,0] -- [w] => [w] -- [v,w] => [w,v] -- [u,v,w] => [u,w,v] -- R,R,_ ◌ _,R,_ -- R in p1 takes you to middle which also goes R, so first goes RR -- [a,b,c] ◌ [d,e,f] -- [a+p2[a], ...] -- [1,1,0] ◌ [0,1,0] one step [2,1,0] -- [z] => [z] -- [y,z] => [z,y] -- [x,y,z] => [z,y,x] -- [1,1,0] ◌ [0,1,0] -- [z] => [z] => [z] -- [y,z] => -- [x,y,z] => -- so [1,1,0] ◌ [0,1,0] ==> [2,1,0] -- so [0,1,0] ◌ [1,1,0] ==> [1,0,0] -- pex takes [0,1,2] to [2,0,1] -- qex takes [0,1,2] to [0,2,1] -- pex ◌ qex takes [0,1,2] to [2,1,0] -- qex ◌ pex takes [0,1,2] to [1,0,2] -- seq : ∀ {m n} → (m ≤ n) → Perm m → Perm n → Perm m -- seq lp [] _ = [] -- seq lp (i ∷ p) q = (lookupP i q) ∷ (seq lp p q) -- i F+ ... -- lookupP : ∀ {n} → Fin n → Perm n → Fin n -- i : Fin (suc m) -- p : Perm m -- q : Perm n -- -- (zero ∷ p₁) ◌ (q ∷ q₁) = q ∷ (p₁ ◌ q₁) -- (suc p ∷ p₁) ◌ (zero ∷ q₁) = {!!} -- (suc p ∷ p₁) ◌ (suc q ∷ q₁) = {!!} -- -- data Perm : ℕ → Set where -- [] : Perm 0 -- _∷_ : {n : ℕ} → Fin (suc n) → Perm n → Perm (suc n) -- Given a vector of (suc n) elements, return one of the elements and -- the rest. Example: pick (inject+ 1 (fromℕ 1)) (10 ∷ 20 ∷ 30 ∷ 40 ∷ []) pick : ∀ {ℓ} {n : ℕ} {A : Set ℓ} → Fin n → Vec A (suc n) → (A × Vec A n) pick {ℓ} {0} {A} () pick {ℓ} {suc n} {A} zero (v ∷ vs) = (v , vs) pick {ℓ} {suc n} {A} (suc i) (v ∷ vs) = let (w , ws) = pick {ℓ} {n} {A} i vs in (w , v ∷ ws) insertV : ∀ {ℓ} {n : ℕ} {A : Set ℓ} → A → Fin (suc n) → Vec A n → Vec A (suc n) insertV {n = 0} v zero [] = [ v ] insertV {n = 0} v (suc ()) insertV {n = suc n} v zero vs = v ∷ vs insertV {n = suc n} v (suc i) (w ∷ ws) = w ∷ insertV v i ws -- A permutation takes two vectors of the same size, matches one -- element from each and returns another permutation data P {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : (m n : ℕ) → (m ≡ n) → Vec A m → Vec B n → Set (ℓ ⊔ ℓ') where nil : P A B 0 0 refl [] [] cons : {m n : ℕ} {i : Fin (suc m)} {j : Fin (suc n)} → (p : m ≡ n) → (v : A) → (w : B) → (vs : Vec A m) → (ws : Vec B n) → P A B m n p vs ws → P A B (suc m) (suc n) (cong suc p) (insertV v i vs) (insertV w j ws) -- A permutation is a sequence of "insertions". infixr 5 _∷_ data Perm : ℕ → Set where [] : Perm 0 _∷_ : {n : ℕ} → Fin (suc n) → Perm n → Perm (suc n) lookupP : ∀ {n} → Fin n → Perm n → Fin n lookupP () [] lookupP zero (j ∷ _) = j lookupP {suc n} (suc i) (j ∷ q) = inject₁ (lookupP i q) insert : ∀ {ℓ n} {A : Set ℓ} → Vec A n → Fin (suc n) → A → Vec A (suc n) insert vs zero w = w ∷ vs insert [] (suc ()) -- absurd insert (v ∷ vs) (suc i) w = v ∷ insert vs i w -- A permutation acts on a vector by inserting each element in its new -- position. permute : ∀ {ℓ n} {A : Set ℓ} → Perm n → Vec A n → Vec A n permute [] [] = [] permute (p ∷ ps) (v ∷ vs) = insert (permute ps vs) p v -- Use a permutation to match up the elements in two vectors. See more -- convenient function matchP below. match : ∀ {t t'} → (size t ≡ size t') → Perm (size t) → Vec ⟦ t ⟧ (size t) → Vec ⟦ t' ⟧ (size t) → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) match {t} {t'} sp α vs vs' = let js = permute α (tabulate id) in zip (tabulate (λ j → lookup (lookup j js) vs)) vs' -- swap -- -- swapperm produces the permutations that maps: -- [ a , b || x , y , z ] -- to -- [ x , y , z || a , b ] -- Ex. -- permute (swapperm {5} (inject+ 2 (fromℕ 2))) ordered=[0,1,2,3,4] -- produces [2,3,4,0,1] -- Explicitly: -- swapex : Perm 5 -- swapex = inject+ 1 (fromℕ 3) -- :: Fin 5 -- ∷ inject+ 0 (fromℕ 3) -- :: Fin 4 -- ∷ zero -- ∷ zero -- ∷ zero -- ∷ [] swapperm : ∀ {n} → Fin n → Perm n swapperm {0} () -- absurd swapperm {suc n} zero = idperm swapperm {suc n} (suc i) = subst Fin (-+-id n i) (inject+ (toℕ i) (fromℕ (n ∸ toℕ i))) ∷ swapperm {n} i -- compositions -- Sequential composition scompperm : ∀ {n} → Perm n → Perm n → Perm n scompperm α β = {!!} -- Sub-permutations -- useful for parallel and multiplicative compositions -- Perm 4 has elements [Fin 4, Fin 3, Fin 2, Fin 1] -- SubPerm 11 7 has elements [Fin 11, Fin 10, Fin 9, Fin 8] -- So Perm 4 is a special case SubPerm 4 0 data SubPerm : ℕ → ℕ → Set where []s : {n : ℕ} → SubPerm n n _∷s_ : {n m : ℕ} → Fin (suc n) → SubPerm n m → SubPerm (suc n) m merge : ∀ {m n} → SubPerm m n → Perm n → Perm m merge []s β = β merge (i ∷s α) β = i ∷ merge α β injectP : ∀ {m} → Perm m → (n : ℕ) → SubPerm (m + n) n injectP [] n = []s injectP (i ∷ α) n = inject+ n i ∷s injectP α n -- Parallel + composition pcompperm : ∀ {m n} → Perm m → Perm n → Perm (m + n) pcompperm {m} {n} α β = merge (injectP α n) β -- Multiplicative * composition tcompperm : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompperm [] β = [] tcompperm (i ∷ α) β = {!!} ------------------------------------------------------------------------------ -- A combinator t₁ ⟷ t₂ denotes a permutation. comb2perm : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Perm (size t₁) comb2perm {PLUS ZERO t} {.t} unite₊ = idperm comb2perm {t} {PLUS ZERO .t} uniti₊ = idperm comb2perm {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ with size t₂ ... | 0 = idperm ... | suc j = swapperm {size t₁ + suc j} (inject≤ (fromℕ (size t₁)) (suc≤ (size t₁) j)) comb2perm {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = idperm comb2perm {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = idperm comb2perm {TIMES ONE t} {.t} unite⋆ = idperm comb2perm {t} {TIMES ONE .t} uniti⋆ = idperm comb2perm {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = idperm comb2perm assocl⋆ = idperm comb2perm assocr⋆ = idperm comb2perm distz = idperm comb2perm factorz = idperm comb2perm dist = idperm comb2perm factor = idperm comb2perm id⟷ = idperm comb2perm (c₁ ◎ c₂) = scompperm (comb2perm c₁) (subst Perm (sym (size≡ c₁)) (comb2perm c₂)) comb2perm (c₁ ⊕ c₂) = pcompperm (comb2perm c₁) (comb2perm c₂) comb2perm (c₁ ⊗ c₂) = tcompperm (comb2perm c₁) (comb2perm c₂) -- Convenient way of "seeing" what the permutation does for each combinator matchP : ∀ {t t'} → (t ⟷ t') → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) matchP {t} {t'} c = match sp (comb2perm c) (utoVec t) (subst (λ n → Vec ⟦ t' ⟧ n) (sym sp) (utoVec t')) where sp = size≡ c ------------------------------------------------------------------------------ -- Extensional equivalence of combinators: two combinators are -- equivalent if they denote the same permutation. Generally we would -- require that the two permutations map the same value x to values y -- and z that have a path between them, but because the internals of each -- type are discrete groupoids, this reduces to saying that y and z -- are identical, and hence that the permutations are identical. infix 10 _∼_ _∼_ : ∀ {t₁ t₂} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ ∼ c₂ = (comb2perm c₁ ≡ comb2perm c₂) -- The relation ~ is an equivalence relation refl∼ : ∀ {t₁ t₂} {c : t₁ ⟷ t₂} → (c ∼ c) refl∼ = refl sym∼ : ∀ {t₁ t₂} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₁) sym∼ = sym trans∼ : ∀ {t₁ t₂} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₃) → (c₁ ∼ c₃) trans∼ = trans -- The relation ~ validates the groupoid laws c◎id∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ id⟷ ∼ c c◎id∼c = {!!} id◎c∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ◎ c ∼ c id◎c∼c = {!!} assoc∼ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → c₁ ◎ (c₂ ◎ c₃) ∼ (c₁ ◎ c₂) ◎ c₃ assoc∼ = {!!} linv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ ! c ∼ id⟷ linv∼ = {!!} rinv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! c ◎ c ∼ id⟷ rinv∼ = {!!} resp∼ : {t₁ t₂ t₃ : U} {c₁ c₂ : t₁ ⟷ t₂} {c₃ c₄ : t₂ ⟷ t₃} → (c₁ ∼ c₂) → (c₃ ∼ c₄) → (c₁ ◎ c₃ ∼ c₂ ◎ c₄) resp∼ = {!!} -- The equivalence ∼ of paths makes U a 1groupoid: the points are -- types (t : U); the 1paths are ⟷; and the 2paths between them are -- based on extensional equivalence ∼ G : 1Groupoid G = record { set = U ; _↝_ = _⟷_ ; _≈_ = _∼_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ c → c◎id∼c {c = c} ; rneutr = λ c → id◎c∼c {c = c} ; assoc = λ c₃ c₂ c₁ → assoc∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} ; equiv = record { refl = λ {c} → refl∼ {c = c} ; sym = λ {c₁} {c₂} → sym∼ {c₁ = c₁} {c₂ = c₂} ; trans = λ {c₁} {c₂} {c₃} → trans∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} } ; linv = λ c → linv∼ {c = c} ; rinv = λ c → rinv∼ {c = c} ; ∘-resp-≈ = λ α β → resp∼ β α } -- And there are additional laws assoc⊕∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊕ (c₂ ⊕ c₃) ∼ assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊ assoc⊕∼ = {!!} assoc⊗∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊗ (c₂ ⊗ c₃) ∼ assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆ assoc⊗∼ = {!!} ------------------------------------------------------------------------------ -- Picture so far: -- -- path p -- ===================== -- || || || -- || ||2path || -- || || || -- || || path q || -- t₁ =================t₂ -- || ... || -- ===================== -- -- The types t₁, t₂, etc are discrete groupoids. The paths between -- them correspond to permutations. Each syntactically different -- permutation corresponds to a path but equivalent permutations are -- connected by 2paths. But now we want an alternative definition of -- 2paths that is structural, i.e., that looks at the actual -- construction of the path t₁ ⟷ t₂ in terms of combinators... The -- theorem we want is that α ∼ β iff we can rewrite α to β using -- various syntactic structural rules. We start with a collection of -- simplication rules and then try to show they are complete. -- Simplification rules infix 30 _⇔_ data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → (c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃) assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃)) assoc⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊕ (c₂ ⊕ c₃)) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) assoc⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊗ (c₂ ⊗ c₃)) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) assoc⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (c₁ ⊗ (c₂ ⊗ c₃)) dist⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → ((c₁ ⊕ c₂) ⊗ c₃) ⇔ (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) factor⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) ⇔ ((c₁ ⊕ c₂) ⊗ c₃) idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷) linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷ linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c) rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷ rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c) unitel₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (unite₊ ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊) uniter₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊕ c₂) ◎ unite₊) ⇔ (unite₊ ◎ c₂) unitil₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (uniti₊ ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊) unitir₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti₊) ⇔ (uniti₊ ◎ (c₁ ⊕ c₂)) unitial₊⇔ : {t₁ t₂ : U} → (uniti₊ {PLUS t₁ t₂} ◎ assocl₊) ⇔ (uniti₊ ⊕ id⟷) unitiar₊⇔ : {t₁ t₂ : U} → (uniti₊ {t₁} ⊕ id⟷ {t₂}) ⇔ (uniti₊ ◎ assocl₊) swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊) swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂)) unitel⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (unite⋆ ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆) uniter⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊗ c₂) ◎ unite⋆) ⇔ (unite⋆ ◎ c₂) unitil⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (uniti⋆ ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆) unitir⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti⋆) ⇔ (uniti⋆ ◎ (c₁ ⊗ c₂)) unitial⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {TIMES t₁ t₂} ◎ assocl⋆) ⇔ (uniti⋆ ⊗ id⟷) unitiar⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {t₁} ⊗ id⟷ {t₂}) ⇔ (uniti⋆ ◎ assocl⋆) swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆) swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂)) swapfl⋆⇔ : {t₁ t₂ t₃ : U} → (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) ⇔ (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) swapfr⋆⇔ : {t₁ t₂ t₃ : U} → (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) ⇔ (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) resp◎⇔ : {t₁ t₂ t₃ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄) resp⊕⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄) resp⊗⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄) -- better syntax for writing 2paths infix 2 _▤ infixr 2 _⇔⟨_⟩_ _⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) _ ⇔⟨ α ⟩ β = trans⇔ α β _▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c) _▤ c = id⇔ -- Inverses for 2paths 2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁) 2! assoc◎l = assoc◎r 2! assoc◎r = assoc◎l 2! assoc⊕l = assoc⊕r 2! assoc⊕r = assoc⊕l 2! assoc⊗l = assoc⊗r 2! assoc⊗r = assoc⊗l 2! dist⇔ = factor⇔ 2! factor⇔ = dist⇔ 2! idl◎l = idl◎r 2! idl◎r = idl◎l 2! idr◎l = idr◎r 2! idr◎r = idr◎l 2! linv◎l = linv◎r 2! linv◎r = linv◎l 2! rinv◎l = rinv◎r 2! rinv◎r = rinv◎l 2! unitel₊⇔ = uniter₊⇔ 2! uniter₊⇔ = unitel₊⇔ 2! unitil₊⇔ = unitir₊⇔ 2! unitir₊⇔ = unitil₊⇔ 2! swapl₊⇔ = swapr₊⇔ 2! swapr₊⇔ = swapl₊⇔ 2! unitial₊⇔ = unitiar₊⇔ 2! unitiar₊⇔ = unitial₊⇔ 2! unitel⋆⇔ = uniter⋆⇔ 2! uniter⋆⇔ = unitel⋆⇔ 2! unitil⋆⇔ = unitir⋆⇔ 2! unitir⋆⇔ = unitil⋆⇔ 2! unitial⋆⇔ = unitiar⋆⇔ 2! unitiar⋆⇔ = unitial⋆⇔ 2! swapl⋆⇔ = swapr⋆⇔ 2! swapr⋆⇔ = swapl⋆⇔ 2! swapfl⋆⇔ = swapfr⋆⇔ 2! swapfr⋆⇔ = swapfl⋆⇔ 2! id⇔ = id⇔ 2! (trans⇔ α β) = trans⇔ (2! β) (2! α) 2! (resp◎⇔ α β) = resp◎⇔ (2! α) (2! β) 2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β) 2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β) -- a nice example of 2 paths negEx : neg₅ ⇔ neg₁ negEx = uniti⋆ ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ assoc◎l ⟩ uniti⋆ ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ swapl⋆⇔ id⇔) ⟩ uniti⋆ ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ assoc◎r ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ assoc◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ (resp◎⇔ linv◎l id⇔)) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ idl◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆) ⇔⟨ assoc◎l ⟩ (uniti⋆ ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆ ⇔⟨ resp◎⇔ unitil⋆⇔ id⇔ ⟩ (swap₊ ◎ uniti⋆) ◎ unite⋆ ⇔⟨ assoc◎r ⟩ swap₊ ◎ (uniti⋆ ◎ unite⋆) ⇔⟨ resp◎⇔ id⇔ linv◎l ⟩ swap₊ ◎ id⟷ ⇔⟨ idr◎l ⟩ swap₊ ▤ -- The equivalence ⇔ of paths is rich enough to make U a 1groupoid: -- the points are types (t : U); the 1paths are ⟷; and the 2paths -- between them are based on the simplification rules ⇔ G' : 1Groupoid G' = record { set = U ; _↝_ = _⟷_ ; _≈_ = _⇔_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ → idr◎l ; rneutr = λ _ → idl◎l ; assoc = λ _ _ _ → assoc◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; linv = λ {t₁} {t₂} α → linv◎l ; rinv = λ {t₁} {t₂} α → rinv◎l ; ∘-resp-≈ = λ p∼q r∼s → resp◎⇔ r∼s p∼q } ------------------------------------------------------------------------------ -- Inverting permutations to syntactic combinators perm2comb : {t₁ t₂ : U} → (size t₁ ≡ size t₂) → Perm (size t₁) → (t₁ ⟷ t₂) perm2comb {ZERO} {t₂} sp [] = {!!} perm2comb {ONE} {t₂} sp p = {!!} perm2comb {PLUS t₁ t₂} {t₃} sp p = {!!} perm2comb {TIMES t₁ t₂} {t₃} sp p = {!!} ------------------------------------------------------------------------------ -- Soundness and completeness -- -- Proof of soundness and completeness: now we want to verify that ⇔ -- is sound and complete with respect to ∼. The statement to prove is -- that for all c₁ and c₂, we have c₁ ∼ c₂ iff c₁ ⇔ c₂ soundness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₁ ∼ c₂) soundness assoc◎l = assoc∼ soundness assoc◎r = sym∼ assoc∼ soundness assoc⊕l = assoc⊕∼ soundness assoc⊕r = sym∼ assoc⊕∼ soundness assoc⊗l = assoc⊗∼ soundness assoc⊗r = sym∼ assoc⊗∼ soundness dist⇔ = {!!} soundness factor⇔ = {!!} soundness idl◎l = id◎c∼c soundness idl◎r = sym∼ id◎c∼c soundness idr◎l = c◎id∼c soundness idr◎r = sym∼ c◎id∼c soundness linv◎l = linv∼ soundness linv◎r = sym∼ linv∼ soundness rinv◎l = rinv∼ soundness rinv◎r = sym∼ rinv∼ soundness unitel₊⇔ = {!!} soundness uniter₊⇔ = {!!} soundness unitil₊⇔ = {!!} soundness unitir₊⇔ = {!!} soundness unitial₊⇔ = {!!} soundness unitiar₊⇔ = {!!} soundness swapl₊⇔ = {!!} soundness swapr₊⇔ = {!!} soundness unitel⋆⇔ = {!!} soundness uniter⋆⇔ = {!!} soundness unitil⋆⇔ = {!!} soundness unitir⋆⇔ = {!!} soundness unitial⋆⇔ = {!!} soundness unitiar⋆⇔ = {!!} soundness swapl⋆⇔ = {!!} soundness swapr⋆⇔ = {!!} soundness swapfl⋆⇔ = {!!} soundness swapfr⋆⇔ = {!!} soundness id⇔ = refl∼ soundness (trans⇔ α β) = trans∼ (soundness α) (soundness β) soundness (resp◎⇔ α β) = resp∼ (soundness α) (soundness β) soundness (resp⊕⇔ α β) = {!!} soundness (resp⊗⇔ α β) = {!!} -- The idea is to invert evaluation and use that to extract from each -- extensional representation of a combinator, a canonical syntactic -- representative canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) canonical c = perm2comb (size≡ c) (comb2perm c) -- Note that if c₁ ⇔ c₂, then by soundness c₁ ∼ c₂ and hence their -- canonical representatives are identical. canonicalWellDefined : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (canonical c₁ ≡ canonical c₂) canonicalWellDefined {t₁} {t₂} {c₁} {c₂} α = cong₂ perm2comb (size∼ c₁ c₂) (soundness α) -- If we can prove that every combinator is equal to its normal form -- then we can prove completeness. inversion : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ canonical c inversion = {!!} resp≡⇔ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ≡ c₂) → (c₁ ⇔ c₂) resp≡⇔ {t₁} {t₂} {c₁} {c₂} p rewrite p = id⇔ completeness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) completeness {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = c₁ ⇔⟨ inversion ⟩ canonical c₁ ⇔⟨ resp≡⇔ (cong₂ perm2comb (size∼ c₁ c₂) c₁∼c₂) ⟩ canonical c₂ ⇔⟨ 2! inversion ⟩ c₂ ▤ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Nat and Fin lemmas suc≤ : (m n : ℕ) → suc m ≤ m + suc n suc≤ 0 n = s≤s z≤n suc≤ (suc m) n = s≤s (suc≤ m n) -+-id : (n : ℕ) → (i : Fin n) → suc (n ∸ toℕ i) + toℕ i ≡ suc n -+-id 0 () -- absurd -+-id (suc n) zero = +-right-identity (suc (suc n)) -+-id (suc n) (suc i) = begin suc (suc n ∸ toℕ (suc i)) + toℕ (suc i) ≡⟨ refl ⟩ suc (n ∸ toℕ i) + suc (toℕ i) ≡⟨ +-suc (suc (n ∸ toℕ i)) (toℕ i) ⟩ suc (suc (n ∸ toℕ i) + toℕ i) ≡⟨ cong suc (-+-id n i) ⟩ suc (suc n) ∎ p0 p1 : Perm 4 p0 = idπ p1 = swap (inject+ 1 (fromℕ 2)) (inject+ 3 (fromℕ 0)) (swap (fromℕ 3) zero (swap zero (inject+ 1 (fromℕ 2)) idπ)) xx = action p1 (10 ∷ 20 ∷ 30 ∷ 40 ∷ []) n≤sn : ∀ {x} → x ≤ suc x n≤sn {0} = z≤n n≤sn {suc n} = s≤s (n≤sn {n}) <implies≤ : ∀ {x y} → (x < y) → (x ≤ y) <implies≤ (s≤s z≤n) = z≤n <implies≤ {suc x} {suc y} (s≤s p) = begin (suc x ≤⟨ p ⟩ y ≤⟨ n≤sn {y} ⟩ suc y ∎) where open ≤-Reasoning bounded≤ : ∀ {n} (i : Fin n) → toℕ i ≤ n bounded≤ i = <implies≤ (bounded i) n≤n : (n : ℕ) → n ≤ n n≤n 0 = z≤n n≤n (suc n) = s≤s (n≤n n) -- Convenient way of "seeing" what the permutation does for each combinator matchP : ∀ {t t'} → (t ⟷ t') → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) matchP {t} {t'} c = match sp (comb2perm c) (utoVec t) (subst (λ n → Vec ⟦ t' ⟧ n) (sym sp) (utoVec t')) where sp = size≡ c infix 90 _X_ data Swap (n : ℕ) : Set where _X_ : Fin n → Fin n → Swap n Perm : ℕ → Set Perm n = List (Swap n) showSwap : ∀ {n} → Swap n → String showSwap (i X j) = show (toℕ i) ++S " X " ++S show (toℕ j) actionπ : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Perm n → Vec A n → Vec A n actionπ π vs = foldl swapX vs π where swapX : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Vec A n → Swap n → Vec A n swapX vs (i X j) = (vs [ i ]≔ lookup j vs) [ j ]≔ lookup i vs swapπ : ∀ {m n} → Perm (m + n) swapπ {0} {n} = [] swapπ {suc m} {n} = concatL (replicate (suc m) (toList (zipWith _X_ (mapV inject₁ (allFin (m + n))) (tail (allFin (suc m + n)))))) scompπ : ∀ {n} → Perm n → Perm n → Perm n scompπ = _++L_ injectπ : ∀ {m} → Perm m → (n : ℕ) → Perm (m + n) injectπ π n = mapL (λ { (i X j) → (inject+ n i) X (inject+ n j) }) π raiseπ : ∀ {n} → Perm n → (m : ℕ) → Perm (m + n) raiseπ π m = mapL (λ { (i X j) → (raise m i) X (raise m j) }) π pcompπ : ∀ {m n} → Perm m → Perm n → Perm (m + n) pcompπ {m} {n} α β = (injectπ α n) ++L (raiseπ β m) idπ : ∀ {n} → Perm n idπ {n} = toList (zipWith _X_ (allFin n) (allFin n)) tcompπ : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompπ {m} {n} α β = concatL (mapL (λ { (i X j) → mapL (λ { (k X l) → (inject≤ (fromℕ (toℕ i * n + toℕ k)) (i*n+k≤m*n i k)) X (inject≤ (fromℕ (toℕ j * n + toℕ l)) (i*n+k≤m*n j l))}) (β ++L idπ {n})}) (α ++L idπ {m})) module Sort (A : Set) {_<_ : Rel A lzero} ( _<?_ : Decidable _<_) where insert : (A × A → A × A) → A → List A → List A insert shift x [] = x ∷ [] insert shift x (y ∷ ys) with x <? y ... | yes _ = x ∷ y ∷ ys ... | no _ = let (y' , x') = shift (x , y) in y' ∷ insert shift x' ys sort : (A × A → A × A) → List A → List A sort shift [] = [] sort shift (x ∷ xs) = insert shift x (sort shift xs) data _<S_ {n : ℕ} : Rel (Transposition< n) lzero where <1 : ∀ {i j k l : Fin n} {p₁ : toℕ i < toℕ j} {p₂ : toℕ k < toℕ l} → (toℕ i < toℕ k) → (_X_ i j {p₁}) <S (_X_ k l {p₂}) <2 : ∀ {i j k l : Fin n} {p₁ : toℕ i < toℕ j} {p₂ : toℕ k < toℕ l} → (toℕ i ≡ toℕ k) → (toℕ j < toℕ l) → (_X_ i j {p₁}) <S (_X_ k l {p₂}) d<S : {n : ℕ} → Decidable (_<S_ {n}) d<S (_X_ i j {p₁}) (_X_ k l {p₂}) with suc (toℕ i) ≤? toℕ k d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | yes p = yes (<1 p) d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | no p with toℕ i ≟ toℕ k d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | no p | yes p= with suc (toℕ j) ≤? toℕ l d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | no p | yes p= | yes p' = yes (<2 p= p') d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | no p | yes p= | no p' = no (λ { (<1 i<k) → p i<k ; (<2 i≡k j<l) → p' j<l}) d<S (_X_ i j {p₁}) (_X_ k l {p₂}) | no p | no p≠ = no (λ { (<1 i<k) → p i<k ; (<2 i≡k j<l) → p≠ i≡k }) module TSort (n : ℕ) = Sort (Transposition< n) {_<S_} d<S -- If we shift a transposition past another, there is nothing to do if -- the four indices are different. If however there is a common index, -- we have to adjust the transpositions. shift : {n : ℕ} → Transposition< n × Transposition< n → Transposition< n × Transposition< n shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) with toℕ i ≟ toℕ k | toℕ i ≟ toℕ l | toℕ j ≟ toℕ k | toℕ j ≟ toℕ l -- -- a bunch of impossible cases given that i < j and k < l -- shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | _ | yes j≡k | yes j≡l with trans (sym j≡k) (j≡l) | i<j→i≠j {toℕ k} {toℕ l} k<l shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | _ | yes j≡k | yes j≡l | k≡l | ¬k≡l with ¬k≡l k≡l shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | _ | yes j≡k | yes j≡l | k≡l | ¬k≡l | () shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | _ | yes j≡l with trans i≡l (sym j≡l) | i<j→i≠j {toℕ i} {toℕ j} i<j shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | _ | yes j≡l | i≡j | ¬i≡j with ¬i≡j i≡j shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | _ | yes j≡l | i≡j | ¬i≡j | () shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | _ | yes j≡k | _ with trans i≡k (sym j≡k) | i<j→i≠j {toℕ i} {toℕ j} i<j shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | _ | yes j≡k | _ | i≡j | ¬i≡j with ¬i≡j i≡j shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | _ | yes j≡k | _ | i≡j | ¬i≡j | () shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | yes i≡l | _ | _ with trans (sym i≡k) i≡l | i<j→i≠j {toℕ k} {toℕ l} k<l shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | yes i≡l | _ | _ | k≡l | ¬k≡l with ¬k≡l k≡l shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | yes i≡l | _ | _ | k≡l | ¬k≡l | () shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | yes j≡k | _ with subst₂ _<_ (sym j≡k) (sym i≡l) k<l | i<j→j≮i {toℕ i} {toℕ j} i<j shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | yes j≡k | _ | j<i | j≮i with j≮i j<i shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | _ | yes i≡l | yes j≡k | _ | j<i | j≮i | () -- -- end of impossible cases -- shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l = -- no interference (_X_ k l {k<l} , _X_ i j {i<j}) shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | no ¬i≡l | no ¬j≡k | yes j≡l = -- Ex: 2 X 5 , 2 X 5 (_X_ k l {k<l} , _X_ i j {i<j}) shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l with toℕ i <? toℕ k shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l | yes i<k = (_X_ i k {i<k} , _X_ i j {i<j}) -- Ex: 2 X 5 , 3 X 5 -- becomes 2 X 3 , 2 X 5 shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l | no i≮k = (_X_ k i {i≰j∧j≠i→j<i (toℕ i) (toℕ k) (i≮j∧i≠j→i≰j (toℕ i) (toℕ k) i≮k ¬i≡k) (i≠j→j≠i (toℕ i) (toℕ k) ¬i≡k)} , _X_ i j {i<j}) -- Ex: 2 X 5 , 1 X 5 -- becomes 1 X 2 , 2 X 5 shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | no ¬i≡l | yes j≡k | no ¬j≡l = -- Ex: 2 X 5 , 5 X 6 -- becomes 2 x 6 , 2 X 5 (_X_ i l {trans< (subst ((λ j → toℕ i < j)) j≡k i<j) k<l} , _X_ i j {i<j}) shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | no ¬i≡k | yes i≡l | no ¬j≡k | no ¬j≡l = -- Ex: 2 X 5 , 1 X 2 -- becomes 1 X 5 , 2 X 5 (_X_ k j {trans< (subst ((λ l → toℕ k < l)) (sym i≡l) k<l) i<j} , _X_ i j {i<j}) shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l with toℕ j <? toℕ l shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | yes j<l = -- Ex: 2 X 3 , 2 X 4 -- becomes 3 X 4 , 2 X 3 (_X_ j l {j<l} , _X_ i j {i<j}) shift {n} (_X_ i j {i<j} , _X_ k l {k<l}) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | no j≮l = -- Ex: 2 X 5 , 2 X 4 -- becomes 4 X 5 , 2 X 5 (_X_ l j {i≰j∧j≠i→j<i (toℕ j) (toℕ l) (i≮j∧i≠j→i≰j (toℕ j) (toℕ l) j≮l ¬j≡l) (i≠j→j≠i (toℕ j) (toℕ l) ¬j≡l)} , _X_ i j {i<j}) -- Coalesce permutations i X j followed by i X k -- Do termination proof... {-# NO_TERMINATION_CHECK #-} coalesce : {n : ℕ} → Perm< n → Perm< n coalesce [] = [] coalesce (x ∷ []) = x ∷ [] coalesce (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) with toℕ i ≟ toℕ k coalesce (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | no ¬i≡k = _X_ i j {i<j} ∷ coalesce (_X_ k l {k<l} ∷ π) coalesce (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | yes i≡k with toℕ j <? toℕ l coalesce {n} (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | yes i≡k | yes j<l = -- Ex: 2 X 5 , 2 X 6 -- becomes 2 X 6 , 5 X 6 coalesce {n} (sort (shift {n}) (_X_ k l {k<l} ∷ _X_ j l {j<l} ∷ π)) where open TSort n coalesce {n} (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | yes i≡k | no j≮l with toℕ j ≟ toℕ l coalesce {n} (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | yes i≡k | no j≮l | yes j≡l = -- Ex: 2 X 5 , 2 X 5 -- disappears coalesce {n} π coalesce {n} (_X_ i j {i<j} ∷ _X_ k l {k<l} ∷ π) | yes i≡k | no j≮l | no ¬j≡l = -- Ex: 2 X 5 , 2 X 3 -- becomes 2 X 3 , 3 X 5 -- should never happen if input is sorted but the type Perm< -- does not capture this coalesce {n} (sort (shift {n}) (_X_ k l {k<l} ∷ _X_ l j {i≰j∧j≠i→j<i (toℕ j) (toℕ l) (i≮j∧i≠j→i≰j (toℕ j) (toℕ l) j≮l ¬j≡l) (i≠j→j≠i (toℕ j) (toℕ l) ¬j≡l)} ∷ π)) where open TSort n -- Normalized permutations have exactly one entry for each position infixr 5 _∷_ data NPerm : ℕ → Set where [] : NPerm 0 _∷_ : {n : ℕ} → Fin (suc n) → NPerm n → NPerm (suc n) lookupP : ∀ {n} → Fin n → NPerm n → Fin n lookupP () [] lookupP zero (j ∷ _) = j lookupP {suc n} (suc i) (j ∷ q) = inject₁ (lookupP i q) insert : ∀ {ℓ n} {A : Set ℓ} → Vec A n → Fin (suc n) → A → Vec A (suc n) insert vs zero w = w ∷ vs insert [] (suc ()) -- absurd insert (v ∷ vs) (suc i) w = v ∷ insert vs i w -- A normalized permutation acts on a vector by inserting each element in its -- new position. permute : ∀ {ℓ n} {A : Set ℓ} → NPerm n → Vec A n → Vec A n permute [] [] = [] permute (p ∷ ps) (v ∷ vs) = insert (permute ps vs) p v -- Convert normalized permutation to a sequence of transpositions nperm2list : ∀ {n} → NPerm n → Perm< n nperm2list {0} [] = [] nperm2list {suc n} (p ∷ ps) = {!!} -- Aggregate a sequence of transpositions to one insertion in the right -- position aggregate : ∀ {n} → Perm< n → NPerm n aggregate = {!!} {-- aggregate [] = [] aggregate (_X_ i j {p₁} ∷ []) = _X_ i j {p₁} ∷ [] aggregate (_X_ i j {p₁} ∷ _X_ k l {p₂} ∷ π) with toℕ i ≟ toℕ k | toℕ j ≟ toℕ l aggregate (_X_ i j {p₁} ∷ _X_ k l {p₂} ∷ π) | yes _ | yes _ = aggregate (_X_ k l {p₂} ∷ π) aggregate (_X_ i j {p₁} ∷ _X_ k l {p₂} ∷ π) | _ | _ = (_X_ i j {p₁}) ∷ aggregate (_X_ k l {p₂} ∷ π) --} normalize : ∀ {n} → Perm n → NPerm n normalize {n} = aggregate ∘ sort ∘ normalize< where open TSort n -- Examples nsnn₁ nsnn₂ nsnn₃ nsnn₄ nsnn₅ : List String nsnn₁ = mapL showTransposition< (nperm2list (normalize (c2π neg₁))) where open TSort 2 -- 0 X 1 ∷ [] nsnn₂ = mapL showTransposition< (nperm2list (normalize (c2π neg₂))) where open TSort 2 -- 0 X 1 ∷ [] nsnn₃ = mapL showTransposition< (nperm2list (normalize (c2π neg₃))) where open TSort 2 -- 0 X 1 ∷ [] nsnn₄ = mapL showTransposition< (nperm2list (normalize (c2π neg₄))) where open TSort 2 -- 0 X 1 ∷ [] nsnn₅ = mapL showTransposition< (nperm2list (normalize (c2π neg₅))) where open TSort 2 -- 0 X 1 ∷ [] nswap₁₂ nswap₂₃ nswap₁₃ : List String nswap₁₂ = mapL showTransposition< (nperm2list (normalize (c2π SWAP12))) nswap₂₃ = mapL showTransposition< (nperm2list (normalize (c2π SWAP23))) nswap₁₃ = mapL showTransposition< (nperm2list (normalize (c2π SWAP13))) xxx : Perm 5 xxx = (_X_ (inject+ 1 (fromℕ 3)) (fromℕ 4) {s≤s (s≤s (s≤s z≤n))}) ∷ (_X_ (inject+ 3 (fromℕ 1)) (inject+ 1 (fromℕ 3)) {s≤s z≤n}) ∷ (_X_ zero (inject+ 1 (fromℕ 3)) {z≤n}) ∷ (_X_ (inject+ 3 (fromℕ 1)) (inject+ 2 (fromℕ 2)) {s≤s z≤n}) ∷ [] yyy : ∀ {ℓ m n} {A B : Set ℓ} → Vec A m → Vec B n → Vec (A ⊎ B) (m + n) yyy vs ws = mapV inj₁ vs ++V mapV inj₂ ws xxx : ∀ {ℓ m n} {A B : Set ℓ} → Vec A m → Vec B n → Vec (A × B) (m * n) xxx vs ws = concatV (mapV (λ v₁ → mapV (λ v₂ → (v₁ , v₂)) ws) vs) vs : Vec ℕ 7 vs = 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ [] ws : Vec ℕ 5 ws = 10 ∷ 11 ∷ 12 ∷ 13 ∷ 14 ∷ [] us : Vec ℕ 3 us = 100 ∷ 101 ∷ 102 ∷ [] os : Vec ℕ 1 os = 1000 ∷ [] -- xxx vs ws -- (0 , 10) ∷ (0 , 11) ∷ (0 , 12) ∷ (0 , 13) ∷ (0 , 14) ∷ -- (1 , 10) ∷ (1 , 11) ∷ (1 , 12) ∷ (1 , 13) ∷ (1 , 14) ∷ -- (2 , 10) ∷ (2 , 11) ∷ (2 , 12) ∷ (2 , 13) ∷ (2 , 14) ∷ -- (3 , 10) ∷ (3 , 11) ∷ (3 , 12) ∷ (3 , 13) ∷ (3 , 14) ∷ -- (4 , 10) ∷ (4 , 11) ∷ (4 , 12) ∷ (4 , 13) ∷ (4 , 14) ∷ -- (5 , 10) ∷ (5 , 11) ∷ (5 , 12) ∷ (5 , 13) ∷ (5 , 14) ∷ -- (6 , 10) ∷ (6 , 11) ∷ (6 , 12) ∷ (6 , 13) ∷ (6 , 14) ∷ -- [] -- xxx ws vs -- (10 , 0) ∷ (10 , 1) ∷ (10 , 2) ∷ (10 , 3) ∷ (10 , 4) ∷ (10 , 5) ∷ (10 , 6) ∷ -- (11 , 0) ∷ (11 , 1) ∷ (11 , 2) ∷ (11 , 3) ∷ (11 , 4) ∷ (11 , 5) ∷ (11 , 6) ∷ -- (12 , 0) ∷ (12 , 1) ∷ (12 , 2) ∷ (12 , 3) ∷ (12 , 4) ∷ (12 , 5) ∷ (12 , 6) ∷ -- (13 , 0) ∷ (13 , 1) ∷ (13 , 2) ∷ (13 , 3) ∷ (13 , 4) ∷ (13 , 5) ∷ (13 , 6) ∷ -- (14 , 0) ∷ (14 , 1) ∷ (14 , 2) ∷ (14 , 3) ∷ (14 , 4) ∷ (14 , 5) ∷ (14 , 6) ∷ -- [] xxx : Perm 5 xxx = cycle→Perm (inject+ 3 (fromℕ 1) ∷ inject+ 1 (fromℕ 3) ∷ inject+ 2 (fromℕ 2) ∷ inject+ 0 (fromℕ 4) ∷ []) -- cycle (1 3 2 4) -- 1 X 4 ∷ 1 X 2 ∷ 1 X 3 ∷ [] a : Vec ℕ 5 a = 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ [] -- actionπ xxx a -- 0 ∷ 3 ∷ 4 ∷ 2 ∷ 1 ∷ [] bbb = transpose {3} {4} -- 3 * 2 => 2 * 3 -- (zero , zero) ∷ -- (suc zero , suc (suc (suc zero))) ∷ -- (suc (suc zero) , suc zero) ∷ -- (suc (suc (suc zero)) , suc (suc (suc (suc zero)))) ∷ -- (suc (suc (suc (suc zero))) , suc (suc zero)) ∷ [] {-- ------------------------------------------------------------------------------ -- Extensional equivalence of combinators: two combinators are -- equivalent if they denote the same permutation. Generally we would -- require that the two permutations map the same value x to values y -- and z that have a path between them, but because the internals of each -- type are discrete groupoids, this reduces to saying that y and z -- are identical, and hence that the permutations are identical. normalize : ∀ {n} → Perm n → Perm< n normalize = sort ∘ filter= infix 10 _∼_ _∼_ : ∀ {t₁ t₂} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ ∼ c₂ = (normalize (c2π c₁) ≡ normalize (c2π c₂)) -- The relation ~ is an equivalence relation refl∼ : ∀ {t₁ t₂} {c : t₁ ⟷ t₂} → (c ∼ c) refl∼ = refl sym∼ : ∀ {t₁ t₂} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₁) sym∼ = sym trans∼ : ∀ {t₁ t₂} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₃) → (c₁ ∼ c₃) trans∼ = trans -- The relation ~ validates the groupoid laws c◎id∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ id⟷ ∼ c c◎id∼c = {!!} id◎c∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ◎ c ∼ c id◎c∼c = {!!} assoc∼ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → c₁ ◎ (c₂ ◎ c₃) ∼ (c₁ ◎ c₂) ◎ c₃ assoc∼ = {!!} linv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ ! c ∼ id⟷ linv∼ = {!!} rinv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! c ◎ c ∼ id⟷ rinv∼ = {!!} resp∼ : {t₁ t₂ t₃ : U} {c₁ c₂ : t₁ ⟷ t₂} {c₃ c₄ : t₂ ⟷ t₃} → (c₁ ∼ c₂) → (c₃ ∼ c₄) → (c₁ ◎ c₃ ∼ c₂ ◎ c₄) resp∼ = {!!} -- The equivalence ∼ of paths makes U a 1groupoid: the points are -- types (t : U); the 1paths are ⟷; and the 2paths between them are -- based on extensional equivalence ∼ G : 1Groupoid G = record { set = U ; _↝_ = _⟷_ ; _≈_ = _∼_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ c → c◎id∼c {c = c} ; rneutr = λ c → id◎c∼c {c = c} ; assoc = λ c₃ c₂ c₁ → assoc∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} ; equiv = record { refl = λ {c} → refl∼ {c = c} ; sym = λ {c₁} {c₂} → sym∼ {c₁ = c₁} {c₂ = c₂} ; trans = λ {c₁} {c₂} {c₃} → trans∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} } ; linv = λ c → linv∼ {c = c} ; rinv = λ c → rinv∼ {c = c} ; ∘-resp-≈ = {!!} -- λ α β → resp∼ β α } -- And there are additional laws assoc⊕∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊕ (c₂ ⊕ c₃) ∼ assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊ assoc⊕∼ = {!!} assoc⊗∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊗ (c₂ ⊗ c₃) ∼ assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆ assoc⊗∼ = {!!} ------------------------------------------------------------------------------ -- Picture so far: -- -- path p -- ===================== -- || || || -- || ||2path || -- || || || -- || || path q || -- t₁ =================t₂ -- || ... || -- ===================== -- -- The types t₁, t₂, etc are discrete groupoids. The paths between -- them correspond to permutations. Each syntactically different -- permutation corresponds to a path but equivalent permutations are -- connected by 2paths. But now we want an alternative definition of -- 2paths that is structural, i.e., that looks at the actual -- construction of the path t₁ ⟷ t₂ in terms of combinators... The -- theorem we want is that α ∼ β iff we can rewrite α to β using -- various syntactic structural rules. We start with a collection of -- simplication rules and then try to show they are complete. -- Simplification rules infix 30 _⇔_ data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → (c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃) assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃)) assoc⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊕ (c₂ ⊕ c₃)) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) assoc⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊗ (c₂ ⊗ c₃)) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) assoc⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (c₁ ⊗ (c₂ ⊗ c₃)) dist⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → ((c₁ ⊕ c₂) ⊗ c₃) ⇔ (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) factor⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) ⇔ ((c₁ ⊕ c₂) ⊗ c₃) idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷) linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷ linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c) rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷ rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c) unitel₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (unite₊ ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊) uniter₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊕ c₂) ◎ unite₊) ⇔ (unite₊ ◎ c₂) unitil₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (uniti₊ ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊) unitir₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti₊) ⇔ (uniti₊ ◎ (c₁ ⊕ c₂)) unitial₊⇔ : {t₁ t₂ : U} → (uniti₊ {PLUS t₁ t₂} ◎ assocl₊) ⇔ (uniti₊ ⊕ id⟷) unitiar₊⇔ : {t₁ t₂ : U} → (uniti₊ {t₁} ⊕ id⟷ {t₂}) ⇔ (uniti₊ ◎ assocl₊) swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊) swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂)) unitel⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (unite⋆ ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆) uniter⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊗ c₂) ◎ unite⋆) ⇔ (unite⋆ ◎ c₂) unitil⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (uniti⋆ ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆) unitir⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti⋆) ⇔ (uniti⋆ ◎ (c₁ ⊗ c₂)) unitial⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {TIMES t₁ t₂} ◎ assocl⋆) ⇔ (uniti⋆ ⊗ id⟷) unitiar⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {t₁} ⊗ id⟷ {t₂}) ⇔ (uniti⋆ ◎ assocl⋆) swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆) swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂)) swapfl⋆⇔ : {t₁ t₂ t₃ : U} → (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) ⇔ (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) swapfr⋆⇔ : {t₁ t₂ t₃ : U} → (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) ⇔ (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) resp◎⇔ : {t₁ t₂ t₃ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄) resp⊕⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄) resp⊗⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄) -- better syntax for writing 2paths infix 2 _▤ infixr 2 _⇔⟨_⟩_ _⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) _ ⇔⟨ α ⟩ β = trans⇔ α β _▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c) _▤ c = id⇔ -- Inverses for 2paths 2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁) 2! assoc◎l = assoc◎r 2! assoc◎r = assoc◎l 2! assoc⊕l = assoc⊕r 2! assoc⊕r = assoc⊕l 2! assoc⊗l = assoc⊗r 2! assoc⊗r = assoc⊗l 2! dist⇔ = factor⇔ 2! factor⇔ = dist⇔ 2! idl◎l = idl◎r 2! idl◎r = idl◎l 2! idr◎l = idr◎r 2! idr◎r = idr◎l 2! linv◎l = linv◎r 2! linv◎r = linv◎l 2! rinv◎l = rinv◎r 2! rinv◎r = rinv◎l 2! unitel₊⇔ = uniter₊⇔ 2! uniter₊⇔ = unitel₊⇔ 2! unitil₊⇔ = unitir₊⇔ 2! unitir₊⇔ = unitil₊⇔ 2! swapl₊⇔ = swapr₊⇔ 2! swapr₊⇔ = swapl₊⇔ 2! unitial₊⇔ = unitiar₊⇔ 2! unitiar₊⇔ = unitial₊⇔ 2! unitel⋆⇔ = uniter⋆⇔ 2! uniter⋆⇔ = unitel⋆⇔ 2! unitil⋆⇔ = unitir⋆⇔ 2! unitir⋆⇔ = unitil⋆⇔ 2! unitial⋆⇔ = unitiar⋆⇔ 2! unitiar⋆⇔ = unitial⋆⇔ 2! swapl⋆⇔ = swapr⋆⇔ 2! swapr⋆⇔ = swapl⋆⇔ 2! swapfl⋆⇔ = swapfr⋆⇔ 2! swapfr⋆⇔ = swapfl⋆⇔ 2! id⇔ = id⇔ 2! (trans⇔ α β) = trans⇔ (2! β) (2! α) 2! (resp◎⇔ α β) = resp◎⇔ (2! α) (2! β) 2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β) 2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β) -- a nice example of 2 paths negEx : neg₅ ⇔ neg₁ negEx = uniti⋆ ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ assoc◎l ⟩ uniti⋆ ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ swapl⋆⇔ id⇔) ⟩ uniti⋆ ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ assoc◎r ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ assoc◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ (resp◎⇔ linv◎l id⇔)) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ idl◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆) ⇔⟨ assoc◎l ⟩ (uniti⋆ ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆ ⇔⟨ resp◎⇔ unitil⋆⇔ id⇔ ⟩ (swap₊ ◎ uniti⋆) ◎ unite⋆ ⇔⟨ assoc◎r ⟩ swap₊ ◎ (uniti⋆ ◎ unite⋆) ⇔⟨ resp◎⇔ id⇔ linv◎l ⟩ swap₊ ◎ id⟷ ⇔⟨ idr◎l ⟩ swap₊ ▤ -- The equivalence ⇔ of paths is rich enough to make U a 1groupoid: -- the points are types (t : U); the 1paths are ⟷; and the 2paths -- between them are based on the simplification rules ⇔ G' : 1Groupoid G' = record { set = U ; _↝_ = _⟷_ ; _≈_ = _⇔_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ → idr◎l ; rneutr = λ _ → idl◎l ; assoc = λ _ _ _ → assoc◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; linv = λ {t₁} {t₂} α → linv◎l ; rinv = λ {t₁} {t₂} α → rinv◎l ; ∘-resp-≈ = λ p∼q r∼s → resp◎⇔ r∼s p∼q } ------------------------------------------------------------------------------ -- Inverting permutations to syntactic combinators π2c : {t₁ t₂ : U} → (size t₁ ≡ size t₂) → NPerm (size t₁) → (t₁ ⟷ t₂) π2c = {!!} ------------------------------------------------------------------------------ -- Soundness and completeness -- -- Proof of soundness and completeness: now we want to verify that ⇔ -- is sound and complete with respect to ∼. The statement to prove is -- that for all c₁ and c₂, we have c₁ ∼ c₂ iff c₁ ⇔ c₂ soundness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₁ ∼ c₂) soundness assoc◎l = {!!} -- assoc∼ soundness assoc◎r = {!!} -- sym∼ assoc∼ soundness assoc⊕l = {!!} -- assoc⊕∼ soundness assoc⊕r = {!!} -- sym∼ assoc⊕∼ soundness assoc⊗l = {!!} -- assoc⊗∼ soundness assoc⊗r = {!!} -- sym∼ assoc⊗∼ soundness dist⇔ = {!!} soundness factor⇔ = {!!} soundness idl◎l = {!!} -- id◎c∼c soundness idl◎r = {!!} -- sym∼ id◎c∼c soundness idr◎l = {!!} -- c◎id∼c soundness idr◎r = {!!} -- sym∼ c◎id∼c soundness linv◎l = {!!} -- linv∼ soundness linv◎r = {!!} -- sym∼ linv∼ soundness rinv◎l = {!!} -- rinv∼ soundness rinv◎r = {!!} -- sym∼ rinv∼ soundness unitel₊⇔ = {!!} soundness uniter₊⇔ = {!!} soundness unitil₊⇔ = {!!} soundness unitir₊⇔ = {!!} soundness unitial₊⇔ = {!!} soundness unitiar₊⇔ = {!!} soundness swapl₊⇔ = {!!} soundness swapr₊⇔ = {!!} soundness unitel⋆⇔ = {!!} soundness uniter⋆⇔ = {!!} soundness unitil⋆⇔ = {!!} soundness unitir⋆⇔ = {!!} soundness unitial⋆⇔ = {!!} soundness unitiar⋆⇔ = {!!} soundness swapl⋆⇔ = {!!} soundness swapr⋆⇔ = {!!} soundness swapfl⋆⇔ = {!!} soundness swapfr⋆⇔ = {!!} soundness id⇔ = {!!} -- refl∼ soundness (trans⇔ α β) = {!!} -- trans∼ (soundness α) (soundness β) soundness (resp◎⇔ α β) = {!!} -- resp∼ (soundness α) (soundness β) soundness (resp⊕⇔ α β) = {!!} soundness (resp⊗⇔ α β) = {!!} -- The idea is to invert evaluation and use that to extract from each -- extensional representation of a combinator, a canonical syntactic -- representative canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) canonical c = π2c (size≡ c) (normalize (c2π c)) -- Note that if c₁ ⇔ c₂, then by soundness c₁ ∼ c₂ and hence their -- canonical representatives are identical. canonicalWellDefined : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (canonical c₁ ≡ canonical c₂) canonicalWellDefined {t₁} {t₂} {c₁} {c₂} α = cong₂ π2c (size∼ c₁ c₂) (soundness α) -- If we can prove that every combinator is equal to its normal form -- then we can prove completeness. inversion : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ canonical c inversion = {!!} resp≡⇔ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ≡ c₂) → (c₁ ⇔ c₂) resp≡⇔ {t₁} {t₂} {c₁} {c₂} p rewrite p = id⇔ completeness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) completeness {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = c₁ ⇔⟨ inversion ⟩ canonical c₁ ⇔⟨ resp≡⇔ (cong₂ π2c (size∼ c₁ c₂) c₁∼c₂) ⟩ canonical c₂ ⇔⟨ 2! inversion ⟩ c₂ ▤ ------------------------------------------------------------------------------ -- normalize a finite type to (1 + (1 + (1 + ... + (1 + 0) ... ))) -- a bunch of ones ending with zero with left biased + in between toℕ : U → ℕ toℕ ZERO = 0 toℕ ONE = 1 toℕ (PLUS t₁ t₂) = toℕ t₁ + toℕ t₂ toℕ (TIMES t₁ t₂) = toℕ t₁ * toℕ t₂ fromℕ : ℕ → U fromℕ 0 = ZERO fromℕ (suc n) = PLUS ONE (fromℕ n) normalℕ : U → U normalℕ = fromℕ ∘ toℕ -- invert toℕ: give t and n such that toℕ t = n, return constraints on components of t reflectPlusZero : {m n : ℕ} → (m + n ≡ 0) → m ≡ 0 × n ≡ 0 reflectPlusZero {0} {0} refl = (refl , refl) reflectPlusZero {0} {suc n} () reflectPlusZero {suc m} {0} () reflectPlusZero {suc m} {suc n} () -- nbe nbe : {t₁ t₂ : U} → (p : toℕ t₁ ≡ toℕ t₂) → (⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (t₁ ⟷ t₂) nbe {ZERO} {ZERO} refl f = id⟷ nbe {ZERO} {ONE} () nbe {ZERO} {PLUS t₁ t₂} p f = {!!} nbe {ZERO} {TIMES t₂ t₃} p f = {!!} nbe {ONE} {ZERO} () nbe {ONE} {ONE} p f = id⟷ nbe {ONE} {PLUS t₂ t₃} p f = {!!} nbe {ONE} {TIMES t₂ t₃} p f = {!!} nbe {PLUS t₁ t₂} {ZERO} p f = {!!} nbe {PLUS t₁ t₂} {ONE} p f = {!!} nbe {PLUS t₁ t₂} {PLUS t₃ t₄} p f = {!!} nbe {PLUS t₁ t₂} {TIMES t₃ t₄} p f = {!!} nbe {TIMES t₁ t₂} {ZERO} p f = {!!} nbe {TIMES t₁ t₂} {ONE} p f = {!!} nbe {TIMES t₁ t₂} {PLUS t₃ t₄} p f = {!!} nbe {TIMES t₁ t₂} {TIMES t₃ t₄} p f = {!!} -- build a combinator that does the normalization assocrU : {m : ℕ} (n : ℕ) → (PLUS (fromℕ n) (fromℕ m)) ⟷ fromℕ (n + m) assocrU 0 = unite₊ assocrU (suc n) = assocr₊ ◎ (id⟷ ⊕ assocrU n) distrU : (m : ℕ) {n : ℕ} → TIMES (fromℕ m) (fromℕ n) ⟷ fromℕ (m * n) distrU 0 = distz distrU (suc n) {m} = dist ◎ (unite⋆ ⊕ distrU n) ◎ assocrU m normalU : (t : U) → t ⟷ normalℕ t normalU ZERO = id⟷ normalU ONE = uniti₊ ◎ swap₊ normalU (PLUS t₁ t₂) = (normalU t₁ ⊕ normalU t₂) ◎ assocrU (toℕ t₁) normalU (TIMES t₁ t₂) = (normalU t₁ ⊗ normalU t₂) ◎ distrU (toℕ t₁) -- a few lemmas fromℕplus : {m n : ℕ} → fromℕ (m + n) ⟷ PLUS (fromℕ m) (fromℕ n) fromℕplus {0} {n} = fromℕ n ⟷⟨ uniti₊ ⟩ PLUS ZERO (fromℕ n) □ fromℕplus {suc m} {n} = fromℕ (suc (m + n)) ⟷⟨ id⟷ ⟩ PLUS ONE (fromℕ (m + n)) ⟷⟨ id⟷ ⊕ fromℕplus {m} {n} ⟩ PLUS ONE (PLUS (fromℕ m) (fromℕ n)) ⟷⟨ assocl₊ ⟩ PLUS (PLUS ONE (fromℕ m)) (fromℕ n) ⟷⟨ id⟷ ⟩ PLUS (fromℕ (suc m)) (fromℕ n) □ normalℕswap : {t₁ t₂ : U} → normalℕ (PLUS t₁ t₂) ⟷ normalℕ (PLUS t₂ t₁) normalℕswap {t₁} {t₂} = fromℕ (toℕ t₁ + toℕ t₂) ⟷⟨ fromℕplus {toℕ t₁} {toℕ t₂} ⟩ PLUS (normalℕ t₁) (normalℕ t₂) ⟷⟨ swap₊ ⟩ PLUS (normalℕ t₂) (normalℕ t₁) ⟷⟨ ! (fromℕplus {toℕ t₂} {toℕ t₁}) ⟩ fromℕ (toℕ t₂ + toℕ t₁) □ assocrUS : {m : ℕ} {t : U} → PLUS t (fromℕ m) ⟷ fromℕ (toℕ t + m) assocrUS {m} {ZERO} = unite₊ assocrUS {m} {ONE} = id⟷ assocrUS {m} {t} = PLUS t (fromℕ m) ⟷⟨ normalU t ⊕ id⟷ ⟩ PLUS (normalℕ t) (fromℕ m) ⟷⟨ ! fromℕplus ⟩ fromℕ (toℕ t + m) □ -- convert each combinator to a normal form normal⟷ : {t₁ t₂ : U} → (c₁ : t₁ ⟷ t₂) → Σ[ c₂ ∈ normalℕ t₁ ⟷ normalℕ t₂ ] (c₁ ⇔ (normalU t₁ ◎ c₂ ◎ (! (normalU t₂)))) normal⟷ {PLUS ZERO t} {.t} unite₊ = (id⟷ , (unite₊ ⇔⟨ idr◎r ⟩ unite₊ ◎ id⟷ ⇔⟨ resp◎⇔ id⇔ linv◎r ⟩ unite₊ ◎ (normalU t ◎ (! (normalU t))) ⇔⟨ assoc◎l ⟩ (unite₊ ◎ normalU t) ◎ (! (normalU t)) ⇔⟨ resp◎⇔ unitel₊⇔ id⇔ ⟩ ((id⟷ ⊕ normalU t) ◎ unite₊) ◎ (! (normalU t)) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ ((id⟷ ⊕ normalU t) ◎ unite₊) ◎ (id⟷ ◎ (! (normalU t))) ⇔⟨ id⇔ ⟩ normalU (PLUS ZERO t) ◎ (id⟷ ◎ (! (normalU t))) ▤)) normal⟷ {t} {PLUS ZERO .t} uniti₊ = (id⟷ , (uniti₊ ⇔⟨ idl◎r ⟩ id⟷ ◎ uniti₊ ⇔⟨ resp◎⇔ linv◎r id⇔ ⟩ (normalU t ◎ (! (normalU t))) ◎ uniti₊ ⇔⟨ assoc◎r ⟩ normalU t ◎ ((! (normalU t)) ◎ uniti₊) ⇔⟨ resp◎⇔ id⇔ unitir₊⇔ ⟩ normalU t ◎ (uniti₊ ◎ (id⟷ ⊕ (! (normalU t)))) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ normalU t ◎ (id⟷ ◎ (uniti₊ ◎ (id⟷ ⊕ (! (normalU t))))) ⇔⟨ id⇔ ⟩ normalU t ◎ (id⟷ ◎ (! ((id⟷ ⊕ (normalU t)) ◎ unite₊))) ⇔⟨ id⇔ ⟩ normalU t ◎ (id⟷ ◎ (! (normalU (PLUS ZERO t)))) ▤)) normal⟷ {PLUS ZERO t₂} {PLUS .t₂ ZERO} swap₊ = (normalℕswap {ZERO} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ (unite₊ ◎ normalU t₂) ◎ (normalℕswap {ZERO} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ id⟷))) ⇔⟨ resp◎⇔ unitel₊⇔ id⇔ ⟩ ((id⟷ ⊕ normalU t₂) ◎ unite₊) ◎ (normalℕswap {ZERO} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ id⟷))) ⇔⟨ id⇔ ⟩ normalU (PLUS ZERO t₂) ◎ (normalℕswap {ZERO} {t₂} ◎ (! (normalU (PLUS t₂ ZERO)))) ▤)) normal⟷ {PLUS ONE t₂} {PLUS .t₂ ONE} swap₊ = (normalℕswap {ONE} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ ((normalU ONE ⊕ normalU t₂) ◎ assocrU (toℕ ONE)) ◎ (normalℕswap {ONE} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ ! (normalU ONE)))) ⇔⟨ id⇔ ⟩ normalU (PLUS ONE t₂) ◎ (normalℕswap {ONE} {t₂} ◎ (! (normalU (PLUS t₂ ONE)))) ▤)) normal⟷ {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ = (normalℕswap {t₁} {t₂} , (swap₊ ⇔⟨ {!!} ⟩ ((normalU t₁ ⊕ normalU t₂) ◎ assocrU (toℕ t₁)) ◎ (normalℕswap {t₁} {t₂} ◎ ((! (assocrU (toℕ t₂))) ◎ (! (normalU t₂) ⊕ ! (normalU t₁)))) ⇔⟨ id⇔ ⟩ normalU (PLUS t₁ t₂) ◎ (normalℕswap {t₁} {t₂} ◎ (! (normalU (PLUS t₂ t₁)))) ▤)) normal⟷ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = {!!} normal⟷ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = {!!} normal⟷ {TIMES ONE t} {.t} unite⋆ = {!!} normal⟷ {t} {TIMES ONE .t} uniti⋆ = {!!} normal⟷ {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = {!!} normal⟷ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} assocl⋆ = {!!} normal⟷ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} assocr⋆ = {!!} normal⟷ {TIMES ZERO t} {ZERO} distz = {!!} normal⟷ {ZERO} {TIMES ZERO t} factorz = {!!} normal⟷ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} dist = {!!} normal⟷ {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {TIMES (PLUS t₁ t₂) t₃} factor = {!!} normal⟷ {t} {.t} id⟷ = (id⟷ , (id⟷ ⇔⟨ linv◎r ⟩ normalU t ◎ (! (normalU t)) ⇔⟨ resp◎⇔ id⇔ idl◎r ⟩ normalU t ◎ (id⟷ ◎ (! (normalU t))) ▤)) normal⟷ {t₁} {t₃} (_◎_ {t₂ = t₂} c₁ c₂) = {!!} normal⟷ {PLUS t₁ t₂} {PLUS t₃ t₄} (c₁ ⊕ c₂) = {!!} normal⟷ {TIMES t₁ t₂} {TIMES t₃ t₄} (c₁ ⊗ c₂) = {!!} -- if c₁ c₂ : t₁ ⟷ t₂ and c₁ ∼ c₂ then we want a canonical combinator -- normalℕ t₁ ⟷ normalℕ t₂. If we have that then we should be able to -- decide whether c₁ ∼ c₂ by normalizing and looking at the canonical -- combinator. -- Use ⇔ to normalize a path {-# NO_TERMINATION_CHECK #-} normalize : {t₁ t₂ : U} → (c₁ : t₁ ⟷ t₂) → Σ[ c₂ ∈ t₁ ⟷ t₂ ] (c₁ ⇔ c₂) normalize unite₊ = (unite₊ , id⇔) normalize uniti₊ = (uniti₊ , id⇔) normalize swap₊ = (swap₊ , id⇔) normalize assocl₊ = (assocl₊ , id⇔) normalize assocr₊ = (assocr₊ , id⇔) normalize unite⋆ = (unite⋆ , id⇔) normalize uniti⋆ = (uniti⋆ , id⇔) normalize swap⋆ = (swap⋆ , id⇔) normalize assocl⋆ = (assocl⋆ , id⇔) normalize assocr⋆ = (assocr⋆ , id⇔) normalize distz = (distz , id⇔) normalize factorz = (factorz , id⇔) normalize dist = (dist , id⇔) normalize factor = (factor , id⇔) normalize id⟷ = (id⟷ , id⇔) normalize (c₁ ◎ c₂) with normalize c₁ | normalize c₂ ... | (c₁' , α) | (c₂' , β) = {!!} normalize (c₁ ⊕ c₂) with normalize c₁ | normalize c₂ ... | (c₁' , α) | (c₂₁ ⊕ c₂₂ , β) = (assocl₊ ◎ ((c₁' ⊕ c₂₁) ⊕ c₂₂) ◎ assocr₊ , trans⇔ (resp⊕⇔ α β) assoc⊕l) ... | (c₁' , α) | (c₂' , β) = (c₁' ⊕ c₂' , resp⊕⇔ α β) normalize (c₁ ⊗ c₂) with normalize c₁ | normalize c₂ ... | (c₁₁ ⊕ c₁₂ , α) | (c₂' , β) = (dist ◎ ((c₁₁ ⊗ c₂') ⊕ (c₁₂ ⊗ c₂')) ◎ factor , trans⇔ (resp⊗⇔ α β) dist⇔) ... | (c₁' , α) | (c₂₁ ⊗ c₂₂ , β) = (assocl⋆ ◎ ((c₁' ⊗ c₂₁) ⊗ c₂₂) ◎ assocr⋆ , trans⇔ (resp⊗⇔ α β) assoc⊗l) ... | (c₁' , α) | (c₂' , β) = (c₁' ⊗ c₂' , resp⊗⇔ α β) record Permutation (t t' : U) : Set where field t₀ : U -- no occurrences of TIMES .. (TIMES .. ..) phase₀ : t ⟷ t₀ t₁ : U -- no occurrences of TIMES (PLUS .. ..) phase₁ : t₀ ⟷ t₁ t₂ : U -- no occurrences of TIMES phase₂ : t₁ ⟷ t₂ t₃ : U -- no nested left PLUS, all PLUS of form PLUS simple (PLUS ...) phase₃ : t₂ ⟷ t₃ t₄ : U -- no occurrences PLUS ZERO phase₄ : t₃ ⟷ t₄ t₅ : U -- do actual permutation using swapij phase₅ : t₄ ⟷ t₅ rest : t₅ ⟷ t' -- blah blah p◎id∼p : ∀ {t₁ t₂} {c : t₁ ⟷ t₂} → (c ◎ id⟷ ∼ c) p◎id∼p {t₁} {t₂} {c} v = (begin (proj₁ (perm2path (c ◎ id⟷) v)) ≡⟨ {!!} ⟩ (proj₁ (perm2path id⟷ (proj₁ (perm2path c v)))) ≡⟨ {!!} ⟩ (proj₁ (perm2path c v)) ∎) -- perm2path {t} id⟷ v = (v , edge •[ t , v ] •[ t , v ]) --perm2path (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v₁ with perm2path c₁ v₁ --... | (v₂ , p) with perm2path c₂ v₂ --... | (v₃ , q) = (v₃ , seq p q) -- Equivalences between paths leading to 2path structure -- Two paths are the same if they go through the same points _∼_ : ∀ {t₁ t₂ v₁ v₂} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → Set (edge ._ ._) ∼ (edge ._ ._) = ⊤ (edge ._ ._) ∼ (seq p q) = {!!} (edge ._ ._) ∼ (left p) = {!!} (edge ._ ._) ∼ (right p) = {!!} (edge ._ ._) ∼ (par p q) = {!!} seq p p₁ ∼ edge ._ ._ = {!!} seq p₁ p ∼ seq q q₁ = {!!} seq p p₁ ∼ left q = {!!} seq p p₁ ∼ right q = {!!} seq p p₁ ∼ par q q₁ = {!!} left p ∼ edge ._ ._ = {!!} left p ∼ seq q q₁ = {!!} left p ∼ left q = {!!} right p ∼ edge ._ ._ = {!!} right p ∼ seq q q₁ = {!!} right p ∼ right q = {!!} par p p₁ ∼ edge ._ ._ = {!!} par p p₁ ∼ seq q q₁ = {!!} par p p₁ ∼ par q q₁ = {!!