Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K #-}
module M-types.Base where
open import M-types.Base.Core public
open import M-types.Base.Sum public
open import M-types.Base.Prod public
open import M-types.Base.Eq public
open import M-types.Base.Equi public
open import M-types.Base.Rel public
open import M-types.Base.Contr public
open import M-types.Base.Axiom public
| {
"alphanum_fraction": 0.7172774869,
"avg_line_length": 29.3846153846,
"ext": "agda",
"hexsha": "cbda517d996a5dbbbc07f074c0f2b393025bab0b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DDOtten/M-types",
"max_forks_repo_path": "Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DDOtten/M-types",
"max_issues_repo_path": "Base.agda",
"max_line_length": 41,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DDOtten/M-types",
"max_stars_repo_path": "Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 91,
"size": 382
} |
module Injections where
open import Data.Product
open import Relation.Nullary
open import Data.Empty
open import Data.Sum
open import Support.Equality
open ≡-Reasoning
open import Vars public
open import Injections.Type public
invert : ∀ {A : Set} {xs ys : List A} (i : Inj xs ys) → ∀ {t} (y : ys ∋ t) → Dec (∃ \ x → i $ x ≡ y)
invert [] y = no (λ { (() , _)})
invert ( z ∷ i [ pf ]) y with z ≅∋? y
invert (.y ∷ i [ pf ]) y | yes refl` = yes (zero , refl)
invert ( z ∷ i [ pf ]) y | no z≢y with invert i y
invert ( z ∷ i [ pf ]) y | no z≢y | yes (x , i$x≡y) = yes (suc x , i$x≡y)
invert ( z ∷ i [ pf ]) y | no z≢y | no ¬[i⁻¹y] = no (neither z≢y ¬[i⁻¹y])
where
neither : ∀ {t} {y : _ ∋ t} → ¬ z ≅∋ y → ¬ (∃ \ x → i $ x ≡ y) → ¬ Σ (_ ∷ _ ∋ _) (λ x → (z ∷ i [ pf ]) $ x ≡ y)
neither ¬1 ¬2 (zero , p) = ¬1 (refl , ≡-to-≅ p)
neither ¬1 ¬2 (suc x , p) = ¬2 (x , p)
abstract
_∘i_ : ∀ {A : Set}{xs ys zs : List A} → Inj ys zs → Inj xs ys → Inj xs zs
f ∘i g = quo (λ x x₁ → f $ (g $ x₁)) {λ x x₁ → injective g _ _ (injective f _ _ x₁)}
mutual
id-i : ∀ {A : Set}{xs : List A} → Inj xs xs
id-i = quo (\ _ x → x) {\ _ e → e}
Inj-thin : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> Inj xs (ys - v) → Inj xs ys
Inj-thin v f = quo (λ x x₁ → thin v x (f $ x₁)) {λ x x₁ → injective f _ _ (thin-inj v x₁)}
abstract
id-i$ : ∀ {A : Set}{xs : List A} -> ∀ {x}(v : xs ∋ x) -> id-i $ v ≡ v
id-i$ v = iso2 _ _ v
right-id : ∀ {A : Set}{xs ys : List A} → (i : Inj xs ys) → i ∘i id-i ≡ i
right-id i = begin quo (λ x z → i $ (id-i $ z)) ≡⟨ quo-ext (λ x v → cong (_$_ i) (iso2 _ _ v)) ⟩
quo (λ x → _$_ i) ≡⟨ iso1 i (λ x eq → injective i _ _ eq) ⟩
i ∎
left-id : ∀ {A : Set}{xs ys : List A} → (i : Inj xs ys) → id-i ∘i i ≡ i
left-id i = begin quo (λ x z → id-i $ (i $ z)) ≡⟨ quo-ext (λ x v → (iso2 _ _ (i $ v))) ⟩
quo (λ x → _$_ i) ≡⟨ iso1 i (λ x eq → injective i _ _ eq) ⟩
i ∎
apply-∘ : ∀ {A : Set}{xs ys zs : List A} → (j : Inj ys zs) → (i : Inj xs ys) → ∀ {x} {v : x ∈ xs} → (j ∘i i) $ v ≡ j $ (i $ v)
apply-∘ j i {x}{v} = iso2 _ _ v
assoc-∘i : ∀ {A : Set}{xs ys ws zs : List A} {f : Inj ws zs}{g : Inj _ ws}{h : Inj xs ys} → f ∘i (g ∘i h) ≡ (f ∘i g) ∘i h
assoc-∘i {f = f}{g = g}{h = h} = quo-ext λ x v →
begin f $ (quo (λ x₁ x₂ → g $ (h $ x₂)) $ v) ≡⟨ cong (_$_ f) (iso2 _ _ v) ⟩
f $ (g $ (h $ v)) ≡⟨ sym (iso2 _ _ (h $ v)) ⟩
quo (λ x₁ x₂ → f $ (g $ x₂)) $ (h $ v) ∎
cong-$ : ∀ {A : Set}{xs ys : List A} {f g : _} {inj1 inj2} → quo {_} {xs} {ys} f {inj1} ≡ quo g {inj2} → ∀ {s} (x : xs ∋ s) → f s x ≡ g s x
cong-$ {A} {xs} {ys} {f} {g} eq x = begin f _ x ≡⟨ sym (iso2 f _ x) ⟩
quo f $ x ≡⟨ cong (λ f₁ → f₁ $ x) eq ⟩
quo g $ x ≡⟨ iso2 g _ x ⟩
g _ x ∎
∘i-inj : ∀ {A : Set}{xs ys zs : List A} → (i : Inj ys zs) (j1 j2 : Inj xs ys) → (i ∘i j1) ≡ (i ∘i j2) → j1 ≡ j2
∘i-inj i j1 j2 eq = begin j1 ≡⟨ sym (iso1 j1 (λ x x₁ → injective j1 _ _ x₁)) ⟩
quo (λ x → _$_ j1) ≡⟨ quo-ext (λ x v → injective i _ _ (cong-$ eq v)) ⟩
quo (λ x → _$_ j2) ≡⟨ iso1 j2 (λ x x₁ → injective j2 _ _ x₁) ⟩
j2 ∎
Inj-thin-$ : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) -> ∀ {y}(u : xs ∋ y) -> Inj-thin v f $ u ≡ thin v _ (f $ u)
Inj-thin-$ v f u = iso2 _ _ u
Inj-thin-inj : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f g : Inj xs (ys - v)) -> Inj-thin v f ≡ Inj-thin v g -> f ≡ g
Inj-thin-inj v f g eq = ext-$ f g (λ x v₁ → thin-inj v (cong-$ {inj1 = λ x₁ x₂ → injective f _ _ (thin-inj v x₂)} {inj2 = λ x₁ x₂ → injective g _ _ (thin-inj v x₂)} eq v₁)) -- XXX regression
Inj-thin-∘i : ∀ {A : Set}{x : A}{zs xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) (m : Inj zs xs) -> Inj-thin v f ∘i m ≡ Inj-thin v (f ∘i m)
Inj-thin-∘i v f m = quo-ext (λ x v₁ → trans (iso2 _ _ (m $ v₁)) (cong (thin v x) (sym (iso2 _ _ v₁))))
v∉Inj-thinv : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) -> v ∉ Inj-thin v f
v∉Inj-thinv v f = ∉Im$-∉ (λ x x₁ → thin v _ (f $ x₁)) v (λ b → x∉thinx v (f $ b))
test : ∀ {A : Set} {xs ys} → (f : ∀ (x : A) → x ∈ xs → x ∈ ys){inj1 inj2 : ∀ x → {i j : x ∈ xs} → f x i ≡ f x j → i ≡ j} → quo f {inj1} ≡ quo f {inj2}
test f = refl
weak : ∀ {A : Set}{x : A}{xs ys} → Inj xs ys → Inj xs (x ∷ ys)
weak f = Inj-thin zero f
apply-weakid : ∀ {A : Set}{xs : List A}{x y}(i : xs ∋ x) -> weak {x = y} id-i $ i ≡ suc i
apply-weakid i = begin
quo (λ x v → thin zero x (id-i $ v)) $ i ≡⟨ iso2 _ _ i ⟩
suc (id-i $ i) ≡⟨ cong suc (id-i$ i) ⟩
suc i ∎
_∷[]_ : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> Inj xs (ys - v) → Inj (x ∷ xs) ys
v ∷[] f = v ∷ Inj-thin v f [ v∉Inj-thinv v f ]
cons : ∀ {A : Set}{x : A}{xs ys} → Inj xs ys → Inj (x ∷ xs) (x ∷ ys)
cons z = zero ∷[] z
abstract
cons-id : ∀ {A : Set}{x : A}{xs} -> cons id-i ≡ id-i {_} {x ∷ xs}
cons-id = cong-∷[] refl (quo-ext (λ x v → cong suc (id-i$ v)))
cons-∘i : ∀ {A : Set}{xs ys zs : List A}{x} → (j : Inj ys zs) → (i : Inj xs ys) → cons {A} {x} (j ∘i i) ≡ cons j ∘i cons i
cons-∘i j i = cong-∷[] refl (begin
quo (λ x z → suc (proj₁ (quo' (λ v v₁ → j $ (i $ v₁))) $ z))
≡⟨ quo-ext {injg = λ x x₁ → injective i _ _ (injective (weak j) _ _ x₁)} (λ x v →
begin suc (proj₁ (quo' (λ v₁ v₂ → j $ (i $ v₂))) $ v) ≡⟨ cong suc (iso2 _ _ v) ⟩
suc (j $ (i $ v)) ≡⟨ sym (iso2 _ _ (i $ v)) ⟩
quo (λ x₁ x₂ → suc (j $ x₂)) $ (i $ v) ∎) ⟩
quo (λ x v → cons j $ suc (i $ v)) ≡⟨ sym (quo-ext (λ x₁ v → cong (_$_ (cons j)) (iso2 (λ _ x → suc (i $ x)) _ v))) ⟩
quo (λ x v → cons j $ (quo (λ z x₁ → suc (i $ x₁)) $ v)) ∎)
∘-ext : ∀ {A : Set}{xs ys zs ws : List A} {f : Inj ys zs}{g : Inj xs ys}{f1 : Inj ws zs}{g1 : Inj xs ws} -> f ∘i g ≡ f1 ∘i g1
-> (∀ x (v : xs ∋ x) -> f $ (g $ v) ≡ f1 $ (g1 $ v))
∘-ext eq = (\ x v -> trans (sym (apply-∘ _ _)) (trans (cong (\ f -> f $ v) eq) ((apply-∘ _ _))))
ext-∘ : ∀ {A : Set}{xs ys zs ws : List A} {f : Inj ys zs}{g : Inj xs ys}{f1 : Inj ws zs}{g1 : Inj xs ws} ->
(∀ x (v : xs ∋ x) -> f $ (g $ v) ≡ f1 $ (g1 $ v)) -> f ∘i g ≡ f1 ∘i g1
ext-∘ eq = ext-$ _ _ (\ x v -> trans (apply-∘ _ _) (trans (eq x v) (sym (apply-∘ _ _))))
-- Transforming pointwise representations of universal morphisms into Inj ones.
Equ-universal-quote : ∀ {A : Set} {xs ys : List A} → (i j : Inj xs ys) → ∀ {E} → (e : Inj E xs) ->
(∀ a (y : xs ∋ a) -> i $ y ≡ j $ y -> ∃ \ z -> y ≡ e $ z) ->
{as : List A} (h : Inj as xs) → i ∘i h ≡ j ∘i h → Σ (Inj as E) (λ z → e ∘i z ≡ h )
Equ-universal-quote {A} {xs} {ys} i j {E} e c {as} h eq =
quo u {λ x {v} {w} eq1 → injective h v w (begin h $ v ≡⟨ proj₂ (f x v) ⟩
e $ u x v ≡⟨ cong (_$_ e) eq1 ⟩
e $ u x w ≡⟨ sym (proj₂ (f x w)) ⟩
h $ w ∎)}
, ext-$ (e ∘i quo u) h (λ x v → begin
(e ∘i quo u) $ v ≡⟨ apply-∘ _ _ ⟩
e $ (quo u $ v) ≡⟨ cong (_$_ e) (iso2 _ _ v) ⟩
e $ u x v ≡⟨ sym (proj₂ (f x v)) ⟩
h $ v ∎)
where
f : ∀ a (y : as ∋ a) -> ∃ \ z -> h $ y ≡ e $ z
f a y = c a (h $ y) (∘-ext eq a y)
u = (λ x v → proj₁ (f x v))
Pull-universal-quote : ∀ {A : Set} {X Y Z : List A} → (i : Inj X Z)(j : Inj Y Z) -> ∀ {P} -> (p₁ : Inj P X) (p₂ : Inj P Y)
-> (∀ (a : A) (y : Y ∋ a)(x : X ∋ a) -> i $ x ≡ j $ y -> (∃ \ z -> p₁ $ z ≡ x × p₂ $ z ≡ y))
-> ∀ {Q} -> (q₁ : Inj Q X) (q₂ : Inj Q Y) -> i ∘i q₁ ≡ j ∘i q₂ -> ∃ \ u -> q₁ ≡ p₁ ∘i u × q₂ ≡ p₂ ∘i u
Pull-universal-quote i j p₁ p₂ uni {Q} q₁ q₂ commutes =
quo u {λ x {v} {w} eq → injective q₁ v w (begin q₁ $ v ≡⟨ sym (proj₁ (proj₂ (f x v))) ⟩
p₁ $ u x v ≡⟨ cong (_$_ p₁) eq ⟩
p₁ $ u x w ≡⟨ proj₁ (proj₂ (f x w)) ⟩
q₁ $ w ∎)}
, ext-$ q₁ (p₁ ∘i quo u) (λ x v → begin
q₁ $ v ≡⟨ sym (proj₁ (proj₂ (f x v))) ⟩
p₁ $ u x v ≡⟨ cong (_$_ p₁) (sym (iso2 _ _ v)) ⟩
p₁ $ (quo u $ v) ≡⟨ sym (apply-∘ _ _) ⟩
(p₁ ∘i quo u) $ v ∎)
, ext-$ q₂ (p₂ ∘i quo u) (λ x v → begin
q₂ $ v ≡⟨ sym (proj₂ (proj₂ (f x v))) ⟩
p₂ $ u x v ≡⟨ cong (_$_ p₂) (sym (iso2 _ _ v)) ⟩
p₂ $ (quo u $ v) ≡⟨ sym (apply-∘ _ _) ⟩
(p₂ ∘i quo u) $ v ∎)
where
f : ∀ a (v : Q ∋ a) -> (∃ \ z -> p₁ $ z ≡ q₁ $ v × p₂ $ z ≡ q₂ $ v)
f a v = uni a (q₂ $ v) (q₁ $ v) (∘-ext commutes a v)
u : ∀ a (v : Q ∋ a) -> _
u a v = proj₁ (f a v)
| {
"alphanum_fraction": 0.3912716328,
"avg_line_length": 54.7235294118,
"ext": "agda",
"hexsha": "31995b9f2ea95922a7928e9120a732bca7b17a8e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda",
"max_line_length": 192,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 4112,
"size": 9303
} |
{-# OPTIONS --without-K --safe #-}
module Polynomial.Simple.Reflection where
open import Agda.Builtin.Reflection
open import Reflection.Helpers
open import Polynomial.Simple.Solver renaming (solve to solve-fn)
open AlmostCommutativeRing
open import Data.Nat.Table
open import Data.Fin as Fin using (Fin)
open import Data.Vec as Vec using (Vec; _∷_; [])
open import Data.List as List using (List; _∷_; [])
open import Data.Maybe as Maybe using (Maybe; just; nothing; fromMaybe)
open import Agda.Builtin.Nat using (_<_)
open import Data.Nat using (ℕ; suc; zero)
open import Data.Bool using (Bool; if_then_else_; true; false)
open import Data.Unit using (⊤)
open import Data.String using (String)
open import Data.Product using (_,_)
open import Function
module Internal where
_∈Ring : Term → TC Term
ring ∈Ring = checkType ring (def (quote AlmostCommutativeRing) (unknown ⟨∷⟩ unknown ⟨∷⟩ []))
vars : Term → Maybe Table
vars = go []
where
go : Table → Term → Maybe Table
go t (con (quote List._∷_) (_ ∷ _ ∷ var i [] ⟨∷⟩ xs ⟨∷⟩ _)) = go (insert i t) xs
go t (con (quote List.List.[]) _) = just t
go _ _ = nothing
module OverRing (ring : Term) where
_∈List⟨Carrier⟩ : Term → TC Term
t ∈List⟨Carrier⟩ =
checkType t
(quote List ⟨ def ⟩ 1 ⋯⟅∷⟆ def (quote Carrier) (2 ⋯⟅∷⟆ ring ⟨∷⟩ []) ⟨∷⟩ []) >>= normalise
record Ring⇓ : Set where
constructor +⇒_*⇒_^⇒_-⇒_
field +′ *′ ^′ -′ : Maybe Name
ring⇓ : TC Ring⇓
ring⇓ = ⦇ +⇒ ⟦ quote _+_ ⇓⟧ₙ *⇒ ⟦ quote _*_ ⇓⟧ₙ ^⇒ ⟦ quote _^_ ⇓⟧ₙ -⇒ ⟦ quote -_ ⇓⟧ₙ ⦈
where
⟦_⇓⟧ₙ : Name → TC (Maybe Name)
⟦ nm ⇓⟧ₙ =
normalise (nm ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ [])
<&> λ where (def f args) → just f
_ → nothing
module _ (nms : Ring⇓) where
open Ring⇓ nms
module _ (numVars : ℕ) where
-- This function applies the hidden arguments that the constructors
-- that Expr needs. The first is the universe level, the second is the
-- type it contains, and the third is the number of variables it's
-- indexed by. All three of these could likely be inferred, but to
-- make things easier we supply the third because we know it.
infixr 5 E⟅∷⟆_
E⟅∷⟆_ : List (Arg Term) → List (Arg Term)
E⟅∷⟆ xs = 1 ⋯⟅∷⟆
(quote Carrier ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ []) ⟅∷⟆
ℕ′ numVars ⟅∷⟆
xs
-- A constant expression.
Κ′ : Term → Term
Κ′ x = quote Κ ⟨ con ⟩ E⟅∷⟆ x ⟨∷⟩ []
_⇓≟_ : Maybe Name → Name → Bool
nothing ⇓≟ _ = false
just x ⇓≟ y = primQNameEquality x y
{-# INLINE _⇓≟_ #-}
module ToExpr (Ι′ : ℕ → Maybe Term) where
mutual
-- Application of a ring operator often doesn't have a type as
-- simple as "Carrier → Carrier → Carrier": there may be hidden
-- arguments, etc. Here, we do our best to handle those cases,
-- by just taking the last two explicit arguments.
E⟨_⟩₂ : Name → List (Arg Term) → Term
E⟨ nm ⟩₂ (x ⟨∷⟩ y ⟨∷⟩ []) = nm ⟨ con ⟩ E⟅∷⟆ E x ⟨∷⟩ E y ⟨∷⟩ []
E⟨ nm ⟩₂ (x ∷ xs) = E⟨ nm ⟩₂ xs
E⟨ nm ⟩₂ _ = unknown
E⟨_⟩₁ : Name → List (Arg Term) → Term
E⟨ nm ⟩₁ (x ⟨∷⟩ []) = nm ⟨ con ⟩ E⟅∷⟆ E x ⟨∷⟩ []
E⟨ nm ⟩₁ (x ∷ xs) = E⟨ nm ⟩₁ xs
E⟨ _ ⟩₁ _ = unknown
E⟨^⟩ : List (Arg Term) → Term
E⟨^⟩ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _⊛_ ⟨ con ⟩ E⟅∷⟆ E x ⟨∷⟩ y ⟨∷⟩ []
E⟨^⟩ (x ∷ xs) = E⟨^⟩ xs
E⟨^⟩ _ = unknown
-- When trying to figure out the shape of an expression, one of
-- the difficult tasks is recognizing where constants in the
-- underlying ring are used. If we were only dealing with ℕ, we
-- might look for its constructors: however, we want to deal with
-- arbitrary types which implement AlmostCommutativeRing. If the
-- Term type contained type information we might be able to
-- recognize it there, but it doesn't.
--
-- We're in luck, though, because all other cases in the following
-- function *are* recognizable. As a result, the "catch-all" case
-- will just assume that it has a constant expression.
E : Term → Term
E (def (quote _+_) xs) = E⟨ quote _⊕_ ⟩₂ xs
E (def (quote _*_) xs) = E⟨ quote _⊗_ ⟩₂ xs
E (def (quote _^_) xs) = E⟨^⟩ xs
E (def (quote -_) xs) = E⟨ quote ⊝_ ⟩₁ xs
E (def nm xs) = if +′ ⇓≟ nm then E⟨ quote _⊕_ ⟩₂ xs else
if *′ ⇓≟ nm then E⟨ quote _⊗_ ⟩₂ xs else
if ^′ ⇓≟ nm then E⟨^⟩ xs else
if -′ ⇓≟ nm then E⟨ quote ⊝_ ⟩₁ xs else
Κ′ (def nm xs)
E (con (quote ℕ.suc) (x ⟨∷⟩ [])) = quote _⊕_ ⟨ con ⟩ E⟅∷⟆ Κ′ (ℕ′ (ℕ.suc ℕ.zero)) ⟨∷⟩ E x ⟨∷⟩ []
E v@(var x _) = fromMaybe (Κ′ v) (Ι′ x)
E t = Κ′ t
callSolver : Vec String numVars → Term → Term → List (Arg Type)
callSolver nms lhs rhs =
2 ⋯⟅∷⟆ ring ⟨∷⟩ ℕ′ numVars ⟨∷⟩
vlams nms (quote _⊜_ ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ ℕ′ numVars ⟨∷⟩ E lhs ⟨∷⟩ E rhs ⟨∷⟩ []) ⟨∷⟩
hlams nms (quote refl ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ 1 ⋯⟅∷⟆ []) ⟨∷⟩
[]
where
Ι′ : ℕ → Maybe Term
Ι′ i = if i < numVars then just (var i []) else nothing
open ToExpr Ι′
constructSoln : Table → Term → Term → Term
constructSoln t lhs rhs =
quote trans ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ 3 ⋯⟅∷⟆
(quote sym ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ 2 ⋯⟅∷⟆
(quote Ops.correct ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ 1 ⋯⟅∷⟆ E lhs ⟨∷⟩ ρ ⟨∷⟩ []) ⟨∷⟩ [])
⟨∷⟩
(quote Ops.correct ⟨ def ⟩ 2 ⋯⟅∷⟆ ring ⟨∷⟩ 1 ⋯⟅∷⟆ E rhs ⟨∷⟩ ρ ⟨∷⟩ []) ⟨∷⟩
[]
where
Ι′ : ℕ → Maybe Term
Ι′ i = Maybe.map (λ x → quote Ι ⟨ con ⟩ E⟅∷⟆ Fin′ x ⟨∷⟩ []) (member i t)
open ToExpr Ι′
ρ : Term
ρ = curriedTerm t
open Internal
-- This is the main macro you'll probably be using. Call it like this:
--
-- lemma : ∀ x y → x + y ≈ y + x
-- lemma = solve TypeRing
--
-- where TypRing is your implementation of AlmostCommutativeRing. (Find some
-- example implementations in Polynomial.Solver.Ring.AlmostCommutativeRing.Instances).
macro
solve : Name → Term → TC ⊤
solve ring hole = do
ring′ ← def ring [] ∈Ring
commitTC
let open OverRing ring′
nms ← ring⇓
hole′ ← inferType hole >>= reduce
let i , k , xs = underPi hole′
just (lhs ∷ rhs ∷ []) ← pure (getArgs 2 xs)
where nothing → typeError (strErr "Malformed call to solve." ∷
strErr "Expected target type to be like: ∀ x y → x + y ≈ y + x." ∷
strErr "Instead: " ∷
termErr hole′ ∷
[])
unify hole (quote solve-fn ⟨ def ⟩ callSolver nms i k lhs rhs)
-- Use this macro when you want to solve something *under* a lambda. For example:
-- say you have a long proof, and you just want the solver to deal with an
-- intermediate step. Call it like so:
--
-- lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x
-- lemma₃ x y = begin
-- x + y * 1 + 3 ≈⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩
-- y * 1 + x + 3 ≈⟨ solveOver (x ∷ y ∷ []) Int.ring ⟩
-- 3 + y + x ≡⟨ refl ⟩
-- 2 + 1 + y + x ∎
--
-- The first argument is the free variables, and the second is the
-- ring implementation (as before).
--
-- One thing to note here is that we need to be able to infer *both* sides of
-- the equality, which the normal equaltional reasoning combinators don't let you
-- do. You'll need the combinators defined in Relation.Binary.Reasoning.Inference.
-- These are just as powerful as the others, but have slightly better inference properties.
solveOver-macro : Term → Name → Term → TC ⊤
solveOver-macro i ring hole = do
ring′ ← def ring [] ∈Ring
commitTC
let open OverRing ring′
nms ← ring⇓
i′ ← i ∈List⟨Carrier⟩
commitTC
hole′ ← inferType hole >>= reduce
just vars′ ← pure (vars i′)
where nothing → typeError (strErr "Malformed call to solveOver." ∷
strErr "First argument should be a list of free variables." ∷
strErr "Instead: " ∷
termErr i′ ∷
[])
just (lhs ∷ rhs ∷ []) ← pure (getArgs 2 hole′)
where nothing → typeError (strErr "Malformed call to solveOver." ∷
strErr "First argument should be a list of free variables." ∷
strErr "Instead: " ∷
termErr hole′ ∷
[])
unify hole (constructSoln nms (List.length vars′) vars′ lhs rhs)
macro
solveOver : Term → Name → Term → TC ⊤
solveOver = solveOver-macro
| {
"alphanum_fraction": 0.514201442,
"avg_line_length": 40.6844444444,
"ext": "agda",
"hexsha": "b6f50e6f76fa1a388f2d2f5b6aac6e99e28318e0",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Simple/Reflection.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Simple/Reflection.agda",
"max_line_length": 107,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Simple/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 3054,
"size": 9154
} |
open import Relation.Binary.PropositionalEquality using (_≡_)
module AKS.Primality.Base where
open import AKS.Nat using (ℕ; _<_)
open import AKS.Nat.GCD using (_∣_; _∤_)
record IsPrime (p : ℕ) : Set where
constructor IsPrime✓
field
1<p : 1 < p
∀i∣p[i≡p] : ∀ {i} → 1 < i → i ∣ p → i ≡ p
record IsComposite (c : ℕ) : Set where
constructor IsComposite✓
field
p : ℕ
p<c : p < c
p-isPrime : IsPrime p
p∣c : p ∣ c
record Prime : Set where
constructor Prime✓
field
prime : ℕ
isPrime : IsPrime prime
record Composite : Set where
constructor Composite✓
field
composite : ℕ
isComposite : IsComposite composite
data Compositionality (n : ℕ) : Set where
Composite✓ : IsComposite n → Compositionality n
Prime✓ : (∀ {p} → p < n → IsPrime p → p ∤ n) → Compositionality n
data Primality (n : ℕ) : Set where
Composite✓ : IsComposite n → Primality n
Prime✓ : IsPrime n → Primality n
| {
"alphanum_fraction": 0.6467449306,
"avg_line_length": 22.8536585366,
"ext": "agda",
"hexsha": "0146e586b99d5f7e8b6307c266bddbe8a1a2ce4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Primality/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Primality/Base.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Primality/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 322,
"size": 937
} |
module Properties.StepBeta where
open import Data.List
open import Data.List.All
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Syntax
open import Global
open import Channel
open import Values
open import Session
open import Schedule
open import ProcessSyntax
open import ProcessRun
open import Properties.Base
-- V: (λx.e)v = e[v/x]
-- let f = λx.e in let r = f v in E --> [let x = v in] let r = e in E
mklhs : ∀ {Φ tin tout} (e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit) → Expr (tin ∷ Φ) TUnit
mklhs {Φ} e E =
letbind (rght (split-all-right Φ)) (ulambda [] [] [] e)
(letbind (left (left (split-all-right Φ))) (app (left (rght [])) (here []) (here []))
E)
mkrhs : ∀ {Φ tin tout} (e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit) → Expr (tin ∷ Φ) TUnit
mkrhs {Φ} e E =
letbind (left (split-all-right Φ)) e E
reductionT : Set
reductionT = ∀ {tin tout}
(e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ []) TUnit)
(v : Val [] tin)
→ let ϱ = vcons ss-[] v (vnil []-inactive) in
let lhs = run (left []) ss-[] (mklhs e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left []) ss-[] (mkrhs e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction : reductionT
reduction e E v
with split-env (rght []) (vcons ss-[] v (vnil []-inactive))
... | sperght
= refl
-- open reduction
reduction-open-type : Set
reduction-open-type = ∀ {Φ tin tout}
(e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction-open : reduction-open-type
reduction-open {Φ} e E (vcons ss-[] v ϱ)
rewrite split-rotate-lemma {Φ}
| split-env-right-lemma0 ϱ
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ
| split-rotate-lemma {Φ}
= refl
-- open reduction with split between closure and context
mktype' : Set
mktype' = ∀ {Φ Φ₁ Φ₂ tin tout}
(sp : Split Φ Φ₁ Φ₂) (un-Φ₁ : All Unr Φ₁) (e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
→ Expr (tin ∷ Φ) TUnit
mklhs' : mktype'
mklhs' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E =
letbind (rght sp) (ulambda (split-all-left Φ₁) un-Φ₁ [] e)
(letbind (left (left (split-all-right Φ₂))) (app (left (rght [])) (here []) (here []))
E)
mkrhs' : mktype'
mkrhs' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E =
letbind (left sp) e E
reduction-open-type' : Set
reduction-open-type' = ∀ {Φ Φ₁ Φ₂ tin tout}
(sp : Split Φ Φ₁ Φ₂) (un-Φ₁ : All Unr Φ₁)
(e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
-- this runs into the split-from-disjoint, which was hacked into function application
-- it's not clear if there's a way round
-- hence the proposition needs to be proved with a more specific assumption
{-
reduction-open' : reduction-open-type'
reduction-open' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E (vcons ss-[] v ϱ)
rewrite split-rotate-lemma' sp
with split-env sp ϱ
... | ([] , []) , ss-[] , ϱ₁ , ϱ₂
rewrite split-env-left-lemma0 ϱ₁
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ₂
with ssplit-compose3 ss-[] ss-[]
... | ssc3'
rewrite split-rotate-lemma {Φ₂}
= {!!}
-}
-- straightforward generalization of the inspect pattern
record Reveal2_·_·_is_ {A B : Set} {C : A → B → Set}
(f : (x : A) (y : B) → C x y) (x : A) (y : B) (z : C x y) :
Set₁ where
constructor [[_]]
field eq : f x y ≡ z
inspect2 : ∀ {A B : Set} {C : A → B → Set}
(f : (x : A) (y : B) → C x y) (x : A) (y : B) → Reveal2 f · x · y is f x y
inspect2 f x y = [[ refl ]]
reduction-open-type'' : Set
reduction-open-type'' = ∀ {Φ₁ Φ₂ tin tout} →
let Φ,sp = split-from-disjoint Φ₁ Φ₂ in
let Φ = proj₁ Φ,sp in
let sp = proj₂ Φ,sp in
(un-Φ₁ : All Unr Φ₁)
(e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction-open'' : reduction-open-type''
reduction-open'' {Φ₁} {Φ₂} un-Φ₁ e E (vcons ss-[] v ϱ)
with split-from-disjoint Φ₁ Φ₂ | inspect2 split-from-disjoint Φ₁ Φ₂
... | Φ , sp | [[ eq ]]
rewrite split-rotate-lemma' sp
with split-env sp ϱ
... | ([] , []) , ss-[] , ϱ₁ , ϱ₂
rewrite split-env-left-lemma0 ϱ₁
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ₂
with ssplit-compose3 ss-[] ss-[]
... | ssc3'
rewrite split-rotate-lemma {Φ₂} | eq
= refl
| {
"alphanum_fraction": 0.6022659511,
"avg_line_length": 32.4580645161,
"ext": "agda",
"hexsha": "cc3d0adc2dafa303652653962e216d9f94657c6f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Properties/StepBeta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Properties/StepBeta.agda",
"max_line_length": 101,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Properties/StepBeta.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 1966,
"size": 5031
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Restriction.Instance.PartialFunctions where
-- The Category of partial functions is a restriction category
-- The proof is straightforward in the sense that it's all unwinding definitions,
-- but also no-trivial in that they need to be unwound with care (a lot of
-- case analyses with 'with' and inspect is used a lot).
open import Data.Maybe using (Maybe; map; just; nothing; _>>=_)
open import Data.Maybe.Properties
open import Function using (const)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; inspect; [_])
open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.PartialFunctions using (PartialFunctions)
open import Categories.Category.Restriction using (Restriction)
private
variable
o : Level
A B C : Set o
Restriction-PF : ∀ {o} → Restriction (PartialFunctions o)
Restriction-PF {o} = record
{ _↓ = λ f x → map (const x) (f x)
; pidʳ = pidʳ
; ↓-comm = λ {_} {_} {_} {g} {f} → ↓-comm {g = g} {f}
; ↓-denestʳ = λ {_} {_} {_} {f} {g} → ↓-denestʳ {f = f} {g}
; ↓-skew-comm = λ {_} {_} {_} {g} {f} → ↓-skew-comm {g = g} {f}
; ↓-cong = ↓-cong
}
where
open Category (PartialFunctions o)
_↓ : (A → Maybe B) → (A → Maybe A)
_↓ = λ f x → map (const x) (f x)
pidʳ : {f : A → Maybe B} → f ∘ f ↓ ≈ f
pidʳ {f = f} x with f x | inspect f x
... | just z | [ eq ] = eq
... | nothing | _ = refl
↓-comm : {g : A → Maybe C} {f : A → Maybe B} → g ↓ ∘ f ↓ ≈ f ↓ ∘ g ↓
↓-comm {g = g} {f} x with f x | g x | inspect f x | inspect g x
... | just b | just b′ | [ fx=jb ] | [ gx=jb′ ] rewrite fx=jb | gx=jb′ = refl
... | just b | nothing | _ | [ eq ] rewrite eq = refl
... | nothing | just b′ | [ eq ] | _ rewrite eq = refl
... | nothing | nothing | _ | _ = refl
↓-denestʳ : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → (g ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓
↓-denestʳ {f = f} a with f a
... | just b = refl
... | nothing = refl
↓-skew-comm : {A B C : Obj} {g : A ⇒ B} {f : C ⇒ A} → g ↓ ∘ f ≈ f ∘ (g ∘ f) ↓
↓-skew-comm {g = g} {f = f} a with f a | inspect f a
... | just b | [ eq ] with g b
... | just c = sym eq
... | nothing = refl
↓-skew-comm _ | nothing | _ = refl
↓-cong : {A B : Obj} {f g : A ⇒ B} → f ≈ g → f ↓ ≈ g ↓
↓-cong eq a rewrite eq a = refl
| {
"alphanum_fraction": 0.5440938511,
"avg_line_length": 38.0307692308,
"ext": "agda",
"hexsha": "2e51af9035330a1af8ab4e4881007ca9eb9b0c38",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Restriction/Instance/PartialFunctions.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Restriction/Instance/PartialFunctions.agda",
"max_line_length": 86,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Restriction/Instance/PartialFunctions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 868,
"size": 2472
} |
{-# OPTIONS --cubical --safe #-}
module Data.Maybe.Sugar where
open import Prelude
open import Data.Maybe
infixl 4 _<*>_
_>>=_ : Maybe A → (A → Maybe B) → Maybe B
nothing >>= f = nothing
just x >>= f = f x
pure : A → Maybe A
pure = just
_<*>_ : Maybe (A → B) →
Maybe A →
Maybe B
nothing <*> xs = nothing
just f <*> nothing = nothing
just f <*> just x = just (f x)
_>>_ : Maybe A → Maybe B → Maybe B
nothing >> _ = nothing
just _ >> y = y
guard : Bool → Maybe ⊤
guard false = nothing
guard true = just tt
_<|>_ : Maybe A → Maybe A → Maybe A
nothing <|> ys = ys
xs@(just _) <|> _ = xs
| {
"alphanum_fraction": 0.5534591195,
"avg_line_length": 18.7058823529,
"ext": "agda",
"hexsha": "26a8c582d72a32d0f3c46a181b938340314ff501",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Maybe/Sugar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Maybe/Sugar.agda",
"max_line_length": 41,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Maybe/Sugar.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 208,
"size": 636
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Structures.Universe where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓ≅A ℓB ℓ≅B ℓ≅ᴰ : Level
-- Universes and equivalences form a URGStr
𝒮-universe : URGStr (Type ℓ) ℓ
𝒮-universe
= make-𝒮 {_≅_ = _≃_}
idEquiv
λ A → isContrRespectEquiv (Σ-cong-equiv-snd (λ A' → isoToEquiv (equivInv A' A)))
(equivContr' A)
where
module _ (A : Type ℓ) where
equivInv : (A' : Type ℓ) → Iso (A ≃ A') (A' ≃ A)
Iso.fun (equivInv A') = invEquiv
Iso.inv (equivInv A') = invEquiv
Iso.leftInv (equivInv A') = λ e → equivEq (invEquiv (invEquiv e)) e (funExt (λ x → refl))
Iso.rightInv (equivInv A') = λ e → equivEq (invEquiv (invEquiv e)) e (funExt (λ x → refl))
equivContr' : isContr (Σ[ A' ∈ Type ℓ ] A' ≃ A)
equivContr' = EquivContr A
𝒮ᴰ-pointed : {ℓ : Level} → URGStrᴰ (𝒮-universe {ℓ}) (λ A → A) ℓ
𝒮ᴰ-pointed {ℓ} =
make-𝒮ᴰ (λ a e b → equivFun e a ≡ b)
(λ _ → refl)
p
where
p : (A : Type ℓ) (a : A) → isContr (Σ[ b ∈ A ] a ≡ b)
p _ a = isContrSingl a
𝒮-pointed : {ℓ : Level} → URGStr (Σ[ A ∈ Type ℓ ] A) ℓ
𝒮-pointed = ∫⟨ 𝒮-universe ⟩ 𝒮ᴰ-pointed
| {
"alphanum_fraction": 0.6071205497,
"avg_line_length": 34.0638297872,
"ext": "agda",
"hexsha": "3b5a597106cdf0fad2ed68f9e40df17e409479ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Structures/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Structures/Universe.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Structures/Universe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 617,
"size": 1601
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Property related to Grouped
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Grouped.Properties where
open import Data.Bool using (true; false)
open import Data.List
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
import Data.List.Relation.Unary.All.Properties as All
open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs; []; _∷_)
open import Data.List.Relation.Unary.Grouped
open import Function using (_∘_; _⇔_; Equivalence)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary as B using (REL; Rel)
open import Relation.Unary as U using (Pred)
open import Relation.Nullary using (¬_; does; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Level
private
variable
a b c p q : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- map
module _ (P : Rel A p) (Q : Rel B q) where
map⁺ : ∀ {f xs} → (∀ {x y} → P x y ⇔ Q (f x) (f y)) → Grouped P xs → Grouped Q (map f xs)
map⁺ {f} {[]} P⇔Q [] = []
map⁺ {f} {x ∷ xs} P⇔Q (all[¬Px,xs] ∷≉ g) = aux all[¬Px,xs] ∷≉ map⁺ P⇔Q g where
aux : ∀ {ys} → All (λ y → ¬ P x y) ys → All (λ y → ¬ Q (f x) y) (map f ys)
aux [] = []
aux (py ∷ pys) = py ∘ Equivalence.g P⇔Q ∷ aux pys
map⁺ {f} {x₁ ∷ x₂ ∷ xs} P⇔Q (Px₁x₂ ∷≈ g) = Equivalence.f P⇔Q Px₁x₂ ∷≈ map⁺ P⇔Q g
map⁻ : ∀ {f xs} → (∀ {x y} → P x y ⇔ Q (f x) (f y)) → Grouped Q (map f xs) → Grouped P xs
map⁻ {f} {[]} P⇔Q [] = []
map⁻ {f} {x ∷ []} P⇔Q ([] ∷≉ []) = [] ∷≉ []
map⁻ {f} {x₁ ∷ x₂ ∷ xs} P⇔Q (all[¬Qx,xs] ∷≉ g) = aux all[¬Qx,xs] ∷≉ map⁻ P⇔Q g where
aux : ∀ {ys} → All (λ y → ¬ Q (f x₁) y) (map f ys) → All (λ y → ¬ P x₁ y) ys
aux {[]} [] = []
aux {y ∷ ys} (py ∷ pys) = py ∘ Equivalence.f P⇔Q ∷ aux pys
map⁻ {f} {x₁ ∷ x₂ ∷ xs} P⇔Q (Qx₁x₂ ∷≈ g) = Equivalence.g P⇔Q Qx₁x₂ ∷≈ map⁻ P⇔Q g
------------------------------------------------------------------------
-- [_]
module _ (P : Rel A p) where
[_]⁺ : ∀ x → Grouped P [ x ]
[_]⁺ x = [] ∷≉ []
------------------------------------------------------------------------
-- derun
module _ {P : Rel A p} (P? : B.Decidable P) where
grouped[xs]⇒unique[derun[xs]] : ∀ xs → Grouped P xs → AllPairs (λ x y → ¬ P x y) (derun P? xs)
grouped[xs]⇒unique[derun[xs]] [] [] = []
grouped[xs]⇒unique[derun[xs]] (x ∷ []) ([] ∷≉ []) = [] ∷ []
grouped[xs]⇒unique[derun[xs]] (x ∷ y ∷ xs) (all[¬Px,y∷xs]@(¬Pxy ∷ _) ∷≉ grouped[y∷xs]) with P? x y
... | yes Pxy = contradiction Pxy ¬Pxy
... | no _ = All.derun⁺ P? all[¬Px,y∷xs] ∷ grouped[xs]⇒unique[derun[xs]] (y ∷ xs) grouped[y∷xs]
grouped[xs]⇒unique[derun[xs]] (x ∷ y ∷ xs) (Pxy ∷≈ grouped[xs]) with P? x y
... | yes _ = grouped[xs]⇒unique[derun[xs]] (y ∷ xs) grouped[xs]
... | no ¬Pxy = contradiction Pxy ¬Pxy
| {
"alphanum_fraction": 0.490241482,
"avg_line_length": 39.7763157895,
"ext": "agda",
"hexsha": "5664d6f24f3cde8ab242e5b91540b7ed78d728ec",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped/Properties.agda",
"max_line_length": 101,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1182,
"size": 3023
} |
------------------------------------------------------------------------------
-- Properties related with the forest type
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Forest.PropertiesATP where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesATP using ( ∷-rightCong )
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesATP
using ( ++-leftIdentity
; mapCong₂
; ++-leftCong
; reverse-[x]≡[x]
)
open import FOTC.Program.Mirror.Forest.TotalityATP
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
++-rightIdentity : ∀ {xs} → Forest xs → xs ++ [] ≡ xs
++-rightIdentity fnil = ++-leftIdentity []
++-rightIdentity (fcons {x} {xs} Tx Fxs) =
prf (++-rightIdentity Fxs)
where postulate prf : xs ++ [] ≡ xs → (x ∷ xs) ++ [] ≡ x ∷ xs
{-# ATP prove prf #-}
++-assoc : ∀ {xs} → Forest xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
++-assoc fnil ys zs = prf
where postulate prf : ([] ++ ys) ++ zs ≡ [] ++ ys ++ zs
{-# ATP prove prf #-}
++-assoc (fcons {x} {xs} Tx Fxs) ys zs = prf (++-assoc Fxs ys zs)
where postulate prf : (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs →
((x ∷ xs) ++ ys) ++ zs ≡ (x ∷ xs) ++ ys ++ zs
{-# ATP prove prf #-}
-- We don't use an automatic proof, because it is necessary to erase a
-- proof term which we don't know how to erase.
map-++ : ∀ f {xs} → (∀ {x} → Tree x → Tree (f · x)) →
Forest xs →
∀ ys → map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++ f h fnil ys =
map f ([] ++ ys)
≡⟨ mapCong₂ (++-leftIdentity ys) ⟩
map f ys
≡⟨ sym (++-leftIdentity (map f ys)) ⟩
[] ++ map f ys
≡⟨ ++-leftCong (sym (map-[] f)) ⟩
map f [] ++ map f ys ∎
map-++ f h (fcons {x} {xs} Tx Fxs) ys =
map f ((x ∷ xs) ++ ys)
≡⟨ mapCong₂ (++-∷ x xs ys) ⟩
map f (x ∷ xs ++ ys)
≡⟨ map-∷ f x (xs ++ ys) ⟩
f · x ∷ map f (xs ++ ys)
≡⟨ ∷-rightCong (map-++ f h Fxs ys) ⟩
f · x ∷ (map f xs ++ map f ys)
≡⟨ sym (++-∷ (f · x) (map f xs) (map f ys)) ⟩
(f · x ∷ map f xs) ++ map f ys
≡⟨ ++-leftCong (sym (map-∷ f x xs)) ⟩
map f (x ∷ xs) ++ map f ys ∎
rev-++ : ∀ {xs} → Forest xs → ∀ ys → rev xs ys ≡ rev xs [] ++ ys
rev-++ fnil ys = prf
where postulate prf : rev [] ys ≡ rev [] [] ++ ys
{-# ATP prove prf #-}
rev-++ (fcons {x} {xs} Tx Fxs) ys =
prf (rev-++ Fxs (x ∷ ys))
(rev-++ Fxs (x ∷ []))
where postulate prf : rev xs (x ∷ ys) ≡ rev xs [] ++ x ∷ ys →
rev xs (x ∷ []) ≡ rev xs [] ++ x ∷ [] →
rev (x ∷ xs) ys ≡ rev (x ∷ xs) [] ++ ys
{-# ATP prove prf ++-assoc rev-Forest #-}
reverse-++ : ∀ {xs ys} → Forest xs → Forest ys →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++ {ys = ys} fnil Fys = prf
where postulate prf : reverse ([] ++ ys) ≡ reverse ys ++ reverse []
{-# ATP prove prf ++-rightIdentity reverse-Forest #-}
reverse-++ (fcons {x} {xs} Tx Fxs) fnil = prf
where
postulate prf : reverse ((x ∷ xs) ++ []) ≡ reverse [] ++ reverse (x ∷ xs)
{-# ATP prove prf ++-rightIdentity #-}
reverse-++ (fcons {x} {xs} Tx Fxs) (fcons {y} {ys} Ty Fys) =
prf (reverse-++ Fxs (fcons Ty Fys))
where
postulate prf : reverse (xs ++ y ∷ ys) ≡ reverse (y ∷ ys) ++
reverse xs →
reverse ((x ∷ xs) ++ y ∷ ys) ≡ reverse (y ∷ ys) ++
reverse (x ∷ xs)
{-# ATP prove prf reverse-Forest ++-Forest rev-++ ++-assoc #-}
reverse-∷ : ∀ {x ys} → Tree x → Forest ys →
reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])
reverse-∷ {x} Tx fnil = prf
where postulate prf : reverse (x ∷ []) ≡ reverse [] ++ x ∷ []
{-# ATP prove prf #-}
reverse-∷ {x} Tx (fcons {y} {ys} Ty Fys) = prf
where postulate prf : reverse (x ∷ y ∷ ys) ≡ reverse (y ∷ ys) ++ x ∷ []
{-# ATP prove prf reverse-[x]≡[x] reverse-++ #-}
| {
"alphanum_fraction": 0.4687426832,
"avg_line_length": 37.1391304348,
"ext": "agda",
"hexsha": "2c949a9f71498c4769c475b4ed8d73bbf0b7dce3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1453,
"size": 4271
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some theory for commutative semigroup
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra using (CommutativeSemigroup)
module Algebra.Properties.CommutativeSemigroup
{a ℓ} (CS : CommutativeSemigroup a ℓ)
where
open CommutativeSemigroup CS
open import Relation.Binary.Reasoning.Setoid setoid
------------------------------------------------------------------------------
-- Re-export the contents of semigroup
open import Algebra.Properties.Semigroup semigroup public
------------------------------------------------------------------------------
-- Permutation laws for _∙_ for three factors.
