Search is not available for this dataset
text
string
meta
dict
module _ where open import Agda.Builtin.Equality module _ (Ty : Set) where data Cxt : Set where sg : (A : Ty) → Cxt _∙_ : (Γ₁ Γ₂ : Cxt) → Cxt postulate Sub : Cxt → Cxt → Set variable Γ Δ : Cxt data Var (A : Ty) : Cxt → Set where • : Var A (sg A) inl : (x : Var A Γ) → Var A (Γ ∙ Δ) postulate T : ∀ {a} {A : Set a} → A → Set bla : T Γ check-bla : {Ty : Set} {Γ : Cxt Ty} → T Γ check-bla = bla
{ "alphanum_fraction": 0.525462963, "avg_line_length": 16, "ext": "agda", "hexsha": "370a2ec929012269839aaa3d853e91d79be4e8e8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3164.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3164.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3164.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 184, "size": 432 }
module _ where open import Common.Prelude data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {@0 n} → A → Vec A n → Vec A (suc n) sum : ∀ {@0 n} → Vec Nat n → Nat sum (x ∷ xs) = x + sum xs sum [] = 0 foldl : ∀ {A} {B : Nat → Set} → (∀ {@0 n} → B n → A → B (suc n)) → B 0 → ∀ {@0 n} → Vec A n → B n foldl {B = B} f z (x ∷ xs) = foldl {B = λ n → B (suc n)} f (f z x) xs foldl f z [] = z reverse : ∀ {A} {@0 n} → Vec A n → Vec A n reverse = foldl {B = Vec _} (λ xs x → x ∷ xs) [] downFrom : ∀ n → Vec Nat n downFrom zero = [] downFrom (suc n) = n ∷ downFrom n main : IO Unit main = printNat (sum (reverse (downFrom 100000)))
{ "alphanum_fraction": 0.50625, "avg_line_length": 24.6153846154, "ext": "agda", "hexsha": "594d7c8583c31d61c0025526a41773954111726f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Compiler/simple/VecReverseErased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Compiler/simple/VecReverseErased.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Compiler/simple/VecReverseErased.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 276, "size": 640 }
{-# OPTIONS --safe --without-K #-} ------------------------------------------------------------------------ -- Group objects in a cartesian category. ------------------------------------------------------------------------ open import Categories.Category open import Categories.Category.Cartesian module Categories.Object.Group {o ℓ e} {𝒞 : Category o ℓ e} (C : Cartesian 𝒞) where open import Level open import Categories.Category.BinaryProducts 𝒞 using (BinaryProducts) open import Categories.Category.Cartesian.Monoidal open import Categories.Object.Monoid (CartesianMonoidal.monoidal C) open import Categories.Object.Terminal 𝒞 open Category 𝒞 open Cartesian C module Π = BinaryProducts products open BinaryProducts products using (_×_; _⁂_; ⟨_,_⟩) open Terminal terminal record IsGroup (G : Obj) : Set (ℓ ⊔ e) where -- any group object is also a monoid object field isMonoid : IsMonoid G open IsMonoid isMonoid public field -- inverse operation ι : G ⇒ G -- ι is in fact an inverse inverseˡ : η ∘ ! ≈ μ ∘ ⟨ ι , id ⟩ inverseʳ : η ∘ ! ≈ μ ∘ ⟨ id , ι ⟩ record Group : Set (o ⊔ ℓ ⊔ e) where field Carrier : Obj isGroup : IsGroup Carrier open IsGroup isGroup public monoid : Monoid monoid = record { isMonoid = isMonoid } open Group record Group⇒ (G H : Group) : Set (ℓ ⊔ e) where field arr : Carrier G ⇒ Carrier H preserves-μ : arr ∘ μ G ≈ μ H ∘ (arr ⁂ arr) preserves-η : arr ∘ η G ≈ η H preserves-ι : arr ∘ ι G ≈ ι H ∘ arr
{ "alphanum_fraction": 0.6099337748, "avg_line_length": 26.9642857143, "ext": "agda", "hexsha": "b575714821a88ff4a856f51c632e6b83972e0539", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Group.agda", "max_line_length": 83, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Group.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 438, "size": 1510 }
{-# OPTIONS --disable-positivity-check #-} module univ where import Logic.ChainReasoning module Chain {A : Set} ( _==_ : A -> A -> Set) (refl : {x : A} -> x == x) (trans : {x y z : A} -> x == y -> y == z -> x == z) = Logic.ChainReasoning.Mono.Homogenous _==_ (\x -> refl) (\x y z -> trans) data N1 : Set where T : N1 data N0 : Set where data Sigma (A:Set)(B : A -> Set) : Set where Pair : (x:A) -> B x -> Sigma A B rel : Set -> Set1 rel A = A -> A -> Set pred : Set -> Set1 pred A = A -> Set Refl : {A:Set} -> rel A -> Set Refl {A} R = {x : A} -> R x x Sym : {A:Set} -> rel A -> Set Sym {A} R = {x y : A} -> R x y -> R y x Trans : {A:Set} -> rel A -> Set Trans {A} R = {x y z : A} -> R x y -> R y z -> R x z Map : (A:Set) -> rel A -> (B:Set) -> rel B -> pred (A -> B) Map A _R_ B _S_ f = {x y : A} -> x R y -> f x S f y postulate N : Set _=N_ : rel N refN : Refl _=N_ symN : Sym _=N_ transN : Trans _=N_ -- mutual inductive recursive definition of S and the functions _=S_, El, eq, and all the -- proofs on these functions mutual infix 40 _==_ _=S_ infixr 80 _<<_ data S : Set where nat : S pi : (A:S) -> (f:El A -> S) -> Map (El A) _==_ S _=S_ f -> S _=S'_ : rel S nat =S' nat = N1 nat =S' pi A f pf = N0 pi _ _ _ =S' nat = N0 pi A F pF =S' pi B G pG = Sigma (A =S B) \ A=B -> (x : El B) -> F (A=B << x) =S G x data _=S_ (A B : S) : Set where eqS : A =S' B -> A =S B El' : S -> Set El' nat = N El' (pi A F pF) = Sigma ((x : El A) -> El (F x)) \f -> {x y : El A}(x=y : x == y) -> f x == pF x=y << f y data El (A : S) : Set where el : El' A -> El A _=='_ : {A : S} -> rel (El A) _=='_ {nat} (el x) (el y) = x =N y _=='_ {pi A F pF} (el (Pair f pf)) (el (Pair g pg)) = (x : El A) -> f x == g x data _==_ {A : S}(x y : El A) : Set where eq : x ==' y -> x == y _<<_ : {A B : S} -> A =S B -> El B -> El A _<<_ {nat} {nat} p x = x _<<_ {pi A F pF} {pi B G pG} (eqS (Pair A=B F=G)) (el (Pair g pg)) = el (Pair f (\{x}{y} -> pf x y)) where B=A = symS A=B F=Gc : (x : El A) -> F x =S G (B=A << x) F=Gc x = transS (transS refS (symS (pF (castlem A=B (symS A=B) x)))) (F=G (symS A=B << x)) -- chain> F x -- === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) -- === G (B=A << x) by F=G (B=A << x) -- where -- open module C = Chain _=S_ refS transS f : (x : El A) -> El (F x) f x = F=Gc x << g (B=A << x) pf : (x y : El A)(p : x == y) -> f x == pF p << f y pf x y x=y = trans fx=ccgy ccgy=cfy where cx = B=A << x cy = B=A << y cx=cy : cx == cy cx=cy = p<< B=A x=y cgy : El (G cx) cgy = pG cx=cy << g cy gx=gy : g cx == cgy gx=gy = pg cx=cy ccgy : El (F x) ccgy = F=Gc x << cgy fx=ccgy : f x == ccgy fx=ccgy = p<< (F=Gc x) gx=gy cfy : El (F x) cfy = pF x=y << f y ccgy=cfy : ccgy == cfy ccgy=cfy = castlem2 (F=Gc x) (pF x=y) (pG cx=cy) (F=Gc y) (g cy) p<< : {A B : S}(A=B : A =S B) -> Map (El B) _==_ (El A) _==_ (_<<_ A=B) p<< {nat}{nat} _ x=y = x=y p<< {pi A F pF} {pi B G pG} (eqS (Pair A=B F=G)) {el (Pair f pf)} {el (Pair g pg)} (eq f=g) = eq cf=cg where open module C = Logic.ChainReasoning.Mono.Homogenous _=S_ (\x -> refS) (\x y z -> transS) B=A = symS A=B F=Gc : (x : El A) -> F x =S G (B=A << x) F=Gc x = chain> F x === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) === G (B=A << x) by F=G _ cf=cg : (x : El A) -> F=Gc x << f (B=A << x) == F=Gc x << g (B=A << x) cf=cg x = p<< (F=Gc x) (f=g (B=A << x)) p<< {nat} {pi _ _ _} (eqS ()) _ p<< {pi _ _ _} {nat} (eqS ()) _ refS : Refl _=S_ refS {nat} = eqS T refS {pi A F pF} = eqS (Pair refS \(x : El A) -> pF (castref refS x)) transS : Trans _=S_ transS {nat}{nat}{nat} p q = p transS {nat}{nat}{pi _ _ _} _ (eqS ()) transS {nat}{pi _ _ _}{_} (eqS ()) _ transS {pi _ _ _}{nat}{_} (eqS ()) _ transS {pi _ _ _}{pi _ _ _}{nat} _ (eqS ()) transS {pi A F pF}{pi B G pG}{pi C H pH} (eqS (Pair A=B F=G)) (eqS (Pair B=C G=H)) = eqS (Pair A=C F=H) where open module C = Chain _=S_ refS transS A=C = transS A=B B=C F=H : (x : El C) -> F (A=C << x) =S H x F=H x = chain> F (A=C << x) === F (A=B << B=C << x) by symS (pF (casttrans A=B B=C A=C x)) === G (B=C << x) by F=G (B=C << x) === H x by G=H x symS : Sym _=S_ symS {nat}{nat} p = p symS {pi _ _ _}{nat} (eqS ()) symS {nat}{pi _ _ _} (eqS ()) symS {pi A F pF}{pi B G pg} (eqS (Pair A=B F=G)) = eqS (Pair B=A G=F) where open module C = Chain _=S_ refS transS B=A = symS A=B G=F : (x : El A) -> G (B=A << x) =S F x G=F x = chain> G (B=A << x) === F (A=B << B=A << x) by symS (F=G (B=A << x)) === F x by pF (castlem A=B B=A x) pfi : {A B : S}(p q : A =S B)(x : El B) -> p << x == q << x pfi {nat}{nat} _ _ x = ref pfi {nat}{pi _ _ _} (eqS ()) _ _ pfi {pi _ _ _}{nat} (eqS ()) _ _ pfi {pi A F pF}{pi B G pG} (eqS (Pair A=B1 F=G1)) (eqS (Pair A=B2 F=G2)) (el (Pair f pf)) = eq f1=f2 where B=A1 = symS A=B1 B=A2 = symS A=B2 f1=f2 : (x : El A) -> _ << f (B=A1 << x) == _ << f (B=A2 << x) f1=f2 x = chain> _ << f (B=A1 << x) === _ << _ << f (B=A2 << x) by p<< _ lem2 === _ << f (B=A2 << x) by casttrans _ _ _ _ where open module C = Chain _==_ (ref {F x}) (trans {F x}) lem1 : B=A1 << x == B=A2 << x lem1 = pfi B=A1 B=A2 x lem2 : f (B=A1 << x) == _ << f (B=A2 << x) lem2 = pf lem1 castref : {A : S}(p : A =S A)(x : El A) -> p << x == x castref {nat} p x = ref castref {pi A F pF} (eqS (Pair A=A F=F)) (el (Pair f pf)) = eq cf=f where A=A' = symS A=A cf=f : (x : El A) -> _ << f (A=A' << x) == f x cf=f x = chain> Fx=Fcx << f (A=A' << x) === Fx=Fcx << _ << f x by p<< Fx=Fcx lem2 === refS << f x by casttrans _ _ _ (f x) === f x by castref _ (f x) where Fx=Fcx = _ open module C = Chain _==_ (ref {F x}) (trans {F x}) lem1 : A=A' << x == x lem1 = castref A=A' x lem2 : f (A=A' << x) == _ << f x lem2 = pf lem1 casttrans : {A B C : S}(A=B : A =S B)(B=C : B =S C)(A=C : A =S C)(x : El C) -> A=B << B=C << x == A=C << x casttrans {nat}{nat}{nat} _ _ _ x = ref casttrans {nat}{nat}{pi _ _ _} _ (eqS ()) _ _ casttrans {nat}{pi _ _ _}{_} (eqS ()) _ _ _ casttrans {pi _ _ _}{nat}{_} (eqS ()) _ _ _ casttrans {pi _ _ _}{pi _ _ _}{nat} _ (eqS ()) _ _ casttrans {pi A F pF}{pi B G pG}{pi C H pH} (eqS (Pair A=B F=G))(eqS (Pair B=C G=H))(eqS (Pair A=C F=H)) (el (Pair h ph)) = eq prf where B=A = symS A=B C=B = symS B=C C=A = symS A=C prf : (x : El A) -> _ << _ << h (C=B << B=A << x) == _ << h (C=A << x) prf x = chain> Fx=Gcx << Gcx=Hccx << h (C=B << B=A << x) === Fx=Hccx << h (C=B << B=A << x) by casttrans _ _ _ _ === Fx=Hccx << _ << h (C=A << x) by p<< _ (ph (casttrans C=B B=A C=A x)) === Fx=Hcx << h (C=A << x) by casttrans _ _ _ _ where Fx=Gcx = _ Gcx=Hccx = _ Fx=Hccx = transS (lemF=Gc A=B pF pG F=G _) (lemF=Gc B=C pG pH G=H _) Fx=Hcx = _ open module C = Chain _==_ (ref {F x}) (trans {F x}) lemF=Gc : {A B : S}(A=B : A =S B) {F : El A -> S}(pF : Map (El A) _==_ S _=S_ F) {G : El B -> S}(pG : Map (El B) _==_ S _=S_ G) (F=G : (x : El B) -> F (A=B << x) =S G x) (x : El A) -> F x =S G (symS A=B << x) lemF=Gc A=B {F} pF {G} pG F=G x = chain> F x === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) === G (B=A << x) by F=G _ where open module C = Chain _=S_ refS transS B=A = symS A=B castlem : {A B : S}(p : A =S B)(q : B =S A)(x : El A) -> p << q << x == x castlem {A}{B} p q x = chain> p << q << x === refS << x by casttrans p q refS x === x by castref refS x where open module C = Chain _==_ (ref {A}) (trans {A}) castlem2 : {A B B' C : S}(A=B : A =S B)(A=B' : A =S B')(B=C : B =S C)(B'=C : B' =S C) (x : El C) -> A=B << B=C << x == A=B' << B'=C << x castlem2 {A} p p' q q' x = chain> p << q << x === transS p q << x by casttrans _ _ _ x === transS p' q' << x by pfi _ _ _ === p' << q' << x by sym (casttrans _ _ _ x) where open module C = Chain _==_ (ref {A}) (trans {A}) ref : {A:S} -> Refl {El A} _==_ ref {nat} {el n} = eq refN ref {pi A F pF}{el (Pair f pf)} = eq f=f where f=f : (x : El A) -> f x == f x f=f x = ref trans : {A:S} -> Trans {El A} _==_ trans {nat}{el x}{el y}{el z} (eq p) (eq q) = eq (transN p q) trans {pi A F pF}{el (Pair f pf)}{el (Pair g pg)}{el (Pair h ph)} (eq f=g)(eq g=h) = eq f=h where f=h : (x : El A) -> f x == h x f=h x = trans (f=g x) (g=h x) sym : {A:S} -> Sym {El A} _==_ sym {nat}{el x}{el y} (eq p) = eq (symN p) sym {pi A F pF}{el (Pair f pf)}{el (Pair g pg)} (eq f=g) = eq g=f where g=f : (x : El A) -> g x == f x g=f x = sym (f=g x)
{ "alphanum_fraction": 0.3997606224, "avg_line_length": 31.1366459627, "ext": "agda", "hexsha": "fa37bf22144fd7a59e883628266cd5e3a660f388", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/univ.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/univ.agda", "max_line_length": 95, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/univ.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 4108, "size": 10026 }
module _ where open import utility open import Function using (_∘_) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction using (Canₛ ; Canₛₕ) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap ; []env ; sig-stats ; Dom) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Relation.Nullary using (¬_ ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Data.Empty using (⊥ ; ⊥-elim) import Data.FiniteMap open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.All as All using (All ; _∷_ ; []) open import Data.Nat using (ℕ ; zero ; suc ; _+_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_ ; ∃ ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Relation.Binary.PropositionalEquality open import Esterel.Lang.Binding -- open import coherence open import blocked open import sn-calculus open import par-swap open import calculus open _≐_⟦_⟧e open _≐_⟦_⟧c open EvaluationContext1 open Context1 open import Data.Maybe sn≡ₑ-context : ∀ p q C -> (∀ p BVp FVp -> CorrectBinding p BVp FVp -> CB (C ⟦ p ⟧c)) -> p sn≡ₑ q -> (C ⟦ p ⟧c) sn≡ₑ (C ⟦ q ⟧c) sn≡ₑ-context p q C CBfill (rstp psn⟶q) = rstp (Context-sn⟶⟦⟧ C psn⟶q) sn≡ₑ-context p q C CBfill (rsym{p = .q}{BV = BV} {FV} psn≡ₑq CBq) with sn≡ₑ-context q p C CBfill psn≡ₑq ... | C⟦q⟧csn≡ₑC⟦p⟧c = rsym C⟦q⟧csn≡ₑC⟦p⟧c (CBfill q BV FV CBq) sn≡ₑ-context p .p C _ rref = rref sn≡ₑ-context p q C CBfill (rtrn{r = r} psn≡ₑr rsn≡ₑq) with sn≡ₑ-context p r C CBfill psn≡ₑr | sn≡ₑ-context r q C CBfill rsn≡ₑq ... | C⟦p⟧csn≡ₑC⟦r⟧c | C⟦r⟧csn≡ₑC⟦q⟧c = rtrn {r = C ⟦ r ⟧c} C⟦p⟧csn≡ₑC⟦r⟧c C⟦r⟧csn≡ₑC⟦q⟧c sn≡ₑ-sn⟶* : ∀ {p q} -> p sn⟶* q -> p sn≡ₑ q sn≡ₑ-sn⟶* rrefl = rref sn≡ₑ-sn⟶* (rstep psn⟶q psn⟶*q) = rtrn (rstp psn⟶q) (sn≡ₑ-sn⟶* psn⟶*q) ≡ₑ-context : ∀ {p q} -> ∀ C1 C2 -> (∀ {r r′ BVp FVp} -> CorrectBinding r BVp FVp -> r′ ≐ C2 ⟦ r ⟧c -> CB r′) -> p ≡ₑ q # C1 -> p ≡ₑ q # (C2 ++ C1) ≡ₑ-context C C′ CBfill ≡ₑrefl = ≡ₑrefl ≡ₑ-context C C′ CBfill (≡ₑtran p≡ₑr r≡ₑq) with ≡ₑ-context C C′ CBfill p≡ₑr ... | p≡ₑr#C with ≡ₑ-context C C′ CBfill r≡ₑq ... | r≡ₑq#C = ≡ₑtran p≡ₑr#C r≡ₑq#C ≡ₑ-context C C′ CBfill (≡ₑsymm{q = q} CBq p≡ₑq) with ≡ₑ-context C C′ CBfill p≡ₑq ... | q≡ₑp#C = ≡ₑsymm (CBfill CBq (++-is-nesting C′ C _)) q≡ₑp#C ≡ₑ-context C1 C2 CBfill (≡ₑctxt{_}{C''} C′⟦p⟧≐C′⟦p⟧c C′⟦q⟧≐C′⟦q⟧c p≡ₑq) with ≡ₑ-context (C1 ++ C'') C2 wrapCBfill p≡ₑq where wrapCBfill : ∀ {r r′ BVp FVp} -> CorrectBinding r BVp FVp -> r′ ≐ C2 ⟦ r ⟧c -> CB r′ wrapCBfill{r} CB C′⟦r⟧c = CBfill CB C′⟦r⟧c ... | p≡ₑq#[C′++C++C''] rewrite sym (++-assoc C2 C1 C'') = ≡ₑctxt C′⟦p⟧≐C′⟦p⟧c C′⟦q⟧≐C′⟦q⟧c p≡ₑq#[C′++C++C''] ≡ₑ-context C C′ CBfill (≡ₑstep p⟶₁q) = ≡ₑstep p⟶₁q θ-present-signals : Env → List Signal θ-present-signals θ = Data.List.mapMaybe (f ∘ _ₛ) DomS where DomS = (fst (Env.Dom θ)) f : Signal → Maybe Signal f S with (Env.Sig∈ S θ) ... | (no S∈) = nothing ... | (yes S∈) with sig-stats{S} θ S∈ ... | Signal.present = just S ... | Signal.absent = nothing ... | Signal.unknown = nothing get-signals : Term → List Signal get-signals nothin = [] get-signals pause = [] get-signals (signl S p) = [] get-signals (present S ∣⇒ p ∣⇒ p₁) = [] get-signals (emit S) = [] get-signals (p ∥ p₁) = [] get-signals (loop p) = [] get-signals (loopˢ p q) = [] get-signals (p >> p₁) = [] get-signals (suspend p S) = [] get-signals (trap p) = [] get-signals (exit x) = [] get-signals (shared s ≔ e in: p) = [] get-signals (s ⇐ e) = [] get-signals (var x ≔ e in: p) = [] get-signals (x ≔ e) = [] get-signals (if x ∣⇒ p ∣⇒ p₁) = [] get-signals (ρ⟨ θ , A ⟩· p) = θ-present-signals θ data eval-result : Set where output : List Signal → eval-result data non-constructive : Env → Term → Set where nc : ∀{p θ} → (Σ (Env × Term) λ {(θq , q) → (ρ⟨ θ , GO ⟩· p) sn≡ₑ (ρ⟨ θq , GO ⟩· q) × (manifests-as-non-constructive θq GO q)}) → non-constructive θ p data evalsn≡ₑ : Term → Env → eval-result → Set where evalsn-complete : ∀{p q θ θq} → (ρθ·p≡q : (ρ⟨ θ , GO ⟩· p) sn≡ₑ (ρ⟨ θq , GO ⟩· q)) → (complete-q : complete (ρ⟨ θq , GO ⟩· q)) → evalsn≡ₑ p θ (output (get-signals (ρ⟨ θq , GO ⟩· q))) data eval∥R∪sn≡ₑ : Term → Env → eval-result → Set where eval∥R∪sn-complete : ∀{p q θ θq} → (ρθ·p≡q : (ρ⟨ θ , GO ⟩· p) ∥R∪sn≡ₑ (ρ⟨ θq , GO ⟩· q)) → (complete-q : complete (ρ⟨ θq , GO ⟩· q)) → eval∥R∪sn≡ₑ p θ (output (get-signals (ρ⟨ θq , GO ⟩· q))) data eval≡ₑ : Term → Env → eval-result → Set where eval-complete : ∀{p q θ θq} → (ρθ·p≡q : (ρ⟨ θ , GO ⟩· p) ≡ₑ (ρ⟨ θq , GO ⟩· q) # []) → (complete-q : complete (ρ⟨ θq , GO ⟩· q)) → eval≡ₑ p θ (output (get-signals (ρ⟨ θq , GO ⟩· q)))
{ "alphanum_fraction": 0.5874045802, "avg_line_length": 33.8064516129, "ext": "agda", "hexsha": "c0c6346a50d31626da04fafbf4ca85692c812a17", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/eval.agda", "max_line_length": 129, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/eval.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 2464, "size": 5240 }
-- The comonad named Store by Russel O'Connor. -- See his WGP 2011 paper. {-# OPTIONS --copatterns #-} module Control.Comonad.Store where open import Function using (id) renaming (_∘′_ to _∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning) open ≡-Reasoning open import Axiom.FunctionExtensionality open import Util.Equality open import Control.Functor open import Control.Functor.NaturalTransformation open import Control.Comonad -- The Store comonad. record Store (I O : Set) : Set where constructor store field peek : I → O pos : I extract : O extract = peek pos {- not in scope: store extend′ : ∀ {B} → (Store I O → B) → Store I B extend′ f = store (f ∘ store peek) pos -} extend′ : ∀ {B} → (Store I O → B) → Store I B pos (extend′ f) = pos peek (extend′ f) = f ∘ s where s : I → Store I O peek (s i) = peek pos (s i) = i storeIsComonad : ∀ I → IsComonad (Store I) storeIsComonad I = record { extract = extract ; extend = extend ; extend-β = refl ; extend-η = refl ; extend-∘ = refl } where extract : ∀ {O} → Store I O → O extract (store v i) = v i extend : ∀ {A B} → (Store I A → B) → Store I A → Store I B extend f (store v i) = store (f ∘ store v) i extend-β : ∀ {A B} (f : Store I A → B) → extract ∘ extend f ≡ f extend-β f = refl StoreC : ∀ I → Comonad StoreC I = comonad (Store I) (storeIsComonad I) -- Functoriality, storeIsFunctor : ∀ I → IsFunctor (Store I) storeIsFunctor I = IsComonad.isFunctor (storeIsComonad I) StoreF : (I : Set) → Functor StoreF I = functor (Store I) (storeIsFunctor I) idLens : ∀ {I} → I → Store I I idLens = store id -- Van Laarhoven presentation record LStore (I O : Set) : Set₁ where -- constructor lstore field modifier : (FF : Functor) → let open Functor FF in (I → F I) → F O -- Laws. -- 0. Free theorem. field modifier-free : {FF GG : Functor} (N : NatTrans FF GG) → let open Functor FF using () renaming (F to F) in let open Functor GG using () renaming (F to G) in let open NatTrans N using () renaming (eta to η) in (f : I → F I) → η (modifier FF f) ≡ modifier GG (η ∘ f) -- 1. Identity -- modifier-id : -- Converting between store comonads. storeToLStore : ∀ {I O} → Store I O → LStore I O storeToLStore {I = I} {O = O} (store v i) = record { modifier = modifier ; modifier-free = modifier-free } where modifier : (FF : Functor) → let open Functor FF in (I → F I) → F O modifier FF f = map v (f i) where open Functor FF modifier-free : {FF GG : Functor} (N : NatTrans FF GG) → let open Functor FF using () renaming (F to F) in let open Functor GG using () renaming (F to G) in let open NatTrans N using () renaming (eta to η) in (f : I → F I) → η (modifier FF f) ≡ modifier GG (η ∘ f) modifier-free {FF = FF}{GG = GG} N f = begin η (modifier FF f) ≡⟨⟩ (η ∘ mapF v) (f i) ≡⟨ app-≡ (f i) (naturality _) ⟩ (mapG v ∘ η) (f i) ≡⟨⟩ modifier GG (η ∘ f) ∎ where open Functor FF using () renaming (F to F; map to mapF; map-id to mapF-id; map-∘ to mapF-∘) open Functor GG using () renaming (F to G; map to mapG; map-id to mapG-id; map-∘ to mapG-∘) open NatTrans N using (naturality) renaming (eta to η) lstoreToStore : ∀ {I O} → LStore I O → Store I O lstoreToStore {I = I} {O = O} l = LStore.modifier l (StoreF I) idLens -- Isomorphism. storeId : ∀ {I O} (s : Store I O) → lstoreToStore (storeToLStore s) ≡ s storeId {I = I}{O = O} (store v i) = begin lstoreToStore (storeToLStore (store v i)) ≡⟨⟩ LStore.modifier (storeToLStore (store v i)) (StoreF I) idLens ≡⟨⟩ Functor.map (StoreF I) v (idLens i) ≡⟨⟩ Functor.map (StoreF I) v (store id i) ≡⟨⟩ store (v ∘ id) i ≡⟨⟩ store v i ∎ -- -- BAD IDEA: the proof of modifier-free should not be compared with ≡ -- lstoreId : ∀ {I O} (l : LStore I O) → storeToLStore (lstoreToStore l) ≡ l -- lstoreId {I = I}{O = O} l = begin -- storeToLStore (lstoreToStore l) ≡⟨⟩ -- storeToLStore (modifier (StoreF I) idLens) ≡⟨⟩ -- storeToLStore (modifier (StoreF I) idLens) ≡⟨ {!!} ⟩ -- l ∎ -- where open LStore l
{ "alphanum_fraction": 0.5728565082, "avg_line_length": 29.0451612903, "ext": "agda", "hexsha": "4065077113d4cb066722abfe750bb59fec2263c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Control/Comonad/Store.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Control/Comonad/Store.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Control/Comonad/Store.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1550, "size": 4502 }
module z04-lists where open import bool open import eq open import nat open import nat-thms open import product-thms using (keep) open import logic -- needed for filter-idem {- -- p 75 'data' : datatype declaration '𝕃' : name of type being declared {ℓ} : level A : element type (polymorphic) 𝕃 is a type level function - takes a type (bound to 'A') - at level ℓ - returns a type - at level same level ℓ -} data 𝕃 {ℓ} (A : Set ℓ) : Set ℓ where [] : 𝕃 A _::_ : (x : A) (xs : 𝕃 A) → 𝕃 A -- from lists.agda [_] : ∀ {ℓ} {A : Set ℓ} → A → 𝕃 A [ x ] = x :: [] -- p 77 length : ∀ {ℓ} {A : Set ℓ } → 𝕃 A → ℕ length [] = 0 length (x :: xs) = suc (length xs) -- 78 _++_ : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) -- 79 map : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A → B) → 𝕃 A → 𝕃 B map f [] = [] map f (x :: xs) = f x :: map f xs -- 80 filter : ∀ {ℓ} {A : Set ℓ} → (A → 𝔹) → 𝕃 A → 𝕃 A filter p [] = [] filter p (x :: xs) = if p x then x :: r else r where r = filter p xs -- p 81 remove : ∀ {ℓ} {A : Set ℓ} (eq : A → A → 𝔹) (a : A) (l : 𝕃 A) → 𝕃 A remove eq a l = filter (λ x → ~ (eq a x)) l -- p 82 data maybe {ℓ} (A : Set ℓ) : Set ℓ where just : A → maybe A nothing : maybe A nth : ∀ {ℓ} {A : Set ℓ} → ℕ → 𝕃 A → maybe A nth _ [] = nothing nth 0 (x :: xs) = just x nth (suc n) (x :: xs) = nth n xs -- p 83 -- inefficient sreverse : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A sreverse [] = [] sreverse (h :: t) = sreverse t ++ [ h ] reverse-helper : ∀ {ℓ}{A : Set ℓ} → 𝕃 A → 𝕃 A → 𝕃 A reverse-helper h [] = h reverse-helper h (x :: xs) = reverse-helper (x :: h) xs reverse : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → 𝕃 A reverse l = reverse-helper [] l ------------------------------------------------------------------------------ -- p 84 Reasong about List Operations length-++ : ∀ {ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → length (l1 ++ l2) ≡ length l1 + length l2 length-++ [] l2 -- length ([] ++ l2) ≡ length [] + length l2 -- length l2 ≡ length l2 = refl length-++ (x :: xs) l2 -- length ((x :: xs) ++ l2) ≡ length (x :: xs) + length l2 -- suc (length (xs ++ l2)) ≡ suc (length xs + length l2) -- | rewrite -- IH ≡ -- v length-++ xs l2 -- suc (length xs + length l2) ≡ suc (length xs + length l2) = refl -- p 86 ++-assoc : ∀ {ℓ} {A : Set ℓ} (l1 l2 l3 : 𝕃 A) → (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 -- (([] ++ l2) ++ l3) ≡ ([] ++ (l2 ++ l3)) -- (l2 ++ l3) ≡ (l2 ++ l3) = refl ++-assoc (x :: xs) l2 l3 -- (((x :: xs) ++ l2) ++ l3) ≡ ((x :: xs) ++ (l2 ++ l3)) -- (x :: ((xs ++ l2) ++ l3)) ≡ (x :: (xs ++ (l2 ++ l3))) rewrite -- IH v ++-assoc xs l2 l3 -- (x :: (xs ++ (l2 ++ l3))) ≡ (x :: (xs ++ (l2 ++ l3))) = refl {- ------------------------------------------------------------------------------ -- p 87 - WITH for - any type A (of any level), - any predicate p on A - any list of A the length of the list after filtering l with p <= length of l -} length-filter : ∀ {ℓ} {A : Set ℓ} (p : A → 𝔹) (l : 𝕃 A) → length (filter p l) ≤ length l ≡ tt -- proof case-splits input list length-filter p [] -- length (filter p []) ≤ length [] ≡ tt -- 0 ≤ 0 ≡ tt = refl -- Consider cases where predicate returns tt or ff. -- The predicate return value is NOT an input to length-filter. -- WITH : extend pattern on left side with an additional pattern, here : | tt and | ff length-filter p (x :: l) with p x length-filter p (x :: l) | tt -- length (filter p l) < length l -- || length (filter p l) =ℕ length l ≡ tt = length-filter p l -- IH length-filter p (x :: l) | ff -- length (filter p l) < suc (length l) = -- || length (filter p l) =ℕ suc (length l) ≡ tt ≤-trans {length (filter p l)} (length-filter p l) -- IH (≤-suc (length l)) -- ≤-suc proves length l ≤ suc (length l) {- this is to see the goal for the non-nil case lf : ∀ {ℓ} {A : Set ℓ} (p : A → 𝔹) (l : 𝕃 A) → length (filter p l) ≤ length l ≡ tt lf p [] = refl lf p (x :: l) -- length (filter p (x :: l)) ≤ length (x :: l) ≡ tt -- length (if p x then x :: filter p l else filter p l) ≤ suc (length l) ≡ tt = {!!} ------------------------------------------------------------------------------ -- p 90 KEEP (called INSPECT in Agda standard library) filtering a list twice using same predicate gives the same result as filtering it once cannot use WITH because Agda only applies the p ≡ tt to the goal once, not the next iteration (see page 92 for more details) 'with keep (p x)' : make additional variable (here p') available -} filter-idem : ∀ {ℓ} {A : Set ℓ} (p : A → 𝔹) (l : 𝕃 A) → (filter p (filter p l)) ≡ (filter p l) filter-idem p [] -- filter p (filter p []) ≡ filter p [] -- [] ≡ [] = refl {- filter-idem p (x :: l) -- filter p (filter p (x :: l)) ≡ filter p (x :: l) -- -- filter p (if p x then x :: filter p l else filter p l) -- ≡ if p x then x :: filter p l else filter p l = {!!} -} filter-idem p (x :: l) with keep (p x) filter-idem p (x :: l) | tt , p' -- filter p (if p x then x :: filter p l else filter p l) -- ≡ if p x then x :: filter p l else filter p l rewrite -- agda does not instantiate 'p x' in goal -- must explicit use it below to change 'p x' to 'tt' (or 'ff' further below) p' -- filter p (if tt then x :: filter p l else filter p l) -- ≡ if tt then x :: filter p l else filter p l -- -- if p x then x :: filter p (filter p l) else filter p (filter p l) -- ≡ (x :: filter p l) -- use it again to eliminate the if | p' -- if tt then x :: filter p (filter p l) else filter p (filter p l) -- ≡ (x :: filter p l) -- -- (x :: filter p (filter p l)) ≡ (x :: filter p l) | filter-idem p l -- (x :: filter p l) ≡ (x :: filter p l) = refl filter-idem p (x :: l) | ff , p' -- filter p (if p x then x :: filter p l else filter p l) -- ≡ if p x then x :: filter p l else filter p l rewrite p' -- filter p (if ff then x :: filter p l else filter p l) -- ≡ if ff then x :: filter p l else filter p l -- -- filter p (filter p l) ≡ filter p l = filter-idem p l {- ------------------------------------------------------------------------------ -- p 93 reverse-helper args - reverse of the list processed so far - rest of list to be reversed tricky to figure out what general property of reverse-helper to prove -length of reverse-helper h l is sum of lengths of h and l -} length-reverse-helper : ∀ {ℓ} {A : Set ℓ} (h l : 𝕃 A) → length (reverse-helper h l) ≡ length h + length l length-reverse-helper h [] -- length (reverse-helper h []) ≡ length h + length [] -- length h ≡ length h + 0 rewrite +comm (length h) 0 -- length h ≡ length h -- also can do via -- rewrite +0 (length h) = refl = refl length-reverse-helper h (x :: xs) -- length (reverse-helper h (x :: xs)) ≡ length h + length (x :: xs) -- length (reverse-helper (x :: h) xs) ≡ length h + suc (length xs) rewrite length-reverse-helper (x :: h) xs -- IH -- suc (length h + length xs) ≡ length h + suc (length xs) | +suc (length h) (length xs) -- suc (length h + length xs) ≡ suc (length h + length xs) = refl length-reverse : ∀ {ℓ} {A : Set ℓ} (l : 𝕃 A) → length (reverse l) ≡ length l length-reverse l = length-reverse-helper [] l {- ------------------------------------------------------------------------------ -- p 95 conclusion : WITH and KEEP (aka INSPECT) -- p 96 EXERCISES -- 1 -} ------------------------- -- NOT TRUE -- 1a : ∀ {ℓ} {A : Set ℓ} (l1 l2 : 𝕃 A) → l1 ++ l2 ≡ l2 ++ l1 ------------------------- -- NOT TRUE -- 1b : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (l : 𝕃 A) → length (map f l) ≡ suc (length l) ------------------------- -- 1c: TRUE repeat : ∀ {ℓ} {A : Set ℓ} → ℕ → A → 𝕃 A repeat 0 a = [] repeat (suc n) a = a :: (repeat n a) 1c : ∀ {ℓ} {A : Set ℓ} {p : A → 𝔹} {a : A} (n : ℕ) → p a ≡ ff → filter p (repeat n a) ≡ [] 1c 0 prop -- filter p (repeat zero a) ≡ [] -- [] ≡ [] = refl 1c (suc n) prop -- filter p (repeat (suc n) a) ≡ [] -- if p a then a :: filter p (repeat n a) else filter p (repeat n a) ≡ [] rewrite prop -- if ff then a :: filter p (repeat n a) else filter p (repeat n a) ≡ [] -- filter p (repeat n a) ≡ [] = 1c n prop -- IH ------------------------- -- NOT TRUE -- 1d : ∀ {ℓ} {A : Set ℓ} (l : 𝕃 A) → is-empty l ≡ tt → is-empty (reverse l) ≡ ff ------------------------- -- TRUE 1e : ∀ {ℓ} {A : Set ℓ} (p : A -> 𝔹) (l1 l2 : 𝕃 A) → filter p (l1 ++ l2) ≡ filter p l1 ++ filter p l2 1e p [] l2 -- filter p ([] ++ l2) ≡ (filter p [] ++ filter p l2) -- filter p l2 ≡ filter p l2 = refl 1e p (x :: xs) l2 with keep (p x) 1e p (x :: xs) l2 | tt , p' -- if p x then x :: filter p (xs ++ l2) else filter p (xs ++ l2) -- ≡ ((if p x then x :: filter p xs else filter p xs) ++ filter p l2) rewrite p' -- if tt then x :: filter p (xs ++ l2) else filter p (xs ++ l2) -- ≡ ((if tt then x :: filter p xs else filter p xs) ++ filter p l2) -- -- (x :: filter p (xs ++ l2)) -- ≡ (x :: (filter p xs ++ filter p l2)) | 1e p xs l2 -- (x :: (filter p xs ++ filter p l2)) -- ≡ (x :: (filter p xs ++ filter p l2)) = refl 1e p (x :: xs) l2 | ff , p' -- if p x then x :: filter p (xs ++ l2) else filter p (xs ++ l2) -- ≡ ((if p x then x :: filter p xs else filter p xs) ++ filter p l2) rewrite p' -- if ff then x :: filter p (xs ++ l2) else filter p (xs ++ l2) -- ≡ ((if ff then x :: filter p xs else filter p xs) ++ filter p l2) -- -- filter p (xs ++ l2) ≡ (filter p xs ++ filter p l2) = 1e p xs l2 -- IH -------------------------------------------------- -- 2 ------------------------- -- 2a [] : 𝕃 Set (𝕃 _A_277) ------------------------- 2b : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → ℕ 2b [] = 0 2b (x :: xs) = suc (2b xs) ------------------------- -- Note: 2ci does not explicitly give ℓ -- Note: some other answers are probably OK - did not check 2c : ∀ {ℓ} {A : Set ℓ} {B : Set ℓ} {C : Set ℓ} → (A → B) → (B → C) → 𝕃 A → 𝕃 C 2c f g x = map g (map f x) -------------------------------------------------- -- 3 takeWhile : ∀ {ℓ} {A : Set ℓ} → (A → 𝔹) -> 𝕃 A → 𝕃 A takeWhile p [] = [] takeWhile p (x :: xs) = if p x then x :: takeWhile p xs else takeWhile p xs -------------------------------------------------- -- 4 4twr : ∀ {ℓ} {A : Set ℓ} {p : A → 𝔹} {a : A} (n : ℕ) → p a ≡ tt → takeWhile p (repeat n a) ≡ repeat n a 4twr zero p -- takeWhile p₁ (repeat zero a) ≡ repeat zero a -- [] ≡ [] = refl 4twr {l} {A} {pred} {a} (suc n) p -- takeWhile p₁ (repeat (suc n) a) ≡ repeat (suc n) a -- if p₁ a then a :: takeWhile p₁ (repeat n a) else takeWhile p₁ (repeat n a) -- ≡ (a :: repeat n a) rewrite p -- if tt then a :: takeWhile p₁ (repeat n a) else takeWhile p₁ (repeat n a) -- ≡ (a :: repeat n a) -- (a :: takeWhile p₁ (repeat n a)) -- ≡ (a :: repeat n a) | 4twr {l} {A} {pred} {a} n p -- (a :: repeat n a) ≡ (a :: repeat n a) = refl -------------------------------------------------- -- 5 take : ∀ {ℓ} {A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A take 0 _ = [] take _ [] = [] take (suc n) (x :: xs) = x :: take n xs -------------------------------------------------- -- 6 nthTail : ∀ {ℓ} {A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A nthTail 0 xs = xs nthTail _ [] = [] nthTail (suc n) (x :: xs) = nthTail n xs {- 6tn : ∀ {ℓ} {A : Set ℓ} {a : A} (n : ℕ) (l : 𝕃 A) → take n l ++ nthTail n l ≡ l 6tn zero l -- (take zero l ++ nthTail zero l) ≡ l -- l ≡ l = refl 6tn {ℓ} {A} {a} (suc n) l -- (take (suc n) l ++ nthTail (suc n) l) ≡ l rewrite 6tn {ℓ} {A} {a} n l = {!!} -} 6tn : ∀ {ℓ} {A : Set ℓ} {a : A} (n : ℕ) (l : 𝕃 A) → take n l ++ nthTail n l ≡ l 6tn zero [] -- (take zero [] ++ nthTail zero []) ≡ [] -- [] ≡ [] = refl 6tn (suc n) [] -- (take (suc n) [] ++ nthTail (suc n) []) ≡ [] -- [] ≡ [] = refl 6tn zero (x :: xs) -- (take zero (x :: xs) ++ nthTail zero (x :: xs)) ≡ (x :: xs) -- (x :: xs) ≡ (x :: xs) = refl 6tn {ℓ} {A} {a} (suc n) (x :: xs) -- (take (suc n) (x :: xs) ++ nthTail (suc n) (x :: xs)) ≡ (x :: xs) -- (x :: (take n xs ++ nthTail n xs)) ≡ (x :: xs) rewrite 6tn {ℓ} {A} {a} n xs -- (x :: xs) ≡ (x :: xs) = refl
{ "alphanum_fraction": 0.3800706621, "avg_line_length": 36.6522781775, "ext": "agda", "hexsha": "ff6fb52052a86db45f26d510887608f0182e603c", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z04-lists.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z04-lists.agda", "max_line_length": 115, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z04-lists.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 4834, "size": 15284 }
-- {-# OPTIONS -v tc.proj.like:10 #-} -- {-# OPTIONS -v tc.conv:10 #-} open import Common.Level module ProjectionLikeAndModules (A : Set) (a : A) where record ⊤ : Set where constructor tt data Wrap (W : Set) : Set where wrap : W → Wrap W data Bool : Set where true false : Bool -- postulate -- `or' should be projection like in the module parameters if : Bool → {ℓ : Level} {B : Set ℓ} → B → B → B if true a b = a if false a b = b postulate u v : ⊤ P : {ℓ : Level} {C : Set ℓ} (c : C) -> Set test : (y : Bool) -> P (if y (wrap u) (wrap tt)) -> P (if y (wrap tt) (wrap v)) test y h = h -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:536
{ "alphanum_fraction": 0.6115591398, "avg_line_length": 21.8823529412, "ext": "agda", "hexsha": "788165820d62d76ea1a1ad7976e54c9b547bf768", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ProjectionLikeAndModules.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ProjectionLikeAndModules.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ProjectionLikeAndModules.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 252, "size": 744 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field open import Algebra.Linear.Structures.Bundles module Algebra.Linear.Space.Product {k ℓ} (K : Field k ℓ) {a₁ ℓ₁} (V₁-space : VectorSpace K a₁ ℓ₁) {a₂ ℓ₂} (V₂-space : VectorSpace K a₂ ℓ₂) where open import Relation.Binary open import Level using (_⊔_) open import Data.Nat using (ℕ; zero; suc) renaming (_+_ to _+ℕ_) open import Algebra.Linear.Structures.VectorSpace import Algebra.FunctionProperties as FP open VectorSpaceField K open VectorSpace V₁-space using () renaming ( Carrier to V₁ ; _≈_ to _≈₁_ ; isEquivalence to ≈₁-isEquiv ; refl to ≈₁-refl ; sym to ≈₁-sym ; trans to ≈₁-trans ; _+_ to _+₁_ ; _∙_ to _∙₁_ ; -_ to -₁_ ; 0# to 0₁ ; +-identityˡ to +₁-identityˡ ; +-identityʳ to +₁-identityʳ ; +-identity to +₁-identity ; +-cong to +₁-cong ; +-assoc to +₁-assoc ; +-comm to +₁-comm ; *ᵏ-∙-compat to *ᵏ-∙₁-compat ; ∙-+-distrib to ∙₁-+₁-distrib ; ∙-+ᵏ-distrib to ∙₁-+ᵏ-distrib ; ∙-cong to ∙₁-cong ; ∙-identity to ∙₁-identity ; ∙-absorbˡ to ∙₁-absorbˡ ; ∙-absorbʳ to ∙₁-absorbʳ ; -‿cong to -₁‿cong ; -‿inverseˡ to -₁‿inverseˡ ; -‿inverseʳ to -₁‿inverseʳ ) open VectorSpace V₂-space using () renaming ( Carrier to V₂ ; _≈_ to _≈₂_ ; isEquivalence to ≈₂-isEquiv ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; _+_ to _+₂_ ; _∙_ to _∙₂_ ; -_ to -₂_ ; 0# to 0₂ ; +-identityˡ to +₂-identityˡ ; +-identityʳ to +₂-identityʳ ; +-identity to +₂-identity ; +-cong to +₂-cong ; +-assoc to +₂-assoc ; +-comm to +₂-comm ; *ᵏ-∙-compat to *ᵏ-∙₂-compat ; ∙-+-distrib to ∙₂-+₂-distrib ; ∙-+ᵏ-distrib to ∙₂-+ᵏ-distrib ; ∙-cong to ∙₂-cong ; ∙-identity to ∙₂-identity ; ∙-absorbˡ to ∙₂-absorbˡ ; ∙-absorbʳ to ∙₂-absorbʳ ; -‿cong to -₂‿cong ; -‿inverseˡ to -₂‿inverseˡ ; -‿inverseʳ to -₂‿inverseʳ ) open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent private V : Set (a₁ ⊔ a₂) V = V₁ × V₂ _≈_ : Rel V (ℓ₁ ⊔ ℓ₂) _≈_ = Pointwise _≈₁_ _≈₂_ ≈-isEquiv : IsEquivalence _≈_ ≈-isEquiv = ×-isEquivalence ≈₁-isEquiv ≈₂-isEquiv prod-setoid : Setoid (a₁ ⊔ a₂) (ℓ₁ ⊔ ℓ₂) prod-setoid = record { Carrier = V ; _≈_ = _≈_ ; isEquivalence = ≈-isEquiv } open IsEquivalence ≈-isEquiv renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) open import Algebra.FunctionProperties _≈_ open import Algebra.Structures _≈_ 0# : V 0# = (0₁ , 0₂) -_ : Op₁ V - (x₁ , x₂) = (-₁ x₁ , -₂ x₂) infixr 25 _+_ _+_ : Op₂ V (x₁ , x₂) + (y₁ , y₂) = (x₁ +₁ y₁ , x₂ +₂ y₂) infixr 30 _∙_ _∙_ : K' -> V -> V k ∙ (x₁ , x₂) = (k ∙₁ x₁ , k ∙₂ x₂) +-cong : Congruent₂ _+_ +-cong (r₁ , r₂) (s₁ , s₂) = ( +₁-cong r₁ s₁ , +₂-cong r₂ s₂ ) +-assoc : Associative _+_ +-assoc (x₁ , x₂) (y₁ , y₂) (z₁ , z₂) = ( +₁-assoc x₁ y₁ z₁ , +₂-assoc x₂ y₂ z₂ ) +-identityˡ : LeftIdentity 0# _+_ +-identityˡ (x₁ , x₂) = ( +₁-identityˡ x₁ , +₂-identityˡ x₂ ) +-identityʳ : RightIdentity 0# _+_ +-identityʳ (x₁ , x₂) = ( +₁-identityʳ x₁ , +₂-identityʳ x₂ ) +-identity : Identity 0# _+_ +-identity = +-identityˡ , +-identityʳ +-comm : Commutative _+_ +-comm (x₁ , x₂) (y₁ , y₂) = ( +₁-comm x₁ y₁ , +₂-comm x₂ y₂ ) *ᵏ-∙-compat : ∀ (a b : K') (u : V) -> ((a *ᵏ b) ∙ u) ≈ (a ∙ (b ∙ u)) *ᵏ-∙-compat a b (x₁ , x₂) = ( *ᵏ-∙₁-compat a b x₁ , *ᵏ-∙₂-compat a b x₂ ) ∙-+-distrib : ∀ (a : K') (u v : V) -> (a ∙ (u + v)) ≈ ((a ∙ u) + (a ∙ v)) ∙-+-distrib a (x₁ , x₂) (y₁ , y₂) = ( ∙₁-+₁-distrib a x₁ y₁ , ∙₂-+₂-distrib a x₂ y₂ ) ∙-+ᵏ-distrib : ∀ (a b : K') (u : V) -> ((a +ᵏ b) ∙ u) ≈ ((a ∙ u) + (b ∙ u)) ∙-+ᵏ-distrib a b (x₁ , x₂) = ( ∙₁-+ᵏ-distrib a b x₁ , ∙₂-+ᵏ-distrib a b x₂ ) ∙-cong : ∀ {a b : K'} {u v : V} -> a ≈ᵏ b -> u ≈ v -> (a ∙ u) ≈ (b ∙ v) ∙-cong rₓ (r₁ , r₂) = ( ∙₁-cong rₓ r₁ , ∙₂-cong rₓ r₂ ) ∙-identity : ∀ (x : V) → (1ᵏ ∙ x) ≈ x ∙-identity (x₁ , x₂) = ( ∙₁-identity x₁ , ∙₂-identity x₂ ) ∙-absorbˡ : ∀ (x : V) → (0ᵏ ∙ x) ≈ 0# ∙-absorbˡ (x₁ , x₂) = ( ∙₁-absorbˡ x₁ , ∙₂-absorbˡ x₂ ) -‿inverseˡ : LeftInverse 0# -_ _+_ -‿inverseˡ (x₁ , x₂) = ( -₁‿inverseˡ x₁ , -₂‿inverseˡ x₂ ) -‿inverseʳ : RightInverse 0# -_ _+_ -‿inverseʳ (x₁ , x₂) = ( -₁‿inverseʳ x₁ , -₂‿inverseʳ x₂ ) -‿inverse : Inverse 0# -_ _+_ -‿inverse = -‿inverseˡ , -‿inverseʳ -‿cong : Congruent₁ -_ -‿cong (x₁ , x₂) = ( -₁‿cong x₁ , -₂‿cong x₂ ) isMagma : IsMagma _+_ isMagma = record { isEquivalence = ≈-isEquiv ; ∙-cong = +-cong } isSemigroup : IsSemigroup _+_ isSemigroup = record { isMagma = isMagma ; assoc = +-assoc } isMonoid : IsMonoid _+_ 0# isMonoid = record { isSemigroup = isSemigroup ; identity = +-identity } isGroup : IsGroup _+_ 0# -_ isGroup = record { isMonoid = isMonoid ; inverse = -‿inverse ; ⁻¹-cong = -‿cong } isAbelianGroup : IsAbelianGroup _+_ 0# -_ isAbelianGroup = record { isGroup = isGroup ; comm = +-comm } isVectorSpace : IsVectorSpace K _≈_ _+_ _∙_ -_ 0# isVectorSpace = record { isAbelianGroup = isAbelianGroup ; *ᵏ-∙-compat = *ᵏ-∙-compat ; ∙-+-distrib = ∙-+-distrib ; ∙-+ᵏ-distrib = ∙-+ᵏ-distrib ; ∙-cong = ∙-cong ; ∙-identity = ∙-identity ; ∙-absorbˡ = ∙-absorbˡ } vectorSpace : VectorSpace K (a₁ ⊔ a₂) (ℓ₁ ⊔ ℓ₂) vectorSpace = record { isVectorSpace = isVectorSpace }
{ "alphanum_fraction": 0.5424511545, "avg_line_length": 25.9447004608, "ext": "agda", "hexsha": "fcda9498d211da87f491dcdd6db183a84c302ff7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Space/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Space/Product.agda", "max_line_length": 85, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Space/Product.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 2636, "size": 5630 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude import LibraBFT.Concrete.Properties.PreferredRound as PR open import LibraBFT.Concrete.Obligations -- In this module, we (will) prove the implementation obligation for the PreferredRound rule. module LibraBFT.Impl.Properties.PreferredRound where postulate -- TODO-3 : prove. Note that this is a substantial -- undertaking that should not be started before we have -- a proof for the similar-but-much-simpler VotesOnce -- property, and also not before we have an -- implementation (perhaps some incremental extension of -- our current fake/simple implementaion) that we can -- reasonably hope actually ensures the property! pr₁ : PR.ImplObligation₁
{ "alphanum_fraction": 0.7205882353, "avg_line_length": 44.347826087, "ext": "agda", "hexsha": "8957f5ccecf6ef11768787fae465ff3548a283ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Properties/PreferredRound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Properties/PreferredRound.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Properties/PreferredRound.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 1020 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Gysin where open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Functions.Embedding open import Cubical.Relation.Nullary open import Cubical.Data.Unit open import Cubical.Data.Bool open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Nat.Order open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Data.Fin open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.HITs.Truncation as T open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Pushout.Flattening open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.HITs.Join open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Hopf open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.Base open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.RingStructure.GradedCommutativity open PlusBis -- There seems to be some problems with the termination checker. -- Spelling out integer induction with 3 base cases like this -- solves the issue. private Int-ind : ∀ {ℓ} (P : ℤ → Type ℓ) → P (pos zero) → P (pos 1) → P (negsuc zero) → ((x y : ℤ) → P x → P y → P (x + y)) → (x : ℤ) → P x Int-ind P z one min ind (pos zero) = z Int-ind P z one min ind (pos (suc zero)) = one Int-ind P z one min ind (pos (suc (suc n))) = ind (pos (suc n)) 1 (Int-ind P z one min ind (pos (suc n))) one Int-ind P z one min ind (negsuc zero) = min Int-ind P z one min ind (negsuc (suc n)) = ind (negsuc n) (negsuc zero) (Int-ind P z one min ind (negsuc n)) min -- The untruncated version (coHomRed n (S₊ n)), i.e. -- (S₊∙ n →∙ coHomK-ptd n) is in fact equal to -- (coHomRed n (S₊ n)). Its useful to formulate -- (S₊∙ n →∙ coHomK-ptd n) as a group in its own right -- and prove it equivalent to (coHomRed n (S₊ n)). -- We start with the addition private _++_ : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (A →∙ coHomK-ptd n) → (A →∙ coHomK-ptd n) → (A →∙ coHomK-ptd n) fst (f ++ g) x = fst f x +ₖ fst g x snd (f ++ g) = cong₂ _+ₖ_ (snd f) (snd g) ∙ rUnitₖ _ (0ₖ _) -- If we truncate the addition, we get back our usual -- addition on (coHomRed n (S₊ n)) addAgree : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (x y : A →∙ coHomK-ptd n) → Path (fst (coHomRedGrDir n A)) ∣ x ++ y ∣₂ (∣ x ∣₂ +ₕ∙ ∣ y ∣₂) addAgree {A = A} zero f g = cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) refl) addAgree {A = A} (suc zero) f g = cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) refl) addAgree {A = A} (suc (suc n)) f g = cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) refl) -- We formulate (S₊∙ n →∙ coHomK-ptd n) as a group, πS. module _ where open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open GroupStr open IsGroup open IsMonoid open IsSemigroup πS : (n : ℕ) → Group ℓ-zero fst (πS n) = S₊∙ n →∙ coHomK-ptd n 1g (snd (πS n)) = (λ _ → 0ₖ n) , refl GroupStr._·_ (snd (πS n)) f g = (λ x → fst f x +ₖ fst g x) , cong₂ _+ₖ_ (snd f) (snd g) ∙ rUnitₖ n (0ₖ n) inv (snd (πS n)) f = (λ x → -ₖ fst f x) , cong -ₖ_ (snd f) ∙ -0ₖ {n = n} isGroup (snd (πS n)) = makeIsGroup (helper n) (λ x y z → →∙Homogeneous≡ (isHomogeneousKn n) (funExt λ w → assocₖ n (fst x w) (fst y w) (fst z w))) (λ { (f , p) → →∙Homogeneous≡ (isHomogeneousKn n) (funExt λ x → rUnitₖ n (f x)) }) (λ { (f , p) → →∙Homogeneous≡ (isHomogeneousKn n) (funExt λ x → lUnitₖ n (f x)) }) (λ { (f , p) → →∙Homogeneous≡ (isHomogeneousKn n) (funExt λ x → rCancelₖ n (f x)) }) (λ { (f , p) → →∙Homogeneous≡ (isHomogeneousKn n) (funExt λ x → lCancelₖ n (f x)) }) where helper : (n : ℕ) → isSet (S₊∙ n →∙ coHomK-ptd n) helper zero = isOfHLevelΣ 2 (isSetΠ (λ _ → isSetℤ)) λ _ → isOfHLevelPath 2 isSetℤ _ _ helper (suc n) = isOfHLevel↑∙' 0 n isSetπS : (n : ℕ) → isSet (S₊∙ n →∙ coHomK-ptd n) isSetπS = λ n → is-set (snd (πS n)) -- πS is equivalent to (coHomRed n (S₊∙ n)) K : (n : ℕ) → GroupIso (coHomRedGrDir n (S₊∙ n)) (πS n) fst (K n) = setTruncIdempotentIso (isSetπS n) snd (K zero) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSetπS 0) _ _) λ f g → →∙Homogeneous≡ (isHomogeneousKn 0) refl) snd (K (suc zero)) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSetπS 1) _ _) λ f g → →∙Homogeneous≡ (isHomogeneousKn 1) refl) snd (K (suc (suc n))) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 (isSetπS _) _ _) λ f g → →∙Homogeneous≡ (isHomogeneousKn _) refl) -- πS has the following generator genFunSpace : (n : ℕ) → S₊∙ n →∙ coHomK-ptd n fst (genFunSpace zero) false = 1 fst (genFunSpace zero) true = 0 snd (genFunSpace zero) = refl fst (genFunSpace (suc n)) = ∣_∣ snd (genFunSpace (suc zero)) = refl snd (genFunSpace (suc (suc n))) = refl πS≅ℤ : (n : ℕ) → GroupIso (πS n) ℤGroup fst (πS≅ℤ zero) = IsoBool→∙ snd (πS≅ℤ zero) = makeIsGroupHom λ _ _ → refl πS≅ℤ (suc n) = compGroupIso (invGroupIso (K (suc n))) (compGroupIso (GroupEquiv→GroupIso (coHomGr≅coHomRedGr n (S₊∙ (suc n)))) (Hⁿ-Sⁿ≅ℤ n)) Iso-πS-ℤ : (n : ℕ) → Iso (S₊∙ (suc n) →∙ coHomK-ptd (suc n)) ℤ Iso-πS-ℤ n = compIso (invIso (setTruncIdempotentIso (isOfHLevel↑∙' 0 n))) (compIso (equivToIso (fst (coHomGr≅coHomRedGr n (S₊∙ (suc n))))) (fst (Hⁿ-Sⁿ≅ℤ n))) Iso-πS-ℤ' : (n : ℕ) → Iso (S₊∙ n →∙ coHomK-ptd n) ℤ Iso-πS-ℤ' n = fst (πS≅ℤ n) Iso-πS-ℤPres1 : (n : ℕ) → Iso.fun (fst (πS≅ℤ (suc n))) (∣_∣ , refl) ≡ pos 1 Iso-πS-ℤPres1 zero = refl Iso-πS-ℤPres1 (suc n) = cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ n))) (lem n) ∙ Iso-πS-ℤPres1 n where lem : (n : ℕ) → Iso.fun (fst (suspensionAx-Sn n n)) ∣ ∣_∣ ∣₂ ≡ ∣ ∣_∣ ∣₂ lem zero = cong ∣_∣₂ (funExt λ x → transportRefl (∣ x ∣ +ₖ (0ₖ 1)) ∙ rUnitₖ 1 ∣ x ∣) lem (suc n) = cong ∣_∣₂ (funExt λ x → (λ i → transportRefl ((ΩKn+1→Kn (suc (suc n)) (transp (λ j → 0ₖ (suc (suc (suc n))) ≡ ∣ merid north (~ j ∧ ~ i) ∣) i (λ z → ∣ compPath-filler (merid (transportRefl (transportRefl x i) i)) (sym (merid north)) i z ∣)))) i) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc (suc n))) ∣ x ∣) -- The first step of the Gysin sequence is to formulate -- an equivalence g : Kᵢ ≃ (Sⁿ →∙ Kᵢ₊ₙ) module g-base where g : (n : ℕ) (i : ℕ) → coHomK i → (S₊∙ n →∙ coHomK-ptd (i +' n)) fst (g n i x) y = x ⌣ₖ (genFunSpace n) .fst y snd (g n i x) = cong (x ⌣ₖ_) ((genFunSpace n) .snd) ∙ ⌣ₖ-0ₖ i n x -- We give another version of g which will be easier to work with now G : (n : ℕ) (i : ℕ) → coHomK i → (S₊∙ n →∙ coHomK-ptd (n +' i)) fst (G n i x) y = (genFunSpace n) .fst y ⌣ₖ x snd (G n i x) = cong (_⌣ₖ x) ((genFunSpace n) .snd) ∙ 0ₖ-⌣ₖ n i x -ₖ'^-Iso : (n : ℕ) (i : ℕ) → (S₊∙ n →∙ coHomK-ptd (i +' n)) ≃ (S₊∙ n →∙ coHomK-ptd (i +' n)) -ₖ'^-Iso n i = isoToEquiv (iso F F FF FF) where lem : (i n : ℕ) → (-ₖ'^ i · n) (snd (coHomK-ptd (i +' n))) ≡ 0ₖ _ lem zero zero = refl lem zero (suc zero) = refl lem zero (suc (suc n)) = refl lem (suc zero) zero = refl lem (suc (suc i)) zero = refl lem (suc i) (suc n) = refl F : S₊∙ n →∙ coHomK-ptd (i +' n) → S₊∙ n →∙ coHomK-ptd (i +' n) fst (F f) x = (-ₖ'^ i · n) (fst f x) snd (F f) = cong (-ₖ'^ i · n) (snd f) ∙ lem i n FF : (x : _) → F (F x) ≡ x FF x = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ y → -ₖ'-gen² i n _ _ (fst x y)) transpPres0ₖ : ∀ {k m : ℕ} (p : k ≡ m) → subst coHomK p (0ₖ k) ≡ 0ₖ m transpPres0ₖ {k = k} = J (λ m p → subst coHomK p (0ₖ k) ≡ 0ₖ m) (transportRefl _) -- There will be some index swapping going on. We state this explicitly, since we will -- need to trace the maps later indexSwap : (n : ℕ) (i : ℕ) → (S₊∙ n →∙ coHomK-ptd (n +' i)) ≃ (S₊∙ n →∙ coHomK-ptd (i +' n)) indexSwap n i = isoToEquiv (iso (λ f → (λ x → subst coHomK (+'-comm n i) (fst f x)) , cong (subst coHomK (+'-comm n i)) (snd f) ∙ transpPres0ₖ (+'-comm n i)) (λ f → (λ x → subst coHomK (sym (+'-comm n i)) (fst f x)) , (cong (subst coHomK (sym (+'-comm n i))) (snd f) ∙ transpPres0ₖ (sym (+'-comm n i)))) (λ f → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → transportTransport⁻ _ (f .fst x))) λ f → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → transportTransport⁻ _ (f .fst x))) -- g is a composition of G and our two previous equivs. g≡ : (n : ℕ) (i : ℕ) → g n i ≡ λ x → fst (compEquiv (indexSwap n i) (-ₖ'^-Iso n i)) ((G n i) x) g≡ n i = funExt (λ f → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ y → gradedComm'-⌣ₖ _ _ f (genFunSpace n .fst y))) -- We need a third Iso. suspKn-Iso-fun : (n m : ℕ) → (S₊∙ (suc n) →∙ coHomK-ptd (suc m)) → (S₊ n → coHomK m) suspKn-Iso-fun zero m (f , p) false = ΩKn+1→Kn _ (sym p ∙∙ cong f loop ∙∙ p) suspKn-Iso-fun zero m (f , p) true = 0ₖ _ suspKn-Iso-fun (suc n) m (f , p) x = ΩKn+1→Kn _ (sym p ∙∙ cong f (merid x ∙ sym (merid (ptSn _))) ∙∙ p) suspKn-Iso-fun∙ : (n m : ℕ) → (f : _) → suspKn-Iso-fun n m f (ptSn _) ≡ 0ₖ m suspKn-Iso-fun∙ zero m = λ _ → refl suspKn-Iso-fun∙ (suc n) m (f , p) = cong (ΩKn+1→Kn m) (cong (sym p ∙∙_∙∙ p) (cong (cong f) (rCancel (merid (ptSn _))))) ∙∙ cong (ΩKn+1→Kn m) (∙∙lCancel p) ∙∙ ΩKn+1→Kn-refl m suspKn-Iso-inv : (n m : ℕ) → (S₊∙ n →∙ coHomK-ptd m) → (S₊∙ (suc n) →∙ coHomK-ptd (suc m)) fst (suspKn-Iso-inv zero m (f , p)) base = 0ₖ _ fst (suspKn-Iso-inv zero m (f , p)) (loop i) = Kn→ΩKn+1 m (f false) i snd (suspKn-Iso-inv zero m (f , p)) = refl fst (suspKn-Iso-inv (suc n) m (f , p)) north = 0ₖ _ fst (suspKn-Iso-inv (suc n) m (f , p)) south = 0ₖ _ fst (suspKn-Iso-inv (suc n) m (f , p)) (merid a i) = Kn→ΩKn+1 m (f a) i snd (suspKn-Iso-inv (suc n) m (f , p)) = refl suspKn-Iso : (n m : ℕ) → Iso (S₊∙ (suc n) →∙ coHomK-ptd (suc m)) (S₊∙ n →∙ coHomK-ptd m) Iso.fun (suspKn-Iso n m) f = (suspKn-Iso-fun n m f) , (suspKn-Iso-fun∙ n m f) Iso.inv (suspKn-Iso n m) = suspKn-Iso-inv n m Iso.rightInv (suspKn-Iso zero m) (f , p) = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { false → cong (ΩKn+1→Kn m) (sym (rUnit _)) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 _) (f false) ; true → sym p}) Iso.rightInv (suspKn-Iso (suc n) m) (f , p) = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → (λ i → ΩKn+1→Kn m (sym (rUnit (cong-∙ (suspKn-Iso-inv (suc n) m (f , p) .fst) (merid x) (sym (merid (ptSn _))) i)) i)) ∙∙ cong (ΩKn+1→Kn m) (cong (Kn→ΩKn+1 m (f x) ∙_) (cong sym (cong (Kn→ΩKn+1 m) p ∙ Kn→ΩKn+10ₖ m)) ∙ sym (rUnit _)) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 _) (f x)) Iso.leftInv (suspKn-Iso zero m) (f , p) = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { base → sym p ; (loop i) j → lem j i}) where lem : PathP (λ i → p (~ i) ≡ p (~ i)) (Kn→ΩKn+1 m (ΩKn+1→Kn m (sym p ∙∙ cong f loop ∙∙ p))) (cong f loop) lem = Iso.rightInv (Iso-Kn-ΩKn+1 _) _ ◁ λ i → doubleCompPath-filler (sym p) (cong f loop) p (~ i) Iso.leftInv (suspKn-Iso (suc n) m) (f , p) = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { north → sym p ; south → sym p ∙ cong f (merid (ptSn _)) ; (merid a i) j → lem a j i}) where lem : (a : S₊ (suc n)) → PathP (λ i → p (~ i) ≡ (sym p ∙ cong f (merid (ptSn (suc n)))) i) (Kn→ΩKn+1 m (ΩKn+1→Kn m (sym p ∙∙ cong f (merid a ∙ sym (merid (ptSn _))) ∙∙ p))) (cong f (merid a)) lem a = Iso.rightInv (Iso-Kn-ΩKn+1 _) _ ◁ λ i j → hcomp (λ k → λ { (i = i1) → (f (merid a j)) ; (j = i0) → p (k ∧ ~ i) ; (j = i1) → compPath-filler' (sym p) (cong f (merid (ptSn _))) k i }) (f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ i) j)) glIsoInvHom : (n m : ℕ) (x y : coHomK n) (z : S₊ (suc m)) → Iso.inv (suspKn-Iso _ _) (G m n (x +ₖ y)) .fst z ≡ Iso.inv (suspKn-Iso _ _) (G m n x) .fst z +ₖ Iso.inv (suspKn-Iso _ _) (G m n y) .fst z glIsoInvHom zero zero x y base = refl glIsoInvHom (suc n) zero x y base = refl glIsoInvHom zero zero x y (loop i) j = lem j i where lem : (cong (Iso.inv (suspKn-Iso _ _) (G zero zero (x + y)) .fst) loop) ≡ cong₂ _+ₖ_ (cong (Iso.inv (suspKn-Iso _ _) (G zero zero x) .fst) loop) (cong (Iso.inv (suspKn-Iso _ _) (G zero zero y) .fst) loop) lem = Kn→ΩKn+1-hom 0 x y ∙ ∙≡+₁ (cong (Iso.inv (suspKn-Iso _ _) (G zero zero x) .fst) loop) (cong (Iso.inv (suspKn-Iso _ _) (G zero zero y) .fst) loop) glIsoInvHom (suc n) zero x y (loop i) j = lem j i where lem : Kn→ΩKn+1 (suc n) ((pos (suc zero)) ·₀ (x +ₖ y)) ≡ cong₂ _+ₖ_ (cong (Iso.inv (suspKn-Iso zero (zero +' suc n)) (G zero (suc n) x) .fst) loop) (cong (Iso.inv (suspKn-Iso zero (zero +' suc n)) (G zero (suc n) y) .fst) loop) lem = cong (Kn→ΩKn+1 (suc n)) (lUnit⌣ₖ _ (x +ₖ y)) ∙∙ Kn→ΩKn+1-hom (suc n) x y ∙∙ (λ i → ∙≡+₂ n (Kn→ΩKn+1 (suc n) (lUnit⌣ₖ _ x (~ i))) (Kn→ΩKn+1 (suc n) (lUnit⌣ₖ _ y (~ i))) i) glIsoInvHom zero (suc m) x y north = refl glIsoInvHom zero (suc m) x y south = refl glIsoInvHom zero (suc m) x y (merid a i) j = lem j i where lem : Kn→ΩKn+1 (suc m) (_⌣ₖ_ {n = suc m} {m = zero} ∣ a ∣ (x + y)) ≡ cong₂ _+ₖ_ (Kn→ΩKn+1 (suc m) (_⌣ₖ_ {n = suc m} {m = zero} ∣ a ∣ x)) (Kn→ΩKn+1 (suc m) (_⌣ₖ_ {n = suc m} {m = zero} ∣ a ∣ y)) lem = cong (Kn→ΩKn+1 (suc m)) (leftDistr-⌣ₖ (suc m) 0 ∣ a ∣ x y) ∙∙ Kn→ΩKn+1-hom (suc m) _ _ ∙∙ ∙≡+₂ _ _ _ glIsoInvHom (suc n) (suc m) x y north = refl glIsoInvHom (suc n) (suc m) x y south = refl glIsoInvHom (suc n) (suc m) x y (merid a i) j = lem j i where lem : Kn→ΩKn+1 (suc (suc (m +ℕ n))) (_⌣ₖ_ {n = suc m} {m = suc n} ∣ a ∣ (x +ₖ y)) ≡ cong₂ _+ₖ_ (Kn→ΩKn+1 (suc (suc (m +ℕ n))) (_⌣ₖ_ {n = suc m} {m = suc n} ∣ a ∣ x)) (Kn→ΩKn+1 (suc (suc (m +ℕ n))) (_⌣ₖ_ {n = suc m} {m = suc n} ∣ a ∣ y)) lem = cong (Kn→ΩKn+1 (suc (suc (m +ℕ n)))) (leftDistr-⌣ₖ (suc m) (suc n) ∣ a ∣ x y) ∙∙ Kn→ΩKn+1-hom _ _ _ ∙∙ ∙≡+₂ _ _ _ private +'-suc : (n m : ℕ) → suc n +' m ≡ suc (n +' m) +'-suc zero zero = refl +'-suc (suc n) zero = refl +'-suc zero (suc m) = refl +'-suc (suc n) (suc m) = refl decomposeG : (i n : ℕ) (x : coHomK i) → G (suc n) i x ≡ subst (λ x → S₊∙ (suc n) →∙ coHomK-ptd x) (sym (+'-suc n i)) (Iso.inv (suspKn-Iso n _) (G n i x)) decomposeG zero zero x = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ z → (λ i → x ·₀ ∣ z ∣) ∙ h3 x z ∙ sym (transportRefl _)) where h3 : (x : ℤ) (z : S¹) → _·₀_ {n = 1} x ∣ z ∣ ≡ fst (Iso.inv (suspKn-Iso 0 zero) (G zero zero x)) z h3 = Int-ind _ (λ { base → refl ; (loop i) j → Kn→ΩKn+10ₖ zero (~ j) i}) (λ { base → refl ; (loop i) j → rUnit (cong ∣_∣ₕ (lUnit loop j)) j i}) (λ { base → refl ; (loop i) j → rUnit (cong ∣_∣ₕ (sym loop)) j i}) λ x y inx iny z → rightDistr-⌣ₖ 0 1 x y ∣ z ∣ ∙∙ cong₂ _+ₖ_ (inx z) (iny z) ∙∙ sym (glIsoInvHom zero zero x y z) decomposeG (suc i) zero x = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ z → lem z ∙ sym (transportRefl ((Iso.inv (suspKn-Iso zero (suc i)) (G zero (suc i) x)) .fst z))) where lem : (z : S₊ 1) → _ ≡ Iso.inv (suspKn-Iso zero (suc i)) (G zero (suc i) x) .fst z lem base = refl lem (loop k) j = Kn→ΩKn+1 (suc i) (lUnit⌣ₖ _ x (~ j)) k decomposeG zero (suc n) x = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ z → main x z ∙ λ i → transportRefl (Iso.inv (suspKn-Iso (suc n) (suc n)) (G (suc n) zero x)) (~ i) .fst z) where +merid : rUnitₖ (suc (suc n)) ∣ south ∣ ≡ cong ∣_∣ₕ (merid (ptSn _)) +merid = sym (lUnit _) ∙ cong (cong ∣_∣ₕ) λ j i → transp (λ _ → S₊ (suc (suc n))) (i ∨ j) (merid (ptSn (suc n)) i) lem : (a : S₊ (suc n)) → PathP (λ i → ∣ merid a i ∣ₕ ≡ Kn→ΩKn+1 (suc n) (∣ a ∣ +ₖ (0ₖ _)) i) refl (sym (rUnitₖ (suc (suc n)) ∣ south ∣)) lem a = flipSquare ((λ i j → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) i j ∣ₕ) ▷ cong (Kn→ΩKn+1 (suc n)) (sym (rUnitₖ (suc n) ∣ a ∣ₕ))) ▷ sym (cong sym +merid) lem₂ : (a : S₊ (suc n)) → (λ i → -ₖ ∣ merid a i ∣) ≡ Kn→ΩKn+1 (suc n) (-ₖ ∣ a ∣) lem₂ a = cong (cong ∣_∣ₕ) (sym (symDistr (merid a) (sym (merid (ptSn (suc n)))))) ∙ sym (Kn→ΩKn+1-ₖ (suc n) ∣ a ∣) main : (x : ℤ) (z : S₊ (suc (suc n))) → _⌣ₖ_ {n = suc (suc n)} {m = 0} ∣ z ∣ x ≡ Iso.inv (suspKn-Iso (suc n) (suc n)) (G (suc n) zero x) .fst z main = Int-ind _ (λ { north → refl ; south → refl ; (merid a i) j → Kn→ΩKn+10ₖ (suc n) (~ j) i}) (λ { north → refl ; south → refl ; (merid a i) j → hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → rUnitₖ (suc (suc n)) ∣ south ∣ (~ k) ; (j = i0) → rUnitₖ (suc (suc n)) ∣ merid a i ∣ (~ k) ; (j = i1) → lem a i k}) ∣ merid a i ∣ₕ}) (λ { north → refl ; south → refl ; (merid a i) j → lem₂ a j i}) λ x y indx indy z → leftDistr-⌣ₖ _ _ ∣ z ∣ x y ∙ cong₂ _+ₖ_ (indx z) (indy z) ∙ sym (glIsoInvHom _ _ _ _ _) decomposeG (suc i) (suc n) x = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ z → lem z ∙ λ j → transportRefl ((Iso.inv (suspKn-Iso (suc n) (suc (suc (n +ℕ i)))) (G (suc n) (suc i) x))) (~ j) .fst z) where lem : (z : S₊ (suc (suc n))) → _ lem north = refl lem south = refl lem (merid a i) = refl isEquivGzero : (i : ℕ) → isEquiv (G zero i) isEquivGzero i = isoToIsEquiv (iso _ (λ f → fst f false) (λ {(f , p) → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { false → rUnitₖ _ (f false) ; true → sym p})}) (lUnit⌣ₖ _)) isEquivG : (n i : ℕ) → isEquiv (G n i) isEquivG zero i = isoToIsEquiv (iso _ (λ f → fst f false) (λ {(f , p) → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { false → rUnitₖ _ (f false) ; true → sym p})}) (lUnit⌣ₖ _)) isEquivG (suc n) i = subst isEquiv (sym (funExt (decomposeG i n))) (compEquiv (compEquiv (G n i , isEquivG n i) (isoToEquiv (invIso (suspKn-Iso n (n +' i))))) (pathToEquiv (λ j → S₊∙ (suc n) →∙ coHomK-ptd (+'-suc n i (~ j)))) .snd) isEquiv-g : (n i : ℕ) → isEquiv (g n i) isEquiv-g n i = subst isEquiv (sym (g≡ n i)) (compEquiv (G n i , isEquivG n i) (compEquiv (indexSwap n i) (-ₖ'^-Iso n i)) .snd) -- We now generealise the equivalence g to also apply to arbitrary fibrations (Q : B → Type) -- satisfying (Q * ≃∙ Sⁿ) module _ {ℓ} (B : Pointed ℓ) (Q : typ B → Pointed ℓ-zero) (conB : (x y : typ B) → ∥ x ≡ y ∥₁) (n : ℕ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (Q (pt B))) ≡ snd (S₊∙ n)) (c : (b : typ B) → (Q b →∙ coHomK-ptd n)) (c-pt : c (pt B) .fst ≡ ((λ x → genFunSpace n .fst (Iso.fun Q-is x)))) where g : (b : typ B) (i : ℕ) → coHomK i → (Q b →∙ coHomK-ptd (i +' n)) fst (g b i x) y = x ⌣ₖ c b .fst y snd (g b i x) = cong (x ⌣ₖ_) (c b .snd) ∙ ⌣ₖ-0ₖ i n x g-hom : (b : typ B) (i : ℕ) → (x y : coHomK i) → g b i (x +ₖ y) ≡ ((g b i x) ++ (g b i y)) g-hom b i x y = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ z → rightDistr-⌣ₖ i n x y (c b .fst z)) gPathP' : (i : ℕ) → PathP (λ j → coHomK i → (isoToPath Q-is j , ua-gluePath (isoToEquiv Q-is) (Q-is-ptd) j) →∙ coHomK-ptd (i +' n)) (g (pt B) i) (g-base.g n i) gPathP' i = toPathP (funExt λ x → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ y → (λ i → transportRefl (transportRefl x i ⌣ₖ c (pt B) .fst (Iso.inv Q-is (transportRefl y i))) i) ∙ cong (x ⌣ₖ_) (funExt⁻ c-pt (Iso.inv Q-is y) ∙ cong (genFunSpace n .fst) (Iso.rightInv Q-is y)))) g-base : (i : ℕ) → isEquiv (g (pt B) i) g-base i = transport (λ j → isEquiv (gPathP' i (~ j))) (g-base.isEquiv-g n i) g-equiv : (b : typ B) (i : ℕ) → isEquiv (g b i) g-equiv b i = PT.rec (isPropIsEquiv _) (J (λ b _ → isEquiv (g b i)) (g-base i)) (conB (pt B) b) module _ {ℓ} (B : Pointed ℓ) (Q : typ B → Pointed ℓ-zero) (conB : (x y : typ B) → ∥ x ≡ y ∥₂) (n : ℕ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (Q (pt B))) ≡ snd (S₊∙ n)) where is-setQ→K : (b : typ B) → isSet (Q b →∙ coHomK-ptd n) is-setQ→K b = ST.rec (isProp→isOfHLevelSuc 1 isPropIsSet) (J (λ b _ → isSet (Q b →∙ coHomK-ptd n)) (subst isSet (cong (_→∙ coHomK-ptd n) (ua∙ (isoToEquiv (invIso Q-is)) (cong (Iso.inv Q-is) (sym Q-is-ptd) ∙ Iso.leftInv Q-is _))) (isOfHLevelRetractFromIso 2 (fst (πS≅ℤ n)) isSetℤ))) (conB (pt B) b) isConnB : isConnected 3 (typ B) fst isConnB = ∣ pt B ∣ snd isConnB = T.elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ a → ST.rec (isOfHLevelTrunc 3 _ _) (cong ∣_∣ₕ) (conB (pt B) a) isPropPath : isProp (∥ pt B ≡ pt B ∥₂) isPropPath = isOfHLevelRetractFromIso 1 setTruncTrunc2Iso (isContr→isProp (isConnectedPath _ isConnB (pt B) (pt B))) -- We construct a term in c* : (b : B) → (Q b →∙ Kₙ) -- Which is equal to the generator of (Sⁿ →∙ Kₙ) over the base point. c* : Σ[ c ∈ ((b : typ B) → (Q b →∙ coHomK-ptd n)) ] (c (pt B) .fst ≡ ((λ x → genFunSpace n .fst (Iso.fun Q-is x)))) fst c* b = ST.rec (is-setQ→K b) (J (λ b _ → Q b →∙ coHomK-ptd n) ((λ x → genFunSpace n .fst (Iso.fun Q-is x)) , cong (genFunSpace n .fst) Q-is-ptd ∙ genFunSpace n .snd)) (conB (pt B) b) snd c* = funExt λ x → (λ i → ST.rec (is-setQ→K (pt B)) (J (λ b _ → Q b →∙ coHomK-ptd n) ((λ x₁ → genFunSpace n .fst (Iso.fun Q-is x₁)) , (λ i → genFunSpace n .fst (Q-is-ptd i)) ∙ genFunSpace n .snd)) (isPropPath (conB (pt B) (pt B)) ∣ refl ∣₂ i) .fst x) ∙ (λ i → transportRefl (genFunSpace n .fst (Iso.fun Q-is (transportRefl x i))) i) p-help : {b : fst B} (p : pt B ≡ b) → (subst (fst ∘ Q) (sym p) (snd (Q b))) ≡ (snd (Q (pt B))) p-help {b = b} = J (λ b p → subst (fst ∘ Q) (sym p) (snd (Q b)) ≡ snd (Q (pt B))) (transportRefl _) -- This form of c* will make things somewhat easier to work with later on. c≡ : (b : fst B) (p : ∥ pt B ≡ b ∥₂) → (c* .fst b) ≡ ST.rec (is-setQ→K b) (λ pp → (λ qb → genFunSpace n .fst (Iso.fun Q-is (subst (fst ∘ Q) (sym pp) qb))) , cong (genFunSpace n .fst ∘ Iso.fun Q-is) (p-help pp) ∙ ((λ i → genFunSpace n .fst (Q-is-ptd i)) ∙ genFunSpace n .snd)) p c≡ b = ST.elim (λ _ → isOfHLevelPath 2 (is-setQ→K b) _ _) (J (λ b a → c* .fst b ≡ ST.rec (is-setQ→K b) (λ pp → (λ qb → genFunSpace n .fst (Iso.fun Q-is (subst (fst ∘ Q) (sym pp) qb))) , cong (genFunSpace n .fst ∘ Iso.fun Q-is) (p-help pp) ∙ (λ i → genFunSpace n .fst (Q-is-ptd i)) ∙ genFunSpace n .snd) ∣ a ∣₂) ((λ i → ST.rec (is-setQ→K (pt B)) (J (λ b₁ _ → Q b₁ →∙ coHomK-ptd n) ((λ x → genFunSpace n .fst (Iso.fun Q-is x)) , (λ i → genFunSpace n .fst (Q-is-ptd i)) ∙ genFunSpace n .snd)) (isPropPath (conB (pt B) (pt B)) ∣ refl ∣₂ i)) ∙ →∙Homogeneous≡ (isHomogeneousKn n) (transportRefl ((λ x → genFunSpace n .fst (Iso.fun Q-is x))) ∙ funExt λ x → cong (genFunSpace n .fst ∘ Iso.fun Q-is) (sym (transportRefl x))))) -- We are now almost ready to define the Thom isomorphism. -- The following module contains the types and functions occuring in it. module preThom {ℓ ℓ'} (B : Pointed ℓ) (P : typ B → Type ℓ') where E : Type _ E = Σ (typ B) P Ẽ : Type _ Ẽ = Pushout {A = E} (λ _ → tt) fst i : (n : ℕ) → (P-base : Iso (P (pt B)) (S₊ n)) → S₊ (suc n) → Ẽ i zero P-base base = inr (pt B) i zero P-base (loop j) = (sym (push (pt B , Iso.inv P-base false)) ∙ push ((pt B) , Iso.inv P-base true)) j i (suc n) P-base north = inl tt i (suc n) P-base south = inr (pt B) i (suc n) P-base (merid a i₁) = push (pt B , Iso.inv P-base a) i₁ Q : typ B → Pointed ℓ' Q x = Susp (P x) , north F : Type _ F = Σ (typ B) λ x → Q x .fst F̃ : Type _ F̃ = Pushout {A = typ B} {C = F} (λ _ → tt) λ b → b , north invFE : Ẽ → F̃ invFE (inl x) = inl tt invFE (inr x) = inr (x , south) invFE (push (x , a) i₁) = ((push x) ∙ λ i → inr (x , merid a i)) i₁ funFE : F̃ → Ẽ funFE (inl x) = inl tt funFE (inr (x , north)) = inl tt funFE (inr (x , south)) = inr x funFE (inr (x , merid a i₁)) = push (x , a) i₁ funFE (push a i₁) = inl tt IsoFE : Iso F̃ Ẽ Iso.fun IsoFE = funFE Iso.inv IsoFE = invFE Iso.rightInv IsoFE (inl x) = refl Iso.rightInv IsoFE (inr x) = refl Iso.rightInv IsoFE (push (x , a) i₁) k = lem k i₁ where lem : cong funFE (((push x) ∙ λ i → inr (x , merid a i))) ≡ push (x , a) lem = congFunct funFE (push x) (λ i → inr (x , merid a i)) ∙ sym (lUnit (push (x , a))) Iso.leftInv IsoFE (inl x) = refl Iso.leftInv IsoFE (inr (x , north)) = push x Iso.leftInv IsoFE (inr (x , south)) = refl Iso.leftInv IsoFE (inr (x , merid a i)) j = compPath-filler' (push x) (λ i₁ → inr (x , merid a i₁)) (~ j) i Iso.leftInv IsoFE (push a i₁) k = push a (i₁ ∧ k) F̃→Q : ∀ {ℓ} {A : Pointed ℓ} → (F̃ , inl tt) →∙ A → (b : typ B) → Q b →∙ A fst (F̃→Q {A = A , a} (f , p) b) north = f (inr (b , north)) fst (F̃→Q {A = A , a} (f , p) b) south = f (inr (b , south)) fst (F̃→Q {A = A , a} (f , p) b) (merid a₁ i₁) = f (inr (b , merid a₁ i₁)) snd (F̃→Q {A = A , a} (f , p) b) = sym (cong f (push b)) ∙ p Q→F̃ : ∀ {ℓ} {A : Pointed ℓ} → ((b : typ B) → Q b →∙ A) → (F̃ , inl tt) →∙ A fst (Q→F̃ {A = A , a} f) (inl x) = a fst (Q→F̃ {A = A , a} f) (inr (x , north)) = f x .fst north fst (Q→F̃ {A = A , a} f) (inr (x , south)) = f x .fst south fst (Q→F̃ {A = A , a} f) (inr (x , merid a₁ i₁)) = f x .fst (merid a₁ i₁) fst (Q→F̃ {A = A , a} f) (push a₁ i₁) = snd (f a₁) (~ i₁) snd (Q→F̃ {A = A , a} f) = refl Q→F̃-hom : (n : ℕ) → (f g : ((b : typ B) → Q b →∙ coHomK-ptd n)) → Q→F̃ (λ b → f b ++ g b) ≡ (Q→F̃ f ++ Q→F̃ g) Q→F̃-hom n f g = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { (inl x) → sym (rUnitₖ _ (0ₖ _)) ; (inr (x , north)) → refl ; (inr (x , south)) → refl ; (inr (x , merid a i₁)) → refl ; (push a j) i → compPath-filler (cong₂ _+ₖ_ (snd (f a)) (snd (g a))) (rUnitₖ n (0ₖ n)) (~ i) (~ j)}) Q→F̃→Q : ∀ {ℓ} {A : Pointed ℓ} → (x : (b : typ B) → Q b →∙ A) (b : typ B) (q : Q b .fst) → F̃→Q (Q→F̃ x) b .fst q ≡ x b .fst q Q→F̃→Q f b north = refl Q→F̃→Q f b south = refl Q→F̃→Q f b (merid a i₁) = refl F̃→Q→F̃ : ∀ {ℓ} {A : Pointed ℓ} (f : F̃ → typ A) (p : _) → (x : F̃) → fst (Q→F̃ {A = A} (F̃→Q (f , p))) x ≡ f x F̃→Q→F̃ f p (inl x) = sym p F̃→Q→F̃ f p (inr (x , north)) = refl F̃→Q→F̃ f p (inr (x , south)) = refl F̃→Q→F̃ f p (inr (x , merid a i₁)) = refl F̃→Q→F̃ f p (push a i₁) j = compPath-filler (sym (cong f (push a))) p (~ j) (~ i₁) IsoF̃Q : ∀ {ℓ} {A : Pointed ℓ} → Iso ((F̃ , inl tt) →∙ A) ((b : typ B) → Q b →∙ A) Iso.fun (IsoF̃Q {A = A , a}) = F̃→Q Iso.inv (IsoF̃Q {A = A , a}) = Q→F̃ Iso.rightInv (IsoF̃Q {A = A , a}) f = funExt λ b → ΣPathP (funExt (Q→F̃→Q f b) , sym (rUnit (snd (f b)))) Iso.leftInv (IsoF̃Q {A = A , a}) (f , p) = ΣPathP ((funExt (F̃→Q→F̃ f p)) , λ i j → p (~ i ∨ j)) -- The main result ι : (k : ℕ) → Iso ((b : typ B) → Q b →∙ coHomK-ptd k) ((Ẽ , inl tt) →∙ coHomK-ptd k) ι k = compIso (invIso IsoF̃Q) IsoFE-extend where IsoFE-extend : Iso ((F̃ , inl tt) →∙ coHomK-ptd k) ((Ẽ , inl tt) →∙ coHomK-ptd k) Iso.fun IsoFE-extend G = (λ x → G .fst (Iso.inv IsoFE x)) , (snd G) Iso.inv IsoFE-extend G = (λ x → G .fst (Iso.fun IsoFE x)) , (snd G) Iso.rightInv IsoFE-extend G = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → cong (G .fst) (Iso.rightInv IsoFE x)) Iso.leftInv IsoFE-extend G = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → cong (G .fst) (Iso.leftInv IsoFE x)) ι-hom : (k : ℕ) → (f g : ((b : typ B) → Q b →∙ coHomK-ptd k)) → Iso.fun (ι k) (λ b → f b ++ g b) ≡ (Iso.fun (ι k) f ++ Iso.fun (ι k) g) ι-hom k f g = →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x → funExt⁻ (cong fst (Q→F̃-hom _ f g)) (invFE x)) -- Packing everything up gives us the Thom Isomorphism between -- the nᵗʰ cohomology of B and the (n+i)ᵗʰ reduced cohomology of Ẽ, -- as defined above module Thom {ℓ} (B : Pointed ℓ) (P : typ B → Type ℓ-zero) (conB : (x y : typ B) → ∥ x ≡ y ∥₁) (n : ℕ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (preThom.Q B P (pt B))) ≡ snd (S₊∙ n)) (c : (b : typ B) → (preThom.Q B P b →∙ coHomK-ptd n)) (c-pt : c (pt B) .fst ≡ ((λ x → genFunSpace n .fst (Iso.fun Q-is x)))) where ϕ : (i : ℕ) → GroupEquiv (coHomGr i (typ B)) (coHomRedGrDir (i +' n) (preThom.Ẽ B P , inl tt)) fst (ϕ i) = isoToEquiv (setTruncIso (compIso (codomainIsoDep λ b → equivToIso ((g B (preThom.Q B P) conB n Q-is Q-is-ptd c c-pt b i) , g-equiv B (preThom.Q B P) conB n Q-is Q-is-ptd c c-pt b i)) (preThom.ι B P (i +' n)))) snd (ϕ i) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ F G → cong ∣_∣₂ (cong (Iso.fun (preThom.ι B P (i +' n))) (funExt (λ a → g-hom B (preThom.Q B P) conB n Q-is Q-is-ptd c c-pt a i (F a) (G a))) ∙ preThom.ι-hom B P (i +' n) _ _) ∙ addAgree (i +' n) _ _) -- We finally get the Gysin sequence module Gysin {ℓ} (B : Pointed ℓ) (P : typ B → Type ℓ-zero) (conB : (x y : typ B) → ∥ x ≡ y ∥₂) (n : ℕ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (preThom.Q B P (pt B))) ≡ snd (S₊∙ n)) where 0-connB : (x y : typ B) → ∥ x ≡ y ∥₁ 0-connB x y = ST.rec (isProp→isSet squash₁) (∥_∥₁.∣_∣₁) (conB x y) c = (c* B (preThom.Q B P) conB n Q-is Q-is-ptd .fst) c-ptd = (c* B (preThom.Q B P) conB n Q-is Q-is-ptd .snd) cEq = c≡ B (preThom.Q B P) conB n Q-is Q-is-ptd module w = Thom B P 0-connB n Q-is Q-is-ptd c c-ptd ϕ = w.ϕ E' = preThom.E B P E'̃ = preThom.Ẽ B P -- The generator of coHom n (typ B) e : coHom n (typ B) e = ∣ (λ b → c b .fst south) ∣₂ -- The maps of interest are ⌣, p, E-susp and j*. In reality, we are interested -- in the composition of ϕ and j* (which is just the cup product), -- but it's easier to first give an exact sequence involving p, E-susp and j* ⌣-hom : (i : ℕ) → GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) fst (⌣-hom i) x = x ⌣ e snd (⌣-hom i) = makeIsGroupHom λ f g → rightDistr-⌣ _ _ f g e p : E' → typ B p = fst p-hom : (i : ℕ) → GroupHom (coHomGr i (typ B)) (coHomGr i E') p-hom i = coHomMorph _ p E-susp : (i : ℕ) → GroupHom (coHomGr i E') (coHomRedGrDir (suc i) (E'̃ , inl tt)) fst (E-susp i) = ST.map λ f → (λ { (inl x) → 0ₖ _ ; (inr x) → 0ₖ _ ; (push a j) → Kn→ΩKn+1 _ (f a) j}) , refl snd (E-susp zero) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn 1) (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a j) k → (Kn→ΩKn+1-hom zero (f a) (g a) ∙ ∙≡+₁ (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a))) k j}))) snd (E-susp (suc i)) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a j) k → (Kn→ΩKn+1-hom _ (f a) (g a) ∙ ∙≡+₂ _ (Kn→ΩKn+1 _ (f a)) (Kn→ΩKn+1 _ (g a))) k j}))) module cofibSeq where j* : (i : ℕ) → GroupHom (coHomRedGrDir i (E'̃ , (inl tt))) (coHomGr i (typ B)) fst (j* i) = ST.map λ f → λ x → fst f (inr x) snd (j* zero) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → refl) snd (j* (suc zero)) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → refl) snd (j* (suc (suc i₁))) = makeIsGroupHom (ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → refl) Im-j⊂Ker-p : (i : ℕ) (x : _) → isInIm (j* i) x → isInKer (p-hom i) x Im-j⊂Ker-p i = ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ f → PT.rec (squash₂ _ _) (uncurry (ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g P → subst (isInKer (p-hom i)) P (cong ∣_∣₂ (funExt λ x → cong (g .fst) (sym (push x)) ∙ g .snd)))) Ker-p⊂Im-j : (i : ℕ) (x : _) → isInKer (p-hom i) x → isInIm (j* i) x Ker-p⊂Im-j i = ST.elim (λ _ → isSetΠ (λ _ → isProp→isSet squash₁)) λ f ker → PT.rec squash₁ (λ id → ∣ ∣ (λ { (inl x) → 0ₖ _ ; (inr x) → f x ; (push a i₁) → funExt⁻ id a (~ i₁)}) , refl ∣₂ , refl ∣₁) (Iso.fun PathIdTrunc₀Iso ker) Im-p⊂Ker-Susp : (i : ℕ) (x : _) → isInIm (p-hom i) x → isInKer (E-susp i) x Im-p⊂Ker-Susp i = ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ f → PT.rec (squash₂ _ _) (uncurry (ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g y → subst (isInKer (E-susp i)) y (cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) (funExt λ { (inl x) → refl ; (inr x) → sym (Kn→ΩKn+1 _ (g x)) ; (push a j) k → Kn→ΩKn+1 i (g (fst a)) (~ k ∧ j)}))))) Ker-Susp⊂Im-p : (i : ℕ) (x : _) → isInKer (E-susp i) x → isInIm (p-hom i) x Ker-Susp⊂Im-p i = ST.elim (λ _ → isSetΠ (λ _ → isProp→isSet squash₁)) λ f ker → PT.rec squash₁ (λ id → ∣ ∣ (λ x → ΩKn+1→Kn i (sym (funExt⁻ (cong fst id) (inr x)))) ∣₂ , cong ∣_∣₂ (funExt (λ { (a , b) → cong (ΩKn+1→Kn i) (lUnit _ ∙ cong (_∙ sym (funExt⁻ (λ i₁ → fst (id i₁)) (inr a))) (sym (flipSquare (cong snd id)) ∙∙ (PathP→compPathR (cong (funExt⁻ (cong fst id)) (push (a , b)))) ∙∙ assoc _ _ _ ∙ sym (rUnit _)) ∙ (sym (assoc _ _ _) ∙∙ cong (Kn→ΩKn+1 i (f (a , b)) ∙_) (rCancel _) ∙∙ sym (rUnit _))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 _) (f (a , b))})) ∣₁) (Iso.fun PathIdTrunc₀Iso ker) Im-Susp⊂Ker-j : (i : ℕ) (x : _) → isInIm (E-susp i) x → isInKer (cofibSeq.j* (suc i)) x Im-Susp⊂Ker-j i = ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g → PT.rec (squash₂ _ _) (uncurry (ST.elim (λ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ f id → PT.rec (squash₂ _ _) (λ P → subst (isInKer (cofibSeq.j* (suc i))) (cong ∣_∣₂ P) (cong ∣_∣₂ refl)) (Iso.fun PathIdTrunc₀Iso id))) Ker-j⊂Im-Susp : (i : ℕ) (x : _) → isInKer (cofibSeq.j* (suc i)) x → isInIm (E-susp i) x Ker-j⊂Im-Susp i = ST.elim (λ _ → isSetΠ (λ _ → isProp→isSet squash₁)) λ f ker → PT.rec squash₁ (λ p → ∣ ∣ (λ x → ΩKn+1→Kn _ (sym (snd f) ∙∙ cong (fst f) (push x) ∙∙ funExt⁻ p (fst x))) ∣₂ , cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousKn _) (funExt (λ { (inl x) → sym (snd f) ; (inr x) → sym (funExt⁻ p x) ; (push a j) k → h3 f p a k j}))) ∣₁) (Iso.fun PathIdTrunc₀Iso ker) where h3 : (f : (E'̃ , inl tt) →∙ coHomK-ptd (suc i)) → (p : (fst f ∘ inr) ≡ (λ _ → 0ₖ (suc i))) → (a : preThom.E B P) → PathP (λ i → snd f (~ i) ≡ p (~ i) (fst a)) (Kn→ΩKn+1 i (ΩKn+1→Kn i (sym (snd f) ∙∙ cong (fst f) (push a) ∙∙ funExt⁻ p (fst a)))) (cong (fst f) (push a)) h3 f p a = Iso.rightInv (Iso-Kn-ΩKn+1 i) _ ◁ λ i j → doubleCompPath-filler (sym (snd f)) (cong (fst f) (push a)) (funExt⁻ p (fst a)) (~ i) j -- We compose ϕ and j*. The above exact sequence will induce another one for -- this composition. In fact, this group hom is definitionally equal to -- (λ x → x ⌣ e) modulo truncation elimination and snd fields. ϕ∘j : (i : ℕ) → GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) ϕ∘j i = compGroupHom (fst (fst (ϕ i)) , snd (ϕ i)) (cofibSeq.j* (i +' n)) private +'-suc : (i n : ℕ) → (suc i +' n) ≡ suc (i +' n) +'-suc zero zero = refl +'-suc (suc i₁) zero = refl +'-suc zero (suc n) = refl +'-suc (suc i₁) (suc n) = refl Path→GroupPath : ∀ {ℓ ℓ'} {n m : ℕ} (G : ℕ → Group ℓ) (H : Group ℓ') (p : n ≡ m) → GroupEquiv (G n) H → GroupEquiv (G m) H Path→GroupPath {n = n} G H = J (λ m _ → GroupEquiv (G n) H → GroupEquiv (G m) H) λ p → p h-ret : ∀ {ℓ ℓ'} {n m : ℕ} (G : ℕ → Group ℓ) (H : Group ℓ') → (e : GroupEquiv (G n) H) → (p : n ≡ m) → (x : G m .fst) → invEq (fst e) (fst (fst (Path→GroupPath G H p e)) x) ≡ subst (λ x → G x .fst) (sym p) x h-ret G H e = J (λ m p → ((x : G m .fst) → invEq (fst e) (fst (fst (Path→GroupPath G H p e)) x) ≡ subst (λ x → G x .fst) (sym p) x)) λ x → cong (invEq (fst e) ) (λ i → transportRefl (transportRefl (fst (fst e) (transportRefl (transportRefl x i) i)) i) i) ∙∙ retEq (fst e) x ∙∙ sym (transportRefl _) thomIso' : (i : ℕ) → GroupEquiv (coHomRedGrDir (suc (i +' n)) (E'̃ , inl tt)) (coHomGr (suc i) (typ B)) thomIso' i = (Path→GroupPath (λ n → coHomRedGrDir n (E'̃ , inl tt)) _ (+'-suc i n) (invGroupEquiv (ϕ (suc i)))) ϕ' : (i : ℕ) → GroupHom (coHomRedGrDir (suc (i +' n)) (E'̃ , inl tt)) (coHomGr (suc i) (typ B)) ϕ' i = fst (fst (thomIso' i)) , snd (thomIso' i) susp∘ϕ : (i : ℕ) → GroupHom (coHomGr (i +' n) E') (coHomGr (suc i) (typ B)) susp∘ϕ i = compGroupHom (E-susp (i +' n)) (ϕ' i) Im-ϕ∘j⊂Ker-p : (i : ℕ) (x : _) → isInIm (ϕ∘j i) x → isInKer (p-hom _) x Im-ϕ∘j⊂Ker-p i x p = cofibSeq.Im-j⊂Ker-p _ x (PT.rec squash₁ (uncurry (λ f p → ∣ fst (fst (ϕ _)) f , p ∣₁)) p) Ker-p⊂Im-ϕ∘j : (i : ℕ) (x : _) → isInKer (p-hom _) x → isInIm (ϕ∘j i) x Ker-p⊂Im-ϕ∘j i x p = PT.rec squash₁ (uncurry (λ f p → ∣ (invEq (fst (ϕ _)) f) , (cong (fst (cofibSeq.j* _)) (secEq (fst (ϕ _)) f) ∙ p) ∣₁)) (cofibSeq.Ker-p⊂Im-j _ x p) Im-p⊂KerSusp∘ϕ : (i : ℕ) (x : _) → isInIm (p-hom _) x → isInKer (susp∘ϕ i) x Im-p⊂KerSusp∘ϕ i x p = cong (fst (ϕ' _)) (Im-p⊂Ker-Susp _ x p) ∙ IsGroupHom.pres1 (snd (ϕ' _)) KerSusp∘ϕ⊂Im-p : (i : ℕ) (x : _) → isInKer (susp∘ϕ i) x → isInIm (p-hom _) x KerSusp∘ϕ⊂Im-p i x p = Ker-Susp⊂Im-p _ x (sym (retEq (fst (thomIso' _)) _) ∙ (cong (invEq (fst (thomIso' _))) p ∙ IsGroupHom.pres1 (snd (invGroupEquiv (thomIso' _))))) Im-Susp∘ϕ⊂Ker-ϕ∘j : (i : ℕ) → (x : _) → isInIm (susp∘ϕ i) x → isInKer (ϕ∘j (suc i)) x Im-Susp∘ϕ⊂Ker-ϕ∘j i x = PT.rec (squash₂ _ _) (uncurry λ f → J (λ x p → isInKer (ϕ∘j (suc i)) x) ((λ i → fst (cofibSeq.j* _) (fst (fst (ϕ _)) (fst (ϕ' _) (fst (E-susp _) f)))) ∙∙ cong (fst (cofibSeq.j* _)) ((h-ret (λ n → coHomRedGrDir n (E'̃ , inl tt)) _ (invGroupEquiv (ϕ (suc i))) (+'-suc i n)) (fst (E-susp _) f)) ∙∙ (natTranspLem _ (λ n → fst (cofibSeq.j* n)) (sym (+'-suc i n)) ∙ cong (subst (λ z → coHomGr z (typ B) .fst) (sym (+'-suc i n))) (Im-Susp⊂Ker-j _ (fst (E-susp (i +' n)) f) ∣ f , refl ∣₁) ∙ tLem i n))) where tLem : (i n : ℕ) → subst (λ z → coHomGr z (typ B) .fst) (sym (+'-suc i n)) (0ₕ _) ≡ 0ₕ _ tLem zero zero = refl tLem zero (suc n) = refl tLem (suc i₁) zero = refl tLem (suc i₁) (suc n) = refl Ker-ϕ∘j⊂Im-Susp∘ϕ : (i : ℕ) (x : _) → isInKer (ϕ∘j (suc i)) x → isInIm (susp∘ϕ i) x Ker-ϕ∘j⊂Im-Susp∘ϕ i x p = PT.rec squash₁ (uncurry (λ f p → ∣ f , cong (fst (fst (thomIso' i))) p ∙ secEq (fst (thomIso' _)) x ∣₁)) (Ker-j⊂Im-Susp _ (invEq (fst (thomIso' _)) x) ((cong (cofibSeq.j* (suc (i +' n)) .fst ) lem₁ ∙ natTranspLem _ (λ n → cofibSeq.j* n .fst) (+'-suc i n)) ∙∙ cong (transport (λ j → (coHomGr (+'-suc i n j) (typ B) .fst))) p ∙∙ lem₂ i n)) where lem₁ : invEq (fst (thomIso' i)) x ≡ transport (λ j → coHomRed (+'-suc i n j) (E'̃ , inl tt)) (fst (fst (ϕ _)) x) lem₁ = cong (transport (λ j → coHomRed (+'-suc i n j) (E'̃ , inl tt))) (transportRefl _ ∙ cong (fst (fst (ϕ _))) λ i → transportRefl (transportRefl x i) i) lem₂ : (i n : ℕ) → transport (λ j → coHomGr (+'-suc i n j) (typ B) .fst) (GroupStr.1g (coHomGr (suc i +' n) (typ B) .snd)) ≡ 0ₕ _ lem₂ zero zero = refl lem₂ zero (suc n) = refl lem₂ (suc i₁) zero = refl lem₂ (suc i₁) (suc n) = refl -- Finally, we have that ϕ∘j is just the cup product, and we have arrived -- at an exact sequence involving it. ϕ∘j≡ : (i : ℕ) → ϕ∘j i ≡ ⌣-hom i ϕ∘j≡ i = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt (ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ → refl)) -- We can now restate the previous resluts for (λ x → x ⌣ e) Im-⌣e⊂Ker-p : (i : ℕ) (x : _) → isInIm (⌣-hom i) x → isInKer (p-hom _) x Im-⌣e⊂Ker-p i x p = Im-ϕ∘j⊂Ker-p i x (subst (λ p → isInIm p x) (sym (ϕ∘j≡ i)) p) Ker-p⊂Im-⌣e : (i : ℕ) (x : _) → isInKer (p-hom _) x → isInIm (⌣-hom i) x Ker-p⊂Im-⌣e i x p = subst (λ p → isInIm p x) (ϕ∘j≡ i) (Ker-p⊂Im-ϕ∘j i x p) Im-Susp∘ϕ⊂Ker-⌣e : (i : ℕ) (x : _) → isInIm (susp∘ϕ i) x → isInKer (⌣-hom (suc i)) x Im-Susp∘ϕ⊂Ker-⌣e i x p = subst (λ p → isInKer p x) (ϕ∘j≡ (suc i)) (Im-Susp∘ϕ⊂Ker-ϕ∘j i x p) Ker-⌣e⊂Im-Susp∘ϕ : (i : ℕ) (x : _) → isInKer (⌣-hom (suc i)) x → isInIm (susp∘ϕ i) x Ker-⌣e⊂Im-Susp∘ϕ i x p = Ker-ϕ∘j⊂Im-Susp∘ϕ i x (subst (λ p → isInKer p x) (sym (ϕ∘j≡ (suc i))) p)
{ "alphanum_fraction": 0.4884532991, "avg_line_length": 41.0915492958, "ext": "agda", "hexsha": "6c1c88d4db1e01dbe9876e105d1b1ad1e7981599", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Gysin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Gysin.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Gysin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19716, "size": 46680 }
import Lvl open import Type module Structure.Logic.Constructive.Propositional {ℓₗ} {Formula : Type{ℓₗ}} {ℓₘₗ} (Proof : Formula → Type{ℓₘₗ}) where open import Logic.Predicate private variable X Y Z : Formula -- Rules of bottom (falsity). record Bottom(⊥ : Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field elim : Proof(⊥) → Proof(X) ⊥ = \ ⦃([∃]-intro ▫) : ∃(Bottom)⦄ → ▫ module ⊥ {▫} ⦃ p ⦄ = Bottom {▫} p -- Rules of top (truth). record Top(⊤ : Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : Proof(⊤) ⊤ = \ ⦃([∃]-intro ▫) : ∃(Top)⦄ → ▫ module ⊤ {▫} ⦃ p ⦄ = Top {▫} p -- Rules of conjunction (and). record Conjunction(_∧_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : Proof(X) → Proof(Y) → Proof(X ∧ Y) elimₗ : Proof(X ∧ Y) → Proof(X) elimᵣ : Proof(X ∧ Y) → Proof(Y) _∧_ = \ ⦃([∃]-intro ▫) : ∃(Conjunction)⦄ → ▫ module ∧ {▫} ⦃ p ⦄ = Conjunction {▫} p -- Rules of implication. record Implication(_⟶_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : (Proof(X) → Proof(Y)) → Proof(X ⟶ Y) elim : Proof(X ⟶ Y) → Proof(X) → Proof(Y) _⟶_ = \ ⦃([∃]-intro ▫) : ∃(Implication)⦄ → ▫ module ⟶ {▫} ⦃ p ⦄ = Implication {▫} p -- Rules of reversed implication. record Consequence(_⟵_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : (Proof(X) → Proof(Y)) → Proof(Y ⟵ X) elim : Proof(Y ⟵ X) → Proof(X) → Proof(Y) _⟵_ = \ ⦃([∃]-intro ▫) : ∃(Consequence)⦄ → ▫ module ⟵ {▫} ⦃ p ⦄ = Consequence {▫} p -- Rules of equivalence. record Equivalence(_⟷_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : let _ = X in (Proof(Y) → Proof(X)) → (Proof(X) → Proof(Y)) → Proof(X ⟷ Y) elimₗ : Proof(X ⟷ Y) → Proof(Y) → Proof(X) elimᵣ : Proof(X ⟷ Y) → Proof(X) → Proof(Y) _⟷_ = \ ⦃([∃]-intro ▫) : ∃(Equivalence)⦄ → ▫ module ⟷ {▫} ⦃ p ⦄ = Equivalence {▫} p -- Rules of disjunction (or). record Disjunction(_∨_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field introₗ : Proof(X) → Proof(X ∨ Y) introᵣ : Proof(Y) → Proof(X ∨ Y) elim : (Proof(X) → Proof(Z)) → (Proof(Y) → Proof(Z)) → Proof(X ∨ Y) → Proof(Z) _∨_ = \ ⦃([∃]-intro ▫) : ∃(Disjunction)⦄ → ▫ module ∨ {▫} ⦃ p ⦄ = Disjunction {▫} p -- Rules of negation (not). record Negation(¬_ : Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field intro : (Proof(X) → Proof(Y)) → (Proof(X) → Proof(¬ Y)) → Proof(¬ X) elim : Proof(X) → Proof(¬ X) → Proof(Y) ¬_ = \ ⦃([∃]-intro ▫) : ∃(Negation)⦄ → ▫ module ¬ {▫} ⦃ p ⦄ = Negation {▫} p record Logic : Type{ℓₘₗ Lvl.⊔ ℓₗ} where field ⦃ bottom ⦄ : ∃(Bottom) ⦃ top ⦄ : ∃(Top) ⦃ conjunction ⦄ : ∃(Conjunction) ⦃ implication ⦄ : ∃(Implication) ⦃ consequence ⦄ : ∃(Consequence) ⦃ equivalence ⦄ : ∃(Equivalence) ⦃ disjunction ⦄ : ∃(Disjunction) ⦃ negation ⦄ : ∃(Negation)
{ "alphanum_fraction": 0.5545138889, "avg_line_length": 33.8823529412, "ext": "agda", "hexsha": "ba6094bf5a18b54ece7b5bf4c079029f1cd35ef5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Logic/Constructive/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Logic/Constructive/Propositional.agda", "max_line_length": 117, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Logic/Constructive/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1319, "size": 2880 }
------------------------------------------------------------------------------ -- Properties for the equality on Conat ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Conat.Equality.PropertiesI where open import FOTC.Base open import FOTC.Data.Conat open import FOTC.Data.Conat.Equality.Type ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the -- relation _≈_ is also a pre-fixed point of the functional ≈-F, i.e. -- -- ≈-F _≈_ ≤ _≈_ (see FOTC.Data.Conat.Equality.Type). ≈-in : ∀ {m n} → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈ n') → m ≈ n ≈-in h = ≈-coind R h' h where R : D → D → Set R m n = m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈ n') h' : ∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n') h' (inj₁ prf) = inj₁ prf h' (inj₂ (m' , n' , prf₁ , prf₂ , m'≈n')) = inj₂ (m' , n' , prf₁ , prf₂ , ≈-out m'≈n') ≈-refl : ∀ {n} → Conat n → n ≈ n ≈-refl {n} Cn = ≈-coind R h₁ h₂ where R : D → D → Set R a b = Conat a ∧ Conat b ∧ a ≡ b h₁ : ∀ {a b} → R a b → a ≡ zero ∧ b ≡ zero ∨ (∃[ a' ] ∃[ b' ] a ≡ succ₁ a' ∧ b ≡ succ₁ b' ∧ R a' b') h₁ (Ca , Cb , h) with Conat-out Ca ... | inj₁ prf = inj₁ (prf , trans (sym h) prf) ... | inj₂ (a' , prf , Ca') = inj₂ (a' , a' , prf , trans (sym h) prf , (Ca' , Ca' , refl)) h₂ : R n n h₂ = Cn , Cn , refl ≡→≈ : ∀ {m n} → Conat m → Conat n → m ≡ n → m ≈ n ≡→≈ Cm _ refl = ≈-refl Cm
{ "alphanum_fraction": 0.4108108108, "avg_line_length": 31.8965517241, "ext": "agda", "hexsha": "bd2f3033243080fb4a4ad6810784360bcd88e022", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 724, "size": 1850 }
------------------------------------------------------------------------ -- Quotients, defined as families of equivalence classes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Partly based on the presentation of quotients in the HoTT book. -- Perhaps that presentation is partly based on work by Voevodsky. -- The generalisation from propositional equivalence relations to -- "strong" equivalence relations is my own. In light of the results -- below I see little use for this generalisation… open import Equality module Quotient.Families-of-equivalence-classes {r} (eq : ∀ {a p} → Equality-with-J a p r) where open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq as Bij using (_↔_) open import Bool eq private module D = Derived-definitions-and-properties eq open D hiding (elim) open import Equality.Decidable-UIP eq using (Constant) open import Equality.Decision-procedures eq import Equality.Groupoid eq as EG open import Equivalence eq as Eq using (_≃_) open import Equivalence-relation eq open import Fin eq open import Function-universe eq as F hiding (_∘_) open import Groupoid open import H-level eq as H-level open import H-level.Closure eq open import H-level.Truncation.Church eq as Trunc hiding (rec) open import Nat eq as Nat open import Surjection eq using (_↠_) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Strong equivalence relations mutual -- A strengthening of the concept of "equivalence relation". Strong-equivalence : ∀ {a r} {A : Type a} → (A → A → Type r) → Type (a ⊔ lsuc r) Strong-equivalence = Strong-equivalence-with equivalence -- A generalisation of "strong equivalence". Strong-equivalence-with : ∀ {a r} {A : Type a} → Kind → (A → A → Type r) → Type (a ⊔ lsuc r) Strong-equivalence-with k R = ∀ {x y} → R x y ↝[ k ] (R x ≡ R y) -- Strong equivalence relations (with equivalence) are strong -- equivalence relations with any kind. strong-equivalence⇒strong-equivalence-with : ∀ {k a r} {A : Type a} {R : A → A → Type r} → Strong-equivalence R → Strong-equivalence-with k R strong-equivalence⇒strong-equivalence-with strong-equivalence = from-equivalence strong-equivalence -- Strong equivalence relations with logical equivalence are -- equivalence relations. strong-equivalence-with-⇔⇒equivalence : ∀ {a r} {A : Type a} {R : A → A → Type r} → Strong-equivalence-with logical-equivalence R → Is-equivalence-relation R strong-equivalence-with-⇔⇒equivalence {R = R} strong-equivalence = record { reflexive = λ {x} → $⟨ refl (R x) ⟩ R x ≡ R x ↝⟨ to-implication $ inverse strong-equivalence ⟩□ R x x □ ; symmetric = λ {x y} → R x y ↝⟨ to-implication strong-equivalence ⟩ R x ≡ R y ↝⟨ sym ⟩ R y ≡ R x ↝⟨ to-implication $ inverse strong-equivalence ⟩□ R y x □ ; transitive = λ {x y z} Rxy Ryz → to-implication (inverse strong-equivalence) ( R x ≡⟨ to-implication strong-equivalence Rxy ⟩ R y ≡⟨ to-implication strong-equivalence Ryz ⟩∎ R z ∎) } -- Strong equivalence relations are equivalence relations. strong-equivalence⇒equivalence : ∀ {a r} {A : Type a} {R : A → A → Type r} → Strong-equivalence R → Is-equivalence-relation R strong-equivalence⇒equivalence = strong-equivalence-with-⇔⇒equivalence ∘ strong-equivalence⇒strong-equivalence-with -- A relation that is an equivalence relation, and a family of -- propositions, is a strong equivalence relation (assuming -- extensionality and univalence). propositional-equivalence⇒strong-equivalence : ∀ {a r} {A : Type a} {R : A → A → Type r} → Extensionality (a ⊔ r) (lsuc r) → Univalence r → Is-equivalence-relation R → (∀ x y → Is-proposition (R x y)) → Strong-equivalence R propositional-equivalence⇒strong-equivalence {a} {r} {R = R} ext univ R-equiv R-prop {x = x} {y = y} = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = λ Rxy → apply-ext (lower-extensionality r lzero ext) λ z → ≃⇒≡ univ $ _↔_.to (Eq.⇔↔≃ (lower-extensionality a _ ext) (R-prop x z) (R-prop y z)) (R x z ↝⟨ record { to = transitive (symmetric Rxy) ; from = transitive Rxy } ⟩□ R y z □) ; from = λ Rx≡Ry → $⟨ reflexive ⟩ R y y ↝⟨ subst (_$ y) (sym Rx≡Ry) ⟩□ R x y □ } ; right-inverse-of = λ _ → H-level.respects-surjection (_≃_.surjection $ Eq.extensionality-isomorphism (lower-extensionality r lzero ext)) 1 (Π-closure (lower-extensionality r lzero ext) 1 λ z → H-level-H-level-≡ˡ (lower-extensionality a _ ext) univ 0 (R-prop x z)) _ _ } ; left-inverse-of = λ _ → R-prop x y _ _ }) where open Is-equivalence-relation R-equiv -- _≡_ is a strong equivalence relation (assuming extensionality and -- univalence). equality-strong-equivalence : ∀ {a} {A : Type a} → Extensionality a (lsuc a) → Univalence a → Strong-equivalence (_≡_ {A = A}) equality-strong-equivalence ext univ {x = x} {y = y} = x ≡ y ↝⟨ inverse $ Π≡≃≡-↔-≡ _ _ (lower-extensionality lzero _ ext) ⟩ (∀ z → (z ≡ x) ≃ (z ≡ y)) ↝⟨ (∀-cong (lower-extensionality lzero _ ext) λ _ → Eq.↔⇒≃ $ Eq.≃-preserves-bijections (lower-extensionality lzero _ ext) (Groupoid.⁻¹-bijection (EG.groupoid _)) (Groupoid.⁻¹-bijection (EG.groupoid _))) ⟩ (∀ z → (x ≡ z) ≃ (y ≡ z)) ↝⟨ (∀-cong ext λ _ → inverse $ ≡≃≃ univ) ⟩ (∀ z → (x ≡ z) ≡ (y ≡ z)) ↝⟨ Eq.extensionality-isomorphism ext ⟩□ (x ≡_) ≡ (y ≡_) □ -- If λ (_ _ : ⊤) → Fin n is a strong equivalence relation, then n is -- equal to n ! (assuming extensionality and univalence). const-Fin-strong-equivalence⇒≡! : Extensionality (# 0) (# 1) → Univalence (# 0) → ∀ n → Strong-equivalence (λ (_ _ : ⊤) → Fin n) → n ≡ n ! const-Fin-strong-equivalence⇒≡! ext univ n strong-equivalence = _⇔_.to isomorphic-same-size ( Fin n ↔⟨ strong-equivalence ⟩ const (Fin n) ≡ const (Fin n) ↔⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (⊤ → Fin n ≡ Fin n) ↝⟨ Π-left-identity ⟩ Fin n ≡ Fin n ↝⟨ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ n ⟩ Fin (n !) □) -- Thus there is at least one equivalence relation that is not a -- strong equivalence relation (assuming extensionality and -- univalence). equivalence-but-not-strong-equivalence : Extensionality (# 0) (# 1) → Univalence (# 0) → ∃ λ (A : Type) → ∃ λ (R : A → A → Type) → (∀ {x} → R x x) × (∀ {x y} → R x y → R y x) × (∀ {x y z} → R x y → R y z → R x z) × ¬ Strong-equivalence R equivalence-but-not-strong-equivalence ext univ = A , R , rfl , sm , trns , not-strong-equivalence where A : Type A = ⊤ R : A → A → Type R _ _ = Fin 3 rfl : ∀ {x} → R x x rfl = fzero sm : ∀ {x y} → R x y → R y x sm _ = fzero trns : ∀ {x y z} → R x y → R y z → R x z trns _ _ = fzero not-strong-equivalence : ¬ Strong-equivalence R not-strong-equivalence = Strong-equivalence R ↝⟨ const-Fin-strong-equivalence⇒≡! ext univ 3 ⟩ 3 ≡ 3 ! ↝⟨ from-⊎ (3 Nat.≟ (3 !)) ⟩□ ⊥ □ -- On the other hand, if n is 2, then λ (_ _ : ⊤) → Fin n is a strong -- equivalence relation (assuming extensionality and univalence). const-Fin-2-strong-equivalence : Extensionality (# 0) (# 1) → Univalence (# 0) → Strong-equivalence (λ (_ _ : ⊤) → Fin 2) const-Fin-2-strong-equivalence ext univ = Fin 2 ↔⟨ inverse $ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ 2 ⟩ Fin 2 ≡ Fin 2 ↔⟨ inverse Π-left-identity ⟩ (⊤ → Fin 2 ≡ Fin 2) ↝⟨ Eq.extensionality-isomorphism ext ⟩□ const (Fin 2) ≡ const (Fin 2) □ -- Thus there is at least one example of a strong equivalence relation -- that is neither propositional nor the identity type (assuming -- extensionality and univalence). strong-equivalence-that-is-neither-propositional-nor-≡ : Extensionality (# 0) (# 1) → Univalence (# 0) → ∃ λ (A : Type) → ∃ λ (R : A → A → Type) → Strong-equivalence R × ¬ (∀ x y → Is-proposition (R x y)) × ¬ (∀ x y → R x y ≃ (x ≡ y)) strong-equivalence-that-is-neither-propositional-nor-≡ ext univ = ⊤ , (λ _ _ → Fin 2) , const-Fin-2-strong-equivalence ext univ , (λ is-prop → $⟨ is-prop _ _ ⟩ Is-proposition (⊤ ⊎ ⊤ ⊎ ⊥) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse Bool↔Fin2) 1 ⟩ Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□ ⊥ □) , (λ ≃≡ → let eq = ≃≡ tt tt in ⊎.inj₁≢inj₂ ( fzero ≡⟨ sym $ _≃_.left-inverse-of eq _ ⟩ _≃_.from eq (_≃_.to eq fzero) ≡⟨ cong (_≃_.from eq) $ mono (zero≤ 2) ⊤-contractible _ _ ⟩ _≃_.from eq (_≃_.to eq (fsuc fzero)) ≡⟨ _≃_.left-inverse-of eq _ ⟩∎ fsuc fzero ∎)) -- It is not in general the case that, if R is a strong equivalence -- relation, then R on f is a strong equivalence relation (assuming -- extensionality and univalence). strong-equivalence-not-closed-under-on : Extensionality (# 1) (# 2) → Univalence (# 1) → Univalence (# 0) → ∃ λ (A : Type₁) → ∃ λ (B : Type₁) → ∃ λ (R : A → A → Type₁) → ∃ λ (f : B → A) → Strong-equivalence R × ¬ Strong-equivalence (R on f) strong-equivalence-not-closed-under-on ext univ₁ univ₀ = Type , ↑ _ ⊤ , _≡_ , const (Fin 3) , equality-strong-equivalence ext univ₁ , not-strong-equivalence where not-strong-equivalence : ¬ Strong-equivalence (_≡_ on const (Fin 3)) not-strong-equivalence strong-equivalence = contradiction where 3!≡3!! = _⇔_.to (isomorphic-same-size { n = 3 ! ! }) ( Fin (3 !) ↝⟨ inverse $ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ 3 ⟩ Fin 3 ≡ Fin 3 ↔⟨ strong-equivalence ⟩ const (Fin 3 ≡ Fin 3) ≡ const (Fin 3 ≡ Fin 3) ↔⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (↑ _ ⊤ → (Fin 3 ≡ Fin 3) ≡ (Fin 3 ≡ Fin 3)) ↝⟨ →-cong₁ ext Bij.↑↔ ⟩ (⊤ → (Fin 3 ≡ Fin 3) ≡ (Fin 3 ≡ Fin 3)) ↝⟨ Π-left-identity ⟩ (Fin 3 ≡ Fin 3) ≡ (Fin 3 ≡ Fin 3) ↔⟨ ≡-preserves-≃ (lower-extensionality lzero _ ext) univ₁ univ₀ (Eq.↔⇒≃ $ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ 3) (Eq.↔⇒≃ $ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ 3) ⟩ Fin (3 !) ≡ Fin (3 !) ↝⟨ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ (3 !) ⟩□ Fin (3 ! !) □) contradiction : ⊥ contradiction = from-⊎ ((3 !) Nat.≟ (3 ! !)) 3!≡3!! -- However, Strong-equivalence-with k is closed under _on f when f is -- an equivalence (assuming extensionality). strong-equivalence-with-closed-under-on : ∀ {k a b r} {A : Type a} {B : Type b} {R : A → A → Type r} → Extensionality (a ⊔ b) (lsuc r) → (B≃A : B ≃ A) → Strong-equivalence-with k R → Strong-equivalence-with k (R on _≃_.to B≃A) strong-equivalence-with-closed-under-on {a = a} {b} {R = R} ext B≃A strong-equivalence {x} {y} = R (f x) (f y) ↝⟨ strong-equivalence ⟩ R (f x) ≡ R (f y) ↔⟨⟩ (λ z → R (f x) z) ≡ (λ z → R (f y) z) ↔⟨ inverse $ Eq.extensionality-isomorphism (lower-extensionality b lzero ext) ⟩ (∀ z → R (f x) z ≡ R (f y) z) ↔⟨ (Π-cong ext (inverse B≃A) λ z → ≡⇒≃ $ cong₂ _≡_ (lemma x z) (lemma y z)) ⟩ (∀ z → R (f x) (f z) ≡ R (f y) (f z)) ↔⟨ Eq.extensionality-isomorphism (lower-extensionality a lzero ext) ⟩ (λ z → R (f x) (f z)) ≡ (λ z → R (f y) (f z)) ↔⟨⟩ (R on f) x ≡ (R on f) y □ where f = _≃_.to B≃A f⁻¹ = _≃_.from B≃A lemma = λ x z → R (f x) z ≡⟨ cong (R (f x)) $ sym $ _≃_.right-inverse-of B≃A _ ⟩∎ R (f x) (f (f⁻¹ z)) ∎ -- Various closure properties related to _×_ and _⊎_ fail to hold for -- Strong-equivalence (assuming extensionality and univalence). strong-equivalence-not-closed-under-×-or-⊎ : Extensionality (# 0) (# 1) → Univalence (# 0) → ∃ λ (A : Type) → ∃ λ (R₁ : A → A → Type) → ∃ λ (R₂ : A → A → Type) → Strong-equivalence R₁ × Strong-equivalence R₂ × ¬ Strong-equivalence (λ x y → R₁ x y × R₂ x y) × ¬ Strong-equivalence (λ x y → R₁ x y ⊎ R₂ x y) × ¬ Strong-equivalence (λ x y → R₁ (proj₁ x) (proj₁ y) × R₂ (proj₂ x) (proj₂ y)) × ¬ Strong-equivalence (λ x y → R₁ (proj₁ x) (proj₁ y) ⊎ R₂ (proj₂ x) (proj₂ y)) strong-equivalence-not-closed-under-×-or-⊎ ext univ = ⊤ , R , R , strong-equivalence , strong-equivalence , not-strong-equivalence (Fin×Fin↔Fin* 2 2) , not-strong-equivalence (Fin⊎Fin↔Fin+ 2 2) , not-strong-equivalence′ (Fin×Fin↔Fin* 2 2) , not-strong-equivalence′ (Fin⊎Fin↔Fin+ 2 2) where R : ⊤ → ⊤ → Type R = λ _ _ → Fin 2 strong-equivalence : Strong-equivalence R strong-equivalence = proj₁ $ proj₂ $ proj₂ $ strong-equivalence-that-is-neither-propositional-nor-≡ ext univ not-strong-equivalence : {B : Type} → B ↔ Fin 4 → ¬ Strong-equivalence (λ (_ _ : ⊤) → B) not-strong-equivalence {B} B↔Fin4 = Strong-equivalence (λ _ _ → B) ↝⟨ (≡⇒↝ _ $ cong Strong-equivalence $ apply-ext ext λ _ → apply-ext ext λ _ → ≃⇒≡ univ $ Eq.↔⇒≃ B↔Fin4) ⟩ Strong-equivalence (λ _ _ → Fin 4) ↝⟨ const-Fin-strong-equivalence⇒≡! ext univ 4 ⟩ 4 ≡ 4 ! ↝⟨ from-⊎ (4 Nat.≟ (4 !)) ⟩□ ⊥ □ not-strong-equivalence′ : {B : Type} → B ↔ Fin 4 → ¬ Strong-equivalence (λ (_ _ : ⊤ × ⊤) → B) not-strong-equivalence′ {B} B↔Fin4 = Strong-equivalence (λ (_ _ : ⊤ × ⊤) → B) ↝⟨ (λ se {_ _} → B ↝⟨ se {y = _} ⟩ const B ≡ const B ↝⟨ inverse $ Eq.extensionality-isomorphism ext ⟩ (⊤ × ⊤ → B ≡ B) ↝⟨ →-cong₁ ext ×-right-identity ⟩ (⊤ → B ≡ B) ↝⟨ Eq.extensionality-isomorphism ext ⟩□ const B ≡ const B □) ⟩ Strong-equivalence (λ (_ _ : ⊤) → B) ↝⟨ not-strong-equivalence B↔Fin4 ⟩□ ⊥ □ -- Is the following a strong equivalence relation? -- -- R (x , _) (y , _) = x ≡ y -- -- (This is a combination of equality and the trivial relation, both -- of which are strong equivalence relations.) -- -- Answer: No, not in general (assuming extensionality and -- univalence). another-negative-result : Extensionality (# 1) (# 2) → Univalence (# 1) → Univalence (# 0) → ∃ λ (A : Type₁) → ∃ λ (B : Type) → ¬ Strong-equivalence {A = A × B} (_≡_ on proj₁) another-negative-result ext univ₁ univ₀ = Type , Fin 2 , not-strong-equivalence where not-strong-equivalence : ¬ Strong-equivalence (_≡_ on proj₁) not-strong-equivalence strong-equivalence = contradiction where 4≡2 = _⇔_.to isomorphic-same-size ( Fin 4 ↝⟨ inverse $ [Fin→Fin]↔Fin^ (lower-extensionality _ _ ext) 2 2 ⟩ (Fin 2 → Fin 2) ↝⟨ →-cong (lower-extensionality _ _ ext) F.id $ inverse $ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ 2 ⟩ (Fin 2 → Fin 2 ≡ Fin 2) ↔⟨ →-cong (lower-extensionality _ lzero ext) F.id $ equality-strong-equivalence ext univ₁ ⟩ (Fin 2 → (λ A → Fin 2 ≡ A) ≡ (λ A → Fin 2 ≡ A)) ↔⟨ →-cong (lower-extensionality _ lzero ext) F.id $ inverse $ Eq.extensionality-isomorphism ext ⟩ (Fin 2 → ∀ A → (Fin 2 ≡ A) ≡ (Fin 2 ≡ A)) ↝⟨ Π-comm ⟩ (∀ A → Fin 2 → (Fin 2 ≡ A) ≡ (Fin 2 ≡ A)) ↝⟨ inverse currying ⟩ (∀ A → (Fin 2 ≡ proj₁ A) ≡ (Fin 2 ≡ proj₁ A)) ↔⟨ Eq.extensionality-isomorphism ext ⟩ (λ A → Fin 2 ≡ proj₁ A) ≡ (λ A → Fin 2 ≡ proj₁ A) ↔⟨ inverse $ strong-equivalence {x = _ , fzero} {y = _ , fzero} ⟩ Fin 2 ≡ Fin 2 ↝⟨ [Fin≡Fin]↔Fin! (lower-extensionality _ _ ext) univ₀ 2 ⟩□ Fin 2 □) contradiction : ⊥ contradiction = from-⊎ (4 Nat.≟ 2) 4≡2 ------------------------------------------------------------------------ -- Quotients -- Equivalence classes. _is-equivalence-class-of_ : ∀ {a} {A : Type a} → (A → Type a) → (A → A → Type a) → Type (lsuc (lsuc a)) _is-equivalence-class-of_ {a} P R = ∥ (∃ λ x → R x ≡ P) ∥ 1 (lsuc a) -- Quotients. infix 5 _/_ _/_ : ∀ {a} (A : Type a) → (A → A → Type a) → Type (lsuc (lsuc a)) A / R = ∃ λ (P : A → Type _) → P is-equivalence-class-of R -- Quotienting with equality amounts to the same thing as not -- quotienting at all (assuming extensionality and univalence). /≡↔ : ∀ {a} {A : Type a} → Extensionality (lsuc (lsuc a)) (lsuc a) → Univalence a → A / _≡_ ↔ A /≡↔ {A = A} ext univ = (∃ λ P → ∥ (∃ λ x → (x ≡_) ≡ P) ∥ 1 _) ↝⟨ (∃-cong λ _ → ∥∥↔ lzero ext irr) ⟩ (∃ λ P → ∃ λ x → (x ≡_) ≡ P) ↝⟨ ∃-comm ⟩ (∃ λ x → ∃ λ P → (x ≡_) ≡ P) ↝⟨ drop-⊤-right (λ _ → _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩□ A □ where se = equality-strong-equivalence (lower-extensionality _ lzero ext) univ se-refl : ∀ x → _≃_.to se (refl x) ≡ refl (x ≡_) se-refl x = _≃_.from-to se ( sym (_≃_.to (≡⇒↝ _ (cong (_$ x) (refl (x ≡_)))) (sym (refl x))) ≡⟨ cong (λ p → sym (_≃_.to (≡⇒↝ _ p) (sym (refl x)))) $ cong-refl _ ⟩ sym (_≃_.to (≡⇒↝ _ (refl (x ≡ x))) (sym (refl x))) ≡⟨ cong (λ eq → sym (_≃_.to eq (sym (refl x)))) ≡⇒↝-refl ⟩ sym (sym (refl x)) ≡⟨ sym-sym _ ⟩∎ refl x ∎) lemma : {x y : A} (p : (x ≡_) ≡ (y ≡_)) → cong _≡_ (subst (_$ x) p (refl x)) ≡ sym p lemma {x = x} p = cong _≡_ (subst (_$ x) p (refl x)) ≡⟨ cong (λ p → cong _≡_ (subst (_$ x) p (refl x))) $ sym $ _≃_.right-inverse-of se _ ⟩ cong _≡_ (subst (_$ x) (_≃_.to se (_≃_.from se p)) (refl x)) ≡⟨ D.elim (λ p → cong _≡_ (subst (_$ _) (_≃_.to se p) (refl _)) ≡ sym (_≃_.to se p)) (λ x → cong _≡_ (subst (_$ x) (_≃_.to se (refl x)) (refl x)) ≡⟨ cong (λ p → cong _≡_ (subst (_$ x) p (refl x))) $ se-refl x ⟩ cong _≡_ (subst (_$ x) (refl (x ≡_)) (refl x)) ≡⟨ cong (cong _≡_) $ subst-refl _ _ ⟩ cong _≡_ (refl x) ≡⟨ cong-refl _ ⟩ refl (x ≡_ ) ≡⟨ sym sym-refl ⟩ sym (refl (x ≡_ )) ≡⟨ cong sym $ sym $ se-refl x ⟩∎ sym (_≃_.to se (refl x)) ∎) (_≃_.from se p) ⟩ sym (_≃_.to se (_≃_.from se p)) ≡⟨ cong sym $ _≃_.right-inverse-of se _ ⟩∎ sym p ∎ irr : ∀ {P} (p q : ∃ λ x → (x ≡_) ≡ P) → p ≡ q irr {P} (x , x≡≡) (y , y≡≡) = Σ-≡,≡→≡ (_≃_.from se ((x ≡_) ≡⟨ x≡≡ ⟩ P ≡⟨ sym y≡≡ ⟩∎ (y ≡_) ∎)) (subst (λ x → (x ≡_) ≡ P) (_≃_.from se (trans x≡≡ (sym y≡≡))) x≡≡ ≡⟨⟩ subst (λ x → (x ≡_) ≡ P) (sym $ _≃_.to (≡⇒↝ _ (cong (_$ x) (trans x≡≡ (sym y≡≡)))) (sym (refl x))) x≡≡ ≡⟨ cong (λ eq → subst (λ x → (x ≡_) ≡ P) (sym eq) x≡≡) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst (λ x → (x ≡_) ≡ P) (sym $ subst (_$ x) (trans x≡≡ (sym y≡≡)) (sym (refl x))) x≡≡ ≡⟨ cong (λ eq → subst (λ x → (x ≡_) ≡ P) (sym (subst (_$ x) (trans x≡≡ (sym y≡≡)) eq)) _) sym-refl ⟩ subst (λ x → (x ≡_) ≡ P) (sym $ subst (_$ x) (trans x≡≡ (sym y≡≡)) (refl x)) x≡≡ ≡⟨ subst-∘ _ _ _ ⟩ subst (λ Q → Q ≡ P) (cong _≡_ $ sym $ subst (_$ x) (trans x≡≡ (sym y≡≡)) (refl x)) x≡≡ ≡⟨ cong (λ eq → subst (λ Q → Q ≡ P) eq _) $ cong-sym _ _ ⟩ subst (λ Q → Q ≡ P) (sym $ cong _≡_ $ subst (_$ x) (trans x≡≡ (sym y≡≡)) (refl x)) x≡≡ ≡⟨ subst-trans _ ⟩ trans (cong _≡_ $ subst (_$ x) (trans x≡≡ (sym y≡≡)) (refl x)) x≡≡ ≡⟨ cong (flip trans x≡≡) $ lemma _ ⟩ trans (sym (trans x≡≡ (sym y≡≡))) x≡≡ ≡⟨ cong (flip trans x≡≡) $ sym-trans _ _ ⟩ trans (trans (sym (sym y≡≡)) (sym x≡≡)) x≡≡ ≡⟨ trans-[trans-sym]- _ _ ⟩ sym (sym y≡≡) ≡⟨ sym-sym _ ⟩∎ y≡≡ ∎) module _ {a} {A : Type a} {R : A → A → Type a} where -- Equality characterisation lemmas for the quotient type. equality-characterisation₁ : Extensionality (lsuc (lsuc a)) (lsuc a) → {x y : A / R} → x ≡ y ↔ proj₁ x ≡ proj₁ y equality-characterisation₁ ext {x} {y} = x ≡ y ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩ (∃ λ (eq : proj₁ x ≡ proj₁ y) → subst (_is-equivalence-class-of R) eq (proj₂ x) ≡ proj₂ y) ↝⟨ (drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ +⇒≡ $ truncation-has-correct-h-level 1 ext) ⟩□ proj₁ x ≡ proj₁ y □ equality-characterisation₂ : Extensionality (lsuc (lsuc a)) (lsuc a) → {x y : A / R} → x ≡ y ↔ (∀ z → proj₁ x z ≡ proj₁ y z) equality-characterisation₂ ext {x} {y} = x ≡ y ↝⟨ equality-characterisation₁ ext ⟩ proj₁ x ≡ proj₁ y ↔⟨ inverse $ Eq.extensionality-isomorphism (lower-extensionality _ lzero ext) ⟩□ (∀ z → proj₁ x z ≡ proj₁ y z) □ equality-characterisation₃ : Extensionality (lsuc (lsuc a)) (lsuc a) → Univalence a → {x y : A / R} → x ≡ y ↔ (∀ z → proj₁ x z ≃ proj₁ y z) equality-characterisation₃ ext univ {x} {y} = x ≡ y ↝⟨ equality-characterisation₂ ext ⟩ (∀ z → proj₁ x z ≡ proj₁ y z) ↔⟨ (∀-cong (lower-extensionality _ lzero ext) λ _ → ≡≃≃ univ) ⟩□ (∀ z → proj₁ x z ≃ proj₁ y z) □ -- Constructor for the quotient type. [_] : A → A / R [ a ] = R a , ∣ (a , refl (R a)) ∣₁ -- [_] is surjective (assuming extensionality). []-surjective : Extensionality (lsuc (lsuc a)) (lsuc a) → Surjective (lsuc a) [_] []-surjective ext (P , P-is-class) = ∥∥-map 1 (Σ-map F.id (λ {x} Rx≡P → [ x ] ≡⟨ _↔_.from (equality-characterisation₁ ext) Rx≡P ⟩∎ (P , P-is-class) ∎)) P-is-class -- If the relation is a family of types of h-level n, then the -- equivalence classes are also families of types of h-level n -- (assuming extensionality). equivalence-classes-have-same-h-level-as-relation : Extensionality a a → ∀ n → (∀ x y → H-level n (R x y)) → (x : A / R) → ∀ y → H-level n (proj₁ x y) equivalence-classes-have-same-h-level-as-relation ext n h (P , P-is-class) y = Trunc.rec 1 (H-level-propositional ext n) (λ { (z , Rz≡P) → H-level.respects-surjection (≡⇒↝ _ (R z y ≡⟨ cong (_$ y) Rz≡P ⟩∎ P y ∎)) n (h z y) }) (with-lower-level _ 1 P-is-class) -- If R is a family of types of h-level n, then A / R has h-level -- 1 + n (assuming extensionality and univalence). quotient's-h-level-is-1-+-relation's-h-level : Extensionality (lsuc (lsuc a)) (lsuc a) → Univalence a → Univalence (# 0) → ∀ n → (∀ x y → H-level n (R x y)) → H-level (1 + n) (A / R) quotient's-h-level-is-1-+-relation's-h-level ext univ univ₀ = h′ where lemma₁ : ∀ n → (∀ x y z → H-level n (proj₁ x z ≡ proj₁ y z)) → H-level (1 + n) (A / R) lemma₁ n h = ≡↔+ _ _ λ x y → $⟨ h x y ⟩ (∀ z → H-level n (proj₁ x z ≡ proj₁ y z)) ↝⟨ Π-closure (lower-extensionality _ lzero ext) n ⟩ H-level n (∀ z → proj₁ x z ≡ proj₁ y z) ↝⟨ H-level.respects-surjection (_↔_.surjection (inverse $ equality-characterisation₂ ext)) n ⟩□ H-level n (x ≡ y) □ lemma₂ : ∀ n → (∀ x y → H-level (1 + n) (R x y)) → ∀ x y z → H-level (1 + n) (proj₁ x z ≡ proj₁ y z) lemma₂ n h x _ z = H-level-H-level-≡ˡ (lower-extensionality _ _ ext) univ n (equivalence-classes-have-same-h-level-as-relation (lower-extensionality _ _ ext) (1 + n) h x z) h′ : ∀ n → (∀ x y → H-level n (R x y)) → H-level (1 + n) (A / R) h′ (suc n) h = lemma₁ (suc n) (lemma₂ n h) h′ zero h = lemma₁ zero λ x y z → propositional⇒inhabited⇒contractible (lemma₂ 0 (λ x y → mono₁ 0 (h x y)) x y z) ( $⟨ refl _ ⟩ ⊤ ≡ ⊤ ↝⟨ ≡-preserves-≃ (lower-extensionality _ _ ext) univ₀ univ (lemma₃ x z) (lemma₃ y z) ⟩ proj₁ x z ≡ proj₁ y z □) where lemma₃ : ∀ x z → ⊤ ≃ proj₁ x z lemma₃ x z = $⟨ equivalence-classes-have-same-h-level-as-relation (lower-extensionality _ _ ext) 0 h x z ⟩ Contractible (proj₁ x z) ↝⟨ _⇔_.to contractible⇔↔⊤ ⟩ proj₁ x z ↔ ⊤ ↝⟨ inverse ⟩ ⊤ ↔ proj₁ x z ↝⟨ Eq.↔⇒≃ ⟩□ ⊤ ≃ proj₁ x z □ -- If the relation is a strong equivalence relation with k, then it -- is k-related to equality under [_] (assuming extensionality). related↝[equal] : ∀ {k} → Extensionality (lsuc (lsuc a)) (lsuc a) → Strong-equivalence-with k R → ∀ {x y} → R x y ↝[ k ] [ x ] ≡ [ y ] related↝[equal] ext strong-equivalence {x} {y} = R x y ↝⟨ strong-equivalence ⟩ R x ≡ R y ↔⟨ inverse $ equality-characterisation₁ ext ⟩□ [ x ] ≡ [ y ] □ -- If the relation is a strong equivalence relation with a symmetric -- kind k, then functions from quotients to sets are k-related to -- relation-respecting functions (assuming extensionality). /→set↝relation-respecting : ∀ {k} → Extensionality (lsuc (lsuc a)) (lsuc (lsuc a)) → Strong-equivalence-with ⌊ k ⌋-sym R → {B : Type a} → Is-set B → (A / R → B) ↝[ ⌊ k ⌋-sym ] ∃ λ (f : A → B) → ∀ x y → R x y → f x ≡ f y /→set↝relation-respecting {k} ext strong-equivalence {B = B} B-set = ((∃ λ P → ∥ (∃ λ x → R x ≡ P) ∥ 1 _) → B) ↔⟨ currying ⟩ (∀ P → ∥ (∃ λ x → R x ≡ P) ∥ 1 _ → B) ↔⟨ (∀-cong (lower-extensionality _ lzero ext) λ P → inverse $ constant-function≃∥inhabited∥⇒inhabited lzero (lower-extensionality lzero _ ext) B-set) ⟩ (∀ P → ∃ λ (f : (∃ λ x → R x ≡ P) → B) → Constant f) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → Σ-cong currying λ _ → Bij.id) ⟩ (∀ P → ∃ λ (f : (x : A) → R x ≡ P → B) → Constant (uncurry f)) ↔⟨ ΠΣ-comm ⟩ (∃ λ (f : ∀ P → (x : A) → R x ≡ P → B) → ∀ P → Constant (uncurry (f P))) ↝⟨ Σ-cong Π-comm (λ _ → F.id) ⟩ (∃ λ (f : (x : A) → ∀ P → R x ≡ P → B) → ∀ P → Constant (uncurry (flip f P))) ↝⟨ Σ-cong (∀-cong (lower-extensionality _ _ ext) λ _ → inverse currying) (λ _ → F.id) ⟩ (∃ λ (f : (x : A) → (∃ λ P → R x ≡ P) → B) → ∀ P → Constant (uncurry λ x eq → f x (P , eq))) ↝⟨ inverse $ Σ-cong (Bij.inverse $ ∀-cong (lower-extensionality _ _ ext) λ _ → drop-⊤-left-Π (lower-extensionality _ _ ext) $ _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) lemma ⟩□ (∃ λ (f : A → B) → ∀ x y → R x y → f x ≡ f y) □ where lemma = λ f → (∀ x y → R x y → f x ≡ f y) ↝⟨ (∀-cong (forget-ext? ⌊ k ⌋-sym $ lower-extensionality _ _ ext) λ x → ∀-cong (forget-ext? ⌊ k ⌋-sym $ lower-extensionality _ _ ext) λ y → →-cong (forget-ext? ⌊ k ⌋-sym $ lower-extensionality _ _ ext) strong-equivalence F.id) ⟩ (∀ x y → R x ≡ R y → f x ≡ f y) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → ∀-cong (lower-extensionality _ _ ext) λ _ → →-cong (lower-extensionality _ _ ext) (Groupoid.⁻¹-bijection (EG.groupoid _)) F.id) ⟩ (∀ x y → R y ≡ R x → f x ≡ f y) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → inverse currying) ⟩ (∀ x (q : ∃ λ y → R y ≡ R x) → f x ≡ f (proj₁ q)) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → inverse $ drop-⊤-left-Π {k = bijection} (lower-extensionality _ _ ext) $ _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩ (∀ x (Q : ∃ λ P → R x ≡ P) (q : ∃ λ x → R x ≡ proj₁ Q) → f x ≡ f (proj₁ q)) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → currying) ⟩ (∀ x P → R x ≡ P → (q : ∃ λ x → R x ≡ P) → f x ≡ f (proj₁ q)) ↔⟨ Π-comm ⟩ (∀ P x → R x ≡ P → (q : ∃ λ x → R x ≡ P) → f x ≡ f (proj₁ q)) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → inverse currying) ⟩ (∀ P (p q : ∃ λ x → R x ≡ P) → f (proj₁ p) ≡ f (proj₁ q)) ↔⟨⟩ (∀ P → Constant (uncurry λ x _ → f x)) ↔⟨ (∀-cong (lower-extensionality _ _ ext) λ _ → ≡⇒↝ bijection $ cong Constant $ apply-ext (lower-extensionality _ _ ext) λ _ → sym $ subst-const _) ⟩□ (∀ P → Constant (uncurry λ x _ → subst (const B) _ (f x))) □ -- "Computation rule" for /→set↝relation-respecting. proj₁-to-/→set↝relation-respecting : ∀ {k} (ext : Extensionality (lsuc (lsuc a)) (lsuc (lsuc a))) (strong-equivalence : Strong-equivalence-with ⌊ k ⌋-sym R) {B : Type a} (B-set : Is-set B) (f : A / R → B) → proj₁ (to-implication (/→set↝relation-respecting ext strong-equivalence B-set) f) ≡ f ∘ [_] proj₁-to-/→set↝relation-respecting ext eq {B} B-set f = apply-ext (lower-extensionality _ _ ext) (lemma _ eq) where lemma : ∀ k (eq : Strong-equivalence-with ⌊ k ⌋-sym R) x → proj₁ (to-implication (/→set↝relation-respecting ext eq B-set) f) x ≡ f [ x ] lemma logical-equivalence _ x = subst (const B) (refl _) (f [ x ]) ≡⟨ subst-refl _ _ ⟩∎ f [ x ] ∎ lemma bijection _ x = subst (const B) (refl _) (f [ x ]) ≡⟨ subst-refl _ _ ⟩∎ f [ x ] ∎ lemma equivalence _ x = subst (const B) (refl _) (f [ x ]) ≡⟨ subst-refl _ _ ⟩∎ f [ x ] ∎ lemma equivalenceᴱ _ x = subst (const B) (refl _) (f [ x ]) ≡⟨ subst-refl _ _ ⟩∎ f [ x ] ∎ -- Recursor (used to eliminate into sets). The recursor uses -- extensionality and reflexivity. rec : Extensionality (lsuc (lsuc a)) (lsuc a) → (∀ {x} → R x x) → (B : Type a) → Is-set B → (f : A → B) → (∀ {x y} → R x y → f x ≡ f y) → A / R → B rec ext refl B B-set f R⇒≡ (P , P-is-class) = _≃_.to (constant-function≃∥inhabited∥⇒inhabited lzero ext B-set) (f′ , f′-constant) P-is-class where f′ : (∃ λ x → R x ≡ P) → B f′ (x , _) = f x f′-constant : Constant f′ f′-constant (x₁ , Rx₁≡P) (x₂ , Rx₂≡P) = R⇒≡ ( $⟨ refl ⟩ R x₂ x₂ ↝⟨ ≡⇒→ $ cong (λ Q → Q x₂) Rx₂≡P ⟩ P x₂ ↝⟨ ≡⇒→ $ cong (λ Q → Q x₂) $ sym Rx₁≡P ⟩□ R x₁ x₂ □) private -- The recursor's computation rule holds definitionally. rec-[] : (ext : Extensionality (lsuc (lsuc a)) (lsuc a)) (refl : ∀ {x} → R x x) (B : Type a) (B-set : Is-set B) (f : A → B) (R⇒≡ : ∀ {x y} → R x y → f x ≡ f y) (x : A) → rec ext refl B B-set f R⇒≡ [ x ] ≡ f x rec-[] _ _ _ _ _ _ _ = refl _ -- Eliminator (used to eliminate into sets). The eliminator uses -- extensionality, and the assumption that the relation is a "strong -- equivalence relation with split surjections". elim : (ext : Extensionality (lsuc (lsuc a)) (lsuc a)) (strong-equivalence : Strong-equivalence-with surjection R) (B : A / R → Type (lsuc a)) → (∀ x → Is-set (B x)) → (f : ∀ x → B [ x ]) → (∀ {x y} (Rxy : R x y) → subst B (_↠_.to (related↝[equal] ext strong-equivalence) Rxy) (f x) ≡ f y) → ∀ x → B x elim ext strong-equivalence B B-set f R⇒≡ (P , P-is-class) = _≃_.to (constant-function≃∥inhabited∥⇒inhabited lzero ext (B-set _)) (f′ , f′-constant) P-is-class where f′ : (∃ λ x → R x ≡ P) → B (P , P-is-class) f′ (x , Rx≡P) = subst B (_↔_.from (equality-characterisation₁ ext) Rx≡P) (f x) f′-constant : Constant f′ f′-constant (x , Rx≡P) (y , Ry≡P) = subst B (_↔_.from (equality-characterisation₁ ext) Rx≡P) (f x) ≡⟨ cong (subst _ _) $ sym $ R⇒≡ _ ⟩ subst B (_↔_.from (equality-characterisation₁ ext) Rx≡P) (subst B (_↠_.to (related↝[equal] ext strong-equivalence) lemma₁) (f y)) ≡⟨ subst-subst _ _ _ _ ⟩ subst B (trans (_↠_.to (related↝[equal] ext strong-equivalence) lemma₁) (_↔_.from (equality-characterisation₁ ext) Rx≡P)) (f y) ≡⟨ cong (λ eq → subst B eq _) lemma₄ ⟩∎ subst B (_↔_.from (equality-characterisation₁ ext) Ry≡P) (f y) ∎ where lemma₁ = _↠_.from strong-equivalence ( R y ≡⟨ Ry≡P ⟩ P ≡⟨ sym Rx≡P ⟩∎ R x ∎) lemma₂ = λ x → _↔_.to (equality-characterisation₁ ext) (refl x) ≡⟨⟩ proj₁ (Σ-≡,≡←≡ (refl x)) ≡⟨ proj₁-Σ-≡,≡←≡ _ ⟩ cong proj₁ (refl x) ≡⟨ cong-refl _ ⟩∎ refl (proj₁ x) ∎ lemma₃ = trans (_↠_.to strong-equivalence lemma₁) Rx≡P ≡⟨⟩ trans (_↠_.to strong-equivalence (_↠_.from strong-equivalence (trans Ry≡P (sym Rx≡P)))) Rx≡P ≡⟨ cong (flip trans _) $ _↠_.right-inverse-of strong-equivalence _ ⟩ trans (trans Ry≡P (sym Rx≡P)) Rx≡P ≡⟨ trans-[trans-sym]- _ _ ⟩∎ Ry≡P ∎ lemma₄ = trans (_↠_.to (related↝[equal] ext strong-equivalence) lemma₁) (_↔_.from (equality-characterisation₁ ext) Rx≡P) ≡⟨⟩ trans (_↔_.from (equality-characterisation₁ ext) (_↠_.to strong-equivalence lemma₁)) (_↔_.from (equality-characterisation₁ ext) Rx≡P) ≡⟨ Bij.trans-to-to≡to-trans (λ _ _ → inverse $ equality-characterisation₁ ext) lemma₂ ⟩ _↔_.from (equality-characterisation₁ ext) (trans (_↠_.to strong-equivalence lemma₁) Rx≡P) ≡⟨ cong (_↔_.from (equality-characterisation₁ ext)) lemma₃ ⟩∎ _↔_.from (equality-characterisation₁ ext) Ry≡P ∎ -- A variant of elim that can be used if the motive composed with -- [_] is a family of propositions. -- -- I took the idea for this eliminator from Nicolai Kraus. elim-Prop : (ext : Extensionality (lsuc (lsuc a)) (lsuc a)) (strong-equivalence : Strong-equivalence-with surjection R) (B : A / R → Type (lsuc a)) → (∀ x → Is-proposition (B [ x ])) → (f : ∀ x → B [ x ]) → ∀ x → B x elim-Prop ext strong-equivalence B B-prop f x = elim ext strong-equivalence B (elim ext strong-equivalence _ (λ _ → mono₁ 1 $ H-level-propositional ext′ 2) (mono₁ 1 ∘ B-prop) (λ _ → H-level-propositional ext′ 2 _ _)) f (λ _ → B-prop _ _ _) x where ext′ = lower-extensionality _ lzero ext ------------------------------------------------------------------------ -- An example module ⊤/2 where -- What happens if we quotient the unit type by the "binary-valued -- trivial relation"? ⊤/2 : Type₂ ⊤/2 = ⊤ / λ _ _ → Fin 2 -- The type is not a set (assuming extensionality and univalence). not-a-set : Extensionality (# 2) (# 1) → Univalence (# 0) → ¬ Is-set ⊤/2 not-a-set ext univ = Is-set ⊤/2 ↝⟨ _⇔_.from (≡↔+ 1 _) ⟩ ((x y : ⊤/2) → Is-proposition (x ≡ y)) ↝⟨ (λ prop → prop _ _) ⟩ Is-proposition ([ tt ] ≡ [ tt ]) ↝⟨ H-level.respects-surjection (_≃_.surjection $ inverse $ related↝[equal] ext (const-Fin-2-strong-equivalence (lower-extensionality _ lzero ext) univ)) 1 ⟩ Is-proposition (Fin 2) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse Bool↔Fin2) 1 ⟩ Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□ ⊥ □ -- The type is a groupoid (assuming extensionality and univalence). is-groupoid : Extensionality (# 2) (# 1) → Univalence (# 0) → H-level 3 ⊤/2 is-groupoid ext univ = quotient's-h-level-is-1-+-relation's-h-level ext univ univ 2 (λ _ _ → Fin-set 2) -- Every value in the quotient is merely equal to [ tt ] (assuming -- extensionality). ∥≡[tt]∥ : Extensionality (# 2) (# 1) → (x : ⊤/2) → ∥ x ≡ [ tt ] ∥ 1 (# 1) ∥≡[tt]∥ ext x = $⟨ []-surjective ext x ⟩ ∥ ⊤ × [ tt ] ≡ x ∥ 1 _ ↝⟨ ∥∥-map 1 (sym ∘ proj₂) ⟩□ ∥ x ≡ [ tt ] ∥ 1 _ □ -- The type is merely single-valued (assuming extensionality and a -- resizing function for the propositional truncation). merely-single-valued : Extensionality (# 2) (# 2) → ({A : Type₂} → ∥ A ∥ 1 (# 1) → ∥ A ∥ 1 (# 2)) → (x y : ⊤/2) → ∥ x ≡ y ∥ 1 (# 1) merely-single-valued ext resize x y = Trunc.rec 1 (truncation-has-correct-h-level 1 ext) (λ x≡[tt] → ∥∥-map 1 (λ y≡[tt] → x ≡⟨ x≡[tt] ⟩ [ tt ] ≡⟨ sym y≡[tt] ⟩∎ y ∎) (∥≡[tt]∥ ext′ y)) (resize (∥≡[tt]∥ ext′ x)) where ext′ = lower-extensionality lzero _ ext -- Every instance of the type's equality type is merely isomorphic -- to Fin 2 (assuming extensionality, univalence, and a resizing -- function for the propositional truncation). ∥≡↔2∥ : Extensionality (# 2) (# 2) → Univalence (# 0) → ({A : Type₂} → ∥ A ∥ 1 (# 1) → ∥ A ∥ 1 (# 2)) → (x y : ⊤/2) → ∥ x ≡ y ↔ Fin 2 ∥ 1 (# 1) ∥≡↔2∥ ext univ resize x y = Trunc.rec 1 (truncation-has-correct-h-level 1 ext) (λ x≡[tt] → ∥∥-map 1 (λ y≡[tt] → x ≡ y ↝⟨ ≡⇒↝ _ $ cong₂ _≡_ x≡[tt] y≡[tt] ⟩ [ tt ] ≡ [ tt ] ↔⟨ inverse $ related↝[equal] (lower-extensionality lzero _ ext) (const-Fin-2-strong-equivalence (lower-extensionality _ _ ext) univ) ⟩□ Fin 2 □) (∥≡[tt]∥ (lower-extensionality lzero _ ext) y)) (resize (∥≡[tt]∥ (lower-extensionality lzero _ ext) x))