} -- Equivalences between paths leading to 2path structure -- Following the HoTT approach two paths are considered the same if they -- map the same points to equal points infix 4 _∼_ _∼_ : ∀ {t₁ t₂ v₁ v₂ v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁ , v₁ ] •[ t₂ , v₂' ]) → Set _∼_ {t₁} {t₂} {v₁} {v₂} {v₂'} p q = (v₂ ≡ v₂') -- Lemma 2.4.2 p∼p : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ p p∼p {p = path c} _ = refl p∼q→q∼p : {t₁ t₂ : U} {p q : Path t₁ t₂} → (p ∼ q) → (q ∼ p) p∼q→q∼p {p = path c₁} {q = path c₂} α v = sym (α v) p∼q∼r→p∼r : {t₁ t₂ : U} {p q r : Path t₁ t₂} → (p ∼ q) → (q ∼ r) → (p ∼ r) p∼q∼r→p∼r {p = path c₁} {q = path c₂} {r = path c₃} α β v = trans (α v) (β v) -- lift inverses and compositions to paths inv : {t₁ t₂ : U} → Path t₁ t₂ → Path t₂ t₁ inv (path c) = path (! c) infixr 10 _●_ _●_ : {t₁ t₂ t₃ : U} → Path t₁ t₂ → Path t₂ t₃ → Path t₁ t₃ path c₁ ● path c₂ = path (c₁ ◎ c₂) -- Lemma 2.1.4 p∼p◎id : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ p ● path id⟷ p∼p◎id {t₁} {t₂} {path c} v = (begin (perm2path c v) ≡⟨ refl ⟩ (perm2path c (perm2path id⟷ v)) ≡⟨ refl ⟩ (perm2path (c ◎ id⟷) v) ∎) p∼id◎p : {t₁ t₂ : U} {p : Path t₁ t₂} → p ∼ path id⟷ ● p p∼id◎p {t₁} {t₂} {path c} v = (begin (perm2path c v) ≡⟨ refl ⟩ (perm2path id⟷ (perm2path c v)) ≡⟨ refl ⟩ (perm2path (id⟷ ◎ c) v) ∎) !p◎p∼id : {t₁ t₂ : U} {p : Path t₁ t₂} → (inv p) ● p ∼ path id⟷ !p◎p∼id {t₁} {t₂} {path c} v = (begin (perm2path ((! c) ◎ c) v) ≡⟨ refl ⟩ (perm2path c (perm2path (! c) v)) ≡⟨ invr {t₁} {t₂} {c} {v} ⟩ (perm2path id⟷ v) ∎) p◎!p∼id : {t₁ t₂ : U} {p : Path t₁ t₂} → p ● (inv p) ∼ path id⟷ p◎!p∼id {t₁} {t₂} {path c} v = (begin (perm2path (c ◎ (! c)) v) ≡⟨ refl ⟩ (perm2path (! c) (perm2path c v)) ≡⟨ invl {t₁} {t₂} {c} {v} ⟩ (perm2path id⟷ v) ∎) !!p∼p : {t₁ t₂ : U} {p : Path t₁ t₂} → inv (inv p) ∼ p !!p∼p {t₁} {t₂} {path c} v = begin (perm2path (! (! c)) v ≡⟨ cong (λ x → perm2path x v) (!! {c = c}) ⟩ perm2path c v ∎) assoc◎ : {t₁ t₂ t₃ t₄ : U} {p : Path t₁ t₂} {q : Path t₂ t₃} {r : Path t₃ t₄} → p ● (q ● r) ∼ (p ● q) ● r assoc◎ {t₁} {t₂} {t₃} {t₄} {path c₁} {path c₂} {path c₃} v = begin (perm2path (c₁ ◎ (c₂ ◎ c₃)) v ≡⟨ refl ⟩ perm2path (c₂ ◎ c₃) (perm2path c₁ v) ≡⟨ refl ⟩ perm2path c₃ (perm2path c₂ (perm2path c₁ v)) ≡⟨ refl ⟩ perm2path c₃ (perm2path (c₁ ◎ c₂) v) ≡⟨ refl ⟩ perm2path ((c₁ ◎ c₂) ◎ c₃) v ∎) resp◎ : {t₁ t₂ t₃ : U} {p q : Path t₁ t₂} {r s : Path t₂ t₃} → p ∼ q → r ∼ s → (p ● r) ∼ (q ● s) resp◎ {t₁} {t₂} {t₃} {path c₁} {path c₂} {path c₃} {path c₄} α β v = begin (perm2path (c₁ ◎ c₃) v ≡⟨ refl ⟩ perm2path c₃ (perm2path c₁ v) ≡⟨ cong (λ x → perm2path c₃ x) (α v) ⟩ perm2path c₃ (perm2path c₂ v) ≡⟨ β (perm2path c₂ v) ⟩ perm2path c₄ (perm2path c₂ v) ≡⟨ refl ⟩ perm2path (c₂ ◎ c₄) v ∎) -- Recall that two perminators are the same if they denote the same -- permutation; in that case there is a 2path between them in the relevant -- path space data _⇔_ {t₁ t₂ : U} : Path t₁ t₂ → Path t₁ t₂ → Set where 2path : {p q : Path t₁ t₂} → (p ∼ q) → (p ⇔ q) -- Examples p q r : Path BOOL BOOL p = path id⟷ q = path swap₊ r = path (swap₊ ◎ id⟷) α : q ⇔ r α = 2path (p∼p◎id {p = path swap₊}) -- The equivalence of paths makes U a 1groupoid: the points are types t : U; -- the 1paths are ⟷; and the 2paths between them are ⇔ G : 1Groupoid G = record { set = U ; _↝_ = Path ; _≈_ = _⇔_ ; id = path id⟷ ; _∘_ = λ q p → p ● q ; _⁻¹ = inv ; lneutr = λ p → 2path (p∼q→q∼p p∼p◎id) ; rneutr = λ p → 2path (p∼q→q∼p p∼id◎p) ; assoc = λ r q p → 2path assoc◎ ; equiv = record { refl = 2path p∼p ; sym = λ { (2path α) → 2path (p∼q→q∼p α) } ; trans = λ { (2path α) (2path β) → 2path (p∼q∼r→p∼r α β) } } ; linv = λ p → 2path p◎!p∼id ; rinv = λ p → 2path !p◎p∼id ; ∘-resp-≈ = λ { (2path β) (2path α) → 2path (resp◎ α β) } } ------------------------------------------------------------------------------ data ΩU : Set where ΩZERO : ΩU -- empty set of paths ΩONE : ΩU -- a trivial path ΩPLUS : ΩU → ΩU → ΩU -- disjoint union of paths ΩTIMES : ΩU → ΩU → ΩU -- pairs of paths PATH : (t₁ t₂ : U) → ΩU -- level 0 paths between values -- values Ω⟦_⟧ : ΩU → Set Ω⟦ ΩZERO ⟧ = ⊥ Ω⟦ ΩONE ⟧ = ⊤ Ω⟦ ΩPLUS t₁ t₂ ⟧ = Ω⟦ t₁ ⟧ ⊎ Ω⟦ t₂ ⟧ Ω⟦ ΩTIMES t₁ t₂ ⟧ = Ω⟦ t₁ ⟧ × Ω⟦ t₂ ⟧ Ω⟦ PATH t₁ t₂ ⟧ = Path t₁ t₂ -- two perminators are the same if they denote the same permutation -- 2paths data _⇔_ : ΩU → ΩU → Set where unite₊ : {t : ΩU} → ΩPLUS ΩZERO t ⇔ t uniti₊ : {t : ΩU} → t ⇔ ΩPLUS ΩZERO t swap₊ : {t₁ t₂ : ΩU} → ΩPLUS t₁ t₂ ⇔ ΩPLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : ΩU} → ΩPLUS t₁ (ΩPLUS t₂ t₃) ⇔ ΩPLUS (ΩPLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : ΩU} → ΩPLUS (ΩPLUS t₁ t₂) t₃ ⇔ ΩPLUS t₁ (ΩPLUS t₂ t₃) unite⋆ : {t : ΩU} → ΩTIMES ΩONE t ⇔ t uniti⋆ : {t : ΩU} → t ⇔ ΩTIMES ΩONE t swap⋆ : {t₁ t₂ : ΩU} → ΩTIMES t₁ t₂ ⇔ ΩTIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : ΩU} → ΩTIMES t₁ (ΩTIMES t₂ t₃) ⇔ ΩTIMES (ΩTIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : ΩU} → ΩTIMES (ΩTIMES t₁ t₂) t₃ ⇔ ΩTIMES t₁ (ΩTIMES t₂ t₃) distz : {t : ΩU} → ΩTIMES ΩZERO t ⇔ ΩZERO factorz : {t : ΩU} → ΩZERO ⇔ ΩTIMES ΩZERO t dist : {t₁ t₂ t₃ : ΩU} → ΩTIMES (ΩPLUS t₁ t₂) t₃ ⇔ ΩPLUS (ΩTIMES t₁ t₃) (ΩTIMES t₂ t₃) factor : {t₁ t₂ t₃ : ΩU} → ΩPLUS (ΩTIMES t₁ t₃) (ΩTIMES t₂ t₃) ⇔ ΩTIMES (ΩPLUS t₁ t₂) t₃ id⇔ : {t : ΩU} → t ⇔ t _◎_ : {t₁ t₂ t₃ : ΩU} → (t₁ ⇔ t₂) → (t₂ ⇔ t₃) → (t₁ ⇔ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : ΩU} → (t₁ ⇔ t₃) → (t₂ ⇔ t₄) → (ΩPLUS t₁ t₂ ⇔ ΩPLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : ΩU} → (t₁ ⇔ t₃) → (t₂ ⇔ t₄) → (ΩTIMES t₁ t₂ ⇔ ΩTIMES t₃ t₄) _∼⇔_ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → PATH t₁ t₂ ⇔ PATH t₁ t₂ -- two spaces are equivalent if there is a path between them; this path -- automatically has an inverse which is an equivalence. It is a -- quasi-equivalence but for finite types that's the same as an equivalence. infix 4 _≃_ _≃_ : (t₁ t₂ : U) → Set t₁ ≃ t₂ = (t₁ ⟷ t₂) -- Univalence says (t₁ ≃ t₂) ≃ (t₁ ⟷ t₂) but as shown above, we actually have -- this by definition instead of up to ≃ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ another idea is to look at c and massage it as follows: rewrite every swap+ ; c to c' ; swaps ; c'' general start with id || id || c examine c and move anything that's not swap to left. If we get to c' || id || id we are done if we get to: c' || id || swap+;c then we rewrite c';c1 || swaps || c2;c and we keep going module Phase₁ where -- no occurrences of (TIMES (TIMES t₁ t₂) t₃) approach that maintains the invariants in proofs invariant : (t : U) → Bool invariant ZERO = true invariant ONE = true invariant (PLUS t₁ t₂) = invariant t₁ ∧ invariant t₂ invariant (TIMES ZERO t₂) = invariant t₂ invariant (TIMES ONE t₂) = invariant t₂ invariant (TIMES (PLUS t₁ t₂) t₃) = (invariant t₁ ∧ invariant t₂) ∧ invariant t₃ invariant (TIMES (TIMES t₁ t₂) t₃) = false Invariant : (t : U) → Set Invariant t = invariant t ≡ true invariant? : Decidable Invariant invariant? t with invariant t ... | true = yes refl ... | false = no (λ ()) conj : ∀ {b₁ b₂} → (b₁ ≡ true) → (b₂ ≡ true) → (b₁ ∧ b₂ ≡ true) conj {true} {true} p q = refl conj {true} {false} p () conj {false} {true} () conj {false} {false} () phase₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (True (invariant? t₂) × t₁ ⟷ t₂) phase₁ ZERO = (ZERO , (fromWitness {Q = invariant? ZERO} refl , id⟷)) phase₁ ONE = (ONE , (fromWitness {Q = invariant? ONE} refl , id⟷)) phase₁ (PLUS t₁ t₂) with phase₁ t₁ | phase₁ t₂ ... | (t₁' , (p₁ , c₁)) | (t₂' , (p₂ , c₂)) with toWitness p₁ | toWitness p₂ ... | t₁'ok | t₂'ok = (PLUS t₁' t₂' , (fromWitness {Q = invariant? (PLUS t₁' t₂')} (conj t₁'ok t₂'ok) , c₁ ⊕ c₂)) phase₁ (TIMES ZERO t) with phase₁ t ... | (t' , (p , c)) with toWitness p ... | t'ok = (TIMES ZERO t' , (fromWitness {Q = invariant? (TIMES ZERO t')} t'ok , id⟷ ⊗ c)) phase₁ (TIMES ONE t) with phase₁ t ... | (t' , (p , c)) with toWitness p ... | t'ok = (TIMES ONE t' , (fromWitness {Q = invariant? (TIMES ONE t')} t'ok , id⟷ ⊗ c)) phase₁ (TIMES (PLUS t₁ t₂) t₃) with phase₁ t₁ | phase₁ t₂ | phase₁ t₃ ... | (t₁' , (p₁ , c₁)) | (t₂' , (p₂ , c₂)) | (t₃' , (p₃ , c₃)) with toWitness p₁ | toWitness p₂ | toWitness p₃ ... | t₁'ok | t₂'ok | t₃'ok = (TIMES (PLUS t₁' t₂') t₃' , (fromWitness {Q = invariant? (TIMES (PLUS t₁' t₂') t₃')} (conj (conj t₁'ok t₂'ok) t₃'ok) , (c₁ ⊕ c₂) ⊗ c₃)) phase₁ (TIMES (TIMES t₁ t₂) t₃) = {!!} -- invariants are informal -- rewrite (TIMES (TIMES t₁ t₂) t₃) to TIMES t₁ (TIMES t₂ t₃) invariant : (t : U) → Bool invariant ZERO = true invariant ONE = true invariant (PLUS t₁ t₂) = invariant t₁ ∧ invariant t₂ invariant (TIMES ZERO t₂) = invariant t₂ invariant (TIMES ONE t₂) = invariant t₂ invariant (TIMES (PLUS t₁ t₂) t₃) = invariant t₁ ∧ invariant t₂ ∧ invariant t₃ invariant (TIMES (TIMES t₁ t₂) t₃) = false step₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (t₁ ⟷ t₂) step₁ ZERO = (ZERO , id⟷) step₁ ONE = (ONE , id⟷) step₁ (PLUS t₁ t₂) with step₁ t₁ | step₁ t₂ ... | (t₁' , c₁) | (t₂' , c₂) = (PLUS t₁' t₂' , c₁ ⊕ c₂) step₁ (TIMES (TIMES t₁ t₂) t₃) with step₁ t₁ | step₁ t₂ | step₁ t₃ ... | (t₁' , c₁) | (t₂' , c₂) | (t₃' , c₃) = (TIMES t₁' (TIMES t₂' t₃') , ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) step₁ (TIMES ZERO t₂) with step₁ t₂ ... | (t₂' , c₂) = (TIMES ZERO t₂' , id⟷ ⊗ c₂) step₁ (TIMES ONE t₂) with step₁ t₂ ... | (t₂' , c₂) = (TIMES ONE t₂' , id⟷ ⊗ c₂) step₁ (TIMES (PLUS t₁ t₂) t₃) with step₁ t₁ | step₁ t₂ | step₁ t₃ ... | (t₁' , c₁) | (t₂' , c₂) | (t₃' , c₃) = (TIMES (PLUS t₁' t₂') t₃' , (c₁ ⊕ c₂) ⊗ c₃) {-# NO_TERMINATION_CHECK #-} phase₁ : (t₁ : U) → Σ[ t₂ ∈ U ] (t₁ ⟷ t₂) phase₁ t with invariant t ... | true = (t , id⟷) ... | false with step₁ t ... | (t' , c) with phase₁ t' ... | (t'' , c') = (t'' , c ◎ c') test₁ = phase₁ (TIMES (TIMES (TIMES ONE ONE) (TIMES ONE ONE)) ONE) TIMES ONE (TIMES ONE (TIMES ONE (TIMES ONE ONE))) , (((id⟷ ⊗ id⟷) ⊗ (id⟷ ⊗ id⟷)) ⊗ id⟷ ◎ assocr⋆) ◎ ((id⟷ ⊗ id⟷) ⊗ ((id⟷ ⊗ id⟷) ⊗ id⟷ ◎ assocr⋆) ◎ assocr⋆) ◎ id⟷ -- Now any perminator (t₁ ⟷ t₂) can be transformed to a canonical -- representation in which we first associate all the TIMES to the right -- and then do the rest of the perminator normalize₁ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (Σ[ t₁' ∈ U ] (t₁ ⟷ t₁' × t₁' ⟷ t₂)) normalize₁ {ZERO} {t} c = ZERO , id⟷ , c normalize₁ {ONE} c = ONE , id⟷ , c normalize₁ {PLUS .ZERO t₂} unite₊ with phase₁ t₂ ... | (t₂n , cn) = PLUS ZERO t₂n , id⟷ ⊕ cn , unite₊ ◎ ! cn normalize₁ {PLUS t₁ t₂} uniti₊ = {!!} normalize₁ {PLUS t₁ t₂} swap₊ = {!!} normalize₁ {PLUS t₁ ._} assocl₊ = {!!} normalize₁ {PLUS ._ t₂} assocr₊ = {!!} normalize₁ {PLUS t₁ t₂} uniti⋆ = {!!} normalize₁ {PLUS ._ ._} factor = {!!} normalize₁ {PLUS t₁ t₂} id⟷ = {!!} normalize₁ {PLUS t₁ t₂} (c ◎ c₁) = {!!} normalize₁ {PLUS t₁ t₂} (c ⊕ c₁) = {!!} normalize₁ {TIMES t₁ t₂} c = {!!} record Permutation (t t' : U) : Set where field t₀ : U -- no occurrences of TIMES .. (TIMES .. ..) phase₀ : t ⟷ t₀ t₁ : U -- no occurrences of TIMES (PLUS .. ..) phase₁ : t₀ ⟷ t₁ t₂ : U -- no occurrences of TIMES phase₂ : t₁ ⟷ t₂ t₃ : U -- no nested left PLUS, all PLUS of form PLUS simple (PLUS ...) phase₃ : t₂ ⟷ t₃ t₄ : U -- no occurrences PLUS ZERO phase₄ : t₃ ⟷ t₄ t₅ : U -- do actual permutation using swapij phase₅ : t₄ ⟷ t₅ rest : t₅ ⟷ t' -- blah blah canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → Permutation t₁ t₂ canonical c = {!!} ------------------------------------------------------------------------------ -- These paths do NOT reach "inside" the finite sets. For example, there is -- NO PATH between false and true in BOOL even though there is a path between -- BOOL and BOOL that "twists the space around." -- -- In more detail how do these paths between types relate to the whole -- discussion about higher groupoid structure of type formers (Sec. 2.5 and -- on). -- Then revisit the early parts of Ch. 2 about higher groupoid structure for -- U, how functions from U to U respect the paths in U, type families and -- dependent functions, homotopies and equivalences, and then Sec. 2.5 and -- beyond again. should this be on the code as done now or on their interpreation i.e. data _⟷_ : ⟦ U ⟧ → ⟦ U ⟧ → Set where can add recursive types rec : U ⟦_⟧ takes an additional argument X that is passed around ⟦ rec ⟧ X = X fixpoitn data μ (t : U) : Set where ⟨_⟩ : ⟦ t ⟧ (μ t) → μ t -- We identify functions with the paths above. Since every function is -- reversible, every function corresponds to a path and there is no -- separation between functions and paths and no need to mediate between them -- using univalence. -- -- Note that none of the above functions are dependent functions. ------------------------------------------------------------------------------ -- Now we consider homotopies, i.e., paths between functions. Since our -- functions are identified with the paths ⟷, the homotopies are paths -- between elements of ⟷ -- First, a sanity check. Our notion of paths matches the notion of -- equivalences in the conventional HoTT presentation -- Homotopy between two functions (paths) -- That makes id ∼ not which is bad. The def. of ∼ should be parametric... _∼_ : {t₁ t₂ t₃ : U} → (f : t₁ ⟷ t₂) → (g : t₁ ⟷ t₃) → Set _∼_ {t₁} {t₂} {t₃} f g = t₂ ⟷ t₃ -- Every f and g of the right type are related by ∼ homotopy : {t₁ t₂ t₃ : U} → (f : t₁ ⟷ t₂) → (g : t₁ ⟷ t₃) → (f ∼ g) homotopy f g = (! f) ◎ g -- Equivalences -- -- If f : t₁ ⟷ t₂ has two inverses g₁ g₂ : t₂ ⟷ t₁ then g₁ ∼ g₂. More -- generally, any two paths of the same type are related by ∼. equiv : {t₁ t₂ : U} → (f g : t₁ ⟷ t₂) → (f ∼ g) equiv f g = id⟷ -- It follows that any two types in U are equivalent if there is a path -- between them _≃_ : (t₁ t₂ : U) → Set t₁ ≃ t₂ = t₁ ⟷ t₂ -- Now we want to understand the type of paths between paths ------------------------------------------------------------------------------ elems : (t : U) → List ⟦ t ⟧ elems ZERO = [] elems ONE = [ tt ] elems (PLUS t₁ t₂) = map inj₁ (elems t₁) ++ map inj₂ (elems t₂) elems (TIMES t₁ t₂) = concat (map (λ v₂ → map (λ v₁ → (v₁ , v₂)) (elems t₁)) (elems t₂)) _≟_ : {t : U} → ⟦ t ⟧ → ⟦ t ⟧ → Bool _≟_ {ZERO} () _≟_ {ONE} tt tt = true _≟_ {PLUS t₁ t₂} (inj₁ v) (inj₁ w) = v ≟ w _≟_ {PLUS t₁ t₂} (inj₁ v) (inj₂ w) = false _≟_ {PLUS t₁ t₂} (inj₂ v) (inj₁ w) = false _≟_ {PLUS t₁ t₂} (inj₂ v) (inj₂ w) = v ≟ w _≟_ {TIMES t₁ t₂} (v₁ , w₁) (v₂ , w₂) = v₁ ≟ v₂ ∧ w₁ ≟ w₂ findLoops : {t t₁ t₂ : U} → (PLUS t t₁ ⟷ PLUS t t₂) → List ⟦ t ⟧ → List (Σ[ t ∈ U ] ⟦ t ⟧) findLoops c [] = [] findLoops {t} c (v ∷ vs) = ? with perm2path c (inj₁ v) ... | (inj₂ _ , loops) = loops ++ findLoops c vs ... | (inj₁ v' , loops) with v ≟ v' ... | true = (t , v) ∷ loops ++ findLoops c vs ... | false = loops ++ findLoops c vs traceLoopsEx : {t : U} → List (Σ[ t ∈ U ] ⟦ t ⟧) traceLoopsEx {t} = findLoops traceBodyEx (elems (PLUS t (PLUS t t))) -- traceLoopsEx {ONE} ==> (PLUS ONE (PLUS ONE ONE) , inj₂ (inj₁ tt)) ∷ [] -- Each permutation is a "path" between types. We can think of this path as -- being indexed by "time" where "time" here is in discrete units -- corresponding to the sequencing of combinators. A homotopy between paths p -- and q is a map that, for each "time unit", maps the specified type along p -- to a corresponding type along q. At each such time unit, the mapping -- between types is itself a path. So a homotopy is essentially a collection -- of paths. As an example, given two paths starting at t₁ and ending at t₂ -- and going through different intermediate points: -- p = t₁ -> t -> t' -> t₂ -- q = t₁ -> u -> u' -> t₂ -- A possible homotopy between these two paths is a path from t to u and -- another path from t' to u'. Things get slightly more complicated if the -- number of intermediate points is not the same etc. but that's the basic idea. -- The vertical paths must commute with the horizontal ones. -- -- Postulate the groupoid laws and use them to prove commutativity etc. -- -- Bool -id-- Bool -id-- Bool -id-- Bool -- | | | | -- | not id | the last square does not commute -- | | | | -- Bool -not- Bool -not- Bool -not- Bool -- -- If the large rectangle commutes then the smaller squares commute. For a -- proof, let p o q o r o s be the left-bottom path and p' o q' o r' o s' be -- the top-right path. Let's focus on the square: -- -- A-- r'--C -- | | -- ? s' -- | | -- B-- s --D -- -- We have a path from A to B that is: !q' o !p' o p o q o r. -- Now let's see if r' o s' is equivalent to -- !q' o !p' o p o q o r o s -- We know p o q o r o s ⇔ p' o q' o r' o s' -- If we know that ⇔ is preserved by composition then: -- !q' o !p' o p o q o r o s ⇔ !q' o !p' o p' o q' o r' o s' -- and of course by inverses and id being unit of composition: -- !q' o !p' o p o q o r o s ⇔ r' o s' -- and we are done. {-# NO_TERMINATION_CHECK #-} Path∼ : ∀ {t₁ t₂ t₁' t₂' v₁ v₂ v₁' v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁' , v₁' ] •[ t₂' , v₂' ]) → Set -- sequential composition Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p₁ p₂) (_●_ {t₂ = t₂'} {v₂ = v₂'} q₁ q₂) = (Path∼ p₁ q₁ × Path∼ p₂ q₂) ⊎ (Path∼ {t₁} {t₂} {t₁'} {t₁'} {v₁} {v₂} {v₁'} {v₁'} p₁ id⟷• × Path∼ p₂ (q₁ ● q₂)) ⊎ (Path∼ p₁ (q₁ ● q₂) × Path∼ {t₂} {t₃} {t₃'} {t₃'} {v₂} {v₃} {v₃'} {v₃'} p₂ id⟷•) ⊎ (Path∼ {t₁} {t₁} {t₁'} {t₂'} {v₁} {v₁} {v₁'} {v₂'} id⟷• q₁ × Path∼ (p₁ ● p₂) q₂) ⊎ (Path∼ (p₁ ● p₂) q₁ × Path∼ {t₃} {t₃} {t₂'} {t₃'} {v₃} {v₃} {v₂'} {v₃'} id⟷• q₂) Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p q) c = (Path∼ {t₁} {t₂} {t₁'} {t₁'} {v₁} {v₂} {v₁'} {v₁'} p id⟷• × Path∼ q c) ⊎ (Path∼ p c × Path∼ {t₂} {t₃} {t₃'} {t₃'} {v₂} {v₃} {v₃'} {v₃'} q id⟷•) Path∼ {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} c (_●_ {t₂ = t₂'} {v₂ = v₂'} p q) = (Path∼ {t₁} {t₁} {t₁'} {t₂'} {v₁} {v₁} {v₁'} {v₂'} id⟷• p × Path∼ c q) ⊎ (Path∼ c p × Path∼ {t₃} {t₃} {t₂'} {t₃'} {v₃} {v₃} {v₂'} {v₃'} id⟷• q) -- choices Path∼ (⊕1• p) (⊕1• q) = Path∼ p q Path∼ (⊕1• p) _ = ⊥ Path∼ _ (⊕1• p) = ⊥ Path∼ (⊕2• p) (⊕2• q) = Path∼ p q Path∼ (⊕2• p) _ = ⊥ Path∼ _ (⊕2• p) = ⊥ -- parallel paths Path∼ (p₁ ⊗• p₂) (q₁ ⊗• q₂) = Path∼ p₁ q₁ × Path∼ p₂ q₂ Path∼ (p₁ ⊗• p₂) _ = ⊥ Path∼ _ (q₁ ⊗• q₂) = ⊥ -- simple edges connecting two points Path∼ {t₁} {t₂} {t₁'} {t₂'} {v₁} {v₂} {v₁'} {v₂'} c₁ c₂ = Path •[ t₁ , v₁ ] •[ t₁' , v₁' ] × Path •[ t₂ , v₂ ] •[ t₂' , v₂' ] -- In the setting of finite types (in particular with no loops) every pair of -- paths with related start and end points is equivalent. In other words, we -- really have no interesting 2-path structure. allequiv : ∀ {t₁ t₂ t₁' t₂' v₁ v₂ v₁' v₂'} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → (q : Path •[ t₁' , v₁' ] •[ t₂' , v₂' ]) → (start : Path •[ t₁ , v₁ ] •[ t₁' , v₁' ]) → (end : Path •[ t₂ , v₂ ] •[ t₂' , v₂' ]) → Path∼ p q allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p₁ p₂) (_●_ {t₂ = t₂'} {v₂ = v₂'} q₁ q₂) start end = {!!} allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} (_●_ {t₂ = t₂} {v₂ = v₂} p q) c start end = {!!} allequiv {t₁} {t₃} {t₁'} {t₃'} {v₁} {v₃} {v₁'} {v₃'} c (_●_ {t₂ = t₂'} {v₂ = v₂'} p q) start end = {!!} allequiv (⊕1• p) (⊕1• q) start end = {!!} allequiv (⊕1• p) _ start end = {!!} allequiv _ (⊕1• p) start end = {!!} allequiv (⊕2• p) (⊕2• q) start end = {!!} allequiv (⊕2• p) _ start end = {!!} allequiv _ (⊕2• p) start end = {!!} -- parallel paths allequiv (p₁ ⊗• p₂) (q₁ ⊗• q₂) start end = {!!} allequiv (p₁ ⊗• p₂) _ start end = {!!} allequiv _ (q₁ ⊗• q₂) start end = {!!} -- simple edges connecting two points allequiv {t₁} {t₂} {t₁'} {t₂'} {v₁} {v₂} {v₁'} {v₂'} c₁ c₂ start end = {!!} refl∼ : ∀ {t₁ t₂ v₁ v₂} → (p : Path •[ t₁ , v₁ ] •[ t₂ , v₂ ]) → Path∼ p p refl∼ unite•₊ = id⟷• , id⟷• refl∼ uniti•₊ = id⟷• , id⟷• refl∼ swap1•₊ = id⟷• , id⟷• refl∼ swap2•₊ = id⟷• , id⟷• refl∼ assocl1•₊ = id⟷• , id⟷• refl∼ assocl2•₊ = id⟷• , id⟷• refl∼ assocl3•₊ = id⟷• , id⟷• refl∼ assocr1•₊ = id⟷• , id⟷• refl∼ assocr2•₊ = id⟷• , id⟷• refl∼ assocr3•₊ = id⟷• , id⟷• refl∼ unite•⋆ = id⟷• , id⟷• refl∼ uniti•⋆ = id⟷• , id⟷• refl∼ swap•⋆ = id⟷• , id⟷• refl∼ assocl•⋆ = id⟷• , id⟷• refl∼ assocr•⋆ = id⟷• , id⟷• refl∼ distz• = id⟷• , id⟷• refl∼ factorz• = id⟷• , id⟷• refl∼ dist1• = id⟷• , id⟷• refl∼ dist2• = id⟷• , id⟷• refl∼ factor1• = id⟷• , id⟷• refl∼ factor2• = id⟷• , id⟷• refl∼ id⟷• = id⟷• , id⟷• refl∼ (p ● q) = inj₁ (refl∼ p , refl∼ q) refl∼ (⊕1• p) = refl∼ p refl∼ (⊕2• q) = refl∼ q refl∼ (p ⊗• q) = refl∼ p , refl∼ q -- Extensional view -- First we enumerate all the values of a given finite type size : U → ℕ size ZERO = 0 size ONE = 1 size (PLUS t₁ t₂) = size t₁ + size t₂ size (TIMES t₁ t₂) = size t₁ * size t₂ enum : (t : U) → ⟦ t ⟧ → Fin (size t) enum ZERO () -- absurd enum ONE tt = zero enum (PLUS t₁ t₂) (inj₁ v₁) = inject+ (size t₂) (enum t₁ v₁) enum (PLUS t₁ t₂) (inj₂ v₂) = raise (size t₁) (enum t₂ v₂) enum (TIMES t₁ t₂) (v₁ , v₂) = fromℕ≤ (pr {s₁} {s₂} {n₁} {n₂}) where n₁ = enum t₁ v₁ n₂ = enum t₂ v₂ s₁ = size t₁ s₂ = size t₂ pr : {s₁ s₂ : ℕ} → {n₁ : Fin s₁} {n₂ : Fin s₂} → ((toℕ n₁ * s₂) + toℕ n₂) < (s₁ * s₂) pr {0} {_} {()} pr {_} {0} {_} {()} pr {suc s₁} {suc s₂} {zero} {zero} = {!z≤n!} pr {suc s₁} {suc s₂} {zero} {Fsuc n₂} = {!!} pr {suc s₁} {suc s₂} {Fsuc n₁} {zero} = {!!} pr {suc s₁} {suc s₂} {Fsuc n₁} {Fsuc n₂} = {!!} vals3 : Fin 3 × Fin 3 × Fin 3 vals3 = (enum THREE LL , enum THREE LR , enum THREE R) where THREE = PLUS (PLUS ONE ONE) ONE LL = inj₁ (inj₁ tt) LR = inj₁ (inj₂ tt) R = inj₂ tt xxx : {s₁ s₂ : ℕ} → (i : Fin s₁) → (j : Fin s₂) → suc (toℕ i * s₂ + toℕ j) ≤ s₁ * s₂ xxx {0} {_} () xxx {suc s₁} {s₂} i j = {!!} -- i : Fin (suc s₁) -- j : Fin s₂ -- ?0 : suc (toℕ i * s₂ + toℕ j) ≤ suc s₁ * s₂ -- (suc (toℕ i) * s₂ + toℕ j ≤ s₂ + s₁ * s₂ -- (suc (toℕ i) * s₂ + toℕ j ≤ s₁ * s₂ + s₂ utoVecℕ : (t : U) → Vec (Fin (utoℕ t)) (utoℕ t) utoVecℕ ZERO = [] utoVecℕ ONE = [ zero ] utoVecℕ (PLUS t₁ t₂) = map (inject+ (utoℕ t₂)) (utoVecℕ t₁) ++ map (raise (utoℕ t₁)) (utoVecℕ t₂) utoVecℕ (TIMES t₁ t₂) = concat (map (λ i → map (λ j → inject≤ (fromℕ (toℕ i * utoℕ t₂ + toℕ j)) (xxx i j)) (utoVecℕ t₂)) (utoVecℕ t₁)) -- Vector representation of types so that we can test permutations utoVec : (t : U) → Vec ⟦ t ⟧ (utoℕ t) utoVec ZERO = [] utoVec ONE = [ tt ] utoVec (PLUS t₁ t₂) = map inj₁ (utoVec t₁) ++ map inj₂ (utoVec t₂) utoVec (TIMES t₁ t₂) = concat (map (λ v₁ → map (λ v₂ → (v₁ , v₂)) (utoVec t₂)) (utoVec t₁)) -- Examples permutations and their actions on a simple ordered vector module PermExamples where -- ordered vector: position i has value i ordered : ∀ {n} → Vec (Fin n) n ordered = tabulate id -- empty permutation p₀ { } p₀ : Perm 0 p₀ = [] v₀ = permute p₀ ordered -- permutation p₁ { 0 -> 0 } p₁ : Perm 1 p₁ = 0F ∷ p₀ where 0F = fromℕ 0 v₁ = permute p₁ ordered -- permutations p₂ { 0 -> 0, 1 -> 1 } -- q₂ { 0 -> 1, 1 -> 0 } p₂ q₂ : Perm 2 p₂ = 0F ∷ p₁ where 0F = inject+ 1 (fromℕ 0) q₂ = 1F ∷ p₁ where 1F = fromℕ 1 v₂ = permute p₂ ordered w₂ = permute q₂ ordered -- permutations p₃ { 0 -> 0, 1 -> 1, 2 -> 2 } -- s₃ { 0 -> 0, 1 -> 2, 2 -> 1 } -- q₃ { 0 -> 1, 1 -> 0, 2 -> 2 } -- r₃ { 0 -> 1, 1 -> 2, 2 -> 0 } -- t₃ { 0 -> 2, 1 -> 0, 2 -> 1 } -- u₃ { 0 -> 2, 1 -> 1, 2 -> 0 } p₃ q₃ r₃ s₃ t₃ u₃ : Perm 3 p₃ = 0F ∷ p₂ where 0F = inject+ 2 (fromℕ 0) s₃ = 0F ∷ q₂ where 0F = inject+ 2 (fromℕ 0) q₃ = 1F ∷ p₂ where 1F = inject+ 1 (fromℕ 1) r₃ = 2F ∷ p₂ where 2F = fromℕ 2 t₃ = 1F ∷ q₂ where 1F = inject+ 1 (fromℕ 1) u₃ = 2F ∷ q₂ where 2F = fromℕ 2 v₃ = permute p₃ ordered y₃ = permute s₃ ordered w₃ = permute q₃ ordered x₃ = permute r₃ ordered z₃ = permute t₃ ordered α₃ = permute u₃ ordered -- end module PermExamples ------------------------------------------------------------------------------ -- Testing t₁ = PLUS ZERO BOOL t₂ = BOOL m₁ = matchP {t₁} {t₂} unite₊ -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ (inj₂ (inj₂ tt) , inj₂ tt) ∷ [] m₂ = matchP {t₂} {t₁} uniti₊ -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ (inj₂ tt , inj₂ (inj₂ tt)) ∷ [] t₃ = PLUS BOOL ONE t₄ = PLUS ONE BOOL m₃ = matchP {t₃} {t₄} swap₊ -- (inj₂ tt , inj₁ tt) ∷ -- (inj₁ (inj₁ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₁ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ [] m₄ = matchP {t₄} {t₃} swap₊ -- (inj₂ (inj₁ tt) , inj₁ (inj₁ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₁ (inj₂ tt)) ∷ -- (inj₁ tt , inj₂ tt) ∷ [] t₅ = PLUS ONE (PLUS BOOL ONE) t₆ = PLUS (PLUS ONE BOOL) ONE m₅ = matchP {t₅} {t₆} assocl₊ -- (inj₁ tt , inj₁ (inj₁ tt)) ∷ -- (inj₂ (inj₁ (inj₁ tt)) , inj₁ (inj₂ (inj₁ tt))) ∷ -- (inj₂ (inj₁ (inj₂ tt)) , inj₁ (inj₂ (inj₂ tt))) ∷ -- (inj₂ (inj₂ tt) , inj₂ tt) ∷ [] m₆ = matchP {t₆} {t₅} assocr₊ -- (inj₁ (inj₁ tt) , inj₁ tt) ∷ -- (inj₁ (inj₂ (inj₁ tt)) , inj₂ (inj₁ (inj₁ tt))) ∷ -- (inj₁ (inj₂ (inj₂ tt)) , inj₂ (inj₁ (inj₂ tt))) ∷ -- (inj₂ tt , inj₂ (inj₂ tt)) ∷ [] t₇ = TIMES ONE BOOL t₈ = BOOL m₇ = matchP {t₇} {t₈} unite⋆ -- ((tt , inj₁ tt) , inj₁ tt) ∷ ((tt , inj₂ tt) , inj₂ tt) ∷ [] m₈ = matchP {t₈} {t₇} uniti⋆ -- (inj₁ tt , (tt , inj₁ tt)) ∷ (inj₂ tt , (tt , inj₂ tt)) ∷ [] t₉ = TIMES BOOL ONE t₁₀ = TIMES ONE BOOL m₉ = matchP {t₉} {t₁₀} swap⋆ -- ((inj₁ tt , tt) , (tt , inj₁ tt)) ∷ -- ((inj₂ tt , tt) , (tt , inj₂ tt)) ∷ [] m₁₀ = matchP {t₁₀} {t₉} swap⋆ -- ((tt , inj₁ tt) , (inj₁ tt , tt)) ∷ -- ((tt , inj₂ tt) , (inj₂ tt , tt)) ∷ [] t₁₁ = TIMES BOOL (TIMES ONE BOOL) t₁₂ = TIMES (TIMES BOOL ONE) BOOL m₁₁ = matchP {t₁₁} {t₁₂} assocl⋆ -- ((inj₁ tt , (tt , inj₁ tt)) , ((inj₁ tt , tt) , inj₁ tt)) ∷ -- ((inj₁ tt , (tt , inj₂ tt)) , ((inj₁ tt , tt) , inj₂ tt)) ∷ -- ((inj₂ tt , (tt , inj₁ tt)) , ((inj₂ tt , tt) , inj₁ tt)) ∷ -- ((inj₂ tt , (tt , inj₂ tt)) , ((inj₂ tt , tt) , inj₂ tt)) ∷ [] m₁₂ = matchP {t₁₂} {t₁₁} assocr⋆ -- (((inj₁ tt , tt) , inj₁ tt) , (inj₁ tt , (tt , inj₁ tt)) ∷ -- (((inj₁ tt , tt) , inj₂ tt) , (inj₁ tt , (tt , inj₂ tt)) ∷ -- (((inj₂ tt , tt) , inj₁ tt) , (inj₂ tt , (tt , inj₁ tt)) ∷ -- (((inj₂ tt , tt) , inj₂ tt) , (inj₂ tt , (tt , inj₂ tt)) ∷ [] t₁₃ = TIMES ZERO BOOL t₁₄ = ZERO m₁₃ = matchP {t₁₃} {t₁₄} distz -- [] m₁₄ = matchP {t₁₄} {t₁₃} factorz -- [] t₁₅ = TIMES (PLUS BOOL ONE) BOOL t₁₆ = PLUS (TIMES BOOL BOOL) (TIMES ONE BOOL) m₁₅ = matchP {t₁₅} {t₁₆} dist -- ((inj₁ (inj₁ tt) , inj₁ tt) , inj₁ (inj₁ tt , inj₁ tt)) ∷ -- ((inj₁ (inj₁ tt) , inj₂ tt) , inj₁ (inj₁ tt , inj₂ tt)) ∷ -- ((inj₁ (inj₂ tt) , inj₁ tt) , inj₁ (inj₂ tt , inj₁ tt)) ∷ -- ((inj₁ (inj₂ tt) , inj₂ tt) , inj₁ (inj₂ tt , inj₂ tt)) ∷ -- ((inj₂ tt , inj₁ tt) , inj₂ (tt , inj₁ tt)) ∷ -- ((inj₂ tt , inj₂ tt) , inj₂ (tt , inj₂ tt)) ∷ [] m₁₆ = matchP {t₁₆} {t₁₅} factor -- (inj₁ (inj₁ tt , inj₁ tt) , (inj₁ (inj₁ tt) , inj₁ tt)) ∷ -- (inj₁ (inj₁ tt , inj₂ tt) , (inj₁ (inj₁ tt) , inj₂ tt)) ∷ -- (inj₁ (inj₂ tt , inj₁ tt) , (inj₁ (inj₂ tt) , inj₁ tt)) ∷ -- (inj₁ (inj₂ tt , inj₂ tt) , (inj₁ (inj₂ tt) , inj₂ tt)) ∷ -- (inj₂ (tt , inj₁ tt) , (inj₂ tt , inj₁ tt)) ∷ -- (inj₂ (tt , inj₂ tt) , (inj₂ tt , inj₂ tt)) ∷ [] t₁₇ = BOOL t₁₈ = BOOL m₁₇ = matchP {t₁₇} {t₁₈} id⟷ -- (inj₁ tt , inj₁ tt) ∷ (inj₂ tt , inj₂ tt) ∷ [] --◎ --⊕ --⊗ ------------------------------------------------------------------------------ mergeS :: SubPerm → SubPerm (suc m * n) (m * n) → SubPerm (suc m * suc n) (m * suc n) mergeS = ? subP : ∀ {m n} → Fin (suc m) → Perm n → SubPerm (suc m * n) (m * n) subP {m} {0} i β = {!!} subP {m} {suc n} i (j ∷ β) = mergeS ? (subP {m} {n} i β) -- injectP (Perm n) (m * n) -- ... -- SP (suc m * n) (m * n) -- SP (n + m * n) (m * n) --SP (suc m * n) (m * n) -- -- --==> -- --(suc m * suc n) (m * suc n) --m : ℕ --n : ℕ --i : Fin (suc m) --j : Fin (suc n) --β : Perm n --?1 : SubPerm (suc m * suc n) (m * suc n) tcompperm : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompperm [] β = [] tcompperm (i ∷ α) β = merge (subP i β) (tcompperm α β) -- shift m=3 n=4 i=ax:F3 β=[ay:F4,by:F3,cy:F2,dy:F1] γ=[r4,...,r11]:P8 -- ==> [F12,F11,F10,F9...γ] -- m = 3 -- n = 4 -- 3 * 4 -- x = [ ax, bx, cx ] : P 3, y : [ay, by, cy, dy] : P 4 -- (shift ax 4 y) || -- ( (shift bx 4 y) || -- ( (shift cx 4 y) || -- []))) -- -- ax : F3, bx : F2, cx : F1 -- ay : F4, by : F3, cy : F2, dy : F1 -- -- suc m = 3, m = 2 -- F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 -- [ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 ] -- --------------- -- ax : F3 with y=[F4,F3,F2,F1] -- -------------- -- bx : F2 -- ------------------ -- cx : F1 -- β should be something like i * n + entry in β 0 * n = 0 (suc m) * n = n + (m * n) comb2perm (c₁ ⊗ c₂) = tcompperm (comb2perm c₁) (comb2perm c₂) c1 = swap+ (f->t,t->f) [1,0] c2 = id (f->f,t->t) [0,0] c1xc2 (f,f)->(t,f), (f,t)->(t,t), (t,f)->(f,f), (t,t)->(f,t) [ ff ft tf tt 2 2 0 0 index in α * n + index in β pex qex pqex qpex : Perm 3 pex = inject+ 1 (fromℕ 1) ∷ fromℕ 1 ∷ zero ∷ [] qex = zero ∷ fromℕ 1 ∷ zero ∷ [] pqex = fromℕ 2 ∷ fromℕ 1 ∷ zero ∷ [] qpex = inject+ 1 (fromℕ 1) ∷ zero ∷ zero ∷ [] pqexv = (permute qex ∘ permute pex) (tabulate id) pqexv' = permute pqex (tabulate id) qpexv = (permute pex ∘ permute qex) (tabulate id) qpexv' = permute qpex (tabulate id) -- [1,1,0] -- [z] => [z] -- [y,z] => [z,y] -- [x,y,z] => [z,x,y] -- [0,1,0] -- [w] => [w] -- [v,w] => [w,v] -- [u,v,w] => [u,w,v] -- R,R,_ ◌ _,R,_ -- R in p1 takes you to middle which also goes R, so first goes RR -- [a,b,c] ◌ [d,e,f] -- [a+p2[a], ...] -- [1,1,0] ◌ [0,1,0] one step [2,1,0] -- [z] => [z] -- [y,z] => [z,y] -- [x,y,z] => [z,y,x] -- [1,1,0] ◌ [0,1,0] -- [z] => [z] => [z] -- [y,z] => -- [x,y,z] => -- so [1,1,0] ◌ [0,1,0] ==> [2,1,0] -- so [0,1,0] ◌ [1,1,0] ==> [1,0,0] -- pex takes [0,1,2] to [2,0,1] -- qex takes [0,1,2] to [0,2,1] -- pex ◌ qex takes [0,1,2] to [2,1,0] -- qex ◌ pex takes [0,1,2] to [1,0,2] -- seq : ∀ {m n} → (m ≤ n) → Perm m → Perm n → Perm m -- seq lp [] _ = [] -- seq lp (i ∷ p) q = (lookupP i q) ∷ (seq lp p q) -- i F+ ... -- lookupP : ∀ {n} → Fin n → Perm n → Fin n -- i : Fin (suc m) -- p : Perm m -- q : Perm n -- -- (zero ∷ p₁) ◌ (q ∷ q₁) = q ∷ (p₁ ◌ q₁) -- (suc p ∷ p₁) ◌ (zero ∷ q₁) = {!!} -- (suc p ∷ p₁) ◌ (suc q ∷ q₁) = {!!} -- -- data Perm : ℕ → Set where -- [] : Perm 0 -- _∷_ : {n : ℕ} → Fin (suc n) → Perm n → Perm (suc n) -- Given a vector of (suc n) elements, return one of the elements and -- the rest. Example: pick (inject+ 1 (fromℕ 1)) (10 ∷ 20 ∷ 30 ∷ 40 ∷ []) pick : ∀ {ℓ} {n : ℕ} {A : Set ℓ} → Fin n → Vec A (suc n) → (A × Vec A n) pick {ℓ} {0} {A} () pick {ℓ} {suc n} {A} zero (v ∷ vs) = (v , vs) pick {ℓ} {suc n} {A} (suc i) (v ∷ vs) = let (w , ws) = pick {ℓ} {n} {A} i vs in (w , v ∷ ws) insertV : ∀ {ℓ} {n : ℕ} {A : Set ℓ} → A → Fin (suc n) → Vec A n → Vec A (suc n) insertV {n = 0} v zero [] = [ v ] insertV {n = 0} v (suc ()) insertV {n = suc n} v zero vs = v ∷ vs insertV {n = suc n} v (suc i) (w ∷ ws) = w ∷ insertV v i ws -- A permutation takes two vectors of the same size, matches one -- element from each and returns another permutation data P {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : (m n : ℕ) → (m ≡ n) → Vec A m → Vec B n → Set (ℓ ⊔ ℓ') where nil : P A B 0 0 refl [] [] cons : {m n : ℕ} {i : Fin (suc m)} {j : Fin (suc n)} → (p : m ≡ n) → (v : A) → (w : B) → (vs : Vec A m) → (ws : Vec B n) → P A B m n p vs ws → P A B (suc m) (suc n) (cong suc p) (insertV v i vs) (insertV w j ws) -- A permutation is a sequence of "insertions". infixr 5 _∷_ data Perm : ℕ → Set where [] : Perm 0 _∷_ : {n : ℕ} → Fin (suc n) → Perm n → Perm (suc n) lookupP : ∀ {n} → Fin n → Perm n → Fin n lookupP () [] lookupP zero (j ∷ _) = j lookupP {suc n} (suc i) (j ∷ q) = inject₁ (lookupP i q) insert : ∀ {ℓ n} {A : Set ℓ} → Vec A n → Fin (suc n) → A → Vec A (suc n) insert vs zero w = w ∷ vs insert [] (suc ()) -- absurd insert (v ∷ vs) (suc i) w = v ∷ insert vs i w -- A permutation acts on a vector by inserting each element in its new -- position. permute : ∀ {ℓ n} {A : Set ℓ} → Perm n → Vec A n → Vec A n permute [] [] = [] permute (p ∷ ps) (v ∷ vs) = insert (permute ps vs) p v -- Use a permutation to match up the elements in two vectors. See more -- convenient function matchP below. match : ∀ {t t'} → (size t ≡ size t') → Perm (size t) → Vec ⟦ t ⟧ (size t) → Vec ⟦ t' ⟧ (size t) → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) match {t} {t'} sp α vs vs' = let js = permute α (tabulate id) in zip (tabulate (λ j → lookup (lookup j js) vs)) vs' -- swap -- -- swapperm produces the permutations that maps: -- [ a , b || x , y , z ] -- to -- [ x , y , z || a , b ] -- Ex. -- permute (swapperm {5} (inject+ 2 (fromℕ 2))) ordered=[0,1,2,3,4] -- produces [2,3,4,0,1] -- Explicitly: -- swapex : Perm 5 -- swapex = inject+ 1 (fromℕ 3) -- :: Fin 5 -- ∷ inject+ 0 (fromℕ 3) -- :: Fin 4 -- ∷ zero -- ∷ zero -- ∷ zero -- ∷ [] swapperm : ∀ {n} → Fin n → Perm n swapperm {0} () -- absurd swapperm {suc n} zero = idperm swapperm {suc n} (suc i) = subst Fin (-+-id n i) (inject+ (toℕ i) (fromℕ (n ∸ toℕ i))) ∷ swapperm {n} i -- compositions -- Sequential composition scompperm : ∀ {n} → Perm n → Perm n → Perm n scompperm α β = {!!} -- Sub-permutations -- useful for parallel and multiplicative compositions -- Perm 4 has elements [Fin 4, Fin 3, Fin 2, Fin 1] -- SubPerm 11 7 has elements [Fin 11, Fin 10, Fin 9, Fin 8] -- So Perm 4 is a special case SubPerm 4 0 data SubPerm : ℕ → ℕ → Set where []s : {n : ℕ} → SubPerm n n _∷s_ : {n m : ℕ} → Fin (suc n) → SubPerm n m → SubPerm (suc n) m merge : ∀ {m n} → SubPerm m n → Perm n → Perm m merge []s β = β merge (i ∷s α) β = i ∷ merge α β injectP : ∀ {m} → Perm m → (n : ℕ) → SubPerm (m + n) n injectP [] n = []s injectP (i ∷ α) n = inject+ n i ∷s injectP α n -- Parallel + composition pcompperm : ∀ {m n} → Perm m → Perm n → Perm (m + n) pcompperm {m} {n} α β = merge (injectP α n) β -- Multiplicative * composition tcompperm : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompperm [] β = [] tcompperm (i ∷ α) β = {!!} ------------------------------------------------------------------------------ -- A combinator t₁ ⟷ t₂ denotes a permutation. comb2perm : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Perm (size t₁) comb2perm {PLUS ZERO t} {.t} unite₊ = idperm comb2perm {t} {PLUS ZERO .t} uniti₊ = idperm comb2perm {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ with size t₂ ... | 0 = idperm ... | suc j = swapperm {size t₁ + suc j} (inject≤ (fromℕ (size t₁)) (suc≤ (size t₁) j)) comb2perm {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = idperm comb2perm {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = idperm comb2perm {TIMES ONE t} {.t} unite⋆ = idperm comb2perm {t} {TIMES ONE .t} uniti⋆ = idperm comb2perm {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = idperm comb2perm assocl⋆ = idperm comb2perm assocr⋆ = idperm comb2perm distz = idperm comb2perm factorz = idperm comb2perm dist = idperm comb2perm factor = idperm comb2perm id⟷ = idperm comb2perm (c₁ ◎ c₂) = scompperm (comb2perm c₁) (subst Perm (sym (size≡ c₁)) (comb2perm c₂)) comb2perm (c₁ ⊕ c₂) = pcompperm (comb2perm c₁) (comb2perm c₂) comb2perm (c₁ ⊗ c₂) = tcompperm (comb2perm c₁) (comb2perm c₂) -- Convenient way of "seeing" what the permutation does for each combinator matchP : ∀ {t t'} → (t ⟷ t') → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) matchP {t} {t'} c = match sp (comb2perm c) (utoVec t) (subst (λ n → Vec ⟦ t' ⟧ n) (sym sp) (utoVec t')) where sp = size≡ c ------------------------------------------------------------------------------ -- Extensional equivalence of combinators: two combinators are -- equivalent if they denote the same permutation. Generally we would -- require that the two permutations map the same value x to values y -- and z that have a path between them, but because the internals of each -- type are discrete groupoids, this reduces to saying that y and z -- are identical, and hence that the permutations are identical. infix 10 _∼_ _∼_ : ∀ {t₁ t₂} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ ∼ c₂ = (comb2perm c₁ ≡ comb2perm c₂) -- The relation ~ is an equivalence relation refl∼ : ∀ {t₁ t₂} {c : t₁ ⟷ t₂} → (c ∼ c) refl∼ = refl sym∼ : ∀ {t₁ t₂} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₁) sym∼ = sym trans∼ : ∀ {t₁ t₂} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₂ ∼ c₃) → (c₁ ∼ c₃) trans∼ = trans -- The relation ~ validates the groupoid laws c◎id∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ id⟷ ∼ c c◎id∼c = {!!} id◎c∼c : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ◎ c ∼ c id◎c∼c = {!!} assoc∼ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → c₁ ◎ (c₂ ◎ c₃) ∼ (c₁ ◎ c₂) ◎ c₃ assoc∼ = {!!} linv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ◎ ! c ∼ id⟷ linv∼ = {!!} rinv∼ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! c ◎ c ∼ id⟷ rinv∼ = {!!} resp∼ : {t₁ t₂ t₃ : U} {c₁ c₂ : t₁ ⟷ t₂} {c₃ c₄ : t₂ ⟷ t₃} → (c₁ ∼ c₂) → (c₃ ∼ c₄) → (c₁ ◎ c₃ ∼ c₂ ◎ c₄) resp∼ = {!!} -- The equivalence ∼ of paths makes U a 1groupoid: the points are -- types (t : U); the 1paths are ⟷; and the 2paths between them are -- based on extensional equivalence ∼ G : 1Groupoid G = record { set = U ; _↝_ = _⟷_ ; _≈_ = _∼_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ c → c◎id∼c {c = c} ; rneutr = λ c → id◎c∼c {c = c} ; assoc = λ c₃ c₂ c₁ → assoc∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} ; equiv = record { refl = λ {c} → refl∼ {c = c} ; sym = λ {c₁} {c₂} → sym∼ {c₁ = c₁} {c₂ = c₂} ; trans = λ {c₁} {c₂} {c₃} → trans∼ {c₁ = c₁} {c₂ = c₂} {c₃ = c₃} } ; linv = λ c → linv∼ {c = c} ; rinv = λ c → rinv∼ {c = c} ; ∘-resp-≈ = λ α β → resp∼ β α } -- And there are additional laws assoc⊕∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊕ (c₂ ⊕ c₃) ∼ assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊ assoc⊕∼ = {!!} assoc⊗∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → c₁ ⊗ (c₂ ⊗ c₃) ∼ assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆ assoc⊗∼ = {!!} ------------------------------------------------------------------------------ -- Picture so far: -- -- path p -- ===================== -- || || || -- || ||2path || -- || || || -- || || path q || -- t₁ =================t₂ -- || ... || -- ===================== -- -- The types t₁, t₂, etc are discrete groupoids. The paths between -- them correspond to permutations. Each syntactically different -- permutation corresponds to a path but equivalent permutations are -- connected by 2paths. But now we want an alternative definition of -- 2paths that is structural, i.e., that looks at the actual -- construction of the path t₁ ⟷ t₂ in terms of combinators... The -- theorem we want is that α ∼ β iff we can rewrite α to β using -- various syntactic structural rules. We start with a collection of -- simplication rules and then try to show they are complete. -- Simplification rules infix 30 _⇔_ data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → (c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃) assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃)) assoc⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊕ (c₂ ⊕ c₃)) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) assoc⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊗ (c₂ ⊗ c₃)) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) assoc⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (c₁ ⊗ (c₂ ⊗ c₃)) dist⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → ((c₁ ⊕ c₂) ⊗ c₃) ⇔ (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) factor⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) ⇔ ((c₁ ⊕ c₂) ⊗ c₃) idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷) linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷ linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c) rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷ rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c) unitel₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (unite₊ ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊) uniter₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊕ c₂) ◎ unite₊) ⇔ (unite₊ ◎ c₂) unitil₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (uniti₊ ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊) unitir₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti₊) ⇔ (uniti₊ ◎ (c₁ ⊕ c₂)) unitial₊⇔ : {t₁ t₂ : U} → (uniti₊ {PLUS t₁ t₂} ◎ assocl₊) ⇔ (uniti₊ ⊕ id⟷) unitiar₊⇔ : {t₁ t₂ : U} → (uniti₊ {t₁} ⊕ id⟷ {t₂}) ⇔ (uniti₊ ◎ assocl₊) swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊) swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂)) unitel⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (unite⋆ ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆) uniter⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊗ c₂) ◎ unite⋆) ⇔ (unite⋆ ◎ c₂) unitil⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (uniti⋆ ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆) unitir⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti⋆) ⇔ (uniti⋆ ◎ (c₁ ⊗ c₂)) unitial⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {TIMES t₁ t₂} ◎ assocl⋆) ⇔ (uniti⋆ ⊗ id⟷) unitiar⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {t₁} ⊗ id⟷ {t₂}) ⇔ (uniti⋆ ◎ assocl⋆) swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆) swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂)) swapfl⋆⇔ : {t₁ t₂ t₃ : U} → (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) ⇔ (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) swapfr⋆⇔ : {t₁ t₂ t₃ : U} → (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) ⇔ (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) resp◎⇔ : {t₁ t₂ t₃ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄) resp⊕⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄) resp⊗⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄) -- better syntax for writing 2paths infix 2 _▤ infixr 2 _⇔⟨_⟩_ _⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) _ ⇔⟨ α ⟩ β = trans⇔ α β _▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c) _▤ c = id⇔ -- Inverses for 2paths 2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁) 2! assoc◎l = assoc◎r 2! assoc◎r = assoc◎l 2! assoc⊕l = assoc⊕r 2! assoc⊕r = assoc⊕l 2! assoc⊗l = assoc⊗r 2! assoc⊗r = assoc⊗l 2! dist⇔ = factor⇔ 2! factor⇔ = dist⇔ 2! idl◎l = idl◎r 2! idl◎r = idl◎l 2! idr◎l = idr◎r 2! idr◎r = idr◎l 2! linv◎l = linv◎r 2! linv◎r = linv◎l 2! rinv◎l = rinv◎r 2! rinv◎r = rinv◎l 2! unitel₊⇔ = uniter₊⇔ 2! uniter₊⇔ = unitel₊⇔ 2! unitil₊⇔ = unitir₊⇔ 2! unitir₊⇔ = unitil₊⇔ 2! swapl₊⇔ = swapr₊⇔ 2! swapr₊⇔ = swapl₊⇔ 2! unitial₊⇔ = unitiar₊⇔ 2! unitiar₊⇔ = unitial₊⇔ 2! unitel⋆⇔ = uniter⋆⇔ 2! uniter⋆⇔ = unitel⋆⇔ 2! unitil⋆⇔ = unitir⋆⇔ 2! unitir⋆⇔ = unitil⋆⇔ 2! unitial⋆⇔ = unitiar⋆⇔ 2! unitiar⋆⇔ = unitial⋆⇔ 2! swapl⋆⇔ = swapr⋆⇔ 2! swapr⋆⇔ = swapl⋆⇔ 2! swapfl⋆⇔ = swapfr⋆⇔ 2! swapfr⋆⇔ = swapfl⋆⇔ 2! id⇔ = id⇔ 2! (trans⇔ α β) = trans⇔ (2! β) (2! α) 2! (resp◎⇔ α β) = resp◎⇔ (2! α) (2! β) 2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β) 2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β) -- a nice example of 2 paths negEx : neg₅ ⇔ neg₁ negEx = uniti⋆ ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ assoc◎l ⟩ uniti⋆ ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ swapl⋆⇔ id⇔) ⟩ uniti⋆ ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ assoc◎r ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ assoc◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ (resp◎⇔ linv◎l id⇔)) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ idl◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆) ⇔⟨ assoc◎l ⟩ (uniti⋆ ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆ ⇔⟨ resp◎⇔ unitil⋆⇔ id⇔ ⟩ (swap₊ ◎ uniti⋆) ◎ unite⋆ ⇔⟨ assoc◎r ⟩ swap₊ ◎ (uniti⋆ ◎ unite⋆) ⇔⟨ resp◎⇔ id⇔ linv◎l ⟩ swap₊ ◎ id⟷ ⇔⟨ idr◎l ⟩ swap₊ ▤ -- The equivalence ⇔ of paths is rich enough to make U a 1groupoid: -- the points are types (t : U); the 1paths are ⟷; and the 2paths -- between them are based on the simplification rules ⇔ G' : 1Groupoid G' = record { set = U ; _↝_ = _⟷_ ; _≈_ = _⇔_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ → idr◎l ; rneutr = λ _ → idl◎l ; assoc = λ _ _ _ → assoc◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; linv = λ {t₁} {t₂} α → linv◎l ; rinv = λ {t₁} {t₂} α → rinv◎l ; ∘-resp-≈ = λ p∼q r∼s → resp◎⇔ r∼s p∼q } ------------------------------------------------------------------------------ -- Inverting permutations to syntactic combinators perm2comb : {t₁ t₂ : U} → (size t₁ ≡ size t₂) → Perm (size t₁) → (t₁ ⟷ t₂) perm2comb {ZERO} {t₂} sp [] = {!!} perm2comb {ONE} {t₂} sp p = {!!} perm2comb {PLUS t₁ t₂} {t₃} sp p = {!!} perm2comb {TIMES t₁ t₂} {t₃} sp p = {!!} ------------------------------------------------------------------------------ -- Soundness and completeness -- -- Proof of soundness and completeness: now we want to verify that ⇔ -- is sound and complete with respect to ∼. The statement to prove is -- that for all c₁ and c₂, we have c₁ ∼ c₂ iff c₁ ⇔ c₂ soundness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₁ ∼ c₂) soundness assoc◎l = assoc∼ soundness assoc◎r = sym∼ assoc∼ soundness assoc⊕l = assoc⊕∼ soundness assoc⊕r = sym∼ assoc⊕∼ soundness assoc⊗l = assoc⊗∼ soundness assoc⊗r = sym∼ assoc⊗∼ soundness dist⇔ = {!!} soundness factor⇔ = {!!} soundness idl◎l = id◎c∼c soundness idl◎r = sym∼ id◎c∼c soundness idr◎l = c◎id∼c soundness idr◎r = sym∼ c◎id∼c soundness linv◎l = linv∼ soundness linv◎r = sym∼ linv∼ soundness rinv◎l = rinv∼ soundness rinv◎r = sym∼ rinv∼ soundness unitel₊⇔ = {!!} soundness uniter₊⇔ = {!!} soundness unitil₊⇔ = {!!} soundness unitir₊⇔ = {!!} soundness unitial₊⇔ = {!!} soundness unitiar₊⇔ = {!!} soundness swapl₊⇔ = {!!} soundness swapr₊⇔ = {!!} soundness unitel⋆⇔ = {!!} soundness uniter⋆⇔ = {!!} soundness unitil⋆⇔ = {!!} soundness unitir⋆⇔ = {!!} soundness unitial⋆⇔ = {!!} soundness unitiar⋆⇔ = {!!} soundness swapl⋆⇔ = {!!} soundness swapr⋆⇔ = {!!} soundness swapfl⋆⇔ = {!!} soundness swapfr⋆⇔ = {!!} soundness id⇔ = refl∼ soundness (trans⇔ α β) = trans∼ (soundness α) (soundness β) soundness (resp◎⇔ α β) = resp∼ (soundness α) (soundness β) soundness (resp⊕⇔ α β) = {!!} soundness (resp⊗⇔ α β) = {!!} -- The idea is to invert evaluation and use that to extract from each -- extensional representation of a combinator, a canonical syntactic -- representative canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) canonical c = perm2comb (size≡ c) (comb2perm c) -- Note that if c₁ ⇔ c₂, then by soundness c₁ ∼ c₂ and hence their -- canonical representatives are identical. canonicalWellDefined : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (canonical c₁ ≡ canonical c₂) canonicalWellDefined {t₁} {t₂} {c₁} {c₂} α = cong₂ perm2comb (size∼ c₁ c₂) (soundness α) -- If we can prove that every combinator is equal to its normal form -- then we can prove completeness. inversion : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ canonical c inversion = {!!} resp≡⇔ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ≡ c₂) → (c₁ ⇔ c₂) resp≡⇔ {t₁} {t₂} {c₁} {c₂} p rewrite p = id⇔ completeness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) completeness {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = c₁ ⇔⟨ inversion ⟩ canonical c₁ ⇔⟨ resp≡⇔ (cong₂ perm2comb (size∼ c₁ c₂) c₁∼c₂) ⟩ canonical c₂ ⇔⟨ 2! inversion ⟩ c₂ ▤ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Nat and Fin lemmas suc≤ : (m n : ℕ) → suc m ≤ m + suc n suc≤ 0 n = s≤s z≤n suc≤ (suc m) n = s≤s (suc≤ m n) -+-id : (n : ℕ) → (i : Fin n) → suc (n ∸ toℕ i) + toℕ i ≡ suc n -+-id 0 () -- absurd -+-id (suc n) zero = +-right-identity (suc (suc n)) -+-id (suc n) (suc i) = begin suc (suc n ∸ toℕ (suc i)) + toℕ (suc i) ≡⟨ refl ⟩ suc (n ∸ toℕ i) + suc (toℕ i) ≡⟨ +-suc (suc (n ∸ toℕ i)) (toℕ i) ⟩ suc (suc (n ∸ toℕ i) + toℕ i) ≡⟨ cong suc (-+-id n i) ⟩ suc (suc n) ∎ p0 p1 : Perm 4 p0 = idπ p1 = swap (inject+ 1 (fromℕ 2)) (inject+ 3 (fromℕ 0)) (swap (fromℕ 3) zero (swap zero (inject+ 1 (fromℕ 2)) idπ)) xx = action p1 (10 ∷ 20 ∷ 30 ∷ 40 ∷ []) n≤sn : ∀ {x} → x ≤ suc x n≤sn {0} = z≤n n≤sn {suc n} = s≤s (n≤sn {n}) <implies≤ : ∀ {x y} → (x < y) → (x ≤ y) <implies≤ (s≤s z≤n) = z≤n <implies≤ {suc x} {suc y} (s≤s p) = begin (suc x ≤⟨ p ⟩ y ≤⟨ n≤sn {y} ⟩ suc y ∎) where open ≤-Reasoning bounded≤ : ∀ {n} (i : Fin n) → toℕ i ≤ n bounded≤ i = <implies≤ (bounded i) n≤n : (n : ℕ) → n ≤ n n≤n 0 = z≤n n≤n (suc n) = s≤s (n≤n n) -- Convenient way of "seeing" what the permutation does for each combinator matchP : ∀ {t t'} → (t ⟷ t') → Vec (⟦ t ⟧ × ⟦ t' ⟧) (size t) matchP {t} {t'} c = match sp (comb2perm c) (utoVec t) (subst (λ n → Vec ⟦ t' ⟧ n) (sym sp) (utoVec t')) where sp = size≡ c infix 90 _X_ data Swap (n : ℕ) : Set where _X_ : Fin n → Fin n → Swap n Perm : ℕ → Set Perm n = List (Swap n) showSwap : ∀ {n} → Swap n → String showSwap (i X j) = show (toℕ i) ++S " X " ++S show (toℕ j) actionπ : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Perm n → Vec A n → Vec A n actionπ π vs = foldl swapX vs π where swapX : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Vec A n → Swap n → Vec A n swapX vs (i X j) = (vs [ i ]≔ lookup j vs) [ j ]≔ lookup i vs swapπ : ∀ {m n} → Perm (m + n) swapπ {0} {n} = [] swapπ {suc m} {n} = concatL (replicate (suc m) (toList (zipWith _X_ (mapV inject₁ (allFin (m + n))) (tail (allFin (suc m + n)))))) scompπ : ∀ {n} → Perm n → Perm n → Perm n scompπ = _++L_ injectπ : ∀ {m} → Perm m → (n : ℕ) → Perm (m + n) injectπ π n = mapL (λ { (i X j) → (inject+ n i) X (inject+ n j) }) π raiseπ : ∀ {n} → Perm n → (m : ℕ) → Perm (m + n) raiseπ π m = mapL (λ { (i X j) → (raise m i) X (raise m j) }) π pcompπ : ∀ {m n} → Perm m → Perm n → Perm (m + n) pcompπ {m} {n} α β = (injectπ α n) ++L (raiseπ β m) idπ : ∀ {n} → Perm n idπ {n} = toList (zipWith _X_ (allFin n) (allFin n)) tcompπ : ∀ {m n} → Perm m → Perm n → Perm (m * n) tcompπ {m} {n} α β = concatL (mapL (λ { (i X j) → mapL (λ { (k X l) → (inject≤ (fromℕ (toℕ i * n + toℕ k)) (i*n+k≤m*n i k)) X (inject≤ (fromℕ (toℕ j * n + toℕ l)) (i*n+k≤m*n j l))}) (β ++L idπ {n})}) (α ++L idπ {m})) --} swap+π : (m n : ℕ) → Transposition* (m + n) swap+π 0 n = [] swap+π (suc m) n = concatL (replicate (suc m) (toList (zipWith mkTransposition (mapV inject₁ (allFin (m + n))) (tail (allFin (suc m + n)))))) -- Ex: swap11 swap21 swap32 : List String swap11 = showTransposition* (swap+π 1 1) -- 0 X 1 ∷ [] -- actionπ (swap+π 1 1) ("a" ∷ "b" ∷ []) -- "b" ∷ "a" ∷ [] swap21 = showTransposition* (swap+π 2 1) -- 0 X 1 ∷ 1 X 2 ∷ 0 X 1 ∷ 1 X 2 ∷ [] -- actionπ (swap+π 2 1) ("a" ∷ "b" ∷ "c" ∷ []) -- "c" ∷ "a" ∷ "b" ∷ [] swap32 = showTransposition* (swap+π 3 2) -- 0 X 1 ∷ 1 X 2 ∷ 2 X 3 ∷ 3 X 4 ∷ -- 0 X 1 ∷ 1 X 2 ∷ 2 X 3 ∷ 3 X 4 ∷ -- 0 X 1 ∷ 1 X 2 ∷ 2 X 3 ∷ 3 X 4 ∷ [] -- actionπ (swap+π 3 2) ("a" ∷ "b" ∷ "c" ∷ "d" ∷ "e" ∷ []) -- "d" ∷ "e" ∷ "a" ∷ "b" ∷ "c" ∷ [] delete : ∀ {n} → List (Fin n) → Fin n → List (Fin n) delete [] _ = [] delete (j ∷ js) i with toℕ i ≟ toℕ j delete (j ∷ js) i | yes _ = js delete (j ∷ js) i | no _ = j ∷ delete js i extendπ : ∀ {n} → Transposition* n → Transposition* n extendπ {n} π = let existing = mapL (λ { (i X j) → i }) π all = toList (allFin n) diff = foldl delete all existing in π ++L mapL (λ i → _X_ i i {i≤i (toℕ i)}) diff tcompπ : ∀ {m n} → Transposition* m → Transposition* n → Transposition* (m * n) tcompπ {m} {n} α β = concatMap (λ { (i X j) → mapL (λ { (k X l) → mkTransposition (inject≤ (fromℕ (toℕ i * n + toℕ k)) (i*n+k≤m*n i k)) (inject≤ (fromℕ (toℕ j * n + toℕ l)) (i*n+k≤m*n j l))}) (extendπ β)}) (extendπ α) {-- pcompπ : ∀ {m n} → Transposition* m → Transposition* n → Transposition* (m + n) pcompπ {m} {n} α β = injectπ n α ++L raiseπ m β where injectπ : ∀ {m} → (n : ℕ) → Transposition* m → Transposition* (m + n) injectπ n = mapL (λ { (i X j) → mkTransposition (inject+ n i) (inject+ n j) }) raiseπ : ∀ {n} → (m : ℕ) → Transposition* n → Transposition* (m + n) raiseπ m = mapL (λ { (i X j) → mkTransposition (raise m i) (raise m j)}) --} -- Identity permutation as explicit product of transpositions idπ : (n : ℕ) → Transposition* n idπ n = toList (zipWith mkTransposition (allFin n) (allFin n)) -- Ex: idπ5 = showTransposition* (idπ 5) -- 0 X 0 ∷ 1 X 1 ∷ 2 X 2 ∷ 3 X 3 ∷ 4 X 4 ∷ [] -- actionπ (idπ 5) ("1" ∷ "2" ∷ "3" ∷ "4" ∷ "5" ∷ []) -- "1" ∷ "2" ∷ "3" ∷ "4" ∷ "5" ∷ [] concatMap (λ { (i X j) → mapL (λ { (k X l) → mkTransposition (inject≤ (fromℕ (toℕ i * n + toℕ k)) (i*n+k≤m*n i k)) (inject≤ (fromℕ (toℕ j * n + toℕ l)) (i*n+k≤m*n j l))}) (extendπ β)}) (extendπ α) ----- {-- -- Representation I: -- Our first representation of a permutation is as a product of -- "transpositions." This product is not commutative; we apply it from -- left to right. Because we eventually want to normalize permutations -- to some canonical representation, we insist that the first -- component of a transposition is always ≤ than the second infix 90 _X_ data Transposition (n : ℕ) : Set where _X_ : (i j : Fin n) → {p : toℕ i ≤ toℕ j} → Transposition n mkTransposition : {n : ℕ} → (i j : Fin n) → Transposition n mkTransposition {n} i j with toℕ i ≤? toℕ j ... | yes p = _X_ i j {p} ... | no p = _X_ j i {i≰j→j≤i (toℕ i) (toℕ j) p} Transposition* : ℕ → Set Transposition* n = List (Transposition n) showTransposition* : ∀ {n} → Transposition* n → List String showTransposition* = mapL (λ { (i X j) → show (toℕ i) ++S " X " ++S show (toℕ j) }) actionπ : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Transposition* n → Vec A n → Vec A n actionπ π vs = foldl swapX vs π where swapX : ∀ {ℓ} {A : Set ℓ} {n : ℕ} → Vec A n → Transposition n → Vec A n swapX vs (i X j) = (vs [ i ]≔ lookup j vs) [ j ]≔ lookup i vs -- Representation II: -- This is also a product of transpositions but the transpositions are such -- that the first component is always < the second, i.e., we got rid of trivial -- transpositions that swap an element with itself data Transposition< (n : ℕ) : Set where _X!_ : (i j : Fin n) → {p : toℕ i < toℕ j} → Transposition< n Transposition<* : ℕ → Set Transposition<* n = List (Transposition< n) showTransposition<* : ∀ {n} → Transposition<* n → List String showTransposition<* = mapL (λ { (i X! j) → show (toℕ i) ++S " X! " ++S show (toℕ j) }) filter= : {n : ℕ} → Transposition* n → Transposition<* n filter= [] = [] filter= (_X_ i j {p≤} ∷ π) with toℕ i ≟ toℕ j ... | yes p= = filter= π ... | no p≠ = _X!