------------------------------------------------------------------------------
-- Partitions (1,1).
-- There are five nontrivial permutations.
------------------------------------------------------------------------------
x∙yz≈y∙xz : ∀ x y z → x ∙ (y ∙ z) ≈ y ∙ (x ∙ z)
x∙yz≈y∙xz x y z = begin
x ∙ (y ∙ z) ≈⟨ sym (assoc x y z) ⟩
(x ∙ y) ∙ z ≈⟨ ∙-congʳ (comm x y) ⟩
(y ∙ x) ∙ z ≈⟨ assoc y x z ⟩
y ∙ (x ∙ z) ∎
x∙yz≈z∙yx : ∀ x y z → x ∙ (y ∙ z) ≈ z ∙ (y ∙ x)
x∙yz≈z∙yx x y z = begin
x ∙ (y ∙ z) ≈⟨ ∙-congˡ (comm y z) ⟩
x ∙ (z ∙ y) ≈⟨ x∙yz≈y∙xz x z y ⟩
z ∙ (x ∙ y) ≈⟨ ∙-congˡ (comm x y) ⟩
z ∙ (y ∙ x) ∎
x∙yz≈x∙zy : ∀ x y z → x ∙ (y ∙ z) ≈ x ∙ (z ∙ y)
x∙yz≈x∙zy _ y z = ∙-congˡ (comm y z)
x∙yz≈y∙zx : ∀ x y z → x ∙ (y ∙ z) ≈ y ∙ (z ∙ x)
x∙yz≈y∙zx x y z = begin
x ∙ (y ∙ z) ≈⟨ comm x _ ⟩
(y ∙ z) ∙ x ≈⟨ assoc y z x ⟩
y ∙ (z ∙ x) ∎
x∙yz≈z∙xy : ∀ x y z → x ∙ (y ∙ z) ≈ z ∙ (x ∙ y)
x∙yz≈z∙xy x y z = begin
x ∙ (y ∙ z) ≈⟨ sym (assoc x y z) ⟩
(x ∙ y) ∙ z ≈⟨ comm _ z ⟩
z ∙ (x ∙ y) ∎
------------------------------------------------------------------------------
-- Partitions (1,2).
-- These permutation laws are proved by composing the proofs for
-- partitions (1,1) with \p → trans p (sym (assoc _ _ _)).
------------------------------------------------------------------------------
x∙yz≈yx∙z : ∀ x y z → x ∙ (y ∙ z) ≈ (y ∙ x) ∙ z
x∙yz≈yx∙z x y z = trans (x∙yz≈y∙xz x y z) (sym (assoc y x z))
x∙yz≈zy∙x : ∀ x y z → x ∙ (y ∙ z) ≈ (z ∙ y) ∙ x
x∙yz≈zy∙x x y z = trans (x∙yz≈z∙yx x y z) (sym (assoc z y x))
x∙yz≈xz∙y : ∀ x y z → x ∙ (y ∙ z) ≈ (x ∙ z) ∙ y
x∙yz≈xz∙y x y z = trans (x∙yz≈x∙zy x y z) (sym (assoc x z y))
x∙yz≈yz∙x : ∀ x y z → x ∙ (y ∙ z) ≈ (y ∙ z) ∙ x
x∙yz≈yz∙x x y z = trans (x∙yz≈y∙zx _ _ _) (sym (assoc y z x))
x∙yz≈zx∙y : ∀ x y z → x ∙ (y ∙ z) ≈ (z ∙ x) ∙ y
x∙yz≈zx∙y x y z = trans (x∙yz≈z∙xy x y z) (sym (assoc z x y))
------------------------------------------------------------------------------
-- Partitions (2,1).
-- Their laws are proved by composing proofs for partitions (1,1) with
-- trans (assoc x y z).
------------------------------------------------------------------------------
xy∙z≈y∙xz : ∀ x y z → (x ∙ y) ∙ z ≈ y ∙ (x ∙ z)
xy∙z≈y∙xz x y z = trans (assoc x y z) (x∙yz≈y∙xz x y z)
xy∙z≈z∙yx : ∀ x y z → (x ∙ y) ∙ z ≈ z ∙ (y ∙ x)
xy∙z≈z∙yx x y z = trans (assoc x y z) (x∙yz≈z∙yx x y z)
xy∙z≈x∙zy : ∀ x y z → (x ∙ y) ∙ z ≈ x ∙ (z ∙ y)
xy∙z≈x∙zy x y z = trans (assoc x y z) (x∙yz≈x∙zy x y z)
xy∙z≈y∙zx : ∀ x y z → (x ∙ y) ∙ z ≈ y ∙ (z ∙ x)
xy∙z≈y∙zx x y z = trans (assoc x y z) (x∙yz≈y∙zx x y z)
xy∙z≈z∙xy : ∀ x y z → (x ∙ y) ∙ z ≈ z ∙ (x ∙ y)
xy∙z≈z∙xy x y z = trans (assoc x y z) (x∙yz≈z∙xy x y z)
------------------------------------------------------------------------------
-- Partitions (2,2).
-- These proofs are by composing with the proofs for (2,1).
------------------------------------------------------------------------------
xy∙z≈yx∙z : ∀ x y z → (x ∙ y) ∙ z ≈ (y ∙ x) ∙ z
xy∙z≈yx∙z x y z = trans (xy∙z≈y∙xz _ _ _) (sym (assoc y x z))
xy∙z≈zy∙x : ∀ x y z → (x ∙ y) ∙ z ≈ (z ∙ y) ∙ x
xy∙z≈zy∙x x y z = trans (xy∙z≈z∙yx x y z) (sym (assoc z y x))
xy∙z≈xz∙y : ∀ x y z → (x ∙ y) ∙ z ≈ (x ∙ z) ∙ y
xy∙z≈xz∙y x y z = trans (xy∙z≈x∙zy x y z) (sym (assoc x z y))
xy∙z≈yz∙x : ∀ x y z → (x ∙ y) ∙ z ≈ (y ∙ z) ∙ x
xy∙z≈yz∙x x y z = trans (xy∙z≈y∙zx x y z) (sym (assoc y z x))
xy∙z≈zx∙y : ∀ x y z → (x ∙ y) ∙ z ≈ (z ∙ x) ∙ y
xy∙z≈zx∙y x y z = trans (xy∙z≈z∙xy x y z) (sym (assoc z x y))
| {
"alphanum_fraction": 0.3839925977,
"avg_line_length": 35.1463414634,
"ext": "agda",
"hexsha": "1516fd4c984918f8919ef29f92bd512540b945b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/CommutativeSemigroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/CommutativeSemigroup.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/CommutativeSemigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1986,
"size": 4323
} |
open import Relation.Binary.Core
module TreeSort.Impl2 {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import BBSTree _≤_
open import Bound.Total A
open import Bound.Total.Order _≤_
open import Data.List
open import Data.Sum
insert : {x : A}{b t : Bound} → LeB b (val x) → LeB (val x) t → BBSTree b t → BBSTree b t
insert b≤x x≤t (bslf _) = bsnd b≤x x≤t (bslf b≤x) (bslf x≤t)
insert {x = x} b≤x x≤t (bsnd {x = y} b≤y y≤t l r)
with tot≤ x y
... | inj₁ x≤y = bsnd b≤y y≤t (insert b≤x (lexy x≤y) l) r
... | inj₂ y≤x = bsnd b≤y y≤t l (insert (lexy y≤x) x≤t r)
treeSort : List A → BBSTree bot top
treeSort [] = bslf lebx
treeSort (x ∷ xs) = insert {x = x} lebx lext (treeSort xs)
| {
"alphanum_fraction": 0.5832205683,
"avg_line_length": 27.3703703704,
"ext": "agda",
"hexsha": "669efe0c46ccb7fb374adfe09c5f4f3a25e44d93",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/TreeSort/Impl2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/TreeSort/Impl2.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/TreeSort/Impl2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 320,
"size": 739
} |
open import Oscar.Prelude
open import Oscar.Class.Successor₀
open import Oscar.Class.Successor₁
open import Oscar.Class.Injectivity
open import Oscar.Class.Pure
module Oscar.Class.Thickandthin where
module _
{x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b)
where
record [𝓣hin] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓢uccessor₀ X ⦄
where
𝔱hin : ∀ (m : X) → A (⇑₀ m) → B m → Ø b
𝔱hin m = λ _ _ → B (⇑₀ m)
𝓽hin = ∀ {m : X} → A (⇑₀ m) → B m → B (⇑₀ m)
record 𝓣hin ⦃ _ : [𝓣hin] ⦄ : Ø x ∙̂ a ∙̂ b where
field
thin : 𝓽hin
instance `𝓘njection₂ : ∀ {m} → 𝓘njection₂ (𝔱hin m)
`𝓘njection₂ = ∁ thin
open 𝓣hin ⦃ … ⦄ public
module _
{x} {X : Ø x} {a} (A : X → Ø a) {b} (B : X → Ø b)
where
record [𝓣hick] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓢uccessor₀ X ⦄
where
𝓽hick = ∀ {m} → A m → B (⇑₀ m) → B m
record 𝓣hick ⦃ _ : [𝓣hick] ⦄ : Ø x ∙̂ a ∙̂ b where field thick : 𝓽hick
open 𝓣hick ⦃ … ⦄ public
module _
{x} {X : Ø x}
{a} (A : X → Ø a)
{b} (B : X → Ø b)
{ℓ} (_≈_ : ∀ {x} → B x → B x → Ø ℓ)
where
record [𝓣hick/thin=1] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓢uccessor₀ X ⦄
⦃ _ : [𝓢uccessor₁] A ⦄
⦃ _ : 𝓢uccessor₁ A ⦄
⦃ _ : [𝓣hin] A B ⦄
⦃ _ : 𝓣hin A B ⦄
⦃ _ : [𝓣hick] A B ⦄
⦃ _ : 𝓣hick A B ⦄
where
𝓽hick/thin=1 = ∀ {m} (x : A m) (y : B m) → thick x (thin (⇑₁ x) y) ≈ y
record 𝓣hick/thin=1 : Ø x ∙̂ a ∙̂ b ∙̂ ℓ where field thick/thin=1 : 𝓽hick/thin=1
open 𝓣hick/thin=1 ⦃ … ⦄ public
module _
{x} {X : Ø x}
{a} (A : X → Ø a)
{b} (B : X → Ø b)
{c} (C : Ø b → Ø c)
where
record [𝓒heck] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓢uccessor₀ X ⦄
where
𝓬heck = ∀ {m} → A (⇑₀ m) → B (⇑₀ m) → C (B m)
record 𝓒heck ⦃ _ : [𝓒heck] ⦄ : Ø x ∙̂ a ∙̂ b ∙̂ c where field check : 𝓬heck
open 𝓒heck ⦃ … ⦄ public
check[_] : ∀
{x} {X : Ø x}
{a} {A : X → Ø a}
{b} {B : X → Ø b}
{c} (C : Ø b → Ø c)
⦃ _ : [𝓒heck] A B C ⦄
⦃ _ : 𝓢uccessor₀ X ⦄
⦃ _ : 𝓒heck A B C ⦄
→ 𝓬heck A B C
check[ _ ] = check
module _
{x} {X : Ø x}
{a} (A : X → Ø a)
{b} (B : X → Ø b)
{c} (C : Ø b → Ø c)
{ℓ} (_≈_ : ∀ {x} → C (B x) → C (B x) → Ø ℓ)
where
record [𝓒heck/thin=1] : Ø₀ where
no-eta-equality
constructor ∁
module _
⦃ _ : 𝓢uccessor₀ X ⦄
⦃ _ : [𝓣hin] A B ⦄
⦃ _ : 𝓣hin A B ⦄
⦃ _ : [𝓒heck] A B C ⦄
⦃ _ : 𝓒heck A B C ⦄
⦃ _ : 𝓟ure C ⦄
where
𝓬heck/thin=1 = ∀ {n} (x : A (⇑₀ n)) (y : B n) → check x (thin x y) ≈ pure y
record 𝓒heck/thin=1 ⦃ _ : [𝓒heck/thin=1] ⦄ : Ø x ∙̂ a ∙̂ b ∙̂ c ∙̂ ℓ where field check/thin=1 : 𝓬heck/thin=1
open 𝓒heck/thin=1 ⦃ … ⦄ public
check/thin=1[_] : ∀
{x} {X : Ø x}
{a} {A : X → Ø a}
{b} {B : X → Ø b}
{c} {C : Ø b → Ø c}
{ℓ} (_≈_ : ∀ {x} → C (B x) → C (B x) → Ø ℓ)
⦃ _ : 𝓢uccessor₀ X ⦄
⦃ _ : [𝓣hin] A B ⦄
⦃ _ : 𝓣hin A B ⦄
⦃ _ : [𝓒heck] A B C ⦄
⦃ _ : 𝓒heck A B C ⦄
⦃ _ : 𝓟ure C ⦄
⦃ _ : [𝓒heck/thin=1] A B C _≈_ ⦄
⦃ _ : 𝓒heck/thin=1 A B C _≈_ ⦄
→ 𝓬heck/thin=1 A B C _≈_
check/thin=1[ _ ] = check/thin=1
record IsThickandthin
{x a b c ℓb ℓc}
{X : Ø x}
(A : X → Ø a)
(B : X → Ø b)
(_≈B_ : ∀ {x} → B x → B x → Ø ℓb)
(C : Ø b → Ø c)
(_≈C_ : ∀ {x} → C (B x) → C (B x) → Ø ℓc)
: Ø x ∙̂ a ∙̂ ↑̂ b ∙̂ ℓb ∙̂ c ∙̂ ℓc where
constructor ∁
field
overlap ⦃ `𝓢uccessor₀ ⦄ : 𝓢uccessor₀ X
overlap ⦃ `[𝓢uccessor₁] ⦄ : [𝓢uccessor₁] A
overlap ⦃ `𝓢uccessor₁ ⦄ : 𝓢uccessor₁ A
overlap ⦃ `[𝓣hick] ⦄ : [𝓣hick] A B
overlap ⦃ `𝓣hick ⦄ : 𝓣hick A B
overlap ⦃ `[𝓣hin] ⦄ : [𝓣hin] A B
overlap ⦃ `𝓣hin ⦄ : 𝓣hin A B
overlap ⦃ `[𝓘njectivity₂,₁] ⦄ : ∀ {m} → [𝓘njectivity₂,₁] (𝔱hin A B m) _≈B_ _≈B_
overlap ⦃ `𝓘njectivity₂,₁ ⦄ : ∀ {m} → 𝓘njectivity₂,₁ (𝔱hin A B m) _≈B_ _≈B_
overlap ⦃ `[𝓒heck] ⦄ : [𝓒heck] A B C
overlap ⦃ `𝓒heck ⦄ : 𝓒heck A B C
overlap ⦃ `[𝓣hick/thin=1] ⦄ : [𝓣hick/thin=1] A B _≈B_
overlap ⦃ `𝓣hick/thin=1 ⦄ : 𝓣hick/thin=1 A B _≈B_
overlap ⦃ `[𝓒heck/thin=1] ⦄ : [𝓒heck/thin=1] A B C _≈C_
overlap ⦃ `𝓟ure ⦄ : 𝓟ure C
overlap ⦃ `𝓒heck/thin=1 ⦄ : 𝓒heck/thin=1 A B C _≈C_
record Thickandthin x a b ℓb c ℓc : Ø ↑̂ (x ∙̂ a ∙̂ b ∙̂ ℓb ∙̂ c ∙̂ ℓc) where
constructor ∁
field
{X} : Ø x
A : X → Ø a
B : X → Ø b
_≈B_ : ∀ {x} → B x → B x → Ø ℓb
C : Ø b → Ø c
_≈C_ : ∀ {x} → C (B x) → C (B x) → Ø ℓc
⦃ `IsThickandthin ⦄ : IsThickandthin A B _≈B_ C _≈C_
| {
"alphanum_fraction": 0.4842387659,
"avg_line_length": 26.625,
"ext": "agda",
"hexsha": "06281ff4a3b24df6b720b8c6673f9ed66ec9906f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Thickandthin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Thickandthin.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Thickandthin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2575,
"size": 4473
} |
-- simply-typed λ-calculus w/ DeBruijn indices
module LC where
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Data.Bool.Properties hiding (≤-trans ; <-trans ; ≤-refl ; <-irrefl)
open import Data.Empty
open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_)
open import Data.Nat.Properties renaming (_<?_ to _<ᴺ?_)
open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_)
open import Data.Integer.Properties using (⊖-≥ ; 0≤n⇒+∣n∣≡n ; +-monoˡ-≤)
open import Data.List
open import Data.List.Relation.Unary.All
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Nullary.Negation
open import Auxiliary
module defs where
data Exp : Set where
Var : ℕ → Exp
Abs : Exp → Exp
App : Exp → Exp → Exp
data Ty : Set where
Fun : Ty → Ty → Ty
-- typing
Env = List Ty
data _∶_∈_ : ℕ → Ty → Env → Set where
here : {T : Ty} {Γ : Env} → 0 ∶ T ∈ (T ∷ Γ)
there : {n : ℕ} {T₁ T₂ : Ty} {Γ : Env} → n ∶ T₁ ∈ Γ → (ℕ.suc n) ∶ T₁ ∈ (T₂ ∷ Γ)
data _⊢_∶_ : Env → Exp → Ty → Set where
TVar : {n : ℕ} {Γ : Env} {T : Ty} → n ∶ T ∈ Γ → Γ ⊢ (Var n) ∶ T
TAbs : {Γ : Env} {T₁ T₂ : Ty} {e : Exp} → (T₁ ∷ Γ) ⊢ e ∶ T₂ → Γ ⊢ (Abs e) ∶ (Fun T₁ T₂)
TApp : {Γ : Env} {T₁ T₂ : Ty} {e₁ e₂ : Exp} → Γ ⊢ e₁ ∶ (Fun T₁ T₂) → Γ ⊢ e₂ ∶ T₁ → Γ ⊢ (App e₁ e₂) ∶ T₂
-- denotational semantics
module denotational where
open defs
Valᵈ : Ty → Set
Valᵈ (Fun Ty₁ Ty₂) = (Valᵈ Ty₁) → (Valᵈ Ty₂)
access : {n : ℕ} {Γ : Env} {T : Ty} → n ∶ T ∈ Γ → All Valᵈ Γ → Valᵈ T
access here (V ∷ Γ) = V
access (there J) (V ∷ Γ) = access J Γ
eval : {Γ : Env} {T : Ty} {e : Exp} → Γ ⊢ e ∶ T → All Valᵈ Γ → Valᵈ T
eval (TVar c) Val-Γ = access c Val-Γ
eval (TAbs TJ) Val-Γ = λ V → eval TJ (V ∷ Val-Γ)
eval (TApp TJ TJ₁) Val-Γ = (eval TJ Val-Γ) (eval TJ₁ Val-Γ)
-- operational semantics (call-by-value)
module operational where
open defs
-- shifting, required to avoid variable-capturing in substitution
-- see Pierce 2002, pg. 78/79
↑_,_[_] : ℤ → ℕ → Exp → Exp
↑ d , c [ Var x ]
with (x <ᴺ? c)
... | yes p = Var x
... | no ¬p = Var (∣ (ℤ.pos x) +ᶻ d ∣) -- should always be positive anyway
↑ d , c [ Abs t ] = Abs (↑ d , (ℕ.suc c) [ t ])
↑ d , c [ App t t₁ ] = App (↑ d , c [ t ]) (↑ d , c [ t₁ ])
-- shifting in range [n, m]; by def. m < n implies no shift
↑[_,_]_[_] : ℕ → ℕ → ℤ → Exp → Exp
↑[ n , m ] d [ Var x ]
with (x <ᴺ? n)
... | yes p = Var x
... | no ¬p
with (m <ᴺ? x)
... | yes p' = Var x
... | no ¬p' = Var (∣ (ℤ.pos x) +ᶻ d ∣)
↑[ n , m ] d [ Abs e ] = Abs (↑[ ℕ.suc n , ℕ.suc m ] d [ e ])
↑[ n , m ] d [ App e e₁ ] = App (↑[ n , m ] d [ e ]) (↑[ n , m ] d [ e₁ ])
-- shorthands
↑¹[_] : Exp → Exp
↑¹[ e ] = ↑ (ℤ.pos 1) , 0 [ e ]
↑⁻¹[_] : Exp → Exp
↑⁻¹[ e ] = ↑ (ℤ.negsuc 0) , 0 [ e ]
-- substitution
-- see Pierce 2002, pg. 80
[_↦_]_ : ℕ → Exp → Exp → Exp
[ k ↦ s ] Var x
with (Data.Nat._≟_ x k)
... | yes p = s
... | no ¬p = Var x
[ k ↦ s ] Abs t = Abs ([ ℕ.suc k ↦ ↑¹[ s ] ] t)
[ k ↦ s ] App t t₁ = App ([ k ↦ s ] t) ([ k ↦ s ] t₁)
data Val : Exp → Set where
VFun : {e : Exp} → Val (Abs e)
-- reduction relation
data _⇒_ : Exp → Exp → Set where
ξ-App1 : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → App e₁ e₂ ⇒ App e₁' e₂
ξ-App2 : {e e' v : Exp} → Val v → e ⇒ e' → App v e ⇒ App v e'
β-App : {e v : Exp} → Val v → (App (Abs e) v) ⇒ (↑⁻¹[ ([ 0 ↦ ↑¹[ v ] ] e) ])
---- properties & lemmas
--- properties of shifting
↑-var-refl : {d : ℤ} {c : ℕ} {x : ℕ} {le : ℕ.suc x ≤ᴺ c} → ↑ d , c [ Var x ] ≡ Var x
↑-var-refl {d} {c} {x} {le}
with (x <ᴺ? c)
... | no ¬p = contradiction le ¬p
... | yes p = refl
↑[]-var-refl-< : {n m x : ℕ} {d : ℤ} {le : x <ᴺ n} → ↑[ n , m ] d [ Var x ] ≡ Var x
↑[]-var-refl-< {n} {m} {x} {d} {le}
with (x <ᴺ? n)
... | yes p = refl
... | no ¬p = contradiction le ¬p
↑[]-var-refl-> : {n m x : ℕ} {d : ℤ} {le : m <ᴺ x} → ↑[ n , m ] d [ Var x ] ≡ Var x
↑[]-var-refl-> {n} {m} {x} {d} {le}
with (x <ᴺ? n)
... | yes p = refl
... | no p
with (m <ᴺ? x)
... | no ¬q = contradiction le ¬q
... | yes q = refl
↑[]-var-shift : {n m x : ℕ} {d : ℤ} (le1 : n ≤ᴺ x) (le2 : x ≤ᴺ m) → ↑[ n , m ] d [ Var x ] ≡ Var (∣ (ℤ.pos x) +ᶻ d ∣)
↑[]-var-shift {n} {m} {x} {d} le1 le2
with x <ᴺ? n
... | yes p = contradiction p (<⇒≱ (s≤s le1))
... | no ¬p
with m <ᴺ? x
... | yes p' = contradiction p' (<⇒≱ (s≤s le2))
... | no ¬p' = refl
↑¹-var : {x : ℕ} → ↑¹[ Var x ] ≡ Var (ℕ.suc x)
↑¹-var {zero} = refl
↑¹-var {ℕ.suc x}
rewrite (sym (n+1≡sucn{x +ᴺ 1}))
| (sym (n+1≡sucn{x}))
= cong ↑¹[_] (↑¹-var{x})
↑⁻¹ₖ[↑¹ₖ[s]]≡s : {e : Exp} {k : ℕ} → ↑ -[1+ 0 ] , k [ ↑ + 1 , k [ e ] ] ≡ e
↑⁻¹ₖ[↑¹ₖ[s]]≡s {Var x} {k}
with (x <ᴺ? k)
-- x < k
-- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var n) = Var n
... | yes p = ↑-var-refl{ -[1+ 0 ]}{k}{x}{p}
-- x ≥ k
-- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var |n + 1|) = Var (||n + 1| - 1|) = Var n
... | no ¬p
with (¬[x≤k]⇒¬[sucx≤k] ¬p)
... | ¬p'
with (x +ᴺ 1) <ᴺ? k
... | yes pp = contradiction pp ¬p'
... | no ¬pp
rewrite (∣nℕ+1⊖1∣≡n{x})
= refl
↑⁻¹ₖ[↑¹ₖ[s]]≡s {Abs e} {k} = cong Abs ↑⁻¹ₖ[↑¹ₖ[s]]≡s
↑⁻¹ₖ[↑¹ₖ[s]]≡s {App e e₁} = cong₂ App ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] : {k l : ℤ} {c : ℕ} {s : Exp} → l ≥ᶻ +0 → ↑ k , c [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ]
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge
with x <ᴺ? c
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge | no ¬p
with ∣ + x +ᶻ l ∣ <ᴺ? c
... | yes q = contradiction q (<⇒≱ (n≤m⇒n<sucm (≤-trans (≮⇒≥ ¬p) (m≥0⇒∣n+m∣≥n ge))))
... | no ¬q
rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (m≥0⇒n+m≥0 ge))
| (Data.Integer.Properties.+-assoc (+_ x) l k)
= refl
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge | yes p
with x <ᴺ? c
... | yes p' = refl
... | no ¬p' = contradiction p ¬p'
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Abs s} le = cong Abs (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{ℕ.suc c}{s} le)
↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {App s s₁} le = cong₂ App (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{c}{s} le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{c}{s₁} le)
↑k,q[↑l,c[s]]≡↑l+k,c[s] : {k l : ℤ} {q c : ℕ} {s : Exp} → + q ≤ᶻ + c +ᶻ l → c ≤ᴺ q → ↑ k , q [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ]
↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Var x} ge₁ ge₂
with x <ᴺ? c
... | yes p
with x <ᴺ? q
... | yes p' = refl
... | no ¬p' = contradiction (≤-trans p ge₂) ¬p'
↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Var x} ge₁ ge₂
| no ¬p
with ∣ + x +ᶻ l ∣ <ᴺ? q
... | yes p' = contradiction p' (≤⇒≯ (+a≤b⇒a≤∣b∣{q}{+ x +ᶻ l} (Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p)))))))
... | no ¬p'
rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (Data.Integer.Properties.≤-trans (+≤+ z≤n) ((Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p))))))))
| (Data.Integer.Properties.+-assoc (+_ x) l k)
= refl
↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Abs s} ge₁ ge₂ = cong Abs (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {ℕ.suc q} {ℕ.suc c} {s} (+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁) (s≤s ge₂))
↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {App s s₁} ge₁ ge₂ = cong₂ App (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {s} ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {s₁} ge₁ ge₂)
--- properties of substitution
subst-trivial : {x : ℕ} {s : Exp} → [ x ↦ s ] Var x ≡ s
subst-trivial {x} {s}
with x Data.Nat.≟ x
... | no ¬p = contradiction refl ¬p
... | yes p = refl
var-subst-refl : {n m : ℕ} {neq : n ≢ m} {e : Exp} → [ n ↦ e ] (Var m) ≡ (Var m)
var-subst-refl {n} {m} {neq} {e}
with Data.Nat._≟_ n m
| map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (Data.Bool.Properties.T? (m ≡ᵇ n))
... | yes p | _ = contradiction p neq
... | no ¬p | yes q = contradiction q (≢-sym ¬p)
... | no ¬p | no ¬q = refl
--- properties and manipulation of environments
var-env-< : {Γ : Env} {T : Ty} {n : ℕ} (j : n ∶ T ∈ Γ) → n <ᴺ (length Γ)
var-env-< {.(T ∷ _)} {T} {.0} here = s≤s z≤n
var-env-< {.(_ ∷ _)} {T} {.(ℕ.suc _)} (there j) = s≤s (var-env-< j)
-- type to determine whether var type judgement in env. (Δ ++ Γ) is in Δ or Γ
data extract-env-or {Δ Γ : Env} {T : Ty} {x : ℕ} : Set where
in-Δ : x ∶ T ∈ Δ → extract-env-or
-- x ≥ length Δ makes sure that x really is in Γ; e.g.
-- x = 1, Δ = (S ∷ T), Γ = (T ∷ Γ'); here 1 ∶ T ∈ Δ as well as (1 ∸ 2) ≡ 0 ∶ T ∈ Γ
in-Γ : (x ≥ᴺ length Δ) → (x ∸ length Δ) ∶ T ∈ Γ → extract-env-or
extract : {Δ Γ : Env} {T : Ty} {x : ℕ} (j : x ∶ T ∈ (Δ ++ Γ)) → extract-env-or{Δ}{Γ}{T}{x}
extract {[]} {Γ} {T} {x} j = in-Γ z≤n j
extract {x₁ ∷ Δ} {Γ} {.x₁} {.0} here = in-Δ here
extract {x₁ ∷ Δ} {Γ} {T} {ℕ.suc x} (there j)
with extract {Δ} {Γ} {T} {x} j
... | in-Δ j' = in-Δ (there j')
... | in-Γ ge j'' = in-Γ (s≤s ge) j''
ext-behind : {Δ Γ : Env} {T : Ty} {x : ℕ} → x ∶ T ∈ Δ → x ∶ T ∈ (Δ ++ Γ)
ext-behind here = here
ext-behind (there j) = there (ext-behind j)
ext-front : {n : ℕ} {Γ Δ : Env} {S : Ty} → n ∶ S ∈ Γ → (n +ᴺ (length Δ)) ∶ S ∈ (Δ ++ Γ)
ext-front {n} {Γ} {[]} {S} j
rewrite (n+length[]≡n{A = Ty}{n = n})
= j
ext-front {n} {Γ} {T ∷ Δ} {S} j
rewrite (+-suc n (foldr (λ _ → ℕ.suc) 0 Δ))
= there (ext-front j)
swap-env-behind : {Γ Δ : Env} {T : Ty} → 0 ∶ T ∈ (T ∷ Γ) → 0 ∶ T ∈ (T ∷ Δ)
swap-env-behind {Γ} {Δ} {T} j = here
swap-type : {Δ ∇ Γ : Env} {T : Ty} → (length Δ) ∶ T ∈ (Δ ++ T ∷ ∇ ++ Γ) → (length Δ +ᴺ length ∇) ∶ T ∈ (Δ ++ ∇ ++ T ∷ Γ)
swap-type {Δ} {∇} {Γ} {T} j
with extract{Δ}{T ∷ ∇ ++ Γ} j
... | in-Δ x = contradiction (var-env-< {Δ} {T} x) (<-irrefl refl)
... | in-Γ le j'
with extract{T ∷ ∇}{Γ} j'
... | in-Δ j''
rewrite (n∸n≡0 (length Δ))
| (sym (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{∇}))
| (sym (++-assoc{lzero}{Ty}{Δ}{∇}{T ∷ Γ}))
= ext-front{0}{T ∷ Γ}{Δ ++ ∇}{T} (swap-env-behind{∇}{Γ}{T} j'')
... | in-Γ le' j''
rewrite (length[A∷B]≡suc[length[B]]{lzero}{Ty}{T}{∇})
| (n∸n≡0 (length Δ))
= contradiction le' (<⇒≱ (s≤s z≤n))
env-pred : {Γ : Env} {S T : Ty} {y : ℕ} {gt : y ≢ 0} → y ∶ T ∈ (S ∷ Γ) → ∣ y ⊖ 1 ∣ ∶ T ∈ Γ
env-pred {Γ} {S} {.S} {.0} {gt} here = contradiction refl gt
env-pred {Γ} {S} {T} {.(ℕ.suc _)} {gt} (there j) = j
env-type-equiv-here : {Γ : Env} {S T : Ty} → 0 ∶ T ∈ (S ∷ Γ) → T ≡ S
env-type-equiv-here {Γ} {S} {.S} here = refl
env-type-equiv : {Δ ∇ : Env} {S T : Ty} → length Δ ∶ T ∈ (Δ ++ S ∷ ∇) → T ≡ S
env-type-equiv {Δ} {∇} {S} {T} j
with extract{Δ}{S ∷ ∇} j
... | in-Δ x = contradiction (var-env-< x) (≤⇒≯ ≤-refl)
... | in-Γ x j'
rewrite (n∸n≡0 (length Δ))
= env-type-equiv-here {∇} {S} {T} j'
env-type-equiv-j : {Γ : Env} {S T : Ty} {n : ℕ} → T ≡ S → n ∶ T ∈ Γ → n ∶ S ∈ Γ
env-type-equiv-j {Γ} {S} {T} {n} eq j
rewrite eq
= j
-- extension of environment
ext : {Γ Δ ∇ : Env} {S : Ty} {s : Exp} → (∇ ++ Γ) ⊢ s ∶ S → (∇ ++ Δ ++ Γ) ⊢ ↑ (ℤ.pos (length Δ)) , length ∇ [ s ] ∶ S
ext {Γ} {Δ} {∇} (TVar {n} x)
with extract{∇}{Γ} x
... | in-Δ x₁
with n <ᴺ? length ∇
... | yes p = TVar (ext-behind x₁)
... | no ¬p = contradiction (var-env-< x₁) ¬p
ext {Γ} {Δ} {∇} (TVar {n} x)
| in-Γ x₁ x₂
with n <ᴺ? length ∇
... | yes p = contradiction x₁ (<⇒≱ p)
... | no ¬p
with (ext-front{n ∸ length ∇}{Γ}{∇ ++ Δ} x₂)
... | w
rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Δ})
| (sym (+-assoc (n ∸ length ∇) (length ∇) (length Δ)))
| (m∸n+n≡m{n}{length ∇} (≮⇒≥ ¬p))
| (++-assoc{lzero}{Ty}{∇}{Δ}{Γ})
= TVar w
ext {Γ} {Δ} {∇} {Fun T₁ T₂} {Abs e} (TAbs j) = TAbs (ext{Γ}{Δ}{T₁ ∷ ∇} j)
ext {Γ} {Δ} {∇} {S} {App s₁ s₂} (TApp{T₁ = T₁} j₁ j₂) = TApp (ext{Γ}{Δ}{∇}{Fun T₁ S} j₁) (ext{Γ}{Δ}{∇}{T₁} j₂)
---- progress and preservation
-- progress theorem, i.e. a well-typed closed expression is either a value
-- or can be reduced further
data Progress (e : Exp) {T : Ty} {j : [] ⊢ e ∶ T} : Set where
step : {e' : Exp} → e ⇒ e' → Progress e
value : Val e → Progress e
progress : (e : Exp) {T : Ty} {j : [] ⊢ e ∶ T} → Progress e {T} {j}
progress (Var x) {T} {TVar ()}
progress (Abs e) = value VFun
progress (App e e₁) {T} {TApp{T₁ = T₁}{T₂ = .T} j j₁} with progress e {Fun T₁ T} {j}
... | step x = step (ξ-App1 x)
... | value VFun with progress e₁ {T₁} {j₁}
... | step x₁ = step (ξ-App2 VFun x₁)
... | value x₁ = step (β-App x₁)
---
-- preservation under substitution
preserve-subst : {T S : Ty} {Γ Δ : Env} {e s : Exp} (j : (Δ ++ (S ∷ Γ)) ⊢ e ∶ T) (j' : Γ ⊢ s ∶ S) → (Δ ++ Γ) ⊢ ↑ -[1+ 0 ] , length Δ [ [ length Δ ↦ ↑ (ℤ.pos (ℕ.suc (length Δ))) , 0 [ s ] ] e ] ∶ T
preserve-subst {T} {S} {Γ} {Δ} {e} {s} (TVar{n} x) j'
with extract{Δ}{S ∷ Γ}{T}{n} x
... | in-Δ x₁
with n Data.Nat.≟ length Δ
... | yes p = contradiction p (<⇒≢ (var-env-< x₁))
... | no ¬p
with n <ᴺ? length Δ
... | yes q = TVar (ext-behind{Δ}{Γ} x₁)
... | no ¬q = contradiction (var-env-< x₁) ¬q
preserve-subst {T} {S} {Γ} {Δ} {e} {s} (TVar{n} x) j'
| in-Γ x₁ x₂
with n Data.Nat.≟ length Δ
... | yes p
rewrite (↑k,q[↑l,c[s]]≡↑l+k,c[s]{ -[1+ 0 ]}{+[1+ length Δ ]}{length Δ}{0}{s} (+≤+ n≤sucn) z≤n)
| p
| (env-type-equiv x)
= ext{Γ}{Δ}{[]} j'
... | no ¬p
with n <ᴺ? length Δ
... | yes q = contradiction x₁ (<⇒≱ q)
... | no ¬q rewrite (sym (minus-1{n}{length Δ}{≤∧≢⇒< x₁ (≢-sym ¬p)}))
= TVar (ext-front{Δ = Δ} (env-pred{Γ}{S}{T}{gt = ≢-sym (<⇒≢ (m>n⇒m∸n≥1 (≤∧≢⇒< x₁ (≢-sym ¬p))))} x₂))
preserve-subst {T} {S} {Γ} {Δ} {Abs e'} {s} (TAbs{T₁ = T₁}{T₂} j) j'
with preserve-subst{T₂}{S}{Γ}{T₁ ∷ Δ}{e'}{s} j j'
... | w
rewrite (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{+ 1}{+[1+ length Δ ]}{0}{s} (+≤+ z≤n))
| (length[A∷B]≡suc[length[B]]{lzero}{Ty}{T₁}{Δ})
| (n+1≡sucn{length Δ})
= TAbs w
preserve-subst (TApp j j₁) j' = TApp (preserve-subst j j') (preserve-subst j₁ j')
-- preservation theorem, i.e. a well-typed expression reduces to a well-typed expression
preserve : {T : Ty} {Γ : Env} (e e' : Exp) (j : Γ ⊢ e ∶ T) (r : e ⇒ e') → Γ ⊢ e' ∶ T
preserve (App s₁ s₂) .(App _ s₂) (TApp j j') (ξ-App1{e₁' = s₁'} r) = TApp (preserve s₁ s₁' j r) j' -- IH on inner reduction
preserve (App s₁ s₂) .(App s₁ _) (TApp j j') (ξ-App2{e' = s₂'} x r) = TApp j (preserve s₂ s₂' j' r)
preserve (App (Abs e) s') .(↑⁻¹[ [ 0 ↦ ↑¹[ s' ] ] e ]) (TApp (TAbs j) j') (β-App x) = preserve-subst{Δ = []} j j'
-----------------------------------------------------------------------------------------------------------
-- swap-subst lemma: swap the position of a type in an environment (did not need this after all)
-- aux. calculations
length-≡ : {Δ ∇ Γ : Env} {S : Ty} → ℕ.suc (length Δ +ᴺ (length Γ +ᴺ length ∇)) ≡ length (Δ ++ S ∷ ∇ ++ Γ)
length-≡ {Δ} {∇} {Γ} {S}
rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{S ∷ ∇ ++ Γ})
| (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Γ})
| (+-suc (length Δ) (length ∇ +ᴺ length Γ))
| (+-comm (length ∇) (length Γ))
= refl
length-≡' : {Δ ∇ : Env} {S : Ty} → length (Δ ++ ∇ ++ S ∷ []) ≡ length Δ +ᴺ ℕ.suc (length ∇)
length-≡' {Δ} {∇} {S}
rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{∇ ++ S ∷ []})
| (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{S ∷ []})
| (+-suc (length ∇) (0))
| (+-identityʳ (length ∇))
= refl
length-≡'' : {Δ ∇ : Env} {S : Ty} → length (Δ ++ ∇ ++ S ∷ []) ≡ ℕ.suc (length ∇ +ᴺ length Δ)
length-≡'' {Δ} {∇} {S}
rewrite (cong (ℕ.suc) (+-comm (length ∇) (length Δ)))
| (sym (+-suc (length Δ) (length ∇)))
= length-≡'{Δ}{∇}{S}
--- why the "r"? we have to "remember" where S was
--- cannot substitute its position for zero, since ↑ would increase that
--- cannot do ↑ and then subtitute its position for zero, since (position - 1) would be affected aswell
--- fix: cache in unreachable variable r
swap-subst : {T S : Ty} {Γ Δ ∇ : Env} {e : Exp} {r : ℕ} {gt : r >ᴺ ℕ.suc (length Δ +ᴺ (length Γ +ᴺ length ∇))}
→ (Δ ++ (S ∷ ∇) ++ Γ) ⊢ e ∶ T
→ (Δ ++ ∇ ++ (S ∷ Γ)) ⊢ [ r ↦ Var (length Δ +ᴺ length ∇) ] ↑[ ℕ.suc (length Δ) , length Δ +ᴺ length ∇ ] -[1+ 0 ] [ [ length Δ ↦ Var r ] e ] ∶ T
swap-subst {(Fun T₁ T₂)} {S} {Γ} {Δ} {∇} {(Abs e)} {r} {gt} (TAbs j)
rewrite (↑¹-var{length Δ +ᴺ length ∇})
| (n+1≡sucn{r})
= TAbs (swap-subst{T₂}{S}{Γ}{T₁ ∷ Δ}{∇}{e}{ℕ.suc r}{s≤s gt} j)
swap-subst {T} {S} {Γ} {Δ} {∇} {(App e e₁)} {r} {gt} (TApp{T₁ = T₁}{T₂} j j₁) = TApp (swap-subst{Fun T₁ T₂}{S}{Γ}{Δ}{∇}{e}{r}{gt} j) (swap-subst{T₁}{S}{Γ}{Δ}{∇}{e₁}{r}{gt} j₁)
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j)
with extract{Δ} {(S ∷ ∇) ++ Γ} {T} {y} j
| y <ᴺ? (foldr (λ _ → ℕ.suc) 0 Δ)
| Data.Nat._≟_ y (length Δ)
-- y ∈ Δ
... | in-Δ x | yes p | yes q = contradiction q (<⇒≢ p)
... | in-Δ x | yes p | no ¬q
rewrite (↑[]-var-refl-<{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ] }{[k<x]⇒[k<sucx] p})
| (var-subst-refl{r}{y}{≢-sym (<⇒≢ (a<b≤c⇒a<c p (≤-trans (n≤m⇒n≤sucm (m≤m+n (length Δ) (length Γ +ᴺ length ∇))) (<-trans (s≤s ≤-refl) gt))) )}
{Var (foldr (λ _ → ℕ.suc) 0 Δ +ᴺ foldr (λ _ → ℕ.suc) 0 ∇)})
= TVar (ext-behind x)
... | in-Δ x | no ¬p | _ = contradiction (var-env-< x) ¬p
-- y ∈ (S ∷ ∇ ++ Γ)
... | in-Γ ge x | p | q
with extract{S ∷ ∇} {Γ} {T} {y ∸ length Δ} x
--- y ∈ (S ∷ ∇)
---- y @ S
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | yes q' | in-Δ x'
rewrite (↑[]-var-refl->{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{r}{ -[1+ 0 ] }{<-trans (s≤s (n+m≤n+q+m {length Δ} {length ∇} {length Γ})) gt})
| (subst-trivial{r} {Var (length Δ +ᴺ length ∇)})
| q'
| (env-type-equiv j)
= TVar (swap-type{Δ}{∇}{Γ}{S} (env-type-equiv-j (env-type-equiv j) j))
---- y ∈ ∇
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | no ¬q' | in-Δ x'
rewrite (↑[]-var-shift{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ]} (≤∧≢⇒< ge (≢-sym ¬q')) (≤-trans (≤-pred (m≤n∧m≡q⇒q≤n (m≤n⇒m+o≤n+o{o = length Δ} (var-env-< x'))