{ "alphanum_fraction": 0.4427044993, "avg_line_length": 42.491943128, "ext": "agda", "hexsha": "7480f8306545c6c35c433fba620065e70e85e582", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Quotient/Families-of-equivalence-classes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Quotient/Families-of-equivalence-classes.agda", "max_line_length": 145, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Quotient/Families-of-equivalence-classes.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 14629, "size": 44829 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Injectivity where open import Definition.Untyped hiding (wk) import Definition.Untyped as U open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE -- Helper function of injectivity for specific reducible Π-types injectivity′ : ∀ {F G H E Γ l} ([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G) → Γ ⊩⟨ l ⟩ Π F ▹ G ≡ Π H ▹ E / Π-intr [ΠFG] → Γ ⊢ F ≡ H × Γ ∙ F ⊢ G ≡ E injectivity′ (noemb (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , G≡G₁ = Π-PE-injectivity (whnfRed* (red D) Πₙ) H≡F′ , E≡G′ = Π-PE-injectivity (whnfRed* D′ Πₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (refl (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ⊩⟨ _ ⟩ x) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in escapeEq [F]′ [F≡H]′ , escapeEq [G]′ [G≡E]′ injectivity′ (emb 0<1 x) (ιx [ΠFG≡ΠHE]) = injectivity′ x [ΠFG≡ΠHE] -- Injectivity of Π injectivity : ∀ {Γ F G H E} → Γ ⊢ Π F ▹ G ≡ Π H ▹ E → Γ ⊢ F ≡ H × Γ ∙ F ⊢ G ≡ E injectivity ⊢ΠFG≡ΠHE = let [ΠFG] , _ , [ΠFG≡ΠHE] = reducibleEq ⊢ΠFG≡ΠHE in injectivity′ (Π-elim [ΠFG]) (irrelevanceEq [ΠFG] (Π-intr (Π-elim [ΠFG])) [ΠFG≡ΠHE])
{ "alphanum_fraction": 0.5482315113, "avg_line_length": 41.4666666667, "ext": "agda", "hexsha": "3bf0080bcd721d7852b941ef0935469149dfbac5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Injectivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1030, "size": 2488 }
import Relation.Binary.PropositionalEquality as PEq module Relation.Binary.PropositionalEquality.Extensionality (funext : ∀ {ℓ₁ ℓ₂} → PEq.Extensionality ℓ₁ ℓ₂) where funext² : ∀ {p q r}{P : Set p}{Q : P → Set q} {R : (p : P) → Q p → Set r} → {f g : ∀ (p : P)(q : Q p) → R p q} → (∀ p q → f p q PEq.≡ g p q) → f PEq.≡ g funext² f = funext λ p → funext λ q → f p q funext³ : ∀ {p q r s}{P : Set p}{Q : P → Set q} {R : (p : P) → Q p → Set r}{S : (p : P)(q : Q p) → R p q → Set s} → {f g : ∀ (p : P)(q : Q p)(r : R p q) → S p q r} → (∀ p q r → f p q r PEq.≡ g p q r) → f PEq.≡ g funext³ f = funext λ p → funext λ q → funext λ r → f p q r
{ "alphanum_fraction": 0.4771428571, "avg_line_length": 38.8888888889, "ext": "agda", "hexsha": "7148ddb0ea100b95938a4a3148178007d8a06116", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Relation/Binary/PropositionalEquality/Extensionality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Relation/Binary/PropositionalEquality/Extensionality.agda", "max_line_length": 95, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Relation/Binary/PropositionalEquality/Extensionality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 304, "size": 700 }
{-# OPTIONS --prop --without-K --rewriting #-} module Data.Nat.Log2 where open import Data.Nat open import Data.Nat.Properties open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl) open import Agda.Builtin.Equality.Rewrite private aux : (P : ℕ → Set) → P zero → P (suc zero) → ((n : ℕ) → P ⌈ suc (suc n) /2⌉ → P (suc (suc n))) → (n : ℕ) → (m : ℕ) → m ≤ n → P m aux P bc₀ bc₁ is n zero h = bc₀ aux P bc₀ bc₁ is n (suc zero) h = bc₁ aux P bc₀ bc₁ is (suc (suc n)) (suc (suc m)) (s≤s (s≤s h)) = is m (aux P bc₀ bc₁ is (suc n) ⌈ suc (suc m) /2⌉ (s≤s (≤-trans (⌈n/2⌉≤n m) h))) strong-induction : (P : ℕ → Set) → P zero → P (suc zero) → ((n : ℕ) → P ⌈ suc (suc n) /2⌉ → P (suc (suc n))) → (n : ℕ) → P n strong-induction P bc₀ bc₁ is n = aux P bc₀ bc₁ is n n ≤-refl strong-induction/is : ∀ {P bc₀ bc₁ is n} → aux P bc₀ bc₁ is (suc n) ⌈ suc (suc n) /2⌉ (s≤s (≤-trans (⌈n/2⌉≤n n) ≤-refl)) ≡ strong-induction P bc₀ bc₁ is ⌈ suc (suc n) /2⌉ strong-induction/is {P} {bc₀} {bc₁} {is} {n} = aux/unique where aux/unique : ∀ {m n₁ n₂ h₁ h₂} → aux P bc₀ bc₁ is n₁ m h₁ ≡ aux P bc₀ bc₁ is n₂ m h₂ aux/unique {zero} = refl aux/unique {suc zero} = refl aux/unique {suc (suc m)} {h₁ = s≤s (s≤s h₁)} {h₂ = s≤s (s≤s h₂)} = Eq.cong (is m) aux/unique {-# REWRITE strong-induction/is #-} ⌈log₂_⌉ : ℕ → ℕ ⌈log₂_⌉ = strong-induction (λ _ → ℕ) zero zero (λ _ → suc) log₂-mono : ⌈log₂_⌉ Preserves _≤_ ⟶ _≤_ log₂-mono {n₁} {n₂} = strong-induction (λ n₁ → ∀ n₂ → n₁ ≤ n₂ → ⌈log₂ n₁ ⌉ ≤ ⌈log₂ n₂ ⌉) (λ _ _ → z≤n) (λ _ _ → z≤n) (λ { n₁ ih (suc (suc n₂)) (s≤s (s≤s h)) → s≤s (ih ⌈ suc (suc n₂) /2⌉ (⌈n/2⌉-mono (s≤s (s≤s h))))}) n₁ n₂ ⌈log₂n⌉≤n : ∀ n → ⌈log₂ n ⌉ ≤ n ⌈log₂n⌉≤n n = strong-induction' n n ≤-refl where strong-induction' : (n m : ℕ) → m ≤ n → ⌈log₂ m ⌉ ≤ m strong-induction' n zero h = z≤n strong-induction' n (suc zero) h = z≤n strong-induction' (suc (suc n)) (suc (suc m)) (s≤s (s≤s h)) = s≤s ( let open ≤-Reasoning in begin ⌈log₂ suc ⌈ m /2⌉ ⌉ ≤⟨ strong-induction' (suc n) (suc ⌈ m /2⌉) (s≤s (≤-trans (⌈n/2⌉≤n m) h)) ⟩ suc ⌈ m /2⌉ ≤⟨ s≤s (⌈n/2⌉≤n m) ⟩ suc m ∎ ) log₂-suc : ∀ n {k} → ⌈log₂ n ⌉ ≤ suc k → ⌈log₂ ⌈ n /2⌉ ⌉ ≤ k log₂-suc zero h = z≤n log₂-suc (suc zero) h = z≤n log₂-suc (suc (suc n)) (s≤s h) = h ⌈log₂n⌉≡0⇒n≤1 : {n : ℕ} → ⌈log₂ n ⌉ ≡ 0 → n ≤ 1 ⌈log₂n⌉≡0⇒n≤1 {zero} refl = z≤n ⌈log₂n⌉≡0⇒n≤1 {suc zero} refl = s≤s z≤n
{ "alphanum_fraction": 0.5296875, "avg_line_length": 34.5945945946, "ext": "agda", "hexsha": "e954d0d6a9d9c1d8c55914591975b8c9bcd12233", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Data/Nat/Log2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Data/Nat/Log2.agda", "max_line_length": 124, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Data/Nat/Log2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1349, "size": 2560 }
import Lvl module Structure.Category.Dual {ℓₒ ℓₘ ℓₑ : Lvl.Level} where open import Data.Tuple as Tuple using () open import Functional using (swap) open import Structure.Category open import Structure.Categorical.Names open import Structure.Categorical.Properties import Structure.Operator.Properties as Properties open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Type module _ {Obj : Type{ℓₒ}} {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ (cat : Category(Morphism)) where open Category.ArrowNotation(cat) open Category(cat) private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using () -- The opposite/dual category of a category. dualCategory : Category(_⟵_) Category._∘_ dualCategory = swap(_∘_) Category.id dualCategory = id BinaryOperator.congruence (Category.binaryOperator dualCategory) p₁ p₂ = congruence₂(_∘_) p₂ p₁ Morphism.Associativity.proof (Category.associativity dualCategory) = symmetry(_≡_) (Morphism.associativity(_∘_)) Morphism.Identityₗ.proof (Tuple.left (Category.identity dualCategory)) = Morphism.identity-right(_∘_)(id) Morphism.Identityᵣ.proof (Tuple.right (Category.identity dualCategory)) = Morphism.identity-left (_∘_)(id) dual : CategoryObject{ℓₒ}{ℓₘ} → CategoryObject{ℓₒ}{ℓₘ} dual(intro cat) = intro(dualCategory cat)
{ "alphanum_fraction": 0.7416612165, "avg_line_length": 39.2051282051, "ext": "agda", "hexsha": "751aee5dec7c6bf3f0583b00d7816aa8b2030d99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Dual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Dual.agda", "max_line_length": 125, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Dual.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 443, "size": 1529 }
module RecordsAndModules where module Setoids where record Equiv (a : Set) : Set where field x : a y : a record Setoid : Set1 where field carrier : Set equiv : Equiv carrier module RegExps (S : Setoids.Setoid) where data RegExp : Set where ε : RegExp module SimpleMatcher (S : Setoids.Setoid) where open module R = RegExps S foo : RegExp -> RegExp foo ε = ε
{ "alphanum_fraction": 0.6354916067, "avg_line_length": 15.4444444444, "ext": "agda", "hexsha": "7e6d83d417565c829e536329132de30f3620f901", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RecordsAndModules.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RecordsAndModules.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RecordsAndModules.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 417 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The values of terms in Nehemiah.Change.Term. ------------------------------------------------------------------------ module Nehemiah.Change.Value where open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Denotation.Value open import Data.Integer open import Structure.Bag.Nehemiah import Parametric.Change.Value Const ⟦_⟧Base ΔBase as ChangeValue ⟦apply-base⟧ : ChangeValue.ApplyStructure ⟦apply-base⟧ base-int n Δn = n + Δn ⟦apply-base⟧ base-bag b Δb = b ++ Δb ⟦diff-base⟧ : ChangeValue.DiffStructure ⟦diff-base⟧ base-int m n = m - n ⟦diff-base⟧ base-bag a b = a \\ b ⟦nil-base⟧ : ChangeValue.NilStructure ⟦nil-base⟧ base-int n = + 0 ⟦nil-base⟧ base-bag b = emptyBag open ChangeValue.Structure ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧ public
{ "alphanum_fraction": 0.6209223847, "avg_line_length": 28.6774193548, "ext": "agda", "hexsha": "f15f47633e97fd814b617d3eef424e930384bd60", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Value.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Value.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Value.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 246, "size": 889 }
module Data.QuadTree.Implementation.Functors where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.QuadrantLenses {-# FOREIGN AGDA2HS {-# LANGUAGE Safe #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE Rank2Types #-} import Data.Nat import Data.Lens.Lens import Data.Logic import Data.QuadTree.Implementation.Definition import Data.QuadTree.Implementation.ValidTypes import Data.QuadTree.Implementation.QuadrantLenses #-} record FunctorEq (f : (y : Set) -> {{ eqT : Eq y }} -> Set) : Set₁ where field fmapₑ : {a b : Set} -> {{ eqA : Eq a }} {{ eqB : Eq b }} -> (a → b) → f a → f b open FunctorEq public {-# COMPILE AGDA2HS FunctorEq class #-} quadrantFunctor : (dep : Nat) -> FunctorEq (λ y -> VQuadrant y {dep}) quadrantFunctor dep .fmapₑ fn (CVQuadrant (Leaf v) {p}) = (CVQuadrant (Leaf $ fn v) {p}) quadrantFunctor (S dep) .fmapₑ fn (CVQuadrant (Node a b c d) {p}) = (combine (fmapₑ (quadrantFunctor dep) fn sA) (fmapₑ (quadrantFunctor dep) fn sB) (fmapₑ (quadrantFunctor dep) fn sC) (fmapₑ (quadrantFunctor dep) fn sD)) where sA = CVQuadrant a {aSub a b c d p} sB = CVQuadrant b {bSub a b c d p} sC = CVQuadrant c {cSub a b c d p} sD = CVQuadrant d {dSub a b c d p} toQt : {b : Set} -> {{ eqB : Eq b }} -> (dep w h : Nat) .(q : IsTrue (dep == log2up (if w < h then h else w))) -> VQuadrant b {dep} -> VQuadTree b {dep} toQt dep w h q (CVQuadrant qd {p}) = CVQuadTree (Wrapper (w , h) qd) {p} {q} quadtreeFunctor : (dep : Nat) -> FunctorEq (λ y -> VQuadTree y {dep}) quadtreeFunctor dep .fmapₑ {a} {b} fn (CVQuadTree (Wrapper (w , h) qd) {p} {q}) = toQt dep w h q (fmapₑ (quadrantFunctor dep) fn (CVQuadrant qd {p}))
{ "alphanum_fraction": 0.6776636019, "avg_line_length": 42.0227272727, "ext": "agda", "hexsha": "9422d539f65900ca6742df7d1c0fdac09448644d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/Implementation/Functors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/Implementation/Functors.agda", "max_line_length": 161, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/Implementation/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 663, "size": 1849 }
module Issue978 where module A where infixr 4 _,_ record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B module B where infixl 2 _,_ data Ty : Set where data Cxt : Set where ε : Cxt _,_ : (Γ : Cxt) (a : Ty) → Cxt open A open B test : (Γ : Cxt) → Set₁ test ε = Set test (ε , a) = ? test (Γ , a , a₁) = ?
{ "alphanum_fraction": 0.5324324324, "avg_line_length": 12.3333333333, "ext": "agda", "hexsha": "e1800fe98b80e3b19118f52d81d5fd60ce18dbc3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue978.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue978.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue978.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 145, "size": 370 }
{- Setting an unknown signal can only shrink Can. canₖ-set-sig-monotonic : ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → ∀ k → k ∈ Canₖ p (Env.set-sig {S} θ S∈ status) → k ∈ Canₖ p θ (And its counterpart for Canₛ and Canₛₕ.) There are also corresponding Canθ versions: Setting a signal that is immediately shadowed by the inner environment does not change the result; setting a signal not in the inner environment can only shrink Canθ. canθ-set-sig-irr : ∀ sigs S'' → ∀ p S θ S∈ status → Signal.unwrap S ∈ map (_+_ S'') (SigMap.keys sigs) → Canθ sigs S'' p θ ≡ Canθ sigs S'' p (Env.set-sig {S} θ S∈ status) canθₖ-set-sig-monotonic : ∀ sigs S'' → ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → Signal.unwrap S ∉ map (_+_ S'') (SigMap.keys sigs) → ∀ k → k ∈ Canθₖ sigs S'' p (Env.set-sig {S} θ S∈ status) → k ∈ Canθₖ sigs S'' p θ For convenient reasoning of Canθ, we have a wrapper around canθ?-set-sig-monotonic lemmas: changing some unknowns to present or absent in the new signals (sigs) will only make the result smaller. canθₖ-add-sig-monotonic : ∀ sigs S'' p θ S status → ∀ k → k ∈ Canθₖ sigs S'' p (θ ← Θ SigMap.[ S ↦ status ] VarMap.empty ShrMap.empty) → k ∈ Canθₖ sigs S'' p (θ ← [S]-env S) A similar lemma for Canθ also holds, with some proper add-sig-monotonic constriant on the continuation. Specifically, this holds for using Canθ as the continuation. canθ'ₛ-add-sig-monotonic : ∀ sigs S'' κ θ S status → (∀ θ S status S' → S' ∈ proj₁ (κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (κ (θ ← [S]-env S))) → ∀ S' → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) → S' ∈ proj₁ (Canθ' sigs S'' κ (θ ← [S]-env S)) canθ'ₛ-canθ-add-sig-monotonic : ∀ sigs S sigs' S' p θ S''' status → ∀ S'' → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← Θ SigMap.[ S''' ↦ status ] ShrMap.empty VarMap.empty)) → S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' S' p) (θ ← [S]-env S''')) -} module Esterel.Lang.CanFunction.SetSigMonotonic where open import utility open import Esterel.Lang -- Note: the dependency is weird here; SetSigMonotonic should be basic -- and cannot import Base. Instead, Base relies on SetSigMonotonic. open import Esterel.Lang.CanFunction open import Esterel.Context open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) renaming (unwrap to _ˢ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) renaming (unwrap to _ˢʰ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) renaming (unwrap to _ᵛ) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map) open import Data.List.Properties using (map-id ; map-compose ; map-cong) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using (++⁻) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; trans ; sym ; cong ; subst ; inspect ; [_] ; Reveal_·_is_ ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-merge ; set-subtract-split ; set-remove ; set-remove-removed ; set-remove-mono-∈ ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open ≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM canₖ-set-sig-monotonic : ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → ∀ k → k ∈ Canₖ p (Env.set-sig {S} θ S∈ status) → k ∈ Canₖ p θ canₛ-set-sig-monotonic : ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → ∀ S'' → S'' ∈ Canₛ p (Env.set-sig {S} θ S∈ status) → S'' ∈ Canₛ p θ canₛₕ-set-sig-monotonic : ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → ∀ s → s ∈ Canₛₕ p (Env.set-sig {S} θ S∈ status) → s ∈ Canₛₕ p θ canθ-set-sig-irr : ∀ sigs S'' → ∀ p S θ S∈ status → Signal.unwrap S ∈ map (_+_ S'') (SigMap.keys sigs) → Canθ sigs S'' p θ ≡ Canθ sigs S'' p (Env.set-sig {S} θ S∈ status) canθₖ-set-sig-monotonic : ∀ sigs S'' → ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → Signal.unwrap S ∉ map (_+_ S'') (SigMap.keys sigs) → ∀ k → k ∈ Canθₖ sigs S'' p (Env.set-sig {S} θ S∈ status) → k ∈ Canθₖ sigs S'' p θ canθₛ-set-sig-monotonic : ∀ sigs S'' → ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → Signal.unwrap S ∉ map (_+_ S'') (SigMap.keys sigs) → ∀ S' → S' ∈ Canθₛ sigs S'' p (Env.set-sig {S} θ S∈ status) → S' ∈ Canθₛ sigs S'' p θ canθₛₕ-set-sig-monotonic : ∀ sigs S'' → ∀ p S θ S∈ status → Env.sig-stats {S} θ S∈ ≡ Signal.unknown → Signal.unwrap S ∉ map (_+_ S'') (SigMap.keys sigs) → ∀ s → s ∈ Canθₛₕ sigs S'' p (Env.set-sig {S} θ S∈ status) → s ∈ Canθₛₕ sigs S'' p θ canθₖ-add-sig-monotonic : ∀ sigs S'' p θ S status → ∀ k → k ∈ Canθₖ sigs S'' p (θ ← Θ SigMap.[ S ↦ status ] VarMap.empty ShrMap.empty) → k ∈ Canθₖ sigs S'' p (θ ← [S]-env S) canθₛ-add-sig-monotonic : ∀ sigs S'' p θ S status → ∀ S' → S' ∈ Canθₛ sigs S'' p (θ ← Θ SigMap.[ S ↦ status ] VarMap.empty ShrMap.empty) → S' ∈ Canθₛ sigs S'' p (θ ← [S]-env S) canθₛₕ-add-sig-monotonic : ∀ sigs S'' p θ S status → ∀ s → s ∈ Canθₛₕ sigs S'' p (θ ← Θ SigMap.[ S ↦ status ] VarMap.empty ShrMap.empty) → s ∈ Canθₛₕ sigs S'' p (θ ← [S]-env S) canθₖ-add-sig-monotonic sigs S'' p θ S status k k∈canθ-p-θ←[S↦status] with any (_≟_ (Signal.unwrap S)) (map (_+_ S'') (SigMap.keys sigs)) ... | yes S∈map-S''+-sigs = subst (k ∈_) (trans (cong (Canθₖ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) (cong (proj₁ ∘ proj₂) (sym (canθ-set-sig-irr sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status S∈map-S''+-sigs)))) k∈canθ-p-θ←[S↦status] where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ... | no S∉map-S''+-sigs = canθₖ-set-sig-monotonic sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status (trans ⟨θ←[S]⟩S≡[S]S (Env.sig-stats-1map' S Signal.unknown S∈[S])) S∉map-S''+-sigs k (subst (k ∈_) (cong (Canθₖ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) k∈canθ-p-θ←[S↦status]) where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ⟨θ←[S]⟩S≡[S]S = Env.sig-stats-←-right-irr' S θ ([S]-env S) S∈[S] S∈Domθ←[S] canθₛ-add-sig-monotonic sigs S'' p θ S status S' S'∈canθ-p-θ←[S↦status] with any (_≟_ (Signal.unwrap S)) (map (_+_ S'') (SigMap.keys sigs)) ... | yes S∈map-S''+-sigs = subst (S' ∈_) (trans (cong (Canθₛ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) (cong proj₁ (sym (canθ-set-sig-irr sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status S∈map-S''+-sigs)))) S'∈canθ-p-θ←[S↦status] where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ... | no S∉map-S''+-sigs = canθₛ-set-sig-monotonic sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status (trans ⟨θ←[S]⟩S≡[S]S (Env.sig-stats-1map' S Signal.unknown S∈[S])) S∉map-S''+-sigs S' (subst (S' ∈_) (cong (Canθₛ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) S'∈canθ-p-θ←[S↦status]) where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ⟨θ←[S]⟩S≡[S]S = Env.sig-stats-←-right-irr' S θ ([S]-env S) S∈[S] S∈Domθ←[S] canθₛₕ-add-sig-monotonic sigs S'' p θ S status s s∈canθ-p-θ←[S↦status] with any (_≟_ (Signal.unwrap S)) (map (_+_ S'') (SigMap.keys sigs)) ... | yes S∈map-S''+-sigs = subst (s ∈_) (trans (cong (Canθₛₕ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) (cong (proj₂ ∘ proj₂) (sym (canθ-set-sig-irr sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status S∈map-S''+-sigs)))) s∈canθ-p-θ←[S↦status] where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ... | no S∉map-S''+-sigs = canθₛₕ-set-sig-monotonic sigs S'' p S (θ ← [S]-env S) S∈Domθ←[S] status (trans ⟨θ←[S]⟩S≡[S]S (Env.sig-stats-1map' S Signal.unknown S∈[S])) S∉map-S''+-sigs s (subst (s ∈_) (cong (Canθₛₕ sigs S'' p) (begin θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty ≡⟨ cong (θ ←_) (sym (Env.sig-put-1map-overwrite' S Signal.unknown status S∈[S])) ⟩ θ ← Env.set-sig {S} ([S]-env S) S∈[S] status ≡⟨ Env.sig-switch-right S status θ ([S]-env S) S∈[S] S∈Domθ←[S] ⟩ Env.set-sig {S} (θ ← [S]-env S) S∈Domθ←[S] status ∎)) s∈canθ-p-θ←[S↦status]) where S∈[S] = Env.sig-∈-single S Signal.unknown S∈Domθ←[S] = Env.sig-←-monoʳ S ([S]-env S) θ S∈[S] ⟨θ←[S]⟩S≡[S]S = Env.sig-stats-←-right-irr' S θ ([S]-env S) S∈[S] S∈Domθ←[S] canₖ-set-sig-monotonic nothin S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic pause S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic (signl S' p) S θ S∈ status θS≡unknown k k∈can-p-θ' with Env.Sig∈ S ([S]-env S') ... | yes S∈Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) | canθ-set-sig-irr (Env.sig ([S]-env S')) 0 p S θ S∈ status S∈Dom[S]-env = k∈can-p-θ' ... | no S∉Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) = canθₖ-set-sig-monotonic (Env.sig ([S]-env S')) 0 p S θ S∈ status θS≡unknown S∉Dom[S]-env k k∈can-p-θ' canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' with S' Signal.≟ S canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no S'≢S with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no S'≢S | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no S'≢S | no S'∉θ | yes S'∈θ' with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ') ... | Signal.absent = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₖ p (Env.set-sig {S} θ S∈ status)) k∈can-p-θ' ... | inj₁ k∈can-p'-θ' = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p'-θ') ... | inj₂ k∈can-q'-θ' = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q'-θ') canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no S'≢S | no S'∉θ | no S'∉θ' with ++⁻ (Canₖ p (Env.set-sig {S} θ S∈ status)) k∈can-p-θ' ... | inj₁ k∈can-p'-θ' = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p'-θ') ... | inj₂ k∈can-q'-θ' = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q'-θ') canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no S'≢S | yes S'∈θ | yes S'∈θ' with Env.sig-stats {S'} θ S'∈θ | Env.sig-putputget {S'} {S} {θ} {_} {status} S'≢S S'∈θ S∈ S'∈θ' refl ... | Signal.present | eq rewrite eq = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' ... | Signal.absent | eq rewrite eq = canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-p-θ' ... | Signal.unknown | eq rewrite eq with ++⁻ (Canₖ p (Env.set-sig {S} θ S∈ status)) k∈can-p-θ' ... | inj₁ k∈can-p'-θ' = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p'-θ') ... | inj₂ k∈can-q'-θ' = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q'-θ') canₖ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-p-θ' | yes refl with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) ... | no S'∉θ | S'∈θ'? = ⊥-elim (S'∉θ S∈) ... | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) ... | yes S'∈θ | yes S'∈θ' rewrite Env.sig-stats-∈-irr {S'} {θ} S'∈θ S∈ | θS≡unknown with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ') ... | Signal.absent = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₖ p (Env.set-sig {S} θ S∈ status)) k∈can-p-θ' ... | inj₁ k∈can-p'-θ' = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p'-θ') ... | inj₂ k∈can-q'-θ' = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q'-θ') canₖ-set-sig-monotonic (emit S') S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic (p ∥ q) S θ S∈ status θS≡unknown k k∈can-p-θ' = map-mono² Code._⊔_ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown) k k∈can-p-θ' canₖ-set-sig-monotonic (loop p) S θ S∈ status θS≡unknown k k∈can-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' canₖ-set-sig-monotonic (loopˢ p q) S θ S∈ status θS≡unknown k s∈can-loopˢpq-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k s∈can-loopˢpq-θ' canₖ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown k k∈can-p-θ' with any (Code._≟_ Code.nothin) (Canₖ p θ) | any (Code._≟_ Code.nothin) (Canₖ p (Env.set-sig {S} θ S∈ status)) canₖ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown k k∈can-p-θ' | yes nothin∈can-p-θ | yes nothin∈can-p-θ' with Code.nothin Code.≟ k | ++⁻ (CodeSet.set-remove (Canₖ p (Env.set-sig {S} θ S∈ status)) Code.nothin) k∈can-p-θ' ... | nothin≟k | inj₂ k∈can-q-θ' = ++ʳ (CodeSet.set-remove (Canₖ p θ) Code.nothin) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q-θ') ... | yes refl | inj₁ nothin∈can-p-θ'-[nothin] = ⊥-elim (CodeSet.set-remove-removed {Code.nothin} {Canₖ p (Env.set-sig {S} θ S∈ status)} nothin∈can-p-θ'-[nothin]) ... | no nothin≢k | inj₁ k∈can-p-θ'-[nothin] = ++ˡ (CodeSet.set-remove-not-removed nothin≢k (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k (CodeSet.set-remove-mono-∈ Code.nothin k∈can-p-θ'-[nothin]))) canₖ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown k k∈can-p-θ' | yes nothin∈can-p-θ | no nothin∉can-p-θ' with Code.nothin Code.≟ k ... | yes refl = ⊥-elim (nothin∉can-p-θ' k∈can-p-θ') ... | no nothin≢k = ++ˡ (CodeSet.set-remove-not-removed nothin≢k (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ')) canₖ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no nothin∉can-p-θ | yes nothin∈can-p-θ' = ⊥-elim (nothin∉can-p-θ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown Code.nothin nothin∈can-p-θ')) canₖ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown k k∈can-p-θ' | no nothin∉can-p-θ | no nothin∉can-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' canₖ-set-sig-monotonic (suspend p S') S θ S∈ status θS≡unknown k k∈can-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' canₖ-set-sig-monotonic (trap p) S θ S∈ status θS≡unknown k k∈can-p-θ' = map-mono Code.↓* (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown) k k∈can-p-θ' canₖ-set-sig-monotonic (exit n) S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic (shared s ≔ e in: p) S θ S∈ status θS≡unknown k k∈can-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' canₖ-set-sig-monotonic (s ⇐ e) S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic (var x ≔ e in: p) S θ S∈ status θS≡unknown k k∈can-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ' canₖ-set-sig-monotonic (x ≔ e) S θ S∈ status θS≡unknown k k∈can-p-θ' = k∈can-p-θ' canₖ-set-sig-monotonic (if x ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown k k∈can-if-θ' with ++⁻ (Canₖ p (Env.set-sig {S} θ S∈ status)) k∈can-if-θ' ... | inj₁ k∈can-p-θ' = ++ˡ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈can-p-θ') ... | inj₂ k∈can-q-θ' = ++ʳ (Canₖ p θ) (canₖ-set-sig-monotonic q S θ S∈ status θS≡unknown k k∈can-q-θ') canₖ-set-sig-monotonic (ρ⟨ θ' , A ⟩· p) S θ S∈ status θS≡unknown k k∈can-p-θ' with Env.Sig∈ S θ' ... | yes S∈Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) | canθ-set-sig-irr (Env.sig θ') 0 p S θ S∈ status S∈Domθ' = k∈can-p-θ' ... | no S∉Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) = canθₖ-set-sig-monotonic (Env.sig θ') 0 p S θ S∈ status θS≡unknown S∉Domθ' k k∈can-p-θ' canₛ-set-sig-monotonic nothin S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic pause S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic (signl S' p) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' with Env.Sig∈ S ([S]-env S') ... | yes S∈Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) | canθ-set-sig-irr (Env.sig ([S]-env S')) 0 p S θ S∈ status S∈Dom[S]-env = S''∈can-p-θ' ... | no S∉Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) with Signal.unwrap S' ≟ S'' ... | yes refl = ⊥-elim (set-remove-removed {S''} {Canθₛ (Env.sig ([S]-env S')) 0 p (Env.set-sig {S} θ S∈ status)} S''∈can-p-θ') ... | no S'≢S'' = set-remove-not-removed S'≢S'' (canθₛ-set-sig-monotonic (Env.sig ([S]-env S')) 0 p S θ S∈ status θS≡unknown S∉Dom[S]-env S'' (set-remove-mono-∈ (Signal.unwrap S') S''∈can-p-θ')) canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' with S' Signal.≟ S canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | no S'≢S with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | no S'≢S | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | no S'≢S | no S'∉θ | yes S'∈θ' with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | Signal.absent = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p-θ' ... | inj₁ S''∈can-p'-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p'-θ') ... | inj₂ S''∈can-q'-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q'-θ') canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | no S'≢S | no S'∉θ | no S'∉θ' with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p-θ' ... | inj₁ S''∈can-p'-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p'-θ') ... | inj₂ S''∈can-q'-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q'-θ') canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | no S'≢S | yes S'∈θ | yes S'∈θ' with Env.sig-stats {S'} θ S'∈θ | Env.sig-putputget {S'} {S} {θ} {_} {status} S'≢S S'∈θ S∈ S'∈θ' refl ... | Signal.present | eq rewrite eq = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' ... | Signal.absent | eq rewrite eq = canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-p-θ' ... | Signal.unknown | eq rewrite eq with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p-θ' ... | inj₁ S''∈can-p'-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p'-θ') ... | inj₂ S''∈can-q'-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q'-θ') canₛ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' | yes refl with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) ... | no S'∉θ | S'∈θ'? = ⊥-elim (S'∉θ S∈) ... | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) ... | yes S'∈θ | yes S'∈θ' rewrite Env.sig-stats-∈-irr {S'} {θ} S'∈θ S∈ | θS≡unknown with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | Signal.absent = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p-θ' ... | inj₁ S''∈can-p'-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p'-θ') ... | inj₂ S''∈can-q'-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q'-θ') canₛ-set-sig-monotonic (emit S') S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic (p ∥ q) S θ S∈ status θS≡unknown S'' S''∈can-p∥q-θ' with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p∥q-θ' ... | inj₁ S''∈can-p-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | inj₂ S''∈can-q-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q-θ') canₛ-set-sig-monotonic (loop p) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' canₛ-set-sig-monotonic (loopˢ p q) S θ S∈ status θS≡unknown S'' s∈can-loopˢpq-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' s∈can-loopˢpq-θ' canₛ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown S'' S''∈can-p>>q-θ' with any (Code._≟_ Code.nothin) (Canₖ p θ) | any (Code._≟_ Code.nothin) (Canₖ p (Env.set-sig {S} θ S∈ status)) ... | no nothin∉can-p-θ | yes nothin∈can-p-θ' = ⊥-elim (nothin∉can-p-θ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown Code.nothin nothin∈can-p-θ')) ... | no nothin∉can-p-θ | no nothin∉can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p>>q-θ' ... | yes nothin∈can-p-θ | no nothin∉can-p-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p>>q-θ') ... | yes nothin∈can-p-θ | yes nothin∈can-p-θ' with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-p>>q-θ' ... | inj₁ S''∈can-p-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | inj₂ S''∈can-q-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q-θ') canₛ-set-sig-monotonic (suspend p S') S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' canₛ-set-sig-monotonic (trap p) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' canₛ-set-sig-monotonic (exit n) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic (shared s' ≔ e in: p) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' canₛ-set-sig-monotonic (s' ⇐ e) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic (var x ≔ e in: p) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ' canₛ-set-sig-monotonic (x ≔ e) S θ S∈ status θS≡unknown S'' S''∈can-p-θ' = S''∈can-p-θ' canₛ-set-sig-monotonic (if x ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown S'' S''∈can-if-θ' with ++⁻ (Canₛ p (Env.set-sig {S} θ S∈ status)) S''∈can-if-θ' ... | inj₁ S''∈can-p-θ' = ++ˡ (canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S'' S''∈can-p-θ') ... | inj₂ S''∈can-q-θ' = ++ʳ (Canₛ p θ) (canₛ-set-sig-monotonic q S θ S∈ status θS≡unknown S'' S''∈can-q-θ') canₛ-set-sig-monotonic (ρ⟨ θ' , A ⟩· p) S θ S∈ status θS≡unknown S'' S''∈can-ρθ'p-θ' with Env.Sig∈ S θ' ... | yes S∈Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) | canθ-set-sig-irr (Env.sig θ') 0 p S θ S∈ status S∈Domθ' = S''∈can-ρθ'p-θ' ... | no S∉Domθ' with set-subtract-merge {xs = Canθₛ (Env.sig θ') 0 p (Env.set-sig {S} θ S∈ status)} {ys = proj₁ (Dom θ')} S''∈can-ρθ'p-θ' ... | S''∈canθ-p-θ' , S''∉Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) with set-subtract-split (canθₛ-set-sig-monotonic (Env.sig θ') 0 p S θ S∈ status θS≡unknown S∉Domθ' S'' S''∈canθ-p-θ') ... | inj₂ S''∈Domθ' = ⊥-elim (S''∉Domθ' S''∈Domθ') ... | inj₁ S''∈canθ-p-θ-Domθ' = S''∈canθ-p-θ-Domθ' canₛₕ-set-sig-monotonic nothin S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic pause S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic (signl S' p) S θ S∈ status θS≡unknown s s∈can-p-θ' with Env.Sig∈ S ([S]-env S') ... | yes S∈Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) | canθ-set-sig-irr (Env.sig ([S]-env S')) 0 p S θ S∈ status S∈Dom[S]-env = s∈can-p-θ' ... | no S∉Dom[S]-env rewrite sym (map-id (proj₁ (Dom ([S]-env S')))) = canθₛₕ-set-sig-monotonic (Env.sig ([S]-env S')) 0 p S θ S∈ status θS≡unknown S∉Dom[S]-env s s∈can-p-θ' canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' with S' Signal.≟ S canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | no S'≢S with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | no S'≢S | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | no S'≢S | no S'∉θ | yes S'∈θ' with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ') ... | Signal.absent = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p-θ' ... | inj₁ s∈can-p'-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p'-θ') ... | inj₂ s∈can-q'-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q'-θ') canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | no S'≢S | no S'∉θ | no S'∉θ' with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p-θ' ... | inj₁ s∈can-p'-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p'-θ') ... | inj₂ s∈can-q'-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q'-θ') canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | no S'≢S | yes S'∈θ | yes S'∈θ' with Env.sig-stats {S'} θ S'∈θ | Env.sig-putputget {S'} {S} {θ} {_} {status} S'≢S S'∈θ S∈ S'∈θ' refl ... | Signal.present | eq rewrite eq = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ' ... | Signal.absent | eq rewrite eq = canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-p-θ' ... | Signal.unknown | eq rewrite eq with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p-θ' ... | inj₁ s∈can-p'-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p'-θ') ... | inj₂ s∈can-q'-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q'-θ') canₛₕ-set-sig-monotonic (present S' ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-p-θ' | yes refl with Env.Sig∈ S' θ | Env.Sig∈ S' (Env.set-sig {S} θ S∈ status) ... | no S'∉θ | S'∈θ'? = ⊥-elim (S'∉θ S∈) ... | yes S'∈θ | no S'∉θ' = ⊥-elim (S'∉θ' (Env.sig-set-mono' {S'} {S} {θ} {status} {S∈} S'∈θ)) ... | yes S'∈θ | yes S'∈θ' rewrite Env.sig-stats-∈-irr {S'} {θ} S'∈θ S∈ | θS≡unknown with Env.sig-stats {S'} (Env.set-sig {S} θ S∈ status) S'∈θ' ... | Signal.present = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ') ... | Signal.absent = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-p-θ') ... | Signal.unknown with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p-θ' ... | inj₁ s∈can-p'-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p'-θ') ... | inj₂ s∈can-q'-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q'-θ') canₛₕ-set-sig-monotonic (emit S') S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic (p ∥ q) S θ S∈ status θS≡unknown s s∈can-p∥q-θ' with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p∥q-θ' ... | inj₁ s∈can-p-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ') ... | inj₂ s∈can-q-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q-θ') canₛₕ-set-sig-monotonic (loop p) S θ S∈ status θS≡unknown s s∈can-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ' canₛₕ-set-sig-monotonic (loopˢ p q) S θ S∈ status θS≡unknown s s∈can-loopˢpq-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-loopˢpq-θ' canₛₕ-set-sig-monotonic (p >> q) S θ S∈ status θS≡unknown s s∈can-p>>q-θ' with any (Code._≟_ Code.nothin) (Canₖ p θ) | any (Code._≟_ Code.nothin) (Canₖ p (Env.set-sig {S} θ S∈ status)) ... | no nothin∉can-p-θ | yes nothin∈-can-p-θ' = ⊥-elim (nothin∉can-p-θ (canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown Code.nothin nothin∈-can-p-θ')) ... | no nothin∉can-p-θ | no nothin∉-can-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p>>q-θ' ... | yes nothin∈can-p-θ | no nothin∉-can-p-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p>>q-θ') ... | yes nothin∈can-p-θ | yes nothin∈-can-p-θ' with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-p>>q-θ' ... | inj₁ s∈can-p-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ') ... | inj₂ s∈can-q-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q-θ') canₛₕ-set-sig-monotonic (suspend p S') S θ S∈ status θS≡unknown s s∈can-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ' canₛₕ-set-sig-monotonic (trap p) S θ S∈ status θS≡unknown s s∈can-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ' canₛₕ-set-sig-monotonic (exit n) S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic (shared s' ≔ e in: p) S θ S∈ status θS≡unknown s s∈can-p-θ' with SharedVar.unwrap s' Data.Nat.≟ s ... | yes refl = ⊥-elim (set-remove-removed {SharedVar.unwrap s'} {Canₛₕ p (Env.set-sig {S} θ S∈ status)} s∈can-p-θ') ... | no s'≢s = set-remove-not-removed s'≢s (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s (set-remove-mono-∈ (SharedVar.unwrap s') s∈can-p-θ')) canₛₕ-set-sig-monotonic (s' ⇐ e) S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic (var x ≔ e in: p) S θ S∈ status θS≡unknown s s∈can-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ' canₛₕ-set-sig-monotonic (x ≔ e) S θ S∈ status θS≡unknown s s∈can-p-θ' = s∈can-p-θ' canₛₕ-set-sig-monotonic (if x ∣⇒ p ∣⇒ q) S θ S∈ status θS≡unknown s s∈can-if-θ' with ++⁻ (Canₛₕ p (Env.set-sig {S} θ S∈ status)) s∈can-if-θ' ... | inj₁ s∈can-p-θ' = ++ˡ (canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈can-p-θ') ... | inj₂ s∈can-q-θ' = ++ʳ (Canₛₕ p θ) (canₛₕ-set-sig-monotonic q S θ S∈ status θS≡unknown s s∈can-q-θ') canₛₕ-set-sig-monotonic (ρ⟨ θ' , A ⟩· p) S θ S∈ status θS≡unknown s s∈can-ρθ'p-θ' with Env.Sig∈ S θ' ... | yes S∈Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) | canθ-set-sig-irr (Env.sig θ') 0 p S θ S∈ status S∈Domθ' = s∈can-ρθ'p-θ' ... | no S∉Domθ' with set-subtract-merge {xs = Canθₛₕ (Env.sig θ') 0 p (Env.set-sig {S} θ S∈ status)} {ys = proj₁ (proj₂ (Dom θ'))} s∈can-ρθ'p-θ' ... | s∈canθ-p-θ' , s∉Domθ' rewrite sym (map-id (proj₁ (Dom θ'))) with set-subtract-split (canθₛₕ-set-sig-monotonic (Env.sig θ') 0 p S θ S∈ status θS≡unknown S∉Domθ' s s∈canθ-p-θ') ... | inj₂ s∈Domθ' = ⊥-elim (s∉Domθ' s∈Domθ') ... | inj₁ s∈canθ-p-θ-Domθ' = s∈canθ-p-θ-Domθ' canθ-set-sig-irr [] S'' p S θ S∈Domθ status () canθ-set-sig-irr (nothing ∷ sigs) S'' p S θ S∈Domθ status S∈sigs rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθ-set-sig-irr sigs (suc S'') p S θ S∈Domθ status S∈sigs canθ-set-sig-irr (just Signal.present ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env-present S) S∈Domθ (Env.sig-∈-single S Signal.present) = refl ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env-present (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.present (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) = canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env-present (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ) status S∈sigs canθ-set-sig-irr (just Signal.absent ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env-absent S) S∈Domθ (Env.sig-∈-single S Signal.absent) = refl ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env-absent (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.absent (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) = canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env-absent (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ) status S∈sigs canθ-set-sig-irr (just Signal.unknown ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') p ((Env.set-sig {S} θ S∈Domθ status) ← [S]-env (S'' ₛ))) canθ-set-sig-irr (just Signal.unknown ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs | yes S''∈canθ-p-θ←[S''] | yes S''∈canθ-p-θ'←[S''] with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env S) S∈Domθ (Env.sig-∈-single S Signal.unknown) = refl ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.unknown (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) = canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) status S∈sigs canθ-set-sig-irr (just Signal.unknown ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs | no S''∉can-pθ-θ←[S''] | no S''∉can-pθ-θ'←[S''] with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env-absent S) S∈Domθ (Env.sig-∈-single S Signal.absent) = refl ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env-absent (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.absent (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) = canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env-absent (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ) status S∈sigs canθ-set-sig-irr (just Signal.unknown ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs | yes S''∈canθ-p-θ←[S''] | no S''∉canθ-p-θ'←[S''] with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env S) S∈Domθ (Env.sig-∈-single S Signal.unknown) = ⊥-elim (S''∉canθ-p-θ'←[S''] S''∈canθ-p-θ←[S'']) ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.unknown (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) | canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) status S∈sigs = ⊥-elim (S''∉canθ-p-θ'←[S''] S''∈canθ-p-θ←[S'']) canθ-set-sig-irr (just Signal.unknown ∷ sigs) S'' p S θ S∈Domθ status S∈S'∷sigs | no S''∉canθ-p-θ←[S''] | yes S''∈canθ-p-θ'←[S''] with (S'' ₛ) Signal.≟ S ... | yes refl rewrite Env.sig-set-←-← S status θ ([S]-env S) S∈Domθ (Env.sig-∈-single S Signal.unknown) = ⊥-elim (S''∉canθ-p-θ←[S''] S''∈canθ-p-θ'←[S'']) ... | no S''≢S with S | S∈S'∷sigs ... | _ | here S≡S''+0 rewrite +-comm S'' 0 = ⊥-elim (S''≢S (Signal.unwrap-injective (sym S≡S''+0))) ... | zero ₛ | there S∈sigs rewrite map-+-swap-suc S'' (SigMap.keys sigs) = ⊥-elim (SigM.0∈S S∈sigs) ... | suc S' ₛ | there S∈sigs rewrite sym (Env.sig-switch (suc S' ₛ) status θ ([S]-env (S'' ₛ)) S∈Domθ (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) (Env.sig-∉-single (suc S' ₛ) (S'' ₛ) Signal.unknown (S''≢S ∘ sym))) | map-+-compose-suc S'' (SigMap.keys sigs) | canθ-set-sig-irr sigs (suc S'') p (suc S' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-←-monoˡ (suc S' ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ) status S∈sigs = ⊥-elim (S''∉canθ-p-θ←[S''] S''∈canθ-p-θ'←[S'']) canθₖ-set-sig-monotonic [] S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' = canₖ-set-sig-monotonic p S θ S∈ status θS≡unknown k k∈canθ-p-θ' canθₖ-set-sig-monotonic (nothing ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₖ-set-sig-monotonic sigs (suc S'') p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' canθₖ-set-sig-monotonic (just Signal.present ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₖ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-present (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) k (subst (k ∈_) (cong (Canθₖ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap))))) k∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₖ-set-sig-monotonic (just Signal.absent ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₖ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) k (subst (k ∈_) (cong (Canθₖ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) k∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₖ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') p ((Env.set-sig {S} θ S∈ status) ← [S]-env (S'' ₛ))) canθₖ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₖ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) k (subst (k ∈_) (cong (Canθₖ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) k∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₖ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₖ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) k (subst (k ∈_) (cong (Canθₖ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) k∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₖ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 | cong (Canθₖ sigs (suc S'') p) (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))) = ⊥-elim (S''∉canθ-p-θ←[S] (canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S'' (subst (S'' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S''∈canθ-p-θ'←[S]))) where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₖ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs k k∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₖ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent k k∈canθ-p-θ←[S↦absent] where S''∈[S''] = Env.sig-∈-single (S'' ₛ) Signal.unknown S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ S''∈Domθ←[S''] = Env.sig-←-monoʳ (S'' ₛ) ([S]-env (S'' ₛ)) θ S''∈[S''] θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] ⟨θ←[S'']⟩S''≡[S'']S'' = Env.sig-stats-←-right-irr' (S'' ₛ) θ ([S]-env (S'' ₛ)) S''∈[S''] S''∈Domθ←[S''] k∈canθ-p-θ←[S↦absent] = canθₖ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) k (subst (k ∈_) (cong (Canθₖ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) k∈canθ-p-θ') canθₛ-set-sig-monotonic [] S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' = canₛ-set-sig-monotonic p S θ S∈ status θS≡unknown S' S'∈canθ-p-θ' canθₛ-set-sig-monotonic (nothing ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛ-set-sig-monotonic sigs (suc S'') p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' canθₛ-set-sig-monotonic (just Signal.present ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-present (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S' (subst (S' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S'∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛ-set-sig-monotonic (just Signal.absent ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S' (subst (S' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S'∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') p ((Env.set-sig {S} θ S∈ status) ← [S]-env (S'' ₛ))) canθₛ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S' (subst (S' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S'∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S' (subst (S' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S'∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 | cong (Canθₛ sigs (suc S'') p) (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))) = ⊥-elim (S''∉canθ-p-θ←[S] (canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S'' (subst (S'' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S''∈canθ-p-θ'←[S]))) where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs S' S'∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent S' S'∈canθ-p-θ←[S↦absent] where S''∈[S''] = Env.sig-∈-single (S'' ₛ) Signal.unknown S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ S''∈Domθ←[S''] = Env.sig-←-monoʳ (S'' ₛ) ([S]-env (S'' ₛ)) θ S''∈[S''] θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] ⟨θ←[S'']⟩S''≡[S'']S'' = Env.sig-stats-←-right-irr' (S'' ₛ) θ ([S]-env (S'' ₛ)) S''∈[S''] S''∈Domθ←[S''] S'∈canθ-p-θ←[S↦absent] = canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S' (subst (S' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S'∈canθ-p-θ') canθₛₕ-set-sig-monotonic [] S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' = canₛₕ-set-sig-monotonic p S θ S∈ status θS≡unknown s s∈canθ-p-θ' canθₛₕ-set-sig-monotonic (nothing ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) = canθₛₕ-set-sig-monotonic sigs (suc S'') p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' canθₛₕ-set-sig-monotonic (just Signal.present ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛₕ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-present (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) s (subst (s ∈_) (cong (Canθₛₕ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap))))) s∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-present (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-present (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.present (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛₕ-set-sig-monotonic (just Signal.absent ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛₕ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) s (subst (s ∈_) (cong (Canθₛₕ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) s∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛₕ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ))) | any (_≟_ S'') (Canθₛ sigs (suc S'') p ((Env.set-sig {S} θ S∈ status) ← [S]-env (S'' ₛ))) canθₛₕ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛₕ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) s (subst (s ∈_) (cong (Canθₛₕ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) s∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛₕ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛₕ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) s (subst (s ∈_) (cong (Canθₛₕ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) s∈canθ-p-θ') where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛₕ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' | no S''∉canθ-p-θ←[S] | yes S''∈canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 | cong (Canθₛₕ sigs (suc S'') p) (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))) = ⊥-elim (S''∉canθ-p-θ←[S] (canθₛ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) S'' (subst (S'' ∈_) (cong (Canθₛ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap))))) S''∈canθ-p-θ'←[S]))) where S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env (S'' ₛ)) S∈ θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.unknown (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] canθₛₕ-set-sig-monotonic (just Signal.unknown ∷ sigs) S'' p S θ S∈ status θS≡unknown S∉sigs s s∈canθ-p-θ' | yes S''∈canθ-p-θ←[S] | no S''∉canθ-p-θ'←[S] rewrite map-+-compose-suc S'' (SigMap.keys sigs) | +-comm S'' 0 = canθₛₕ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent s s∈canθ-p-θ←[S↦absent] where S''∈[S''] = Env.sig-∈-single (S'' ₛ) Signal.unknown S∈Domθ←[S''] = Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈ S''∈Domθ←[S''] = Env.sig-←-monoʳ (S'' ₛ) ([S]-env (S'' ₛ)) θ S''∈[S''] θS≡⟨θ←[S'']⟩S = Env.sig-←-∉-irr-stats' S θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap)) S∈Domθ←[S''] ⟨θ←[S'']⟩S''≡[S'']S'' = Env.sig-stats-←-right-irr' (S'' ₛ) θ ([S]-env (S'' ₛ)) S''∈[S''] S''∈Domθ←[S''] s∈canθ-p-θ←[S↦absent] = canθₛₕ-set-sig-monotonic sigs (suc S'') p S (θ ← [S]-env-absent (S'' ₛ)) S∈Domθ←[S''] status (trans (sym θS≡⟨θ←[S'']⟩S) θS≡unknown) (S∉sigs ∘ there) s (subst (s ∈_) (cong (Canθₛₕ sigs (suc S'') p) (sym (Env.sig-switch S status θ ([S]-env-absent (S'' ₛ)) S∈ (Env.sig-←-monoˡ S θ ([S]-env-absent (S'' ₛ)) S∈) (Env.sig-∉-single S (S'' ₛ) Signal.absent (S∉sigs ∘ here ∘ cong Signal.unwrap))))) s∈canθ-p-θ') private -- re-defined and exported in Base; so we put it in private here [_↦_] : Signal → Signal.Status → Env [ S ↦ status ] = Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty canθₛ-cong-←-add-sig-monotonic : ∀ sigs S'' p θ θ' S status → ∀ S' → S' ∈ Canθₛ sigs S'' p ((θ ← Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty) ← θ') → S' ∈ Canθₛ sigs S'' p ((θ ← [S]-env S) ← θ') canθₛ-cong-←-add-sig-monotonic sigs S'' p θ θ' S status S' S'∈ with Env.Sig∈ S θ' ... | yes S∈Domθ' rewrite sym (Env.←-assoc θ [ S ↦ status ] θ') | cong (θ ←_) (Env.←-single-overwrite-sig S status θ' S∈Domθ') | sym (Env.←-assoc θ ([S]-env S) θ') | cong (θ ←_) (Env.←-single-overwrite-sig S Signal.unknown θ' S∈Domθ') = S'∈ ... | no S∉Domθ' rewrite Env.←-assoc-comm θ ([S]-env S) θ' (Env.sig-single-notin-distinct S Signal.unknown θ' S∉Domθ') = canθₛ-add-sig-monotonic sigs S'' p (θ ← θ') S status S' (subst (S' ∈_) (cong (proj₁ ∘ Canθ sigs S'' p) (Env.←-assoc-comm θ [ S ↦ status ] θ' (Env.sig-single-notin-distinct S status θ' S∉Domθ'))) S'∈)