_ i j {i≠j∧i≤j→i<j (toℕ i) (toℕ j) p≠ p≤} ∷ filter= π -- Representation IV -- A product of cycles where each cycle is a non-empty sequence of indices Cycle : ℕ → Set Cycle n = List⁺ (Fin n) Cycle* : ℕ → Set Cycle* n = List (Cycle n) -- convert a cycle to a product of transpositions cycle→transposition* : ∀ {n} → Cycle n → Transposition* n cycle→transposition* (i , []) = [] cycle→transposition* (i , (j ∷ ns)) = mkTransposition i j ∷ cycle→transposition* (i , ns) cycle*→transposition* : ∀ {n} → Cycle* n → Transposition* n cycle*→transposition* cs = concatMap cycle→transposition* cs -- Ex: cycleEx1 cycleEx2 : Cycle 5 -- cycleEx1 (0 1 2 3 4) which rotates right cycleEx1 = inject+ 4 (fromℕ 0) , inject+ 3 (fromℕ 1) ∷ inject+ 2 (fromℕ 2) ∷ inject+ 1 (fromℕ 3) ∷ inject+ 0 (fromℕ 4) ∷ [] -- cycleEx1 (0 4 3 2 1) which rotates left cycleEx2 = inject+ 4 (fromℕ 0) , inject+ 0 (fromℕ 4) ∷ inject+ 1 (fromℕ 3) ∷ inject+ 2 (fromℕ 2) ∷ inject+ 3 (fromℕ 1) ∷ [] cycleEx1→transposition* cycleEx2→transposition* : List String cycleEx1→transposition* = showTransposition* (cycle→transposition* cycleEx1) -- 0 X 1 ∷ 0 X 2 ∷ 0 X 3 ∷ 0 X 4 ∷ [] -- actionπ (cycle→transposition* cycleEx1) (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []) -- 4 ∷ 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] cycleEx2→transposition* = showTransposition* (cycle→transposition* cycleEx2) -- 0 X 4 ∷ 0 X 3 ∷ 0 X 2 ∷ 0 X 1 ∷ [] -- actionπ (cycle→transposition* cycleEx2) (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []) -- 1 ∷ 2 ∷ 3 ∷ 4 ∷ 0 ∷ [] -- Convert from Cauchy 2 line representation to product of cycles -- Helper that checks if there is a cycle that starts at i -- Returns the cycle containing i and the rest of the permutation -- without that cycle findCycle : ∀ {n} → Fin n → Cycle* n → Maybe (Cycle n × Cycle* n) findCycle i [] = nothing findCycle i (c ∷ cs) with toℕ i ≟ toℕ (head c) findCycle i (c ∷ cs) | yes _ = just (c , cs) findCycle i (c ∷ cs) | no _ = maybe′ (λ { (c' , cs') → just (c' , c ∷ cs') }) nothing (findCycle i cs) -- Another helper that repeatedly tries to merge smaller cycles {-# NO_TERMINATION_CHECK #-} mergeCycles : ∀ {n} → Cycle* n → Cycle* n mergeCycles [] = [] mergeCycles (c ∷ cs) with findCycle (last c) cs mergeCycles (c ∷ cs) | nothing = c ∷ mergeCycles cs mergeCycles (c ∷ cs) | just (c' , cs') = mergeCycles ((c ⁺++ ntail c') ∷ cs') -- To convert a Cauchy representation to a product of cycles, just create -- a cycle of size 2 for each entry and then merge the cycles cauchy→cycle* : ∀ {n} → Cauchy n → Cycle* n cauchy→cycle* {n} perm = mergeCycles (toList (zipWith (λ i j → i ∷⁺ [ j ]) (allFin n) perm)) cauchyEx1→transposition* cauchyEx2→transposition* : List String cauchyEx1→transposition* = showTransposition* (cycle*→transposition* (cauchy→cycle* cauchyEx1)) -- 0 X 2 ∷ 0 X 4 ∷ 0 X 1 ∷ 0 X 0 ∷ 3 X 3 ∷ 5 X 5 ∷ [] -- actionπ (cycle*→transposition* (cauchy→cycle* cauchyEx1)) -- (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) -- 1 ∷ 4 ∷ 0 ∷ 3 ∷ 2 ∷ 5 ∷ [] cauchyEx2→transposition* = showTransposition* (cycle*→transposition* (cauchy→cycle* cauchyEx2)) -- 0 X 3 ∷ 0 X 0 ∷ 1 X 2 ∷ 1 X 1 ∷ 4 X 5 ∷ 4 X 4 ∷ [] -- actionπ (cycle*→transposition* (cauchy→cycle* cauchyEx2)) -- (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) -- 3 ∷ 2 ∷ 1 ∷ 0 ∷ 5 ∷ 4 ∷ [] -- Cauchy to product of transpostions cauchy→transposition* : ∀ {n} → Cauchy n → Transposition* n cauchy→transposition* = cycle*→transposition* ∘ cauchy→cycle* -- Ex: swap+π : (m n : ℕ) → Transposition* (m + n) swap+π m n = cauchy→transposition* (swap+cauchy m n) swap11 swap21 swap32 : List String swap11 = showTransposition* (swap+π 1 1) -- 0 X 1 ∷ 0 X 0 ∷ [] -- actionπ (swap+π 1 1) ("a" ∷ "b" ∷ []) -- "b" ∷ "a" ∷ [] swap21 = showTransposition* (swap+π 2 1) -- 0 X 1 ∷ 0 X 2 ∷ 0 X 0 ∷ [] -- actionπ (swap+π 2 1) ("a" ∷ "b" ∷ "c" ∷ []) -- "c" ∷ "a" ∷ "b" ∷ [] swap32 = showTransposition* (swap+π 3 2) -- 0 X 2 ∷ 0 X 4 ∷ 0 X 1 ∷ 0 X 3 ∷ 0 X 0 ∷ [] -- actionπ (swap+π 3 2) ("a" ∷ "b" ∷ "c" ∷ "d" ∷ "e" ∷ []) -- "d" ∷ "e" ∷ "a" ∷ "b" ∷ "c" ∷ [] -- Ex: pcompπ : ∀ {m n} → Cauchy m → Cauchy n → Transposition* (m + n) pcompπ α β = cauchy→transposition* (pcompcauchy α β) swap11+21 swap21+11 : List String swap11+21 = showTransposition* (pcompπ (swap+cauchy 1 1) (swap+cauchy 2 1)) -- 0 X 1 ∷ 0 X 0 ∷ 2 X 3 ∷ 2 X 4 ∷ 2 X 2 ∷ [] -- actionπ (pcompπ (swap+cauchy 1 1) (swap+cauchy 2 1)) -- ("a" ∷ "b" ∷ "1" ∷ "2" ∷ "3" ∷ []) -- "b" ∷ "a" ∷ "3" ∷ "1" ∷ "2" ∷ [] swap21+11 = showTransposition* (pcompπ (swap+cauchy 2 1) (swap+cauchy 1 1)) -- 0 X 1 ∷ 0 X 2 ∷ 0 X 0 ∷ 3 X 4 ∷ 3 X 3 ∷ [] -- actionπ (pcompπ (swap+cauchy 2 1) (swap+cauchy 1 1)) -- ("1" ∷ "2" ∷ "3" ∷ "a" ∷ "b" ∷ []) -- "3" ∷ "1" ∷ "2" ∷ "b" ∷ "a" ∷ [] -- Ex: tcompπ : ∀ {m n} → Cauchy m → Cauchy n → Transposition* (m * n) tcompπ α β = cauchy→transposition* (tcompcauchy α β) swap21*swap11 : List String swap21*swap11 = showTransposition* (tcompπ (swap+cauchy 2 1) (swap+cauchy 1 1)) -- 0 X 3 ∷ 0 X 4 ∷ 0 X 1 ∷ 0 X 2 ∷ 0 X 5 ∷ 0 X 0 ∷ [] -- Recall (swap+π 2 1) -- 0 X 1 ∷ 0 X 2 ∷ 0 X 0 ∷ [] -- actionπ (swap+π 2 1) ("a" ∷ "b" ∷ "c" ∷ []) -- "c" ∷ "a" ∷ "b" ∷ [] -- Recall (swap+π 1 1) -- 0 X 1 ∷ 0 X 0 ∷ [] -- actionπ (swap+π 1 1) ("1" ∷ "2" ∷ []) -- "2" ∷ "1" ∷ [] -- Tensor tensorvs -- ("a" , "1") ∷ ("a" , "2") ∷ -- ("b" , "1") ∷ ("b" , "2") ∷ -- ("c" , "1") ∷ ("c" , "2") ∷ [] -- actionπ (tcompπ (swap+cauchy 2 1) (swap+cauchy 1 1)) tensorvs -- ("c" , "2") ∷ ("c" , "1") ∷ -- ("a" , "2") ∷ ("a" , "1") ∷ -- ("b" , "2") ∷ ("b" , "1") ∷ [] -- Ex: swap⋆π : (m n : ℕ) → Transposition* (m * n) swap⋆π m n = cauchy→transposition* (swap⋆cauchy m n) swap3x2→2x3 : List String swap3x2→2x3 = showTransposition* (swap⋆π 3 2) -- 0 X 0 ∷ 1 X 3 ∷ 1 X 4 ∷ 1 X 2 ∷ 1 X 1 ∷ 5 X 5 ∷ [] -- Let vs3x2 = -- ("a" , 1) ∷ ("a" , 2) ∷ -- ("b" , 1) ∷ ("b" , 2) ∷ -- ("c" , 1) ∷ ("c" , 2) ∷ [] -- actionπ (swap⋆π 3 2) vs3x2 -- ("a" , 1) ∷ ("b" , 1) ∷ ("c" , 1) ∷ -- ("a" , 2) ∷ ("b" , 2) ∷ ("c" , 2) ∷ [] c2π : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Transposition* (size t₁) c2π = cauchy→transposition* ∘ c2cauchy -- Convenient way of seeing c : t₁ ⟷ t₂ as a permutation showπ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Vec (⟦ t₁ ⟧ × ⟦ t₂ ⟧) (size t₁) showπ {t₁} {t₂} c = let vs₁ = utoVec t₁ vs₂ = utoVec t₂ in zip (actionπ (c2π c) vs₁) (subst (Vec ⟦ t₂ ⟧) (sym (size≡ c)) vs₂) -- Examples NEG1π NEG2π NEG3π NEG4π NEG5π : Vec (⟦ BOOL ⟧ × ⟦ BOOL ⟧) 2 NEG1π = showπ NEG1 -- (true , false) ∷ (false , true) ∷ [] NEG2π = showπ NEG2 -- (true , false) ∷ (false , true) ∷ [] NEG3π = showπ NEG3 -- (true , false) ∷ (false , true) ∷ [] NEG4π = showπ NEG4 -- (true , false) ∷ (false , true) ∷ [] NEG5π = showπ NEG5 -- (true , false) ∷ (false , true) ∷ [] cnotπ : Vec (⟦ BOOL² ⟧ × ⟦ BOOL² ⟧) 4 cnotπ = showπ {BOOL²} {BOOL²} CNOT -- ((false , false) , (false , false)) ∷ -- ((false , true) , (false , true)) ∷ -- ((true , true) , (true , false)) ∷ -- ((true , false) , (true , true)) ∷ [] toffoliπ : Vec (⟦ TIMES BOOL BOOL² ⟧ × ⟦ TIMES BOOL BOOL² ⟧) 8 toffoliπ = showπ {TIMES BOOL BOOL²} {TIMES BOOL BOOL²} TOFFOLI -- ((false , false , false) , (false , false , false)) ∷ -- ((false , false , true) , (false , false , true)) ∷ -- ((false , true , false) , (false , true , false)) ∷ -- ((false , true , true) , (false , true , true)) ∷ -- ((true , false , false) , (true , false , false) ∷ -- ((true , false , true) , (true , false , true)) ∷ -- ((true , true , true) , (true , true , false)) ∷ -- ((true , true , false) , (true , true , true)) ∷ [] -- The elements of PLUS ONE (PLUS ONE ONE) in canonical order are: -- inj₁ tt -- inj₂ (inj₁ tt) -- inj₂ (inj₂ tt) id3π swap12π swap23π swap13π rotlπ rotrπ : Vec (⟦ PLUS ONE (PLUS ONE ONE) ⟧ × ⟦ PLUS ONE (PLUS ONE ONE) ⟧) 3 id3π = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} id⟷ -- (inj₁ tt , inj₁ tt) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ [] swap12π = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} SWAP12 -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ [] swap23π = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} SWAP23 -- (inj₁ tt , inj₁ tt) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷ [] swap13π = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} SWAP13 -- (inj₂ (inj₂ tt) , inj₁ tt) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₁ tt , inj₂ (inj₂ tt)) ∷ [] rotrπ = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} ROTR -- (inj₂ (inj₁ tt) , inj₁ tt) ∷ -- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ -- (inj₁ tt , inj₂ (inj₂ tt)) ∷ [] rotlπ = showπ {PLUS ONE (PLUS ONE ONE)} {PLUS ONE (PLUS ONE ONE)} ROTL -- (inj₂ (inj₂ tt) , inj₁ tt) ∷ -- (inj₁ tt , inj₂ (inj₁ tt)) ∷ -- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷ [] peresπ : Vec (((Bool × Bool) × Bool) × ((Bool × Bool) × Bool)) 8 peresπ = showπ PERES -- (((false , false) , false) , (false , false) , false) ∷ -- (((false , false) , true) , (false , false) , true) ∷ -- (((false , true) , false) , (false , true) , false) ∷ -- (((false , true) , true) , (false , true) , true) ∷ -- (((true , true) , true) , (true , false) , false) ∷ -- (((true , true) , false) , (true , false) , true) ∷ -- (((true , false) , false) , (true , true) , false) ∷ -- (((true , false) , true) , (true , true) , true) ∷ [] fulladderπ : Vec ((Bool × ((Bool × Bool) × Bool)) × (Bool × (Bool × (Bool × Bool)))) 16 fulladderπ = showπ FULLADDER -- ((false , (false , false) , false) , false , false , false , false) ∷ -- ((true , (false , false) , false) , false , false , false , true) ∷ -- ((false , (false , false) , true) , false , false , true , false) ∷ -- ((true , (false , false) , true) , false , false , true , true) ∷ -- ((false , (false , true) , false) , false , true , true , false) ∷ -- ((false , (false , true) , true) , false , true , false , true) ∷ -- ((true , (false , true) , true) , false , true , false , false) ∷ -- ((true , (false , true) , false) , false , true , true , true) ∷ -- ((true , (true , true) , false) , true , false , false , false) ∷ -- ((false , (true , true) , false) , true , false , false , true) ∷ -- ((true , (true , true) , true) , true , false , true , false) ∷ -- ((false , (true , true) , true) , true , false , true , true) ∷ -- ((true , (true , false) , true) , true , true , false , false) ∷ -- ((false , (true , false) , true) , true , true , false , true) ∷ -- ((false , (true , false) , false) , true , true , true , false) ∷ -- ((true , (true , false) , false) , true , true , true , true) ∷ [] -- which agrees with spec. ------------------------------------------------------------------------------ -- Normalization -- We sort the list of transpositions using a variation of bubble -- sort. Like in the conventional bubble sort we look at pairs of -- transpositions and swap them if they are out of order but if we -- encounter (i X j) followed by (i X j) we remove both. -- one pass of bubble sort -- goal is to reach a sorted sequene with no repeats in the first position -- Ex: (0 X 2) ∷ (3 X 4) ∷ (4 X 6) ∷ (5 X 6) -- There is probably lots of room for improvement. Here is the idea. -- We take a list of transpositions (a_i X b_i) where a_i < b_i and keep -- looking at adjacent pairs doing the following transformations: -- -- A. (a X b) (a X b) => id -- B. (a X b) (c X d) => (c X d) (a X b) if c < a -- C. (a X b) (c X b) => (c X a) (a X b) if c < a -- D. (a X b) (c X a) => (c X b) (a X b) -- E. (a X b) (a X d) => (a X d) (b X d) if b < d -- F. (a X b) (a X d) => (a X d) (d X b) if d < b -- -- The point is that we get closer and closer to the following -- invariant. For any two adjacent transpositions (a X b) (c X d) we have -- that a < c. Transformations B, C, and D rewrite anything in which a > c. -- Transformations A, E, and F rewrite anything in which a = c. Termination -- is subtle clearly. -- -- New strategy to implement: So could we index things so that a first set of -- (up to) n passes 'bubble down' (0 X a) until there is only one left at the -- root, then recurse on the tail to 'bubble down' (1 X b)'s [if any]? That -- would certainly ensure termination. {-# NO_TERMINATION_CHECK #-} bubble : ∀ {n} → Transposition<* n → Transposition<* n bubble [] = [] bubble (x ∷ []) = x ∷ [] bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) -- -- check every possible equality between the indices -- with toℕ i ≟ toℕ k | toℕ i ≟ toℕ l | toℕ j ≟ toℕ k | toℕ j ≟ toℕ l -- -- get rid of a bunch of impossible cases given that i < j and k < l -- bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | _ | yes j≡k | yes j≡l with trans (sym j≡k) (j≡l) | i<j→i≠j {toℕ k} {toℕ l} k<l bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | _ | yes j≡k | yes j≡l | k≡l | ¬k≡l with ¬k≡l k≡l bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | _ | yes j≡k | yes j≡l | k≡l | ¬k≡l | () bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | _ | yes j≡l with trans i≡l (sym j≡l) | i<j→i≠j {toℕ i} {toℕ j} i<j bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | _ | yes j≡l | i≡j | ¬i≡j with ¬i≡j i≡j bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | _ | yes j≡l | i≡j | ¬i≡j | () bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | _ | yes j≡k | _ with trans i≡k (sym j≡k) | i<j→i≠j {toℕ i} {toℕ j} i<j bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | _ | yes j≡k | _ | i≡j | ¬i≡j with ¬i≡j i≡j bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | _ | yes j≡k | _ | i≡j | ¬i≡j | () bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | yes i≡l | _ | _ with trans (sym i≡k) i≡l | i<j→i≠j {toℕ k} {toℕ l} k<l bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | yes i≡l | _ | _ | k≡l | ¬k≡l with ¬k≡l k≡l bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | yes i≡l | _ | _ | k≡l | ¬k≡l | () bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | yes j≡k | _ with subst₂ _<_ (sym j≡k) (sym i≡l) k<l | i<j→j≮i {toℕ i} {toℕ j} i<j bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | yes j≡k | _ | j<i | j≮i with j≮i j<i bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | _ | yes i≡l | yes j≡k | _ | j<i | j≮i | () -- -- end of impossible cases -- bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l with toℕ i <? toℕ k bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | yes i<k = -- already sorted; no repeat in first position; skip and recur -- Ex: 2 X! 5 , 3 X! 4 _X!_ i j {i<j} ∷ bubble (_X!_ k l {k<l} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | no i≮k = -- Case B. -- not sorted; no repeat in first position; no interference -- just slide one transposition past the other -- Ex: 2 X! 5 , 1 X! 4 -- becomes 1 X! 4 , 2 X! 5 _X!_ k l {k<l} ∷ bubble (_X!_ i j {i<j} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | no ¬i≡l | no ¬j≡k | yes j≡l = -- Case A. -- transposition followed by its inverse; simplify by removing both -- Ex: 2 X! 5 , 2 X! 5 -- becomes id and is deleted bubble π bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l with toℕ i <? toℕ k bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l | yes i<k = -- already sorted; no repeat in first position; skip and recur -- Ex: 2 X! 5 , 3 X! 5 _X!_ i j {i<j} ∷ bubble (_X!_ k l {k<l} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | no ¬j≡k | yes j≡l | no i≮k = _X!_ k i {i≰j∧j≠i→j<i (toℕ i) (toℕ k) (i≮j∧i≠j→i≰j (toℕ i) (toℕ k) i≮k ¬i≡k) (i≠j→j≠i (toℕ i) (toℕ k) ¬i≡k)} ∷ bubble (_X!_ i j {i<j} ∷ π) -- Case C. -- Ex: 2 X! 5 , 1 X! 5 -- becomes 1 X! 2 , 2 X! 5 bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | no ¬i≡l | yes j≡k | no ¬j≡l = -- already sorted; no repeat in first position; skip and recur -- Ex: 2 X! 5 , 5 X! 6 _X!_ i j {i<j} ∷ bubble (_X!_ k l {k<l} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | no ¬i≡k | yes i≡l | no ¬j≡k | no ¬j≡l = -- Case D. -- Ex: 2 X! 5 , 1 X! 2 -- becomes 1 X! 5 , 2 X! 5 _X!_ k j {trans< (subst ((λ l → toℕ k < l)) (sym i≡l) k<l) i<j} ∷ bubble (_X!_ i j {i<j} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l with toℕ j <? toℕ l bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | yes j<l = -- Case E. -- Ex: 2 X! 5 , 2 X! 6 -- becomes 2 X! 6 , 5 X! 6 _X!_ k l {k<l} ∷ bubble (_X!_ j l {j<l} ∷ π) bubble (_X!_ i j {i<j} ∷ _X!_ k l {k<l} ∷ π) | yes i≡k | no ¬i≡l | no ¬j≡k | no ¬j≡l | no j≮l = -- Case F. -- Ex: 2 X! 5 , 2 X! 3 -- becomes 2 X! 3 , 3 X! 5 _X!_ k l {k<l} ∷ bubble (_X!_ l j {i≰j∧j≠i→j<i (toℕ j) (toℕ l) (i≮j∧i≠j→i≰j (toℕ j) (toℕ l) j≮l ¬j≡l) (i≠j→j≠i (toℕ j) (toℕ l) ¬j≡l)} ∷ π) -- sorted and no repeats in first position {-# NO_TERMINATION_CHECK #-} canonical? : ∀ {n} → Transposition<* n → Bool canonical? [] = true canonical? (x ∷ []) = true canonical? (i X! j ∷ k X! l ∷ π) with toℕ i <? toℕ k canonical? (i X! j ∷ _X!_ k l {k<l} ∷ π) | yes i<k = canonical? (_X!_ k l {k<l} ∷ π) canonical? (i X! j ∷ _X!_ k l {k<l} ∷ π) | no i≮k = false {-# NO_TERMINATION_CHECK #-} sort : ∀ {n} → Transposition<* n → Transposition<* n sort π with canonical? π sort π | true = π sort π | false = sort (bubble π) -- Examples snn₁ snn₂ snn₃ snn₄ snn₅ : List String snn₁ = showTransposition<* (sort (filter= (c2π NEG1))) -- 0 X! 1 ∷ [] snn₂ = showTransposition<* (sort (filter= (c2π NEG2))) -- 0 X! 1 ∷ [] snn₃ = showTransposition<* (sort (filter= (c2π NEG3))) -- 0 X! 1 ∷ [] snn₄ = showTransposition<* (sort (filter= (c2π NEG4))) -- 0 X! 1 ∷ [] snn₅ = showTransposition<* (sort (filter= (c2π NEG5))) -- 0 X! 1 ∷ [] sncnot sntoffoli : List String sncnot = showTransposition<* (sort (filter= (c2π CNOT))) -- 2 X! 3 ∷ [] sntoffoli = showTransposition<* (sort (filter= (c2π TOFFOLI))) -- 6 X! 7 ∷ [] snswap12 snswap23 snswap13 snrotl snrotr : List String snswap12 = showTransposition<* (sort (filter= (c2π SWAP12))) -- 0 X! 1 ∷ [] snswap23 = showTransposition<* (sort (filter= (c2π SWAP23))) -- 1 X! 2 ∷ [] snswap13 = showTransposition<* (sort (filter= (c2π SWAP13))) -- 0 X! 2 ∷ [] snrotl = showTransposition<* (sort (filter= (c2π ROTL))) -- 0 X! 2 ∷ 1 X! 2 ∷ [] snrotr = showTransposition<* (sort (filter= (c2π ROTR))) -- 0 X! 1 ∷ 1 X! 2 ∷ [] snperes snfulladder : List String snperes = showTransposition<* (sort (filter= (c2π PERES))) -- 4 X! 7 ∷ 5 X! 6 ∷ 6 X! 7 ∷ [] snfulladder = showTransposition<* (sort (filter= (c2π FULLADDER))) -- ? -- Normalization normalizeπ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Transposition<* (size t₁) normalizeπ = sort ∘ filter= ∘ c2π --} -- Courtesy of Wolfram Kahl, a dependent cong₂ cong₂D : {a b c : Level} {A : Set a} {B : A → Set b} {C : Set c} (f : (x : A) → B x → C) → {x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂} → (x₁≡x₂ : x₁ ≡ x₂) → y₁ ≡ subst B (sym x₁≡x₂) y₂ → f x₁ y₁ ≡ f x₂ y₂ cong₂D f refl refl = refl congD : {a b : Level} {A : Set a} {B : A → Set b} (f : (x : A) → B x) → {x₁ x₂ : A} → (x₁≡x₂ : x₁ ≡ x₂) → subst B (sym x₁≡x₂) (f x₂) ≡ f x₁ congD f refl = refl {-- -- even more useful is something which captures the equalities -- inherent in a combinator -- note that the code below "hand inlines" most of size≡, -- mainly for greater convenience adjustBy : {t₁ t₂ : U} {P : ℕ → Set} → (c : t₁ ⟷ t₂) → (P (size t₁) → P (size t₂)) adjustBy {P = P} (c₀ ◎ c₁) p = subst P (size≡ c₁) (subst P (size≡ c₀) p) adjustBy {PLUS t₁ t₂} {PLUS t₃ t₄} {P} (c₀ ⊕ c₁) p = subst P (cong₂ _+_ (size≡ c₀) (refl)) (subst P (cong₂ _+_ {size t₁} (refl) (size≡ c₁)) p) adjustBy (c₀ ⊗ c₁) p = {!!} adjustBy unite₊ p = p adjustBy uniti₊ p = p adjustBy {PLUS t₁ t₂} {PLUS .t₂ .t₁} {P} swap₊ p = subst P (+-comm (size t₁) (size t₂) ) p adjustBy assocl₊ p = {!!} adjustBy assocr₊ p = {!!} adjustBy unite⋆ p = {!!} adjustBy uniti⋆ p = {!!} adjustBy swap⋆ p = {!!} adjustBy assocl⋆ p = {!!} adjustBy assocr⋆ p = {!!} adjustBy distz p = {!!} adjustBy factorz p = {!!} adjustBy dist p = {!!} adjustBy factor p = {!!} adjustBy id⟷ p = p adjustBy foldBool p = p adjustBy unfoldBool p = p --} {-- OLD definition swap+cauchy' : (m n : ℕ) → Cauchy (m + n) swap+cauchy' m n with splitAt n (allFin (n + m)) ... | (zeron , (nsum , _)) = (subst (λ s → Vec (Fin s) m) (+-comm n m) nsum) ++V (subst (λ s → Vec (Fin s) n) (+-comm n m) zeron) --} {-- -- Proofs about proofs. Should be elsewhere sym-sym : {A : Set} {x y : A} → (p : x ≡ y) → sym (sym p) ≡ p sym-sym refl = refl trans-refl : {A : Set} {x y : A} → (p : x ≡ y) → trans p refl ≡ p trans-refl refl = refl -- Proof about natural numbers proof sym-comm : ∀ (m n : ℕ) → sym (+-comm m n) ≡ +-comm n m sym-comm 0 0 = refl sym-comm 0 (suc n) = begin (sym (sym (cong suc $ +-right-identity n)) ≡⟨ sym-sym (cong suc (+-right-identity n)) ⟩ cong suc (+-right-identity n) ≡⟨ cong (cong suc) (trans (sym (sym-sym (+-right-identity n))) (sym-comm 0 n)) ⟩ cong suc (+-comm n 0) ≡⟨ sym (trans-refl (cong suc (+-comm n 0))) ⟩ trans (cong suc (+-comm n 0)) (sym (+-suc 0 n)) ∎) where open ≡-Reasoning sym-comm (suc m) 0 = {!!} sym-comm (suc m) (suc n) = {!!} --} {-- these are all true, but not actually used! And they cause termination issues in my older Agda, so I'll just comment them out for now. JC i≰j→j≤i : (i j : ℕ) → (i ≰ j) → (j ≤ i) i≰j→j≤i i 0 p = z≤n i≰j→j≤i 0 (suc j) p with p z≤n i≰j→j≤i 0 (suc j) p | () i≰j→j≤i (suc i) (suc j) p with i ≤? j i≰j→j≤i (suc i) (suc j) p | yes p' with p (s≤s p') i≰j→j≤i (suc i) (suc j) p | yes p' | () i≰j→j≤i (suc i) (suc j) p | no p' = s≤s (i≰j→j≤i i j p') i≠j∧i≤j→i<j : (i j : ℕ) → (¬ i ≡ j) → (i ≤ j) → (i < j) i≠j∧i≤j→i<j 0 0 p≠ p≤ with p≠ refl i≠j∧i≤j→i<j 0 0 p≠ p≤ | () i≠j∧i≤j→i<j 0 (suc j) p≠ p≤ = s≤s z≤n i≠j∧i≤j→i<j (suc i) 0 p≠ () i≠j∧i≤j→i<j (suc i) (suc j) p≠ (s≤s p≤) with i ≟ j i≠j∧i≤j→i<j (suc i) (suc j) p≠ (s≤s p≤) | yes p' with p≠ (cong suc p') i≠j∧i≤j→i<j (suc i) (suc j) p≠ (s≤s p≤) | yes p' | () i≠j∧i≤j→i<j (suc i) (suc j) p≠ (s≤s p≤) | no p' = s≤s (i≠j∧i≤j→i<j i j p' p≤) i<j→i≠j : {i j : ℕ} → (i < j) → (¬ i ≡ j) i<j→i≠j {0} (s≤s p) () i<j→i≠j {suc i} (s≤s p) refl = i<j→i≠j {i} p refl i<j→j≮i : {i j : ℕ} → (i < j) → (j ≮ i) i<j→j≮i {0} (s≤s p) () i<j→j≮i {suc i} (s≤s p) (s≤s q) = i<j→j≮i {i} p q i≰j∧j≠i→j<i : (i j : ℕ) → (i ≰ j) → (¬ j ≡ i) → j < i i≰j∧j≠i→j<i i j i≰j ¬j≡i = i≠j∧i≤j→i<j j i ¬j≡i (i≰j→j≤i i j i≰j) i≠j→j≠i : (i j : ℕ) → (¬ i ≡ j) → (¬ j ≡ i) i≠j→j≠i i j i≠j j≡i = i≠j (sym j≡i) si≠sj→i≠j : (i j : ℕ) → (¬ Data.Nat.suc i ≡ Data.Nat.suc j) → (¬ i ≡ j) si≠sj→i≠j i j ¬si≡sj i≡j = ¬si≡sj (cong suc i≡j) si≮sj→i≮j : (i j : ℕ) → (¬ Data.Nat.suc i < Data.Nat.suc j) → (¬ i < j) si≮sj→i≮j i j si≮sj i<j = si≮sj (s≤s i<j) i≮j∧i≠j→i≰j : (i j : ℕ) → (i ≮ j) → (¬ i ≡ j) → (i ≰ j) i≮j∧i≠j→i≰j 0 0 i≮j ¬i≡j i≤j = ¬i≡j refl i≮j∧i≠j→i≰j 0 (suc j) i≮j ¬i≡j i≤j = i≮j (s≤s z≤n) i≮j∧i≠j→i≰j (suc i) 0 i≮j ¬i≡j () i≮j∧i≠j→i≰j (suc i) (suc j) si≮sj ¬si≡sj (s≤s i≤j) = i≮j∧i≠j→i≰j i j (si≮sj→i≮j i j si≮sj) (si≠sj→i≠j i j ¬si≡sj) i≤j -} -- this is a non-dependently typed version of tensor product of vectors. tensorvec : ∀ {m n} {A B C : Set} → (A → B → C) → Vec A m → Vec B n → Vec C (m * n) tensorvec {0} _ [] _ = [] tensorvec {suc m} {n} {C = C} f (x ∷ α) β = subst (λ i → Vec C (n + m * n)) (+-*-suc m n) (mapV (f x) β ++V tensorvec f α β) -- this is a better template tensorvec' : ∀ {A B C : ℕ → Set} → (∀ {m n} → A m → B n → C (m * n)) → (∀ {m} → (n : ℕ) → C m → C (n + m)) → ∀ {m n j} → Vec (A m) j → Vec (B n) n → Vec (C (m * n)) (j * n) tensorvec' _ _ {j = 0} [] _ = [] tensorvec' {A} {B} {C} f shift {m} {n} {suc j} (x ∷ α) β = subst (λ i → Vec (C (m * n)) (n + j * n)) (+-*-suc j n) (mapV (f x) β ++V (tensorvec' {A} {B} {C} f shift α β)) -- raise d by b*n and inject in m*n raise∘inject : ∀ {m n} → (b : Fin m) (d : Fin n) → Fin (m * n) raise∘inject {0} {n} () d raise∘inject {suc m} {n} b d = inject≤ (raise (toℕ b * n) d) (i*n+n≤sucm*n {m} {n} b) tcompcauchy' : ∀ {i m n} → Vec (Fin m) i → Cauchy n → Vec (Fin (m * n)) (i * n) tcompcauchy' {0} {m} {n} [] β = [] tcompcauchy' {suc i} {m} {n} (b ∷ α) β = mapV (raise∘inject {m} {n} b) β ++V tcompcauchy' {i} {m} {n} α β tcompcauchy2 : ∀ {m n} → Cauchy m → Cauchy n → Cauchy (m * n) tcompcauchy2 = tcompcauchy' leq-lem-0 : (m n : ℕ) → suc n ≤ n + suc m leq-lem-0 m n = begin (suc n ≤⟨ m≤m+n (suc n) m ⟩ suc (n + m) ≡⟨ cong suc (+-comm n m) ⟩ suc m + n ≡⟨ +-comm (suc m) n ⟩ n + suc m ∎) where open ≤-Reasoning leq-lem-1 : (n : ℕ) → suc ((n + 0) + 0) ≤ n + suc (suc (n + 0)) leq-lem-1 n = begin (suc ((n + 0) + 0) ≡⟨ cong suc (+-right-identity (n + 0)) ⟩ suc (n + 0) ≡⟨ cong suc (+-right-identity n) ⟩ suc n ≤⟨ n≤1+n (suc n) ⟩ suc (suc n) ≤⟨ n≤m+n n (suc (suc n)) ⟩ n + suc (suc n) ≡⟨ cong (λ x → n + suc (suc x)) (sym (+-right-identity n)) ⟩ n + suc (suc (n + 0)) ∎) where open ≤-Reasoning simplify-≤ : {m n m' n' : ℕ} → (m ≤ n) → (m ≡ m') → (n ≡ n') → (m' ≤ n') simplify-≤ leq refl refl = leq raise-lem-0 : (m n : ℕ) → (leq : suc n ≤ n + suc m) → raise n zero ≡ inject≤ (fromℕ n) leq raise-lem-0 m 0 (s≤s leq) = refl raise-lem-0 m (suc n) (s≤s leq) = cong suc (raise-lem-0 m n leq) simplify-≤ : {m n m' n' : ℕ} → (m ≤ n) → (m ≡ m') → (n ≡ n') → (m' ≤ n') simplify-≤ leq refl refl = leq inject≤-≡ : ∀ {m m' n : ℕ} → (i : Fin m) → (leq : m ≤ n) → (eqm : m ≡ m') → inject≤ {m} {n} i leq ≡ inject≤ {m'} {n} (subst Fin eqm i) (subst (λ x → x ≤ n) eqm leq) inject≤-≡ i leq refl = refl leq-Fin : (n m : ℕ) → (j : Fin (suc n)) → toℕ j ≤ n + m leq-Fin 0 m zero = z≤n leq-Fin 0 m (suc ()) leq-Fin (suc n) m zero = z≤n leq-Fin (suc n) m (suc j) = s≤s (leq-Fin n m j) leq-lem-1 : (m n : ℕ) → (j : Fin (suc m)) → (d : Fin (suc n)) → suc (toℕ j * suc n + toℕ d) ≤ suc m * suc n leq-lem-1 0 0 zero zero = s≤s z≤n leq-lem-1 0 0 zero (suc ()) leq-lem-1 0 0 (suc ()) zero leq-lem-1 0 0 (suc () ) _ leq-lem-1 0 (suc n) zero zero = s≤s z≤n leq-lem-1 0 (suc n) zero (suc d) = s≤s (s≤s (leq-Fin n 0 d)) leq-lem-1 0 (suc n) (suc ()) _ leq-lem-1 (suc m) 0 zero zero = s≤s z≤n leq-lem-1 (suc m) 0 zero (suc ()) leq-lem-1 (suc m) 0 (suc j) zero = s≤s (leq-lem-1 m 0 j zero) leq-lem-1 (suc m) 0 (suc j) (suc ()) leq-lem-1 (suc m) (suc n) zero zero = s≤s z≤n leq-lem-1 (suc m) (suc n) zero (suc d) = s≤s (s≤s (leq-Fin n (suc m * suc (suc n)) d)) leq-lem-1 (suc m) (suc n) (suc j) d = s≤s (s≤s pr) where pr = begin (suc ((n + toℕ j * suc (suc n)) + toℕ d) ≡⟨ sym (+-suc (n + toℕ j * suc (suc n)) (toℕ d)) ⟩ (n + toℕ j * suc (suc n)) + suc (toℕ d) ≤⟨ cong+l≤ (bounded d) (n + toℕ j * suc (suc n)) ⟩ (n + toℕ j * suc (suc n)) + suc (suc n) ≤⟨ cong+r≤ (cong+l≤ (cong*r≤ (bounded' m j) (suc (suc n))) n) (suc (suc n)) ⟩ (n + m * suc (suc n)) + suc (suc n) ≡⟨ +-assoc n (m * suc (suc n)) (suc (suc n)) ⟩ n + (m * suc (suc n) + suc (suc n)) ≡⟨ cong (λ x → n + x) (+-comm (m * suc (suc n)) (suc (suc n))) ⟩ n + (suc (suc n) + m * suc (suc n)) ≡⟨ refl ⟩ n + suc m * suc (suc n) ∎) where open ≤-Reasoning leq-lem-2 : (m n : ℕ) → (j : Fin (suc m)) → (d : Fin (suc n)) → suc (suc (toℕ j) * suc n + toℕ d) ≤ suc (suc m) * suc n leq-lem-2 m n j d = begin (suc (suc (toℕ j) * suc n + toℕ d) ≤⟨ s≤s (cong+l≤ (bounded' n d) (suc (toℕ j) * suc n)) ⟩ suc (suc (toℕ j) * suc n + n) ≡⟨ sym (+-suc (suc (toℕ j) * suc n) n) ⟩ suc (toℕ j) * suc n + suc n ≡⟨ +-comm (suc (toℕ j) * suc n) (suc n) ⟩ suc n + suc (toℕ j) * suc n ≡⟨ refl ⟩ suc (suc (toℕ j)) * suc n ≤⟨ cong*r≤ (s≤s (s≤s (bounded' m j))) (suc n) ⟩ suc (suc m) * suc n ∎) where open ≤-Reasoning leq-lem-0 : (m n : ℕ) → suc n ≤ n + suc m leq-lem-0 m n = begin (suc n ≤⟨ m≤m+n (suc n) m ⟩ suc (n + m) ≡⟨ cong suc (+-comm n m) ⟩ suc m + n ≡⟨ +-comm (suc m) n ⟩ n + suc m ∎) where open ≤-Reasoning -- the extra 'm' is really handy inject-id : (m : ℕ) (j : Fin (suc m)) (leq : toℕ j ≤ m) → j ≡ inject≤ (fromℕ (toℕ j)) (s≤s leq) inject-id 0 zero z≤n = refl inject-id 0 (suc j) () inject-id (suc m) zero z≤n = refl inject-id (suc m) (suc j) (s≤s leq) = cong suc (inject-id m j leq) raise-lem-0 : (m n : ℕ) → (leq : suc n ≤ n + suc m) → raise n zero ≡ inject≤ (fromℕ n) leq raise-lem-0 m 0 (s≤s leq) = refl raise-lem-0 m (suc n) (s≤s leq) = cong suc (raise-lem-0 m n leq) raise-lem-0' : (m n : ℕ) (j : Fin (suc m)) → (leq : suc (n + toℕ j) ≤ n + (suc m)) → raise n j ≡ inject≤ (fromℕ (n + toℕ j)) leq raise-lem-0' m 0 j (s≤s leq) = inject-id m j leq raise-lem-0' m (suc n) j (s≤s leq) = cong suc (raise-lem-0' m n j leq) raise-lem-1 : (n : ℕ) → (d : Fin (suc n)) → (leq : toℕ d ≤ n) → (leq' : suc (n + suc (toℕ d)) ≤ n + suc (suc n)) → raise n (inject≤ (fromℕ (toℕ (suc d))) (s≤s (s≤s leq))) ≡ inject≤ (fromℕ (n + toℕ (suc d))) leq' raise-lem-1 0 zero z≤n (s≤s (s≤s z≤n)) = refl raise-lem-1 0 (suc d) () leq' raise-lem-1 (suc n) zero z≤n (s≤s leq') = begin (suc (raise n (suc zero)) ≡⟨ cong suc (raise-lem-0' (suc (suc n)) n (suc zero) leq') ⟩ suc (inject≤ (fromℕ (n + 1)) leq') ∎) where open ≡-Reasoning raise-lem-1 (suc n) (suc d) (s≤s leq) (s≤s leq') = cong suc ( begin (raise n (suc (suc _))) ≡⟨ cong (λ x → raise n (suc (suc x))) (sym (inject-id n d leq)) ⟩ raise n (suc (suc d)) ≡⟨ raise-lem-0' (suc (suc n)) n (suc (suc d)) leq' ⟩ inject≤ (fromℕ (n + suc (suc (toℕ d)))) leq' ∎) where open ≡-Reasoning cancel+l : (r k n : ℕ) → r + k ≤ n → k ≤ n cancel+l 0 k n x = x cancel+l (suc r) k 0 () cancel+l (suc r) k (suc n) (s≤s x) = trans≤ (cancel+l r k n x) (i≤si _) lastV : {ℓ : Level} {A : Set ℓ} {n : ℕ} → Vec A (suc n) → A lastV (x ∷ []) = x lastV (_ ∷ x ∷ xs) = lastV (x ∷ xs) last-map : {A B : Set} → (n : ℕ) → (xs : Vec A (suc n)) → (f : A → B) → lastV (mapV f xs) ≡ f (lastV xs) last-map 0 (x ∷ []) f = refl last-map (suc n) (_ ∷ x ∷ xs) f = last-map n (x ∷ xs) f {-- transposeIndex : (m n : ℕ) → (b : Fin (suc (suc m))) → (d : Fin (suc (suc n))) → Fin (suc (suc m) * suc (suc n)) transposeIndex m n b d with toℕ b * suc (suc n) + toℕ d transposeIndex m n b d | i with suc i ≟ suc (suc m) * suc (suc n) transposeIndex m n b d | i | yes _ = fromℕ (suc (n + suc (suc (n + m * suc (suc n))))) transposeIndex m n b d | i | no _ = inject≤ ((i * (suc (suc m))) mod (suc (n + suc (suc (n + m * suc (suc n)))))) (i≤si (suc (n + suc (suc (n + m * suc (suc n)))))) --} transposeIndex : (m n : ℕ) → (b : Fin (suc (suc m))) → (d : Fin (suc (suc n))) → Fin (suc (suc m) * suc (suc n)) transposeIndex m n b d = inject≤ (fromℕ (toℕ d * suc (suc m) + toℕ b)) (trans≤ (i*n+k≤m*n d b) (refl′ (*-comm (suc (suc n)) (suc (suc m))))) swap⋆cauchy : (m n : ℕ) → Cauchy (m * n) swap⋆cauchy 0 n = [] swap⋆cauchy 1 n = subst Cauchy (sym (+-right-identity n)) (idcauchy n) swap⋆cauchy (suc (suc m)) 0 = subst Cauchy (sym (*-right-zero (suc (suc m)))) [] swap⋆cauchy (suc (suc m)) 1 = subst Cauchy (sym (i*1≡i (suc (suc m)))) (idcauchy (suc (suc m))) swap⋆cauchy (suc (suc m)) (suc (suc n)) = concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin (suc (suc n)))) (allFin (suc (suc m)))) transposeIndex0 : (m n : ℕ) → (b : Fin m) → (d : Fin n) → Fin (m * n) transposeIndex0 m n b d = inject≤ (fromℕ (toℕ d * m + toℕ b)) (trans≤ (i*n+k≤m*n d b) (refl′ (*-comm n m))) -- another way to check injectivity isElement : ∀ {m n} → Fin m → Vec (Fin m) n → Maybe (Fin n) isElement _ [] = nothing isElement x (y ∷ ys) with toℕ x ≟ toℕ y | isElement x ys ... | yes _ | _ = just zero ... | no _ | nothing = nothing ... | no _ | just i = just (suc i) injective : ∀ {m n} → Pred (Vec (Fin m) n) lzero injective {m} {n} π = ∀ {i j} → lookup i π ≡ lookup j π → i ≡ j {-- isInjective : ∀ {m n} → UnaryDecidable (injective {m} {n}) isInjective {m} {0} [] = yes f where f : {i j : Fin 0} → (lookup i [] ≡ lookup j []) → (i ≡ j) f {()} isInjective {m} {suc n} (b ∷ π) with isElement b π | isInjective {m} {n} π ... | just i | _ = no {!!} ... | nothing | no ¬inj = no {!!} ... | nothing | yes inj = yes {!!} --} {-- transpose≡ : (m n : ℕ) (i j : Fin (suc (suc m) * suc (suc n))) (bi bj : Fin (suc (suc m))) (di dj : Fin (suc (suc n))) (deci : toℕ i ≡ toℕ di + toℕ bi * suc (suc n)) (decj : toℕ j ≡ toℕ dj + toℕ bj * suc (suc n)) (tpr : transposeIndex m n bi di ≡ transposeIndex m n bj dj) → (i ≡ j) transpose≡ m n i j bi bj di dj deci decj tpr = let (d≡ , b≡) = fin-addMul-lemma (suc (suc n)) (suc (suc m)) di dj bi bj stpr d+bn≡ = cong₂ (λ x y → toℕ x + toℕ y * suc (suc n)) d≡ b≡ in toℕ-injective (trans deci (trans d+bn≡ (sym decj))) where stpr = begin (toℕ di * suc (suc m) + toℕ bi ≡⟨ sym (to-from _) ⟩ toℕ (fromℕ (toℕ di * suc (suc m) + toℕ bi)) ≡⟨ sym (inject≤-lemma _ _) ⟩ toℕ (inject≤ (fromℕ (toℕ di * suc (suc m) + toℕ bi)) (trans≤ (i*n+k≤m*n di bi) (refl′ (*-comm (suc (suc n)) (suc (suc m)))))) ≡⟨ cong toℕ tpr ⟩ toℕ (inject≤ (fromℕ (toℕ dj * suc (suc m) + toℕ bj)) (trans≤ (i*n+k≤m*n dj bj) (refl′ (*-comm (suc (suc n)) (suc (suc m)))))) ≡⟨ inject≤-lemma _ _ ⟩ toℕ (fromℕ (toℕ dj * suc (suc m) + toℕ bj)) ≡⟨ to-from _ ⟩ toℕ dj * suc (suc m) + toℕ bj ∎) where open ≡-Reasoning swap⋆perm' : (m n : ℕ) (i j : Fin (m * n)) (p : lookup i (swap⋆cauchy m n) ≡ lookup j (swap⋆cauchy m n)) → (i ≡ j) swap⋆perm' 0 n () j p swap⋆perm' 1 n i j p = toℕ-injective pr where pr = begin (toℕ i ≡⟨ cong toℕ (sym (lookup-allFin i)) ⟩ toℕ (lookup i (idcauchy (n + 0))) ≡⟨ cong (λ x → toℕ (lookup i x)) (sym (subst-allFin (sym (+-right-identity n)))) ⟩ toℕ (lookup i (subst Cauchy (sym (+-right-identity n)) (idcauchy n))) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (subst Cauchy (sym (+-right-identity n)) (idcauchy n))) ≡⟨ cong (λ x → toℕ (lookup j x)) i (subst-allFin (sym (+-right-identity n))) ⟩ toℕ (lookup j (idcauchy (n + 0))) ≡⟨ cong toℕ (lookup-allFin j) ⟩ toℕ j ∎) where open ≡-Reasoning swap⋆perm' (suc (suc m)) 0 i j p rewrite (*-right-zero m) = ⊥-elim (Fin0-⊥ i) swap⋆perm' (suc (suc m)) 1 i j p = toℕ-injective pr where pr = begin (toℕ i ≡⟨ cong toℕ (sym (lookup-allFin i)) ⟩ toℕ (lookup i (idcauchy (suc (suc m) * 1))) ≡⟨ cong (λ x → toℕ (lookup i x)) (sym (subst-allFin (sym (i*1≡i (suc (suc m)))))) ⟩ toℕ (lookup i (subst Cauchy (sym (i*1≡i (suc (suc m)))) (idcauchy (suc (suc m))))) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (subst Cauchy (sym (i*1≡i (suc (suc m)))) (idcauchy (suc (suc m))))) ≡⟨ cong (λ x → toℕ (lookup j x)) (subst-allFin (sym (i*1≡i (suc (suc m))))) ⟩ toℕ (lookup j (idcauchy (suc (suc m) * 1))) ≡⟨ cong toℕ (lookup-allFin j) ⟩ toℕ j ∎) where open ≡-Reasoning swap⋆perm' (suc (suc m)) (suc (suc n)) i j p = let fin-result bi di deci deci' = fin-divMod (suc (suc m)) (suc (suc n)) i fin-result bj dj decj decj' = fin-divMod (suc (suc m)) (suc (suc n)) j in transpose≡ m n i j bi bj di dj deci decj pr where pr = let fin-result bi di deci deci' = fin-divMod (suc (suc m)) (suc (suc n)) i fin-result bj dj decj decj' = fin-divMod (suc (suc m)) (suc (suc n)) j in begin (transposeIndex m n bi di ≡⟨ cong₂ (λ x y → transposeIndex m n x y) (sym (lookup-allFin bi)) (sym (lookup-allFin di)) ⟩ transposeIndex m n (lookup bi (allFin (suc (suc m)))) (lookup di (allFin (suc (suc n)))) ≡⟨ sym (lookup-2d (suc (suc m)) (suc (suc n)) i (allFin (suc (suc m))) (allFin (suc (suc n))) (λ {(b , d) → transposeIndex m n b d})) ⟩ lookup i (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin (suc (suc n)))) (allFin (suc (suc m))))) ≡⟨ p ⟩ lookup j (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin (suc (suc n)))) (allFin (suc (suc m))))) ≡⟨ lookup-2d (suc (suc m)) (suc (suc n)) j (allFin (suc (suc m))) (allFin (suc (suc n))) (λ {(b , d) → transposeIndex m n b d}) ⟩ transposeIndex m n (lookup bj (allFin (suc (suc m)))) (lookup dj (allFin (suc (suc n)))) ≡⟨ cong₂ (λ x y → transposeIndex m n x y) (lookup-allFin bj) (lookup-allFin dj) ⟩ transposeIndex m n bj dj ∎) where open ≡-Reasoning swap⋆perm : (m n : ℕ) → Permutation (m * n) swap⋆perm m n = (swap⋆cauchy m n , λ {i} {j} p → swap⋆perm' m n i j p) --} subst-allFin : ∀ {m n} → (eq : m ≡ n) → subst Cauchy eq (allFin m) ≡ allFin n subst-allFin refl = refl {-- transposeIndex' : (m n : ℕ) → (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) → (toℕ b ≡ suc m × toℕ d ≡ suc n) → transposeIndex m n b d ≡ fromℕ (suc n + suc m * suc (suc n)) transposeIndex' m n b d (b≡ , d≡) with suc (toℕ b * suc (suc n) + toℕ d) ≟ suc (suc m) * suc (suc n) transposeIndex' m n b d (b≡ , d≡) | yes i= = refl transposeIndex' m n b d (b≡ , d≡) | no i≠ = ⊥-elim (i≠ contra) where contra = begin (suc (toℕ b * suc (suc n) + toℕ d) ≡⟨ cong₂ (λ x y → suc (x * suc (suc n) + y)) b≡ d≡ ⟩ suc (suc m * suc (suc n) + suc n) ≡⟨ sym (+-suc (suc m * suc (suc n)) (suc n)) ⟩ suc m * suc (suc n) + suc (suc n) ≡⟨ +-comm (suc m * suc (suc n)) (suc (suc n)) ⟩ suc (suc n) + suc m * suc (suc n) ≡⟨ refl ⟩ suc (suc m) * suc (suc n) ∎) where open ≡-Reasoning --} {-- transposeIndex'' : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) (p≠ : ¬ suc (toℕ b * suc (suc n) + toℕ d) ≡ suc (suc m) * suc (suc n)) → transposeIndex m n b d ≡ inject≤ (((toℕ b * suc (suc n) + toℕ d) * (suc (suc m))) mod (suc n + suc m * suc (suc n))) (i≤si (suc n + suc m * suc (suc n))) transposeIndex'' m n b d p≠ with suc (toℕ b * suc (suc n) + toℕ d) ≟ suc (suc m) * suc (suc n) ... | yes w = ⊥-elim (p≠ w) ... | no ¬w = refl --} {-- subst-lookup-transpose : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) → subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (subst Fin (*-comm (suc (suc m)) (suc (suc n))) (transposeIndex m n b d)) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) subst-lookup-transpose m n b d with suc (toℕ b * suc (suc n) + toℕ d) ≟ suc (suc m) * suc (suc n) subst-lookup-transpose m n b d | yes p= = let (b= , d=) = max-b-d m n b d p= in begin (subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (subst Fin (*-comm (suc (suc m)) (suc (suc n))) (fromℕ (suc n + suc m * suc (suc n)))) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ cong (λ x → subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup x (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n))))))) (subst-fin (suc n + suc m * suc (suc n)) (suc m + suc n * suc (suc m)) (*-comm (suc (suc m)) (suc (suc n)))) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (fromℕ (suc m + suc n * suc (suc m))) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ cong (λ x → subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (fromℕ (suc m + suc n * suc (suc m))) x)) (concat-map-map-tabulate (suc (suc n)) (suc (suc m)) (λ {(b , d) → transposeIndex n m b d})) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (fromℕ (suc m + suc n * suc (suc m))) (tabulate (λ k → let (b , d) = fin-project (suc (suc n)) (suc (suc m)) k in transposeIndex n m b d))) ≡⟨ cong (subst Fin (*-comm (suc (suc n)) (suc (suc m)))) (lookup-fromℕ-allFin (suc m + suc n * suc (suc m)) (λ k → let (b , d) = fin-project (suc (suc n)) (suc (suc m)) k in transposeIndex n m b d)) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (let (b , d) = fin-project (suc (suc n)) (suc (suc m)) (fromℕ (suc m + suc n * suc (suc m))) in transposeIndex n m b d) ≡⟨ cong (λ x → subst Fin (*-comm (suc (suc n)) (suc (suc m))) (let (b , d) = x in transposeIndex n m b d)) (fin-project-2 n m) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (transposeIndex n m (fromℕ (suc n)) (fromℕ (suc m))) ≡⟨ cong (subst Fin (*-comm (suc (suc n)) (suc (suc m)))) (transposeIndex' n m (fromℕ (suc n)) (fromℕ (suc m)) (to-from (suc n) , to-from (suc m))) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (fromℕ (suc m + suc n * suc (suc m))) ≡⟨ subst-fin (suc (m + suc (suc (m + n * suc (suc m))))) (suc (n + suc (suc (n + m * suc (suc n))))) (*-comm (suc (suc n)) (suc (suc m))) ⟩ fromℕ (suc (n + suc (suc (n + m * suc (suc n))))) ≡⟨ sym (fin=1 n m) ⟩ fromℕ (suc n + suc m * suc (suc n)) ≡⟨ toℕ-injective (trans (to-from (suc n + suc m * suc (suc n))) (trans (+-comm (suc n) (suc m * suc (suc n))) (trans (sym (to-from (suc m * suc (suc n) + suc n))) (sym (inject≤-lemma (fromℕ (suc m * suc (suc n) + suc n)) (refl′ (trans (sym (+-suc (suc m * suc (suc n)) (suc n))) (+-comm (suc m * suc (suc n)) (suc (suc n)))))))))) ⟩ inject≤ (fromℕ (suc m * suc (suc n) + suc n)) (refl′ (trans (sym (+-suc (suc m * suc (suc n)) (suc n))) (+-comm (suc m * suc (suc n)) (suc (suc n))))) ≡⟨ cong₂D! (λ x y → inject≤ (fromℕ x) y) (cong₂ (λ x y → x * suc (suc n) + y) b= d=) (≤-proof-irrelevance (subst (λ z → suc z ≤ suc (suc n) + suc m * suc (suc n)) (cong₂ (λ x y → x * suc (suc n) + y) b= d=) (i*n+k≤m*n b d)) (refl′ (trans (sym (cong suc (cong suc (+-suc (n + m * suc (suc n)) (suc n))))) (+-comm (suc m * suc (suc n)) (suc (suc n)))))) ⟩ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) ∎) where open ≡-Reasoning subst-lookup-transpose m n b d | no p≠ = let leq : suc (toℕ b * suc (suc n) + toℕ d) ≤ suc n + suc m * suc (suc n) leq = not-max-b-d m n b d p≠ p'≠ : ¬ suc (toℕ d * suc (suc m) + toℕ b) ≡ suc (suc n) * suc (suc m) p'≠ = not-max-b-d' m n b d p≠ in begin (subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (subst Fin (*-comm (suc (suc m)) (suc (suc n))) (inject≤ ((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod (suc n + suc m * suc (suc n))) (i≤si (suc n + suc m * suc (suc n))))) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ cong₂ (λ x y → subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup x y)) (subst-inject-mod {((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))} (*-comm (suc (suc m)) (suc (suc n)))) (concat-map-map-tabulate (suc (suc n)) (suc (suc m)) (λ {(b , d) → transposeIndex n m b d})) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (inject≤ ((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod (suc m + suc n * suc (suc m))) (i≤si (suc m + suc n * suc (suc m)))) (tabulate (λ k → let (b , d) = fin-project (suc (suc n)) (suc (suc m)) k in transposeIndex n m b d))) ≡⟨ cong (subst Fin (*-comm (suc (suc n)) (suc (suc m)))) (lookup∘tabulate (λ k → let (b , d) = fin-project (suc (suc n)) (suc (suc m)) k in transposeIndex n m b d) (inject≤ ((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod (suc m + suc n * suc (suc m))) (i≤si (suc m + suc n * suc (suc m))))) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (let (d' , b') = fin-project (suc (suc n)) (suc (suc m)) (inject≤ ((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod (suc m + suc n * suc (suc m))) (i≤si (suc m + suc n * suc (suc m)))) in transposeIndex n m d' b') ≡⟨ cong (λ x → subst Fin (*-comm (suc (suc n)) (suc (suc m))) let (d' , b') = x in transposeIndex n m d' b') (fin-project-3 m n b d p'≠) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (transposeIndex n m d b) ≡⟨ cong (subst Fin (*-comm (suc (suc n)) (suc (suc m)))) (transposeIndex'' n m d b p'≠) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (inject≤ (((toℕ d * suc (suc m) + toℕ b) * suc (suc n)) mod (suc m + suc n * suc (suc m))) (i≤si (suc m + suc n * suc (suc m)))) ≡⟨ subst-inject-mod {(toℕ d * suc (suc m) + toℕ b) * suc (suc n)} (*-comm (suc (suc n)) (suc (suc m))) ⟩ inject≤ (((toℕ d * suc (suc m) + toℕ b) * suc (suc n)) mod (suc n + suc m * suc (suc n))) (i≤si (suc n + suc m * suc (suc n))) ≡⟨ inject-mod m n b d leq ⟩ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) ∎) where open ≡-Reasoning --} {-- lookup-swap-2 : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) → lookup (transposeIndex m n b d) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) lookup-swap-2 m n b d = begin (lookup (transposeIndex m n b d) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ lookup-subst-1 (transposeIndex m n b d) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n))))) (*-comm (suc (suc n)) (suc (suc m))) (*-comm (suc (suc m)) (suc (suc n))) (proof-irrelevance (sym (*-comm (suc (suc n)) (suc (suc m)))) (*-comm (suc (suc m)) (suc (suc n)))) ⟩ subst Fin (*-comm (suc (suc n)) (suc (suc m))) (lookup (subst Fin (*-comm (suc (suc m)) (suc (suc n))) (transposeIndex m n b d)) (concatV (mapV (λ b → mapV (λ d → transposeIndex n m b d) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ subst-lookup-transpose m n b d ⟩ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) ∎) where open ≡-Reasoning --} {-- lookup-swap-1 : (m n : ℕ) → (b : Fin (suc (suc m))) → (d : Fin (suc (suc n))) → lookup (lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b₁ → mapV (transposeIndex m n b₁) (allFin (suc (suc n)))) (allFin (suc (suc m)))))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡ lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b₁ → mapV (λ d₁ → inject≤ (fromℕ (toℕ b₁ * suc (suc n) + toℕ d₁)) (i*n+k≤m*n b₁ d₁)) (allFin (suc (suc n)))) (allFin (suc (suc m))))) lookup-swap-1 m n b d = begin (lookup (lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b₁ → mapV (transposeIndex m n b₁) (allFin (suc (suc n)))) (allFin (suc (suc m)))))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ cong (λ x → lookup x (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n))))))) (lookup-concat' (suc (suc m)) (suc (suc n)) b d (i*n+k≤m*n b d) (λ {(b , d) → transposeIndex m n b d}) (allFin (suc (suc m))) (allFin (suc (suc n)))) ⟩ lookup (transposeIndex m n (lookup b (allFin (suc (suc m)))) (lookup d (allFin (suc (suc n))))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ cong₂ (λ x y → lookup (transposeIndex m n x y) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n))))))) (lookup-allFin b) (lookup-allFin d) ⟩ lookup (transposeIndex m n b d) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b₁ → mapV (transposeIndex n m b₁) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ lookup-swap-2 m n b d ⟩ inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d) ≡⟨ sym (cong₂ (λ x y → let b' = x d' = y in inject≤ (fromℕ (toℕ b' * suc (suc n) + toℕ d')) (i*n+k≤m*n b' d')) (lookup-allFin b) (lookup-allFin d)) ⟩ let b' = lookup b (allFin (suc (suc m))) d' = lookup d (allFin (suc (suc n))) in inject≤ (fromℕ (toℕ b' * suc (suc n) + toℕ d')) (i*n+k≤m*n b' d') ≡⟨ sym (lookup-concat' (suc (suc m)) (suc (suc n)) b d (i*n+k≤m*n b d) (λ {(b , d) → inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)}) (allFin (suc (suc m))) (allFin (suc (suc n)))) ⟩ lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b₁ → mapV (λ d₁ → inject≤ (fromℕ (toℕ b₁ * suc (suc n) + toℕ d₁)) (i*n+k≤m*n b₁ d₁)) (allFin (suc (suc n)))) (allFin (suc (suc m))))) ∎) where open ≡-Reasoning --} {-- lookup-swap : (m n : ℕ) (i : Fin (suc (suc m) * suc (suc n))) → let vs = allFin (suc (suc m)) ws = allFin (suc (suc n)) in lookup (lookup i (concatV (mapV (λ b → mapV (transposeIndex m n b) ws) vs))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (transposeIndex n m b) vs) ws))) ≡ lookup i (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) ws) vs)) lookup-swap m n i = let vs = allFin (suc (suc m)) ws = allFin (suc (suc n)) in begin (lookup (lookup i (concatV (mapV (λ b → mapV (transposeIndex m n b) ws) vs))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (transposeIndex n m b) vs) ws))) ≡⟨ cong (λ x → lookup (lookup x (concatV (mapV (λ b → mapV (transposeIndex m n b) ws) vs))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (transposeIndex n m b) vs) ws)))) (fin-proj-lem (suc (suc m)) (suc (suc n)) i) ⟩ let (b , d) = fin-project (suc (suc m)) (suc (suc n)) i in lookup (lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b → mapV (transposeIndex m n b) ws) vs))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ b → mapV (transposeIndex n m b) vs) ws))) ≡⟨ cong (λ x → let (b , d) = fin-project (suc (suc m)) (suc (suc n)) i in x) (lookup-swap-1 m n b d) ⟩ let (b , d) = fin-project (suc (suc m)) (suc (suc n)) i in lookup (inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) ws) vs)) ≡⟨ cong (λ x → lookup x (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) ws) vs))) (sym (fin-proj-lem (suc (suc m)) (suc (suc n)) i)) ⟩ lookup i (concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) ws) vs)) ∎) where open ≡-Reasoning --} {-- tabulate-lookup-concat : (m n : ℕ) → let vec = (λ m n f → concatV (mapV (λ b → mapV (f m n b) (allFin (suc (suc n)))) (allFin (suc (suc m))))) in tabulate {suc (suc m) * suc (suc n)} (λ i → lookup (lookup i (vec m n transposeIndex)) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (vec n m transposeIndex))) ≡ vec m n (λ m n b d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) tabulate-lookup-concat m n = let vec = (λ m n f → concatV (mapV (λ b → mapV (f m n b) (allFin (suc (suc n)))) (allFin (suc (suc m))))) in begin (tabulate {suc (suc m) * suc (suc n)} (λ i → lookup (lookup i (vec m n transposeIndex)) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (vec n m transposeIndex))) ≡⟨ finext _ _ (λ i → lookup-swap m n i) ⟩ tabulate {suc (suc m) * suc (suc n)} (λ i → lookup i (vec m n (λ m n b d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)))) ≡⟨ tabulate∘lookup (vec m n (λ m n b d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d))) ⟩ vec m n (λ m n b d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) ∎) where open ≡-Reasoning --} {-- swap⋆idemp : (m n : ℕ) → scompcauchy (swap⋆cauchy m n) (subst Cauchy (*-comm n m) (swap⋆cauchy n m)) ≡ allFin (m * n) swap⋆idemp 0 n = refl swap⋆idemp 1 0 = refl swap⋆idemp 1 1 = refl swap⋆idemp 1 (suc (suc n)) = begin (scompcauchy (subst Cauchy (sym (+-right-identity (suc (suc n)))) (allFin (suc (suc n)))) (subst Cauchy (*-comm (suc (suc n)) 1) (subst Cauchy (sym (i*1≡i (suc (suc n)))) (allFin (suc (suc n))))) ≡⟨ cong₂ (λ x y → scompcauchy x (subst Cauchy (*-comm (suc (suc n)) 1) y)) (subst-allFin (sym (+-right-identity (suc (suc n))))) (subst-allFin (sym (i*1≡i (suc (suc n))))) ⟩ scompcauchy (allFin (suc (suc n) + 0)) (subst Cauchy (*-comm (suc (suc n)) 1) (allFin (suc (suc n) * 1))) ≡⟨ cong (scompcauchy (allFin (suc (suc n) + 0))) (subst-allFin (*-comm (suc (suc n)) 1)) ⟩ scompcauchy (allFin (suc (suc n) + 0)) (allFin (1 * suc (suc n))) ≡⟨ scomplid (allFin (suc (suc n) + 0)) ⟩ allFin (1 * suc (suc n)) ∎) where open ≡-Reasoning swap⋆idemp (suc (suc m)) 0 = begin (scompcauchy (subst Cauchy (sym (*-right-zero (suc (suc m)))) (allFin 0)) (subst Cauchy (*-comm 0 (suc (suc m))) (allFin 0)) ≡⟨ cong₂ scompcauchy (subst-allFin (sym (*-right-zero (suc (suc m))))) (subst-allFin (*-comm 0 (suc (suc m)))) ⟩ scompcauchy (allFin (suc (suc m) * 0)) (allFin (suc (suc m) * 0)) ≡⟨ scomplid (allFin (suc (suc m) * 0)) ⟩ allFin (suc (suc m) * 0) ∎) where open ≡-Reasoning swap⋆idemp (suc (suc m)) 1 = begin (scompcauchy (subst Cauchy (sym (i*1≡i (suc (suc m)))) (idcauchy (suc (suc m)))) (subst Cauchy (*-comm 1 (suc (suc m))) (subst Cauchy (sym (+-right-identity (suc (suc m)))) (idcauchy (suc (suc m))))) ≡⟨ cong₂ (λ x y → scompcauchy x (subst Cauchy (*-comm 1 (suc (suc m))) y)) (subst-allFin (sym (i*1≡i (suc (suc m))))) (subst-allFin (sym (+-right-identity (suc (suc m))))) ⟩ scompcauchy (allFin (suc (suc m) * 1)) (subst Cauchy (*-comm 1 (suc (suc m))) (allFin (suc (suc m) + 0))) ≡⟨ cong (scompcauchy (allFin (suc (suc m) * 1))) (subst-allFin (*-comm 1 (suc (suc m)))) ⟩ scompcauchy (allFin (suc (suc m) * 1)) (allFin (suc (suc m) * 1)) ≡⟨ scomplid (allFin (suc (suc m) * 1)) ⟩ allFin (suc (suc m) * 1) ∎) where open ≡-Reasoning swap⋆idemp (suc (suc m)) (suc (suc n)) = begin (scompcauchy (swap⋆cauchy (suc (suc m)) (suc (suc n))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (swap⋆cauchy (suc (suc n)) (suc (suc m)))) ≡⟨ refl ⟩ scompcauchy (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin (suc (suc n)))) (allFin (suc (suc m))))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ d → mapV (λ b → transposeIndex n m d b) (allFin (suc (suc m)))) (allFin (suc (suc n)))))) ≡⟨ refl ⟩ tabulate {suc (suc m) * suc (suc n)} (λ i → lookup (lookup i (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin (suc (suc n)))) (allFin (suc (suc m)))))) (subst Cauchy (*-comm (suc (suc n)) (suc (suc m))) (concatV (mapV (λ d → mapV (λ b → transposeIndex n m d b) (allFin (suc (suc m)))) (allFin (suc (suc n))))))) ≡⟨ tabulate-lookup-concat m n ⟩ concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * (suc (suc n)) + toℕ d)) (i*n+k≤m*n b d)) (allFin (suc (suc n)))) (allFin (suc (suc m)))) ≡⟨ sym (allFin* (suc (suc m)) (suc (suc n))) ⟩ allFin (suc (suc m) * suc (suc n)) ∎) where open ≡-Reasoning --} {-- -- The type Cauchy is too weak to allow us to invert it to combinators cauchy2c : {t₁ t₂ : U} → (size t₁ ≡ size t₂) → Cauchy (size t₁) → (t₁ ⟷ t₂) cauchy2c {ZERO} {ONE} () π cauchy2c {ZERO} {BOOL} () π cauchy2c {ONE} {ZERO} () π cauchy2c {ONE} {BOOL} () π cauchy2c {BOOL} {ZERO} () π cauchy2c {BOOL} {ONE} () π cauchy2c {ZERO} {ZERO} refl [] = id⟷ cauchy2c {ONE} {ONE} sp π = id⟷ cauchy2c {ZERO} {PLUS t₂ t₃} sp π = {!!} cauchy2c {ZERO} {TIMES t₂ t₃} sp π = {!!} cauchy2c {ONE} {PLUS t₂ t₃} sp π = {!!} cauchy2c {ONE} {TIMES t₂ t₃} sp π = {!!} cauchy2c {PLUS t₁ t₂} {ZERO} sp π = {!!} cauchy2c {PLUS t₁ t₂} {ONE} sp π = {!!} cauchy2c {PLUS t₁ t₂} {PLUS t₃ t₄} sp π = {!!} cauchy2c {PLUS t₁ t₂} {TIMES t₃ t₄} sp π = {!!} cauchy2c {PLUS t₁ t₂} {BOOL} sp π = {!!} cauchy2c {TIMES t₁ t₂} {ZERO} sp π = {!!} cauchy2c {TIMES t₁ t₂} {ONE} sp π = {!!} cauchy2c {TIMES t₁ t₂} {PLUS t₃ t₄} sp π = {!!} cauchy2c {TIMES t₁ t₂} {TIMES t₃ t₄} sp π = {!!} cauchy2c {TIMES t₁ t₂} {BOOL} sp π = {!!} cauchy2c {BOOL} {PLUS t₂ t₃} sp π = {!!} cauchy2c {BOOL} {TIMES t₂ t₃} sp π = {!!} -- LOOK HERE cauchy2c {BOOL} {BOOL} refl (zero ∷ zero ∷ []) = {!!} -- ILLEGAL cauchy2c {BOOL} {BOOL} refl (zero ∷ suc zero ∷ []) = id⟷ cauchy2c {BOOL} {BOOL} refl (zero ∷ suc (suc ()) ∷ []) cauchy2c {BOOL} {BOOL} refl (suc zero ∷ zero ∷ []) = NOT cauchy2c {BOOL} {BOOL} refl (suc zero ∷ suc zero ∷ []) = {!!} --ILLEGAL cauchy2c {BOOL} {BOOL} refl (suc zero ∷ suc (suc ()) ∷ []) cauchy2c {BOOL} {BOOL} refl (suc (suc ()) ∷ b ∷ []) --} -- A view of (t : U) as normalized types -- Normalized types are (1 + (1 + (1 + (1 + ... 0)))) data NormalU : Set where NZERO : NormalU NSUC : NormalU → NormalU fromNormalU : NormalU → U fromNormalU NZERO = ZERO fromNormalU (NSUC n) = PLUS ONE (fromNormalU n) normalU+ : NormalU → NormalU → NormalU normalU+ NZERO n₂ = n₂ normalU+ (NSUC n₁) n₂ = NSUC (normalU+ n₁ n₂) normalU⋆ : NormalU → NormalU → NormalU normalU⋆ NZERO n₂ = NZERO normalU⋆ (NSUC n₁) n₂ = normalU+ n₂ (normalU⋆ n₁ n₂) normalU : U → NormalU normalU ZERO = NZERO normalU ONE = NSUC NZERO normalU BOOL = NSUC (NSUC NZERO) normalU (PLUS t₁ t₂) = normalU+ (normalU t₁) (normalU t₂) normalU (TIMES t₁ t₂) = normalU⋆ (normalU t₁) (normalU t₂) data Normalized : (t : NormalU) → Set where nzero : Normalized NZERO nsuc : {t : NormalU} → Normalized t → Normalized (NSUC t) normalized+ : (n₁ n₂ : NormalU) → Normalized n₁ → Normalized n₂ → Normalized (normalU+ n₁ n₂) normalized+ NZERO n₂ nd₁ nd₂ = nd₂ normalized+ (NSUC n₁) n₂ (nsuc nd₁) nd₂ = nsuc (normalized+ n₁ n₂ nd₁ nd₂) normalized⋆ : (n₁ n₂ : NormalU) → Normalized n₁ → Normalized n₂ → Normalized (normalU⋆ n₁ n₂) normalized⋆ NZERO n₂ nzero nd₂ = nzero normalized⋆ (NSUC n₁) n₂ (nsuc nd₁) nd₂ = normalized+ n₂ (normalU⋆ n₁ n₂) nd₂ (normalized⋆ n₁ n₂ nd₁ nd₂) normalized : (t : U) → Normalized (normalU t) normalized ZERO = nzero normalized ONE = nsuc nzero normalized BOOL = nsuc (nsuc nzero) normalized (PLUS t₁ t₂) = normalized+ (normalU t₁) (normalU t₂) (normalized t₁) (normalized t₂) normalized (TIMES t₁ t₂) = normalized⋆ (normalU t₁) (normalU t₂) (normalized t₁) (normalized t₂) assocr : (n₁ n₂ : NormalU) → PLUS (fromNormalU n₁) (fromNormalU n₂) ⟷ fromNormalU (normalU+ n₁ n₂) assocr NZERO n₂ = unite₊ assocr (NSUC n₁) n₂ = assocr₊ ◎ (id⟷ ⊕ assocr n₁ n₂) distr : (n₁ n₂ : NormalU) → TIMES (fromNormalU n₁) (fromNormalU n₂) ⟷ fromNormalU (normalU⋆ n₁ n₂) distr NZERO n₂ = distz distr (NSUC n₁) n₂ = dist ◎ (unite⋆ ⊕ distr n₁ n₂) ◎ assocr n₂ (normalU⋆ n₁ n₂) canonicalU : U → U canonicalU = fromNormalU ∘ normalU normalizeC : (t : U) → t ⟷ canonicalU t normalizeC ZERO = id⟷ normalizeC ONE = uniti₊ ◎ swap₊ normalizeC BOOL = unfoldBool ◎ ((uniti₊ ◎ swap₊) ⊕ (uniti₊ ◎ swap₊)) ◎ (assocr₊ ◎ (id⟷ ⊕ unite₊)) normalizeC (PLUS t₀ t₁) = (normalizeC t₀ ⊕ normalizeC t₁) ◎ assocr (normalU t₀) (normalU t₁) normalizeC (TIMES t₀ t₁) = (normalizeC t₀ ⊗ normalizeC t₁) ◎ distr (normalU t₀) (normalU t₁) fin+ : {m n : ℕ} → Fin m → Fin n → Fin (m + n) fin+ {0} {n} () _ fin+ {suc m} {n} zero b = inject≤ b (n≤m+n (suc m) n) fin+ {suc m} {n} (suc a) b = suc (fin+ {m} {n} a b) fin* : {m n : ℕ} → Fin m → Fin n → Fin (m * n) fin* {0} {n} () _ fin* {suc m} {0} zero () fin* {suc m} {suc n} zero b = zero fin* {suc m} {n} (suc a) b = fin+ b (fin* a b)
{ "alphanum_fraction": 0.477287874, "avg_line_length": 35.1745835904, "ext": "agda", "hexsha": "f01f961b9192cf9514ec50da9a26090e579682ad", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Pifextra.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Pifextra.agda", "max_line_length": 94, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Pifextra.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 106217, "size": 228072 }
{-# OPTIONS --warning=error --safe --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Numbers.Integers.Integers open import Numbers.Naturals.Semiring open import Numbers.Naturals.Subtraction open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Exponentiation open import Numbers.Primes.PrimeNumbers open import Maybe open import Semirings.Definition import Semirings.Solver open module NatSolver = Semirings.Solver ℕSemiring multiplicationNIsCommutative module LectureNotes.NumbersAndSets.Lecture1 where a-Na : (a : ℕ) → a -N' a ≡ yes 0 a-Na zero = refl a-Na (succ a) = a-Na a -N''lemma : (a b : ℕ) → (a<b : a ≤N b) → b -N' a ≡ yes (subtractionNResult.result (-N a<b)) -N''lemma zero (succ b) (inl x) = refl -N''lemma (succ a) (succ b) (inl x) = -N''lemma a b (inl (canRemoveSuccFrom<N x)) -N''lemma a b (inr x) rewrite x | a-Na b = ans where ans : yes 0 ≡ yes (subtractionNResult.result (-N (inr (refl {x = b})))) ans with -N (inr (refl {x = b})) ans | record { result = result ; pr = pr } with result ans | record { result = result ; pr = pr } | zero = refl ans | record { result = result ; pr = pr } | succ bl = exFalso (cannotAddAndEnlarge'' pr) -N'' : (a b : ℕ) (a<b : a ≤N b) → ℕ -N'' a b a<b with -N''lemma a b a<b ... | bl with b -N' a -N'' a b a<b | bl | yes x = x n3Bigger : (n : ℕ) → (n ≡ 0) || (n ≤N n ^N 3) n3Bigger n = exponentiationIncreases n 2 n3Bigger' : (n : ℕ) → n ≤N n ^N 3 n3Bigger' zero = inr refl n3Bigger' (succ n) with n3Bigger (succ n) n3Bigger' (succ n) | inr f = f -- How to use the semiring solver -- The process is very mechanical; I haven't yet worked out how to do reflection, -- so there's quite a bit of transcribing expressions into the Expr form. -- The first two arguments to from-to-by are totally mindless in construction. proof : (n : ℕ) → ((n *N n) +N ((2 *N n) +N 1)) ≡ (n +N 1) *N (n +N 1) proof n = from plus (times (const n) (const n)) (plus (times (succ (succ zero)) (const n)) (succ zero)) to times (plus (const n) (succ zero)) (plus (const n) (succ zero)) by applyEquality (λ i → succ (n *N n) +N (n +N i)) ((from (const n) to (plus (const n) zero) by refl))
{ "alphanum_fraction": 0.6525198939, "avg_line_length": 39, "ext": "agda", "hexsha": "bfd769631d9af42baaa5a8e5793be4db098ca12c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "LectureNotes/NumbersAndSets/Lecture1.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "LectureNotes/NumbersAndSets/Lecture1.agda", "max_line_length": 103, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "LectureNotes/NumbersAndSets/Lecture1.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 789, "size": 2262 }
------------------------------------------------------------------------------ -- Induction principles for Tree and Forest ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.Induction.InductionPrinciples where open import FOTC.Base open import FOTC.Base.List open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- These induction principles *not cover* the mutual structure of the -- types Tree and Rose (Bertot and Casterán, 2004, p. 401). -- Induction principle for Tree. Tree-ind : (A : D → Set) → (∀ d {ts} → Forest ts → A (node d ts)) → ∀ {t} → Tree t → A t Tree-ind A h (tree d Fts) = h d Fts -- Induction principle for Forest. Forest-ind : (A : D → Set) → A [] → (∀ {t ts} → Tree t → Forest ts → A ts → A (t ∷ ts)) → ∀ {ts} → Forest ts → A ts Forest-ind A A[] h fnil = A[] Forest-ind A A[] h (fcons Tt Fts) = h Tt Fts (Forest-ind A A[] h Fts) ------------------------------------------------------------------------------ -- References -- -- Bertot, Yves and Castéran, Pierre (2004). Interactive Theorem -- Proving and Program Development. Coq’Art: The Calculus of Inductive -- Constructions. Springer.