(cong ℕ.suc (m∸n+n≡m ge)))) (≤-refl-+-comm{length ∇}{length Δ})))
| length-≡ {Δ} {∇} {Γ} {S}
| (var-subst-refl {r} {∣ y ⊖ 1 ∣} {≢-sym (<⇒≢ (<-trans (n>0⇒n>∣n⊖1∣ (≤-trans (s≤s z≤n) ((≤∧≢⇒< ge (≢-sym ¬q'))))) (<-trans (var-env-< j) gt)))} {Var (length Δ +ᴺ length ∇)})
| sym (minus-1{y}{length Δ}{≤∧≢⇒< ge (≢-sym ¬q')} )
= TVar (ext-front{Δ = Δ}(ext-behind{∇}{S ∷ Γ}{T} (env-pred{gt = ≢-sym (<⇒≢ (m>n⇒m∸n≥1{y}{length Δ} ((≤∧≢⇒< ge (≢-sym ¬q')))))} x')))
--- y ∈ Γ
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | no ¬p | yes q | in-Γ ge' x'
= contradiction q (≢-sym (<⇒≢ (m∸n≢0⇒n<m{y}{length Δ} (≢-sym (<⇒≢ (a<b≤c⇒a<c (s≤s z≤n) (≤-trans (length[A∷B]≥1{lzero}{Ty}{S}{∇}) ge')))))))
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | yes p | yes q | in-Γ ge' x' = contradiction q (<⇒≢ p)
swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | no ¬q' | in-Γ ge' x'
rewrite (↑[]-var-refl->{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ]}{a<b≤c⇒a<c (s≤s (≤-refl-+-comm{length Δ}{length ∇})) (m≤n∧n≡q⇒m≤q (m≤n⇒m+o≤n+o{o = length Δ} ge') (m∸n+n≡m ge))})
| (var-subst-refl{r}{y}{≢-sym (<⇒≢ (<-trans (var-env-< j) (m≤n∧m≡q⇒q≤n gt (cong ℕ.suc (length-≡{Δ}{∇}{Γ}{S})))))}{ Var (foldr (λ _ → ℕ.suc) 0 Δ +ᴺ foldr (λ _ → ℕ.suc) 0 ∇)})
with ext-front{((y ∸ (length Δ)) ∸ ℕ.suc (length ∇))}{Γ}{Δ ++ ∇ ++ (S ∷ [])}{T}
... | w rewrite (∸-+-assoc y (length Δ) (ℕ.suc (length ∇)))
| (sym (length-≡'{Δ}{∇}{S}))
| (m∸n+n≡m{y}{length (Δ ++ ∇ ++ S ∷ [])} (m≤n∧m≡q⇒q≤n (m≤n∧n≡q⇒m≤q (m≤n⇒m+o≤n+o{o = length Δ} ge') (m∸n+n≡m ge)) (sym (length-≡''{Δ}{∇}{S}))))
| (A++B++D∷[]++C≡A++B++D∷C{lzero}{Ty}{Δ}{∇}{Γ}{S})
= TVar (w x')
| {
"alphanum_fraction": 0.4419054061,
"avg_line_length": 44.5139784946,
"ext": "agda",
"hexsha": "1d025dabede913ffacb172151beda179d6c3bc05",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kcaliban/ldlc",
"max_forks_repo_path": "src/lc/LC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kcaliban/ldlc",
"max_issues_repo_path": "src/lc/LC.agda",
"max_line_length": 199,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kcaliban/ldlc",
"max_stars_repo_path": "src/lc/LC.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10284,
"size": 20699
} |
module subst where
open import lib
open import cedille-types
open import ctxt-types
open import is-free
open import rename
open import general-util
open import syntax-util
substh-ret-t : Set → Set
substh-ret-t T = ∀ {ed} → ctxt → renamectxt → trie ⟦ ed ⟧ → T → T
substh : ∀ {ed} → substh-ret-t ⟦ ed ⟧
substh-term : substh-ret-t term
substh-type : substh-ret-t type
substh-kind : substh-ret-t kind
substh-tk : substh-ret-t tk
substh-optClass : substh-ret-t optClass
substh-optGuide : substh-ret-t optGuide
substh-optTerm : substh-ret-t optTerm
substh-optType : substh-ret-t optType
substh-liftingType : substh-ret-t liftingType
substh-arg : substh-ret-t arg
substh-args : substh-ret-t args
substh-params : substh-ret-t params
substh-cases : substh-ret-t cases
substh-varargs : {ed : exprd} → ctxt → renamectxt → trie ⟦ ed ⟧ → varargs → varargs × renamectxt
substh{TERM} = substh-term
substh{TYPE} = substh-type
substh{KIND} = substh-kind
substh{LIFTINGTYPE} = substh-liftingType
substh{TK} = substh-tk
substh{ARG} = substh-arg
substh{QUALIF} = λ Γ ρ σ q → q
subst-rename-var-if : {ed : exprd} → ctxt → renamectxt → var → trie ⟦ ed ⟧ → var
subst-rename-var-if Γ ρ "_" σ = "_"
subst-rename-var-if Γ ρ x σ =
{- rename bound variable x iff it is one of the vars being substituted for,
or if x occurs free in one of the terms we are substituting for vars,
or if it is the renamed version of any variable -}
if trie-contains σ x || trie-any (is-free-in check-erased x) σ || renamectxt-in-range ρ x || ctxt-binds-var Γ x then
rename-away-from x (λ s → ctxt-binds-var Γ s || trie-contains σ s) ρ
else
x
substh-term Γ ρ σ (App t m t') = App (substh-term Γ ρ σ t) m (substh-term Γ ρ σ t')
substh-term Γ ρ σ (AppTp t tp) = AppTp (substh-term Γ ρ σ t) (substh-type Γ ρ σ tp)
substh-term Γ ρ σ (Hole x₁) = Hole x₁
substh-term Γ ρ σ (Lam _ b _ x oc t) =
let x' = subst-rename-var-if Γ ρ x σ in
Lam posinfo-gen b posinfo-gen x' (substh-optClass Γ ρ σ oc)
(substh-term (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh-term Γ ρ σ (Let _ (DefTerm _ x m t) t') =
let x' = subst-rename-var-if Γ ρ x σ in
(Let posinfo-gen (DefTerm posinfo-gen x' (substh-optType Γ ρ σ m) (substh-term Γ ρ σ t))
(substh-term (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t'))
substh-term Γ ρ σ (Let _ (DefType _ x k t) t') =
let x' = subst-rename-var-if Γ ρ x σ in
(Let posinfo-gen (DefType posinfo-gen x' (substh-kind Γ ρ σ k) (substh-type Γ ρ σ t))
(substh-term (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t'))
substh-term Γ ρ σ (Open _ x t) = Open posinfo-gen x (substh-term Γ ρ σ t)
substh-term Γ ρ σ (Parens _ t _) = substh-term Γ ρ σ t
substh-term{TERM} Γ ρ σ (Var _ x) =
let x' = renamectxt-rep ρ x in
trie-lookup-else (Var posinfo-gen x') σ x'
substh-term{ARG} Γ ρ σ (Var _ x) =
let x' = renamectxt-rep ρ x in
inst-lookup-term σ x'
substh-term{QUALIF} Γ ρ σ (Var _ x) =
let x' = renamectxt-rep ρ x in
qualif-lookup-term σ x'
substh-term Γ ρ σ (Var _ x) = Var posinfo-gen (renamectxt-rep ρ x)
substh-term Γ ρ σ (Beta _ ot ot') = Beta posinfo-gen (substh-optTerm Γ ρ σ ot) (substh-optTerm Γ ρ σ ot')
substh-term Γ ρ σ (IotaPair _ t1 t2 og pi') = IotaPair posinfo-gen (substh-term Γ ρ σ t1) (substh-term Γ ρ σ t2) (substh-optGuide Γ ρ σ og) pi'
substh-term Γ ρ σ (IotaProj t n _) = IotaProj (substh-term Γ ρ σ t) n posinfo-gen
substh-term Γ ρ σ (Epsilon _ lr m t) = Epsilon posinfo-gen lr m (substh-term Γ ρ σ t)
substh-term Γ ρ σ (Sigma _ t) = Sigma posinfo-gen (substh-term Γ ρ σ t)
substh-term Γ ρ σ (Phi _ t t₁ t₂ _) = Phi posinfo-gen (substh-term Γ ρ σ t) (substh-term Γ ρ σ t₁) (substh-term Γ ρ σ t₂) posinfo-gen
substh-term Γ ρ σ (Rho _ op on t og t') = Rho posinfo-gen op on (substh-term Γ ρ σ t) (substh-optGuide Γ ρ σ og) (substh-term Γ ρ σ t')
substh-term Γ ρ σ (Chi _ T t') = Chi posinfo-gen (substh-optType Γ ρ σ T) (substh-term Γ ρ σ t')
substh-term Γ ρ σ (Delta _ T t') = Delta posinfo-gen (substh-optType Γ ρ σ T) (substh-term Γ ρ σ t')
substh-term Γ ρ σ (Theta _ θ t ls) = Theta posinfo-gen (substh-theta θ) (substh-term Γ ρ σ t) (substh-lterms ls)
where substh-lterms : lterms → lterms
substh-lterms (LtermsNil pi) = LtermsNil pi
substh-lterms (LtermsCons m t ls) = LtermsCons m (substh-term Γ ρ σ t) (substh-lterms ls)
substh-vars : vars → vars
substh-vars (VarsStart x) = VarsStart (renamectxt-rep ρ x)
substh-vars (VarsNext x xs) = VarsNext (renamectxt-rep ρ x) (substh-vars xs)
substh-theta : theta → theta
substh-theta (AbstractVars xs) = AbstractVars (substh-vars xs)
substh-theta θ = θ
substh-term Γ ρ σ (Mu _ x t ot _ cs _) =
let x' = subst-rename-var-if Γ ρ x σ in
let ρ' = renamectxt-insert ρ x x' in
Mu posinfo-gen x' (substh-term (ctxt-var-decl x' Γ) ρ' σ t) (substh-optType Γ ρ σ ot) posinfo-gen (substh-cases Γ ρ' σ cs) posinfo-gen
substh-term Γ ρ σ (Mu' _ t ot _ cs _) = Mu' posinfo-gen (substh-term Γ ρ σ t) (substh-optType Γ ρ σ ot) posinfo-gen (substh-cases Γ ρ σ cs) posinfo-gen
substh-cases Γ ρ σ NoCase = NoCase
substh-cases Γ ρ σ (SomeCase _ x varargs t cs) =
let res = substh-varargs Γ ρ σ varargs in
SomeCase posinfo-gen x (fst res) (substh-term Γ (snd res) σ t) (substh-cases Γ ρ σ cs)
substh-varargs Γ ρ σ NoVarargs = NoVarargs , ρ
substh-varargs Γ ρ σ (NormalVararg x varargs) =
let x' = subst-rename-var-if Γ ρ x σ in
let ρ' = renamectxt-insert ρ x x' in
let res = substh-varargs Γ ρ' σ varargs in
NormalVararg x' (fst res) , snd res
substh-varargs Γ ρ σ (ErasedVararg x varargs) =
let x' = subst-rename-var-if Γ ρ x σ in
let ρ' = renamectxt-insert ρ x x' in
let res = substh-varargs Γ ρ' σ varargs in
ErasedVararg x' (fst res) , snd res
substh-varargs Γ ρ σ (TypeVararg x varargs) =
let x' = subst-rename-var-if Γ ρ x σ in
let ρ' = renamectxt-insert ρ x x' in
let res = substh-varargs Γ ρ' σ varargs in
TypeVararg x' (fst res) , snd res
substh-type Γ ρ σ (Abs _ b _ x atk t) =
let x' = subst-rename-var-if Γ ρ x σ in
Abs posinfo-gen b posinfo-gen x' (substh-tk Γ ρ σ atk)
(substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh-type Γ ρ σ (TpLambda _ _ x atk t) =
let x' = subst-rename-var-if Γ ρ x σ in
TpLambda posinfo-gen posinfo-gen x' (substh-tk Γ ρ σ atk)
(substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh-type Γ ρ σ (Iota _ _ x m t) =
let x' = subst-rename-var-if Γ ρ x σ in
Iota posinfo-gen posinfo-gen x' (substh-type Γ ρ σ m)
(substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh-type Γ ρ σ (Lft _ _ x t l) =
let x' = subst-rename-var-if Γ ρ x σ in
Lft posinfo-gen posinfo-gen x' (substh-term (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
(substh-liftingType Γ ρ σ l)
substh-type Γ ρ σ (TpApp tp tp₁) = TpApp (substh-type Γ ρ σ tp) (substh-type Γ ρ σ tp₁)
substh-type Γ ρ σ (TpAppt tp t) = TpAppt (substh-type Γ ρ σ tp) (substh-term Γ ρ σ t)
substh-type Γ ρ σ (TpArrow tp arrowtype tp₁) = TpArrow (substh-type Γ ρ σ tp) arrowtype (substh-type Γ ρ σ tp₁)
substh-type Γ ρ σ (TpEq _ x₁ x₂ _) = TpEq posinfo-gen (substh-term Γ ρ σ x₁) (substh-term Γ ρ σ x₂) posinfo-gen
substh-type Γ ρ σ (TpParens _ tp _) = substh-type Γ ρ σ tp
substh-type Γ ρ σ (NoSpans tp _) = substh-type Γ ρ σ tp
substh-type{TYPE} Γ ρ σ (TpVar _ x) =
let x' = renamectxt-rep ρ x in
trie-lookup-else (TpVar posinfo-gen x') σ x'
substh-type{ARG} Γ ρ σ (TpVar _ x) =
let x' = renamectxt-rep ρ x in
inst-lookup-type σ x'
substh-type{QUALIF} Γ ρ σ (TpVar _ x) =
let x' = renamectxt-rep ρ x in
qualif-lookup-type σ x'
substh-type Γ ρ σ (TpVar _ x) = TpVar posinfo-gen (renamectxt-rep ρ x)
substh-type Γ ρ σ (TpHole _) = TpHole posinfo-gen --ACG
substh-type Γ ρ σ (TpLet _ (DefTerm _ x m t) t') =
let x' = subst-rename-var-if Γ ρ x σ in
(TpLet posinfo-gen (DefTerm posinfo-gen x' (substh-optType Γ ρ σ m) (substh-term Γ ρ σ t))
(substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t'))
substh-type Γ ρ σ (TpLet _ (DefType _ x k t) t') =
let x' = subst-rename-var-if Γ ρ x σ in
(TpLet posinfo-gen (DefType posinfo-gen x' (substh-kind Γ ρ σ k) (substh-type Γ ρ σ t))
(substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t'))
substh-kind Γ ρ σ (KndArrow k k₁) = KndArrow (substh-kind Γ ρ σ k) (substh-kind Γ ρ σ k₁)
substh-kind Γ ρ σ (KndParens x₁ k x₂) = substh-kind Γ ρ σ k
substh-kind Γ ρ σ (KndPi _ _ x atk k) =
let x' = subst-rename-var-if Γ ρ x σ in
KndPi posinfo-gen posinfo-gen x' (substh-tk Γ ρ σ atk)
(substh-kind (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ k)
substh-kind Γ ρ σ (KndTpArrow t k) = KndTpArrow (substh-type Γ ρ σ t) (substh-kind Γ ρ σ k)
substh-kind{QUALIF} Γ ρ σ (KndVar _ x xs) =
qualif-lookup-kind (substh-args Γ ρ σ xs) σ x
substh-kind Γ ρ σ (KndVar _ x xs) = KndVar posinfo-gen x (substh-args Γ ρ σ xs)
substh-kind Γ ρ σ (Star _) = Star posinfo-gen
substh-arg Γ ρ σ (TermArg me t) = TermArg me (substh-term Γ ρ σ t)
substh-arg Γ ρ σ (TypeArg T) = TypeArg (substh-type Γ ρ σ T)
substh-args Γ ρ σ (ArgsCons a as) = ArgsCons (substh-arg Γ ρ σ a) (substh-args Γ ρ σ as)
substh-args Γ ρ σ ArgsNil = ArgsNil
substh-params{QUALIF} Γ ρ σ (ParamsCons (Decl _ pi me x atk _) ps) =
ParamsCons (Decl posinfo-gen posinfo-gen me (pi % x) (substh-tk Γ ρ σ atk) posinfo-gen)
(substh-params Γ (renamectxt-insert ρ x (pi % x)) (trie-remove σ (pi % x)) ps)
substh-params Γ ρ σ (ParamsCons (Decl _ _ me x atk _) ps) =
ParamsCons (Decl posinfo-gen posinfo-gen me x (substh-tk Γ ρ σ atk) posinfo-gen)
(substh-params Γ (renamectxt-insert ρ x x) (trie-remove σ x) ps)
substh-params Γ ρ σ ParamsNil = ParamsNil
substh-tk Γ ρ σ (Tkk k) = Tkk (substh-kind Γ ρ σ k)
substh-tk Γ ρ σ (Tkt t) = Tkt (substh-type Γ ρ σ t)
substh-optClass Γ ρ σ NoClass = NoClass
substh-optClass Γ ρ σ (SomeClass atk) = SomeClass (substh-tk Γ ρ σ atk)
substh-liftingType Γ ρ σ (LiftArrow l l₁) = LiftArrow (substh-liftingType Γ ρ σ l) (substh-liftingType Γ ρ σ l₁)
substh-liftingType Γ ρ σ (LiftParens _ l _) = substh-liftingType Γ ρ σ l
substh-liftingType Γ ρ σ (LiftPi _ x tp l) =
let x' = subst-rename-var-if Γ ρ x σ in
LiftPi posinfo-gen x' (substh-type Γ ρ σ tp)
(substh-liftingType (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ l)
substh-liftingType Γ ρ σ (LiftStar _) = LiftStar posinfo-gen
substh-liftingType Γ ρ σ (LiftTpArrow tp l) =
LiftTpArrow (substh-type Γ ρ σ tp) (substh-liftingType Γ ρ σ l)
substh-optType Γ ρ σ NoType = NoType
substh-optType Γ ρ σ (SomeType T) = SomeType (substh-type Γ ρ σ T)
substh-optTerm Γ ρ σ NoTerm = NoTerm
substh-optTerm Γ ρ σ (SomeTerm t _) = (SomeTerm (substh-term Γ ρ σ t) posinfo-gen)
substh-optGuide Γ ρ σ NoGuide = NoGuide
substh-optGuide Γ ρ σ (Guide _ x T) =
let x' = subst-rename-var-if Γ ρ x σ in
Guide posinfo-gen x' (substh-type (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ T)
subst-ret-t : Set → Set
subst-ret-t T = {ed : exprd} → ctxt → ⟦ ed ⟧ → var → T → T
subst : ∀ {ed} → subst-ret-t ⟦ ed ⟧
subst Γ t x = substh Γ empty-renamectxt (trie-single x t)
subst-term = subst {TERM}
subst-type = subst {TYPE}
subst-kind = subst {KIND}
subst-liftingType = subst {LIFTINGTYPE}
subst-tk = subst {TK}
subst-renamectxt : ∀ {ed : exprd} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧
subst-renamectxt {ed} Γ ρ = substh {ed} {ed} Γ ρ empty-trie
rename-var : ∀ {ed} → ctxt → var → var → ⟦ ed ⟧ → ⟦ ed ⟧
rename-var Γ x x' = subst-renamectxt Γ (renamectxt-single x x')
substs-ret-t : Set → Set
substs-ret-t T = ∀ {ed} → ctxt → trie ⟦ ed ⟧ → T → T
substs : ∀ {ed} → substs-ret-t ⟦ ed ⟧
substs Γ = substh Γ empty-renamectxt
substs-term = substs {TERM}
substs-type = substs {TYPE}
substs-kind = substs {KIND}
substs-liftingType = substs {LIFTINGTYPE}
substs-tk = substs {TK}
substs-args : substs-ret-t args
substs-args Γ = substh-args Γ empty-renamectxt
substs-params : substs-ret-t params
substs-params Γ = substh-params Γ empty-renamectxt
subst-params-args : ∀ {ed} → ctxt → params → args → ⟦ ed ⟧ → ⟦ ed ⟧ × params × args
subst-params-args Γ (ParamsCons (Decl _ _ me x atk _) ps) (ArgsCons a as) t =
subst-params-args Γ (substs-params Γ (trie-single x a) ps) as (subst Γ a x t)
subst-params-args Γ ps as t = t , ps , as
| {
"alphanum_fraction": 0.6647990256,
"avg_line_length": 47.3653846154,
"ext": "agda",
"hexsha": "9ad27d2de1a2488628dd53cc4ade751da395d44a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/subst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/subst.agda",
"max_line_length": 151,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/subst.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4686,
"size": 12315
} |
module Iff where
infix 20 _⇔_
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
| {
"alphanum_fraction": 0.5462962963,
"avg_line_length": 13.5,
"ext": "agda",
"hexsha": "1735ee8c52eb9f708065e1c15542929eadf433d4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b2e5e76c3cb6d0c0f3b2779cf20d439db42a33af",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "leopoulson/plfa.github.io",
"max_forks_repo_path": "blame/Iff.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b2e5e76c3cb6d0c0f3b2779cf20d439db42a33af",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "leopoulson/plfa.github.io",
"max_issues_repo_path": "blame/Iff.agda",
"max_line_length": 34,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b2e5e76c3cb6d0c0f3b2779cf20d439db42a33af",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "leopoulson/plfa.github.io",
"max_stars_repo_path": "blame/Iff.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 48,
"size": 108
} |
module Data.BitVector.Peano where
open import Data.BitVector
open import Algebra.FunctionProperties.Core
open import Data.Nat hiding (pred) renaming (suc to Nsuc; zero to Nzero)
open import Data.Vec hiding (fromList)
open import Relation.Binary.PropositionalEquality
open import Data.Digit hiding (Bit)
open import Data.Fin using () renaming (zero to Fzero; suc to Fsuc)
open import Data.List
open import Data.Product
suc : ∀ {n} → Op₁ (BitVector n)
suc [] = []
suc (0# ∷ xs) = 1# ∷ xs
suc (1# ∷ xs) = 0# ∷ suc xs
pred-helper : ∀ {n} → BitVector n → BitVector (Nsuc n)
pred-helper [] = 1# ∷ []
pred-helper (0# ∷ xs) = 1# ∷ pred-helper xs
pred-helper (1# ∷ xs) = 1# ∷ 0# ∷ xs
pred : ∀ {n} → Op₁ (BitVector n)
pred [] = []
pred (1# ∷ xs) = 0# ∷ xs
pred (0# ∷ xs) = pred-helper xs
suc∘pred-helper≡0# : ∀ {n} (x : BitVector n) → suc (pred-helper x) ≡ 0# ∷ x
suc∘pred-helper≡0# [] = refl
suc∘pred-helper≡0# (0# ∷ xs) = cong (_∷_ 0#) (suc∘pred-helper≡0# xs)
suc∘pred-helper≡0# (1# ∷ xs) = refl
pred-helper∘suc≡1# : ∀ {n} (x : BitVector n) → pred-helper (suc x) ≡ 1# ∷ x
pred-helper∘suc≡1# [] = refl
pred-helper∘suc≡1# (0# ∷ xs) = refl
pred-helper∘suc≡1# (1# ∷ xs) = cong (_∷_ 1#) (pred-helper∘suc≡1# xs)
suc∘pred≡id : ∀ {n} (x : BitVector n) → suc (pred x) ≡ x
suc∘pred≡id [] = refl
suc∘pred≡id (0# ∷ xs) = suc∘pred-helper≡0# xs
suc∘pred≡id (1# ∷ xs) = refl
pred∘suc≡id : ∀ {n} (x : BitVector n) → pred (suc x) ≡ x
pred∘suc≡id [] = refl
pred∘suc≡id (0# ∷ xs) = refl
pred∘suc≡id (1# ∷ xs) = pred-helper∘suc≡1# xs
data Peano : ∀ {n} → BitVector n → Set where
Pzero : ∀ {n} → Peano (zero n)
Psuc : ∀ {n} {x : BitVector n} → (p : Peano x) → Peano (suc x)
Pdouble : ∀ {n} {x : BitVector n} → Peano x → Peano (0# ∷ x)
Pdouble Pzero = Pzero
Pdouble (Psuc p) = Psuc (Psuc (Pdouble p))
toPeano : ∀ {n} (x : BitVector n) → Peano x
toPeano [] = Pzero
toPeano (0# ∷ xs) = Pdouble (toPeano xs)
toPeano (1# ∷ xs) = Psuc (Pdouble (toPeano xs))
peanoInduction : ∀ {n} → (P : ∀ {x : BitVector n} → Peano x → Set) → P Pzero
→ (∀ {x : BitVector n} {m : Peano x} → P m → P (Psuc m))
→ ∀ {x : BitVector n} (q : Peano x) → P q
peanoInduction P z s Pzero = z
peanoInduction P z s (Psuc p) = s {_} {p} (peanoInduction P z s p)
induction : ∀ {n} (P : BitVector n → Set) → P (zero n)
→ (∀ {m} → P m → P (suc m)) → ∀ x → P x
induction P z s x = peanoInduction (λ {x} _ → P x) z s (toPeano x)
toℕ : ∀ {n} → BitVector n → ℕ
toℕ = induction _ 0 Nsuc
fromDigit : Digit 2 → Bit
fromDigit Fzero = 0#
fromDigit (Fsuc Fzero) = 1#
fromDigit (Fsuc (Fsuc ()))
fromList : ∀ {n} → List (Digit 2) → BitVector n
fromList [] = zero _
fromList {Nzero} (x ∷ xs) = []
fromList {Nsuc n} (x ∷ xs) = fromDigit x ∷ fromList xs
fromℕ : ∀ {n} → ℕ → BitVector n
fromℕ n with toDigits 2 n
fromℕ .(fromDigits ds) | ds , refl = fromList ds
-- TODO: the terrifying proofs that toℕ and fromℕ are inverses
| {
"alphanum_fraction": 0.5964912281,
"avg_line_length": 31.597826087,
"ext": "agda",
"hexsha": "395c602a58c5147e2cac949a5c0d4eacfa9d956d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z",
"max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/bitvector",
"max_forks_repo_path": "Data/BitVector/Peano.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/bitvector",
"max_issues_repo_path": "Data/BitVector/Peano.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/bitvector",
"max_stars_repo_path": "Data/BitVector/Peano.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z",
"num_tokens": 1256,
"size": 2907
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Handle
open EpochConfig
open import LibraBFT.Yasm.Base ℓ-RoundManager
-- In this module, we instantiate the system model with parameters to
-- model a system using the simple implementation model we have so
-- far, which aims to obey the VotesOnceRule, but not PreferredRoundRule
-- yet. This will evolve as we build out a model of a real
-- implementation.
module LibraBFT.Concrete.System.Parameters where
ConcSysParms : SystemParameters
ConcSysParms = mkSysParms
NodeId
_≟NodeId_
GenesisInfo
genInfo
RoundManager
initRM
NetworkMsg
Vote
sig-Vote
_⊂Msg_
∈GenInfo
initWrapper
peerStep
| {
"alphanum_fraction": 0.6648606811,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "0a9ab98e303291686912bd664f1052ad603397ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/System/Parameters.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/System/Parameters.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/System/Parameters.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 304,
"size": 1292
} |
{-# OPTIONS --no-unicode #-}
open import Agda.Builtin.Nat
pred : Nat -> Nat
pred = \ { n -> {!!} }
| {
"alphanum_fraction": 0.5445544554,
"avg_line_length": 14.4285714286,
"ext": "agda",
"hexsha": "77e270296929d14a9b657131f68dbfa048ac595d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/unicodelambdasplit.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/unicodelambdasplit.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/unicodelambdasplit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 31,
"size": 101
} |
module SizedPoly.Console where
open import SizedPolyIO.Base
open import SizedPolyIO.Console hiding (main)
open import NativePolyIO
open import Level using () renaming (zero to lzero)
{-# TERMINATING #-}
myProgram : ∀{i} → IOConsole i (Unit {lzero})
myProgram = exec getLine λ line →
exec (putStrLn line) λ _ →
exec (putStrLn line) λ _ →
myProgram
main : NativeIO Unit
main = translateIOConsole myProgram
| {
"alphanum_fraction": 0.6484210526,
"avg_line_length": 22.619047619,
"ext": "agda",
"hexsha": "2e02458b640d4165598dfe281f81441155810500",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/SizedPoly/Console.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/SizedPoly/Console.agda",
"max_line_length": 51,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/SizedPoly/Console.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 126,
"size": 475
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Transitivity {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties.Conversion
open import Tools.Embedding
open import Tools.Product
import Tools.PropositionalEquality as PE
mutual
-- Helper function for transitivity of type equality using shape views.
transEqT : ∀ {Γ A B C l l′ l″}
{[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} {[C] : Γ ⊩⟨ l″ ⟩ C}
→ ShapeView₃ Γ l l′ l″ A B C [A] [B] [C]
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C / [A]
transEqT (ℕᵥ D D′ D″) A≡B (ιx (ℕ₌ B≡C)) = ιx (ℕ₌ B≡C)
transEqT (ne (ne K [ ⊢A , ⊢B , D ] neK K≡K) (ne K₁ D₁ neK₁ _)
(ne K₂ D₂ neK₂ _))
(ιx (ne₌ M D′ neM K≡M)) (ιx (ne₌ M₁ D″ neM₁ K≡M₁))
rewrite whrDet* (red D₁ , ne neK₁) (red D′ , ne neM)
| whrDet* (red D₂ , ne neK₂) (red D″ , ne neM₁) =
ιx (ne₌ M₁ D″ neM₁
(~-trans K≡M K≡M₁))
transEqT {Γ} {l = l} {l′ = l′} {l″ = l″}
(Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)
(Πᵣ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
(Π₌ F″ G″ D″ A≡B₁ [F≡F′]₁ [G≡G′]₁) =
let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ)
F₁≡F′ , G₁≡G′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′
F₂≡F″ , G₂≡G″ = Π-PE-injectivity (whrDet* (red D₂ , Πₙ) (D″ , Πₙ))
substLift {Δ} {l} {a} ρ x = Δ ⊩⟨ l ⟩ wk (lift ρ) x [ a ]
[F′] : ∀ {ρ Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′
[F′] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x) F₁≡F′ ([F]₁ [ρ] ⊢Δ)
[F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l″ ⟩ wk ρ F″
[F″] {ρ} [ρ] ⊢Δ = PE.subst (λ x → _ ⊩⟨ _ ⟩ wk ρ x) F₂≡F″ ([F]₂ [ρ] ⊢Δ)
[F′≡F″] : ∀ {ρ} {Δ} [ρ] ⊢Δ → Δ ⊩⟨ l′ ⟩ wk ρ F′ ≡ wk ρ F″ / [F′] [ρ] ⊢Δ
[F′≡F″] {ρ} [ρ] ⊢Δ = irrelevanceEq′ (PE.cong (wk ρ) F₁≡F′)
([F]₁ [ρ] ⊢Δ) ([F′] [ρ] ⊢Δ) ([F≡F′]₁ [ρ] ⊢Δ)
[G′] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ / [F′] [ρ] ⊢Δ
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ]
[G′] {ρ} [ρ] ⊢Δ [a] =
let [a′] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′))
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₁≡G′ ([G]₁ [ρ] ⊢Δ [a′])
[G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ a ∷ wk ρ F″ / [F″] [ρ] ⊢Δ
→ Δ ⊩⟨ l″ ⟩ wk (lift ρ) G″ [ a ]
[G″] {ρ} [ρ] ⊢Δ [a] =
let [a″] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₂≡F″))
([F″] [ρ] ⊢Δ) ([F]₂ [ρ] ⊢Δ) [a]
in PE.subst (substLift ρ) G₂≡G″ ([G]₂ [ρ] ⊢Δ [a″])
[G′≡G″] : ∀ {ρ Δ a} [ρ] ⊢Δ
([a] : Δ ⊩⟨ l′ ⟩ a ∷ wk ρ F′ / [F′] [ρ] ⊢Δ)
→ Δ ⊩⟨ l′ ⟩ wk (lift ρ) G′ [ a ]
≡ wk (lift ρ) G″ [ a ] / [G′] [ρ] ⊢Δ [a]
[G′≡G″] {ρ} [ρ] ⊢Δ [a′] =
let [a]₁ = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F₁≡F′))
([F′] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [a′]
in irrelevanceEq′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) G₁≡G′)
([G]₁ [ρ] ⊢Δ [a]₁) ([G′] [ρ] ⊢Δ [a′])
([G≡G′]₁ [ρ] ⊢Δ [a]₁)
in Π₌ F″ G″ D″ (≅-trans A≡B (PE.subst (λ x → Γ ⊢ x ≅ Π F″ ▹ G″) ΠF₁G₁≡ΠF′G′ A≡B₁))
(λ ρ ⊢Δ → transEq ([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ)
([F≡F′] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ))
(λ ρ ⊢Δ [a] →
let [a′] = convTerm₁ ([F] ρ ⊢Δ) ([F′] ρ ⊢Δ) ([F≡F′] ρ ⊢Δ) [a]
[a″] = convTerm₁ ([F′] ρ ⊢Δ) ([F″] ρ ⊢Δ) ([F′≡F″] ρ ⊢Δ) [a′]
in transEq ([G] ρ ⊢Δ [a]) ([G′] ρ ⊢Δ [a′]) ([G″] ρ ⊢Δ [a″])
([G≡G′] ρ ⊢Δ [a]) ([G′≡G″] ρ ⊢Δ [a′]))
transEqT (Uᵥ _ _ _ _ _ _ _ _ _) A≡B B≡C = A≡B
transEqT (emb⁰¹¹ PE.refl AB) (ιx A≡B) B≡C = ιx (transEqT AB A≡B B≡C)
transEqT (emb¹⁰¹ PE.refl AB) A≡B (ιx B≡C) = transEqT AB A≡B B≡C
transEqT (emb¹¹⁰ PE.refl AB) A≡B B≡C = transEqT AB A≡B B≡C
-- Transitivty of type equality.
transEq : ∀ {Γ A B C l l′ l″}
([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) ([C] : Γ ⊩⟨ l″ ⟩ C)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C / [A]
transEq [A] [B] [C] A≡B B≡C =
transEqT (combine (goodCases [A] [B] A≡B) (goodCases [B] [C] B≡C)) A≡B B≡C
-- Transitivty of type equality with some propositonally equal types.
transEq′ : ∀ {Γ A B B′ C C′ l l′ l″} → B PE.≡ B′ → C PE.≡ C′
→ ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) ([C] : Γ ⊩⟨ l″ ⟩ C)
→ Γ ⊩⟨ l ⟩ A ≡ B′ / [A]
→ Γ ⊩⟨ l′ ⟩ B ≡ C′ / [B]
→ Γ ⊩⟨ l ⟩ A ≡ C / [A]
transEq′ PE.refl PE.refl [A] [B] [C] A≡B B≡C = transEq [A] [B] [C] A≡B B≡C
transEqTermNe : ∀ {Γ n n′ n″ A}
→ Γ ⊩neNf n ≡ n′ ∷ A
→ Γ ⊩neNf n′ ≡ n″ ∷ A
→ Γ ⊩neNf n ≡ n″ ∷ A
transEqTermNe (neNfₜ₌ neK neM k≡m) (neNfₜ₌ neK₁ neM₁ k≡m₁) =
neNfₜ₌ neK neM₁ (~-trans k≡m k≡m₁)
mutual
transEqTermℕ : ∀ {Γ n n′ n″}
→ _⊩ℕ_≡_∷ℕ Γ n n′
→ _⊩ℕ_≡_∷ℕ Γ n′ n″
→ _⊩ℕ_≡_∷ℕ Γ n n″
transEqTermℕ (ℕₜ₌ k k′ d d′ t≡u prop)
(ℕₜ₌ k₁ k″ d₁ d″ t≡u₁ prop₁) =
let k₁Whnf = naturalWhnf (proj₁ (split prop₁))
k′Whnf = naturalWhnf (proj₂ (split prop))
k₁≡k′ = whrDet*Term (redₜ d₁ , k₁Whnf) (redₜ d′ , k′Whnf)
prop′ = PE.subst (λ x → [Natural]-prop _ x _) k₁≡k′ prop₁
in ℕₜ₌ k k″ d d″ (≅ₜ-trans t≡u (PE.subst (λ x → _ ⊢ x ≅ _ ∷ _) k₁≡k′ t≡u₁))
(transNatural-prop prop prop′)
transNatural-prop : ∀ {Γ k k′ k″}
→ [Natural]-prop Γ k k′
→ [Natural]-prop Γ k′ k″
→ [Natural]-prop Γ k k″
transNatural-prop (sucᵣ x) (sucᵣ x₁) = sucᵣ (transEqTermℕ x x₁)
transNatural-prop (sucᵣ x) (ne (neNfₜ₌ () neM k≡m))
transNatural-prop zeroᵣ prop₁ = prop₁
transNatural-prop prop zeroᵣ = prop
transNatural-prop (ne (neNfₜ₌ neK () k≡m)) (sucᵣ x₃)
transNatural-prop (ne [k≡k′]) (ne [k′≡k″]) =
ne (transEqTermNe [k≡k′] [k′≡k″])
-- Transitivty of term equality.