{ "alphanum_fraction": 0.5328647703, "avg_line_length": 49.0399408284, "ext": "agda", "hexsha": "b62259e7aefdc48122993b6e6d71d710292e401d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/CanFunction/SetSigMonotonic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/CanFunction/SetSigMonotonic.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/CanFunction/SetSigMonotonic.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 30893, "size": 66302 }
module Issue1624 where open import Common.Char open import Common.String open import Common.List test : List Char → String test ('0' ∷ ('x' ∷ xs)) = "x" test ('0' ∷ ('b' ∷ xs)) = "b" test xs = "f" open import Common.IO open import Common.Unit main : IO Unit main = putStr (test x) where x = '0' ∷ ('x' ∷ ('1' ∷ []))
{ "alphanum_fraction": 0.5845697329, "avg_line_length": 17.7368421053, "ext": "agda", "hexsha": "dd1661a201ddf76d4f72a93741b5ccbaea0abd92", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue1624.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue1624.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue1624.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 113, "size": 337 }
------------------------------------------------------------------------ -- A coinductive definition of (strong) similarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Similarity {ℓ} (lts : LTS ℓ) where open import Equality.Propositional open import Prelude open import Prelude.Size open import Bisimilarity lts as SB using ([_]_∼_; [_]_∼′_) open import Indexed-container hiding (⟨_⟩) open import Relation import Similarity.General open LTS lts private module General = Similarity.General lts _[_]⟶_ id open General public using (module StepC; ⟨_⟩; challenge; force; reflexive-≤; reflexive-≤′; ≡⇒≤; ≤:_; ≤′:_; [_]_≡_; [_]_≡′_; []≡↔; Extensionality; extensionality) -- StepC is given in the following way, rather than via open public, -- to make hyperlinks to it more informative. StepC : Container (Proc × Proc) (Proc × Proc) StepC = General.StepC -- The following definitions are given explicitly, in order to make -- the code easier to follow. Similarity : Size → Rel₂ ℓ Proc Similarity = ν StepC Similarity′ : Size → Rel₂ ℓ Proc Similarity′ = ν′ StepC infix 4 [_]_≤_ [_]_≤′_ _≤_ _≤′_ [_]_≤_ : Size → Proc → Proc → Type ℓ [ i ] p ≤ q = ν StepC i (p , q) [_]_≤′_ : Size → Proc → Proc → Type ℓ [ i ] p ≤′ q = ν′ StepC i (p , q) _≤_ : Proc → Proc → Type ℓ _≤_ = [ ∞ ]_≤_ _≤′_ : Proc → Proc → Type ℓ _≤′_ = [ ∞ ]_≤′_ private -- However, these definitions are definitionally equivalent to -- corresponding definitions in General. indirect-Similarity : Similarity ≡ General.Similarity indirect-Similarity = refl indirect-Similarity′ : Similarity′ ≡ General.Similarity′ indirect-Similarity′ = refl indirect-[]≤ : [_]_≤_ ≡ General.[_]_≤_ indirect-[]≤ = refl indirect-[]≤′ : [_]_≤′_ ≡ General.[_]_≤′_ indirect-[]≤′ = refl indirect-≤ : _≤_ ≡ General._≤_ indirect-≤ = refl indirect-≤′ : _≤′_ ≡ General._≤′_ indirect-≤′ = refl mutual -- Bisimilarity is contained in similarity. ∼⇒≤ : ∀ {i p q} → [ i ] p ∼ q → [ i ] p ≤ q ∼⇒≤ = λ p∼q → ⟨ (λ q⟶q′ → let p′ , p⟶p′ , p′∼′q′ = SB.left-to-right p∼q q⟶q′ in p′ , p⟶p′ , ∼⇒≤′ p′∼′q′) ⟩ ∼⇒≤′ : ∀ {i p q} → [ i ] p ∼′ q → [ i ] p ≤′ q force (∼⇒≤′ p≳′q) = ∼⇒≤ (SB.force p≳′q) mutual -- Similarity is transitive. transitive-≤ : ∀ {i p q r} → [ i ] p ≤ q → [ i ] q ≤ r → [ i ] p ≤ r transitive-≤ p≤q q≤r = ⟨ (λ p⟶p′ → let q′ , q⟶q′ , p′≤q′ = challenge p≤q p⟶p′ r′ , r⟶r′ , q′≤r′ = challenge q≤r q⟶q′ in r′ , r⟶r′ , transitive-≤′ p′≤q′ q′≤r′) ⟩ transitive-≤′ : ∀ {i p q r} → [ i ] p ≤′ q → [ i ] q ≤′ r → [ i ] p ≤′ r force (transitive-≤′ p≤q q≤r) = transitive-≤ (force p≤q) (force q≤r)
{ "alphanum_fraction": 0.5458452722, "avg_line_length": 25.1531531532, "ext": "agda", "hexsha": "7efa0bb4e5932edf1215046927ebca0c68f3442f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Similarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Similarity.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Similarity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1096, "size": 2792 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Empty.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty.Base isProp⊥ : isProp ⊥ isProp⊥ x = ⊥-elim x
{ "alphanum_fraction": 0.7543103448, "avg_line_length": 19.3333333333, "ext": "agda", "hexsha": "f21ca377833c58d6f104ea5fc0cf9447426f3e98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Empty/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Empty/Properties.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Empty/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 68, "size": 232 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Naturals.Order.WellFounded open import KeyValue.KeyValue open import Orders.Total.Definition open import Orders.Partial.Definition open import Vectors open import Maybe open import Semirings.Definition open import Numbers.Naturals.EuclideanAlgorithm module Numbers.Primes.PrimeNumbers where open TotalOrder ℕTotalOrder open Semiring ℕSemiring open import Decidable.Lemmas ℕDecideEquality dividesEqualityLemma'' : {a b : ℕ} → (quot1 quot2 : ℕ) → .(quot1 ≡ quot2) → (rem : ℕ) → .(pr1 : (quot1 +N a *N quot1) +N rem ≡ b) → .(pr2 : (quot2 +N a *N quot2) +N rem ≡ b) → (y : rem <N' succ a) → (x1 : zero <N' succ a) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem ; pr = pr1 ; remIsSmall = inl y ; quotSmall = inl x1 } record { quot = quot2 ; rem = rem ; pr = pr2 ; remIsSmall = inl y ; quotSmall = inl x1} dividesEqualityLemma'' {a} {b} q1 q2 pr rem pr1 pr2 y x1 with squashN record { eq = pr } ... | refl = refl dividesEqualityLemma' : {a b : ℕ} → (quot1 quot2 : ℕ) → (rem : ℕ) → .(pr1 : (quot1 +N a *N quot1) +N rem ≡ b) → .(pr2 : (quot2 +N a *N quot2) +N rem ≡ b) → (y : rem <N' succ a) → (y2 : rem <N' succ a) → (x1 : zero <N' succ a) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem ; pr = pr1 ; remIsSmall = inl y ; quotSmall = inl x1 } record { quot = quot2 ; rem = rem ; pr = pr2 ; remIsSmall = inl y2 ; quotSmall = inl x1} dividesEqualityLemma' {a} {b} quot1 quot2 rem pr1 pr2 y y2 x1 with productCancelsLeft (succ a) quot2 quot1 (succIsPositive a) (canSubtractFromEqualityRight (transitivity (squashN record { eq = pr2 }) (equalityCommutative (squashN record { eq = pr1 })))) ... | refl with <N'Refl y y2 ... | refl = refl dividesEqualityLemma : {a b : ℕ} → (quot1 quot2 : ℕ) → (rem1 rem2 : ℕ) → .(pr1 : (quot1 +N a *N quot1) +N rem1 ≡ b) → .(pr2 : (quot2 +N a *N quot2) +N rem2 ≡ b) → .(rem1 ≡ rem2) → (y : rem1 <N' succ a) → (y2 : rem2 <N' succ a) → (x1 : zero <N' succ a) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = inl y ; quotSmall = inl x1 } record { quot = quot2 ; rem = rem2 ; pr = pr2 ; remIsSmall = inl y2 ; quotSmall = inl x1} dividesEqualityLemma {a} {b} quot1 quot2 rem1 rem2 pr1 pr2 remEq y y2 x1 with squashN record { eq = remEq } ... | refl = dividesEqualityLemma' quot1 quot2 rem1 pr1 pr2 y y2 x1 dividesEqualityLemma1 : {a b : ℕ} → (quot1 quot2 : ℕ) → (rem1 rem2 : ℕ) → .(pr1 : (quot1 +N a *N quot1) +N rem1 ≡ b) → .(pr2 : (quot2 +N a *N quot2) +N rem2 ≡ b) → .(rem1 ≡ rem2) → (y : (rem1 <N' succ a) || (succ a =N' zero)) → (y2 : (rem2 <N' succ a) || (succ a =N' zero)) → (x1 : zero <N' succ a) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = y ; quotSmall = inl x1 } record { quot = quot2 ; rem = rem2 ; pr = pr2 ; remIsSmall = y2 ; quotSmall = inl x1} dividesEqualityLemma1 {a} {b} quot1 quot2 rem1 rem2 pr1 pr2 remEq (inl x) (inl y) x1 = dividesEqualityLemma quot1 quot2 rem1 rem2 pr1 pr2 remEq x y x1 dividesEqualityLemma2 : {a b : ℕ} → (quot1 quot2 : ℕ) → (rem1 rem2 : ℕ) → .(pr1 : (quot1 +N a *N quot1) +N rem1 ≡ b) → .(pr2 : (quot2 +N a *N quot2) +N rem2 ≡ b) → .(rem1 ≡ rem2) → (y : (rem1 <N' succ a) || (succ a =N' zero)) → (y2 : (rem2 <N' succ a) || (succ a =N' zero)) → (x1 : zero <N' succ a) (x2 : zero <N' succ a) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = y ; quotSmall = inl x1 } record { quot = quot2 ; rem = rem2 ; pr = pr2 ; remIsSmall = y2 ; quotSmall = inl x2 } dividesEqualityLemma2 {a} {b} quot1 quot2 rem1 rem2 pr1 pr2 remEq x y x1 x2 with <N'Refl x1 x2 ... | refl = dividesEqualityLemma1 quot1 quot2 rem1 rem2 pr1 pr2 remEq x y x1 dividesEqualityLemma3 : {a b : ℕ} → (quot1 quot2 : ℕ) → (rem1 rem2 : ℕ) → .(pr1 : (succ a *N quot1) +N rem1 ≡ b) → .(pr2 : (succ a *N quot2) +N rem2 ≡ b) → .(rem1 ≡ rem2) → (y : (rem1 <N' succ a) || (succ a =N' zero)) → (y2 : (rem2 <N' succ a) || (succ a =N' zero)) → (x1 : (zero <N' succ a) || (zero =N' succ a) && (quot1 =N' zero)) (x2 : (zero <N' succ a) || (zero =N' succ a) && (quot2 =N' zero)) → _≡_ {A = divisionAlgResult' _ _} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = y ; quotSmall = x1 } record { quot = quot2 ; rem = rem2 ; pr = pr2 ; remIsSmall = y2 ; quotSmall = x2 } dividesEqualityLemma3 {a} {b} quot1 quot2 rem1 rem2 pr1 pr2 remEq x y (inl x1) (inl x2) = dividesEqualityLemma2 quot1 quot2 rem1 rem2 pr1 pr2 remEq x y x1 x2 dividesEqualityPr' : {a b : ℕ} → (res1 res2 : divisionAlgResult' a b) → res1 ≡ res2 dividesEqualityPr' {zero} {zero} record { quot = quot₁ ; rem = rem₁ ; pr = pr1 ; remIsSmall = (inr f2) ; quotSmall = (inr (f4 ,, quot1=0)) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr f1) ; quotSmall = (inr (f3 ,, quot=0)) } with squashN quot1=0 ... | refl with squashN quot=0 ... | refl with =N'Refl f1 f2 ... | refl with =N'Refl f3 f4 ... | refl with =N'Refl quot1=0 quot=0 ... | refl with transitivity (squashN record { eq = pr }) (equalityCommutative (squashN record { eq = pr1 })) ... | refl = refl dividesEqualityPr' {zero} {succ b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inr rSm) ; quotSmall = (inr (f ,, quot1=0)) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr rSm2) ; quotSmall = (inr (f2 ,, quot=0)) } with squashN quot=0 ... | refl with squashN quot1=0 ... | refl with =N'Refl rSm rSm2 ... | refl with =N'Refl quot1=0 quot=0 ... | refl with =N'Refl f f2 ... | refl with transitivity (squashN record { eq = pr }) (equalityCommutative (squashN record { eq = pr1 })) ... | refl = refl dividesEqualityPr' {succ a} {zero} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inl remSm) ; quotSmall = (inl qSm) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl remSm2) ; quotSmall = (inl qSm2) } with sumZeroImpliesSummandsZero {quot +N a *N quot} {rem} (squashN record { eq = pr }) ... | fst ,, refl with sumZeroImpliesSummandsZero {quot} {_} fst ... | refl ,, _ with sumZeroImpliesSummandsZero {_} {rem1} (squashN record { eq = pr1 }) ... | fst2 ,, refl with sumZeroImpliesSummandsZero {quot1} {_} fst2 ... | refl ,, _ with <N'Refl remSm remSm2 ... | refl with <N'Refl qSm qSm2 ... | refl = refl dividesEqualityPr' {succ a} {succ b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = inl remIsSmall1 ; quotSmall = inl (quotSmall1) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = (inl quotSmall) } = dividesEqualityLemma3 quot1 quot rem1 rem pr1 pr t (inl remIsSmall1) (inl remIsSmall) (inl quotSmall1) (inl quotSmall) where t : rem1 ≡ rem t = modIsUnique record { quot = quot1 ; rem = rem1 ; pr = squash pr1 ; remIsSmall = inl (<N'To<N remIsSmall1) ; quotSmall = inl (<N'To<N quotSmall) } record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inl (<N'To<N remIsSmall) ; quotSmall = inl (<N'To<N quotSmall1) } dividesEquality : {a b : ℕ} → (res1 res2 : a ∣' b) → res1 ≡ res2 dividesEquality (divides' res1 x1) (divides' res2 x2) with dividesEqualityPr' res1 res2 ... | refl = refl data notDiv : ℕ → ℕ → Set where doesNotDivide : {a b : ℕ} → (res : divisionAlgResult a b) → 0 <N divisionAlgResult.rem res → notDiv a b twoDividesFour : succ (succ zero) ∣ succ (succ (succ (succ zero))) twoDividesFour = divides {(succ (succ zero))} {succ (succ (succ (succ zero)))} (record { quot = succ (succ zero) ; rem = zero ; pr = refl ; remIsSmall = inl (succIsPositive 1) ; quotSmall = inl (succIsPositive 1) }) refl record Prime (p : ℕ) : Set where field p>1 : 1 <N p pr : forall {i : ℕ} → i ∣ p → i <N p → zero <N i → i ≡ (succ zero) record Composite (n : ℕ) : Set where field n>1 : 1 <N n divisor : ℕ dividesN : divisor ∣ n divisorLessN : divisor <N n divisorNot1 : 1 <N divisor divisorPrime : Prime divisor noSmallerDivisors : ∀ i → i <N divisor → 1 <N i → i ∣ n → False notBothPrimeAndComposite : {n : ℕ} → Composite n → Prime n → False notBothPrimeAndComposite {n} record { n>1 = n>1 ; divisor = divisor ; dividesN = dividesN ; divisorLessN = divisorLessN ; divisorNot1 = divisorNot1 } record { p>1 = p>1 ; pr = pr } = lessImpliesNotEqual divisorNot1 (equalityCommutative div=1) where div=1 : divisor ≡ 1 div=1 = pr {divisor} dividesN divisorLessN (TotalOrder.<Transitive ℕTotalOrder (succIsPositive 0) divisorNot1) zeroIsNotPrime : Prime 0 → False zeroIsNotPrime record { p>1 = p>1 ; pr = pr } = zeroNeverGreater p>1 oneIsNotPrime : Prime 1 → False oneIsNotPrime record { p>1 = (le x proof) ; pr = pr } = naughtE (equalityCommutative absurd') where absurd : x +N 1 ≡ 0 absurd = succInjective proof absurd' : succ x ≡ 0 absurd' rewrite Semiring.commutative ℕSemiring 1 x = absurd twoIsPrime : Prime 2 Prime.p>1 twoIsPrime = succPreservesInequality (succIsPositive 0) Prime.pr twoIsPrime {i} i|2 i<2 0<i with totality i (succ (succ zero)) Prime.pr twoIsPrime {zero} i|2 i<2 (le x ()) | order Prime.pr twoIsPrime {succ zero} i|2 i<2 0<i | order = refl Prime.pr twoIsPrime {succ (succ zero)} i|2 i<2 0<i | order = exFalso (lessImpliesNotEqual {2} i<2 refl) Prime.pr twoIsPrime {succ (succ (succ i))} i|2 i<2 0<i | inl (inl x) = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder i<2 (succPreservesInequality (succPreservesInequality (succIsPositive i))))) Prime.pr twoIsPrime {succ (succ (succ i))} i|2 i<2 0<i | inl (inr twoLessThree) = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder twoLessThree i<2)) Prime.pr twoIsPrime {succ (succ (succ i))} i|2 i<2 0<i | inr () threeIsPrime : Prime 3 Prime.p>1 threeIsPrime = le 1 refl Prime.pr threeIsPrime {succ zero} i|3 i<3 _ = refl Prime.pr threeIsPrime {succ (succ zero)} (divides record { quot = (succ (succ (succ zero))) ; rem = zero ; pr = () ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x) i<3 _ Prime.pr threeIsPrime {succ (succ zero)} (divides record { quot = (succ (succ (succ (succ quot)))) ; rem = zero ; pr = () ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x) i<3 _ Prime.pr threeIsPrime {succ (succ (succ i))} i|3 (le (succ (succ zero)) ()) _ Prime.pr threeIsPrime {succ (succ (succ i))} i|3 (le (succ (succ (succ x))) ()) _ compositeImpliesNotPrime : (m p : ℕ) → (succ zero <N m) → (m <N p) → (m ∣ p) → Prime p → False compositeImpliesNotPrime zero p (le x ()) _ mDivP pPrime compositeImpliesNotPrime (succ zero) p mLarge _ mDivP pPrime = lessImpliesNotEqual {succ zero} {succ zero} mLarge refl compositeImpliesNotPrime (succ (succ m)) zero _ _ mDivP () compositeImpliesNotPrime (succ (succ m)) (succ zero) _ _ mDivP primeP = exFalso (oneIsNotPrime primeP) compositeImpliesNotPrime (succ (succ m)) (succ (succ p)) _ mLessP mDivP pPrime = false where r = succ (succ m) q = succ (succ p) rEqOne : r ≡ succ zero rEqOne = (Prime.pr pPrime) {r} mDivP mLessP (succIsPositive (succ m)) false : False false = succIsNonzero (succInjective rEqOne) fourIsNotPrime : Prime 4 → False fourIsNotPrime = compositeImpliesNotPrime (succ (succ zero)) (succ (succ (succ (succ zero)))) (le zero refl) (le (succ zero) refl) twoDividesFour record Coprime (a : ℕ) (b : ℕ) : Set where field hcf : hcfData a b hcfNot1 : 1 <N hcfData.c hcf record numberLessThan (n : ℕ) : Set where field a : ℕ a<n : a <N' n upper : ℕ upper = n numberLessThanEquality : {n : ℕ} → (a b : numberLessThan n) → (numberLessThan.a a ≡ numberLessThan.a b) → a ≡ b numberLessThanEquality record { a = a ; a<n = a<n } record { a = b ; a<n = b<n } pr rewrite pr | <N'Refl a<n b<n = refl numberLessThanOrder : (n : ℕ) → TotalOrder (numberLessThan n) PartialOrder._<_ (TotalOrder.order (numberLessThanOrder n)) = λ a b → (numberLessThan.a a) <N numberLessThan.a b PartialOrder.irreflexive (TotalOrder.order (numberLessThanOrder n)) pr = TotalOrder.irreflexive ℕTotalOrder pr PartialOrder.<Transitive (TotalOrder.order (numberLessThanOrder n)) pr1 pr2 = TotalOrder.<Transitive ℕTotalOrder pr1 pr2 TotalOrder.totality (numberLessThanOrder n) a b with totality (numberLessThan.a a) (numberLessThan.a b) TotalOrder.totality (numberLessThanOrder n) a b | inl (inl x) = inl (inl x) TotalOrder.totality (numberLessThanOrder n) a b | inl (inr x) = inl (inr x) TotalOrder.totality (numberLessThanOrder n) a b | inr x rewrite x = inr (numberLessThanEquality a b x) numberLessThanInject : {newMax : ℕ} → (max : ℕ) → (n : numberLessThan max) → (max <N newMax) → (numberLessThan newMax) numberLessThanInject max record { a = n ; a<n = n<max } max<newMax = record { a = n ; a<n = <NTo<N' (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (<N'To<N n<max) max<newMax) } numberLessThanInjectComp : {max : ℕ} (a b : ℕ) → (i : numberLessThan b) → (pr : b <N a) → (pr2 : a <N max) → numberLessThanInject {max} a (numberLessThanInject {a} b i pr) pr2 ≡ numberLessThanInject {max} b i (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) pr pr2) numberLessThanInjectComp {max} a b record { a = i ; a<n = i<max } b<a a<max = numberLessThanEquality _ _ refl allNumbersLessThanDescending : (n : ℕ) → Vec (numberLessThan n) n allNumbersLessThanDescending zero = [] allNumbersLessThanDescending (succ n) = record { a = n ; a<n = <NTo<N' (le zero refl) } ,- vecMap (λ i → numberLessThanInject {succ n} (numberLessThan.upper i) i (le zero refl)) (allNumbersLessThanDescending n) allNumbersLessThan : (n : ℕ) → Vec (numberLessThan n) n allNumbersLessThan n = vecRev (allNumbersLessThanDescending n) maxDivides : (a b : ℕ) → ((TotalOrder.max ℕTotalOrder a b) ∣ a) → (TotalOrder.max ℕTotalOrder a b) ∣ b → (((a ≡ 0) && (0 <N b)) || ((b ≡ 0) && (0 <N a))) || (a ≡ b) maxDivides a b max|a max|b with totality a b maxDivides a b max|a max|b | inl (inl a<b) = inl (inl (record { fst = gg ; snd = identityOfIndiscernablesLeft _<N_ a<b gg})) where gg : a ≡ 0 gg = biggerThanCantDivideLemma {a} {b} a<b max|a maxDivides a b max|a max|b | inl (inr b<a) = inl (inr (record { fst = gg ; snd = identityOfIndiscernablesLeft _<N_ b<a gg })) where gg : b ≡ 0 gg = biggerThanCantDivideLemma b<a max|b maxDivides a .a a|max b|max | inr refl = inr refl {- hcfsEquivalent' : {a b : ℕ} → extensionalHCF a b → hcfData a b hcfData.c (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcfExtension = hcfExtension }) = c hcfData.c|a (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcfExtension = hcfExtension }) = c|a hcfData.c|b (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcfExtension = hcfExtension }) = c|b hcfData.hcf (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcfExtension = hcfExtension }) x x|a x|b with totality ℕTotalOrder x c hcfData.hcf (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; zeroCase = zeroCase ; hcfExtension = hcfExtension ; hcfExtensionIsRightLength = hIRL }) x x|a x|b | inl (inl x<c) = {!!} where xLess : numberLessThan c xLess = record { a = x ; a<n = x<c } pair : Set pair = Sg (numberLessThan c) (λ i → (notDiv (numberLessThan.a i) a || notDiv (numberLessThan.a i) b) || (numberLessThan.a i ∣ a) & numberLessThan.a i ∣ b & (numberLessThan.a i ∣ c)) pr : Sg pair λ p → (lookup (MapWithDomain.map hcfExtension) xLess ≡ {!!}) pr = MapWithDomain.lookup' hcfExtension xLess (hcfsContains {a} {b} {x} (record { c = c ; c|a = c|a ; c|b = c|b ; zeroCase = zeroCase ; hcfExtension = hcfExtension ; hcfExtensionIsRightLength = hIRL }) x<c) hcfData.hcf (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; zeroCase = _ ; hcfExtension = hcfExtension ; hcfExtensionIsRightLength = _ }) x x|a x|b | inl (inr c<x) = {!!} hcfData.hcf (hcfsEquivalent' {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; zeroCase = _ ; hcfExtension = hcfExtension ; hcfExtensionIsRightLength = _ }) x x|a x|b | inr x=c rewrite x=c = aDivA c extensionalHCFEquality : {a b : ℕ} → {h1 h2 : extensionalHCF a b} → (extensionalHCF.c h1 ≡ extensionalHCF.c h2) → h1 ≡ h2 extensionalHCFEquality {a} {b} {record { c = c1 ; c|a = c|a1 ; c|b = c|b1 ; hcfExtension = hcfExtension1 }} {record { c = c2 ; c|a = c|a2 ; c|b = c|b2 ; hcfExtension = hcfExtension2 }} pr rewrite pr = {!!} -} divisorIsSmaller : {a b : ℕ} → a ∣ succ b → succ b <N a → False divisorIsSmaller {a} {b} (divides record { quot = zero ; rem = .0 ; pr = pr } refl) sb<a rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) = go where go : False go rewrite Semiring.productZeroRight ℕSemiring a = naughtE pr divisorIsSmaller {a} {b} (divides record { quot = (succ quot) ; rem = .0 ; pr = pr } refl) sb<a rewrite Semiring.sumZeroRight ℕSemiring (a *N succ quot) = go where go : False go rewrite equalityCommutative pr = go' where go' : False go' rewrite multiplicationNIsCommutative a (succ quot) = cannotAddAndEnlarge' sb<a primeDivisorIs1OrP : {a p : ℕ} → (prime : Prime p) → (a ∣ p) → (a ≡ 1) || (a ≡ p) primeDivisorIs1OrP {zero} {zero} prime a|p = inr refl primeDivisorIs1OrP {zero} {succ p} prime a|p = exFalso (zeroDividesNothing p a|p) primeDivisorIs1OrP {succ zero} {p} prime a|p = inl refl primeDivisorIs1OrP {succ (succ a)} {p} prime a|p with totality (succ (succ a)) p primeDivisorIs1OrP {succ (succ a)} {p} prime a|p | inl (inl ssa<p) = go p prime a|p ssa<p where go : (n : ℕ) → Prime n → succ (succ a) ∣ n → succ (succ a) <N n → (succ (succ a) ≡ 1) || (succ (succ a) ≡ p) go zero pr x|n n<n = exFalso (zeroIsNotPrime pr) go (succ zero) pr x|n n<n = exFalso (oneIsNotPrime pr) go (succ (succ n)) pr x|n n<n = inl ((Prime.pr pr) {succ (succ a)} x|n n<n (succIsPositive (succ a))) primeDivisorIs1OrP {succ (succ a)} {zero} prime a|p | inl (inr x) = exFalso (zeroIsNotPrime prime) primeDivisorIs1OrP {succ (succ a)} {succ p} prime a|p | inl (inr x) = exFalso (divisorIsSmaller {succ (succ a)} {p} a|p x) primeDivisorIs1OrP {succ (succ a)} {p} prime a|p | inr x = inr x hcfPrimeIsOne' : {p : ℕ} → {a : ℕ} → (Prime p) → (0 <N divisionAlgResult.rem (divisionAlg p a)) → (extendedHcf.c (euclid a p) ≡ 1) || (extendedHcf.c (euclid a p) ≡ p) hcfPrimeIsOne' {p} {a} pPrime pCoprimeA with euclid a p hcfPrimeIsOne' {p} {a} pPrime pCoprimeA | record { hcf = record { c = hcf ; c|a = hcf|a ; c|b = hcf|p ; hcf = hcfPr } } with divisionAlg p a hcfPrimeIsOne' {p} {a} pPrime pCoprimeA | record { hcf = record { c = hcf ; c|a = hcf|a ; c|b = hcf|p ; hcf = hcfPr } } | record { quot = quot ; rem = rem ; pr = prPDivA } with primeDivisorIs1OrP pPrime hcf|p hcfPrimeIsOne' {p} {a} pPrime pCoprimeA | record { hcf = record { c = hcf ; c|a = hcf|a ; c|b = hcf|p ; hcf = hcfPr } } | record { quot = quot ; rem = rem ; pr = prPDivA } | inl x = inl x hcfPrimeIsOne' {p} {a} pPrime pCoprimeA | record { hcf = record { c = hcf ; c|a = hcf|a ; c|b = hcf|p ; hcf = hcfPr } } | record { quot = quot ; rem = rem ; pr = prPDivA } | inr x = inr x divisionDecidable : (a b : ℕ) → (a ∣ b) || ((a ∣ b) → False) divisionDecidable zero zero = inl (aDivA zero) divisionDecidable zero (succ b) = inr f where f : zero ∣ succ b → False f (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall } x) rewrite x = naughtE pr divisionDecidable (succ a) b with divisionAlg (succ a) b divisionDecidable (succ a) b | record { quot = quot ; rem = zero ; pr = pr ; remIsSmall = remSmall } = inl (divides (record { quot = quot ; rem = zero ; pr = pr ; remIsSmall = remSmall ; quotSmall = inl (succIsPositive a) }) refl) divisionDecidable (succ a) b | record { quot = b/a ; rem = succ rem ; pr = prANotDivB ; remIsSmall = inr p } = exFalso (naughtE (equalityCommutative p)) divisionDecidable (succ a) b | record { quot = b/a ; rem = succ rem ; pr = prANotDivB ; remIsSmall = inl p } = inr f where f : (succ a) ∣ b → False f (divides record { quot = b/a' ; rem = .0 ; pr = pr } refl) rewrite Semiring.sumZeroRight ℕSemiring ((succ a) *N b/a') = naughtE (modUniqueLemma {zero} {succ rem} {succ a} b/a' b/a (succIsPositive a) p comp') where comp : (succ a) *N b/a' ≡ (succ a) *N b/a +N succ rem comp = transitivity pr (equalityCommutative prANotDivB) comp' : (succ a) *N b/a' +N zero ≡ (succ a) *N b/a +N succ rem comp' rewrite Semiring.sumZeroRight ℕSemiring (succ a *N b/a') = comp doesNotDivideImpliesNonzeroRem : (a b : ℕ) → ((a ∣ b) → False) → 0 <N divisionAlgResult.rem (divisionAlg a b) doesNotDivideImpliesNonzeroRem a b pr with divisionAlg a b doesNotDivideImpliesNonzeroRem a b pr | record { quot = quot ; rem = rem ; pr = divAlgPr ; remIsSmall = remIsSmall } with zeroIsValidRem rem doesNotDivideImpliesNonzeroRem a b pr | record { quot = quot ; rem = rem ; pr = divAlgPr ; remIsSmall = remIsSmall } | inl x = x doesNotDivideImpliesNonzeroRem a b pr | record { quot = quot ; rem = rem ; pr = divAlgPr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } | inr x = exFalso (pr aDivB) where aDivB : a ∣ b aDivB = divides (record { quot = quot ; rem = rem ; pr = divAlgPr ; remIsSmall = remIsSmall ; quotSmall = quotSmall }) x hcfPrimeIsOne : {p : ℕ} → {a : ℕ} → (Prime p) → ((p ∣ a) → False) → extendedHcf.c (euclid a p) ≡ 1 hcfPrimeIsOne {p} {a} pPrime pr with hcfPrimeIsOne' {p} {a} pPrime (doesNotDivideImpliesNonzeroRem p a pr) hcfPrimeIsOne {p} {a} pPrime pr | inl x = x hcfPrimeIsOne {p} {a} pPrime pr | inr x with euclid a p hcfPrimeIsOne {p} {a} pPrime pr | inr x | record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = extendedProof } rewrite x = exFalso (pr c|a) reduceEquationMod : {a b c : ℕ} → (d : ℕ) → (a ∣ b) → (a ∣ c) → b ≡ c +N d → a ∣ d reduceEquationMod {a} {b} {c} 0 a|b a|c pr = aDivZero a reduceEquationMod {a} {b} {c} (succ d) (divides record { quot = b/a ; rem = .0 ; pr = prb/a ; remIsSmall = r1 ; quotSmall = qSm1 } refl) (divides record { quot = c/a ; rem = .0 ; pr = prc/a ; remIsSmall = r2 ; quotSmall = qSm2 } refl) b=c+d = identityOfIndiscernablesRight _∣_ a|b-c ex where c<b : c <N b c<b rewrite succExtracts c d | Semiring.commutative ℕSemiring c d = le d (equalityCommutative b=c+d) a|b-c : a ∣ subtractionNResult.result (-N (inl c<b)) a|b-c = dividesBothImpliesDividesDifference (divides record { quot = b/a ; rem = 0 ; pr = prb/a ; remIsSmall = r1 ; quotSmall = qSm1 } refl) (divides record { quot = c/a ; rem = 0 ; pr = prc/a ; remIsSmall = r2 ; quotSmall = qSm2 } refl) c<b ex : subtractionNResult.result (-N {c} {b} (inl c<b)) ≡ subtractionNResult.result (-N {0} {succ d} (inl (succIsPositive d))) ex = equivalentSubtraction c (succ d) b 0 (c<b) (succIsPositive d) (equalityCommutative (identityOfIndiscernablesLeft _≡_ b=c+d (equalityCommutative (Semiring.sumZeroRight ℕSemiring b)))) primesArePrime : {p : ℕ} → {a b : ℕ} → (Prime p) → p ∣ (a *N b) → (p ∣ a) || (p ∣ b) primesArePrime {p} {a} {b} pPrime pr with divisionDecidable p a primesArePrime {p} {a} {b} pPrime pr | inl p|a = inl p|a primesArePrime {p} {a} {b} pPrime (divides record {quot = ab/p ; rem = .0 ; pr = p|ab ; remIsSmall = _ ; quotSmall = quotSmall } refl) | inr notp|a = inr (answer ex'') where euc : extendedHcf a p euc = euclid a p h : extendedHcf.c euc ≡ 1 h = hcfPrimeIsOne {p} {a} pPrime notp|a x = extendedHcf.extended1 euc y = extendedHcf.extended2 euc extended : ((a *N x) ≡ p *N y +N extendedHcf.c euc) || (a *N x +N extendedHcf.c euc ≡ p *N y) extended = extendedHcf.extendedProof euc extended' : (a *N x ≡ p *N y +N 1) || (a *N x +N 1 ≡ p *N y) extended' rewrite equalityCommutative h = extended extended'' : ((a *N x ≡ p *N y +N 1) || (a *N x +N 1 ≡ p *N y)) → (b *N (a *N x) ≡ b *N (p *N y +N 1)) || (b *N (a *N x +N 1) ≡ b *N (p *N y)) extended'' (inl z) = inl (applyEquality (λ t → b *N t) z) extended'' (inr z) = inr (applyEquality (λ t → b *N t) z) ex : (b *N (a *N x) ≡ b *N (p *N y +N 1)) || (b *N (a *N x +N 1) ≡ b *N (p *N y)) → ((b *N a) *N x ≡ (b *N (p *N y) +N b)) || (((b *N a) *N x +N b) ≡ b *N (p *N y)) ex (inl z) rewrite Semiring.*Associative ℕSemiring b a x | Semiring.+DistributesOver* ℕSemiring b (p *N y) 1 | Semiring.productOneRight ℕSemiring b = inl z ex (inr z) rewrite Semiring.+DistributesOver* ℕSemiring b (a *N x) 1 | Semiring.*Associative ℕSemiring b a x | Semiring.productOneRight ℕSemiring b = inr z ex' : ((a *N b) *N x ≡ ((p *N y) *N b +N b)) || (((a *N b) *N x +N b) ≡ (p *N y) *N b) ex' rewrite multiplicationNIsCommutative a b | multiplicationNIsCommutative (p *N y) b = ex (extended'' extended') ex'' : ((a *N b) *N x ≡ (p *N (y *N b) +N b)) || (((a *N b) *N x +N b) ≡ p *N (y *N b)) ex'' rewrite Semiring.*Associative ℕSemiring (p) y b = ex' inter1 : p ∣ (a *N b) *N x inter1 = divides (record {quot = ab/p *N x ; rem = 0 ; pr = g ; remIsSmall = zeroIsValidRem p ; quotSmall = qsm quotSmall}) refl where g' : p *N ab/p ≡ a *N b g' rewrite Semiring.sumZeroRight ℕSemiring (p *N ab/p) = p|ab g'' : p *N (ab/p *N x) ≡ (a *N b) *N x g'' rewrite Semiring.*Associative ℕSemiring (p) ab/p x = applyEquality (λ t → t *N x) g' g : p *N (ab/p *N x) +N 0 ≡ (a *N b) *N x g rewrite Semiring.sumZeroRight ℕSemiring (p *N (ab/p *N x)) = g'' qsm : ((0 <N p) || ((0 ≡ p) && (ab/p ≡ 0))) → (0 <N p) || ((0 ≡ p) && (ab/p *N x ≡ 0)) qsm (inl pr) = inl pr qsm (inr (pr1 ,, pr2)) = inr (pr1 ,, blah) where blah : ab/p *N x ≡ 0 blah rewrite pr2 = refl inter2 : ((0 <N p) || ((0 ≡ p) && (ab/p ≡ 0))) → p ∣ (p *N (y *N b)) inter2 (inl 0<p) = divides (record {quot = y *N b ; rem = 0 ; pr = Semiring.sumZeroRight ℕSemiring (p *N (y *N b)) ; remIsSmall = zeroIsValidRem p ; quotSmall = inl 0<p }) refl inter2 (inr (0=p ,, ab/p=0)) = divides (record {quot = y *N b ; rem = 0 ; pr = Semiring.sumZeroRight ℕSemiring (p *N (y *N b)) ; remIsSmall = zeroIsValidRem p ; quotSmall = inr (0=p ,, blah) }) refl where oneZero : (a ≡ 0) || (b ≡ 0) oneZero rewrite Semiring.commutative ℕSemiring (p *N ab/p) 0 | ab/p=0 | equalityCommutative 0=p = productZeroImpliesOperandZero (equalityCommutative p|ab) blah : y *N b ≡ 0 blah with oneZero blah | inl x1 = exFalso (notp|a p|a) where p|a : p ∣ a p|a rewrite x1 = aDivZero p blah | inr x1 rewrite x1 = Semiring.productZeroRight ℕSemiring y answer : ((a *N b) *N x ≡ (p *N (y *N b) +N b)) || (((a *N b) *N x +N b) ≡ p *N (y *N b)) → (p ∣ b) answer (inl z) = reduceEquationMod {p} b inter1 (inter2 quotSmall) z answer (inr z) = reduceEquationMod {p} b (inter2 quotSmall) inter1 (equalityCommutative z) primesAreBiggerThanOne : {p : ℕ} → Prime p → (1 <N p) primesAreBiggerThanOne {zero} record { p>1 = (le x ()) ; pr = pr } primesAreBiggerThanOne {succ zero} pr = exFalso (oneIsNotPrime pr) primesAreBiggerThanOne {succ (succ p)} pr = succPreservesInequality (succIsPositive p) primesAreBiggerThanZero : {p : ℕ} → Prime p → 0 <N p primesAreBiggerThanZero {p} pr = TotalOrder.<Transitive ℕTotalOrder (succIsPositive 0) (primesAreBiggerThanOne pr) record notDividedByLessThan (a : ℕ) (firstPossibleDivisor : ℕ) : Set where field previousDoNotDivide : ∀ x → 1 <N x → x <N firstPossibleDivisor → x ∣ a → False alternativePrime : {a : ℕ} → 1 <N a → notDividedByLessThan a a → Prime a alternativePrime {a} 1<a record { previousDoNotDivide = previousDoNotDivide } = record { pr = pr ; p>1 = 1<a} where pr : {x : ℕ} → (x|a : x ∣ a) (x<a : x <N a) (0<x : zero <N x) → x ≡ 1 pr {zero} _ _ (le x ()) pr {succ zero} _ _ _ = refl pr {succ (succ x)} x|a x<a 0<x = exFalso (previousDoNotDivide (succ (succ x)) (succPreservesInequality (succIsPositive x)) x<a x|a) divisibilityTransitive : {a b c : ℕ} → a ∣ b → b ∣ c → a ∣ c divisibilityTransitive {a} {b} {c} (divides record { quot = b/a ; rem = .0 ; pr = prDivAB ; remIsSmall = remIsSmallAB ; quotSmall = quotSmall } refl) (divides record { quot = c/b ; rem = .0 ; pr = prDivBC ; remIsSmall = remIsSmallBC } refl) = divides record { quot = b/a *N c/b ; rem = 0 ; pr = p ; remIsSmall = zeroIsValidRem a ; quotSmall = qsm quotSmall } refl where p : a *N (b/a *N c/b) +N 0 ≡ c p rewrite Semiring.sumZeroRight ℕSemiring (a *N (b/a *N c/b)) | Semiring.sumZeroRight ℕSemiring (b *N c/b) | Semiring.sumZeroRight ℕSemiring (a *N b/a) | Semiring.*Associative ℕSemiring a b/a c/b | prDivAB | prDivBC = refl qsm : ((0 <N a) || (0 ≡ a) && (b/a ≡ 0)) → ((0 <N a) || (0 ≡ a) && (b/a *N c/b ≡ 0)) qsm (inl x) = inl x qsm (inr (p1 ,, p2)) = inr (p1 ,, blah) where blah : b/a *N c/b ≡ 0 blah rewrite p2 = refl compositeOrPrimeLemma : {a b : ℕ} → notDividedByLessThan b a → a ∣ b → {i : ℕ} → (i ∣ a) → (i <N a) → (0 <N i) → i ≡ 1 compositeOrPrimeLemma {a} {b} record { previousDoNotDivide = previousDoNotDivide } a|b {zero} i|a i<a 0<i = exFalso (lessIrreflexive 0<i) compositeOrPrimeLemma {a} {b} record { previousDoNotDivide = previousDoNotDivide } a|b {succ zero} i|a i<a 0<i = refl compositeOrPrimeLemma {a} {b} record { previousDoNotDivide = previousDoNotDivide } a|b {succ (succ i)} i|a i<a 0<i = exFalso (previousDoNotDivide (succ (succ i)) (succPreservesInequality (succIsPositive i)) i<a (divisibilityTransitive i|a a|b) ) compositeOrPrime : (a : ℕ) → (1 <N a) → (Composite a) || (Prime a) compositeOrPrime a pr = go''' go'' where base : notDividedByLessThan a 2 base = record { previousDoNotDivide = λ x 1<x x<2 _ → noIntegersBetweenXAndSuccX 1 1<x x<2 } go : {firstPoss : ℕ} → notDividedByLessThan a firstPoss → ((notDividedByLessThan a (succ firstPoss)) || ((firstPoss ∣ a) && (firstPoss <N a))) || (firstPoss ≡ a) go' : (firstPoss : ℕ) → (((notDividedByLessThan a firstPoss) || (Composite a))) || (notDividedByLessThan a a) go'' : (notDividedByLessThan a a) || (Composite a) go'' with go' a ... | inr x = inl x ... | inl x = x go''' : ((notDividedByLessThan a a) || (Composite a)) → ((Composite a) || (Prime a)) go''' (inl x) = inr (alternativePrime pr x) go''' (inr x) = inl x go' (zero) = inl (inl (record { previousDoNotDivide = λ x 1<x x<0 _ → zeroNeverGreater x<0 })) go' (succ 0) = inl (inl (record { previousDoNotDivide = λ x 1<x x<1 _ → TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder x<1 1<x) })) go' (succ (succ zero)) = inl (inl base) go' (succ (succ (succ firstPoss))) with go' (succ (succ firstPoss)) go' (succ (succ (succ firstPoss))) | inl (inl x) with go {succ (succ firstPoss)} x go' (succ (succ (succ firstPoss))) | inl (inl x) | inl (inl x1) = inl (inl x1) go' (succ (succ (succ firstPoss))) | inl (inl x) | inl (inr x1) = inl (inr record { noSmallerDivisors = λ i i<ssFP 1<i i|a → notDividedByLessThan.previousDoNotDivide x i 1<i i<ssFP i|a ; n>1 = pr ; divisor = succ (succ firstPoss) ; dividesN = _&&_.fst x1 ; divisorLessN = _&&_.snd x1 ; divisorNot1 = succPreservesInequality (succIsPositive firstPoss) ; divisorPrime = record { p>1 = succPreservesInequality (succIsPositive firstPoss) ; pr = compositeOrPrimeLemma {succ (succ firstPoss)} {a} x (_&&_.fst x1) } }) go' (succ (succ (succ firstPoss))) | inl (inl x) | inr y rewrite y = inr x go' (succ (succ (succ firstPoss))) | inl (inr x) = inl (inr x) go' (succ (succ (succ firstPoss))) | inr x = inr x go {zero} pr = inl (inl (record { previousDoNotDivide = λ x 1<x x<1 _ → irreflexive (<Transitive x<1 1<x)})) go {succ firstPoss} knownCoprime with totality (succ firstPoss) a go {succ firstPoss} knownCoprime | inr x = inr x go {succ firstPoss} knownCoprime | inl (inl sFP<a) with divisionAlg (succ firstPoss) a go {succ firstPoss} knownCoprime | inl (inl sFP<a) | record { quot = quot ; rem = zero ; pr = pr ; remIsSmall = remIsSmall } = inl (inr record { fst = (divides (record { quot = quot ; rem = zero ; remIsSmall = remIsSmall ; pr = pr ; quotSmall = inl (succIsPositive firstPoss) }) refl) ; snd = sFP<a }) go {succ firstPoss} knownCoprime | inl (inl sFP<a) | record { quot = quot ; rem = succ rem ; pr = pr ; remIsSmall = remIsSmall } = inl next where previous : ∀ x → 1 <N x → x <N succ firstPoss → x ∣ a → False previous = notDividedByLessThan.previousDoNotDivide knownCoprime next : notDividedByLessThan a (succ (succ firstPoss)) || (((succ firstPoss) ∣ a) && (succ firstPoss <N a)) next with divisionAlg (succ firstPoss) a next | record { quot = quot ; rem = zero ; pr = pr ; remIsSmall = remIsSmall } = inr (record { fst = divides record { quot = quot ; rem = zero ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = inl (succIsPositive firstPoss) } refl ; snd = sFP<a } ) next | record { quot = quot ; rem = succ rem ; pr = pr ; remIsSmall = remIsSmall } = inl record { previousDoNotDivide = (next' record { quot = quot ; rem = succ rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = inl (succIsPositive firstPoss) } (succIsPositive rem)) } where next' : (res : divisionAlgResult (succ firstPoss) a) → (pr : 0 <N divisionAlgResult.rem res) → (x : ℕ) → 1 <N x → x <N succ (succ firstPoss) → x ∣ a → False next' (res) (prDiv) x 1<x x<ssFirstposs x|a with totality x (succ firstPoss) next' (res) (prDiv) x 1<x x<ssFirstposs x|a | inl (inl x<sFirstPoss) = previous x 1<x x<sFirstPoss x|a next' (res) (prDiv) x 1<x x<ssFirstposs x|a | inl (inr sFirstPoss<x) = noIntegersBetweenXAndSuccX (succ firstPoss) sFirstPoss<x x<ssFirstposs next' res prDiv x 1<x x<ssFirstposs (divides res1 x1) | inr x=sFirstPoss rewrite equalityCommutative x=sFirstPoss = g where g : False g with modIsUnique res res1 ... | r rewrite r = lessImpliesNotEqual prDiv (equalityCommutative x1) go {succ firstPoss} record { previousDoNotDivide = previousDoNotDivide } | inl (inr a<sFP) = exFalso (previousDoNotDivide a pr a<sFP (aDivA a)) primeDivPrimeImpliesEqual : {p1 p2 : ℕ} → Prime p1 → Prime p2 → p1 ∣ p2 → p1 ≡ p2 primeDivPrimeImpliesEqual {p1} {p2} pr1 pr2 p1|p2 with totality p1 p2 primeDivPrimeImpliesEqual {p1} {p2} pr1 record { p>1 = p>1 ; pr = pr } p1|p2 | inl (inl p1<p2) with pr p1|p2 p1<p2 (primesAreBiggerThanZero {p1} pr1) ... | p1=1 = exFalso (oneIsNotPrime contr) where contr : Prime 1 contr rewrite p1=1 = pr1 primeDivPrimeImpliesEqual {p1} {zero} pr1 pr2 p1|p2 | inl (inr p1>p2) = exFalso (zeroIsNotPrime pr2) primeDivPrimeImpliesEqual {p1} {succ p2} pr1 pr2 p1|p2 | inl (inr p1>p2) = exFalso (divisorIsSmaller p1|p2 p1>p2) primeDivPrimeImpliesEqual {p1} {p2} pr1 pr2 p1|p2 | inr p1=p2 = p1=p2 mult1Lemma : {a b : ℕ} → a *N succ b ≡ 1 → (a ≡ 1) && (b ≡ 0) mult1Lemma {a} {b} pr = record { fst = _&&_.fst p ; snd = q} where p : (a ≡ 1) && (succ b ≡ 1) p = productOneImpliesOperandsOne pr q : b ≡ zero q = succInjective (_&&_.snd p) oneHasNoDivisors : {a : ℕ} → a ∣ 1 → a ≡ 1 oneHasNoDivisors {a} (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall } refl) rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | multiplicationNIsCommutative a zero | Semiring.sumZeroRight ℕSemiring a = exFalso (naughtE pr) oneHasNoDivisors {a} (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall } refl) rewrite Semiring.sumZeroRight ℕSemiring (a *N succ quot) = _&&_.fst (mult1Lemma pr) notSmallerMeansGE : {a b : ℕ} → (a <N b → False) → b ≤N a notSmallerMeansGE {a} {b} notA<b with totality a b notSmallerMeansGE {a} {b} notA<b | inl (inl x) = exFalso (notA<b x) notSmallerMeansGE {a} {b} notA<b | inl (inr x) = inl x notSmallerMeansGE {a} {b} notA<b | inr x = inr (equalityCommutative x)
{ "alphanum_fraction": 0.6366613928, "avg_line_length": 76.1670190275, "ext": "agda", "hexsha": "0463dffb48f10e7f1b34f6cd1265b4bf0f426fc1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Primes/PrimeNumbers.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Primes/PrimeNumbers.agda", "max_line_length": 599, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Primes/PrimeNumbers.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 13603, "size": 36027 }
------------------------------------------------------------------------ -- Functional semantics for a non-deterministic untyped λ-calculus -- with constants ------------------------------------------------------------------------ {-# OPTIONS --no-termination-check #-} module Lambda.Closure.Functional.Non-deterministic.No-workarounds where open import Category.Monad.Partiality as Pa using (_⊥; now; later) open import Codata.Musical.Notation open import Data.Fin using (Fin; zero; suc; #_) open import Data.List hiding (lookup) open import Data.Maybe hiding (_>>=_) open import Data.Nat open import Data.Vec using ([]; _∷_; lookup) open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Decidable open import Lambda.Syntax using (Ty; Ctxt) open Lambda.Syntax.Closure using (con; ƛ) open Lambda.Syntax.Ty open import Lambda.VirtualMachine hiding (comp; comp-val; comp-env; lookup-hom) open Functional private module VM = Lambda.Syntax.Closure Code ------------------------------------------------------------------------ -- A monad with partiality, failure and non-determinism -- This is basically the maybe monad transformer applied to the -- partiality monad transformer applied to the non-determinism monad -- N A = μX. A ⊎ X × X. Unfortunately it is somewhat awkward to -- implement the partiality monad transformer in Agda: the definition -- -- data Partiality′ (M : Set → Set) (A : Set) : Set where -- now-or-later : M (A ⊎ Partiality′ M A) → Partiality′ M A -- -- is rejected, because M might use its argument negatively. infixr 6 _∣_ data D (A : Set) : Set where fail : D A return : (x : A) → D A _∣_ : (x y : D A) → D A later : (x : ∞ (D A)) → D A -- The function force n removes (up to) n layers of later -- constructors. force : {A : Set} → ℕ → D A → D A force (suc n) (later x) = force n (♭ x) force n (x₁ ∣ x₂) = force n x₁ ∣ force n x₂ force _ x = x -- Bind. infixl 5 _>>=_ _>>=_ : {A B : Set} → D A → (A → D B) → D B fail >>= f = fail return x >>= f = f x (x₁ ∣ x₂) >>= f = (x₁ >>= f) ∣ (x₂ >>= f) later x >>= f = later (♯ (♭ x >>= f)) -- A deterministic non-terminating computation. never : {A : Set} → D A never = later (♯ never) -- Strong bisimilarity. infix 4 _≅_ data _≅_ {A : Set} : D A → D A → Set where fail : fail ≅ fail return : ∀ {x} → return x ≅ return x _∣_ : ∀ {x₁ x₂ y₁ y₂} (x₁≅y₁ : x₁ ≅ y₁) (x₂≅y₂ : x₂ ≅ y₂) → x₁ ∣ x₂ ≅ y₁ ∣ y₂ later : ∀ {x y} (x≅y : ∞ (♭ x ≅ ♭ y)) → later x ≅ later y -- Strong bisimilarity is reflexive. infixr 3 _∎ _∎ : {A : Set} (x : D A) → x ≅ x fail ∎ = fail return x ∎ = return x₁ ∣ x₂ ∎ = (x₁ ∎) ∣ (x₂ ∎) later x ∎ = later (♯ (♭ x ∎)) -- Strong bisimilarity is symmetric. sym : {A : Set} {x y : D A} → x ≅ y → y ≅ x sym fail = fail sym return = return sym (x₁≅y₁ ∣ x₂≅y₂) = sym x₁≅y₁ ∣ sym x₂≅y₂ sym (later x≅y) = later (♯ sym (♭ x≅y)) -- Strong bisimilarity is transitive. infixr 2 _≅⟨_⟩_ _≅⟨_⟩_ : ∀ {A : Set} (x : D A) {y z} → x ≅ y → y ≅ z → x ≅ z ._ ≅⟨ fail ⟩ fail = fail ._ ≅⟨ return ⟩ return = return ._ ≅⟨ x₁≅y₁ ∣ x₂≅y₂ ⟩ y₁≅z₁ ∣ y₂≅z₂ = (_ ≅⟨ x₁≅y₁ ⟩ y₁≅z₁) ∣ (_ ≅⟨ x₂≅y₂ ⟩ y₂≅z₂) ._ ≅⟨ later x≅y ⟩ later y≅z = later (♯ (_ ≅⟨ ♭ x≅y ⟩ ♭ y≅z)) -- The monad laws hold up to strong bisimilarity. left-identity : {A B : Set} {x : A} {f : A → D B} → return x >>= f ≅ f x left-identity {x = x} {f} = f x ∎ right-identity : {A : Set} (x : D A) → x >>= return ≅ x right-identity fail = fail right-identity (return x) = return right-identity (x₁ ∣ x₂) = right-identity x₁ ∣ right-identity x₂ right-identity (later x) = later (♯ right-identity (♭ x)) associative : {A B C : Set} (x : D A) {f : A → D B} {g : B → D C} → x >>= f >>= g ≅ x >>= λ y → f y >>= g associative fail = fail associative (return x) {f} {g} = f x >>= g ∎ associative (x₁ ∣ x₂) = associative x₁ ∣ associative x₂ associative (later x) = later (♯ associative (♭ x)) -- Bind respects strong bisimilarity. infixl 5 _>>=-cong_ _>>=-cong_ : {A B : Set} {x₁ x₂ : D A} {f₁ f₂ : A → D B} → x₁ ≅ x₂ → (∀ y → f₁ y ≅ f₂ y) → x₁ >>= f₁ ≅ x₂ >>= f₂ fail >>=-cong f₁≅f₂ = fail return >>=-cong f₁≅f₂ = f₁≅f₂ _ later x≅y >>=-cong f₁≅f₂ = later (♯ (♭ x≅y >>=-cong f₁≅f₂)) x₁≅x₂ ∣ y₁≅y₂ >>=-cong f₁≅f₂ = (x₁≅x₂ >>=-cong f₁≅f₂) ∣ (y₁≅y₂ >>=-cong f₁≅f₂) -- More laws. never-left-zero : {A B : Set} {f : A → D B} → never >>= f ≅ never never-left-zero = later (♯ never-left-zero) fail-left-zero : {A B : Set} {f : A → D B} → fail >>= f ≅ fail fail-left-zero = fail ∎ ------------------------------------------------------------------------ -- Syntax infixl 9 _·_ data Tm (n : ℕ) : Set where con : (i : ℕ) → Tm n var : (x : Fin n) → Tm n ƛ : (t : Tm (suc n)) → Tm n _·_ : (t₁ t₂ : Tm n) → Tm n _∣_ : (t₁ t₂ : Tm n) → Tm n -- Convenient helper. vr : ∀ m {n} {m<n : True (suc m ≤? n)} → Tm n vr _ {m<n = m<n} = var (#_ _ {m<n = m<n}) open Lambda.Syntax.Closure Tm hiding (con; ƛ) ------------------------------------------------------------------------ -- Semantics infix 9 _∙_ mutual ⟦_⟧ : ∀ {n} → Tm n → Env n → D Value ⟦ con i ⟧ ρ = return (con i) ⟦ var x ⟧ ρ = return (lookup ρ x) ⟦ ƛ t ⟧ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ ⟦ t₁ ∣ t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ ∣ ⟦ t₂ ⟧ ρ _∙_ : Value → Value → D Value con i ∙ v₂ = fail ƛ t₁ ρ ∙ v₂ = later (♯ (⟦ t₁ ⟧ (v₂ ∷ ρ))) -- An abbreviation. infix 9 _⟦·⟧_ _⟦·⟧_ : D Value → D Value → D Value v₁ ⟦·⟧ v₂ = v₁ >>= λ v₁ → v₂ >>= λ v₂ → v₁ ∙ v₂ ------------------------------------------------------------------------ -- Compiler -- The compiler takes a code continuation. -- -- Non-determinism is resolved by always picking the left choice. comp : ∀ {n} → Tm n → Code n → Code n comp (con i) c = con i ∷ c comp (var x) c = var x ∷ c comp (ƛ t) c = clo (comp t [ ret ]) ∷ c comp (t₁ · t₂) c = comp t₁ (comp t₂ (app ∷ c)) comp (t₁ ∣ t₂) c = comp t₁ c -- Environments and values can also be compiled. mutual comp-env : ∀ {n} → Env n → VM.Env n comp-env [] = [] comp-env (v ∷ ρ) = comp-val v ∷ comp-env ρ comp-val : Value → VM.Value comp-val (con i) = con i comp-val (ƛ t ρ) = ƛ (comp t [ ret ]) (comp-env ρ) -- lookup x is homomorphic with respect to comp-env/comp-val. lookup-hom : ∀ {n} (x : Fin n) ρ → lookup (comp-env ρ) x ≡ comp-val (lookup ρ x) lookup-hom zero (v ∷ ρ) = P.refl lookup-hom (suc x) (v ∷ ρ) = lookup-hom x ρ ------------------------------------------------------------------------ -- Examples -- A non-terminating term. Ω : Tm 0 Ω = ω · ω where ω = ƛ (vr 0 · vr 0) Ω-loops : ⟦ Ω ⟧ [] ≅ never Ω-loops = later (♯ Ω-loops) -- A call-by-value fix-point combinator. Z : {n : ℕ} → Tm n Z = ƛ (t · t) where t = ƛ (vr 1 · ƛ (vr 1 · vr 1 · vr 0)) -- A non-deterministically non-terminating term. ! : Tm 0 ! = Z · ƛ (ƛ (vr 1 · vr 0 ∣ vr 1 · vr 0)) · con 0 -- Its semantics. !-sem : D Value !-sem = later (♯ later (♯ later (♯ later (♯ (!-sem ∣ !-sem))))) ⟦!⟧≅!-sem : ⟦ ! ⟧ [] ≅ !-sem ⟦!⟧≅!-sem = later (♯ lem) where lem : force 1 (⟦ ! ⟧ []) ≅ force 1 !-sem lem = later (♯ later (♯ later (♯ (later (♯ lem) ∣ later (♯ lem))))) -- How did I come up with this proof term? Through a manual -- calculation... -- -- Let us first define some abbreviations: -- -- t₀ = vr 1 · vr 1 · vr 0 -- t₁ = ƛ t₀ -- t₂ = vr 1 · t₁ -- t₃ = ƛ t₂ -- -- u₀ = vr 1 · vr 0 -- u₁ = u₀ ∣ u₀ -- u₂ = ƛ u₁ -- u₃ = ƛ u₂ -- -- c₀ = ƛ u₂ [] -- c₁ = ƛ t₂ (c₀ ∷ []) -- c₂ = ƛ t₀ (c₁ ∷ c₀ ∷ []) -- -- Now we can calculate as follows (ignoring ♯): -- -- ⟦ Z · u₃ · con 0 ⟧ [] -- = ⟦ Z · u₃ ⟧ [] ⟦·⟧ return (con 0) -- = ƛ (t₃ · t₃) [] ∙ c₀ ⟦·⟧ return (con 0) -- = later (⟦ t₃ · t₃ ⟧ (c₀ ∷ []) ⟦·⟧ return (con 0)) -- = later (c₁ ∙ c₁ ⟦·⟧ return (con 0)) -- -- = c₁ ∙ c₁ ⟦·⟧ return (con 0) -- = later (⟦ t₂ ⟧ (c₁ ∷ c₀ ∷ []) ⟦·⟧ return (con 0)) -- = later (c₀ ∙ c₂ ⟦·⟧ return (con 0)) -- = later (later (⟦ u₂ ⟧ (c₂ ∷ []) ⟦·⟧ return (con 0))) -- = later (later (ƛ u₁ (c₂ ∷ []) ∙ con 0)) -- = later (later (later (⟦ u₁ ⟧ (con 0 ∷ c₂ ∷ [])))) -- = later (later (later (⟦ u₀ ⟧ (con 0 ∷ c₂ ∷ []) ∣ -- ⟦ u₀ ⟧ (con 0 ∷ c₂ ∷ [])))) -- = later (later (later (c₂ ∙ con 0 ∣ c₂ ∙ con 0))) -- = later (later (later (⟦ t₀ ⟧ (con 0 ∷ c₁ ∷ c₀ ∷ []) ∣ -- ⟦ t₀ ⟧ (con 0 ∷ c₁ ∷ c₀ ∷ [])))) -- = later (later (later (later (c₁ ∙ c₁ ⟦·⟧ return (con 0)) ∣ -- later (c₁ ∙ c₁ ⟦·⟧ return (con 0))))) ------------------------------------------------------------------------ -- A relation relating deterministic and non-deterministic -- computations -- x ≈∈ y means that x implements /one/ possible semantics of y (up to -- weak bisimilarity). infix 4 _≈∈_ data _≈∈_ {A : Set} : Maybe A ⊥ → D A → Set where fail : now nothing ≈∈ fail return : ∀ {x} → now (just x) ≈∈ return x ∣ˡ : ∀ {x y₁ y₂} (x≈∈y₁ : x ≈∈ y₁) → x ≈∈ y₁ ∣ y₂ ∣ʳ : ∀ {x y₁ y₂} (x≈∈y₂ : x ≈∈ y₂) → x ≈∈ y₁ ∣ y₂ later : ∀ {x y} (x≈∈y : ∞ (♭ x ≈∈ ♭ y)) → later x ≈∈ later y laterˡ : ∀ {x y} (x≈∈y : ♭ x ≈∈ y ) → later x ≈∈ y laterʳ : ∀ {x y} (x≈∈y : x ≈∈ ♭ y ) → x ≈∈ later y -- A transitivity-like result for _≡_ and _≈∈_. infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {A : Set} (x : Maybe A ⊥) {y z} → x ≡ y → y ≈∈ z → x ≈∈ z _ ≡⟨ P.refl ⟩ y≈z = y≈z -- A transitivity-like result for _≈∈_ and _≅_. infixr 2 _≈∈⟨_⟩_ _≈∈⟨_⟩_ : ∀ {A : Set} (x : Maybe A ⊥) {y z} → x ≈∈ y → y ≅ z → x ≈∈ z ._ ≈∈⟨ fail ⟩ fail = fail ._ ≈∈⟨ return ⟩ return = return _ ≈∈⟨ ∣ˡ x₁≈∈y₁ ⟩ y₁≅z₁ ∣ y₂≅z₂ = ∣ˡ (_ ≈∈⟨ x₁≈∈y₁ ⟩ y₁≅z₁) _ ≈∈⟨ ∣ʳ x₂≈∈y₂ ⟩ y₁≅z₁ ∣ y₂≅z₂ = ∣ʳ (_ ≈∈⟨ x₂≈∈y₂ ⟩ y₂≅z₂) ._ ≈∈⟨ later x≈∈y ⟩ later y≅z = later (♯ (_ ≈∈⟨ ♭ x≈∈y ⟩ ♭ y≅z)) ._ ≈∈⟨ laterˡ x≈∈y ⟩ y≅z = laterˡ (_ ≈∈⟨ x≈∈y ⟩ y≅z) _ ≈∈⟨ laterʳ x≈∈y ⟩ later y≅z = laterʳ (_ ≈∈⟨ x≈∈y ⟩ ♭ y≅z) -- An example. lemma : Pa.never ≈∈ !-sem lemma = later (♯ later (♯ later (♯ later (♯ ∣ˡ lemma)))) ------------------------------------------------------------------------ -- Compiler correctness module Correctness where mutual correct : ∀ {n} t {ρ : Env n} {c s} {k : Value → D VM.Value} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈∈ k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈∈ (⟦ t ⟧ ρ >>= k) correct (con i) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (con i) ∷ s , comp-env ρ ⟩ ≈∈⟨ hyp (con i) ⟩ k (con i) ∎) correct (var x) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → exec ⟨ c , val v ∷ s , comp-env ρ ⟩) (lookup-hom x ρ) ⟩ exec ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ≈∈⟨ hyp (lookup ρ x) ⟩ k (lookup ρ x) ∎) correct (ƛ t) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈∈⟨ hyp (ƛ t ρ) ⟩ k (ƛ t ρ) ∎) correct (t₁ · t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈∈⟨ correct t₁ (λ v₁ → correct t₂ (λ v₂ → ∙-correct v₁ v₂ hyp)) ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ≅⟨ ((⟦ t₁ ⟧ ρ ∎) >>=-cong λ _ → sym $ associative (⟦ t₂ ⟧ ρ)) ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂) >>= k) ≅⟨ sym $ associative (⟦ t₁ ⟧ ρ) ⟩ (⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ >>= k) ≅⟨ _ ∎ ⟩ (⟦ t₁ · t₂ ⟧ ρ >>= k) ∎ correct (t₁ ∣ t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ c , s , comp-env ρ ⟩ ≈∈⟨ ∣ˡ (correct t₁ hyp) ⟩ (⟦ t₁ ⟧ ρ >>= k) ∣ (⟦ t₂ ⟧ ρ >>= k) ∎ ∙-correct : ∀ {n} v₁ v₂ {ρ : Env n} {c s} {k : Value → D VM.Value} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈∈ k v) → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈∈ v₁ ∙ v₂ >>= k ∙-correct (con i) v₂ _ = fail ∙-correct (ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≈∈⟨ later (♯ ( exec ⟨ comp t₁ [ ret ] , ret c (comp-env ρ) ∷ s , comp-env (v₂ ∷ ρ₁) ⟩ ≈∈⟨ correct t₁ (λ v → laterˡ (hyp v)) ⟩ (⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k) ∎)) ⟩ (ƛ t₁ ρ₁ ∙ v₂ >>= k) ∎ correct : ∀ t → exec ⟨ comp t [] , [] , [] ⟩ ≈∈ ⟦ t ⟧ [] >>= λ v → return (comp-val v) correct t = Correctness.correct t (λ _ → return) ------------------------------------------------------------------------ -- Type system (following Leroy and Grall) infix 4 _⊢_∈_ data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty → Set where con : ∀ {i} → Γ ⊢ con i ∈ nat var : ∀ {x} → Γ ⊢ var x ∈ lookup Γ x ƛ : ∀ {t σ τ} (t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) → Γ ⊢ ƛ t ∈ σ ⇾ τ _·_ : ∀ {t₁ t₂ σ τ} (t₁∈ : Γ ⊢ t₁ ∈ σ ⇾ τ) (t₂∈ : Γ ⊢ t₂ ∈ ♭ σ) → Γ ⊢ t₁ · t₂ ∈ ♭ τ _∣_ : ∀ {t₁ t₂ σ} (t₁∈ : Γ ⊢ t₁ ∈ σ) (t₂∈ : Γ ⊢ t₂ ∈ σ) → Γ ⊢ t₁ ∣ t₂ ∈ σ -- Ω is well-typed. Ω-well-typed : (τ : Ty) → [] ⊢ Ω ∈ τ Ω-well-typed τ = _·_ {σ = ♯ σ} {τ = ♯ τ} (ƛ (var · var)) (ƛ (var · var)) where σ = ♯ σ ⇾ ♯ τ -- The call-by-value fix-point combinator is also well-typed. fix-well-typed : ∀ {σ τ} → [] ⊢ Z ∈ ♯ (♯ (σ ⇾ τ) ⇾ ♯ (σ ⇾ τ)) ⇾ ♯ (σ ⇾ τ) fix-well-typed = ƛ (_·_ {σ = υ} {τ = ♯ _} (ƛ (var · ƛ (var · var · var))) (ƛ (var · ƛ (var · var · var)))) where υ : ∞ Ty υ = ♯ (υ ⇾ ♯ _) ------------------------------------------------------------------------ -- Type soundness -- WF-Value, WF-Env and WF-DV specify when a -- value/environment/computation is well-formed with respect to a -- given context (and type). mutual data WF-Value : Ty → Value → Set where con : ∀ {i} → WF-Value nat (con i) ƛ : ∀ {n Γ σ τ} {t : Tm (1 + n)} {ρ} (t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) (ρ-wf : WF-Env Γ ρ) → WF-Value (σ ⇾ τ) (ƛ t ρ) infixr 5 _∷_ data WF-Env : ∀ {n} → Ctxt n → Env n → Set where [] : WF-Env [] [] _∷_ : ∀ {n} {Γ : Ctxt n} {ρ σ v} (v-wf : WF-Value σ v) (ρ-wf : WF-Env Γ ρ) → WF-Env (σ ∷ Γ) (v ∷ ρ) data WF-DV (σ : Ty) : D Value → Set where return : ∀ {v} (v-wf : WF-Value σ v) → WF-DV σ (return v) _∣_ : ∀ {x y} (x-wf : WF-DV σ x) (y-wf : WF-DV σ y) → WF-DV σ (x ∣ y) later : ∀ {x} (x-wf : ∞ (WF-DV σ (♭ x))) → WF-DV σ (later x) -- Variables pointing into a well-formed environment refer to -- well-formed values. lookup-wf : ∀ {n Γ ρ} (x : Fin n) → WF-Env Γ ρ → WF-Value (lookup Γ x) (lookup ρ x) lookup-wf zero (v-wf ∷ ρ-wf) = v-wf lookup-wf (suc x) (v-wf ∷ ρ-wf) = lookup-wf x ρ-wf -- If we can prove WF-DV σ x, then x does not "go wrong". does-not-go-wrong : ∀ {σ x} → WF-DV σ x → ¬ now nothing ≈∈ x does-not-go-wrong (return v-wf) () does-not-go-wrong (x-wf ∣ y-wf) (∣ˡ x↯) = does-not-go-wrong x-wf x↯ does-not-go-wrong (x-wf ∣ y-wf) (∣ʳ y↯) = does-not-go-wrong y-wf y↯ does-not-go-wrong (later x-wf) (laterʳ x↯) = does-not-go-wrong (♭ x-wf) x↯ -- Bind preserves WF-DV in the following way: _>>=-cong-WF_ : ∀ {σ τ x f} → WF-DV σ x → (∀ {v} → WF-Value σ v → WF-DV τ (f v)) → WF-DV τ (x >>= f) return v-wf >>=-cong-WF f-wf = f-wf v-wf (x-wf ∣ y-wf) >>=-cong-WF f-wf = (x-wf >>=-cong-WF f-wf) ∣ (y-wf >>=-cong-WF f-wf) later x-wf >>=-cong-WF f-wf = later (♯ (♭ x-wf >>=-cong-WF f-wf)) -- Well-typed programs do not "go wrong". mutual ⟦⟧-wf : ∀ {n Γ} (t : Tm n) {σ} → Γ ⊢ t ∈ σ → ∀ {ρ} → WF-Env Γ ρ → WF-DV σ (⟦ t ⟧ ρ) ⟦⟧-wf (con i) con ρ-wf = return con ⟦⟧-wf (var x) var ρ-wf = return (lookup-wf x ρ-wf) ⟦⟧-wf (ƛ t) (ƛ t∈) ρ-wf = return (ƛ t∈ ρ-wf) ⟦⟧-wf (t₁ ∣ t₂) (t₁∈ ∣ t₂∈) ρ-wf = ⟦⟧-wf t₁ t₁∈ ρ-wf ∣ ⟦⟧-wf t₂ t₂∈ ρ-wf ⟦⟧-wf (t₁ · t₂) (t₁∈ · t₂∈) {ρ} ρ-wf = ⟦⟧-wf t₁ t₁∈ ρ-wf >>=-cong-WF λ f-wf → ⟦⟧-wf t₂ t₂∈ ρ-wf >>=-cong-WF λ v-wf → ∙-wf f-wf v-wf ∙-wf : ∀ {σ τ f v} → WF-Value (σ ⇾ τ) f → WF-Value (♭ σ) v → WF-DV (♭ τ) (f ∙ v) ∙-wf (ƛ t₁∈ ρ₁-wf) v₂-wf = later (♯ ⟦⟧-wf _ t₁∈ (v₂-wf ∷ ρ₁-wf)) type-soundness : ∀ {t : Tm 0} {σ} → [] ⊢ t ∈ σ → ¬ now nothing ≈∈ ⟦ t ⟧ [] type-soundness t∈ = does-not-go-wrong (⟦⟧-wf _ t∈ [])