{ "alphanum_fraction": 0.4726904922, "avg_line_length": 37.075, "ext": "agda", "hexsha": "4a6e719d59c1cdf7109b53da90597f880b8bcb25", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/Induction/InductionPrinciples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 350, "size": 1483 }
{-# OPTIONS --without-K --safe #-} module Polynomial.Simple.Solver where open import Polynomial.Expr public open import Polynomial.Simple.AlmostCommutativeRing public hiding (-raw-almostCommutative⟶) open import Data.Vec hiding (_⊛_) open import Algebra.Solver.Ring.AlmostCommutativeRing using (-raw-almostCommutative⟶) open import Polynomial.Parameters open import Function open import Data.Maybe open import Data.Vec.N-ary open import Data.Bool using (Bool; true; false; T; if_then_else_) open import Data.Empty using (⊥-elim) module Ops {ℓ₁ ℓ₂} (ring : AlmostCommutativeRing ℓ₁ ℓ₂) where open AlmostCommutativeRing ring zero-homo : ∀ x → T (is-just (0≟ x)) → 0# ≈ x zero-homo x _ with 0≟ x zero-homo x _ | just p = p zero-homo x () | nothing homo : Homomorphism ℓ₁ ℓ₂ ℓ₁ ℓ₂ homo = record { coeffs = record { coeffs = AlmostCommutativeRing.rawRing ring ; Zero-C = λ x → is-just (0≟ x) } ; ring = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = -‿+-comm } } ; morphism = -raw-almostCommutative⟶ _ ; Zero-C⟶Zero-R = zero-homo } ⟦_⟧ : ∀ {n} → Expr Carrier n → Vec Carrier n → Carrier ⟦ Κ x ⟧ ρ = x ⟦ Ι x ⟧ ρ = lookup ρ x ⟦ x ⊕ y ⟧ ρ = ⟦ x ⟧ ρ + ⟦ y ⟧ ρ ⟦ x ⊗ y ⟧ ρ = ⟦ x ⟧ ρ * ⟦ y ⟧ ρ ⟦ ⊝ x ⟧ ρ = - ⟦ x ⟧ ρ ⟦ x ⊛ i ⟧ ρ = ⟦ x ⟧ ρ ^ i open import Polynomial.NormalForm.Definition (Homomorphism.coeffs homo) open import Polynomial.NormalForm.Operations (Homomorphism.coeffs homo) norm : ∀ {n} → Expr Carrier n → Poly n norm = go where go : ∀ {n} → Expr Carrier n → Poly n go (Κ x) = κ x go (Ι x) = ι x go (x ⊕ y) = go x ⊞ go y go (x ⊗ y) = go x ⊠ go y go (⊝ x) = ⊟ go x go (x ⊛ i) = go x ⊡ i ⟦_⇓⟧ : ∀ {n} → Expr Carrier n → Vec Carrier n → Carrier ⟦ expr ⇓⟧ = ⟦ norm expr ⟧ₚ where open import Polynomial.NormalForm.Semantics homo renaming (⟦_⟧ to ⟦_⟧ₚ) correct : ∀ {n} (expr : Expr Carrier n) ρ → ⟦ expr ⇓⟧ ρ ≈ ⟦ expr ⟧ ρ correct {n = n} = go where open import Polynomial.Homomorphism homo go : ∀ (expr : Expr Carrier n) ρ → ⟦ expr ⇓⟧ ρ ≈ ⟦ expr ⟧ ρ go (Κ x) ρ = κ-hom x ρ go (Ι x) ρ = ι-hom x ρ go (x ⊕ y) ρ = ⊞-hom (norm x) (norm y) ρ ⟨ trans ⟩ (go x ρ ⟨ +-cong ⟩ go y ρ) go (x ⊗ y) ρ = ⊠-hom (norm x) (norm y) ρ ⟨ trans ⟩ (go x ρ ⟨ *-cong ⟩ go y ρ) go (⊝ x) ρ = ⊟-hom (norm x) ρ ⟨ trans ⟩ -‿cong (go x ρ) go (x ⊛ i) ρ = ⊡-hom (norm x) i ρ ⟨ trans ⟩ pow-cong i (go x ρ) open import Relation.Binary.Reflection setoid Ι ⟦_⟧ ⟦_⇓⟧ correct public open import Data.Nat using (ℕ) open import Data.Product solve : ∀ {ℓ₁ ℓ₂} → (ring : AlmostCommutativeRing ℓ₁ ℓ₂) → (n : ℕ) → (f : N-ary n (Expr (AlmostCommutativeRing.Carrier ring) n) (Expr (AlmostCommutativeRing.Carrier ring) n × Expr (AlmostCommutativeRing.Carrier ring) n)) → Eqʰ n (AlmostCommutativeRing._≈_ ring) (curryⁿ (Ops.⟦_⇓⟧ ring (proj₁ (Ops.close ring n f)))) (curryⁿ (Ops.⟦_⇓⟧ ring (proj₂ (Ops.close ring n f)))) → Eq n (AlmostCommutativeRing._≈_ ring) (curryⁿ (Ops.⟦_⟧ ring (proj₁ (Ops.close ring n f)))) (curryⁿ (Ops.⟦_⟧ ring (proj₂ (Ops.close ring n f)))) solve ring = solve′ where open Ops ring renaming (solve to solve′) {-# INLINE solve #-} _⊜_ : ∀ {ℓ₁ ℓ₂} → (ring : AlmostCommutativeRing ℓ₁ ℓ₂) → (n : ℕ) → Expr (AlmostCommutativeRing.Carrier ring) n → Expr (AlmostCommutativeRing.Carrier ring) n → Expr (AlmostCommutativeRing.Carrier ring) n × Expr (AlmostCommutativeRing.Carrier ring) n _⊜_ _ _ = _,_ {-# INLINE _⊜_ #-}
{ "alphanum_fraction": 0.5992936702, "avg_line_length": 34.4018691589, "ext": "agda", "hexsha": "57d6779025865bb01c6625382e4fb15264eed648", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/Simple/Solver.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/Simple/Solver.agda", "max_line_length": 159, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/Simple/Solver.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 1473, "size": 3681 }
------------------------------------------------------------------------ -- A class of algebraic structures, based on non-recursive simple -- types, satisfies the property that isomorphic instances of a -- structure are equal (assuming univalence) ------------------------------------------------------------------------ -- In fact, isomorphism and equality are basically the same thing, and -- the main theorem can be instantiated with several different -- "universes", not only the one based on simple types. -- This module is similar to -- Univalence-axiom.Isomorphism-is-equality.Simple, but the -- definitions of isomorphism used below are perhaps closer to the -- "standard" ones. Carrier types also live in Type rather than Type₁ -- (at the cost of quite a bit of lifting). -- This module has been developed in collaboration with Thierry -- Coquand. {-# OPTIONS --without-K --safe #-} open import Equality module Univalence-axiom.Isomorphism-is-equality.Simple.Variant {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as B using (_↔_) open Derived-definitions-and-properties eq renaming (lower-extensionality to lower-ext) open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq hiding (id; _∘_) open import H-level eq open import H-level.Closure eq open import Logical-equivalence using (_⇔_; module _⇔_) open import Preimage eq open import Prelude as P hiding (id) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Universes with some extra stuff -- A record type packing up some assumptions. record Assumptions : Type₃ where field -- Univalence at three different levels. univ : Univalence (# 0) univ₁ : Univalence (# 1) univ₂ : Univalence (# 2) abstract -- Extensionality. ext : Extensionality (# 1) (# 1) ext = dependent-extensionality univ₂ univ₁ ext₀ : Extensionality (# 0) (# 0) ext₀ = dependent-extensionality univ₁ univ -- Universes with some extra stuff. record Universe : Type₃ where field -- Codes for something. U : Type₁ -- Interpretation of codes. El : U → Type → Type₁ -- A predicate, possibly specifying what it means for a bijection -- to be an isomorphism between two elements. Is-isomorphism : ∀ a {B C} → B ↔ C → El a B → El a C → Type₁ -- El a, seen as a predicate, respects equivalences (assuming -- univalence). resp : Assumptions → ∀ a {B C} → B ≃ C → El a B → El a C -- The resp function respects identities (assuming univalence). resp-id : (ass : Assumptions) → ∀ a {B} (x : El a B) → resp ass a Eq.id x ≡ x -- An alternative definition of Is-isomorphism, (possibly) defined -- using univalence. Is-isomorphism′ : Assumptions → ∀ a {B C} → B ↔ C → El a B → El a C → Type₁ Is-isomorphism′ ass a B↔C x y = resp ass a (Eq.↔⇒≃ B↔C) x ≡ y field -- Is-isomorphism and Is-isomorphism′ are isomorphic (assuming -- univalence). isomorphism-definitions-isomorphic : (ass : Assumptions) → ∀ a {B C} (B↔C : B ↔ C) {x y} → Is-isomorphism a B↔C x y ↔ Is-isomorphism′ ass a B↔C x y -- Another alternative definition of Is-isomorphism, defined using -- univalence. Is-isomorphism″ : Assumptions → ∀ a {B C} → B ↔ C → El a B → El a C → Type₁ Is-isomorphism″ ass a B↔C x y = subst (El a) (≃⇒≡ univ (Eq.↔⇒≃ B↔C)) x ≡ y where open Assumptions ass abstract -- Every element is isomorphic to itself, transported along the -- isomorphism. isomorphic-to-itself : (ass : Assumptions) → let open Assumptions ass in ∀ a {B C} (B↔C : B ↔ C) x → Is-isomorphism′ ass a B↔C x (subst (El a) (≃⇒≡ univ (Eq.↔⇒≃ B↔C)) x) isomorphic-to-itself ass a B↔C x = transport-theorem (El a) (resp ass a) (resp-id ass a) univ (Eq.↔⇒≃ B↔C) x where open Assumptions ass -- Is-isomorphism and Is-isomorphism″ are isomorphic (assuming -- univalence). isomorphism-definitions-isomorphic₂ : (ass : Assumptions) → ∀ a {B C} (B↔C : B ↔ C) {x y} → Is-isomorphism a B↔C x y ↔ Is-isomorphism″ ass a B↔C x y isomorphism-definitions-isomorphic₂ ass a B↔C {x} {y} = Is-isomorphism a B↔C x y ↝⟨ isomorphism-definitions-isomorphic ass a B↔C ⟩ Is-isomorphism′ ass a B↔C x y ↝⟨ ≡⇒↝ _ $ cong (λ z → z ≡ y) $ isomorphic-to-itself ass a B↔C x ⟩□ Is-isomorphism″ ass a B↔C x y □ ------------------------------------------------------------------------ -- A universe-indexed family of classes of structures module Class (Univ : Universe) where open Universe Univ -- Codes for structures. Code : Type₃ Code = -- A code. Σ U λ a → -- A proposition. (C : Set (# 0)) → El a ⌞ C ⌟ → Σ Type₁ λ P → -- The proposition should be propositional (assuming -- univalence). Assumptions → Is-proposition P -- Interpretation of the codes. The elements of "Instance c" are -- instances of the structure encoded by c. Instance : Code → Type₁ Instance (a , P) = -- A carrier set. Σ (Set (# 0)) λ C → -- An element. Σ (El a ⌞ C ⌟) λ x → -- The element should satisfy the proposition. proj₁ (P C x) -- The carrier type. Carrier : ∀ c → Instance c → Type Carrier _ I = ⌞ proj₁ I ⌟ -- The "element". element : ∀ c (I : Instance c) → El (proj₁ c) (Carrier c I) element _ I = proj₁ (proj₂ I) -- One can prove that two instances of a structure are equal by -- proving that the carrier types and "elements" (suitably -- transported) are equal (assuming univalence). instances-equal↔ : Assumptions → ∀ c {I₁ I₂} → (I₁ ≡ I₂) ↔ ∃ λ (C-eq : Carrier c I₁ ≡ Carrier c I₂) → subst (El (proj₁ c)) C-eq (element c I₁) ≡ element c I₂ instances-equal↔ ass (a , P) {(C₁ , S₁) , x₁ , p₁} {(C₂ , S₂) , x₂ , p₂} = ((C₁ , λ {_ _} → S₁) , x₁ , p₁) ≡ ((C₂ , λ {_ _} → S₂) , x₂ , p₂) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ bij ⟩ ((C₁ , x₁) , ((λ {_ _} → S₁) , p₁)) ≡ ((C₂ , x₂) , ((λ {_ _} → S₂) , p₂)) ↝⟨ inverse $ ignore-propositional-component prop ⟩ ((C₁ , x₁) ≡ (C₂ , x₂)) ↝⟨ inverse B.Σ-≡,≡↔≡ ⟩□ (∃ λ (C-eq : C₁ ≡ C₂) → subst (El a) C-eq x₁ ≡ x₂) □ where bij : Instance (a , P) ↔ Σ (Σ Type (El a)) λ { (C , x) → Σ (Is-set C) λ S → proj₁ (P (C , S) x) } bij = (Σ (Σ Type Is-set) λ { (C , S) → Σ (El a C) λ x → proj₁ (P (C , S) x) }) ↝⟨ inverse Σ-assoc ⟩ (Σ Type λ C → Σ (Is-set C) λ S → Σ (El a C) λ x → proj₁ (P (C , S) x)) ↝⟨ ∃-cong (λ _ → ∃-comm) ⟩ (Σ Type λ C → Σ (El a C) λ x → Σ (Is-set C) λ S → proj₁ (P (C , S) x)) ↝⟨ Σ-assoc ⟩□ (Σ (Σ Type (El a)) λ { (C , x) → Σ (Is-set C) λ S → proj₁ (P (C , S) x) }) □ prop : Is-proposition (Σ (Is-set C₂) λ S₂ → proj₁ (P (C₂ , S₂) x₂)) prop = Σ-closure 1 (H-level-propositional (Assumptions.ext₀ ass) 2) (λ S₂ → proj₂ (P (C₂ , S₂) x₂) ass) -- Structure isomorphisms. Isomorphic : ∀ c → Instance c → Instance c → Type₁ Isomorphic (a , _) ((C₁ , _) , x₁ , _) ((C₂ , _) , x₂ , _) = Σ (C₁ ↔ C₂) λ C₁↔C₂ → Is-isomorphism a C₁↔C₂ x₁ x₂ abstract -- The type of isomorphisms between two instances of a structure -- is isomorphic to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is isomorphic to equality. isomorphic↔equal : Assumptions → ∀ c {I₁ I₂} → Isomorphic c I₁ I₂ ↔ (I₁ ≡ I₂) isomorphic↔equal ass c {I₁} {I₂} = (∃ λ (C-eq : Carrier c I₁ ↔ Carrier c I₂) → Is-isomorphism (proj₁ c) C-eq (element c I₁) (element c I₂)) ↝⟨ ∃-cong (λ C-eq → isomorphism-definitions-isomorphic₂ ass (proj₁ c) C-eq) ⟩ (∃ λ (C-eq : Carrier c I₁ ↔ Carrier c I₂) → subst (El (proj₁ c)) (≃⇒≡ univ (Eq.↔⇒≃ C-eq)) (element c I₁) ≡ element c I₂) ↝⟨ Σ-cong (Eq.↔↔≃ ext₀ (proj₂ (proj₁ I₁))) (λ _ → _ □) ⟩ (∃ λ (C-eq : Carrier c I₁ ≃ Carrier c I₂) → subst (El (proj₁ c)) (≃⇒≡ univ C-eq) (element c I₁) ≡ element c I₂) ↝⟨ inverse $ Σ-cong (≡≃≃ univ) (λ C-eq → ≡⇒↝ _ $ sym $ cong (λ eq → subst (El (proj₁ c)) eq (element c I₁) ≡ element c I₂) (_≃_.left-inverse-of (≡≃≃ univ) C-eq)) ⟩ (∃ λ (C-eq : Carrier c I₁ ≡ Carrier c I₂) → subst (El (proj₁ c)) C-eq (element c I₁) ≡ element c I₂) ↝⟨ inverse $ instances-equal↔ ass c ⟩□ (I₁ ≡ I₂) □ where open Assumptions ass -- The first part of the from component of the preceding lemma is -- extensionally equal to a simple function. (The codomain of the -- second part is propositional whenever El (proj₁ c) applied to -- either carrier type is a set.) proj₁-from-isomorphic↔equal : ∀ ass c {I J} (I≡J : I ≡ J) → proj₁ (_↔_.from (isomorphic↔equal ass c) I≡J) ≡ _≃_.bijection (≡⇒≃ (cong (proj₁ ∘ proj₁) I≡J)) proj₁-from-isomorphic↔equal ass (a , P) I≡J = let A = Instance (a , P) B = Σ (∃ (El a)) λ { (C , x) → ∃ λ (S : Is-set C) → proj₁ (P (C , S) x) } in cong (_≃_.bijection ∘ ≡⇒≃) ( proj₁ (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong {B = B} (λ { ((C , S) , x , p) → (C , x) , S , p }) I≡J)))) ≡⟨ cong (proj₁ ∘ Σ-≡,≡←≡) $ proj₁-Σ-≡,≡←≡ _ ⟩ proj₁ (Σ-≡,≡←≡ (cong proj₁ (cong {B = B} (λ { ((C , S) , x , p) → (C , x) , S , p }) I≡J))) ≡⟨ cong (proj₁ ∘ Σ-≡,≡←≡) $ cong-∘ {B = B} proj₁ (λ { ((C , S) , x , p) → (C , x) , S , p }) _ ⟩ proj₁ (Σ-≡,≡←≡ (cong {A = A} (λ { ((C , S) , x , p) → C , x }) I≡J)) ≡⟨ proj₁-Σ-≡,≡←≡ _ ⟩ cong proj₁ (cong {A = A} (λ { ((C , S) , x , p) → C , x }) I≡J) ≡⟨ cong-∘ {A = A} proj₁ (λ { ((C , S) , x , p) → C , x }) _ ⟩∎ cong (proj₁ ∘ proj₁) I≡J ∎) -- The type of (lifted) isomorphisms between two instances of a -- structure is equal to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is equal to equality. isomorphic≡equal : Assumptions → ∀ c {I₁ I₂} → Isomorphic c I₁ I₂ ≡ (I₁ ≡ I₂) isomorphic≡equal ass c {I₁} {I₂} = ≃⇒≡ univ₁ $ Eq.↔⇒≃ (isomorphic↔equal ass c) where open Assumptions ass ------------------------------------------------------------------------ -- A universe of non-recursive, simple types -- Codes for types. infixr 20 _⊗_ infixr 15 _⊕_ infixr 10 _⇾_ data U : Type₁ where id prop : U k : Type → U _⇾_ _⊕_ _⊗_ : U → U → U -- Interpretation of types. El : U → Type₁ → Type₁ El id B = B El prop B = Proposition (# 0) El (k A) B = ↑ _ A El (a ⇾ b) B = El a B → El b B El (a ⊕ b) B = El a B ⊎ El b B El (a ⊗ b) B = El a B × El b B -- El a preserves equivalences (assuming extensionality). cast : Extensionality (# 1) (# 1) → ∀ a {B C} → B ≃ C → El a B ≃ El a C cast ext id B≃C = B≃C cast ext prop B≃C = Eq.id cast ext (k A) B≃C = Eq.id cast ext (a ⇾ b) B≃C = →-cong ext (cast ext a B≃C) (cast ext b B≃C) cast ext (a ⊕ b) B≃C = cast ext a B≃C ⊎-cong cast ext b B≃C cast ext (a ⊗ b) B≃C = cast ext a B≃C ×-cong cast ext b B≃C abstract -- The cast function respects identities (assuming extensionality). cast-id : (ext : Extensionality (# 1) (# 1)) → ∀ a {B} → cast ext a (Eq.id {A = B}) ≡ Eq.id cast-id ext id = refl _ cast-id ext prop = refl _ cast-id ext (k A) = refl _ cast-id ext (a ⇾ b) = Eq.lift-equality ext $ cong _≃_.to $ cong₂ (→-cong ext) (cast-id ext a) (cast-id ext b) cast-id ext (a ⊗ b) = Eq.lift-equality ext $ cong _≃_.to $ cong₂ _×-cong_ (cast-id ext a) (cast-id ext b) cast-id ext (a ⊕ b) = cast ext a Eq.id ⊎-cong cast ext b Eq.id ≡⟨ cong₂ _⊎-cong_ (cast-id ext a) (cast-id ext b) ⟩ Eq.⟨ [ inj₁ , inj₂ ] , _ ⟩ ≡⟨ Eq.lift-equality ext (apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) ⟩∎ Eq.id ∎ -- The property of being an isomorphism between two elements. Is-isomorphism : ∀ a {B C} → B ↔ C → El a B → El a C → Type₁ Is-isomorphism id B↔C = λ x y → _↔_.to B↔C x ≡ y Is-isomorphism prop B↔C = λ { (P , _) (Q , _) → ↑ _ (P ⇔ Q) } Is-isomorphism (k A) B↔C = λ x y → x ≡ y Is-isomorphism (a ⇾ b) B↔C = Is-isomorphism a B↔C →-rel Is-isomorphism b B↔C Is-isomorphism (a ⊕ b) B↔C = Is-isomorphism a B↔C ⊎-rel Is-isomorphism b B↔C Is-isomorphism (a ⊗ b) B↔C = Is-isomorphism a B↔C ×-rel Is-isomorphism b B↔C -- Another definition of "being an isomorphism" (defined using -- extensionality). Is-isomorphism′ : Extensionality (# 1) (# 1) → ∀ a {B C} → B ↔ C → El a B → El a C → Type₁ Is-isomorphism′ ext a B↔C x y = _≃_.to (cast ext a (Eq.↔⇒≃ B↔C)) x ≡ y abstract -- The two definitions of "being an isomorphism" are "isomorphic" -- (in bijective correspondence), assuming univalence. isomorphism-definitions-isomorphic : (ass : Assumptions) → let open Assumptions ass in ∀ a {B C} (B↔C : B ↔ C) {x y} → Is-isomorphism a B↔C x y ↔ Is-isomorphism′ ext a B↔C x y isomorphism-definitions-isomorphic ass id B↔C {x} {y} = (_↔_.to B↔C x ≡ y) □ isomorphism-definitions-isomorphic ass prop B↔C {P} {Q} = ↑ _ (proj₁ P ⇔ proj₁ Q) ↝⟨ B.↑↔ ⟩ (proj₁ P ⇔ proj₁ Q) ↝⟨ Eq.⇔↔≃ ext₀ (proj₂ P) (proj₂ Q) ⟩ (proj₁ P ≃ proj₁ Q) ↔⟨ inverse $ ≡≃≃ univ ⟩ (proj₁ P ≡ proj₁ Q) ↝⟨ ignore-propositional-component (H-level-propositional ext₀ 1) ⟩□ (P ≡ Q) □ where open Assumptions ass isomorphism-definitions-isomorphic ass (k A) B↔C {x} {y} = (x ≡ y) □ isomorphism-definitions-isomorphic ass (a ⇾ b) B↔C {f} {g} = let B≃C = Eq.↔⇒≃ B↔C in (∀ x y → Is-isomorphism a B↔C x y → Is-isomorphism b B↔C (f x) (g y)) ↝⟨ ∀-cong ext (λ _ → ∀-cong ext λ _ → →-cong ext (isomorphism-definitions-isomorphic ass a B↔C) (isomorphism-definitions-isomorphic ass b B↔C)) ⟩ (∀ x y → to (cast ext a B≃C) x ≡ y → to (cast ext b B≃C) (f x) ≡ g y) ↝⟨ inverse $ ∀-cong ext (λ x → ∀-intro (λ y _ → to (cast ext b B≃C) (f x) ≡ g y) ext) ⟩ (∀ x → to (cast ext b B≃C) (f x) ≡ g (to (cast ext a B≃C) x)) ↔⟨ Eq.extensionality-isomorphism ext ⟩ (to (cast ext b B≃C) ∘ f ≡ g ∘ to (cast ext a B≃C)) ↝⟨ inverse $ ∘from≡↔≡∘to ext (cast ext a B≃C) ⟩□ (to (cast ext b B≃C) ∘ f ∘ from (cast ext a B≃C) ≡ g) □ where open _≃_ open Assumptions ass isomorphism-definitions-isomorphic ass (a ⊕ b) B↔C {inj₁ x} {inj₁ y} = let B≃C = Eq.↔⇒≃ B↔C in Is-isomorphism a B↔C x y ↝⟨ isomorphism-definitions-isomorphic ass a B↔C ⟩ (to (cast ext a B≃C) x ≡ y) ↝⟨ B.≡↔inj₁≡inj₁ ⟩□ (inj₁ (to (cast ext a B≃C) x) ≡ inj₁ y) □ where open _≃_ open Assumptions ass isomorphism-definitions-isomorphic ass (a ⊕ b) B↔C {inj₂ x} {inj₂ y} = let B≃C = Eq.↔⇒≃ B↔C in Is-isomorphism b B↔C x y ↝⟨ isomorphism-definitions-isomorphic ass b B↔C ⟩ (to (cast ext b B≃C) x ≡ y) ↝⟨ B.≡↔inj₂≡inj₂ ⟩□ (inj₂ (to (cast ext b B≃C) x) ≡ inj₂ y) □ where open _≃_ open Assumptions ass isomorphism-definitions-isomorphic ass (a ⊕ b) B↔C {inj₁ x} {inj₂ y} = ⊥ ↝⟨ B.⊥↔uninhabited ⊎.inj₁≢inj₂ ⟩□ (inj₁ _ ≡ inj₂ _) □ isomorphism-definitions-isomorphic ass (a ⊕ b) B↔C {inj₂ x} {inj₁ y} = ⊥ ↝⟨ B.⊥↔uninhabited (⊎.inj₁≢inj₂ ∘ sym) ⟩□ (inj₂ _ ≡ inj₁ _) □ isomorphism-definitions-isomorphic ass (a ⊗ b) B↔C {x , u} {y , v} = let B≃C = Eq.↔⇒≃ B↔C in Is-isomorphism a B↔C x y × Is-isomorphism b B↔C u v ↝⟨ isomorphism-definitions-isomorphic ass a B↔C ×-cong isomorphism-definitions-isomorphic ass b B↔C ⟩ (to (cast ext a B≃C) x ≡ y × to (cast ext b B≃C) u ≡ v) ↝⟨ ≡×≡↔≡ ⟩□ ((to (cast ext a B≃C) x , to (cast ext b B≃C) u) ≡ (y , v)) □ where open _≃_ open Assumptions ass -- The universe above is a "universe with some extra stuff". simple : Universe simple = record { U = U ; El = λ a → El a ∘ ↑ _ ; Is-isomorphism = λ a B↔C → Is-isomorphism a (↑-cong B↔C) ; resp = λ ass a → _≃_.to ∘ cast (ext ass) a ∘ ↑-cong ; resp-id = λ ass a x → cong (λ f → _≃_.to f x) ( cast (ext ass) a (↑-cong Eq.id) ≡⟨ cong (cast (ext ass) a) $ Eq.lift-equality (ext ass) (refl _) ⟩ cast (ext ass) a Eq.id ≡⟨ cast-id (ext ass) a ⟩∎ Eq.id ∎) ; isomorphism-definitions-isomorphic = λ ass a B↔C {x y} → Is-isomorphism a (↑-cong B↔C) x y ↝⟨ isomorphism-definitions-isomorphic ass a (↑-cong B↔C) ⟩ (_≃_.to (cast (ext ass) a (Eq.↔⇒≃ (↑-cong B↔C))) x ≡ y) ↝⟨ ≡⇒↝ _ $ cong (λ eq → _≃_.to (cast (ext ass) a eq) x ≡ y) $ Eq.lift-equality (ext ass) (refl _) ⟩□ (_≃_.to (cast (ext ass) a (↑-cong (Eq.↔⇒≃ B↔C))) x ≡ y) □ } where open Assumptions -- Let us use this universe in the examples below. open Class simple ------------------------------------------------------------------------ -- An example: monoids monoid : Code monoid = -- Binary operation. (id ⇾ id ⇾ id) ⊗ -- Identity. id , λ { (_ , M-set) (_∙_ , e) → (-- Left and right identity laws. (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × -- Associativity. (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))) , -- The laws are propositional (assuming extensionality). λ ass → let open Assumptions ass in ×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 M-set) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 M-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 M-set)) } -- The interpretation of the code is reasonable. Instance-monoid : Instance monoid ≡ Σ (Set (# 0)) λ { (M , _) → Σ ((↑ _ M → ↑ _ M → ↑ _ M) × ↑ _ M) λ { (_∙_ , e) → (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) }} Instance-monoid = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-monoid : ∀ {M₁} {S₁ : Is-set M₁} {_∙₁_ e₁ laws₁} {M₂} {S₂ : Is-set M₂} {_∙₂_ e₂ laws₂} → Isomorphic monoid ((M₁ , S₁) , (_∙₁_ , e₁) , laws₁) ((M₂ , S₂) , (_∙₂_ , e₂) , laws₂) ≡ Σ (M₁ ↔ M₂) λ M₁↔M₂ → let open _↔_ (↑-cong M₁↔M₂) in (∀ x y → to x ≡ y → ∀ u v → to u ≡ v → to (x ∙₁ u) ≡ (y ∙₂ v)) × to e₁ ≡ e₂ Isomorphic-monoid = refl _ -- Note that this definition of isomorphism is isomorphic to a more -- standard one (assuming extensionality). Isomorphism-monoid-isomorphic-to-standard : Extensionality (# 1) (# 1) → ∀ {M₁} {S₁ : Is-set M₁} {_∙₁_ e₁ laws₁} {M₂} {S₂ : Is-set M₂} {_∙₂_ e₂ laws₂} → Isomorphic monoid ((M₁ , S₁) , (_∙₁_ , e₁) , laws₁) ((M₂ , S₂) , (_∙₂_ , e₂) , laws₂) ↔ Σ (M₁ ↔ M₂) λ M₁↔M₂ → let open _↔_ (↑-cong M₁↔M₂) in (∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) × to e₁ ≡ e₂ Isomorphism-monoid-isomorphic-to-standard ext {M₁} {S₁} {_∙₁_} {e₁} {M₂ = M₂} {_∙₂_ = _∙₂_} {e₂} = (Σ (M₁ ↔ M₂) λ M₁↔M₂ → let open _↔_ (↑-cong M₁↔M₂) in (∀ x y → to x ≡ y → ∀ u v → to u ≡ v → to (x ∙₁ u) ≡ (y ∙₂ v)) × to e₁ ≡ e₂) ↝⟨ inverse $ ∃-cong (λ _ → (∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ×-cong (_ □)) ⟩ (Σ (M₁ ↔ M₂) λ M₁↔M₂ → let open _↔_ (↑-cong M₁↔M₂) in (∀ x u v → to u ≡ v → to (x ∙₁ u) ≡ (to x ∙₂ v)) × to e₁ ≡ e₂) ↝⟨ inverse $ ∃-cong (λ _ → (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ×-cong (_ □)) ⟩□ (Σ (M₁ ↔ M₂) λ M₁↔M₂ → let open _↔_ (↑-cong M₁↔M₂) in (∀ x u → to (x ∙₁ u) ≡ (to x ∙₂ to u)) × to e₁ ≡ e₂) □ ------------------------------------------------------------------------ -- An example: posets poset : Code poset = -- The ordering relation. (id ⇾ id ⇾ prop) , λ { (P , P-set) Le → let _≤_ : ↑ _ P → ↑ _ P → Type _≤_ x y = proj₁ (Le x y) in -- Reflexivity. ((∀ x → x ≤ x) × -- Transitivity. (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × -- Antisymmetry. (∀ x y → x ≤ y → y ≤ x → x ≡ y)) , λ ass → let open Assumptions ass in ×-closure 1 (Π-closure (lower-ext (# 0) _ ext) 1 λ _ → proj₂ (Le _ _)) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure (lower-ext (# 0) _ ext) 1 λ _ → Π-closure ext₀ 1 λ _ → Π-closure ext₀ 1 λ _ → proj₂ (Le _ _)) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure (lower-ext _ (# 0) ext) 1 λ _ → Π-closure (lower-ext _ (# 0) ext) 1 λ _ → ↑-closure 2 P-set)) } -- The interpretation of the code is reasonable. Instance-poset : Instance poset ≡ Σ (Set (# 0)) λ { (P , _) → Σ (↑ _ P → ↑ _ P → Proposition (# 0)) λ Le → let _≤_ : ↑ _ P → ↑ _ P → Type _≤_ x y = proj₁ (Le x y) in (∀ x → x ≤ x) × (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × (∀ x y → x ≤ y → y ≤ x → x ≡ y) } Instance-poset = refl _ -- The notion of isomorphism that we get is also reasonable. It is the -- usual notion of "order isomorphism". Isomorphic-poset : ∀ {P₁} {S₁ : Is-set P₁} {Le₁ laws₁} {P₂} {S₂ : Is-set P₂} {Le₂ laws₂} → let _≤₁_ : ↑ _ P₁ → ↑ _ P₁ → Type _≤₁_ x y = proj₁ (Le₁ x y) _≤₂_ : ↑ _ P₂ → ↑ _ P₂ → Type _≤₂_ x y = proj₁ (Le₂ x y) in Isomorphic poset ((P₁ , S₁) , Le₁ , laws₁) ((P₂ , S₂) , Le₂ , laws₂) ≡ Σ (P₁ ↔ P₂) λ P₁↔P₂ → let open _↔_ (↑-cong P₁↔P₂) in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ⇔ (b ≤₂ d)) Isomorphic-poset = refl _ ------------------------------------------------------------------------ -- An example: discrete fields -- Discrete fields. discrete-field : Code discrete-field = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) ⊗ -- Multiplicative inverse (a partial operation). (id ⇾ k ⊤ ⊕ id) , λ { (_ , F-set) (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → -- Associativity. ((∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Zero and one are distinct. 0# ≢ 1# × -- Inverse laws. (∀ x → (x + (- x)) ≡ 0#) × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) , λ ass → let open Assumptions ass in ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext) 1 λ _ → ⊥-propositional) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 F-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 F-set)))))))))) } -- The interpretation of the code is reasonable. Instance-discrete-field : Instance discrete-field ≡ Σ (Set (# 0)) λ { (F , _) → Σ ((↑ _ F → ↑ _ F → ↑ _ F) × ↑ _ F × (↑ _ F → ↑ _ F → ↑ _ F) × ↑ _ F × (↑ _ F → ↑ _ F) × (↑ _ F → ↑ (# 1) ⊤ ⊎ ↑ _ F)) λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × 0# ≢ 1# × (∀ x → (x + (- x)) ≡ 0#) × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) }} Instance-discrete-field = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-discrete-field : ∀ {F₁} {S₁ : Is-set F₁} {_+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁} {F₂} {S₂ : Is-set F₂} {_+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} → Isomorphic discrete-field ((F₁ , S₁) , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁) ((F₂ , S₂) , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂) ≡ Σ (F₁ ↔ F₂) λ F₁↔F₂ → let open _↔_ (↑-cong F₁↔F₂) in (∀ x y → to x ≡ y → ∀ u v → to u ≡ v → to (x +₁ u) ≡ (y +₂ v)) × to 0₁ ≡ 0₂ × (∀ x y → to x ≡ y → ∀ u v → to u ≡ v → to (x *₁ u) ≡ (y *₂ v)) × to 1₁ ≡ 1₂ × (∀ x y → to x ≡ y → to (-₁ x) ≡ (-₂ y)) × (∀ x y → to x ≡ y → ((λ _ _ → lift tt ≡ lift tt) ⊎-rel (λ u v → to u ≡ v)) (x ⁻¹₁) (y ⁻¹₂)) Isomorphic-discrete-field = refl _ ------------------------------------------------------------------------ -- An example: vector spaces over discrete fields -- Vector spaces over a particular discrete field. vector-space : Instance discrete-field → Code vector-space ((F , _) , (_+F_ , _ , _*F_ , 1F , _ , _) , _) = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Scalar multiplication. (k F ⇾ id ⇾ id) ⊗ -- Zero vector. id ⊗ -- Additive inverse. (id ⇾ id) , λ { (_ , V-set) (_+_ , _*_ , 0V , -_) → -- Associativity. ((∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × -- Commutativity. (∀ u v → (u + v) ≡ (v + u)) × -- Distributivity. (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × -- Identity laws. (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × -- Inverse law. (∀ v → (v + (- v)) ≡ 0V)) , λ ass → let open Assumptions ass in ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 V-set) (×-closure 1 (Π-closure ext 1 λ _ → ↑-closure 2 V-set) (Π-closure ext 1 λ _ → ↑-closure 2 V-set))))))) } -- The interpretation of the code is reasonable. Instance-vector-space : ∀ {F} {S : Is-set F} {_+F_ 0F _*F_ 1F -F_ _⁻¹F laws} → Instance (vector-space ((F , S) , (_+F_ , 0F , _*F_ , 1F , -F_ , _⁻¹F) , laws)) ≡ Σ (Set (# 0)) λ { (V , _) → Σ ((↑ _ V → ↑ _ V → ↑ _ V) × (↑ _ F → ↑ _ V → ↑ _ V) × ↑ _ V × (↑ _ V → ↑ _ V)) λ { (_+_ , _*_ , 0V , -_) → (∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × (∀ u v → (u + v) ≡ (v + u)) × (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × (∀ v → (v + (- v)) ≡ 0V) }} Instance-vector-space = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-vector-space : ∀ {F V₁} {S₁ : Is-set V₁} {_+₁_ _*₁_ 0₁ -₁_ laws₁} {V₂} {S₂ : Is-set V₂} {_+₂_ _*₂_ 0₂ -₂_ laws₂} → Isomorphic (vector-space F) ((V₁ , S₁) , (_+₁_ , _*₁_ , 0₁ , -₁_) , laws₁) ((V₂ , S₂) , (_+₂_ , _*₂_ , 0₂ , -₂_) , laws₂) ≡ Σ (V₁ ↔ V₂) λ V₁↔V₂ → let open _↔_ (↑-cong V₁↔V₂) in (∀ a b → to a ≡ b → ∀ u v → to u ≡ v → to (a +₁ u) ≡ (b +₂ v)) × (∀ x y → x ≡ y → ∀ u v → to u ≡ v → to (x *₁ u) ≡ (y *₂ v)) × to 0₁ ≡ 0₂ × (∀ u v → to u ≡ v → to (-₁ u) ≡ (-₂ v)) Isomorphic-vector-space = refl _ ------------------------------------------------------------------------ -- An example: sets equipped with fixpoint operators set-with-fixpoint-operator : Code set-with-fixpoint-operator = (id ⇾ id) ⇾ id , λ { (_ , F-set) fix → -- The fixpoint operator property. (∀ f → f (fix f) ≡ fix f) , λ ass → let open Assumptions ass in Π-closure ext 1 λ _ → ↑-closure 2 F-set } -- The usual unfolding lemmas. Instance-set-with-fixpoint-operator : Instance set-with-fixpoint-operator ≡ Σ (Set (# 0)) λ { (F , _) → Σ ((↑ _ F → ↑ _ F) → ↑ _ F) λ fix → ∀ f → f (fix f) ≡ fix f } Instance-set-with-fixpoint-operator = refl _ Isomorphic-set-with-fixpoint-operator : ∀ {F₁} {S₁ : Is-set F₁} {fix₁ law₁} {F₂} {S₂ : Is-set F₂} {fix₂ law₂} → Isomorphic set-with-fixpoint-operator ((F₁ , S₁) , fix₁ , law₁) ((F₂ , S₂) , fix₂ , law₂) ≡ Σ (F₁ ↔ F₂) λ F₁↔F₂ → let open _↔_ (↑-cong F₁↔F₂) in ∀ f g → (∀ x y → to x ≡ y → to (f x) ≡ g y) → to (fix₁ f) ≡ fix₂ g Isomorphic-set-with-fixpoint-operator = refl _
{ "alphanum_fraction": 0.4544647232, "avg_line_length": 34.0521376434, "ext": "agda", "hexsha": "a4d40ec61c6a585dc56e4458102e0d0ad16a71ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple/Variant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple/Variant.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple/Variant.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 12287, "size": 32656 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LogicalFramework.Existential where module LF where postulate D : Set -- Disjunction. _∨_ : Set → Set → Set inj₁ : {A B : Set} → A → A ∨ B inj₂ : {A B : Set} → B → A ∨ B case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C -- The existential quantifier type on D. ∃ : (A : D → Set) → Set _,_ : {A : D → Set}(t : D) → A t → ∃ A ∃-proj₁ : {A : D → Set} → ∃ A → D ∃-proj₂ : {A : D → Set}(h : ∃ A) → A (∃-proj₁ h) ∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B syntax ∃ (λ x → e) = ∃[ x ] e module FOL-Examples where -- Using the projections. ∃∀₁ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y ∃∀₁ h y = ∃-proj₁ h , (∃-proj₂ h) y ∃∨₁ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x) ∃∨₁ h = case (λ Ax → inj₁ (∃-proj₁ h , Ax)) (λ Bx → inj₂ (∃-proj₁ h , Bx)) (∃-proj₂ h) -- Using the elimination. ∃∀₂ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y ∃∀₂ h y = ∃-elim h (λ {x} ah → x , ah y) ∃∨₂ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x) ∃∨₂ h = ∃-elim h (λ {x} ah → case (λ Ax → inj₁ (x , Ax)) (λ Bx → inj₂ (x , Bx)) ah) module NonFOL-Examples where -- Using the projections. non-FOL₁ : {A : D → Set} → ∃ A → D non-FOL₁ h = ∃-proj₁ h -- Using the elimination. non-FOL₂ : {A : D → Set} → ∃ A → D non-FOL₂ h = ∃-elim h (λ {x} _ → x) module Inductive where open import Common.FOL.FOL -- The existential proyections. ∃-proj₁ : ∀ {A} → ∃ A → D ∃-proj₁ (x , _) = x ∃-proj₂ : ∀ {A} → (h : ∃ A) → A (∃-proj₁ h) ∃-proj₂ (_ , Ax) = Ax -- The existential elimination. ∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B ∃-elim (_ , Ax) h = h Ax module FOL-Examples where -- Using the projections. ∃∀₁ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y ∃∀₁ h y = ∃-proj₁ h , (∃-proj₂ h) y ∃∨₁ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x) ∃∨₁ h = case (λ Ax → inj₁ (∃-proj₁ h , Ax)) (λ Bx → inj₂ (∃-proj₁ h , Bx)) (∃-proj₂ h) -- Using the elimination. ∃∀₂ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y ∃∀₂ h y = ∃-elim h (λ {x} ah → x , ah y) ∃∨₂ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x) ∃∨₂ h = ∃-elim h (λ {x} ah → case (λ Ax → inj₁ (x , Ax)) (λ Bx → inj₂ (x , Bx)) ah) -- Using pattern matching. ∃∀₃ : {A : D → D → Set} → ∃[ x ](∀ y → A x y) → ∀ y → ∃[ x ] A x y ∃∀₃ (x , Ax) y = x , Ax y ∃∨₃ : {A B : D → Set} → ∃[ x ](A x ∨ B x) → (∃[ x ] A x) ∨ (∃[ x ] B x) ∃∨₃ (x , inj₁ Ax) = inj₁ (x , Ax) ∃∨₃ (x , inj₂ Bx) = inj₂ (x , Bx) module NonFOL-Examples where -- Using the projections. non-FOL₁ : {A : D → Set} → ∃ A → D non-FOL₁ h = ∃-proj₁ h -- Using the elimination. non-FOL₂ : {A : D → Set} → ∃ A → D non-FOL₂ h = ∃-elim h (λ {x} _ → x) -- Using the pattern matching. non-FOL₃ : {A : D → Set} → ∃ A → D non-FOL₃ (x , _) = x
{ "alphanum_fraction": 0.388872874, "avg_line_length": 31.2522522523, "ext": "agda", "hexsha": "1a06f1ca47dc9b4943297b138f9ba956e2d743d1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/LogicalFramework/Existential.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/LogicalFramework/Existential.agda", "max_line_length": 75, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/LogicalFramework/Existential.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1547, "size": 3469 }
module Prelude where open import Agda.Primitive public using (_⊔_) renaming (lsuc to ↑_) -- Built-in implication. id : ∀ {ℓ} {X : Set ℓ} → X → X id x = x const : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X → Y → X const x y = x flip : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y → Z) → Y → X → Z flip P y x = P x y ap : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y → Z) → (X → Y) → X → Z ap f g x = f x (g x) infixr 9 _∘_ _∘_ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (Y → Z) → (X → Y) → X → Z f ∘ g = λ x → f (g x) refl→ : ∀ {ℓ} {X : Set ℓ} → X → X refl→ = id trans→ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (X → Y) → (Y → Z) → X → Z trans→ = flip _∘_ -- Built-in verum. open import Agda.Builtin.Unit public using (⊤) renaming (tt to ∙) -- Falsum. data ⊥ : Set where {-# HASKELL data AgdaEmpty #-} {-# COMPILED_DATA ⊥ MAlonzo.Code.Data.Empty.AgdaEmpty #-} elim⊥ : ∀ {ℓ} {X : Set ℓ} → ⊥ → X elim⊥ () -- Negation. infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ X = X → ⊥ _↯_ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X → ¬ X → Y p ↯ ¬p = elim⊥ (¬p p) -- Built-in equality. open import Agda.Builtin.Equality public using (_≡_ ; refl) infix 4 _≢_ _≢_ : ∀ {ℓ} {X : Set ℓ} → X → X → Set ℓ x ≢ x′ = ¬ (x ≡ x′) trans : ∀ {ℓ} {X : Set ℓ} {x x′ x″ : X} → x ≡ x′ → x′ ≡ x″ → x ≡ x″ trans refl refl = refl sym : ∀ {ℓ} {X : Set ℓ} {x x′ : X} → x ≡ x′ → x′ ≡ x sym refl = refl subst : ∀ {ℓ ℓ′} {X : Set ℓ} → (P : X → Set ℓ′) → ∀ {x x′} → x ≡ x′ → P x → P x′ subst P refl p = p cong : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → (f : X → Y) → ∀ {x x′} → x ≡ x′ → f x ≡ f x′ cong f refl = refl cong² : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → (f : X → Y → Z) → ∀ {x x′ y y′} → x ≡ x′ → y ≡ y′ → f x y ≡ f x′ y′ cong² f refl refl = refl cong³ : ∀ {ℓ ℓ′ ℓ″ ℓ‴} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} {A : Set ℓ‴} → (f : X → Y → Z → A) → ∀ {x x′ y y′ z z′} → x ≡ x′ → y ≡ y′ → z ≡ z′ → f x y z ≡ f x′ y′ z′ cong³ f refl refl refl = refl -- Equational reasoning with built-in equality. module ≡-Reasoning {ℓ} {X : Set ℓ} where infix 1 begin_ begin_ : ∀ {x x′ : X} → x ≡ x′ → x ≡ x′ begin p = p infixr 2 _≡⟨⟩_ _≡⟨⟩_ : ∀ (x {x′} : X) → x ≡ x′ → x ≡ x′ x ≡⟨⟩ p = p infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ (x {x′ x″} : X) → x ≡ x′ → x′ ≡ x″ → x ≡ x″ x ≡⟨ p ⟩ q = trans p q infix 3 _∎ _∎ : ∀ (x : X) → x ≡ x x ∎ = refl open ≡-Reasoning public -- Constructive existence. infixl 5 _,_ record Σ {ℓ ℓ′} (X : Set ℓ) (Y : X → Set ℓ′) : Set (ℓ ⊔ ℓ′) where constructor _,_ field π₁ : X π₂ : Y π₁ open Σ public -- Conjunction. infixr 2 _∧_ _∧_ : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′) X ∧ Y = Σ X (λ x → Y) -- Disjunction. infixr 1 _∨_ data _∨_ {ℓ ℓ′} (X : Set ℓ) (Y : Set ℓ′) : Set (ℓ ⊔ ℓ′) where ι₁ : X → X ∨ Y ι₂ : Y → X ∨ Y {-# HASKELL type AgdaEither _ _ x y = Either x y #-} {-# COMPILED_DATA _∨_ MAlonzo.Code.Data.Sum.AgdaEither Left Right #-} elim∨ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → X ∨ Y → (X → Z) → (Y → Z) → Z elim∨ (ι₁ x) f g = f x elim∨ (ι₂ y) f g = g y -- Equivalence. infix 3 _↔_ _↔_ : ∀ {ℓ ℓ′} → (X : Set ℓ) (Y : Set ℓ′) → Set (ℓ ⊔ ℓ′) X ↔ Y = (X → Y) ∧ (Y → X) infix 3 _↮_ _↮_ : ∀ {ℓ ℓ′} → (X : Set ℓ) (Y : Set ℓ′) → Set (ℓ ⊔ ℓ′) X ↮ Y = ¬ (X ↔ Y) refl↔ : ∀ {ℓ} {X : Set ℓ} → X ↔ X refl↔ = refl→ , refl→ trans↔ : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} → X ↔ Y → Y ↔ Z → X ↔ Z trans↔ (P , Q) (P′ , Q′) = trans→ P P′ , trans→ Q′ Q sym↔ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X ↔ Y → Y ↔ X sym↔ (P , Q) = Q , P antisym→ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → ((X → Y) ∧ (Y → X)) ≡ (X ↔ Y) antisym→ = refl ≡→↔ : ∀ {ℓ} {X Y : Set ℓ} → X ≡ Y → X ↔ Y ≡→↔ refl = refl↔ -- Equational reasoning with equivalence. module ↔-Reasoning where infix 1 begin↔_ begin↔_ : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → X ↔ Y → X ↔ Y begin↔ P = P infixr 2 _↔⟨⟩_ _↔⟨⟩_ : ∀ {ℓ ℓ′} → (X : Set ℓ) → {Y : Set ℓ′} → X ↔ Y → X ↔ Y X ↔⟨⟩ P = P infixr 2 _≡→↔⟨⟩_ _≡→↔⟨⟩_ : ∀ {ℓ} → (X : Set ℓ) → {Y : Set ℓ} → X ≡ Y → X ↔ Y X ≡→↔⟨⟩ P = ≡→↔ P infixr 2 _↔⟨_⟩_ _↔⟨_⟩_ : ∀ {ℓ ℓ′ ℓ″} → (X : Set ℓ) → {Y : Set ℓ′} {Z : Set ℓ″} → X ↔ Y → Y ↔ Z → X ↔ Z X ↔⟨ P ⟩ Q = trans↔ P Q infix 3 _∎↔ _∎↔ : ∀ {ℓ} → (X : Set ℓ) → X ↔ X X ∎↔ = refl↔ open ↔-Reasoning public -- Booleans. open import Agda.Builtin.Bool public using (Bool ; false ; true) elimBool : ∀ {ℓ} {X : Set ℓ} → Bool → X → X → X elimBool false z s = z elimBool true z s = s -- Conditionals. data Maybe {ℓ} (X : Set ℓ) : Set ℓ where nothing : Maybe X just : X → Maybe X {-# HASKELL type AgdaMaybe _ x = Maybe x #-} {-# COMPILED_DATA Maybe MAlonzo.Code.Data.Maybe.Base.AgdaMaybe Just Nothing #-} elimMaybe : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → Maybe X → Y → (X → Y) → Y elimMaybe nothing z f = z elimMaybe (just x) z f = f x -- Naturals. open import Agda.Builtin.Nat public using (Nat ; zero ; suc) elimNat : ∀ {ℓ} {X : Set ℓ} → Nat → X → (Nat → X → X) → X elimNat zero z f = z elimNat (suc n) z f = f n (elimNat n z f) -- Decidability. data Dec {ℓ} (X : Set ℓ) : Set ℓ where yes : X → Dec X no : ¬ X → Dec X mapDec : ∀ {ℓ ℓ′} {X : Set ℓ} {Y : Set ℓ′} → (X → Y) → (Y → X) → Dec X → Dec Y mapDec f g (yes x) = yes (f x) mapDec f g (no ¬x) = no (λ y → g y ↯ ¬x) ⌊_⌋Dec : ∀ {ℓ} {X : Set ℓ} → Dec X → Bool ⌊ yes x ⌋Dec = true ⌊ no ¬x ⌋Dec = false
{ "alphanum_fraction": 0.4485896269, "avg_line_length": 21.2984496124, "ext": "agda", "hexsha": "fbaf3bb592fa76b0d48c2901503c515b4aaae46d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/nbe-correctness", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/nbe-correctness", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/nbe-correctness", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z", "num_tokens": 2841, "size": 5495 }
-- Andreas, 2014-01-08, following Maxime Denes 2014-01-06 -- This file demonstrates that size-based termination does -- not lead to incompatibility with HoTT. {-# OPTIONS --sized-types #-} open import Common.Size open import Common.Equality data Empty : Set where data Box : Size → Set where wrap : ∀ i → (Empty → Box i) → Box (↑ i) -- Box is inhabited at each stage > 0: gift : ∀ {i} → Empty → Box i gift () box : ∀ {i} → Box (↑ i) box {i} = wrap i gift -- wrap has an inverse: unwrap : ∀ i → Box (↑ i) → (Empty → Box i) unwrap .i (wrap i f) = f -- There is an isomorphism between (Empty → Box ∞) and (Box ∞) -- but none between (Empty → Box i) and (Box i). -- We only get the following, but it is not sufficient to -- produce the loop. postulate iso : ∀ i → (Empty → Box i) ≡ Box (↑ i) -- Since Agda's termination checker uses the structural order -- in addition to sized types, we need to conceal the subterm. conceal : {A : Set} → A → A conceal x = x mutual loop : ∀ i → Box i → Empty loop .(↑ i) (wrap i x) = loop' (↑ i) (Empty → Box i) (iso i) (conceal x) -- We would like to write loop' i instead of loop' (↑ i) -- but this is ill-typed. Thus, we cannot achieve something -- well-founded wrt. to sized types. loop' : ∀ i A → A ≡ Box i → A → Empty loop' i .(Box i) refl x = loop i x -- The termination checker complains here, rightfully! bug : Empty bug = loop ∞ box
{ "alphanum_fraction": 0.6303116147, "avg_line_length": 24.7719298246, "ext": "agda", "hexsha": "0f2c0ec59a1fb918739f2e54e610758ac0df14aa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/HoTTCompatibleWithSizeBasedTerminationMaximeDenes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/HoTTCompatibleWithSizeBasedTerminationMaximeDenes.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/HoTTCompatibleWithSizeBasedTerminationMaximeDenes.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 450, "size": 1412 }
-- 2014-05-27 Jesper and Andreas postulate A : Set R : A → A → Set {-# BUILTIN REWRITE R #-} {-# REWRITE R #-} -- Expected error: -- R does not target rewrite relation -- when checking the pragma REWRITE R
{ "alphanum_fraction": 0.6401869159, "avg_line_length": 16.4615384615, "ext": "agda", "hexsha": "f236185c18397281cfa730723876f6a258a1bad9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/RewriteRuleNotTargetRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/RewriteRuleNotTargetRelation.agda", "max_line_length": 38, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/RewriteRuleNotTargetRelation.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 64, "size": 214 }
open import FRP.JS.Nat using ( ℕ ; suc ; _+_ ) renaming ( _≟_ to _≟=_ ) open import FRP.JS.List using ( List ; [] ; _∷_ ; [_] ; _++_ ; map ; foldr ; foldl ; build ; _≟[_]_ ) open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.QUnit using ( TestSuite ; ok ; ok! ; test ; _,_ ) module FRP.JS.Test.List where infixr 2 _≟_ _≟_ : List ℕ → List ℕ → Bool xs ≟ ys = xs ≟[ _≟=_ ] ys tests : TestSuite tests = ( test "≟" ( ok "[] ≟ []" ([] ≟ []) , ok "[] ≟ [0]" (not ([] ≟ (0 ∷ []))) , ok "[0] ≟ []" (not ((0 ∷ []) ≟ [])) , ok "[0] ≟ [0]" ((0 ∷ []) ≟ (0 ∷ [])) , ok "[] ≟ [0,1]" (not ([] ≟ (0 ∷ 1 ∷ []))) , ok "[0,1] ≟ []" (not ((0 ∷ 1 ∷ []) ≟ [])) , ok "[1] ≟ [0,1]" (not ((1 ∷ []) ≟ (0 ∷ 1 ∷ []))) , ok "[0] ≟ [0,1]" (not ((0 ∷ []) ≟ (0 ∷ 1 ∷ []))) , ok "[0,1] ≟ [0,1]" ((0 ∷ 1 ∷ []) ≟ (0 ∷ 1 ∷ [])) ) , test "[_]" ( ok "[1] ≟ 1 ∷ []" ([ 1 ] ≟ 1 ∷ []) , ok "[1] ≟ [0]" (not ([ 1 ] ≟ [ 0 ])) ) , test "++" ( ok "[] ++ []" ([] ++ [] ≟ []) , ok "[] ++ [1]" ([] ++ [ 1 ] ≟ [ 1 ]) , ok "[0] ++ []" ([ 0 ] ++ [] ≟ [ 0 ]) , ok "[0] ++ [1]" ([ 0 ] ++ [ 1 ] ≟ 0 ∷ [ 1 ]) , ok "[0] ++ [1] ++ [2]" ([ 0 ] ++ [ 1 ] ++ [ 2 ] ≟ (0 ∷ 1 ∷ [ 2 ])) ) , test "foldl" ( ok "foldl + []" (foldl _+_ 0 [] ≟= 0) , ok "foldl + [1]" (foldl _+_ 0 [ 1 ] ≟= 1) , ok "foldl + [1,2]" (foldl _+_ 0 (1 ∷ [ 2 ]) ≟= 3) ) , test "foldr" ( ok "foldr + []" (foldr _+_ 0 [] ≟= 0) , ok "foldr + [1]" (foldr _+_ 0 [ 1 ] ≟= 1) , ok "foldr + [1,2]" (foldr _+_ 0 (1 ∷ [ 2 ]) ≟= 3) ) , test "map" ( ok "map suc []" (map suc [] ≟ []) , ok "map suc [1]" (map suc [ 1 ] ≟ [ 2 ]) , ok "map suc [1,2]" (map suc (1 ∷ [ 2 ]) ≟ 2 ∷ [ 3 ]) ) , test "build" ( ok "build suc 0" (build suc 0 ≟ []) , ok "build suc 1" (build suc 1 ≟ [ 1 ]) , ok "build suc 2" (build suc 2 ≟ 1 ∷ [ 2 ]) ) )
{ "alphanum_fraction": 0.3397333333, "avg_line_length": 37.5, "ext": "agda", "hexsha": "4f1d55035b7884d93c2f56fe9914e909dd6c5dab", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/List.agda", "max_line_length": 101, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 930, "size": 1875 }
module Numeral.Natural.Oper.Summation.Proofs where import Lvl open import Data.List open import Data.List.Functions open import Data.List.Equiv.Id open import Numeral.Natural open import Structure.Function open import Structure.Operator.Field open import Structure.Operator.Monoid open import Structure.Operator open import Structure.Setoid open import Type private variable ℓ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} private variable _▫_ : T → T → T open Data.List.Functions.LongOper open import Data.List.Proofs open import Functional as Fn using (_$_ ; _∘_ ; const) import Function.Equals as Fn open import Lang.Instance import Numeral.Natural.Oper.Summation open import Numeral.Natural.Oper.Summation.Range open import Numeral.Natural.Oper.Summation.Range.Proofs open import Numeral.Natural.Relation.Order import Structure.Function.Names as Names open import Structure.Operator.Properties open import Structure.Operator.Proofs.Util open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Transitivity module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ monoid : Monoid{T = T}(_▫_) ⦄ where open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = monoid ⦄ open Monoid(monoid) using (id) renaming (binary-operator to [▫]-binary-operator) open import Relator.Equals.Proofs.Equiv {T = ℕ} private variable f g : ℕ → T private variable x a b c k n : ℕ private variable r r₁ r₂ : List(ℕ) ∑-empty : (∑(∅) f ≡ id) ∑-empty = reflexivity(Equiv._≡_ equiv) ∑-prepend : (∑(prepend x r) f ≡ f(x) ▫ ∑(r) f) ∑-prepend = reflexivity(Equiv._≡_ equiv) ∑-postpend : (∑(postpend x r) f ≡ ∑(r) f ▫ f(x)) ∑-postpend {x = x} {r = ∅} {f = f} = ∑(postpend x empty) f 🝖[ _≡_ ]-[] ∑(prepend x empty) f 🝖[ _≡_ ]-[] f(x) ▫ (∑(empty) f) 🝖[ _≡_ ]-[] f(x) ▫ id 🝖[ _≡_ ]-[ identityᵣ(_▫_)(id) ] f(x) 🝖[ _≡_ ]-[ identityₗ(_▫_)(id) ]-sym id ▫ f(x) 🝖[ _≡_ ]-[] (∑(empty) f) ▫ f(x) 🝖-end ∑-postpend {x = x} {r = r₀ ⊰ r} {f = f} = f(r₀) ▫ ∑(postpend x r) f 🝖[ _≡_ ]-[ congruence₂ᵣ(_▫_)(f(r₀)) (∑-postpend {x = x}{r = r}{f = f}) ] f(r₀) ▫ (∑(r) f ▫ f(x)) 🝖[ _≡_ ]-[ associativity(_▫_) {f(r₀)}{∑(r) f}{f(x)} ]-sym (f(r₀) ▫ ∑(r) f) ▫ f(x) 🝖-end ∑-compose : ∀{f : ℕ → T}{g : ℕ → ℕ} → (∑(r) (f ∘ g) ≡ ∑(map g r) f) ∑-compose {r = r}{f = f}{g = g} = ∑(r) (f ∘ g) 🝖[ _≡_ ]-[] foldᵣ(_▫_) id (map(f ∘ g) r) 🝖[ _≡_ ]-[ congruence₁(foldᵣ(_▫_) id) ⦃ foldᵣ-function ⦄ (map-preserves-[∘] {f = f}{g = g}{x = r}) ] foldᵣ(_▫_) id (map f(map g r)) 🝖[ _≡_ ]-[] ∑(map g r) f 🝖-end ∑-singleton : (∑(singleton(a)) f ≡ f(a)) ∑-singleton = identityᵣ ⦃ equiv ⦄ (_▫_)(id) ∑-concat : (∑(r₁ ++ r₂) f ≡ ∑(r₁) f ▫ ∑(r₂) f) ∑-concat {empty} {r₂} {f} = symmetry(_≡_) (identityₗ(_▫_)(id)) ∑-concat {prepend x r₁} {r₂} {f} = f(x) ▫ ∑(r₁ ++ r₂) f 🝖[ _≡_ ]-[ congruence₂ᵣ(_▫_)(f(x)) (∑-concat {r₁}{r₂}{f}) ] f(x) ▫ (∑(r₁) f ▫ ∑ r₂ f) 🝖[ _≡_ ]-[ associativity(_▫_) {x = f(x)}{y = ∑(r₁) f}{z = ∑(r₂) f} ]-sym (f(x) ▫ ∑(r₁) f) ▫ ∑ r₂ f 🝖-end ∑-const-id : (∑(r) (const id) ≡ id) ∑-const-id {empty} = reflexivity(Equiv._≡_ equiv) ∑-const-id {prepend x r} = ∑(prepend x r) (const id) 🝖[ _≡_ ]-[] id ▫ (∑(r) (const id)) 🝖[ _≡_ ]-[ identityₗ(_▫_)(id) ] ∑(r) (const id) 🝖[ _≡_ ]-[ ∑-const-id {r} ] id 🝖-end module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where private variable f g : ℕ → T private variable k n : ℕ private variable x a b c : T private variable r r₁ r₂ : List(ℕ) private variable _+_ _⋅_ : T → T → T module _ ⦃ monoid : Monoid(_+_) ⦄ ⦃ comm : Commutativity(_+_) ⦄ where open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = monoid ⦄ open Monoid(monoid) using (id) renaming (binary-operator to [+]-binary-operator) open import Relator.Equals.Proofs.Equiv {T = ℕ} ∑-add : (∑(r) f + ∑(r) g ≡ ∑(r) (x ↦ f(x) + g(x))) ∑-add {∅} {f} {g} = identityₗ(_+_)(id) ∑-add {r₀ ⊰ r} {f} {g} = ∑(prepend r₀ r) f + ∑(prepend r₀ r) g 🝖[ _≡_ ]-[] (f(r₀) + ∑(r) f) + (g(r₀) + ∑(r) g) 🝖[ _≡_ ]-[ One.associate-commute4 {a = f(r₀)}{b = ∑(r) f}{c = g(r₀)}{d = ∑(r) g} (commutativity(_+_){∑(r) f}{g(r₀)}) ] (f(r₀) + g(r₀)) + (∑(r) f + ∑(r) g) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(r₀) + g(r₀)) (∑-add {r} {f} {g}) ] (f(r₀) + g(r₀)) + ∑(r) (x ↦ f(x) + g(x)) 🝖[ _≡_ ]-[] ∑(prepend r₀ r) (x ↦ f(x) + g(x)) 🝖-end module _ ⦃ monoid : Monoid(_+_) ⦄ ⦃ distₗ : Distributivityₗ(_⋅_)(_+_) ⦄ ⦃ absorᵣ : Absorberᵣ(_⋅_)(Monoid.id monoid) ⦄ where open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = monoid ⦄ open Monoid(monoid) using (id) renaming (binary-operator to [+]-binary-operator) open import Relator.Equals.Proofs.Equiv {T = ℕ} ∑-scalar-multₗ : (∑(r) (x ↦ c ⋅ f(x)) ≡ c ⋅ (∑(r) f)) ∑-scalar-multₗ {empty} {c} {f} = symmetry(_≡_) (absorberᵣ(_⋅_)(id)) ∑-scalar-multₗ {prepend r₀ r} {c} {f} = (c ⋅ f(r₀)) + ∑(r) (x ↦ c ⋅ f(x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(c ⋅ f(r₀)) (∑-scalar-multₗ {r}{c}{f}) ] (c ⋅ f(r₀)) + (c ⋅ (∑(r) f)) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_+_) {c}{f(r₀)}{∑(r) f} ]-sym c ⋅ (f(r₀) + (∑(r) f)) 🝖-end module _ ⦃ monoid : Monoid(_+_) ⦄ ⦃ distᵣ : Distributivityᵣ(_⋅_)(_+_) ⦄ ⦃ absorₗ : Absorberₗ(_⋅_)(Monoid.id monoid) ⦄ where open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = monoid ⦄ open Monoid(monoid) using (id) renaming (binary-operator to [+]-binary-operator) open import Relator.Equals.Proofs.Equiv {T = ℕ} ∑-scalar-multᵣ : (∑(r) (x ↦ f(x) ⋅ c) ≡ (∑(r) f) ⋅ c) ∑-scalar-multᵣ {empty} {f} {c} = symmetry(_≡_) (absorberₗ(_⋅_)(id)) ∑-scalar-multᵣ {prepend r₀ r} {f} {c} = (f(r₀) ⋅ c) + ∑(r) (x ↦ f(x) ⋅ c) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(r₀) ⋅ c) (∑-scalar-multᵣ {r}{f}{c}) ] (f(r₀) ⋅ c) + ((∑(r) f) ⋅ c) 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) {f(r₀)}{∑(r) f}{c} ]-sym (f(r₀) + (∑(r) f)) ⋅ c 🝖-end module _ ⦃ field-structure : Field(_+_)(_⋅_) ⦄ where open Field(field-structure) open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = [+]-monoid ⦄ open import Relator.Equals hiding (_≡_) open import Relator.Equals.Proofs.Equiv open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Structure open Numeral.Natural.Oper.Summation {I = ℕ} ⦃ monoid = [+]-monoid ⦄ -- TODO: Generalize all the proofs private variable f g : ℕ → ℕ private variable x a b c k n : ℕ private variable r r₁ r₂ : List(ℕ) ∑-const : (∑(r) (const c) ≡ c ⋅ length(r)) ∑-const {empty} {c} = reflexivity(_≡_) ∑-const {prepend x r}{c} = congruence₂ᵣ(_+_)(c) (∑-const {r}{c}) -- TODO: Σ-const-id is a generalization of this ∑-zero : (∑(r) (const 𝟎) ≡ 𝟎) ∑-zero {r} = ∑-const {r}{𝟎} -- TODO: map-binaryOperator is on the equality setoid, which blocks the generalization of this instance ∑-binaryOperator : BinaryOperator ⦃ equiv-A₂ = Fn.[⊜]-equiv ⦄ (∑) BinaryOperator.congruence ∑-binaryOperator {r₁}{r₂}{f}{g} rr fg = ∑(r₁) f 🝖[ _≡_ ]-[] foldᵣ(_+_) 𝟎 (map f(r₁)) 🝖[ _≡_ ]-[ congruence₁(foldᵣ(_+_) 𝟎) (congruence₂(map) ⦃ map-binaryOperator ⦄ fg rr) ] foldᵣ(_+_) 𝟎 (map g(r₂)) 🝖[ _≡_ ]-[] ∑(r₂) g 🝖-end ∑-mult : ∀{r₁ r₂}{f g} → ((∑(r₁) f) ⋅ (∑(r₂) g) ≡ ∑(r₁) (x ↦ ∑(r₂) (y ↦ f(x) ⋅ g(y)))) ∑-mult {empty} {_} {f} {g} = [≡]-intro ∑-mult {prepend x₁ r₁} {empty} {f} {g} = 𝟎 🝖[ _≡_ ]-[ ∑-zero {r = prepend x₁ r₁} ]-sym ∑(prepend x₁ r₁) (x ↦ 𝟎) 🝖[ _≡_ ]-[ congruence₂ᵣ(∑)(prepend x₁ r₁) (Fn.intro(\{x} → ∑-empty {f = y ↦ f(x) ⋅ g(y)})) ]-sym ∑(prepend x₁ r₁) (x ↦ ∑(empty) (y ↦ f(x) ⋅ g(y))) 🝖-end ∑-mult {prepend x₁ r₁} {prepend x₂ r₂} {f} {g} = (∑(prepend x₁ r₁) f) ⋅ (∑(prepend x₂ r₂) g) 🝖[ _≡_ ]-[] (f(x₁) + (∑(r₁) f)) ⋅ (g(x₂) + (∑(r₂) g)) 🝖[ _≡_ ]-[ OneTypeTwoOp.cross-distribute {a = f(x₁)}{b = ∑(r₁) f}{c = g(x₂)}{d = ∑(r₂) g} ] ((f(x₁) ⋅ g(x₂)) + ((∑(r₁) f) ⋅ g(x₂))) + ((f(x₁) ⋅ (∑(r₂) g)) + ((∑(r₁) f) ⋅ (∑(r₂) g))) 🝖[ _≡_ ]-[ One.associate-commute4 {a = f(x₁) ⋅ g(x₂)}{b = (∑(r₁) f) ⋅ g(x₂)}{c = f(x₁) ⋅ (∑(r₂) g)}{d = (∑(r₁) f) ⋅ (∑(r₂) g)} (commutativity(_+_) {(∑(r₁) f) ⋅ g(x₂)}{f(x₁) ⋅ (∑(r₂) g)}) ] ((f(x₁) ⋅ g(x₂)) + (f(x₁) ⋅ (∑(r₂) g))) + (((∑(r₁) f) ⋅ g(x₂)) + ((∑(r₁) f) ⋅ (∑(r₂) g))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_) ((f(x₁) ⋅ g(x₂)) + (f(x₁) ⋅ (∑(r₂) g))) p ] ((f(x₁) ⋅ g(x₂)) + (f(x₁) ⋅ (∑(r₂) g))) + (∑(r₁) (x ↦ (f(x) ⋅ g(x₂)) + (∑(r₂) (y ↦ f(x) ⋅ g(y))))) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_) (∑(r₁) (x ↦ (f(x) ⋅ g(x₂)) + (∑(r₂) (y ↦ f(x) ⋅ g(y))))) (congruence₂ᵣ(_+_)(f(x₁) ⋅ g(x₂)) (∑-scalar-multₗ {r = r₂}{c = f(x₁)}{f = g})) ]-sym ((f(x₁) ⋅ g(x₂)) + (∑(r₂) (y ↦ f(x₁) ⋅ g(y)))) + (∑(r₁) (x ↦ (f(x) ⋅ g(x₂)) + (∑(r₂) (y ↦ f(x) ⋅ g(y))))) 🝖[ _≡_ ]-[] (∑(prepend x₂ r₂) (y ↦ f(x₁) ⋅ g(y))) + (∑(r₁) (x ↦ ∑(prepend x₂ r₂) (y ↦ f(x) ⋅ g(y)))) 🝖[ _≡_ ]-[] ∑(prepend x₁ r₁) (x ↦ ∑(prepend x₂ r₂) (y ↦ f(x) ⋅ g(y))) 🝖-end where p = ((∑(r₁) f) ⋅ g(x₂)) + ((∑(r₁) f) ⋅ (∑(r₂) g)) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_+_) {x = ∑(r₁) f}{y = g(x₂)}{z = ∑(r₂) g} ]-sym (∑(r₁) f) ⋅ (g(x₂) + (∑(r₂) g)) 🝖[ _≡_ ]-[ ∑-scalar-multᵣ {r = r₁}{f = f}{c = g(x₂) + (∑(r₂) g)} ]-sym ∑(r₁) (x ↦ f(x) ⋅ (g(x₂) + (∑(r₂) g))) 🝖[ _≡_ ]-[ congruence₂ᵣ(∑) r₁ (Fn.intro(\{x} → distributivityₗ(_⋅_)(_+_) {x = f(x)}{y = g(x₂)}{z = ∑(r₂) g})) ] ∑(r₁) (x ↦ (f(x) ⋅ g(x₂)) + (f(x) ⋅ (∑(r₂) g))) 🝖[ _≡_ ]-[ congruence₂ᵣ(∑) r₁ (Fn.intro(\{x} → congruence₂ᵣ(_+_) (f(x) ⋅ g(x₂)) (∑-scalar-multₗ {r = r₂}{c = f(x)}{f = g}))) ]-sym ∑(r₁) (x ↦ (f(x) ⋅ g(x₂)) + (∑(r₂) (y ↦ f(x) ⋅ g(y)))) 🝖-end ∑-swap-nested : ∀{f : ℕ → ℕ → _}{r₁ r₂} → (∑(r₁) (a ↦ ∑(r₂) (b ↦ f(a)(b))) ≡ ∑(r₂) (b ↦ ∑(r₁) (a ↦ f(a)(b)))) ∑-swap-nested {f} {empty} {empty} = [≡]-intro ∑-swap-nested {f} {empty} {prepend x r₂} = ∑(∅)(a ↦ ∑(x ⊰ r₂) (b ↦ f(a)(b))) 🝖[ _≡_ ]-[] 𝟎 🝖[ _≡_ ]-[ ∑-zero {x ⊰ r₂} ]-sym ∑(x ⊰ r₂) (b ↦ 𝟎) 🝖[ _≡_ ]-[] ∑(x ⊰ r₂) (b ↦ ∑(∅) (a ↦ f(a)(b))) 🝖-end ∑-swap-nested {f} {prepend x r₁} {empty} = ∑(x ⊰ r₁) (a ↦ ∑(∅) (b ↦ f(a)(b))) 🝖[ _≡_ ]-[] ∑(x ⊰ r₁) (b ↦ 𝟎) 🝖[ _≡_ ]-[ ∑-zero {x ⊰ r₁} ] 𝟎 🝖[ _≡_ ]-[] ∑(∅) (b ↦ ∑(x ⊰ r₁) (a ↦ f(a)(b))) 🝖-end ∑-swap-nested {f} {prepend x₁ r₁} {prepend x₂ r₂} = ∑(x₁ ⊰ r₁) (a ↦ ∑(x₂ ⊰ r₂) (b ↦ f(a)(b))) 🝖[ _≡_ ]-[] ∑(x₁ ⊰ r₁) (a ↦ f(a)(x₂) + ∑(r₂) (b ↦ f(a)(b))) 🝖[ _≡_ ]-[] (f(x₁)(x₂) + ∑(r₂) (b ↦ f(x₁)(b))) + ∑(r₁) (a ↦ f(a)(x₂) + ∑(r₂) (b ↦ f(a)(b))) 🝖[ _≡_ ]-[] (f(x₁)(x₂) + ∑(r₂) (b ↦ f(x₁)(b))) + (∑(r₁) (a ↦ f(a)(x₂) + ∑(r₂) (b ↦ f(a)(b)))) 🝖[ _≡_ ]-[ associativity(_+_) {x = f(x₁)(x₂)}{y = ∑(r₂) (b ↦ f(x₁)(b))} ] f(x₁)(x₂) + (∑(r₂) (b ↦ f(x₁)(b)) + (∑(r₁) (a ↦ f(a)(x₂) + ∑(r₂) (b ↦ f(a)(b))))) 🝖[ _≡_ ]-[] f(x₁)(x₂) + (∑(r₂) (b ↦ f(x₁)(b)) + (∑(r₁) (a ↦ ∑(x₂ ⊰ r₂) (b ↦ f(a)(b))))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(x₁)(x₂)) (congruence₂ᵣ(_+_)(∑(r₂) (b ↦ f(x₁)(b))) (∑-swap-nested {f}{r₁}{x₂ ⊰ r₂})) ] f(x₁)(x₂) + (∑(r₂) (b ↦ f(x₁)(b)) + (∑(x₂ ⊰ r₂) (b ↦ ∑(r₁) (a ↦ f(a)(b))))) 🝖[ _≡_ ]-[] f(x₁)(x₂) + (∑(r₂) (b ↦ f(x₁)(b)) + (∑(r₁) (a ↦ f(a)(x₂)) + (∑(r₂) (b ↦ ∑(r₁) (a ↦ f(a)(b)))))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(x₁)(x₂)) (symmetry(_≡_) (associativity(_+_) {x = ∑(r₂) (b ↦ f(x₁)(b))}{y = ∑(r₁) (a ↦ f(a)(x₂))})) ] f(x₁)(x₂) + ((∑(r₂) (b ↦ f(x₁)(b)) + ∑(r₁) (a ↦ f(a)(x₂))) + (∑(r₂) (b ↦ ∑(r₁) (a ↦ f(a)(b))))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(x₁)(x₂)) (congruence₂(_+_) (commutativity(_+_) {∑(r₂) (b ↦ f(x₁)(b))}{∑(r₁) (a ↦ f(a)(x₂))}) (symmetry(_≡_) (∑-swap-nested {f}{r₁}{r₂}))) ] f(x₁)(x₂) + ((∑(r₁) (a ↦ f(a)(x₂)) + ∑(r₂) (b ↦ f(x₁)(b))) + ∑(r₁) (a ↦ ∑(r₂) (b ↦ f(a)(b)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(x₁)(x₂)) (associativity(_+_) {x = ∑(r₁) (a ↦ f(a)(x₂))}{y = ∑(r₂) (b ↦ f(x₁)(b))}) ] f(x₁)(x₂) + (∑(r₁) (a ↦ f(a)(x₂)) + (∑(r₂) (b ↦ f(x₁)(b)) + ∑(r₁) (a ↦ ∑(r₂) (b ↦ f(a)(b))))) 🝖[ _≡_ ]-[] f(x₁)(x₂) + (∑(r₁) (a ↦ f(a)(x₂)) + (∑(x₁ ⊰ r₁) (a ↦ ∑(r₂) (b ↦ f(a)(b))))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(f(x₁)(x₂)) (congruence₂ᵣ(_+_)(∑(r₁) (a ↦ f(a)(x₂))) (∑-swap-nested {f}{x₁ ⊰ r₁}{r₂})) ] f(x₁)(x₂) + (∑(r₁) (a ↦ f(a)(x₂)) + (∑(r₂) (b ↦ ∑(x₁ ⊰ r₁) (a ↦ f(a)(b))))) 🝖[ _≡_ ]-[] f(x₁)(x₂) + (∑(r₁) (a ↦ f(a)(x₂)) + (∑(r₂) (b ↦ f(x₁)(b) + ∑(r₁) (a ↦ f(a)(b))))) 🝖[ _≡_ ]-[ associativity(_+_) {x = f(x₁)(x₂)}{y = ∑(r₁) (a ↦ f(a)(x₂))} ]-sym (f(x₁)(x₂) + ∑(r₁) (a ↦ f(a)(x₂))) + (∑(r₂) (b ↦ f(x₁)(b) + ∑(r₁) (a ↦ f(a)(b)))) 🝖[ _≡_ ]-[] ∑(x₂ ⊰ r₂) (b ↦ f(x₁)(b) + ∑(r₁) (a ↦ f(a)(b))) 🝖[ _≡_ ]-[] ∑(x₂ ⊰ r₂) (b ↦ ∑(x₁ ⊰ r₁) (a ↦ f(a)(b))) 🝖-end ∑-zero-range : (∑(a ‥ a) f ≡ 𝟎) ∑-zero-range {a}{f} = congruence₁ (r ↦ ∑(r) f) (Range-empty{a}) ∑-single-range : (∑(a ‥ 𝐒(a)) f ≡ f(a)) ∑-single-range {𝟎} {f} = reflexivity(_≡_) ∑-single-range {𝐒 a}{f} = ∑ (map 𝐒(a ‥ 𝐒(a))) f 🝖[ _≡_ ]-[ ∑-compose ⦃ monoid = [+]-monoid ⦄ {r = a ‥ 𝐒(a)}{f}{𝐒} ]-sym ∑ (a ‥ 𝐒(a)) (x ↦ f(𝐒(x))) 🝖[ _≡_ ]-[ ∑-single-range {a}{f ∘ 𝐒} ] f(𝐒(a)) 🝖-end ∑-step-range : (∑(𝐒(a) ‥ 𝐒(b)) f ≡ ∑(a ‥ b) (f ∘ 𝐒)) ∑-step-range {a}{b}{f} = symmetry(_≡_) (∑-compose {r = a ‥ b}{f = f}{g = 𝐒}) ∑-stepₗ-range : ⦃ _ : (a < b) ⦄ → (∑(a ‥ b) f ≡ f(a) + ∑(𝐒(a) ‥ b) f) ∑-stepₗ-range {𝟎} {𝐒 b} {f} ⦃ succ ab ⦄ = reflexivity(_≡_) ∑-stepₗ-range {𝐒 a} {𝐒 b} {f} ⦃ succ ab ⦄ = ∑(𝐒(a) ‥ 𝐒(b)) f 🝖[ _≡_ ]-[ ∑-step-range {a}{b}{f} ] ∑(a ‥ b) (f ∘ 𝐒) 🝖[ _≡_ ]-[ ∑-stepₗ-range {a}{b}{f ∘ 𝐒} ] (f ∘ 𝐒)(a) + ∑(𝐒(a) ‥ b) (f ∘ 𝐒) 🝖[ _≡_ ]-[ congruence₂(_+_) (reflexivity(_≡_) {x = f(𝐒(a))}) (symmetry(_≡_) (∑-step-range {𝐒 a}{b}{f})) ] f(𝐒(a)) + ∑(𝐒(𝐒(a)) ‥ 𝐒(b)) f 🝖-end where instance _ = ab -- ∑-stepᵣ-range : ⦃ _ : (a < 𝐒(b)) ⦄ → (∑(a ‥ 𝐒(b)) f ≡ ∑(a ‥ b) f + f(b)) -- ∑-stepᵣ-range = ? -- ∑-add-range : (∑(a ‥ a + b) f ≡ ∑(𝟎 ‥ b) (f ∘ (_+ a))) ∑-trans-range : ⦃ ab : (a ≤ b) ⦄ ⦃ bc : (b < c) ⦄ → (∑(a ‥ b) f + ∑(b ‥ c) f ≡ ∑(a ‥ c) f) ∑-trans-range {a}{b}{c} {f} = ∑(a ‥ b) f + ∑(b ‥ c) f 🝖[ _≡_ ]-[ ∑-concat{r₁ = a ‥ b}{r₂ = b ‥ c}{f = f} ]-sym ∑((a ‥ b) ++ (b ‥ c)) f 🝖[ _≡_ ]-[ congruence₁(r ↦ ∑(r) f) (Range-concat{a}{b}{c}) ] ∑(a ‥ c) f 🝖-end -- TODO: Formulate ∑({(x,y). a ≤ x ≤ y ≤ b}) f ≡ ∑(a ‥ b) (x ↦ ∑(a ‥ x) (y ↦ f(x)(y))) ≡ ∑(a ‥ b) (x ↦ ∑(x ‥ b) (y ↦ f(x)(y))) ≡ ... and first prove a theorem stating that the order of a list does not matter -- ∑-nested-dependent-range : ∀{f : ℕ → ℕ → _}{a b} → ? ∑-of-succ : (∑(r) (𝐒 ∘ f) ≡ (∑(r) f) + length(r)) ∑-of-succ {empty} {f} = [≡]-intro ∑-of-succ {prepend x r}{f} = ∑(x ⊰ r) (𝐒 ∘ f) 🝖[ _≡_ ]-[] 𝐒(f(x)) + ∑(r) (𝐒 ∘ f) 🝖[ _≡_ ]-[] 𝐒(f(x) + ∑(r) (𝐒 ∘ f)) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₂ᵣ(_+_)(f(x)) (∑-of-succ {r}{f})) ] 𝐒(f(x) + ((∑(r) f) + length(r))) 🝖[ _≡_ ]-[ congruence₁(𝐒) (symmetry(_≡_) (associativity(_+_) {x = f(x)}{y = ∑(r) f}{z = length(r)})) ] 𝐒((f(x) + (∑(r) f)) + length(r)) 🝖[ _≡_ ]-[] 𝐒((∑(x ⊰ r) f) + length(r)) 🝖[ _≡_ ]-[] (∑(x ⊰ r) f) + 𝐒(length(r)) 🝖[ _≡_ ]-[] (∑(x ⊰ r) f) + length(x ⊰ r) 🝖-end ∑-even-sum : (∑(𝟎 ‥₌ n) (k ↦ 2 ⋅ k) ≡ n ⋅ 𝐒(n)) ∑-even-sum {𝟎} = [≡]-intro ∑-even-sum {𝐒 n} = ∑(𝟎 ‥₌ 𝐒(n)) (k ↦ 2 ⋅ k) 🝖[ _≡_ ]-[] (2 ⋅ 𝟎) + ∑(1 ‥₌ 𝐒(n)) (k ↦ 2 ⋅ k) 🝖[ _≡_ ]-[] 𝟎 + ∑(1 ‥₌ 𝐒(n)) (k ↦ 2 ⋅ k) 🝖[ _≡_ ]-[] ∑(1 ‥₌ 𝐒(n)) (k ↦ 2 ⋅ k) 🝖[ _≡_ ]-[] ∑(map 𝐒(𝟎 ‥₌ n)) (k ↦ 2 ⋅ k) 🝖[ _≡_ ]-[ ∑-step-range {a = 𝟎}{b = 𝐒 n}{f = 2 ⋅_} ] ∑(𝟎 ‥₌ n) (k ↦ 2 ⋅ 𝐒(k)) 🝖[ _≡_ ]-[] ∑(𝟎 ‥₌ n) (k ↦ 2 + (2 ⋅ k)) 🝖[ _≡_ ]-[ ∑-add {r = 0 ‥₌ n}{f = const 2}{g = 2 ⋅_} ]-sym ∑(𝟎 ‥₌ n) (const(2)) + ∑(𝟎 ‥₌ n) (k ↦ (2 ⋅ k)) 🝖[ _≡_ ]-[ congruence₂(_+_) (∑-const {r = 0 ‥₌ n}{c = 2}) (∑-even-sum {n}) ] (2 ⋅ length(𝟎 ‥₌ n)) + (n ⋅ 𝐒(n)) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(n ⋅ 𝐒(n)) (congruence₂ᵣ(_⋅_)(2) (Range-length-zero {𝐒(n)})) ] (2 ⋅ 𝐒(n)) + (n ⋅ 𝐒(n)) 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_+_) {x = 2}{y = n}{z = 𝐒(n)} ]-sym (2 + n) ⋅ 𝐒(n) 🝖[ _≡_ ]-[] 𝐒(𝐒(n)) ⋅ 𝐒(n) 🝖[ _≡_ ]-[ commutativity(_⋅_) {𝐒(𝐒(n))}{𝐒(n)} ] 𝐒(n) ⋅ 𝐒(𝐒(n)) 🝖[ _≡_ ]-end ∑-odd-sum : (∑(𝟎 ‥ n) (k ↦ 𝐒(2 ⋅ k)) ≡ n ^ 2) ∑-odd-sum {𝟎} = [≡]-intro ∑-odd-sum {𝐒 n} = ∑(𝟎 ‥ 𝐒(n)) (k ↦ 𝐒(2 ⋅ k)) 🝖[ _≡_ ]-[] ∑(𝟎 ‥₌ n) (k ↦ 𝐒(2 ⋅ k)) 🝖[ _≡_ ]-[ ∑-of-succ {r = 𝟎 ‥ 𝐒(n)}{f = 2 ⋅_} ] ∑(𝟎 ‥₌ n) (k ↦ 2 ⋅ k) + length(𝟎 ‥ 𝐒(n)) 🝖[ _≡_ ]-[ congruence₂(_+_) (∑-even-sum {n}) (Range-length-zero {𝐒(n)}) ] (n ⋅ 𝐒(n)) + 𝐒(n) 🝖[ _≡_ ]-[ [⋅]-with-[𝐒]ₗ {x = n}{y = 𝐒(n)} ]-sym 𝐒(n) ⋅ 𝐒(n) 🝖[ _≡_ ]-[] 𝐒(n) ^ 2 🝖-end open import Numeral.Natural.Combinatorics module _ where open import Data.List.Relation.Membership using (_∈_ ; use ; skip) mapDep : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (l : List(A)) → ((elem : A) → ⦃ _ : (elem ∈ l) ⦄ → B) → List(B) mapDep ∅ _ = ∅ mapDep (elem ⊰ l) f = (f elem ⦃ use [≡]-intro ⦄) ⊰ (mapDep l (\x → f x ⦃ _∈_.skip infer ⦄)) -- ∑dep : (r : List(ℕ)) → ((i : ℕ) → ⦃ _ : (i ∈ r) ⦄ → ℕ) → ℕ -- ∑dep-test : ∑dep ∅ id ≡ 0 -- Also called: The binomial theorem {- binomial-power : ∀{n}{a b} → ((a + b) ^ n ≡ ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ^ (n −₀ i)) ⋅ (b ^ i))) binomial-power {𝟎} {a} {b} = (a + b) ^ 𝟎 🝖[ _≡_ ]-[] 1 🝖[ _≡_ ]-[] 1 ⋅ 1 ⋅ 1 🝖[ _≡_ ]-[] 𝑐𝐶(𝟎)(𝟎) ⋅ (a ^ 𝟎) ⋅ (b ^ 𝟎) 🝖[ _≡_ ]-[] 𝑐𝐶(𝟎)(𝟎) ⋅ (a ^ (𝟎 −₀ 𝟎)) ⋅ (b ^ 𝟎) 🝖[ _≡_ ]-[] ∑(𝟎 ‥₌ 𝟎) (i ↦ 𝑐𝐶(𝟎)(i) ⋅ (a ^ (𝟎 −₀ i)) ⋅ (b ^ 𝟎)) 🝖-end binomial-power {𝐒 n} {a} {b} = {!!} {- (a + b) ^ 𝐒(n) 🝖[ _≡_ ]-[] (a + b) ⋅ ((a + b) ^ n) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅_)(a + b) (binomial-power{n}{a}{b}) ] (a + b) ⋅ (∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ^ i) ⋅ (b ^ (n −₀ i)))) 🝖[ _≡_ ]-[ {!!} ] (a ⋅ (∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ^ i) ⋅ (b ^ (n −₀ i))))) + (b ⋅ (∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ^ i) ⋅ (b ^ (n −₀ i))))) 🝖[ _≡_ ]-[ {!!} ] a ⋅ (b ^ 𝐒(n)) ⋅ ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(𝐒(n))(𝐒(i)) ⋅ (a ^ i) ⋅ (b ^ (n −₀ i))) 🝖[ _≡_ ]-[ {!!} ] (b ^ 𝐒(n)) ⋅ ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(𝐒(n))(𝐒(i)) ⋅ a ⋅ (a ^ i) ⋅ (b ^ (n −₀ i))) 🝖[ _≡_ ]-[ {!!} ] (b ^ 𝐒(n)) ⋅ ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(𝐒(n))(𝐒(i)) ⋅ (a ^ 𝐒(i)) ⋅ (b ^ (n −₀ i))) 🝖[ _≡_ ]-[] (b ^ 𝐒(n)) ⋅ ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(𝐒(n))(𝐒(i)) ⋅ (a ^ 𝐒(i)) ⋅ (b ^ (𝐒(n) −₀ 𝐒(i)))) 🝖[ _≡_ ]-[ {!!} ] (b ^ 𝐒(n)) ⋅ ∑(1 ‥₌ 𝐒(n)) (i ↦ 𝑐𝐶(𝐒(n))(i) ⋅ (a ^ i) ⋅ (b ^ (𝐒(n) −₀ i))) 🝖[ _≡_ ]-[] (1 ⋅ 1 ⋅ (b ^ 𝐒(n))) ⋅ ∑(1 ‥₌ 𝐒(n)) (i ↦ 𝑐𝐶(𝐒(n))(i) ⋅ (a ^ i) ⋅ (b ^ (𝐒(n) −₀ i))) 🝖[ _≡_ ]-[] (𝑐𝐶(𝐒(n))(𝟎) ⋅ (a ^ 𝟎) ⋅ (b ^ (𝐒(n) −₀ 𝟎))) ⋅ ∑(1 ‥₌ 𝐒(n)) (i ↦ 𝑐𝐶(𝐒(n))(i) ⋅ (a ^ i) ⋅ (b ^ (𝐒(n) −₀ i))) 🝖[ _≡_ ]-[ {!!} ] ∑(𝟎 ‥₌ 𝐒(n)) (i ↦ 𝑐𝐶(𝐒(n))(i) ⋅ (a ^ i) ⋅ (b ^ (𝐒(n) −₀ i))) 🝖-end-} where left : _ ≡ _ left = a ⋅ (∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ^ (n −₀ i)) ⋅ (b ^ i))) 🝖[ _≡_ ]-[ {!!} ] ∑(𝟎 ‥₌ n) (i ↦ a ⋅ 𝑐𝐶(n)(i) ⋅ (a ^ (n −₀ i)) ⋅ (b ^ i)) 🝖[ _≡_ ]-[ {!!} ] ∑(𝟎 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ⋅ (a ^ (n −₀ i))) ⋅ (b ^ i)) 🝖[ _≡_ ]-[ {!!} ] (𝑐𝐶(n)(𝟎) ⋅ (a ⋅ (a ^ (n −₀ 𝟎))) ⋅ (b ^ 𝟎)) + ∑(1 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ⋅ (a ^ (n −₀ i))) ⋅ (b ^ i)) 🝖[ _≡_ ]-[ {!!} ] (1 ⋅ (a ^ 𝐒(n)) ⋅ 1) + ∑(1 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ⋅ (a ^ (n −₀ i))) ⋅ (b ^ i)) 🝖[ _≡_ ]-[ {!!} ] (1 ⋅ (a ^ 𝐒(n))) + ∑(1 ‥₌ n) (i ↦ 𝑐𝐶(n)(i) ⋅ (a ⋅ (a ^ (n −₀ i))) ⋅ (b ^ i)) 🝖-end -- TODO: Maybe need another variant of ∑ where the index has a proof of it being in the range? And it is in this case used for a ⋅ (a ^ (n −₀ i)) ≡ a ^ (𝐒(n) −₀ i) -}