transEqTerm : ∀ {l Γ A t u v}
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
→ Γ ⊩⟨ l ⟩ u ≡ v ∷ A / [A]
→ Γ ⊩⟨ l ⟩ t ≡ v ∷ A / [A]
transEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ)
(Uₜ₌ A B d d′ typeA typeB t≡u [t] [u] [t≡u])
(Uₜ₌ A₁ B₁ d₁ d₁′ typeA₁ typeB₁ t≡u₁ [t]₁ [u]₁ [t≡u]₁)
rewrite whrDet*Term (redₜ d′ , typeWhnf typeB) (redₜ d₁ , typeWhnf typeA₁) =
Uₜ₌ A B₁ d d₁′ typeA typeB₁ (≅ₜ-trans t≡u t≡u₁) [t] [u]₁
(transEq [t] [u] [u]₁ [t≡u] (irrelevanceEq [t]₁ [u] [t≡u]₁))
transEqTerm (ℕᵣ D) (ιx [t≡u]) (ιx [u≡v]) = ιx (transEqTermℕ [t≡u] [u≡v])
transEqTerm (ne′ K D neK K≡K) (ιx (neₜ₌ k m d d′ (neNfₜ₌ neK₁ neM k≡m)))
(ιx (neₜ₌ k₁ m₁ d₁ d″ (neNfₜ₌ neK₂ neM₁ k≡m₁))) =
let k₁≡m = whrDet*Term (redₜ d₁ , ne neK₂) (redₜ d′ , ne neM)
in ιx (neₜ₌ k m₁ d d″
(neNfₜ₌ neK₁ neM₁
(~-trans k≡m (PE.subst (λ x → _ ⊢ x ~ _ ∷ _) k₁≡m k≡m₁))))
transEqTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g])
(Πₜ₌ f₁ g₁ d₁ d₁′ funcF₁ funcG₁ f≡g₁ [f]₁ [g]₁ [f≡g]₁)
rewrite whrDet*Term (redₜ d′ , functionWhnf funcG)
(redₜ d₁ , functionWhnf funcF₁) =
Πₜ₌ f g₁ d d₁′ funcF funcG₁ (≅ₜ-trans f≡g f≡g₁) [f] [g]₁
(λ ρ ⊢Δ [a] → transEqTerm ([G] ρ ⊢Δ [a])
([f≡g] ρ ⊢Δ [a])
([f≡g]₁ ρ ⊢Δ [a]))
transEqTerm (emb′ 0<1 x) (ιx t≡u) (ιx u≡v) = ιx (transEqTerm x t≡u u≡v)
| {
"alphanum_fraction": 0.4235323138,
"avg_line_length": 47.1395348837,
"ext": "agda",
"hexsha": "ce69fb1c06d926d792f8f3b806aef845888fcb9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Transitivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4220,
"size": 8108
} |
module Text.Greek.SBLGNT.1Pet where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΠΕΤΡΟΥ-Α : List (Word)
ΠΕΤΡΟΥ-Α =
word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "1Pet.1.1"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.1"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.1"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ι ∷ δ ∷ ή ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.1.1"
∷ word (δ ∷ ι ∷ α ∷ σ ∷ π ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.1"
∷ word (Π ∷ ό ∷ ν ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.1"
∷ word (Γ ∷ α ∷ ∙λ ∷ α ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.1"
∷ word (Κ ∷ α ∷ π ∷ π ∷ α ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.1"
∷ word (Ἀ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.1"
∷ word (Β ∷ ι ∷ θ ∷ υ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.1"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.1.2"
∷ word (π ∷ ρ ∷ ό ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.1.2"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "1Pet.1.2"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.2"
∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Pet.1.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.2"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ὴ ∷ ν ∷ []) "1Pet.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.2"
∷ word (ῥ ∷ α ∷ ν ∷ τ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Pet.1.2"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.2"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Pet.1.2"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Pet.1.2"
∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "1Pet.1.2"
∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.1.3"
∷ word (ὁ ∷ []) "1Pet.1.3"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Pet.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.3"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Pet.1.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.1.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (ὁ ∷ []) "1Pet.1.3"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.1.3"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.3"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "1Pet.1.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "1Pet.1.3"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Pet.1.3"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.3"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "1Pet.1.3"
∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "1Pet.1.3"
∷ word (δ ∷ ι ∷ []) "1Pet.1.3"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.1.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.3"
∷ word (ἐ ∷ κ ∷ []) "1Pet.1.3"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Pet.1.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.4"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.1.4"
∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.4"
∷ word (ἀ ∷ μ ∷ ί ∷ α ∷ ν ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.4"
∷ word (ἀ ∷ μ ∷ ά ∷ ρ ∷ α ∷ ν ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.1.4"
∷ word (τ ∷ ε ∷ τ ∷ η ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "1Pet.1.4"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.4"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.1.5"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.5"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Pet.1.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.1.5"
∷ word (φ ∷ ρ ∷ ο ∷ υ ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.1.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.1.5"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.1.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.5"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.1.5"
∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ η ∷ ν ∷ []) "1Pet.1.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Pet.1.5"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.5"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "1Pet.1.5"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ῳ ∷ []) "1Pet.1.5"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.6"
∷ word (ᾧ ∷ []) "1Pet.1.6"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.1.6"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "1Pet.1.6"
∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Pet.1.6"
∷ word (ε ∷ ἰ ∷ []) "1Pet.1.6"
∷ word (δ ∷ έ ∷ ο ∷ ν ∷ []) "1Pet.1.6"
∷ word (∙λ ∷ υ ∷ π ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.6"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.6"
∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.1.6"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.1.7"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.7"
∷ word (δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.1.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.7"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.1.7"
∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ μ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Pet.1.7"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.1.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.7"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Pet.1.7"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.1.7"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Pet.1.7"
∷ word (δ ∷ ὲ ∷ []) "1Pet.1.7"
∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Pet.1.7"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "1Pet.1.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.7"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.7"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Pet.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.7"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "1Pet.1.7"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.7"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "1Pet.1.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.7"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.7"
∷ word (ὃ ∷ ν ∷ []) "1Pet.1.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.1.8"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.8"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ τ ∷ ε ∷ []) "1Pet.1.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.8"
∷ word (ὃ ∷ ν ∷ []) "1Pet.1.8"
∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Pet.1.8"
∷ word (μ ∷ ὴ ∷ []) "1Pet.1.8"
∷ word (ὁ ∷ ρ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.8"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.8"
∷ word (δ ∷ ὲ ∷ []) "1Pet.1.8"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.1.8"
∷ word (χ ∷ α ∷ ρ ∷ ᾷ ∷ []) "1Pet.1.8"
∷ word (ἀ ∷ ν ∷ ε ∷ κ ∷ ∙λ ∷ α ∷ ∙λ ∷ ή ∷ τ ∷ ῳ ∷ []) "1Pet.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.8"
∷ word (δ ∷ ε ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "1Pet.1.8"
∷ word (κ ∷ ο ∷ μ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.1.9"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.9"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.1.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.9"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.1.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.9"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.1.9"
∷ word (ψ ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "1Pet.1.9"
∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Pet.1.10"
∷ word (ἧ ∷ ς ∷ []) "1Pet.1.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.10"
∷ word (ἐ ∷ ξ ∷ ε ∷ ζ ∷ ή ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Pet.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.10"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Pet.1.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Pet.1.10"
∷ word (ο ∷ ἱ ∷ []) "1Pet.1.10"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Pet.1.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.10"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.10"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.10"
∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.11"
∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "1Pet.1.11"
∷ word (ἢ ∷ []) "1Pet.1.11"
∷ word (π ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "1Pet.1.11"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Pet.1.11"
∷ word (ἐ ∷ δ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Pet.1.11"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.11"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Pet.1.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.11"
∷ word (π ∷ ρ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.1.11"
∷ word (τ ∷ ὰ ∷ []) "1Pet.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.11"
∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Pet.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.11"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.1.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Pet.1.11"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Pet.1.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ς ∷ []) "1Pet.1.11"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "1Pet.1.12"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ φ ∷ θ ∷ η ∷ []) "1Pet.1.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.1.12"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Pet.1.12"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.1.12"
∷ word (δ ∷ ὲ ∷ []) "1Pet.1.12"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "1Pet.1.12"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "1Pet.1.12"
∷ word (ἃ ∷ []) "1Pet.1.12"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Pet.1.12"
∷ word (ἀ ∷ ν ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Pet.1.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.1.12"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.1.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.1.12"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.1.12"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.12"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.1.12"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Pet.1.12"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ έ ∷ ν ∷ τ ∷ ι ∷ []) "1Pet.1.12"
∷ word (ἀ ∷ π ∷ []) "1Pet.1.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "1Pet.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.12"
∷ word (ἃ ∷ []) "1Pet.1.12"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.1.12"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Pet.1.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ύ ∷ ψ ∷ α ∷ ι ∷ []) "1Pet.1.12"
∷ word (Δ ∷ ι ∷ ὸ ∷ []) "1Pet.1.13"
∷ word (ἀ ∷ ν ∷ α ∷ ζ ∷ ω ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.1.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.1.13"
∷ word (ὀ ∷ σ ∷ φ ∷ ύ ∷ α ∷ ς ∷ []) "1Pet.1.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.13"
∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.13"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.13"
∷ word (ν ∷ ή ∷ φ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.13"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.1.13"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.1.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Pet.1.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.1.13"
∷ word (φ ∷ ε ∷ ρ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "1Pet.1.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.1.13"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Pet.1.13"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.13"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "1Pet.1.13"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.1.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.13"
∷ word (ὡ ∷ ς ∷ []) "1Pet.1.14"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Pet.1.14"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "1Pet.1.14"
∷ word (μ ∷ ὴ ∷ []) "1Pet.1.14"
∷ word (σ ∷ υ ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.1.14"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Pet.1.14"
∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Pet.1.14"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.14"
∷ word (τ ∷ ῇ ∷ []) "1Pet.1.14"
∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ί ∷ ᾳ ∷ []) "1Pet.1.14"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.14"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.1.14"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.1.15"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.1.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.15"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "1Pet.1.15"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.15"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Pet.1.15"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "1Pet.1.15"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.15"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Pet.1.15"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῇ ∷ []) "1Pet.1.15"
∷ word (γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.1.15"
∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Pet.1.16"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Pet.1.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.1.16"
∷ word (Ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "1Pet.1.16"
∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.1.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.1.16"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Pet.1.16"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "1Pet.1.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "1Pet.1.17"
∷ word (ε ∷ ἰ ∷ []) "1Pet.1.17"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Pet.1.17"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.1.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.17"
∷ word (ἀ ∷ π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ π ∷ ο ∷ ∙λ ∷ ή ∷ μ ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "1Pet.1.17"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Pet.1.17"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.1.17"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.17"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.17"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Pet.1.17"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.17"
∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "1Pet.1.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.17"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.17"
∷ word (π ∷ α ∷ ρ ∷ ο ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.17"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.17"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.1.17"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ά ∷ φ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.1.17"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.1.18"
∷ word (ο ∷ ὐ ∷ []) "1Pet.1.18"
∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.1.18"
∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Pet.1.18"
∷ word (ἢ ∷ []) "1Pet.1.18"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "1Pet.1.18"
∷ word (ἐ ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.1.18"
∷ word (ἐ ∷ κ ∷ []) "1Pet.1.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.18"
∷ word (μ ∷ α ∷ τ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.18"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.18"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ ς ∷ []) "1Pet.1.18"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ο ∷ π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.18"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.1.19"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "1Pet.1.19"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.1.19"
∷ word (ὡ ∷ ς ∷ []) "1Pet.1.19"
∷ word (ἀ ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "1Pet.1.19"
∷ word (ἀ ∷ μ ∷ ώ ∷ μ ∷ ο ∷ υ ∷ []) "1Pet.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.19"
∷ word (ἀ ∷ σ ∷ π ∷ ί ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Pet.1.19"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.19"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ γ ∷ ν ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Pet.1.20"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Pet.1.20"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Pet.1.20"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Pet.1.20"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Pet.1.20"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.20"
∷ word (δ ∷ ὲ ∷ []) "1Pet.1.20"
∷ word (ἐ ∷ π ∷ []) "1Pet.1.20"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.1.20"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.1.20"
∷ word (δ ∷ ι ∷ []) "1Pet.1.20"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.1.21"
∷ word (δ ∷ ι ∷ []) "1Pet.1.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.1.21"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.21"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.1.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.21"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "1Pet.1.21"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.21"
∷ word (ἐ ∷ κ ∷ []) "1Pet.1.21"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Pet.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.21"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Pet.1.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.1.21"
∷ word (δ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "1Pet.1.21"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Pet.1.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.1.21"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.1.21"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.21"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "1Pet.1.21"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Pet.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.21"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Pet.1.21"
∷ word (Τ ∷ ὰ ∷ ς ∷ []) "1Pet.1.22"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "1Pet.1.22"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.1.22"
∷ word (ἡ ∷ γ ∷ ν ∷ ι ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.1.22"
∷ word (ἐ ∷ ν ∷ []) "1Pet.1.22"
∷ word (τ ∷ ῇ ∷ []) "1Pet.1.22"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ῇ ∷ []) "1Pet.1.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.22"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.22"
∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.1.22"
∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.1.22"
∷ word (ἐ ∷ κ ∷ []) "1Pet.1.22"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.1.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.1.22"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.1.22"
∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῶ ∷ ς ∷ []) "1Pet.1.22"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ε ∷ γ ∷ ε ∷ ν ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.1.23"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.1.23"
∷ word (ἐ ∷ κ ∷ []) "1Pet.1.23"
∷ word (σ ∷ π ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.23"
∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.23"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.1.23"
∷ word (ἀ ∷ φ ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.1.23"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Pet.1.23"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.23"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.23"
∷ word (μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.23"
∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Pet.1.24"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Pet.1.24"
∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Pet.1.24"
∷ word (ὡ ∷ ς ∷ []) "1Pet.1.24"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.24"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Pet.1.24"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Pet.1.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Pet.1.24"
∷ word (ὡ ∷ ς ∷ []) "1Pet.1.24"
∷ word (ἄ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "1Pet.1.24"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Pet.1.24"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "1Pet.1.24"
∷ word (ὁ ∷ []) "1Pet.1.24"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.1.24"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.24"
∷ word (ἄ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "1Pet.1.24"
∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "1Pet.1.24"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.25"
∷ word (δ ∷ ὲ ∷ []) "1Pet.1.25"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "1Pet.1.25"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.1.25"
∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Pet.1.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.25"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.1.25"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "1Pet.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.1.25"
∷ word (δ ∷ έ ∷ []) "1Pet.1.25"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.1.25"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.25"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "1Pet.1.25"
∷ word (τ ∷ ὸ ∷ []) "1Pet.1.25"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ὲ ∷ ν ∷ []) "1Pet.1.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.1.25"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.1.25"
∷ word (Ἀ ∷ π ∷ ο ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.2.1"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.1"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Pet.2.1"
∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.1"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.1"
∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.1"
∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "1Pet.2.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ α ∷ ∙λ ∷ ι ∷ ά ∷ ς ∷ []) "1Pet.2.1"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.2"
∷ word (ἀ ∷ ρ ∷ τ ∷ ι ∷ γ ∷ έ ∷ ν ∷ ν ∷ η ∷ τ ∷ α ∷ []) "1Pet.2.2"
∷ word (β ∷ ρ ∷ έ ∷ φ ∷ η ∷ []) "1Pet.2.2"
∷ word (τ ∷ ὸ ∷ []) "1Pet.2.2"
∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Pet.2.2"
∷ word (ἄ ∷ δ ∷ ο ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Pet.2.2"
∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ []) "1Pet.2.2"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.2.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.2.2"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.2.2"
∷ word (α ∷ ὐ ∷ ξ ∷ η ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Pet.2.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.2"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.2.2"
∷ word (ε ∷ ἰ ∷ []) "1Pet.2.3"
∷ word (ἐ ∷ γ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.2.3"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.2.3"
∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.2.3"
∷ word (ὁ ∷ []) "1Pet.2.3"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Pet.2.3"
∷ word (Π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Pet.2.4"
∷ word (ὃ ∷ ν ∷ []) "1Pet.2.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.4"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "1Pet.2.4"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "1Pet.2.4"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Pet.2.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Pet.2.4"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Pet.2.4"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.2.4"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Pet.2.4"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.4"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Pet.2.4"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.4"
∷ word (ἔ ∷ ν ∷ τ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "1Pet.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "1Pet.2.5"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.5"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ []) "1Pet.2.5"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.5"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.2.5"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "1Pet.2.5"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Pet.2.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.5"
∷ word (ἱ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ε ∷ υ ∷ μ ∷ α ∷ []) "1Pet.2.5"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.2.5"
∷ word (ἀ ∷ ν ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "1Pet.2.5"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ ς ∷ []) "1Pet.2.5"
∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.2.5"
∷ word (ε ∷ ὐ ∷ π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ έ ∷ κ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.2.5"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Pet.2.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.2.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.2.5"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.5"
∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Pet.2.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "1Pet.2.6"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.6"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ῇ ∷ []) "1Pet.2.6"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "1Pet.2.6"
∷ word (τ ∷ ί ∷ θ ∷ η ∷ μ ∷ ι ∷ []) "1Pet.2.6"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.6"
∷ word (Σ ∷ ι ∷ ὼ ∷ ν ∷ []) "1Pet.2.6"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "1Pet.2.6"
∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ γ ∷ ω ∷ ν ∷ ι ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "1Pet.2.6"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.6"
∷ word (ἔ ∷ ν ∷ τ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "1Pet.2.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.6"
∷ word (ὁ ∷ []) "1Pet.2.6"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Pet.2.6"
∷ word (ἐ ∷ π ∷ []) "1Pet.2.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.2.6"
∷ word (ο ∷ ὐ ∷ []) "1Pet.2.6"
∷ word (μ ∷ ὴ ∷ []) "1Pet.2.6"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "1Pet.2.6"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.2.7"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.2.7"
∷ word (ἡ ∷ []) "1Pet.2.7"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "1Pet.2.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.7"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.7"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.7"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.7"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "1Pet.2.7"
∷ word (ὃ ∷ ν ∷ []) "1Pet.2.7"
∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "1Pet.2.7"
∷ word (ο ∷ ἱ ∷ []) "1Pet.2.7"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.7"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.2.7"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Pet.2.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.7"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Pet.2.7"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Pet.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.8"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "1Pet.2.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.8"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ []) "1Pet.2.8"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Pet.2.8"
∷ word (ο ∷ ἳ ∷ []) "1Pet.2.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ π ∷ τ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.8"
∷ word (τ ∷ ῷ ∷ []) "1Pet.2.8"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Pet.2.8"
∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.8"
∷ word (ὃ ∷ []) "1Pet.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.8"
∷ word (ἐ ∷ τ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Pet.2.8"
∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Pet.2.9"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.9"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.2.9"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ό ∷ ν ∷ []) "1Pet.2.9"
∷ word (β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.2.9"
∷ word (ἱ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ε ∷ υ ∷ μ ∷ α ∷ []) "1Pet.2.9"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.2.9"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.2.9"
∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "1Pet.2.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.9"
∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "1Pet.2.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.2.9"
∷ word (ἀ ∷ ρ ∷ ε ∷ τ ∷ ὰ ∷ ς ∷ []) "1Pet.2.9"
∷ word (ἐ ∷ ξ ∷ α ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.9"
∷ word (ἐ ∷ κ ∷ []) "1Pet.2.9"
∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.2.9"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.2.9"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.2.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.9"
∷ word (τ ∷ ὸ ∷ []) "1Pet.2.9"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.9"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "1Pet.2.9"
∷ word (ο ∷ ἵ ∷ []) "1Pet.2.10"
∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "1Pet.2.10"
∷ word (ο ∷ ὐ ∷ []) "1Pet.2.10"
∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "1Pet.2.10"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Pet.2.10"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.10"
∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "1Pet.2.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.2.10"
∷ word (ο ∷ ἱ ∷ []) "1Pet.2.10"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.2.10"
∷ word (ἠ ∷ ∙λ ∷ ε ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.10"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Pet.2.10"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.10"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.10"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Pet.2.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Pet.2.11"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.11"
∷ word (π ∷ α ∷ ρ ∷ ο ∷ ί ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.11"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ι ∷ δ ∷ ή ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.2.11"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.2.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.2.11"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "1Pet.2.11"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.2.11"
∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Pet.2.11"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Pet.2.11"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.2.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.2.11"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "1Pet.2.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ὴ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.12"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.12"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.12"
∷ word (κ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ᾧ ∷ []) "1Pet.2.12"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.12"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.12"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ κ ∷ []) "1Pet.2.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.2.12"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ π ∷ ο ∷ π ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.12"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ []) "1Pet.2.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.12"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Pet.2.12"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ο ∷ π ∷ ῆ ∷ ς ∷ []) "1Pet.2.12"
∷ word (Ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.13"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Pet.2.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ ν ∷ ῃ ∷ []) "1Pet.2.13"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Pet.2.13"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.2.13"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.13"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.2.13"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Pet.2.13"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Pet.2.13"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.13"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Pet.2.13"
∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Pet.2.14"
∷ word (ἡ ∷ γ ∷ ε ∷ μ ∷ ό ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.14"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.14"
∷ word (δ ∷ ι ∷ []) "1Pet.2.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.14"
∷ word (π ∷ ε ∷ μ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.2.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.14"
∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.14"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.2.14"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.2.14"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.14"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.2.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.2.15"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Pet.2.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Pet.2.15"
∷ word (τ ∷ ὸ ∷ []) "1Pet.2.15"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Pet.2.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.2.15"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.2.15"
∷ word (φ ∷ ι ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Pet.2.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.2.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.2.15"
∷ word (ἀ ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.2.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Pet.2.15"
∷ word (ἀ ∷ γ ∷ ν ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.2.15"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.16"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Pet.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.16"
∷ word (μ ∷ ὴ ∷ []) "1Pet.2.16"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.16"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ α ∷ []) "1Pet.2.16"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.2.16"
∷ word (κ ∷ α ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.2.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.2.16"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.2.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Pet.2.16"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.16"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.2.16"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Pet.2.16"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.2.17"
∷ word (τ ∷ ι ∷ μ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.2.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.2.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "1Pet.2.17"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ τ ∷ ε ∷ []) "1Pet.2.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.17"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.2.17"
∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.2.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.17"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "1Pet.2.17"
∷ word (τ ∷ ι ∷ μ ∷ ᾶ ∷ τ ∷ ε ∷ []) "1Pet.2.17"
∷ word (Ο ∷ ἱ ∷ []) "1Pet.2.18"
∷ word (ο ∷ ἰ ∷ κ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "1Pet.2.18"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.18"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.18"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Pet.2.18"
∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "1Pet.2.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.18"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Pet.2.18"
∷ word (ο ∷ ὐ ∷ []) "1Pet.2.18"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.2.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.18"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.18"
∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.18"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.18"
∷ word (σ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.18"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.2.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.2.19"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Pet.2.19"
∷ word (ε ∷ ἰ ∷ []) "1Pet.2.19"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.2.19"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.2.19"
∷ word (ὑ ∷ π ∷ ο ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Pet.2.19"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Pet.2.19"
∷ word (∙λ ∷ ύ ∷ π ∷ α ∷ ς ∷ []) "1Pet.2.19"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ω ∷ ν ∷ []) "1Pet.2.19"
∷ word (ἀ ∷ δ ∷ ί ∷ κ ∷ ω ∷ ς ∷ []) "1Pet.2.19"
∷ word (π ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "1Pet.2.20"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.2.20"
∷ word (κ ∷ ∙λ ∷ έ ∷ ο ∷ ς ∷ []) "1Pet.2.20"
∷ word (ε ∷ ἰ ∷ []) "1Pet.2.20"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.20"
∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.20"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Pet.2.20"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Pet.2.20"
∷ word (ε ∷ ἰ ∷ []) "1Pet.2.20"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.20"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.2.20"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Pet.2.20"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.2.20"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Pet.2.20"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Pet.2.20"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Pet.2.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.2.21"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.2.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.2.21"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.21"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.2.21"
∷ word (ἔ ∷ π ∷ α ∷ θ ∷ ε ∷ ν ∷ []) "1Pet.2.21"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Pet.2.21"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.2.21"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.2.21"
∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ ι ∷ μ ∷ π ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.2.21"
∷ word (ὑ ∷ π ∷ ο ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Pet.2.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.2.21"
∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.2.21"
∷ word (ἴ ∷ χ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.21"
∷ word (ὃ ∷ ς ∷ []) "1Pet.2.22"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.2.22"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.2.22"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Pet.2.22"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Pet.2.22"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "1Pet.2.22"
∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.2.22"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.22"
∷ word (τ ∷ ῷ ∷ []) "1Pet.2.22"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.22"
∷ word (ὃ ∷ ς ∷ []) "1Pet.2.23"
∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.2.23"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.2.23"
∷ word (ἀ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ δ ∷ ό ∷ ρ ∷ ε ∷ ι ∷ []) "1Pet.2.23"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ω ∷ ν ∷ []) "1Pet.2.23"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Pet.2.23"
∷ word (ἠ ∷ π ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Pet.2.23"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "1Pet.2.23"
∷ word (δ ∷ ὲ ∷ []) "1Pet.2.23"
∷ word (τ ∷ ῷ ∷ []) "1Pet.2.23"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Pet.2.23"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.2.23"
∷ word (ὃ ∷ ς ∷ []) "1Pet.2.24"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.2.24"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.2.24"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.2.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.2.24"
∷ word (ἀ ∷ ν ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "1Pet.2.24"
∷ word (ἐ ∷ ν ∷ []) "1Pet.2.24"
∷ word (τ ∷ ῷ ∷ []) "1Pet.2.24"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.2.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.2.24"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Pet.2.24"
∷ word (τ ∷ ὸ ∷ []) "1Pet.2.24"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Pet.2.24"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.2.24"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Pet.2.24"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.2.24"
∷ word (ἀ ∷ π ∷ ο ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.24"
∷ word (τ ∷ ῇ ∷ []) "1Pet.2.24"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Pet.2.24"
∷ word (ζ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Pet.2.24"
∷ word (ο ∷ ὗ ∷ []) "1Pet.2.24"
∷ word (τ ∷ ῷ ∷ []) "1Pet.2.24"
∷ word (μ ∷ ώ ∷ ∙λ ∷ ω ∷ π ∷ ι ∷ []) "1Pet.2.24"
∷ word (ἰ ∷ ά ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.24"
∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Pet.2.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.2.25"
∷ word (ὡ ∷ ς ∷ []) "1Pet.2.25"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "1Pet.2.25"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.2.25"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.2.25"
∷ word (ἐ ∷ π ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ά ∷ φ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.2.25"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Pet.2.25"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Pet.2.25"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.2.25"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "1Pet.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.2.25"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ν ∷ []) "1Pet.2.25"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.2.25"
∷ word (ψ ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "1Pet.2.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.2.25"
∷ word (Ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.3.1"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "1Pet.3.1"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "1Pet.3.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.3.1"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.3.1"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.1"
∷ word (ε ∷ ἴ ∷ []) "1Pet.3.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Pet.3.1"
∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.1"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.1"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Pet.3.1"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.3.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.3.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.3.1"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "1Pet.3.1"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ ς ∷ []) "1Pet.3.1"
∷ word (ἄ ∷ ν ∷ ε ∷ υ ∷ []) "1Pet.3.1"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Pet.3.1"
∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Pet.3.1"
∷ word (ἐ ∷ π ∷ ο ∷ π ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.3.2"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.2"
∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "1Pet.3.2"
∷ word (ἁ ∷ γ ∷ ν ∷ ὴ ∷ ν ∷ []) "1Pet.3.2"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ὴ ∷ ν ∷ []) "1Pet.3.2"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.3.2"
∷ word (ὧ ∷ ν ∷ []) "1Pet.3.3"
∷ word (ἔ ∷ σ ∷ τ ∷ ω ∷ []) "1Pet.3.3"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Pet.3.3"
∷ word (ὁ ∷ []) "1Pet.3.3"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "1Pet.3.3"
∷ word (ἐ ∷ μ ∷ π ∷ ∙λ ∷ ο ∷ κ ∷ ῆ ∷ ς ∷ []) "1Pet.3.3"
∷ word (τ ∷ ρ ∷ ι ∷ χ ∷ ῶ ∷ ν ∷ []) "1Pet.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.3"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.3.3"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "1Pet.3.3"
∷ word (ἢ ∷ []) "1Pet.3.3"
∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.3.3"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "1Pet.3.3"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Pet.3.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Pet.3.4"
∷ word (ὁ ∷ []) "1Pet.3.4"
∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.3.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.3.4"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.3.4"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Pet.3.4"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.4"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.4"
∷ word (ἀ ∷ φ ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "1Pet.3.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.4"
∷ word (π ∷ ρ ∷ α ∷ έ ∷ ω ∷ ς ∷ []) "1Pet.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.4"
∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.3.4"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.3.4"
∷ word (ὅ ∷ []) "1Pet.3.4"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.3.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.3.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.3.4"
∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ ς ∷ []) "1Pet.3.4"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Pet.3.5"
∷ word (γ ∷ ά ∷ ρ ∷ []) "1Pet.3.5"
∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "1Pet.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.5"
∷ word (α ∷ ἱ ∷ []) "1Pet.3.5"
∷ word (ἅ ∷ γ ∷ ι ∷ α ∷ ι ∷ []) "1Pet.3.5"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "1Pet.3.5"
∷ word (α ∷ ἱ ∷ []) "1Pet.3.5"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Pet.3.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.3.5"
∷ word (ἐ ∷ κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ ν ∷ []) "1Pet.3.5"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "1Pet.3.5"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "1Pet.3.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.3.5"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.3.5"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.5"
∷ word (ὡ ∷ ς ∷ []) "1Pet.3.6"
∷ word (Σ ∷ ά ∷ ρ ∷ ρ ∷ α ∷ []) "1Pet.3.6"
∷ word (ὑ ∷ π ∷ ή ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "1Pet.3.6"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.6"
∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "1Pet.3.6"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.3.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.3.6"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "1Pet.3.6"
∷ word (ἧ ∷ ς ∷ []) "1Pet.3.6"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.3.6"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Pet.3.6"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "1Pet.3.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.6"
∷ word (μ ∷ ὴ ∷ []) "1Pet.3.6"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "1Pet.3.6"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.3.6"
∷ word (π ∷ τ ∷ ό ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.6"
∷ word (Ο ∷ ἱ ∷ []) "1Pet.3.7"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "1Pet.3.7"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.3.7"
∷ word (σ ∷ υ ∷ ν ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.7"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.3.7"
∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.7"
∷ word (ὡ ∷ ς ∷ []) "1Pet.3.7"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Pet.3.7"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "1Pet.3.7"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.7"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ε ∷ ί ∷ ῳ ∷ []) "1Pet.3.7"
∷ word (ἀ ∷ π ∷ ο ∷ ν ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.7"
∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "1Pet.3.7"
∷ word (ὡ ∷ ς ∷ []) "1Pet.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.7"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.3.7"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.3.7"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Pet.3.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.7"
∷ word (τ ∷ ὸ ∷ []) "1Pet.3.7"
∷ word (μ ∷ ὴ ∷ []) "1Pet.3.7"
∷ word (ἐ ∷ γ ∷ κ ∷ ό ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.3.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.3.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "1Pet.3.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.3.7"
∷ word (Τ ∷ ὸ ∷ []) "1Pet.3.8"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.8"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.3.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.8"
∷ word (ὁ ∷ μ ∷ ό ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "1Pet.3.8"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Pet.3.8"
∷ word (φ ∷ ι ∷ ∙λ ∷ ά ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ι ∷ []) "1Pet.3.8"
∷ word (ε ∷ ὔ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.3.8"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ό ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "1Pet.3.8"
∷ word (μ ∷ ὴ ∷ []) "1Pet.3.9"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.9"
∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "1Pet.3.9"
∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "1Pet.3.9"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "1Pet.3.9"
∷ word (ἢ ∷ []) "1Pet.3.9"
∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.3.9"
∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "1Pet.3.9"
∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.3.9"
∷ word (τ ∷ ο ∷ ὐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ν ∷ []) "1Pet.3.9"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.9"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.3.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.9"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.3.9"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.3.9"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.3.9"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.3.9"
∷ word (ὁ ∷ []) "1Pet.3.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.3.10"
∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Pet.3.10"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "1Pet.3.10"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "1Pet.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.10"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Pet.3.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Pet.3.10"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὰ ∷ ς ∷ []) "1Pet.3.10"
∷ word (π ∷ α ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "1Pet.3.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.3.10"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "1Pet.3.10"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Pet.3.10"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "1Pet.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.10"
∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ []) "1Pet.3.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.10"
∷ word (μ ∷ ὴ ∷ []) "1Pet.3.10"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Pet.3.10"
∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Pet.3.10"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ ι ∷ ν ∷ ά ∷ τ ∷ ω ∷ []) "1Pet.3.11"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.11"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Pet.3.11"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "1Pet.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.11"
∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "1Pet.3.11"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "1Pet.3.11"
∷ word (ζ ∷ η ∷ τ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "1Pet.3.11"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "1Pet.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.11"
∷ word (δ ∷ ι ∷ ω ∷ ξ ∷ ά ∷ τ ∷ ω ∷ []) "1Pet.3.11"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "1Pet.3.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.3.12"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Pet.3.12"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.3.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Pet.3.12"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.12"
∷ word (ὦ ∷ τ ∷ α ∷ []) "1Pet.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.12"
∷ word (δ ∷ έ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Pet.3.12"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Pet.3.12"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.12"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.3.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Pet.3.12"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.3.12"
∷ word (κ ∷ α ∷ κ ∷ ά ∷ []) "1Pet.3.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "1Pet.3.13"
∷ word (τ ∷ ί ∷ ς ∷ []) "1Pet.3.13"
∷ word (ὁ ∷ []) "1Pet.3.13"
∷ word (κ ∷ α ∷ κ ∷ ώ ∷ σ ∷ ω ∷ ν ∷ []) "1Pet.3.13"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.3.13"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Pet.3.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.13"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῦ ∷ []) "1Pet.3.13"
∷ word (ζ ∷ η ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ὶ ∷ []) "1Pet.3.13"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.3.13"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Pet.3.14"
∷ word (ε ∷ ἰ ∷ []) "1Pet.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.14"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ο ∷ ι ∷ τ ∷ ε ∷ []) "1Pet.3.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.3.14"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Pet.3.14"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "1Pet.3.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.3.14"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.14"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "1Pet.3.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Pet.3.14"
∷ word (μ ∷ ὴ ∷ []) "1Pet.3.14"
∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Pet.3.14"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Pet.3.14"
∷ word (τ ∷ α ∷ ρ ∷ α ∷ χ ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Pet.3.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.3.15"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.3.15"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Pet.3.15"
∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.3.15"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.15"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Pet.3.15"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.3.15"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.3.15"
∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Pet.3.15"
∷ word (ἀ ∷ ε ∷ ὶ ∷ []) "1Pet.3.15"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Pet.3.15"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Pet.3.15"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Pet.3.15"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.15"
∷ word (α ∷ ἰ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Pet.3.15"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.3.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Pet.3.15"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Pet.3.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.3.15"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.3.15"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "1Pet.3.15"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.3.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Pet.3.16"
∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.16"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ υ ∷ []) "1Pet.3.16"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.16"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.16"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ή ∷ ν ∷ []) "1Pet.3.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.16"
∷ word (ᾧ ∷ []) "1Pet.3.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.3.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.16"
∷ word (ο ∷ ἱ ∷ []) "1Pet.3.16"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ε ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.3.16"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.3.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.3.16"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "1Pet.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.16"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Pet.3.16"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ή ∷ ν ∷ []) "1Pet.3.16"
∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.3.17"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.3.17"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.3.17"
∷ word (ε ∷ ἰ ∷ []) "1Pet.3.17"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Pet.3.17"
∷ word (τ ∷ ὸ ∷ []) "1Pet.3.17"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Pet.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.3.17"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Pet.3.17"
∷ word (ἢ ∷ []) "1Pet.3.17"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.3.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.18"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.3.18"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "1Pet.3.18"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Pet.3.18"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.3.18"
∷ word (ἔ ∷ π ∷ α ∷ θ ∷ ε ∷ ν ∷ []) "1Pet.3.18"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "1Pet.3.18"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Pet.3.18"
∷ word (ἀ ∷ δ ∷ ί ∷ κ ∷ ω ∷ ν ∷ []) "1Pet.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.3.18"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.3.18"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ γ ∷ ά ∷ γ ∷ ῃ ∷ []) "1Pet.3.18"
∷ word (τ ∷ ῷ ∷ []) "1Pet.3.18"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Pet.3.18"
∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ω ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Pet.3.18"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Pet.3.18"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Pet.3.18"
∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Pet.3.18"
∷ word (δ ∷ ὲ ∷ []) "1Pet.3.18"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.3.18"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.19"
∷ word (ᾧ ∷ []) "1Pet.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.19"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.3.19"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.19"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "1Pet.3.19"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.3.19"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Pet.3.19"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "1Pet.3.19"
∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ή ∷ σ ∷ α ∷ σ ∷ ί ∷ ν ∷ []) "1Pet.3.20"
∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "1Pet.3.20"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Pet.3.20"
∷ word (ἀ ∷ π ∷ ε ∷ ξ ∷ ε ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "1Pet.3.20"
∷ word (ἡ ∷ []) "1Pet.3.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.20"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.3.20"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ []) "1Pet.3.20"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Pet.3.20"
∷ word (Ν ∷ ῶ ∷ ε ∷ []) "1Pet.3.20"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "1Pet.3.20"
∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.20"
∷ word (ἣ ∷ ν ∷ []) "1Pet.3.20"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ι ∷ []) "1Pet.3.20"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "1Pet.3.20"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.3.20"
∷ word (ὀ ∷ κ ∷ τ ∷ ὼ ∷ []) "1Pet.3.20"
∷ word (ψ ∷ υ ∷ χ ∷ α ∷ ί ∷ []) "1Pet.3.20"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Pet.3.20"
∷ word (δ ∷ ι ∷ []) "1Pet.3.20"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.3.20"
∷ word (ὃ ∷ []) "1Pet.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.21"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.3.21"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ τ ∷ υ ∷ π ∷ ο ∷ ν ∷ []) "1Pet.3.21"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Pet.3.21"
∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ ι ∷ []) "1Pet.3.21"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "1Pet.3.21"
∷ word (ο ∷ ὐ ∷ []) "1Pet.3.21"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "1Pet.3.21"
∷ word (ἀ ∷ π ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "1Pet.3.21"
∷ word (ῥ ∷ ύ ∷ π ∷ ο ∷ υ ∷ []) "1Pet.3.21"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.3.21"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.3.21"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῆ ∷ ς ∷ []) "1Pet.3.21"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ώ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "1Pet.3.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.21"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Pet.3.21"
∷ word (δ ∷ ι ∷ []) "1Pet.3.21"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Pet.3.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.3.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.3.21"
∷ word (ὅ ∷ ς ∷ []) "1Pet.3.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.3.22"
∷ word (ἐ ∷ ν ∷ []) "1Pet.3.22"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "1Pet.3.22"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.3.22"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Pet.3.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.3.22"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "1Pet.3.22"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ έ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.3.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.3.22"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Pet.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.22"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.3.22"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ν ∷ []) "1Pet.3.22"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.4.1"
∷ word (π ∷ α ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.4.1"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Pet.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.1"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Pet.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "1Pet.4.1"
∷ word (ἔ ∷ ν ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "1Pet.4.1"
∷ word (ὁ ∷ π ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.4.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.4.1"
∷ word (ὁ ∷ []) "1Pet.4.1"
∷ word (π ∷ α ∷ θ ∷ ὼ ∷ ν ∷ []) "1Pet.4.1"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Pet.4.1"
∷ word (π ∷ έ ∷ π ∷ α ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.1"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.4.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.2"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.2"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "1Pet.4.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Pet.4.2"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.4.2"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.4.2"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.4.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.4.2"
∷ word (ἐ ∷ π ∷ ί ∷ ∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ν ∷ []) "1Pet.4.2"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.2"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Pet.4.2"
∷ word (β ∷ ι ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Pet.4.2"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.4.2"
∷ word (ἀ ∷ ρ ∷ κ ∷ ε ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.4.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.4.3"
∷ word (ὁ ∷ []) "1Pet.4.3"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ὼ ∷ ς ∷ []) "1Pet.4.3"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.4.3"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.3"
∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Pet.4.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.4.3"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "1Pet.4.3"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ρ ∷ γ ∷ ά ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.4.3"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.4.3"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.3"
∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (ο ∷ ἰ ∷ ν ∷ ο ∷ φ ∷ ∙λ ∷ υ ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (κ ∷ ώ ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (π ∷ ό ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.3"
∷ word (ἀ ∷ θ ∷ ε ∷ μ ∷ ί ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ α ∷ τ ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Pet.4.3"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.4"
∷ word (ᾧ ∷ []) "1Pet.4.4"
∷ word (ξ ∷ ε ∷ ν ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.4"
∷ word (μ ∷ ὴ ∷ []) "1Pet.4.4"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.4.4"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.4.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.4.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "1Pet.4.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.4.4"
∷ word (ἀ ∷ σ ∷ ω ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Pet.4.4"
∷ word (ἀ ∷ ν ∷ ά ∷ χ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.4.4"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.4.4"
∷ word (ο ∷ ἳ ∷ []) "1Pet.4.5"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.4.5"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Pet.4.5"
∷ word (τ ∷ ῷ ∷ []) "1Pet.4.5"
∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ ω ∷ ς ∷ []) "1Pet.4.5"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Pet.4.5"
∷ word (κ ∷ ρ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Pet.4.5"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.5"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "1Pet.4.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Pet.4.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Pet.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.6"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.4.6"
∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "1Pet.4.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.4.6"
∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ []) "1Pet.4.6"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Pet.4.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.4.6"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.4.6"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Pet.4.6"
∷ word (ζ ∷ ῶ ∷ σ ∷ ι ∷ []) "1Pet.4.6"
∷ word (δ ∷ ὲ ∷ []) "1Pet.4.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.4.6"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.4.6"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.4.6"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.4.7"
∷ word (δ ∷ ὲ ∷ []) "1Pet.4.7"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.7"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.4.7"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "1Pet.4.7"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.4.7"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.7"
∷ word (ν ∷ ή ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.4.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "1Pet.4.7"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Pet.4.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.4.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.4.8"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Pet.4.8"
∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῆ ∷ []) "1Pet.4.8"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.4.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.4.8"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Pet.4.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "1Pet.4.8"
∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "1Pet.4.8"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Pet.4.8"
∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ξ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.4.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.4.9"
∷ word (ἄ ∷ ν ∷ ε ∷ υ ∷ []) "1Pet.4.9"
∷ word (γ ∷ ο ∷ γ ∷ γ ∷ υ ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Pet.4.9"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.4.10"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Pet.4.10"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "1Pet.4.10"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "1Pet.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.10"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Pet.4.10"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.4.10"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.10"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Pet.4.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "1Pet.4.10"
∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ η ∷ ς ∷ []) "1Pet.4.10"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.4.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.10"
∷ word (ε ∷ ἴ ∷ []) "1Pet.4.11"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Pet.4.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Pet.4.11"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.11"
∷ word (∙λ ∷ ό ∷ γ ∷ ι ∷ α ∷ []) "1Pet.4.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.11"
∷ word (ε ∷ ἴ ∷ []) "1Pet.4.11"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Pet.4.11"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ []) "1Pet.4.11"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.11"
∷ word (ἐ ∷ ξ ∷ []) "1Pet.4.11"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "1Pet.4.11"
∷ word (ἧ ∷ ς ∷ []) "1Pet.4.11"
∷ word (χ ∷ ο ∷ ρ ∷ η ∷ γ ∷ ε ∷ ῖ ∷ []) "1Pet.4.11"
∷ word (ὁ ∷ []) "1Pet.4.11"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Pet.4.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.4.11"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.11"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.4.11"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.11"
∷ word (ὁ ∷ []) "1Pet.4.11"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Pet.4.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Pet.4.11"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Pet.4.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.11"
∷ word (ᾧ ∷ []) "1Pet.4.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Pet.4.11"
∷ word (ἡ ∷ []) "1Pet.4.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Pet.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.11"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.11"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.4.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.4.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.4.11"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "1Pet.4.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.4.11"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.4.11"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Pet.4.11"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Pet.4.12"
∷ word (μ ∷ ὴ ∷ []) "1Pet.4.12"
∷ word (ξ ∷ ε ∷ ν ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.4.12"
∷ word (τ ∷ ῇ ∷ []) "1Pet.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.4.12"
∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Pet.4.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Pet.4.12"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Pet.4.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.4.12"
∷ word (γ ∷ ι ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "1Pet.4.12"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.12"
∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Pet.4.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.4.12"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.4.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.4.13"
∷ word (κ ∷ α ∷ θ ∷ ὸ ∷ []) "1Pet.4.13"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Pet.4.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.4.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.13"
∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.4.13"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "1Pet.4.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.4.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.13"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.13"
∷ word (τ ∷ ῇ ∷ []) "1Pet.4.13"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "1Pet.4.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.4.13"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Pet.4.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.13"
∷ word (χ ∷ α ∷ ρ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Pet.4.13"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.4.13"
∷ word (ε ∷ ἰ ∷ []) "1Pet.4.14"
∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.4.14"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.14"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.4.14"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.14"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "1Pet.4.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.4.14"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.4.14"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Pet.4.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.14"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.14"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Pet.4.14"
∷ word (ἐ ∷ φ ∷ []) "1Pet.4.14"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.4.14"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.14"
∷ word (μ ∷ ὴ ∷ []) "1Pet.4.15"
∷ word (γ ∷ ά ∷ ρ ∷ []) "1Pet.4.15"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Pet.4.15"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.4.15"
∷ word (π ∷ α ∷ σ ∷ χ ∷ έ ∷ τ ∷ ω ∷ []) "1Pet.4.15"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.15"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ὺ ∷ ς ∷ []) "1Pet.4.15"
∷ word (ἢ ∷ []) "1Pet.4.15"
∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "1Pet.4.15"
∷ word (ἢ ∷ []) "1Pet.4.15"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ὸ ∷ ς ∷ []) "1Pet.4.15"
∷ word (ἢ ∷ []) "1Pet.4.15"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.15"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ε ∷ π ∷ ί ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ς ∷ []) "1Pet.4.15"
∷ word (ε ∷ ἰ ∷ []) "1Pet.4.16"
∷ word (δ ∷ ὲ ∷ []) "1Pet.4.16"
∷ word (ὡ ∷ ς ∷ []) "1Pet.4.16"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ι ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "1Pet.4.16"
∷ word (μ ∷ ὴ ∷ []) "1Pet.4.16"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ υ ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Pet.4.16"
∷ word (δ ∷ ο ∷ ξ ∷ α ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "1Pet.4.16"
∷ word (δ ∷ ὲ ∷ []) "1Pet.4.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.4.16"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Pet.4.16"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.16"
∷ word (τ ∷ ῷ ∷ []) "1Pet.4.16"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.4.16"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Pet.4.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.4.17"
∷ word (ὁ ∷ []) "1Pet.4.17"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Pet.4.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (ἄ ∷ ρ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.4.17"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.17"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Pet.4.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Pet.4.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "1Pet.4.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (ε ∷ ἰ ∷ []) "1Pet.4.17"
∷ word (δ ∷ ὲ ∷ []) "1Pet.4.17"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Pet.4.17"
∷ word (ἀ ∷ φ ∷ []) "1Pet.4.17"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.4.17"
∷ word (τ ∷ ί ∷ []) "1Pet.4.17"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.17"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.4.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.4.17"
∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.4.17"
∷ word (τ ∷ ῷ ∷ []) "1Pet.4.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.17"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Pet.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.18"
∷ word (ε ∷ ἰ ∷ []) "1Pet.4.18"
∷ word (ὁ ∷ []) "1Pet.4.18"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "1Pet.4.18"
∷ word (μ ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "1Pet.4.18"
∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.18"
∷ word (ὁ ∷ []) "1Pet.4.18"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ὴ ∷ ς ∷ []) "1Pet.4.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.18"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Pet.4.18"
∷ word (π ∷ ο ∷ ῦ ∷ []) "1Pet.4.18"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Pet.4.18"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Pet.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.4.19"
∷ word (ο ∷ ἱ ∷ []) "1Pet.4.19"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.4.19"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.4.19"
∷ word (τ ∷ ὸ ∷ []) "1Pet.4.19"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Pet.4.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.4.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.4.19"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Pet.4.19"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ τ ∷ ῃ ∷ []) "1Pet.4.19"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Pet.4.19"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Pet.4.19"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "1Pet.4.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Pet.4.19"
∷ word (ἐ ∷ ν ∷ []) "1Pet.4.19"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ΐ ∷ ᾳ ∷ []) "1Pet.4.19"
∷ word (Π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.5.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.5.1"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.1"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.5.1"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Pet.5.1"
∷ word (ὁ ∷ []) "1Pet.5.1"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Pet.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.5.1"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "1Pet.5.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.5.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.1"
∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.5.1"
∷ word (ὁ ∷ []) "1Pet.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.5.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.5.1"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "1Pet.5.1"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.5.1"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Pet.5.1"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ό ∷ ς ∷ []) "1Pet.5.1"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ ά ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Pet.5.2"
∷ word (τ ∷ ὸ ∷ []) "1Pet.5.2"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.2"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.5.2"
∷ word (π ∷ ο ∷ ί ∷ μ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.5.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.5.2"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.5.2"
∷ word (μ ∷ ὴ ∷ []) "1Pet.5.2"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ σ ∷ τ ∷ ῶ ∷ ς ∷ []) "1Pet.5.2"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.5.2"
∷ word (ἑ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.5.2"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Pet.5.2"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Pet.5.2"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Pet.5.2"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ρ ∷ δ ∷ ῶ ∷ ς ∷ []) "1Pet.5.2"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.5.2"
∷ word (π ∷ ρ ∷ ο ∷ θ ∷ ύ ∷ μ ∷ ω ∷ ς ∷ []) "1Pet.5.2"
∷ word (μ ∷ η ∷ δ ∷ []) "1Pet.5.3"
∷ word (ὡ ∷ ς ∷ []) "1Pet.5.3"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.5.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.5.3"
∷ word (κ ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ ν ∷ []) "1Pet.5.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Pet.5.3"
∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ι ∷ []) "1Pet.5.3"
∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Pet.5.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.3"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "1Pet.5.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.5.4"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.5.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.4"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ π ∷ ο ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.5.4"
∷ word (κ ∷ ο ∷ μ ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.5.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Pet.5.4"
∷ word (ἀ ∷ μ ∷ α ∷ ρ ∷ ά ∷ ν ∷ τ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.5.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Pet.5.4"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Pet.5.4"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "1Pet.5.4"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Pet.5.5"
∷ word (ν ∷ ε ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Pet.5.5"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.5.5"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.5.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.5.5"
∷ word (δ ∷ ὲ ∷ []) "1Pet.5.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.5.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.5.5"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Pet.5.5"
∷ word (ἐ ∷ γ ∷ κ ∷ ο ∷ μ ∷ β ∷ ώ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.5.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.5.5"
∷ word (Ὁ ∷ []) "1Pet.5.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Pet.5.5"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ ά ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Pet.5.5"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Pet.5.5"
∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.5.5"
∷ word (δ ∷ ὲ ∷ []) "1Pet.5.5"
∷ word (δ ∷ ί ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.5.5"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Pet.5.5"
∷ word (Τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.5.6"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Pet.5.6"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Pet.5.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.5.6"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ α ∷ ι ∷ ὰ ∷ ν ∷ []) "1Pet.5.6"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "1Pet.5.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.5.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Pet.5.6"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.5.6"
∷ word (ὑ ∷ ψ ∷ ώ ∷ σ ∷ ῃ ∷ []) "1Pet.5.6"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.6"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "1Pet.5.6"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Pet.5.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.5.7"
∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ ν ∷ []) "1Pet.5.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.5.7"
∷ word (ἐ ∷ π ∷ ι ∷ ρ ∷ ί ∷ ψ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.5.7"
∷ word (ἐ ∷ π ∷ []) "1Pet.5.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Pet.5.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Pet.5.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.5.7"
∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Pet.5.7"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Pet.5.7"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.5.7"
∷ word (ν ∷ ή ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.5.8"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Pet.5.8"
∷ word (ὁ ∷ []) "1Pet.5.8"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "1Pet.5.8"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.5.8"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Pet.5.8"
∷ word (ὡ ∷ ς ∷ []) "1Pet.5.8"
∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "1Pet.5.8"
∷ word (ὠ ∷ ρ ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Pet.5.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "1Pet.5.8"
∷ word (ζ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "1Pet.5.8"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Pet.5.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "1Pet.5.8"
∷ word (ᾧ ∷ []) "1Pet.5.9"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ σ ∷ τ ∷ η ∷ τ ∷ ε ∷ []) "1Pet.5.9"
∷ word (σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ο ∷ ὶ ∷ []) "1Pet.5.9"
∷ word (τ ∷ ῇ ∷ []) "1Pet.5.9"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Pet.5.9"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Pet.5.9"
∷ word (τ ∷ ὰ ∷ []) "1Pet.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "1Pet.5.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.5.9"
∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Pet.5.9"
∷ word (τ ∷ ῇ ∷ []) "1Pet.5.9"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.9"
∷ word (τ ∷ ῷ ∷ []) "1Pet.5.9"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Pet.5.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Pet.5.9"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "1Pet.5.9"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Pet.5.9"
∷ word (ὁ ∷ []) "1Pet.5.10"
∷ word (δ ∷ ὲ ∷ []) "1Pet.5.10"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Pet.5.10"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Pet.5.10"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.5.10"
∷ word (ὁ ∷ []) "1Pet.5.10"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ς ∷ []) "1Pet.5.10"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.5.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.5.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Pet.5.10"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Pet.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.10"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Pet.5.10"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.10"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Pet.5.10"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "1Pet.5.10"
∷ word (π ∷ α ∷ θ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Pet.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Pet.5.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Pet.5.10"
∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "1Pet.5.10"
∷ word (σ ∷ θ ∷ ε ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Pet.5.10"
∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Pet.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Pet.5.11"
∷ word (τ ∷ ὸ ∷ []) "1Pet.5.11"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "1Pet.5.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.5.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Pet.5.11"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "1Pet.5.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Pet.5.11"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Pet.5.11"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Pet.5.11"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "1Pet.5.12"
∷ word (Σ ∷ ι ∷ ∙λ ∷ ο ∷ υ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.5.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (ὡ ∷ ς ∷ []) "1Pet.5.12"
∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Pet.5.12"
∷ word (δ ∷ ι ∷ []) "1Pet.5.12"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "1Pet.5.12"
∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Pet.5.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Pet.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.5.12"
∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Pet.5.12"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Pet.5.12"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Pet.5.12"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ []) "1Pet.5.12"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Pet.5.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Pet.5.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Pet.5.12"
∷ word (ἣ ∷ ν ∷ []) "1Pet.5.12"
∷ word (σ ∷ τ ∷ ῆ ∷ τ ∷ ε ∷ []) "1Pet.5.12"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Pet.5.13"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Pet.5.13"
∷ word (ἡ ∷ []) "1Pet.5.13"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.13"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Pet.5.13"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ὴ ∷ []) "1Pet.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Pet.5.13"
∷ word (Μ ∷ ᾶ ∷ ρ ∷ κ ∷ ο ∷ ς ∷ []) "1Pet.5.13"
∷ word (ὁ ∷ []) "1Pet.5.13"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "1Pet.5.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "1Pet.5.13"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Pet.5.14"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Pet.5.14"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.14"
∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Pet.5.14"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "1Pet.5.14"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Pet.5.14"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Pet.5.14"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Pet.5.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Pet.5.14"
∷ word (ἐ ∷ ν ∷ []) "1Pet.5.14"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Pet.5.14"
∷ []
| {
"alphanum_fraction": 0.3389790016,
"avg_line_length": 47.0870337478,
"ext": "agda",
"hexsha": "f7079e62693d95c84142acb1337507f69075cb37",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/1Pet.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/1Pet.agda",
"max_line_length": 92,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/1Pet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 57260,
"size": 79530
} |
data Unit : Set where
unit : Unit
F : Unit → Set₁
F {x = unit} = Set
| {
"alphanum_fraction": 0.5833333333,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "4103cfc550f0703916f84ab6a78c4944908fc40a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2075.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2075.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2075.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 72
} |
{-# OPTIONS --cubical --safe #-}
module Control.Applicative.Levels where
| {
"alphanum_fraction": 0.6883116883,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "ea992e95dc1cb8b16552b5a5205bac87984de2c1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Applicative/Levels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Applicative/Levels.agda",
"max_line_length": 39,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Applicative/Levels.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 17,
"size": 77
} |
module PLRTree.Order.Properties {A : Set} where
open import Data.Nat
open import Data.Nat.Properties
open import Data.Sum
open import Function
open import Induction.Nat
open import Induction.WellFounded
open import PLRTree {A}
open import PLRTree.Order {A}
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open DecTotalOrder decTotalOrder hiding (refl)
open Inverse-image {_<_ = _<′_} height
≺-wf : Well-founded (_<′_ on height)
≺-wf = well-founded <-well-founded
lemma-≺-left : (t : Tag)(x : A)(l r : PLRTree) → l ≺ node t x l r
lemma-≺-left t x l r
with total (height l) (height r)
... | inj₁ hl≤hr = s≤′s (≤⇒≤′ hl≤hr)
... | inj₂ hr≤hl = ≤′-refl
lemma-≺-right : (t : Tag)(x : A)(l r : PLRTree) → r ≺ node t x l r
lemma-≺-right t x l r
with total (height l) (height r)
... | inj₁ hl≤hr = ≤′-refl
... | inj₂ hr≤hl = s≤′s (≤⇒≤′ hr≤hl)
lemma-≡-height : (t : Tag)(x y : A)(l r : PLRTree) → height (node t x l r) ≡ height (node t y l r)
lemma-≡-height t x y l r
with total (height l) (height r)
... | inj₁ hl≤hr = refl
... | inj₂ hr≤hl = refl
| {
"alphanum_fraction": 0.6413540714,
"avg_line_length": 29.5405405405,
"ext": "agda",
"hexsha": "904b031489b7417397754b5afea3c926723ee257",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Order/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Order/Properties.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Order/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 417,
"size": 1093
} |
module Holes.Prelude where
open import Agda.Primitive public
using (Level; _⊔_; lzero; lsuc)
open import Agda.Builtin.List public
using (List; _∷_; [])
open import Agda.Builtin.Unit public
using (⊤; tt)
open import Agda.Builtin.Bool public
using (Bool; true; false)
open import Agda.Builtin.Nat public
using (zero; suc; _+_; _*_)
renaming (Nat to ℕ; _==_ to _=ℕ?_)
open import Agda.Builtin.Reflection public
open import Agda.Builtin.String public
open import Agda.Builtin.Char public
infixr 4 _,_
infixr 2 _×_
infixr 9 _∘_
infixl 1 _⟨_⟩_
infixr 0 _$_
infix 0 case_of_
--------------------------------------------------------------------------------
-- Datatypes
--------------------------------------------------------------------------------
data Maybe {a} (A : Set a) : Set a where
just : (x : A) → Maybe A
nothing : Maybe A
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B
open _×_ public
--------------------------------------------------------------------------------
-- Combinators
--------------------------------------------------------------------------------
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
id : ∀ {a} {A : Set a} → A → A
id x = x
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x = λ _ → x
flip : ∀ {a b c} {A : Set a}{B : Set b}{C : Set c} → (A → B → C) → B → A → C
flip f y x = f x y
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
_⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
A → (A → B → C) → B → C
x ⟨ f ⟩ y = f x y
curry : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} → (A × B → C) → A → B → C
curry f x y = f (x , y)
uncurry : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} → (A → B → C) → A × B → C
uncurry f (x , y) = f x y
case_of_ : ∀ {a b}{A : Set a}{B : Set b} → A → (A → B) → B
case x of f = f x
--------------------------------------------------------------------------------
-- Boolean operations
--------------------------------------------------------------------------------
_∨_ : Bool → Bool → Bool
false ∨ false = false
_ ∨ _ = true
_∧_ : Bool → Bool → Bool
true ∧ true = true
_ ∧ _ = false
not : Bool → Bool
not true = false
not false = true
if_then_else_ : ∀ {a} {A : Set a} → (b : Bool) → A → A → A
if true then x else y = x
if false then x else y = y
--------------------------------------------------------------------------------
-- List operations
--------------------------------------------------------------------------------
singleton : ∀ {a}{A : Set a} → A → List A
singleton x = x ∷ []
map : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
length : ∀ {a}{A : Set a} → List A → ℕ
length [] = 0
length (_ ∷ xs) = suc (length xs)
zip : ∀ {a b}{A : Set a}{B : Set b} → List A → List B → List (A × B)
zip [] _ = []
zip _ [] = []
zip (x ∷ xs) (y ∷ ys) = (x , y) ∷ zip xs ys
unzip : ∀ {a b}{A : Set a}{B : Set b} → List (A × B) → List A × List B
unzip [] = [] , []
unzip ((x , y) ∷ xys) with unzip xys
... | xs , ys = x ∷ xs , y ∷ ys
infixr 6 _++_
_++_ : ∀ {a}{A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
concatMap : ∀ {a b}{A : Set a}{B : Set b} → (A → List B) → List A → List B
concatMap f [] = []
concatMap f (x ∷ xs) = f x ++ concatMap f xs
concat : ∀ {a}{A : Set a} → List (List A) → List A
concat = concatMap id
intersperse : ∀ {a}{A : Set a} → A → List A → List A
intersperse e [] = []
intersperse e (x ∷ []) = x ∷ []
intersperse e (x ∷ y ∷ xs) = x ∷ e ∷ intersperse e (y ∷ xs)
intercalate : ∀ {a}{A : Set a} → List A → List (List A) → List A
intercalate e = concat ∘ intersperse e
--------------------------------------------------------------------------------
-- Nat operations
--------------------------------------------------------------------------------
-- A comparison view. Taken from "View from the left" (McBride/McKinna) via the
-- Agda standard library
data Ordering : ℕ → ℕ → Set where
less : ∀ m k → Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k → Ordering (suc (m + k)) m
compare : ∀ m n → Ordering m n
compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
compare (suc .m) (suc .(suc m + k)) | less m k = less (suc m) k
compare (suc .m) (suc .m) | equal m = equal (suc m)
compare (suc .(suc m + k)) (suc .m) | greater m k = greater (suc m) k
_<?_ : ℕ → ℕ → Bool
x <? y with compare x y
... | Ordering.less .x _ = true
... | _ = false
--------------------------------------------------------------------------------
-- Typeclasses
--------------------------------------------------------------------------------
record RawMonoid {f} (M : Set f) : Set f where
field
_<>_ : M → M → M
mempty : M
open RawMonoid {{...}} public
instance
listMonoid : ∀ {a} {A : Set a} → RawMonoid (List A)
RawMonoid._<>_ listMonoid = _++_
RawMonoid.mempty listMonoid = []
record RawMonad {f} (M : Set f → Set f) : Set (lsuc f) where
infixl 1 _>>=_ _>>_ _>=>_ _>>=²_
infixr 1 _=<<_ _<=<_
infixl 4 _<$>_
infixl 4 _⊛_
field
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
return : ∀ {A} → A → M A
_>>_ : ∀ {A B} → M A → M B → M B
x >> y = x >>= λ _ → y
_>=>_ : ∀ {ℓ}{A : Set ℓ}{B C} → (A → M B) → (B → M C) → A → M C
f >=> g = λ x → f x >>= g
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< x = x >>= f
_<=<_ : ∀ {ℓ}{A : Set ℓ}{B C} → (B → M C) → (A → M B) → A → M C
g <=< f = f >=> g
_>>=²_ : {A B C : Set f} → M (A × B) → (A → B → M C) → M C
x >>=² f = x >>= uncurry f
join : ∀ {A} → M (M A) → M A
join m = m >>= id
fmap : ∀ {A B} → (A → B) → M A → M B
fmap f x = x >>= return ∘ f
_<$>_ = fmap
_⊛_ : ∀ {A B} → M (A → B) → M A → M B
f ⊛ x = f >>= flip fmap x
open RawMonad {{...}} public
record RawTraversable {t} (T : Set t → Set t) : Set (lsuc t) where
field
traverse : {M : Set t → Set t} {{monad : RawMonad M}} {A B : Set t} → (A → M B) → T A → M (T B)
sequence : {M : Set t → Set t} {{monad : RawMonad M}} {A : Set t} → T (M A) → M (T A)
sequence = traverse id
open RawTraversable {{...}} public
traverse- : {T M : Set → Set} {{traversable : RawTraversable T}} {{monad : RawMonad M}} {A B : Set} → (A → M B) → T A → M ⊤
traverse- f xs = traverse f xs >> return tt
instance
traversableList : ∀ {t} → RawTraversable (List {t})
traverse {{traversableList}} f [] = return []
traverse {{traversableList}} f (x ∷ xs) = _∷_ <$> f x ⊛ traverse f xs
--------------------------------------------------------------------------------
-- Propositional Equality
--------------------------------------------------------------------------------
module PropEq where
open import Agda.Builtin.Equality using (_≡_; refl) public
sym : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl eq = eq
subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y} → x ≡ y → P x → P y
subst P refl p = p
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
--------------------------------------------------------------------------------
-- Monads and useful instances
--------------------------------------------------------------------------------
infixl 1 _>>=′_
-- _>>=_ in `RawMonad` only works on a single level, while bindTC is more
-- level-polymorphic, which we will sometimes need.