{ "alphanum_fraction": 0.4532601563, "avg_line_length": 32.4235976789, "ext": "agda", "hexsha": "2158082d93cb2a806b96979d1878432f7e17b0fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Functional/Non-deterministic/No-workarounds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Functional/Non-deterministic/No-workarounds.agda", "max_line_length": 137, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Functional/Non-deterministic/No-workarounds.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 7413, "size": 16763 }
module CoinductiveConstructorsAndLet where open import Common.Coinduction data D : Set where foo : D → ∞ D foo x = let y = x in ♯ y -- CoinductiveConstructorsAndLet.agda:9,24-25 -- Panic: thing out of context ([CtxId 1] is not a sub context of -- [CtxId 3]) -- when checking that the expression y has type D
{ "alphanum_fraction": 0.7211538462, "avg_line_length": 22.2857142857, "ext": "agda", "hexsha": "00f33ca8336a232205a43a5ba703509bd2ad62dd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/CoinductiveConstructorsAndLet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/CoinductiveConstructorsAndLet.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/CoinductiveConstructorsAndLet.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 98, "size": 312 }
module SystemF.NormalForm where open import Prelude open import SystemF.Syntax open import SystemF.WellTyped open import SystemF.Substitutions open import Data.Vec hiding ([_]) open import Data.List hiding ([_]) mutual -- The eta-long beta-normal form described by Andreas Abel in: -- Abel, A., 2008, November. -- Weak βη-normalization and normalization by evaluation for System F. -- In Logic for Programming, Artificial Intelligence, and Reasoning (pp. 497-511). -- Springer Berlin Heidelberg. infix 4 _⊢_⇓_ _⊢_⇑_ data _⊢_⇓_ {ν n} (Γ : Ctx ν n) : Term ν n → Type ν → Set where nvar : ∀ n → Γ ⊢ (var n) ⇓ (lookup n Γ) napp : ∀ {a b f e} → Γ ⊢ f ⇓ (a →' b) → Γ ⊢ e ⇑ a → Γ ⊢ (f · e) ⇓ b ntapp : ∀ {a f} b → Γ ⊢ f ⇓ (∀' a) → Γ ⊢ (f [ b ]) ⇓ a tp[/tp b ] data _⊢_⇑_ {ν n} (Γ : Ctx ν n) : Term ν n → Type ν → Set where nbase : ∀ {t a} → Base a → Γ ⊢ t ⇓ a → Γ ⊢ t ⇑ a nabs : ∀ {a b e} → (a ∷ Γ) ⊢ e ⇑ b → Γ ⊢ (λ' a e) ⇑ (a →' b) ntabs : ∀ {a e} → (ctx-weaken Γ) ⊢ e ⇑ a → Γ ⊢ (Λ e) ⇑ (∀' a) mutual ⇓-sound : ∀ {ν n} {Γ : Ctx ν n} {t a} → Γ ⊢ t ⇓ a → Γ ⊢ t ∈ a ⇓-sound (nvar n₁) = var n₁ ⇓-sound (napp p x) = (⇓-sound p) · ⇑-sound x ⇓-sound (ntapp b p) = ⇓-sound p [ b ] ⇑-sound : ∀ {ν n} {Γ : Ctx ν n} {t a} → Γ ⊢ t ⇑ a → Γ ⊢ t ∈ a ⇑-sound (nbase a p) = ⇓-sound p ⇑-sound (nabs x) = λ' _ (⇑-sound x) ⇑-sound (ntabs x) = Λ (⇑-sound x)
{ "alphanum_fraction": 0.529957204, "avg_line_length": 32.6046511628, "ext": "agda", "hexsha": "b347fac3faf650ba52f501617e45e6b0ecef6e78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/NormalForm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/NormalForm.agda", "max_line_length": 84, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/NormalForm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 636, "size": 1402 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on M-types ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.M.Properties where open import Level open import Size open import Codata.Thunk using (Thunk; force) open import Codata.M open import Codata.M.Bisimilarity open import Data.Container.Core as C hiding (map) import Data.Container.Morphism as Mp open import Data.Product as Prod using (_,_) open import Data.Product.Properties open import Function import Relation.Binary.PropositionalEquality as P open import Data.Container.Relation.Binary.Pointwise using (_,_) import Data.Container.Relation.Binary.Equality.Setoid as EqSetoid private module Eq {a} (A : Set a) = EqSetoid (P.setoid A) open Eq using (Eq) module _ {s p} {C : Container s p} where map-id : ∀ {i} c → Bisim C i (map (Mp.id C) c) c map-id (inf (s , f)) = inf (P.refl , λ where p .force → map-id (f p .force)) module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where map-cong : ∀ {i} {f g : C₁ ⇒ C₂} → (∀ {X} t → Eq X C₂ (⟪ f ⟫ t) (⟪ g ⟫ t)) → ∀ c₁ → Bisim C₂ i (map f c₁) (map g c₁) map-cong {f = f} {g} f≗g (inf t@(s , n)) with f≗g t ... | eqs , eqf = inf (eqs , λ where p .force {j} → P.subst (λ t → Bisim C₂ j (map f (n (position f p) .force)) (map g (t .force))) (eqf p) (map-cong f≗g (n (position f p) .force))) module _ {s₁ s₂ s₃ p₁ p₂ p₃} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃} where map-compose : ∀ {i} {g : C₂ ⇒ C₃} {f : C₁ ⇒ C₂} c₁ → Bisim C₃ i (map (g Mp.∘ f) c₁) (map g $′ map f c₁) map-compose (inf (s , f)) = inf (P.refl , λ where p .force → map-compose (f _ .force)) module _ {s₁ s₂ p₁ p₂ s} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {S : Set s} {alg : S → ⟦ C₁ ⟧ S} {f : C₁ ⇒ C₂} where map-unfold : ∀ {i} s → Bisim C₂ i (map f (unfold alg s)) (unfold (⟪ f ⟫ ∘′ alg) s) map-unfold s = inf (P.refl , λ where p .force → map-unfold _)
{ "alphanum_fraction": 0.5376439327, "avg_line_length": 37.6333333333, "ext": "agda", "hexsha": "b1cbbeb6f5e3c8c4a59c12653bd844ff268d9f0b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Properties.agda", "max_line_length": 88, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 746, "size": 2258 }
-- Andreas, 2012-01-17 -- {-# OPTIONS -v tc.proj.like:50 #-} -- {-# OPTIONS -v tc.conv.atom:50 #-} module Issue553c where postulate A : Set a : A data Bool : Set where true false : Bool data WrapBool (C : Set) : Set where wrap : Bool -> WrapBool C -- a projection-like function (must not be constructor-headed!) -- the dummy C is to make Agda accept f as projection like f : {C : Set} -> WrapBool C -> A f (wrap true) = a f (wrap false) = a data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a -- it is important that f does not reduce, in order to enter compareAtom test : (b : Bool) -> f {C = A} (wrap b) ≡ f (wrap b) test b = refl -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:335 -- the problem is fixed now, since f is no longer projection-like -- because of deep matching
{ "alphanum_fraction": 0.6542372881, "avg_line_length": 27.65625, "ext": "agda", "hexsha": "04061c9f92aa3df636b4a963f13a67e151e6acdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue553c.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue553c.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue553c.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 274, "size": 885 }
module STLC1.Kovacs.Substitution where open import STLC1.Kovacs.Embedding public open import Category -------------------------------------------------------------------------------- -- Substitutions (Sub ; ∙ ; _,_) infix 3 _⊢⋆_ data _⊢⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ⊢⋆ ∅ _,_ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) (M : Γ ⊢ A) → Γ ⊢⋆ Ξ , A -- (_ₛ∘ₑ_) -- NOTE: _◐_ = ren⋆ _◐_ : ∀ {Γ Γ′ Ξ} → Γ ⊢⋆ Ξ → Γ′ ⊇ Γ → Γ′ ⊢⋆ Ξ ∅ ◐ η = ∅ (σ , M) ◐ η = σ ◐ η , ren η M -- (_ₑ∘ₛ_) _◑_ : ∀ {Γ Ξ Ξ′} → Ξ′ ⊇ Ξ → Γ ⊢⋆ Ξ′ → Γ ⊢⋆ Ξ done ◑ σ = σ wkₑ η ◑ (σ , M) = η ◑ σ liftₑ η ◑ (σ , M) = η ◑ σ , M -------------------------------------------------------------------------------- -- (dropₛ) wkₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ wkₛ σ = σ ◐ wkₑ idₑ -- (keepₛ) liftₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ , A liftₛ σ = wkₛ σ , 0 -- (⌜_⌝ᵒᵖᵉ) ⌊_⌋ : ∀ {Γ Γ′} → Γ′ ⊇ Γ → Γ′ ⊢⋆ Γ ⌊ done ⌋ = ∅ ⌊ wkₑ η ⌋ = wkₛ ⌊ η ⌋ ⌊ liftₑ η ⌋ = liftₛ ⌊ η ⌋ -- (∈ₛ) getₛ : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ∋ A → Γ ⊢ A getₛ (σ , M) zero = M getₛ (σ , M) (suc i) = getₛ σ i -- (Tmₛ) sub : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A sub σ (𝓋 i) = getₛ σ i sub σ (ƛ M) = ƛ (sub (liftₛ σ) M) sub σ (M ∙ N) = sub σ M ∙ sub σ N sub σ (M , N) = sub σ M , sub σ N sub σ (π₁ M) = π₁ (sub σ M) sub σ (π₂ M) = π₂ (sub σ M) sub σ τ = τ -- (idₛ) idₛ : ∀ {Γ} → Γ ⊢⋆ Γ idₛ {∅} = ∅ idₛ {Γ , A} = liftₛ idₛ cut : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut M N = sub (idₛ , M) N -- (_∘ₛ_) -- NOTE: _●_ = sub⋆ _●_ : ∀ {Γ Ξ Φ} → Ξ ⊢⋆ Φ → Γ ⊢⋆ Ξ → Γ ⊢⋆ Φ ∅ ● σ₁ = ∅ (σ₂ , M) ● σ₁ = σ₂ ● σ₁ , sub σ₁ M -------------------------------------------------------------------------------- -- (assₛₑₑ) comp◐○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) → (σ ◐ η₂) ◐ η₁ ≡ σ ◐ (η₂ ○ η₁) comp◐○ η₁ η₂ ∅ = refl comp◐○ η₁ η₂ (σ , M) = _,_ & comp◐○ η₁ η₂ σ ⊗ (ren○ η₁ η₂ M ⁻¹) -- (assₑₛₑ) comp◑◐ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ′) (η₂ : Ξ′ ⊇ Ξ) → (η₂ ◑ σ) ◐ η₁ ≡ η₂ ◑ (σ ◐ η₁) comp◑◐ η₁ ∅ done = refl comp◑◐ η₁ (σ , M) (wkₑ η₂) = comp◑◐ η₁ σ η₂ comp◑◐ η₁ (σ , M) (liftₑ η₂) = (_, ren η₁ M) & comp◑◐ η₁ σ η₂ -------------------------------------------------------------------------------- -- (idlₑₛ) lid◑ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idₑ ◑ σ ≡ σ lid◑ ∅ = refl lid◑ (σ , M) = (_, M) & lid◑ σ -- (idlₛₑ) lid◐ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ) → idₛ ◐ η ≡ ⌊ η ⌋ lid◐ done = refl lid◐ (wkₑ η) = ((idₛ ◐_) ∘ wkₑ) & rid○ η ⁻¹ ⦙ comp◐○ (wkₑ idₑ) η idₛ ⁻¹ ⦙ wkₛ & lid◐ η lid◐ (liftₑ η) = (_, 0) & ( comp◐○ (liftₑ η) (wkₑ idₑ) idₛ ⦙ ((idₛ ◐_) ∘ wkₑ) & ( lid○ η ⦙ rid○ η ⁻¹ ) ⦙ comp◐○ (wkₑ idₑ) η idₛ ⁻¹ ⦙ (_◐ wkₑ idₑ) & lid◐ η ) -- (idrₑₛ) rid◑ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ) → η ◑ idₛ ≡ ⌊ η ⌋ rid◑ done = refl rid◑ (wkₑ η) = comp◑◐ (wkₑ idₑ) idₛ η ⁻¹ ⦙ wkₛ & rid◑ η rid◑ (liftₑ η) = (_, 0) & ( comp◑◐ (wkₑ idₑ) idₛ η ⁻¹ ⦙ (_◐ wkₑ idₑ) & rid◑ η ) -------------------------------------------------------------------------------- -- (∈-ₑ∘ₛ) get◑ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (i : Ξ ∋ A) → getₛ (η ◑ σ) i ≡ (getₛ σ ∘ getₑ η) i get◑ σ done i = refl get◑ (σ , M) (wkₑ η) i = get◑ σ η i get◑ (σ , M) (liftₑ η) zero = refl get◑ (σ , M) (liftₑ η) (suc i) = get◑ σ η i -- (Tm-ₑ∘ₛ) mutual sub◑ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ ⊢ A) → sub (η ◑ σ) M ≡ (sub σ ∘ ren η) M sub◑ σ η (𝓋 i) = get◑ σ η i sub◑ σ η (ƛ M) = ƛ & sublift◑ σ η M sub◑ σ η (M ∙ N) = _∙_ & sub◑ σ η M ⊗ sub◑ σ η N sub◑ σ η (M , N) = _,_ & sub◑ σ η M ⊗ sub◑ σ η N sub◑ σ η (π₁ M) = π₁ & sub◑ σ η M sub◑ σ η (π₂ M) = π₂ & sub◑ σ η M sub◑ σ η τ = refl sublift◑ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (η ◑ σ)) M ≡ (sub (liftₛ σ) ∘ ren (liftₑ η)) M sublift◑ σ η M = (λ σ′ → sub (σ′ , 0) M) & comp◑◐ (wkₑ idₑ) σ η ⦙ sub◑ (liftₛ σ) (liftₑ η) M -------------------------------------------------------------------------------- -- (∈-ₛ∘ₑ) get◐ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → getₛ (σ ◐ η) i ≡ (ren η ∘ getₛ σ) i get◐ η (σ , M) zero = refl get◐ η (σ , M) (suc i) = get◐ η σ i -- (Tm-ₛ∘ₑ) mutual sub◐ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A) → sub (σ ◐ η) M ≡ (ren η ∘ sub σ) M sub◐ η σ (𝓋 i) = get◐ η σ i sub◐ η σ (ƛ M) = ƛ & sublift◐ η σ M sub◐ η σ (M ∙ N) = _∙_ & sub◐ η σ M ⊗ sub◐ η σ N sub◐ η σ (M , N) = _,_ & sub◐ η σ M ⊗ sub◐ η σ N sub◐ η σ (π₁ M) = π₁ & sub◐ η σ M sub◐ η σ (π₂ M) = π₂ & sub◐ η σ M sub◐ η σ τ = refl sublift◐ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (σ ◐ η)) M ≡ (ren (liftₑ η) ∘ sub (liftₛ σ)) M sublift◐ η σ M = (λ σ′ → sub (σ′ , 0) M) & ( comp◐○ (wkₑ idₑ) η σ ⦙ (σ ◐_) & (wkₑ & ( rid○ η ⦙ lid○ η ⁻¹ )) ⦙ comp◐○ (liftₑ η) (wkₑ idₑ) σ ⁻¹ ) ⦙ sub◐ (liftₑ η) (liftₛ σ) M -------------------------------------------------------------------------------- -- (assₛₑₛ) comp●◑ : ∀ {Γ Ξ Ξ′ Φ} → (σ₁ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → (σ₂ ◐ η) ● σ₁ ≡ σ₂ ● (η ◑ σ₁) comp●◑ σ₁ η ∅ = refl comp●◑ σ₁ η (σ₂ , M) = _,_ & comp●◑ σ₁ η σ₂ ⊗ (sub◑ σ₁ η M ⁻¹) -- (assₛₛₑ) comp●◐ : ∀ {Γ Γ′ Ξ Φ} → (η : Γ′ ⊇ Γ) (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → (σ₂ ● σ₁) ◐ η ≡ σ₂ ● (σ₁ ◐ η) comp●◐ η σ₁ ∅ = refl comp●◐ η σ₁ (σ₂ , M) = _,_ & comp●◐ η σ₁ σ₂ ⊗ (sub◐ η σ₁ M ⁻¹) -------------------------------------------------------------------------------- -- (∈-∘ₛ) get● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (i : Φ ∋ A) → getₛ (σ₂ ● σ₁) i ≡ (sub σ₁ ∘ getₛ σ₂) i get● σ₁ (σ₂ , M) zero = refl get● σ₁ (σ₂ , M) (suc i) = get● σ₁ σ₂ i -- (Tm-∘ₛ) mutual sub● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → sub (σ₂ ● σ₁) M ≡ (sub σ₁ ∘ sub σ₂) M sub● σ₁ σ₂ (𝓋 i) = get● σ₁ σ₂ i sub● σ₁ σ₂ (ƛ M) = ƛ & sublift● σ₁ σ₂ M sub● σ₁ σ₂ (M ∙ N) = _∙_ & sub● σ₁ σ₂ M ⊗ sub● σ₁ σ₂ N sub● σ₁ σ₂ (M , N) = _,_ & sub● σ₁ σ₂ M ⊗ sub● σ₁ σ₂ N sub● σ₁ σ₂ (π₁ M) = π₁ & sub● σ₁ σ₂ M sub● σ₁ σ₂ (π₂ M) = π₂ & sub● σ₁ σ₂ M sub● σ₁ σ₂ τ = refl sublift● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ , B ⊢ A) → sub (liftₛ {B} (σ₂ ● σ₁)) M ≡ (sub (liftₛ σ₁) ∘ sub (liftₛ σ₂)) M sublift● σ₁ σ₂ M = (λ σ′ → sub (σ′ , 0) M) & ( comp●◐ (wkₑ idₑ) σ₁ σ₂ ⦙ (σ₂ ●_) & (lid◑ (wkₛ σ₁) ⁻¹) ⦙ comp●◑ (liftₛ σ₁) (wkₑ idₑ) σ₂ ⁻¹ ) ⦙ sub● (liftₛ σ₁) (liftₛ σ₂) M -------------------------------------------------------------------------------- -- (∈-idₛ) idgetₛ : ∀ {Γ A} → (i : Γ ∋ A) → getₛ idₛ i ≡ 𝓋 i idgetₛ zero = refl idgetₛ (suc i) = get◐ (wkₑ idₑ) idₛ i ⦙ wk & idgetₛ i ⦙ 𝓋 ∘ suc & idgetₑ i -- (Tm-idₛ) idsub : ∀ {Γ A} → (M : Γ ⊢ A) → sub idₛ M ≡ M idsub (𝓋 i) = idgetₛ i idsub (ƛ M) = ƛ & idsub M idsub (M ∙ N) = _∙_ & idsub M ⊗ idsub N idsub (M , N) = _,_ & idsub M ⊗ idsub N idsub (π₁ M) = π₁ & idsub M idsub (π₂ M) = π₂ & idsub M idsub τ = refl -------------------------------------------------------------------------------- -- (idrₛ) rid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → σ ● idₛ ≡ σ rid● ∅ = refl rid● (σ , M) = _,_ & rid● σ ⊗ idsub M -- (idlₛ) lid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idₛ ● σ ≡ σ lid● ∅ = refl lid● (σ , M) = (_, M) & ( comp●◑ (σ , M) (wkₑ idₑ) idₛ ⦙ lid● (idₑ ◑ σ) ⦙ lid◑ σ ) -- (assₛ) assoc● : ∀ {Γ Ξ Φ Ψ} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (σ₃ : Φ ⊢⋆ Ψ) → (σ₃ ● σ₂) ● σ₁ ≡ σ₃ ● (σ₂ ● σ₁) assoc● σ₁ σ₂ ∅ = refl assoc● σ₁ σ₂ (σ₃ , M) = _,_ & assoc● σ₁ σ₂ σ₃ ⊗ (sub● σ₁ σ₂ M ⁻¹) -------------------------------------------------------------------------------- 𝗦𝗧𝗟𝗖 : Category 𝒞 _⊢⋆_ 𝗦𝗧𝗟𝗖 = record { idₓ = idₛ ; _⋄_ = _●_ ; lid⋄ = lid● ; rid⋄ = rid● ; assoc⋄ = assoc● } subPsh : 𝒯 → Presheaf₀ 𝗦𝗧𝗟𝗖 subPsh A = record { Fₓ = _⊢ A ; F = sub ; idF = fext! idsub ; F⋄ = λ σ₁ σ₂ → fext! (sub● σ₂ σ₁) } --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.2970024362, "avg_line_length": 28.5226586103, "ext": "agda", "hexsha": "211a5f0660175be469a28011730742afe443e892", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC1/Kovacs/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC1/Kovacs/Substitution.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC1/Kovacs/Substitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4753, "size": 9441 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties, related to products, that rely on the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Product.Properties.WithK where open import Data.Product open import Data.Product.Properties open import Function open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) ------------------------------------------------------------------------ -- Equality module _ {a b} {A : Set a} {B : Set b} where ,-injective : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → a ≡ c × b ≡ d ,-injective refl = refl , refl module _ {a b} {A : Set a} {B : A → Set b} where ,-injectiveʳ : ∀ {a} {b c : B a} → (Σ A B ∋ (a , b)) ≡ (a , c) → b ≡ c ,-injectiveʳ refl = refl ≡-dec : Decidable _≡_ → (∀ {a} → Decidable {A = B a} _≡_) → Decidable {A = Σ A B} _≡_ ≡-dec dec₁ dec₂ (a , x) (b , y) with dec₁ a b ... | no a≢b = no (a≢b ∘ ,-injectiveˡ) ... | yes refl with dec₂ x y ... | no x≢y = no (x≢y ∘ ,-injectiveʳ) ... | yes refl = yes refl
{ "alphanum_fraction": 0.4787928222, "avg_line_length": 32.2631578947, "ext": "agda", "hexsha": "0d3a8dafb04ece27f1300d0f87353562da1df1de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties/WithK.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Properties/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 383, "size": 1226 }
module Oscar.Object {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Category.Category open import Oscar.Category.Functor open import Oscar.Category.Morphism open import Oscar.Category.Semifunctor open import Oscar.Category.Semigroupoid open import Oscar.Category.Setoid open import Oscar.Data.Nat {- open import Oscar.Data.AList FunctionName open import Oscar.Data.Equality open import Oscar.Data.Equality.properties open import Oscar.Data.Fin open import Oscar.Data.List open import Oscar.Data.Nat open import Oscar.Data.Product open import Oscar.Data.Step FunctionName open import Oscar.Data.Term FunctionName open import Oscar.Data.Term.internal.SubstituteAndSubstitution FunctionName open import Oscar.Data.Unit -} open import Oscar.Function open import Oscar.Level {- List : Set ListNatAction : Nat → Set ListNatMorphism : Nat → Nat → Set Nat : Set NatNatAction : Nat → Set NatNatMorphism : Nat → Nat → Set -} {- data ⋆ : Set where ∅ : ⋆ ↧ : ⋆ → ⋆ data ⟱ {a} {A : Set a} : Set a where data Nat[_↦_] (m : Nat) : Nat → Set where zero : Nat[ m ↦ m ] suc : ∀ {n} → Nat[ m ↦ n ] → Nat[ m ↦ suc n ] _+²_ : ∀ {i₂ i₃} → Nat[ i₂ ↦ i₃ ] → ∀ {i₁} → Nat[ i₁ ↦ i₂ ] → Nat[ i₁ ↦ i₃ ] zero +² y = y suc x +² y = suc (x +² y) data Nat↥ = Fin bar = Nat[ 0 ↦ 3 ] br = Nat br2 = Nat↥ 3 -} open import Oscar.Data5 data Indexed : Set (lsuc ℓ) where iset₀ : (⟦⟧ → Set) → Indexed isetℓ : (⟦⟧ → Set ℓ) → Indexed vec : ⟦⟧ → Indexed → Indexed list : Indexed → Indexed function : Indexed → Indexed → Indexed data IsMonoid : Indexed → Set where list : ∀ i → IsMonoid (list i) function : ∀ i j → IsMonoid (function i j) vec : ∀ n i → IsMonoid open import Level test-l : ∀ {ℓ} {ℓ'} → (⟦⟧ → Lift {ℓ = ℓ} Set) → (⟦⟧ → Lift {ℓ = ℓ'} Set) test-l f n = lift (lower (f n)) data Categorical : Set (lsuc ℓ) where set₀ : (⟦⟧ → ⟦⟧ → Set) → Categorical setℓ : (⟦⟧ → ⟦⟧ → Set ℓ) → Categorical function : Indexed → Indexed → Categorical {- e.g. Fin m → Term n -} monoidal-function : Indexed → Indexed → Categorical {- e.g. Fin n → Term n -} alist = setℓ AList ifin = iset₀ Fin iterm = isetℓ Term iterms = λ N → isetℓ (Terms N) istep = isetℓ Step iliststep = list (istep) finterm = relational-function ifin iterm termterm = relational-function iterm iterm termsterms = λ N → relational-function (iterms N) (iterms N) stepstep = relational-function istep istep data Functorial : Categorical → Categorical → Set (lsuc ℓ) where unpack : Functorial alist finterm substitute : Functorial finterm termterm substitutes : (N : ⟦⟧) → Functorial finterm (termsterms N) stepify : Functorial termterm stepstep collapse : (n : Nat) → Arrow (listStepN n) (termtermN n) reduce : (n : Nat) → Arrow (termtermN n) termterm COMPOSE : ∀ {o₂ o₃} → Functorial o₂ o₃ → ∀ {o₁} → Functorial o₁ o₂ → Functorial o₁ o₃ data Cat : Set where identity : Cat cat : Category → Cat compose : -- sustitute : Functorial -- unpack : Arrow alist finterm -- substitute : Arrow finterm termterm -- substitutes : (N : Nat) → Arrow finterm (termsterms N) -- stepify : Arrow termterm stepstep -- collapse : (n : Nat) → Arrow (listStepN n) (termtermN n) -- reduce : (n : Nat) → Arrow (termtermN n) termterm -- COMPOSE : ∀ {o₂ o₃} → Arrow o₂ o₃ → ∀ {o₁} → Arrow o₁ o₂ → Arrow o₁ o₃ -- finterm : Object -- termterm : Object -- termsterms : Nat → Object -- stepstep : Object -- listStepN : Nat → Object -- termtermN : Nat → Object -- list∘ : Object → Object -- {- -- object⋆ : Object → Set _ -- object⋆ alist = Nat -- object⋆ finterm = Nat -- object⋆ termterm = Nat -- object⋆ (termsterms N) = Nat -- object⋆ stepstep = Nat -- object⋆ (listStepN _) = ⊤ -- object⋆ (termtermN _) = ⊤ -- objectMorphism : (o : Object) → Morphism (object⋆ o) 𝔣 𝔣 -- objectMorphism alist = ⇧ AList -- objectMorphism finterm = Fin ⇨ Term -- objectMorphism termterm = Term ⇨ Term -- objectMorphism (termsterms N) = Terms N ⇨ Terms N -- objectMorphism stepstep = Step ⇨ Step -- Setoid.⋆ ((objectMorphism (listStepN n) Morphism.⇒ _) _) = List (Step n) -- IsSetoid._≋_ (Setoid.isSetoid ((objectMorphism (listStepN N) Morphism.⇒ _) _)) = _≡_ -- Setoid.⋆ ((objectMorphism (termtermN n) Morphism.⇒ _) _) = Term n → Term n -- IsSetoid._≋_ (Setoid.isSetoid ((objectMorphism (termtermN N) Morphism.⇒ _) _)) = _≡̇_ -- IsSetoid._≋_ (Morphism.isSetoid (objectMorphism (termtermN N))) = _≡̇_ -- -} -- objectCategory : Object → Category lzero 𝔣 𝔣 -- objectCategory alist = {!!} -- objectCategory finterm = 𝔾₁ -- objectCategory termterm = 𝔾₂ -- objectCategory (termsterms N) = 𝔾₂ₛ N -- objectCategory stepstep = {!!} -- objectCategory (listStepN x) = {!!} -- objectCategory (termtermN x) = {!!} -- Semigroupoid.⋆ (Category.semigroupoid (objectCategory (list∘ G))) = List (Category.⋆ (objectCategory G)) -- Morphism._⇒_ (Semigroupoid.𝔐 (Category.semigroupoid (objectCategory (list∘ G)))) = {!!} -- Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid (objectCategory (list∘ G)))) = {!!} -- Semigroupoid._∙_ (Category.semigroupoid (objectCategory (list∘ G))) = {!!} -- Semigroupoid.isSemigroupoid (Category.semigroupoid (objectCategory (list∘ G))) = {!!} -- Category.ε (objectCategory (list∘ G)) = {!!} -- Category.isCategory (objectCategory (list∘ G)) = {!!} -- data Arrow : Object → Object → Set where -- unpack : Arrow alist finterm -- substitute : Arrow finterm termterm -- substitutes : (N : Nat) → Arrow finterm (termsterms N) -- stepify : Arrow termterm stepstep -- collapse : (n : Nat) → Arrow (listStepN n) (termtermN n) -- reduce : (n : Nat) → Arrow (termtermN n) termterm -- COMPOSE : ∀ {o₂ o₃} → Arrow o₂ o₃ → ∀ {o₁} → Arrow o₁ o₂ → Arrow o₁ o₃ -- data SimpleArrow : ∀ {o1 o2} → Arrow o1 o2 → Set where -- unpack : SimpleArrow unpack -- substitute : SimpleArrow substitute -- substitutes : (N : Nat) → SimpleArrow (substitutes N) -- stepify : SimpleArrow stepify -- collapse : (n : Nat) → SimpleArrow (collapse n) -- reduce : (n : Nat) → SimpleArrow (reduce n) -- import Data.List as LIST -- open import Algebra using (Monoid) -- serialiseArrow : ∀ {o1 o2} → Arrow o1 o2 → List (∃ λ o1 → ∃ λ o2 → ∃ λ (a : Arrow o1 o2) → SimpleArrow a) -- serialiseArrow unpack = (_ , _ , _ , unpack) ∷ [] -- serialiseArrow substitute = {!!} -- serialiseArrow (substitutes N) = {!!} -- serialiseArrow stepify = {!!} -- serialiseArrow (collapse n) = {!!} -- serialiseArrow (reduce n) = {!!} -- serialiseArrow (COMPOSE g f) = -- let g' = serialiseArrow g -- f' = serialiseArrow f -- in Monoid._∙_ (LIST.monoid (∃ (λ o1 → ∃ (λ o2 → ∃ SimpleArrow)))) g' f' -- open import Data.Empty -- eqArrow : ∀ {o1 o2} → Arrow o1 o2 → Arrow o1 o2 → Set -- eqArrow x y = serialiseArrow x ≡ serialiseArrow y -- open IsSemifunctor ⦃ … ⦄ using () renaming (extensionality to ext; distributivity to dist) -- module _ -- {𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ 𝔬₃ 𝔪₃ 𝔮₃} -- (c₁ : Semigroupoid 𝔬₁ 𝔪₁ 𝔮₁) -- (c₂ : Semigroupoid 𝔬₂ 𝔪₂ 𝔮₂) -- (c₃ : Semigroupoid 𝔬₃ 𝔪₃ 𝔮₃) -- where -- private -- module 𝔊₁ = Semigroupoid c₁ -- module 𝔊₂ = Semigroupoid c₂ -- module 𝔊₃ = Semigroupoid c₃ -- composeS : ∀ -- {μ₁₂ : 𝔊₁.⋆ → 𝔊₂.⋆} -- (𝔣₁₂ : ∀ {x y} → x 𝔊₁.↦ y → μ₁₂ x 𝔊₂.↦ μ₁₂ y) -- {μ₂₃ : 𝔊₂.⋆ → 𝔊₃.⋆} -- (𝔣₂₃ : ∀ {x y} → x 𝔊₂.↦ y → μ₂₃ x 𝔊₃.↦ μ₂₃ y) -- ⦃ _ : IsSemifunctor (c₁ , c₂) 𝔣₁₂ ⦄ -- ⦃ _ : IsSemifunctor (c₂ , c₃) 𝔣₂₃ ⦄ -- → IsSemifunctor (c₁ , c₃) (𝔣₂₃ ∘ 𝔣₁₂) -- IsSemifunctor.extensionality (composeS 𝔣₁₂ 𝔣₂₃ ⦃ isS₁ ⦄ ⦃ isS₂ ⦄) f₁≋f₂ = ext ⦃ isS₂ ⦄ (ext ⦃ isS₁ ⦄ f₁≋f₂) -- IsSemifunctor.distributivity (composeS {μ₁₂} 𝔣₁₂ {μ₂₃} 𝔣₂₃ ⦃ isS₁ ⦄ ⦃ isS₂ ⦄) {x} {y} f {z} g = -- let eq₁ = ext ⦃ isS₂ ⦄ (dist ⦃ isS₁ ⦄ f g) -- eq₂ = dist ⦃ isS₂ ⦄ (𝔣₁₂ f) (𝔣₁₂ g) -- instance _ = IsSetoid.isEquivalence 𝔊₃.isSetoid -- in transitivity eq₁ eq₂ -- module _ -- {𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ 𝔬₃ 𝔪₃ 𝔮₃} -- (c₁ : Category 𝔬₁ 𝔪₁ 𝔮₁) -- (c₂ : Category 𝔬₂ 𝔪₂ 𝔮₂) -- (c₃ : Category 𝔬₃ 𝔪₃ 𝔮₃) -- where -- private -- module 𝔊₁ = Category c₁ -- module 𝔊₂ = Category c₂ -- module 𝔊₃ = Category c₃ -- composeF : ∀ -- {μ₁₂ : 𝔊₁.⋆ → 𝔊₂.⋆} -- (𝔣₁₂ : ∀ {x y} → x 𝔊₁.↦ y → μ₁₂ x 𝔊₂.↦ μ₁₂ y) -- {μ₂₃ : 𝔊₂.⋆ → 𝔊₃.⋆} -- (𝔣₂₃ : ∀ {x y} → x 𝔊₂.↦ y → μ₂₃ x 𝔊₃.↦ μ₂₃ y) -- ⦃ _ : IsFunctor (c₁ , c₂) 𝔣₁₂ ⦄ -- ⦃ _ : IsFunctor (c₂ , c₃) 𝔣₂₃ ⦄ -- → IsFunctor (c₁ , c₃) (𝔣₂₃ ∘ 𝔣₁₂) -- IsFunctor.isSemifunctor (composeF 𝔣₁₂ 𝔣₂₃ ⦃ isF₁ ⦄ ⦃ isF₂ ⦄) = composeS _ _ _ _ _ ⦃ (IsFunctor.isSemifunctor isF₁) ⦄ ⦃ (IsFunctor.isSemifunctor isF₂) ⦄ -- IsFunctor.identity (composeF {μ₁₂} 𝔣₁₂ 𝔣₂₃ ⦃ isF₁ ⦄ ⦃ isF₂ ⦄) x = -- let f₁₂ε≋ε = identity ⦃ isF₁ ⦄ x -- f₂₃f₁₂ε≋f₂₃ε = ext ⦃ IsFunctor.isSemifunctor isF₂ ⦄ f₁₂ε≋ε -- f₂₃ε≋ε = identity ⦃ isF₂ ⦄ (μ₁₂ x) -- instance _ = IsSetoid.isEquivalence 𝔊₃.isSetoid -- in transitivity f₂₃f₁₂ε≋f₂₃ε f₂₃ε≋ε -- --𝔬₁ 𝔪₁ 𝔮₁ 𝔬₃ 𝔪₃ 𝔮₃ -- --composeF 𝔣₁₂ 𝔣₂₃ = (c₁ , c₃) , (𝔣₂₃ ∘ 𝔣₁₂) -- arrowIsFunctor : ∀ {o₁ o₂} → Arrow o₁ o₂ -- → ∃ λ μ -- → (let c1 = objectCategory o₁) -- (let c2 = objectCategory o₂) -- (let module 𝔊₁ = Category c1) -- (let module 𝔊₂ = Category c2) -- → ∃ λ (f : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y) -- → (IsFunctor (objectCategory o₁ , objectCategory o₂) {μ} f) -- arrowIsFunctor unpack = {!!} -- arrowIsFunctor substitute = _ , _ , IsFunctor𝔾₁,₂◂ -- arrowIsFunctor (substitutes N) = _ , _ , IsFunctor𝔾₁,₂ₛ◂ {N} -- arrowIsFunctor stepify = {!!} -- arrowIsFunctor (collapse n) = {!!} -- arrowIsFunctor (reduce n) = {!!} -- arrowIsFunctor (COMPOSE a1 a2) = -- let _ , _ , isF1 = arrowIsFunctor a1 -- _ , _ , isF2 = arrowIsFunctor a2 -- in _ , _ , composeF _ _ _ _ _ ⦃ isF2 ⦄ ⦃ isF1 ⦄ -- arrowFunctor : ∀ {o₁ o₂} → Arrow o₁ o₂ → Functor _ _ _ _ _ _ -- arrowFunctor {o₁} {o₂} a = -- let cs , f , IF = arrowIsFunctor a -- instance _ = IF -- in (objectCategory o₁ , objectCategory o₂) , f -- category : Category _ _ _ -- Semigroupoid.⋆ (Category.semigroupoid category) = Object -- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ o1) o2) = Arrow o1 o2 -- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ x) x₁)) = {!!} -- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ x) x₁)) = {!!} -- IsSetoid._≋_ (Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid category))) = eqArrow -- IsSetoid.isEquivalence (Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid category))) = {!!} -- Semigroupoid._∙_ (Category.semigroupoid category) g f = COMPOSE g f -- IsSemigroupoid.extensionality (Semigroupoid.isSemigroupoid (Category.semigroupoid category)) = {!!} -- IsSemigroupoid.associativity (Semigroupoid.isSemigroupoid (Category.semigroupoid category)) = {!!} -- Category.ε category = {!!} -- IsCategory.left-identity (Category.isCategory category) = {!!} -- IsCategory.right-identity (Category.isCategory category) = {!!}
{ "alphanum_fraction": 0.6332601135, "avg_line_length": 35.5895765472, "ext": "agda", "hexsha": "c701136a207356f982c526cfb3dad7ae86fab3c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Object.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Object.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Object.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4473, "size": 10926 }
module Syntax where open import Stack public -- Abstract symbols, or atoms. abstract Atom : Set Atom = Nat -- Types, or propositions in constructive logic. infixl 9 _⩕_ infixr 7 _⇒_ data Type : Set where α_ : Atom → Type _⇒_ : Type → Type → Type _⩕_ : Type → Type → Type ⫪ : Type -- Contexts, or stacks of types. Context : Set Context = Stack Type -- Derivations, or syntactic entailment. infix 3 _⊢_ data _⊢_ : Context → Type → Set where var : ∀ {A Γ} → A ∈ Γ → Γ ⊢ A lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ⇒ B app : ∀ {A B Γ} → Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ⩕ B fst : ∀ {A B Γ} → Γ ⊢ A ⩕ B → Γ ⊢ A snd : ∀ {A B Γ} → Γ ⊢ A ⩕ B → Γ ⊢ B unit : ∀ {Γ} → Γ ⊢ ⫪ -- Shorthand for variables. v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A v₂ = var i₂ -- Stacks of derivations, or simultaneous syntactic entailment. infix 3 _⊢⋆_ _⊢⋆_ : Context → Stack Type → Set Γ ⊢⋆ ∅ = ⊤ Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ ∧ Γ ⊢ A -- Monotonicity of syntactic entailment with respect to context inclusion. mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ p (var i) = var (mono∈ p i) mono⊢ p (lam d) = lam (mono⊢ (keep p) d) mono⊢ p (app d e) = app (mono⊢ p d) (mono⊢ p e) mono⊢ p (pair d e) = pair (mono⊢ p d) (mono⊢ p e) mono⊢ p (fst d) = fst (mono⊢ p d) mono⊢ p (snd d) = snd (mono⊢ p d) mono⊢ p unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ mono⊢⋆ {∅} p ∙ = ∙ mono⊢⋆ {Ξ , A} p (ζ , d) = mono⊢⋆ p ζ , mono⊢ p d -- TODO: Naming things. idmono⊢ : ∀ {A Γ} → (d : Γ ⊢ A) → mono⊢ refl⊆ d ≡ d idmono⊢ (var {A} i) = cong var (idmono∈ i) idmono⊢ (lam d) = cong lam (idmono⊢ d) idmono⊢ (app d e) = cong² app (idmono⊢ d) (idmono⊢ e) idmono⊢ (pair d e) = cong² pair (idmono⊢ d) (idmono⊢ e) idmono⊢ (fst d) = cong fst (idmono⊢ d) idmono⊢ (snd d) = cong snd (idmono⊢ d) idmono⊢ unit = refl idmono⊢⋆ : ∀ {Ξ Γ} → (ζ : Γ ⊢⋆ Ξ) → mono⊢⋆ refl⊆ ζ ≡ ζ idmono⊢⋆ {∅} ∙ = refl idmono⊢⋆ {Ξ , A} (ζ , d) = cong² _,_ (idmono⊢⋆ ζ) (idmono⊢ d) -- Reflexivity of simultaneous syntactic entailment. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Substitution. [_≔_]∈_ : ∀ {A C Γ} → (i : C ∈ Γ) → Γ ∖ i ⊢ C → A ∈ Γ → Γ ∖ i ⊢ A [ i ≔ c ]∈ j with i ≟∈ j [ i ≔ c ]∈ .i | same = c [ i ≔ c ]∈ ._ | diff j = var j [_≔_]_ : ∀ {A C Γ} → (i : C ∈ Γ) → Γ ∖ i ⊢ C → Γ ⊢ A → Γ ∖ i ⊢ A [ i ≔ c ] var j = [ i ≔ c ]∈ j [ i ≔ c ] lam d = lam ([ pop i ≔ mono⊢ weak⊆ c ] d) [ i ≔ c ] app d e = app ([ i ≔ c ] d) ([ i ≔ c ] e) [ i ≔ c ] pair d e = pair ([ i ≔ c ] d) ([ i ≔ c ] e) [ i ≔ c ] fst d = fst ([ i ≔ c ] d) [ i ≔ c ] snd d = snd ([ i ≔ c ] d) [ i ≔ c ] unit = unit -- Grafting of derivation trees, or simultaneous substitution, or cut. graft∈ : ∀ {A Ξ Γ} → Γ ⊢⋆ Ξ → A ∈ Ξ → Γ ⊢ A graft∈ (ζ , d) top = d graft∈ (ζ , d) (pop i) = graft∈ ζ i graft⊢ : ∀ {A Ξ Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A graft⊢ ζ (var i) = graft∈ ζ i graft⊢ ζ (lam d) = lam (graft⊢ (mono⊢⋆ weak⊆ ζ , v₀) d) graft⊢ ζ (app d e) = app (graft⊢ ζ d) (graft⊢ ζ e) graft⊢ ζ (pair d e) = pair (graft⊢ ζ d) (graft⊢ ζ e) graft⊢ ζ (fst d) = fst (graft⊢ ζ d) graft⊢ ζ (snd d) = snd (graft⊢ ζ d) graft⊢ ζ unit = unit -- Derivations, or syntactic entailment, in normal form. mutual infix 3 _⊢ⁿᶠ_ data _⊢ⁿᶠ_ : Context → Type → Set where neⁿᶠ : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ⁿᶠ A lamⁿᶠ : ∀ {A B Γ} → Γ , A ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ⇒ B pairⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B → Γ ⊢ⁿᶠ A ⩕ B unitⁿᶠ : ∀ {Γ} → Γ ⊢ⁿᶠ ⫪ infix 3 _⊢ⁿᵉ_ data _⊢ⁿᵉ_ : Context → Type → Set where varⁿᵉ : ∀ {A Γ} → A ∈ Γ → Γ ⊢ⁿᵉ A appⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ⇒ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᵉ B fstⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ⩕ B → Γ ⊢ⁿᵉ A sndⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ⩕ B → Γ ⊢ⁿᵉ B -- Shorthand for variables. v₀ⁿᵉ : ∀ {A Γ} → Γ , A ⊢ⁿᵉ A v₀ⁿᵉ = varⁿᵉ top -- Stacks of derivations, or simultaneous syntactic entailment, in normal form. infix 3 _⊢⋆ⁿᵉ_ _⊢⋆ⁿᵉ_ : Context → Stack Type → Set Γ ⊢⋆ⁿᵉ ∅ = ⊤ Γ ⊢⋆ⁿᵉ Ξ , A = Γ ⊢⋆ⁿᵉ Ξ ∧ Γ ⊢ⁿᵉ A -- Translation from normal form to arbitrary form. mutual nf→af : ∀ {A Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ A nf→af (neⁿᶠ d) = ne→af d nf→af (lamⁿᶠ d) = lam (nf→af d) nf→af (pairⁿᶠ d e) = pair (nf→af d) (nf→af e) nf→af unitⁿᶠ = unit ne→af : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ A ne→af (varⁿᵉ i) = var i ne→af (appⁿᵉ d e) = app (ne→af d) (nf→af e) ne→af (fstⁿᵉ d) = fst (ne→af d) ne→af (sndⁿᵉ d) = snd (ne→af d) -- Monotonicity of syntactic entailment with respect to context inclusion, in normal form. mutual mono⊢ⁿᶠ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᶠ A → Γ′ ⊢ⁿᶠ A mono⊢ⁿᶠ p (neⁿᶠ d) = neⁿᶠ (mono⊢ⁿᵉ p d) mono⊢ⁿᶠ p (lamⁿᶠ d) = lamⁿᶠ (mono⊢ⁿᶠ (keep p) d) mono⊢ⁿᶠ p (pairⁿᶠ d e) = pairⁿᶠ (mono⊢ⁿᶠ p d) (mono⊢ⁿᶠ p e) mono⊢ⁿᶠ p unitⁿᶠ = unitⁿᶠ mono⊢ⁿᵉ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ⁿᵉ A → Γ′ ⊢ⁿᵉ A mono⊢ⁿᵉ p (varⁿᵉ i) = varⁿᵉ (mono∈ p i) mono⊢ⁿᵉ p (appⁿᵉ d e) = appⁿᵉ (mono⊢ⁿᵉ p d) (mono⊢ⁿᶠ p e) mono⊢ⁿᵉ p (fstⁿᵉ d) = fstⁿᵉ (mono⊢ⁿᵉ p d) mono⊢ⁿᵉ p (sndⁿᵉ d) = sndⁿᵉ (mono⊢ⁿᵉ p d) mono⊢⋆ⁿᵉ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ⁿᵉ Ξ → Γ′ ⊢⋆ⁿᵉ Ξ mono⊢⋆ⁿᵉ {∅} p ∙ = ∙ mono⊢⋆ⁿᵉ {Ξ , A} p (ζ , d) = mono⊢⋆ⁿᵉ p ζ , mono⊢ⁿᵉ p d -- TODO: Naming things. mutual idmono⊢ⁿᶠ : ∀ {A Γ} → (d : Γ ⊢ⁿᶠ A) → mono⊢ⁿᶠ refl⊆ d ≡ d idmono⊢ⁿᶠ (neⁿᶠ d) = cong neⁿᶠ (idmono⊢ⁿᵉ d) idmono⊢ⁿᶠ (lamⁿᶠ d) = cong lamⁿᶠ (idmono⊢ⁿᶠ d) idmono⊢ⁿᶠ (pairⁿᶠ d e) = cong² pairⁿᶠ (idmono⊢ⁿᶠ d) (idmono⊢ⁿᶠ e) idmono⊢ⁿᶠ unitⁿᶠ = refl idmono⊢ⁿᵉ : ∀ {A Γ} → (d : Γ ⊢ⁿᵉ A) → mono⊢ⁿᵉ refl⊆ d ≡ d idmono⊢ⁿᵉ (varⁿᵉ i) = cong varⁿᵉ (idmono∈ i) idmono⊢ⁿᵉ (appⁿᵉ d e) = cong² appⁿᵉ (idmono⊢ⁿᵉ d) (idmono⊢ⁿᶠ e) idmono⊢ⁿᵉ (fstⁿᵉ d) = cong fstⁿᵉ (idmono⊢ⁿᵉ d) idmono⊢ⁿᵉ (sndⁿᵉ d) = cong sndⁿᵉ (idmono⊢ⁿᵉ d) idmono⊢⋆ⁿᵉ : ∀ {Ξ Γ} → (ζ : Γ ⊢⋆ⁿᵉ Ξ) → mono⊢⋆ⁿᵉ refl⊆ ζ ≡ ζ idmono⊢⋆ⁿᵉ {∅} ∙ = refl idmono⊢⋆ⁿᵉ {Ξ , A} (ζ , d) = cong² _,_ (idmono⊢⋆ⁿᵉ ζ) (idmono⊢ⁿᵉ d) -- Reflexivity of simultaneous syntactic entailment, in normal form. refl⊢⋆ⁿᵉ : ∀ {Γ} → Γ ⊢⋆ⁿᵉ Γ refl⊢⋆ⁿᵉ {∅} = ∙ refl⊢⋆ⁿᵉ {Γ , A} = mono⊢⋆ⁿᵉ weak⊆ refl⊢⋆ⁿᵉ , v₀ⁿᵉ
{ "alphanum_fraction": 0.4974611235, "avg_line_length": 27.6403508772, "ext": "agda", "hexsha": "3f4acfad961f1d1768d8544b1d9efffebbe7b43d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/nbe-correctness", "max_forks_repo_path": "src/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/nbe-correctness", "max_issues_repo_path": "src/Syntax.agda", "max_line_length": 90, "max_stars_count": 3, "max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/nbe-correctness", "max_stars_repo_path": "src/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z", "num_tokens": 3898, "size": 6302 }
------------------------------------------------------------------------ -- Encoder and decoder instances ------------------------------------------------------------------------ open import Atom module Coding.Instances (atoms : χ-atoms) where open import Prelude open import Chi atoms open import Free-variables atoms open import Values atoms open χ-atoms atoms open import Coding atoms as Coding using (Rep; module Code) instance rep-Consts-Exp : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ → Rep A Exp rep-Consts-Exp = Coding.rep-Consts-Exp rep-Consts-Closed-exp : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ → Rep A Closed-exp rep-Consts-Closed-exp = Coding.rep-Consts-Closed-exp rep-Bool : Rep Bool Consts rep-Bool = Code.rep Coding.code-Bool rep-ℕ : Rep ℕ Consts rep-ℕ = Code.rep Coding.code-ℕ rep-Var : Rep Var Consts rep-Var = Code.rep Coding.code-Var rep-Const : Rep Const Consts rep-Const = Code.rep Coding.code-Const rep-× : ∀ {a b} {A : Type a} {B : Type b} ⦃ c : Rep A Consts ⦄ ⦃ d : Rep B Consts ⦄ → Rep (A × B) Consts rep-× = Coding.rep-× rep-Var⋆ : Rep (List Var) Consts rep-Var⋆ = Code.rep Coding.code-Var⋆ rep-Exp : Rep Exp Consts rep-Exp = Code.rep Coding.code-Exp rep-Br : Rep Br Consts rep-Br = Code.rep Coding.code-Br rep-Exps : Rep (List Exp) Consts rep-Exps = Code.rep Coding.code-Exps rep-Brs : Rep (List Br) Consts rep-Brs = Code.rep Coding.code-Brs rep-Closed : Rep Closed-exp Consts rep-Closed = Code.rep Coding.code-Closed
{ "alphanum_fraction": 0.582278481, "avg_line_length": 25.0793650794, "ext": "agda", "hexsha": "e37e6d2f764d6c2e802d6291cdd41a765aecfcb2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Coding/Instances.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Coding/Instances.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Coding/Instances.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 495, "size": 1580 }
module Nat where import Bool open Bool data Nat : Set where zero : Nat suc : Nat -> Nat infixr 25 _+_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) infix 10 _==_ _<_ _==_ : Nat -> Nat -> Bool zero == zero = true suc n == zero = false zero == suc m = false suc n == suc m = n == m _<_ : Nat -> Nat -> Bool n < zero = false zero < suc m = true suc n < suc m = n < m {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} -- {-# BUILTIN NATPLUS _+_ #-} -- {-# BUILTIN NATEQUALS _==_ #-} -- {-# BUILTIN NATLESS _<_ #-}
{ "alphanum_fraction": 0.5354058722, "avg_line_length": 15.6486486486, "ext": "agda", "hexsha": "88aa22dac0138be998c44c544769852b631cbf36", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "benchmark/ac/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "benchmark/ac/Nat.agda", "max_line_length": 33, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/ac/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 211, "size": 579 }
module #1 where open import Level open import Relation.Binary.PropositionalEquality {- Exercise 1.1. Given functions f : A → B and g : B → C, define their composite g ◦ f : A → C. Show that we have h ◦ (g ◦ f ) ≡ (h ◦ g) ◦ f . -} -- Function composition _∘_ : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} → (B → C) → (A → B) → A → C f ∘ g = λ x → f (g x) -- Proof of associativity of composition ∘-assoc : ∀ {a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (h : C → D) → (g : B → C) → (f : A → B) → h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f ∘-assoc _ _ _ = refl
{ "alphanum_fraction": 0.5008635579, "avg_line_length": 28.95, "ext": "agda", "hexsha": "ec70a3709984c7365fced018163bc1c184809a65", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#1.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 579 }
module Miscellaneous.InstanceLoop where open import Type postulate A : TYPE postulate B : TYPE postulate C : TYPE instance postulate ab : ⦃ A ⦄ → B instance postulate ba : ⦃ B ⦄ → A postulate a : A test-a : B test-a = ab
{ "alphanum_fraction": 0.683982684, "avg_line_length": 12.1578947368, "ext": "agda", "hexsha": "9455e90059edec99f6d278a21feaa8aa2624424e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/InstanceLoop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/InstanceLoop.agda", "max_line_length": 39, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/InstanceLoop.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 78, "size": 231 }
module Lemmachine.Resource.Universe where open import Lemmachine.Request open import Lemmachine.Response open import Data.Maybe open import Data.List open import Data.Product open import Data.Bool open import Data.String AuthHead = Bool MediaType = String Handler = String Charset = String CharsetConverter = String Encoding = String Encoder = String MovedURI = String DateTime = String ETag = String data Code : Set where resourceExists serviceAvailable isAuthorized : Code forbidden allowMissingPost malformedRequest : Code uriTooLong knownContentType validContentHeaders : Code validEntityLength options allowedMethods : Code knownMethods deleteResource deleteCompleted : Code postIsCreate createPath processPost : Code contentTypesProvided languageAvailable contentTypesAccepted : Code charsetsProvided encodingsProvided variances : Code isConflict multipleChoices previouslyExisted : Code movedPermanently movedTemporarily lastModified : Code expires generateETag finishRequest body : Code El : Code → Set El resourceExists = Request → Bool El serviceAvailable = Request → Bool El isAuthorized = Request → AuthHead El forbidden = Request → Bool El allowMissingPost = Request → Bool El malformedRequest = Request → Bool El uriTooLong = Request → Bool El knownContentType = Request → Bool El validContentHeaders = Request → Bool El validEntityLength = Request → Bool El options = Request → List ResponseHeader El allowedMethods = Request → List Method El knownMethods = Request → List Method El deleteResource = Request → Bool El deleteCompleted = Request → Bool El postIsCreate = Request → Bool El createPath = Request → Maybe Path El processPost = Request → Bool El contentTypesProvided = Request → List MediaType El languageAvailable = Request → Bool El contentTypesAccepted = Request → List (MediaType × Handler) El charsetsProvided = Request → List (Charset × CharsetConverter) El encodingsProvided = Request → List (Encoding × Encoder) El variances = Request → List RequestHeader El isConflict = Request → Bool El multipleChoices = Request → Bool El previouslyExisted = Request → Bool El movedPermanently = Request → Maybe MovedURI El movedTemporarily = Request → Maybe MovedURI El lastModified = Request → Maybe DateTime El expires = Request → Maybe DateTime El generateETag = Request → Maybe ETag El finishRequest = Request → Bool El body = Status → String
{ "alphanum_fraction": 0.7998328458, "avg_line_length": 34.6811594203, "ext": "agda", "hexsha": "edbbf5ae73758795f3fe90df5701a7d6cf5dcb43", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Resource/Universe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Resource/Universe.agda", "max_line_length": 68, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Resource/Universe.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 541, "size": 2393 }
------------------------------------------------------------------------------ -- FOTC list terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Base.List.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- Congruence properties ∷-leftCong : ∀ {x y xs} → x ≡ y → x ∷ xs ≡ y ∷ xs ∷-leftCong refl = refl ∷-rightCong : ∀ {x xs ys} → xs ≡ ys → x ∷ xs ≡ x ∷ ys ∷-rightCong refl = refl ∷-cong : ∀ {x y xs ys} → x ≡ y → xs ≡ ys → x ∷ xs ≡ y ∷ ys ∷-cong refl refl = refl headCong : ∀ {xs ys} → xs ≡ ys → head₁ xs ≡ head₁ ys headCong refl = refl tailCong : ∀ {xs ys} → xs ≡ ys → tail₁ xs ≡ tail₁ ys tailCong refl = refl ------------------------------------------------------------------------------ -- Injective properties ∷-injective : ∀ {x y xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y ∧ xs ≡ ys ∷-injective {x} {y} {xs} {ys} h = x≡y , xs≡ys where x≡y : x ≡ y x≡y = x ≡⟨ sym (head-∷ x xs) ⟩ head₁ (x ∷ xs) ≡⟨ headCong h ⟩ head₁ (y ∷ ys) ≡⟨ head-∷ y ys ⟩ y ∎ xs≡ys : xs ≡ ys xs≡ys = xs ≡⟨ sym (tail-∷ x xs) ⟩ tail₁ (x ∷ xs) ≡⟨ tailCong h ⟩ tail₁ (y ∷ ys) ≡⟨ tail-∷ y ys ⟩ ys ∎
{ "alphanum_fraction": 0.4032051282, "avg_line_length": 30, "ext": "agda", "hexsha": "f96a72748bcce2fe7f59b2330212c25825eb6c5f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Base/List/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Base/List/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Base/List/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 507, "size": 1560 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence module HoTT.Equivalence.Empty where open variables 𝟎-equiv : {A : 𝒰 i} → ¬ A → 𝟎 {i} ≃ A 𝟎-equiv ¬a = 𝟎-rec , qinv→isequiv (𝟎-rec ∘ ¬a , 𝟎-ind , 𝟎-rec ∘ ¬a)
{ "alphanum_fraction": 0.6317991632, "avg_line_length": 21.7272727273, "ext": "agda", "hexsha": "d06600309078b58961a2bddacd8f091a17ccb058", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Equivalence/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Equivalence/Empty.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Equivalence/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 104, "size": 239 }
-- 2014-05-27 Jesper and Andreas postulate A : Set {-# BUILTIN REWRITE A #-} -- Expected error: -- A does not have the right type for a rewriting relation -- because it should accept at least two arguments -- when checking the pragma BUILTIN REWRITE A