{ "alphanum_fraction": 0.3867341203, "avg_line_length": 61.1690544413, "ext": "agda", "hexsha": "809247d4ab1cd229cccb049cc508a55cd9230beb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Summation/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Summation/Proofs.agda", "max_line_length": 296, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Summation/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 11531, "size": 21348 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.InfNat.Properties where open import Cubical.Data.Nat as ℕ using (ℕ) open import Cubical.Data.InfNat.Base open import Cubical.Core.Primitives open import Cubical.Foundations.Prelude open import Cubical.Relation.Nullary open import Cubical.Data.Unit open import Cubical.Data.Empty fromInf-def : ℕ → ℕ+∞ → ℕ fromInf-def n ∞ = n fromInf-def _ (fin n) = n fin-inj : (n m : ℕ) → fin n ≡ fin m → n ≡ m fin-inj x _ eq = cong (fromInf-def x) eq discreteInfNat : Discrete ℕ+∞ discreteInfNat ∞ ∞ = yes (λ i → ∞) discreteInfNat ∞ (fin _) = no λ p → subst (caseInfNat ⊥ Unit) p tt discreteInfNat (fin _) ∞ = no λ p → subst (caseInfNat Unit ⊥) p tt discreteInfNat (fin n) (fin m) with ℕ.discreteℕ n m discreteInfNat (fin n) (fin m) | yes p = yes (cong fin p) discreteInfNat (fin n) (fin m) | no ¬p = no (λ p → ¬p (fin-inj n m p))
{ "alphanum_fraction": 0.6875687569, "avg_line_length": 33.6666666667, "ext": "agda", "hexsha": "e2f2e10f1728e4828219ab6ac822167422d18088", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/InfNat/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/InfNat/Properties.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/InfNat/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 321, "size": 909 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Category open import Oscar.Class.Congruity open import Oscar.Class.Functor open import Oscar.Class.HasEquivalence open import Oscar.Class.IsCategory open import Oscar.Class.IsFunctor open import Oscar.Class.IsPrecategory open import Oscar.Class.IsPrefunctor open import Oscar.Class.Precategory open import Oscar.Class.Prefunctor open import Oscar.Class.Reflexivity open import Oscar.Class.Surjection open import Oscar.Class.Smap open import Oscar.Class.Surjextensionality open import Oscar.Class.Surjidentity open import Oscar.Class.Surjtranscommutativity open import Oscar.Class.Transassociativity open import Oscar.Class.Transextensionality open import Oscar.Class.Transitivity open import Oscar.Class.Transleftidentity open import Oscar.Class.Transrightidentity open import Oscar.Class.[IsExtensionB] open import Oscar.Data.¶ open import Oscar.Data.Proposequality open import Oscar.Data.Substitunction open import Oscar.Data.Term open import Oscar.Data.Vec import Oscar.Property.Setoid.Proposequality import Oscar.Property.Setoid.Proposextensequality import Oscar.Property.Category.ExtensionProposextensequality import Oscar.Property.Category.Function import Oscar.Class.Congruity.Proposequality import Oscar.Class.HasEquivalence.Substitunction import Oscar.Class.Surjection.⋆ import Oscar.Class.Reflexivity.Function module Oscar.Property.Functor.SubstitunctionExtensionTerm where module _ {𝔭} {𝔓 : Ø 𝔭} where open Substitunction 𝔓 open Term 𝔓 private mutual 𝓼urjectivitySubstitunctionExtensionTerm : Smap!.type Substitunction (Extension Term) 𝓼urjectivitySubstitunctionExtensionTerm σ (i x) = σ x 𝓼urjectivitySubstitunctionExtensionTerm σ leaf = leaf 𝓼urjectivitySubstitunctionExtensionTerm σ (τ₁ fork τ₂) = 𝓼urjectivitySubstitunctionExtensionTerm σ τ₁ fork 𝓼urjectivitySubstitunctionExtensionTerm σ τ₂ 𝓼urjectivitySubstitunctionExtensionTerm σ (function p τs) = function p (𝓼urjectivitySubstitunctionExtensionTerms σ τs) 𝓼urjectivitySubstitunctionExtensionTerms : ∀ {N} → Smap.type Substitunction (Extension $ Terms N) surjection surjection 𝓼urjectivitySubstitunctionExtensionTerms σ ∅ = ∅ 𝓼urjectivitySubstitunctionExtensionTerms σ (τ , τs) = 𝓼urjectivitySubstitunctionExtensionTerm σ τ , 𝓼urjectivitySubstitunctionExtensionTerms σ τs instance 𝓢urjectivitySubstitunctionExtensionTerm : Smap!.class Substitunction (Extension Term) 𝓢urjectivitySubstitunctionExtensionTerm .⋆ _ _ = 𝓼urjectivitySubstitunctionExtensionTerm 𝓢urjectivitySubstitunctionExtensionTerms : ∀ {N} → Smap!.class Substitunction (Extension $ Terms N) 𝓢urjectivitySubstitunctionExtensionTerms .⋆ _ _ = 𝓼urjectivitySubstitunctionExtensionTerms instance 𝓣ransitivitySubstitunction : Transitivity.class Substitunction 𝓣ransitivitySubstitunction .⋆ f g = smap g ∘ f [IsExtensionB]Term : [IsExtensionB] Term [IsExtensionB]Term = ∁ [IsExtensionB]Terms : ∀ {N} → [IsExtensionB] (Terms N) [IsExtensionB]Terms = ∁ private mutual 𝓼urjextensionalitySubstitunctionExtensionTerm : Surjextensionality!.TYPE Substitunction _≈_ (Extension Term) _≈_ 𝓼urjextensionalitySubstitunctionExtensionTerm p (i x) = p x 𝓼urjextensionalitySubstitunctionExtensionTerm p leaf = ∅ 𝓼urjextensionalitySubstitunctionExtensionTerm p (s fork t) = congruity₂ _fork_ (𝓼urjextensionalitySubstitunctionExtensionTerm p s) (𝓼urjextensionalitySubstitunctionExtensionTerm p t) 𝓼urjextensionalitySubstitunctionExtensionTerm p (function fn ts) = congruity (function fn) (𝓼urjextensionalitySubstitunctionExtensionTerms p ts) 𝓼urjextensionalitySubstitunctionExtensionTerms : ∀ {N} → Surjextensionality!.TYPE Substitunction Proposextensequality (Extension $ Terms N) Proposextensequality 𝓼urjextensionalitySubstitunctionExtensionTerms p ∅ = ∅ 𝓼urjextensionalitySubstitunctionExtensionTerms p (t , ts) = congruity₂ _,_ (𝓼urjextensionalitySubstitunctionExtensionTerm p t) (𝓼urjextensionalitySubstitunctionExtensionTerms p ts) instance 𝓢urjextensionalitySubstitunction : Surjextensionality!.class Substitunction Proposextensequality (Extension Term) Proposextensequality 𝓢urjextensionalitySubstitunction .⋆ _ _ _ _ = 𝓼urjextensionalitySubstitunctionExtensionTerm 𝓢urjextensionalitySubstitunctions : ∀ {N} → Surjextensionality!.class Substitunction Proposextensequality (Extension $ Terms N) Proposextensequality 𝓢urjextensionalitySubstitunctions .⋆ _ _ _ _ = 𝓼urjextensionalitySubstitunctionExtensionTerms private mutual 𝓼urjtranscommutativitySubstitunctionExtensionTerm : Surjtranscommutativity.type Substitunction (Extension Term) Proposextensequality smap transitivity transitivity 𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ (i _) = ! 𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ leaf = ! 𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ (τ₁ fork τ₂) = congruity₂ _fork_ (𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ τ₁) (𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ τ₂) 𝓼urjtranscommutativitySubstitunctionExtensionTerm f g (function fn ts) = congruity (function fn) (𝓼urjtranscommutativitySubstitunctionExtensionTerms f g ts) 𝓼urjtranscommutativitySubstitunctionExtensionTerms : ∀ {N} → Surjtranscommutativity.type Substitunction (Extension $ Terms N) Proposextensequality smap transitivity transitivity 𝓼urjtranscommutativitySubstitunctionExtensionTerms _ _ ∅ = ! 𝓼urjtranscommutativitySubstitunctionExtensionTerms _ _ (τ , τs) = congruity₂ _,_ (𝓼urjtranscommutativitySubstitunctionExtensionTerm _ _ τ) (𝓼urjtranscommutativitySubstitunctionExtensionTerms _ _ τs) instance 𝓢urjtranscommutativitySubstitunctionExtensionTerm : Surjtranscommutativity.class Substitunction (Extension Term) Proposextensequality smap transitivity transitivity 𝓢urjtranscommutativitySubstitunctionExtensionTerm .⋆ = 𝓼urjtranscommutativitySubstitunctionExtensionTerm 𝓢urjtranscommutativitySubstitunctionExtensionTerms : ∀ {N} → Surjtranscommutativity.class Substitunction (Extension $ Terms N) Proposextensequality smap transitivity transitivity 𝓢urjtranscommutativitySubstitunctionExtensionTerms .⋆ = 𝓼urjtranscommutativitySubstitunctionExtensionTerms instance 𝓣ransassociativitySubstitunction : Transassociativity!.class Substitunction _≈_ 𝓣ransassociativitySubstitunction .⋆ f g h = surjtranscommutativity g h ∘ f 𝓣ransextensionalitySubstitunction : Transextensionality!.class Substitunction _≈_ 𝓣ransextensionalitySubstitunction .⋆ {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = surjextensionality g₁≡̇g₂ $ f₂ x IsPrecategorySubstitunction : IsPrecategory Substitunction _≈_ transitivity IsPrecategorySubstitunction = ∁ IsPrefunctorSubstitunctionExtensionTerm : IsPrefunctor Substitunction _≈_ transitivity (Extension Term) _≈_ transitivity smap IsPrefunctorSubstitunctionExtensionTerm = ∁ IsPrefunctorSubstitunctionExtensionTerms : ∀ {N} → IsPrefunctor Substitunction _≈_ transitivity (Extension $ Terms N) _≈_ transitivity smap IsPrefunctorSubstitunctionExtensionTerms = ∁ 𝓡eflexivitySubstitunction : Reflexivity.class Substitunction 𝓡eflexivitySubstitunction .⋆ = i private mutual 𝓼urjidentitySubstitunctionExtensionTerm : Surjidentity.type Substitunction (Extension Term) _≈_ smap ε ε 𝓼urjidentitySubstitunctionExtensionTerm (i x) = ∅ 𝓼urjidentitySubstitunctionExtensionTerm leaf = ∅ 𝓼urjidentitySubstitunctionExtensionTerm (s fork t) = congruity₂ _fork_ (𝓼urjidentitySubstitunctionExtensionTerm s) (𝓼urjidentitySubstitunctionExtensionTerm t) 𝓼urjidentitySubstitunctionExtensionTerm (function fn ts) = congruity (function fn) (𝓼urjidentitySubstitunctionExtensionTerms ts) 𝓼urjidentitySubstitunctionExtensionTerms : ∀ {N} → Surjidentity.type Substitunction (Extension $ Terms N) _≈_ smap ε ε 𝓼urjidentitySubstitunctionExtensionTerms ∅ = ∅ 𝓼urjidentitySubstitunctionExtensionTerms (t , ts) = congruity₂ _,_ (𝓼urjidentitySubstitunctionExtensionTerm t) (𝓼urjidentitySubstitunctionExtensionTerms ts) instance 𝓢urjidentitySubstitunctionExtensionTerm : Surjidentity.class Substitunction (Extension Term) _≈_ smap ε ε 𝓢urjidentitySubstitunctionExtensionTerm .⋆ = 𝓼urjidentitySubstitunctionExtensionTerm 𝓢urjidentitySubstitunctionExtensionTerms : ∀ {N} → Surjidentity.class Substitunction (Extension $ Terms N) _≈_ smap ε ε 𝓢urjidentitySubstitunctionExtensionTerms .⋆ = 𝓼urjidentitySubstitunctionExtensionTerms 𝓣ransleftidentitySubstitunction : Transleftidentity!.class Substitunction _≈_ 𝓣ransleftidentitySubstitunction .⋆ {f = f} = surjidentity ∘ f 𝓣ransrightidentitySubstitunction : Transrightidentity!.class Substitunction _≈_ 𝓣ransrightidentitySubstitunction .⋆ _ = ! IsCategorySubstitunction : IsCategory Substitunction _≈_ ε transitivity IsCategorySubstitunction = ∁ IsFunctorSubstitunctionExtensionTerm : IsFunctor Substitunction _≈_ ε transitivity (Extension Term) _≈_ ε transitivity smap IsFunctorSubstitunctionExtensionTerm = ∁ IsFunctorSubstitunctionExtensionTerms : ∀ {N} → IsFunctor Substitunction _≈_ ε transitivity (Extension $ Terms N) _≈_ ε transitivity smap IsFunctorSubstitunctionExtensionTerms = ∁ module _ {𝔭} (𝔓 : Ø 𝔭) where open Substitunction 𝔓 open Term 𝔓 PrecategorySubstitunction : Precategory _ _ _ PrecategorySubstitunction = ∁ Substitunction _≈_ transitivity PrefunctorSubstitunctionExtensionTerm : Prefunctor _ _ _ _ _ _ PrefunctorSubstitunctionExtensionTerm = ∁ Substitunction _≈_ transitivity (Extension Term) _≈_ transitivity smap CategorySubstitunction : Category _ _ _ CategorySubstitunction = ∁ Substitunction _≈_ ε transitivity FunctorSubstitunctionExtensionTerm : Functor _ _ _ _ _ _ FunctorSubstitunctionExtensionTerm = ∁ Substitunction _≈_ ε transitivity (Extension Term) _≈_ ε transitivity smap module _ (N : ¶) where FunctorSubstitunctionExtensionTerms : Functor _ _ _ _ _ _ FunctorSubstitunctionExtensionTerms = ∁ Substitunction _≈_ ε transitivity (Extension $ Terms N) _≈_ ε transitivity smap
{ "alphanum_fraction": 0.8158665105, "avg_line_length": 50.9850746269, "ext": "agda", "hexsha": "efbb1d50d71aee6e30b3deb9dd54e76b5b104d22", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitunctionExtensionTerm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitunctionExtensionTerm.agda", "max_line_length": 210, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitunctionExtensionTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3026, "size": 10248 }
{- Eilenberg–Mac Lane type K(G, 1) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.EilenbergMacLane1.Properties where open import Cubical.HITs.EilenbergMacLane1.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥; ∣_∣; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) -- Type quotients private variable ℓG ℓ : Level module _ (G : Group {ℓG}) where open Group G elimEq : {B : EM₁ G → Type ℓ} (Bprop : (x : EM₁ G) → isProp (B x)) {x y : EM₁ G} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : {B : EM₁ G → Type ℓ} → ((x : EM₁ G) → isProp (B x)) → B embase → (x : EM₁ G) → B x elimProp Bprop b embase = b elimProp Bprop b (emloop g i) = elimEq Bprop (emloop g) b b i elimProp Bprop b (emcomp g h i j) = isSet→isSetDep (λ x → isProp→isSet (Bprop x)) (emloop g) (emloop (g + h)) (λ j → embase) (emloop h) (emcomp g h) (λ i → elimEq Bprop (emloop g) b b i) (λ i → elimEq Bprop (emloop (g + h)) b b i) (λ j → b) (λ j → elimEq Bprop (emloop h) b b j) i j elimProp Bprop b (emsquash x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (isProp→isSet (Bprop x))) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (emsquash x y p q r s) i j k where g = elimProp Bprop b elimProp2 : {C : EM₁ G → EM₁ G → Type ℓ} → ((x y : EM₁ G) → isProp (C x y)) → C embase embase → (x y : EM₁ G) → C x y elimProp2 Cprop c = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (elimProp (λ y → Cprop embase y) c) elimSet : {B : EM₁ G → Type ℓ} → ((x : EM₁ G) → isSet (B x)) → (b : B embase) → ((g : Carrier) → PathP (λ i → B (emloop g i)) b b) → (x : EM₁ G) → B x elimSet Bset b bloop embase = b elimSet Bset b bloop (emloop g i) = bloop g i elimSet Bset b bloop (emcomp g h i j) = isSet→isSetDep Bset (emloop g) (emloop (g + h)) (λ j → embase) (emloop h) (emcomp g h) (bloop g) (bloop (g + h)) refl (bloop h) i j elimSet Bset b bloop (emsquash x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (Bset x)) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (emsquash x y p q r s) i j k where g = elimSet Bset b bloop elim : {B : EM₁ G → Type ℓ} → ((x : EM₁ G) → isGroupoid (B x)) → (b : B embase) → (bloop : (g : Carrier) → PathP (λ i → B (emloop g i)) b b) → ((g h : Carrier) → SquareP (λ i j → B (emcomp g h i j)) (bloop g) (bloop (g + h)) (λ j → b) (bloop h)) → (x : EM₁ G) → B x elim Bgpd b bloop bcomp embase = b elim Bgpd b bloop bcomp (emloop g i) = bloop g i elim Bgpd b bloop bcomp (emcomp g h i j) = bcomp g h i j elim Bgpd b bloop bcomp (emsquash x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 Bgpd _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (emsquash x y p q r s) i j k where g = elim Bgpd b bloop bcomp rec : {B : Type ℓ} → isGroupoid B → (b : B) → (bloop : Carrier → b ≡ b) → ((g h : Carrier) → Square (bloop g) (bloop (g + h)) refl (bloop h)) → (x : EM₁ G) → B rec Bgpd = elim (λ _ → Bgpd) rec' : {B : Type ℓ} → isGroupoid B → (b : B) → (bloop : Carrier → b ≡ b) → ((g h : Carrier) → (bloop g) ∙ (bloop h) ≡ bloop (g + h)) → (x : EM₁ G) → B rec' Bgpd b bloop p = rec Bgpd b bloop sq where module _ (g h : Carrier) where abstract sq : Square (bloop g) (bloop (g + h)) refl (bloop h) sq = transport (sym (Square≡doubleComp (bloop g) (bloop (g + h)) refl (bloop h))) (refl ∙∙ bloop g ∙∙ bloop h ≡⟨ doubleCompPath-elim refl (bloop g) (bloop h) ⟩ (refl ∙ bloop g) ∙ bloop h ≡⟨ cong (_∙ bloop h) (sym (lUnit (bloop g))) ⟩ bloop g ∙ bloop h ≡⟨ p g h ⟩ bloop (g + h) ∎)
{ "alphanum_fraction": 0.5288241415, "avg_line_length": 33.3680555556, "ext": "agda", "hexsha": "22fbb59f4a0166177aa6aac8831a213fb89bcbc2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1823, "size": 4805 }
module Text.Greek.SBLGNT.1Thess where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Α : List (Word) ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Α = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.1" ∷ word (Σ ∷ ι ∷ ∙λ ∷ ο ∷ υ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "1Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.1" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "1Thess.1.1" ∷ word (τ ∷ ῇ ∷ []) "1Thess.1.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Thess.1.1" ∷ word (Θ ∷ ε ∷ σ ∷ σ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ ι ∷ κ ∷ έ ∷ ω ∷ ν ∷ []) "1Thess.1.1" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.1" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.1.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "1Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Thess.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Thess.1.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Thess.1.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.1" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Thess.1.1" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.1.2" ∷ word (τ ∷ ῷ ∷ []) "1Thess.1.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.1.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.1.2" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.1.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.1.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.2" ∷ word (μ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.1.2" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.1.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Thess.1.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.1.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "1Thess.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.2" ∷ word (ἀ ∷ δ ∷ ι ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.1.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.1.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "1Thess.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.3" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ υ ∷ []) "1Thess.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.3" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "1Thess.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.3" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "1Thess.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.3" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "1Thess.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "1Thess.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.3" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.3" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.1.4" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "1Thess.1.4" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.1.4" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Thess.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.1.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.1.4" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ ν ∷ []) "1Thess.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.1.5" ∷ word (τ ∷ ὸ ∷ []) "1Thess.1.5" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.1.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Thess.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.1.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Thess.1.5" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Thess.1.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.5" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Thess.1.5" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.5" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ί ∷ ᾳ ∷ []) "1Thess.1.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "1Thess.1.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.1.5" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.1.5" ∷ word (ο ∷ ἷ ∷ ο ∷ ι ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.1.5" ∷ word (δ ∷ ι ∷ []) "1Thess.1.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.6" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.1.6" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "1Thess.1.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.6" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Thess.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.1.6" ∷ word (δ ∷ ε ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.1.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.1.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Thess.1.6" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.6" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "1Thess.1.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "1Thess.1.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Thess.1.6" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Thess.1.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.1.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.1.7" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.1.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.7" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "1Thess.1.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.1.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.1.7" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.7" ∷ word (τ ∷ ῇ ∷ []) "1Thess.1.7" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ ᾳ ∷ []) "1Thess.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.7" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.7" ∷ word (τ ∷ ῇ ∷ []) "1Thess.1.7" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "1Thess.1.7" ∷ word (ἀ ∷ φ ∷ []) "1Thess.1.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.1.8" ∷ word (ἐ ∷ ξ ∷ ή ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Thess.1.8" ∷ word (ὁ ∷ []) "1Thess.1.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Thess.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.1.8" ∷ word (ο ∷ ὐ ∷ []) "1Thess.1.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Thess.1.8" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.8" ∷ word (τ ∷ ῇ ∷ []) "1Thess.1.8" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ ᾳ ∷ []) "1Thess.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.8" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "1Thess.1.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Thess.1.8" ∷ word (ἐ ∷ ν ∷ []) "1Thess.1.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Thess.1.8" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "1Thess.1.8" ∷ word (ἡ ∷ []) "1Thess.1.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Thess.1.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.8" ∷ word (ἡ ∷ []) "1Thess.1.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.1.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.1.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Thess.1.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "1Thess.1.8" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.1.8" ∷ word (μ ∷ ὴ ∷ []) "1Thess.1.8" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.1.8" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.1.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.8" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.1.8" ∷ word (τ ∷ ι ∷ []) "1Thess.1.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.1.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.1.9" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.1.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.1.9" ∷ word (ἀ ∷ π ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.1.9" ∷ word (ὁ ∷ π ∷ ο ∷ ί ∷ α ∷ ν ∷ []) "1Thess.1.9" ∷ word (ε ∷ ἴ ∷ σ ∷ ο ∷ δ ∷ ο ∷ ν ∷ []) "1Thess.1.9" ∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.1.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.1.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.9" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Thess.1.9" ∷ word (ἐ ∷ π ∷ ε ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.1.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.1.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.1.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Thess.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Thess.1.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.1.9" ∷ word (ε ∷ ἰ ∷ δ ∷ ώ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Thess.1.9" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.1.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.1.9" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "1Thess.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.9" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ῷ ∷ []) "1Thess.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.1.10" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.1.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.1.10" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "1Thess.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.1.10" ∷ word (ἐ ∷ κ ∷ []) "1Thess.1.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.1.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "1Thess.1.10" ∷ word (ὃ ∷ ν ∷ []) "1Thess.1.10" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Thess.1.10" ∷ word (ἐ ∷ κ ∷ []) "1Thess.1.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.1.10" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Thess.1.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Thess.1.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.1.10" ∷ word (ῥ ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Thess.1.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.1.10" ∷ word (ἐ ∷ κ ∷ []) "1Thess.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.10" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "1Thess.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.1.10" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "1Thess.1.10" ∷ word (Α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.2.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.2.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.2.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.2.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.2.1" ∷ word (ε ∷ ἴ ∷ σ ∷ ο ∷ δ ∷ ο ∷ ν ∷ []) "1Thess.2.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.2.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.2.1" ∷ word (ο ∷ ὐ ∷ []) "1Thess.2.1" ∷ word (κ ∷ ε ∷ ν ∷ ὴ ∷ []) "1Thess.2.1" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "1Thess.2.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.2" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ α ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.2" ∷ word (ὑ ∷ β ∷ ρ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.2.2" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.2" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Thess.2.2" ∷ word (ἐ ∷ π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ι ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.2" ∷ word (τ ∷ ῷ ∷ []) "1Thess.2.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.2.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Thess.2.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.2.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.2" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.2" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Thess.2.2" ∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Thess.2.2" ∷ word (ἡ ∷ []) "1Thess.2.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.2.3" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Thess.2.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.2.3" ∷ word (ἐ ∷ κ ∷ []) "1Thess.2.3" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ ς ∷ []) "1Thess.2.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Thess.2.3" ∷ word (ἐ ∷ ξ ∷ []) "1Thess.2.3" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.2.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Thess.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.3" ∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "1Thess.2.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.4" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.2.4" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.2.4" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Thess.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.4" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.2.4" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.4" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.2.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.2.4" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.4" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Thess.2.4" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Thess.2.4" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.2.4" ∷ word (τ ∷ ῷ ∷ []) "1Thess.2.4" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Thess.2.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Thess.2.4" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.2.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Thess.2.5" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Thess.2.5" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Thess.2.5" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ κ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Thess.2.5" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.2.5" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.2.5" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Thess.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Thess.2.5" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.2.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.2.5" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "1Thess.2.5" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Thess.2.6" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.6" ∷ word (ἐ ∷ ξ ∷ []) "1Thess.2.6" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Thess.2.6" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Thess.2.6" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Thess.2.6" ∷ word (ἀ ∷ φ ∷ []) "1Thess.2.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.6" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Thess.2.6" ∷ word (ἀ ∷ π ∷ []) "1Thess.2.6" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Thess.2.6" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.2.7" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.7" ∷ word (β ∷ ά ∷ ρ ∷ ε ∷ ι ∷ []) "1Thess.2.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.2.7" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.7" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Thess.2.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.7" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.7" ∷ word (ἤ ∷ π ∷ ι ∷ ο ∷ ι ∷ []) "1Thess.2.7" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.7" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Thess.2.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.7" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Thess.2.7" ∷ word (τ ∷ ρ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Thess.2.7" ∷ word (θ ∷ ά ∷ ∙λ ∷ π ∷ ῃ ∷ []) "1Thess.2.7" ∷ word (τ ∷ ὰ ∷ []) "1Thess.2.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Thess.2.7" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Thess.2.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.2.8" ∷ word (ὁ ∷ μ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.2.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.8" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.8" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.2.8" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.2.8" ∷ word (ο ∷ ὐ ∷ []) "1Thess.2.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Thess.2.8" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.8" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.8" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Thess.2.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.8" ∷ word (ψ ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "1Thess.2.8" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Thess.2.8" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.2.8" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.2.8" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Thess.2.8" ∷ word (Μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.2.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Thess.2.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.2.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.2.9" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "1Thess.2.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.2.9" ∷ word (μ ∷ ό ∷ χ ∷ θ ∷ ο ∷ ν ∷ []) "1Thess.2.9" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Thess.2.9" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.2.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.2.9" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.9" ∷ word (μ ∷ ὴ ∷ []) "1Thess.2.9" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "1Thess.2.9" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Thess.2.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.9" ∷ word (ἐ ∷ κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.2.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.9" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.9" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.10" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ς ∷ []) "1Thess.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.10" ∷ word (ὁ ∷ []) "1Thess.2.10" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Thess.2.10" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.10" ∷ word (ὁ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "1Thess.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.10" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "1Thess.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.10" ∷ word (ἀ ∷ μ ∷ έ ∷ μ ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.2.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.2.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.2.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.2.10" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.10" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Thess.2.11" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.2.11" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.11" ∷ word (ἕ ∷ ν ∷ α ∷ []) "1Thess.2.11" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Thess.2.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.11" ∷ word (ὡ ∷ ς ∷ []) "1Thess.2.11" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Thess.2.11" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Thess.2.11" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ υ ∷ θ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.2.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.2.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.12" ∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "1Thess.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Thess.2.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.2.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.12" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Thess.2.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "1Thess.2.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.13" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.13" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.13" ∷ word (τ ∷ ῷ ∷ []) "1Thess.2.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.2.13" ∷ word (ἀ ∷ δ ∷ ι ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.2.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.2.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Thess.2.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "1Thess.2.13" ∷ word (π ∷ α ∷ ρ ∷ []) "1Thess.2.13" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.13" ∷ word (ἐ ∷ δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.2.13" ∷ word (ο ∷ ὐ ∷ []) "1Thess.2.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Thess.2.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Thess.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.2.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.2.13" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "1Thess.2.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Thess.2.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Thess.2.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.13" ∷ word (ὃ ∷ ς ∷ []) "1Thess.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.13" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Thess.2.13" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.2.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.2.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.2.13" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.2.14" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "1Thess.2.14" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Thess.2.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (ο ∷ ὐ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῇ ∷ []) "1Thess.2.14" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "1Thess.2.14" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Thess.2.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.2.14" ∷ word (τ ∷ ὰ ∷ []) "1Thess.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "1Thess.2.14" ∷ word (ἐ ∷ π ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.14" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.14" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "1Thess.2.14" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ υ ∷ ∙λ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.2.14" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.14" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "1Thess.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.2.15" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.2.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.2.15" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "1Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.15" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.15" ∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ ω ∷ ξ ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.15" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.2.15" ∷ word (μ ∷ ὴ ∷ []) "1Thess.2.15" ∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ κ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.15" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.2.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Thess.2.15" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "1Thess.2.15" ∷ word (κ ∷ ω ∷ ∙λ ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.2.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.2.16" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.2.16" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Thess.2.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.2.16" ∷ word (σ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.2.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.2.16" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.16" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Thess.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Thess.2.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Thess.2.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.2.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.2.16" ∷ word (ἔ ∷ φ ∷ θ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Thess.2.16" ∷ word (δ ∷ ὲ ∷ []) "1Thess.2.16" ∷ word (ἐ ∷ π ∷ []) "1Thess.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.2.16" ∷ word (ἡ ∷ []) "1Thess.2.16" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ []) "1Thess.2.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.2.16" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Thess.2.16" ∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.17" ∷ word (δ ∷ έ ∷ []) "1Thess.2.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.2.17" ∷ word (ἀ ∷ π ∷ ο ∷ ρ ∷ φ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.2.17" ∷ word (ἀ ∷ φ ∷ []) "1Thess.2.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.2.17" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Thess.2.17" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "1Thess.2.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "1Thess.2.17" ∷ word (ο ∷ ὐ ∷ []) "1Thess.2.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Thess.2.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "1Thess.2.17" ∷ word (ἐ ∷ σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.17" ∷ word (τ ∷ ὸ ∷ []) "1Thess.2.17" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Thess.2.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.17" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.2.17" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "1Thess.2.17" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "1Thess.2.17" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Thess.2.18" ∷ word (ἠ ∷ θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.2.18" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.2.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.2.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.18" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Thess.2.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Thess.2.18" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Thess.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.18" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "1Thess.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.18" ∷ word (δ ∷ ί ∷ ς ∷ []) "1Thess.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.18" ∷ word (ἐ ∷ ν ∷ έ ∷ κ ∷ ο ∷ ψ ∷ ε ∷ ν ∷ []) "1Thess.2.18" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.2.18" ∷ word (ὁ ∷ []) "1Thess.2.18" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "1Thess.2.18" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Thess.2.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.2.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.19" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ὶ ∷ ς ∷ []) "1Thess.2.19" ∷ word (ἢ ∷ []) "1Thess.2.19" ∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ []) "1Thess.2.19" ∷ word (ἢ ∷ []) "1Thess.2.19" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "1Thess.2.19" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.2.19" ∷ word (ἢ ∷ []) "1Thess.2.19" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Thess.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.19" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.19" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "1Thess.2.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.19" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.2.19" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.2.19" ∷ word (ἐ ∷ ν ∷ []) "1Thess.2.19" ∷ word (τ ∷ ῇ ∷ []) "1Thess.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.2.19" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Thess.2.19" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.2.20" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Thess.2.20" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.2.20" ∷ word (ἡ ∷ []) "1Thess.2.20" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Thess.2.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.2.20" ∷ word (ἡ ∷ []) "1Thess.2.20" ∷ word (χ ∷ α ∷ ρ ∷ ά ∷ []) "1Thess.2.20" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "1Thess.3.1" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "1Thess.3.1" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.3.1" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ι ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.3.1" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.1" ∷ word (Ἀ ∷ θ ∷ ή ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "1Thess.3.1" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.2" ∷ word (ἐ ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.2" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ν ∷ []) "1Thess.3.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.3.2" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "1Thess.3.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.2" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "1Thess.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.3.2" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.2" ∷ word (τ ∷ ῷ ∷ []) "1Thess.3.2" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Thess.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.2" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.2" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ α ∷ ι ∷ []) "1Thess.3.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "1Thess.3.2" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Thess.3.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.3.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.3.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.2" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.3" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "1Thess.3.3" ∷ word (σ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.3.3" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Thess.3.3" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.3.3" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Thess.3.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.3.3" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.3.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.3.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.3.3" ∷ word (κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.3.4" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Thess.3.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.3.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.4" ∷ word (ἦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.4" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ∙λ ∷ έ ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.3.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.3.4" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.4" ∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.3.4" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.4" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "1Thess.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.4" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.3.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.3.5" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Thess.3.5" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "1Thess.3.5" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "1Thess.3.5" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "1Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.5" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.5" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.3.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Thess.3.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.5" ∷ word (μ ∷ ή ∷ []) "1Thess.3.5" ∷ word (π ∷ ω ∷ ς ∷ []) "1Thess.3.5" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Thess.3.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.5" ∷ word (ὁ ∷ []) "1Thess.3.5" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "1Thess.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.5" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "1Thess.3.5" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Thess.3.5" ∷ word (ὁ ∷ []) "1Thess.3.5" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "1Thess.3.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.5" ∷ word (Ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Thess.3.6" ∷ word (δ ∷ ὲ ∷ []) "1Thess.3.6" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Thess.3.6" ∷ word (Τ ∷ ι ∷ μ ∷ ο ∷ θ ∷ έ ∷ ο ∷ υ ∷ []) "1Thess.3.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.3.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.6" ∷ word (ἀ ∷ φ ∷ []) "1Thess.3.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.3.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.3.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.3.6" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Thess.3.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.3.6" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.3.6" ∷ word (μ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.6" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "1Thess.3.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.3.6" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.3.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.6" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.3.6" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Thess.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.3.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.3.7" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.7" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.3.7" ∷ word (ἐ ∷ φ ∷ []) "1Thess.3.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.3.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Thess.3.7" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Thess.3.7" ∷ word (τ ∷ ῇ ∷ []) "1Thess.3.7" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ ῃ ∷ []) "1Thess.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.7" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "1Thess.3.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.3.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.3.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.3.8" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Thess.3.8" ∷ word (ζ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Thess.3.8" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.3.8" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.3.8" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Thess.3.8" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "1Thess.3.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.3.9" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "1Thess.3.9" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.3.9" ∷ word (τ ∷ ῷ ∷ []) "1Thess.3.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.3.9" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.3.9" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.3.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Thess.3.9" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Thess.3.9" ∷ word (τ ∷ ῇ ∷ []) "1Thess.3.9" ∷ word (χ ∷ α ∷ ρ ∷ ᾷ ∷ []) "1Thess.3.9" ∷ word (ᾗ ∷ []) "1Thess.3.9" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.3.9" ∷ word (δ ∷ ι ∷ []) "1Thess.3.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.9" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "1Thess.3.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.3.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.9" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Thess.3.10" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.3.10" ∷ word (δ ∷ ε ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.3.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.10" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.10" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.3.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.10" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.10" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Thess.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "1Thess.3.10" ∷ word (τ ∷ ὰ ∷ []) "1Thess.3.10" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Thess.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.3.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.3.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.10" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.3.11" ∷ word (δ ∷ ὲ ∷ []) "1Thess.3.11" ∷ word (ὁ ∷ []) "1Thess.3.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.11" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Thess.3.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.11" ∷ word (ὁ ∷ []) "1Thess.3.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Thess.3.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Thess.3.11" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ θ ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.3.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.3.11" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "1Thess.3.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.3.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.12" ∷ word (δ ∷ ὲ ∷ []) "1Thess.3.12" ∷ word (ὁ ∷ []) "1Thess.3.12" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Thess.3.12" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "1Thess.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ι ∷ []) "1Thess.3.12" ∷ word (τ ∷ ῇ ∷ []) "1Thess.3.12" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Thess.3.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.3.12" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Thess.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.3.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.3.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Thess.3.13" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ α ∷ ι ∷ []) "1Thess.3.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Thess.3.13" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.3.13" ∷ word (ἀ ∷ μ ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.13" ∷ word (ἁ ∷ γ ∷ ι ∷ ω ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Thess.3.13" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "1Thess.3.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.3.13" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.3.13" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Thess.3.13" ∷ word (τ ∷ ῇ ∷ []) "1Thess.3.13" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Thess.3.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.3.13" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.3.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.3.13" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Thess.3.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.3.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.3.13" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Thess.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.3.13" ∷ word (Λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Thess.4.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Thess.4.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.4.1" ∷ word (ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.1" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Thess.4.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.4.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.4.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.4.1" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.4.1" ∷ word (π ∷ α ∷ ρ ∷ []) "1Thess.4.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.4.1" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.1" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Thess.4.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Thess.4.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.1" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.1" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Thess.4.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.4.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.4.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Thess.4.1" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Thess.4.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.4.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.2" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "1Thess.4.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.4.2" ∷ word (ἐ ∷ δ ∷ ώ ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.4.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.4.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.4.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.4.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.4.3" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Thess.4.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Thess.4.3" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Thess.4.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.4.3" ∷ word (ὁ ∷ []) "1Thess.4.3" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Thess.4.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.4.3" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.4.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Thess.4.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.4.3" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Thess.4.3" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.4.4" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Thess.4.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.4.4" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.4" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "1Thess.4.4" ∷ word (κ ∷ τ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.4.4" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.4" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Thess.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.4" ∷ word (τ ∷ ι ∷ μ ∷ ῇ ∷ []) "1Thess.4.4" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.5" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.5" ∷ word (π ∷ ά ∷ θ ∷ ε ∷ ι ∷ []) "1Thess.4.5" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.4.5" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Thess.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.5" ∷ word (τ ∷ ὰ ∷ []) "1Thess.4.5" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "1Thess.4.5" ∷ word (τ ∷ ὰ ∷ []) "1Thess.4.5" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.5" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ α ∷ []) "1Thess.4.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.4.5" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Thess.4.5" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.6" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.6" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.6" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.4.6" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.6" ∷ word (τ ∷ ῷ ∷ []) "1Thess.4.6" ∷ word (π ∷ ρ ∷ ά ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Thess.4.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.4.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "1Thess.4.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.6" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Thess.4.6" ∷ word (ἔ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "1Thess.4.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Thess.4.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.4.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.4.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Thess.4.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.6" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ π ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.6" ∷ word (δ ∷ ι ∷ ε ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.4.6" ∷ word (ο ∷ ὐ ∷ []) "1Thess.4.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.7" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "1Thess.4.7" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.7" ∷ word (ὁ ∷ []) "1Thess.4.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.4.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Thess.4.7" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Thess.4.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Thess.4.7" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.7" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Thess.4.7" ∷ word (τ ∷ ο ∷ ι ∷ γ ∷ α ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Thess.4.8" ∷ word (ὁ ∷ []) "1Thess.4.8" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Thess.4.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.4.8" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Thess.4.8" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ []) "1Thess.4.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.4.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.4.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Thess.4.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.8" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "1Thess.4.8" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Thess.4.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.8" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.8" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.4.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.8" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.4.9" ∷ word (δ ∷ ὲ ∷ []) "1Thess.4.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.4.9" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.4.9" ∷ word (ο ∷ ὐ ∷ []) "1Thess.4.9" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.4.9" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.4.9" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.4.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.4.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.4.9" ∷ word (θ ∷ ε ∷ ο ∷ δ ∷ ί ∷ δ ∷ α ∷ κ ∷ τ ∷ ο ∷ ί ∷ []) "1Thess.4.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.9" ∷ word (τ ∷ ὸ ∷ []) "1Thess.4.9" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "1Thess.4.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.10" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Thess.4.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.10" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.10" ∷ word (ὅ ∷ ∙λ ∷ ῃ ∷ []) "1Thess.4.10" ∷ word (τ ∷ ῇ ∷ []) "1Thess.4.10" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ ᾳ ∷ []) "1Thess.4.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Thess.4.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.10" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Thess.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.11" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ τ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.4.11" ∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.11" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "1Thess.4.11" ∷ word (τ ∷ ὰ ∷ []) "1Thess.4.11" ∷ word (ἴ ∷ δ ∷ ι ∷ α ∷ []) "1Thess.