_>>=′_ = bindTC
data Result {e r} (E : Set e) (R : Set r) : Set (e ⊔ r) where
ok : (x : R) → Result E R
err : (e : E) → Result E R
Maybe→Result : ∀ {e r} {E : Set e} {R : Set r} → E → Maybe R → Result E R
Maybe→Result e (just x) = ok x
Maybe→Result e nothing = err e
instance
List-Monad : ∀ {a} → RawMonad (List {a})
RawMonad._>>=_ List-Monad = flip concatMap
RawMonad.return List-Monad x = x ∷ []
TC-Monad : ∀ {a} → RawMonad {a} TC
TC-Monad = record
{ return = returnTC
; _>>=_ = bindTC
}
Maybe-Monad : ∀ {a} → RawMonad {a} Maybe
(RawMonad._>>=_ Maybe-Monad) (just x) f = f x
(RawMonad._>>=_ Maybe-Monad) nothing f = nothing
RawMonad.return Maybe-Monad = just
Result-Monad : ∀ {ℓ}{E : Set ℓ} → RawMonad {ℓ} (Result E)
Result-Monad = record
{ return = ok
; _>>=_ = λ
{ (err e) _ → err e
; (ok x) f → f x
}
}
--------------------------------------------------------------------------------
-- RTC: A type checking monad with errors other than normal type errors
--------------------------------------------------------------------------------
record RTC {e r} (E : Set e) (R : Set r) : Set (e ⊔ r) where
field
tryRunRTC : TC (Result E R)
open RTC public
runRTC : ∀ {e r} {E : Set e} {R : Set r} → (E → TC R) → RTC E R → TC R
runRTC f x =
tryRunRTC x >>=′
λ { (err e) → f e
; (ok y) → return y
}
module RTC′ {e} {E : Set e} where
bind : ∀ {α β} {A : Set α}{B : Set β} → RTC E A → (A → RTC E B) → RTC E B
tryRunRTC (bind x f) =
tryRunRTC x >>=′
λ { (err e) → return (err e)
; (ok y) → tryRunRTC (f y)
}
instance
RTC-monad : ∀ {ℓ} {E : Set ℓ} → RawMonad {ℓ} (RTC E)
RTC-monad = record
{ return = λ x → record { tryRunRTC = return (return x) }
; _>>=_ = RTC′.bind
}
catchRTC : ∀ {ℓ} {E : Set ℓ}{R : Set ℓ} → RTC E R → RTC E R → RTC E R
tryRunRTC (catchRTC rtc fallback) =
tryRunRTC rtc ⟨ catchTC ⟩ tryRunRTC fallback
--------------------------------------------------------------------------------
-- MonadCatch and instances
--------------------------------------------------------------------------------
record MonadCatch {a e} (E : Set e) (M : Set a → Set a) : Set (lsuc a ⊔ e) where
field
catch : ∀ {A : Set a} → (E → M A) → M A → M A
open MonadCatch {{...}} public
instance
Maybe-MonadCatch : ∀ {a} → MonadCatch {a} ⊤ Maybe
Maybe-MonadCatch = record
{ catch = λ
{ f (just x) → just x
; f nothing → f tt
}
}
Result-MonadCatch : ∀ {ℓ} {E : Set ℓ} → MonadCatch {ℓ} E (Result E)
Result-MonadCatch = record
{ catch = λ
{ f (err e) → f e
; f (ok x) → ok x}
}
RTC-MonadCatch : ∀ {ℓ} {E : Set ℓ} → MonadCatch {ℓ} E (RTC E)
RTC-MonadCatch = record
{ catch = λ f x → record
{ tryRunRTC = tryRunRTC x >>= λ
{ (err e) → tryRunRTC (f e)
; (ok y) → return (ok y)
}
}
}
--------------------------------------------------------------------------------
-- MonadThrow and instances
--------------------------------------------------------------------------------
record MonadThrow {a e} (E : Set e) (M : Set a → Set a) : Set (lsuc a ⊔ e) where
field
{{monad}} : RawMonad M
throw : ∀ {A : Set a} → E → M A
open MonadThrow {{...}} public
instance
Maybe-MonadThrow : ∀ {a} → MonadThrow {a} ⊤ Maybe
Maybe-MonadThrow = record { throw = λ _ → nothing }
Result-MonadThrow : ∀ {ℓ} {E : Set ℓ} → MonadThrow {ℓ} E (Result E)
Result-MonadThrow = record { throw = err }
RTC-MonadThrow : ∀ {ℓ} {E : Set ℓ} → MonadThrow {ℓ} E (RTC E)
RTC-MonadThrow = record { throw = λ e → record { tryRunRTC = return (err e) } }
TC-MonadThrow : ∀ {ℓ} → MonadThrow {ℓ} (List ErrorPart) TC
TC-MonadThrow = record { throw = typeError }
liftResult′ : ∀ {e ℓ} {E E′ : Set e} {M : Set ℓ → Set ℓ} {{monadThrow : MonadThrow E′ M}} {A : Set ℓ} → (E → E′) → Result E A → M A
liftResult′ _ (ok x) = return x
liftResult′ f (err e) = throw (f e)
liftResult : ∀ {e ℓ} {E : Set e} {M : Set ℓ → Set ℓ} {{monadThrow : MonadThrow E M}} {A : Set ℓ} → Result E A → M A
liftResult = liftResult′ id
liftMaybe : ∀ {e ℓ}{E : Set e} {M : Set ℓ → Set ℓ} {{monadThrow : MonadThrow E M}} {A : Set ℓ} → E → Maybe A → M A
liftMaybe error (just x) = return x
liftMaybe error nothing = throw error
--------------------------------------------------------------------------------
-- Choice and instances
--------------------------------------------------------------------------------
record Choice {a} (F : Set a → Set a) : Set (lsuc a) where
field
_<|>_ : ∀ {A} → F A → F A → F A
open Choice {{...}} public
instance
Maybe-Choice : ∀ {a} → Choice {a} Maybe
Maybe-Choice = record
{ _<|>_ = λ
{ (just x) _ → just x
; nothing (just y) → just y
; nothing nothing → nothing
}
}
Result-Choice : ∀ {ℓ}{E : Set ℓ} → Choice {ℓ} (Result E)
Result-Choice = record
{ _<|>_ = λ
{ (ok x) _ → ok x
; (err _) (ok y) → ok y
; (err e) (err _) → err e
}
}
--------------------------------------------------------------------------------
-- General utility methods
--------------------------------------------------------------------------------
successes : ∀ {ℓ e M} {E : Set e} {{monadCatch : MonadCatch E M}}{{monad : RawMonad M}} {A : Set ℓ} → List (M A) → M (List A)
successes [] = return []
successes {{monadCatch}} {A = A} (x ∷ xs) =
successes {{monadCatch}} xs >>= λ xs′ →
catch {{monadCatch}} (λ _ → return xs′) (fmap (_∷ xs′) x)
mapErr : ∀ {e r}{R : Set r}{E E′ : Set e} → (E → E′) → Result E R → Result E′ R
mapErr f (ok x) = ok x
mapErr f (err e) = err (f e)
discardErr : ∀ {e r} {E : Set e}{R : Set r} → Result E R → Maybe R
discardErr (ok x) = just x
discardErr (err _) = nothing
result : ∀ {e r a}{E : Set e}{R : Set r}{A : Set a} → (E → A) → (R → A) → Result E R → A
result g f (ok x) = f x
result g f (err e) = g e
--------------------------------------------------------------------------------
-- Reflection utility methods
--------------------------------------------------------------------------------
infix 4 _=Name?_
_=Name?_ : Name → Name → Bool
_=Name?_ = primQNameEquality
basicArg : Term → Arg Term
basicArg = arg (arg-info visible relevant)
implicitArg : Term → Arg Term
implicitArg = arg (arg-info hidden relevant)
getArg : Arg Term → Term
getArg (arg _ x) = x
mapArg : ∀ {A B} → (A → B) → Arg A → Arg B
mapArg f (arg i x) = arg i (f x)
getArglist : Term → List (Arg Term)
getArglist (def _ args) = args
getArglist (con _ args) = args
getArglist (var _ args) = args
getArglist _ = []
instance
traversableArg : RawTraversable Arg
traverse {{traversableArg}} f (arg i x) = arg i <$> f x
liftTC : ∀ {e r} {E : Set e}{R : Set r} → TC R → RTC E R
tryRunRTC (liftTC x) = x >>=′ return ∘ ok
mapRtcErr : ∀ {ℓ}{R E E′ : Set ℓ} → (E → E′) → RTC E R → RTC E′ R
tryRunRTC (mapRtcErr f x) = tryRunRTC x >>= return ∘ mapErr f
runRtcOrTypeError : ∀ {ℓ} {E R : Set ℓ} → (E → List ErrorPart) → RTC E R → TC R
runRtcOrTypeError error = tryRunRTC >=> result (typeError ∘ error) return
typeError′ : ∀ {ℓ} {E R : Set ℓ} → List ErrorPart → RTC E R
typeError′ = liftTC ∘ typeError
--------------------------------------------------------------------------------
-- Macros that aid debugging
--------------------------------------------------------------------------------
runTCTy : ∀ ℓ → Type → Term → Term → TC ⊤
runTCTy ℓ at-type tc-term target =
unquoteTC at-type >>=′ λ (ty : Set ℓ) →
unquoteTC tc-term >>=′ λ (TCx : TC ty) →
TCx >>=′
quoteTC >>=′
unify target
macro
-- Quotes a term and expands to its reified syntax tree as a `Term`.
quote-term : Term → Term → TC ⊤
quote-term term target = quoteTC term >>= unify target
-- Runs a TC operation and splices its result into the expression. Only works
-- with operations in Set₀.
runTCTy′ : ∀ {ℓ} → Type → Term → Term → TC ⊤
runTCTy′ {ℓ} = runTCTy ℓ
runTC : ∀ {ℓ} → Term → Term → TC ⊤
runTC {ℓ} tc-term target =
inferType target >>=′
unquoteTC >>=′ λ (ty : Set ℓ) →
unquoteTC tc-term >>=′ λ (TCx : TC ty) →
TCx >>=′
quoteTC >>=′
unify target
| {
"alphanum_fraction": 0.4531572689,
"avg_line_length": 29.7560521415,
"ext": "agda",
"hexsha": "e8090258c3e48a4b9dfac59d809ce8f66a99a17c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z",
"max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-holes",
"max_forks_repo_path": "src/Holes/Prelude.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-holes",
"max_issues_repo_path": "src/Holes/Prelude.agda",
"max_line_length": 131,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-holes",
"max_stars_repo_path": "src/Holes/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z",
"num_tokens": 5447,
"size": 15979
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Reflexivity
open import Oscar.Class.Smap
open import Oscar.Class.Surjextensionality
open import Oscar.Class.Surjidentity
open import Oscar.Class.Surjtranscommutativity
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Transitivity
open import Oscar.Class.Thickandthin
open import Oscar.Class.IsPrefunctor
open import Oscar.Class.IsFunctor
open import Oscar.Data.Maybe
open import Oscar.Data.¶
open import Oscar.Data.Fin
open import Oscar.Data.Proposequality
open import Oscar.Data.Substitunction
open import Oscar.Data.Term
open import Oscar.Data.Substitist
open import Oscar.Data.Descender
import Oscar.Property.Setoid.Proposextensequality
import Oscar.Property.Functor.SubstitunctionExtensionTerm
import Oscar.Property.Category.AListProposequality
import Oscar.Property.Category.ExtensionProposextensequality
import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality
import Oscar.Class.HasEquivalence.Substitunction
import Oscar.Class.Surjection.⋆
module Oscar.Property.Functor.SubstitistProposequalitySubstitunctionProposextensequality where
module _ {𝔭} {𝔓 : Ø 𝔭} where
open Substitunction 𝔓
open Term 𝔓
open Substitist 𝔓
_for_ : ∀ {n} (t' : Term n) (x : Fin (↑ n)) → Fin (↑ n) → Term n
(t for x) y = maybe′ ε t (check[ Maybe ] x y)
instance
𝓢urjectivitySubstitist,Substitunction : Smap.class Substitist Substitunction ¡ ¡
𝓢urjectivitySubstitist,Substitunction .⋆ _ _ ∅ = i
𝓢urjectivitySubstitist,Substitunction .⋆ _ _ ((x , t) , σ) = 𝓢urjectivitySubstitist,Substitunction .⋆ _ _ σ ∙ (t for x)
𝓢urjextensionalitySubstitist,Substitunction : Surjextensionality.class Substitist Proposequality Substitunction _≈_ ¡ smap
𝓢urjextensionalitySubstitist,Substitunction .⋆ _ _ _ _ ∅ _ = ∅
𝓢urjtranscommutativitySubstitist,Substitunction : Surjtranscommutativity.class Substitist Substitunction _≈_ smap transitivity transitivity
𝓢urjtranscommutativitySubstitist,Substitunction .⋆ ∅ _ _ = ∅
𝓢urjtranscommutativitySubstitist,Substitunction .⋆ ((π₀ , π₁) , f) g =
let _⟪∙⟫′_ = flip (𝓢urjtranscommutativitySubstitist,Substitunction .⋆) in -- kludge for Agda's termination checker
(
§ g ⟪∙⟫ §[ Substitunction ] f
∙
⟪ g ⟪∙⟫′ f ⟫[ Proposextensequality ]
)
∘
π₁ for π₀
IsPrefunctorSubstitist,Substitunction : IsPrefunctor Substitist Proposequality transitivity Substitunction _≈_ transitivity smap
IsPrefunctorSubstitist,Substitunction = ∁
𝓢urjidentitySubstitist,Substitunction : Surjidentity.class Substitist Substitunction _≈_ smap ε ε
𝓢urjidentitySubstitist,Substitunction .⋆ _ = ∅
IsFunctorSubstitist,Substitunction : IsFunctor Substitist Proposequality ε transitivity Substitunction _≈_ ε transitivity smap
IsFunctorSubstitist,Substitunction = ∁
| {
"alphanum_fraction": 0.7791983414,
"avg_line_length": 40.1944444444,
"ext": "agda",
"hexsha": "09c38133265d08162f7f2c7bc592430597fc00ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitistProposequalitySubstitunctionProposextensequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitistProposequalitySubstitunctionProposextensequality.agda",
"max_line_length": 143,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Functor/SubstitistProposequalitySubstitunctionProposextensequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 907,
"size": 2894
} |
{-# OPTIONS --without-K #-}
module Substream (A : Set) where
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PE
open import PropsAsTypes
open import Stream
open Bisim A
open ~-Reasoning
mutual
record Sel : Set where
coinductive
field out : Selμ
data Selμ : Set where
pres : Sel → Selμ
drop : Selμ → Selμ
open Sel public
filterμ : Selμ → Stream A → Stream A
filter : Sel → Stream A → Stream A
filter x = filterμ (x .out)
filterμ (pres x) s .hd = s .hd
filterμ (pres x) s .tl = filter x (s .tl)
filterμ (drop u) s = filterμ u (s .tl)
_≤[_]_ : Stream A → Sel → Stream A → Prop
s ≤[ x ] t = s ~ filter x t
_≤μ[_]_ : Stream A → Selμ → Stream A → Prop
s ≤μ[ u ] t = s ~ filterμ u t
_≤'_ : Stream A → Stream A → Prop
s ≤' t = ∃[ x ∈ Sel ] (s ≤[ x ] t)
_•_ : Sel → Sel → Sel
_•μ_ : Selμ → Selμ → Selμ
(x • y) .out = (x .out) •μ (y .out)
(pres x') •μ (pres y') = pres (x' • y')
(drop u') •μ (pres y') = drop (u' •μ (y' .out))
u •μ (drop v') = drop (u •μ v')
filter-hom : ∀ x y s → filter (y • x) s ~ filter y (filter x s)
filterμ-hom : ∀ u v s → filterμ (v •μ u) s ~ filterμ v (filterμ u s)
filter-hom x y s = filterμ-hom (x .out) (y .out) s
filterμ-hom (pres x) (pres y) s .hd≡ = refl
filterμ-hom (pres x) (pres y) s .tl~ = filter-hom x y (s .tl)
filterμ-hom (pres x) (drop v) s = filterμ-hom (x .out) v (s .tl)
filterμ-hom (drop u) (pres x) s = filterμ-hom u (pres x) (s .tl)
filterμ-hom (drop u) (drop v) s = filterμ-hom u (drop v) (s .tl)
filter-resp~ : ∀{s t} (x : Sel) → s ~ t → filter x s ~ filter x t
filterμ-resp~ : ∀{s t} (u : Selμ) → s ~ t → filterμ u s ~ filterμ u t
filter-resp~ x p = filterμ-resp~ (x .out) p
filterμ-resp~ (pres x) p .hd≡ = p .hd≡
filterμ-resp~ (pres x) p .tl~ = filter-resp~ x (p .tl~)
filterμ-resp~ (drop u) p = filterμ-resp~ u (p .tl~)
≤-witness-trans : ∀{r s t} {x y} → r ≤[ x ] s → s ≤[ y ] t → r ≤[ x • y ] t
≤-witness-trans {r} {s} {t} {x} {y} p q =
begin
r
~⟨ p ⟩
filter x s
~⟨ filter-resp~ x q ⟩
filter x (filter y t)
~⟨ S.sym (filter-hom y x t) ⟩
filter (x • y) t
∎
where
module S = Setoid stream-setoid
≤'-trans : ∀{r s t} → r ≤' s → s ≤' t → r ≤' t
≤'-trans = ∃₂-elim (λ x y p q →
∃-intro (x • y) (≤-witness-trans {x = x} {y} p q))
mutual
record _≤_ (s t : Stream A) : Prop where
coinductive
field out≤ : s ≤μ t
data _≤μ_ (s t : Stream A) : Prop where
match : (s .hd ≡ t .hd) → (s .tl ≤ t .tl) → s ≤μ t
skip : (s ≤μ t .tl) → s ≤μ t
open _≤_ public
witness : {s t : Stream A} → s ≤ t → Sel
witnessμ : {s t : Stream A} → s ≤μ t → Selμ
witness p .out = witnessμ (p .out≤)
witnessμ (match _ t≤) = pres (witness t≤)
witnessμ (skip u) = drop (witnessμ u)
≤-implies-witnessed≤ : ∀{s t} → (p : s ≤ t) → s ≤[ witness p ] t
≤μ-implies-witnessed≤μ : ∀{s t} → (p : s ≤μ t) → s ≤μ[ witnessμ p ] t
≤-implies-witnessed≤ {s} {t} p = ≤μ-implies-witnessed≤μ (p .out≤)
≤μ-implies-witnessed≤μ (match h≡ t≤) .hd≡ = h≡
≤μ-implies-witnessed≤μ (match h≡ t≤) .tl~ = ≤-implies-witnessed≤ t≤
≤μ-implies-witnessed≤μ (skip q) = ≤μ-implies-witnessed≤μ q
≤-implies-≤' : _≤_ ⊑ _≤'_
≤-implies-≤' p = ∃-intro (witness p) (≤-implies-witnessed≤ p)
witnessed≤-implies-≤ : ∀{s t} (x : Sel) → s ≤[ x ] t → s ≤ t
witnessed≤μ-implies-≤μ : ∀{s t} (u : Selμ) → s ≤μ[ u ] t → s ≤μ t
witnessed≤-implies-≤ x p .out≤ = witnessed≤μ-implies-≤μ (x .out) p
witnessed≤μ-implies-≤μ (pres x) p = match (p .hd≡) (witnessed≤-implies-≤ x (p .tl~))
witnessed≤μ-implies-≤μ (drop u) p = skip (witnessed≤μ-implies-≤μ u p)
≤'-implies-≤ : _≤'_ ⊑ _≤_
≤'-implies-≤ = ∃-elim witnessed≤-implies-≤
≤-and-≤'-equivalent : ∀ {s t} → s ≤ t ⇔ s ≤' t
≤-and-≤'-equivalent = equivalence ≤-implies-≤' ≤'-implies-≤
≤-trans : ∀{r s t} → r ≤ s → s ≤ t → r ≤ t
≤-trans p q = ≤'-implies-≤ (≤'-trans (≤-implies-≤' p) (≤-implies-≤' q))
| {
"alphanum_fraction": 0.5401921132,
"avg_line_length": 29.0882352941,
"ext": "agda",
"hexsha": "ca4d5a0e83f003efadc1b3bd9a578f1c19828a8a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Lecture/Substream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Lecture/Substream.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Lecture/Substream.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1814,
"size": 3956
} |
module Structure.Category.Functor.Functors.Proofs where
import Functional as Fn
import Function.Equals
open Function.Equals.Dependent
open import Function.Equals.Proofs
open import Logic.Predicate
open import Logic.Propositional
import Lvl
open import Relator.Equals.Proofs.Equivalence
open import Structure.Category
open import Structure.Category.Functor
open import Structure.Category.Functor.Equiv
open import Structure.Category.Functor.Functors
open import Structure.Category.Morphism.IdTransport
open import Structure.Category.NaturalTransformation
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
private variable ℓₒ ℓₘ ℓₑ : Lvl.Level
private variable A B C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}
open CategoryObject
open Category ⦃ … ⦄
open Functor ⦃ … ⦄
module _ where
open Wrapped
-- TODO: Prove transport-of-congruenced-bifunctor
[∘ᶠᵘⁿᶜᵗᵒʳ]-binaryOperator : BinaryOperator(_∘ᶠᵘⁿᶜᵗᵒʳ_ {A = A}{B = B}{C = C})
_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (BinaryOperator.congruence ([∘ᶠᵘⁿᶜᵗᵒʳ]-binaryOperator {A = A} {B = B} {C = C}) {[∃]-intro F₁} {[∃]-intro F₂} {[∃]-intro G₁} {[∃]-intro G₂} (intro fp₁ mp₁) (intro fp₂ mp₂)) = congruence₂(Fn._∘_) ⦃ [⊜][∘]-binaryOperator ⦃ function = [≡]-function ⦄ ⦄ fp₁ fp₂ where
instance _ = [≡]-equiv {T = Object(B)}
instance _ = [≡]-equiv {T = Object(C)}
NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (BinaryOperator.congruence ([∘ᶠᵘⁿᶜᵗᵒʳ]-binaryOperator {A = A} {B = B} {C = C}) {[∃]-intro F₁}{[∃]-intro F₂} {[∃]-intro G₁}{[∃]-intro G₂} (intro fp₁ mp₁) (intro fp₂ mp₂))) {x}{y} {f} = anything {-
transport C (_⊜_.proof (congruence₂(Fn._∘_) ⦃ [⊜][∘]-binaryOperator ⦃ function = [≡]-function _ ⦄ ⦄ fp₁ fp₂)) ∘ map(map f) 🝖-[ {!x₂ y₂!} ]
map(map f) ∘ transport C ([≡]-with-op (Object C) (λ v v₁ → {!v!}) (_⊜_.proof fp₁) (_⊜_.proof fp₂)) 🝖-[ {!!} ]
map(map f) ∘ transport C (_⊜_.proof (congruence₂(Fn._∘_) ⦃ [⊜][∘]-binaryOperator ⦃ function = [≡]-function _ ⦄ ⦄ fp₁ fp₂)) 🝖-end-}
where
postulate anything : ∀{ℓ}{a : Type{ℓ}} → a
open module MorphismEquivB {x}{y} = Equiv(morphism-equiv B {x}{y}) using () renaming (_≡_ to _≡B_)
open module MorphismEquivC {x}{y} = Equiv(morphism-equiv C {x}{y}) using () renaming (_≡_ to _≡C_)
instance _ = category A
instance _ = category B
instance _ = category C
instance _ = [≡]-equiv {T = Object B}
instance _ = [≡]-equiv {T = Object C}
-- [≡]-with-op
instance
[∘ᶠᵘⁿᶜᵗᵒʳ]-identityₗ : Morphism.Identityₗ {Obj = CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} (\{A} → _∘ᶠᵘⁿᶜᵗᵒʳ_ {A = A})(idᶠᵘⁿᶜᵗᵒʳ)
_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Morphism.Identityₗ.proof ([∘ᶠᵘⁿᶜᵗᵒʳ]-identityₗ) {y = B}) = reflexivity(_⊜_) where
instance _ = [≡]-equiv {T = Object(B)}
NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Morphism.Identityₗ.proof [∘ᶠᵘⁿᶜᵗᵒʳ]-identityₗ {A} {B} {[∃]-intro F})) {x} {y} {f} =
id ∘ map f 🝖-[ Morphism.identityₗ(_∘_)(id) ]
map f 🝖-[ Morphism.identityᵣ(_∘_)(id) ]-sym
map f ∘ id 🝖-end
where
open module MorphismEquivB {x}{y} = Equiv(morphism-equiv B {x}{y}) using () renaming (_≡_ to _≡B_)
instance _ = category A
instance _ = category B
instance
[∘ᶠᵘⁿᶜᵗᵒʳ]-identityᵣ : Morphism.Identityᵣ {Obj = CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} (\{A} → _∘ᶠᵘⁿᶜᵗᵒʳ_ {A = A})(idᶠᵘⁿᶜᵗᵒʳ)
_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Morphism.Identityᵣ.proof ([∘ᶠᵘⁿᶜᵗᵒʳ]-identityᵣ) {y = B}) = reflexivity(_⊜_) where
instance _ = [≡]-equiv {T = Object(B)}
NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Morphism.Identityᵣ.proof [∘ᶠᵘⁿᶜᵗᵒʳ]-identityᵣ {A} {B} {[∃]-intro F})) {x} {y} {f} =
id ∘ map f 🝖-[ Morphism.identityₗ(_∘_)(id) ]
map f 🝖-[ Morphism.identityᵣ(_∘_)(id) ]-sym
map f ∘ id 🝖-end
where
open module MorphismEquivB {x}{y} = Equiv(morphism-equiv B {x}{y}) using () renaming (_≡_ to _≡B_)
instance _ = category A
instance _ = category B
instance
[∘ᶠᵘⁿᶜᵗᵒʳ]-identity : Morphism.Identity {Obj = CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} (\{A} → _∘ᶠᵘⁿᶜᵗᵒʳ_ {A = A})(idᶠᵘⁿᶜᵗᵒʳ)
[∘ᶠᵘⁿᶜᵗᵒʳ]-identity = [∧]-intro [∘ᶠᵘⁿᶜᵗᵒʳ]-identityₗ [∘ᶠᵘⁿᶜᵗᵒʳ]-identityᵣ
instance
[∘ᶠᵘⁿᶜᵗᵒʳ]-associativity : Morphism.Associativity {Obj = CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} (\{A B C} → _∘ᶠᵘⁿᶜᵗᵒʳ_ {A = A}{B = B}{C = C})
_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Morphism.Associativity.proof [∘ᶠᵘⁿᶜᵗᵒʳ]-associativity {w = D}) = reflexivity(_⊜_) where
instance _ = [≡]-equiv {T = Object(D)}
NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Morphism.Associativity.proof [∘ᶠᵘⁿᶜᵗᵒʳ]-associativity {A}{B}{C}{D} {[∃]-intro F}{[∃]-intro G}{[∃]-intro H})) {x}{y}{f} =
id ∘ map(map(map f)) 🝖-[ Morphism.identityₗ(_∘_)(id) ]
map(map(map f)) 🝖-[ Morphism.identityᵣ(_∘_)(id) ]-sym
map(map(map f)) ∘ id 🝖-end
where
open module MorphismEquivₗ {x}{y} = Equiv(morphism-equiv D {x}{y}) using () renaming (_≡_ to _≡D_)
instance _ = category A
instance _ = category B
instance _ = category C
instance _ = category D
| {
"alphanum_fraction": 0.6433108758,
"avg_line_length": 51.95,
"ext": "agda",
"hexsha": "472a1bc909bbde98d24f4a4cadddb98ce0aa2894",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Functor/Functors/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Functor/Functors/Proofs.agda",
"max_line_length": 288,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Functor/Functors/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2438,
"size": 5195
} |
-- Andreas, 2015-06-28, issue reported by Nisse
{-# OPTIONS -vtc.pos.occ:20 #-} -- KEEP!, this triggered the __IMPOSSIBLE__
-- {-# OPTIONS -vtc.pos.occ:70 -v tc.rec:80 --show-implicit #-}
data ⊥ : Set where
F : ⊥ → Set
F ()
record R (i : ⊥) : Set₁ where
constructor c
field
P Q : F i → Set
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/Syntax/Translation/InternalToAbstract.hs:874
-- The error is triggered by the use of prettyTCM in
-- Agda.TypeChecking.Positivity.getOccurrences.
-- tel = (_ : Prop) (_ : Prop) -- WRONG
-- perm = id
-- ps = (c x x : R @0) _
-- body = λ x _y _z -> x _z
-- type = F @1 → Set
| {
"alphanum_fraction": 0.635431918,
"avg_line_length": 24.3928571429,
"ext": "agda",
"hexsha": "1a24c51dccfa2425389ea2040d1f65544564f6fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1595.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1595.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1595.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 224,
"size": 683
} |
open import Agda.Builtin.Nat
f : Nat
f with zero
... | n with (suc n)
... | m = m
| {
"alphanum_fraction": 0.578313253,
"avg_line_length": 11.8571428571,
"ext": "agda",
"hexsha": "96ad7bc5b45be99a746af32de60a90ed2844ac00",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue4704-nested-with.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue4704-nested-with.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue4704-nested-with.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 83
} |
data Li : (a : Set) -> Set where
Ni : {a : Set} -> Li a
Co : {a : Set} -> a -> Li a -> Li a
{-# BUILTIN NATURAL name #-}
t : Li (Set 2) -> Set 1
t li = Set 1
| {
"alphanum_fraction": 0.4606060606,
"avg_line_length": 16.5,
"ext": "agda",
"hexsha": "89e88ed365ff096d8c4ef74c475ed36260ba34a0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hjorthjort/IdrisToAgda",
"max_forks_repo_path": "univ_old.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_issues_repo_issues_event_max_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hjorthjort/IdrisToAgda",
"max_issues_repo_path": "univ_old.agda",
"max_line_length": 37,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hjorthjort/IdrisToAgda",
"max_stars_repo_path": "univ_old.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-29T20:42:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-16T23:22:50.000Z",
"num_tokens": 69,
"size": 165
} |
------------------------------------------------------------------------
-- Recognisers form a Kleene algebra
------------------------------------------------------------------------
module TotalRecognisers.LeftRecursion.KleeneAlgebra (Tok : Set) where
open import Algebra
import Algebra.Properties.BooleanAlgebra
open import Codata.Musical.Notation
open import Data.Bool hiding (_∧_; _≤_)
import Data.Bool.Properties as Bool
private
module BoolCS = CommutativeSemiring Bool.∨-∧-commutativeSemiring
module BoolBA = Algebra.Properties.BooleanAlgebra
Bool.∨-∧-booleanAlgebra
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (_⇔_; equivalence)
open import Data.List
open import Data.List.Properties
private
module ListMonoid {A : Set} = Monoid (++-monoid A)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product as Prod
open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; _≗_)
open import Relation.Nullary
import TotalRecognisers.LeftRecursion
open TotalRecognisers.LeftRecursion Tok hiding (left-zero)
import TotalRecognisers.LeftRecursion.Lib
open TotalRecognisers.LeftRecursion.Lib Tok
open ⊙ using (_⊙′_)
open KleeneStar₂
------------------------------------------------------------------------
-- The relation _≤_ is a partial order with respect to _≈_
module PartialOrder where
reflexive : ∀ {n} {p : P n} → p ≤ p
reflexive = id
trans : ∀ {n₁ n₂ n₃} {p₁ : P n₁} {p₂ : P n₂} {p₃ : P n₃} →
p₁ ≤ p₂ → p₂ ≤ p₃ → p₁ ≤ p₃
trans p₁≤p₂ p₂≤p₃ = p₂≤p₃ ∘ p₁≤p₂
antisym : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≤ p₂ → p₂ ≤ p₁ → p₁ ≈ p₂
antisym p₁≤p₂ p₂≤p₁ = equivalence p₁≤p₂ p₂≤p₁
------------------------------------------------------------------------
-- The relation _≈_ is an equality, i.e. a congruential equivalence
-- relation
module Equivalence where
reflexive : ∀ {n} {p : P n} → p ≈ p
reflexive = Eq.id
sym : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} → p₁ ≈ p₂ → p₂ ≈ p₁
sym p₁≈p₂ = Eq.sym p₁≈p₂
trans : ∀ {n₁ n₂ n₃} {p₁ : P n₁} {p₂ : P n₂} {p₃ : P n₃} →
p₁ ≈ p₂ → p₂ ≈ p₃ → p₁ ≈ p₃
trans p₁≈p₂ p₂≈p₃ = Eq._∘_ p₂≈p₃ p₁≈p₂
♭♯-cong : ∀ {n₁ n₂} b₁ b₂ {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ → ♭? (♯? {b₁} p₁) ≈ ♭? (♯? {b₂} p₂)
♭♯-cong b₁ b₂ {p₁} {p₂} rewrite ♭?♯? b₁ {p = p₁} | ♭?♯? b₂ {p = p₂} = id
fail-cong : fail ≈ fail
fail-cong = Equivalence.reflexive
empty-cong : empty ≈ empty
empty-cong = Equivalence.reflexive
sat-cong : {f₁ f₂ : Tok → Bool} → f₁ ≗ f₂ → sat f₁ ≈ sat f₂
sat-cong f₁≗f₂ = equivalence (helper f₁≗f₂) (helper (P.sym ∘ f₁≗f₂))
where
helper : {f₁ f₂ : Tok → Bool} → f₁ ≗ f₂ → sat f₁ ≤ sat f₂
helper f₁≗f₂ (sat ok) = sat (P.subst T (f₁≗f₂ _) ok)
∣-cong : ∀ {n₁ n₂ n₃ n₄}
{p₁ : P n₁} {p₂ : P n₂} {p₃ : P n₃} {p₄ : P n₄} →
p₁ ≈′ p₃ → p₂ ≈′ p₄ → p₁ ∣ p₂ ≈′ p₃ ∣ p₄
∣-cong (refl ∷ rest₁) (refl ∷ rest₂) =
refl ∷ λ t → ♯ ∣-cong (♭ (rest₁ t)) (♭ (rest₂ t))
·-cong : ∀ {n₁ n₂ n₃ n₄}
{p₁ : ∞⟨ n₂ ⟩P n₁} {p₂ : ∞⟨ n₁ ⟩P n₂}
{p₃ : ∞⟨ n₄ ⟩P n₃} {p₄ : ∞⟨ n₃ ⟩P n₄} →
♭? p₁ ≈ ♭? p₃ → ♭? p₂ ≈ ♭? p₄ → p₁ · p₂ ≈ p₃ · p₄
·-cong p₁≈p₃ p₂≈p₄ =
Eq.Equivalence.from ≈⇔≤≥ ⟨$⟩
Prod.zip helper helper
(Eq.Equivalence.to ≈⇔≤≥ ⟨$⟩ p₁≈p₃)
(Eq.Equivalence.to ≈⇔≤≥ ⟨$⟩ p₂≈p₄)
where
helper : ∀ {n₁ n₂ n₃ n₄}
{p₁ : ∞⟨ n₂ ⟩P n₁} {p₂ : ∞⟨ n₁ ⟩P n₂}
{p₃ : ∞⟨ n₄ ⟩P n₃} {p₄ : ∞⟨ n₃ ⟩P n₄} →
♭? p₁ ≤ ♭? p₃ → ♭? p₂ ≤ ♭? p₄ → p₁ · p₂ ≤ p₃ · p₄
helper ₁≤₃ ₂≤₄ (∈p₁ · ∈p₂) = ₁≤₃ ∈p₁ · ₂≤₄ ∈p₂
⊙-cong : ∀ {n₁ n₂ n₃ n₄}
{p₁ : P n₁} {p₂ : P n₂} {p₃ : P n₃} {p₄ : P n₄} →
p₁ ≈ p₃ → p₂ ≈ p₄ → p₁ ⊙ p₂ ≈ p₃ ⊙ p₄
⊙-cong {n₁} {n₂} {n₃} {n₄} ₁≈₃ ₂≈₄ =
·-cong (♭♯-cong n₂ n₄ ₁≈₃) (♭♯-cong n₁ n₃ ₂≈₄)
nonempty-cong : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈′ p₂ → nonempty p₁ ≈′ nonempty p₂
nonempty-cong (_ ∷ rest) = refl ∷ rest
cast-cong : ∀ {n₁ n₂ n₁′ n₂′}
{p₁ : P n₁} {p₂ : P n₂}
{eq₁ : n₁ ≡ n₁′} {eq₂ : n₂ ≡ n₂′} →
p₁ ≈′ p₂ → cast eq₁ p₁ ≈′ cast eq₂ p₂
cast-cong {eq₁ = refl} {refl} (init ∷ rest) = init ∷ rest
⋆-cong : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ → p₁ ⋆ ≈ p₂ ⋆
⋆-cong p₁≈p₂ = Eq.Equivalence.from ≈⇔≤≥ ⟨$⟩
Prod.map helper helper
(Eq.Equivalence.to ≈⇔≤≥ ⟨$⟩ p₁≈p₂)
where
helper : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≤ p₂ → p₁ ⋆ ≤ p₂ ⋆
helper p₁≤p₂ (∣-left empty) = ∣-left empty
helper p₁≤p₂ (∣-right (nonempty ∈p₁ · ∈p₁⋆)) =
∣-right {p₁ = empty} (nonempty (p₁≤p₂ ∈p₁) · helper p₁≤p₂ ∈p₁⋆)
^-cong : ∀ {n₁ n₂ i₁ i₂} {p₁ : P n₁} {p₂ : P n₂} →
p₁ ≈ p₂ → i₁ ≡ i₂ → p₁ ^ i₁ ≈ p₂ ^ i₂
^-cong {i₁ = i} p₁≈p₂ refl =
Eq.Equivalence.from ≈⇔≤≥ ⟨$⟩
Prod.map (helper i) (helper i)
(Eq.Equivalence.to ≈⇔≤≥ ⟨$⟩ p₁≈p₂)
where
helper : ∀ {n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} i →
p₁ ≤ p₂ → p₁ ^ i ≤ p₂ ^ i
helper zero p₁≤p₂ empty = empty
helper {n₁} {n₂} (suc i) p₁≤p₂ ∈p₁⊙p₁ⁱ
with ⊙.sound ⟨ n₁ ^ i ⟩-nullable ∈p₁⊙p₁ⁱ
... | ∈p₁ ⊙′ ∈p₁ⁱ = ⊙.complete (p₁≤p₂ ∈p₁) (helper i p₁≤p₂ ∈p₁ⁱ)
------------------------------------------------------------------------
-- A variant of _≤_
infix 4 _≲_
-- If _∣_ is viewed as the join operation of a join-semilattice, then
-- the following definition of order is natural.
_≲_ : ∀ {n₁ n₂} → P n₁ → P n₂ → Set
p₁ ≲ p₂ = p₁ ∣ p₂ ≈ p₂
-- The order above coincides with _≤_.
≤⇔≲ : ∀ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) → p₁ ≤ p₂ ⇔ p₁ ≲ p₂
≤⇔≲ {n₁} p₁ p₂ =
equivalence
(λ (p₁≤p₂ : p₁ ≤ p₂) {_} →
equivalence (helper p₁≤p₂) (∣-right {n₁ = n₁}))
(λ (p₁≲p₂ : p₁ ≲ p₂) s∈p₁ → Eq.Equivalence.to p₁≲p₂ ⟨$⟩ ∣-left s∈p₁)
where
helper : p₁ ≤ p₂ → p₁ ∣ p₂ ≤ p₂
helper p₁≤p₂ (∣-left s∈p₁) = p₁≤p₂ s∈p₁
helper p₁≤p₂ (∣-right s∈p₂) = s∈p₂
------------------------------------------------------------------------
-- Recognisers form a *-continuous Kleene algebra
-- The definition of *-continuous Kleene algebras used here is the one
-- given by Kozen in "On Kleene Algebras and Closed Semirings", except
-- for the presence of the recogniser indices. Kozen used the order
-- _≲_ in his definition, but as shown above this order is equivalent
-- to _≤_.
-- Additive idempotent commutative monoid. (One of the identity lemmas
-- could be omitted.)