{ "alphanum_fraction": 0.7209302326, "avg_line_length": 21.5, "ext": "agda", "hexsha": "c230084a611da1e9e62f83b36443cee1c9ea26cb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/RewriteRelationNotEnoughArguments.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/RewriteRelationNotEnoughArguments.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/RewriteRelationNotEnoughArguments.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 67, "size": 258 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.elims.SuspSmash -- (ΣX)∧Y ≃ Σ(X∧Y) module homotopy.SuspSmash where module _ {i j} (X : Ptd i) (Y : Ptd j) where private x₀ = pt X y₀ = pt Y Σ∧-out-smgluel-merid : ∀ (x : de⊙ X) → Square idp (ap (Susp-fmap (λ x' → smin x' y₀)) (merid x)) (ap (λ sx → north) (merid x)) (! (merid (smin x₀ y₀))) Σ∧-out-smgluel-merid x = ((SuspFmap.merid-β (λ x' → smin x' y₀) x ∙ ap merid (∧-norm-l x)) ∙v⊡ tr-square (merid (smin x₀ y₀))) ⊡v∙ ! (ap-cst north (merid x)) module Σ∧OutSmgluel = SuspPathElim (Susp-fmap (λ x' → smin x' y₀)) (λ sx → north) idp (! (merid (smin x₀ y₀))) Σ∧-out-smgluel-merid module Σ∧Out = SmashRec {X = ⊙Susp (de⊙ X)} {Y = Y} {C = Susp (X ∧ Y)} (λ sx y → Susp-fmap (λ x → smin x y) sx) north north Σ∧OutSmgluel.f (λ y → idp) Σ∧-out : ⊙Susp (de⊙ X) ∧ Y → Susp (X ∧ Y) Σ∧-out = Σ∧Out.f ⊙Σ∧-out : ⊙Susp (de⊙ X) ⊙∧ Y ⊙→ ⊙Susp (X ∧ Y) ⊙Σ∧-out = Σ∧-out , idp Σ∧-out-∧-norm-r : ∀ (y : de⊙ Y) → ap Σ∧-out (∧-norm-r y) == idp Σ∧-out-∧-norm-r y = Σ∧Out.∧-norm-r-β y ∧Σ-out-smgluer-merid : ∀ (y : de⊙ Y) → Square idp (ap (λ sy → Susp-fmap (smin x₀) sy) (merid y)) (ap (λ sy → north) (merid y)) (! (merid (smin x₀ y₀))) ∧Σ-out-smgluer-merid y = ((SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀))) ⊡v∙ ! (ap-cst north (merid y)) module ∧ΣOutSmgluer = SuspPathElim (λ sy → Susp-fmap (smin x₀) sy) (λ sy → north) idp (! (merid (smin x₀ y₀))) ∧Σ-out-smgluer-merid module ∧ΣOut = SmashRec {X = X} {Y = ⊙Susp (de⊙ Y)} {C = Susp (X ∧ Y)} (λ x sy → Susp-fmap (smin x) sy) north north (λ x → idp) ∧ΣOutSmgluer.f ∧Σ-out : X ∧ ⊙Susp (de⊙ Y) → Susp (X ∧ Y) ∧Σ-out = ∧ΣOut.f ⊙∧Σ-out : X ⊙∧ ⊙Susp (de⊙ Y) ⊙→ ⊙Susp (X ∧ Y) ⊙∧Σ-out = ∧Σ-out , idp ∧Σ-out-∧-norm-l : ∀ (x : de⊙ X) → ap ∧Σ-out (∧-norm-l x) == idp ∧Σ-out-∧-norm-l x = ∧ΣOut.∧-norm-l-β x Σ∧-in-merid-smin : de⊙ X → de⊙ Y → pt (⊙Susp (de⊙ X) ⊙∧ Y) == pt (⊙Susp (de⊙ X) ⊙∧ Y) Σ∧-in-merid-smin x y = ↯ $ smin north y₀ =⟪ ! (∧-norm-r y) ⟫ smin north y =⟪ ap (λ sx → smin sx y) (merid x ∙ ! (merid x₀)) ⟫ smin north y =⟪ ∧-norm-r y ⟫ smin north y₀ ∎∎ Σ∧-in-merid-smgluel : ∀ (x : de⊙ X) → Σ∧-in-merid-smin x y₀ == idp Σ∧-in-merid-smgluel x = ↯ $ Σ∧-in-merid-smin x y₀ =⟪ ap (λ u → ! u ∙ ap (λ sx → smin sx y₀) (merid x ∙ ! (merid x₀)) ∙ u) (!-inv-r (smgluer y₀)) ⟫ ap (λ sx → smin sx y₀) (merid x ∙ ! (merid x₀)) ∙ idp =⟪ ap (_∙ idp) $ ap-null-homotopic (λ sx → smin sx y₀) smgluel (merid x ∙ ! (merid x₀)) ⟫ (smgluel north ∙ ! (smgluel north)) ∙ idp =⟪ ap (_∙ idp) (!-inv-r (smgluel north)) ⟫ idp ∎∎ Σ∧-in-merid-smgluer : ∀ (y : de⊙ Y) → Σ∧-in-merid-smin x₀ y == idp Σ∧-in-merid-smgluer y = ↯ $ Σ∧-in-merid-smin x₀ y =⟪ ap (λ p → ! (∧-norm-r y) ∙ ap (λ sx → smin sx y) p ∙ ∧-norm-r y) (!-inv-r (merid x₀)) ⟫ ! (∧-norm-r y) ∙ ∧-norm-r y =⟪ !-inv-l (∧-norm-r y) ⟫ idp ∎∎ Σ∧-in : Susp (X ∧ Y) → ⊙Susp (de⊙ X) ∧ Y Σ∧-in = Susp-rec {C = ⊙Susp (de⊙ X) ∧ Y} (smin north y₀) (smin north y₀) (Smash-rec {C = smin north y₀ == smin north y₀} Σ∧-in-merid-smin idp idp Σ∧-in-merid-smgluel Σ∧-in-merid-smgluer) module _ {i j} (X : Ptd i) (Y : Ptd j) where private x₀ = pt X y₀ = pt Y ∧-swap-∧Σ-out-merid : ∀ (x : de⊙ X) (y : de⊙ Y) → ap (Susp-fmap (∧-swap X Y) ∘ Susp-fmap (smin x)) (merid y) =-= merid (smin y x) ∧-swap-∧Σ-out-merid x y = ap (Susp-fmap (∧-swap X Y) ∘ Susp-fmap (smin x)) (merid y) =⟪ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x)) (merid y) ⟫ ap (Susp-fmap (∧-swap X Y)) (ap (Susp-fmap (smin x)) (merid y)) =⟪ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x) y) ⟫ ap (Susp-fmap (∧-swap X Y)) (merid (smin x y)) =⟪ SuspFmap.merid-β (∧-swap X Y) (smin x y) ⟫ merid (smin y x) ∎∎ {- This is the same as `! (Susp-fmap-∘ (∧-swap X Y) (smin x))`, except that the merid case is easier to reason about, which we will do in `Σ∧-∧Σ-swap-smgluer-merid`. -} module Σ∧-∧Σ-swap-smin (x : de⊙ X) = SuspPathElim (Susp-fmap (∧-swap X Y) ∘ Susp-fmap (smin x)) (Susp-fmap (λ y → smin y x)) idp idp (λ y → ↯ (∧-swap-∧Σ-out-merid x y) ∙v⊡ vid-square ⊡v∙ ! (SuspFmap.merid-β (λ y' → smin y' x) y)) ∧-swap-∧Σ-out-smgluel : ∀ x → ap (Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y) (smgluel x) == idp ∧-swap-∧Σ-out-smgluel x = ap (Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y) (smgluel x) =⟨ ap-∘ (Susp-fmap (∧-swap X Y)) (∧Σ-out X Y) (smgluel x) ⟩ ap (Susp-fmap (∧-swap X Y)) (ap (∧Σ-out X Y) (smgluel x)) =⟨ ap (ap (Susp-fmap (∧-swap X Y))) (∧ΣOut.smgluel-β X Y x) ⟩ idp =∎ Σ∧-out-∧-swap-smgluel : ∀ x → ap (Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y))) (smgluel x) == idp Σ∧-out-∧-swap-smgluel x = ap (Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y))) (smgluel x) =⟨ ap-∘ (Σ∧-out Y X) (∧-swap X (⊙Susp (de⊙ Y))) (smgluel x) ⟩ ap (Σ∧-out Y X) (ap (∧-swap X (⊙Susp (de⊙ Y))) (smgluel x)) =⟨ ap (ap (Σ∧-out Y X)) (SmashSwap.smgluel-β X (⊙Susp (de⊙ Y)) x) ⟩ ap (Σ∧-out Y X) (∧-norm-r x) =⟨ Σ∧-out-∧-norm-r Y X x ⟩ idp =∎ ∧-swap-∧Σ-out-smgluer : ∀ sy → ap (Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y) (smgluer sy) == ap (Susp-fmap (∧-swap X Y)) (∧ΣOutSmgluer.f X Y sy) ∧-swap-∧Σ-out-smgluer sy = ap (Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y) (smgluer sy) =⟨ ap-∘ (Susp-fmap (∧-swap X Y)) (∧Σ-out X Y) (smgluer sy) ⟩ ap (Susp-fmap (∧-swap X Y)) (ap (∧Σ-out X Y) (smgluer sy)) =⟨ ap (ap (Susp-fmap (∧-swap X Y))) (∧ΣOut.smgluer-β X Y sy) ⟩ ap (Susp-fmap (∧-swap X Y)) (∧ΣOutSmgluer.f X Y sy) =∎ Σ∧-out-∧-swap-smgluer : ∀ sy → ap (Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y))) (smgluer sy) == Σ∧OutSmgluel.f Y X sy Σ∧-out-∧-swap-smgluer sy = ap (Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y))) (smgluer sy) =⟨ ap-∘ (Σ∧-out Y X) (∧-swap X (⊙Susp (de⊙ Y))) (smgluer sy) ⟩ ap (Σ∧-out Y X) (ap (∧-swap X (⊙Susp (de⊙ Y))) (smgluer sy)) =⟨ ap (ap (Σ∧-out Y X)) (SmashSwap.smgluer-β X (⊙Susp (de⊙ Y)) sy) ⟩ ap (Σ∧-out Y X) (∧-norm-l sy) =⟨ Σ∧Out.∧-norm-l-β Y X sy ⟩ Σ∧OutSmgluel.f Y X sy ∙ idp =⟨ ∙-unit-r (Σ∧OutSmgluel.f Y X sy) ⟩ Σ∧OutSmgluel.f Y X sy =∎ Σ∧-∧Σ-swap-smgluer-merid : ∀ y → Cube ids ((ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ vid-square) (natural-square (Σ∧-∧Σ-swap-smin.f x₀) (merid y)) (natural-square (ap (Susp-fmap (∧-swap X Y)) ∘ ∧ΣOutSmgluer.f X Y) (merid y)) (natural-square (Σ∧OutSmgluel.f Y X) (merid y)) (natural-square (λ v → idp) (merid y)) Σ∧-∧Σ-swap-smgluer-merid y = cube-shift-back (! (Σ∧-∧Σ-swap-smin.merid-square-β x₀ y)) $ custom-cube-∙v⊡ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) (↯ (∧-swap-∧Σ-out-merid x₀ y)) (ap-cst north (merid y)) $ cube-shift-top (! top-path) $ custom-cube-⊡v∙ (! (SuspFmap.merid-β (λ y' → smin y' x₀) y)) (ap-cst north (merid y)) $ cube-shift-front (! front-path) $ cube-shift-bot (! bot-path) $ custom-cube (ap merid (∧-norm-l y)) where custom-cube-∙v⊡ : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ p₋₀₁' : a₀₀₁ == a₁₀₁} (q₋₀₁ : p₋₀₁' == p₋₀₁) {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ p₀₀₋' : a₀₀₀ == a₀₀₁} (q₀₀₋ : p₀₀₋' == p₀₀₋) {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ p₁₀₋' : a₁₀₀ == a₁₀₁} (q₁₀₋ : p₁₀₋ == p₁₀₋') {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋' p₁₀₋ p₋₀₁'} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ ((! q₀₀₋ ∙v⊡ sq₋₀₋ ⊡v∙ q₁₀₋) ⊡h∙ q₋₀₁) sq₋₁₋ (! q₁₀₋ ∙v⊡ sq₁₋₋) → Cube sq₋₋₀ (q₋₀₁ ∙v⊡ sq₋₋₁) (q₀₀₋ ∙v⊡ sq₀₋₋) sq₋₀₋ sq₋₁₋ sq₁₋₋ custom-cube-∙v⊡ idp idp idp c = c custom-cube-⊡v∙ : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ p₀₁₋' : a₀₁₀ == a₀₁₁} (q₀₁₋ : p₀₁₋ == p₀₁₋') {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ p₁₁₋' : a₁₁₀ == a₁₁₁} (q₁₁₋ : p₁₁₋ == p₁₁₋') {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋' p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ (q₀₁₋ ∙v⊡ sq₋₁₋ ⊡v∙ q₁₁₋) (sq₁₋₋ ⊡v∙ q₁₁₋) → Cube sq₋₋₀ sq₋₋₁ (sq₀₋₋ ⊡v∙ q₀₁₋) sq₋₀₋ sq₋₁₋ sq₁₋₋ custom-cube-⊡v∙ idp idp c = c custom-cube : ∀ {i} {A : Type i} {a₀ a₁ : A} {p q : a₀ == a₁} (r : p == q) → Cube ids vid-square vid-square (r ∙v⊡ tr-square q) (r ∙v⊡ tr-square q) ids custom-cube {p = idp} {q = .idp} r@idp = idc top-path : (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ natural-square (ap (Susp-fmap (∧-swap X Y)) ∘ ∧ΣOutSmgluer.f X Y) (merid y) ⊡v∙ ap-cst north (merid y)) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) == ap merid (∧-norm-l y) ∙v⊡ tr-square (merid (smin y₀ x₀)) top-path = (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ natural-square (ap (Susp-fmap (∧-swap X Y)) ∘ ∧ΣOutSmgluer.f X Y) (merid y) ⊡v∙ ap-cst north (merid y)) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ u ⊡v∙ ap-cst north (merid y)) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ natural-square-ap (Susp-fmap (∧-swap X Y)) (∧ΣOutSmgluer.f X Y) (merid y) ⟩ (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ (ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ∘-ap (Susp-fmap (∧-swap X Y)) (λ _ → north) (merid y)) ⊡v∙ ap-cst north (merid y)) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ∙v⊡-⊡v∙-comm (ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y)) (ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ∘-ap (Susp-fmap (∧-swap X Y)) (λ _ → north) (merid y)) (ap-cst north (merid y)) ⟩ (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ∘-ap (Susp-fmap (∧-swap X Y)) (λ _ → north) (merid y) ⊡v∙ ap-cst north (merid y)) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ⊡v∙-assoc (ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y))) (∘-ap (Susp-fmap (∧-swap X Y)) (λ _ → north) (merid y)) (ap-cst north (merid y)) ⟩ (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ (∘-ap (Susp-fmap (∧-swap X Y)) (λ _ → north) (merid y) ∙ ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ =ₛ-out $ ap-∘-cst-coh (Susp-fmap (∧-swap X Y)) north (merid y) ⟩ (! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙v⊡ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → u ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ! $ ∙v⊡-assoc (! (↯ (∧-swap-∧Σ-out-merid x₀ y))) (ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y)) (ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⟩ ((! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ∙ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y)) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (u ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ =ₛ-out $ ! (↯ (∧-swap-∧Σ-out-merid x₀ y)) ◃∙ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ◃∎ =ₛ⟨ 0 & 1 & !-∙-seq $ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ◃∙ ↯ (tail (∧-swap-∧Σ-out-merid x₀ y)) ◃∎ ⟩ ! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ◃∙ ! (ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y)) ◃∙ ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ◃∎ =ₛ⟨ 1 & 2 & seq-!-inv-l (ap-∘ (Susp-fmap (∧-swap X Y)) (Susp-fmap (smin x₀)) (merid y) ◃∎) ⟩ ! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ◃∎ ∎ₛ ⟩ (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (natural-square (∧ΣOutSmgluer.f X Y) (merid y)) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) u ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ∧ΣOutSmgluer.merid-square-β X Y y ⟩ (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (∧Σ-out-smgluer-merid X Y y) ⊡v∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ap-square-⊡v∙ (Susp-fmap (∧-swap X Y)) (∧Σ-out-smgluer-merid X Y y) (ap-cst north (merid y)) ⟩ (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (∧Σ-out-smgluer-merid X Y y ⊡v∙ ap-cst north (merid y))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ∧Σ-out-smgluer-merid X Y y ⊡v∙ ap-cst north (merid y) =⟨ ⊡v∙-assoc ((SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀))) (! (ap-cst north (merid y))) (ap-cst north (merid y)) ⟩ ((SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀))) ⊡v∙ (! (ap-cst north (merid y)) ∙ ap-cst north (merid y)) =⟨ ap (((SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀))) ⊡v∙_) $ !-inv-l (ap-cst north (merid y)) ⟩ (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀)) =∎ ⟩ (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) ((SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ tr-square (merid (smin x₀ y₀)))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ u) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ! $ ap-square-∙v⊡ (Susp-fmap (∧-swap X Y)) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) (tr-square (merid (smin x₀ y₀))) ⟩ (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙v⊡ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (_⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ ! $ ∙v⊡-assoc (! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y)))) (ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y))) (ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) ⟩ ((! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ∙ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap (λ u → (u ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)))) $ =ₛ-out $ ! (↯ (tail (∧-swap-∧Σ-out-merid x₀ y))) ◃∙ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ◃∎ =ₛ⟨ 0 & 1 & !-∙-seq (tail (∧-swap-∧Σ-out-merid x₀ y)) ⟩ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y)) ◃∙ ! (ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y)) ◃∙ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y ∙ ap merid (∧-norm-r y)) ◃∎ =ₛ⟨ 2 & 1 & ap-seq-∙ (ap (Susp-fmap (∧-swap X Y))) $ (SuspFmap.merid-β (smin x₀) y ◃∙ ap merid (∧-norm-r y) ◃∎) ⟩ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y)) ◃∙ ! (ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y)) ◃∙ ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y) ◃∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap merid (∧-norm-r y)) ◃∎ =ₛ⟨ 1 & 2 & seq-!-inv-l (ap (ap (Susp-fmap (∧-swap X Y))) (SuspFmap.merid-β (smin x₀) y) ◃∎) ⟩ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y)) ◃∙ ap (ap (Susp-fmap (∧-swap X Y))) (ap merid (∧-norm-r y)) ◃∎ =ₛ₁⟨ 1 & 1 & ∘-ap (ap (Susp-fmap (∧-swap X Y))) merid (∧-norm-r y) ⟩ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y)) ◃∙ ap (ap (Susp-fmap (∧-swap X Y)) ∘ merid) (∧-norm-r y) ◃∎ =ₛ⟨ !ₛ $ homotopy-naturality (merid ∘ ∧-swap X Y) (ap (Susp-fmap (∧-swap X Y)) ∘ merid) (! ∘ SuspFmap.merid-β (∧-swap X Y)) (∧-norm-r y) ⟩ ap (merid ∘ ∧-swap X Y) (∧-norm-r y) ◃∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) ◃∎ =ₛ₁⟨ 0 & 1 & ap-∘ merid (∧-swap X Y) (∧-norm-r y) ⟩ ap merid (ap (∧-swap X Y) (∧-norm-r y)) ◃∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) ◃∎ =ₛ₁⟨ 0 & 1 & ap (ap merid) (∧-swap-norm-r-β X Y y) ⟩ ap merid (∧-norm-l y) ◃∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) ◃∎ ∎ₛ ⟩ ((ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ∙v⊡-⊡h∙-comm (ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) (ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ⟩ (ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀))) ⊡h∙ (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) =⟨ ap ((ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡_) $ ! $ ⊡h∙-assoc (ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀)))) (ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀))) (ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ⟩ (ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ ap-square (Susp-fmap (∧-swap X Y)) (tr-square (merid (smin x₀ y₀))) ⊡h∙ ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ⊡h∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) =⟨ ap (λ u → (ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ u ⊡h∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) $ ap-tr-square (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ⟩ (ap merid (∧-norm-l y) ∙ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ tr-square (ap (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀))) ⊡h∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) =⟨ ∙v⊡-assoc (ap merid (∧-norm-l y)) (! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) (tr-square (ap (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀))) ⊡h∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ⟩ ap merid (∧-norm-l y) ∙v⊡ ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) ∙v⊡ tr-square (ap (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀))) ⊡h∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) =⟨ ap (ap merid (∧-norm-l y) ∙v⊡_) $ tr-square-∙v⊡-⊡h∙ (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀)) ⟩ ap merid (∧-norm-l y) ∙v⊡ tr-square (merid (smin y₀ x₀)) =∎ front-path : (! (ap-cst (north {A = Y ∧ X}) (merid y)) ∙v⊡ natural-square (λ v → idp) (merid y)) ⊡v∙ ap-cst north (merid y) == ids front-path = (! (ap-cst (north {A = Y ∧ X}) (merid y)) ∙v⊡ natural-square (λ v → idp) (merid y)) ⊡v∙ ap-cst north (merid y) =⟨ ∙v⊡-⊡v∙-comm (! (ap-cst (north {A = Y ∧ X}) (merid y))) (natural-square (λ v → idp) (merid y)) (ap-cst north (merid y)) ⟩ ! (ap-cst (north {A = Y ∧ X}) (merid y)) ∙v⊡ natural-square (λ v → idp) (merid y) ⊡v∙ ap-cst north (merid y) =⟨ natural-square-cst north north (λ v → idp) (merid y) ⟩ disc-to-square (ap (λ v → idp) (merid y)) =⟨ ap disc-to-square (ap-cst idp (merid y)) ⟩ ids =∎ bot-path : ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ natural-square (Σ∧OutSmgluel.f Y X) (merid y) ⊡v∙ ap-cst north (merid y) == ap merid (∧-norm-l y) ∙v⊡ tr-square (merid (smin y₀ x₀)) bot-path = ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ natural-square (Σ∧OutSmgluel.f Y X) (merid y) ⊡v∙ ap-cst north (merid y) =⟨ ap (λ u → ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ u ⊡v∙ ap-cst north (merid y)) $ Σ∧OutSmgluel.merid-square-β Y X y ⟩ ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ Σ∧-out-smgluel-merid Y X y ⊡v∙ ap-cst north (merid y) =⟨ ap (! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡_) $ ⊡v∙-assoc ((SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) ∙v⊡ tr-square (merid (smin y₀ x₀))) (! (ap-cst north (merid y))) (ap-cst north (merid y)) ⟩ ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ ((SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) ∙v⊡ tr-square (merid (smin y₀ x₀))) ⊡v∙ (! (ap-cst north (merid y)) ∙ ap-cst north (merid y)) =⟨ ap (λ u → ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ ((SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) ∙v⊡ tr-square (merid (smin y₀ x₀))) ⊡v∙ u) $ !-inv-l (ap-cst north (merid y)) ⟩ ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙v⊡ ((SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) ∙v⊡ tr-square (merid (smin y₀ x₀))) =⟨ ! $ ∙v⊡-assoc (! (SuspFmap.merid-β (λ y' → smin y' x₀) y)) (SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) (tr-square (merid (smin y₀ x₀))) ⟩ (! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ∙ SuspFmap.merid-β (λ y' → smin y' x₀) y ∙ ap merid (∧-norm-l y)) ∙v⊡ tr-square (merid (smin y₀ x₀)) =⟨ ap (_∙v⊡ tr-square (merid (smin y₀ x₀))) $ =ₛ-out $ ! (SuspFmap.merid-β (λ y' → smin y' x₀) y) ◃∙ SuspFmap.merid-β (λ y' → smin y' x₀) y ◃∙ ap merid (∧-norm-l y) ◃∎ =ₛ⟨ 0 & 2 & seq-!-inv-l (SuspFmap.merid-β (λ y' → smin y' x₀) y ◃∎) ⟩ ap merid (∧-norm-l y) ◃∎ ∎ₛ ⟩ ap merid (∧-norm-l y) ∙v⊡ tr-square (merid (smin y₀ x₀)) =∎ Σ∧-∧Σ-swap-smgluer : ∀ sy → Square (Σ∧-∧Σ-swap-smin.f x₀ sy) (ap (Susp-fmap (∧-swap X Y)) (∧ΣOutSmgluer.f X Y sy)) (Σ∧OutSmgluel.f Y X sy) idp Σ∧-∧Σ-swap-smgluer = Susp-elim ids ((ap-! (Susp-fmap (∧-swap X Y)) (merid (smin x₀ y₀)) ∙ ap ! (SuspFmap.merid-β (∧-swap X Y) (smin x₀ y₀))) ∙v⊡ vid-square) (λ y → cube-to-↓-square (Σ∧-∧Σ-swap-smgluer-merid y)) swap-∧Σ-out : Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y ∼ Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y)) swap-∧Σ-out = Smash-Path-elim (Susp-fmap (∧-swap X Y) ∘ ∧Σ-out X Y) (Σ∧-out Y X ∘ ∧-swap X (⊙Susp (de⊙ Y))) Σ∧-∧Σ-swap-smin.f idp idp (λ x → ∧-swap-∧Σ-out-smgluel x ∙v⊡ ids ⊡v∙ ! (Σ∧-out-∧-swap-smgluel x)) (λ sy → ∧-swap-∧Σ-out-smgluer sy ∙v⊡ Σ∧-∧Σ-swap-smgluer sy ⊡v∙ ! (Σ∧-out-∧-swap-smgluer sy)) ⊙swap-∧Σ-out : ⊙Susp-fmap (∧-swap X Y) ◃⊙∘ ⊙∧Σ-out X Y ◃⊙idf =⊙∘ ⊙Σ∧-out Y X ◃⊙∘ ⊙∧-swap X (⊙Susp (de⊙ Y)) ◃⊙idf ⊙swap-∧Σ-out = =⊙∘-in (⊙λ=' swap-∧Σ-out idp) module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙swap-Σ∧-out : ⊙Susp-fmap (∧-swap X Y) ◃⊙∘ ⊙Σ∧-out X Y ◃⊙idf =⊙∘ ⊙∧Σ-out Y X ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf ⊙swap-Σ∧-out = ⊙Susp-fmap (∧-swap X Y) ◃⊙∘ ⊙Σ∧-out X Y ◃⊙idf =⊙∘⟨ 2 & 0 & !⊙∘ $ ⊙∧-swap-inv (⊙Susp (de⊙ X)) Y ⟩ ⊙Susp-fmap (∧-swap X Y) ◃⊙∘ ⊙Σ∧-out X Y ◃⊙∘ ⊙∧-swap Y (⊙Susp (de⊙ X)) ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ (⊙swap-∧Σ-out Y X) ⟩ ⊙Susp-fmap (∧-swap X Y) ◃⊙∘ ⊙Susp-fmap (∧-swap Y X) ◃⊙∘ ⊙∧Σ-out Y X ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ =⊙∘-in {fs = ⊙Susp-fmap (∧-swap X Y ∘ ∧-swap Y X) ◃⊙idf} $ ⊙Susp-fmap-∘ (∧-swap X Y) (∧-swap Y X) ⟩ ⊙Susp-fmap (∧-swap X Y ∘ ∧-swap Y X) ◃⊙∘ ⊙∧Σ-out Y X ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap ⊙Susp-fmap (λ= (∧-swap-inv Y X)) ⟩ ⊙Susp-fmap (idf _) ◃⊙∘ ⊙∧Σ-out Y X ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙Susp-fmap-idf (Y ∧ X) ⟩ ⊙∧Σ-out Y X ◃⊙∘ ⊙∧-swap (⊙Susp (de⊙ X)) Y ◃⊙idf ∎⊙∘
{ "alphanum_fraction": 0.4431211626, "avg_line_length": 48.0162962963, "ext": "agda", "hexsha": "850d9a465e226389701003dd23143b57b3848ff6", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SuspSmash.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SuspSmash.agda", "max_line_length": 111, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SuspSmash.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 15562, "size": 32411 }
{-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.data:25 #-} -- {-# OPTIONS -v tc.conv.coerce:0 -v tc.with:25 #-} module FilterSub where open import Common.Level open import Common.Equality _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) data Bool : Set where true false : Bool if_then_else_ : ∀ {a}{A : Set a} → Bool → A → A → A if true then t else e = t if false then t else e = e data Maybe {a} (A : Set a) : Set a where nothing : Maybe A just : A → Maybe A infixr 5 _∷_ data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A data Any {a p} {A : Set a} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) infix 4 _⊆_ _∈_ _∈_ : ∀ {a}{A : Set a} → A → List A → Set _ x ∈ xs = Any (_≡_ x) xs _⊆_ : ∀ {a}{A : Set a} → List A → List A → Set _ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys filter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A filter p [] = [] filter p (x ∷ xs) with p x ... | true = x ∷ filter p xs ... | false = filter p xs filter-⊆ : ∀ {a} {A : Set a} (p : A → Bool) → (xs : List A) → filter p xs ⊆ xs filter-⊆ _ [] = λ () filter-⊆ p (x ∷ xs) with p x | filter-⊆ p xs ... | false | hyp = there ∘ hyp ... | true | hyp = λ { (here eq) → here eq ; (there ∈filter) → there (hyp ∈filter) }
{ "alphanum_fraction": 0.4683870968, "avg_line_length": 25.4098360656, "ext": "agda", "hexsha": "a2cd1ff53db0e1277f6757bcebfa86a79f743a04", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/FilterSub.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/FilterSub.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/FilterSub.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 651, "size": 1550 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.CommAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Powerset open import Cubical.Algebra.CommRing open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommAlgebra open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.HITs.PropositionalTruncation open Category open CommAlgebraHoms private variable ℓ ℓ' ℓ'' : Level module _ (R : CommRing ℓ) where CommAlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob CommAlgebrasCategory = CommAlgebra R _ Hom[_,_] CommAlgebrasCategory = CommAlgebraHom id CommAlgebrasCategory {A} = idCommAlgebraHom A _⋆_ CommAlgebrasCategory {A} {B} {C} = compCommAlgebraHom A B C ⋆IdL CommAlgebrasCategory {A} {B} = compIdCommAlgebraHom {A = A} {B} ⋆IdR CommAlgebrasCategory {A} {B} = idCompCommAlgebraHom {A = A} {B} ⋆Assoc CommAlgebrasCategory {A} {B} {C} {D} = compAssocCommAlgebraHom {A = A} {B} {C} {D} isSetHom CommAlgebrasCategory = isSetAlgebraHom _ _ module PreSheafFromUniversalProp (C : Category ℓ ℓ') (P : ob C → Type ℓ) {R : CommRing ℓ''} (𝓕 : Σ (ob C) P → CommAlgebra R ℓ'') (uniqueHom : ∀ x y → C [ fst x , fst y ] → isContr (CommAlgebraHom (𝓕 y) (𝓕 x))) where private ∥P∥ : ℙ (ob C) ∥P∥ x = ∥ P x ∥ , isPropPropTrunc ΣC∥P∥Cat = ΣPropCat C ∥P∥ 𝓕UniqueEquiv : (x : ob C) (p q : P x) → isContr (CommAlgebraEquiv (𝓕 (x , p)) (𝓕 (x , q))) 𝓕UniqueEquiv x = contrCommAlgebraHom→contrCommAlgebraEquiv (curry 𝓕 x) λ p q → uniqueHom _ _ (id C) theMap : (x : ob C) → ∥ P x ∥ → CommAlgebra R ℓ'' theMap x = recPT→CommAlgebra (curry 𝓕 x) (λ p q → 𝓕UniqueEquiv x p q .fst) λ p q r → 𝓕UniqueEquiv x p r .snd _ theAction : (x y : ob C) → C [ x , y ] → (p : ∥ P x ∥) (q : ∥ P y ∥) → isContr (CommAlgebraHom (theMap y q) (theMap x p)) theAction _ _ f = elim2 (λ _ _ → isPropIsContr) λ _ _ → uniqueHom _ _ f open Functor universalPShf : Functor (ΣC∥P∥Cat ^op) (CommAlgebrasCategory {ℓ = ℓ''} R {ℓ' = ℓ''}) F-ob universalPShf = uncurry theMap F-hom universalPShf {x = x} {y = y} f = theAction _ _ f (y .snd) (x. snd) .fst F-id universalPShf {x = x} = theAction (x .fst) (x .fst) (id C) (x .snd) (x .snd) .snd _ F-seq universalPShf {x = x} {z = z} f g = theAction _ _ (g ⋆⟨ C ⟩ f) (z .snd) (x .snd) .snd _
{ "alphanum_fraction": 0.6387122417, "avg_line_length": 39.9365079365, "ext": "agda", "hexsha": "29e3a8eb9c0e9d19b155ff219991289ce6919bb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/CommAlgebras.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 976, "size": 2516 }
{-# OPTIONS --safe #-} module Definition.Typed.RedSteps where open import Definition.Untyped open import Definition.Typed -- Concatenation of type reduction closures _⇨*_ : ∀ {Γ A B C r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ B ⇒* C ^ r → Γ ⊢ A ⇒* C ^ r id ⊢B ⇨* B⇒C = B⇒C (A⇒A′ ⇨ A′⇒B) ⇨* B⇒C = A⇒A′ ⇨ (A′⇒B ⇨* B⇒C) -- Concatenation of term reduction closures _⇨∷*_ : ∀ {Γ A t u v l} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ u ⇒* v ∷ A ^ l → Γ ⊢ t ⇒* v ∷ A ^ l id ⊢u ⇨∷* u⇒v = u⇒v (t⇒t′ ⇨ t′⇒u) ⇨∷* u⇒v = t⇒t′ ⇨ (t′⇒u ⇨∷* u⇒v) -- Conversion of reduction closures conv* : ∀ {Γ A B t u l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t ⇒* u ∷ B ^ l conv* (id x) A≡B = id (conv x A≡B) conv* (x ⇨ d) A≡B = conv x A≡B ⇨ conv* d A≡B conv:* : ∀ {Γ A B t u l } → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t :⇒*: u ∷ B ^ l conv:* [[ ⊢t , ⊢u , d ]] e = [[ (conv ⊢t e) , (conv ⊢u e) , (conv* d e) ]] -- Universe of reduction closures univ* : ∀ {Γ A B r l} → Γ ⊢ A ⇒* B ∷ (Univ r l) ^ next l → Γ ⊢ A ⇒* B ^ [ r , ι l ] univ* (id x) = id (univ x) univ* (x ⇨ A⇒B) = univ x ⇨ univ* A⇒B -- Application substitution of reduction closures app-subst* : ∀ {Γ A B t t′ a rA lA lB l} → Γ ⊢ t ⇒* t′ ∷ Π A ^ rA ° lA ▹ B ° lB ° l ^ ι l → Γ ⊢ a ∷ A ^ [ rA , ι lA ] → Γ ⊢ t ∘ a ^ l ⇒* t′ ∘ a ^ l ∷ B [ a ] ^ ι lB app-subst* (id x) a₁ = id (x ∘ⱼ a₁) app-subst* (x ⇨ t⇒t′) a₁ = app-subst x a₁ ⇨ app-subst* t⇒t′ a₁
{ "alphanum_fraction": 0.4547413793, "avg_line_length": 37.6216216216, "ext": "agda", "hexsha": "9a23a27f7630a99bffb8ae427b523f870ad9a73c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/RedSteps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/RedSteps.agda", "max_line_length": 117, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/RedSteps.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 764, "size": 1392 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Crypto.Crypto.Hash as Hash open import LibraBFT.ImplShared.Consensus.Types open import Util.Prelude module LibraBFT.Impl.Types.LedgerInfo where mockGenesis : Maybe ValidatorSet → Either ErrLog LedgerInfo mockGenesis mvs = LedgerInfo∙new <$> BlockInfo.mockGenesis mvs <*> pure Hash.valueZero
{ "alphanum_fraction": 0.7617554859, "avg_line_length": 39.875, "ext": "agda", "hexsha": "f45047dae812aa42f8432801c970fcb074a4c156", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Types/LedgerInfo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Types/LedgerInfo.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Types/LedgerInfo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 164, "size": 638 }
open import Prelude open import Nat open import core open import contexts module lemmas-env where env-ctx-same-1 : ∀{Δ Σ' Γ E x} → Δ , Σ' , Γ ⊢ E → x # E → x # Γ env-ctx-same-1 EnvId h = x#∅ env-ctx-same-1 {x = x} (EnvInd {E = E} {x = x'} ctxcons _) x#E+ with natEQ x x' ... | Inl refl = abort (x#E+ (_ , x,a∈Γ,,x,a {Γ = E})) ... | Inr x≠x' with env-ctx-same-1 ctxcons (x#Γ+→x#Γ {Γ = E} x#E+) ... | x#Γ = x#Γ→x#Γ+ x≠x' x#Γ env-ctx-same-2 : ∀{Δ Σ' Γ E x} → Δ , Σ' , Γ ⊢ E → x # Γ → x # E env-ctx-same-2 EnvId h = x#∅ env-ctx-same-2 {x = x} (EnvInd {Γ = Γ} {x = x'} ctxcons _) x#Γ+ with natEQ x x' ... | Inl refl = abort (x#Γ+ (_ , x,a∈Γ,,x,a {Γ = Γ})) ... | Inr x≠x' with env-ctx-same-2 ctxcons (x#Γ+→x#Γ {Γ = Γ} x#Γ+) ... | x#E = x#Γ→x#Γ+ x≠x' x#E env-all-Γ : ∀{Δ Σ' Γ E x τ} → Δ , Σ' , Γ ⊢ E → (x , τ) ∈ Γ → Σ[ r ∈ result ] ((x , r) ∈ E ∧ Δ , Σ' ⊢ r ·: τ) env-all-Γ EnvId x∈Γ = abort (x#∅ (_ , x∈Γ)) env-all-Γ {x = x} (EnvInd {Γ = Γ} {E} {x'} ctxcons ta) x∈Γ with natEQ x x' ... | Inl refl rewrite ctxunicity x∈Γ (x,a∈Γ,,x,a {Γ = Γ}) = _ , x,a∈Γ,,x,a {Γ = E} , ta ... | Inr x≠x' with env-all-Γ ctxcons (x∈Γ+→x∈Γ {Γ = Γ} x≠x' x∈Γ) ... | _ , x∈E , ta-rec = _ , x∈Γ→x∈Γ+ x≠x' x∈E , ta-rec env-all-E : ∀{Δ Σ' Γ E x r} → Δ , Σ' , Γ ⊢ E → (x , r) ∈ E → Σ[ τ ∈ typ ] ((x , τ) ∈ Γ ∧ Δ , Σ' ⊢ r ·: τ) env-all-E EnvId x∈E = abort (x#∅ (_ , x∈E)) env-all-E {x = x} (EnvInd {Γ = Γ} {E} {x'} ctxcons ta) x∈E with natEQ x x' ... | Inl refl rewrite ctxunicity x∈E (x,a∈Γ,,x,a {Γ = E}) = _ , x,a∈Γ,,x,a {Γ = Γ} , ta ... | Inr x≠x' with env-all-E ctxcons (x∈Γ+→x∈Γ {Γ = E} x≠x' x∈E) ... | _ , x∈Γ , ta-rec = _ , x∈Γ→x∈Γ+ x≠x' x∈Γ , ta-rec
{ "alphanum_fraction": 0.3948302078, "avg_line_length": 34.0172413793, "ext": "agda", "hexsha": "af4bf8b07fe35590492400f8791121ae336d217e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "lemmas-env.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "lemmas-env.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "lemmas-env.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 995, "size": 1973 }
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module OPair {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODUtil import OrdUtil open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open OD O open OD.OD open OD.HOD open ODAxiom odAxiom open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open _∧_ open _∨_ open Bool open _==_ <_,_> : (x y : HOD) → HOD < x , y > = (x , x ) , (x , y ) exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where left : {z : Ordinal} → odef (x , y) z → odef (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t right : {z : Ordinal} → odef (y , x) z → odef (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y xx=zy→x=y {x} {y} eq with trio< (& x) (& y) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where lemma3 : ( x , x ) =h= ( y , z ) lemma3 = ==-trans eq exg-pair lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) ... | refl = refl lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z lemmax : x ≡ x' lemmax with eq→ eq {& (x , x)} (case1 refl) lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' ... | refl = lemma1 (ord→== s ) lemmay : y ≡ y' lemmay with lemmax ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) -- -- unlike ordered pair, ZFProduct is not a HOD data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' -- eq-pair refl refl = HE.refl pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y) = x π1 : { p : HOD } → def ZFProduct (& p) → HOD π1 lt = * (pi1 lt ) pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y π2 : { p : HOD } → def ZFProduct (& p) → HOD π2 lt = * (pi2 lt ) op-cons : { ox oy : Ordinal } → def ZFProduct (& ( < * ox , * oy > )) op-cons {ox} {oy} = pair ox oy def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df p-cons : ( x y : HOD ) → def ZFProduct (& ( < x , y >)) p-cons x y = def-subst {_} {_} {ZFProduct} {& (< x , y >)} (pair (& x) ( & y )) refl ( let open ≡-Reasoning in begin & < * (& x) , * (& y) > ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ & < x , y > ∎ ) op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op op-iso (pair ox oy) = refl p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x p-iso {x} p = ord≡→≡ (op-iso p) p-pi1 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π1 p ≡ x p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) p-pi2 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) ω-pair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & (x , y) o< next m ω-pair lx ly = next< (omax<nx lx ly ) ho< ω-opair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & < x , y > o< next m ω-opair {x} {y} {m} lx ly = lemma0 where lemma0 : & < x , y > o< next m lemma0 = osucprev (begin osuc (& < x , y >) <⟨ osuc<nx ho< ⟩ next (omax (& (x , x)) (& (x , y))) ≡⟨ cong (λ k → next k) (sym ( omax≤ _ _ pair-xx<xy )) ⟩ next (osuc (& (x , y))) ≡⟨ sym (nexto≡) ⟩ next (& (x , y)) ≤⟨ x<ny→≤next (ω-pair lx ly) ⟩ next m ∎ ) where open o≤-Reasoning O _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > product→ {A} {B} {a} {b} A∋a B∋b = λ t → t (& (Replace A (λ a → < a , b >))) ⟪ lemma1 , subst (λ k → odef k (& < a , b >)) (sym *iso) lemma2 ⟫ where lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >))) lemma1 = replacement← B b B∋b lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >) lemma2 = replacement← A a A∋a x<nextA : {A x : HOD} → A ∋ x → & x o< next (odmax A) x<nextA {A} {x} A∋x = ordtrans (c<→o< {x} {A} A∋x) ho< A<Bnext : {A B x : HOD} → & A o< & B → A ∋ x → & x o< next (odmax B) A<Bnext {A} {B} {x} lt A∋x = osucprev (begin osuc (& x) <⟨ osucc (c<→o< A∋x) ⟩ osuc (& A) <⟨ osucc lt ⟩ osuc (& B) <⟨ osuc<nx ho< ⟩ next (odmax B) ∎ ) where open o≤-Reasoning O ZFP : (A B : HOD) → HOD ZFP A B = record { od = record { def = λ x → ord-pair x ∧ ((p : ord-pair x ) → odef A (pi1 p) ∧ odef B (pi2 p) )} ; odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } where lemma : (y : Ordinal) → ( ord-pair y ∧ ((p : ord-pair y) → odef A (pi1 p) ∧ odef B (pi2 p))) → y o< omax (next (odmax A)) (next (odmax B)) lemma y lt with proj1 lt lemma p lt | pair x y with trio< (& A) (& B) lemma p lt | pair x y | tri< a ¬b ¬c = ordtrans (ω-opair (A<Bnext a (subst (λ k → odef A k ) (sym &iso) (proj1 (proj2 lt (pair x y))))) (lemma1 (proj2 (proj2 lt (pair x y))))) (omax-y _ _ ) where lemma1 : odef B y → & (* y) o< next (HOD.odmax B) lemma1 lt = x<nextA {B} (d→∋ B lt) lemma p lt | pair x y | tri≈ ¬a b ¬c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) lemma2 ) (omax-x _ _ ) where lemma2 : & (* y) o< next (HOD.odmax A) lemma2 = ordtrans ( subst (λ k → & (* y) o< k ) (sym b) (c<→o< (d→∋ B ((proj2 (proj2 lt (pair x y))))))) ho< lemma p lt | pair x y | tri> ¬a ¬b c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) (A<Bnext c (subst (λ k → odef B k ) (sym &iso) (proj2 (proj2 lt (pair x y)))))) (omax-x _ _ ) ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ⟪ (pair x y) , p2 ⟫ = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) ))) -- axiom of choice required -- ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFProduct (& x) -- ⊗⊆ZFP {A} {B} {x} lt = subst (λ k → ord-pair (& k )) {!!} op-cons
{ "alphanum_fraction": 0.4747063054, "avg_line_length": 38.9813084112, "ext": "agda", "hexsha": "d07511ba5696cc5ba7b2cd5a9ff365c898d073f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/OPair.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/OPair.agda", "max_line_length": 146, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/OPair.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 3718, "size": 8342 }
module PreludeString where import RTP -- magic module import PreludeList open PreludeList using (List) open import AlonzoPrelude infixr 50 _++_ private primitive primStringAppend : String -> String -> String -- primStringReverse : String -> String primStringToList : String -> List Char primStringFromList : List Char -> String _++_ = primStringAppend reverseString = RTP.primStringReverse toList : String -> List Char toList = primStringToList fromList : List Char -> String fromList = primStringFromList -- toList = RTP.primStringToList -- fromList = RTP.primStringFromList
{ "alphanum_fraction": 0.7217806041, "avg_line_length": 17.9714285714, "ext": "agda", "hexsha": "c5518ca6f89ab2d8be41d51cb37b7ddc3093192f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeString.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeString.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 160, "size": 629 }
-- ---------------------------------------------------------------------- -- The Agda Descriptor Library -- -- (Closed) Sets -- ---------------------------------------------------------------------- module Data.Set where open import Data.Empty using (⊥) open import Data.Fin using (Fin; suc; zero) open import Data.Nat using (ℕ) open import Data.Product using (Σ) open import Data.Unit using (⊤) open import Data.Desc using (Desc; μ; _##_; _⟶_; Π) open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- ---------------------------------------------------------------------- -- Definition -- -- A `Desc is a closed dependent type theory of -- strictly positive functors : Set/A → Set/A -- -- A `Set is a open dependent type theory of -- the Agda model -- -- To ensure a closed universe, we use -- induction recursion. data `Set : Set ⟦_⟧ : `Set → Set private variable A : `Set data `Desc (A : `Set) : Set ⟪_⟫ : `Desc A → Desc ⟦ A ⟧ data `Set where `Fin : ℕ → `Set `Σ `Π : (B : `Set) → (⟦ B ⟧ → `Set) → `Set `μ : `Desc A → ⟦ A ⟧ → `Set ⟦ `Fin n ⟧ = Fin n ⟦ `Σ A B ⟧ = Σ ⟦ A ⟧ (λ a → ⟦ B a ⟧ ) ⟦ `Π A B ⟧ = (a : ⟦ A ⟧) → ⟦ B a ⟧ ⟦ `μ d a ⟧ = μ ⟪ d ⟫ a infixr 6 _⟶_ data `Desc A where `Π : (B : `Set) → (⟦ B ⟧ → `Desc A) → `Desc A _⟶_ : `Desc A → `Desc A → `Desc A _`##_ : (`Set → `Set) → ⟦ A ⟧ → `Desc A ⟪ `Π B d ⟫ = Π ⟦ B ⟧ (λ b → ⟪ d b ⟫) ⟪ d₁ ⟶ d₂ ⟫ = ⟪ d₁ ⟫ ⟶ ⟪ d₂ ⟫ ⟪ f `## a ⟫ = {! !} ## a -- ---------------------------------------------------------------------- -- Example (Basic) -- `⊤ : `Set -- `⊤ = `Fin 1 -- `tt : ⟦ `⊤ ⟧ -- `tt = zero -- `const : `Set → `Desc `⊤ -- `const A = `Π A λ _ → `# `tt -- _`≡_ : ⟦ A ⟧ → ⟦ A ⟧ → `Set -- x `≡ y = `μ (`# x) y -- ---------------------------------------------------------------------- -- pattern nil = zero -- pattern cons = (suc zero) -- TODO: First order isomorphisms -- _ : ⟦ zero `≡ zero ⟧ -- _ = {! refl !} -- ListD : `Set → `Desc `⊤ -- ListD A = `Π (`Fin 2) -- λ{ nil → `# `tt -- ; cons → `const A ⟶ `# `tt ⟶ `# `tt } -- `List : `Set → `Set -- `List A = `μ (ListD A) `tt -- RoseD : `Set → `Desc `⊤ -- RoseD A = `const A ⟶ `List $ (`# `tt) ⟶ `# `tt -- _#_ : (Set → Set) → A → Desc A -- -- Computional: -- f (X a) -- -- Propositional: -- f (a′ ≡ a)
{ "alphanum_fraction": 0.4105815479, "avg_line_length": 20.4196428571, "ext": "agda", "hexsha": "ae1e438db49e8db007f43b019e9a77feb2c32e5c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-desc", "max_forks_repo_path": "src/Data/Set.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-desc", "max_issues_repo_path": "src/Data/Set.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-desc", "max_stars_repo_path": "src/Data/Set.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 862, "size": 2287 }
------------------------------------------------------------------------ -- Universe levels ------------------------------------------------------------------------ module Common.Level where postulate Level : Set lzero : Level lsuc : (i : Level) → Level _⊔_ : Level -> Level -> Level {-# IMPORT Common.FFI #-} {-# COMPILED_TYPE Level Common.FFI.Level #-} {-# COMPILED lzero Common.FFI.Zero #-} {-# COMPILED lsuc Common.FFI.Suc #-} {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_
{ "alphanum_fraction": 0.4661016949, "avg_line_length": 22.6923076923, "ext": "agda", "hexsha": "e4d6278bd4002cc606aff23331bf1b77f799a37c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/Common/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/Common/Level.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/Common/Level.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 144, "size": 590 }
------------------------------------------------------------------------ -- "Equational" reasoning combinator setup ------------------------------------------------------------------------ {-# OPTIONS --safe #-} open import Labelled-transition-system -- Note that the module parameter is explicit. If the LTS is not given -- explicitly, then the use of _[ μ ]⟶_ in the instances below can -- make it hard for Agda to infer what instance to use. module Labelled-transition-system.Equational-reasoning-instances {ℓ} (lts : LTS ℓ) where open import Prelude open import Equational-reasoning open LTS lts private -- Converts one kind of proof of silence to another kind. get : ∀ {μ} → T (silent? μ) → Silent μ get {μ} _ with silent? μ get {μ} () | no _ get {μ} _ | yes s = s instance convert⟶ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⟶_ convert⟶ = is-convertible id convert⟶⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⟶_ _⇒_ convert⟶⇒ {s = s} = is-convertible (⟶→⇒ (get s)) convert⟶[]⇒ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⇒_ convert⟶[]⇒ = is-convertible ⟶→[]⇒ convert⟶⇒̂ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⇒̂_ convert⟶⇒̂ = is-convertible ⟶→⇒̂ convert⟶⟶̂ : ∀ {μ} → Convertible _[ μ ]⟶_ _[ μ ]⟶̂_ convert⟶⟶̂ = is-convertible ⟶→⟶̂ convert⇒ : Convertible _⇒_ _⇒_ convert⇒ = is-convertible id convert⇒⇒̂ : ∀ {μ} {s : T (silent? μ)} → Convertible _⇒_ _[ μ ]⇒̂_ convert⇒⇒̂ {s = s} = is-convertible (silent (get s)) convert[]⇒ : ∀ {μ} → Convertible _[ μ ]⇒_ _[ μ ]⇒_ convert[]⇒ = is-convertible id convert[]⇒⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⇒_ _⇒_ convert[]⇒⇒ {s = s} = is-convertible ([]⇒→⇒ (get s)) convert[]⇒⇒̂ : ∀ {μ} → Convertible _[ μ ]⇒_ _[ μ ]⇒̂_ convert[]⇒⇒̂ = is-convertible ⇒→⇒̂ convert⇒̂ : ∀ {μ} → Convertible _[ μ ]⇒̂_ _[ μ ]⇒̂_ convert⇒̂ = is-convertible id convert⇒̂⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⇒̂_ _⇒_ convert⇒̂⇒ {s = s} = is-convertible (⇒̂→⇒ (get s)) convert⇒̂[]⇒ : ∀ {μ} {¬s : if (silent? μ) then ⊥ else ⊤} → Convertible _[ μ ]⇒̂_ _[ μ ]⇒_ convert⇒̂[]⇒ {μ} with silent? μ convert⇒̂[]⇒ {¬s = ()} | yes _ convert⇒̂[]⇒ | no ¬s = is-convertible (⇒̂→[]⇒ ¬s) convert⟶̂ : ∀ {μ} → Convertible _[ μ ]⟶̂_ _[ μ ]⟶̂_ convert⟶̂ = is-convertible id convert⟶̂⇒ : ∀ {μ} {s : T (silent? μ)} → Convertible _[ μ ]⟶̂_ _⇒_ convert⟶̂⇒ {s = s} = is-convertible (⟶̂→⇒ (get s)) convert⟶̂⇒̂ : ∀ {μ} → Convertible _[ μ ]⟶̂_ _[ μ ]⇒̂_ convert⟶̂⇒̂ = is-convertible ⟶̂→⇒̂ reflexive⇒ : Reflexive _⇒_ reflexive⇒ = is-reflexive done reflexive⟶̂ : ∀ {μ} {s : T (silent? μ)} → Reflexive _[ μ ]⟶̂_ reflexive⟶̂ {s = s} = is-reflexive (done (get s)) reflexive⇒̂ : ∀ {μ} {s : T (silent? μ)} → Reflexive _[ μ ]⇒̂_ reflexive⇒̂ {s = s} = is-reflexive (silent (get s) done) trans⇒ : Transitive _⇒_ _⇒_ trans⇒ = is-transitive ⇒-transitive trans⟶⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⟶_ _⇒_ trans⟶⇒ {s = s} = is-transitive (⇒-transitive ∘ ⟶→⇒ (get s)) trans⇒̂⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⇒̂_ _⇒_ trans⇒̂⇒ {s = s} = is-transitive (⇒-transitive ∘ ⇒̂→⇒ (get s)) trans⟶̂⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive _[ μ ]⟶̂_ _⇒_ trans⟶̂⇒ {s = s} = is-transitive (⇒-transitive ∘ ⟶̂→⇒ (get s)) trans⇒[]⇒ : ∀ {μ} → Transitive _⇒_ _[ μ ]⇒_ trans⇒[]⇒ = is-transitive ⇒[]⇒-transitive trans⟶[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶_ _[ μ ]⇒_ trans⟶[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ ⟶→⇒ (get s)) trans[]⇒[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒_ _[ μ ]⇒_ trans[]⇒[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ []⇒→⇒ (get s)) trans⟶̂[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶̂_ _[ μ ]⇒_ trans⟶̂[]⇒ {s = s} = is-transitive (⇒[]⇒-transitive ∘ ⟶̂→⇒ (get s)) trans⇒⇒̂ : ∀ {μ} → Transitive _⇒_ _[ μ ]⇒̂_ trans⇒⇒̂ = is-transitive ⇒⇒̂-transitive trans⟶⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶_ _[ μ ]⇒̂_ trans⟶⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⟶→⇒ (get s)) trans[]⇒⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒_ _[ μ ]⇒̂_ trans[]⇒⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ []⇒→⇒ (get s)) trans[]⇒̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⇒̂_ _[ μ ]⇒̂_ trans[]⇒̂⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⇒̂→⇒ (get s)) trans⟶̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive _[ μ′ ]⟶̂_ _[ μ ]⇒̂_ trans⟶̂⇒̂ {s = s} = is-transitive (⇒⇒̂-transitive ∘ ⟶̂→⇒ (get s)) trans′⇒⟶ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⟶_ trans′⇒⟶ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⟶→⇒ (get s))) trans′⇒[]⇒ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⇒_ trans′⇒[]⇒ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ []⇒→⇒ (get s))) trans′⇒⇒̂ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⇒̂_ trans′⇒⇒̂ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′⇒⟶̂ : ∀ {μ} {s : T (silent? μ)} → Transitive′ _⇒_ _[ μ ]⟶̂_ trans′⇒⟶̂ {s = s} = is-transitive (flip (flip ⇒-transitive ∘ ⟶̂→⇒ (get s))) trans′[]⇒⟶ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⟶_ trans′[]⇒⟶ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⟶→⇒ (get s))) trans′[]⇒⇒ : ∀ {μ} → Transitive′ _[ μ ]⇒_ _⇒_ trans′[]⇒⇒ = is-transitive []⇒⇒-transitive trans′[]⇒[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⇒_ trans′[]⇒[]⇒ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ []⇒→⇒ (get s))) trans′[]⇒[]⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⇒̂_ trans′[]⇒[]⇒̂ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′[]⇒⟶̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒_ _[ μ′ ]⟶̂_ trans′[]⇒⟶̂ {s = s} = is-transitive (flip (flip []⇒⇒-transitive ∘ ⟶̂→⇒ (get s))) trans′⇒̂⟶ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⟶_ trans′⇒̂⟶ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⟶→⇒ (get s))) trans′⇒̂⇒ : ∀ {μ} → Transitive′ _[ μ ]⇒̂_ _⇒_ trans′⇒̂⇒ = is-transitive ⇒̂⇒-transitive trans′⇒̂[]⇒ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⇒_ trans′⇒̂[]⇒ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ []⇒→⇒ (get s))) trans′⇒̂⇒̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⇒̂_ trans′⇒̂⇒̂ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⇒̂→⇒ (get s))) trans′⇒̂⟶̂ : ∀ {μ μ′} {s : T (silent? μ′)} → Transitive′ _[ μ ]⇒̂_ _[ μ′ ]⟶̂_ trans′⇒̂⟶̂ {s = s} = is-transitive (flip (flip ⇒̂⇒-transitive ∘ ⟶̂→⇒ (get s)))
{ "alphanum_fraction": 0.4716596241, "avg_line_length": 34.315, "ext": "agda", "hexsha": "f5baa7a6f1a8f561e052859bc2f7b5a18943718c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Labelled-transition-system/Equational-reasoning-instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Labelled-transition-system/Equational-reasoning-instances.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Labelled-transition-system/Equational-reasoning-instances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3600, "size": 6863 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.Consensus.ConsensusProvider as ConsensusProvider import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile import LibraBFT.Impl.IO.OBM.ObmNeedFetch as ObmNeedFetch import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.PKCS open import Util.Prelude module LibraBFT.Impl.IO.OBM.Start where {- This only does the initialization steps from the Haskell version. If initialization succeeds, it returns - the EpochManager (for all epochs) - note: this contains the initialized RoundManager for the current epoch (i.e., Epoch 0) - any output from the RoundManager produced during initialization The only output is (with info logging removed): -- only the leader of round 1 will broadcast a proposal BroadcastProposal; [ ... peer addresses ... ]; (ProposalMsg (B 7194dca (BD 1 1 (Prop ("TX/1/1")) ...)) -- proposed block (SI (hqc c66a132) (hcc N) (htc (TC N)))) -- SyncInfo The Haskell code, after initialization, hooks up the communication channels and sockets and starts threads that handle them. One of the threads is given to EpochManager.obmStartLoop to get input and pass it through the EpochManager and then (usually) on to the RoundMnager. TODO-3: Replace 'Handle.initRM' with the initialized RoundManager obtained through the following 'startViaConsensusProvider'. TODO-3: Figure out how to handle the initial BroadcastProposal. -} module startViaConsensusProvider-ed (now : Instant) (nfl : GenKeyFile.NfLiwsVsVvPe) (txTDS : TxTypeDependentStuffForNetwork) where step₁ : (NodeConfig × OnChainConfigPayload × LedgerInfoWithSignatures × SK × ProposerElection) → EitherD ErrLog (EpochManager × List Output) step₀ : EitherD ErrLog (EpochManager × List Output) step₀ = do let (nf , liws , vs , vv , pe) = nfl (nc , occp , liws , sk , pe) ← ConsensusProvider.obmInitialData-ed-abs (nf , liws , vs , vv , pe) step₁ (nc , occp , liws , sk , pe) step₁ (nc , occp , liws' , sk , _) = ConsensusProvider.startConsensus-ed-abs nc now occp liws' sk (ObmNeedFetch∙new {- newNetwork -stps'-}) (txTDS ^∙ ttdsnProposalGenerator) (txTDS ^∙ ttdsnStateComputer) abstract startViaConsensusProvider-ed-abs = startViaConsensusProvider-ed.step₀ startViaConsensusProvider-ed-abs-≡ : startViaConsensusProvider-ed-abs ≡ startViaConsensusProvider-ed.step₀ startViaConsensusProvider-ed-abs-≡ = refl
{ "alphanum_fraction": 0.7298292601, "avg_line_length": 43.9264705882, "ext": "agda", "hexsha": "f10883e652f829ac224c82a01bec1230f6d36b17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/Start.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/Start.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/Start.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 813, "size": 2987 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open import Data.Empty using (⊥; ⊥-elim) open import Data.List using (List; []; _∷_; dropWhile) open import Data.Char using (Char) open import Data.Bool using (Bool; true; false) import Data.Char as Char using (_≟_) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) data Head {A : Set} (P : A → Bool) : List A → Set where head : ∀ (c : A) (s : List A) → P c ≡ true → Head P (c ∷ s) prime : Char prime = '′' isPrime : Char → Bool isPrime c = ⌊ c Char.≟ prime ⌋ head-lemma : ∀ (s : List Char) → ¬ Head isPrime (dropWhile isPrime s) head-lemma [] = λ() head-lemma (c ∷ s) with isPrime c ... | true = head-lemma s ... | false = ¬h where ¬h : ¬ Head isPrime (c ∷ s) ¬h (head c s eqn′) = {!!} {- Goal: ⊥ ———————————————————————————————————————————————————————————— s : List Char c : Char eqn′ : ⌊ (c Char.≟ '′' | .Agda.Builtin.Char.primCharEquality c '′') ⌋ ≡ true s : List Char c : Char -}
{ "alphanum_fraction": 0.5479331574, "avg_line_length": 27.7317073171, "ext": "agda", "hexsha": "53639a4fa453618d5c2aec2396ca1c0b95120d5a", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Head.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Head.agda", "max_line_length": 69, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Head.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 384, "size": 1137 }
------------------------------------------------------------------------------ -- A proof that is rejected using the --without-K option ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Lists where open import FOTC.Base open import FOTC.Data.Nat.Inequalities open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Cons open import FOTC.Data.List.WF-Relation.LT-Length ------------------------------------------------------------------------------ -- LTC → LTL. -- 25 April 2014. The proof is accepted using Cockx's --without-K -- implementation. LTC→LTL : ∀ {xs ys} → List xs → LTC xs ys → LTL xs ys LTC→LTL Lxs (x , refl) = lg-x<lg-x∷xs x Lxs LTC→LTL' : ∀ {xs ys} → List xs → LTC xs ys → LTL xs ys LTC→LTL' {xs} {ys} Lxs (x , h) = subst (λ ys' → length xs < length ys') (sym h) (lg-x<lg-x∷xs x Lxs)
{ "alphanum_fraction": 0.4894009217, "avg_line_length": 33.90625, "ext": "agda", "hexsha": "93be4dc7668c84e9f07e1b2333236d45c0a8cd3d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/k-axiom/Lists.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/k-axiom/Lists.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/k-axiom/Lists.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 278, "size": 1085 }
module Data.Fin.Properties.Extra where open import Data.Fin hiding (_≤_) open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality inject≤-trans : ∀ {l m n} i (p : l ≤ m)(q : m ≤ n) → inject≤ (inject≤ i p) q ≡ inject≤ i (≤-trans p q) inject≤-trans () z≤n q inject≤-trans zero (s≤s p) (s≤s q) = refl inject≤-trans (suc i) (s≤s p) (s≤s q) = cong suc (inject≤-trans i p q)
{ "alphanum_fraction": 0.6650717703, "avg_line_length": 32.1538461538, "ext": "agda", "hexsha": "4fd90f854ed4745976eceb2cead5ccd758544e51", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Fin/Properties/Extra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Fin/Properties/Extra.agda", "max_line_length": 102, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Fin/Properties/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 165, "size": 418 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Comma.Functors where open import Categories.Category open import Categories.Functor renaming (_∘_ to _∘F_) open import Categories.FunctorCategory renaming (Functors to [_⇒_]) open import Categories.NaturalTransformation using (module NaturalTransformation) open import Data.Product using (∃; _,_; proj₁; proj₂; zip; map) open import Level open import Relation.Binary using (Rel) open import Categories.Support.EqReasoning open import Categories.Square open import Categories.Comma open import Categories.Product renaming (Product to _×_) πComma : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → {A : Category o₁ ℓ₁ e₁} → {B : Category o₂ ℓ₂ e₂} → {C : Category o₃ ℓ₃ e₃} → (S : Functor B C) (T : Functor A C) → Functor (S ↓ T) (B × A) πComma {A = A} {B} {C} S T = record { F₀ = F₀′ ; F₁ = F₁′ ; identity = B×A.Equiv.refl ; homomorphism = B×A.Equiv.refl ; F-resp-≡ = λ pf → pf } where module S↓T = Category (S ↓ T) module B×A = Category (B × A) open Comma S T using (_,_[_]) renaming (_,_,_ to ⟨_,_,_⟩) F₀′ : S↓T.Obj → B×A.Obj F₀′ ⟨ α , β , f ⟩ = α , β F₁′ : ∀ {X Y} → (S ↓ T) [ X , Y ] → (B × A) [ F₀′ X , F₀′ Y ] F₁′ (g , h [ commutes ]) = g , h InducedFunctor : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} {s₁ s₂ d₁ d₂} (m : (Category.op [ A ⇒ C ] × [ B ⇒ C ]) [ (s₁ , s₂) , (d₁ , d₂) ]) → Functor (s₁ ↓ s₂) (d₁ ↓ d₂) InducedFunctor {A = A} {B} {C} {s₁} {s₂} {d₁} {d₂} m = record { F₀ = F₀′ ; F₁ = F₁′ ; identity = λ {X} → d₁↓d₂.Equiv.refl {_} {_} {d₁↓d₂.id {F₀′ X}} ; homomorphism = λ {_ _ _ f g} → d₁↓d₂.Equiv.refl {_} {_} {F₁′ ((s₁ ↓ s₂) [ g ∘ f ])} ; F-resp-≡ = λ pf → pf } where module s₁↓s₂ = Category (s₁ ↓ s₂) module d₁↓d₂ = Category (d₁ ↓ d₂) module s₁ = Functor s₁ module s₂ = Functor s₂ module d₁ = Functor d₁ module d₂ = Functor d₂ module m₁ = NaturalTransformation (proj₁ m) module m₂ = NaturalTransformation (proj₂ m) open Category C open Comma renaming (_,_,_ to ⟨_,_,_⟩) F₀′ : s₁↓s₂.Obj → d₁↓d₂.Obj F₀′ ⟨ α , β , f ⟩ = ⟨ α , β , m₂.η β ∘ f ∘ m₁.η α ⟩ F₁′ : ∀ {X Y} → (s₁ ↓ s₂) [ X , Y ] → (d₁ ↓ d₂) [ F₀′ X , F₀′ Y ] F₁′ {⟨ α₁ , β₁ , f₁ ⟩} {⟨ α₂ , β₂ , f₂ ⟩} (g , h [ commutes ]) = g , h [ ( begin d₂.F₁ h ∘ m₂.η β₁ ∘ f₁ ∘ m₁.η α₁ ↑⟨ pushˡ (m₂.commute h) ⟩ (m₂.η β₂ ∘ s₂.F₁ h) ∘ f₁ ∘ m₁.η α₁ ↓⟨ pullˡ (pullʳ commutes) ⟩ (m₂.η β₂ ∘ f₂ ∘ s₁.F₁ g) ∘ m₁.η α₁ ↑⟨ extendˡ (extendˡ (m₁.commute g)) ⟩ (m₂.η β₂ ∘ f₂ ∘ m₁.η α₂) ∘ d₁.F₁ g ∎ ) ] where open HomReasoning open GlueSquares C
{ "alphanum_fraction": 0.5357269819, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "7547d083d7dd62441c155c0a5a570a763d5ee23c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Comma/Functors.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Comma/Functors.agda", "max_line_length": 87, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Comma/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1196, "size": 2813 }
-- Andreas, Bentfest 2016-04-28 Marsstrand -- Issue 1944: also resolve overloaded projections in checking position module _ (A : Set) (a : A) where record R B : Set where field f : B open R record S B : Set where field f : B open S test : R A → A test = f test1 : ∀{A} → R A → A test1 = f test2 : ∀ A → R A → A test2 A = f {A} postulate F : Set → Set mapF : ∀{A B} (f : A → B) → F A → F B fr : F (R A) test3 : F (R A) → F A test3 = mapF f test4 : F (R _) → F A test4 = mapF f test5 : ∀{A} → F (F (R A)) → F _ test5 = mapF (mapF f) test6 = mapF f fr
{ "alphanum_fraction": 0.5649122807, "avg_line_length": 15, "ext": "agda", "hexsha": "5e0adefe4654d4b1999d59ae434c143dfe918ac9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue1944-UnappliedOverloadedProjection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue1944-UnappliedOverloadedProjection.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue1944-UnappliedOverloadedProjection.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 237, "size": 570 }