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.11" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.4.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Thess.4.11" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Thess.4.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.4.11" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.4.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.4.11" ∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.4.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Thess.4.12" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ό ∷ ν ∷ ω ∷ ς ∷ []) "1Thess.4.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.4.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "1Thess.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.12" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "1Thess.4.12" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.4.12" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "1Thess.4.12" ∷ word (Ο ∷ ὐ ∷ []) "1Thess.4.13" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.13" ∷ word (δ ∷ ὲ ∷ []) "1Thess.4.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.4.13" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "1Thess.4.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.4.13" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.4.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.4.13" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Thess.4.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.4.13" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.13" ∷ word (∙λ ∷ υ ∷ π ∷ ῆ ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.4.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.13" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "1Thess.4.13" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.13" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.13" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.4.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "1Thess.4.13" ∷ word (ε ∷ ἰ ∷ []) "1Thess.4.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.4.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Thess.4.14" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Thess.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.14" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "1Thess.4.14" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.14" ∷ word (ὁ ∷ []) "1Thess.4.14" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.4.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.14" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.4.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.4.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.4.14" ∷ word (ἄ ∷ ξ ∷ ε ∷ ι ∷ []) "1Thess.4.14" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Thess.4.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Thess.4.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.4.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.4.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Thess.4.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.4.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.4.15" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.4.15" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.15" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.4.15" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.4.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.4.15" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Thess.4.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.4.15" ∷ word (ο ∷ ὐ ∷ []) "1Thess.4.15" ∷ word (μ ∷ ὴ ∷ []) "1Thess.4.15" ∷ word (φ ∷ θ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.4.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.4.15" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.4.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.4.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.4.16" ∷ word (ὁ ∷ []) "1Thess.4.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Thess.4.16" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.16" ∷ word (κ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Thess.4.16" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.16" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "1Thess.4.16" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Thess.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.16" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.16" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ι ∷ []) "1Thess.4.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.4.16" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Thess.4.16" ∷ word (ἀ ∷ π ∷ []) "1Thess.4.16" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "1Thess.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.16" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.16" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Thess.4.16" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Thess.4.16" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Thess.4.16" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Thess.4.16" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Thess.4.17" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.4.17" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.17" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.4.17" ∷ word (ο ∷ ἱ ∷ []) "1Thess.4.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.4.17" ∷ word (ἅ ∷ μ ∷ α ∷ []) "1Thess.4.17" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Thess.4.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.4.17" ∷ word (ἁ ∷ ρ ∷ π ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.17" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "1Thess.4.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.17" ∷ word (ἀ ∷ π ∷ ά ∷ ν ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.4.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.4.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.4.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.4.17" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "1Thess.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.4.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.4.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.4.17" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Thess.4.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Thess.4.17" ∷ word (ἐ ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Thess.4.17" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.4.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.4.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.4.18" ∷ word (ἐ ∷ ν ∷ []) "1Thess.4.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.4.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Thess.4.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Thess.4.18" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.5.1" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.5.1" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "1Thess.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.5.1" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Thess.5.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.5.1" ∷ word (ο ∷ ὐ ∷ []) "1Thess.5.1" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Thess.5.1" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.5.1" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.5.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Thess.5.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.5.2" ∷ word (ἀ ∷ κ ∷ ρ ∷ ι ∷ β ∷ ῶ ∷ ς ∷ []) "1Thess.5.2" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Thess.5.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.5.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "1Thess.5.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.5.2" ∷ word (ὡ ∷ ς ∷ []) "1Thess.5.2" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "1Thess.5.2" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.2" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "1Thess.5.2" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.5.2" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Thess.5.2" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Thess.5.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.3" ∷ word (Ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Thess.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.3" ∷ word (ἀ ∷ σ ∷ φ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "1Thess.5.3" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Thess.5.3" ∷ word (α ∷ ἰ ∷ φ ∷ ν ∷ ί ∷ δ ∷ ι ∷ ο ∷ ς ∷ []) "1Thess.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.5.3" ∷ word (ἐ ∷ φ ∷ ί ∷ σ ∷ τ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Thess.5.3" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ς ∷ []) "1Thess.5.3" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Thess.5.3" ∷ word (ἡ ∷ []) "1Thess.5.3" ∷ word (ὠ ∷ δ ∷ ὶ ∷ ν ∷ []) "1Thess.5.3" ∷ word (τ ∷ ῇ ∷ []) "1Thess.5.3" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.3" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "1Thess.5.3" ∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "1Thess.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.3" ∷ word (ο ∷ ὐ ∷ []) "1Thess.5.3" ∷ word (μ ∷ ὴ ∷ []) "1Thess.5.3" ∷ word (ἐ ∷ κ ∷ φ ∷ ύ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.3" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.5.4" ∷ word (δ ∷ έ ∷ []) "1Thess.5.4" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.5.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.5.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "1Thess.5.4" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.4" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ε ∷ ι ∷ []) "1Thess.5.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.5.4" ∷ word (ἡ ∷ []) "1Thess.5.4" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "1Thess.5.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.4" ∷ word (ὡ ∷ ς ∷ []) "1Thess.5.4" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "1Thess.5.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "1Thess.5.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.5.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.5.5" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.5.5" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "1Thess.5.5" ∷ word (φ ∷ ω ∷ τ ∷ ό ∷ ς ∷ []) "1Thess.5.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Thess.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.5" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "1Thess.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Thess.5.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.5.5" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "1Thess.5.5" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Thess.5.5" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.5" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Thess.5.6" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Thess.5.6" ∷ word (μ ∷ ὴ ∷ []) "1Thess.5.6" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.6" ∷ word (ὡ ∷ ς ∷ []) "1Thess.5.6" ∷ word (ο ∷ ἱ ∷ []) "1Thess.5.6" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ί ∷ []) "1Thess.5.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.5.6" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.6" ∷ word (ν ∷ ή ∷ φ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.6" ∷ word (ο ∷ ἱ ∷ []) "1Thess.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.5.7" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.5.7" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.7" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.7" ∷ word (ο ∷ ἱ ∷ []) "1Thess.5.7" ∷ word (μ ∷ ε ∷ θ ∷ υ ∷ σ ∷ κ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.5.7" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.7" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.5.8" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Thess.5.8" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Thess.5.8" ∷ word (ν ∷ ή ∷ φ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.8" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Thess.5.8" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ []) "1Thess.5.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Thess.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "1Thess.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "1Thess.5.8" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "1Thess.5.8" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.5.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Thess.5.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Thess.5.9" ∷ word (ἔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "1Thess.5.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.9" ∷ word (ὁ ∷ []) "1Thess.5.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.5.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.5.9" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "1Thess.5.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.5.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.5.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.9" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Thess.5.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.5.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.5.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.5.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.10" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Thess.5.10" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.5.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Thess.5.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Thess.5.10" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Thess.5.10" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.10" ∷ word (ἅ ∷ μ ∷ α ∷ []) "1Thess.5.10" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Thess.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Thess.5.10" ∷ word (ζ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.10" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "1Thess.5.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.11" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.11" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Thess.5.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.5.11" ∷ word (ἕ ∷ ν ∷ α ∷ []) "1Thess.5.11" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Thess.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.11" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.11" ∷ word (Ἐ ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.12" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.5.12" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.12" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.5.12" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Thess.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.12" ∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.12" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Thess.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.12" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.5.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.13" ∷ word (ἡ ∷ γ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Thess.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.13" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.5.13" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Thess.5.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Thess.5.13" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Thess.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Thess.5.13" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.13" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.13" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.5.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Thess.5.14" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.5.14" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.14" ∷ word (ἀ ∷ τ ∷ ά ∷ κ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.14" ∷ word (ὀ ∷ ∙λ ∷ ι ∷ γ ∷ ο ∷ ψ ∷ ύ ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.14" ∷ word (ἀ ∷ ν ∷ τ ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Thess.5.14" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "1Thess.5.14" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Thess.5.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.5.14" ∷ word (ὁ ∷ ρ ∷ ᾶ ∷ τ ∷ ε ∷ []) "1Thess.5.15" ∷ word (μ ∷ ή ∷ []) "1Thess.5.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Thess.5.15" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "1Thess.5.15" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "1Thess.5.15" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "1Thess.5.15" ∷ word (τ ∷ ι ∷ ν ∷ ι ∷ []) "1Thess.5.15" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ῷ ∷ []) "1Thess.5.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Thess.5.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.5.15" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.15" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "1Thess.5.15" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.5.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.5.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.5.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Thess.5.16" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.16" ∷ word (ἀ ∷ δ ∷ ι ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.5.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.17" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.18" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Thess.5.18" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.18" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Thess.5.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Thess.5.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Thess.5.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Thess.5.18" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Thess.5.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Thess.5.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.18" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.19" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Thess.5.19" ∷ word (μ ∷ ὴ ∷ []) "1Thess.5.19" ∷ word (σ ∷ β ∷ έ ∷ ν ∷ ν ∷ υ ∷ τ ∷ ε ∷ []) "1Thess.5.19" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Thess.5.20" ∷ word (μ ∷ ὴ ∷ []) "1Thess.5.20" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Thess.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Thess.5.21" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.21" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.21" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.21" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Thess.5.21" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Thess.5.21" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Thess.5.22" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.22" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "1Thess.5.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Thess.5.22" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.22" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.23" ∷ word (δ ∷ ὲ ∷ []) "1Thess.5.23" ∷ word (ὁ ∷ []) "1Thess.5.23" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Thess.5.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Thess.5.23" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "1Thess.5.23" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "1Thess.5.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.23" ∷ word (ὁ ∷ ∙λ ∷ ο ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Thess.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.23" ∷ word (ὁ ∷ ∙λ ∷ ό ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ []) "1Thess.5.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.23" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.23" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Thess.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.23" ∷ word (ἡ ∷ []) "1Thess.5.23" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "1Thess.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.23" ∷ word (τ ∷ ὸ ∷ []) "1Thess.5.23" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Thess.5.23" ∷ word (ἀ ∷ μ ∷ έ ∷ μ ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Thess.5.23" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.23" ∷ word (τ ∷ ῇ ∷ []) "1Thess.5.23" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Thess.5.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.5.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.5.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.23" ∷ word (τ ∷ η ∷ ρ ∷ η ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "1Thess.5.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Thess.5.24" ∷ word (ὁ ∷ []) "1Thess.5.24" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Thess.5.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.24" ∷ word (ὃ ∷ ς ∷ []) "1Thess.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Thess.5.24" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Thess.5.24" ∷ word (Ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Thess.5.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.25" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Thess.5.25" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.25" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Thess.5.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.26" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Thess.5.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Thess.5.26" ∷ word (ἐ ∷ ν ∷ []) "1Thess.5.26" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Thess.5.26" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Thess.5.26" ∷ word (ἐ ∷ ν ∷ ο ∷ ρ ∷ κ ∷ ί ∷ ζ ∷ ω ∷ []) "1Thess.5.27" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Thess.5.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Thess.5.27" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Thess.5.27" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Thess.5.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Thess.5.27" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Thess.5.27" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Thess.5.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.5.27" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Thess.5.27" ∷ word (ἡ ∷ []) "1Thess.5.28" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Thess.5.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.28" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Thess.5.28" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.28" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Thess.5.28" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Thess.5.28" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Thess.5.28" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Thess.5.28" ∷ []
{ "alphanum_fraction": 0.3680153322, "avg_line_length": 47.4663072776, "ext": "agda", "hexsha": "16e90ce981da620519e6bc334c4544eef9e5b7dd", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/1Thess.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/1Thess.agda", "max_line_length": 87, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/1Thess.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 49943, "size": 70440 }
module Formalization.PredicateLogic.Signature where import Lvl open import Numeral.Natural open import Type -- A signature consists of a countable family of constant/function and relation symbols. -- `Prop(n)` should be interpreted as the indices for relations of arity `n`. -- `Obj(n)` should be interpreted as the indices for functions of arity `n` (constants if `n = 0`). record Signature : Typeω where constructor intro field {ℓₚ} : Lvl.Level Prop : ℕ → Type{ℓₚ} {ℓₒ} : Lvl.Level Obj : ℕ → Type{ℓₒ}
{ "alphanum_fraction": 0.7113207547, "avg_line_length": 31.1764705882, "ext": "agda", "hexsha": "e4ba5089826763fdbf23f22bacfc843f0854b3f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Signature.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Signature.agda", "max_line_length": 99, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 149, "size": 530 }
{-# OPTIONS --safe #-} module Cubical.HITs.Ints.IsoInt where open import Cubical.HITs.Ints.IsoInt.Base public
{ "alphanum_fraction": 0.75, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "50c5caa452df11c3c6670e8b51749163b3876b38", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z", "max_forks_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jespercockx/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/IsoInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jespercockx/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/IsoInt.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jespercockx/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/IsoInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 33, "size": 112 }
{-# OPTIONS --without-K #-} module sets.nat.ordering.leq.level where open import sum open import equality open import function.isomorphism open import function.extensionality open import hott.level open import sets.nat.core open import sets.nat.ordering.leq.core open import container.core open import container.w open import sets.empty open import sets.unit open import hott.level.sets public using (nat-set) module ≤-container where I : Set I = ℕ × ℕ A A₁ A₂ : I → Set A₁ (m , n) = m ≡ 0 A₂ (m , n) = ( Σ I λ { (m' , n') → m ≡ suc m' × n ≡ suc n' } ) A i = A₁ i ⊎ A₂ i A₂-struct-iso : ∀ m n → A₂ (m , n) ≅ (¬ (m ≡ 0) × ¬ (n ≡ 0)) A₂-struct-iso m n = iso f g α β where f : ∀ {m n} → A₂ (m , n) → ¬ (m ≡ 0) × ¬ (n ≡ 0) f .{suc m}.{suc n}((m , n) , refl , refl) = (λ ()) , (λ ()) g : ∀ {m n} → ¬ (m ≡ 0) × ¬ (n ≡ 0) → A₂ (m , n) g {m = zero} (u , v) = ⊥-elim (u refl) g {n = zero} (u , v) = ⊥-elim (v refl) g {suc m} {suc n} _ = ((m , n) , refl , refl) α : ∀ {m n}(a : A₂ (m , n)) → g (f a) ≡ a α .{suc m}.{suc n}((m , n) , refl , refl) = refl β : ∀ {m n}(u : ¬ (m ≡ 0) × ¬ (n ≡ 0)) → f (g u) ≡ u β {m = zero} (u , v) = ⊥-elim (u refl) β {n = zero} (u , v) = ⊥-elim (v refl) β {suc m} {suc n} _ = pair≡ (funext λ ()) (funext λ ()) A₂-h1 : ∀ i → h 1 (A₂ i) A₂-h1 (m , n) = iso-level (sym≅ (A₂-struct-iso m n)) (×-level (Π-level λ _ → ⊥-prop) (Π-level λ _ → ⊥-prop)) A-disj : ∀ i → ¬ (A₁ i × A₂ i) A-disj (.zero , n) (refl , (m' , n') , () , pn) A-h1 : ∀ i → h 1 (A i) A-h1 i = ⊎-h1 (nat-set _ zero) (A₂-h1 i) (A-disj i) B : ∀ {i} → A i → Set B (inj₁ _) = ⊥ B (inj₂ _) = ⊤ r : ∀ {i}{a : A i} → B a → I r {a = inj₁ _} () r {a = inj₂ (mn' , _)} _ = mn' c : Container _ _ _ c = container I A B r open ≤-container using (c; A-h1) ≤-struct-iso : ∀ {n m} → n ≤ m ≅ W c (n , m) ≤-struct-iso = iso f g α β where f : ∀ {n m} → n ≤ m → W c (n , m) f z≤n = sup (inj₁ refl) (λ ()) f (s≤s p) = sup (inj₂ (_ , (refl , refl))) (λ _ → f p) g : ∀ {m n} → W c (m , n) → m ≤ n g (sup (inj₁ refl) _) = z≤n g (sup (inj₂ ((m' , n') , (refl , refl))) u) = s≤s (g (u tt)) α : ∀ {n m}(p : n ≤ m) → g (f p) ≡ p α z≤n = refl α (s≤s p) = ap s≤s (α p) β : ∀ {n m}(p : W c (m , n)) → f (g p) ≡ p β (sup (inj₁ refl) u) = ap (sup (inj₁ refl)) (funext λ ()) β (sup (inj₂ ((m' , n') , (refl , refl))) u) = ap (sup _) (funext λ { tt → β (u tt) }) ≤-level : ∀ {m n} → h 1 (m ≤ n) ≤-level {m}{n} = iso-level (sym≅ ≤-struct-iso) (w-level A-h1 (m , n))
{ "alphanum_fraction": 0.4351680827, "avg_line_length": 27.3434343434, "ext": "agda", "hexsha": "8ce0f8ae27d3b362fc927e5ce1073c860b8335b7", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering/leq/level.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering/leq/level.agda", "max_line_length": 69, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering/leq/level.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 1228, "size": 2707 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Instance.Setoids where open import Level open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Data.Sum open import Data.Sum.Relation.Binary.Pointwise open import Function.Equality open import Relation.Binary using (Setoid) open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Category.Cartesian open import Categories.Category.Cocartesian open import Categories.Category.Instance.SingletonSet open import Categories.Category.Instance.EmptySet module _ {o ℓ} where Setoids-Cartesian : Cartesian (Setoids o ℓ) Setoids-Cartesian = record { terminal = SingletonSetoid-⊤ ; products = record { product = λ {A B} → let module A = Setoid A module B = Setoid B in record { A×B = ×-setoid A B -- the stdlib doesn't provide projections! ; π₁ = record { _⟨$⟩_ = proj₁ ; cong = proj₁ } ; π₂ = record { _⟨$⟩_ = proj₂ ; cong = proj₂ } ; ⟨_,_⟩ = λ f g → record { _⟨$⟩_ = λ x → f ⟨$⟩ x , g ⟨$⟩ x ; cong = λ eq → cong f eq , cong g eq } ; project₁ = λ {_ h i} eq → cong h eq ; project₂ = λ {_ h i} eq → cong i eq ; unique = λ {W h i j} eq₁ eq₂ eq → A.sym (eq₁ (Setoid.sym W eq)) , B.sym (eq₂ (Setoid.sym W eq)) } } } module Setoids-Cartesian = Cartesian Setoids-Cartesian open Setoids-Cartesian renaming (monoidal to Setoids-Monoidal) public Setoids-Cocartesian : Cocartesian (Setoids o (o ⊔ ℓ)) Setoids-Cocartesian = record { initial = EmptySetoid-⊥ ; coproducts = record { coproduct = λ {A} {B} → record { A+B = ⊎-setoid A B ; i₁ = record { _⟨$⟩_ = inj₁ ; cong = inj₁ } ; i₂ = record { _⟨$⟩_ = inj₂ ; cong = inj₂ } ; [_,_] = λ f g → record { _⟨$⟩_ = [ f ⟨$⟩_ , g ⟨$⟩_ ] ; cong = λ { (inj₁ x) → Π.cong f x ; (inj₂ x) → Π.cong g x } } ; inject₁ = λ {_} {f} → Π.cong f ; inject₂ = λ {_} {_} {g} → Π.cong g ; unique = λ { {C} h≈f h≈g (inj₁ x) → Setoid.sym C (h≈f (Setoid.sym A x)) ; {C} h≈f h≈g (inj₂ x) → Setoid.sym C (h≈g (Setoid.sym B x)) } } } }
{ "alphanum_fraction": 0.5499174917, "avg_line_length": 33.6666666667, "ext": "agda", "hexsha": "d65a387589ef339c3dd16de3ba8947db73c632a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bond15/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bond15/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bond15/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 769, "size": 2424 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the unit type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from deprecation warnings for _≤_ {-# OPTIONS --warn=noUserWarning #-} module Data.Unit.Properties where open import Data.Sum.Base open import Data.Unit.Base open import Level using (0ℓ) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Equality infix 4 _≟_ _≟_ : Decidable {A = ⊤} _≡_ _ ≟ _ = yes refl ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid ⊤ ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Relational properties ≡-total : Total {A = ⊤} _≡_ ≡-total _ _ = inj₁ refl ≡-antisym : Antisymmetric {A = ⊤} _≡_ _≡_ ≡-antisym eq _ = eq ------------------------------------------------------------------------ -- Structures ≡-isPreorder : IsPreorder {A = ⊤} _≡_ _≡_ ≡-isPreorder = record { isEquivalence = isEquivalence ; reflexive = λ x → x ; trans = trans } ≡-isPartialOrder : IsPartialOrder _≡_ _≡_ ≡-isPartialOrder = record { isPreorder = ≡-isPreorder ; antisym = ≡-antisym } ≡-isTotalOrder : IsTotalOrder _≡_ _≡_ ≡-isTotalOrder = record { isPartialOrder = ≡-isPartialOrder ; total = ≡-total } ≡-isDecTotalOrder : IsDecTotalOrder _≡_ _≡_ ≡-isDecTotalOrder = record { isTotalOrder = ≡-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≟_ } ------------------------------------------------------------------------ -- Bundles ≡-poset : Poset 0ℓ 0ℓ 0ℓ ≡-poset = record { isPartialOrder = ≡-isPartialOrder } ≡-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≡-decTotalOrder = record { isDecTotalOrder = ≡-isDecTotalOrder } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.2 ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive _ = _ {-# WARNING_ON_USAGE ≤-reflexive "Warning: ≤-reflexive was deprecated in v1.2. Please use id from Function instead." #-} ≤-trans : Transitive _≤_ ≤-trans _ _ = _ {-# WARNING_ON_USAGE ≤-trans "Warning: ≤-trans was deprecated in v1.2. Please use trans from Relation.Binary.PropositionalEquality instead." #-} ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym _ _ = refl {-# WARNING_ON_USAGE ≤-antisym "Warning: ≤-antisym was deprecated in v1.2. Please use ≡-antisym instead." #-} ≤-total : Total _≤_ ≤-total _ _ = inj₁ _ {-# WARNING_ON_USAGE ≤-total "Warning: ≤-total was deprecated in v1.2. Please use ≡-total instead." #-} infix 4 _≤?_ _≤?_ : Decidable _≤_ _ ≤? _ = yes _ {-# WARNING_ON_USAGE _≤?_ "Warning: _≤_ was deprecated in v1.2. Please use _≟_ instead." #-} ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } {-# WARNING_ON_USAGE ≤-isPreorder "Warning: ≤-isPreorder was deprecated in v1.2. Please use ≡-isPreorder instead." #-} ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } {-# WARNING_ON_USAGE ≤-isPartialOrder "Warning: ≤-isPartialOrder was deprecated in v1.2. Please use ≡-isPartialOrder instead." #-} ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } {-# WARNING_ON_USAGE ≤-isTotalOrder "Warning: ≤-isTotalOrder was deprecated in v1.2. Please use ≡-isTotalOrder instead." #-} ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } {-# WARNING_ON_USAGE ≤-isDecTotalOrder "Warning: ≤-isDecTotalOrder was deprecated in v1.2. Please use ≡-isDecTotalOrder instead." #-} -- Bundles ≤-poset : Poset 0ℓ 0ℓ 0ℓ ≤-poset = record { isPartialOrder = ≤-isPartialOrder } {-# WARNING_ON_USAGE ≤-poset "Warning: ≤-poset was deprecated in v1.2. Please use ≡-poset instead." #-} ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } {-# WARNING_ON_USAGE ≤-decTotalOrder "Warning: ≤-decTotalOrder was deprecated in v1.2. Please use ≡-decTotalOrder instead." #-}
{ "alphanum_fraction": 0.5909190133, "avg_line_length": 25.1703296703, "ext": "agda", "hexsha": "8f29b361a16971c515df88a1c51e1595bb8abda7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Unit/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Unit/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Unit/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1499, "size": 4581 }
module Function.Proofs where import Lvl open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Functional open import Function.Inverseᵣ open import Function.Names using (_⊜_) open import Structure.Setoid using (Equiv) renaming (_≡_ to _≡ₛ_) open import Structure.Setoid.Uniqueness open import Structure.Relator.Properties open import Structure.Relator open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function open import Structure.Operator open import Syntax.Transitivity open import Type open import Type.Properties.Empty private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₒ₅ ℓₒ₆ ℓₒ₇ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ ℓₑ₆ ℓₑ₇ : Lvl.Level module _ {T : Type{ℓₒ}} ⦃ eq : Equiv{ℓₑ}(T) ⦄ where instance -- Identity function is a function. id-function : Function(id) Function.congruence(id-function) = id instance -- Identity function is injective. id-injective : Injective(id) Injective.proof(id-injective) = id instance -- Identity function is surjective. id-surjective : Surjective(id) Surjective.proof(id-surjective) {y} = [∃]-intro (y) ⦃ reflexivity(_≡ₛ_) ⦄ instance -- Identity function is bijective. id-bijective : Bijective(id) id-bijective = injective-surjective-to-bijective(id) instance id-idempotent : Idempotent(id) id-idempotent = intro(reflexivity _) instance id-involution : Involution(id) id-involution = intro(reflexivity _) instance id-inverseₗ : Inverseₗ(id)(id) id-inverseₗ = intro(reflexivity _) instance id-inverseᵣ : Inverseᵣ(id)(id) id-inverseᵣ = intro(reflexivity _) instance id-inverse : Inverse(id)(id) id-inverse = [∧]-intro id-inverseₗ id-inverseᵣ module _ {A : Type{ℓₒ₁}} ⦃ eq-a : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ eq-b : Equiv{ℓₑ₂}(B) ⦄ where instance -- Constant functions are functions. const-function : ∀{c : B} → Function {A = A}{B = B} (const(c)) Function.congruence(const-function) _ = reflexivity(_≡ₛ_) instance -- Constant functions are constant. const-constant : ∀{c : B} → Constant {A = A}{B = B} (const(c)) Constant.proof const-constant = reflexivity(_≡ₛ_) module _ {A : Type{ℓₒ₁}} ⦃ eq-a : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ eq-b : Equiv{ℓₑ₂}(B) ⦄ where open import Function.Equals open import Function.Equals.Proofs -- The constant function is extensionally a function. instance const-function-function : ∀{c : B} → Function {A = B}{B = A → B} const Function.congruence const-function-function = [⊜]-abstract module _ {a : Type{ℓₒ₁}}{b : Type{ℓₒ₂}}{c : Type{ℓₒ₃}}{d : Type{ℓₒ₄}} ⦃ _ : Equiv{ℓₑ}(a → d) ⦄ where -- Function composition is associative. [∘]-associativity : ∀{f : c → d}{g : b → c}{h : a → b} → ((f ∘ (g ∘ h)) ≡ₛ ((f ∘ g) ∘ h)) [∘]-associativity = reflexivity(_≡ₛ_) module _ {a : Type{ℓₒ₁}}{b : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ}(a → b) ⦄ {f : a → b} where -- Function composition has left identity element. [∘]-identityₗ : (id ∘ f ≡ₛ f) [∘]-identityₗ = reflexivity(_≡ₛ_) -- Function composition has right identity element. [∘]-identityᵣ : (f ∘ id ≡ₛ f) [∘]-identityᵣ = reflexivity(_≡ₛ_) module _ {a : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₑ₁}(a) ⦄ {b : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ₂}(b) ⦄ {c : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₑ₃}(c) ⦄ where -- The composition of injective functions is injective. -- Source: https://math.stackexchange.com/questions/2049511/is-the-composition-of-two-injective-functions-injective/2049521 -- Alternative proof: [∘]-associativity {f⁻¹}{g⁻¹}{g}{f} becomes id by inverseₗ-value injective equivalence [∘]-injective : ∀{f : b → c}{g : a → b} → ⦃ inj-f : Injective(f) ⦄ → ⦃ inj-g : Injective(g) ⦄ → Injective(f ∘ g) Injective.proof([∘]-injective {f = f}{g = g} ⦃ inj-f ⦄ ⦃ inj-g ⦄ ) {x₁}{x₂} = (injective(g) ⦃ inj-g ⦄ {x₁} {x₂}) ∘ (injective(f) ⦃ inj-f ⦄ {g(x₁)} {g(x₂)}) -- RHS of composition is injective if the composition is injective. [∘]-injective-elim : ∀{f : b → c} → ⦃ func-f : Function(f) ⦄ → ∀{g : a → b} → ⦃ inj-fg : Injective(f ∘ g) ⦄ → Injective(g) Injective.proof([∘]-injective-elim {f = f}{g = g} ⦃ inj-fg ⦄) {x₁}{x₂} (gx₁gx₂) = injective(f ∘ g) ⦃ inj-fg ⦄ {x₁} {x₂} (congruence₁(f) (gx₁gx₂)) module _ {a : Type{ℓₒ₁}} {b : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ₂}(b) ⦄ {c : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₑ₃}(c) ⦄ where -- The composition of surjective functions is surjective. [∘]-surjective : ∀{f : b → c} → ⦃ func-f : Function(f) ⦄ → ∀{g : a → b} → ⦃ surj-f : Surjective(f) ⦄ → ⦃ surj-g : Surjective(g) ⦄ → Surjective(f ∘ g) Surjective.proof([∘]-surjective {f = f}{g = g}) {y} with [∃]-intro (a) ⦃ fa≡y ⦄ ← surjective(f) {y} with [∃]-intro (x) ⦃ gx≡a ⦄ ← surjective(g) {a} = [∃]-intro (x) ⦃ congruence₁(f) gx≡a 🝖 fa≡y ⦄ -- LHS of composition is surjective if the composition is surjective. [∘]-surjective-elim : ∀{f : b → c}{g : a → b} → ⦃ _ : Surjective(f ∘ g) ⦄ → Surjective(f) Surjective.proof([∘]-surjective-elim {f = f}{g = g}) {y} with (surjective(f ∘ g) {y}) ... | [∃]-intro (x) ⦃ fgx≡y ⦄ = [∃]-intro (g(x)) ⦃ fgx≡y ⦄ module _ {a : Type{ℓₒ₁}} ⦃ equiv-a : Equiv{ℓₑ₁}(a) ⦄ {b : Type{ℓₒ₂}} ⦃ equiv-b : Equiv{ℓₑ₂}(b) ⦄ {c : Type{ℓₒ₃}} ⦃ equiv-c : Equiv{ℓₑ₃}(c) ⦄ where -- Bijective functions are closed under function composition. -- The composition of bijective functions is bijective. [∘]-bijective : ∀{f : b → c} → ⦃ func-f : Function(f) ⦄ → ∀{g : a → b} → ⦃ bij-f : Bijective(f) ⦄ → ⦃ bij-g : Bijective(g) ⦄ → Bijective(f ∘ g) [∘]-bijective {f = f} {g = g} = injective-surjective-to-bijective(f ∘ g) ⦃ [∘]-injective ⦃ inj-f = bijective-to-injective(f) ⦄ ⦃ inj-g = bijective-to-injective(g) ⦄ ⦄ ⦃ [∘]-surjective ⦃ surj-f = bijective-to-surjective(f) ⦄ ⦃ surj-g = bijective-to-surjective(g) ⦄ ⦄ [∘]-inverseᵣ : ∀{f : b → c} ⦃ func-f : Function(f) ⦄ {f⁻¹ : b ← c}{g : a → b}{g⁻¹ : a ← b} → ⦃ inv-f : Inverseᵣ(f)(f⁻¹) ⦄ ⦃ inv-g : Inverseᵣ(g)(g⁻¹) ⦄ → Inverseᵣ(f ∘ g)(g⁻¹ ∘ f⁻¹) Inverseᵣ.proof ([∘]-inverseᵣ {f} {f⁻¹} {g} {g⁻¹}) {x} = ((f ∘ g) ∘ (g⁻¹ ∘ f⁻¹))(x) 🝖[ _≡ₛ_ ]-[] (f ∘ ((g ∘ g⁻¹) ∘ f⁻¹))(x) 🝖[ _≡ₛ_ ]-[ congruence₁(f) (inverseᵣ(g)(g⁻¹)) ] (f ∘ (id ∘ f⁻¹))(x) 🝖[ _≡ₛ_ ]-[] (f ∘ f⁻¹)(x) 🝖[ _≡ₛ_ ]-[ inverseᵣ(f)(f⁻¹) ] x 🝖-end -- The composition of functions is a function. [∘]-function : ∀{f : b → c}{g : a → b} → ⦃ func-f : Function(f) ⦄ → ⦃ func-g : Function(g) ⦄ → Function(f ∘ g) Function.congruence([∘]-function {f = f}{g = g}) = congruence₁(f) ∘ congruence₁(g) module _ {a₁ : Type{ℓₒ₁}} ⦃ equiv-a₁ : Equiv{ℓₑ₁}(a₁) ⦄ {b₁ : Type{ℓₒ₂}} ⦃ equiv-b₁ : Equiv{ℓₑ₂}(b₁) ⦄ {a₂ : Type{ℓₒ₃}} ⦃ equiv-a₂ : Equiv{ℓₑ₃}(a₂) ⦄ {b₂ : Type{ℓₒ₄}} ⦃ equiv-b₂ : Equiv{ℓₑ₄}(b₂) ⦄ {c : Type{ℓₒ₅}} ⦃ equiv-c : Equiv{ℓₑ₅}(c) ⦄ {f : a₂ → b₂ → c} ⦃ func-f : BinaryOperator(f) ⦄ {g : a₁ → b₁ → a₂} ⦃ func-g : BinaryOperator(g) ⦄ {h : a₁ → b₁ → b₂} ⦃ func-h : BinaryOperator(h) ⦄ where [∘]-binaryOperator : BinaryOperator(x ↦ y ↦ f(g x y)(h x y)) BinaryOperator.congruence [∘]-binaryOperator xy1 xy2 = congruence₂(f) (congruence₂(g) xy1 xy2) (congruence₂(h) xy1 xy2) module _ {a : Type{ℓₒ₁}} ⦃ equiv-a : Equiv{ℓₑ₁}(a) ⦄ {b : Type{ℓₒ₂}} ⦃ equiv-b : Equiv{ℓₑ₂}(b) ⦄ {f : a → a → b} ⦃ func-f : BinaryOperator(f) ⦄ where [$₂]-function : Function(f $₂_) Function.congruence [$₂]-function = congruence₂(f) $₂_ module _ {X : Type{ℓ₁}} {Y : Type{ℓ₂}} {Z : Type{ℓ₃}} where swap-involution : ⦃ _ : Equiv{ℓₑ}(X → Y → Z) ⦄ → ∀{f : X → Y → Z} → (swap(swap(f)) ≡ₛ f) swap-involution = reflexivity(_≡ₛ_) swap-involution-fn : ⦃ _ : Equiv{ℓₑ}((X → Y → Z) → (X → Y → Z)) ⦄ → (swap ∘ swap ≡ₛ id {T = X → Y → Z}) swap-involution-fn = reflexivity(_≡ₛ_) swap-binaryOperator : ⦃ _ : Equiv{ℓₑ₁}(X) ⦄ ⦃ _ : Equiv{ℓₑ₂}(Y) ⦄ ⦃ _ : Equiv{ℓₑ₃}(Z) ⦄ → ∀{_▫_ : X → Y → Z} → ⦃ _ : BinaryOperator(_▫_) ⦄ → BinaryOperator(swap(_▫_)) BinaryOperator.congruence (swap-binaryOperator {_▫_ = _▫_} ⦃ intro p ⦄) x₁y₁ x₂y₂ = p x₂y₂ x₁y₁ module _ {X : Type{ℓ₁}} {Y : Type{ℓ₂}} where s-combinator-const-id : ⦃ _ : Equiv{ℓₑ}(X → X) ⦄ → (_∘ₛ_ {X = X}{Y = Y → X}{Z = X} const const ≡ₛ id) s-combinator-const-id = reflexivity(_≡ₛ_) module _ {X : Type{ℓ₁}} {Y : Type{ℓ₂}} {Z : Type{ℓ₃}} ⦃ equiv-z : Equiv{ℓₑ₃}(Z) ⦄ where s-combinator-const-eq : ∀{f}{a}{b} → (_∘ₛ_{X = X}{Y = Y}{Z = Z} f (const b) a ≡ₛ f a b) s-combinator-const-eq = reflexivity(_≡ₛ_) {- TODO: Maybe this is unprovable because types. https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog https://plato.stanford.edu/entries/axiom-choice/choice-and-type-theory.html https://en.wikipedia.org/wiki/Diaconescu%27s_theorem module _ {fn-ext : FunctionExtensionality} where open import Function.Names open import Data.Boolean function-extensionality-to-classical : ∀{P} → (P ∨ (¬ P)) function-extensionality-to-classical{P} = where A : Bool → Stmt A(x) = (P ∨ (x ≡ 𝐹)) B : Bool → Stmt B(x) = (P ∨ (x ≡ 𝑇)) C : (Bool → Stmt) → Stmt C(F) = (F ⊜ A) ∨ (F ⊜ B) -} module _ {X : Type{ℓₒ₁}} ⦃ eq-x : Equiv{ℓₑ₁}(X) ⦄ {Y : Type{ℓₒ₂}} ⦃ eq-y : Equiv{ℓₑ₂}(Y) ⦄ {Z : Type{ℓₒ₃}} ⦃ eq-z : Equiv{ℓₑ₃}(Z) ⦄ where open import Function.Equals open import Function.Equals.Proofs s-combinator-injective : Injective(_∘ₛ_ {X = X}{Y = Y}{Z = Z}) _⊜_.proof (Injective.proof s-combinator-injective {f} {g} sxsy) {x} = Function.Equals.intro(\{a} → [⊜]-apply([⊜]-apply sxsy {const(a)}){x}) s-combinator-inverseₗ : Inverseₗ(_∘ₛ_ {X = X}{Y = Y}{Z = Z})(f ↦ a ↦ b ↦ f (const b) a) _⊜_.proof (Inverseᵣ.proof s-combinator-inverseₗ) = reflexivity(_≡ₛ_) module _ {A : Type{ℓ}} ⦃ equiv-A : Equiv{ℓₑ}(A) ⦄ where classical-constant-endofunction-existence : ⦃ classical : Classical(A) ⦄ → ∃{Obj = A → A}(Constant) classical-constant-endofunction-existence with excluded-middle(A) ... | [∨]-introₗ a = [∃]-intro (const a) ... | [∨]-introᵣ na = [∃]-intro id ⦃ intro(\{a} → [⊥]-elim(na a)) ⦄ module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where open import Logic.Propositional.Theorems open import Structure.Operator.Properties proj₂ₗ-associativity : Associativity{T = T}(proj₂ₗ) proj₂ₗ-associativity = intro(reflexivity(_)) proj₂ᵣ-associativity : Associativity{T = T}(proj₂ᵣ) proj₂ᵣ-associativity = intro(reflexivity(_)) proj₂ₗ-identityₗ : ∀{id : T} → Identityₗ(proj₂ₗ)(id) ↔ (∀{x} → (Equiv._≡_ equiv id x)) proj₂ₗ-identityₗ = [↔]-intro intro Identityₗ.proof proj₂ₗ-identityᵣ : ∀{id : T} → Identityᵣ(proj₂ₗ)(id) proj₂ₗ-identityᵣ = intro(reflexivity(_)) proj₂ₗ-identity : ∀{id : T} → Identity(proj₂ₗ)(id) ↔ (∀{x} → (Equiv._≡_ equiv id x)) proj₂ₗ-identity = [↔]-transitivity ([↔]-intro (l ↦ intro ⦃ left = l ⦄ ⦃ right = proj₂ₗ-identityᵣ ⦄) Identity.left) proj₂ₗ-identityₗ proj₂ᵣ-identityₗ : ∀{id : T} → Identityₗ(proj₂ᵣ)(id) proj₂ᵣ-identityₗ = intro(reflexivity(_)) proj₂ᵣ-identityᵣ : ∀{id : T} → Identityᵣ(proj₂ᵣ)(id) ↔ (∀{x} → (Equiv._≡_ equiv id x)) proj₂ᵣ-identityᵣ = [↔]-intro intro Identityᵣ.proof proj₂ᵣ-identity : ∀{id : T} → Identity(proj₂ᵣ)(id) ↔ (∀{x} → (Equiv._≡_ equiv id x)) proj₂ᵣ-identity = [↔]-transitivity ([↔]-intro (r ↦ intro ⦃ left = proj₂ᵣ-identityₗ ⦄ ⦃ right = r ⦄) Identity.right) proj₂ᵣ-identityᵣ module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where instance id-inversePair : InversePair{A = T}([↔]-reflexivity) id-inversePair = intro ⦃ left = intro(reflexivity(_≡ₛ_)) ⦄ ⦃ right = intro(reflexivity(_≡ₛ_)) ⦄ module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {p : A ↔ B} where sym-inversePair : ⦃ InversePair(p) ⦄ → InversePair([↔]-symmetry p) sym-inversePair = intro module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ {p₁ : A ↔ B} ⦃ func-p₁ₗ : Function([↔]-to-[←] p₁) ⦄ {p₂ : B ↔ C} ⦃ func-p₂ᵣ : Function([↔]-to-[→] p₂) ⦄ where trans-inversePair : ⦃ inv₁ : InversePair(p₁) ⦄ → ⦃ inv₂ : InversePair(p₂) ⦄ → InversePair([↔]-transitivity p₁ p₂) trans-inversePair = intro ⦃ left = [∘]-inverseᵣ {f = [↔]-to-[→] p₂} ⦄ ⦃ right = [∘]-inverseᵣ {f = [↔]-to-[←] p₁} ⦄
{ "alphanum_fraction": 0.6025006089, "avg_line_length": 42.6193771626, "ext": "agda", "hexsha": "82e0765b903bc30bb0b8ef0b7a3f306d1db63f87", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Proofs.agda", "max_line_length": 236, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5588, "size": 12317 }
------------------------------------------------------------------------ -- Application of substitutions to terms ------------------------------------------------------------------------ import Level open import Data.Universe module README.DependentlyTyped.Term.Substitution (Uni₀ : Universe Level.zero Level.zero) where open import Data.Product as Prod renaming (curry to c; uncurry to uc) open import deBruijn.Substitution.Data open import Function as F using (_$_; _ˢ_) renaming (const to k) import README.DependentlyTyped.Term as Term; open Term Uni₀ import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning -- Code for applying substitutions. -- -- Note that the _↦_ record ensures that we already have access to -- operations such as lifting. module Apply {T : Term-like Level.zero} (T↦Tm : T ↦ Tm) where open _↦_ T↦Tm hiding (var) mutual infixl 8 _/⊢_ _/⊢-lemma_ -- Applies a substitution to a term. TODO: Generalise and allow -- the codomain to be any suitable applicative structure? _/⊢_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ → Sub T ρ̂ → Δ ⊢ σ /̂ ρ̂ var x /⊢ ρ = trans ⊙ (x /∋ ρ) ƛ t /⊢ ρ = ƛ (t /⊢ ρ ↑) t₁ · t₂ /⊢ ρ = [ t₁ · t₂ ]/⊢ ρ -- The body of the last case above. (At the time of writing the -- termination checker complains if [ t₁ · t₂ ]/⊢ ρ is replaced by -- t₁ · t₂ /⊢ ρ in the type signature of ·-/⊢ below.) [_·_]/⊢ : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) (ρ : Sub T ρ̂) → Δ ⊢ snd σ /̂ ŝub ⟦ t₂ ⟧ /̂ ρ̂ [_·_]/⊢ {σ = σ} t₁ t₂ ρ = P.subst (λ v → _ ⊢ snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v) (≅-Value-⇒-≡ $ P.sym $ t₂ /⊢-lemma ρ) ((t₁ /⊢ ρ) · (t₂ /⊢ ρ)) abstract -- An unfolding lemma. ·-/⊢ : ∀ {Γ Δ sp₁ sp₂ σ} {ρ̂ : Γ ⇨̂ Δ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) (ρ : Sub T ρ̂) → [ t₁ · t₂ ]/⊢ ρ ≅-⊢ (t₁ /⊢ ρ) · (t₂ /⊢ ρ) ·-/⊢ {σ = σ} t₁ t₂ ρ = drop-subst-⊢ (λ v → snd σ /̂ ⟦ ρ ⟧⇨ ↑̂ /̂ ŝub v) (≅-Value-⇒-≡ $ P.sym $ t₂ /⊢-lemma ρ) -- The application operation is well-behaved. _/⊢-lemma_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ σ) (ρ : Sub T ρ̂) → ⟦ t ⟧ /Val ρ ≅-Value ⟦ t /⊢ ρ ⟧ var x /⊢-lemma ρ = /̂∋-⟦⟧⇨ x ρ ƛ t /⊢-lemma ρ = begin [ c ⟦ t ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ c (⟦ t ⟧ /Val ρ ↑) ] ≡⟨ curry-cong (t /⊢-lemma (ρ ↑)) ⟩ [ c ⟦ t /⊢ ρ ↑ ⟧ ] ∎ t₁ · t₂ /⊢-lemma ρ = begin [ ⟦ t₁ · t₂ ⟧ /Val ρ ] ≡⟨ P.refl ⟩ [ (⟦ t₁ ⟧ /Val ρ) ˢ (⟦ t₂ ⟧ /Val ρ) ] ≡⟨ ˢ-cong (t₁ /⊢-lemma ρ) (t₂ /⊢-lemma ρ) ⟩ [ ⟦ t₁ /⊢ ρ ⟧ ˢ ⟦ t₂ /⊢ ρ ⟧ ] ≡⟨ P.refl ⟩ [ ⟦ (t₁ /⊢ ρ) · (t₂ /⊢ ρ) ⟧ ] ≡⟨ ⟦⟧-cong (P.sym $ ·-/⊢ t₁ t₂ ρ) ⟩ [ ⟦ t₁ · t₂ /⊢ ρ ⟧ ] ∎ app : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → [ Tm ⟶ Tm ] ρ̂ app ρ = record { function = λ _ t → t /⊢ ρ ; corresponds = λ _ t → t /⊢-lemma ρ } -- Application of substitutions to syntactic types. TODO: Remove? infixl 8 _/⊢t_ _/⊢t⋆_ _/⊢t_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ type → Sub T ρ̂ → Δ ⊢ σ /̂ ρ̂ type ⋆ /⊢t ρ = ⋆ el t /⊢t ρ = P.subst (λ v → _ ⊢ -, k U-el ˢ v type) (≅-Value-⇒-≡ $ P.sym $ t /⊢-lemma ρ) $ el (t /⊢ ρ) π σ′ τ′ /⊢t ρ = π (σ′ /⊢t ρ) (τ′ /⊢t ρ ↑) _/⊢t⋆_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ⊢ σ type → Subs T ρ̂ → Δ ⊢ σ /̂ ρ̂ type σ′ /⊢t⋆ ε = σ′ σ′ /⊢t⋆ (ρs ▻ ρ) = σ′ /⊢t⋆ ρs /⊢t ρ -- Congruence lemmas. /⊢t-cong : ∀ {Γ₁ Δ₁ σ₁} {σ′₁ : Γ₁ ⊢ σ₁ type} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ σ₂} {σ′₂ : Γ₂ ⊢ σ₂ type} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → σ′₁ ≅-type σ′₂ → ρ₁ ≅-⇨ ρ₂ → σ′₁ /⊢t ρ₁ ≅-type σ′₂ /⊢t ρ₂ /⊢t-cong P.refl P.refl = P.refl /⊢t⋆-cong : ∀ {Γ₁ Δ₁ σ₁} {σ′₁ : Γ₁ ⊢ σ₁ type} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ₂ Δ₂ σ₂} {σ′₂ : Γ₂ ⊢ σ₂ type} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} → σ′₁ ≅-type σ′₂ → ρs₁ ≅-⇨⋆ ρs₂ → σ′₁ /⊢t⋆ ρs₁ ≅-type σ′₂ /⊢t⋆ ρs₂ /⊢t⋆-cong P.refl P.refl = P.refl substitution₁ : Substitution₁ Tm substitution₁ = record { var = record { function = λ _ → var ; corresponds = λ _ _ → P.refl } ; app′ = Apply.app ; app′-var = λ _ _ _ → P.refl } open Substitution₁ substitution₁ hiding (var) -- Some unfolding lemmas. module Unfolding-lemmas {T : Term-like Level.zero} (T↦Tm : Translation-from T) where open Translation-from T↦Tm open Apply translation hiding (_/⊢_; app) abstract ƛ-/⊢⋆ : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ▻ σ ⊢ τ) (ρs : Subs T ρ̂) → ƛ t /⊢⋆ ρs ≅-⊢ ƛ (t /⊢⋆ ρs ↑⋆) ƛ-/⊢⋆ t ε = P.refl ƛ-/⊢⋆ t (ρs ▻ ρ) = begin [ ƛ t /⊢⋆ ρs /⊢ ρ ] ≡⟨ /⊢-cong (ƛ-/⊢⋆ t ρs) (P.refl {x = [ ρ ]}) ⟩ [ ƛ (t /⊢⋆ ρs ↑⋆) /⊢ ρ ] ≡⟨ P.refl ⟩ [ ƛ (t /⊢⋆ (ρs ▻ ρ) ↑⋆) ] ∎ ·-/⊢⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} {sp₁ sp₂ σ} (t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) (ρs : Subs T ρ̂) → t₁ · t₂ /⊢⋆ ρs ≅-⊢ (t₁ /⊢⋆ ρs) · (t₂ /⊢⋆ ρs) ·-/⊢⋆ t₁ t₂ ε = P.refl ·-/⊢⋆ t₁ t₂ (ρs ▻ ρ) = begin [ t₁ · t₂ /⊢⋆ ρs /⊢ ρ ] ≡⟨ /⊢-cong (·-/⊢⋆ t₁ t₂ ρs) P.refl ⟩ [ (t₁ /⊢⋆ ρs) · (t₂ /⊢⋆ ρs) /⊢ ρ ] ≡⟨ ·-/⊢ (t₁ /⊢⋆ ρs) (t₂ /⊢⋆ ρs) ρ ⟩ [ (t₁ /⊢⋆ (ρs ▻ ρ)) · (t₂ /⊢⋆ (ρs ▻ ρ)) ] ∎ -- TODO: Remove the following lemmas? ⋆-/⊢t⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs : Subs T ρ̂) → ⋆ /⊢t⋆ ρs ≅-type ⋆ {Γ = Δ} ⋆-/⊢t⋆ ε = P.refl ⋆-/⊢t⋆ (ρs ▻ ρ) = begin [ ⋆ /⊢t⋆ ρs /⊢t ρ ] ≡⟨ /⊢t-cong (⋆-/⊢t⋆ ρs) (P.refl {x = [ ρ ]}) ⟩ [ ⋆ /⊢t ρ ] ≡⟨ P.refl ⟩ [ ⋆ ] ∎ el-/⊢t : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ -, k U-⋆) (ρ : Sub T ρ̂) → el t /⊢t ρ ≅-type el (t /⊢ ρ) el-/⊢t t ρ = drop-subst-⊢-type (λ v → -, k U-el ˢ v) (≅-Value-⇒-≡ $ P.sym $ t /⊢-lemma ρ) el-/⊢t⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ -, k U-⋆) (ρs : Subs T ρ̂) → el t /⊢t⋆ ρs ≅-type el (t /⊢⋆ ρs) el-/⊢t⋆ t ε = P.refl el-/⊢t⋆ t (ρs ▻ ρ) = begin [ el t /⊢t⋆ ρs /⊢t ρ ] ≡⟨ /⊢t-cong (el-/⊢t⋆ t ρs) (P.refl {x = [ ρ ]}) ⟩ [ el (t /⊢⋆ ρs) /⊢t ρ ] ≡⟨ el-/⊢t (t /⊢⋆ ρs) ρ ⟩ [ el (t /⊢⋆ ρs /⊢ ρ) ] ∎ π-/⊢t⋆ : ∀ {Γ Δ σ τ} {ρ̂ : Γ ⇨̂ Δ} (σ′ : Γ ⊢ σ type) (τ′ : Γ ▻ σ ⊢ τ type) (ρs : Subs T ρ̂) → π σ′ τ′ /⊢t⋆ ρs ≅-type π (σ′ /⊢t⋆ ρs) (τ′ /⊢t⋆ ρs ↑⋆) π-/⊢t⋆ σ′ τ′ ε = P.refl π-/⊢t⋆ σ′ τ′ (ρs ▻ ρ) = begin [ π σ′ τ′ /⊢t⋆ ρs /⊢t ρ ] ≡⟨ /⊢t-cong (π-/⊢t⋆ σ′ τ′ ρs) (P.refl {x = [ ρ ]}) ⟩ [ π (σ′ /⊢t⋆ ρs) (τ′ /⊢t⋆ ρs ↑⋆) /⊢t ρ ] ≡⟨ P.refl ⟩ [ π (σ′ /⊢t⋆ ρs /⊢t ρ) (τ′ /⊢t⋆ ρs ↑⋆ /⊢t ρ ↑) ] ∎ -- Another lemma. module Apply-lemma {T₁ T₂ : Term-like Level.zero} (T₁↦T : Translation-from T₁) (T₂↦T : Translation-from T₂) {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₂ ρ̂) where open Translation-from T₁↦T using () renaming (_↑⁺⋆_ to _↑⁺⋆₁_; _/⊢⋆_ to _/⊢⋆₁_) open Apply (Translation-from.translation T₁↦T) using () renaming (_/⊢t⋆_ to _/⊢t⋆₁_) open Translation-from T₂↦T using () renaming (_↑⁺⋆_ to _↑⁺⋆₂_; _/⊢⋆_ to _/⊢⋆₂_) open Apply (Translation-from.translation T₂↦T) using () renaming (_/⊢t⋆_ to _/⊢t⋆₂_) abstract var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ : (∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) → var x /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢ var x /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺) → ∀ Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢ σ) → t /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢ t /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺ var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp Γ⁺ (var x) = hyp Γ⁺ x var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp Γ⁺ (ƛ {σ = σ} t) = begin [ ƛ t /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ] ≡⟨ Unfolding-lemmas.ƛ-/⊢⋆ T₁↦T t (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ ƛ (t /⊢⋆₁ ρs₁ ↑⁺⋆₁ (Γ⁺ ▻ σ)) ] ≡⟨ ƛ-cong (var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp (Γ⁺ ▻ σ) t) ⟩ [ ƛ (t /⊢⋆₂ ρs₂ ↑⁺⋆₂ (Γ⁺ ▻ σ)) ] ≡⟨ P.sym $ Unfolding-lemmas.ƛ-/⊢⋆ T₂↦T t (ρs₂ ↑⁺⋆₂ Γ⁺) ⟩ [ ƛ t /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺ ] ∎ var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp Γ⁺ (t₁ · t₂) = begin [ t₁ · t₂ /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ] ≡⟨ Unfolding-lemmas.·-/⊢⋆ T₁↦T t₁ t₂ (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ (t₁ /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺) · (t₂ /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺) ] ≡⟨ ·-cong (var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp Γ⁺ t₁) (var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ hyp Γ⁺ t₂) ⟩ [ (t₁ /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺) · (t₂ /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺) ] ≡⟨ P.sym $ Unfolding-lemmas.·-/⊢⋆ T₂↦T t₁ t₂ (ρs₂ ↑⁺⋆₂ Γ⁺) ⟩ [ t₁ · t₂ /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺ ] ∎ -- Term substitutions, along with a number of lemmas. substitution₂ : Substitution₂ Tm substitution₂ = record { substitution₁ = substitution₁ ; var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆′ = Apply-lemma.var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ } open Apply (Translation-from.translation no-translation) public using (·-/⊢; _/⊢t_; /⊢t-cong; _/⊢t⋆_; /⊢t⋆-cong) open Unfolding-lemmas no-translation public open Substitution₂ substitution₂ public hiding (var; substitution₁)
{ "alphanum_fraction": 0.4048093972, "avg_line_length": 38.0759493671, "ext": "agda", "hexsha": "7c8d6097612f74732b55b5bfd414218ffdfa181c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/Term/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/Term/Substitution.agda", "max_line_length": 117, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/Term/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 5386, "size": 9024 }
------------------------------------------------------------------------ -- Coinductive definition of subtyping ------------------------------------------------------------------------ module RecursiveTypes.Subtyping.Semantic.Coinductive where open import Codata.Musical.Notation open import Data.Nat using (ℕ; zero; suc) open import Data.Fin using (Fin) open import Function.Base open import Data.Empty using (⊥-elim) open import Relation.Nullary open import Relation.Nullary.Negation hiding (stable) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import RecursiveTypes.Syntax open import RecursiveTypes.Substitution open import RecursiveTypes.Semantics infixr 10 _⟶_ infix 4 _≤∞_ _≤Coind_ infix 3 _∎ infixr 2 _≤⟨_⟩_ ------------------------------------------------------------------------ -- Definition -- The obvious definition of subtyping for trees. data _≤∞_ {n} : Tree n → Tree n → Set where ⊥ : ∀ {τ} → ⊥ ≤∞ τ ⊤ : ∀ {σ} → σ ≤∞ ⊤ var : ∀ {x} → var x ≤∞ var x _⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤σ₁ : ∞ (♭ τ₁ ≤∞ ♭ σ₁)) (σ₂≤τ₂ : ∞ (♭ σ₂ ≤∞ ♭ τ₂)) → σ₁ ⟶ σ₂ ≤∞ τ₁ ⟶ τ₂ -- Subtyping for recursive types is defined in terms of subtyping for -- trees. _≤Coind_ : ∀ {n} → Ty n → Ty n → Set σ ≤Coind τ = ⟦ σ ⟧ ≤∞ ⟦ τ ⟧ ------------------------------------------------------------------------ -- A trick used to ensure guardedness of expressions using -- transitivity infix 4 _≤∞P_ _≤∞W_ data _≤∞P_ {n} : Tree n → Tree n → Set where ⊥ : ∀ {τ} → ⊥ ≤∞P τ ⊤ : ∀ {σ} → σ ≤∞P ⊤ var : ∀ {x} → var x ≤∞P var x _⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤σ₁ : ∞ (♭ τ₁ ≤∞P ♭ σ₁)) (σ₂≤τ₂ : ∞ (♭ σ₂ ≤∞P ♭ τ₂)) → σ₁ ⟶ σ₂ ≤∞P τ₁ ⟶ τ₂ -- Transitivity. _≤⟨_⟩_ : ∀ τ₁ {τ₂ τ₃} (τ₁≤τ₂ : τ₁ ≤∞P τ₂) (τ₂≤τ₃ : τ₂ ≤∞P τ₃) → τ₁ ≤∞P τ₃ data _≤∞W_ {n} : Tree n → Tree n → Set where ⊥ : ∀ {τ} → ⊥ ≤∞W τ ⊤ : ∀ {σ} → σ ≤∞W ⊤ var : ∀ {x} → var x ≤∞W var x _⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤σ₁ : ♭ τ₁ ≤∞P ♭ σ₁) (σ₂≤τ₂ : ♭ σ₂ ≤∞P ♭ τ₂) → σ₁ ⟶ σ₂ ≤∞W τ₁ ⟶ τ₂ transW : ∀ {n} {τ₁ τ₂ τ₃ : Tree n} → τ₁ ≤∞W τ₂ → τ₂ ≤∞W τ₃ → τ₁ ≤∞W τ₃ transW ⊥ _ = ⊥ transW _ ⊤ = ⊤ transW var var = var transW (τ₁≤σ₁ ⟶ σ₂≤τ₂) (χ₁≤τ₁ ⟶ τ₂≤χ₂) = (_ ≤⟨ χ₁≤τ₁ ⟩ τ₁≤σ₁) ⟶ (_ ≤⟨ σ₂≤τ₂ ⟩ τ₂≤χ₂) whnf : ∀ {n} {σ τ : Tree n} → σ ≤∞P τ → σ ≤∞W τ whnf ⊥ = ⊥ whnf ⊤ = ⊤ whnf var = var whnf (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♭ τ₁≤σ₁ ⟶ ♭ σ₂≤τ₂ whnf (σ ≤⟨ τ₁≤τ₂ ⟩ τ₂≤τ₃) = transW (whnf τ₁≤τ₂) (whnf τ₂≤τ₃) mutual ⟦_⟧W : ∀ {n} {σ τ : Tree n} → σ ≤∞W τ → σ ≤∞ τ ⟦ ⊥ ⟧W = ⊥ ⟦ ⊤ ⟧W = ⊤ ⟦ var ⟧W = var ⟦ τ₁≤σ₁ ⟶ σ₂≤τ₂ ⟧W = ♯ ⟦ τ₁≤σ₁ ⟧P ⟶ ♯ ⟦ σ₂≤τ₂ ⟧P ⟦_⟧P : ∀ {n} {σ τ : Tree n} → σ ≤∞P τ → σ ≤∞ τ ⟦ σ≤τ ⟧P = ⟦ whnf σ≤τ ⟧W ⌜_⌝ : ∀ {n} {σ τ : Tree n} → σ ≤∞ τ → σ ≤∞P τ ⌜ ⊥ ⌝ = ⊥ ⌜ ⊤ ⌝ = ⊤ ⌜ var ⌝ = var ⌜ τ₁≤σ₁ ⟶ σ₂≤τ₂ ⌝ = ♯ ⌜ ♭ τ₁≤σ₁ ⌝ ⟶ ♯ ⌜ ♭ σ₂≤τ₂ ⌝ ------------------------------------------------------------------------ -- Some lemmas refl∞ : ∀ {n} (τ : Tree n) → τ ≤∞ τ refl∞ ⊥ = ⊥ refl∞ ⊤ = ⊤ refl∞ (var x) = var refl∞ (σ ⟶ τ) = ♯ refl∞ (♭ σ) ⟶ ♯ refl∞ (♭ τ) _∎ : ∀ {n} (τ : Tree n) → τ ≤∞P τ τ ∎ = ⌜ refl∞ τ ⌝ trans : ∀ {n} {τ₁ τ₂ τ₃ : Tree n} → τ₁ ≤∞ τ₂ → τ₂ ≤∞ τ₃ → τ₁ ≤∞ τ₃ trans {τ₁ = τ₁} {τ₂} {τ₃} τ₁≤τ₂ τ₂≤τ₃ = ⟦ τ₁ ≤⟨ ⌜ τ₁≤τ₂ ⌝ ⟩ τ₂ ≤⟨ ⌜ τ₂≤τ₃ ⌝ ⟩ τ₃ ∎ ⟧P unfold : ∀ {n} {τ₁ τ₂ : Ty (suc n)} → μ τ₁ ⟶ τ₂ ≤Coind unfold[μ τ₁ ⟶ τ₂ ] unfold = ♯ refl∞ _ ⟶ ♯ refl∞ _ fold : ∀ {n} {τ₁ τ₂ : Ty (suc n)} → unfold[μ τ₁ ⟶ τ₂ ] ≤Coind μ τ₁ ⟶ τ₂ fold = ♯ refl∞ _ ⟶ ♯ refl∞ _ var:≤∞⟶≡ : ∀ {n} {x y : Fin n} → var x ≤∞ var y → Ty.var x ≡ Ty.var y var:≤∞⟶≡ var = refl left-proj : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : ∞ (Tree n)} → σ₁ ⟶ σ₂ ≤∞ τ₁ ⟶ τ₂ → ♭ τ₁ ≤∞ ♭ σ₁ left-proj (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♭ τ₁≤σ₁ right-proj : ∀ {n} {σ₁ σ₂ τ₁ τ₂ : ∞ (Tree n)} → σ₁ ⟶ σ₂ ≤∞ τ₁ ⟶ τ₂ → ♭ σ₂ ≤∞ ♭ τ₂ right-proj (τ₁≤σ₁ ⟶ σ₂≤τ₂) = ♭ σ₂≤τ₂ ------------------------------------------------------------------------ -- _≤∞_ is stable under double-negation stable : ∀ {n} (σ τ : Tree n) → Stable (σ ≤∞ τ) stable ⊥ τ ¬≰ = ⊥ stable σ ⊤ ¬≰ = ⊤ stable (var x) (var y) ¬≰ with var x ≡? var y stable (var x) (var .x) ¬≰ | yes refl = var stable (var x) (var y) ¬≰ | no x≠y = ⊥-elim (¬≰ (x≠y ∘ var:≤∞⟶≡)) stable (σ₁ ⟶ σ₂) (τ₁ ⟶ τ₂) ¬≰ = ♯ stable (♭ τ₁) (♭ σ₁) (λ ≰ → ¬≰ (≰ ∘ left-proj)) ⟶ ♯ stable (♭ σ₂) (♭ τ₂) (λ ≰ → ¬≰ (≰ ∘ right-proj)) stable ⊤ ⊥ ¬≰ = ⊥-elim (¬≰ (λ ())) stable ⊤ (var x) ¬≰ = ⊥-elim (¬≰ (λ ())) stable ⊤ (τ₁ ⟶ τ₂) ¬≰ = ⊥-elim (¬≰ (λ ())) stable (var x) ⊥ ¬≰ = ⊥-elim (¬≰ (λ ())) stable (var x) (τ₁ ⟶ τ₂) ¬≰ = ⊥-elim (¬≰ (λ ())) stable (σ₁ ⟶ σ₂) ⊥ ¬≰ = ⊥-elim (¬≰ (λ ())) stable (σ₁ ⟶ σ₂) (var x) ¬≰ = ⊥-elim (¬≰ (λ ()))
{ "alphanum_fraction": 0.3986704271, "avg_line_length": 31.2201257862, "ext": "agda", "hexsha": "b4894d66bc6efda9d6c9596cd2231cc1438412d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "RecursiveTypes/Subtyping/Semantic/Coinductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "RecursiveTypes/Subtyping/Semantic/Coinductive.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "RecursiveTypes/Subtyping/Semantic/Coinductive.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2480, "size": 4964 }
import Lvl open import Type module Structure.Logic.Constructive.Predicate {ℓₗ} {Formula : Type{ℓₗ}} {ℓₘₗ} (Proof : Formula → Type{ℓₘₗ}) {ℓₚ} {Predicate : Type{ℓₚ}} {ℓₒ} {Domain : Type{ℓₒ}} (_$_ : Predicate → Domain → Formula) where import Logic.Predicate as Meta import Structure.Logic.Constructive.Propositional as Propositional open import Type.Properties.Inhabited using (◊) private variable P : Predicate private variable X Y Q : Formula private variable x y z : Domain -- Rules of universal quantification (for all). record Universal(∀ₗ : Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where field intro : (∀{x} → Proof(P $ x)) → Proof(∀ₗ P) elim : Proof(∀ₗ P) → ∀{x} → Proof(P $ x) ∀ₗ = \ ⦃(Meta.[∃]-intro ▫) : Meta.∃(Universal)⦄ → ▫ module ∀ₗ {▫} ⦃ p ⦄ = Universal {▫} p -- Rules of existential quantification (exists). record Existential(∃ : Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where field intro : Proof(P $ x) → Proof(∃ P) elim : (∀{x} → Proof(P $ x) → Proof(Q)) → (Proof(∃ P) → Proof(Q)) ∃ = \ ⦃(Meta.[∃]-intro ▫) : Meta.∃(Existential)⦄ → ▫ module ∃ {▫} ⦃ p ⦄ = Existential {▫} p record ExistentialWitness(∃ : Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where field witness : Proof(∃ P) → Domain proof : (p : Proof(∃ P)) → Proof(P $ witness p) NonEmptyDomain = ◊ Domain record Equality(_≡_ : Domain → Domain → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Domain)} where field reflexivity : Proof(x ≡ x) substitute : (P : Domain → Formula) → Proof(x ≡ y) → (Proof(P(x)) → Proof(P(y))) record Logic : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where field ⦃ propositional ⦄ : Propositional.Logic(Proof) ⦃ universal ⦄ : Meta.∃(Universal) ⦃ existential ⦄ : Meta.∃(Existential)