∣-commutative : ∀ {n₁ n₂} (p₁ : P n₁) (p₂ : P n₂) → p₁ ∣ p₂ ≈′ p₂ ∣ p₁
∣-commutative {n₁} {n₂} p₁ p₂ =
BoolCS.+-comm n₁ n₂ ∷ λ t → ♯ ∣-commutative (D t p₁) (D t p₂)
fail-left-identity : ∀ {n} (p : P n) → fail ∣ p ≈′ p
fail-left-identity p = refl ∷ λ t → ♯ fail-left-identity (D t p)
fail-right-identity : ∀ {n} (p : P n) → p ∣ fail ≈′ p
fail-right-identity {n} p =
proj₂ BoolCS.+-identity n ∷ λ t → ♯ fail-right-identity (D t p)
∣-associative : ∀ {n₁ n₂ n₃} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) →
p₁ ∣ (p₂ ∣ p₃) ≈′ (p₁ ∣ p₂) ∣ p₃
∣-associative {n₁} {n₂} {n₃} p₁ p₂ p₃ =
P.sym (BoolCS.+-assoc n₁ n₂ n₃) ∷ λ t →
♯ ∣-associative (D t p₁) (D t p₂) (D t p₃)
∣-idempotent : ∀ {n} (p : P n) → p ∣ p ≈′ p
∣-idempotent {n} p =
BoolBA.∨-idempotent n ∷ λ t → ♯ ∣-idempotent (D t p)
-- Multiplicative monoid.
empty-left-identity : ∀ {n} (p : P n) → empty ⊙ p ≈ p
empty-left-identity {n} p =
equivalence helper (λ s∈p → ⊙.complete empty s∈p)
where
helper : empty ⊙ p ≤ p
helper ∈empty⊙p with ⊙.sound n ∈empty⊙p
... | empty ⊙′ s∈p = s∈p
empty-right-identity : ∀ {n} (p : P n) → p ⊙ empty ≈ p
empty-right-identity {n} p =
equivalence
helper
(λ s∈p → cast∈ (proj₂ ListMonoid.identity _) refl
(⊙.complete s∈p empty))
where
helper : ∀ {s} → s ∈ p ⊙ empty → s ∈ p
helper ∈p⊙empty with ⊙.sound true ∈p⊙empty
helper ∈p⊙empty | ∈p ⊙′ empty =
cast∈ (P.sym (proj₂ ListMonoid.identity _)) refl ∈p
·-associative : ∀ {n₁ n₂ n₃} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) →
p₁ ⊙ (p₂ ⊙ p₃) ≈ (p₁ ⊙ p₂) ⊙ p₃
·-associative {n₁} {n₂} {n₃} p₁ p₂ p₃ = equivalence helper₁ helper₂
where
helper₁ : p₁ ⊙ (p₂ ⊙ p₃) ≤ (p₁ ⊙ p₂) ⊙ p₃
helper₁ ∈⊙⊙ with ⊙.sound (n₂ ∧ n₃) ∈⊙⊙
... | _⊙′_ {s₁ = s₁} ∈p₁ ∈⊙ with ⊙.sound n₃ ∈⊙
... | ∈p₂ ⊙′ ∈p₃ =
cast∈ (ListMonoid.assoc s₁ _ _) refl $
⊙.complete (⊙.complete ∈p₁ ∈p₂) ∈p₃
helper₂ : (p₁ ⊙ p₂) ⊙ p₃ ≤ p₁ ⊙ (p₂ ⊙ p₃)
helper₂ ∈⊙⊙ with ⊙.sound n₃ ∈⊙⊙
... | ∈⊙ ⊙′ ∈p₃ with ⊙.sound n₂ ∈⊙
... | _⊙′_ {s₁ = s₁} ∈p₁ ∈p₂ =
cast∈ (P.sym $ ListMonoid.assoc s₁ _ _) refl $
⊙.complete ∈p₁ (⊙.complete ∈p₂ ∈p₃)
-- Distributivity.
left-distributive :
∀ {n₁ n₂ n₃} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) →
p₁ ⊙ (p₂ ∣ p₃) ≈ p₁ ⊙ p₂ ∣ p₁ ⊙ p₃
left-distributive {n₁} {n₂} {n₃} p₁ p₂ p₃ = equivalence helper₁ helper₂
where
helper₁ : p₁ ⊙ (p₂ ∣ p₃) ≤ p₁ ⊙ p₂ ∣ p₁ ⊙ p₃
helper₁ ∈⊙∣ with ⊙.sound (n₂ ∨ n₃) ∈⊙∣
... | ∈p₁ ⊙′ ∣-left ∈p₂ = ∣-left $ ⊙.complete ∈p₁ ∈p₂
... | ∈p₁ ⊙′ ∣-right ∈p₃ = ∣-right {n₁ = n₁ ∧ n₂} $ ⊙.complete ∈p₁ ∈p₃
helper₂ : p₁ ⊙ p₂ ∣ p₁ ⊙ p₃ ≤ p₁ ⊙ (p₂ ∣ p₃)
helper₂ (∣-left ∈⊙) with ⊙.sound n₂ ∈⊙
... | ∈p₁ ⊙′ ∈p₂ = ⊙.complete ∈p₁ (∣-left ∈p₂)
helper₂ (∣-right ∈⊙) with ⊙.sound n₃ ∈⊙
... | ∈p₁ ⊙′ ∈p₃ = ⊙.complete ∈p₁ (∣-right {n₁ = n₂} ∈p₃)
right-distributive :
∀ {n₁ n₂ n₃} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) →
(p₁ ∣ p₂) ⊙ p₃ ≈ p₁ ⊙ p₃ ∣ p₂ ⊙ p₃
right-distributive {n₁} {n₂} {n₃} p₁ p₂ p₃ = equivalence helper₁ helper₂
where
helper₁ : (p₁ ∣ p₂) ⊙ p₃ ≤ p₁ ⊙ p₃ ∣ p₂ ⊙ p₃
helper₁ ∈∣⊙ with ⊙.sound n₃ ∈∣⊙
... | ∣-left ∈p₁ ⊙′ ∈p₃ = ∣-left $ ⊙.complete ∈p₁ ∈p₃
... | ∣-right ∈p₂ ⊙′ ∈p₃ = ∣-right {n₁ = n₁ ∧ n₃} $ ⊙.complete ∈p₂ ∈p₃
helper₂ : p₁ ⊙ p₃ ∣ p₂ ⊙ p₃ ≤ (p₁ ∣ p₂) ⊙ p₃
helper₂ (∣-left ∈⊙) with ⊙.sound n₃ ∈⊙
... | ∈p₁ ⊙′ ∈p₃ = ⊙.complete (∣-left ∈p₁) ∈p₃
helper₂ (∣-right ∈⊙) with ⊙.sound n₃ ∈⊙
... | ∈p₂ ⊙′ ∈p₃ = ⊙.complete (∣-right {n₁ = n₁} ∈p₂) ∈p₃
-- Zero.
left-zero : ∀ {n} (p : P n) → fail ⊙ p ≈ fail
left-zero {n} p = equivalence helper (λ ())
where
helper : fail ⊙ p ≤ fail
helper ∈fail⊙ with ⊙.sound n ∈fail⊙
... | () ⊙′ _
right-zero : ∀ {n} (p : P n) → p ⊙ fail ≈ fail
right-zero {n} p = equivalence helper (λ ())
where
helper : p ⊙ fail ≤ fail
helper ∈⊙fail with ⊙.sound false ∈⊙fail
... | _ ⊙′ ()
-- *-continuity.
*-continuity-upper-bound :
∀ {n₁ n₂ n₃} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) →
∀ i → p₁ ⊙ p₂ ^ i ⊙ p₃ ≤ p₁ ⊙ p₂ ⋆ ⊙ p₃
*-continuity-upper-bound {n₁} {n₂} {n₃} _ _ _ i ∈⊙ⁱ⊙
with ⊙.sound n₃ ∈⊙ⁱ⊙
... | ∈⊙ⁱ ⊙′ ∈p₃ with ⊙.sound ⟨ n₂ ^ i ⟩-nullable ∈⊙ⁱ
... | ∈p₁ ⊙′ ∈p₂ⁱ = ⊙.complete (⊙.complete ∈p₁ (^≤⋆ i ∈p₂ⁱ)) ∈p₃
*-continuity-least-upper-bound :
∀ {n₁ n₂ n₃ n} (p₁ : P n₁) (p₂ : P n₂) (p₃ : P n₃) (p : P n) →
(∀ i → p₁ ⊙ p₂ ^ i ⊙ p₃ ≤ p) → p₁ ⊙ p₂ ⋆ ⊙ p₃ ≤ p
*-continuity-least-upper-bound {n₁} {n₂} {n₃} {n} p₁ p₂ p₃ p ub =
helper ∘ _⟨$⟩_ (Eq.Equivalence.from $ ·-associative p₁ (p₂ ⋆) p₃)
where
helper : p₁ ⊙ (p₂ ⋆ ⊙ p₃) ≤ p
helper ∈⊙⋆⊙ with ⊙.sound (true ∧ n₃) ∈⊙⋆⊙
... | _⊙′_ {s₁ = s₁} ∈p₁ ∈⋆⊙ with ⊙.sound n₃ ∈⋆⊙
... | ∈p₂⋆ ⊙′ ∈p₃ with ⋆≤^ ∈p₂⋆
... | (i , ∈p₂ⁱ) =
cast∈ (ListMonoid.assoc s₁ _ _) refl $
ub i $ ⊙.complete (⊙.complete ∈p₁ ∈p₂ⁱ) ∈p₃
| {
"alphanum_fraction": 0.5150004451,
"avg_line_length": 35.2131661442,
"ext": "agda",
"hexsha": "636c01c5be47c980e18e695b07490e4d84e9d4c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers/LeftRecursion/KleeneAlgebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers/LeftRecursion/KleeneAlgebra.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalRecognisers/LeftRecursion/KleeneAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 5587,
"size": 11233
} |
{-
FP Lunch, Nottingham
July 27, 2007
Conor McBride
-}
module Binary where
data Bit : Set where
O : Bit
I : Bit
infixl 80 _◃_
data Pos : Set where
◃I : Pos
_◃_ : Pos -> Bit -> Pos
bsuc : Pos -> Pos
bsuc ◃I = ◃I ◃ O
bsuc (n ◃ O) = n ◃ I
bsuc (n ◃ I) = bsuc n ◃ O
data Peano : Pos -> Set where
pI : Peano ◃I
psuc : {n : Pos} -> Peano n -> Peano (bsuc n)
pdouble : {n : Pos} -> Peano n -> Peano (n ◃ O)
pdouble pI = psuc pI
pdouble (psuc p) = psuc (psuc (pdouble p))
peano : (n : Pos) -> Peano n
peano ◃I = pI
peano (n ◃ O) = pdouble (peano n)
peano (n ◃ I) = psuc (pdouble (peano n))
-- Slow addition (yay!)
_+_ : Pos -> Pos -> Pos
_+_ n m = peano n ⊕ m
where
_⊕_ : {n : Pos} -> Peano n -> Pos -> Pos
pI ⊕ m = bsuc m
psuc p ⊕ m = bsuc (p ⊕ m)
infixl 60 _+_
infix 40 _==_
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
test : (◃I ◃ I ◃ O ◃ O ◃ O) == (◃I ◃ I ◃ O ◃ I) + (◃I ◃ O ◃ I ◃ I)
test = refl
| {
"alphanum_fraction": 0.5030612245,
"avg_line_length": 18.1481481481,
"ext": "agda",
"hexsha": "f4b88fc4c9a8d10d1d4b7f581b736c762d92c7d3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/Binary.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/Binary.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 455,
"size": 980
} |
module Chain
{A : Set}(_==_ : A -> A -> Set)
(refl : (x : A) -> x == x)
(trans : (x y z : A) -> x == y -> y == z -> x == z)
where
infix 2 chain>_
infixl 2 _===_by_
infix 1 _qed
private
data _≃_ (x y : A) : Set where
prf : x == y -> x ≃ y
chain>_ : (x : A) -> x ≃ x
chain> x = prf (refl x)
_===_by_ : {x y : A} -> x ≃ y -> (z : A) -> y == z -> x ≃ z
prf p === z by q = prf (trans _ _ _ p q)
_qed : {x y : A} -> x ≃ y -> x == y
prf p qed = p
| {
"alphanum_fraction": 0.4157782516,
"avg_line_length": 18.76,
"ext": "agda",
"hexsha": "6fb2703510388b695b36e69b8d6e11856485dfb2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tait/Chain.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tait/Chain.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tait/Chain.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 221,
"size": 469
} |
module Languages.FILL.Syntax where
open import level
open import bool
open import nat
open import unit
open import empty
open import list
open import eq
open import sum
open import Utils.HaskellTypes
open import Utils.HaskellFunctions
open import Languages.FILL.TypeSyntax
True : Set
True = ⊤{lzero}
False : Set
False = ⊥{lzero}
Name : Set
Name = ℕ
name-in : ∀{A : Set} → (A → A → 𝔹) → A → 𝕃 A → Set
name-in eq x ctx with list-member eq x ctx
name-in _ x ctx | tt = True
name-in _ x ctx | ff = False
-- Bound Variable Labels:
data VLabel : Set where
LPV : VLabel -- Let-Bound Left Pattern Variable
RPV : VLabel -- Let-Bound Right Pattern Variable
BV : VLabel -- λ-Bound Variable
_vl-eq_ : VLabel → VLabel → 𝔹
LPV vl-eq LPV = tt
RPV vl-eq RPV = tt
BV vl-eq BV = tt
_ vl-eq _ = ff
data Pattern : Set where
PTriv : Pattern
PTensor : String → String → Pattern
PPar : String → String → Pattern
data Term : Set where
Triv : Term
Void : Term
FVar : String → Term
BVar : Name → String → VLabel → Term
Let : Term → Type → Pattern → Term → Term
Lam : String → Type → Term → Term
App : Term → Term → Term
Tensor : Term → Term → Term
Par : Term → Term → Term
open-t : Name → VLabel → Term → Term → Term
open-t x l u (BVar y ys l') with x =ℕ y | l vl-eq l'
... | tt | tt = u
... | _ | _ = BVar y ys l'
open-t x BV u (Let t₁ y z t₂) = Let (open-t x BV u t₁) y z (open-t x BV u t₂)
open-t x l u (Let t₁ a p t₂) = Let (open-t (suc x) l u t₁) a p (open-t (suc x) l u t₂)
open-t x BV u (Lam ys a t) = Lam ys a (open-t (suc x) BV u t)
open-t x l u (Lam ys a t) = Lam ys a (open-t x l u t)
open-t x l u (App t₁ t₂) = App (open-t x l u t₁) (open-t x l u t₂)
open-t x l u (Tensor t₁ t₂) = Tensor (open-t x l u t₁) (open-t x l u t₂)
open-t x l u (Par t₁ t₂) = Par (open-t x l u t₁) (open-t x l u t₂)
open-t _ _ _ t = t
close-t : Name → String → VLabel → String → Term → Term
close-t x xs l y (FVar z) with y str-eq z
... | tt = BVar x xs l
... | ff = FVar z
close-t x xs l y (Let t₁ ty p t₂) = Let (close-t x xs l y t₁) ty p (close-t x xs l y t₂)
close-t x xs l y (Lam ys a t) = Lam ys a (close-t x xs l y t)
close-t x xs l y (App t₁ t₂) = App (close-t x xs l y t₁) (close-t x xs l y t₂)
close-t x xs l y (Tensor t₁ t₂) = Tensor (close-t x xs l y t₁) (close-t x xs l y t₂)
close-t x xs l y (Par t₁ t₂) = Par (close-t x xs l y t₁) (close-t x xs l y t₂)
close-t _ _ _ _ t = t
data LC : Term → Set where
Triv : LC Triv
Void : LC Void
FVar : ∀{x : String} → LC (FVar x)
Lam : ∀{ns : 𝕃 String}{t : Term}{a : Type}{y : String}
→ LC t
→ (∀{x : String}
→ (name-in _str-eq_ x ns → False)
→ LC (open-t 0 BV (FVar x) t))
→ LC (Lam y a t)
LetTriv : ∀{t₁ : Term}{a : Type}{t₂ : Term}
→ LC t₁
→ LC t₂
→ LC (Let t₁ a PTriv t₂)
LetTensor : ∀{ns : 𝕃 String}{t₁ : Term}{a : Type}{t₂ : Term}{s₁ s₂ : String}
→ LC t₁
→ LC t₂
→ (∀{x y : String}
→ (name-in _str-eq_ x ns → False)
→ (name-in _str-eq_ y ns → False)
→ LC (open-t 0 LPV (FVar x) (open-t 0 RPV (FVar y) t₂)))
→ LC (Let t₁ a (PTensor s₁ s₂) t₂)
LetPar : ∀{ns : 𝕃 String}{t₁ : Term}{a : Type}{t₂ : Term}{s₁ s₂ : String}
→ LC t₁
→ LC t₂
→ (∀{x y : String}
→ (name-in _str-eq_ x ns → False)
→ (name-in _str-eq_ y ns → False)
→ LC (open-t 0 LPV (FVar x) (open-t 0 RPV (FVar y) t₂)))
→ LC (Let t₁ a (PPar s₁ s₂) t₂)
App : ∀{t₁ t₂ : Term}
→ LC t₁
→ LC t₂
→ LC (App t₁ t₂)
Tensor : ∀{t₁ t₂ : Term}
→ LC t₁
→ LC t₂
→ LC (Tensor t₁ t₂)
Par : ∀{t₁ t₂ : Term}
→ LC t₁
→ LC t₂
→ LC (Par t₁ t₂)
| {
"alphanum_fraction": 0.5546331012,
"avg_line_length": 30.1129032258,
"ext": "agda",
"hexsha": "241631f2d9b6ba9619c5577d675af09e4dc9f87c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "heades/Agda-LLS",
"max_forks_repo_path": "Source/ALL/Languages/FILL/Syntax.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "heades/Agda-LLS",
"max_issues_repo_path": "Source/ALL/Languages/FILL/Syntax.agda",
"max_line_length": 88,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "heades/Agda-LLS",
"max_stars_repo_path": "Source/ALL/Languages/FILL/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z",
"num_tokens": 1450,
"size": 3734
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions {{eqrel : EqRelSet}} where
open import Definition.LogicalRelation.Substitution.Introductions.Application public
open import Definition.LogicalRelation.Substitution.Introductions.Lambda public
open import Definition.LogicalRelation.Substitution.Introductions.Nat public
open import Definition.LogicalRelation.Substitution.Introductions.Natrec public
open import Definition.LogicalRelation.Substitution.Introductions.Pi public
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst public
open import Definition.LogicalRelation.Substitution.Introductions.Universe public
| {
"alphanum_fraction": 0.8724559023,
"avg_line_length": 52.6428571429,
"ext": "agda",
"hexsha": "a78b8ff4c4f50f9e3fa3d5f392133b87ab0d7fb4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 142,
"size": 737
} |
open import Agda.Builtin.Equality
cong : ∀{a b} {A : Set a} {B : Set b} (f : A → B) {x y : A} (eq : x ≡ y) → f x ≡ f y
cong f refl = refl
record Category : Set₂ where
field
Ob : Set₁
_⇒_ : Ob → Ob → Set
_∘_ : ∀ {O P Q} → P ⇒ Q → O ⇒ P → O ⇒ Q
-- Moving this out of the record fixes the problem.
idem : {X : Ob} → X ⇒ X → Set₁
idem {X} f = f ∘ f ≡ f → Set
Sets : Category
Sets = record
{ Ob = Set
; _⇒_ = {!!}
; _∘_ = λ f g x → f (g x)
}
open Category Sets
postulate
Y : Ob
f : Y ⇒ Y
idem-f : idem {X = _} f -- Solving the _ fixes the problem
idem-f ff≡f
with ffx≡fx ← cong {!!} ff≡f
= Y
| {
"alphanum_fraction": 0.5039123631,
"avg_line_length": 19.96875,
"ext": "agda",
"hexsha": "bb99a3cf1eb70a3cc94bcdb5f7f9dc9e9cbd969a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5805.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5805.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5805.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 279,
"size": 639
} |
-- Andreas, 2012-01-11, bug reported by Adam Gundry
module Issue551 where
data Bool : Set where
true false : Bool
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
cong : {A B : Set}(f : A → B){a a' : A} → a ≡ a' → f a ≡ f a'
cong f refl = refl
implicit : {A : Set}{{a : A}} -> A
implicit {{a}} = a
record PackBool : Set where
constructor pack
field unpack : Bool
open PackBool
data IrrBool : Set where
irr : .(b : PackBool) -> IrrBool
p : irr (pack true) ≡ irr (pack false)
p = refl
-- The following should fail:
unirr : IrrBool -> PackBool
unirr (irr x) = implicit
-- unirr (irr x) = x gives an error message (as well it should)
-- but using instance arguments circumvents the check.
q : true ≡ false
q = cong (λ x → unpack (unirr x)) p
| {
"alphanum_fraction": 0.6253263708,
"avg_line_length": 21.2777777778,
"ext": "agda",
"hexsha": "e55b39da386d02e7e0fedf9af95ae687e6c3a925",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue551.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue551.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue551.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 269,
"size": 766
} |
module Issue936 where
-- The highlighting generated for this file should not contain
-- any references to Agda.Primitive.
| {
"alphanum_fraction": 0.7967479675,
"avg_line_length": 24.6,
"ext": "agda",
"hexsha": "57c8f0736bd1ffef1c5f9b7c6f9165a049135109",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue936.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue936.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue936.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 123
} |
-- Andreas, 2017-01-18, issue #57
-- reported by Nisse 2008-03-26
data Unit : Set where
unit : Unit
foo : Unit → Unit
foo m with m
foo _ | x@unit with x
foo _ | x@unit | _ = x
test : Unit → Unit
test m with m
test _ | x@unit with x
... | _ = x
| {
"alphanum_fraction": 0.6144578313,
"avg_line_length": 15.5625,
"ext": "agda",
"hexsha": "3c60a64ce428b6cb1221f54f6b9582e0c8852391",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue57.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue57.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue57.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 96,
"size": 249
} |
------------------------------------------------------------------------
-- Rational numbers
------------------------------------------------------------------------
module Data.Rational where
open import Data.Bool.Properties
open import Data.Function
open import Data.Integer hiding (suc) renaming (_*_ to _ℤ*_)
open import Data.Integer.Divisibility as ℤDiv using (Coprime)
import Data.Integer.Properties as ℤ
open import Data.Nat.Divisibility as ℕDiv using (_∣_)
import Data.Nat.Coprimality as C
open import Data.Nat as ℕ renaming (_*_ to _ℕ*_)
open import Relation.Nullary.Decidable
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
open ≡-Reasoning
------------------------------------------------------------------------
-- The definition
-- Rational numbers in reduced form.
record ℚ : Set where
field
numerator : ℤ
denominator-1 : ℕ
isCoprime : True (C.coprime? ∣ numerator ∣ (suc denominator-1))
denominator : ℤ
denominator = + suc denominator-1
coprime : Coprime numerator denominator
coprime = witnessToTruth isCoprime
-- Constructs rational numbers. The arguments have to be in reduced
-- form.
infixl 7 _÷_
_÷_ : (numerator : ℤ) (denominator : ℕ)
{coprime : True (C.coprime? ∣ numerator ∣ denominator)}
{≢0 : False (ℕ._≟_ denominator 0)} →
ℚ
(n ÷ zero) {≢0 = ()}
(n ÷ suc d) {c} =
record { numerator = n; denominator-1 = d; isCoprime = c }
private
-- Note that the implicit arguments do not need to be given for
-- concrete inputs:
0/1 : ℚ
0/1 = + 0 ÷ 1
-½ : ℚ
-½ = - + 1 ÷ 2
------------------------------------------------------------------------
-- Equality
-- Equality of rational numbers.
infix 4 _≃_
_≃_ : Rel ℚ
p ≃ q = P.numerator ℤ* Q.denominator ≡
Q.numerator ℤ* P.denominator
where module P = ℚ p; module Q = ℚ q
-- _≃_ coincides with propositional equality.
≡⇒≃ : _≡_ ⇒ _≃_
≡⇒≃ refl = refl
≃⇒≡ : _≃_ ⇒ _≡_
≃⇒≡ {p} {q} = helper P.numerator P.denominator-1 P.isCoprime
Q.numerator Q.denominator-1 Q.isCoprime
where
module P = ℚ p; module Q = ℚ q
helper : ∀ n₁ d₁ c₁ n₂ d₂ c₂ →
n₁ ℤ* + suc d₂ ≡ n₂ ℤ* + suc d₁ →
(n₁ ÷ suc d₁) {c₁} ≡ (n₂ ÷ suc d₂) {c₂}
helper n₁ d₁ c₁ n₂ d₂ c₂ eq
with Poset.antisym ℕDiv.poset 1+d₁∣1+d₂ 1+d₂∣1+d₁
where
1+d₁∣1+d₂ : suc d₁ ∣ suc d₂
1+d₁∣1+d₂ = ℤDiv.coprime-divisor (+ suc d₁) n₁ (+ suc d₂)
(C.sym $ witnessToTruth c₁) $
ℕDiv.divides ∣ n₂ ∣ (begin
∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ ℤ.abs-*-commute n₂ (+ suc d₁) ⟩
∣ n₂ ∣ ℕ* suc d₁ ∎)
1+d₂∣1+d₁ : suc d₂ ∣ suc d₁
1+d₂∣1+d₁ = ℤDiv.coprime-divisor (+ suc d₂) n₂ (+ suc d₁)
(C.sym $ witnessToTruth c₂) $
ℕDiv.divides ∣ n₁ ∣ (begin
∣ n₂ ℤ* + suc d₁ ∣ ≡⟨ cong ∣_∣ (PropEq.sym eq) ⟩
∣ n₁ ℤ* + suc d₂ ∣ ≡⟨ ℤ.abs-*-commute n₁ (+ suc d₂) ⟩
∣ n₁ ∣ ℕ* suc d₂ ∎)
helper n₁ d c₁ n₂ .d c₂ eq | refl with ℤ.cancel-*-right
n₁ n₂ (+ suc d) (λ ()) eq
helper n d c₁ .n .d c₂ eq | refl | refl with proof-irrelevance c₁ c₂
helper n d c .n .d .c eq | refl | refl | refl = refl
| {
"alphanum_fraction": 0.5245362059,
"avg_line_length": 30.3818181818,
"ext": "agda",
"hexsha": "1042d936021b1bbbe59051aac054b78ace259a47",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Rational.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Rational.agda",
"max_line_length": 74,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Rational.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1157,
"size": 3342
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Group
open import lib.types.Unit
open import lib.groups.SubgroupProp
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
open import lib.groups.Lift
module lib.groups.Unit where
Unit-group-structure : GroupStructure Unit
Unit-group-structure = record
{ ident = unit
; inv = λ _ → unit
; comp = λ _ _ → unit
; unit-l = λ _ → idp
; assoc = λ _ _ _ → idp
; inv-l = λ _ → idp
}
Unit-group : Group lzero
Unit-group = group _ Unit-is-set Unit-group-structure
0ᴳ = Unit-group
abstract
Unit-group-is-trivial : is-trivialᴳ Unit-group
Unit-group-is-trivial = λ _ → idp
iso-Unit-is-trivial : ∀ {i} {G : Group i} → G ≃ᴳ Unit-group → is-trivialᴳ G
iso-Unit-is-trivial G-iso-0 = iso-preserves'-trivial G-iso-0 Unit-group-is-trivial
0ᴳ-is-trivial = Unit-group-is-trivial
iso-0ᴳ-is-trivial = iso-Unit-is-trivial
trivial-iso-Unit : ∀ {i} {G : Group i} → is-trivialᴳ G → G ≃ᴳ Unit-group
trivial-iso-Unit {G = G} G-triv = group-hom (λ _ → tt) (λ _ _ → idp) ,
is-eq _ (λ _ → Group.ident G) (λ _ → idp) (λ _ → ! (G-triv _))
trivial-iso-0ᴳ = trivial-iso-Unit
{- the following should be replaced by [is-trivial] completely -}
abstract
contr-iso-Unit : ∀ {i} (G : Group i) → is-contr (Group.El G) → G ≃ᴳ Unit-group
contr-iso-Unit G pA = ≃-to-≃ᴳ (contr-equiv-Unit pA) (λ _ _ → idp)
contr-iso-0ᴳ = contr-iso-Unit
Unit-group-is-abelian : is-abelian 0ᴳ
Unit-group-is-abelian _ _ = idp
0ᴳ-is-abelian = Unit-group-is-abelian
Unit-abgroup : AbGroup₀
Unit-abgroup = Unit-group , Unit-group-is-abelian
0ᴳ-abgroup = Unit-abgroup
abstract
hom₁-Unit-is-trivial : ∀ {i} (G : AbGroup i) → is-trivialᴳ (hom-group Unit-group G)
hom₁-Unit-is-trivial G φ = group-hom= $ λ= λ _ → GroupHom.pres-ident φ
hom₁-0ᴳ-is-trivial = hom₁-Unit-is-trivial
| {
"alphanum_fraction": 0.6797843666,
"avg_line_length": 28.1060606061,
"ext": "agda",
"hexsha": "411cf7569540e96b36c436296959e52205fd6b95",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Unit.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 678,
"size": 1855
} |
data Nat : Set where
zero : Nat
suc : Nat → Nat
plus : Nat → Nat → Nat
plus zero b = b
plus (suc a) b = suc (plus a b)
infixl 6 _+_
_+_ = plus
{-# DISPLAY suc n = 1 + n #-}
{-# DISPLAY plus a b = a + b #-}
postulate
T : {A : Set} → A → Set
test₁ : ∀ a b → T (plus (suc a) b)
test₁ a b = {!!}
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
data List A : Set where
[] : List A
_∷_ : A → List A → List A
infixr 4 _∷_
[_] : ∀ {A} → A → Vec A (suc zero)
[ x ] = x ∷ []
{-# DISPLAY Vec._∷_ x Vec.[] = [ x ] #-}
test₂ : (n : Nat) → T (n Vec.∷ [])
test₂ n = {!!}
append : ∀ {A : Set} {n m} → Vec A n → Vec A m → Vec A (n + m)
append [] ys = ys
append (x ∷ xs) ys = x ∷ append xs ys
infixr 4 _++_
_++_ = append
{-# DISPLAY append xs ys = xs ++ ys #-}
{-# DISPLAY append xs (y Vec.∷ ys) = xs ++ [ y ] ++ ys #-}
test₃ : ∀ {n} (xs ys : Vec Nat n) → T (append xs (n ∷ ys))
test₃ {n} xs ys = {!!}
| {
"alphanum_fraction": 0.4783505155,
"avg_line_length": 18.6538461538,
"ext": "agda",
"hexsha": "72ecc258d6f1945bb1f4b8225ef93f5b54e083d9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/DisplayForm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/DisplayForm.agda",
"max_line_length": 62,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/DisplayForm.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 401,
"size": 970
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Reducibility {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped hiding (_∷_)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Tools.Nat
open import Tools.Product
private
variable
n : Nat
Γ : Con Term n
-- Valid types are reducible.
reducibleᵛ : ∀ {A l}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ⊩⟨ l ⟩ A
reducibleᵛ [Γ] [A] =
let ⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ [id]))
-- Valid type equality is reducible.
reducibleEqᵛ : ∀ {A B l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ A ≡ B / reducibleᵛ [Γ] [A]
reducibleEqᵛ {A = A} [Γ] [A] [A≡B] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEq″ (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] ([A≡B] ⊢Γ [id])
-- Valid terms are reducible.
reducibleTermᵛ : ∀ {t A l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A / reducibleᵛ [Γ] [A]
reducibleTermᵛ {A = A} [Γ] [A] [t] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceTerm″ (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] (proj₁ ([t] ⊢Γ [id]))
-- Valid term equality is reducible.
reducibleEqTermᵛ : ∀ {t u A l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / reducibleᵛ [Γ] [A]
reducibleEqTermᵛ {A = A} [Γ] [A] [t≡u] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEqTerm″ (subst-id _) (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] ([t≡u] ⊢Γ [id])
| {
"alphanum_fraction": 0.5055319149,
"avg_line_length": 32.6388888889,
"ext": "agda",
"hexsha": "a55ca130f226f38fbe16e1bbc0f427e94b9d5b69",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_line_length": 86,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 966,
"size": 2350
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.Comma where
open import Level
open import Data.Product using (Σ; _,_; proj₁; proj₂; zip; map; swap; <_,_>; -,_)
open import Categories.Category
open import Categories.Category.Instance.One
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Construction.Constant using (const; constNat)
open import Categories.NaturalTransformation using (module NaturalTransformation)
open import Categories.Category.Construction.Comma
open import Categories.Category.Product renaming (Product to _×_)
open import Categories.Category.Construction.Functors renaming (Functors to [_⇒_])
open import Categories.NaturalTransformation renaming (id to idN)
import Categories.Category.Slice as Sl
import Categories.Morphism.Reasoning as Reas
private
variable
o ℓ e o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level
C D E : Category o ℓ e
-- There's a projection functor down onto the A and B Categories
module _ {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} where
open CommaObj
open Comma⇒
private
module A = Category A
module EA = A.Equiv
module B = Category B
module EB = B.Equiv
module C = Category C
module _ (S : Functor B C) (T : Functor A C) where
private
module S = Functor S
module T = Functor T
S↓T⇒A×B : Functor (S ↓ T) (A × B)
S↓T⇒A×B = record
{ F₀ = < β , α >
; F₁ = < h , g >
; identity = EA.refl , EB.refl
; homomorphism = EA.refl , EB.refl
; F-resp-≈ = swap
}
induced-nat : NaturalTransformation (S ∘F Dom S T) (T ∘F Cod S T)
induced-nat = record
{ η = f
; commute = λ i → C.Equiv.sym (commute i)
; sym-commute = commute
}
module _ (S′ : Functor D B) (T′ : Functor E A) where
private
module S′ = Functor S′
module T′ = Functor T′
compose-F : Functor (S ∘F S′ ↓ T ∘F T′) (S ↓ T)
compose-F = record
{ F₀ = λ X → record
{ f = f X
}
; F₁ = λ i → record
{ g = S′.F₁ (g i)
; h = T′.F₁ (h i)
; commute = commute i
}
; identity = S′.identity , T′.identity
; homomorphism = S′.homomorphism , T′.homomorphism
; F-resp-≈ = map S′.F-resp-≈ T′.F-resp-≈
}
module _ (S′ : Functor D B) where
private
module S′ = Functor S′
compose-Fˡ : Functor (S ∘F S′ ↓ T) (S ↓ T)
compose-Fˡ = record
{ F₀ = λ X → record
{ f = f X
}
; F₁ = λ i → record
{ g = S′.F₁ (g i)
; h = h i
; commute = commute i
}
; identity = S′.identity , A.Equiv.refl
; homomorphism = S′.homomorphism , A.Equiv.refl
; F-resp-≈ = map S′.F-resp-≈ λ eq → eq
}
module _ (T′ : Functor E A) where
private
module T′ = Functor T′
compose-Fʳ : Functor (S ↓ T ∘F T′) (S ↓ T)
compose-Fʳ = record
{ F₀ = λ X → record
{ f = f X
}
; F₁ = λ i → record
{ g = g i
; h = T′.F₁ (h i)
; commute = commute i
}
; identity = B.Equiv.refl , T′.identity
; homomorphism = B.Equiv.refl , T′.homomorphism
; F-resp-≈ = map (λ eq → eq) T′.F-resp-≈
}
module _ {S S′ : Functor B C} {T T′ : Functor A C} (γ : NaturalTransformation S′ S) (δ : NaturalTransformation T T′) where
private
module S′ = Functor S′
module T′ = Functor T′
module γ = NaturalTransformation γ
module δ = NaturalTransformation δ
module S = Functor S
module T = Functor T
open C
open HomReasoning
open Reas C
-- functors between Comma categories along natural transformations
along-nat : Functor (S ↓ T) (S′ ↓ T′)
along-nat = record
{ F₀ = λ X → record
{ f = δ.η (β X) ∘ f X ∘ γ.η (α X)
}
; F₁ = λ {X Y} i → record
{ g = g i
; h = h i
; commute = begin
T′.F₁ (h i) ∘ δ.η (β X) ∘ f X ∘ γ.η (α X) ≈⟨ sym-assoc ⟩
(T′.F₁ (h i) ∘ δ.η (β X)) ∘ f X ∘ γ.η (α X) ≈˘⟨ center⁻¹ (δ.commute (h i)) refl ⟩
δ.η (β Y) ∘ (T.F₁ (h i) ∘ f X) ∘ γ.η (α X) ≈⟨ refl⟩∘⟨ pushˡ (commute i) ⟩
δ.η (β Y) ∘ f Y ∘ S.F₁ (g i) ∘ γ.η (α X) ≈˘⟨ pull-last (γ.commute (g i)) ⟩
(δ.η (β Y) ∘ f Y ∘ γ.η (α Y)) ∘ S′.F₁ (g i) ∎
}
; identity = B.Equiv.refl , A.Equiv.refl
; homomorphism = B.Equiv.refl , A.Equiv.refl
; F-resp-≈ = λ eq → eq
}
along-natʳ : ∀ {T T′ : Functor A C} (S : Functor B C) (δ : NaturalTransformation T T′) → Functor (S ↓ T) (S ↓ T′)
along-natʳ S = along-nat idN
along-natˡ : ∀ {S S′ : Functor B C} (γ : NaturalTransformation S′ S) (T : Functor A C) → Functor (S ↓ T) (S′ ↓ T)
along-natˡ γ T = along-nat γ idN
-- There's an induced functor from Functors category to Functors over Comma categories
module _ {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} where
open CommaObj
open Comma⇒
open Category C
open Functor
open HomReasoning
open Reas C
induced : {s₁ d₁ : Functor A C} {s₂ d₂ : Functor B C} →
((Category.op [ A ⇒ C ] × [ B ⇒ C ]) [ (s₁ , s₂) , (d₁ , d₂) ]) → Functor (s₁ ↓ s₂) (d₁ ↓ d₂)
induced {s₁ = s₁} {d₁ = d₁} {s₂} {d₂} (m₁ , m₂) = record
{ F₀ = λ o → record
{ α = α o
; β = β o
; f = m₂.η (β o) ∘ f o ∘ m₁.η (α o)
}
; F₁ = λ {o₁} {o₂} a → record
{ g = g a
; h = h a
; commute = begin
F₁ d₂ (h a) ∘ m₂.η (β o₁) ∘ f o₁ ∘ m₁.η (α o₁) ≈˘⟨ pushˡ (m₂.commute (h a)) ⟩
(m₂.η (β o₂) ∘ F₁ s₂ (h a)) ∘ f o₁ ∘ m₁.η (α o₁) ≈⟨ pullˡ (pullʳ (commute a)) ⟩
(m₂.η (β o₂) ∘ f o₂ ∘ F₁ s₁ (g a)) ∘ m₁.η (α o₁) ≈˘⟨ extendˡ (extendˡ (m₁.commute (g a))) ⟩
(m₂.η (β o₂) ∘ f o₂ ∘ m₁.η (α o₂)) ∘ F₁ d₁ (g a) ∎
}
; identity = A.Equiv.refl , B.Equiv.refl
; homomorphism = A.Equiv.refl , B.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
where
module A = Category A
module B = Category B
module m₁ = NaturalTransformation m₁
module m₂ = NaturalTransformation m₂
module _ (F : Functor C D) where
private
module D = Category D
along-natˡ′ : ∀ {A B} (f : A D.⇒ B) → Functor (B ↙ F) (A ↙ F)
along-natˡ′ f = along-natˡ (constNat f) F
along-natʳ′ : ∀ {A B} (f : A D.⇒ B) → Functor (F ↘ A) (F ↘ B)
along-natʳ′ f = along-natʳ F (constNat f)
module _ {C : Category o ℓ e} where
open Category C
open Sl C
open SliceObj
open Slice⇒
open HomReasoning
open CommaObj
open Comma⇒
open Reas C
slice⇒comma : ∀ X → Functor (Slice X) (idF {C = C} ↓ const {C = One {o} {ℓ} {e}} X)
slice⇒comma X = record
{ F₀ = λ X → record { f = arr X }
; F₁ = λ f → record { commute = identityˡ ○ ⟺ (△ f) }
; identity = refl , _
; homomorphism = refl , _
; F-resp-≈ = λ eq → eq , _
}
comma⇒slice : ∀ X → Functor (idF {C = C} ↓ const {C = One {o} {ℓ} {e}} X) (Slice X)
comma⇒slice X = record
{ F₀ = λ X → Sl.sliceobj (f X)
; F₁ = λ g → Sl.slicearr (⟺ (commute g) ○ identityˡ)
; identity = refl
; homomorphism = refl
; F-resp-≈ = proj₁
}
comma-slice-equiv : ∀ X → StrongEquivalence (Slice X) (idF {C = C} ↓ const {C = One {o} {ℓ} {e}} X)
comma-slice-equiv X = record
{ F = slice⇒comma X
; G = comma⇒slice X
; weak-inverse = record
{ F∘G≈id = record
{ F⇒G = record
{ η = λ _ → record { commute = id-comm-sym }
; commute = λ _ → id-comm-sym , _
; sym-commute = λ _ → id-comm , _
}
; F⇐G = record
{ η = λ _ → record { commute = id-comm-sym }
; commute = λ _ → id-comm-sym , _
; sym-commute = λ _ → id-comm , _
}
; iso = λ Y → record
{ isoˡ = identityˡ , _
; isoʳ = identityˡ , _
}
}
; G∘F≈id = record
{ F⇒G = record
{ η = λ _ → Sl.slicearr identityʳ
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; F⇐G = record
{ η = λ _ → Sl.slicearr identityʳ
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; iso = λ _ → record
{ isoˡ = identityˡ
; isoʳ = identityˡ
}
}
}
}
| {
"alphanum_fraction": 0.4994328494,
"avg_line_length": 32.8955223881,
"ext": "agda",
"hexsha": "2d4cd871ded8ca82fb16181344a08c1a84a04476",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/Comma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/Comma.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/Comma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3212,
"size": 8816
} |
module FlatUnderscore where
postulate
A : Set
f : (@♭ X : A → Set) → ∀ a → X a
@♭ B : A → Set
-- The undescore should be solved to B.
g : ∀ a → B a
g = f _
| {
"alphanum_fraction": 0.5333333333,
"avg_line_length": 13.75,
"ext": "agda",
"hexsha": "2b29c417b0cea7b2fbe584177c7b0a5ac6c3dae3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/FlatUnderscore.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/FlatUnderscore.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/FlatUnderscore.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 165
} |
{-# OPTIONS --safe --no-qualified-instances #-}
module CF.Syntax where
open import Level
open import Data.Integer
open import Data.Bool
open import Data.String
open import Data.Product
open import Data.List hiding (null)
open import Data.List.Relation.Unary.All
open import Relation.Unary hiding (_⊢_)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.PropositionalEquality using (isEquivalence; refl)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad.Possibly
open import Relation.Ternary.Monad.Weakening
open import Relation.Ternary.Data.Bigstar hiding ([_])
open import CF.Types
open import CF.Contexts.Lexical
open import Relation.Ternary.Construct.Product using (fst; snd)
open import Relation.Ternary.Data.Allstar Ty
data BinOp : Ty → Ty → Ty → Set where
add sub mul div xor : BinOp int int int
eq ne lt ge gt le : BinOp int int bool
data Exp : Ty → Pred Ctx 0ℓ where
unit : ε[ Exp void ]
num : ℤ → ε[ Exp int ]
bool : Bool → ε[ Exp bool ]
ifthenelse : ∀[ Exp bool ✴ Exp a ✴ Exp a ⇒ Exp a ]
var' : ∀[ Var a ⇒ Exp a ]
bop : BinOp a b c → ∀[ Exp a ✴ Exp b ⇒ Exp c ]
pattern var = var' vars
module Statements (Block : Ty → Pred Ctx 0ℓ) where
data Statement (r : Ty) : Pred Ctx 0ℓ where
asgn : ∀[ Var a ✴ Exp a ⇒ Statement r ]
run : ∀[ Exp a ⇒ Statement r ]
ifthenelse : ∀[ Exp bool ✴ Statement r ✴ Statement r ⇒ Statement r ]
while : ∀[ Exp bool ✴ Statement r ⇒ Statement r ]
block : ∀[ Block r ⇒ Statement r ]
mutual
Stmt = Statements.Statement Block
data Block (r : Ty) : Pred Ctx 0ℓ where
local : ∀[ Exp a ✴ [ a ] ⊢ (Block r) ⇒ Block r ]
cons : ∀[ Stmt r ✴ Block r ⇒ Block r ]
emp : ε[ Block r ]
-- make constructors visible
open Statements Block public
infixr 5 _⍮⟨_⟩_
pattern _⍮⟨_⟩_ s σ b = cons (s ∙⟨ σ ⟩ b)
pattern _≔⟨_⟩_ e σ b = local (e ∙⟨ σ ⟩ b)
| {
"alphanum_fraction": 0.6660332542,
"avg_line_length": 30.9558823529,
"ext": "agda",
"hexsha": "7c817ac0a9621140c14733fcc97efb7067347b38",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Syntax.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 625,
"size": 2105
} |
-- Andreas, 2019-11-06, issue #4173, reported and testcase by nad.
-- Allow pattern matching on erased arguments in erased context.
-- {-# OPTIONS -v tc.cover.split:60 #-}
open import Agda.Builtin.Bool
@0 F : @0 Bool → Set₁
F true = Set
F false = Set
-- Should succeed.