module nat-thms where open import bool open import bool-thms open import bool-thms2 open import eq open import nat open import neq open import product open import product-thms open import sum open import level open import negation -------------------------------------------------- -- properties of addition -------------------------------------------------- 0+ : ∀ (x : ℕ) → 0 + x ≡ x 0+ x = refl +0 : ∀ (x : ℕ) → x + 0 ≡ x +0 zero = refl +0 (suc x) rewrite +0 x = refl +1 : ∀ (x : ℕ) → x + 1 ≡ suc x +1 zero = refl +1 (suc x) rewrite +1 x = refl +suc : ∀ (x y : ℕ) → x + (suc y) ≡ suc(x + y) +suc zero y = refl +suc (suc x) y rewrite +suc x y = refl +assoc : ∀ (x y z : ℕ) → x + (y + z) ≡ (x + y) + z +assoc zero y z = refl +assoc (suc x) y z rewrite +assoc x y z = refl +comm : ∀ (x y : ℕ) → x + y ≡ y + x +comm zero y rewrite +0 y = refl +comm (suc x) y rewrite +suc y x | +comm x y = refl +perm : ∀ (x y z : ℕ) → x + (y + z) ≡ y + (x + z) +perm x y z rewrite +assoc x y z | +comm x y | sym (+assoc y x z) = refl +perm2 : ∀ (x y z : ℕ) → (x + y) + z ≡ (x + z) + y +perm2 x y z rewrite sym (+assoc x y z) | +comm y z | +assoc x z y = refl +≡0 : ∀ {x y : ℕ} → x + y ≡ 0 → x ≡ 0 ∧ y ≡ 0 +≡0{zero}{zero} p = refl , refl +≡0{zero}{suc y} () +≡0{suc x}{zero} () +≡0{suc x}{suc y} () -------------------------------------------------- -- properties of multiplication -------------------------------------------------- *0 : ∀ (x : ℕ) → x * 0 ≡ 0 *0 zero = refl *0 (suc x) rewrite *0 x = refl *1 : ∀ {n : ℕ} → n * 1 ≡ n *1 {0} = refl *1 {suc n} rewrite *1 {n} = refl *suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + x * y *suc zero y = refl *suc (suc x) y rewrite *suc x y | +assoc y x (x * y) | +assoc x y (x * y) | +comm y x = refl *distribr : ∀ (x y z : ℕ) → (x + y) * z ≡ x * z + y * z *distribr zero y z = refl *distribr (suc x) y z rewrite *distribr x y z = +assoc z (x * z) (y * z) *distribl : ∀ (x y z : ℕ) → x * (y + z) ≡ x * y + x * z *distribl 0 y z = refl *distribl (suc x) y z rewrite *distribl x y z | +assoc (y + z) (x * y) (x * z) | +assoc (y + x * y) z (x * z) | +comm (y + z) (x * y) | +assoc (x * y) y z | +comm (x * y) y = refl *comm : ∀ (x y : ℕ) → x * y ≡ y * x *comm zero y rewrite *0 y = refl *comm (suc x) y rewrite *suc y x | *comm x y = refl *assoc : ∀ (x y z : ℕ) → x * (y * z) ≡ (x * y) * z *assoc zero y z = refl *assoc (suc x) y z rewrite *assoc x y z | *distribr y (x * y) z = refl -------------------------------------------------- -- basic properties of pred -------------------------------------------------- sucpred : ∀ {x : ℕ} → iszero x ≡ ff → suc (pred x) ≡ x sucpred{0} () sucpred{suc x} p = refl pred+ : ∀ (x y : ℕ) → iszero x ≡ ff → (pred x) + y ≡ pred (x + y) pred+ 0 y () pred+ (suc x) y p = refl -------------------------------------------------- -- properties of <, ≤, and =ℕ, iszero -------------------------------------------------- <-0 : ∀ (x : ℕ) → x < 0 ≡ ff <-0 0 = refl <-0 (suc y) = refl 0-≤ : ∀ (x : ℕ) → 0 ≤ x ≡ tt 0-≤ 0 = refl 0-≤ (suc x) = refl <-drop : ∀ {x y : ℕ} → (x < (suc y) ≡ tt) → x ≡ y ∨ x < y ≡ tt <-drop {0} {0} p = inj₁ refl <-drop {suc x} {0} p rewrite <-0 x = 𝔹-contra p <-drop {0} {suc y} p = inj₂ refl <-drop {suc x} {suc y} p with <-drop {x} {y} p ... | inj₁ u rewrite u = inj₁ refl ... | inj₂ u = inj₂ u =ℕ-refl : ∀ (x : ℕ) → (x =ℕ x) ≡ tt =ℕ-refl 0 = refl =ℕ-refl (suc x) = (=ℕ-refl x) =ℕ-to-≡ : ∀ {x y : ℕ} → x =ℕ y ≡ tt → x ≡ y =ℕ-to-≡ {0} {0} u = refl =ℕ-to-≡ {suc x} {0} () =ℕ-to-≡ {0} {suc y} () =ℕ-to-≡ {suc x} {suc y} u rewrite =ℕ-to-≡ {x} {y} u = refl =ℕ-from-≡ : ∀ {x y : ℕ} → x ≡ y → x =ℕ y ≡ tt =ℕ-from-≡ {x} refl = =ℕ-refl x =ℕ-sym : ∀ (x y : ℕ) → (x =ℕ y) ≡ (y =ℕ x) =ℕ-sym 0 0 = refl =ℕ-sym 0 (suc y) = refl =ℕ-sym (suc x) 0 = refl =ℕ-sym (suc x) (suc y) rewrite =ℕ-sym x y = refl =ℕ-suc : ∀ (x : ℕ) → suc x =ℕ x ≡ ff =ℕ-suc 0 = refl =ℕ-suc (suc x) = =ℕ-suc x <-suc : ∀ (n : ℕ) → n < suc n ≡ tt <-suc 0 = refl <-suc (suc n) rewrite <-suc n = refl <-suc2 : ∀ (n : ℕ) → suc n < n ≡ ff <-suc2 0 = refl <-suc2 (suc n) = <-suc2 n ≤-suc : ∀ (n : ℕ) → n ≤ suc n ≡ tt ≤-suc n rewrite <-suc n = refl ≤-suc2 : ∀ (n : ℕ) → suc n ≤ n ≡ ff ≤-suc2 n rewrite <-suc2 n | =ℕ-suc n = refl <-push : ∀ {x y : ℕ} → (suc x) < y ≡ tt → Σ ℕ (λ y' → y ≡ (suc y')) <-push {x} {0} () <-push {0} {suc y} p = (y , refl) <-push {suc x} {suc y} p with <-push {x} {y} p ... | ( y' , p' ) rewrite p' = (suc y' , refl) suc-inj : ∀ {n m : ℕ} → suc n ≡ suc m → n ≡ m suc-inj {n} {m} p rewrite (=ℕ-to-≡{n} (=ℕ-from-≡ p)) = refl <-implies-suc : ∀ {x y : ℕ} → x < y ≡ tt → Σ ℕ λ y' → y ≡ suc y' <-implies-suc{x}{0} p rewrite <-0 x = 𝔹-contra p <-implies-suc{y = suc y} p = y , refl <=ℕff : ∀ (x : ℕ) → 0 < x ≡ tt → x =ℕ 0 ≡ ff <=ℕff 0 () <=ℕff (suc x) p = refl nonzero< : ∀ {n : ℕ} → iszero n ≡ ff → 0 < n ≡ tt nonzero<{0} () nonzero<{(suc n)} p = refl iszerosum : ∀ (x y : ℕ) → iszero(x + y) ≡ iszero(x) && iszero(y) iszerosum 0 y = refl iszerosum (suc x) y = refl iszerosum2 : ∀ (x y : ℕ) → iszero x ≡ ff → iszero(x + y) ≡ ff iszerosum2 0 y () iszerosum2 (suc x) y _ = refl iszeromult : ∀ (x y : ℕ) → iszero x ≡ ff → iszero y ≡ ff → iszero (x * y) ≡ ff iszeromult zero zero () q iszeromult zero (suc y) () q iszeromult (suc x) zero p () iszeromult (suc x) (suc y) p q = refl <≤ : ∀ {n m : ℕ} → n < m ≡ tt → n ≤ m ≡ tt <≤ {n}{m} p rewrite p = refl ≤+1 : ∀(x y : ℕ) → x ≤ x + y ≡ tt ≤+1 zero zero = refl ≤+1 zero (suc y) = refl ≤+1 (suc x) zero rewrite +0 x | =ℕ-refl x | ||-tt (x < x) = refl ≤+1 (suc x) (suc y) = ≤+1 x (suc y) ≤+2 : ∀(x y : ℕ) → y ≤ x + y ≡ tt ≤+2 x y rewrite +comm x y = ≤+1 y x -- a theorem about quotients q, divisors d, and remainders r ÷< : ∀ {d q r x : ℕ} → 1 < d ≡ tt → q * d + r ≡ suc x → q < suc x ≡ tt ÷<{0} () p ÷<{suc 0} () p ÷<{suc (suc d)}{0} u p = refl ÷<{suc (suc d)}{suc q}{r}{0} u () ÷<{suc (suc d)}{suc q}{r}{suc x} u p with suc-inj{suc (d + q * suc (suc d) + r)}{suc x} p ... | p' rewrite sym (+suc (d + q * suc (suc d)) r) | +comm d (q * suc (suc d)) | sym (+assoc (q * (suc (suc d))) d (suc r)) = ÷<{suc (suc d)}{q}{d + suc r}{x} refl p' -------------------------------------------------- -- ordering properties of < and ≤ℕ -------------------------------------------------- <-irrefl : ∀ (n : ℕ) → n < n ≡ ff <-irrefl 0 = refl <-irrefl (suc n) = <-irrefl n <-asym : ∀ {x y : ℕ} → x < y ≡ tt → y < x ≡ ff <-asym {0} {0} _ = refl <-asym {0} {suc y} p = refl <-asym {suc x}{0} () <-asym {suc x}{suc y} p = <-asym {x} {y} p ℕ-trichotomy𝔹 : ∀ (n m : ℕ) → n < m || n =ℕ m || m < n ≡ tt ℕ-trichotomy𝔹 0 0 = refl ℕ-trichotomy𝔹 0 (suc m) = refl ℕ-trichotomy𝔹 (suc n) 0 = refl ℕ-trichotomy𝔹 (suc n) (suc m) = ℕ-trichotomy𝔹 n m ℕ-trichotomy : ∀ (n m : ℕ) → (n < m ≡ tt) ∨ (n =ℕ m ≡ tt) ∨ (m < n ≡ tt) ℕ-trichotomy n m with ||-split{n < m} (ℕ-trichotomy𝔹 n m) ... | inj₁ p = inj₁ p ... | inj₂ p with ||-split{n =ℕ m} p ... | inj₁ p' = inj₂ (inj₁ p') ... | inj₂ p' = inj₂ (inj₂ p') <-insert : ∀ {x n m : ℕ} → n ≤ m ≡ tt → (x < n ≡ tt) ∨ (n ≤ x && x ≤ m ≡ tt) ∨ (m < x ≡ tt) <-insert{x}{n}{m} q with ℕ-trichotomy x n <-insert{x}{n}{m} q | inj₁ p = inj₁ p <-insert{x}{n}{m} q | inj₂ (inj₁ p) rewrite (=ℕ-to-≡{x} p) | =ℕ-refl n | ||-tt (n < n) = inj₂ (inj₁ q) <-insert{x}{n}{m} q | inj₂ (inj₂ p) rewrite p with ℕ-trichotomy x m <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₁ p' rewrite p' = inj₂ (inj₁ refl) <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₂ (inj₁ p') rewrite p' | ||-tt (x < m) = inj₂ (inj₁ refl) <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₂ (inj₂ p') = inj₂ (inj₂ p') <-insert2 : ∀ {x n m : ℕ} → n ≤ m ≡ tt → (x < n ≡ tt) ∨ (n ≤ x ≡ tt ∧ x ≤ m ≡ tt) ∨ (m < x ≡ tt) <-insert2{x}{n}{m} p with <-insert{x}{n}{m} p <-insert2{x}{n}{m} p | inj₁ p' = inj₁ p' <-insert2{x}{n}{m} p | inj₂ (inj₁ p') with &&-elim {n ≤ x} {x ≤ m} p' <-insert2{x}{n}{m} p | inj₂ (inj₁ p') | p1 , p2 = inj₂ (inj₁ (p1 , p2)) <-insert2{x}{n}{m} p | inj₂ (inj₂ p') = inj₂ (inj₂ p') <-trans : ∀ {x y z : ℕ} → x < y ≡ tt → y < z ≡ tt → x < z ≡ tt <-trans {x} {0} p1 p2 rewrite <-0 x = 𝔹-contra p1 <-trans {0} {suc y} {0} p1 () <-trans {0} {suc y} {suc z} p1 p2 = refl <-trans {suc x} {suc y} {0} p1 () <-trans {suc x} {suc y} {suc z} p1 p2 = <-trans {x} {y} {z} p1 p2 -- <≤-trans : ∀ {x y z : ℕ} → x < y ≡ tt → y ≤ z ≡ tt → x < z ≡ tt -- <≤-trans {x} {y} {z} p1 p2 with ||-split p2 -- ... | inj₁ p' = <-trans{x} p1 p' -- ... | inj₂ p' rewrite =ℕ-to-≡ {y} {z} p' = p1 ≤<-trans : ∀ {x y z : ℕ} → x ≤ y ≡ tt → y < z ≡ tt → x < z ≡ tt ≤<-trans {x} {y} {z} p1 p2 with ||-split p1 ... | inj₁ p' = <-trans{x} p' p2 ... | inj₂ p' rewrite =ℕ-to-≡ {x} {y} p' = p2 ≤-refl : ∀ (x : ℕ) → x ≤ x ≡ tt ≤-refl 0 = refl ≤-refl (suc x) = ≤-refl x ≤-trans : ∀ {x y z : ℕ} → x ≤ y ≡ tt → y ≤ z ≡ tt → x ≤ z ≡ tt ≤-trans {x} {y} {z} p1 p2 with ||-split p1 | ||-split p2 ... | inj₁ p' | inj₁ p'' rewrite <-trans {x} p' p'' = refl ... | inj₂ p' | inj₁ p'' rewrite =ℕ-to-≡ {x} p' | p'' = refl ... | inj₁ p' | inj₂ p'' rewrite =ℕ-to-≡ {y} p'' | p' = refl ... | inj₂ p' | inj₂ p'' rewrite =ℕ-to-≡ {x} p' | =ℕ-to-≡ {y} p'' | =ℕ-refl z | ||-tt (z < z) = refl suc≤ : ∀ {n n' : ℕ} → suc n ≤ suc n' ≡ tt → n ≤ n' ≡ tt suc≤{n}{n'} p = p -- suc≤< : ∀ {n n' : ℕ} → suc n ≤ n' ≡ tt → n < n' ≡ tt -- suc≤<{n} p = <≤-trans{n} (<-suc n) p suc<< : ∀ {n' n : ℕ} → suc n < n' ≡ tt → n < n' ≡ tt suc<<{n = n} p = <-trans{n} (<-suc n) p <-suc-trans : ∀{x y : ℕ} → x < y ≡ tt → x < suc y ≡ tt <-suc-trans{0}{0} _ = refl <-suc-trans{suc x}{0} () <-suc-trans{0}{suc y} _ = refl <-suc-trans{suc x}{suc y} p = <-suc-trans{x}{y} p ≤-suc-trans : ∀{x y : ℕ} → x ≤ y ≡ tt → x ≤ suc y ≡ tt ≤-suc-trans{0}{0} _ = refl ≤-suc-trans{suc x}{0} () ≤-suc-trans{0}{suc y} _ = refl ≤-suc-trans{suc x}{suc y} p = ≤-suc-trans{x}{y} p ------------------------------------------------------------- -- more properties relating <, ≤ with arithmetic operations ------------------------------------------------------------- <+ : ∀ {x y : ℕ} → y =ℕ 0 ≡ ff → x < y + x ≡ tt <+{y = 0} () <+{x}{suc 0} p = <-suc x <+{x}{suc (suc y)} p = <-trans{x}{(suc y) + x}{suc ((suc y) + x)} (<+{x}{suc y} refl) (<-suc ((suc y) + x)) <+2 : ∀ {x y : ℕ} → x < (suc y) + x ≡ tt <+2{x}{y} = <+{x}{suc y} refl <-iter-suc-trans-t-h : (n : ℕ) → (x : ℕ) → (accum : ℕ) → Set <-iter-suc-trans-t-h 0 x accum = x < accum ≡ tt <-iter-suc-trans-t-h (suc n) x accum = <-iter-suc-trans-t-h n x (suc accum) <-iter-suc-trans-t : (n : ℕ) → (x : ℕ) → Set <-iter-suc-trans-t n x = <-iter-suc-trans-t-h n x (suc x) <-iter-suc-trans-h : ∀ (n : ℕ) → (x : ℕ) → (accum : ℕ) → x < accum ≡ tt → <-iter-suc-trans-t-h n x accum <-iter-suc-trans-h 0 x accum p = p <-iter-suc-trans-h (suc n) x accum p = <-iter-suc-trans-h n x (suc accum) (<-suc-trans{x} p) <-iter-suc-trans : ∀ (n : ℕ) → (x : ℕ) → <-iter-suc-trans-t n x <-iter-suc-trans n x = <-iter-suc-trans-h n x (suc x) (<-suc x) ≤0 : ∀ (n : ℕ) → 0 ≤ n ≡ tt ≤0 0 = refl ≤0 (suc n) = refl ≤2* : ∀ (x : ℕ) → x ≤ 2 * x ≡ tt ≤2* 0 = refl ≤2* (suc x) rewrite +suc x (x + 0) | ≤<-trans {x} (≤2* x) (<-suc (2 * x)) = refl 0<+ : ∀ (x y : ℕ) → 0 < y ≡ tt → 0 < x + y ≡ tt 0<+ 0 y p = p 0<+ (suc x) y p = refl <=ℕff2 : ∀ (x : ℕ) → 1 < x ≡ tt → x =ℕ 0 ≡ ff <=ℕff2 x p = <=ℕff x (<-trans{0}{1}{x} refl p) *≤ : ∀(x y : ℕ) → x ≤ x * (suc y) ≡ tt *≤ zero y = refl *≤ (suc x) y = ≤-trans {x} (*≤ x y) (≤+2 y (x * suc y)) -------------------------------------------------- -- relationships between ≤ and < -------------------------------------------------- ≤ff : ∀ {x y : ℕ} → x ≤ y ≡ ff → y < x ≡ tt ≤ff{0}{0} () ≤ff{0}{suc y} () ≤ff{suc x}{0} _ = refl ≤ff{suc x}{suc y} p rewrite ≤ff {x}{y} p = refl <ff : ∀ {x y : ℕ} → x < y ≡ ff → y ≤ x ≡ tt <ff{x}{y} p with ℕ-trichotomy x y ... | inj₁ u rewrite u = 𝔹-contra (sym p) ... | inj₂ (inj₁ u) rewrite (=ℕ-to-≡{x} u) | =ℕ-refl y | ||-tt (y < y) = refl ... | inj₂ (inj₂ u) rewrite u = refl <-not-=ℕ : ∀{x y : ℕ} → x < y ≡ tt → y =ℕ x ≡ ff <-not-=ℕ{0}{0} () <-not-=ℕ{suc x}{0} () <-not-=ℕ{0}{suc y} p = refl <-not-=ℕ{suc x}{suc y} p = <-not-=ℕ{x}{y} p <-not-> : ∀{x y : ℕ} → x < y ≡ tt → y < x ≡ ff <-not->{0}{0} () <-not->{suc x}{0} () <-not->{0}{suc y} p = refl <-not->{suc x}{suc y} p = <-not->{x}{y} p <tt : ∀ {x y : ℕ} → x < y ≡ tt → y ≤ x ≡ ff <tt{x}{y} p rewrite <-not-=ℕ{x}{y} p | <-not->{x}{y} p = refl ≤-antisym : ∀{x y : ℕ} → x ≤ y ≡ tt → y ≤ x ≡ tt → x ≡ y ≤-antisym{x}{y} p q with ||-split {x < y} p ≤-antisym{x}{y} p q | inj₁ u rewrite <tt{x} u with q ≤-antisym{x}{y} p q | inj₁ u | () ≤-antisym{x}{y} p q | inj₂ u = =ℕ-to-≡ u -------------------------------------------------- -- monotonicity properties of < and ≤ℕ -------------------------------------------------- <+mono1 : ∀ {z x y : ℕ} → x < y ≡ tt → z + x < z + y ≡ tt <+mono1{0} p = p <+mono1{suc z} p = <+mono1{z} p <+mono2 : ∀ {x y z : ℕ} → x < y ≡ tt → x + z < y + z ≡ tt <+mono2{x}{y}{z} p rewrite +comm x z | +comm y z | <+mono1{z}{x}{y} p = refl -------------------------------------------------- -- properties of subtraction -------------------------------------------------- 0∸ : ∀ {x : ℕ} → 0 ∸ x ≡ 0 0∸{0} = refl 0∸{suc x} = refl ∸≤ : ∀ (x y : ℕ) → x ∸ y ≤ x ≡ tt ∸≤ 0 0 = refl ∸≤ (suc x) 0 rewrite (=ℕ-refl x) = ||-tt (x < x) ∸≤ 0 (suc y) = refl ∸≤ (suc x) (suc y) with ||-split{x ∸ y < x}{x ∸ y =ℕ x} (∸≤ x y) ... | inj₁ u rewrite <-trans {x ∸ y} u (<-suc x) = refl ... | inj₂ u rewrite (=ℕ-to-≡ {x ∸ y} u) | <-suc x = refl ∸< : ∀ {x y : ℕ} → x =ℕ 0 ≡ ff → x ∸ (suc y) < x ≡ tt ∸< {0} {y} () ∸< {suc x} {y} _ with ||-split{x ∸ y < x}{x ∸ y =ℕ x} (∸≤ x y) ... | inj₁ u = <-trans {x ∸ y} u (<-suc x) ... | inj₂ u rewrite (=ℕ-to-≡ {x ∸ y} u) = <-suc x ∸<1 : ∀ {x y : ℕ} → x ∸ y < suc x ≡ tt ∸<1 {zero} {zero} = refl ∸<1 {zero} {suc y} = refl ∸<1 {suc x} {zero} = <-suc x ∸<1 {suc x} {suc y} = <-trans {x ∸ y}{suc x} (∸<1 {x} {y}) (<-suc x) +∸1 : ∀ {x y : ℕ} → x < y ≡ tt → x + (y ∸ x) ≡ y +∸1{0} p = refl +∸1{suc x}{0} () +∸1{suc x}{suc y} p rewrite +∸1{x}{y} p = refl ∸+ : ∀ {x y z : ℕ} → x ∸ (y + z) ≡ (x ∸ y) ∸ z ∸+{x}{0} = refl ∸+{0}{suc y}{z} rewrite 0∸{z} = refl ∸+{suc x}{suc y} = ∸+{x}{y} ∸+2 : ∀ {x y : ℕ} → y ≤ x ≡ tt → (x ∸ y) + y ≡ x ∸+2{0}{0} _ = refl ∸+2{suc x}{0} _ rewrite +0 x = refl ∸+2{0}{suc y} () ∸+2{suc x}{suc y} p rewrite +suc (x ∸ y) y | ∸+2{x}{y} p = refl ∸eq-swap : ∀ {x y z : ℕ} → y ≤ x ≡ tt → z ≡ x ∸ y → z + y ≡ x ∸eq-swap{x}{y}{z} p q = lem (cong (λ w → w + y) q) where lem : z + y ≡ (x ∸ y) + y → z + y ≡ x lem p' rewrite ∸+2{x}{y} p = p' <∸ : ∀ {x y : ℕ} → (y < x ≡ tt) → ((x ∸ y =ℕ 0) ≡ ff) <∸ {0}{y} p with <-0 y ... | q rewrite p = 𝔹-contra (sym q) <∸ {suc x}{0} p = refl <∸ {suc x}{suc y} p = <∸{x}{y} p <∸suc : ∀ {x y : ℕ} → (y < x ≡ tt) → Σ ℕ (λ n → x ∸ y ≡ suc n) <∸suc{x}{y} p with keep (x ∸ y) <∸suc{x}{y} p | 0 , r with <∸{x}{y} p <∸suc{x}{y} p | 0 , r | q rewrite r with q <∸suc{x}{y} p | 0 , r | q | () <∸suc{x}{y} p | suc n , r = n , r ∸suc : ∀ {x y z : ℕ } → y < x ≡ tt → x ∸ (y + (suc z)) < x ∸ y ≡ tt ∸suc{x}{y}{z} p rewrite ∸+{x}{y}{suc z} = ∸< {x ∸ y} (<∸{x}{y} p) ∸suc2 : ∀ {x y z : ℕ } → y < x ≡ tt → x ∸ ((suc z) + y) < x ∸ y ≡ tt ∸suc2{x}{y}{z} p rewrite +comm (suc z) y = ∸suc{x}{y}{z} p ∸cancel : ∀ (x y z : ℕ) → (x + y) ∸ (x + z) ≡ y ∸ z ∸cancel 0 y z = refl ∸cancel (suc x) y z = ∸cancel x y z distribr*∸ : ∀ (x y z : ℕ) → (x ∸ y) * z ≡ x * z ∸ y * z distribr*∸ 0 y z rewrite 0∸{y} | 0∸{y * z} = refl distribr*∸ (suc x) 0 z = refl distribr*∸ (suc x) (suc y) z rewrite distribr*∸ x y z | ∸cancel z (x * z) (y * z) = refl ∸≤2 : ∀ (n x y : ℕ) → x ≤ suc n ≡ tt → y =ℕ 0 ≡ ff → x ∸ y ≤ n ≡ tt ∸≤2 0 0 y p1 p2 rewrite 0∸{y} = refl ∸≤2 0 (suc x) 0 p1 () ∸≤2 0 (suc 0) (suc y) p1 p2 rewrite 0∸{y}= refl ∸≤2 0 (suc (suc x)) (suc y) () p2 ∸≤2 (suc n) 0 y p1 p2 rewrite 0∸{y} = refl ∸≤2 (suc n) (suc x) 0 p1 () ∸≤2 (suc n) (suc x) (suc 0) p1 p2 = p1 ∸≤2 (suc n) (suc x) (suc (suc y)) p1 p2 = ≤-trans{x ∸ suc y}{n}{suc n} (∸≤2 n x (suc y) p1 refl) (≤-suc n) -------------------------------------------------- -- properties of min, max -------------------------------------------------- min-forced1 : ∀ {n n' m : ℕ} → n < n' ≡ tt → n ≡ min n' m → n ≡ m min-forced1{n}{n'}{m} p1 p2 with n' < m ... | tt rewrite p2 = 𝔹-contra (trans (sym (<-irrefl n')) p1) ... | ff = p2 min-suc : ∀ (n m : ℕ) → min (suc n) (suc m) ≡ suc (min n m) min-suc n m rewrite (ite-arg suc (n < m) n m) = refl max-suc : ∀ (n m : ℕ) → max (suc n) (suc m) ≡ suc (max n m) max-suc n m rewrite (ite-arg suc (n < m) m n) = refl min-mono1 : ∀ (n n' m : ℕ) → n ≤ n' ≡ tt → min n m ≤ min n' m ≡ tt min-mono1 n n' m p with ||-split{n < n'} p ... | inj₂ p' rewrite =ℕ-to-≡ {n} p' | =ℕ-refl (min n' m) | ||-tt ((min n' m) < (min n' m)) = refl ... | inj₁ p' with ℕ-trichotomy n' m ... | inj₁ p'' rewrite <-trans {n} p' p'' | p'' | p' = refl ... | inj₂ (inj₁ p'') rewrite =ℕ-to-≡ {n'} p'' | p' | =ℕ-refl (min n m) | ||-tt ((min n m) < (min n m)) | <-irrefl m | p' = refl ... | inj₂ (inj₂ p'') rewrite <-asym {m} p'' with ℕ-trichotomy n m ... | inj₁ p''' rewrite p''' | p''' = refl ... | inj₂ (inj₁ p''') rewrite =ℕ-to-≡ {n} p''' | <-irrefl m | =ℕ-refl m | ||-tt (m < m) = refl ... | inj₂ (inj₂ p''') rewrite <-asym {m} p''' | =ℕ-refl m | ||-tt (m < m) = refl min-comm : ∀ (n m : ℕ) → min n m ≡ min m n min-comm n m with ℕ-trichotomy n m ... | inj₁ p rewrite p | <-asym {n} p = refl ... | inj₂ (inj₁ p) rewrite =ℕ-to-≡ {n} p = refl ... | inj₂ (inj₂ p) rewrite p | <-asym {m} p = refl min-mono2 : ∀ (n m m' : ℕ) → m ≤ m' ≡ tt → min n m ≤ min n m' ≡ tt min-mono2 n m m' p rewrite min-comm n m | min-comm n m' = min-mono1 m m' n p min-same : ∀ (n : ℕ) → min n n ≡ n min-same n rewrite <-irrefl n = refl min-<1 : ∀ {n m : ℕ} → min n m ≤ m ≡ tt min-<1{0}{0} = refl min-<1{0}{suc m} = refl min-<1{suc n}{0} = refl min-<1{suc n}{suc m} rewrite min-suc n m = min-<1{n} min-<2 : ∀ {n m : ℕ} → min n m ≤ n ≡ tt min-<2{0}{0} = refl min-<2{0}{suc m} = refl min-<2{suc n}{0} = refl min-<2{suc n}{suc m} rewrite min-suc n m = min-<2{n} max-<1 : ∀ {n m : ℕ} → n ≤ max n m ≡ tt max-<1{0}{0} = refl max-<1{0}{suc m} = refl max-<1{suc n}{0} rewrite =ℕ-refl n | ||-tt (n < n) = refl max-<1{suc n}{suc m} rewrite max-suc n m = max-<1{n} max-<2 : ∀ {n m : ℕ} → n ≤ max n m ≡ tt max-<2{0}{0} = refl max-<2{0}{suc m} = refl max-<2{suc n}{0} rewrite =ℕ-refl n | ||-tt (n < n) = refl max-<2{suc n}{suc m} rewrite max-suc n m = max-<2{n} -------------------------------------------------- -- some disequalities -------------------------------------------------- +≢ : ∀ (x y : ℕ) → x ≢ x + suc y +≢ 0 y () +≢ (suc x) y p with =ℕ-from-≡ {suc x} p ... | q with =ℕ-to-≡ {x} q ... | r = +≢ x y r -------------------------------------------------- -- properties of parity -------------------------------------------------- parity-even : ∀ (x : ℕ) → parity (x * 2) ≡ ff parity-even 0 = refl parity-even (suc x) rewrite parity-even x = refl parity-even2 : ∀ (x : ℕ) → parity (2 * x) ≡ ff parity-even2 x rewrite *comm 2 x = parity-even x parity-odd : ∀ (x : ℕ) → parity (x * 2 + 1) ≡ tt parity-odd 0 = refl parity-odd (suc x) rewrite parity-odd x = refl parity-add : ∀ (x y : ℕ) → parity (x + y) ≡ (parity x) xor (parity y) parity-add 0 y rewrite ff-xor (parity y) = refl parity-add (suc x) y rewrite parity-add x y | ~-xor-distrb (parity x) (parity y) = refl parity-mult : ∀ (x y : ℕ) → parity (x * y) ≡ (parity x) && (parity y) parity-mult 0 y = refl parity-mult (suc x) y rewrite parity-add y (x * y) | parity-mult x y = xor-distrib-&& (parity y) (parity x) -------------------------------------------------- -- properties of power -------------------------------------------------- 1-pow : ∀ {n : ℕ} → 1 pow n ≡ 1 1-pow {0} = refl 1-pow {(suc n)} rewrite 1-pow {n} = refl nonzero-pow : ∀ (x y : ℕ) → x =ℕ 0 ≡ ff → iszero (x pow y) ≡ ff nonzero-pow x 0 _ = refl nonzero-pow 0 (suc y) () nonzero-pow (suc x) (suc y) p rewrite iszerosum2 (suc x pow y) (x * suc x pow y) (nonzero-pow (suc x) y refl) = refl pow+ : ∀ (x y z : ℕ) → x pow (y + z) ≡ (x pow y) * (x pow z) pow+ x 0 z rewrite +0 (x pow z) = refl pow+ x (suc y) z rewrite pow+ x y z | *assoc x (x pow y) (x pow z) = refl pow* : ∀ (x y z : ℕ) → x pow (y * z) ≡ (x pow y) pow z pow* x y 0 rewrite *0 y = refl pow* x y (suc z) rewrite sym (pow* x y z) | sym (pow+ x y (y * z)) | *comm y (suc z) | *comm y z = refl -------------------------------------------------- -- properties of factorial -------------------------------------------------- factorial-nonzero : ∀ (n : ℕ) → iszero (factorial n) ≡ ff factorial-nonzero zero = refl factorial-nonzero (suc x) rewrite iszerosum (factorial x) (x * factorial x) | factorial-nonzero x = refl -------------------------------------------------- -- injectivity properties of addition -------------------------------------------------- +inj1 : ∀ {x y z : ℕ} → x + y ≡ x + z → y ≡ z +inj1 {0} {y} {z} p = p +inj1 {suc x} {y} {z} p = +inj1 {x} {y} {z} (suc-inj p) +inj2 : ∀ {x y z : ℕ} → x + z ≡ y + z → x ≡ y +inj2 {x} {y} {z} p rewrite +comm x z | +comm y z = +inj1 {z} {x} {y} p -------------------------------------------------- -- properties of is-even, is-odd -------------------------------------------------- even~odd : ∀ (x : ℕ) → is-even x ≡ ~ is-odd x odd~even : ∀ (x : ℕ) → is-odd x ≡ ~ is-even x even~odd zero = refl even~odd (suc x) = odd~even x odd~even zero = refl odd~even (suc x) = even~odd x suc-eq : ∀{x y} → suc x ≡ suc y → x ≡ y suc-eq refl = refl suc-eq⊥ : ∀{x y} → ¬ (x ≡ y) → ¬ (suc x ≡ suc y) suc-eq⊥ p refl = p refl zero-suc-eq⊥ : ∀{x} → zero ≡ suc x → ⊥ {lzero} zero-suc-eq⊥ () suc-zero-eq⊥ : ∀{x} → suc x ≡ zero → ⊥ {lzero} suc-zero-eq⊥ ()
{ "alphanum_fraction": 0.4408203034, "avg_line_length": 33.8351648352, "ext": "agda", "hexsha": "3782a7c2e42c5b3c698afcc4a13288e7f194a51b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "nat-thms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "nat-thms.agda", "max_line_length": 179, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "nat-thms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10156, "size": 21553 }
module _ where module M (X : Set) where postulate F : Set G : Set data ⊥ : Set where open M ⊥ hiding (F) easy : M.G ⊥ easy = {!!} -- G hard : M.F ⊥ hard = {!!} -- M.F ⊥ (and not .Issue1640._.F) data ⊤ : Set where tt : ⊤ module With where private F : ⊤ → Set F x with x F _ | tt = ⊥ T = F tricky : ∀ t → With.T t tricky t = {!!} -- .Issue1640.With.F t | t
{ "alphanum_fraction": 0.4962406015, "avg_line_length": 12.46875, "ext": "agda", "hexsha": "39e81b9cbc22ca8bee876244b1bfab9f9f1cc67a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1640.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1640.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1640.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 162, "size": 399 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Nat using (Nat; zero; suc) open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite variable k l m n : Nat postulate max : Nat → Nat → Nat max-0l : max 0 n ≡ n max-0r : max m 0 ≡ m max-diag : max m m ≡ m max-ss : max (suc m) (suc n) ≡ suc (max m n) max-assoc : max (max k l) m ≡ max k (max l m) {-# REWRITE max-0l #-} {-# REWRITE max-0r #-} {-# REWRITE max-diag #-} {-# REWRITE max-ss #-} {-# REWRITE max-assoc #-} -- not confluent!
{ "alphanum_fraction": 0.6132596685, "avg_line_length": 22.625, "ext": "agda", "hexsha": "cbf49c5c36f0507d252af84a749fe41c44e119a5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RewritingNonConfluent1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RewritingNonConfluent1.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RewritingNonConfluent1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 198, "size": 543 }
module bstd.bake where open import Agda.Builtin.Nat open import Agda.Builtin.String open import Data.Word8.Primitive open import Data.ByteString.Primitive.Strict open import Data.Tuple.Base module bpace (Scalar : Set) (Point : Set) (scalarMul : Scalar → Point → Point) (2ᴸ : Set) (Key : Set) (enc dec : Key → 2ᴸ → 2ᴸ) (swu : 2ᴸ → 2ᴸ → Point) (Hello : Set) (I : Set) (i₀ i₁ : I) (kdf : (K Vᵃ Vᵇ : Point) (helloᵃ helloᵇ : Hello) → I → Key) (Tag : Set) (mac : Key → I → Tag) where s₂ : (K₂ : Key) → (Rᵇ : 2ᴸ) → 2ᴸ s₂ K₂ Rᵇ = Yᵇ where Yᵇ = enc K₂ Rᵇ s₃ : (K₂ : Key) → (Rᵃ : 2ᴸ) → (uᵃ : Scalar) → (Yᵇ : 2ᴸ) → 2ᴸ ∥ Point s₃ K₂ Rᵃ uᵃ Yᵇ = Yᵃ , Vᵃ where Rᵇ = dec K₂ Yᵇ Yᵃ = enc K₂ Rᵃ W = swu Rᵃ Rᵇ Vᵃ = scalarMul uᵃ W s₄ : (K₂ : Key) → (Rᵇ : 2ᴸ) → (uᵇ : Scalar) → (helloᵇ : Hello) → (Yᵃ : 2ᴸ) → (Vᵃ : Point) → (helloᵃ : Hello) → Point ∥ Tag s₄ K₂ Rᵇ uᵇ helloᵇ Yᵃ Vᵃ helloᵃ = Vᵇ , Tᵇ where Rᵃ = dec K₂ Yᵃ W = swu Rᵃ Rᵇ Vᵇ = scalarMul uᵇ W K = scalarMul uᵇ Vᵃ K₀ = kdf K Vᵃ Vᵇ helloᵃ helloᵇ i₀ K₁ = kdf K Vᵃ Vᵇ helloᵃ helloᵇ i₁ Tᵇ = mac K₁ i₁ s₅ : (Vᵇ : Point) → (helloᵇ : Hello) → (uᵃ : Scalar) → (Vᵃ : Point) → (helloᵃ : Hello) → Tag s₅ Vᵇ helloᵇ uᵃ Vᵃ helloᵃ = Tᵃ where K = scalarMul uᵃ Vᵇ K₀ = kdf K Vᵃ Vᵇ helloᵃ helloᵇ i₀ K₁ = kdf K Vᵃ Vᵇ helloᵃ helloᵇ i₁ Tᵃ = mac K₁ i₀
{ "alphanum_fraction": 0.5550070522, "avg_line_length": 23.2459016393, "ext": "agda", "hexsha": "4602983066cfd30e87682d889351c285c223842e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bstd", "max_forks_repo_path": "src/bstd/bake.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bstd", "max_issues_repo_path": "src/bstd/bake.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bstd", "max_stars_repo_path": "src/bstd/bake.agda", "max_stars_repo_stars_event_max_datetime": "2019-06-29T10:40:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-29T10:40:15.000Z", "num_tokens": 815, "size": 1418 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pretty Printing -- This module is based on Jean-Philippe Bernardy's functional pearl -- "A Pretty But Not Greedy Printer" ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} open import Data.Nat.Base using (ℕ) module Text.Pretty (width : ℕ) where import Level open import Data.Char.Base using (Char) open import Data.List.Base using (List; _∷_; []; [_]; uncons; _++_; map; filter) open import Data.List.NonEmpty as List⁺ using (foldr₁) open import Data.Maybe.Base using (maybe′) open import Data.Product using (uncurry) open import Data.String.Base using (String; fromList; replicate) open import Function.Base open import Category.Monad using (RawMonad) import Data.List.Categorical as Cat open RawMonad (Cat.monad {Level.zero}) import Data.Nat.Properties as ℕₚ open import Data.List.Extrema.Core ℕₚ.≤-totalOrder using (⊓ᴸ) ------------------------------------------------------------------------ -- Internal representation of documents and rendering function import Text.Pretty.Core as Core Doc = List Core.Block render : Doc → String render = Core.render ∘ maybe′ (foldr₁ (⊓ᴸ Core.Block.height) ∘′ uncurry List⁺._∷_) Core.empty ∘ uncons ------------------------------------------------------------------------ -- Basic building blocks fail : Doc fail = [] text : String → Doc text = filter (Core.valid width) ∘ pure ∘ Core.text empty : Doc empty = text "" char : Char → Doc char c = text (fromList (c ∷ [])) spaces : ℕ → Doc spaces n = text (replicate n ' ') semi colon comma space dot : Doc semi = char ';'; colon = char ':' comma = char ','; space = char ' '; dot = char '.' backslash forwardslash equal : Doc backslash = char '\\'; forwardslash = char '/'; equal = char '=' squote dquote : Doc squote = char '\''; dquote = char '"' lparen rparen langle rangle : Doc lparen = char '('; rparen = char ')' langle = char '<'; rangle = char '>' lbrace rbrace llbrace rrbrace : Doc lbrace = char '{'; rbrace = char '}' llbrace = char '⦃'; rrbrace = char '⦄' lbracket rbracket llbracket rrbracket : Doc lbracket = char '['; rbracket = char ']' llbracket = char '⟦'; rrbracket = char '⟧' ------------------------------------------------------------------------ -- Combining two documents infixr 5 _<>_ _<>_ : Doc → Doc → Doc xs <> ys = filter (Core.valid width) (Core._<>_ <$> xs ⊛ ys) flush : Doc → Doc flush = map Core.flush infixr 5 _<+>_ _<+>_ : Doc → Doc → Doc x <+> y = x <> space <> y infixr 5 _$$_ _$$_ : Doc → Doc → Doc x $$ y = flush x <> y infixr 4 _<|>_ _<|>_ : Doc → Doc → Doc x <|> y = x ++ y ------------------------------------------------------------------------ -- Combining lists of documents foldDoc : (Doc → Doc → Doc) → List Doc → Doc foldDoc _ [] = empty foldDoc _ (x ∷ []) = x foldDoc f (x ∷ xs) = f x (foldDoc f xs) hsep vcat : List Doc → Doc hsep = foldDoc _<+>_ vcat = foldDoc _$$_ sep : List Doc → Doc sep [] = empty sep xs = hsep xs <|> vcat xs ------------------------------------------------------------------------ -- Defined combinators parens : Doc → Doc parens d = lparen <> d <> rparen commaSep : List Doc → Doc commaSep = foldDoc (λ d e → d <> comma <+> e) newline : Doc newline = flush empty
{ "alphanum_fraction": 0.5493293592, "avg_line_length": 25.2255639098, "ext": "agda", "hexsha": "bcdb3f71f7d348b220b27e1c344569dbcfc43ffd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Text/Pretty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Text/Pretty.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Text/Pretty.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 905, "size": 3355 }
{-# OPTIONS --safe #-} module Cubical.Data.NatPlusOne.MoreNats.AssocNat where open import Cubical.Data.NatPlusOne.MoreNats.AssocNat.Base public open import Cubical.Data.NatPlusOne.MoreNats.AssocNat.Properties public
{ "alphanum_fraction": 0.8248847926, "avg_line_length": 36.1666666667, "ext": "agda", "hexsha": "90b08ba6fd40056dca951f61319570511365c23a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 57, "size": 217 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Construct.Matrix {k ℓ} (K : Field k ℓ) where open import Level using (_⊔_) open import Data.Product hiding (map) open import Data.Fin using (Fin; toℕ; fromℕ; _≤_) open import Data.Fin.Properties using (¬Fin0) open import Data.Nat hiding (_⊔_; _≤_) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) open import Data.Nat.Properties using (1+n≢0) open import Relation.Binary import Data.Vec.Relation.Binary.Pointwise.Inductive as PW open import Algebra.Linear.Core import Data.Vec.Properties as VP open import Algebra.Structures.Field.Utils K import Algebra.Linear.Construct.Vector K as V open V using (Vec; zipWith; replicate) renaming ( _+_ to _+v_ ; _∙_ to _∙v_ ; -_ to -v_ ) open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; subst-subst-sym; _≗_) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans ) import Algebra.Linear.Structures.VectorSpace as VS open VS.VectorSpaceField K open import Data.Nat.Properties using ( ≤-refl ; ≤-reflexive ; ≤-antisym ; n∸n≡0 ; m+[n∸m]≡n ; m≤m+n ; suc-injective ) renaming ( +-identityˡ to +ℕ-identityˡ ; +-identityʳ to +ℕ-identityʳ  ) Matrix : ℕ -> ℕ -> Set k Matrix n p = Vec (Vec K' p) n private M : ℕ -> ℕ -> Set k M = Matrix _≈ʰ_ : ∀ {n p n' p'} (A : M n p) (B : M n' p') → Set (k ⊔ ℓ) _≈ʰ_ = PW.Pointwise V._≈ʰ_ module _ {n p} where setoid : Setoid k (k ⊔ ℓ) setoid = record { Carrier = M n p ; _≈_ = _≈ʰ_ {n} {p} ; isEquivalence = PW.isEquivalence (V.≈-isEquiv {p}) n } open Setoid setoid public renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ; reflexive to ≈-reflexive ; isEquivalence to ≈-isEquiv ) import Algebra.FunctionProperties as FP tabulate : ∀ {n p} -> (Fin n -> Fin p -> K') -> M n p tabulate f = V.tabulate λ i -> V.tabulate λ j -> f i j tabulate⁺ : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≈ᵏ g i j) -> tabulate f ≈ tabulate g tabulate⁺ {0} r = PW.[] tabulate⁺ {suc n} {p} {f} {g} r = (PW.tabulate⁺ (r Fin.zero)) PW.∷ tabulate⁺ {n} {p} λ i j → r (Fin.suc i) j fromVec : ∀ {n p} -> V.Vec K' (n *ℕ p) -> M n p fromVec {0} V.[] = V.[] fromVec {suc n} {p} xs = let (vp , vnp , _) = V.splitAt p xs in vp V.∷ fromVec {n} vnp toVec : ∀ {n p} -> M n p -> V.Vec K' (n *ℕ p) toVec {n} {p} = V.concat {m = p} {n = n} concat∘fromVec : ∀ {n p} (v : V.Vec K' (n *ℕ p)) -> toVec {n} {p} (fromVec v) V.≈ v concat∘fromVec {0} V.[] = PW.[] concat∘fromVec {suc n} {p} v = let (vn , vnp , r) = V.splitAt p v in begin toVec {suc n} {p} (fromVec v) ≡⟨⟩ vn V.++ toVec {n} {p} (fromVec vnp) ≈⟨ V.++-cong {p} {n *ℕ p} V.≈-refl (concat∘fromVec {n} {p} vnp) ⟩ vn V.++ vnp ≈⟨ V.≈-sym (V.≈-reflexive r) ⟩ v ∎ where open import Relation.Binary.EqReasoning (V.setoid (suc n *ℕ p)) _++_ : ∀ {n p q} -> M n p -> M n q -> M n (p +ℕ q) _++_ = zipWith V._++_ _‡_ : ∀ {n m p} -> M n p -> M m p -> M (n +ℕ m) p _‡_ = V._++_ lookup : ∀ {n p} -> M n p -> Fin n -> Fin p -> K' lookup A i j = V.lookup (V.lookup A i) j _⟪_,_⟫ : ∀ {n p} -> M n p -> Fin n -> Fin p -> K' _⟪_,_⟫ = lookup lookup-cong : ∀ {n p} {A B : M n p} (i : Fin n) (j : Fin p) -> A ≈ B -> (A ⟪ i , j ⟫) ≈ᵏ (B ⟪ i , j ⟫) lookup-cong i j rs = PW.lookup (PW.lookup rs i) j tabulate∘lookup : ∀ {n p} (A : M n p) → tabulate (lookup A) ≡ A tabulate∘lookup A = begin tabulate (lookup A) ≡⟨⟩ V.tabulate (λ i -> V.tabulate λ j -> V.lookup (V.lookup A i) j) ≡⟨ VP.tabulate-cong (λ i → VP.tabulate∘lookup (V.lookup A i)) ⟩ V.tabulate (λ i -> V.lookup A i) ≡⟨ VP.tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning lookup∘tabulate : ∀ {n p} (f : Fin n -> Fin p -> K') (i : Fin n) (j : Fin p) -> lookup (tabulate f) i j ≡ f i j lookup∘tabulate {suc n} f i j = begin lookup (tabulate f) i j ≡⟨⟩ V.lookup (V.lookup (V.tabulate λ i′ -> V.tabulate λ j′ -> f i′ j′) i) j ≡⟨ cong (λ u → V.lookup u j) (VP.lookup∘tabulate (λ i′ -> V.tabulate λ j′ -> f i′ j′) i) ⟩ V.lookup (V.tabulate λ j′ -> f i j′) j ≡⟨ VP.lookup∘tabulate (λ j′ -> f i j′) j ⟩ f i j ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning tabulate-cong-≡ : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≡ g i j) -> tabulate f ≡ tabulate g tabulate-cong-≡ {f = f} {g = g} r = VP.tabulate-cong (λ i → VP.tabulate-cong (λ j → r i j)) tabulate-cong : ∀ {n p} {f g : Fin n -> Fin p -> K'} -> (∀ i j -> f i j ≈ᵏ g i j) -> tabulate f ≈ tabulate g tabulate-cong {f = f} {g = g} r = PW.tabulate⁺ (λ i → V.tabulate-cong (λ j → r i j)) transpose : ∀ {n p} -> M n p -> M p n transpose A = tabulate λ i j -> A ⟪ j , i ⟫ _ᵀ : ∀ {n p} -> M n p -> M p n _ᵀ = transpose transpose-involutive : ∀ {n p} (A : M n p) -> ((A ᵀ) ᵀ) ≡ A transpose-involutive A = begin ((A ᵀ)ᵀ) ≡⟨⟩ (tabulate λ i j -> (tabulate λ i′ j′ -> A ⟪ j′ , i′ ⟫) ⟪ j , i ⟫) ≡⟨ tabulate-cong-≡ (λ i j → lookup∘tabulate (λ i′ j′ -> A ⟪ j′ , i′ ⟫) j i) ⟩ (tabulate λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning map : ∀ {n p} -> (K' -> K') -> M n p -> M n p map f = V.map (V.map f) mapRows : ∀ {n p q} -> (V.Vec K' p -> V.Vec K' q) -> M n p -> M n q mapRows = V.map mapCols : ∀ {n m p} -> (V.Vec K' n -> V.Vec K' m) -> M n p -> M m p mapCols f A = (V.map f (A ᵀ)) ᵀ map-cong : ∀ {n p} {f g : K' -> K'} -> f ≗ g -> map {n} {p} f ≗ map g map-cong r = VP.map-cong (VP.map-cong r) mapRows-cong : ∀ {n p q} {f g : V.Vec K' p -> V.Vec K' q} -> f ≗ g -> mapRows {n} f ≗ mapRows g mapRows-cong = VP.map-cong mapCols-cong : ∀ {n m p} {f g : V.Vec K' n -> V.Vec K' m} -> f ≗ g -> mapCols {n} {m} {p} f ≗ mapCols g mapCols-cong r A = P.cong transpose (VP.map-cong r (transpose A)) open import Data.Nat.DivMod _+_ : ∀ {n p} -> FP.Op₂ (M n p) _+_ = zipWith V._+_ _∙_ : ∀ {n p} -> ScalarMultiplication K' (M n p) _∙_ k = V.map (k V.∙_) -_ : ∀ {n p} -> FP.Op₁ (M n p) -_ = V.map V.-_ 0# : ∀ {n p} -> M n p 0# = replicate V.0# +-cong : ∀ {n p} {A B C D : M n p} -> A ≈ B -> C ≈ D -> (A + C) ≈ (B + D) +-cong PW.[] PW.[] = PW.[] +-cong (r₁ PW.∷ rs₁) (r₂ PW.∷ rs₂) = V.+-cong r₁ r₂ PW.∷ +-cong rs₁ rs₂ +-assoc : ∀ {n p} (A B C : M n p) -> ((A + B) + C) ≈ (A + (B + C)) +-assoc V.[] V.[] V.[] = PW.[] +-assoc (u V.∷ us) (v V.∷ vs) (w V.∷ ws) = V.+-assoc u v w PW.∷ +-assoc us vs ws +-identityˡ : ∀ {n p} (A : M n p) -> (0# + A) ≈ A +-identityˡ V.[] = PW.[] +-identityˡ (u V.∷ us) = V.+-identityˡ u PW.∷ +-identityˡ us +-identityʳ : ∀ {n p} (A : M n p) -> (A + 0#) ≈ A +-identityʳ V.[] = PW.[] +-identityʳ (u V.∷ us) = V.+-identityʳ u PW.∷ +-identityʳ us +-identity : ∀ {n p} -> ((∀ (A : M n p) -> ((0# + A) ≈ A)) × (∀ (A : M n p) -> ((A + 0#) ≈ A))) +-identity = +-identityˡ , +-identityʳ +-comm : ∀ {n p} (A B : M n p) -> (A + B) ≈ (B + A) +-comm V.[] V.[] = PW.[] +-comm (u V.∷ us) (v V.∷ vs) = (V.+-comm u v) PW.∷ (+-comm us vs) *ᵏ-∙-compat : ∀ {n p} (a b : K') (A : M n p) -> ((a *ᵏ b) ∙ A) ≈ (a ∙ (b ∙ A)) *ᵏ-∙-compat a b V.[] = PW.[] *ᵏ-∙-compat a b (u V.∷ us) = (V.*ᵏ-∙-compat a b u) PW.∷ (*ᵏ-∙-compat a b us) ∙-+-distrib : ∀ {n p} (a : K') (A B : M n p) -> (a ∙ (A + B)) ≈ ((a ∙ A) + (a ∙ B)) ∙-+-distrib a V.[] V.[] = PW.[] ∙-+-distrib a (u V.∷ us) (v V.∷ vs) = (V.∙-+-distrib a u v) PW.∷ (∙-+-distrib a us vs) ∙-+ᵏ-distrib : ∀ {n p} (a b : K') (A : M n p) -> ((a +ᵏ b) ∙ A) ≈ ((a ∙ A) + (b ∙ A)) ∙-+ᵏ-distrib a b V.[] = PW.[] ∙-+ᵏ-distrib a b (u V.∷ us) = (V.∙-+ᵏ-distrib a b u) PW.∷ (∙-+ᵏ-distrib a b us) ∙-cong : ∀ {n p} {a b : K'} {A B : M n p} → a ≈ᵏ b -> A ≈ B -> (a ∙ A) ≈ (b ∙ B) ∙-cong rᵏ PW.[] = PW.[] ∙-cong rᵏ (r PW.∷ rs) = (V.∙-cong rᵏ r) PW.∷ (∙-cong rᵏ rs) ∙-identity : ∀ {n p} (A : M n p) → (1ᵏ ∙ A) ≈ A ∙-identity V.[] = PW.[] ∙-identity (u V.∷ us) = (V.∙-identity u) PW.∷ (∙-identity us) ∙-absorbˡ : ∀ {n p} (A : M n p) → (0ᵏ ∙ A) ≈ 0# ∙-absorbˡ V.[] = PW.[] ∙-absorbˡ (u V.∷ us) = (V.∙-absorbˡ u) PW.∷ (∙-absorbˡ us) -‿inverseˡ : ∀ {n p} (A : M n p) -> ((- A) + A) ≈ 0# -‿inverseˡ V.[] = PW.[] -‿inverseˡ (u V.∷ us) = (V.-‿inverseˡ u) PW.∷ (-‿inverseˡ us) -‿inverseʳ : ∀ {n p} (A : M n p) -> (A + (- A)) ≈ 0# -‿inverseʳ V.[] = PW.[] -‿inverseʳ (u V.∷ us) = (V.-‿inverseʳ u) PW.∷ (-‿inverseʳ us) -‿inverse : ∀ {n p} → (∀ (A : M n p) -> ((- A) + A) ≈ 0#) × (∀ (A : M n p) -> (A + (- A)) ≈ 0#) -‿inverse = -‿inverseˡ , -‿inverseʳ -‿cong : ∀ {n p} {A B : M n p} -> A ≈ B -> (- A) ≈ (- B) -‿cong PW.[] = PW.[] -‿cong (r PW.∷ rs) = (V.-‿cong r) PW.∷ (-‿cong rs) concat-+ : ∀ {n p} (A B : M n p) -> V.concat (V.zipWith V._+_ A B) V.≈ (V.concat A) +v (V.concat B) concat-+ {0} {p} V.[] V.[] = V.≈-trans (PW.concat⁺ {m = p} {p = 0} PW.[]) (V.≈-sym (V.+-identityˡ V.[])) concat-+ {suc n} {p} (u V.∷ us) (v V.∷ vs) = begin V.concat (V.zipWith V._+_ (u V.∷ us) (v V.∷ vs)) ≡⟨⟩ (u V.+ v) V.++ V.concat (V.zipWith V._+_ us vs) ≈⟨ V.++-cong V.≈-refl (concat-+ {n} {p} us vs) ⟩ (u V.+ v) V.++ (V.concat us V.+ V.concat vs) ≈⟨ V.≈-sym (V.+-++-distrib u (V.concat us) v (V.concat vs)) ⟩ (V.concat (u V.∷ us)) V.+ (V.concat (v V.∷ vs)) ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) concat-0# : ∀ {n p} -> V.concat (0# {n} {p}) V.≈ (V.0# {n *ℕ p}) concat-0# {0} = PW.[] concat-0# {suc n} {p} = begin V.concat (0# {suc n} {p}) ≡⟨⟩ V.0# {p} V.++ V.concat (0# {n} {p}) ≈⟨ PW.++⁺ V.≈-refl (concat-0# {n} {p}) ⟩ V.0# {p} V.++ V.0# {n *ℕ p} ≈⟨ V.0++0≈0 {p} {n *ℕ p} ⟩ V.0# {p +ℕ n *ℕ p} ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) concat-∙ : ∀ {n p} (c : K') (A : M n p) -> V.concat (c ∙ A) V.≈ (c V.∙ V.concat A) concat-∙ {0} c V.[] = PW.[] concat-∙ {suc n} {p} c (u V.∷ us) = begin V.concat ((c V.∙ u) V.∷ (c ∙ us)) ≡⟨⟩ (c V.∙ u) V.++ (V.concat (c ∙ us)) ≈⟨ V.++-cong V.≈-refl (concat-∙ {n} {p} c us) ⟩ (c V.∙ u) V.++ (c V.∙ V.concat us) ≈⟨ V.≈-sym (V.∙-++-distrib c u (V.concat us)) ⟩ c V.∙ V.concat (u V.∷ us) ∎ where open import Relation.Binary.EqReasoning (V.setoid (p +ℕ n *ℕ p)) I : ∀ {n p} -> M n p I = tabulate δ _*_ : ∀ {n p q} -> M n p -> M p q -> M n q A * B = tabulate λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , j ⟫) *-cong : ∀ {n p q} {A B : M n p} {C D : M p q} -> A ≈ B -> C ≈ D -> (A * C) ≈ (B * D) *-cong {n} {q = q} {A} {B} {C} {D} r₁ r₂ = begin A * C ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (C ⟪ k , j ⟫)) ≈⟨ tabulate⁺ (λ i j -> V.sum-tab-cong λ k → *ᵏ-cong (lookup-cong i k r₁) (lookup-cong k j r₂)) ⟩ B * D ∎ where open import Relation.Binary.EqReasoning (setoid {n} {q}) *-assoc : ∀ {n p q r} (A : M n p) (B : M p q) (C : M q r) -> ((A * B) * C) ≈ (A * (B * C)) *-assoc {n} {r = r} A B C = tabulate⁺ λ i j -> begin V.sum-tab (λ k′ -> ((A * B) ⟪ i , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> *ᵏ-cong (≈ᵏ-reflexive (lookup∘tabulate (λ i′ j′ -> V.sum-tab λ k -> (A ⟪ i′ , k ⟫) *ᵏ (B ⟪ k , j′ ⟫)) i k′)) ≈ᵏ-refl) ⟩ V.sum-tab (λ k′ -> (V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> V.*ᵏ-sum-tab-distribʳ (C ⟪ k′ , j ⟫) λ k -> (A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> ((A ⟪ i , k ⟫) *ᵏ (B ⟪ k , k′ ⟫)) *ᵏ (C ⟪ k′ , j ⟫)) ≈⟨ V.sum-tab-cong (λ k′ -> V.sum-tab-cong λ k -> *ᵏ-assoc (A ⟪ i , k ⟫) (B ⟪ k , k′ ⟫) (C ⟪ k′ , j ⟫)) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ≈⟨ V.sum-tab-cong (λ k′ -> V.sum-tab-cong λ k -> *ᵏ-comm (A ⟪ i , k ⟫) ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ⟩ V.sum-tab (λ k′ -> V.sum-tab λ k -> ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) *ᵏ (A ⟪ i , k ⟫)) ≈⟨ V.sum-tab-swap (λ k k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) (λ k -> A ⟪ i , k ⟫) ⟩ V.sum-tab (λ k -> V.sum-tab λ k′ -> ((B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) *ᵏ (A ⟪ i , k ⟫)) ≈⟨ V.sum-tab-cong (λ k -> ≈ᵏ-trans (≈ᵏ-sym (V.*ᵏ-sum-tab-distribʳ (A ⟪ i , k ⟫) λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) (*ᵏ-comm (V.sum-tab λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫)) (A ⟪ i , k ⟫))) ⟩ V.sum-tab (λ k -> (A ⟪ i , k ⟫) *ᵏ V.sum-tab (λ k′ -> (B ⟪ k , k′ ⟫) *ᵏ (C ⟪ k′ , j ⟫))) ≈⟨ V.sum-tab-cong (λ k -> *ᵏ-cong ≈ᵏ-refl (≈ᵏ-sym (≈ᵏ-reflexive (lookup∘tabulate (λ i′ j′ -> V.sum-tab λ k′ -> (B ⟪ i′ , k′ ⟫) *ᵏ (C ⟪ k′ , j′ ⟫)) k j)))) ⟩ V.sum-tab (λ k -> (A ⟪ i , k ⟫) *ᵏ ((B * C) ⟪ k , j ⟫)) ∎ where open import Relation.Binary.EqReasoning (Field.setoid K) *-identityˡ : ∀ {n p} (A : M n p) -> I * A ≈ A *-identityˡ {n} {p} A = begin I * A ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (I ⟪ i , k ⟫) *ᵏ (A ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {n} λ k -> *ᵏ-cong (≈ᵏ-reflexive (lookup∘tabulate δ i k)) ≈ᵏ-refl) ⟩ tabulate (λ i j -> V.sum-tab λ k -> δ i k *ᵏ (A ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-δ (λ k -> A ⟪ k , j ⟫) i) ⟩ tabulate (λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.EqReasoning (setoid {n} {p}) *-identityʳ : ∀ {n p} (A : M n p) -> A * I ≈ A *-identityʳ {n} {p} A = begin A * I ≡⟨⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ (I ⟪ k , j ⟫)) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {p} λ k -> *ᵏ-cong ≈ᵏ-refl (≈ᵏ-reflexive (lookup∘tabulate δ k j))) ⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ δ k j) ≈⟨ tabulate-cong (λ i j -> V.sum-tab-cong {p} λ k -> *ᵏ-cong ≈ᵏ-refl (δ-comm k j)) ⟩ tabulate (λ i j -> V.sum-tab λ k -> (A ⟪ i , k ⟫) *ᵏ δ j k) ≈⟨ tabulate-cong (λ i j -> ≈ᵏ-trans (V.sum-tab-cong {p} (λ k -> *ᵏ-comm ((A ⟪ i , k ⟫)) (δ j k))) (V.sum-tab-δ (λ k -> A ⟪ i , k ⟫) j)) ⟩ tabulate (λ i j -> A ⟪ i , j ⟫) ≡⟨ tabulate∘lookup A ⟩ A ∎ where open import Relation.Binary.EqReasoning (setoid {n} {p}) module _ {n p} where open IsEquivalence (≈-isEquiv {n} {p}) public using () renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) open FP (_≈_ {n} {p}) open import Algebra.Structures (_≈_ {n} {p}) open import Algebra.Linear.Structures.Bundles isMagma : IsMagma _+_ isMagma = record { isEquivalence = ≈-isEquiv ; ∙-cong = +-cong } isSemigroup : IsSemigroup _+_ isSemigroup = record { isMagma = isMagma ; assoc = +-assoc } isMonoid : IsMonoid _+_ 0# isMonoid = record { isSemigroup = isSemigroup ; identity = +-identity } isGroup : IsGroup _+_ 0# -_ isGroup = record { isMonoid = isMonoid ; inverse = -‿inverse ; ⁻¹-cong = -‿cong } isAbelianGroup : IsAbelianGroup _+_ 0# -_ isAbelianGroup = record { isGroup = isGroup ; comm = +-comm } open VS K isVectorSpace : VS.IsVectorSpace K (_≈_ {n}) _+_ _∙_ -_ 0# isVectorSpace = record { isAbelianGroup = isAbelianGroup ; *ᵏ-∙-compat = *ᵏ-∙-compat ; ∙-+-distrib = ∙-+-distrib ; ∙-+ᵏ-distrib = ∙-+ᵏ-distrib ; ∙-cong = ∙-cong ; ∙-identity = ∙-identity ; ∙-absorbˡ = ∙-absorbˡ } vectorSpace : VectorSpace K k (k ⊔ ℓ) vectorSpace = record { isVectorSpace = isVectorSpace } open import Algebra.Linear.Structures.FiniteDimensional K open import Algebra.Linear.Morphism.VectorSpace K open import Algebra.Linear.Morphism.Bundles K open import Algebra.Morphism.Definitions (M n p) (Vec K' (n *ℕ p)) V._≈_ open import Algebra.Linear.Morphism.Definitions K (M n p) (Vec K' (n *ℕ p)) V._≈_ import Relation.Binary.Morphism.Definitions (M n p) (Vec K' (n *ℕ p)) as R open import Function open import Relation.Binary.EqReasoning (V.setoid (n *ℕ p)) ⟦_⟧ : M n p -> Vec K' (n *ℕ p) ⟦_⟧ = V.concat ⟦⟧-cong : R.Homomorphic₂ _≈_ (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-cong = PW.concat⁺ +-homo : Homomorphic₂ ⟦_⟧ _+_ _+v_ +-homo = concat-+ 0#-homo : Homomorphic₀ ⟦_⟧ 0# V.0# 0#-homo = concat-0# {n} {p} ∙-homo : ScalarHomomorphism ⟦_⟧ _∙_ _∙v_ ∙-homo = concat-∙ ⟦⟧-injective : Injective (_≈_ {n} {p}) (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-injective {A} {B} r = PW.concat⁻ A B r ⟦⟧-surjective : Surjective (_≈_ {n} {p}) (V._≈_ {n *ℕ p}) ⟦_⟧ ⟦⟧-surjective v = fromVec {n} {p} v , concat∘fromVec {n} {p} v embed : LinearIsomorphism vectorSpace (V.vectorSpace {n *ℕ p}) embed = record { ⟦_⟧ = ⟦_⟧ ; isLinearIsomorphism = record { isLinearMonomorphism = record { isLinearMap = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = ⟦⟧-cong ; ∙-homo = +-homo } ; ε-homo = 0#-homo } } } ; ∙-homo = ∙-homo } ; injective = ⟦⟧-injective } ; surjective = ⟦⟧-surjective } } isFiniteDimensional : IsFiniteDimensional _≈_ _+_ _∙_ -_ 0# (n *ℕ p) isFiniteDimensional = record { isVectorSpace = isVectorSpace ; embed = embed }
{ "alphanum_fraction": 0.4842244149, "avg_line_length": 32.7054409006, "ext": "agda", "hexsha": "e7a6bd35228317af73d23029c9dd306733529e30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Construct/Matrix.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Construct/Matrix.agda", "max_line_length": 112, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Construct/Matrix.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 8313, "size": 17432 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Groups.Definition open import Groups.Subgroups.Definition open import Groups.Actions.Definition open import Sets.EquivalenceRelations open import Groups.Actions.Definition module Groups.Actions.Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (act : GroupAction G T) where open GroupAction act open Setoid T stabiliserPred : (x : B) → (g : A) → Set d stabiliserPred x g = (action g x) ∼ x stabiliserWellDefined : (x : B) → {g h : A} → Setoid._∼_ S g h → (stabiliserPred x g) → stabiliserPred x h stabiliserWellDefined x {g} {h} g=h gx=x = transitive (actionWellDefined1 (Equivalence.symmetric (Setoid.eq S) g=h)) gx=x where open Equivalence eq open Setoid T open Equivalence (Setoid.eq T) stabiliserSubgroup : (x : B) → Subgroup G (stabiliserPred x) Subgroup.isSubset (stabiliserSubgroup x) = stabiliserWellDefined x Subgroup.closedUnderPlus (stabiliserSubgroup x) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x) Subgroup.containsIdentity (stabiliserSubgroup x) = identityAction Subgroup.closedUnderInverse (stabiliserSubgroup x) {g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction where open Group G
{ "alphanum_fraction": 0.737534626, "avg_line_length": 43.7575757576, "ext": "agda", "hexsha": "50fa96831a26b26807355f2caa8c6a95644fc654", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Actions/Stabiliser.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Actions/Stabiliser.agda", "max_line_length": 216, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Actions/Stabiliser.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 447, "size": 1444 }
module TelescopingLet3 where module Star where ★ : Set₁ ★ = Set ★₁ : Set₂ ★₁ = Set₁ module MEndo (open Star) (A : ★) where Endo = A → A -- at this point, ★ should no longer be in scope data D3 (open Star using (★₁)) : ★₁ where c : (A : ★) → D3 -- ★₁ is in scope -- ★ is not in scope since it was not brought in scope -- (not included in the using ())
{ "alphanum_fraction": 0.6059782609, "avg_line_length": 18.4, "ext": "agda", "hexsha": "3bfba5977817264de55eb1b232f73348facba002", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/TelescopingLet3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/TelescopingLet3.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/TelescopingLet3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 368 }
variable {A} : Set _ id : A → A id a = a test : Set₁ test = id {A = Set₁} Set
{ "alphanum_fraction": 0.5308641975, "avg_line_length": 9, "ext": "agda", "hexsha": "b5b7bc12a2c05024cbfd8b28dea5dac2563e605b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3115.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3115.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3115.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 81 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed module Categories.Category.Monoidal.Closed.IsClosed.Dinatural {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (Σ; _,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Category.Product open import Categories.Category.Monoidal.Properties M open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Reasoning C open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural hiding (_∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI hiding (refl) import Categories.Category.Closed as Cls open Closed Cl private open Category C α⇒ = associator.from α⇐ = associator.to module ℱ = Functor module ⊗ = Functor ⊗ open HomReasoning open Π.Π open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′; Ladjunct-resp-≈ to 𝕃-resp-≈) open import Categories.Category.Monoidal.Closed.IsClosed.Identity Cl open import Categories.Category.Monoidal.Closed.IsClosed.L Cl private id² : {S T : Obj} → [ S , T ]₀ ⇒ [ S , T ]₀ id² = [ id , id ]₁ L-dinatural-comm : ∀ {X′ Y Z X f} → [ [ f , id ]₁ , id² ]₁ ∘ L X′ Y Z ≈ [ id² , [ f , id ]₁ ]₁ ∘ L X Y Z L-dinatural-comm {X′} {Y} {Z} {X} {f} = begin [ fˡ , id² ]₁ ∘ L X′ Y Z ≈⟨ [-,-].F-resp-≈ (refl , [-,-].identity) ⟩∘⟨refl ⟩ [ fˡ , id ]₁ ∘ L X′ Y Z ≈˘⟨ pushˡ [ [-,-] ]-commute ⟩ ([ id , 𝕃 L-inner ]₁ ∘ [ fˡ , id ]₁) ∘ η.η YZ ≈˘⟨ pushʳ (mate.commute₁ [ f , id ]₁) ⟩ [ id , 𝕃 L-inner ]₁ ∘ 𝕃 (id ⊗₁ fˡ) ≈˘⟨ pushˡ (ℱ.homomorphism [ XY ,-]) ⟩ 𝕃 (𝕃 L-inner ∘ id ⊗₁ fˡ) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ L-inner ∘ (id ⊗₁ fˡ) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ push-f-right ⟩ 𝕃 (𝕃 $ L-inner ∘ (id ⊗₁ id) ⊗₁ f) ≈⟨ 𝕃-resp-≈ $ pushˡ (ℱ.homomorphism [ X′ ,-]) ⟩ 𝕃 ([ id , L-inner {X} ]₁ ∘ 𝕃 ((id ⊗₁ id) ⊗₁ f)) ≈⟨ 𝕃-resp-≈ $ ∘-resp-≈ʳ (∘-resp-≈ˡ (X′-resp-≈ (⊗.F-resp-≈ (⊗.identity , refl))) ○ mate.commute₁ f) ⟩ 𝕃 ([ id , L-inner {X} ]₁ ∘ fˡ ∘ η.η (YZ ⊗₀ XY)) ≈⟨ 𝕃-resp-≈ $ pullˡ [ [-,-] ]-commute ○ assoc ⟩ 𝕃 (fˡ ∘ 𝕃 L-inner) ≈⟨ ∘-resp-≈ˡ (ℱ.homomorphism [ XY ,-]) ○ assoc ⟩ [ id , fˡ ]₁ ∘ L X Y Z ≈˘⟨ [-,-].F-resp-≈ ([-,-].identity , refl) ⟩∘⟨refl ⟩ [ id² , fˡ ]₁ ∘ L X Y Z ∎ where fˡ : ∀ {W} → [ X , W ]₀ ⇒ [ X′ , W ]₀ fˡ = [ f , id ]₁ XY = [ X , Y ]₀ YZ = [ Y , Z ]₀ X′-resp-≈ = ℱ.F-resp-≈ [ X′ ,-] L-inner : ∀ {W} → ([ Y , Z ]₀ ⊗₀ [ W , Y ]₀) ⊗₀ W ⇒ Z L-inner {W} = ε.η Z ∘ (id ⊗₁ ε.η {W} Y) ∘ α⇒ push-f-right : (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ fˡ) ⊗₁ id ≈ (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ f push-f-right = begin (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ fˡ) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ id ⊗₁ fˡ ⊗₁ id ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ (ℱ.homomorphism (YZ ⊗-)) ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ fˡ ⊗₁ id) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.F-resp-≈ (YZ ⊗-) (mate.commute₂ f) ⟩∘⟨refl ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ id ⊗₁ f) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.homomorphism (YZ ⊗-) ⟩∘⟨refl ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y ∘ id ⊗₁ id ⊗₁ f) ∘ α⇒ ≈⟨ center⁻¹ refl (⟺ assoc-commute-from) ○ pullˡ assoc ⟩ (ε.η Z ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ f ∎
{ "alphanum_fraction": 0.527173913, "avg_line_length": 49.5384615385, "ext": "agda", "hexsha": "3d0a12e4cd489739dba01e2b6000ad839e13fefe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1724, "size": 3864 }
-- Andreas, 2016-10-11, AIM XXIV -- COMPILED pragma accidentially also accepted for abstract definitions open import Common.String data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} postulate IO : Set → Set doNothing : IO Unit {-# COMPILED_TYPE IO IO #-} {-# BUILTIN IO IO #-} {-# COMPILED doNothing (return ()) #-} {-# IMPORT Data.Text.IO #-} abstract putStrLn : String → IO Unit putStrLn _ = doNothing {-# COMPILED putStrLn Data.Text.IO.putStrLn #-} main = putStrLn "Hello, world!" -- WAS: compiler produced ill-formed Haskell-code -- NOW: Error on COMPILED pragma
{ "alphanum_fraction": 0.679933665, "avg_line_length": 19.4516129032, "ext": "agda", "hexsha": "eeb3d19d82384a6d8288ce2f9a3ad8aed1f97152", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Issue2248.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Issue2248.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Issue2248.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 157, "size": 603 }
postulate A : Set data D : Set → Set₁ where d : (A : Set) → D A f : Set → (D A → Set) → Set f A f = f (d A) -- Expected error: -- A != A of type Set -- (because one is a variable and one a defined identifier) -- when checking that the pattern d A has type D A
{ "alphanum_fraction": 0.6029962547, "avg_line_length": 19.0714285714, "ext": "agda", "hexsha": "bfd382bb318e1505d1b6d114c8434a7cda9de073", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue998a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue998a.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue998a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 89, "size": 267 }
module Numeral.Natural.Relation.Order.Existence.Proofs where import Lvl open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Induction open import Numeral.Natural.Relation.Order.Existence open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Domain open import Structure.Operator open import Structure.Operator.Properties import Structure.Relator.Names as Names open import Structure.Relator.Ordering open import Structure.Relator.Properties open import Syntax.Transitivity open import Type [≡]-to-[≤] : ∀{x y : ℕ} → (x ≡ y) → (x ≤ y) [≡]-to-[≤] x≡y = [∃]-intro 0 ⦃ x≡y ⦄ [≤]-minimum : ∀{x : ℕ} → (0 ≤ x) [≤]-minimum {x} = [∃]-intro x ⦃ identityₗ(_+_)(𝟎) ⦄ [≤][0]ᵣ : ∀{x : ℕ} → (x ≤ 0) ↔ (x ≡ 0) [≤][0]ᵣ {𝟎} = [↔]-intro [≡]-to-[≤] (const [≡]-intro) [≤][0]ᵣ {𝐒(n)} = [↔]-intro (\()) (\{([∃]-intro _ ⦃ ⦄ )}) [≤][0]ᵣ-negation : ∀{x : ℕ} → ¬(𝐒(x) ≤ 0) [≤][0]ᵣ-negation {x} (Sx≤0) = [𝐒]-not-0([↔]-to-[→] ([≤][0]ᵣ {𝐒(x)}) (Sx≤0)) [≤]-successor : ∀{a b : ℕ} → (a ≤ b) → (a ≤ 𝐒(b)) [≤]-successor ([∃]-intro(n) ⦃ proof ⦄) = [∃]-intro (𝐒(n)) ⦃ [≡]-with(𝐒) (proof) ⦄ [≤]-predecessor : ∀{a b : ℕ} → (𝐒(a) ≤ b) → (a ≤ b) [≤]-predecessor ([∃]-intro n) = [∃]-intro(𝐒(n)) [≤]-without-[𝐒] : ∀{a b : ℕ} → (a ≤ b) ← (𝐒(a) ≤ 𝐒(b)) [≤]-without-[𝐒] {𝟎} {b} (_) = [≤]-minimum [≤]-without-[𝐒] {𝐒(a)}{𝟎} () [≤]-without-[𝐒] {𝐒(a)}{𝐒(b)} ([∃]-intro(n) ⦃ proof ⦄) = [≤]-with-[𝐒] {a}{b} ([≤]-without-[𝐒] {a}{b} ([∃]-intro(n) ⦃ injective(𝐒) proof ⦄)) [≤][𝐒]ₗ : ∀{x : ℕ} → ¬(𝐒(x) ≤ x) [≤][𝐒]ₗ {𝟎} (1≤0) = [≤][0]ᵣ-negation{0}(1≤0) [≤][𝐒]ₗ {𝐒(n)} (SSn≤Sn) = [≤][𝐒]ₗ {n} ([≤]-without-[𝐒] {𝐒(n)}{n} (SSn≤Sn)) instance [≤]-transitivity : Transitivity (_≤_) Transitivity.proof [≤]-transitivity {a}{b}{c} ([∃]-intro n₁ ⦃ an₁b ⦄) ([∃]-intro n₂ ⦃ bn₂c ⦄) = [∃]-intro (n₁ + n₂) ⦃ p ⦄ where p = a + (n₁ + n₂) 🝖[ _≡_ ]-[ associativity(_+_) {a}{n₁}{n₂} ]-sym (a + n₁) + n₂ 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(n₂) an₁b ] b + n₂ 🝖[ _≡_ ]-[ bn₂c ] c 🝖-end instance [≤]-reflexivity : Reflexivity (_≤_) Reflexivity.proof [≤]-reflexivity = [≡]-to-[≤] [≡]-intro instance [≤]-antisymmetry : Antisymmetry (_≤_) (_≡_) Antisymmetry.proof [≤]-antisymmetry {a} {b} ([∃]-intro(n₁) ⦃ an₁b ⦄) ([∃]-intro(n₂) ⦃ bn₂a ⦄) = a 🝖[ _≡_ ]-[] a + 𝟎 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(a) n₁0 ]-sym a + n₁ 🝖[ _≡_ ]-[ an₁b ] b 🝖-end where n₁n₂0 : (n₁ + n₂ ≡ 0) n₁n₂0 = cancellationₗ(_+_) $ a + (n₁ + n₂) 🝖[ _≡_ ]-[ associativity(_+_) {a}{n₁}{n₂} ]-sym (a + n₁) + n₂ 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(n₂) an₁b ] b + n₂ 🝖[ _≡_ ]-[ bn₂a ] a 🝖[ _≡_ ]-[] a + 0 🝖-end n₁0 : (n₁ ≡ 0) n₁0 = [∧]-elimₗ ([+]-sum-is-0 {n₁} {n₂} n₁n₂0) instance [≤]-weakPartialOrder : Weak.PartialOrder (_≤_) (_≡_) [≤]-weakPartialOrder = record{} [<]-minimum : ∀{x : ℕ} → (0 < 𝐒(x)) [<]-minimum = [≤]-with-[𝐒] {0} [≤]-minimum [≥]-is-[≮] : ∀{a b : ℕ} → ¬(a < b) ← (a ≥ b) [≥]-is-[≮] {a}{b} b≤a Sa≤b = [≤][𝐒]ₗ (transitivity(_≤_) {x = 𝐒(a)}{y = b}{z = a} Sa≤b b≤a) -- [≤]-is-[≯] : ∀{a b : ℕ} → ¬(a > b) ← (a ≤ b) -- [≤]-is-[≯] {a}{b} = [≥]-is-[≮] {b}{a} -- [>]-is-[≰] : ∀{a b : ℕ} → ¬(a ≤ b) ← (a > b) -- [>]-is-[≰] {a}{b} (Sb≤a) (a≤b) = [≤]-is-[≯] {a}{b} (a≤b) (Sb≤a) -- [<]-is-[≱] : ∀{a b : ℕ} → ¬(a ≥ b) ← (a < b) -- [<]-is-[≱] {a}{b} = [>]-is-[≰] {b}{a} instance [≤]-totality : ConverseTotal(_≤_) [≤]-totality = intro p where p : Names.ConverseTotal(_≤_) p {𝟎} {𝟎} = [∨]-introₗ ([≡]-to-[≤] [≡]-intro) p {𝐒(a)}{𝟎} = [∨]-introᵣ ([≤]-minimum) p {𝟎} {𝐒(b)} = [∨]-introₗ ([≤]-minimum) p {𝐒(a)}{𝐒(b)} = [∨]-elim ([∨]-introₗ ∘ ([≤]-with-[𝐒] {a}{b})) ([∨]-introᵣ ∘ ([≤]-with-[𝐒] {b}{a})) (p {a}{b})