{ "alphanum_fraction": 0.6316049383, "avg_line_length": 38.2075471698, "ext": "agda", "hexsha": "ffae660923f91cdb35493798d7f41f6b91c45396", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Logic/Constructive/Predicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Logic/Constructive/Predicate.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Logic/Constructive/Predicate.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 815, "size": 2025 }
{-# OPTIONS --rewriting #-} -- Set-theoretic interpretation and consistency open import Library module Interpretation (Base : Set) (B⦅_⦆ : Base → Set) where import Formulas ; open module Form = Formulas Base import Derivations; open module Der = Derivations Base T⦅_⦆ : (A : Form) → Set T⦅ Atom P ⦆ = B⦅ P ⦆ T⦅ True ⦆ = ⊤ T⦅ False ⦆ = ⊥ T⦅ A ∨ B ⦆ = T⦅ A ⦆ ⊎ T⦅ B ⦆ T⦅ A ∧ B ⦆ = T⦅ A ⦆ × T⦅ B ⦆ T⦅ A ⇒ B ⦆ = T⦅ A ⦆ → T⦅ B ⦆ C⦅_⦆ : (Γ : Cxt) → Set C⦅ ε ⦆ = ⊤ C⦅ Γ ∙ A ⦆ = C⦅ Γ ⦆ × T⦅ A ⦆ Fun' : (Γ : Cxt) (S : Set) → Set Fun' Γ S = (γ : C⦅ Γ ⦆) → S Fun : (Γ : Cxt) (A : Form) → Set Fun Γ A = Fun' Γ T⦅ A ⦆ Mor : (Γ Δ : Cxt) → Set Mor Γ Δ = Fun' Γ C⦅ Δ ⦆ H⦅_⦆ : ∀{Γ A} (x : Hyp A Γ) → Fun Γ A H⦅ top ⦆ = proj₂ H⦅ pop x ⦆ = H⦅ x ⦆ ∘ proj₁ D⦅_⦆ : ∀{Γ A} (t : Γ ⊢ A) → Fun Γ A D⦅ hyp x ⦆ = H⦅ x ⦆ D⦅ impI t ⦆ = curry D⦅ t ⦆ D⦅ impE t u ⦆ = apply D⦅ t ⦆ D⦅ u ⦆ D⦅ andI t u ⦆ = < D⦅ t ⦆ , D⦅ u ⦆ > D⦅ andE₁ t ⦆ = proj₁ ∘ D⦅ t ⦆ D⦅ andE₂ t ⦆ = proj₂ ∘ D⦅ t ⦆ D⦅ orI₁ t ⦆ = inj₁ ∘ D⦅ t ⦆ D⦅ orI₂ t ⦆ = inj₂ ∘ D⦅ t ⦆ D⦅ orE t u v ⦆ = caseof D⦅ t ⦆ D⦅ u ⦆ D⦅ v ⦆ D⦅ falseE t ⦆ = ⊥-elim ∘ D⦅ t ⦆ D⦅ trueI ⦆ = _ consistency : (t : ε ⊢ False) → ⊥ consistency t = D⦅ t ⦆ _ Ne⦅_⦆ : ∀{Γ A} (t : Ne Γ A) → Fun Γ A Ne⦅_⦆ = D⦅_⦆ ∘ ne[_] Nf⦅_⦆ : ∀{Γ A} (t : Nf Γ A) → Fun Γ A Nf⦅_⦆ = D⦅_⦆ ∘ nf[_] -- Functor R⦅_⦆ : ∀{Γ Δ} (τ : Γ ≤ Δ) → Mor Γ Δ R⦅ ε ⦆ = _ R⦅ weak τ ⦆ = R⦅ τ ⦆ ∘ proj₁ R⦅ lift τ ⦆ = R⦅ τ ⦆ ×̇ id R-id : ∀ Γ (γ : C⦅ Γ ⦆)→ R⦅ id≤ {Γ} ⦆ γ ≡ γ R-id ε γ = refl R-id (Γ ∙ A) γ = cong₂ _,_ (R-id Γ (proj₁ γ)) refl {-# REWRITE R-id #-} -- Kripke application kapp : ∀ A B {Γ} (f : Fun Γ (A ⇒ B)) {Δ} (τ : Δ ≤ Γ) (a : Fun Δ A) → Fun Δ B kapp A B f τ a δ = f (R⦅ τ ⦆ δ) (a δ) -- Naturality natH : ∀{Γ Δ A} (τ : Δ ≤ Γ) (x : Hyp A Γ) → H⦅ monH τ x ⦆ ≡ H⦅ x ⦆ ∘ R⦅ τ ⦆ natH ε () natH (weak τ) x = cong (_∘ proj₁) (natH τ x) natH (lift τ) top = refl natH (lift τ) (pop x) = cong (_∘ proj₁) (natH τ x) {-# REWRITE natH #-} natR : ∀{Γ Δ Φ} (σ : Φ ≤ Δ) (τ : Δ ≤ Γ) → R⦅ σ • τ ⦆ ≡ R⦅ τ ⦆ ∘ R⦅ σ ⦆ natR ε τ = refl natR (weak σ) τ = cong (_∘ proj₁) (natR σ τ) natR (lift σ) (weak τ) = cong (_∘ proj₁) (natR σ τ) natR (lift σ) (lift τ) = cong (_×̇ id) (natR σ τ) {-# REWRITE natR #-} natD : ∀{Γ Δ A} (τ : Δ ≤ Γ) (t : Γ ⊢ A) → D⦅ monD τ t ⦆ ≡ D⦅ t ⦆ ∘ R⦅ τ ⦆ natD τ (hyp x) = natH τ x natD τ (impI t) = cong curry (natD (lift τ) t) natD τ (impE t u) = cong₂ apply (natD τ t) (natD τ u) natD τ (andI t u) = cong₂ <_,_> (natD τ t) (natD τ u) natD τ (andE₁ t) = cong (proj₁ ∘_) (natD τ t) natD τ (andE₂ t) = cong (proj₂ ∘_) (natD τ t) natD τ (orI₁ t) = cong (inj₁ ∘_) (natD τ t) natD τ (orI₂ t) = cong (inj₂ ∘_) (natD τ t) natD τ (orE t u v) = cong₃ caseof (natD τ t) (natD (lift τ) u) (natD (lift τ) v) natD τ (falseE t) = cong (⊥-elim ∘_) (natD τ t) natD τ trueI = funExt λ _ → refl {-# REWRITE natD #-} -- -}
{ "alphanum_fraction": 0.4755415793, "avg_line_length": 25.7837837838, "ext": "agda", "hexsha": "c6737b1d7ece3068c66668459f059f9ddfec8c4d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/Interpretation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/Interpretation.agda", "max_line_length": 80, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/Interpretation.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 1719, "size": 2862 }
module Implicits.Resolution.Embedding.Lemmas where open import Prelude open import Data.Fin.Substitution open import Data.Vec hiding ([_]; _∈_) open import Data.List as List hiding ([_]; map) open import Data.List.Properties open import Data.List.Any hiding (map) open Membership-≡ open import Extensions.Vec open import Data.Vec.Properties as VP using () open import Relation.Binary.HeterogeneousEquality as H using () module HR = H.≅-Reasoning open import Implicits.Syntax open import SystemF.Everything as F using () open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.Embedding open TypeSubst hiding (subst) private module TS = TypeSubst length-weaken-Δ : ∀ {ν} (Δ : ICtx ν) → (List.length (List.map ⟦_⟧tp→ (ictx-weaken Δ))) ≡ (List.length (List.map ⟦_⟧tp→ Δ)) length-weaken-Δ Δ = begin (List.length (List.map ⟦_⟧tp→ (List.map (λ s → s / wk) Δ))) ≡⟨ cong List.length (sym $ map-compose Δ) ⟩ (List.length (List.map (⟦_⟧tp→ ∘ (λ s → s / wk)) Δ)) ≡⟨ length-map _ Δ ⟩ List.length Δ ≡⟨ sym $ length-map _ Δ ⟩ (List.length (List.map ⟦_⟧tp→ Δ)) ∎ tp→← : ∀ {ν} (a : Type ν) → ⟦ ⟦ a ⟧tp→ ⟧tp← ≡ a tp→← (simpl (tc x)) = refl tp→← (simpl (tvar n)) = refl tp→← (simpl (x →' x₁)) = cong₂ (λ u v → simpl (u →' v)) (tp→← x) (tp→← x₁) tp→← (a ⇒ b) = cong₂ _⇒_ (tp→← a) (tp→← b) tp→← (∀' a) = cong ∀' (tp→← a) tp←→ : ∀ {ν} (a : F.Type ν) → ⟦ ⟦ a ⟧tp← ⟧tp→ ≡ a tp←→ (F.tc x) = refl tp←→ (F.tvar n) = refl tp←→ (x F.→' x₁) = cong₂ F._→'_ (tp←→ x) (tp←→ x₁) tp←→ (a F.⟶ b) = cong₂ F._⟶_ (tp←→ a) (tp←→ b) tp←→ (F.∀' a) = cong F.∀' (tp←→ a) ctx→← : ∀ {ν} (Δ : ICtx ν) → ⟦ ⟦ Δ ⟧ctx→ ⟧ctx← ≡ Δ ctx→← [] = refl ctx→← (x ∷ xs) = begin ⟦ ⟦ x ∷ xs ⟧ctx→ ⟧ctx← ≡⟨ refl ⟩ toList (map ⟦_⟧tp← (fromList (List.map ⟦_⟧tp→ (x List.∷ xs)))) ≡⟨ refl ⟩ ⟦ ⟦ x ⟧tp→ ⟧tp← List.∷ (toList (map ⟦_⟧tp← (fromList (List.map ⟦_⟧tp→ xs)))) ≡⟨ cong₂ List._∷_ (tp→← x) (ctx→← xs) ⟩ (x List.∷ xs) ∎ Γ-cong₂ : ∀ {ν n n'} {x x' : F.Type ν} {xs : F.Ctx ν n} {xs' : F.Ctx ν n'} → n ≡ n' → x ≡ x' → xs H.≅ xs' → (x Vec.∷ xs) H.≅ (x' Vec.∷ xs') Γ-cong₂ refl refl H.refl = H.refl ctx←→ : ∀ {ν n} (Γ : F.Ctx ν n) → ⟦ ⟦ Γ ⟧ctx← ⟧ctx→ H.≅ Γ ctx←→ [] = H.refl ctx←→ {ν = ν} (x ∷ xs) = HR.begin ⟦ ⟦ x ∷ xs ⟧ctx← ⟧ctx→ HR.≡⟨ refl ⟩ ⟦ ⟦ x ⟧tp← ⟧tp→ ∷ ⟦ ⟦ xs ⟧ctx← ⟧ctx→ HR.≅⟨ Γ-cong₂ (length-map-toList (map ⟦_⟧tp← xs)) (tp←→ x) (ctx←→ xs) ⟩ (x ∷ xs) HR.∎ ⟦a/var⟧tp← : ∀ {ν ν'} (a : F.Type ν) (s : Vec (Fin ν') ν) → ⟦ a F./Var s ⟧tp← ≡ ⟦ a ⟧tp← /Var s ⟦a/var⟧tp← (F.tc x) s = refl ⟦a/var⟧tp← (F.tvar n) s = refl ⟦a/var⟧tp← (a F.→' b) s = cong₂ _⇒_ (⟦a/var⟧tp← a s) (⟦a/var⟧tp← b s) ⟦a/var⟧tp← (a F.⟶ b) s = cong₂ (λ u v → simpl (u →' v)) (⟦a/var⟧tp← a s) (⟦a/var⟧tp← b s) ⟦a/var⟧tp← (F.∀' a) s = cong ∀' (⟦a/var⟧tp← a (s VarSubst.↑)) ⟦a/var⟧tp→ : ∀ {ν ν'} (a : Type ν) (s : Vec (Fin ν') ν) → ⟦ a /Var s ⟧tp→ ≡ ⟦ a ⟧tp→ F./Var s ⟦a/var⟧tp→ (simpl (tc x)) s = refl ⟦a/var⟧tp→ (simpl (tvar n)) s = refl ⟦a/var⟧tp→ (simpl (a →' b)) s = cong₂ F._⟶_ (⟦a/var⟧tp→ a s) (⟦a/var⟧tp→ b s) ⟦a/var⟧tp→ (a ⇒ b) s = cong₂ F._→'_ (⟦a/var⟧tp→ a s) (⟦a/var⟧tp→ b s) ⟦a/var⟧tp→ (∀' a) s = cong F.∀' (⟦a/var⟧tp→ a (s VarSubst.↑)) ⟦weaken⟧tp← : ∀ {ν} (a : F.Type ν) → ⟦ F.weaken a ⟧tp← ≡ weaken ⟦ a ⟧tp← ⟦weaken⟧tp← x = ⟦a/var⟧tp← x VarSubst.wk ⟦weaken⟧tp→ : ∀ {ν} (a : Type ν) → ⟦ weaken a ⟧tp→ ≡ F.weaken ⟦ a ⟧tp→ ⟦weaken⟧tp→ x = ⟦a/var⟧tp→ x VarSubst.wk -- helper lemma on mapping type-semantics over weakend substitutions ⟦⟧tps←⋆weaken : ∀ {ν n} (xs : Vec (F.Type ν) n) → ⟦ (map F.weaken xs) ⟧tps← ≡ (map weaken ⟦ xs ⟧tps←) ⟦⟧tps←⋆weaken xs = begin (map ⟦_⟧tp← ∘ map F.weaken) xs ≡⟨ sym $ (VP.map-∘ ⟦_⟧tp← F.weaken) xs ⟩ map (⟦_⟧tp← ∘ F.weaken) xs ≡⟨ (VP.map-cong ⟦weaken⟧tp←) xs ⟩ map (TS.weaken ∘ ⟦_⟧tp←) xs ≡⟨ (VP.map-∘ TS.weaken ⟦_⟧tp←) xs ⟩ map TS.weaken (map ⟦_⟧tp← xs) ∎ -- helper lemma on mapping type-semantics over weakend substitutions ⟦⟧tps→⋆weaken : ∀ {ν n} (xs : Vec (Type ν) n) → ⟦ (map TS.weaken xs) ⟧tps→ ≡ (map F.weaken ⟦ xs ⟧tps→) ⟦⟧tps→⋆weaken xs = begin (map ⟦_⟧tp→ ∘ map TS.weaken) xs ≡⟨ sym $ (VP.map-∘ ⟦_⟧tp→ TS.weaken) xs ⟩ map (⟦_⟧tp→ ∘ TS.weaken) xs ≡⟨ (VP.map-cong ⟦weaken⟧tp→) xs ⟩ map (F.weaken ∘ ⟦_⟧tp→) xs ≡⟨ (VP.map-∘ F.weaken ⟦_⟧tp→) xs ⟩ map F.weaken (map ⟦_⟧tp→ xs) ∎ -- the semantics of identity type-substitution is exactly -- system-f's identity type substitution ⟦id⟧tp← : ∀ {n} → map ⟦_⟧tp← (F.id {n}) ≡ TS.id ⟦id⟧tp← {zero} = refl ⟦id⟧tp← {suc n} = begin map ⟦_⟧tp← (F.tvar zero ∷ map F.weaken (F.id {n})) ≡⟨ refl ⟩ (simpl (tvar zero)) ∷ (map ⟦_⟧tp← (map F.weaken (F.id {n}))) ≡⟨ cong (_∷_ (simpl (tvar zero))) (⟦⟧tps←⋆weaken (F.id {n})) ⟩ (simpl (tvar zero)) ∷ (map TS.weaken (map ⟦_⟧tp← (F.id {n}))) ≡⟨ cong (λ e → simpl (tvar zero) ∷ (map TS.weaken e)) ⟦id⟧tp← ⟩ (simpl (tvar zero)) ∷ (map TS.weaken (TS.id {n})) ≡⟨ refl ⟩ TS.id ∎ -- the semantics of identity type-substitution is exactly -- system-f's identity type substitution ⟦id⟧tp→ : ∀ {n} → map ⟦_⟧tp→ (TS.id {n}) ≡ F.id ⟦id⟧tp→ {zero} = refl ⟦id⟧tp→ {suc n} = begin map ⟦_⟧tp→ (simpl (tvar zero) ∷ map TS.weaken (TS.id {n})) ≡⟨ refl ⟩ F.tvar zero ∷ (map ⟦_⟧tp→ (map TS.weaken (TS.id {n}))) ≡⟨ cong (_∷_ (F.tvar zero)) (⟦⟧tps→⋆weaken (TS.id {n})) ⟩ F.tvar zero ∷ (map F.weaken (map ⟦_⟧tp→ (TS.id {n}))) ≡⟨ cong (λ e → F.tvar zero ∷ (map F.weaken e)) ⟦id⟧tp→ ⟩ F.tvar zero ∷ (map F.weaken (F.id {n})) ≡⟨ refl ⟩ F.id ∎ -- the semantics of type weakening is exactly system-f's type weakening ⟦wk⟧tp← : ∀ {n} → map ⟦_⟧tp← (F.wk {n}) ≡ TS.wk {n} ⟦wk⟧tp← = begin map ⟦_⟧tp← F.wk ≡⟨ ⟦⟧tps←⋆weaken F.id ⟩ map TS.weaken (map ⟦_⟧tp← F.id) ≡⟨ cong (map TS.weaken) ⟦id⟧tp← ⟩ TS.wk ∎ -- the semantics of type weakening is exactly system-f's type weakening ⟦wk⟧tp→ : ∀ {n} → map ⟦_⟧tp→ (TS.wk {n}) ≡ F.wk {n} ⟦wk⟧tp→ = begin map ⟦_⟧tp→ TS.wk ≡⟨ ⟦⟧tps→⋆weaken TS.id ⟩ map F.weaken (map ⟦_⟧tp→ TS.id) ≡⟨ cong (map F.weaken) ⟦id⟧tp→ ⟩ F.wk ∎ ⟦⟧tps←⋆↑ : ∀ {ν n} (v : Vec (F.Type ν) n) → ⟦ v F.↑ ⟧tps← ≡ ⟦ v ⟧tps← TS.↑ ⟦⟧tps←⋆↑ xs = begin (simpl (tvar zero)) ∷ (map ⟦_⟧tp← (map F.weaken xs)) ≡⟨ cong (_∷_ (simpl (tvar zero))) (⟦⟧tps←⋆weaken xs) ⟩ (simpl (tvar zero)) ∷ (map TS.weaken (map ⟦_⟧tp← xs)) ≡⟨ refl ⟩ (map ⟦_⟧tp← xs) TS.↑ ∎ ⟦⟧tps→⋆↑ : ∀ {ν n} (v : Vec (Type ν) n) → ⟦ v TS.↑ ⟧tps→ ≡ ⟦ v ⟧tps→ F.↑ ⟦⟧tps→⋆↑ xs = begin F.tvar zero ∷ (map ⟦_⟧tp→ (map TS.weaken xs)) ≡⟨ cong (_∷_ (F.tvar zero)) (⟦⟧tps→⋆weaken xs) ⟩ F.tvar zero ∷ (map F.weaken (map ⟦_⟧tp→ xs)) ≡⟨ refl ⟩ (map ⟦_⟧tp→ xs) F.↑ ∎ -- type substitution commutes with interpreting types /⋆⟦⟧tp← : ∀ {ν μ} (tp : F.Type ν) (σ : Sub F.Type ν μ) → ⟦ tp F./ σ ⟧tp← ≡ ⟦ tp ⟧tp← TS./ (map ⟦_⟧tp← σ) /⋆⟦⟧tp← (F.tc c) σ = refl /⋆⟦⟧tp← (F.tvar n) σ = begin ⟦ lookup n σ ⟧tp← ≡⟨ lookup⋆map σ ⟦_⟧tp← n ⟩ ⟦ F.tvar n ⟧tp← TS./ (map ⟦_⟧tp← σ) ∎ /⋆⟦⟧tp← (l F.→' r) σ = cong₂ _⇒_ (/⋆⟦⟧tp← l σ) (/⋆⟦⟧tp← r σ) /⋆⟦⟧tp← (l F.⟶ r) σ = cong₂ (λ u v → simpl (u →' v)) (/⋆⟦⟧tp← l σ) (/⋆⟦⟧tp← r σ) /⋆⟦⟧tp← (F.∀' a) σ = begin ∀' ⟦ (a F./ σ F.↑) ⟧tp← ≡⟨ cong ∀' (/⋆⟦⟧tp← a (σ F.↑)) ⟩ ∀' (⟦ a ⟧tp← / ⟦ σ F.↑ ⟧tps←) ≡⟨ cong (λ u → ∀' (⟦ a ⟧tp← TS./ u)) ((⟦⟧tps←⋆↑ σ)) ⟩ ⟦ F.∀' a ⟧tp← / (map ⟦_⟧tp← σ) ∎ -- type substitution commutes with interpreting types /⋆⟦⟧tp→ : ∀ {ν μ} (tp : Type ν) (σ : Sub Type ν μ) → ⟦ tp TS./ σ ⟧tp→ ≡ ⟦ tp ⟧tp→ F./ (map ⟦_⟧tp→ σ) /⋆⟦⟧tp→ (simpl (tc c)) σ = refl /⋆⟦⟧tp→ (simpl (tvar n)) σ = begin ⟦ lookup n σ ⟧tp→ ≡⟨ lookup⋆map σ ⟦_⟧tp→ n ⟩ ⟦ simpl (tvar n) ⟧tp→ F./ (map ⟦_⟧tp→ σ) ∎ /⋆⟦⟧tp→ (l ⇒ r) σ = cong₂ F._→'_ (/⋆⟦⟧tp→ l σ) (/⋆⟦⟧tp→ r σ) /⋆⟦⟧tp→ (simpl (l →' r)) σ = cong₂ F._⟶_ (/⋆⟦⟧tp→ l σ) (/⋆⟦⟧tp→ r σ) /⋆⟦⟧tp→ (∀' a) σ = begin F.∀' ⟦ (a TS./ σ TS.↑) ⟧tp→ ≡⟨ cong F.∀' (/⋆⟦⟧tp→ a (σ TS.↑)) ⟩ F.∀' (⟦ a ⟧tp→ F./ ⟦ σ TS.↑ ⟧tps→) ≡⟨ cong (λ u → F.∀' (⟦ a ⟧tp→ F./ u)) ((⟦⟧tps→⋆↑ σ)) ⟩ ⟦ ∀' a ⟧tp→ F./ (map ⟦_⟧tp→ σ) ∎ ⟦a/sub⟧tp← : ∀ {ν} (a : F.Type (suc ν)) b → ⟦ a F./ (F.sub b) ⟧tp← ≡ ⟦ a ⟧tp← TS./ (TS.sub ⟦ b ⟧tp←) ⟦a/sub⟧tp← a b = begin ⟦ a F./ (F.sub b) ⟧tp← ≡⟨ /⋆⟦⟧tp← a (b ∷ F.id) ⟩ (⟦ a ⟧tp← TS./ (map ⟦_⟧tp← (b ∷ F.id)) ) ≡⟨ refl ⟩ (⟦ a ⟧tp← TS./ (⟦ b ⟧tp← ∷ (map ⟦_⟧tp← F.id)) ) ≡⟨ cong (λ s → ⟦ a ⟧tp← TS./ (⟦ b ⟧tp← ∷ s)) ⟦id⟧tp← ⟩ (⟦ a ⟧tp← TS./ (TS.sub ⟦ b ⟧tp←)) ∎ ⟦a/wk⟧tp← : ∀ {ν} → (a : F.Type ν) → ⟦ a F./ F.wk ⟧tp← ≡ ⟦ a ⟧tp← / wk ⟦a/wk⟧tp← tp = begin ⟦ tp F./ F.wk ⟧tp← ≡⟨ /⋆⟦⟧tp← tp F.wk ⟩ ⟦ tp ⟧tp← / (map ⟦_⟧tp← F.wk) ≡⟨ cong (λ e → ⟦ tp ⟧tp← / e) ⟦wk⟧tp← ⟩ ⟦ tp ⟧tp← / wk ∎ ⟦a/wk⟧tp→ : ∀ {ν} → (a : Type ν) → ⟦ a / wk ⟧tp→ ≡ ⟦ a ⟧tp→ F./ F.wk ⟦a/wk⟧tp→ tp = begin ⟦ tp TS./ TS.wk ⟧tp→ ≡⟨ /⋆⟦⟧tp→ tp TS.wk ⟩ ⟦ tp ⟧tp→ F./ (map ⟦_⟧tp→ TS.wk) ≡⟨ cong (λ e → ⟦ tp ⟧tp→ F./ e) ⟦wk⟧tp→ ⟩ ⟦ tp ⟧tp→ F./ F.wk ∎ ⟦weaken⟧ctx← : ∀ {ν n} (Γ : F.Ctx ν n) → ⟦ F.ctx-weaken Γ ⟧ctx← ≡ ictx-weaken ⟦ Γ ⟧ctx← ⟦weaken⟧ctx← [] = refl ⟦weaken⟧ctx← (x ∷ xs) = begin ⟦ F.ctx-weaken (x ∷ xs) ⟧ctx← ≡⟨ refl ⟩ toList (map ⟦_⟧tp← (map (flip F._/_ F.wk) (x ∷ xs))) ≡⟨ cong toList (sym (VP.map-∘ _ _ (x ∷ xs))) ⟩ (⟦ x F./ F.wk ⟧tp← List.∷ (toList (map (⟦_⟧tp← ∘ (flip F._/_ F.wk)) xs))) ≡⟨ cong (λ u → ⟦ F._/_ x F.wk ⟧tp← List.∷ toList u) (VP.map-∘ _ _ xs) ⟩ (⟦ x F./ F.wk ⟧tp← List.∷ ⟦ F.ctx-weaken xs ⟧ctx←) ≡⟨ cong (λ u → ⟦ F._/_ x F.wk ⟧tp← List.∷ u) (⟦weaken⟧ctx← xs) ⟩ (⟦ x F./ F.wk ⟧tp← List.∷ (ictx-weaken ⟦ xs ⟧ctx←)) ≡⟨ cong (flip List._∷_ (ictx-weaken ⟦ xs ⟧ctx←)) (⟦a/wk⟧tp← x) ⟩ ictx-weaken ⟦ x ∷ xs ⟧ctx← ∎ ⟦weaken⟧ctx→ : ∀ {ν} (Δ : ICtx ν) → F.ctx-weaken ⟦ Δ ⟧ctx→ H.≅ ⟦ ictx-weaken Δ ⟧ctx→ ⟦weaken⟧ctx→ List.[] = H.refl ⟦weaken⟧ctx→ (x List.∷ xs) = HR.begin F.ctx-weaken ⟦ x List.∷ xs ⟧ctx→ HR.≅⟨ H.refl ⟩ (⟦ x ⟧tp→ F./ F.wk) Vec.∷ F.ctx-weaken ⟦ xs ⟧ctx→ HR.≅⟨ ∷-cong (sym (length-weaken-Δ xs)) (⟦weaken⟧ctx→ xs) ⟩ (⟦ x ⟧tp→ F./ F.wk) Vec.∷ ⟦ ictx-weaken xs ⟧ctx→ HR.≅⟨ H.cong (flip Vec._∷_ ⟦ ictx-weaken xs ⟧ctx→) (H.≡-to-≅ $ sym $ ⟦a/wk⟧tp→ x) ⟩ ⟦ x / wk ⟧tp→ ∷ ⟦ ictx-weaken xs ⟧ctx→ HR.≅⟨ H.cong (λ u → ⟦ x / wk ⟧tp→ Vec.∷ fromList u) (H.≡-to-≅ (sym (map-compose xs))) ⟩ (fromList (List.map (⟦_⟧tp→ ∘ (λ s → s / wk)) (x List.∷ xs))) HR.≅⟨ H.cong fromList (H.≡-to-≅ (map-compose (x List.∷ xs))) ⟩ ⟦ ictx-weaken (x List.∷ xs) ⟧ctx→ HR.∎ ⟦a/sub⟧tp→ : ∀ {ν} (a : Type (suc ν)) b → ⟦ a TS./ (TS.sub b) ⟧tp→ ≡ ⟦ a ⟧tp→ F./ (F.sub ⟦ b ⟧tp→) ⟦a/sub⟧tp→ a b = begin ⟦ a TS./ (TS.sub b) ⟧tp→ ≡⟨ /⋆⟦⟧tp→ a (b ∷ TS.id) ⟩ (⟦ a ⟧tp→ F./ (map ⟦_⟧tp→ (b ∷ TS.id)) ) ≡⟨ refl ⟩ (⟦ a ⟧tp→ F./ (⟦ b ⟧tp→ ∷ (map ⟦_⟧tp→ TS.id)) ) ≡⟨ cong (λ s → ⟦ a ⟧tp→ F./ (⟦ b ⟧tp→ ∷ s)) ⟦id⟧tp→ ⟩ (⟦ a ⟧tp→ F./ (F.sub ⟦ b ⟧tp→)) ∎ ⊢subst-n : ∀ {ν n n'} {Γ : F.Ctx ν n} {Γ' : F.Ctx ν n'} {t a} → (n-eq : n ≡ n') → Γ H.≅ Γ' → Γ F.⊢ t ∈ a → Γ' F.⊢ (subst (F.Term ν) n-eq t) ∈ a ⊢subst-n refl H.refl p = p lookup-subst-n : ∀ {n n' l} {A : Set l} {v : Vec A n} {v' : Vec A n'} {i : Fin n} → (n-eq : n ≡ n') → (v H.≅ v') → (lookup i v) ≡ (lookup (subst Fin n-eq i) v') lookup-subst-n refl H.refl = refl lookup⟦⟧ : ∀ {ν} (Δ : ICtx ν) {r} i → lookup i (fromList Δ) ≡ r → (lookup (subst Fin (sym $ length-map _ Δ) i) ⟦ Δ ⟧ctx→) ≡ ⟦ r ⟧tp→ lookup⟦⟧ Δ {r = r} i eq = begin (lookup (subst Fin (sym $ length-map _ Δ) i) ⟦ Δ ⟧ctx→) ≡⟨ refl ⟩ (lookup (subst Fin (sym $ length-map _ Δ) i) (fromList $ (List.map ⟦_⟧tp→ Δ))) ≡⟨ sym $ lookup-subst-n (sym $ length-map _ Δ) (H.sym $ fromList-map _ Δ) ⟩ (lookup i (map ⟦_⟧tp→ (fromList Δ))) ≡⟨ sym $ lookup⋆map (fromList Δ) ⟦_⟧tp→ i ⟩ ⟦ lookup i (fromList Δ) ⟧tp→ ≡⟨ cong ⟦_⟧tp→ eq ⟩ ⟦ r ⟧tp→ ∎ lookup-∈ : ∀ {ν n} → (x : Fin n) → (v : F.Ctx ν n) → ⟦ lookup x v ⟧tp← ∈ ⟦ v ⟧ctx← lookup-∈ zero (x ∷ xs) = here refl lookup-∈ (suc x) (v ∷ vs) = there (lookup-∈ x vs) ⇑-subst-n : ∀ {ν n n'} {Γ : F.Ctx ν n} {Γ' : F.Ctx ν n'} {t a} → (n-eq : n ≡ n') → Γ H.≅ Γ' → Γ F.⊢ t ⇑ a → Γ' F.⊢ (subst (F.Term ν) n-eq t) ⇑ a ⇑-subst-n refl H.refl p = p ⟦base⟧tp← : ∀ {ν} {a : F.Type ν} → F.Base a → ∃ λ τ → ⟦ a ⟧tp← ≡ (simpl τ) ⟦base⟧tp← (F.tc n) = tc n , refl ⟦base⟧tp← (F.tvar n) = tvar n , refl ⟦base⟧tp← (a F.⟶ b) = ⟦ a ⟧tp← →' ⟦ b ⟧tp← , refl ⟦simpl⟧tp→ : ∀ {ν} (τ : SimpleType ν) → F.Base ⟦ simpl τ ⟧tp→ ⟦simpl⟧tp→ (tc x) = F.tc x ⟦simpl⟧tp→ (tvar n) = F.tvar n ⟦simpl⟧tp→ (x →' x₁) = ⟦ x ⟧tp→ F.⟶ ⟦ x₁ ⟧tp→ open import Function.Inverse tp-iso : ∀ {ν} → (→-to-⟶ (⟦_⟧tp→ {ν = ν})) InverseOf (→-to-⟶ (⟦_⟧tp← {ν = ν})) tp-iso = record { left-inverse-of = tp←→ ; right-inverse-of = tp→← }
{ "alphanum_fraction": 0.4879092999, "avg_line_length": 38.5718654434, "ext": "agda", "hexsha": "26c2b85a62e32709d86962b40d862b8efebaec54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Embedding/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Embedding/Lemmas.agda", "max_line_length": 104, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Embedding/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 6957, "size": 12613 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Monoid | M type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) -} module Monoid.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Monoid.Signature open import Monoid.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution M:Syn open import SOAS.Metatheory.SecondOrder.Equality M:Syn private variable α β γ τ : *T Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ M) α Γ → (𝔐 ▷ M) α Γ → Set where εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞 εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ₐ 𝔞 ⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.592142189, "avg_line_length": 21.8163265306, "ext": "agda", "hexsha": "bf255b53c09970f2f5da4c41fa76f276264b3512", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Monoid/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Monoid/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Monoid/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 499, "size": 1069 }
------------------------------------------------------------------------ -- Sums of binary relations ------------------------------------------------------------------------ module Relation.Binary.Sum where open import Data.Function open import Data.Sum as Sum open import Data.Product open import Data.Unit using (⊤) open import Data.Empty open import Relation.Nullary open import Relation.Binary infixr 1 _⊎-Rel_ _⊎-<_ ------------------------------------------------------------------------ -- Sums of relations -- Generalised sum. data ⊎ʳ (P : Set) {a₁ : Set} (_∼₁_ : Rel a₁) {a₂ : Set} (_∼₂_ : Rel a₂) : a₁ ⊎ a₂ → a₁ ⊎ a₂ → Set where ₁∼₂ : ∀ {x y} (p : P) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₂ y) ₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₁ y) ₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₂ x) (inj₂ y) -- Pointwise sum. _⊎-Rel_ : ∀ {a₁} (_∼₁_ : Rel a₁) → ∀ {a₂} (_∼₂_ : Rel a₂) → Rel (a₁ ⊎ a₂) _⊎-Rel_ = ⊎ʳ ⊥ -- All things to the left are smaller than (or equal to, depending on -- the underlying equality) all things to the right. _⊎-<_ : ∀ {a₁} (_∼₁_ : Rel a₁) → ∀ {a₂} (_∼₂_ : Rel a₂) → Rel (a₁ ⊎ a₂) _⊎-<_ = ⊎ʳ ⊤ ------------------------------------------------------------------------ -- Helpers private ₁≁₂ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {x y} → ¬ (inj₁ x ⟨ ∼₁ ⊎-Rel ∼₂ ⟩₁ inj₂ y) ₁≁₂ (₁∼₂ ()) drop-inj₁ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {P x y} → inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₁ y → ∼₁ x y drop-inj₁ (₁∼₁ x∼y) = x∼y drop-inj₂ : ∀ {a₁} {∼₁ : Rel a₁} → ∀ {a₂} {∼₂ : Rel a₂} → ∀ {P x y} → inj₂ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₂ y → ∼₂ x y drop-inj₂ (₂∼₂ x∼y) = x∼y ------------------------------------------------------------------------ -- Some properties which are preserved by the relation formers above _⊎-reflexive_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → ≈₁ ⇒ ∼₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → ≈₂ ⇒ ∼₂ → ∀ {P} → (≈₁ ⊎-Rel ≈₂) ⇒ (⊎ʳ P ∼₁ ∼₂) refl₁ ⊎-reflexive refl₂ = refl where refl : (_ ⊎-Rel _) ⇒ (⊎ʳ _ _ _) refl (₁∼₁ x₁≈y₁) = ₁∼₁ (refl₁ x₁≈y₁) refl (₂∼₂ x₂≈y₂) = ₂∼₂ (refl₂ x₂≈y₂) refl (₁∼₂ ()) _⊎-refl_ : ∀ {a₁} {∼₁ : Rel a₁} → Reflexive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Reflexive ∼₂ → Reflexive (∼₁ ⊎-Rel ∼₂) refl₁ ⊎-refl refl₂ = refl where refl : Reflexive (_ ⊎-Rel _) refl {x = inj₁ _} = ₁∼₁ refl₁ refl {x = inj₂ _} = ₂∼₂ refl₂ _⊎-irreflexive_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → Irreflexive ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → Irreflexive ≈₂ <₂ → ∀ {P} → Irreflexive (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂) irrefl₁ ⊎-irreflexive irrefl₂ = irrefl where irrefl : Irreflexive (_ ⊎-Rel _) (⊎ʳ _ _ _) irrefl (₁∼₁ x₁≈y₁) (₁∼₁ x₁<y₁) = irrefl₁ x₁≈y₁ x₁<y₁ irrefl (₂∼₂ x₂≈y₂) (₂∼₂ x₂<y₂) = irrefl₂ x₂≈y₂ x₂<y₂ irrefl (₁∼₂ ()) _ _⊎-symmetric_ : ∀ {a₁} {∼₁ : Rel a₁} → Symmetric ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Symmetric ∼₂ → Symmetric (∼₁ ⊎-Rel ∼₂) sym₁ ⊎-symmetric sym₂ = sym where sym : Symmetric (_ ⊎-Rel _) sym (₁∼₁ x₁∼y₁) = ₁∼₁ (sym₁ x₁∼y₁) sym (₂∼₂ x₂∼y₂) = ₂∼₂ (sym₂ x₂∼y₂) sym (₁∼₂ ()) _⊎-transitive_ : ∀ {a₁} {∼₁ : Rel a₁} → Transitive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Transitive ∼₂ → ∀ {P} → Transitive (⊎ʳ P ∼₁ ∼₂) trans₁ ⊎-transitive trans₂ = trans where trans : Transitive (⊎ʳ _ _ _) trans (₁∼₁ x∼y) (₁∼₁ y∼z) = ₁∼₁ (trans₁ x∼y y∼z) trans (₂∼₂ x∼y) (₂∼₂ y∼z) = ₂∼₂ (trans₂ x∼y y∼z) trans (₁∼₂ p) (₂∼₂ _) = ₁∼₂ p trans (₁∼₁ _) (₁∼₂ p) = ₁∼₂ p _⊎-antisymmetric_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → Antisymmetric ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → Antisymmetric ≈₂ ≤₂ → ∀ {P} → Antisymmetric (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂) antisym₁ ⊎-antisymmetric antisym₂ = antisym where antisym : Antisymmetric (_ ⊎-Rel _) (⊎ʳ _ _ _) antisym (₁∼₁ x≤y) (₁∼₁ y≤x) = ₁∼₁ (antisym₁ x≤y y≤x) antisym (₂∼₂ x≤y) (₂∼₂ y≤x) = ₂∼₂ (antisym₂ x≤y y≤x) antisym (₁∼₂ _) () _⊎-asymmetric_ : ∀ {a₁} {<₁ : Rel a₁} → Asymmetric <₁ → ∀ {a₂} {<₂ : Rel a₂} → Asymmetric <₂ → ∀ {P} → Asymmetric (⊎ʳ P <₁ <₂) asym₁ ⊎-asymmetric asym₂ = asym where asym : Asymmetric (⊎ʳ _ _ _) asym (₁∼₁ x<y) (₁∼₁ y<x) = asym₁ x<y y<x asym (₂∼₂ x<y) (₂∼₂ y<x) = asym₂ x<y y<x asym (₁∼₂ _) () _⊎-≈-respects₂_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → ∼₁ Respects₂ ≈₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → ∼₂ Respects₂ ≈₂ → ∀ {P} → (⊎ʳ P ∼₁ ∼₂) Respects₂ (≈₁ ⊎-Rel ≈₂) _⊎-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁} resp₁ {≈₂ = ≈₂} {∼₂ = ∼₂} resp₂ {P} = (λ {_ _ _} → resp¹) , (λ {_ _ _} → resp²) where resp¹ : ∀ {x} → ((⊎ʳ P ∼₁ ∼₂) x) Respects (≈₁ ⊎-Rel ≈₂) resp¹ (₁∼₁ y≈y') (₁∼₁ x∼y) = ₁∼₁ (proj₁ resp₁ y≈y' x∼y) resp¹ (₂∼₂ y≈y') (₂∼₂ x∼y) = ₂∼₂ (proj₁ resp₂ y≈y' x∼y) resp¹ (₂∼₂ y≈y') (₁∼₂ p) = (₁∼₂ p) resp¹ (₁∼₂ ()) _ resp² : ∀ {y} → (flip₁ (⊎ʳ P ∼₁ ∼₂) y) Respects (≈₁ ⊎-Rel ≈₂) resp² (₁∼₁ x≈x') (₁∼₁ x∼y) = ₁∼₁ (proj₂ resp₁ x≈x' x∼y) resp² (₂∼₂ x≈x') (₂∼₂ x∼y) = ₂∼₂ (proj₂ resp₂ x≈x' x∼y) resp² (₁∼₁ x≈x') (₁∼₂ p) = (₁∼₂ p) resp² (₁∼₂ ()) _ _⊎-substitutive_ : ∀ {a₁} {∼₁ : Rel a₁} → Substitutive ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Substitutive ∼₂ → Substitutive (∼₁ ⊎-Rel ∼₂) subst₁ ⊎-substitutive subst₂ = subst where subst : Substitutive (_ ⊎-Rel _) subst P (₁∼₁ x∼y) Px = subst₁ (λ z → P (inj₁ z)) x∼y Px subst P (₂∼₂ x∼y) Px = subst₂ (λ z → P (inj₂ z)) x∼y Px subst P (₁∼₂ ()) Px ⊎-decidable : ∀ {a₁} {∼₁ : Rel a₁} → Decidable ∼₁ → ∀ {a₂} {∼₂ : Rel a₂} → Decidable ∼₂ → ∀ {P} → (∀ {x y} → Dec (inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩₁ inj₂ y)) → Decidable (⊎ʳ P ∼₁ ∼₂) ⊎-decidable {∼₁ = ∼₁} dec₁ {∼₂ = ∼₂} dec₂ {P} dec₁₂ = dec where dec : Decidable (⊎ʳ P ∼₁ ∼₂) dec (inj₁ x) (inj₁ y) with dec₁ x y ... | yes x∼y = yes (₁∼₁ x∼y) ... | no x≁y = no (x≁y ∘ drop-inj₁) dec (inj₂ x) (inj₂ y) with dec₂ x y ... | yes x∼y = yes (₂∼₂ x∼y) ... | no x≁y = no (x≁y ∘ drop-inj₂) dec (inj₁ x) (inj₂ y) = dec₁₂ dec (inj₂ x) (inj₁ y) = no (λ()) _⊎-<-total_ : ∀ {a₁} {≤₁ : Rel a₁} → Total ≤₁ → ∀ {a₂} {≤₂ : Rel a₂} → Total ≤₂ → Total (≤₁ ⊎-< ≤₂) total₁ ⊎-<-total total₂ = total where total : Total (_ ⊎-< _) total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y total (inj₁ x) (inj₂ y) = inj₁ (₁∼₂ _) total (inj₂ x) (inj₁ y) = inj₂ (₁∼₂ _) _⊎-<-trichotomous_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → Trichotomous ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → Trichotomous ≈₂ <₂ → Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂) _⊎-<-trichotomous_ {≈₁ = ≈₁} {<₁ = <₁} tri₁ {≈₂ = ≈₂} {<₂ = <₂} tri₂ = tri where tri : Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂) tri (inj₁ x) (inj₂ y) = tri< (₁∼₂ _) ₁≁₂ (λ()) tri (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) (₁∼₂ _) tri (inj₁ x) (inj₁ y) with tri₁ x y ... | tri< x<y x≉y x≯y = tri< (₁∼₁ x<y) (x≉y ∘ drop-inj₁) (x≯y ∘ drop-inj₁) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₁) (₁∼₁ x≈y) (x≯y ∘ drop-inj₁) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₁) (x≉y ∘ drop-inj₁) (₁∼₁ x>y) tri (inj₂ x) (inj₂ y) with tri₂ x y ... | tri< x<y x≉y x≯y = tri< (₂∼₂ x<y) (x≉y ∘ drop-inj₂) (x≯y ∘ drop-inj₂) ... | tri≈ x≮y x≈y x≯y = tri≈ (x≮y ∘ drop-inj₂) (₂∼₂ x≈y) (x≯y ∘ drop-inj₂) ... | tri> x≮y x≉y x>y = tri> (x≮y ∘ drop-inj₂) (x≉y ∘ drop-inj₂) (₂∼₂ x>y) ------------------------------------------------------------------------ -- Some collections of properties which are preserved _⊎-isEquivalence_ : ∀ {a₁} {≈₁ : Rel a₁} → IsEquivalence ≈₁ → ∀ {a₂} {≈₂ : Rel a₂} → IsEquivalence ≈₂ → IsEquivalence (≈₁ ⊎-Rel ≈₂) eq₁ ⊎-isEquivalence eq₂ = record { refl = refl eq₁ ⊎-refl refl eq₂ ; sym = sym eq₁ ⊎-symmetric sym eq₂ ; trans = trans eq₁ ⊎-transitive trans eq₂ } where open IsEquivalence _⊎-isPreorder_ : ∀ {a₁} {≈₁ ∼₁ : Rel a₁} → IsPreorder ≈₁ ∼₁ → ∀ {a₂} {≈₂ ∼₂ : Rel a₂} → IsPreorder ≈₂ ∼₂ → ∀ {P} → IsPreorder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ∼₁ ∼₂) pre₁ ⊎-isPreorder pre₂ = record { isEquivalence = isEquivalence pre₁ ⊎-isEquivalence isEquivalence pre₂ ; reflexive = reflexive pre₁ ⊎-reflexive reflexive pre₂ ; trans = trans pre₁ ⊎-transitive trans pre₂ ; ∼-resp-≈ = ∼-resp-≈ pre₁ ⊎-≈-respects₂ ∼-resp-≈ pre₂ } where open IsPreorder _⊎-isDecEquivalence_ : ∀ {a₁} {≈₁ : Rel a₁} → IsDecEquivalence ≈₁ → ∀ {a₂} {≈₂ : Rel a₂} → IsDecEquivalence ≈₂ → IsDecEquivalence (≈₁ ⊎-Rel ≈₂) eq₁ ⊎-isDecEquivalence eq₂ = record { isEquivalence = isEquivalence eq₁ ⊎-isEquivalence isEquivalence eq₂ ; _≟_ = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂) (no ₁≁₂) } where open IsDecEquivalence _⊎-isPartialOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsPartialOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsPartialOrder ≈₂ ≤₂ → ∀ {P} → IsPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂) po₁ ⊎-isPartialOrder po₂ = record { isPreorder = isPreorder po₁ ⊎-isPreorder isPreorder po₂ ; antisym = antisym po₁ ⊎-antisymmetric antisym po₂ } where open IsPartialOrder _⊎-isStrictPartialOrder_ : ∀ {a₁} {≈₁ <₁ : Rel a₁} → IsStrictPartialOrder ≈₁ <₁ → ∀ {a₂} {≈₂ <₂ : Rel a₂} → IsStrictPartialOrder ≈₂ <₂ → ∀ {P} → IsStrictPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂) spo₁ ⊎-isStrictPartialOrder spo₂ = record { isEquivalence = isEquivalence spo₁ ⊎-isEquivalence isEquivalence spo₂ ; irrefl = irrefl spo₁ ⊎-irreflexive irrefl spo₂ ; trans = trans spo₁ ⊎-transitive trans spo₂ ; <-resp-≈ = <-resp-≈ spo₁ ⊎-≈-respects₂ <-resp-≈ spo₂ } where open IsStrictPartialOrder _⊎-<-isTotalOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsTotalOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsTotalOrder ≈₂ ≤₂ → IsTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂) to₁ ⊎-<-isTotalOrder to₂ = record { isPartialOrder = isPartialOrder to₁ ⊎-isPartialOrder isPartialOrder to₂ ; total = total to₁ ⊎-<-total total to₂ } where open IsTotalOrder _⊎-<-isDecTotalOrder_ : ∀ {a₁} {≈₁ ≤₁ : Rel a₁} → IsDecTotalOrder ≈₁ ≤₁ → ∀ {a₂} {≈₂ ≤₂ : Rel a₂} → IsDecTotalOrder ≈₂ ≤₂ → IsDecTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂) to₁ ⊎-<-isDecTotalOrder to₂ = record { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂ ; _≟_ = ⊎-decidable (_≟_ to₁) (_≟_ to₂) (no ₁≁₂) ; _≤?_ = ⊎-decidable (_≤?_ to₁) (_≤?_ to₂) (yes (₁∼₂ _)) } where open IsDecTotalOrder ------------------------------------------------------------------------ -- The game can be taken even further... _⊎-setoid_ : Setoid → Setoid → Setoid s₁ ⊎-setoid s₂ = record { isEquivalence = isEquivalence s₁ ⊎-isEquivalence isEquivalence s₂ } where open Setoid _⊎-preorder_ : Preorder → Preorder → Preorder p₁ ⊎-preorder p₂ = record { _∼_ = _∼_ p₁ ⊎-Rel _∼_ p₂ ; isPreorder = isPreorder p₁ ⊎-isPreorder isPreorder p₂ } where open Preorder _⊎-decSetoid_ : DecSetoid → DecSetoid → DecSetoid ds₁ ⊎-decSetoid ds₂ = record { isDecEquivalence = isDecEquivalence ds₁ ⊎-isDecEquivalence isDecEquivalence ds₂ } where open DecSetoid _⊎-poset_ : Poset → Poset → Poset po₁ ⊎-poset po₂ = record { _≤_ = _≤_ po₁ ⊎-Rel _≤_ po₂ ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder isPartialOrder po₂ } where open Poset _⊎-<-poset_ : Poset → Poset → Poset po₁ ⊎-<-poset po₂ = record { _≤_ = _≤_ po₁ ⊎-< _≤_ po₂ ; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder isPartialOrder po₂ } where open Poset _⊎-<-strictPartialOrder_ : StrictPartialOrder → StrictPartialOrder → StrictPartialOrder spo₁ ⊎-<-strictPartialOrder spo₂ = record { _<_ = _<_ spo₁ ⊎-< _<_ spo₂ ; isStrictPartialOrder = isStrictPartialOrder spo₁ ⊎-isStrictPartialOrder isStrictPartialOrder spo₂ } where open StrictPartialOrder _⊎-<-totalOrder_ : TotalOrder → TotalOrder → TotalOrder to₁ ⊎-<-totalOrder to₂ = record { isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂ } where open TotalOrder _⊎-<-decTotalOrder_ : DecTotalOrder → DecTotalOrder → DecTotalOrder to₁ ⊎-<-decTotalOrder to₂ = record { isDecTotalOrder = isDecTotalOrder to₁ ⊎-<-isDecTotalOrder isDecTotalOrder to₂ } where open DecTotalOrder
{ "alphanum_fraction": 0.4909940983, "avg_line_length": 37.2771428571, "ext": "agda", "hexsha": "3dcf085852969381a79840cd62f631be7e677cbd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Sum.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Sum.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 5993, "size": 13047 }
{-# OPTIONS --without-K #-} module FinVec where -- This is the second step in building a representation of -- permutations. We use permutations expressed as equivalences (in -- FinVec) to construct one-line notation for permutations. We have -- enough structure to model a commutative semiring EXCEPT for -- symmetry. This will be addressed in ConcretePermutation. import Level using (zero) open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin) open import Data.Sum using (_⊎_; inj₁; inj₂) renaming (map to map⊎) open import Data.Product using (_×_; proj₁; proj₂; _,′_) open import Data.Vec using (Vec; allFin; tabulate; _>>=_) renaming (_++_ to _++V_; map to mapV) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Relation.Binary using (IsEquivalence) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; cong₂; module ≡-Reasoning) open import Function using (_∘_; id) -- open import Equiv using (_∼_; p∘!p≡id) open import TypeEquiv using (swap₊) open import FinEquivPlusTimes using (module Plus; module Times) open import FinEquivTypeEquiv using (module PlusE; module TimesE; module PlusTimesE) open import Proofs using ( -- FiniteFunctions finext; -- VectorLemmas _!!_; tabulate-split ) ------------------------------------------------------------------------------ -- The main goal is to represent permutations in the one-line notation -- and to develop all the infrastructure to get a commutative -- semiring, e.g., we can take unions and products of such one-line -- notations of permutations, etc. -- This is the type representing permutations in the one-line -- notation. We will show that it is a commutative semiring FinVec : ℕ → ℕ → Set FinVec m n = Vec (Fin m) n -- The additive and multiplicative units are trivial 1C : {n : ℕ} → FinVec n n 1C {n} = allFin n -- corresponds to ⊥ ≃ ⊥ × A and other impossibilities but don't use -- it, as it is abstract and will confuse external proofs! abstract 0C : FinVec 0 0 0C = 1C {0} -- sequential composition (transitivity) _∘̂_ : {n₀ n₁ n₂ : ℕ} → Vec (Fin n₁) n₀ → Vec (Fin n₂) n₁ → Vec (Fin n₂) n₀ π₁ ∘̂ π₂ = tabulate (_!!_ π₂ ∘ _!!_ π₁) ------------------------------------------------------------------------------ -- Additive monoid private _⊎v_ : ∀ {m n} {A B : Set} → Vec A m → Vec B n → Vec (A ⊎ B) (m + n) α ⊎v β = tabulate (inj₁ ∘ _!!_ α) ++V tabulate (inj₂ ∘ _!!_ β) -- Parallel additive composition -- conceptually, what we want is _⊎c'_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎c'_ α β = mapV Plus.fwd (α ⊎v β) -- but the above is tedious to work with. Instead, inline a bit to get _⊎c_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎c_ {m₁} α β = tabulate (Plus.fwd ∘ inj₁ ∘ _!!_ α) ++V tabulate (Plus.fwd {m₁} ∘ inj₂ ∘ _!!_ β) -- see ⊎c≡⊎c' lemma below _⊎fv_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂) _⊎fv_ {m₁} α β = tabulate (λ j → Plus.fwd (map⊎ (_!!_ α) (_!!_ β) (Plus.bwd j))) ⊎-equiv : ∀ {m₁ n₁ m₂ n₂} → (α : FinVec m₁ m₂) → (β : FinVec n₁ n₂) → α ⊎c β ≡ α ⊎fv β ⊎-equiv {m₁} {n₁} {m₂} {n₂} α β = let mm s = map⊎ (_!!_ α) (_!!_ β) s in let g = Plus.fwd ∘ mm ∘ Plus.bwd in begin ( tabulate (λ j → Plus.fwd (inj₁ (α !! j))) ++V tabulate (λ j → Plus.fwd {m₁} (inj₂ (β !! j))) ≡⟨ refl ⟩ -- map⊎ evaluates on inj₁/inj₂ tabulate (Plus.fwd ∘ mm ∘ inj₁) ++V tabulate (Plus.fwd ∘ mm ∘ inj₂) ≡⟨ cong₂ _++V_ (finext (λ i → cong (Plus.fwd ∘ mm) (sym (Plus.bwd∘fwd~id (inj₁ i))))) (finext (λ i → cong (Plus.fwd ∘ mm) (sym (Plus.bwd∘fwd~id (inj₂ i))))) ⟩ tabulate {m₂} (g ∘ Plus.fwd ∘ inj₁) ++V tabulate {n₂} (g ∘ Plus.fwd {m₂} ∘ inj₂) ≡⟨ sym (tabulate-split {m₂} {n₂} {f = g}) ⟩ tabulate g ∎) where open ≡-Reasoning -- additive units unite+ : {m : ℕ} → FinVec m (0 + m) unite+ {m} = tabulate (proj₁ (PlusE.unite+ {m})) uniti+ : {m : ℕ} → FinVec (0 + m) m uniti+ {m} = tabulate (proj₁ (PlusE.uniti+ {m})) unite+r : {m : ℕ} → FinVec m (m + 0) unite+r {m} = tabulate (proj₁ (PlusE.unite+r {m})) -- unite+r' : {m : ℕ} → FinVec m (m + 0) -- unite+r' {m} = tabulate (proj₁ (PlusE.unite+r' {m})) uniti+r : {m : ℕ} → FinVec (m + 0) m uniti+r {m} = tabulate (proj₁ (PlusE.uniti+r {m})) -- commutativity -- swap the first m elements with the last n elements -- [ v₀ , v₁ , v₂ , ... , vm-1 , vm , vm₊₁ , ... , vm+n-1 ] -- ==> -- [ vm , vm₊₁ , ... , vm+n-1 , v₀ , v₁ , v₂ , ... , vm-1 ] -- swap+cauchy : (m n : ℕ) → FinVec (n + m) (m + n) -- swap+cauchy m n = tabulate (Plus.swapper m n) -- associativity assocl+ : {m n o : ℕ} → FinVec ((m + n) + o) (m + (n + o)) assocl+ {m} {n} {o} = tabulate (proj₁ (PlusE.assocl+ {m} {n} {o})) assocr+ : {m n o : ℕ} → FinVec (m + (n + o)) (m + n + o) assocr+ {m} {n} {o} = tabulate (proj₁ (PlusE.assocr+ {m} {n} {o})) ------------------------------------------------------------------------------ -- Multiplicative monoid private _×v_ : ∀ {m n} {A B : Set} → Vec A m → Vec B n → Vec (A × B) (m * n) α ×v β = α >>= (λ b → mapV (_,′_ b) β) -- Tensor multiplicative composition -- Transpositions in α correspond to swapping entire rows -- Transpositions in β correspond to swapping entire columns _×c_ : ∀ {m₁ n₁ m₂ n₂} → FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ * n₁) (m₂ * n₂) α ×c β = mapV Times.fwd (α ×v β) -- multiplicative units unite* : {m : ℕ} → FinVec m (1 * m) unite* {m} = tabulate (proj₁ (TimesE.unite* {m})) uniti* : {m : ℕ} → FinVec (1 * m) m uniti* {m} = tabulate (proj₁ (TimesE.uniti* {m})) unite*r : {m : ℕ} → FinVec m (m * 1) unite*r {m} = tabulate (proj₁ (TimesE.unite*r {m})) uniti*r : {m : ℕ} → FinVec (m * 1) m uniti*r {m} = tabulate (proj₁ (TimesE.uniti*r {m})) -- commutativity -- swap⋆ -- -- This is essentially the classical problem of in-place matrix transpose: -- "http://en.wikipedia.org/wiki/In-place_matrix_transposition" -- Given m and n, the desired permutation in Cauchy representation is: -- P(i) = m*n-1 if i=m*n-1 -- = m*i mod m*n-1 otherwise -- transposeIndex : {m n : ℕ} → Fin m × Fin n → Fin (n * m) -- transposeIndex = Times.fwd ∘ swap -- inject≤ (fromℕ (toℕ d * m + toℕ b)) (i*n+k≤m*n d b) -- swap⋆cauchy : (m n : ℕ) → FinVec (n * m) (m * n) -- swap⋆cauchy m n = tabulate (Times.swapper m n) -- mapV transposeIndex (V.tcomp 1C 1C) -- associativity assocl* : {m n o : ℕ} → FinVec ((m * n) * o) (m * (n * o)) assocl* {m} {n} {o} = tabulate (proj₁ (TimesE.assocl* {m} {n} {o})) assocr* : {m n o : ℕ} → FinVec (m * (n * o)) (m * n * o) assocr* {m} {n} {o} = tabulate (proj₁ (TimesE.assocr* {m} {n} {o})) ------------------------------------------------------------------------------ -- Distributivity dist*+ : ∀ {m n o} → FinVec (m * o + n * o) ((m + n) * o) dist*+ {m} {n} {o} = tabulate (proj₁ (PlusTimesE.dist {m} {n} {o})) factor*+ : ∀ {m n o} → FinVec ((m + n) * o) (m * o + n * o) factor*+ {m} {n} {o} = tabulate (proj₁ (PlusTimesE.factor {m} {n} {o})) distl*+ : ∀ {m n o} → FinVec (m * n + m * o) (m * (n + o)) distl*+ {m} {n} {o} = tabulate (proj₁ (PlusTimesE.distl {m} {n} {o})) factorl*+ : ∀ {m n o} → FinVec (m * (n + o)) (m * n + m * o) factorl*+ {m} {n} {o} = tabulate (proj₁ (PlusTimesE.factorl {m} {n} {o})) right-zero*l : ∀ {m} → FinVec 0 (m * 0) right-zero*l {m} = tabulate (proj₁ (PlusTimesE.distzr {m})) right-zero*r : ∀ {m} → FinVec (m * 0) 0 right-zero*r {m} = tabulate (proj₁ (PlusTimesE.factorzr {m})) ------------------------------------------------------------------------------ -- Putting it all together, we have a commutative semiring structure -- (modulo symmetry) _cauchy≃_ : (m n : ℕ) → Set m cauchy≃ n = FinVec m n id-iso : {m : ℕ} → FinVec m m id-iso = 1C -- This is only here to show that we do have everything for a -- commutative semiring structure EXCEPT for symmetry; this is -- addressed in ConcretePermutation postulate sym-iso : {m n : ℕ} → FinVec m n → FinVec n m trans-iso : {m n o : ℕ} → FinVec m n → FinVec n o → FinVec m o trans-iso c₁ c₂ = c₂ ∘̂ c₁ cauchy≃IsEquiv : IsEquivalence {Level.zero} {Level.zero} {ℕ} _cauchy≃_ cauchy≃IsEquiv = record { refl = id-iso ; sym = sym-iso ; trans = trans-iso } cauchyPlusIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _+_ cauchyPlusIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl+ {m} {n} {o} ; ∙-cong = _⊎c_ } cauchyTimesIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _*_ cauchyTimesIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl* {m} {n} {o} ; ∙-cong = _×c_ } {-- cauchyPlusIsCM : IsCommutativeMonoid _cauchy≃_ _+_ 0 cauchyPlusIsCM = record { isSemigroup = cauchyPlusIsSG ; identityˡ = λ m → 1C ; comm = λ m n → swap+cauchy n m } cauchyTimesIsCM : IsCommutativeMonoid _cauchy≃_ _*_ 1 cauchyTimesIsCM = record { isSemigroup = cauchyTimesIsSG ; identityˡ = λ m → uniti* {m} ; comm = λ m n → swap⋆cauchy n m } cauchyIsCSR : IsCommutativeSemiring _cauchy≃_ _+_ _*_ 0 1 cauchyIsCSR = record { +-isCommutativeMonoid = cauchyPlusIsCM ; *-isCommutativeMonoid = cauchyTimesIsCM ; distribʳ = λ o m n → factor*+ {m} {n} {o} ; zeroˡ = λ m → 0C } cauchyCSR : CommutativeSemiring Level.zero Level.zero cauchyCSR = record { Carrier = ℕ ; _≈_ = _cauchy≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = cauchyIsCSR } --} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.571501794, "avg_line_length": 30.8702531646, "ext": "agda", "hexsha": "d6c2a01b9c270add0ab1648b935fe280fb614e7e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FinVec.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FinVec.agda", "max_line_length": 84, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FinVec.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3731, "size": 9755 }
------------------------------------------------------------------------ -- The Agda standard library -- -- List Zippers, basic types and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Zipper where open import Data.Nat.Base open import Data.Maybe.Base as Maybe using (Maybe ; just ; nothing) open import Data.List.Base as List using (List ; [] ; _∷_) open import Function -- Definition ------------------------------------------------------------------------ -- A List Zipper represents a List together with a particular sub-List -- in focus. The user can attempt to move the focus left or right, with -- a risk of failure if one has already reached the corresponding end. -- To make these operations efficient, the `context` the sub List in -- focus lives in is stored *backwards*. This is made formal by `toList` -- which returns the List a Zipper represents. record Zipper {a} (A : Set a) : Set a where constructor mkZipper field context : List A value : List A toList : List A toList = List.reverse context List.++ value open Zipper public -- Embedding Lists as Zippers without any context fromList : ∀ {a} {A : Set a} → List A → Zipper A fromList = mkZipper [] -- Fundamental operations of a Zipper: Moving around ------------------------------------------------------------------------ module _ {a} {A : Set a} where left : Zipper A → Maybe (Zipper A) left (mkZipper [] val) = nothing left (mkZipper (x ∷ ctx) val) = just (mkZipper ctx (x ∷ val)) right : Zipper A → Maybe (Zipper A) right (mkZipper ctx []) = nothing right (mkZipper ctx (x ∷ val)) = just (mkZipper (x ∷ ctx) val) -- Focus-respecting operations ------------------------------------------------------------------------ module _ {a} {A : Set a} where reverse : Zipper A → Zipper A reverse (mkZipper ctx val) = mkZipper val ctx -- If we think of a List [x₁⋯xₘ] split into a List [xₙ₊₁⋯xₘ] in focus -- of another list [x₁⋯xₙ] then there are 4 places (marked {k} here) in -- which we can insert new values: [{1}x₁⋯xₙ{2}][{3}xₙ₊₁⋯xₘ{4}] -- The following 4 functions implement these 4 insertions. -- `xs ˢ++ zp` inserts `xs` on the `s` side of the context of the Zipper `zp` -- `zp ++ˢ xs` insert `xs` on the `s` side of the value in focus of the Zipper `zp` infixr 5 _ˡ++_ _ʳ++_ infixl 5 _++ˡ_ _++ʳ_ -- {1} _ˡ++_ : List A → Zipper A → Zipper A xs ˡ++ mkZipper ctx val = mkZipper (ctx List.++ List.reverse xs) val -- {2} _ʳ++_ : List A → Zipper A → Zipper A xs ʳ++ mkZipper ctx val = mkZipper (List.reverse xs List.++ ctx) val -- {3} _++ˡ_ : Zipper A → List A → Zipper A mkZipper ctx val ++ˡ xs = mkZipper ctx (xs List.++ val) -- {4} _++ʳ_ : Zipper A → List A → Zipper A mkZipper ctx val ++ʳ xs = mkZipper ctx (val List.++ xs) -- List-like operations ------------------------------------------------------------------------ module _ {a} {A : Set a} where length : Zipper A → ℕ length (mkZipper ctx val) = List.length ctx + List.length val module _ {a b} {A : Set a} {B : Set b} where map : (A → B) → Zipper A → Zipper B map f (mkZipper ctx val) = (mkZipper on List.map f) ctx val foldr : (A → B → B) → B → Zipper A → B foldr c n (mkZipper ctx val) = List.foldl (flip c) (List.foldr c n val) ctx -- Generating all the possible foci of a list ------------------------------------------------------------------------ module _ {a} {A : Set a} where allFociIn : List A → List A → List (Zipper A) allFociIn ctx [] = List.[ mkZipper ctx [] ] allFociIn ctx xxs@(x ∷ xs) = mkZipper ctx xxs ∷ allFociIn (x ∷ ctx) xs allFoci : List A → List (Zipper A) allFoci = allFociIn []
{ "alphanum_fraction": 0.5629014989, "avg_line_length": 31.3949579832, "ext": "agda", "hexsha": "51e24e14a42645846e1ef7c9be8fc290d7a5438d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1100, "size": 3736 }
-- AIM XXIII, Andreas, 2016-04-24 -- Overloaded projections and projection patterns -- {-# OPTIONS -v tc.proj.amb:30 #-} -- {-# OPTIONS -v tc.lhs.split:20 #-} module _ where import Common.Level open import Common.Prelude hiding (map) open import Common.Equality module M (A : Set) where record Stream : Set where coinductive field head : A tail : Stream open M using (Stream) open module S = M.Stream public -- This is a bit trickier for overloading projections -- as it has a parameter with is of a record type -- with the same projections. record _≈_ {A : Set}(s t : Stream A) : Set where coinductive field head : head s ≡ head t tail : tail s ≈ tail t open module B = _≈_ public ≈refl : ∀{A} {s : Stream A} → s ≈ s head ≈refl = refl tail ≈refl = ≈refl ≈sym : ∀{A} {s t : Stream A} → s ≈ t → t ≈ s head (≈sym p) = sym (head p) tail (≈sym p) = ≈sym (tail p) module N (A : Set) (s : Stream A) where open module SS = Stream s public myhead : A myhead = SS.head -- cannot use ambiguous head here map : {A B : Set} → (A → B) → Stream A → Stream B head (map f s) = f (head s) tail (map f s) = map f (tail s) map_id : {A : Set}(s : Stream A) → map (λ x → x) s ≈ s head (map_id s) = refl tail (map_id s) = map_id (tail s) repeat : {A : Set}(a : A) → Stream A head (repeat a) = a tail (repeat a) = repeat a repeat₂ : {A : Set}(a₁ a₂ : A) → Stream A ( (head (repeat₂ a₁ a₂))) = a₁ (head (tail (repeat₂ a₁ a₂))) = a₂ (tail (tail (repeat₂ a₁ a₂))) = repeat₂ a₁ a₂ repeat≈repeat₂ : {A : Set}(a : A) → repeat a ≈ repeat₂ a a ( (head (repeat≈repeat₂ a))) = refl (head (tail (repeat≈repeat₂ a))) = refl (tail (tail (repeat≈repeat₂ a))) = repeat≈repeat₂ a
{ "alphanum_fraction": 0.6158357771, "avg_line_length": 25.0735294118, "ext": "agda", "hexsha": "dc4e0198522b7723157fe9303e35c9d38eb6263a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1944-Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1944-Stream.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1944-Stream.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 617, "size": 1705 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Typed-Syntax import Globular-TT.Syntax {- Structure of CwF of a globular type theory : Cut admissibility is significantly harder and has to be proved together with it -} module Globular-TT.CwF-Structure {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) where open import Globular-TT.Syntax index open import Globular-TT.Rules index rule A∈Γ→Γ⊢A : ∀ {Γ x A} → Γ ⊢C → x # A ∈ Γ → Γ ⊢T A A∈Γ→Γ⊢A Γ+⊢@(cc Γ⊢ Γ⊢B idp) (inl A∈Γ) = wkT (A∈Γ→Γ⊢A Γ⊢ A∈Γ) Γ+⊢ A∈Γ→Γ⊢A Γ+⊢@(cc Γ⊢ Γ⊢A idp) (inr (idp , idp)) = wkT Γ⊢A Γ+⊢ {- cut-admissibility -} -- notational shortcut : if A = B a term of type A is also of type B trT : ∀ {Γ A B t} → A == B → Γ ⊢t t # A → Γ ⊢t t # B trT idp Γ⊢t:A = Γ⊢t:A {- action on weakened types and terms -} n∉Γ : ∀ {Γ A n} → Γ ⊢C → (C-length Γ ≤ n) → ¬ (n # A ∈ Γ) n∉Γ (cc Γ⊢ _ idp) l+1≤n (inl n∈Γ) = n∉Γ Γ⊢ (Sn≤m→n≤m l+1≤n) n∈Γ n∉Γ (cc Γ⊢ _ idp) Sn≤n (inr (idp , idp)) = Sn≰n _ Sn≤n lΓ∉Γ : ∀ {Γ A} → Γ ⊢C → ¬ ((C-length Γ) # A ∈ Γ) lΓ∉Γ Γ⊢ = n∉Γ Γ⊢ (n≤n _) wk[]T : ∀ {Γ Δ γ x u A B} → Γ ⊢T A → Δ ⊢S < γ , x ↦ u > > (Γ ∙ x # B) → (A [ < γ , x ↦ u > ]Pre-Ty) == (A [ γ ]Pre-Ty) wk[]t : ∀ {Γ Δ γ x u A t B} → Γ ⊢t t # A → Δ ⊢S < γ , x ↦ u > > (Γ ∙ x # B) → (t [ < γ , x ↦ u > ]Pre-Tm) == (t [ γ ]Pre-Tm) wk[]S : ∀ {Γ Δ γ x u B Θ θ} → Γ ⊢S θ > Θ → Δ ⊢S < γ , x ↦ u > > (Γ ∙ x # B) → (θ ∘ < γ , x ↦ u >) == (θ ∘ γ) []T : ∀ {Γ A Δ γ} → Γ ⊢T A → Δ ⊢S γ > Γ → Δ ⊢T (A [ γ ]Pre-Ty) []t : ∀ {Γ A t Δ γ} → Γ ⊢t t # A → Δ ⊢S γ > Γ → Δ ⊢t (t [ γ ]Pre-Tm) # (A [ γ ]Pre-Ty) [∘]T : ∀ {Γ Δ Θ A γ δ} → Γ ⊢T A → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → ((A [ γ ]Pre-Ty) [ δ ]Pre-Ty) == (A [ γ ∘ δ ]Pre-Ty) [∘]t : ∀ {Γ Δ Θ A t γ δ} → Γ ⊢t t # A → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → ((t [ γ ]Pre-Tm) [ δ ]Pre-Tm) == (t [ γ ∘ δ ]Pre-Tm) ∘-admissibility : ∀ {Γ Δ Θ γ δ} → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → Θ ⊢S (γ ∘ δ) > Γ ∘-associativity : ∀ {Γ Δ Θ Ξ γ δ θ} → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → Ξ ⊢S θ > Θ → ((γ ∘ δ) ∘ θ) == (γ ∘ (δ ∘ θ)) wk[]T (ob Γ⊢) _ = idp wk[]T (ar Γ⊢A Γ⊢t:A Γ⊢u:A) Δ⊢γ+:Γ+ = ⇒= (wk[]T Γ⊢A Δ⊢γ+:Γ+) (wk[]t Γ⊢t:A Δ⊢γ+:Γ+) (wk[]t Γ⊢u:A Δ⊢γ+:Γ+) wk[]t {x = x} (var {x = y} Γ⊢ y∈Γ) Δ⊢γ+:Γ+ with (eqdecℕ y x) ... | inr _ = idp wk[]t (var Γ⊢ l∈Γ) (sc Δ⊢γ:Γ (cc _ _ idp) _ _) | inl idp = ⊥-elim (lΓ∉Γ Γ⊢ l∈Γ) wk[]t (tm _ Γ⊢θ:Θ idp) Δ⊢γ+:Γ+ = Tm-constructor= idp (wk[]S Γ⊢θ:Θ Δ⊢γ+:Γ+) wk[]S (es _) _ = idp wk[]S (sc Γ⊢θ:Θ _ Γ⊢t:A[θ] idp) Δ⊢γ+:Γ+ = <,>= (wk[]S Γ⊢θ:Θ Δ⊢γ+:Γ+) idp (wk[]t Γ⊢t:A[θ] Δ⊢γ+:Γ+) []T (ob Γ⊢) Δ⊢γ:Γ = ob (Δ⊢γ:Γ→Δ⊢ Δ⊢γ:Γ) []T (ar Γ⊢A Γ⊢t:A Γ⊢u:A) Δ⊢γ:Γ = ar ([]T Γ⊢A Δ⊢γ:Γ) ([]t Γ⊢t:A Δ⊢γ:Γ) ([]t Γ⊢u:A Δ⊢γ:Γ) []t {t = Tm-constructor i _} (tm Ci⊢Ti x idp) Δ⊢γ:Γ = trT ([∘]T Ci⊢Ti x Δ⊢γ:Γ ^) (tm Ci⊢Ti (∘-admissibility x Δ⊢γ:Γ) idp) []t {Γ = (Γ ∙ _ # _)} {t = Var x} (var Γ+⊢@(cc Γ⊢ _ idp) (inl x∈Γ)) Δ⊢γ+:Γ+@(sc Δ⊢γ:Γ _ _ idp) with (eqdecℕ x (C-length Γ)) ... | inl idp = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ) ... | inr _ = trT (wk[]T (A∈Γ→Γ⊢A Γ⊢ x∈Γ) Δ⊢γ+:Γ+ ^) ([]t (var Γ⊢ x∈Γ) Δ⊢γ:Γ) []t {Γ = (Γ ∙ _ # _)} {t = Var x} (var Γ+⊢@(cc Γ⊢ Γ⊢A idp) (inr (idp , idp))) Δ⊢γ+:Γ+@(sc Δ⊢γ:Γ x₁ Δ⊢t:A[γ] idp) with (eqdecℕ x (C-length Γ)) ... | inl p = trT (wk[]T Γ⊢A Δ⊢γ+:Γ+ ^) Δ⊢t:A[γ] ... | inr x≠x = ⊥-elim (x≠x idp) [∘]T (ob _) _ _ = idp [∘]T (ar Γ⊢A Γ⊢t:A Γ⊢u:A) Δ⊢γ:Γ Θ⊢δ:Δ = ⇒= ([∘]T Γ⊢A Δ⊢γ:Γ Θ⊢δ:Δ) ([∘]t Γ⊢t:A Δ⊢γ:Γ Θ⊢δ:Δ) ([∘]t Γ⊢u:A Δ⊢γ:Γ Θ⊢δ:Δ) [∘]t (tm Ci⊢Ti x idp) Δ⊢γ:Γ Θ⊢δ:Δ = Tm-constructor= idp (∘-associativity x Δ⊢γ:Γ Θ⊢δ:Δ ) [∘]t (var {x = x} Γ,y:A⊢ x∈Γ+) (sc {x = y} Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ with (eqdecℕ x y ) ... | inl idp = idp [∘]t (var Γ,y:A⊢ (inr (idp , idp))) (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ | inr x≠x = ⊥-elim (x≠x idp) [∘]t (var (cc Γ⊢ _ idp) (inl x∈Γ)) (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ | inr _ = [∘]t (var Γ⊢ x∈Γ) Δ⊢γ:Γ Θ⊢δ:Δ ∘-admissibility (es Δ⊢) Θ⊢δ:Δ = es (Δ⊢γ:Γ→Δ⊢ Θ⊢δ:Δ) ∘-admissibility (sc Δ⊢γ:Γ Γ,x:A⊢@(cc _ Γ⊢A idp) Δ⊢t:A[γ] idp) Θ⊢δ:Δ = sc (∘-admissibility Δ⊢γ:Γ Θ⊢δ:Δ) Γ,x:A⊢ (trT ([∘]T Γ⊢A Δ⊢γ:Γ Θ⊢δ:Δ) ([]t Δ⊢t:A[γ] Θ⊢δ:Δ)) idp ∘-associativity (es _) _ _ = idp ∘-associativity (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ Ξ⊢θ:Θ = <,>= (∘-associativity Δ⊢γ:Γ Θ⊢δ:Δ Ξ⊢θ:Θ) idp ([∘]t Δ⊢t:A[γ] Θ⊢δ:Δ Ξ⊢θ:Θ) Γ⊢t:A→Γ⊢A : ∀ {Γ A t} → Γ ⊢t t # A → Γ ⊢T A Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) (inl y∈Γ)) = wkT (Γ⊢t:A→Γ⊢A (var Γ⊢ y∈Γ)) Γ,x:A⊢ Γ⊢t:A→Γ⊢A (var Γ,x:A⊢@(cc _ _ idp) (inr (idp , idp))) = Γ,x:A⊢→Γ,x:A⊢A Γ,x:A⊢ Γ⊢t:A→Γ⊢A (tm Ci⊢Ti Γ⊢γ:Δ idp) = []T Ci⊢Ti Γ⊢γ:Δ {- action of identity on types terms and substitutions is trivial (true on syntax) -} [id]T : ∀ Γ A → (A [ Pre-id Γ ]Pre-Ty) == A [id]t : ∀ Γ t → (t [ Pre-id Γ ]Pre-Tm) == t ∘-right-unit : ∀ {Δ γ} → (γ ∘ Pre-id Δ) == γ [id]T Γ ∗ = idp [id]T Γ (⇒ A t u) = ⇒= ([id]T Γ A) ([id]t Γ t) ([id]t Γ u) [id]t Γ (Tm-constructor i γ) = Tm-constructor= idp ∘-right-unit [id]t ⊘ (Var x) = idp [id]t (Γ ∙ y # B) (Var x) with (eqdecℕ x y) ... | inl x=y = Var= (x=y ^) ... | inr _ = [id]t Γ (Var x) ∘-right-unit {Δ} {<>} = idp ∘-right-unit {Δ} {< γ , y ↦ t >} = <,>= ∘-right-unit idp ([id]t Δ t) -- ::= ∘-right-unit (×= idp ([id]t Δ t)) {- identity is well-formed -} Γ⊢id:Γ : ∀ {Γ} → Γ ⊢C → Γ ⊢S Pre-id Γ > Γ Γ⊢id:Γ ec = es ec Γ⊢id:Γ Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) = sc (wkS (Γ⊢id:Γ Γ⊢) Γ,x:A⊢) Γ,x:A⊢ (var Γ,x:A⊢ (inr (idp , [id]T _ _))) idp {- composition is associative -} ∘-left-unit : ∀{Γ Δ γ} → Δ ⊢S γ > Γ → (Pre-id Γ ∘ γ) == γ ∘-left-unit (es _) = idp ∘-left-unit Δ⊢γ+:Γ+@(sc {x = x} Δ⊢γ:Γ (cc Γ⊢ _ idp) _ idp) with (eqdecℕ x x) ... | inl p = <,>= (wk[]S (Γ⊢id:Γ Γ⊢) Δ⊢γ+:Γ+ >> ∘-left-unit Δ⊢γ:Γ) idp idp ... | inr x≠x = ⊥-elim (x≠x idp) {- Structure of CwF -} Γ,x:A⊢π:Γ : ∀ {Γ x A} → (Γ ∙ x # A) ⊢C → (Γ ∙ x # A) ⊢S Pre-π Γ x A > Γ Γ,x:A⊢π:Γ Γ,x:A⊢@(cc Γ⊢ _ idp) = wkS (Γ⊢id:Γ Γ⊢) Γ,x:A⊢ -- TODO : finish
{ "alphanum_fraction": 0.4173071011, "avg_line_length": 55.6068376068, "ext": "agda", "hexsha": "f40c8ffe79f9489d7bb94584a62d61d2d9d1038c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "Globular-TT/CwF-Structure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "Globular-TT/CwF-Structure.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/CwF-Structure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3921, "size": 6506 }
{-# OPTIONS --rewriting #-} module Properties where import Properties.Contradiction import Properties.Dec import Properties.Equality import Properties.Remember import Properties.Step import Properties.StrictMode import Properties.TypeCheck
{ "alphanum_fraction": 0.8429752066, "avg_line_length": 20.1666666667, "ext": "agda", "hexsha": "8b30ce12150aa29ab4ebd3259fc4754b2af6963b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Properties.agda", "max_line_length": 31, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3f69d3a4f2b74dac8ecff2ef8ec851c8636324b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gideros/luau", "max_stars_repo_path": "prototyping/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-18T04:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-18T04:10:20.000Z", "num_tokens": 44, "size": 242 }
------------------------------------------------------------------------ -- A simple tactic for proving equality of equality proofs ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Equality.Tactic {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Prelude hiding (Level; lift; lower) private variable a : Prelude.Level A B : Type a ℓ x y z : A x≡y y≡z : x ≡ y ------------------------------------------------------------------------ -- Equality expressions -- Equality expressions. -- -- Note that the presence of the Refl constructor means that Eq is a -- definition of equality with a concrete, evaluating eliminator. data Eq {A : Type a} : A → A → Type (lsuc a) where Lift : (x≡y : x ≡ y) → Eq x y Refl : Eq x x Sym : (x≈y : Eq x y) → Eq y x Trans : (x≈y : Eq x y) (y≈z : Eq y z) → Eq x z Cong : ∀ {B : Type a} {x y} (f : B → A) (x≈y : Eq x y) → Eq (f x) (f y) -- Semantics. ⟦_⟧ : Eq x y → x ≡ y ⟦ Lift x≡y ⟧ = x≡y ⟦ Refl ⟧ = refl _ ⟦ Sym x≈y ⟧ = sym ⟦ x≈y ⟧ ⟦ Trans x≈y y≈z ⟧ = trans ⟦ x≈y ⟧ ⟦ y≈z ⟧ ⟦ Cong f x≈y ⟧ = cong f ⟦ x≈y ⟧ -- A derived combinator. Cong₂ : {A B C : Type a} (f : A → B → C) {x y : A} {u v : B} → Eq x y → Eq u v → Eq (f x u) (f y v) Cong₂ f {y = y} {u} x≈y u≈v = Trans (Cong (flip f u) x≈y) (Cong (f y) u≈v) private Cong₂-correct : {A B C : Type a} (f : A → B → C) {x y : A} {u v : B} (x≈y : Eq x y) (u≈v : Eq u v) → ⟦ Cong₂ f x≈y u≈v ⟧ ≡ cong₂ f ⟦ x≈y ⟧ ⟦ u≈v ⟧ Cong₂-correct f x≈y u≈v = refl _ ------------------------------------------------------------------------ -- Simplified expressions private -- The simplified expressions are stratified into three levels. data Level : Type where upper middle lower : Level data EqS {A : Type a} : Level → A → A → Type (lsuc a) where -- Bottom layer: a single use of congruence applied to an actual -- equality. Cong : {B : Type a} {x y : B} (f : B → A) (x≡y : x ≡ y) → EqS lower (f x) (f y) -- Middle layer: at most one use of symmetry. No-Sym : (x≈y : EqS lower x y) → EqS middle x y Sym : (x≈y : EqS lower x y) → EqS middle y x -- Uppermost layer: a sequence of equalities, combined using -- transitivity and a single use of reflexivity. Refl : EqS upper x x Cons : (x≈y : EqS middle x y) (y≈z : EqS upper y z) → EqS upper x z -- Semantics of simplified expressions. ⟦_⟧S : EqS ℓ x y → x ≡ y ⟦ Cong f x≡y ⟧S = cong f x≡y ⟦ No-Sym x≈y ⟧S = ⟦ x≈y ⟧S ⟦ Sym x≈y ⟧S = sym ⟦ x≈y ⟧S ⟦ Refl ⟧S = refl _ ⟦ Cons x≈y y≈z ⟧S = trans ⟦ x≈y ⟧S ⟦ y≈z ⟧S ------------------------------------------------------------------------ -- Manipulation of expressions private lift : x ≡ y → EqS upper x y lift x≡y = Cons (No-Sym (Cong id x≡y)) Refl abstract lift-correct : (x≡y : x ≡ y) → x≡y ≡ ⟦ lift x≡y ⟧S lift-correct x≡y = x≡y ≡⟨ cong-id _ ⟩ cong id x≡y ≡⟨ sym (trans-reflʳ _) ⟩∎ trans (cong id x≡y) (refl _) ∎ snoc : EqS upper x y → EqS middle y z → EqS upper x z snoc Refl y≈z = Cons y≈z Refl snoc (Cons x≈y y≈z) z≈u = Cons x≈y (snoc y≈z z≈u) abstract snoc-correct : (z≈y : EqS upper z y) (y≈x : EqS middle y x) → sym y≡z ≡ ⟦ z≈y ⟧S → sym x≡y ≡ ⟦ y≈x ⟧S → sym (trans x≡y y≡z) ≡ ⟦ snoc z≈y y≈x ⟧S snoc-correct {y≡z = y≡z} {x≡y = x≡y} Refl y≈z h₁ h₂ = sym (trans x≡y y≡z) ≡⟨ sym-trans _ _ ⟩ trans (sym y≡z) (sym x≡y) ≡⟨ cong₂ trans h₁ h₂ ⟩ trans (refl _) ⟦ y≈z ⟧S ≡⟨ trans-reflˡ _ ⟩ ⟦ y≈z ⟧S ≡⟨ sym (trans-reflʳ _) ⟩∎ trans ⟦ y≈z ⟧S (refl _) ∎ snoc-correct {y≡z = y≡z} {x≡y = x≡y} (Cons x≈y y≈z) z≈u h₁ h₂ = sym (trans x≡y y≡z) ≡⟨ sym-trans _ _ ⟩ trans (sym y≡z) (sym x≡y) ≡⟨ cong₂ trans h₁ (refl (sym x≡y)) ⟩ trans (trans ⟦ x≈y ⟧S ⟦ y≈z ⟧S) (sym x≡y) ≡⟨ trans-assoc _ _ _ ⟩ trans ⟦ x≈y ⟧S (trans ⟦ y≈z ⟧S (sym x≡y)) ≡⟨ cong (trans ⟦ x≈y ⟧S) $ cong₂ trans (sym (sym-sym ⟦ y≈z ⟧S)) (refl (sym x≡y)) ⟩ trans ⟦ x≈y ⟧S (trans (sym (sym ⟦ y≈z ⟧S)) (sym x≡y)) ≡⟨ cong (trans _) $ sym (sym-trans x≡y (sym ⟦ y≈z ⟧S)) ⟩ trans ⟦ x≈y ⟧S (sym (trans x≡y (sym ⟦ y≈z ⟧S))) ≡⟨ cong (trans _) $ snoc-correct y≈z z≈u (sym-sym _) h₂ ⟩∎ trans ⟦ x≈y ⟧S ⟦ snoc y≈z z≈u ⟧S ∎ append : EqS upper x y → EqS upper y z → EqS upper x z append Refl x≈y = x≈y append (Cons x≈y y≈z) z≈u = Cons x≈y (append y≈z z≈u) abstract append-correct : (x≈y : EqS upper x y) (y≈z : EqS upper y z) → x≡y ≡ ⟦ x≈y ⟧S → y≡z ≡ ⟦ y≈z ⟧S → trans x≡y y≡z ≡ ⟦ append x≈y y≈z ⟧S append-correct {x≡y = x≡y} {y≡z} Refl x≈y h₁ h₂ = trans x≡y y≡z ≡⟨ cong₂ trans h₁ h₂ ⟩ trans (refl _) ⟦ x≈y ⟧S ≡⟨ trans-reflˡ _ ⟩∎ ⟦ x≈y ⟧S ∎ append-correct {x≡y = x≡z} {z≡u} (Cons x≈y y≈z) z≈u h₁ h₂ = trans x≡z z≡u ≡⟨ cong₂ trans h₁ (refl z≡u) ⟩ trans (trans ⟦ x≈y ⟧S ⟦ y≈z ⟧S) z≡u ≡⟨ trans-assoc _ _ _ ⟩ trans ⟦ x≈y ⟧S (trans ⟦ y≈z ⟧S z≡u) ≡⟨ cong (trans _) $ append-correct y≈z z≈u (refl _) h₂ ⟩∎ trans ⟦ x≈y ⟧S ⟦ append y≈z z≈u ⟧S ∎ map-sym : EqS middle x y → EqS middle y x map-sym (No-Sym x≈y) = Sym x≈y map-sym (Sym x≈y) = No-Sym x≈y abstract map-sym-correct : (x≈y : EqS middle x y) → x≡y ≡ ⟦ x≈y ⟧S → sym x≡y ≡ ⟦ map-sym x≈y ⟧S map-sym-correct {x≡y = x≡y} (No-Sym x≈y) h = sym x≡y ≡⟨ cong sym h ⟩∎ sym ⟦ x≈y ⟧S ∎ map-sym-correct {x≡y = x≡y} (Sym x≈y) h = sym x≡y ≡⟨ cong sym h ⟩ sym (sym ⟦ x≈y ⟧S) ≡⟨ sym-sym _ ⟩∎ ⟦ x≈y ⟧S ∎ reverse : EqS upper x y → EqS upper y x reverse Refl = Refl reverse (Cons x≈y y≈z) = snoc (reverse y≈z) (map-sym x≈y) abstract reverse-correct : (x≈y : EqS upper x y) → x≡y ≡ ⟦ x≈y ⟧S → sym x≡y ≡ ⟦ reverse x≈y ⟧S reverse-correct {x≡y = x≡y} Refl h = sym x≡y ≡⟨ cong sym h ⟩ sym (refl _) ≡⟨ sym-refl ⟩∎ refl _ ∎ reverse-correct {x≡y = x≡y} (Cons x≈y y≈z) h = sym x≡y ≡⟨ cong sym h ⟩ sym (trans ⟦ x≈y ⟧S ⟦ y≈z ⟧S) ≡⟨ snoc-correct (reverse y≈z) _ (reverse-correct y≈z (refl _)) (map-sym-correct x≈y (refl _)) ⟩∎ ⟦ snoc (reverse y≈z) (map-sym x≈y) ⟧S ∎ map-cong : {A B : Type a} {x y : A} (f : A → B) → EqS ℓ x y → EqS ℓ (f x) (f y) map-cong {ℓ = lower} f (Cong g x≡y) = Cong (f ∘ g) x≡y map-cong {ℓ = middle} f (No-Sym x≈y) = No-Sym (map-cong f x≈y) map-cong {ℓ = middle} f (Sym y≈x) = Sym (map-cong f y≈x) map-cong {ℓ = upper} f Refl = Refl map-cong {ℓ = upper} f (Cons x≈y y≈z) = Cons (map-cong f x≈y) (map-cong f y≈z) abstract map-cong-correct : (f : A → B) (x≈y : EqS ℓ x y) → x≡y ≡ ⟦ x≈y ⟧S → cong f x≡y ≡ ⟦ map-cong f x≈y ⟧S map-cong-correct {ℓ = lower} {x≡y = gx≡gy} f (Cong g x≡y) h = cong f gx≡gy ≡⟨ cong (cong f) h ⟩ cong f (cong g x≡y) ≡⟨ cong-∘ f g _ ⟩∎ cong (f ∘ g) x≡y ∎ map-cong-correct {ℓ = middle} {x≡y = x≡y} f (No-Sym x≈y) h = cong f x≡y ≡⟨ map-cong-correct f x≈y h ⟩∎ ⟦ map-cong f x≈y ⟧S ∎ map-cong-correct {ℓ = middle} {x≡y = x≡y} f (Sym y≈x) h = cong f x≡y ≡⟨ cong (cong f) h ⟩ cong f (sym ⟦ y≈x ⟧S) ≡⟨ cong-sym f _ ⟩ sym (cong f ⟦ y≈x ⟧S) ≡⟨ cong sym (map-cong-correct f y≈x (refl _)) ⟩∎ sym ⟦ map-cong f y≈x ⟧S ∎ map-cong-correct {ℓ = upper} {x≡y = x≡y} f Refl h = cong f x≡y ≡⟨ cong (cong f) h ⟩ cong f (refl _) ≡⟨ cong-refl f ⟩∎ refl _ ∎ map-cong-correct {ℓ = upper} {x≡y = x≡y} f (Cons x≈y y≈z) h = cong f x≡y ≡⟨ cong (cong f) h ⟩ cong f (trans ⟦ x≈y ⟧S ⟦ y≈z ⟧S) ≡⟨ cong-trans f _ _ ⟩ trans (cong f ⟦ x≈y ⟧S) (cong f ⟦ y≈z ⟧S) ≡⟨ cong₂ trans (map-cong-correct f x≈y (refl _)) (map-cong-correct f y≈z (refl _)) ⟩∎ trans ⟦ map-cong f x≈y ⟧S ⟦ map-cong f y≈z ⟧S ∎ -- Equality-preserving simplifier. simplify : Eq x y → EqS upper x y simplify (Lift x≡y) = lift x≡y simplify Refl = Refl simplify (Sym x≡y) = reverse (simplify x≡y) simplify (Trans x≡y y≡z) = append (simplify x≡y) (simplify y≡z) simplify (Cong f x≡y) = map-cong f (simplify x≡y) abstract simplify-correct : (x≈y : Eq x y) → ⟦ x≈y ⟧ ≡ ⟦ simplify x≈y ⟧S simplify-correct (Lift x≡y) = lift-correct x≡y simplify-correct Refl = refl _ simplify-correct (Sym x≈y) = reverse-correct (simplify x≈y) (simplify-correct x≈y) simplify-correct (Trans x≈y y≈z) = append-correct (simplify x≈y) _ (simplify-correct x≈y) (simplify-correct y≈z) simplify-correct (Cong f x≈y) = map-cong-correct f (simplify x≈y) (simplify-correct x≈y) ------------------------------------------------------------------------ -- Tactic abstract -- Simple tactic for proving equality of equality proofs. prove : (x≡y x≡y′ : Eq x y) → ⟦ simplify x≡y ⟧S ≡ ⟦ simplify x≡y′ ⟧S → ⟦ x≡y ⟧ ≡ ⟦ x≡y′ ⟧ prove x≡y x≡y′ hyp = ⟦ x≡y ⟧ ≡⟨ simplify-correct x≡y ⟩ ⟦ simplify x≡y ⟧S ≡⟨ hyp ⟩ ⟦ simplify x≡y′ ⟧S ≡⟨ sym (simplify-correct x≡y′) ⟩∎ ⟦ x≡y′ ⟧ ∎ ------------------------------------------------------------------------ -- Some examples private module Examples (x≡y : x ≡ y) where ex₁ : trans (refl x) (sym (sym x≡y)) ≡ x≡y ex₁ = prove (Trans Refl (Sym (Sym (Lift x≡y)))) (Lift x≡y) (refl _) ex₂ : cong proj₂ (sym (cong (_,_ x) x≡y)) ≡ sym x≡y ex₂ = prove (Cong proj₂ (Sym (Cong (_,_ x) (Lift x≡y)))) (Sym (Lift x≡y)) (refl _) -- Non-examples: The tactic cannot prove trans-symˡ or trans-symʳ.
{ "alphanum_fraction": 0.450490381, "avg_line_length": 36.439862543, "ext": "agda", "hexsha": "7808a04e77c9f879666b623f9e68416b2487617d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equality/Tactic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equality/Tactic.agda", "max_line_length": 121, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equality/Tactic.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 4591, "size": 10604 }
module HelloWorld where open import IO open import Data.String open import Data.Unit open import Level using (0ℓ) main = run {0ℓ} (putStrLn "Hello World!")