@0 G : @0 Bool → Set₁
G x = {! x !} -- splitting on x should also succeed
| {
"alphanum_fraction": 0.6581196581,
"avg_line_length": 21.9375,
"ext": "agda",
"hexsha": "f34624308a7f77b1145b4ab934591106d2c3a688",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue4173.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue4173.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue4173.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 106,
"size": 351
} |
module Class.Monad where
open import Class.Functor
open import Data.Unit.Polymorphic
open import Category.Monad renaming (RawMonad to Monad) public
open Monad {{...}} using (return; _>>=_; _=<<_; _>>_) public
module _ {a} {M : Set a → Set a} {{m : Monad M}} where
instance
_ = Monad.rawIApplicative m
monadFunctor = Monad.rawFunctor m
void : ∀ {A} → M A → M ⊤
void x = x >> return tt
| {
"alphanum_fraction": 0.6575682382,
"avg_line_length": 23.7058823529,
"ext": "agda",
"hexsha": "6d1caecd18f570dcade6b4e4fbdbb62b8e90636b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Monad.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Monad.agda",
"max_line_length": 62,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 127,
"size": 403
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
{- Categorical structure of the type theory for globular sets -}
module GSeTT.CwF-structure where
{- cut-admissibility : action of substitutions preserves derivability -}
[]T : ∀ {Γ A Δ γ} → Γ ⊢T A → Δ ⊢S γ > Γ → Δ ⊢T (A [ γ ]Pre-Ty)
[]t : ∀ {Γ A t Δ γ} → Γ ⊢t t # A → Δ ⊢S γ > Γ → Δ ⊢t (t [ γ ]Pre-Tm) # (A [ γ ]Pre-Ty)
[]T (ob Γ⊢) Δ⊢γ:Γ = ob (Δ⊢γ:Γ→Δ⊢ Δ⊢γ:Γ)
[]T (ar Γ⊢t:A Γ⊢u:A) Δ⊢γ:Γ = ar ([]t Γ⊢t:A Δ⊢γ:Γ) ([]t Γ⊢u:A Δ⊢γ:Γ)
[]t {Γ = (Γ :: _)} {t = Var x} (var Γ+⊢@(cc Γ⊢ _ idp) (inl x∈Γ)) Δ⊢γ+:Γ+@(sc Δ⊢γ:Γ _ _ idp) with (eqdecℕ x (length Γ))
... | inl idp = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ)
... | inr _ = trT (wk[]T (Γ⊢t:A→Γ⊢A (var Γ⊢ x∈Γ)) Δ⊢γ+:Γ+ ^) ([]t (var Γ⊢ x∈Γ) Δ⊢γ:Γ)
[]t {Γ = (Γ :: _)} {t = Var x} (var Γ+⊢@(cc Γ⊢ Γ⊢A idp) (inr (idp , idp))) Δ⊢γ+:Γ+@(sc Δ⊢γ:Γ x₁ Δ⊢t:A[γ] idp) with (eqdecℕ x (length Γ))
... | inl _ = trT (wk[]T Γ⊢A Δ⊢γ+:Γ+ ^) Δ⊢t:A[γ]
... | inr x≠x = ⊥-elim (x≠x idp)
{- action of identity on types and terms is trivial (true on syntax) -}
[id]T : ∀ Γ A → (A [ Pre-id Γ ]Pre-Ty) == A
[id]t : ∀ Γ t → (t [ Pre-id Γ ]Pre-Tm) == t
[id]T Γ ∗ = idp
[id]T Γ (⇒ A t u) = ⇒= ([id]T Γ A) ([id]t Γ t) ([id]t Γ u)
[id]t nil (Var x) = idp
[id]t (Γ :: (y , B)) (Var x) with (eqdecℕ x y)
... | inl x=y = Var= (x=y ^)
... | inr _ = [id]t Γ (Var x)
{- identity is well-formed -}
Γ⊢id:Γ : ∀ {Γ} → Γ ⊢C → Γ ⊢S Pre-id Γ > Γ
Γ⊢id:Γ ec = es ec
Γ⊢id:Γ Γ,x:A⊢@(cc Γ⊢ Γ⊢A idp) = sc (wkS (Γ⊢id:Γ Γ⊢) Γ,x:A⊢) Γ,x:A⊢ (var Γ,x:A⊢ (inr (idp , [id]T _ _))) idp
{- action of substitutions on types and terms respects composition -}
[∘]T : ∀ {Γ Δ Θ A γ δ} → Γ ⊢T A → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → ((A [ γ ]Pre-Ty) [ δ ]Pre-Ty) == (A [ γ ∘ δ ]Pre-Ty)
[∘]t : ∀ {Γ Δ Θ A t γ δ} → Γ ⊢t t # A → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → ((t [ γ ]Pre-Tm) [ δ ]Pre-Tm) == (t [ γ ∘ δ ]Pre-Tm)
[∘]T (ob _) _ _ = idp
[∘]T (ar Γ⊢t:A Γ⊢u:A) Δ⊢γ:Γ Θ⊢δ:Δ = ⇒= ([∘]T (Γ⊢t:A→Γ⊢A Γ⊢t:A) Δ⊢γ:Γ Θ⊢δ:Δ) ([∘]t Γ⊢t:A Δ⊢γ:Γ Θ⊢δ:Δ) ([∘]t Γ⊢u:A Δ⊢γ:Γ Θ⊢δ:Δ)
[∘]t (var {x = x} Γ⊢ x∈Γ) (sc {x = y} Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ with (eqdecℕ x y )
... | inl idp = idp
[∘]t (var Γ,y:A⊢ (inr (idp , idp))) (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ | inr x≠x = ⊥-elim (x≠x idp)
[∘]t (var (cc Γ⊢ _ _) (inl x∈Γ)) (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ | inr _ = [∘]t (var Γ⊢ x∈Γ) Δ⊢γ:Γ Θ⊢δ:Δ
{- composition of well-formed substitutions is well-formed -}
∘-admissibility : ∀ {Γ Δ Θ γ δ} → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → Θ ⊢S (γ ∘ δ) > Γ
∘-admissibility (es Δ⊢) Θ⊢δ:Δ = es (Δ⊢γ:Γ→Δ⊢ Θ⊢δ:Δ)
∘-admissibility (sc Δ⊢γ:Γ Γ,x:A⊢@(cc _ Γ⊢A _) Δ⊢t:A[γ] idp) Θ⊢δ:Δ = sc (∘-admissibility Δ⊢γ:Γ Θ⊢δ:Δ) Γ,x:A⊢ (trT ([∘]T Γ⊢A Δ⊢γ:Γ Θ⊢δ:Δ) ([]t Δ⊢t:A[γ] Θ⊢δ:Δ)) idp
{- composition is associative, this is true only for well-formed substitutions -}
∘-associativity : ∀ {Γ Δ Θ Ξ γ δ θ} → Δ ⊢S γ > Γ → Θ ⊢S δ > Δ → Ξ ⊢S θ > Θ → ((γ ∘ δ) ∘ θ) == (γ ∘ (δ ∘ θ))
∘-associativity (es _) _ _ = idp
∘-associativity (sc Δ⊢γ:Γ _ Δ⊢t:A[γ] idp) Θ⊢δ:Δ Ξ⊢θ:Θ = ::= (∘-associativity Δ⊢γ:Γ Θ⊢δ:Δ Ξ⊢θ:Θ) (×= idp ([∘]t Δ⊢t:A[γ] Θ⊢δ:Δ Ξ⊢θ:Θ))
{- Left unitality of composition -}
-- To prove right-unitality, we need a analoguous of wk[]T and wk[]t for substitutions
-- Composing if θ is a subst without x, acting (γ :: (x , u)) on it is same as acting just γ on it
wk[]S : ∀ {Γ Δ γ x u B Θ θ} → Γ ⊢S θ > Θ → Δ ⊢S (γ :: (x , u)) > (Γ :: (x , B)) → (θ ∘ (γ :: (x , u))) == (θ ∘ γ)
wk[]S (es _) _ = idp
wk[]S (sc Γ⊢θ:Θ _ Γ⊢t:A[θ] idp) Δ⊢γ+:Γ+ = ::= (wk[]S Γ⊢θ:Θ Δ⊢γ+:Γ+) (×= idp (wk[]t Γ⊢t:A[θ] Δ⊢γ+:Γ+))
∘-left-unit : ∀{Γ Δ γ} → Δ ⊢S γ > Γ → (Pre-id Γ ∘ γ) == γ
∘-left-unit (es _) = idp
∘-left-unit Δ⊢γ+:Γ+@(sc {x = x} Δ⊢γ:Γ (cc Γ⊢ _ _) _ idp) with (eqdecℕ x x)
... | inl _ = ::= (wk[]S (Γ⊢id:Γ Γ⊢) Δ⊢γ+:Γ+ >> ∘-left-unit Δ⊢γ:Γ) idp
... | inr x≠x = ⊥-elim (x≠x idp)
{- Right unitality of composition (true on syntax)-}
∘-right-unit : ∀ {Δ γ} → (γ ∘ Pre-id Δ) == γ
∘-right-unit {Δ} {nil} = idp
∘-right-unit {Δ} {γ :: (y , t)} = ::= ∘-right-unit (×= idp ([id]t Δ t))
{- Structure of CwF -}
Γ,x:A⊢π:Γ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → (Γ :: (x , A)) ⊢S Pre-π Γ x A > Γ
Γ,x:A⊢π:Γ Γ,x:A⊢@(cc Γ⊢ _ _) = wkS (Γ⊢id:Γ Γ⊢) Γ,x:A⊢
-- TODO : complete the CwF structure
| {
"alphanum_fraction": 0.4323817462,
"avg_line_length": 53.3222222222,
"ext": "agda",
"hexsha": "5f80068ef46f78fed932162a2d45e81608ced06f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/CwF-structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/CwF-structure.agda",
"max_line_length": 171,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/CwF-structure.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2631,
"size": 4799
} |
{- With Agda's current sized types, we have a size ∞ with ∞ < ∞. That's
obviously troublesome if we want to interpret sizes as ordinals and < as the
less-than relation, and indeed we can use this rule to prove false (in
multiple different ways).
This file is an experiment to see whether we could still work with a system
that doesn't have this rule.
-}
{-# OPTIONS --postfix-projections #-}
module irreflexive-lt where
open import Size
postulate
𝟘 : Size
data Size≲ : (j : Size) → Set where
≲∞ : (i : Size) → Size≲ ∞
<→≲ : ∀ {j} (i : Size< j) → Size≲ j
from≲ : ∀ {j} → Size≲ j → Size
from≲ (≲∞ i) = i
from≲ (<→≲ i) = i
∞′ : Size≲ ∞
∞′ = ≲∞ ∞
--------------------------------------------------------------------------------
-- Natural numbers
data ℕ (i : Size) : Set where
zero : ℕ i
suc : (j : Size< i) → ℕ j → ℕ i
-- Using the successor at size ∞ becomes nontrivial. The following is NOT
-- allowed since we use (∞ : Size< ∞).
-- suc₀ : ℕ ∞ → ℕ ∞
-- suc₀ n = suc ∞ n
-- Workaround: superfluous pattern matching.
suc₁ : ℕ ∞ → ℕ ∞
suc₁ zero = suc 𝟘 zero
suc₁ (suc j x) = suc (↑ j) (suc j x)
-- Case analysis
caseℕ : {T : Set} → (i : Size) → ℕ i → T → ((j : Size< i) → ℕ j → T) → T
caseℕ i zero z s = z
caseℕ i (suc j n) z s = s j n
-- Dependent elimination (with size-based termination).
indℕ : (P : (i : Size) → ℕ i → Set)
→ ((i : Size) → P i zero)
→ ((i : Size) (j : Size< i) (n : ℕ j) → P j n → P i (suc j n))
→ (i : Size) (n : ℕ i) → P i n
indℕ P Z S i zero = Z i
indℕ P Z S i (suc j n) = S i j n (indℕ P Z S j n)
--------------------------------------------------------------------------------
-- Streams
record 𝕊 (A : Set) (i : Size) : Set where
coinductive
field
head : A
tail : (j : Size< i) → 𝕊 A j
open 𝕊
variable
A B : Set
-- Again, we CANNOT use tail at ∞ directly since this uses (∞ : Size< ∞).
-- tail₀ : 𝕊 ∞ → 𝕊 ∞
-- tail₀ xs = tail xs ∞
-- Workaround: The equivalent of the 'superfluous pattern matching' workaround
-- for suc.
tail₁ : 𝕊 A ∞ → 𝕊 A ∞
tail₁ xs .head = head {i = 𝟘} (tail xs 𝟘) -- [1]
tail₁ xs .tail j = tail (tail xs (↑ j)) j
-- [1] Without the implicit argument, this doesn't typecheck. Apparently the
-- size argument to head gets eagerly instantiated to ∞ or something.
replicate : (i : Size) → A → 𝕊 A i
replicate i a .head = a
replicate i a .tail j = replicate j a
map𝕊 : (A → B) → (i : Size) → 𝕊 A i → 𝕊 B i
map𝕊 f i xs .head = f (head xs)
map𝕊 f i xs .tail j = map𝕊 f j (tail xs j)
--------------------------------------------------------------------------------
-- Rose trees
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
mapList : (A → B) → List A → List B
mapList f [] = []
mapList f (x ∷ xs) = f x ∷ mapList f xs
data Tree (A : Set) (i : Size) : Set where
leaf : A → Tree A i
node : (j : Size< i) → List (Tree A j) → Tree A i
mapTree : (A → B) → (i : Size) → Tree A i → Tree B i
mapTree f i (leaf x) = leaf (f x)
mapTree f i (node j cs) = node j (mapList (mapTree f j) cs)
--------------------------------------------------------------------------------
-- Potentially infinite lists
mutual
data CoList (A : Set) (i : Size) : Set where
[] : CoList A i
_∷_ : A → CoList′ A i → CoList A i
record CoList′ (A : Set) (i : Size) : Set where
coinductive
field
force : (j : Size< i) → CoList A j
open CoList′
open import Data.Product using (∃-syntax)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; inspect ; [_])
open import Relation.Binary.HeterogeneousEquality using (_≅_ ; refl)
postulate
force-parametric : ∀ {A i} (xs : CoList′ A i) (j j′ : Size< i)
→ xs .force j ≅ xs .force j′
size-parametric : ∀ {T : Size< ∞ → Set} (f : (i : Size< ∞) → T i)
→ (j j′ : Size< ∞)
→ f j ≅ f j′
mutual
data _≈_ {A i j} : CoList A i → CoList A j → Set where
[] : [] ≈ []
_∷_ : ∀ {x y xs ys}
→ x ≡ y
→ xs ≈′ ys
→ (x ∷ xs) ≈ (y ∷ ys)
record _≈′_ {A i j} (xs : CoList′ A i) (ys : CoList′ A j) : Set where
coinductive
field
force : (k : Size< i) (l : Size< j) → xs .force k ≈ ys .force l
open _≈′_
force∞ : CoList′ A ∞ → CoList A ∞
force∞ {A} xs with xs .force 𝟘
... | [] = []
... | y ∷ ys = y ∷ ys′
where
ys′ : CoList′ A ∞
ys′ .force i with xs .force (↑ i)
... | [] = []
... | z ∷ zs = zs .force i
𝕊→CoList : (i : Size) → 𝕊 A i → CoList A i
𝕊→CoList i xs = head xs ∷ λ { .force j → 𝕊→CoList j (tail xs j) }
-- Radical thought: Just kill ∞ altogether and work with (∀ i → CoList A i) and
-- (∃ i → List A i) directly. How much less useful does that make the system?
--
-- Perhaps we can auto-derive the iso (∃ i → List A i) ≅ List A.
-- Radical thought: What if we only provide the Thunk type from the stdlib? Can
-- we recover all other coinductive types from that?
| {
"alphanum_fraction": 0.5286977988,
"avg_line_length": 23.3701923077,
"ext": "agda",
"hexsha": "d72dd7cc328c1d8f0f4109bd5887bd9ab9a38edb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/irreflexive-lt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/irreflexive-lt.agda",
"max_line_length": 84,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/irreflexive-lt.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 1763,
"size": 4861
} |
module Data.List.Functions where
import Lvl
open import Data.Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.List
open import Data.Option as Option using (Option)
import Data.Option.Functions as Option
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Numeral.Finite
open import Numeral.Natural
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T A A₁ A₂ B B₁ B₂ Result : Type{ℓ}
infixl 1000 _++_
open import Data.List.Functions.Positional public
-- The list of the successive application of `tail` on a list.
-- For a list `l`, the range of `n ↦ (tail ^ n)(l)` as a list.
-- Example:
-- tails [] = [[]]
-- tails [a] = [[a] , []]
-- tails [a,b] = [[a,b] , [b] , []]
-- tails [a,b,c] = [[a,b,c] , [b,c] , [c] , []]
-- Note: `∀{l} → (tails l = accumulateIterate (length l) tail l)`.
tails : List(T) → List(List(T))
tails ∅ = singleton(∅)
tails (x ⊰ l) = (x ⊰ l) ⊰ tails l
-- Applies a binary operator to each element in the list starting with the initial element.
-- Example:
-- foldₗ(▫)(init)[] = init
-- foldₗ(▫)(init)[a] = init▫a
-- foldₗ(▫)(init)[a,b] = (init▫a)▫b
-- foldₗ(▫)(init)[a,b,c,d,e] = ((((init▫a)▫b)▫c)▫d)▫e
foldₗ : (Result → T → Result) → Result → List(T) → Result
foldₗ _ result ∅ = result
foldₗ _▫_ result (elem ⊰ l) = foldₗ _▫_ (result ▫ elem) l
-- Applies a binary operator to each element in the list starting with the initial element.
-- Example:
-- foldᵣ(▫)(init)[] = init
-- foldᵣ(▫)(init)[a] = a▫init
-- foldᵣ(▫)(init)[a,b] = a▫(b▫init)
-- foldᵣ(▫)(init)[a,b,c,d,e] = a▫(b▫(c▫(d▫(e▫init))))
foldᵣ : (T → Result → Result) → Result → List(T) → Result
foldᵣ _ init ∅ = init
foldᵣ _▫_ init (elem ⊰ l) = elem ▫ (foldᵣ _▫_ init l)
-- Applies a binary operator to each element in the list starting with the initial element.
-- Example:
-- foldᵣ-init(▫)(init)[] = init
-- foldᵣ-init(▫)(init)[a] = init▫a
-- foldᵣ-init(▫)(init)[a,b] = init▫(a▫b)
-- foldᵣ-init(▫)(init)[a,b,c,d,e] = init▫(a▫(b▫(c▫(d▫e))))
-- Same as (reduceOrᵣ (_▫_) (a) (a⊰l)) except that
-- this allows matching out one element when
-- there is only a first element as the head
-- and an _arbitrary_ list as the tail.
-- Also, this dIffers from foldᵣ in the following way:
-- foldᵣ (_▫_) (1) [2,3] = 2 ▫ (3 ▫ 1)
-- foldᵣ-init (_▫_) (1) [2,3] = 1 ▫ (2 ▫ 3)
-- Also: foldᵣ-init(▫)(init)(l++[last]) = foldᵣ(▫)(last)(init⊰l)
foldᵣ-init : (T → T → T) → T → List(T) → T
foldᵣ-init _ init ∅ = init
foldᵣ-init _▫_ init (elem ⊰ l) = init ▫ (foldᵣ-init _▫_ elem l)
-- If the list is empty, use the result, else like foldₗ
-- Example:
-- reduceOrₗ(▫)(result)[] = result
-- reduceOrₗ(▫)(result)[a] = a
-- reduceOrₗ(▫)(result)[a,b] = a▫b
-- reduceOrₗ(▫)(result)[a,b,c] = (a▫b)▫c
-- reduceOrₗ(▫)(result)[a,b,c,d,e] = (((a▫b)▫c)▫d)▫e
reduceOrₗ : (T → T → T) → T → List(T) → T
reduceOrₗ _ result ∅ = result
reduceOrₗ _▫_ result (elem ⊰ l) = foldₗ _▫_ elem l
-- If the list is empty, use the result, else like foldᵣ
-- Example:
-- reduceOrᵣ(▫)(result)[] = result
-- reduceOrᵣ(▫)(result)[a] = a
-- reduceOrᵣ(▫)(result)[a,b] = a▫b
-- reduceOrᵣ(▫)(result)[a,b,c] = a▫(b▫c)
-- reduceOrᵣ(▫)(result)[a,b,c,d,e] = a▫(b▫(c▫(d▫e)))
reduceOrᵣ : (T → T → T) → T → List(T) → T
reduceOrᵣ _ init ∅ = init
reduceOrᵣ _▫_ init (elem ⊰ l) = foldᵣ-init _▫_ elem l
-- Accumulates the results of every step in `foldₗ` into a list.
-- Example:
-- accumulateFoldₗ(_▫_) result [] = [result]
-- accumulateFoldₗ(_▫_) result [a] = [result▫a]
-- accumulateFoldₗ(_▫_) result [a,b] = [result▫a , (result▫a)▫b]
-- accumulateFoldₗ(_▫_) result [a,b,c] = [result▫a , (result▫a)▫b , ((result▫a)▫b)▫c]
-- accumulateFoldₗ(_▫_) result [a,b,c,d] = [result▫a , (result▫a)▫b , ((result▫a)▫b)▫c , (((result▫a)▫b)▫c)▫d]
accumulateFoldₗ : (Result → T → Result) → Result → List(T) → List(Result)
accumulateFoldₗ(_▫_) result ∅ = singleton(result)
accumulateFoldₗ(_▫_) result (x ⊰ l) = result ⊰ accumulateFoldₗ(_▫_) (result ▫ x) l
-- Accumulates the results of every step in `reduceₗ` into a list.
-- Example:
-- accumulateReduceₗ(_▫_) [] = []
-- accumulateReduceₗ(_▫_) [a] = [a]
-- accumulateReduceₗ(_▫_) [a,b] = [a , a▫b]
-- accumulateReduceₗ(_▫_) [a,b,c] = [a , a▫b , (a▫b)▫c]
-- accumulateReduceₗ(_▫_) [a,b,c,d] = [a , a▫b , (a▫b)▫c , ((a▫b)▫c)▫d]
accumulateReduceₗ : (T → T → T) → List(T) → List(T)
accumulateReduceₗ(_▫_) ∅ = ∅
accumulateReduceₗ(_▫_) (x ⊰ l) = accumulateFoldₗ(_▫_) x l
-- Accumulates the results of every step in `_^_` into a list.
-- Example:
-- accumulateIterate₀ 0 f(x) = []
-- accumulateIterate₀ 1 f(x) = [x]
-- accumulateIterate₀ 2 f(x) = [x , f(x)]
-- accumulateIterate₀ 3 f(x) = [x , f(x) , f(f(x))]
-- accumulateIterate₀ 4 f(x) = [x , f(x) , f(f(x)) , f(f(f(x)))]
accumulateIterate₀ : ℕ → (T → T) → (T → List(T))
accumulateIterate₀ 𝟎 f(x) = ∅
accumulateIterate₀ (𝐒(n)) f(x) = x ⊰ accumulateIterate₀ n f (f(x))
-- Accumulates the results of every step in `_^_` into a list.
-- Example:
-- accumulateIterate 0 f(x) = [x]
-- accumulateIterate 1 f(x) = [x , f(x)]
-- accumulateIterate 2 f(x) = [x , f(x) , f(f(x))]
-- accumulateIterate 3 f(x) = [x , f(x) , f(f(x)) , f(f(f(x)))]
-- accumulateIterate 4 f(x) = [x , f(x) , f(f(x)) , f(f(f(x))) , f(f(f(f(x))))]
accumulateIterate : ℕ → (T → T) → (T → List(T))
accumulateIterate n = accumulateIterate₀(𝐒(n))
-- List concatenation.
-- Concatenates (joins/glues) two lists together.
-- Examples:
-- [] ++ [] = []
-- [a] ++ [b] = [a,b]
-- [a,b,c] ++ [d,e,f] = [a,b,c,d,e,f]
_++_ : List(T) → List(T) → List(T)
_++_ = swap(foldᵣ (_⊰_))
-- Concatenates multiple lists together.
-- Examples:
-- concat [[a,b,c] , [d,e] , [f] , [g,h]]
-- = [a,b,c] ++ [d,e] ++ [f] ++ [g,h] =
-- = [a,b,c,d,e,f,g,h]
concat : List(List(T)) → List(T)
concat = foldᵣ(_++_) ∅
-- Postpends an element to a list, inserting it to the end of the list.
-- Examples:
-- postpend a [] = [a]
-- postpend b [a] = [a,b]
-- postpend c [a,b] = [a,b,c]
-- postpend d [a,b,c] = [a,b,c,d]
postpend : T → List(T) → List(T)
postpend a ∅ = a ⊰ ∅
postpend a (x ⊰ l) = x ⊰ postpend a l
-- Inserts an element to a list, inserting it at the given position of the list.
-- If the given position is out of range, then the element is postpended to the list.
-- Examples:
-- insert 2 x [] = [x]
-- insert 2 x [a] = [a,x]
-- insert 2 x [a,b] = [a,b,x]
-- insert 2 x [a,b,c] = [a,b,x,c]
-- insert 2 x [a,b,c,d] = [a,b,x,c,d]
insert : ℕ → T → List(T) → List(T)
insert 𝟎 = _⊰_
insert (𝐒(_)) a ∅ = singleton a
insert (𝐒(i)) a (x ⊰ l) = x ⊰ insert i a l
module LongOper where
pattern empty = ∅
pattern prepend elem list = elem ⊰ list
-- Applies a function on each element in the list
-- Examples:
-- map f[] = []
-- map f[a] = [f(a)]
-- map f[a,b] = [f(a),f(b)]
-- map f[a,b,c] = [f(a),f(b),f(c)]
map : (A → B) → (List(A) → List(B))
map _ ∅ = ∅
map f (x ⊰ l) = f(x) ⊰ (map f l)
-- Filters the list while mapping it
mapFilter : (A → Option(B)) → (List(A) → List(B))
mapFilter _ ∅ = ∅
mapFilter f (x ⊰ l) with f(x)
... | Option.Some(y) = y ⊰ (mapFilter f l)
... | Option.None = mapFilter f l
-- Maps every element to a list in the given list and then concatenates the resulting list.
-- Note: Functionally equivalent to: `concat ∘₂ map`.
-- Example: `concatMap(x ↦ [x , x + 1 , x + 2]) [10,20,30,40] = [10,11,12 , 20,21,22 , 30,31,32 , 40,41,42]`
-- Alternative implementation:
-- concatMap f ∅ = ∅
-- concatMap f (x ⊰ l) = f(x) ++ concatMap f l
concatMap : (A → List(B)) → (List(A) → List(B))
concatMap f = foldᵣ((_++_) ∘ f) ∅
-- The nth element in the list
-- Examples:
-- • `index₀ 0 [a,b,c] = Some a`
-- • `index₀ 1 [a,b,c] = Some b`
-- • `index₀ 2 [a,b,c] = Some c`
-- • `index₀ 3 [a,b,c] = None`
-- • `index₀ 4 [a,b,c] = None`
index₀ : ℕ → List(T) → Option(T)
index₀ _ ∅ = Option.None
index₀ 𝟎 (x ⊰ _) = Option.Some(x)
index₀ (𝐒(n)) (_ ⊰ l) = index₀ n l
-- The sublist with the first n elements in the list.
-- Also called: "take" in the Haskell standard library.
-- Example:
-- • `initial 0 [1,2,3] = []`
-- • `initial 1 [1,2,3] = [1]`
-- • `initial 2 [1,2,3] = [1,2]`
-- • `initial 3 [1,2,3] = [1,2,3]`
-- • `initial 4 [1,2,3] = [1,2,3]`
-- • `initial 5 [1,2,3] = [1,2,3]`
initial : ℕ → List(T) → List(T)
initial _ ∅ = ∅
initial 𝟎 (_ ⊰ _) = ∅
initial (𝐒(n)) (x ⊰ l) = x ⊰ (initial n l)
-- The sublist without the first n elements in the list
-- Example:
-- • `skip 0 [1,2,3] = [1,2,3]`
-- • `skip 1 [1,2,3] = [2,3]`
-- • `skip 2 [1,2,3] = [3]`
-- • `skip 3 [1,2,3] = []`
-- • `skip 4 [1,2,3] = []`
-- • `skip 5 [1,2,3] = []`
skip : ℕ → List(T) → List(T)
skip _ ∅ = ∅
skip 𝟎 l@(_ ⊰ _) = l
skip (𝐒(n)) (x ⊰ l) = skip n l
-- TODO: Maybe rename this to "extractFirst"?
-- Extracts the first element from the list if there is one.
-- Example: `splitFirst [1,2,3] = Some(1 , [2,3])`
splitFirst : List(T) → Option(T ⨯ List(T))
splitFirst ∅ = Option.None
splitFirst (x ⊰ l) = Option.Some(x , l)
-- Extracts the last element from the list if there is one.
-- Example: `splitLast [1,2,3] = Some([1,2] , 3)`
splitLast : List(T) → Option(List(T) ⨯ T)
splitLast ∅ = Option.None
splitLast (x ⊰ ∅) = Option.Some(∅ , x)
splitLast (x ⊰ y ⊰ l) = Option.map (Tuple.mapLeft (x ⊰_)) (splitLast (y ⊰ l))
-- Split a list into two sublist parts at the specified index.
-- The first list's length is the specified index.
-- The second list starts at the specified index.
-- Example:
-- splitAt 0 [a,b,c,d] = ([] , [a,b,c,d])
-- splitAt 1 [a,b,c,d] = ([a] , [b,c,d])
-- splitAt 2 [a,b,c,d] = ([a,b] , [c,d])
-- splitAt 3 [a,b,c,d] = ([a,b,c] , [d])
-- splitAt 4 [a,b,c,d] = ([a,b,c,d] , [])
-- splitAt 5 [a,b,c,d] = ([a,b,c,d] , [])
splitAt : ℕ → List(T) → (List(T) ⨯ List(T))
splitAt 𝟎 l = (∅ , l)
splitAt (𝐒 n) ∅ = (∅ , ∅)
splitAt (𝐒 n) (x ⊰ l) = Tuple.mapLeft (x ⊰_) (splitAt n l)
-- All ordered sublist partitions of the specified list with only two parts.
--
splits₂ : List(T) → List(List(T) ⨯ List(T))
splits₂ l = (∅ , l) ⊰ f ∅ l where
f : List(T) → List(T) → List(List(T) ⨯ List(T))
f _ ∅ = ∅
f a (x ⊰ b) = (postpend x a , b) ⊰ f (postpend x a) b
-- Length of the list (number of elements in the list).
-- Examples:
-- • `length [] = 0`
-- • `length [a] = 1`
-- • `length [a,b] = 2`
-- • `length [a,b,c] = 3`
-- • `length [b,c,a] = 3`
-- • `length [c,a,b] = 3`
-- • `length [b,a,c] = 3`
-- • `length [a,c,b] = 3`
-- • `length [b,a,c] = 3`
length : List(T) → ℕ
length = foldᵣ (const 𝐒) 0
-- The nth element in the list as a total function.
index : (l : List(T)) → 𝕟(length(l)) → T
index ∅ ()
index (x ⊰ l) 𝟎 = x
index (x ⊰ l) (𝐒 n) = index l n
-- The sublist with the last n elements in the list
-- last : ℕ → List(T) → List(T)
-- last n l = skip(length(l) −₀ ) l
-- TODO: Generalize
mapWindow2ₗ : (T → T → T) → List(T) → List(T)
mapWindow2ₗ f (x₁ ⊰ x₂ ⊰ l) = (f x₁ x₂) ⊰ (mapWindow2ₗ f (x₂ ⊰ l))
{-# CATCHALL #-}
mapWindow2ₗ _ _ = ∅
_orₗ_ : List(T) → List(T) → List(T)
_orₗ_ ∅ default = default
_orₗ_ (l @(_ ⊰ _)) _ = l
-- Reverse the order of the elements in the list.
-- Example: `reverse [a,b,c,d] = [d,c,b,a]`.
reverse : List(T) → List(T)
reverse ∅ = ∅
reverse (x ⊰ l) = postpend x (reverse l)
import Function.Iteration as Function
-- The list with a list concatenated (repeated) n times.
-- Example: `[a,b,c] ++^ 4 = [a,b,c] ++ [a,b,c] ++ [a,b,c] ++ [a,b,c] = [a,b,c , a,b,c , a,b,c , a,b,c]`.
_++^_ : List(T) → ℕ → List(T)
_++^_ l n = Function.repeatᵣ n (_++_) l ∅
-- The list with an element repeated n times
-- Example: `repeat a 4 = [a,a,a,a]`.
repeat : T → ℕ → List(T)
repeat = (_++^_) ∘ singleton
-- Whether at least one element in the list satisfies the given boolean predicate function.
-- Note: `∀{pred}{l} → (satisfiesAny pred l = foldᵣ((_||_) ∘ pred) 𝐹 l)`. They are functionally equivalent but the difference is that this exits early when something false is found which is good for performance.
satisfiesAny : (T → Bool) → List(T) → Bool
satisfiesAny pred ∅ = 𝐹
satisfiesAny pred (x ⊰ l) with pred(x)
... | 𝑇 = 𝑇
... | 𝐹 = satisfiesAny(pred)(l)
-- Whether all elements in the list satisfies the given boolean predicate function.
-- Note: `∀{pred}{l} → (satisfiesAll pred l = foldᵣ((_&&_) ∘ pred) 𝑇 l)`. They are functionally equivalent but the difference is that this exits early when something false is found which is good for performance.
satisfiesAll : (T → Bool) → List(T) → Bool
satisfiesAll pred ∅ = 𝑇
satisfiesAll pred (x ⊰ l) with pred(x)
... | 𝑇 = satisfiesAll(pred)(l)
... | 𝐹 = 𝐹
satisfiesAll₂ : (T → T → Bool) → (T → Bool) → (T → Bool) → (List(T) → List(T) → Bool)
satisfiesAll₂(_▫_) l r ∅ ∅ = 𝑇
satisfiesAll₂(_▫_) l r l₁@(_ ⊰ _) ∅ = satisfiesAll l l₁
satisfiesAll₂(_▫_) l r ∅ l₂@(_ ⊰ _) = satisfiesAll r l₂
satisfiesAll₂(_▫_) l r (x₁ ⊰ l₁) (x₂ ⊰ l₂) = (x₁ ▫ x₂) && satisfiesAll₂(_▫_) l r l₁ l₂
{-satisfiesAll₂(_▫_) l r (x₁ ⊰ l₁) (x₂ ⊰ l₂) with (x₁ ▫ x₂)
... | 𝑇 = satisfiesAll₂(_▫_) l r l₁ l₂
... | 𝐹 = 𝐹-}
-- TODO
-- List-apply : ∀{L : List(Type{ℓ})} → (foldᵣ (_⨯_) (Out) (L)) → ∀{Out : Type{ℓ}} → (foldᵣ (_→ᶠ_) (Out) (L)) → Out
-- List-apply(∅) (f) = f
-- List-apply(head ⊰ rest) (f) = List-apply(rest) (f(head))
-- fn-to-list : ∀{L : List(Type{ℓ})}{Out : Type{ℓ}} → (foldᵣ (_→ᶠ_) (Out) (L)) → (List(Type{ℓ}) → Out)
-- fn-to-list{∅} =
-- Replacing the nth element in the list.
-- Example: `modifyAt 2 f [a,b,c,d] = [a,b,f(c),d]`.
modifyAt : ℕ → (T → T) → List(T) → List(T)
modifyAt _ f ∅ = ∅
modifyAt 𝟎 f (x ⊰ l) = f(x) ⊰ l
modifyAt (𝐒(n)) f (x ⊰ l) = x ⊰ modifyAt n f l
-- Example: `replaceAt 2 x [a,b,c,d] = [a,b,x,d]`.
replaceAt : ℕ → T → List(T) → List(T)
replaceAt n = modifyAt n ∘ const
-- The list without the nth element in the list
-- Example: `withoutIndex 2 [a,b,c,d] = [a,b,d]`.
withoutIndex : ℕ → List(T) → List(T)
withoutIndex _ ∅ = ∅
withoutIndex 𝟎 (_ ⊰ l) = l
withoutIndex (𝐒(n)) (x ⊰ l) = x ⊰ withoutIndex(n)(l)
-- Example: `swapIndex 1 3 [a,b,c,d,e,f] = [a,d,c,b,e,f]`.
swapIndex : ℕ → ℕ → List(T) → List(T)
swapIndex _ _ ∅ = ∅
swapIndex 𝟎 𝟎 (x ⊰ l) = (x ⊰ l)
swapIndex (𝐒(a)) 𝟎 (x ⊰ l) = Option.map(_⊰ replaceAt a x l) (index₀ a l) Option.or (x ⊰ l)
swapIndex 𝟎 (𝐒(b)) (x ⊰ l) = Option.map(_⊰ replaceAt b x l) (index₀ b l) Option.or (x ⊰ l)
swapIndex (𝐒(a)) (𝐒(b)) (x ⊰ l) = x ⊰ swapIndex a b l
-- The given list with only the elements that satisfy the given predicate (without the elements that do not satisfy the given predicate).
-- Example: `filter(_<? 10) [0,10,11,1,2,12,3,13,14,4,5] = [0,1,2,3,4,5]`.
filter : (T → Bool) → List(T) → List(T)
filter f(∅) = ∅
filter f(x ⊰ l) = (if f(x) then (x ⊰_) else id) (filter f(l))
-- Finds the first element that satisfies the given predicate in the given list.
find : (T → Bool) → List(T) → Option(T)
find f(∅) = Option.None
find f(x ⊰ l) with f(x)
... | 𝑇 = Option.Some(x)
... | 𝐹 = find f(l)
-- Finds and extracts the first element satisfying the given predicate.
-- Example: `extractFirst(_> 2) [0,1,2,3,4,5] = Some(3 , [0,1,2,4,5])`.
extractFirstBy : (T → Bool) → List(T) → Option(T ⨯ List(T))
extractFirstBy f(∅) = Option.None
extractFirstBy f(x ⊰ l) with f(x)
... | 𝑇 = Option.Some(x , l)
... | 𝐹 = Option.map(Tuple.mapRight(x ⊰_)) (extractFirstBy f(l))
-- The number of elements satisfying the given predicate in the given list.
count : (T → Bool) → List(T) → ℕ
count f(∅) = 𝟎
count f(x ⊰ l) = (if f(x) then 𝐒 else id) (count f(l))
-- Whether the given list is the empty list.
isEmpty : List(T) → Bool
isEmpty(∅) = 𝑇
isEmpty(_ ⊰ _) = 𝐹
-- Separates a list into 2 lists of almost equal length putting every other element into different lists.
-- Example:
-- separate₂ [] = ([] , [])
-- separate₂ [a] = ([a] , [])
-- separate₂ [a,b] = ([a] , [b])
-- separate₂ [a,b,c] = ([a,c] , [b])
-- separate₂ [a,b,c,d] = ([a,c] , [b,d])
-- separate₂ [a,b,c,d,e] = ([a,c,e] , [b,d])
separate₂ : List(T) → (List(T) ⨯ List(T))
separate₂ ∅ = (∅ , ∅)
separate₂ (x ⊰ ∅) = (singleton x , ∅)
separate₂ (x ⊰ y ⊰ l) = Tuple.map (x ⊰_) (y ⊰_) (separate₂ l)
-- Example:
-- interleave [[0,1,2],[10,11,12,13,14],[100,101]] = [0,10,100 , 1,11,101 , 2,12 , 13 , 14]
-- Termination:
-- Terminates because the argument in the recursion `map tail ls` shrinks every list until they all become empty, and when all lists are empty, the function branches to the other trivially terminating case.
{-# TERMINATING #-}
interleave : List(List(T)) → List(T)
interleave ls with satisfiesAll isEmpty ls
... | 𝑇 = ∅
... | 𝐹 = foldᵣ (Option.partialMap id (_⊰_) ∘ first) (interleave(map tail ls)) ls
-- Note: This is similiar to a function called `zipWith` in the Haskell standard library.
-- TODO: Generalize like https://stackoverflow.com/questions/39991581/how-can-i-implement-generalized-zipn-and-unzipn-in-haskell
map₂ : (A₁ → A₂ → B) → (List(A₁) → List(B)) → (List(A₂) → List(B)) → (List(A₁) → List(A₂) → List(B))
map₂ f g₁ g₂ ∅ ∅ = ∅
map₂ f g₁ g₂ ∅ l₂@(_ ⊰ _) = g₂ l₂
map₂ f g₁ g₂ l₁@(_ ⊰ _) ∅ = g₁ l₁
map₂ f g₁ g₂ (x₁ ⊰ l₁) (x₂ ⊰ l₂) = f x₁ x₂ ⊰ map₂ f g₁ g₂ l₁ l₂
-- Rotates to the left.
-- Example:
-- rotateₗ 3 [a,b,c,d,e]
-- = rotateₗ 2 [b,c,d,e,a]
-- = rotateₗ 1 [c,d,e,a,b]
-- = rotateₗ 0 [d,e,a,b,c]
-- = [d,e,a,b,c]
rotateₗ : ℕ → List(T) → List(T)
rotateₗ 𝟎 l = l
rotateₗ (𝐒(n)) ∅ = ∅
rotateₗ (𝐒(n)) (x ⊰ l) = postpend x (rotateₗ n l)
rotateᵣ : ℕ → List(T) → List(T)
rotateᵣ n l with splitLast l
... | Option.None = ∅
... | Option.Some(r , x) = x ⊰ r
-- Examples:
-- every n [] = []
-- every 0 [0,1,2,3,4,5,6,7,8] = []
-- every 1 [0,1,2,3,4,5,6,7,8] = [0,1,2,3,4,5,6,7,8]
-- every 2 [0,1,2,3,4,5,6,7,8] = [0,2,4,6,8]
-- every 3 [0,1,2,3,4,5,6,7,8] = [0,3,6]
-- every 4 [0,1,2,3,4,5,6,7,8] = [0,4,8]
-- every 5 [0,1,2,3,4,5,6,7,8] = [0,5]
-- every 6 [0,1,2,3,4,5,6,7,8] = [0,6]
-- every 7 [0,1,2,3,4,5,6,7,8] = [0,7]
-- every 8 [0,1,2,3,4,5,6,7,8] = [0,8]
-- every 9 [0,1,2,3,4,5,6,7,8] = [0]
-- every 10 [0,1,2,3,4,5,6,7,8] = [0]
-- Alternative implementations:
-- • every n l = map head (accumulateIterate₀ (length(n) ⌈/₀⌉ n) (skip n) l)
-- every 0 _ = ∅
-- every 1 l = l
-- every (𝐒(𝐒(n))) ∅ = ∅
-- • every (𝐒(𝐒(n))) (x ⊰ l) = x ⊰ every (𝐒(𝐒(n))) (skip (𝐒(n)) l)
every : ℕ → List(T) → List(T)
every 𝟎 = const ∅
every (𝐒(n)) = impl 𝟎 where
-- TODO: Is it possible to prove stuff about `every` when `impl` is hidden in a where clause? `impl` essentially contains a counter, so an alternative implementation would be having `every` having two arguments.
impl : ℕ → List(T) → List(T)
impl _ ∅ = ∅
impl 𝟎 (x ⊰ l) = x ⊰ impl n l
impl (𝐒 k) (x ⊰ l) = impl k l
-- Examples:
-- separate 0 [0,1,2,3,4,5,6,7,8] = []
-- separate 1 [0,1,2,3,4,5,6,7,8] = [[0,1,2,3,4,5,6,7,8]]
-- separate 2 [0,1,2,3,4,5,6,7,8] = [[0,2,4,6,8],[1,3,5,7]]
-- separate 3 [0,1,2,3,4,5,6,7,8] = [[0,3,6],[1,4,7],[2,5,8]]
-- separate 4 [0,1,2,3,4,5,6,7,8] = [[0,4,8],[1,5],[2,6],[3,7]]
-- separate 5 [0,1,2,3,4,5,6,7,8] = [[0,5],[1,6],[2,7],[3,8],[4]]
-- separate 6 [0,1,2,3,4,5,6,7,8] = [[0,6],[1,7],[2,8],[3],[4],[5]]
-- separate 7 [0,1,2,3,4,5,6,7,8] = [[0,7],[1,8],[2],[3],[4],[5],[6]]
-- separate 8 [0,1,2,3,4,5,6,7,8] = [[0,8],[1],[2],[3],[4],[5],[6],[7]]
-- separate 9 [0,1,2,3,4,5,6,7,8] = [[0],[1],[2],[3],[4],[5],[6],[7],[8]]
-- separate 10 [0,1,2,3,4,5,6,7,8] = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[]]
-- separate 11 [0,1,2,3,4,5,6,7,8] = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[],[]]
separate : ℕ → List(T) → List(List(T))
separate n l = map (every n) (accumulateIterate₀ n tail l)
insertIn : T → (l : List(T)) → 𝕟₌(length l) → List(T)
insertIn a l 𝟎 = a ⊰ l
insertIn a ∅ (𝐒(_)) = singleton a
insertIn a (x ⊰ l) (𝐒(i)) = x ⊰ insertIn a l i
| {
"alphanum_fraction": 0.54620575,
"avg_line_length": 39.1800766284,
"ext": "agda",
"hexsha": "2425d3491c200723936325bc4230c403f72a7d21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Functions.agda",
"max_line_length": 213,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 8556,
"size": 20452
} |
{-# OPTIONS --universe-polymorphism --no-positivity-check #-}
module Alg-IIR where
data Level : Set where
zero : Level
suc : Level -> Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
max : Level -> Level -> Level
max zero m = m
max (suc n) zero = suc n
max (suc n) (suc m) = suc (max n m)
{-# BUILTIN LEVELMAX max #-}
_o_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f o g = λ x → f (g x)
infixl 50 _o_
record Sg {a b : Level}(S : Set a)(T : S -> Set b) : Set (max a b) where
constructor _,_
field
fst : S
snd : T fst
infixr 40 _,_
record Lifted {l : Level} (A : Set l) : Set (suc l) where
constructor lif
field
fil : A
open Lifted
lift : {i : Level} -> Set i -> Set (suc i)
lift x = Lifted x
unl : {l r : Level}{A : Set l}{P : Lifted A -> Set r} ->
((a : A) -> P (lif a)) -> (a : Lifted A) -> P a
unl p a = p (fil a)
mutual
data IRD (I : Set1)(J : I -> Set1) : Set1 where
var : I -> IRD I J
con : Set -> IRD I J
_*_ : (S : IRD I J) -> (Deco S -> IRD I J) -> IRD I J
_>_ : (S : Set) -> (S -> IRD I J) -> IRD I J
Deco : forall {I J} -> IRD I J -> Set1
Deco {I}{J} (var i) = J i
Deco (con A) = lift A -- grr
Deco (S * T) = Sg (Deco S) \ s -> Deco (T s)
Deco (S > T) = (s : S) -> Deco (T s)
_-:>_ : forall {a b c}{I : Set a} -> (I -> Set b) -> (I -> Set c)
-> Set (max a (max b c))
_-:>_ {I = I} S T = (i : I) -> S i -> T i
mutual
Func : forall {I J} -> IRD I J -> (X : I -> Set)(d : X -:> J) -> Set
Func (var i) X d = X i
Func (con A) X d = A
Func (S * T) X d = Sg (Func S X d) \ s -> Func (T (deco S X d s)) X d
Func (S > T) X d = (s : S) -> Func (T s) X d
deco : forall {I J} -> (D : IRD I J) -> (X : I -> Set)(d : X -:> J) ->
Func D X d -> Deco D
deco (var i) X d x = d i x
deco (con A) X d a = lif a
deco (S * T) X d (s , t) = s' , t' where
s' = deco S X d s
t' = deco (T s') X d t
deco (S > T) X d f = \ s -> deco (T s) X d (f s)
mutual
data DATA {I J}(F : I -> IRD I J)(d : (Deco o F) -:> J)(i : I) : Set where
<_> : Func (F i) (DATA F d) decode -> DATA F d i
decode : forall {I J}{F : I -> IRD I J}{d : (Deco o F) -:> J} ->
DATA F d -:> J
decode {I}{J}{F}{d} i < xs > = d i (deco (F i) (DATA F d) decode xs)
data MyTags : Set where
zz ss : MyTags
[_/_] : forall {l}{P : MyTags -> Set l} -> P zz -> P ss -> (t : MyTags) -> P t
[ z / s ] zz = z
[ z / s ] ss = s
record One {a} : Set a where
constructor <>
NAT : One {suc zero} -> IRD One \ _ -> One
NAT _ = con MyTags * unl [ con One / var _ ]
Nat : Set
Nat = DATA NAT _ _
myze : Nat
myze = < zz , _ >
mysu : Nat -> Nat
mysu n = < ss , n >
data Two : Set where
tt ff : Two
not : Two -> Two
not tt = ff
not ff = tt
_&&_ : Two -> Two -> Two
tt && b = b
ff && b = ff
_=N=_ : Nat -> Nat -> Two
< zz , _ > =N= < zz , _ > = tt
< zz , _ > =N= < ss , _ > = ff
< ss , _ > =N= < zz , _ > = ff
< ss , m > =N= < ss , n > = m =N= n
data Zero : Set where
So : Two -> Set
So tt = One
So ff = Zero
FREL : One {suc zero} -> IRD One \ _ -> Lifted (Nat -> Two)
FREL _ = con MyTags * unl
[ con One
/ (var _ * unl \ f -> con Nat * unl \ x -> con (So (f x)))
]
frel : Deco o FREL -:> \ _ -> Lifted (Nat -> Two)
frel _ (lif zz , _) = lif \ _ -> tt
frel _ (lif ss , lif f , lif x , p) = lif \ y -> not (y =N= x) && f y
Frel : Set
Frel = DATA FREL frel _
good : Frel
good = < ss , < ss , < ss , < zz , _ > ,
myze , _ > ,
mysu myze , _ > ,
mysu (mysu myze) , _ >
{-
bad : Frel
bad = < ss , < ss , < ss , < zz , _ > ,
myze , _ > ,
mysu myze , _ > ,
myze , {!!} >
-}
UNI : One {suc zero} -> IRD One \ _ -> Set
UNI _ = con MyTags * unl
[ con One
/ (var _ * \ S -> S > \ _ -> var _)
]
uni : Deco o UNI -:> \ _ -> Set
uni i (lif zz , _) = Nat
uni i (lif ss , S , T) = (s : S) -> T s
| {
"alphanum_fraction": 0.4471702696,
"avg_line_length": 23.9360465116,
"ext": "agda",
"hexsha": "a405ef3cfb626d1447fb8548debbadd6df289b44",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:51:42.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:51:42.000Z",
"max_forks_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dataronio/epigram2",
"max_forks_repo_path": "models/Alg-IIR.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dataronio/epigram2",
"max_issues_repo_path": "models/Alg-IIR.agda",
"max_line_length": 78,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dataronio/epigram2",
"max_stars_repo_path": "models/Alg-IIR.agda",
"max_stars_repo_stars_event_max_datetime": "2015-11-05T01:06:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-23T15:00:26.000Z",
"num_tokens": 1698,
"size": 4117
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using () renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal using (Monoidal)
module Categories.Pseudofunctor.Instance.EnrichedUnderlying
{o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) (v : Level) where
-- The "forgetful" functor from V-enriched categories to their
-- underlying Setoid-categories.
open import Data.Product as Prod using (_,_)
open import Categories.Bicategory.Instance.Cats
open import Categories.Bicategory.Instance.EnrichedCats M
open import Categories.Enriched.Category M
open import Categories.Enriched.Functor M
open import Categories.Enriched.NaturalTransformation M
import Categories.Morphism.Reasoning as MorphismReasoning
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
open import Categories.Pseudofunctor using (Pseudofunctor)
private
module V = Setoid-Category V
module UnderlyingReasoning {c} (C : Category c) where
open Underlying C public hiding (id)
open HomReasoning public
open MorphismReasoning (Underlying C) public
open NaturalTransformation using (_[_])
-- Aliases used to shorten some proof expressions
module UF = UnderlyingFunctor
infixr 14 _$₀_ _$₁_
_$₀_ = UF.F₀
_$₁_ = UF.F₁
-- The "forgetful" pseudofunctor mapping a V-enriched category to its
-- underlying Setoid-category.