{ "alphanum_fraction": 0.4791100124, "avg_line_length": 35.4824561404, "ext": "agda", "hexsha": "6ee5b3e528a88c141887e428e8536de170348dd6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Order/Existence/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Order/Existence/Proofs.agda", "max_line_length": 138, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Order/Existence/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2126, "size": 4045 }
------------------------------------------------------------------------ -- Propositional (intensional) equality ------------------------------------------------------------------------ module Relation.Binary.PropositionalEquality where open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.FunctionSetoid open import Data.Function open import Data.Product -- Some of the definitions can be found in the following modules: open import Relation.Binary.Core public using (_≡_; refl; _≢_) open import Relation.Binary.PropositionalEquality.Core public ------------------------------------------------------------------------ -- Some properties subst₂ : ∀ {A B} (P : A → B → Set) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p subst₁ : ∀ {a} (P : a → Set₁) → ∀ {x y} → x ≡ y → P x → P y subst₁ P refl p = p cong : Congruential _≡_ cong = subst⟶cong refl subst cong₂ : Congruential₂ _≡_ cong₂ = cong+trans⟶cong₂ cong trans setoid : Set → Setoid setoid a = record { carrier = a ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : ∀ {a} → Decidable (_≡_ {a}) → DecSetoid decSetoid dec = record { _≈_ = _≡_ ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} → IsPreorder {a} _≡_ _≡_ isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans ; ∼-resp-≈ = resp₂ _≡_ } preorder : Set → Preorder preorder a = record { carrier = a ; _≈_ = _≡_ ; _∼_ = _≡_ ; isPreorder = isPreorder } ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : (A B : Set) → Setoid A →-setoid B = A ≡⇨ λ _ → setoid B _≗_ : ∀ {a b} (f g : a → b) → Set _≗_ {a} {b} = Setoid._≈_ (a →-setoid b) →-to-⟶ : ∀ {A B} → (A → B) → setoid A ⟶ setoid B →-to-⟶ f = record { _⟨$⟩_ = f; pres = cong f } ------------------------------------------------------------------------ -- The inspect idiom -- The inspect idiom can be used when you want to pattern match on the -- result r of some expression e, and you also need to "remember" that -- r ≡ e. data Inspect {a : Set} (x : a) : Set where _with-≡_ : (y : a) (eq : y ≡ x) → Inspect x inspect : ∀ {a} (x : a) → Inspect x inspect x = x with-≡ refl -- Example usage: -- f x y with inspect (g x) -- f x y | c z with-≡ eq = ... ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR -- Relation.Binary.EqReasoning is more convenient to use with _≡_ if -- the combinators take the type argument (a) as a hidden argument, -- instead of being locked to a fixed type at module instantiation -- time. module ≡-Reasoning where private module Dummy {a : Set} where open EqR (setoid a) public hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _≡⟨_⟩_) open Dummy public
{ "alphanum_fraction": 0.5324165029, "avg_line_length": 26.7894736842, "ext": "agda", "hexsha": "24392199b4bdb47e4be015aee958e4fef8319cf8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 941, "size": 3054 }
module _ where open import Agda.Primitive module _ (a ℓ ℓ' : Level) where mutual X : Level X = _ -- Agda 2.5.1.1 solves this level meta hyp : Set₁ hyp with (lsuc ℓ') ... | _ = Set where X<=a : Set (X ⊔ a) → Set a X<=a A = A test : Set₁ test with (lsuc ℓ) ... | _ = Set where a<=X : Set (X ⊔ a) → Set X a<=X A = A
{ "alphanum_fraction": 0.4623115578, "avg_line_length": 15.92, "ext": "agda", "hexsha": "d0f092b42373af96a5bf977f9cf9e32986bc6197", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2223c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2223c.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2223c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 153, "size": 398 }
{-A Polynomials over commutative rings ================================== -} {-# OPTIONS --safe #-} ---------------------------------- module Cubical.Algebra.Polynomials.Univariate.Properties where open import Cubical.HITs.PropositionalTruncation open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _Nat·_) hiding (·-comm) open import Cubical.Data.Nat.Order open import Cubical.Data.Empty.Base renaming (rec to ⊥rec ) open import Cubical.Data.Bool open import Cubical.Algebra.Group hiding (Bool) open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Univariate.Base private variable ℓ ℓ' : Level module PolyModTheory (R' : CommRing ℓ) where private R = fst R' open PolyMod R' open CommRingTheory R' open RingTheory (CommRing→Ring R') open GroupTheory (Ring→Group (CommRing→Ring R')) pattern [_] x = x ∷ [] --------------------------------------- -- Definition -- Identity for addition of polynomials --------------------------------------- 0P : Poly 0P = [] --ReplicatePoly(n,p) returns 0 ∷ 0 ∷ ... ∷ [] (n zeros) ReplicatePoly0 : (n : ℕ) → Poly ReplicatePoly0 zero = 0P ReplicatePoly0 (suc n) = 0r ∷ ReplicatePoly0 n --The empty polynomial has multiple equal representations on the form 0 + 0x + 0 x² + ... replicatePoly0Is0P : ∀ (n : ℕ) → ReplicatePoly0 n ≡ 0P replicatePoly0Is0P zero = refl replicatePoly0Is0P (suc n) = (cong (0r ∷_) (replicatePoly0Is0P n)) ∙ drop0 ----------------------------- -- Definition -- subtraction of polynomials ----------------------------- Poly- : Poly → Poly Poly- [] = [] Poly- (a ∷ p) = (- a) ∷ (Poly- p) Poly- (drop0 i) = (cong (_∷ []) (inv1g) ∙ drop0) i -- Double negation (of subtraction of polynomials) is the identity mapping Poly-Poly- : (p : Poly) → Poly- (Poly- p) ≡ p Poly-Poly- = ElimProp.f (λ x → Poly- (Poly- x) ≡ x) refl (λ a p e → cong (_∷ (Poly- (Poly- p))) (-Idempotent a) ∙ cong (a ∷_ ) (e)) (isSetPoly _ _) --------------------------- -- Definition -- addition for polynomials --------------------------- _Poly+_ : Poly → Poly → Poly p Poly+ [] = p [] Poly+ (drop0 i) = drop0 i [] Poly+ (b ∷ q) = b ∷ q (a ∷ p) Poly+ (b ∷ q) = (a + b) ∷ (p Poly+ q) (a ∷ p) Poly+ (drop0 i) = +Rid a i ∷ p (drop0 i) Poly+ (a ∷ q) = lem q i where lem : ∀ q → (0r + a) ∷ ([] Poly+ q) ≡ a ∷ q lem = ElimProp.f (λ q → (0r + a) ∷ ([] Poly+ q) ≡ a ∷ q) (λ i → (+Lid a i ∷ [])) (λ r p _ → λ i → +Lid a i ∷ r ∷ p ) (isSetPoly _ _) (drop0 i) Poly+ (drop0 j) = isSet→isSet' isSetPoly (cong ([_] ) (+Rid 0r)) drop0 (cong ([_] ) (+Lid 0r)) drop0 i j -- [] is the left identity for Poly+ Poly+Lid : ∀ p → ([] Poly+ p ≡ p) Poly+Lid = ElimProp.f (λ p → ([] Poly+ p ≡ p) ) refl (λ r p prf → refl) (λ x y → isSetPoly _ _ x y) -- [] is the right identity for Poly+ Poly+Rid : ∀ p → (p Poly+ [] ≡ p) Poly+Rid p = refl --Poly+ is Associative Poly+Assoc : ∀ p q r → p Poly+ (q Poly+ r) ≡ (p Poly+ q) Poly+ r Poly+Assoc = ElimProp.f (λ p → (∀ q r → p Poly+ (q Poly+ r) ≡ (p Poly+ q) Poly+ r)) (λ q r → Poly+Lid (q Poly+ r) ∙ cong (_Poly+ r) (sym (Poly+Lid q))) (λ a p prf → ElimProp.f ((λ q → ∀ r → ((a ∷ p) Poly+ (q Poly+ r)) ≡ (((a ∷ p) Poly+ q) Poly+ r))) (λ r → cong ((a ∷ p) Poly+_) (Poly+Lid r)) (λ b q prf2 → ElimProp.f (λ r → ((a ∷ p) Poly+ ((b ∷ q) Poly+ r)) ≡ ((a + b ∷ (p Poly+ q)) Poly+ r)) refl (λ c r prfp → cong ((a + (b + c))∷_) (prf q r) ∙ (cong (_∷ ((p Poly+ q) Poly+ r)) (+Assoc a b c))) (isSetPoly _ _)) λ x y i r → isSetPoly (x r i0) (y r i1) (x r) (y r) i) λ x y i q r → isSetPoly _ _ (x q r) (y q r) i -- for any polynomial, p, the additive inverse is given by Poly- p Poly+Inverses : ∀ p → p Poly+ (Poly- p) ≡ [] Poly+Inverses = ElimProp.f ( λ p → p Poly+ (Poly- p) ≡ []) refl --(Poly+Lid (Poly- [])) (λ r p prf → cong (r + - r ∷_) prf ∙ (cong (_∷ []) (+Rinv r) ∙ drop0)) (isSetPoly _ _) --Poly+ is commutative Poly+Comm : ∀ p q → p Poly+ q ≡ q Poly+ p Poly+Comm = ElimProp.f (λ p → (∀ q → p Poly+ q ≡ q Poly+ p)) (λ q → Poly+Lid q) (λ a p prf → ElimProp.f (λ q → ((a ∷ p) Poly+ q) ≡ (q Poly+ (a ∷ p))) refl (λ b q prf2 → cong (_∷ (p Poly+ q)) (+Comm a b) ∙ cong ((b + a) ∷_) (prf q)) (isSetPoly _ _) ) (λ {p} → isPropΠ (λ q → isSetPoly (p Poly+ q) (q Poly+ p))) -------------------------------------------------------------- -- Definition -- multiplication of a polynomial by a (constant) ring element -------------------------------------------------------------- _PolyConst*_ : (R) → Poly → Poly r PolyConst* [] = [] r PolyConst* (a ∷ p) = (r · a) ∷ (r PolyConst* p) r PolyConst* (drop0 i) = lem r i where lem : ∀ r → [ r · 0r ] ≡ [] lem = λ r → [ r · 0r ] ≡⟨ cong (_∷ []) (0RightAnnihilates r) ⟩ [ 0r ] ≡⟨ drop0 ⟩ [] ∎ -- For any polynomial p we have: 0 _PolyConst*_ p = [] 0rLeftAnnihilatesPoly : ∀ q → 0r PolyConst* q ≡ [ 0r ] 0rLeftAnnihilatesPoly = ElimProp.f (λ q → 0r PolyConst* q ≡ [ 0r ]) (sym drop0) (λ r p prf → cong ((0r · r) ∷_) prf ∙ cong (_∷ [ 0r ]) (0LeftAnnihilates r) ∙ cong (0r ∷_) drop0 ) λ x y → isSetPoly _ _ x y -- For any polynomial p we have: 1 _PolyConst*_ p = p PolyConst*Lid : ∀ q → 1r PolyConst* q ≡ q PolyConst*Lid = ElimProp.f (λ q → 1r PolyConst* q ≡ q ) refl (λ a p prf → cong (_∷ (1r PolyConst* p)) (·Lid a) ∙ cong (a ∷_) (prf) ) λ x y → isSetPoly _ _ x y -------------------------------- -- Definition -- Multiplication of polynomials -------------------------------- _Poly*_ : Poly → Poly → Poly [] Poly* q = [] (a ∷ p) Poly* q = (a PolyConst* q) Poly+ (0r ∷ (p Poly* q)) (drop0 i) Poly* q = lem q i where lem : ∀ q → (0r PolyConst* q) Poly+ [ 0r ] ≡ [] lem = λ q → ((0r PolyConst* q) Poly+ [ 0r ]) ≡⟨ cong ( _Poly+ [ 0r ] ) (0rLeftAnnihilatesPoly q)⟩ ([ 0r ] Poly+ [ 0r ]) ≡⟨ cong (_∷ []) 0Idempotent ∙ drop0 ⟩ [] ∎ -------------------- --Definition --Identity for Poly* -------------------- 1P : Poly 1P = [ 1r ] -- For any polynomial p we have: p Poly* [] = [] 0PRightAnnihilates : ∀ q → 0P Poly* q ≡ 0P 0PRightAnnihilates = ElimProp.f (λ q → 0P Poly* q ≡ 0P) refl (λ r p prf → prf) λ x y → isSetPoly _ _ x y -- For any polynomial p we have: [] Poly* p = [] 0PLeftAnnihilates : ∀ p → p Poly* 0P ≡ 0P 0PLeftAnnihilates = ElimProp.f (λ p → p Poly* 0P ≡ 0P ) refl (λ r p prf → cong (0r ∷_) prf ∙ drop0) λ x y → isSetPoly _ _ x y -- For any polynomial p we have: p Poly* [ 1r ] = p Poly*Lid : ∀ q → 1P Poly* q ≡ q Poly*Lid = ElimProp.f (λ q → 1P Poly* q ≡ q) drop0 (λ r p prf → lemma r p) (λ x y → isSetPoly _ _ x y) where lemma : ∀ r p → 1r · r + 0r ∷ (1r PolyConst* p) ≡ r ∷ p lemma = λ r p → 1r · r + 0r ∷ (1r PolyConst* p) ≡⟨ cong (_∷ (1r PolyConst* p) ) (+Rid (1r · r)) ⟩ 1r · r ∷ (1r PolyConst* p) ≡⟨ cong (_∷ 1r PolyConst* p) (·Lid r) ⟩ r ∷ (1r PolyConst* p) ≡⟨ cong (r ∷_) (PolyConst*Lid p) ⟩ r ∷ p ∎ -- Distribution of indeterminate: (p + q)x = px + qx XLDistrPoly+ : ∀ p q → (0r ∷ (p Poly+ q)) ≡ ((0r ∷ p) Poly+ (0r ∷ q)) XLDistrPoly+ = ElimProp.f (λ p → ∀ q → (0r ∷ (p Poly+ q)) ≡ ((0r ∷ p) Poly+ (0r ∷ q)) ) (λ q → (cong (0r ∷_) (Poly+Lid q)) ∙ cong (0r ∷_) (sym (Poly+Lid q)) ∙ sym (cong (_∷ [] Poly+ q) (+Lid 0r))) (λ a p prf → ElimProp.f (λ q → 0r ∷ ((a ∷ p) Poly+ q) ≡ ((0r ∷ a ∷ p) Poly+ (0r ∷ q))) (cong (_∷ a ∷ p ) (sym (+Lid 0r))) (λ b q prf2 → cong (_∷ a + b ∷ (p Poly+ q)) (sym (+Lid 0r))) (λ x y i → isSetPoly (x i0) (x i1) x y i)) (λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i) -- Distribution of a constant ring element over added polynomials p, q: a (p + q) = ap + aq PolyConst*LDistrPoly+ : ∀ a p q → a PolyConst* (p Poly+ q) ≡ (a PolyConst* p) Poly+ (a PolyConst* q) PolyConst*LDistrPoly+ = λ a → ElimProp.f (λ p → ∀ q → a PolyConst* (p Poly+ q) ≡ (a PolyConst* p) Poly+ (a PolyConst* q)) (λ q → cong (a PolyConst*_) (Poly+Lid q) ∙ (sym (Poly+Lid (a PolyConst* q)))) (λ b p prf → ElimProp.f (λ q → (a PolyConst* ((b ∷ p) Poly+ q)) ≡ (a PolyConst* (b ∷ p)) Poly+ (a PolyConst* q)) refl (λ c q prf2 → cong (_∷ (a PolyConst* (p Poly+ q))) (·Rdist+ a b c) ∙ cong (a · b + a · c ∷_) (prf q)) (isSetPoly _ _)) (λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i) --Poly* left distributes over Poly+ Poly*LDistrPoly+ : ∀ p q r → p Poly* (q Poly+ r) ≡ (p Poly* q) Poly+ (p Poly* r) Poly*LDistrPoly+ = ElimProp.f (λ p → ∀ q r → p Poly* (q Poly+ r) ≡ (p Poly* q) Poly+ (p Poly* r)) (λ _ _ → refl) (λ a p prf q r → ((a PolyConst* (q Poly+ r)) Poly+ (0r ∷(p Poly*(q Poly+ r)))) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* (q Poly+ r)))) (PolyConst*LDistrPoly+ a q r) ⟩ (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+ (0r ∷ (p Poly* (q Poly+ r)))) ≡⟨ cong (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+_) (cong (0r ∷_) (prf q r)) ⟩ (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+ (0r ∷ ((p Poly* q) Poly+ (p Poly* r)))) ≡⟨ cong (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+_) (XLDistrPoly+ (p Poly* q) (p Poly* r)) ⟩ (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+ ((0r ∷ (p Poly* q)) Poly+ (0r ∷ (p Poly* r)))) ≡⟨ Poly+Assoc ((a PolyConst* q) Poly+ (a PolyConst* r)) (0r ∷ (p Poly* q)) (0r ∷ (p Poly* r)) ⟩ (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+ (0r ∷ (p Poly* q))) Poly+ (0r ∷ (p Poly* r)) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* r))) (sym (Poly+Assoc (a PolyConst* q) (a PolyConst* r) (0r ∷ (p Poly* q)))) ⟩ (((a PolyConst* q) Poly+ ((a PolyConst* r) Poly+ (0r ∷ (p Poly* q)))) Poly+ (0r ∷ (p Poly* r))) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* r))) (cong ((a PolyConst* q) Poly+_) (Poly+Comm (a PolyConst* r) (0r ∷ (p Poly* q)))) ⟩ (((a PolyConst* q) Poly+ ((0r ∷ (p Poly* q)) Poly+ (a PolyConst* r))) Poly+ (0r ∷ (p Poly* r))) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* r))) (Poly+Assoc (a PolyConst* q) (0r ∷ (p Poly* q)) (a PolyConst* r)) ⟩ ((((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) Poly+ (a PolyConst* r)) Poly+ (0r ∷ (p Poly* r))) ≡⟨ sym (Poly+Assoc ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ((a PolyConst* r)) ((0r ∷ (p Poly* r)))) ⟩ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) Poly+ ((a PolyConst* r) Poly+ (0r ∷ (p Poly* r))) ∎) (λ x y i q r → isSetPoly _ _ (x q r) (y q r) i) -- The constant multiplication of a ring element, a, with a polynomial, p, can be -- expressed by polynomial multiplication with the singleton polynomial [ a ] PolyConst*r=Poly*[r] : ∀ a p → a PolyConst* p ≡ p Poly* [ a ] PolyConst*r=Poly*[r] = λ a → ElimProp.f (λ p → a PolyConst* p ≡ p Poly* [ a ]) refl ( λ r p prf → a · r ∷ (a PolyConst* p) ≡⟨ cong (a · r ∷_) prf ⟩ a · r ∷ (p Poly* [ a ]) ≡⟨ cong (a · r ∷_) (sym (Poly+Lid (p Poly* [ a ]))) ⟩ a · r ∷ ([] Poly+ (p Poly* [ a ])) ≡⟨ cong (_∷ ([] Poly+ (p Poly* [ a ]))) (·Comm a r ) ⟩ r · a ∷ ([] Poly+ (p Poly* [ a ])) ≡⟨ cong (_∷ ([] Poly+ (p Poly* [ a ]))) (sym (+Rid (r · a))) ⟩ r · a + 0r ∷ ([] Poly+ (p Poly* [ a ])) ∎) ( λ x y i → isSetPoly (x i0) (x i1) x y i) -- Connection between the constant multiplication and the multiplication in the ring PolyConst*Nested· : ∀ a b p → a PolyConst* (b PolyConst* p) ≡ (a · b) PolyConst* p PolyConst*Nested· = λ a b → ElimProp.f (λ p → a PolyConst* (b PolyConst* p) ≡ (a · b) PolyConst* p) refl (λ c p prf → cong ((a · (b · c)) ∷_) prf ∙ cong (_∷ ((a · b) PolyConst* p)) (·Assoc a b c)) (isSetPoly _ _) -- We can move the indeterminate from left to outside: px * q = (p * q)x 0r∷LeftAssoc : ∀ p q → (0r ∷ p) Poly* q ≡ 0r ∷ (p Poly* q) 0r∷LeftAssoc = ElimProp.f (λ p → ∀ q → (0r ∷ p) Poly* q ≡ 0r ∷ (p Poly* q)) (λ q → cong (_Poly+ [ 0r ])((cong (_Poly+ []) (0rLeftAnnihilatesPoly q))) ∙ cong (_∷ []) (+Lid 0r)) (λ r p b q → cong (_Poly+ (0r ∷ ((r PolyConst* q) Poly+ (0r ∷ (p Poly* q))))) ((0rLeftAnnihilatesPoly q) ∙ drop0)) (λ x y i q → isSetPoly _ _ (x q) (y q) i) --Associativity of constant multiplication in relation to polynomial multiplication PolyConst*AssocPoly* : ∀ a p q → a PolyConst* (p Poly* q) ≡ (a PolyConst* p) Poly* q PolyConst*AssocPoly* = λ a → ElimProp.f (λ p → ∀ q → a PolyConst* (p Poly* q) ≡ (a PolyConst* p) Poly* q) (λ q → refl) (λ b p prf q → a PolyConst* ((b PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ≡⟨ PolyConst*LDistrPoly+ a (b PolyConst* q) (0r ∷ (p Poly* q)) ⟩ (a PolyConst* (b PolyConst* q)) Poly+ (a PolyConst* (0r ∷ (p Poly* q))) ≡⟨ cong (_Poly+ (a · 0r ∷ (a PolyConst* (p Poly* q)))) (PolyConst*Nested· a b q) ⟩ ((a · b) PolyConst* q) Poly+ (a PolyConst* (0r ∷ (p Poly* q))) ≡⟨ cong (((a · b) PolyConst* q) Poly+_) (cong (a · 0r ∷_) (PolyConst*r=Poly*[r] a (p Poly* q))) ⟩ ((a · b) PolyConst* q) Poly+ (a · 0r ∷ ((p Poly* q) Poly* [ a ])) ≡⟨ cong (((a · b) PolyConst* q) Poly+_) (cong (_∷ ((p Poly* q) Poly* [ a ])) (0RightAnnihilates a)) ⟩ ((a · b) PolyConst* q) Poly+ (0r ∷ ((p Poly* q) Poly* [ a ])) ≡⟨ cong (((a · b) PolyConst* q) Poly+_) (cong (0r ∷_) (sym (PolyConst*r=Poly*[r] a (p Poly* q)))) ⟩ ((a · b) PolyConst* q) Poly+ (0r ∷ (a PolyConst* (p Poly* q))) ≡⟨ cong (((a · b) PolyConst* q) Poly+_) (cong (0r ∷_) (prf q)) ⟩ ((a · b) PolyConst* q) Poly+ (0r ∷ ((a PolyConst* p) Poly* q)) ∎) (λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i) -- We can move the indeterminate from left to outside: p * qx = (p * q)x 0r∷RightAssoc : ∀ p q → p Poly* (0r ∷ q) ≡ 0r ∷ (p Poly* q) 0r∷RightAssoc = ElimProp.f (λ p → ∀ q → p Poly* (0r ∷ q) ≡ 0r ∷ (p Poly* q)) (λ q → sym drop0) (λ a p prf q → ((a ∷ p) Poly* (0r ∷ q)) ≡⟨ cong ( a · 0r + 0r ∷_) (cong ((a PolyConst* q) Poly+_ ) (prf q)) ⟩ a · 0r + 0r ∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ≡⟨ cong (_∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q)))) ((+Rid (a · 0r))) ⟩ a · 0r ∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ≡⟨ cong (_∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q)))) (0RightAnnihilates a) ⟩ 0r ∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ∎) (λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i) -- We can move the indeterminate around: px * q = p * qx 0r∷Comm : ∀ p q → (0r ∷ p) Poly* q ≡ p Poly* (0r ∷ q) 0r∷Comm = ElimProp.f (λ p → ∀ q → (0r ∷ p) Poly* q ≡ p Poly* (0r ∷ q)) (λ q → (cong ((0r PolyConst* q) Poly+_) drop0) ∙ 0rLeftAnnihilatesPoly q ∙ drop0 ) (λ a p prf q → ((0r ∷ a ∷ p) Poly* q) ≡⟨ 0r∷LeftAssoc (a ∷ p) q ⟩ 0r ∷ ((a ∷ p) Poly* q) ≡⟨ sym (0r∷RightAssoc (a ∷ p) q) ⟩ ((a ∷ p) Poly* (0r ∷ q)) ∎ ) λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i --Poly* is commutative Poly*Commutative : ∀ p q → p Poly* q ≡ q Poly* p Poly*Commutative = ElimProp.f (λ p → ∀ q → p Poly* q ≡ q Poly* p) (λ q → sym (0PLeftAnnihilates q)) (λ a p prf q → (a PolyConst* q) Poly+ (0r ∷ (p Poly* q)) ≡⟨ cong ((a PolyConst* q) Poly+_) (cong (0r ∷_) (prf q)) ⟩ ((a PolyConst* q) Poly+ (0r ∷ (q Poly* p))) ≡⟨ cong ((a PolyConst* q) Poly+_) (sym (0r∷LeftAssoc q p)) ⟩ ((a PolyConst* q) Poly+ ((0r ∷ q) Poly* p)) ≡⟨ cong (_Poly+ ((0r PolyConst* p) Poly+ (0r ∷ (q Poly* p)))) (PolyConst*r=Poly*[r] a q) ⟩ ((q Poly* [ a ]) Poly+ ((0r ∷ q) Poly* p)) ≡⟨ cong ((q Poly* [ a ]) Poly+_) (0r∷Comm q p) ⟩ ((q Poly* [ a ]) Poly+ (q Poly* (0r ∷ p))) ≡⟨ sym (Poly*LDistrPoly+ q [ a ] (0r ∷ p)) ⟩ (((q Poly* ([ a ] Poly+ (0r ∷ p))))) ≡⟨ cong (q Poly*_) (Poly+Comm [ a ] (0r ∷ p)) ⟩ ((q Poly* ((0r ∷ p) Poly+ [ a ]))) ≡⟨ refl ⟩ (q Poly* ((0r + a) ∷ p)) ≡⟨ cong (q Poly*_) (cong (_∷ p) (+Lid a)) ⟩ (q Poly* (a ∷ p)) ∎) (λ x y i q → isSetPoly _ _ (x q ) (y q) i) --1P is the right identity of Poly*. Poly*Rid : ∀ p → p Poly* 1P ≡ p Poly*Rid = λ p → (Poly*Commutative p 1P ∙ Poly*Lid p) --Polynomial multiplication right distributes over polynomial addition. Poly*RDistrPoly+ : ∀ p q r → (p Poly+ q) Poly* r ≡ (p Poly* r) Poly+ (q Poly* r) Poly*RDistrPoly+ = λ p q r → sym (Poly*Commutative r (p Poly+ q)) ∙ Poly*LDistrPoly+ r p q ∙ cong (_Poly+ (r Poly* q)) (Poly*Commutative r p) ∙ cong ((p Poly* r) Poly+_) (Poly*Commutative r q) --Polynomial multiplication is associative Poly*Associative : ∀ p q r → p Poly* (q Poly* r) ≡ (p Poly* q) Poly* r Poly*Associative = ElimProp.f (λ p → ∀ q r → p Poly* (q Poly* r) ≡ (p Poly* q) Poly* r ) (λ _ _ → refl) (λ a p prf q r → ((a ∷ p) Poly* (q Poly* r)) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* (q Poly* r)))) (PolyConst*AssocPoly* a q r) ⟩ (((a PolyConst* q) Poly* r) Poly+ (0r ∷ (p Poly* (q Poly* r)))) ≡⟨ sym (cong (((a PolyConst* q) Poly* r) Poly+_) (cong (_∷ (p Poly* (q Poly* r))) (+Lid 0r))) ⟩ (((a PolyConst* q) Poly* r) Poly+ (0r + 0r ∷ (p Poly* (q Poly* r)))) ≡⟨ cong (((a PolyConst* q) Poly* r) Poly+_) (cong (0r + 0r ∷_) (sym (Poly+Lid (p Poly* (q Poly* r))))) ⟩ (((a PolyConst* q) Poly* r) Poly+ (0r + 0r ∷ ([] Poly+ (p Poly* (q Poly* r))))) ≡⟨ cong (((a PolyConst* q) Poly* r) Poly+_) (cong (0r + 0r ∷_) (cong ([] Poly+_) (prf q r))) ⟩ (((a PolyConst* q) Poly* r) Poly+ (0r + 0r ∷ ([] Poly+ ((p Poly* q) Poly* r)))) ≡⟨ cong (((a PolyConst* q) Poly* r) Poly+_) (cong (_Poly+ (0r ∷ ((p Poly* q) Poly* r))) (sym (0rLeftAnnihilatesPoly r))) ⟩ (((a PolyConst* q) Poly* r) Poly+ ((0r PolyConst* r) Poly+ (0r ∷ ((p Poly* q) Poly* r)))) ≡⟨ sym (Poly*RDistrPoly+ (a PolyConst* q) (0r ∷ (p Poly* q)) r) ⟩ ((((a ∷ p) Poly* q) Poly* r)) ∎) (λ x y i q r → isSetPoly _ _ (x q r) (y q r) i) ----------------------------------------------------------------------------- -- Product by Xn and operationsproperties on it prod-Xn : (n : ℕ) → Poly → Poly prod-Xn zero x = x prod-Xn (suc n) x = 0r ∷ (prod-Xn n x) prod-Xn-0P : (n : ℕ) → prod-Xn n 0P ≡ 0P prod-Xn-0P zero = refl prod-Xn-0P (suc n) = cong (λ X → 0r ∷ X) (prod-Xn-0P n) ∙ drop0 prod-Xn-sum : (n : ℕ) → (x y : Poly) → (prod-Xn n x) Poly+ (prod-Xn n y) ≡ prod-Xn n (x Poly+ y) prod-Xn-sum zero x y = refl prod-Xn-sum (suc n) x y = cong₂ _∷_ (+Rid 0r) (prod-Xn-sum n x y) prod-Xn-comp : (n m : ℕ) → (x : Poly) → prod-Xn n (prod-Xn m x) ≡ prod-Xn (n +n m) x prod-Xn-comp zero m x = refl prod-Xn-comp (suc n) m x = cong (λ X → 0r ∷ X) (prod-Xn-comp n m x) prod-Xn-∷ : (n : ℕ) → (r : R) → (x : Poly) → (prod-Xn n (r ∷ [])) Poly+ (0r ∷ prod-Xn n x) ≡ prod-Xn n (r ∷ x) prod-Xn-∷ zero r x = cong₂ _∷_ (+Rid r) (Poly+Lid x) prod-Xn-∷ (suc n) r x = cong₂ _∷_ (+Lid 0r) (prod-Xn-∷ n r x) prod-Xn-prod-0 : (m : ℕ) → (x y : Poly) → x Poly* (prod-Xn m y) ≡ prod-Xn m (x Poly* y) prod-Xn-prod-0 zero x y = refl prod-Xn-prod-0 (suc m) x y = ((x Poly* (0r ∷ prod-Xn m y))) ≡⟨ Poly*Commutative x (prod-Xn (suc m) y) ⟩ ((0r PolyConst* x) Poly+ (0r ∷ (prod-Xn m y Poly* x))) ≡⟨ cong (λ X → X Poly+ (0r ∷ ((prod-Xn m y) Poly* x))) ((0rLeftAnnihilatesPoly x) ∙ drop0) ⟩ ((0r ∷ (prod-Xn m y Poly* x))) ≡⟨ cong (λ X → 0r ∷ X) (Poly*Commutative (prod-Xn m y) x) ⟩ (0r ∷ (x Poly* prod-Xn m y)) ≡⟨ cong (λ X → 0r ∷ X) (prod-Xn-prod-0 m x y) ⟩ (0r ∷ prod-Xn m (x Poly* y)) ∎ prod-Xn-prod : (n m : ℕ) → (x y : Poly) → (prod-Xn n x) Poly* (prod-Xn m y) ≡ prod-Xn (n +n m) (x Poly* y) prod-Xn-prod zero m x y = prod-Xn-prod-0 m x y prod-Xn-prod (suc n) m x y = cong₂ _Poly+_ ((0rLeftAnnihilatesPoly (prod-Xn m y)) ∙ drop0) (cong (λ X → 0r ∷ X) (prod-Xn-prod n m x y)) ---------------------------------------------------------------------------------------------- -- An instantiation of Polynomials as a commutative ring can be found in CommRing/Instances -- ----------------------------------------------------------------------------------------------
{ "alphanum_fraction": 0.322786417, "avg_line_length": 51.7405582923, "ext": "agda", "hexsha": "812225b2a6ab65aac311ed79905ceb8f6fa08317", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Univariate/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Univariate/Properties.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Univariate/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8732, "size": 31510 }
------------------------------------------------------------------------ -- Conversion of ≤ to <, along with a number of properties ------------------------------------------------------------------------ -- Possible TODO: Prove that a conversion ≤ → < → ≤ returns a -- relation equivalent to the original one (and similarly for -- < → ≤ → <). open import Relation.Binary module Relation.Binary.NonStrictToStrict {a : Set} (_≈_ _≤_ : Rel a) where open import Relation.Nullary open import Relation.Binary.Consequences open import Data.Function open import Data.Product open import Data.Sum ------------------------------------------------------------------------ -- Conversion -- _≤_ can be turned into _<_ as follows: _<_ : Rel a x < y = (x ≤ y) × ¬ (x ≈ y) ------------------------------------------------------------------------ -- The converted relations have certain properties -- (if the original relations have certain other properties) irrefl : Irreflexive _≈_ _<_ irrefl x≈y x<y = proj₂ x<y x≈y trans : IsPartialOrder _≈_ _≤_ → Transitive _<_ trans po = λ x<y y<z → ( PO.trans (proj₁ x<y) (proj₁ y<z) , λ x≈z → proj₂ x<y $ lemma (proj₁ x<y) (proj₁ y<z) x≈z ) where module PO = IsPartialOrder po lemma : ∀ {x y z} → x ≤ y → y ≤ z → x ≈ z → x ≈ y lemma x≤y y≤z x≈z = PO.antisym x≤y $ PO.trans y≤z (PO.reflexive $ PO.Eq.sym x≈z) <-resp-≈ : IsEquivalence _≈_ → _≤_ Respects₂ _≈_ → _<_ Respects₂ _≈_ <-resp-≈ eq ≤-resp-≈ = (λ {x y' y} y'≈y x<y' → ( proj₁ ≤-resp-≈ y'≈y (proj₁ x<y') , λ x≈y → proj₂ x<y' (Eq.trans x≈y (Eq.sym y'≈y)) ) ) , (λ {y x' x} x'≈x x'<y → ( proj₂ ≤-resp-≈ x'≈x (proj₁ x'<y) , λ x≈y → proj₂ x'<y (Eq.trans x'≈x x≈y) )) where module Eq = IsEquivalence eq trichotomous : Symmetric _≈_ → Decidable _≈_ → Antisymmetric _≈_ _≤_ → Total _≤_ → Trichotomous _≈_ _<_ trichotomous ≈-sym ≈-dec antisym total x y with ≈-dec x y ... | yes x≈y = tri≈ (irrefl x≈y) x≈y (irrefl (≈-sym x≈y)) ... | no x≉y with total x y ... | inj₁ x≤y = tri< (x≤y , x≉y) x≉y (x≉y ∘ antisym x≤y ∘ proj₁) ... | inj₂ x≥y = tri> (x≉y ∘ flip antisym x≥y ∘ proj₁) x≉y (x≥y , x≉y ∘ ≈-sym) decidable : Decidable _≈_ → Decidable _≤_ → Decidable _<_ decidable ≈-dec ≤-dec x y with ≈-dec x y | ≤-dec x y ... | yes x≈y | _ = no (flip proj₂ x≈y) ... | no x≉y | yes x≤y = yes (x≤y , x≉y) ... | no x≉y | no x≰y = no (x≰y ∘ proj₁)
{ "alphanum_fraction": 0.5, "avg_line_length": 32.2077922078, "ext": "agda", "hexsha": "edffbc93e70a9b199ed93be4d9c130e19eafa967", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/NonStrictToStrict.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/NonStrictToStrict.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/NonStrictToStrict.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 940, "size": 2480 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.List.Relation.Unary.All -- directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.All where open import Data.List.Relation.Unary.All public {-# WARNING_ON_IMPORT "Data.List.All was deprecated in v1.0. Use Data.List.Relation.Unary.All instead." #-}
{ "alphanum_fraction": 0.5093167702, "avg_line_length": 26.8333333333, "ext": "agda", "hexsha": "c53c76a27ad96ea668d9619b4a9170958c52f48c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/All.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/All.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 87, "size": 483 }
{-# OPTIONS -v impossible:100 #-} module Issue882a where open import Common.Level open import Common.Equality private primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y -- trustMe {x = x} {y = y} evaluates to refl if x and y are -- definitionally equal. -- -- For an example of the use of trustMe, see Data.String._≟_. trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y trustMe = primTrustMe postulate S : Set B : Set b : B M : Set M = B -> S out : M -> M out m = o where s : S s = m b postulate mko : (mm : S) -> s ≡ mm -> M o : M o n = mko (m b) trustMe n postulate unfold : (M -> M) -> M inn : M inn = unfold out postulate n : B iso1 : inn ≡ inn iso1 rewrite refl {x = n} = {!!} -- iso1 rewrite (refl {a = lzero}{A = B}{x = n}) = {!!} {- Error OLD: An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Conversion.hs:636 NEW: Some vomit about Setω not equal to Level when checking well-formedness of with type. NEWER (2013-11-30): Cannot instantiate the metavariable _48 to solution m b since it contains the variable m which is not in scope of the metavariable or irrelevant in the metavariable but relevant in the solution when checking that the type B → (w : _x_48 ≡ _x_48) → unfold (λ m → _.mko m (m b) w) ≡ unfold (λ m → _.mko m (m b) w) of the generated with function is well-formed NOW (2014-05-17): Rewriting with refl is a no-op, so no error is triggered any more. Just an unresolved meta now. -}
{ "alphanum_fraction": 0.6461336828, "avg_line_length": 19.5641025641, "ext": "agda", "hexsha": "062944f5ddbc3befeccaaa19e16cce803263ff77", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/fail/Issue882a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/fail/Issue882a.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue882a.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 511, "size": 1526 }
{-# OPTIONS --cubical --guardedness --postfix-projections #-} module Data.Graph where open import Prelude open import Data.List open import Data.Nat -- record Thunk (A : Type a) : Type a where -- coinductive -- constructor ⟪_⟫ -- field force : A -- open Thunk -- infixr 5 _◃_ -- record Stream (A : Type a) : Type a where -- constructor _◃_ -- coinductive -- field -- head : A -- tail : (Stream A) -- open Stream Graph : Type a → Type a Graph A = A → List A Stream : Type a → Type a Stream A = ℕ → A pure : A → Stream A pure x _ = x smap : (A → B) → Stream A → Stream B smap f xs n = f (xs n) bfs : Graph A → A → Stream (List A) bfs g r zero = r ∷ [] bfs g r (suc n) = concatMap g (bfs g r n) -- module _ {A : Type a} (g : Graph A) where -- mutual -- bfs-foldr : List A → Stream (List A) → Stream (List A) -- bfs-foldr [] qs = qs -- bfs-foldr (x ∷ xs) qs .head = x ∷ bfs-foldr xs qs .head -- bfs-foldr (x ∷ xs) qs .tail .force = bfs-foldr (g x) (bfs-foldr xs qs .tail .force) -- -- bfs-cons : A → Stream (List A) → Stream (List A) -- -- bfs-cons x (q ◃ qs) = (x ∷ q) ◃ bfs-foldr (g x) qs -- -- bfs : A → Stream (List A) -- -- bfs r = bfs-cons r (pure [])
{ "alphanum_fraction": 0.5599022005, "avg_line_length": 22.7222222222, "ext": "agda", "hexsha": "c31118ce3b56b767f151245f18fa46e3250b45b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Graph.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Graph.agda", "max_line_length": 90, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Graph.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 436, "size": 1227 }
open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Equality record D (A : Set) : Set where constructor mkD field d : A open D {{...}} module test where instance _ : D Bool _ = mkD true a : D Nat a = mkD 0 _ : d ≡ true _ = refl _ : d ≡ zero _ = refl -- no instance in scope -- _ : d ≡ true -- _ = ? _ : d ≡ zero _ = refl
{ "alphanum_fraction": 0.5776081425, "avg_line_length": 11.9090909091, "ext": "agda", "hexsha": "263aef8550f7b83c65f0b3ffc376db667491cb3d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2498.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2498.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2498.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 393 }
open import Agda.Builtin.List open import Agda.Builtin.Unit open import Agda.Builtin.Nat open import Agda.Builtin.String renaming (primShowNat to show) open import Agda.Builtin.Reflection renaming (bindTC to _>>=_; returnTC to return) pattern vArg t = arg (arg-info visible relevant) t pattern var₀ x = var x [] infixr 10 _++_ _++_ = primStringAppend postulate whatever : ∀ {a} {A : Set a} → A macro test1 : Nat → Term → TC _ test1 n _ = extendContext (vArg (quoteTerm Nat)) do var₀ i ← quoteTC n where _ → whatever m ← unquoteTC {A = Nat} (var₀ 0) var₀ j ← quoteTC m where _ → whatever extendContext (vArg (quoteTerm Nat)) do var₀ k ← quoteTC n where _ → whatever var₀ l ← quoteTC m where _ → whatever typeError (strErr (show i ++ show k ++ show j ++ show l) ∷ []) test2 : Term → TC _ test2 hole = do st ← quoteTC Set t ← extendContext (vArg st) do v ← unquoteTC {A = Set} (var₀ zero) extendContext (vArg (var₀ zero)) do _ ← unquoteTC {A = v} (var₀ zero) return tt u ← quoteTC t unify hole u test3 : Nat → Term → TC _ test3 n _ = do m ← extendContext (vArg (quoteTerm Nat)) (return n) var₀ i ← quoteTC m where _ → whatever typeError (strErr (show i) ∷ []) localvar : Term → TC _ localvar _ = do m ← extendContext (vArg (quoteTerm Nat)) (unquoteTC {A = Nat} (var₀ 0)) typeError (strErr (show m) ∷ [])
{ "alphanum_fraction": 0.622329428, "avg_line_length": 28.4509803922, "ext": "agda", "hexsha": "8c1f7d2d2fc1b3d02a86e0f778696125dc00cff2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3831.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3831.agda", "max_line_length": 75, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3831.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 470, "size": 1451 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.HSpace where record HSpaceStructure {i} (A : Type i) : Type i where constructor hSpaceStructure field e : A μ : A → A → A μe- : (a : A) → μ e a == a μ-e : (a : A) → μ a e == a module ConnectedHSpace {i} (A : Type i) (c : is-connected ⟨0⟩ A) (hA : HSpaceStructure A) where open HSpaceStructure hA {- Given that [A] is 0-connected, to prove that each [μ a] is an equivalence we only need to prove that one of them is. But for [a] = [e], [μ a] is the identity so we’re done. -} μ-is-equiv : (a : A) → is-equiv (μ a) μ-is-equiv = prop-over-connected {a = e} c (λ a → (is-equiv (μ a) , is-equiv-is-prop (μ a))) (transport! is-equiv (λ= μe-) (idf-is-equiv A)) μ'-is-equiv : (a : A) → is-equiv (λ a' → μ a' a) μ'-is-equiv = prop-over-connected {a = e} c (λ a → (is-equiv (λ a' → μ a' a) , is-equiv-is-prop (λ a' → μ a' a))) (transport! is-equiv (λ= μ-e) (idf-is-equiv A)) μ-equiv : A → A ≃ A μ-equiv a = (μ a , μ-is-equiv a) μ'-equiv : A → A ≃ A μ'-equiv a = ((λ a' → μ a' a) , μ'-is-equiv a)
{ "alphanum_fraction": 0.5533807829, "avg_line_length": 27.4146341463, "ext": "agda", "hexsha": "f8504db895309189e8a312ca86a1fee0a27c5af8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/HSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/HSpace.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/HSpace.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 422, "size": 1124 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Product open import Data.Integer as ℤ using (ℤ) open import Data.Rational as ℚ using (ℚ) open import Data.Bool as 𝔹 using (Bool; true; false; if_then_else_) open import Data.Fin as Fin using (Fin; #_) open import Data.List open import Relation.Nullary open import Relation.Nullary.Decidable module simple-if-temp-output where postulate f : Tensor ℚ (1 ∷ []) → Tensor ℚ (1 ∷ []) abstract prop1 : ∀ (x : ℚ) → if ⌊ x ℚ.>? ℤ.+ 0 ℚ./ 1 ⌋ then f (x ∷ []) (# 0) ℚ.> ℤ.+ 0 ℚ./ 1 else f (x ∷ []) (# 0) ℚ.≤ ℤ.+ 0 ℚ./ 1 prop1 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract prop3 : ∃ λ (x : ℚ) → if ⌊ f (x ∷ []) (# 0) ℚ.>? ℤ.+ 0 ℚ./ 1 ⌋ then x ℚ.≥ ℤ.+ 0 ℚ./ 1 else x ℚ.< ℤ.+ 0 ℚ./ 1 prop3 = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
{ "alphanum_fraction": 0.6401384083, "avg_line_length": 33.0285714286, "ext": "agda", "hexsha": "b40a6be846c6ef022d62c30138b4891ce8a51cea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/simple-if/simple-if-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/simple-if/simple-if-output.agda", "max_line_length": 123, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/simple-if/simple-if-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 423, "size": 1156 }
module Imports.ATP-A where postulate D : Set _≡_ : D → D → Set a b : D postulate p : a ≡ b
{ "alphanum_fraction": 0.5480769231, "avg_line_length": 11.5555555556, "ext": "agda", "hexsha": "5206ea2c778c4fd845ecd782270323251943f540", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/Imports/ATP-A.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/Imports/ATP-A.agda", "max_line_length": 26, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/Imports/ATP-A.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 46, "size": 104 }
{-# OPTIONS --cubical-compatible #-} -- {-# OPTIONS -v tc.lhs.unify:15 #-} open import Common.Equality open import Common.Prelude data Fin : (n : Nat) → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) data _≅_ {A : Set} (a : A) : {B : Set} (b : B) → Set1 where refl : a ≅ a OffDiag : ∀ {n m} → Fin n → Fin m → Set OffDiag zero zero = ⊥ OffDiag (suc _) (suc _) = ⊥ OffDiag _ _ = ⊤ inj-Fin-≅ : ∀ {n m} {i : Fin n} {j : Fin m} → i ≅ j → OffDiag i j → ⊥ inj-Fin-≅ {i = zero} {zero} eq () inj-Fin-≅ {i = zero} {suc j} () inj-Fin-≅ {i = suc i} {zero} () inj-Fin-≅ {i = suc i} {suc j} p ()
{ "alphanum_fraction": 0.5038402458, "avg_line_length": 26.04, "ext": "agda", "hexsha": "46ca7c9be6cffe8e8f2b40d3b3f3f41de44fd664", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue1408a.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue1408a.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue1408a.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 291, "size": 651 }
module Cxt (K : Set) where open import Basics open import Pr open import Nom mutual data Cxt : Set where EC : Cxt _[_-_] : (G : Cxt)(x : Nom) -> K -> {p : [| G Hasn't x |]} -> Cxt HAS : Cxt -> Nom -> Bool HAS EC x = false HAS (G [ y - S ]) x with nomEq y x HAS (G [ y - S ]) .y | yes refl = true ... | no n = HAS G x _Has_ : Cxt -> Nom -> Pr G Has x = So (HAS G x) _Hasn't_ : Cxt -> Nom -> Pr G Hasn't x = So (not (HAS G x)) GooN : (G : Cxt)(T : K) -> Nom -> Pr GooN EC T y = ff GooN (G [ x - S ]) T y with nomEq x y GooN (G [ x - S ]) T .x | yes refl = S eq T GooN (G [ x - S ]) T y | no n = GooN G T y _?-_ : (G : Cxt)(x : Nom){p : [| G Has x |]} -> K :- \ T -> GooN G T x (EC ?- y) {} ((G [ x - S ]) ?- y) {_} with nomEq x y ((G [ x - S ]) ?- .x) {_} | yes refl = [ S / refl ] ((G [ x - S ]) ?- y) {p} | no n = (G ?- y) {p} topGooN : (G : Cxt)(x : Nom){p : [| G Hasn't x |]}(S : K) -> [| GooN ((G [ x - S ]) {p}) S x |] topGooN G x S with nomEq x x topGooN G x S | yes refl = refl topGooN G x S | no n = magic (n refl)
{ "alphanum_fraction": 0.4362176628, "avg_line_length": 26.6904761905, "ext": "agda", "hexsha": "5b495bb9e80bf057fea05226778b834b6ba1b25f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "benchmark/Syntacticosmos/Cxt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "benchmark/Syntacticosmos/Cxt.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "benchmark/Syntacticosmos/Cxt.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 489, "size": 1121 }
{-# OPTIONS --sized-types #-} module SOList.Lower.Properties {A : Set}(_≤_ : A → A → Set) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Size open import List.Sorted _≤_ open import SOList.Lower _≤_ lemma-solist-sorted : {ι : Size}{b : Bound} → (xs : SOList {ι} b) → Sorted (forget xs) lemma-solist-sorted onil = nils lemma-solist-sorted (:< {x = x} _ onil) = singls x lemma-solist-sorted (:< b≤x (:< (lexy x≤y) ys)) = conss x≤y (lemma-solist-sorted (:< (lexy x≤y) ys))
{ "alphanum_fraction": 0.6561886051, "avg_line_length": 29.9411764706, "ext": "agda", "hexsha": "fb0b907750865875e404b8e12fe16d0f24cf3d70", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SOList/Lower/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SOList/Lower/Properties.agda", "max_line_length": 101, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SOList/Lower/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 187, "size": 509 }
module Float where import Lvl open import Type postulate Float : Type{Lvl.𝟎} {-# BUILTIN FLOAT Float #-}
{ "alphanum_fraction": 0.6964285714, "avg_line_length": 14, "ext": "agda", "hexsha": "3ff72daa13374862d2954b423c07c30cd80e7a18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Float.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Float.agda", "max_line_length": 29, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Float.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 32, "size": 112 }
{-# OPTIONS --copatterns #-} open import Common.Equality open import Common.Product id : {A : Set} → A → A id x = x record Functor (F : Set → Set) : Set₁ where field map : ∀ {A B} → (A → B) → F A → F B map-id : ∀ {A}{x : F A} → map id x ≡ x open Functor test : {C : Set} → Functor (_×_ C) map test f (c , a) = c , f a map-id test = refl -- : map test id x ≡ x -- needs to match against record constructor -- x/(c,a) = proj₁ x / c, proj₂ x / a
{ "alphanum_fraction": 0.5400843882, "avg_line_length": 23.7, "ext": "agda", "hexsha": "38b9c99d43b89335e56640828f68aea3c221b943", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue959.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue959.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue959.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 171, "size": 474 }
{-# OPTIONS --without-K --exact-split #-} module 02-pi where import 00-preamble open 00-preamble public -- Section 2.3 The identity function, composition, and their laws -- Definition 2.3.1 id : {i : Level} {A : UU i} → A → A id a = a -- Definition 2.3.2 _∘_ : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C)) (g ∘ f) a = g (f a) -- Exercises -- Exercise 2.3 const : {i j : Level} (A : UU i) (B : UU j) (b : B) → A → B const A B b x = b -- Exercise 2.4 _∘'_ : {i j k : Level} {A : UU i} {B : A → UU j} {C : (x : A) → B x → UU k} → (g : (x : A) → (y : B x) → C x y) (f : (x : A) → B x) → (x : A) → C x (f x) (g ∘' f) x = g x (f x) -- Exercise 2.5 Π-swap : {i j k : Level} {A : UU i} {B : UU j} {C : A → (B → UU k)} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) Π-swap f y x = f x y
{ "alphanum_fraction": 0.4555160142, "avg_line_length": 23.4166666667, "ext": "agda", "hexsha": "accb85bc3f9f4748b2cf889d46827cfb515dfad5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/02-pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/02-pi.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/02-pi.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 408, "size": 843 }
------------------------------------------------------------------------ -- Some parsers which require a decidable token equality ------------------------------------------------------------------------ open import Relation.Binary module RecursiveDescent.Inductive.Token (D : DecSetoid) where open DecSetoid D using (_≟_) renaming (carrier to tok) open import RecursiveDescent.Inductive open import RecursiveDescent.Inductive.SimpleLib open import Data.Maybe open import Relation.Nullary open import Data.Vec open import Data.Vec1 -- Parsing a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym c = sat p where p : tok -> Maybe tok p x with c ≟ x ... | yes _ = just x ... | no _ = nothing -- Parsing a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs)
{ "alphanum_fraction": 0.600877193, "avg_line_length": 26.8235294118, "ext": "agda", "hexsha": "222894395697c7ab72266a3161085b70d6c135c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Inductive/Token.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Inductive/Token.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Inductive/Token.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 214, "size": 912 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality where open import Algebra open import Algebra.Structures open import Algebra.Definitions import Axiom.Extensionality.Propositional as Ext open import Axiom.UniquenessOfIdentityProofs open import Function.Base open import Function.Equality using (Π; _⟶_; ≡-setoid) open import Level using (Level; _⊔_) open import Data.Product using (∃) open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Decidable.Core open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial private variable a b c ℓ p : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Re-export contents of core module open import Relation.Binary.PropositionalEquality.Core public ------------------------------------------------------------------------ -- Some properties subst₂ : ∀ (_∼_ : REL A B ℓ) {x y u v} → x ≡ y → u ≡ v → x ∼ u → y ∼ v subst₂ _ refl refl p = p cong-app : ∀ {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl cong₂ : ∀ (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl ------------------------------------------------------------------------ -- Structure of equality as a binary relation isEquivalence : IsEquivalence {A = A} _≡_ isEquivalence = record { refl = refl ; sym = sym ; trans = trans } isDecEquivalence : Decidable _≡_ → IsDecEquivalence {A = A} _≡_ isDecEquivalence _≟_ = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } isPreorder : IsPreorder {A = A} _≡_ _≡_ isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } ------------------------------------------------------------------------ -- Bundles for equality as a binary relation setoid : Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : Decidable {A = A} _≡_ → DecSetoid _ _ decSetoid _≟_ = record { _≈_ = _≡_ ; isDecEquivalence = isDecEquivalence _≟_ } preorder : Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = _≡_ ; isPreorder = isPreorder } ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : ∀ (A : Set a) (B : Set b) → Setoid _ _ A →-setoid B = ≡-setoid A (Trivial.indexedSetoid (setoid B)) _≗_ : (f g : A → B) → Set _ _≗_ {A = A} {B = B} = Setoid._≈_ (A →-setoid B) :→-to-Π : ∀ {A : Set a} {B : IndexedSetoid A b ℓ} → ((x : A) → IndexedSetoid.Carrier B x) → Π (setoid A) B :→-to-Π {B = B} f = record { _⟨$⟩_ = f ; cong = λ { refl → IndexedSetoid.refl B } } where open IndexedSetoid B using (_≈_) →-to-⟶ : ∀ {A : Set a} {B : Setoid b ℓ} → (A → Setoid.Carrier B) → setoid A ⟶ B →-to-⟶ = :→-to-Π ------------------------------------------------------------------------ -- Inspect -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. -- See README.Inspect for an explanation of how/why to use this. record Reveal_·_is_ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≡ y inspect : ∀ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] ------------------------------------------------------------------------ -- Propositionality isPropositional : Set a → Set a isPropositional A = (a b : A) → a ≡ b ------------------------------------------------------------------------ -- Various equality rearrangement lemmas trans-injectiveˡ : ∀ {x y z : A} {p₁ p₂ : x ≡ y} (q : y ≡ z) → trans p₁ q ≡ trans p₂ q → p₁ ≡ p₂ trans-injectiveˡ refl = subst₂ _≡_ (trans-reflʳ _) (trans-reflʳ _) trans-injectiveʳ : ∀ {x y z : A} (p : x ≡ y) {q₁ q₂ : y ≡ z} → trans p q₁ ≡ trans p q₂ → q₁ ≡ q₂ trans-injectiveʳ refl eq = eq cong-id : ∀ {x y : A} (p : x ≡ y) → cong id p ≡ p cong-id refl = refl cong-∘ : ∀ {x y : A} {f : B → C} {g : A → B} (p : x ≡ y) → cong (f ∘ g) p ≡ cong f (cong g p) cong-∘ refl = refl module _ {P : Pred A p} {x y : A} where subst-injective : ∀ (x≡y : x ≡ y) {p q : P x} → subst P x≡y p ≡ subst P x≡y q → p ≡ q subst-injective refl p≡q = p≡q subst-subst : ∀ {z} (x≡y : x ≡ y) {y≡z : y ≡ z} {p : P x} → subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p subst-subst refl = refl subst-subst-sym : (x≡y : x ≡ y) {p : P y} → subst P x≡y (subst P (sym x≡y) p) ≡ p subst-subst-sym refl = refl subst-sym-subst : (x≡y : x ≡ y) {p : P x} → subst P (sym x≡y) (subst P x≡y p) ≡ p subst-sym-subst refl = refl subst-∘ : ∀ {x y : A} {P : Pred B p} {f : A → B} (x≡y : x ≡ y) {p : P (f x)} → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p subst-∘ refl = refl subst-application : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} (B₁ : A₁ → Set b₁) {B₂ : A₂ → Set b₂} {f : A₂ → A₁} {x₁ x₂ : A₂} {y : B₁ (f x₁)} (g : ∀ x → B₁ (f x) → B₂ x) (eq : x₁ ≡ x₂) → subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong f eq) y) subst-application _ _ refl = refl -- A lemma that is very similar to Lemma 2.4.3 from the HoTT book. naturality : ∀ {x y} {x≡y : x ≡ y} {f g : A → B} (f≡g : ∀ x → f x ≡ g x) → trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y) naturality {x = x} {x≡y = refl} f≡g = f≡g x ≡⟨ sym (trans-reflʳ _) ⟩ trans (f≡g x) refl ∎ where open ≡-Reasoning -- A lemma that is very similar to Corollary 2.4.4 from the HoTT book. cong-≡id : ∀ {f : A → A} {x : A} (f≡id : ∀ x → f x ≡ x) → cong f (f≡id x) ≡ f≡id (f x) cong-≡id {f = f} {x} f≡id = cong f fx≡x ≡⟨ sym (trans-reflʳ _) ⟩ trans (cong f fx≡x) refl ≡⟨ cong (trans _) (sym (trans-symʳ fx≡x)) ⟩ trans (cong f fx≡x) (trans fx≡x (sym fx≡x)) ≡⟨ sym (trans-assoc (cong f fx≡x)) ⟩ trans (trans (cong f fx≡x) fx≡x) (sym fx≡x) ≡⟨ cong (λ p → trans p (sym _)) (naturality f≡id) ⟩ trans (trans f²x≡x (cong id fx≡x)) (sym fx≡x) ≡⟨ cong (λ p → trans (trans f²x≡x p) (sym fx≡x)) (cong-id _) ⟩ trans (trans f²x≡x fx≡x) (sym fx≡x) ≡⟨ trans-assoc f²x≡x ⟩ trans f²x≡x (trans fx≡x (sym fx≡x)) ≡⟨ cong (trans _) (trans-symʳ fx≡x) ⟩ trans f²x≡x refl ≡⟨ trans-reflʳ _ ⟩ f≡id (f x) ∎ where open ≡-Reasoning; fx≡x = f≡id x; f²x≡x = f≡id (f x) module _ (_≟_ : Decidable {A = A} _≡_) {x y : A} where ≡-≟-identity : (eq : x ≡ y) → x ≟ y ≡ yes eq ≡-≟-identity eq = dec-yes-irr (x ≟ y) (Decidable⇒UIP.≡-irrelevant _≟_) eq ≢-≟-identity : x ≢ y → ∃ λ ¬eq → x ≟ y ≡ no ¬eq ≢-≟-identity ¬eq = dec-no (x ≟ y) ¬eq ------------------------------------------------------------------------ -- Any operation forms a magma over _≡_ isMagma : (_∙_ : Op₂ A) → IsMagma _≡_ _∙_ isMagma _∙_ = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∙_ } magma : (_∙_ : Op₂ A) → Magma _ _ magma _∙_ = record { isMagma = isMagma _∙_ } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 Extensionality = Ext.Extensionality {-# WARNING_ON_USAGE Extensionality "Warning: Extensionality was deprecated in v1.0. Please use Extensionality from `Axiom.Extensionality.Propositional` instead." #-} extensionality-for-lower-levels = Ext.lower-extensionality {-# WARNING_ON_USAGE extensionality-for-lower-levels "Warning: extensionality-for-lower-levels was deprecated in v1.0. Please use lower-extensionality from `Axiom.Extensionality.Propositional` instead." #-} ∀-extensionality = Ext.∀-extensionality {-# WARNING_ON_USAGE ∀-extensionality "Warning: ∀-extensionality was deprecated in v1.0. Please use ∀-extensionality from `Axiom.Extensionality.Propositional` instead." #-}
{ "alphanum_fraction": 0.5051534715, "avg_line_length": 32.9440298507, "ext": "agda", "hexsha": "8178ed79d99065c45a6a29e9289774e369f3850d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_line_length": 111, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3139, "size": 8829 }
{-# TERMINATING #-} {-# NO_POSITIVITY_CHECK #-} mutual data D₁ : Set where lam : (D₁ → D₁) → D₁ Foo₁ : Set Foo₁ = Foo₁ {-# NON_TERMINATING #-} {-# NO_POSITIVITY_CHECK #-} mutual data D₂ : Set where lam : (D₂ → D₂) → D₂ Foo₂ : Set Foo₂ = Foo₂
{ "alphanum_fraction": 0.5467625899, "avg_line_length": 14.6315789474, "ext": "agda", "hexsha": "92d5a18ea64e1ecd6fd10142e05b5863efbb60a5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1755b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1755b.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1755b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 278 }
record R0 : Set₁ where constructor c0 field f0 : Set record R1 : Set₁ where constructor c1 field f1 : R0 test : R1 → Set₁ test x@(c1 x) = Set
{ "alphanum_fraction": 0.6578947368, "avg_line_length": 13.8181818182, "ext": "agda", "hexsha": "5f9b331549595ef299774fac30f130831dd43d66", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4631.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4631.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4631.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 152 }
-- forcePi should be allowed to generate constraints module Lambda where data Bool : Set where true : Bool false : Bool T : Bool -> Set T true = Bool -> Bool T false = Bool id : {x : Bool} -> T x -> T x id y = y f : Bool -> Bool f = id (\x -> x)
{ "alphanum_fraction": 0.5953307393, "avg_line_length": 13.5263157895, "ext": "agda", "hexsha": "1d6430c8e62015c24a861dfa9431415ec03c21cd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/Lambda.agda", "max_line_length": 52, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 83, "size": 257 }
-- Andreas, 2013-03-20 Problem was that CompiledClause.Match.unfoldCoinduction -- did not instantiate metas -- {-# OPTIONS -v tc.meta.assign:10 -v tc.reduce:100 -v tc.with.abstract:50 #-} {-# OPTIONS --allow-unsolved-metas #-} module Issue826 where open import Common.Coinduction postulate A : Set x : A P : A → Set p : P x data Q : ∞ A → Set where ♯x = ♯ x Foo : Q ♯x Foo = goal where x′ : _ x′ = _ -- problem went away if we wrote ♯x here goal : Q x′ -- ensures that x′ = ♯ x (instantiates meta) goal = {!♭ x′!} -- normalization of this expression should be x, but was not -- Note that ♭ x′ is definitionally equal to x: ok : P (♭ x′) ok = p good : P x good with (♭ x′) | p good | y | p′ = p′ {- This still does not work because the underscore is solved too late, only after with-abstraction is taking place. bad : P (♭ x′) bad with x | p bad | y | p′ = p′ -}
{ "alphanum_fraction": 0.6133625411, "avg_line_length": 20.2888888889, "ext": "agda", "hexsha": "7f47bc3dabe788e96b407c356afceb9d2283bbb4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue826.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue826.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue826.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 312, "size": 913 }
module SetInf where id : ∀ {A} → A → A id x = x
{ "alphanum_fraction": 0.5306122449, "avg_line_length": 9.8, "ext": "agda", "hexsha": "56dba006b564eab880908b4a5ecf80d101ce6adb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/SetInf.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/SetInf.agda", "max_line_length": 19, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/SetInf.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 49 }