{ "alphanum_fraction": 0.7594936709, "avg_line_length": 17.5555555556, "ext": "agda", "hexsha": "27cc63b91cd7ee4f09fec10c89b43f75eb9d64b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guilhermehas/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guilhermehas/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guilhermehas/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 42, "size": 158 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Coproduct where open import Level open import Data.Empty open import Data.Sum open import Relation.Binary.Core open import Categories.Category module _ {a a′ ℓ ℓ′} {A : Set a} (_∼_ : Rel A ℓ) where lift-∼ : Rel (Lift {ℓ = a′} A) (ℓ ⊔ ℓ′) lift-∼ (lift x) (lift y) = Lift {ℓ = ℓ′} (x ∼ y) lift-equiv : IsEquivalence _∼_ → IsEquivalence lift-∼ lift-equiv record { refl = refl-∼ ; sym = sym-∼ ; trans = trans-∼ } = record { refl = lift refl-∼ ; sym = λ { {lift x} {lift y} {lift x∼y} → lift (sym-∼ x∼y) } ; trans = λ { {lift x} {lift y} {lift z} {lift x∼y} {lift y∼z} → lift (trans-∼ x∼y y∼z) } } Coproduct : ∀ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Coproduct {o} {ℓ} {e} {o′} {ℓ′} {e′} C D = record { Obj = C.Obj ⊎ D.Obj ; _⇒_ = λ { (inj₁ c₁) (inj₁ c₂) → Lift {ℓ = ℓ′} (C._⇒_ c₁ c₂) ; (inj₁ _) (inj₂ _) → Lift ⊥ ; (inj₂ _) (inj₁ _) → Lift ⊥ ; (inj₂ d₁) (inj₂ d₂) → Lift {ℓ = ℓ} (D._⇒_ d₁ d₂) } ; _≡_ = λ { {inj₁ _} {inj₁ _} → lift-∼ {ℓ′ = e′} C._≡_ ; {inj₁ _} {inj₂ _} (lift ()) (lift ()) ; {inj₂ _} {inj₁ _} (lift ()) (lift ()) ; {inj₂ _} {inj₂ _} → lift-∼ {ℓ′ = e} D._≡_ } ; _∘_ = λ { {inj₁ _} {inj₁ _} {inj₁ _} (lift f) (lift g) → lift (C._∘_ f g) ; {inj₁ _} {inj₁ _} {inj₂ _} (lift ()) _ ; {inj₁ _} {inj₂ _} {inj₁ _} _ (lift ()) ; {inj₁ _} {inj₂ _} {inj₂ _} _ (lift ()) ; {inj₂ _} {inj₁ _} {inj₁ _} _ (lift ()) ; {inj₂ _} {inj₁ _} {inj₂ _} (lift ()) _ ; {inj₂ _} {inj₂ _} {inj₁ _} (lift ()) _ ; {inj₂ _} {inj₂ _} {inj₂ _} (lift f) (lift g) → lift (D._∘_ f g) } ; id = λ { {inj₁ _} → lift C.id ; {inj₂ _} → lift D.id } ; assoc = λ { {inj₁ _} {inj₁ _} {inj₁ _} {inj₁ _} → lift C.assoc ; {inj₁ _} {inj₁ _} {inj₁ _} {inj₂ _} {_} {_} {lift ()} ; {inj₁ _} {inj₁ _} {inj₂ _} {inj₁ _} {_} {lift ()} {_} ; {inj₁ _} {inj₁ _} {inj₂ _} {inj₂ _} {_} {lift ()} {_} ; {inj₁ _} {inj₂ _} {inj₁ _} {inj₁ _} {lift ()} {_} {_} ; {inj₁ _} {inj₂ _} {inj₁ _} {inj₂ _} {lift ()} {_} {_} ; {inj₁ _} {inj₂ _} {inj₂ _} {inj₁ _} {lift ()} {_} {_} ; {inj₁ _} {inj₂ _} {inj₂ _} {inj₂ _} {lift ()} {_} {_} ; {inj₂ _} {inj₁ _} {inj₁ _} {inj₁ _} {lift ()} {_} {_} ; {inj₂ _} {inj₁ _} {inj₁ _} {inj₂ _} {lift ()} {_} {_} ; {inj₂ _} {inj₁ _} {inj₂ _} {inj₁ _} {lift ()} {_} {_} ; {inj₂ _} {inj₁ _} {inj₂ _} {inj₂ _} {lift ()} {_} {_} ; {inj₂ _} {inj₂ _} {inj₁ _} {inj₁ _} {_} {lift ()} {_} ; {inj₂ _} {inj₂ _} {inj₁ _} {inj₂ _} {_} {lift ()} {_} ; {inj₂ _} {inj₂ _} {inj₂ _} {inj₁ _} {_} {_} {lift ()} ; {inj₂ _} {inj₂ _} {inj₂ _} {inj₂ _} → lift D.assoc } ; identityˡ = λ { {inj₁ _} {inj₁ _} → lift C.identityˡ ; {inj₁ _} {inj₂ _} {lift ()} ; {inj₂ _} {inj₁ _} {lift ()} ; {inj₂ _} {inj₂ _} → lift D.identityˡ } ; identityʳ = λ { {inj₁ _} {inj₁ _} → lift C.identityʳ ; {inj₁ _} {inj₂ _} {lift ()} ; {inj₂ _} {inj₁ _} {lift ()} ; {inj₂ _} {inj₂ _} → lift D.identityʳ } ; equiv = λ { {inj₁ _} {inj₁ _} → lift-equiv _ C.equiv ; {inj₁ _} {inj₂ _} → record { refl = λ { {lift ()} } ; sym = λ { {lift ()} } ; trans = λ { {lift ()} } } ; {inj₂ _} {inj₁ _} → record { refl = λ { {lift ()} } ; sym = λ { {lift ()} } ; trans = λ { {lift ()} } } ; {inj₂ _} {inj₂ _} → lift-equiv _ D.equiv } ; ∘-resp-≡ = λ { {inj₁ _} {inj₁ _} {inj₁ _} → λ { (lift f) (lift g) → lift (C.∘-resp-≡ f g) } ; {inj₁ _} {inj₁ _} {inj₂ _} {lift ()} {_} {_} ; {inj₁ _} {inj₂ _} {inj₁ _} {lift ()} {_} {_} ; {inj₁ _} {inj₂ _} {inj₂ _} {_} {_} {lift ()} ; {inj₂ _} {inj₁ _} {inj₁ _} {_} {_} {lift ()} ; {inj₂ _} {inj₁ _} {inj₂ _} {lift ()} {_} {_} ; {inj₂ _} {inj₂ _} {inj₁ _} {lift ()} {_} {_} ; {inj₂ _} {inj₂ _} {inj₂ _} → λ { (lift f) (lift g) → lift (D.∘-resp-≡ f g) } } } where module C = Category C module D = Category D
{ "alphanum_fraction": 0.3885977782, "avg_line_length": 49.6979166667, "ext": "agda", "hexsha": "420968f516ed4ffd0c5aeeb215b53019cc09d76d", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/categories", "max_forks_repo_path": "Categories/Coproduct.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/categories", "max_issues_repo_path": "Categories/Coproduct.agda", "max_line_length": 113, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2032, "size": 4771 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Queue.Untruncated2List where open import Cubical.Foundations.Everything open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Queue.1List module Untruncated2List {ℓ} (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset -- Untruncated 2Lists data Q : Type ℓ where Q⟨_,_⟩ : (xs ys : List A) → Q tilt : ∀ xs ys z → Q⟨ xs ++ [ z ] , ys ⟩ ≡ Q⟨ xs , ys ++ [ z ] ⟩ -- enq into the first list, deq from the second if possible flushEq' : (xs ys : List A) → Q⟨ xs ++ ys , [] ⟩ ≡ Q⟨ xs , rev ys ⟩ flushEq' xs [] = cong Q⟨_, [] ⟩ (++-unit-r xs) flushEq' xs (z ∷ ys) j = hcomp (λ i → λ { (j = i0) → Q⟨ ++-assoc xs [ z ] ys i , [] ⟩ ; (j = i1) → tilt xs (rev ys) z i }) (flushEq' (xs ++ [ z ]) ys j) flushEq : (xs ys : List A) → Q⟨ xs ++ rev ys , [] ⟩ ≡ Q⟨ xs , ys ⟩ flushEq xs ys = flushEq' xs (rev ys) ∙ cong Q⟨ xs ,_⟩ (rev-rev ys) emp : Q emp = Q⟨ [] , [] ⟩ enq : A → Q → Q enq a Q⟨ xs , ys ⟩ = Q⟨ a ∷ xs , ys ⟩ enq a (tilt xs ys z i) = tilt (a ∷ xs) ys z i deqFlush : List A → Maybe (Q × A) deqFlush [] = nothing deqFlush (x ∷ xs) = just (Q⟨ [] , xs ⟩ , x) deq : Q → Maybe (Q × A) deq Q⟨ xs , [] ⟩ = deqFlush (rev xs) deq Q⟨ xs , y ∷ ys ⟩ = just (Q⟨ xs , ys ⟩ , y) deq (tilt xs [] z i) = path i where path : deqFlush (rev (xs ++ [ z ])) ≡ just (Q⟨ xs , [] ⟩ , z) path = cong deqFlush (rev-snoc xs z) ∙ cong (λ q → just (q , z)) (sym (flushEq' [] xs)) deq (tilt xs (y ∷ ys) z i) = just (tilt xs ys z i , y) Raw : RawQueue Raw = (Q , emp , enq , deq) -- We construct an equivalence Q₁≃Q and prove that this is an equivalence of queue structures private module One = 1List A Aset open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) using () quot : Q₁ → Q quot xs = Q⟨ xs , [] ⟩ eval : Q → Q₁ eval Q⟨ xs , ys ⟩ = xs ++ rev ys eval (tilt xs ys z i) = hcomp (λ j → λ { (i = i0) → (xs ++ [ z ]) ++ rev ys ; (i = i1) → xs ++ rev-snoc ys z (~ j) }) (++-assoc xs [ z ] (rev ys) i) quot∘eval : ∀ q → quot (eval q) ≡ q quot∘eval Q⟨ xs , ys ⟩ = flushEq xs ys quot∘eval (tilt xs ys z i) j = hcomp (λ k → λ { (i = i0) → compPath-filler (flushEq' (xs ++ [ z ]) (rev ys)) (cong Q⟨ xs ++ [ z ] ,_⟩ (rev-rev ys)) k j ; (i = i1) → helper k ; (j = i0) → Q⟨ compPath-filler (++-assoc xs [ z ] (rev ys)) (cong (xs ++_) (sym (rev-snoc ys z))) k i , [] ⟩ ; (j = i1) → tilt xs (rev-rev ys k) z i }) flushEq'-filler where flushEq'-filler : Q flushEq'-filler = hfill (λ i → λ { (j = i0) → Q⟨ ++-assoc xs [ z ] (rev ys) i , [] ⟩ ; (j = i1) → tilt xs (rev (rev ys)) z i }) (inS (flushEq' (xs ++ [ z ]) (rev ys) j)) i helper : I → Q helper k = hcomp (λ l → λ { (j = i0) → Q⟨ xs ++ rev-snoc ys z (l ∧ ~ k) , [] ⟩ ; (j = i1) → Q⟨ xs , rev-rev-snoc ys z l k ⟩ ; (k = i0) → flushEq' xs (rev-snoc ys z l) j ; (k = i1) → flushEq xs (ys ++ [ z ]) j }) (compPath-filler (flushEq' xs (rev (ys ++ [ z ]))) (cong Q⟨ xs ,_⟩ (rev-rev (ys ++ [ z ]))) k j) eval∘quot : ∀ xs → eval (quot xs) ≡ xs eval∘quot = ++-unit-r -- We get our desired equivalence quotEquiv : Q₁ ≃ Q quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot) -- Now it only remains to prove that this is an equivalence of queue structures quot∘emp : quot emp₁ ≡ emp quot∘emp = refl quot∘enq : ∀ x xs → quot (enq₁ x xs) ≡ enq x (quot xs) quot∘enq x xs = refl quot∘deq : ∀ xs → deqMap quot (deq₁ xs) ≡ deq (quot xs) quot∘deq [] = refl quot∘deq (x ∷ []) = refl quot∘deq (x ∷ x' ∷ xs) = deqMap-∘ quot (enq₁ x) (deq₁ (x' ∷ xs)) ∙ sym (deqMap-∘ (enq x) quot (deq₁ (x' ∷ xs))) ∙ cong (deqMap (enq x)) (quot∘deq (x' ∷ xs)) ∙ lemma x x' (rev xs) where lemma : ∀ x x' ys → deqMap (enq x) (deqFlush (ys ++ [ x' ])) ≡ deqFlush ((ys ++ [ x' ]) ++ [ x ]) lemma x x' [] i = just (tilt [] [] x i , x') lemma x x' (y ∷ ys) i = just (tilt [] (ys ++ [ x' ]) x i , y) quotEquivHasQueueEquivStr : RawQueueEquivStr One.Raw Raw quotEquiv quotEquivHasQueueEquivStr = quot∘emp , quot∘enq , quot∘deq -- And we get a path between the raw 1Lists and 2Lists Raw-1≡2 : One.Raw ≡ Raw Raw-1≡2 = sip rawQueueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) -- We derive the axioms for 2List from those for 1List WithLaws : Queue WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) -- In particular, the untruncated queue type is a set isSetQ : isSet Q isSetQ = str WithLaws .snd .fst WithLaws-1≡2 : One.WithLaws ≡ WithLaws WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) Finite : FiniteQueue Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite))
{ "alphanum_fraction": 0.5454721362, "avg_line_length": 30.9461077844, "ext": "agda", "hexsha": "f8472bbdecfd921c57a8785989d5557501696131", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Queue/Untruncated2List.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Queue/Untruncated2List.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Queue/Untruncated2List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2062, "size": 5168 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous.Core where open import Level import Relation.Binary.Core as B import Relation.Binary.Definitions as B import Relation.Binary.PropositionalEquality.Core as P ------------------------------------------------------------------------ -- Indexed binary relations -- Heterogeneous types IREL : ∀ {i₁ i₂ a₁ a₂} {I₁ : Set i₁} {I₂ : Set i₂} → (I₁ → Set a₁) → (I₂ → Set a₂) → (ℓ : Level) → Set _ IREL A₁ A₂ ℓ = ∀ {i₁ i₂} → A₁ i₁ → A₂ i₂ → Set ℓ -- Homogeneous types IRel : ∀ {i a} {I : Set i} → (I → Set a) → (ℓ : Level) → Set _ IRel A ℓ = IREL A A ℓ ------------------------------------------------------------------------ -- Generalised implication. infixr 4 _=[_]⇒_ _=[_]⇒_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : A → Set b} → B.Rel A ℓ₁ → ((x : A) → B x) → IRel B ℓ₂ → Set _ P =[ f ]⇒ Q = ∀ {i j} → P i j → Q (f i) (f j)
{ "alphanum_fraction": 0.4663934426, "avg_line_length": 29.756097561, "ext": "agda", "hexsha": "8487830ede31f7d564a35e40379bb77fff75a83e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 350, "size": 1220 }
-- Andreas, 2017-10-04, ignore irrelevant arguments during with-abstraction -- Feature request by xekoukou {-# OPTIONS --allow-unsolved-metas --show-irrelevant #-} -- {-# OPTIONS -v tc.abstract:100 #-} open import Agda.Builtin.Equality open import Agda.Builtin.Bool not : Bool → Bool not true = false not false = true but : Bool → .(Bool → Bool) → Bool but true f = false but false f = true test : (x : Bool) → but x not ≡ true test x with but x not' where not' : Bool → Bool not' true = false not' false = true test x | true = refl test x | false = _ -- unsolved meta ok
{ "alphanum_fraction": 0.6683673469, "avg_line_length": 22.6153846154, "ext": "agda", "hexsha": "621b42286a55668ff7c7d448633da07b3cc62535", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2775.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2775.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2775.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 182, "size": 588 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.ConstantToSetExtendsToProp {i j} {A : Type i} {B : Type j} (B-is-set : is-set B) (f : A → B) (f-is-const : ∀ a₁ a₂ → f a₁ == f a₂) where private Skel = SetQuot {A = A} (λ _ _ → Unit) abstract Skel-has-all-paths : has-all-paths Skel Skel-has-all-paths = SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set SetQuot-is-set) (λ a₁ → SetQuot-elim {P = λ s₂ → q[ a₁ ] == s₂} (λ _ → =-preserves-set SetQuot-is-set) (λ _ → quot-rel _) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _))) (λ {a₁ a₂} _ → ↓-Π-cst-app-in λ s₂ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) Skel-is-prop : is-prop Skel Skel-is-prop = all-paths-is-prop Skel-has-all-paths Skel-lift : Skel → B Skel-lift = SetQuot-rec B-is-set f (λ {a₁ a₂} _ → f-is-const a₁ a₂) ext : Trunc -1 A → B ext = Skel-lift ∘ Trunc-rec Skel-is-prop q[_] abstract ext-is-const : ∀ a₁ a₂ → ext a₁ == ext a₂ ext-is-const = Trunc-elim (λ a₁ → Π-is-prop λ a₂ → B-is-set _ _) (λ a₁ → Trunc-elim (λ a₂ → B-is-set _ _) (λ a₂ → f-is-const a₁ a₂)) private abstract -- The beta rule. -- This is definitionally true, so you don't need it. β : ext ∘ [_] == f β = idp
{ "alphanum_fraction": 0.5330428468, "avg_line_length": 29.9347826087, "ext": "agda", "hexsha": "42062b5717b9b00ad29d94acaa5934116d12f017", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/ConstantToSetExtendsToProp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/ConstantToSetExtendsToProp.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/ConstantToSetExtendsToProp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 510, "size": 1377 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.AssocList where open import Cubical.HITs.AssocList.Base public open import Cubical.HITs.AssocList.Properties public
{ "alphanum_fraction": 0.7830687831, "avg_line_length": 27, "ext": "agda", "hexsha": "4e5f90ee81f2910c5485e0a2d7514d31ee852b52", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/AssocList.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/AssocList.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/AssocList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 51, "size": 189 }
-- Andreas, 2015-09-18 Andreas, issue reported by Gillaume Brunerie {- Problem WAS The following code doesn’t typecheck but it should. I have no idea what’s going on. Replacing the definition of PathOver-rewr by a question mark and asking for full normalisation of the goal (C-u C-u C-c C-t), I obtain HetEq idp u v == (u == v), so it seems that the term PathOver (λ _ → B) p u v) is rewritten as HetEq idp u v using ap-cst (as expected), but then for some reason HetEq idp u v isn’t reduced to u == v. -} {-# OPTIONS --rewriting #-} -- {-# OPTIONS --show-implicit #-} data _==_ {i} {A : Set i} (a : A) : A → Set where idp : a == a {-# BUILTIN REWRITE _==_ #-} ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} → x == y → f x == f y ap f idp = idp ap-cst : {A B : Set} (b : B) {x y : A} (p : x == y) → ap (λ _ → b) p == idp ap-cst b idp = idp {-# REWRITE ap-cst #-} HetEq : {A B : Set} (e : A == B) (a : A) (b : B) → Set HetEq idp a b = (a == b) PathOver : {A : Set} (B : A → Set) {x y : A} (p : x == y) (u : B x) (v : B y) → Set PathOver B p u v = HetEq (ap B p) u v PathOver-rewr : {A B : Set} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) == (u == v) PathOver-rewr p u v = idp
{ "alphanum_fraction": 0.5530179445, "avg_line_length": 30.65, "ext": "agda", "hexsha": "eafe69c33311e0da9cbe58a5ed2eb2e5f5883b67", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1648.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1648.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1648.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 482, "size": 1226 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} module is-lib.SInfSys {𝓁} where open import is-lib.InfSys.Base {𝓁} public open import is-lib.InfSys.Induction {𝓁} public open import is-lib.InfSys.SCoinduction {𝓁} public open import is-lib.InfSys.FlexSCoinduction {𝓁} public open MetaRule public open FinMetaRule public open IS public
{ "alphanum_fraction": 0.6087912088, "avg_line_length": 35, "ext": "agda", "hexsha": "efc39f5497dcd652dbd43ee8172216913b8c72b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/is-lib/SInfSys.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/is-lib/SInfSys.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/is-lib/SInfSys.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 120, "size": 455 }
module Q where import AlonzoPrelude open AlonzoPrelude -- , using(Bool,False,True,String,showBool) import PreludeNat open PreludeNat import PreludeBool open PreludeBool import PreludeShow open PreludeShow pred : Nat -> Nat pred (zero) = zero pred (suc n) = n mplus : Nat -> Nat -> Nat mplus zero y = y mplus (suc n) y = suc (mplus n y ) Q : Bool -> Set Q true = Nat Q false = Bool f : (b : Bool) -> Q b f true = pred 3 f false = true mid : {A : Set} -> A -> A mid x = x mainS : String mainS = showBool (f (const false true))
{ "alphanum_fraction": 0.6635687732, "avg_line_length": 15.8235294118, "ext": "agda", "hexsha": "0f1e5a7a3997edbf4cd2fbcc0d832af00a052a7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Q.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Q.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Q.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 182, "size": 538 }
module TooManyArgumentsInLHS where F : Set -> Set F X Y = Y
{ "alphanum_fraction": 0.6825396825, "avg_line_length": 9, "ext": "agda", "hexsha": "b4a56663776fd3aa4c56e02786beb42fd303da75", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TooManyArgumentsInLHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/TooManyArgumentsInLHS.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/TooManyArgumentsInLHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 22, "size": 63 }
{-# OPTIONS --postfix-projections #-} module StateSizedIO.cellStateDependent where open import Data.Product open import Data.String.Base {- open import SizedIO.Object open import SizedIO.ConsoleObject -} open import SizedIO.Console hiding (main) open import SizedIO.Base open import NativeIO open import StateSizedIO.Object open import StateSizedIO.IOObject open import Size data CellStateˢ : Set where empty full : CellStateˢ data CellMethodEmpty A : Set where put : A → CellMethodEmpty A data CellMethodFull A : Set where get : CellMethodFull A put : A → CellMethodFull A CellMethodˢ : (A : Set) → CellStateˢ → Set CellMethodˢ A empty = CellMethodEmpty A CellMethodˢ A full = CellMethodFull A putGen : {A : Set} → {i : CellStateˢ} → A → CellMethodˢ A i putGen {i = empty} = put putGen {i = full} = put CellResultFull : ∀{A} → CellMethodFull A → Set CellResultFull {A} get = A CellResultFull (put _) = Unit CellResultEmpty : ∀{A} → CellMethodEmpty A → Set CellResultEmpty (put _) = Unit CellResultˢ : (A : Set) → (s : CellStateˢ) → CellMethodˢ A s → Set CellResultˢ A empty = CellResultEmpty{A} CellResultˢ A full = CellResultFull{A} nˢ : ∀{A} → (s : CellStateˢ) → (c : CellMethodˢ A s) → (CellResultˢ A s c) → CellStateˢ nˢ _ _ _ = full CellInterfaceˢ : (A : Set) → Interfaceˢ Stateˢ (CellInterfaceˢ A) = CellStateˢ Methodˢ (CellInterfaceˢ A) = CellMethodˢ A Resultˢ (CellInterfaceˢ A) = CellResultˢ A nextˢ (CellInterfaceˢ A) = nˢ mutual cellPempty : (i : Size) → IOObjectˢ consoleI (CellInterfaceˢ String) i empty method (cellPempty i) {j} (put str) = do (putStrLn ("put (" ++ str ++ ")")) λ _ → return (unit , cellPfull j str) cellPfull : (i : Size) → (str : String) → IOObjectˢ consoleI (CellInterfaceˢ String) i full method (cellPfull i str) {j} get = do (putStrLn ("get (" ++ str ++ ")")) λ _ → return (str , cellPfull j str) method (cellPfull i str) {j} (put str') = do (putStrLn ("put (" ++ str' ++ ")")) λ _ → return (unit , cellPfull j str') -- UNSIZED Version, without IO mutual cellPempty' : ∀{A} → Objectˢ (CellInterfaceˢ A) empty cellPempty' .objectMethod (put a) = (_ , cellPfull' a) cellPfull' : ∀{A} → A → Objectˢ (CellInterfaceˢ A) full cellPfull' a .objectMethod get = (a , cellPfull' a) cellPfull' a .objectMethod (put a') = (_ , cellPfull' a')
{ "alphanum_fraction": 0.642370845, "avg_line_length": 28.7011494253, "ext": "agda", "hexsha": "656b236a10b7aba686c2db50c4f6aed52cce878d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/StateSizedIO/cellStateDependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/StateSizedIO/cellStateDependent.agda", "max_line_length": 94, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/StateSizedIO/cellStateDependent.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 814, "size": 2497 }
{-# OPTIONS --allow-unsolved-metas #-} module AgdaFeatureNeedHiddenVariableTypeConstructorWrapper where Unwrapped : {A : Set} → (A → Set) → Set₁ Unwrapped B = ∀ {x} → B x → Set record Unindexed : Set₁ where field {A} : Set {B} : A → Set unwrap : Unwrapped B record Indexed {A : Set} (B : A → Set) : Set₁ where field unwrap : Unwrapped B record Generic (A : Set₁) : Set₁ where field unwrap : A record Foo (F : Set₁) : Set₁ where field foo : F → Set open Foo {{...}} postulate A : Set B : A → Set unwrapped : Unwrapped B indexed : Indexed B unindexed : Unindexed generic : Generic (Unwrapped B) postulate instance FooUnwrapped : Foo (Unwrapped B) instance FooIndexed : Foo (Indexed B) instance FooUnindexed : Foo Unindexed instance FooGeneric : Foo (Generic (Unwrapped B)) test-unwrapped-lambda-unhide-works : Set test-unwrapped-lambda-unhide-works = foo (λ {_} → unwrapped) test-unwrapped-help-instance-works : Set test-unwrapped-help-instance-works = foo {F = ∀ {_} → _} unwrapped test-unindexed-works : Set test-unindexed-works = foo unindexed test-indexed-works : Set test-indexed-works = foo indexed test-generic-works : Set test-generic-works = foo generic test-unwrapped-fails : Set test-unwrapped-fails = {!foo unwrapped!} {- No instance of type Foo (B _x_48 → Set) was found in scope. when checking that unwrapped is a valid argument to a function of type {F : Set₁} {{r : Foo F}} → F → Set -} -- tests for unwrapping unwrap-test-generic : Unwrapped B unwrap-test-generic = let instance _ = generic in let open Generic ⦃ … ⦄ in unwrap {A = Unwrapped _} unwrap-test-index : Unwrapped B unwrap-test-index = let instance _ = indexed in let open Indexed ⦃ … ⦄ in unwrap
{ "alphanum_fraction": 0.6916905444, "avg_line_length": 23.5810810811, "ext": "agda", "hexsha": "639bdff407bac5db4eb94eb8db7a147d80d4ee21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/AgdaFeatureNeedHiddenVariableTypeConstructorWrapper.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/AgdaFeatureNeedHiddenVariableTypeConstructorWrapper.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/AgdaFeatureNeedHiddenVariableTypeConstructorWrapper.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 521, "size": 1745 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous where open import Function open import Level using (suc; _⊔_) open import Relation.Binary using (_⇒_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) ------------------------------------------------------------------------ -- Publically export core definitions open import Relation.Binary.Indexed.Heterogeneous.Core public ------------------------------------------------------------------------ -- Equivalences record IsIndexedEquivalence {i a ℓ} {I : Set i} (A : I → Set a) (_≈_ : IRel A ℓ) : Set (i ⊔ a ⊔ ℓ) where field refl : Reflexive A _≈_ sym : Symmetric A _≈_ trans : Transitive A _≈_ reflexive : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈_ {i} reflexive P.refl = refl record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where infix 4 _≈_ field Carrier : I → Set c _≈_ : IRel Carrier ℓ isEquivalence : IsIndexedEquivalence Carrier _≈_ open IsIndexedEquivalence isEquivalence public ------------------------------------------------------------------------ -- Preorders record IsIndexedPreorder {i a ℓ₁ ℓ₂} {I : Set i} (A : I → Set a) (_≈_ : IRel A ℓ₁) (_∼_ : IRel A ℓ₂) : Set (i ⊔ a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsIndexedEquivalence A _≈_ reflexive : ∀ {i j} → (_≈_ {i} {j}) ⟨ _⇒_ ⟩ _∼_ trans : Transitive A _∼_ module Eq = IsIndexedEquivalence isEquivalence refl : Reflexive A _∼_ refl = reflexive Eq.refl record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ : Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : I → Set c _≈_ : IRel Carrier ℓ₁ -- The underlying equality. _∼_ : IRel Carrier ℓ₂ -- The relation. isPreorder : IsIndexedPreorder Carrier _≈_ _∼_ open IsIndexedPreorder isPreorder public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.17 REL = IREL {-# WARNING_ON_USAGE REL "Warning: REL was deprecated in v0.17. Please use IREL instead." #-} Rel = IRel {-# WARNING_ON_USAGE Rel "Warning: Rel was deprecated in v0.17. Please use IRel instead." #-} Setoid = IndexedSetoid {-# WARNING_ON_USAGE Setoid "Warning: Setoid was deprecated in v0.17. Please use IndexedSetoid instead." #-} IsEquivalence = IsIndexedEquivalence {-# WARNING_ON_USAGE IsEquivalence "Warning: IsEquivalence was deprecated in v0.17. Please use IsIndexedEquivalence instead." #-}
{ "alphanum_fraction": 0.5341216216, "avg_line_length": 30.2040816327, "ext": "agda", "hexsha": "ffadc8c9549413ac17b043482f2c01f7c9da0279", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 808, "size": 2960 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From the technical manual of TPTP -- (http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml) -- ... variables start with upper case letters, ... predicates and -- functors either start with lower case and contain alphanumerics and -- underscore ... module Issue1.Functions where postulate D : Set NAME : D → Set nAME : D → Set postulate foo : ∀ a → NAME a {-# ATP axiom foo #-} -- This conjecture should not be proved. postulate bar : ∀ a → nAME a {-# ATP prove bar #-}
{ "alphanum_fraction": 0.619266055, "avg_line_length": 25.1538461538, "ext": "agda", "hexsha": "c0e6a7f2289f0b165a5267f565353fad73d9778b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/non-theorems/Issue1/Functions.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/non-theorems/Issue1/Functions.agda", "max_line_length": 70, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/non-theorems/Issue1/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 166, "size": 654 }
open import Agda.Builtin.Maybe open import Agda.Builtin.Char open import Agda.Builtin.String open import Agda.Builtin.Sigma open import Agda.Builtin.Equality _ : primStringUncons "abcd" ≡ just ('a', "bcd") _ = refl
{ "alphanum_fraction": 0.7731481481, "avg_line_length": 24, "ext": "agda", "hexsha": "01cff839bf1ebdff7de84b775285c47814769983", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/uncons.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/uncons.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/uncons.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 216 }
{-# OPTIONS --rewriting --confluence-check #-} module Issue4333.N1 where open import Issue4333.M {-# REWRITE p₁ #-} b₁' : B a₁' b₁' = b
{ "alphanum_fraction": 0.652173913, "avg_line_length": 15.3333333333, "ext": "agda", "hexsha": "d64138ed45e155c2b4d5697da6fc10bab5121a0c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4333/N1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4333/N1.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4333/N1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 138 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.UnivariateList.Poly1-1Poly where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec renaming ( [] to <> ; _∷_ to _::_) open import Cubical.Data.Vec.OperationsNat open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.UnivariateList.Base renaming (Poly to Poly:) open import Cubical.Algebra.Polynomials.UnivariateList.Properties open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyList open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly private variable ℓ : Level module Equiv-Poly1-Poly: (Acr@(A , Astr) : CommRing ℓ) where private PA = PolyCommRing Acr 1 PAstr = snd PA PA: = UnivariatePolyList Acr PA:str = snd PA: open PolyMod Acr using (ElimProp) open PolyModTheory Acr using ( prod-Xn ; prod-Xn-sum ; prod-Xn-∷ ; prod-Xn-prod) renaming (prod-Xn-0P to prod-Xn-0P:) open CommRingStr open RingTheory -- Notation P, Q, R... for Poly 1 -- x, y, w... for Poly: -- a,b,c... for A ----------------------------------------------------------------------------- -- direct trad-base : (v : Vec ℕ 1) → A → Poly: Acr trad-base (n :: <>) a = prod-Xn n (a ∷ []) trad-base-neutral : (v : Vec ℕ 1) → trad-base v (0r Astr) ≡ [] trad-base-neutral (n :: <>) = cong (prod-Xn n) drop0 ∙ prod-Xn-0P: n trad-base-add : (v : Vec ℕ 1) → (a b : A) → _+_ PA:str (trad-base v a) (trad-base v b) ≡ trad-base v (_+_ Astr a b) trad-base-add (n :: <>) a b = prod-Xn-sum n (a ∷ []) (b ∷ []) Poly1→Poly: : Poly Acr 1 → Poly: Acr Poly1→Poly: = DS-Rec-Set.f _ _ _ _ (is-set PA:str) [] trad-base (_+_ PA:str) (+Assoc PA:str) (+IdR PA:str) (+Comm PA:str) trad-base-neutral trad-base-add Poly1→Poly:-pres+ : (P Q : Poly Acr 1) → Poly1→Poly: (_+_ PAstr P Q) ≡ _+_ PA:str (Poly1→Poly: P) (Poly1→Poly: Q) Poly1→Poly:-pres+ P Q = refl ----------------------------------------------------------------------------- -- converse Poly:→Poly1-int : (n : ℕ) → Poly: Acr → Poly Acr 1 Poly:→Poly1-int n [] = 0r PAstr Poly:→Poly1-int n (a ∷ x) = _+_ PAstr (base (n :: <>) a) (Poly:→Poly1-int (suc n) x) Poly:→Poly1-int n (drop0 i) = ((cong (λ X → _+_ PAstr X (0r PAstr)) (base-neutral (n :: <>))) ∙ (+IdR PAstr _)) i Poly:→Poly1 : Poly: Acr → Poly Acr 1 Poly:→Poly1 x = Poly:→Poly1-int 0 x Poly:→Poly1-int-pres+ : (x y : Poly: Acr) → (n : ℕ) → Poly:→Poly1-int n (_+_ PA:str x y) ≡ _+_ PAstr (Poly:→Poly1-int n x) (Poly:→Poly1-int n y) Poly:→Poly1-int-pres+ = ElimProp _ (λ y n → cong (Poly:→Poly1-int n) (+IdL PA:str y) ∙ sym (+IdL PAstr _)) (λ a x ind-x → ElimProp _ (λ n → sym (+IdR PAstr (Poly:→Poly1-int n (a ∷ x)))) (λ b y ind-y n → sym (+ShufflePairs (CommRing→Ring PA) _ _ _ _ ∙ cong₂ (_+_ PAstr) (base-add _ _ _) (sym (ind-x y (suc n))))) (isPropΠ (λ _ → is-set PAstr _ _))) (isPropΠ2 (λ _ _ → is-set PAstr _ _)) Poly:→Poly1-pres+ : (x y : Poly: Acr) → Poly:→Poly1 (_+_ PA:str x y) ≡ _+_ PAstr (Poly:→Poly1 x) (Poly:→Poly1 y) Poly:→Poly1-pres+ x y = Poly:→Poly1-int-pres+ x y 0 ----------------------------------------------------------------------------- -- section e-sect-int : (x : Poly: Acr) → (n : ℕ) → Poly1→Poly: (Poly:→Poly1-int n x) ≡ prod-Xn n x e-sect-int = ElimProp _ (λ n → sym (prod-Xn-0P: n)) (λ a x ind-x n → cong (λ X → _+_ PA:str (prod-Xn n (a ∷ [])) X) (ind-x (suc n)) ∙ prod-Xn-∷ n a x) (isPropΠ (λ _ → is-set PA:str _ _)) e-sect : (x : Poly: Acr) → Poly1→Poly: (Poly:→Poly1 x) ≡ x e-sect x = e-sect-int x 0 ----------------------------------------------------------------------------- -- retraction idde : (m n : ℕ) → (a : A) → Poly:→Poly1-int n (prod-Xn m (a ∷ [])) ≡ base ((n +n m) :: <>) a idde zero n a = +IdR PAstr (base (n :: <>) a) ∙ cong (λ X → base (X :: <>) a) (sym (+-zero n)) idde (suc m) n a = cong (λ X → _+_ PAstr X (Poly:→Poly1-int (suc n) (prod-Xn m (a ∷ [])))) (base-neutral (n :: <>)) ∙ +IdL PAstr (Poly:→Poly1-int (suc n) (prod-Xn m (a ∷ []))) ∙ idde m (suc n) a ∙ cong (λ X → base (X :: <>) a) (sym (+-suc n m)) idde-v : (v : Vec ℕ 1) → (a : A) → Poly:→Poly1-int 0 (trad-base v a) ≡ base v a idde-v (n :: <>) a = (idde n 0 a) e-retr : (P : Poly Acr 1) → Poly:→Poly1 (Poly1→Poly: P) ≡ P e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _) refl (λ v a → idde-v v a) λ {P Q} ind-P ind-Q → cong Poly:→Poly1 (Poly1→Poly:-pres+ P Q) ∙ Poly:→Poly1-pres+ (Poly1→Poly: P) (Poly1→Poly: Q) ∙ cong₂ (_+_ PAstr) ind-P ind-Q ----------------------------------------------------------------------------- -- Ring morphism Poly1→Poly:-pres1 : Poly1→Poly: (1r PAstr) ≡ 1r PA:str Poly1→Poly:-pres1 = refl trad-base-prod : (v v' : Vec ℕ 1) → (a a' : A) → trad-base (v +n-vec v') (Astr ._·_ a a') ≡ _·_ PA:str (trad-base v a) (trad-base v' a') trad-base-prod (k :: <>) (l :: <>) a a' = sym ((prod-Xn-prod k l [ a ] [ a' ]) ∙ cong (λ X → prod-Xn (k +n l) [ X ]) (+IdR Astr _)) Poly1→Poly:-pres· : (P Q : Poly Acr 1) → Poly1→Poly: (_·_ PAstr P Q) ≡ _·_ PA:str (Poly1→Poly: P) (Poly1→Poly: Q) Poly1→Poly:-pres· = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ λ _ → is-set PA:str _ _) (λ Q → refl) (λ v a → DS-Ind-Prop.f _ _ _ _ (λ _ → is-set PA:str _ _) (sym (0RightAnnihilates (CommRing→Ring PA:) _)) (λ v' a' → trad-base-prod v v' a a') λ {U V} ind-U ind-V → (cong₂ (_+_ PA:str) ind-U ind-V) ∙ sym (·DistR+ PA:str _ _ _)) λ {U V} ind-U ind-V Q → (cong₂ (_+_ PA:str) (ind-U Q) (ind-V Q)) ∙ sym (·DistL+ PA:str _ _ _) ----------------------------------------------------------------------------- -- Ring Equivalences module _ (Acr : CommRing ℓ) where open Equiv-Poly1-Poly: Acr CRE-Poly1-Poly: : CommRingEquiv (PolyCommRing Acr 1) (UnivariatePolyList Acr) fst CRE-Poly1-Poly: = isoToEquiv is where is : Iso _ _ Iso.fun is = Poly1→Poly: Iso.inv is = Poly:→Poly1 Iso.rightInv is = e-sect Iso.leftInv is = e-retr snd CRE-Poly1-Poly: = makeIsRingHom Poly1→Poly:-pres1 Poly1→Poly:-pres+ Poly1→Poly:-pres·
{ "alphanum_fraction": 0.4750609921, "avg_line_length": 40.7624309392, "ext": "agda", "hexsha": "8ee0ab46845ca02da5af0611e5d22668b6dbc724", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/UnivariateList/Poly1-1Poly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/UnivariateList/Poly1-1Poly.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/UnivariateList/Poly1-1Poly.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2409, "size": 7378 }
------------------------------------------------------------------------------ -- Testing the translation of universal quantified propositional functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PropositionalFunction where postulate D : Set postulate id₁ : {A : D → Set}{x : D} → A x → A x {-# ATP prove id₁ #-} postulate id₂ : {A : D → D → Set}{x y : D} → A x y → A x y {-# ATP prove id₂ #-}
{ "alphanum_fraction": 0.4243902439, "avg_line_length": 32.3684210526, "ext": "agda", "hexsha": "5b477b6ef668a45c884624ffc2a6454188308c83", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/non-fol-theorems/PropositionalFunction.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/non-fol-theorems/PropositionalFunction.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/non-fol-theorems/PropositionalFunction.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 123, "size": 615 }
-------------------------------------------------------------------------------- -- This file generates the environment that the interpreter starts with. In -- particular, it contains the grammar that is loaded initially. -------------------------------------------------------------------------------- module Bootstrap.InitEnv where open import Class.Map open import Data.Char.Ranges open import Data.List using (dropWhile; takeWhile) open import Data.SimpleMap open import Data.String using (fromList; toList) open import Prelude open import Prelude.Strings open import Parse.Escape open import Bootstrap.SimpleInductive private nameSymbols : List Char nameSymbols = "$='-/!@&^" nameInits : List Char nameInits = letters ++ "_" nameTails : List Char nameTails = nameInits ++ nameSymbols ++ digits parseConstrToNonTerminals : String → List String parseConstrToNonTerminals = (map fromList) ∘ parseConstrToNonTerminals' ∘ toList where parseConstrToNonTerminals' : List Char → List (List Char) parseConstrToNonTerminals' = takeEven ∘ (map concat) ∘ (splitMulti "_") ∘ groupEscaped -- don't split on escaped underscores! -- this also ignores ignored non-terminals automatically grammar : List (List Char) grammar = "space'$" ∷ "space'$=newline=_space'_" ∷ "space'$=space=_space'_" ∷ "space$=newline=_space'_" ∷ "space$=space=_space'_" ∷ "index'$" ∷ map (λ c → "index'$" ++ [ c ] ++ "_index'_") digits ++ map (λ c → "index$" ++ [ c ] ++ "_index'_") digits ++ "var$_string_" ∷ "var$_index_" ∷ "sort$=ast=" ∷ "sort$=sq=" ∷ "const$Char" ∷ "term$_var_" ∷ "term$_sort_" ∷ "term$=Kappa=_const_" ∷ "term$=pi=^space^_term_" ∷ "term$=psi=^space^_term_" ∷ "term$=beta=^space^_term_^space^_term_" ∷ "term$=delta=^space^_term_^space^_term_" ∷ "term$=sigma=^space^_term_" ∷ "term$=lsquare=^space'^_term_^space^_term_^space'^=rsquare=" ∷ "term$=langle=^space'^_term_^space^_term_^space'^=rangle=" ∷ "term$=rho=^space^_term_^space^_string_^space'^=dot=^space'^_term_^space^_term_" ∷ "term$=forall=^space^_string_^space'^=colon=^space'^_term_^space^_term_" ∷ "term$=Pi=^space^_string_^space'^=colon=^space'^_term_^space^_term_" ∷ "term$=iota=^space^_string_^space'^=colon=^space'^_term_^space^_term_" ∷ "term$=lambda=^space^_string_^space'^=colon=^space'^_term_^space^_term_" ∷ "term$=Lambda=^space^_string_^space'^=colon=^space'^_term_^space^_term_" ∷ "term$=lbrace=^space'^_term_^space'^=comma=^space'^_term_^space^_string_^space'^=dot=^space'^_term_^space'^=rbrace=" ∷ "term$=phi=^space^_term_^space^_term_^space^_term_" ∷ "term$=equal=^space^_term_^space^_term_" ∷ "term$=omega=^space^_term_" ∷ -- this is M "term$=mu=^space^_term_^space^_term_" ∷ "term$=epsilon=^space^_term_" ∷ "term$=zeta=EvalStmt^space^_term_" ∷ "term$=zeta=ShellCmd^space^_term_^space^_term_" ∷ "term$=zeta=CheckTerm^space^_term_^space^_term_" ∷ "term$=zeta=Parse^space^_term_^space^_term_^space^_term_" ∷ "term$=zeta=Normalize^space^_term_" ∷ "term$=zeta=HeadNormalize^space^_term_" ∷ "term$=zeta=InferType^space^_term_" ∷ "term$=zeta=CatchErr^space^_term_^space^_term_" ∷ -- this is not actually in PrimMeta "term$=kappa=_char_" ∷ -- this constructs a Char "term$=gamma=^space^_term_^space^_term_" ∷ -- charEq "lettail$=dot=" ∷ "lettail$=colon=^space'^_term_^space'^=dot=" ∷ "stmt'$let^space^_string_^space'^=colon==equal=^space'^_term_^space'^_lettail_" ∷ "stmt'$ass^space^_string_^space'^=colon=^space'^_term_^space'^=dot=" ∷ "stmt'$seteval^space^_term_^space^_string_^space^_string_^space'^=dot=" ∷ "stmt'$import^space^_string_^space'^=dot=" ∷ "stmt'$" ∷ "stmt$^space'^_stmt'_" ∷ [] sortGrammar : List (List Char) → SimpleMap (List Char) (List (List Char)) sortGrammar G = mapSnd (map (dropHeadIfAny ∘ dropWhile (¬? ∘ _≟ '$'))) $ mapFromList (takeWhile (¬? ∘ _≟ '$')) G toInductiveData : String → String → List String → InductiveData toInductiveData namespace name constrs = (namespace + "$" + name , map (λ c → (namespace + "$" + name + "$" + c , map (toConstrData' name) (parseConstrToNonTerminals c))) constrs) where toConstrData' : String → String → ConstrData' toConstrData' self l = if self ≣ l then Self else Other (namespace + "$" + l) stringData : InductiveData stringData = ("init$string" , ("init$string$cons" , (Other "ΚChar" ∷ Self ∷ [])) ∷ ("init$string$nil" , []) ∷ []) -- capital kappa stringListData : InductiveData stringListData = ("init$stringList" , ("init$stringList$nil" , []) ∷ ("init$stringList$cons" , (Other "init$string" ∷ Self ∷ [])) ∷ []) termListData : InductiveData termListData = ("init$termList" , ("init$termList$nil" , []) ∷ ("init$termList$cons" , (Other "init$term" ∷ Self ∷ [])) ∷ []) metaResultData : InductiveData metaResultData = ("init$metaResult" , ("init$metaResult$pair" , (Other "init$stringList" ∷ Other "init$termList" ∷ [])) ∷ []) charDataConstructor : Char → String → String charDataConstructor c prefix = "let " + prefix + fromList (escapeChar c) + " := κ" + show c + "." nameInitConstrs : List String nameInitConstrs = map (flip charDataConstructor "init$nameInitChar$") nameInits nameTailConstrs : List String nameTailConstrs = map (flip charDataConstructor "init$nameTailChar$") nameTails initEnvConstrs : List InductiveData initEnvConstrs = stringData ∷ (map (λ { (name , rule) → toInductiveData "init" (fromList name) (map fromList rule) }) $ sortGrammar grammar) otherInit : List String otherInit = map simpleInductive (stringListData ∷ termListData ∷ metaResultData ∷ []) ++ "let init$string$_nameInitChar__string'_ := init$string$cons." ∷ "let init$string'$_nameTailChar__string'_ := init$string$cons." ∷ "let init$string'$ := init$string$nil." ∷ "let init$product := λ A : * λ B : * ∀ X : * Π _ : Π _ : A Π _ : B X X." ∷ "let init$pair := λ A : * λ B : * λ a : A λ b : B Λ X : * λ p : Π _ : A Π _ : B X [[p a] b]." ∷ "let eval := λ s : init$stmt ζEvalStmt s." ∷ "seteval eval init stmt." ∷ [] grammarWithChars : List (List Char) grammarWithChars = grammar ++ map ("nameTailChar$" ++_) (map escapeChar nameTails) ++ map ("nameInitChar$" ++_) (map escapeChar nameInits) ++ "char$!!" ∷ "string'$_nameTailChar__string'_" ∷ "string'$" ∷ "string$_nameInitChar__string'_" ∷ "var$_string_" ∷ "var$_index_" ∷ [] -------------------------------------------------------------------------------- initEnv : String initEnv = "let init$char := ΚChar." + Data.String.concat (map simpleInductive initEnvConstrs ++ nameInitConstrs ++ nameTailConstrs ++ otherInit) -- a map from non-terminals to their possible expansions parseRuleMap : SimpleMap (List Char) (List (List Char)) parseRuleMap = from-just $ sequence $ map (λ { (fst , snd) → do snd' ← sequence (map (λ x → translate $ fst ++ "$" ++ x) snd) return (fst , reverse snd') }) $ sortGrammar grammarWithChars coreGrammarGenerator : List (List Char) coreGrammarGenerator = from-just $ sequence $ map translate grammarWithChars
{ "alphanum_fraction": 0.6322900869, "avg_line_length": 41.4457142857, "ext": "agda", "hexsha": "400d05218a766147298ff27d3d4c57490c47b599", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "src/Bootstrap/InitEnv.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "src/Bootstrap/InitEnv.agda", "max_line_length": 122, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "src/Bootstrap/InitEnv.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 2426, "size": 7253 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import homotopy.SphereEndomorphism open import homotopy.PinSn open import groups.CoefficientExtensionality module cw.DegreeBySquashing {i} where module DegreeAboveOne {n : ℕ} (skel : Skeleton {i} (S (S n))) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (upper : cells-last skel) (lower : cells-last (cw-init skel)) where private lower-skel = cw-init skel lower-dec = init-has-cells-with-dec-eq skel dec lower-cells = cells-last lower-skel lower-cells-has-dec-eq = cells-last-has-dec-eq lower-skel lower-dec -- squash the lower CW complex except one of its cells [lower] cw-squash-lower-to-Sphere : ⟦ lower-skel ⟧ → Sphere (S n) cw-squash-lower-to-Sphere = Attached-rec (λ _ → north) squash-hubs squash-spokes where -- squash cells except [lower] squash-hubs : lower-cells → Sphere (S n) squash-hubs c with lower-cells-has-dec-eq c lower ... | (inl _) = south ... | (inr _) = north -- squash cells except [lower] squash-spokes : (c : lower-cells) → Sphere n → north == squash-hubs c squash-spokes c s with lower-cells-has-dec-eq c lower ... | (inl _) = merid s ... | (inr _) = idp degree-map : Sphere (S n) → Sphere (S n) degree-map = cw-squash-lower-to-Sphere ∘ attaching-last skel upper degree-map' : ℤ-group →ᴳ ℤ-group degree-map' = –>ᴳ (πS-SphereS-iso-ℤ n) ∘ᴳ Trunc-rec →ᴳ-level (πS-fmap n) (⊙SphereS-endo-in n [ degree-map ]) ∘ᴳ <–ᴳ (πS-SphereS-iso-ℤ n) degree' : ℤ → ℤ degree' = GroupHom.f degree-map' degree : ℤ degree = degree' 1 module DegreeAtOne (skel : Skeleton {i} 1) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (line : cells-last skel) (point : cells-last (cw-init skel)) where private points-dec-eq = cells-nth-has-dec-eq (inr ltS) skel dec endpoint = attaching-last skel -- Maybe [true] can or should be mapped to [-1]. Not sure. degree : ℤ degree with points-dec-eq (endpoint line true) point degree | inl _ = 1 degree | inr _ with points-dec-eq (endpoint line false) point degree | inr _ | inl _ = -1 degree | inr _ | inr _ = 0 degree-last : ∀ {n} (skel : Skeleton {i} (S n)) → has-cells-with-dec-eq skel → cells-last skel → cells-last (cw-init skel) → ℤ degree-last {n = O} = DegreeAtOne.degree degree-last {n = S _} = DegreeAboveOne.degree degree-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → cells-nth Sm≤n skel → cells-last (cw-init (cw-take Sm≤n skel)) → ℤ degree-nth Sm≤n skel dec = degree-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → Type i has-degrees-with-finite-support {n = O} _ _ = Lift ⊤ has-degrees-with-finite-support {n = S n} skel dec = has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) × ∀ upper → has-finite-support (cells-nth-has-dec-eq (inr ltS) skel dec) (degree-last skel dec upper) init-has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) init-has-degrees-with-finite-support skel dec fin-sup = fst fin-sup take-has-degrees-with-finite-support : ∀ {m n} (m≤n : m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-take m≤n skel) (take-has-cells-with-dec-eq m≤n skel dec) take-has-degrees-with-finite-support (inl idp) skel dec fin-sup = fin-sup take-has-degrees-with-finite-support (inr ltS) skel dec fin-sup = init-has-degrees-with-finite-support skel dec fin-sup take-has-degrees-with-finite-support (inr (ltSR lt)) skel dec fin-sup = take-has-degrees-with-finite-support (inr lt) (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) degree-last-has-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init skel) (init-has-cells-with-dec-eq skel dec)) (degree-last skel dec upper) degree-last-has-finite-support skel dec fin-sup = snd fin-sup degree-nth-has-finite-support : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init (cw-take Sm≤n skel)) (init-has-cells-with-dec-eq (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec))) (degree-nth Sm≤n skel dec upper) degree-nth-has-finite-support Sm≤n skel dec fin-sup = degree-last-has-finite-support (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup) -- the following are named [boundary'] because it is not extended to the free groups boundary'-last : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → cells-last skel → FreeAbGroup.El (cells-last (cw-init skel)) boundary'-last skel dec fin-sup upper = fst ((snd fin-sup) upper) boundary'-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → cells-nth Sm≤n skel → FreeAbGroup.El (cells-last (cw-init (cw-take Sm≤n skel))) boundary'-nth Sm≤n skel dec fin-sup = boundary'-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup)
{ "alphanum_fraction": 0.6435045317, "avg_line_length": 42.8633093525, "ext": "agda", "hexsha": "6fe55737d4b483f9505e349472dd5e29c0e4fc86", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/DegreeBySquashing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/DegreeBySquashing.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/DegreeBySquashing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2001, "size": 5958 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Instance.Rels where -- The category of relations is cartesian and (by self-duality) co-cartesian. -- Perhaps slightly counter-intuitively if you're used to categories which act -- like Sets, the product acts on objects as the disjoint union. open import Data.Empty.Polymorphic using (⊥; ⊥-elim) import Data.Product as × open × using (_,_) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Function using (case_of_; flip) open import Level using (Lift; lift) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Categories.Category.Cartesian using (Cartesian; module CartesianMonoidal) open import Categories.Category.Core using (Category) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Instance.Rels using (Rels) module _ {o ℓ} where Rels-Cartesian : Cartesian (Rels o ℓ) Rels-Cartesian = record { terminal = record { ⊤ = ⊥ ; ⊤-is-terminal = record { ! = λ { _ (lift ()) } ; !-unique = λ _ → (λ { {_} {lift ()} }) , (λ { {_} {lift ()} }) } } ; products = record { product = λ {A} {B} → record { A×B = A ⊎ B ; π₁ = [ (λ x y → Lift ℓ (x ≡ y) ) , (λ _ _ → ⊥) ]′ ; π₂ = [ (λ _ _ → ⊥) , (λ x y → Lift ℓ (x ≡ y)) ]′ ; ⟨_,_⟩ = λ L R c → [ L c , R c ]′ ; project₁ = (λ { (inj₁ x , r , lift refl) → r}) , λ r → inj₁ _ , r , lift refl ; project₂ = (λ { (inj₂ _ , r , lift refl) → r }) , (λ r → inj₂ _ , r , lift refl) ; unique = λ { (p , q) (p′ , q′) → (λ { {_} {inj₁ a} r → case (q {_} {a} r) of λ { (inj₁ .a , s , lift refl) → s} ; {_} {inj₂ b} r → case (q′ {_} {b} r) of λ { (inj₂ .b , s , lift refl) → s} }) , λ { {_} {inj₁ a} hxa → p (inj₁ a , hxa , lift refl) ; {_} {inj₂ b} hxb → p′ (inj₂ b , hxb , lift refl) } } } } } module Rels-CartesianMonoidal = CartesianMonoidal _ Rels-Cartesian open Rels-CartesianMonoidal renaming (monoidal to Rels-Monoidal) public -- because Rels is dual to itself, the proof that it is cocartesian resembles the proof that it's cartesian -- Rels is not self-dual 'on the nose', so we can't use duality proper. Rels-Cocartesian : Cocartesian (Rels o ℓ) Rels-Cocartesian = record { initial = record { ⊥ = ⊥ ; ⊥-is-initial = record { ! = λ () ; !-unique = λ _ → (λ { {()} }) , (λ { {()} }) } } ; coproducts = record { coproduct = λ {A} {B} → record { A+B = A ⊎ B ; i₁ = λ a → [ (λ a′ → Lift ℓ (a ≡ a′)) , (λ _ → ⊥) ]′ ; i₂ = λ b → [ (λ _ → ⊥) , (λ b′ → Lift ℓ (b ≡ b′)) ]′ ; [_,_] = λ L R a+b c → [ flip L c , flip R c ]′ a+b ; inject₁ = (λ { (inj₁ x , lift refl , fxy) → fxy}) , λ r → inj₁ _ , lift refl , r ; inject₂ = (λ { (inj₂ _ , lift refl , r) → r }) , (λ r → inj₂ _ , lift refl , r) ; unique = λ { (p , q) (p′ , q′) → (λ { {inj₁ a} r → case (q {a} r) of λ { (inj₁ .a , lift refl , s) → s} ; {inj₂ b} r → case (q′ {b} r) of λ { (inj₂ .b , lift refl , s) → s} }) , λ { {inj₁ a} hxa → p (inj₁ a , lift refl , hxa) ; {inj₂ b} hxb → p′ (inj₂ b , lift refl , hxb) } } } } }
{ "alphanum_fraction": 0.4885690093, "avg_line_length": 43.2073170732, "ext": "agda", "hexsha": "72bf57ee45be2920e4680d9dceaccd107133eeae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/Rels.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/Rels.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TOTBWF/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/Rels.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:47.000Z", "num_tokens": 1197, "size": 3543 }
module Common.MAlonzo where open import Common.Prelude open import Common.Coinduction postulate putStrLn : ∞ String → IO Unit {-# COMPILED putStrLn putStrLn #-} main = putStrLn (♯ "This is a dummy main routine.") mainPrint : String → _ mainPrint s = putStrLn (♯ s) postulate natToString : Nat → String {-# COMPILED natToString show #-} mainPrintNat : Nat → _ mainPrintNat n = putStrLn (♯ (natToString n))
{ "alphanum_fraction": 0.7129186603, "avg_line_length": 17.4166666667, "ext": "agda", "hexsha": "6b7e6a1d2a5852ce3e3cf95544dbd0e3396591fd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/Common/MAlonzo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/Common/MAlonzo.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/Common/MAlonzo.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 112, "size": 418 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Relations between properties of functions, such as associativity and -- commutativity ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; Substitutive; Symmetric; Total) module Algebra.FunctionProperties.Consequences {a ℓ} (S : Setoid a ℓ) where open Setoid S renaming (Carrier to A) open import Algebra.FunctionProperties _≈_ open import Data.Sum using (inj₁; inj₂) open import Data.Product using (_,_) import Relation.Binary.Consequences as Bin open import Relation.Binary.Reasoning.Setoid S open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Re-export core properties open import Algebra.FunctionProperties.Consequences.Core public ------------------------------------------------------------------------ -- Magma-like structures module _ {_•_ : Op₂ A} (comm : Commutative _•_) where comm+cancelˡ⇒cancelʳ : LeftCancellative _•_ → RightCancellative _•_ comm+cancelˡ⇒cancelʳ cancelˡ {x} y z eq = cancelˡ x (begin x • y ≈⟨ comm x y ⟩ y • x ≈⟨ eq ⟩ z • x ≈⟨ comm z x ⟩ x • z ∎) comm+cancelʳ⇒cancelˡ : RightCancellative _•_ → LeftCancellative _•_ comm+cancelʳ⇒cancelˡ cancelʳ x {y} {z} eq = cancelʳ y z (begin y • x ≈⟨ comm y x ⟩ x • y ≈⟨ eq ⟩ x • z ≈⟨ comm x z ⟩ z • x ∎) ------------------------------------------------------------------------ -- Monoid-like structures module _ {_•_ : Op₂ A} (comm : Commutative _•_) {e : A} where comm+idˡ⇒idʳ : LeftIdentity e _•_ → RightIdentity e _•_ comm+idˡ⇒idʳ idˡ x = begin x • e ≈⟨ comm x e ⟩ e • x ≈⟨ idˡ x ⟩ x ∎ comm+idʳ⇒idˡ : RightIdentity e _•_ → LeftIdentity e _•_ comm+idʳ⇒idˡ idʳ x = begin e • x ≈⟨ comm e x ⟩ x • e ≈⟨ idʳ x ⟩ x ∎ comm+zeˡ⇒zeʳ : LeftZero e _•_ → RightZero e _•_ comm+zeˡ⇒zeʳ zeˡ x = begin x • e ≈⟨ comm x e ⟩ e • x ≈⟨ zeˡ x ⟩ e ∎ comm+zeʳ⇒zeˡ : RightZero e _•_ → LeftZero e _•_ comm+zeʳ⇒zeˡ zeʳ x = begin e • x ≈⟨ comm e x ⟩ x • e ≈⟨ zeʳ x ⟩ e ∎ ------------------------------------------------------------------------ -- Group-like structures module _ {_•_ : Op₂ A} {_⁻¹ : Op₁ A} {e} (comm : Commutative _•_) where comm+invˡ⇒invʳ : LeftInverse e _⁻¹ _•_ → RightInverse e _⁻¹ _•_ comm+invˡ⇒invʳ invˡ x = begin x • (x ⁻¹) ≈⟨ comm x (x ⁻¹) ⟩ (x ⁻¹) • x ≈⟨ invˡ x ⟩ e ∎ comm+invʳ⇒invˡ : RightInverse e _⁻¹ _•_ → LeftInverse e _⁻¹ _•_ comm+invʳ⇒invˡ invʳ x = begin (x ⁻¹) • x ≈⟨ comm (x ⁻¹) x ⟩ x • (x ⁻¹) ≈⟨ invʳ x ⟩ e ∎ module _ {_•_ : Op₂ A} {_⁻¹ : Op₁ A} {e} (cong : Congruent₂ _•_) where assoc+id+invʳ⇒invˡ-unique : Associative _•_ → Identity e _•_ → RightInverse e _⁻¹ _•_ → ∀ x y → (x • y) ≈ e → x ≈ (y ⁻¹) assoc+id+invʳ⇒invˡ-unique assoc (idˡ , idʳ) invʳ x y eq = begin x ≈⟨ sym (idʳ x) ⟩ x • e ≈⟨ cong refl (sym (invʳ y)) ⟩ x • (y • (y ⁻¹)) ≈⟨ sym (assoc x y (y ⁻¹)) ⟩ (x • y) • (y ⁻¹) ≈⟨ cong eq refl ⟩ e • (y ⁻¹) ≈⟨ idˡ (y ⁻¹) ⟩ y ⁻¹ ∎ assoc+id+invˡ⇒invʳ-unique : Associative _•_ → Identity e _•_ → LeftInverse e _⁻¹ _•_ → ∀ x y → (x • y) ≈ e → y ≈ (x ⁻¹) assoc+id+invˡ⇒invʳ-unique assoc (idˡ , idʳ) invˡ x y eq = begin y ≈⟨ sym (idˡ y) ⟩ e • y ≈⟨ cong (sym (invˡ x)) refl ⟩ ((x ⁻¹) • x) • y ≈⟨ assoc (x ⁻¹) x y ⟩ (x ⁻¹) • (x • y) ≈⟨ cong refl eq ⟩ (x ⁻¹) • e ≈⟨ idʳ (x ⁻¹) ⟩ x ⁻¹ ∎ ---------------------------------------------------------------------- -- Bisemigroup-like structures module _ {_•_ _◦_ : Op₂ A} (◦-cong : Congruent₂ _◦_) (•-comm : Commutative _•_) where comm+distrˡ⇒distrʳ : _•_ DistributesOverˡ _◦_ → _•_ DistributesOverʳ _◦_ comm+distrˡ⇒distrʳ distrˡ x y z = begin (y ◦ z) • x ≈⟨ •-comm (y ◦ z) x ⟩ x • (y ◦ z) ≈⟨ distrˡ x y z ⟩ (x • y) ◦ (x • z) ≈⟨ ◦-cong (•-comm x y) (•-comm x z) ⟩ (y • x) ◦ (z • x) ∎ comm+distrʳ⇒distrˡ : _•_ DistributesOverʳ _◦_ → _•_ DistributesOverˡ _◦_ comm+distrʳ⇒distrˡ distrˡ x y z = begin x • (y ◦ z) ≈⟨ •-comm x (y ◦ z) ⟩ (y ◦ z) • x ≈⟨ distrˡ x y z ⟩ (y • x) ◦ (z • x) ≈⟨ ◦-cong (•-comm y x) (•-comm z x) ⟩ (x • y) ◦ (x • z) ∎ comm⇒sym[distribˡ] : ∀ x → Symmetric (λ y z → (x ◦ (y • z)) ≈ ((x ◦ y) • (x ◦ z))) comm⇒sym[distribˡ] x {y} {z} prf = begin x ◦ (z • y) ≈⟨ ◦-cong refl (•-comm z y) ⟩ x ◦ (y • z) ≈⟨ prf ⟩ (x ◦ y) • (x ◦ z) ≈⟨ •-comm (x ◦ y) (x ◦ z) ⟩ (x ◦ z) • (x ◦ y) ∎ ---------------------------------------------------------------------- -- Ring-like structures module _ {_+_ _*_ : Op₂ A} {_⁻¹ : Op₁ A} {0# : A} (+-cong : Congruent₂ _+_) (*-cong : Congruent₂ _*_) where assoc+distribʳ+idʳ+invʳ⇒zeˡ : Associative _+_ → _*_ DistributesOverʳ _+_ → RightIdentity 0# _+_ → RightInverse 0# _⁻¹ _+_ → LeftZero 0# _*_ assoc+distribʳ+idʳ+invʳ⇒zeˡ +-assoc distribʳ idʳ invʳ x = begin 0# * x ≈⟨ sym (idʳ _) ⟩ (0# * x) + 0# ≈⟨ +-cong refl (sym (invʳ _)) ⟩ (0# * x) + ((0# * x) + ((0# * x)⁻¹)) ≈⟨ sym (+-assoc _ _ _) ⟩ ((0# * x) + (0# * x)) + ((0# * x)⁻¹) ≈⟨ +-cong (sym (distribʳ _ _ _)) refl ⟩ ((0# + 0#) * x) + ((0# * x)⁻¹) ≈⟨ +-cong (*-cong (idʳ _) refl) refl ⟩ (0# * x) + ((0# * x)⁻¹) ≈⟨ invʳ _ ⟩ 0# ∎ assoc+distribˡ+idʳ+invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ → RightIdentity 0# _+_ → RightInverse 0# _⁻¹ _+_ → RightZero 0# _*_ assoc+distribˡ+idʳ+invʳ⇒zeʳ +-assoc distribˡ idʳ invʳ x = begin x * 0# ≈⟨ sym (idʳ _) ⟩ (x * 0#) + 0# ≈⟨ +-cong refl (sym (invʳ _)) ⟩ (x * 0#) + ((x * 0#) + ((x * 0#)⁻¹)) ≈⟨ sym (+-assoc _ _ _) ⟩ ((x * 0#) + (x * 0#)) + ((x * 0#)⁻¹) ≈⟨ +-cong (sym (distribˡ _ _ _)) refl ⟩ (x * (0# + 0#)) + ((x * 0#)⁻¹) ≈⟨ +-cong (*-cong refl (idʳ _)) refl ⟩ ((x * 0#) + ((x * 0#)⁻¹)) ≈⟨ invʳ _ ⟩ 0# ∎ ------------------------------------------------------------------------ -- Without Loss of Generality module _ {p} {f : Op₂ A} {P : Pred A p} (≈-subst : Substitutive _≈_ p) (comm : Commutative f) where subst+comm⇒sym : Symmetric (λ a b → P (f a b)) subst+comm⇒sym = ≈-subst P (comm _ _) wlog : ∀ {r} {_R_ : Rel _ r} → Total _R_ → (∀ a b → a R b → P (f a b)) → ∀ a b → P (f a b) wlog r-total = Bin.wlog r-total subst+comm⇒sym
{ "alphanum_fraction": 0.4331120215, "avg_line_length": 36.3025641026, "ext": "agda", "hexsha": "a5cfd5b7eb2b9dbdb99979c345d1a8f15f470237", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2951, "size": 7079 }
{-# OPTIONS --rewriting #-} open import prelude renaming (_≟Nat_ to _≟_) -- Copied pretty much verbatim Var = Nat data Term : Set where var : Var → Term fun : Term → Term _$_ : Term → Term → Term true : Term false : Term if_then_else_end : Term → Term → Term → Term data VarHeaded : Term → Set data Value : Term → Set data VarHeaded where var : (x : Var) → VarHeaded(var x) _$_ : ∀ {t} → VarHeaded(t) → (u : Term) → VarHeaded(t $ u) if_then_else_end : ∀ {t₀} → VarHeaded(t₀) → (t₁ t₂ : Term) → VarHeaded(if t₀ then t₁ else t₂ end) data Value where var : (x : Var) → Value(var x) fun : (t : Term) → Value(fun t) _$_ : ∀ {t} → VarHeaded(t) → (u : Term) → Value(t $ u) if_then_else_end : ∀ {t₀} → VarHeaded(t₀) → (t₁ t₂ : Term) → Value(if t₀ then t₁ else t₂ end) true : Value true false : Value false -- Substitution shift : Var → Var → Term → Term shift c d (var x) = if (c ≤? x) (var (d + x)) (var x) shift c d (fun t) = fun (shift (1 + c) d t) shift c d (t₁ $ t₂) = (shift c d t₁) $ (shift c d t₂) shift c d true = true shift c d false = false shift c d if t₀ then t₁ else t₂ end = if shift c d t₀ then shift c d t₁ else shift c d t₂ end [_↦_]_ : Var → Term → Term → Term [ x ↦ s ] var y = if (x ≟ y) (shift 0 x s) (if (x ≤? y) (var (y - 1)) (var y)) [ x ↦ s ] fun t = fun ([ (1 + x) ↦ s ] t) [ x ↦ s ] (t₁ $ t₂) = ([ x ↦ s ] t₁) $ ([ x ↦ s ] t₂) [ x ↦ s ] true = true [ x ↦ s ] false = false [ x ↦ s ] if t₀ then t₁ else t₂ end = if [ x ↦ s ] t₀ then [ x ↦ s ] t₁ else [ x ↦ s ] t₂ end -- Reduction data _⟶_ : Term → Term → Set where E─IfTrue : ∀ {t₂ t₃} → ----------------------------------- if true then t₂ else t₃ end ⟶ t₂ E─IfFalse : ∀ {t₂ t₃} → ----------------------------------- if false then t₂ else t₃ end ⟶ t₃ E─IfCong : ∀ {t₁ t₁′ t₂ t₃} → (t₁ ⟶ t₁′) → ---------------------------------------------------------- (if t₁ then t₂ else t₃ end ⟶ if t₁′ then t₂ else t₃ end) E─App1 : ∀ {t₁ t₁′ t₂} → (t₁ ⟶ t₁′) → ------------------------ (t₁ $ t₂) ⟶ (t₁′ $ t₂) E─App2 : ∀ {t₁ t₂ t₂′} → (t₂ ⟶ t₂′) → ------------------------ (t₁ $ t₂) ⟶ (t₁ $ t₂′) E─AppAbs : ∀ {t₁ t₂} → --------------------------------- (fun t₁ $ t₂) ⟶ ([ 0 ↦ t₂ ] t₁) data Redex : Term → Set where redex : ∀ {t t′} → t ⟶ t′ → -------- Redex(t) -- Types data Type : Set where bool : Type _⇒_ : Type → Type → Type data Context : Set where ε : Context _,_ : Context → Type → Context data _∋_⦂_ : Context → Nat → Type → Set where zero : ∀ {Γ S} → (Γ , S) ∋ zero ⦂ S suc : ∀ {Γ S T n} → (Γ ∋ n ⦂ T) → (Γ , S) ∋ suc n ⦂ T data _⊢_⦂_ : Context → Term → Type → Set where T-True : ∀ {Γ} → ----------- Γ ⊢ true ⦂ bool T-False : ∀ {Γ} → ----------- Γ ⊢ false ⦂ bool T-If : ∀ {Γ t₁ t₂ t₃ T} → Γ ⊢ t₁ ⦂ bool → Γ ⊢ t₂ ⦂ T → Γ ⊢ t₃ ⦂ T → ----------------------------- Γ ⊢ if t₁ then t₂ else t₃ end ⦂ T T-Var : ∀ {Γ n T} → Γ ∋ n ⦂ T → ------------------------ Γ ⊢ var n ⦂ T T-Abs : ∀ {Γ t T₁ T₂} → (Γ , T₁) ⊢ t ⦂ T₂ → ----------------------- Γ ⊢ (fun t) ⦂ (T₁ ⇒ T₂) T-App : ∀ {Γ t₁ t₂ T₁₁ T₁₂} → Γ ⊢ t₁ ⦂ (T₁₁ ⇒ T₁₂) → Γ ⊢ t₂ ⦂ T₁₁ → ----------------------- Γ ⊢ (t₁ $ t₂) ⦂ T₁₂ -- Proving that well-typed terms stay well-typed # : Context → Nat # ε = 0 # (Γ , x) = 1 + # Γ _,,_ : Context → Context → Context Γ ,, ε = Γ Γ ,, (Δ , T) = (Γ ,, Δ) , T T-Eq : ∀ {Γ s S T} → (Γ ⊢ s ⦂ S) → (S ≡ T) → (Γ ⊢ s ⦂ T) T-Eq p refl = p hit : ∀ {Γ Δ S T} → (((Γ , S) ,, Δ) ∋ # Δ ⦂ T) → (S ≡ T) hit {Δ = ε} zero = refl hit {Δ = Δ , R} (suc p) = hit p left : ∀ {Γ Δ S T n} → (# Δ < n) → (((Γ , S) ,, Δ) ∋ n ⦂ T) → ((Γ ,, Δ) ∋ (n - 1) ⦂ T) left {n = zero} p q = CONTRADICTION (p zero) left {Δ = ε} {n = suc n} p (suc q) = q left {Δ = Δ , R} {n = suc zero} p (suc q) = CONTRADICTION (p (suc zero)) left {Δ = Δ , R} {n = suc (suc n)} p (suc q) = suc (left (λ a → p (suc a)) q) right : ∀ {Γ Δ S T n} → (n < # Δ) → (((Γ , S) ,, Δ) ∋ n ⦂ T) → ((Γ ,, Δ) ∋ n ⦂ T) right {Δ = ε} p q = CONTRADICTION (p zero) right {Δ = Δ , R} p zero = zero right {Δ = Δ , R} p (suc q) = suc (right (λ z → p (suc z)) q) this : ∀ {Γ T} n Δ Ξ → (# Ξ ≤ n) → ((Γ ,, Ξ) ∋ n ⦂ T) → (((Γ ,, Δ) ,, Ξ) ∋ (# Δ + n) ⦂ T) this n ε ε p q = q this n (Δ , R) ε p q = suc (this n Δ ε p q) this (suc n) Δ (Ξ , S) (suc p) (suc q) = suc (this n Δ Ξ p q) that : ∀ {Γ T} n Δ Ξ → (n < # Ξ) → ((Γ ,, Ξ) ∋ n ⦂ T) → (((Γ ,, Δ) ,, Ξ) ∋ n ⦂ T) that n Δ ε p q = CONTRADICTION (p zero) that zero Δ (Ξ , S) p zero = zero that (suc n) Δ (Ξ , S) p (suc q) = suc (that n Δ Ξ (λ z → p (suc z)) q) preservation-shift : ∀ {Γ s S} Δ Ξ → ((Γ ,, Ξ) ⊢ s ⦂ S) → (((Γ ,, Δ) ,, Ξ) ⊢ shift (# Ξ) (# Δ) s ⦂ S) preservation-shift Δ Ξ T-True = T-True preservation-shift Δ Ξ T-False = T-False preservation-shift Δ Ξ (T-If p p₁ p₂) = T-If (preservation-shift Δ Ξ p) (preservation-shift Δ Ξ p₁) (preservation-shift Δ Ξ p₂) preservation-shift {Γ} {var n} {S} Δ Ξ (T-Var p) = helper (# Ξ ≤? n) where helper : (q : Dec(# Ξ ≤ n)) → ((Γ ,, Δ) ,, Ξ) ⊢ if q (var (# Δ + n)) (var n) ⦂ S helper (yes q) = T-Var (this n Δ Ξ q p) helper (no q) = T-Var (that n Δ Ξ q p) preservation-shift Δ Ξ (T-Abs p) = T-Abs (preservation-shift Δ (Ξ , _) p) preservation-shift Δ Ξ (T-App p p₁) = T-App (preservation-shift Δ Ξ p) (preservation-shift Δ Ξ p₁) preservation-substitution : ∀ {Γ s t S T} → (Γ ⊢ s ⦂ S) → (Δ : Context) → (((Γ , S) ,, Δ) ⊢ t ⦂ T) → ((Γ ,, Δ) ⊢ [ # Δ ↦ s ] t ⦂ T) preservation-substitution {Γ} {s} {t} {S} {T} p Δ (T-Var {n = n} q) = helper (# Δ ≟ n) (# Δ ≤? n) where helper : (p : Dec(# Δ ≡ n)) → (q : Dec(# Δ ≤ n)) → (Γ ,, Δ) ⊢ if p (shift 0 (# Δ) s) (if q (var (n - 1)) (var n)) ⦂ T helper (yes refl) _ = T-Eq (preservation-shift Δ ε p) (hit q) helper (no a) (yes b) = T-Var (left (λ c → a (asym b c)) q) helper (no a) (no b) = T-Var (right b q) preservation-substitution p Δ T-True = T-True preservation-substitution p Δ T-False = T-False preservation-substitution p Δ (T-If q q₁ q₂) = T-If (preservation-substitution p Δ q) (preservation-substitution p Δ q₁) (preservation-substitution p Δ q₂) preservation-substitution p Δ (T-Abs q) = T-Abs (preservation-substitution p (Δ , _) q) preservation-substitution p Δ (T-App q q₁) = T-App (preservation-substitution p Δ q) (preservation-substitution p Δ q₁) preservation : ∀ {Γ t t′ T} → (Γ ⊢ t ⦂ T) → (t ⟶ t′) → (Γ ⊢ t′ ⦂ T) preservation (T-If p₁ p₂ p₃) E─IfTrue = p₂ preservation (T-If p₁ p₂ p₃) E─IfFalse = p₃ preservation (T-If p₁ p₂ p₃) (E─IfCong q) = T-If (preservation p₁ q) p₂ p₃ preservation (T-App p₁ p₂) (E─App1 q) = T-App (preservation p₁ q) p₂ preservation (T-App p₁ p₂) (E─App2 q) = T-App p₁ (preservation p₂ q) preservation (T-App (T-Abs p₁) p₂) E─AppAbs = preservation-substitution p₂ ε p₁ -- Proving that every term is a value or a redex data ValueOrRedex : Term → Set where value : ∀ {t} → (Value(t)) → --------------- ValueOrRedex(t) redex : ∀ {t t′} → t ⟶ t′ → --------------- ValueOrRedex(t) progress : ∀ {Γ t T} → (Γ ⊢ t ⦂ T) → ValueOrRedex(t) progress T-True = value true progress T-False = value false progress (T-If p₁ p₂ p₃) = helper (progress p₁) p₁ where helper : ∀ {Γ t₀ t₁ t₂} → ValueOrRedex(t₀) → (Γ ⊢ t₀ ⦂ bool) → ValueOrRedex(if t₀ then t₁ else t₂ end) helper (value true) p = redex E─IfTrue helper (value false) p = redex E─IfFalse helper (value (var x)) p = value (if var x then _ else _ end) helper (value (if t₃ then t₄ else t₅ end)) p = value if if t₃ then t₄ else t₅ end then _ else _ end helper (value (t₁ $ t₂)) p = value if (t₁ $ t₂) then _ else _ end helper (redex r) p = redex (E─IfCong r) progress (T-Var {n = n} p) = value (var n) progress (T-Abs {t = t} p) = value (fun t) progress (T-App p₁ p₂) = helper (progress p₁) p₁ where helper : ∀ {Γ t₁ t₂ T₁₁ T₁₂} → ValueOrRedex(t₁) → (Γ ⊢ t₁ ⦂ (T₁₁ ⇒ T₁₂)) → ValueOrRedex(t₁ $ t₂) helper (value (var x)) p = value (var x $ _) helper (value (fun t)) p = redex E─AppAbs helper (value (t₃ $ t₄)) p = value ((t₃ $ t₄) $ _) helper (value (if t₃ then t₄ else t₅ end)) p = value (if t₃ then t₄ else t₅ end $ _) helper (redex r) p = redex (E─App1 r) -- Interpreter data _⟶*_ : Term → Term → Set where done : ∀ {t} → -------- t ⟶* t redex : ∀ {t t′ t″} → t ⟶ t′ → t′ ⟶* t″ → ---------- t ⟶* t″ -- An interpreter result data Result : Term → Set where result : ∀ {t t′} → t ⟶* t′ → Value(t′) → --------- Result(t) -- The interpreter just calls `progress` until it is a value. -- This might bot terminate! {-# NON_TERMINATING #-} interp : ∀ {Γ t T} → (Γ ⊢ t ⦂ T) → Result(t) interp p = helper₂ p (progress p) where helper₁ : ∀ {t t′} → (t ⟶ t′) → Result(t′) → Result(t) helper₁ r (result s v) = result (redex r s) v helper₂ : ∀ {Γ t T} → (Γ ⊢ t ⦂ T) → ValueOrRedex(t) → Result(t) helper₂ p (value v) = result done v helper₂ p (redex r) = helper₁ r (interp (preservation p r))
{ "alphanum_fraction": 0.4971161171, "avg_line_length": 29.8344155844, "ext": "agda", "hexsha": "cfc0f4b3e21dbe5cfe42a4df6f1b1fb21a9affd2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "asajeffrey/tapl", "max_forks_repo_path": "ch9.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "asajeffrey/tapl", "max_issues_repo_path": "ch9.agda", "max_line_length": 131, "max_stars_count": 3, "max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "asajeffrey/tapl", "max_stars_repo_path": "ch9.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z", "num_tokens": 3860, "size": 9189 }
module PublicWithoutOpen2 where import Imports.A public
{ "alphanum_fraction": 0.8596491228, "avg_line_length": 14.25, "ext": "agda", "hexsha": "5262cddd3a72b46377fa43aae459f7a8255a3998", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/PublicWithoutOpen2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/PublicWithoutOpen2.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/PublicWithoutOpen2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 12, "size": 57 }
open import Oscar.Prelude open import Oscar.Data.¶ module Oscar.Data.Fin where data ¶⟨<_⟩ : ¶ → Ø₀ where ∅ : ∀ {n} → ¶⟨< ↑ n ⟩ ↑_ : ∀ {n} → ¶⟨< n ⟩ → ¶⟨< ↑ n ⟩ Fin = ¶⟨<_⟩ module Fin = ¶⟨<_⟩
{ "alphanum_fraction": 0.48, "avg_line_length": 14.2857142857, "ext": "agda", "hexsha": "e25a1e9c6f9e3e49a1123b105b4c67d60b5fd3ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Fin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Fin.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 95, "size": 200 }
-- Tests for withNormalisation module _ where open import Agda.Builtin.Reflection open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Agda.Builtin.Unit open import Agda.Builtin.List infixl 4 _>>=_ _>>=_ = bindTC F : Bool → Set F false = Nat F true = Bool data D (b : Bool) : Set where _&&_ : Bool → Bool → Bool true && x = x false && _ = false postulate reflected : ∀ {a} {A : Set a} → Term → A pattern vArg x = arg (arg-info visible relevant) x useReflected : Term → Term → TC ⊤ useReflected hole goal = quoteTC goal >>= λ `goal → unify hole (def (quote reflected) (vArg `goal ∷ [])) macro error : Term → TC ⊤ error hole = inferType hole >>= λ goal → typeError (termErr goal ∷ []) reflect : Term → TC ⊤ reflect hole = inferType hole >>= useReflected hole reflectN : Term → TC ⊤ reflectN hole = withNormalisation true (inferType hole) >>= useReflected hole test₁ : D (true && false) test₁ = reflect test₂ : D (true && false) test₂ = reflectN pattern `D x = def (quote D) (vArg x ∷ []) pattern `true = con (quote true) [] pattern `false = con (quote false) [] pattern _`&&_ x y = def (quote _&&_) (vArg x ∷ vArg y ∷ []) check₁ : test₁ ≡ reflected (`D (`true `&& `false)) check₁ = refl check₂ : test₂ ≡ reflected (`D `false) check₂ = refl
{ "alphanum_fraction": 0.6546546547, "avg_line_length": 21.1428571429, "ext": "agda", "hexsha": "492caddb55d3cd0306396257b0dd97b8e2ed553d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/TCFlags.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/TCFlags.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/TCFlags.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 424, "size": 1332 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Semidirect where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Morphism open import Cubical.Algebra.Group.Notation open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Action open import Cubical.Data.Sigma private variable ℓ ℓ' : Level module _ where semidirectProd : (G : Group {ℓ}) (H : Group {ℓ'}) (Act : GroupAction H G) → Group {ℓ-max ℓ ℓ'} semidirectProd G H Act = makeGroup-left {A = sd-carrier} sd-0 _+sd_ -sd_ sd-set sd-assoc sd-lId sd-lCancel where open ActionNotationα Act open ActionLemmas Act open GroupNotationG G open GroupNotationᴴ H -- sd stands for semidirect sd-carrier = ⟨ G ⟩ × ⟨ H ⟩ sd-0 = 0ᴳ , 0ᴴ module _ ((g , h) : sd-carrier) where -sd_ = (-ᴴ h) α (-ᴳ g) , -ᴴ h _+sd_ = λ (g' , h') → g +ᴳ (h α g') , h +ᴴ h' abstract sd-set = isSetΣ setᴳ (λ _ → setᴴ) sd-lId = λ ((g , h) : sd-carrier) → ΣPathP (lIdᴳ (0ᴴ α g) ∙ (α-id g) , lIdᴴ h) sd-lCancel = λ ((g , h) : sd-carrier) → ΣPathP ((sym (α-hom (-ᴴ h) (-ᴳ g) g) ∙∙ cong ((-ᴴ h) α_) (lCancelᴳ g) ∙∙ actOnUnit (-ᴴ h)) , lCancelᴴ h) sd-assoc = λ (a , x) (b , y) (c , z) → ΣPathP ((a +ᴳ (x α (b +ᴳ (y α c))) ≡⟨ cong (a +ᴳ_) (α-hom x b (y α c)) ⟩ a +ᴳ ((x α b) +ᴳ (x α (y α c))) ≡⟨ assocᴳ a (x α b) (x α (y α c)) ⟩ (a +ᴳ (x α b)) +ᴳ (x α (y α c)) ≡⟨ cong ((a +ᴳ (x α b)) +ᴳ_) (sym (α-assoc x y c)) ⟩ (a +ᴳ (x α b)) +ᴳ ((x +ᴴ y) α c) ∎) , assocᴴ x y z) -- this syntax declaration is the reason we can't unify semidirectProd with -- the projections module syntax semidirectProd G H α = G ⋊⟨ α ⟩ H module _ {G : Group {ℓ}} {H : Group {ℓ'}} (Act : GroupAction H G) where open ActionNotationα Act open ActionLemmas Act open GroupNotationG G open GroupNotationᴴ H π₁ : ⟨ G ⋊⟨ Act ⟩ H ⟩ → ⟨ G ⟩ π₁ = fst ι₁ : GroupHom G (G ⋊⟨ Act ⟩ H) ι₁ = grouphom (λ g → g , 0ᴴ) λ g g' → ΣPathP (cong (g +ᴳ_) (sym (α-id g')), sym (lIdᴴ 0ᴴ)) π₂ : GroupHom (G ⋊⟨ Act ⟩ H) H -- π₂ = grouphom snd λ _ _ → refl π₂ = grouphom snd λ (g , h) (g' , h') → refl {x = h +ᴴ h'} ι₂ : GroupHom H (G ⋊⟨ Act ⟩ H) ι₂ = grouphom (λ h → 0ᴳ , h) λ h h' → ΣPathP (sym (actOnUnit h) ∙ sym (lIdᴳ (h α 0ᴳ)) , refl) π₂-hasSec : isGroupSplitEpi ι₂ π₂ π₂-hasSec = GroupMorphismExt (λ _ → refl)
{ "alphanum_fraction": 0.5429403202, "avg_line_length": 36.1578947368, "ext": "agda", "hexsha": "3ecaecf6262036d2db2e79ab7e10f4c9b51b48fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Semidirect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Semidirect.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Semidirect.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1136, "size": 2748 }
------------------------------------------------------------------------ -- The delay monad is a monad up to strong bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Monad where open import Equality.Propositional open import Prelude open import Prelude.Size open import Conat equality-with-J as Conat using (zero; suc; force) open import Monad equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity as B ------------------------------------------------------------------------ -- Map, join and bind -- A universe-polymorphic variant of map. map′ : ∀ {i a b} {A : Type a} {B : Type b} → (A → B) → Delay A i → Delay B i map′ f (now x) = now (f x) map′ f (later x) = later λ { .force → map′ f (force x) } -- Join. join : ∀ {i a} {A : Type a} → Delay (Delay A i) i → Delay A i join (now x) = x join (later x) = later λ { .force → join (force x) } -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : ∀ {i a b} {A : Type a} {B : Type b} → Delay A i → (A → Delay B i) → Delay B i x >>=′ f = join (map′ f x) instance -- A raw monad instance. delay-raw-monad : ∀ {a i} → Raw-monad (λ (A : Type a) → Delay A i) Raw-monad.return delay-raw-monad = now Raw-monad._>>=_ delay-raw-monad = _>>=′_ ------------------------------------------------------------------------ -- Monad laws left-identity′ : ∀ {a b} {A : Type a} {B : Type b} x (f : A → Delay B ∞) → return x >>=′ f ∼ f x left-identity′ x f = reflexive (f x) right-identity′ : ∀ {a i} {A : Type a} (x : Delay A ∞) → [ i ] x >>= return ∼ x right-identity′ (now x) = now right-identity′ (later x) = later λ { .force → right-identity′ (force x) } associativity′ : ∀ {a b c i} {A : Type a} {B : Type b} {C : Type c} → (x : Delay A ∞) (f : A → Delay B ∞) (g : B → Delay C ∞) → [ i ] x >>=′ (λ x → f x >>=′ g) ∼ x >>=′ f >>=′ g associativity′ (now x) f g = reflexive (f x >>=′ g) associativity′ (later x) f g = later λ { .force → associativity′ (force x) f g } -- The delay monad is a monad (assuming extensionality). delay-monad : ∀ {a} → B.Extensionality a → Monad (λ (A : Type a) → Delay A ∞) Monad.raw-monad (delay-monad ext) = delay-raw-monad Monad.left-identity (delay-monad ext) x f = ext (left-identity′ x f) Monad.right-identity (delay-monad ext) x = ext (right-identity′ x) Monad.associativity (delay-monad ext) x f g = ext (associativity′ x f g) ------------------------------------------------------------------------ -- The functions map′, join and _>>=′_ preserve strong and weak -- bisimilarity and expansion map-cong : ∀ {k i a b} {A : Type a} {B : Type b} (f : A → B) {x y : Delay A ∞} → [ i ] x ⟨ k ⟩ y → [ i ] map′ f x ⟨ k ⟩ map′ f y map-cong f now = now map-cong f (later p) = later λ { .force → map-cong f (force p) } map-cong f (laterˡ p) = laterˡ (map-cong f p) map-cong f (laterʳ p) = laterʳ (map-cong f p) join-cong : ∀ {k i a} {A : Type a} {x y : Delay (Delay A ∞) ∞} → [ i ] x ⟨ k ⟩ y → [ i ] join x ⟨ k ⟩ join y join-cong now = reflexive _ join-cong (later p) = later λ { .force → join-cong (force p) } join-cong (laterˡ p) = laterˡ (join-cong p) join-cong (laterʳ p) = laterʳ (join-cong p) infixl 5 _>>=-cong_ _>>=-cong_ : ∀ {k i a b} {A : Type a} {B : Type b} {x y : Delay A ∞} {f g : A → Delay B ∞} → [ i ] x ⟨ k ⟩ y → (∀ z → [ i ] f z ⟨ k ⟩ g z) → [ i ] x >>=′ f ⟨ k ⟩ y >>=′ g now >>=-cong q = q _ later p >>=-cong q = later λ { .force → force p >>=-cong q } laterˡ p >>=-cong q = laterˡ (p >>=-cong q) laterʳ p >>=-cong q = laterʳ (p >>=-cong q) ------------------------------------------------------------------------ -- A lemma -- The function map′ can be expressed using _>>=′_ and now. map∼>>=-now : ∀ {i a b} {A : Type a} {B : Type b} {f : A → B} (x : Delay A ∞) → [ i ] map′ f x ∼ x >>=′ now ∘ f map∼>>=-now (now x) = now map∼>>=-now (later x) = later λ { .force → map∼>>=-now (x .force) } ------------------------------------------------------------------------ -- Some lemmas relating monadic combinators to steps -- Use of map′ does not affect the number of steps in the computation. steps-map′ : ∀ {i a b} {A : Type a} {B : Type b} {f : A → B} (x : Delay A ∞) → Conat.[ i ] steps (map′ f x) ∼ steps x steps-map′ (now x) = zero steps-map′ (later x) = suc λ { .force → steps-map′ (x .force) } -- Use of _⟨$⟩_ does not affect the number of steps in the -- computation. steps-⟨$⟩ : ∀ {i ℓ} {A B : Type ℓ} {f : A → B} (x : Delay A ∞) → Conat.[ i ] steps (f ⟨$⟩ x) ∼ steps x steps-⟨$⟩ (now x) = zero steps-⟨$⟩ (later x) = suc λ { .force → steps-⟨$⟩ (x .force) }
{ "alphanum_fraction": 0.4860508369, "avg_line_length": 33.1438356164, "ext": "agda", "hexsha": "3ca82384cd5f4110f88c91af29a02018dc3a833a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Monad.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1658, "size": 4839 }