--
-- Note that all the equational reasoning happens in the underlying
-- (ordinary) categories!
EnrichedUnderlying : Pseudofunctor (EnrichedCats v) (Cats v ℓ e)
EnrichedUnderlying = record
{ P₀ = Underlying
; P₁ = record
{ F₀ = UnderlyingFunctor
; F₁ = UnderlyingNT
; identity = V.Equiv.refl
; homomorphism = V.Equiv.refl
; F-resp-≈ = λ eq → eq
}
; P-identity = λ {C} →
let module C = Underlying C
open UnderlyingReasoning C
in niHelper record
{ η = λ _ → ntHelper record
{ η = λ _ → C.id
; commute = λ f → begin
C.id ∘ f ≈⟨ identityˡ ⟩
f ≈˘⟨ identityʳ ○ V.identityˡ ⟩
(V.id V.∘ f) ∘ C.id ∎
}
; η⁻¹ = λ _ → ntHelper record
{ η = λ _ → C.id
; commute = λ f → begin
C.id ∘ (V.id V.∘ f) ≈⟨ identityˡ ○ V.identityˡ ⟩
f ≈˘⟨ identityʳ ⟩
f ∘ C.id ∎
}
; commute = λ _ → V.Equiv.refl
; iso = λ _ → record { isoˡ = C.identityˡ ; isoʳ = C.identityʳ }
}
; P-homomorphism = λ {C D E} →
let module C = Underlying C
module D = Underlying D
module E = Underlying E
open UnderlyingReasoning E
in niHelper record
{ η = λ{ (F , G) → ntHelper record
{ η = λ _ → E.id
; commute = λ f → begin
E.id ∘ F $₁ G $₁ f ≈⟨ id-comm-sym ⟩
F $₁ G $₁ f ∘ E.id ≈˘⟨ V.assoc ⟩∘⟨refl ⟩
(F ∘F G) $₁ f ∘ E.id ∎
} }
; η⁻¹ = λ{ (F , G) → ntHelper record
{ η = λ _ → E.id
; commute = λ f → begin
E.id ∘ (F ∘F G) $₁ f ≈⟨ id-comm-sym ⟩
(F ∘F G) $₁ f ∘ E.id ≈⟨ V.assoc ⟩∘⟨refl ⟩
F $₁ G $₁ f ∘ E.id ∎
} }
; commute = λ _ → id-comm-sym
; iso = λ _ → record { isoˡ = E.identityˡ ; isoʳ = E.identityʳ }
}
; unitaryˡ = λ {_ D} →
let module D = Underlying D
open UnderlyingReasoning D
in begin
D.id ∘ D.id ∘ (V.id V.∘ D.id) ∘ D.id ≈⟨ identityˡ ○ identityˡ ⟩
(V.id V.∘ D.id) ∘ D.id ≈⟨ identityʳ ○ V.identityˡ ⟩
D.id ∎
; unitaryʳ = λ {C D F X} →
let module C = Underlying C
module D = Underlying D
open UnderlyingReasoning D
in begin
D.id ∘ D.id ∘ F $₁ C.id ∘ D.id ≈⟨ identityˡ ○ identityˡ ○ identityʳ ⟩
F $₁ C.id ≈⟨ UF.identity F ⟩
D.id ∎
; assoc = λ {_ B C D F G H X} →
let module B = Underlying B
module C = Underlying C
module D = Underlying D
open UnderlyingReasoning D
in ∘-resp-≈ʳ (begin
D.id ∘ (H ∘F G) $₁ B.id ∘ D.id ≈⟨ refl⟩∘⟨ V.assoc ⟩∘⟨refl ⟩
D.id ∘ H $₁ G $₁ B.id ∘ D.id ≈⟨ refl⟩∘⟨ UF.F-resp-≈ H
(UF.identity G) ⟩∘⟨refl ⟩
D.id ∘ H $₁ C.id ∘ D.id ≈⟨ id-comm-sym ⟩
(H $₁ C.id ∘ D.id) ∘ D.id ∎)
}
| {
"alphanum_fraction": 0.5511413521,
"avg_line_length": 35.874015748,
"ext": "agda",
"hexsha": "02654b38e6ea3eb5af5826dec94e472f8b5a527a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Pseudofunctor/Instance/EnrichedUnderlying.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Pseudofunctor/Instance/EnrichedUnderlying.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Pseudofunctor/Instance/EnrichedUnderlying.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1527,
"size": 4556
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Properties.VoteData as VoteDataProps
import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData
open import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
import LibraBFT.Impl.Types.Properties.LedgerInfoWithSignatures as LedgerInfoWithSignaturesProps
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Hash
open import Util.KVMap as Map
open import Util.Prelude
module LibraBFT.Impl.Consensus.ConsensusTypes.Properties.QuorumCert (self : QuorumCert) (vv : ValidatorVerifier) where
voteHash = hashVD (self ^∙ qcVoteData)
record rnd≡0Props : Set where
field
par≡cert : self ^∙ qcParentBlock ≡ self ^∙ qcCertifiedBlock
cert≡li : self ^∙ qcCertifiedBlock ≡ self ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo
noSigs : Map.kvm-size (self ^∙ qcLedgerInfo ∙ liwsSignatures) ≡ 0
open rnd≡0Props
record rnd≢0Props : Set where
field
sigProp : LedgerInfoWithSignatures.verifySignatures (self ^∙ qcLedgerInfo) vv ≡ Right unit
vdProp : VoteDataProps.Contract (self ^∙ qcVoteData)
open rnd≢0Props
ParentProps : Dec (self ^∙ qcCertifiedBlock ∙ biRound ≡ 0) → Set
ParentProps (yes _) = rnd≡0Props
ParentProps (no _) = rnd≢0Props
record Contract : Set where
field
lihash≡ : self ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash ≡ voteHash
rnd≟0 : Dec (self ^∙ qcCertifiedBlock ∙ biRound ≡ 0)
parProp : ParentProps rnd≟0
open Contract
contract : ∀ (r : Either ErrLog Unit) → r ≡ Right unit
→ QuorumCert.verify self vv ≡ r
→ Contract
contract (Left fakeErr)
with (self ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash) ≟Hash
(hashVD (self ^∙ qcVoteData))
...| no neq = λ ()
...| yes refl
with self ^∙ qcCertifiedBlock ∙ biRound ≟ 0
...| yes refl
with (self ^∙ qcParentBlock) ≟-BlockInfo (self ^∙ qcCertifiedBlock)
...| no neq = λ ()
...| yes refl
with (self ^∙ qcCertifiedBlock) ≟-BlockInfo (self ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo)
...| no neq = λ ()
...| yes refl
with Map.kvm-size (self ^∙ qcLedgerInfo ∙ liwsSignatures) ≟ 0
...| yes noSigs = λ ()
contract (Right unit)
with (self ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash) ≟Hash (hashVD (self ^∙ qcVoteData))
...| no neq = λ _ ()
...| yes refl
with self ^∙ qcCertifiedBlock ∙ biRound ≟ 0
...| yes refl
with (self ^∙ qcParentBlock) ≟-BlockInfo (self ^∙ qcCertifiedBlock)
...| no neq = λ _ ()
...| yes refl
with (self ^∙ qcCertifiedBlock) ≟-BlockInfo (self ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo)
...| no neq = λ _ ()
...| yes refl
with Map.kvm-size (self ^∙ qcLedgerInfo ∙ liwsSignatures) ≟ 0
...| yes noSigs = λ _ _ →
record { lihash≡ = refl
; rnd≟0 = yes refl
; parProp = record { par≡cert = refl
; cert≡li = refl
; noSigs = noSigs } }
contract (Right unit)
| yes refl
| no neq
with LedgerInfoWithSignatures.verifySignatures (self ^∙ qcLedgerInfo) vv | inspect
(LedgerInfoWithSignatures.verifySignatures (self ^∙ qcLedgerInfo)) vv
...| Left err | [ R ] = λ _ ()
...| Right unit | [ R ]
with VoteData.verify (self ^∙ qcVoteData) | inspect
VoteData.verify (self ^∙ qcVoteData)
...| Left err | _ = λ _ ()
...| Right unit | [ R' ] = λ _ _ →
record { lihash≡ = refl
; rnd≟0 = no neq
; parProp = record { sigProp = R
; vdProp = VoteDataProps.contract (self ^∙ qcVoteData) R' } }
| {
"alphanum_fraction": 0.6326434619,
"avg_line_length": 42.52,
"ext": "agda",
"hexsha": "f797719fe4b243fde2bbc8cc2a558cea5ac11854",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/QuorumCert.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/QuorumCert.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/QuorumCert.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1347,
"size": 4252
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Application {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Weakening
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Tools.Product
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
-- Application of valid terms.
appᵛ : ∀ {F G rF lF lG rΠ lΠ t u Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / [ΠFG])
([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ u ^ lΠ ∷ G [ u ] ^ [ rΠ , ι lG ] / [Γ] / substSΠ {F} {G} {u} [Γ] [F] [ΠFG] [u]
appᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ} {t} {u} [Γ] [F] [ΠFG] [t] [u] {σ = σ} ⊢Δ [σ] =
let [G[u]] = substSΠ {F} {G} {u} [Γ] [F] [ΠFG] [u]
[σF] = proj₁ ([F] ⊢Δ [σ])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σt] = proj₁ ([t] ⊢Δ [σ])
[σu] = proj₁ ([u] ⊢Δ [σ])
[σG[u]] = proj₁ ([G[u]] ⊢Δ [σ])
[σG[u]]′ = irrelevance′ (singleSubstLift G u) [σG[u]]
in irrelevanceTerm′ (PE.sym (singleSubstLift G u)) PE.refl PE.refl
[σG[u]]′ [σG[u]]
(appTerm PE.refl [σF] [σG[u]]′ [σΠFG] [σt] [σu])
, (λ [σ′] [σ≡σ′] →
let [σu′] = convTerm₂ [σF] (proj₁ ([F] ⊢Δ [σ′]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([u] ⊢Δ [σ′]))
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G u)) PE.refl PE.refl
[σG[u]]′ [σG[u]]
(app-congTerm [σF] [σG[u]]′ [σΠFG]
(proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
[σu] [σu′]
(proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′])))
-- Application congurence of valid terms.
app-congᵛ : ∀ {F G rF lF lG rΠ lΠ t u a b Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / [ΠFG])
([a] : Γ ⊩ᵛ⟨ l ⟩ a ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
([b] : Γ ⊩ᵛ⟨ l ⟩ b ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
([a≡b] : Γ ⊩ᵛ⟨ l ⟩ a ≡ b ∷ F ^ [ rF , ι lF ] / [Γ] / [F])
→ Γ ⊩ᵛ⟨ l ⟩ t ∘ a ^ lΠ ≡ u ∘ b ^ lΠ ∷ G [ a ] ^ [ rΠ , ι lG ] / [Γ]
/ substSΠ {F} {G} {a} [Γ] [F] [ΠFG] [a]
app-congᵛ {F} {G} {rF} {lF} {lG} {rΠ} {a = a} [Γ] [F] [ΠFG] [t≡u] [a] [b] [a≡b] ⊢Δ [σ] =
let [σF] = proj₁ ([F] ⊢Δ [σ])
[G[a]] = proj₁ (substSΠ {F} {G} {a} [Γ] [F] [ΠFG] [a] ⊢Δ [σ])
[G[a]]′ = irrelevance′ (singleSubstLift G a) [G[a]]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
[σa] = proj₁ ([a] ⊢Δ [σ])
[σb] = proj₁ ([b] ⊢Δ [σ])
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G a)) PE.refl PE.refl [G[a]]′ [G[a]]
(app-congTerm [σF] [G[a]]′ [σΠFG] ([t≡u] ⊢Δ [σ])
[σa] [σb] ([a≡b] ⊢Δ [σ]))
appᵛ↑ : ∀ {F F' G rF rF' lF lF' lG rΠ lΠ t u Γ l}
(lF≤ : lF ≤ lΠ)
(lG≤ : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([F'] : Γ ⊩ᵛ⟨ l ⟩ F' ^ [ rF' , ι lF' ] / [Γ])
([G] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F])
([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ])
([t] : Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ t ∷ wk1 (Π F ^ rF ° lF ▹ G ° lG ° lΠ) ^ [ rΠ , ι lΠ ] / [Γ] ∙ [F'] / wk1ᵛ {A = Π F ^ rF ° lF ▹ G ° lG ° lΠ} {F = F'} [Γ] [F'] [ΠFG])
([u] : Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ u ∷ wk1 F ^ [ rF , ι lF ] / [Γ] ∙ [F'] / wk1ᵛ {A = F} {F = F'} [Γ] [F'] [F])
→ Γ ∙ F' ^ [ rF' , ι lF' ] ⊩ᵛ⟨ l ⟩ t ∘ u ^ lΠ ∷ G [ u ]↑ ^ [ rΠ , ι lG ] / [Γ] ∙ [F'] / subst↑S {F'} {G} {u} {F' = F} [Γ] [F'] [F] [G] [u]
appᵛ↑ {F} {F'} {G} {rF} {rF'} {lF} {lF'} {lG} {rΠ} {lΠ} {t} {u} lF≤ lG≤ [Γ] [F] [F'] [G] [ΠFG] [t] [u] =
let [G[u]] = subst↑S {F'} {G} {u} {F' = F} [Γ] [F'] [F] [G] [u]
[wF] = wk1ᵛ {A = F} {F = F'} [Γ] [F'] [F]
[wΠFG] = wk1ᵛ {A = Π F ^ rF ° lF ▹ G ° lG ° lΠ} {F = F'} [Γ] [F'] [ΠFG]
[app] = appᵛ {F = wk1 F} {G = wk1d G} {t = t} {u = u} (_∙_ {A = F'} [Γ] [F']) [wF] [wΠFG] [t] [u]
in S.irrelevanceTerm′ {A = wk1d G [ u ]} {A′ = G [ u ]↑} {t = t ∘ u ^ lΠ} (PE.sym (wk1d[]-[]↑ G u)) PE.refl (_∙_ {A = F'} [Γ] [F']) (_∙_ {A = F'} [Γ] [F'])
(substSΠ {wk1 F} {wk1d G} {u} (_∙_ {A = F'} [Γ] [F']) [wF] [wΠFG] [u]) [G[u]] [app]
| {
"alphanum_fraction": 0.4144861585,
"avg_line_length": 54.9375,
"ext": "agda",
"hexsha": "57ebb05caff2cbe4e4e5b51b41507368458f5d7b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Application.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Application.agda",
"max_line_length": 179,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Application.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 2685,
"size": 5274
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Literals.Definition.Negative where
open import Light.Library.Data.Natural as ℕ using (ℕ ; zero ; successor) renaming (ℓ to nℓ)
open import Light.Level using (++_ ; _⊔_)
open import Light.Variable.Sets
open import Light.Variable.Levels
open import Light.Package using (Package)
record FromNegative ⦃ package : Package record { ℕ } ⦄ (𝕒 : Set ℓ) : Set (++ (nℓ ⊔ ℓ)) where
field convert : ℕ → 𝕒
open FromNegative ⦃ ... ⦄ using (convert)
open import Agda.Builtin.Nat as Nat using (Nat)
private
change : ∀ ⦃ package : Package record { ℕ } ⦄ → Nat → ℕ
change Nat.zero = zero
change (Nat.suc n) = successor (change n)
from‐literal : ∀ ⦃ package : Package record { ℕ } ⦄ ⦃ natural : FromNegative 𝕒 ⦄ (n : Nat) → 𝕒
from‐literal n = convert (change n)
{-# BUILTIN FROMNEG from‐literal #-}
| {
"alphanum_fraction": 0.677383592,
"avg_line_length": 36.08,
"ext": "agda",
"hexsha": "fdd0a486cdbf6db78ef6eab4a9e0e1f2ab2e1f80",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Literals/Definition/Negative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Literals/Definition/Negative.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Literals/Definition/Negative.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 272,
"size": 902
} |
module Cats.Category.Setoids.Facts.Exponentials where
open import Data.Product using (_,_)
open import Relation.Binary using (Setoid)
open import Cats.Category
open import Cats.Category.Setoids as Setoids using (Setoids ; ≈-intro ; ≈-elim)
open import Cats.Category.Setoids.Facts.Products as Products using
(hasBinaryProducts)
open import Cats.Util.Conv
import Relation.Binary.PropositionalEquality as ≡
import Cats.Category.Base as Base
import Cats.Util.SetoidReasoning as SetoidReasoning
module Build l where
infixr 1 _↝_
open Base.Category (Setoids l l)
open Category (Setoids l l) using (∃!-intro ; Exp ; IsUniqueSuchThat)
open HasBinaryProducts (hasBinaryProducts l l)
open Setoids._⇒_ using (resp)
_↝_ : Obj → Obj → Obj
A ↝ B = record
{ Carrier = A ⇒ B
; _≈_ = _≈_ {A} {B}
; isEquivalence = equiv
}
eval : ∀ {B C} → (B ↝ C) × B ⇒ C
eval = record
{ arr = λ { (f , x) → (f ⃗) x }
; resp = λ { (eq₁ , eq₂) → ≈-elim eq₁ eq₂ }
}
curry : ∀ {A B C} → A × B ⇒ C → A ⇒ B ↝ C
curry {A} f = record
{ arr = λ a → record
{ arr = λ b → (f ⃗) (a , b)
; resp = λ eqb → resp f (refl , eqb)
}
; resp = λ eqa → ≈-intro λ eqb → resp f (eqa , eqb)
}
where
open Setoid A using (refl)
curry-correct : ∀ {A B C} (f : A × B ⇒ C)
→ eval ∘ ⟨ curry f × id ⟩ ≈ f
curry-correct f = ≈-intro (resp f)
curry-unique : ∀ {A B C} (f : A × B ⇒ C)
→ IsUniqueSuchThat (λ f̃ → eval ∘ ⟨ f̃ × id ⟩ ≈ f) (curry f)
curry-unique {A} {B} {C} f {g} eval∘g≈f
= ≈-intro λ {a} {a′} a≈a′ → ≈-intro λ {b} {b′} b≈b′ →
begin⟨ C ⟩
((((curry f) ⃗) a) ⃗) b
≡⟨⟩
(f ⃗) (a , b)
≈⟨ sym C (≈-elim eval∘g≈f (sym A a≈a′ , sym B b≈b′)) ⟩
(((g ⃗) a′) ⃗) b′
∎
where
open SetoidReasoning
open Setoid using (sym)
_↝′_ : ∀ B C → Exp B C
B ↝′ C = record
{ Cᴮ = B ↝ C
; eval = eval
; curry′ = λ f → ∃!-intro
(curry f)
(curry-correct f)
(λ {g} eval∘g≈f → curry-unique f {g} eval∘g≈f)
}
instance
hasExponentials : ∀ l → HasExponentials (Setoids l l)
hasExponentials l = record { _↝′_ = Build._↝′_ l }
| {
"alphanum_fraction": 0.5298573975,
"avg_line_length": 24.9333333333,
"ext": "agda",
"hexsha": "2329beccf05ef9a8334ff75e2fbddf85f3c97dd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Setoids/Facts/Exponentials.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Setoids/Facts/Exponentials.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Setoids/Facts/Exponentials.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 864,
"size": 2244
} |
------------------------------------------------------------------------------
-- Testing the function FOL.Translation.Terms.termToFOLTerm: Con term
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module TermToFOLTerm.ConTerm where
-- We add 3 to the fixities of the standard library.
infixl 9 _+_
infix 7 _≡_
------------------------------------------------------------------------------
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
data _≡_ (m : ℕ) : ℕ → Set where
refl : m ≡ m
sym : ∀ {x y} → x ≡ y → y ≡ x
sym refl = refl
_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)
+-Sx : ∀ m n → succ m + n ≡ succ (m + n)
+-Sx m n = refl
{-# ATP hint +-Sx #-}
postulate
+-rightIdentity : ∀ n → n + zero ≡ n
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n)
+-comm : ∀ m n → m + n ≡ n + m
+-comm zero n = sym (+-rightIdentity n)
+-comm (succ m) n = prf (+-comm m n)
where
postulate prf : m + n ≡ n + m →
succ m + n ≡ n + succ m
{-# ATP prove prf x+Sy≡S[x+y] #-}
| {
"alphanum_fraction": 0.4126853377,
"avg_line_length": 25.829787234,
"ext": "agda",
"hexsha": "45006281c7f4135e951d2f36f58dc7d44abaa657",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "issues/Issue16/sharing/TermToFOLTerm/ConTerm.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "issues/Issue16/sharing/TermToFOLTerm/ConTerm.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "issues/Issue16/sharing/TermToFOLTerm/ConTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 363,
"size": 1214
} |
module Numeral.Matrix.Relations where
open import Data.Tuple as Tuple using (_,_)
open import Logic.Predicate
open import Logic
open import Numeral.Matrix hiding (module SquareMatrix)
open import Numeral.Matrix.OverField
import Relator.Equals as Eq
open import Structure.Operator.Field
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Setoid
open import Syntax.Function
open import Type
module SquareMatrix {ℓ ℓₑ} {d} {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
record Symmetric(M : SquareMatrix(d)(T)) : Stmt{ℓₑ} where
constructor intro
field proof : ∀{x y} → Matrix.proj M(x , y) ≡ Matrix.proj M(y , x)
module _ {_▫_ : T → T → T} ⦃ monoid : Monoid(_▫_) ⦄ where
record Diagonal(M : SquareMatrix(d)(T)) : Stmt{ℓₑ} where
constructor intro
field proof : ∀{x y} → (x Eq.≢ y) → (Matrix.proj M(x , y) ≡ Monoid.id monoid)
record Scalar (s : T) (M : SquareMatrix(d)(T)) : Stmt{ℓₑ} where
constructor intro
field
⦃ diagonal ⦄ : Diagonal(M)
proof : ∀{x} → (Matrix.proj M(x , x) ≡ s)
module _ {_+ₛ_ _⋅ₛ_ : T → T → T} ⦃ field-structure : Field(_+ₛ_)(_⋅ₛ_) ⦄ where
record Similar(A B : SquareMatrix(d)(T)) : Stmt{ℓₑ} where
constructor intro
field proof : ∃(P ↦ ∃{Obj = Invertible(P)}(inver ↦ B ≡ inv(P) ⨯ A ⨯ P))
record Diagonalizable(M : SquareMatrix(d)(T)) : Stmt{ℓₑ} where
constructor intro
field proof : ∃(P ↦ ∃{Obj = Invertible(P)}(inver ↦ Diagonal(inv(P) ⨯ M ⨯ P)))
| {
"alphanum_fraction": 0.6486842105,
"avg_line_length": 38,
"ext": "agda",
"hexsha": "91d7cb32e4b991d6829100d4a16215af259b5f49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Matrix/Relations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Matrix/Relations.agda",
"max_line_length": 83,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Matrix/Relations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 522,
"size": 1520
} |
module Text.Parse (Tok : Set) where
open import Prelude
private
data P′ (A : Set) : Set where
symbolBind : (Tok → P′ A) → P′ A
fail′ : P′ A
returnPlus : A → P′ A → P′ A
_+++′_ : ∀ {A} → P′ A → P′ A → P′ A
symbolBind f +++′ symbolBind g = symbolBind λ x → f x +++′ g x
fail′ +++′ q = q
p +++′ fail′ = p
returnPlus x p +++′ q = returnPlus x (p +++′ q)
p +++′ returnPlus x q = returnPlus x (p +++′ q)
parse′ : ∀ {A} → P′ A → List Tok → List (A × List Tok)
parse′ (symbolBind _) [] = []
parse′ (symbolBind f) (c ∷ s) = parse′ (f c) s
parse′ (returnPlus x p) s = (x , s) ∷ parse′ p s
parse′ fail′ xs = []
record P (A : Set) : Set₁ where
constructor mkP
field
unP : ∀ {B} → (A → P′ B) → P′ B
open P
symbol : P Tok
symbol = mkP symbolBind
fail : ∀ {A} → P A
fail = mkP λ _ → fail′
infixr 2 _+++_
_+++_ : ∀ {A} → P A → P A → P A
p +++ q = mkP λ k → unP p k +++′ unP q k
private
ret : ∀ {A} → A → P A
ret x = mkP λ k → k x
bind : ∀ {A B} → P A → (A → P B) → P B
bind p f = mkP λ k → unP p (λ x → unP (f x) k)
parse : ∀ {A} → P A → List Tok → List (A × List Tok)
parse p = parse′ (unP p (λ x → returnPlus x fail′))
parse! : ∀ {A} → P A → List Tok → Maybe A
parse! p s with filter (null ∘ snd) (parse p s)
... | [] = nothing
... | (x , _) ∷ _ = just x
--- Instances ---
instance
FunctorP : Functor P
fmap {{FunctorP}} f m = bind m λ x → ret (f x)
ApplicativeP : Applicative P
pure {{ApplicativeP}} = ret
_<*>_ {{ApplicativeP}} = monadAp bind
MonadP : Monad P
_>>=_ {{MonadP}} = bind
MonoidP : ∀ {A} → Monoid (P A)
mempty {{MonoidP}} = fail
_<>_ {{MonoidP}} = _+++_
--- Derived combinators ---
sat : (p : Tok → Bool) → P (Σ Tok (IsTrue ∘ p))
sat p = symbol >>= match
where
-- Inlining 'match' gives internal error!
match : Tok → P (Σ Tok (IsTrue ∘ p))
match t = if′ p t then return (t , it) else fail
sat! : (Tok → Bool) → P Tok
sat! p = fst <$> sat p
token : {{EqTok : Eq Tok}} → Tok → P ⊤
token t = _ <$ sat (isYes ∘ _==_ t)
{-# NON_TERMINATING #-}
many many₁ : ∀ {A} → P A → P (List A)
many p = return [] +++ many₁ p
many₁ p = _∷_ <$> p <*> many p
| {
"alphanum_fraction": 0.5141138362,
"avg_line_length": 23.2365591398,
"ext": "agda",
"hexsha": "87ff0e392070dfaa7e0fb26970f662fcb5c5f8f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Text/Parse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Text/Parse.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Text/Parse.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 854,
"size": 2161
} |
module json where
open import general-util
data json : Set where
json-null : json
json-raw : rope → json
json-string : string → json
json-nat : nat → json
json-array : 𝕃 json → json
json-object : 𝕃 (string × json) → json
json-escape-string : string → string
json-escape-string str = 𝕃char-to-string $ rec $ string-to-𝕃char str where
rec : 𝕃 char → 𝕃 char
rec [] = []
rec ('\b' :: chars) = '\\' :: 'b' :: rec chars
rec ('\f' :: chars) = '\\' :: 'f' :: rec chars
rec ('\n' :: chars) = '\\' :: 'n' :: rec chars
rec ('\r' :: chars) = '\\' :: 'r' :: rec chars
rec ('\t' :: chars) = '\\' :: 't' :: rec chars
rec ('"' :: chars) = '\\' :: '"' :: rec chars
rec ('\\' :: chars) = '\\' :: '\\' :: rec chars
rec (char :: chars) = char :: rec chars
{-# TERMINATING #-}
json-to-rope : json → rope
json-to-rope json-null = [[ "null" ]]
json-to-rope (json-raw rope) = rope
json-to-rope (json-string string) = [[ "\"" ]] ⊹⊹ [[ json-escape-string string ]] ⊹⊹ [[ "\"" ]]
json-to-rope (json-nat nat) = [[ ℕ-to-string nat ]]
json-to-rope (json-array array) = [[ "[" ]] ⊹⊹ 𝕃-to-rope json-to-rope "," array ⊹⊹ [[ "]" ]]
json-to-rope (json-object t) = [[ "{" ]] ⊹⊹ 𝕃-to-rope (uncurry λ k v → [[ "\"" ]] ⊹⊹ [[ json-escape-string k ]] ⊹⊹ [[ "\":" ]] ⊹⊹ json-to-rope v) "," t ⊹⊹ [[ "}" ]]
json-rope : rope → json
json-rope rope = json-raw ([[ "\"" ]] ⊹⊹ rope ⊹⊹ [[ "\"" ]])
json-raw-string : string → json
json-raw-string str = json-raw [[ str ]]
putJson : json → IO ⊤
putJson = putRopeLn ∘ json-to-rope
| {
"alphanum_fraction": 0.5253456221,
"avg_line_length": 35.3255813953,
"ext": "agda",
"hexsha": "63eab2ab3773712c5b96baefb28d6cc5cf0d1d9c",
"lang": "Agda",
"max_forks_count": 34,
"max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z",
"max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mudathirmahgoub/cedille",
"max_forks_repo_path": "src/json.agda",
"max_issues_count": 123,
"max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mudathirmahgoub/cedille",
"max_issues_repo_path": "src/json.agda",
"max_line_length": 165,
"max_stars_count": 328,
"max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mudathirmahgoub/cedille",
"max_stars_repo_path": "src/json.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z",
"num_tokens": 544,
"size": 1519
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Dijkstra.EitherD.Syntax where
open import Dijkstra.EitherD
open import Dijkstra.EitherLike
open import Dijkstra.Syntax
open import Haskell.Prelude
private
variable
E : Set
A B C : Set
-- From this instance declaration, we get _<$>_, pure, and _<*>_ also.
instance
Monad-EitherD : ∀ {E : Set} → Monad (EitherD E)
Monad.return Monad-EitherD = EitherD-return
Monad._>>=_ Monad-EitherD = EitherD-bind
-- These instance declarations give us variant conditional operations that we
-- can define to play nice with `EitherD-weakestPre`
instance
EitherD-MonadIfD : MonadIfD{ℓ₃ = ℓ0} (EitherD E)
MonadIfD.monad EitherD-MonadIfD = Monad-EitherD
MonadIfD.ifD‖ EitherD-MonadIfD = EitherD-if
EitherD-MonadMaybeD : MonadMaybeD (EitherD E)
MonadMaybeD.monad EitherD-MonadMaybeD = Monad-EitherD
MonadMaybeD.maybeD EitherD-MonadMaybeD = EitherD-maybe
EitherD-MonadEitherD : MonadEitherD (EitherD E)
MonadEitherD.monad EitherD-MonadEitherD = Monad-EitherD
MonadEitherD.eitherD EitherD-MonadEitherD = EitherD-either
-- `EitherD` is Either-like
instance
EitherD-EitherLike : EitherLike EitherD
EitherLike.fromEither EitherD-EitherLike (Left a) = EitherD-bail a
EitherLike.fromEither EitherD-EitherLike (Right b) = EitherD-return b
EitherLike.toEither EitherD-EitherLike = EitherD-run
| {
"alphanum_fraction": 0.7610899873,
"avg_line_length": 32.875,
"ext": "agda",
"hexsha": "436b8fa94678150f64818c4d72f7e13e1fb1bce0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Dijkstra/EitherD/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Dijkstra/EitherD/Syntax.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Dijkstra/EitherD/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 477,
"size": 1578
} |
_ : @ω Set → Set₁
_ = λ (@0 _) → Set
| {
"alphanum_fraction": 0.4324324324,
"avg_line_length": 12.3333333333,
"ext": "agda",
"hexsha": "aa711f212d79db98e26d0e00f8e8513cfaa6a9ad",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5251-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5251-1.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5251-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 18,
"size": 37
} |
------------------------------------------------------------------------
-- The Eilenberg-MacLane space K(G, 1)
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- The module is parametrised by a notion of equality. The higher
-- constructors of the HIT defining K(G, 1) use path equality, but the
-- supplied notion of equality is used for many other things.
import Equality.Path as P
module Eilenberg-MacLane-space
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
open import Bijection equality-with-J as B using (_↔_)
open import Embedding equality-with-J using (Embedding; Is-embedding)
import Equality.Groupoid equality-with-J as EG
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
import Equivalence P.equality-with-J as PEq
open import Function-universe equality-with-J hiding (id; _∘_)
open import Group equality-with-J
open import H-level equality-with-J as H-level
import H-level P.equality-with-J as PH
open import H-level.Closure equality-with-J
open import H-level.Truncation eq as T using (∥_∥[1+_]; ∣_∣)
open import H-level.Truncation.Propositional eq as TP using (Surjective)
open import Pointed-type equality-with-J
open import Pointed-type.Connected eq
open import Pointed-type.Homotopy-group eq
open import Univalence-axiom equality-with-J
private
variable
a p : Level
A : Type a
P : A → Type p
e g x y : A
G G₁ G₂ : Group g
------------------------------------------------------------------------
-- The type
-- The Eilenberg-MacLane space K(G, 1).
--
-- This definition is taken from "Eilenberg-MacLane Spaces in Homotopy
-- Type Theory" by Licata and Finster.
data K[_]1 (G : Group g) : Type g where
base : K[ G ]1
loopᴾ : Group.Carrier G → base P.≡ base
loop-idᴾ : loopᴾ (Group.id G) P.≡ P.refl
loop-∘ᴾ : loopᴾ (Group._∘_ G x y) P.≡ P.trans (loopᴾ x) (loopᴾ y)
is-groupoidᴾ : PH.H-level 3 K[ G ]1
-- Variants of the higher constructors.
loop : Group.Carrier G → base ≡ base
loop {G = G} = _↔_.from ≡↔≡ ⊚ loopᴾ {G = G}
loop-id : loop {G = G} (Group.id G) ≡ refl base
loop-id {G = G} =
loop id ≡⟨ _≃_.from (Eq.≃-≡ (Eq.↔⇒≃ (inverse ≡↔≡))) (_↔_.from ≡↔≡ loop-idᴾ) ⟩
_↔_.from ≡↔≡ P.refl ≡⟨ from-≡↔≡-refl ⟩∎
refl base ∎
where
open Group G
loop-∘ : loop {G = G} (Group._∘_ G x y) ≡ trans (loop x) (loop y)
loop-∘ {G = G} {x = x} {y = y} =
loop (Group._∘_ G x y) ≡⟨ _≃_.from (Eq.≃-≡ (Eq.↔⇒≃ (inverse ≡↔≡))) (_↔_.from ≡↔≡ loop-∘ᴾ) ⟩
_↔_.from ≡↔≡ (P.trans (loopᴾ x) (loopᴾ y)) ≡⟨ sym trans≡trans ⟩∎
trans (loop x) (loop y) ∎
is-groupoid : H-level 3 K[ G ]1
is-groupoid = _↔_.from (H-level↔H-level 3) is-groupoidᴾ
------------------------------------------------------------------------
-- Eliminators
-- A dependent eliminator, expressed using paths.
--
-- This eliminator is based on one from "Eilenberg-MacLane Spaces in
-- Homotopy Type Theory" by Licata and Finster.
record Elimᴾ {G : Group g} (P : K[ G ]1 → Type p) : Type (g ⊔ p) where
no-eta-equality
open Group G
field
baseʳ : P base
loopʳ : ∀ g → P.[ (λ i → P (loopᴾ g i)) ] baseʳ ≡ baseʳ
loop-idʳ : P.[ (λ i → P.[ (λ j → P (loop-idᴾ i j)) ]
baseʳ ≡ baseʳ) ]
loopʳ id ≡ P.refl {x = baseʳ}
loop-∘ʳ : P.[ (λ i →
P.[ (λ j → P (loop-∘ᴾ {x = x} {y = y} i j)) ]
baseʳ ≡ baseʳ) ]
loopʳ (x ∘ y) ≡ P.htrans P (loopʳ x) (loopʳ y)
is-groupoidʳ : ∀ x → PH.H-level 3 (P x)
open Elimᴾ public
elimᴾ : Elimᴾ P → (x : K[ G ]1) → P x
elimᴾ {G = G} {P = P} e = helper
where
module E = Elimᴾ e
helper : (x : K[ G ]1) → P x
helper base = E.baseʳ
helper (loopᴾ x i) = E.loopʳ x i
helper (loop-idᴾ i j) = E.loop-idʳ i j
helper (loop-∘ᴾ i j) = E.loop-∘ʳ i j
helper (is-groupoidᴾ p q i j k) =
P.heterogeneous-UIP₃ E.is-groupoidʳ (is-groupoidᴾ p q)
(λ j k → helper (p j k)) (λ j k → helper (q j k)) i j k
-- A non-dependent eliminator, expressed using paths.
--
-- This eliminator is based on one from "Eilenberg-MacLane Spaces in
-- Homotopy Type Theory" by Licata and Finster.
record Recᴾ (G : Group g) (A : Type a) : Type (g ⊔ a) where
no-eta-equality
open Group G
field
baseʳ : A
loopʳ : Carrier → baseʳ P.≡ baseʳ
loop-idʳ : loopʳ id P.≡ P.refl
loop-∘ʳ : loopʳ (x ∘ y) P.≡ P.trans (loopʳ x) (loopʳ y)
is-groupoidʳ : PH.H-level 3 A
open Recᴾ public
recᴾ : Recᴾ G A → K[ G ]1 → A
recᴾ {G = G} {A = A} r = elimᴾ λ where
.is-groupoidʳ _ → R.is-groupoidʳ
.baseʳ → R.baseʳ
.loopʳ → R.loopʳ
.loop-idʳ → R.loop-idʳ
.loop-∘ʳ {x = x} {y = y} →
R.loopʳ (x ∘ y) P.≡⟨ R.loop-∘ʳ ⟩
P.trans (R.loopʳ x) (R.loopʳ y) P.≡⟨ P.sym $ P.htrans-const (loopᴾ {G = G} x) (loopᴾ y) (R.loopʳ x) ⟩∎
P.htrans {x≡y = loopᴾ {G = G} x} {y≡z = loopᴾ y} (const A)
(R.loopʳ x) (R.loopʳ y) ∎
where
open Group G
module R = Recᴾ r
-- A non-dependent eliminator.
--
-- This eliminator is based on one from "Eilenberg-MacLane Spaces in
-- Homotopy Type Theory" by Licata and Finster.
record Rec (G : Group g) (A : Type a) : Type (g ⊔ a) where
no-eta-equality
open Group G
field
baseʳ : A
loopʳ : Carrier → baseʳ ≡ baseʳ
loop-idʳ : loopʳ id ≡ refl baseʳ
loop-∘ʳ : loopʳ (x ∘ y) ≡ trans (loopʳ x) (loopʳ y)
is-groupoidʳ : H-level 3 A
open Rec public
rec : Rec G A → K[ G ]1 → A
rec {G = G} {A = A} r = recᴾ λ where
.is-groupoidʳ → _↔_.to (H-level↔H-level 3) R.is-groupoidʳ
.baseʳ → R.baseʳ
.loopʳ → _↔_.to ≡↔≡ ⊚ R.loopʳ
.loop-idʳ →
_↔_.to ≡↔≡ (R.loopʳ id) P.≡⟨ P.cong (_↔_.to ≡↔≡) $ _↔_.to ≡↔≡ R.loop-idʳ ⟩
_↔_.to ≡↔≡ (refl R.baseʳ) P.≡⟨ _↔_.to ≡↔≡ to-≡↔≡-refl ⟩∎
P.refl ∎
.loop-∘ʳ {x = x} {y = y} →
_↔_.to ≡↔≡ (R.loopʳ (x ∘ y)) P.≡⟨ P.cong (_↔_.to ≡↔≡) $ _↔_.to ≡↔≡ R.loop-∘ʳ ⟩
_↔_.to ≡↔≡ (trans (R.loopʳ x) (R.loopʳ y)) P.≡⟨ _↔_.to ≡↔≡ $ sym $ cong₂ (λ p q → _↔_.to ≡↔≡ (trans p q))
(_↔_.left-inverse-of ≡↔≡ _)
(_↔_.left-inverse-of ≡↔≡ _) ⟩
_↔_.to ≡↔≡ (trans (_↔_.from ≡↔≡ (_↔_.to ≡↔≡ (R.loopʳ x)))
(_↔_.from ≡↔≡ (_↔_.to ≡↔≡ (R.loopʳ y)))) P.≡⟨ P.cong (_↔_.to ≡↔≡) $ _↔_.to ≡↔≡ trans≡trans ⟩
(_↔_.to ≡↔≡ $ _↔_.from ≡↔≡ $
P.trans (_↔_.to ≡↔≡ (R.loopʳ x)) (_↔_.to ≡↔≡ (R.loopʳ y))) P.≡⟨ _↔_.to ≡↔≡ $ _↔_.right-inverse-of ≡↔≡ _ ⟩∎
P.trans (_↔_.to ≡↔≡ (R.loopʳ x)) (_↔_.to ≡↔≡ (R.loopʳ y)) ∎
where
open Group G
module R = Rec r
-- A "computation" rule.
rec-loop : cong (rec e) (loop g) ≡ e .loopʳ g
rec-loop = cong-≡↔≡ (refl _)
-- A dependent eliminator that can be used when eliminating into sets,
-- expressed using paths.
record Elim-setᴾ {G : Group g}
(P : K[ G ]1 → Type p) : Type (g ⊔ p) where
no-eta-equality
open Group G
field
baseʳ : P base
loopʳ : ∀ g → P.[ (λ i → P (loopᴾ g i)) ] baseʳ ≡ baseʳ
is-setʳ : ∀ x → P.Is-set (P x)
open Elim-setᴾ public
elim-setᴾ : Elim-setᴾ P → (x : K[ G ]1) → P x
elim-setᴾ e = elimᴾ λ where
.baseʳ → E.baseʳ
.loopʳ → E.loopʳ
.loop-idʳ → P.heterogeneous-UIP E.is-setʳ _ _ _
.loop-∘ʳ → P.heterogeneous-UIP E.is-setʳ _ _ _
.is-groupoidʳ → PH.mono₁ 2 ⊚ E.is-setʳ
where
module E = Elim-setᴾ e
-- A dependent eliminator that can be used when eliminating into sets.
record Elim-set {G : Group g}
(P : K[ G ]1 → Type p) : Type (g ⊔ p) where
no-eta-equality
open Group G
field
baseʳ : P base
loopʳ : ∀ g → subst P (loop g) baseʳ ≡ baseʳ
is-setʳ : ∀ x → Is-set (P x)
open Elim-set public
elim-set : Elim-set P → (x : K[ G ]1) → P x
elim-set e = elim-setᴾ λ where
.baseʳ → E.baseʳ
.loopʳ → subst≡→[]≡ ⊚ E.loopʳ
.is-setʳ → _↔_.to (H-level↔H-level 2) ⊚ E.is-setʳ
where
module E = Elim-set e
-- A "computation" rule.
elim-set-loop : dcong (elim-set e) (loop g) ≡ e .loopʳ g
elim-set-loop = dcong-subst≡→[]≡ (refl _)
-- A non-dependent eliminator that can be used when eliminating into
-- sets, expressed using paths.
record Rec-setᴾ (G : Group g) (A : Type a) : Type (g ⊔ a) where
no-eta-equality
open Group G
field
baseʳ : A
loopʳ : Carrier → baseʳ P.≡ baseʳ
is-setʳ : P.Is-set A
open Rec-setᴾ public
rec-setᴾ : Rec-setᴾ G A → K[ G ]1 → A
rec-setᴾ r = elim-setᴾ λ where
.baseʳ → R.baseʳ
.loopʳ → R.loopʳ
.is-setʳ _ → R.is-setʳ
where
module R = Rec-setᴾ r
-- A non-dependent eliminator that can be used when eliminating into
-- sets.
record Rec-set (G : Group g) (A : Type a) : Type (g ⊔ a) where
no-eta-equality
open Group G
field
baseʳ : A
loopʳ : Carrier → baseʳ ≡ baseʳ
is-setʳ : Is-set A
open Rec-set public
rec-set : Rec-set G A → K[ G ]1 → A
rec-set r = rec-setᴾ λ where
.baseʳ → R.baseʳ
.loopʳ → _↔_.to ≡↔≡ ⊚ R.loopʳ
.is-setʳ → _↔_.to (H-level↔H-level 2) R.is-setʳ
where
module R = Rec-set r
-- A "computation" rule.
rec-set-loop : cong (rec-set e) (loop g) ≡ e .loopʳ g
rec-set-loop = cong-≡↔≡ (refl _)
-- A dependent eliminator that can be used when eliminating into
-- propositions.
record Elim-prop {G : Group g} (P : K[ G ]1 → Type p) :
Type (g ⊔ p) where
no-eta-equality
field
baseʳ : P base
is-propositionʳ : ∀ x → Is-proposition (P x)
open Elim-prop public
elim-prop : Elim-prop P → (x : K[ G ]1) → P x
elim-prop e = elim-set λ where
.baseʳ → E.baseʳ
.loopʳ _ → E.is-propositionʳ _ _ _
.is-setʳ → mono₁ 1 ⊚ E.is-propositionʳ
where
module E = Elim-prop e
------------------------------------------------------------------------
-- Universal properties
-- A dependent universal property, restricted to families of sets.
--
-- This property is expressed using P.[_]_≡_.
universal-property-Π-setᴾ :
(∀ x → P.Is-set (P x)) →
((x : K[ G ]1) → P x) ≃
(∃ λ (x : P base) → ∀ g → P.[ (λ i → P (loopᴾ g i)) ] x ≡ x)
universal-property-Π-setᴾ {G = G} {P = P} P-set =
_↔_.from ≃↔≃ $
PEq.↔→≃
(λ f → f base , P.hcong f ⊚ loopᴾ)
(λ (x , f) → elim-setᴾ λ where
.baseʳ → x
.loopʳ → f
.is-setʳ → P-set)
(λ _ → P.refl)
(λ f → P.⟨ext⟩ $ elim-setᴾ λ where
.baseʳ → P.refl
.loopʳ _ _ → P.refl
.is-setʳ _ → PH.mono₁ 2 (P-set _))
-- A variant of the dependent universal property, restricted to
-- families of sets.
--
-- This property is expressed using subst.
universal-property-Π-set :
(∀ x → Is-set (P x)) →
((x : K[ G ]1) → P x) ≃
(∃ λ (x : P base) → ∀ g → subst P (loop g) x ≡ x)
universal-property-Π-set {G = G} {P = P} P-set =
((x : K[ G ]1) → P x) ↝⟨ universal-property-Π-setᴾ (_↔_.to (H-level↔H-level 2) ⊚ P-set) ⟩
(∃ λ (x : P base) → ∀ g → P.[ (λ i → P (loopᴾ g i)) ] x ≡ x) ↔⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse subst≡↔[]≡) ⟩□
(∃ λ (x : P base) → ∀ g → subst P (loop g) x ≡ x) □
-- A non-dependent universal property, restricted to sets.
universal-property-set :
Is-set A →
(K[ G ]1 → A) ≃ (∃ λ (x : A) → Group.Carrier G → x ≡ x)
universal-property-set {A = A} {G = G} A-set =
(K[ G ]1 → A) ↝⟨ universal-property-Π-setᴾ (λ _ → _↔_.to (H-level↔H-level 2) A-set) ⟩
(∃ λ (x : A) → Carrier → x P.≡ x) ↔⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse ≡↔≡) ⟩□
(∃ λ (x : A) → Carrier → x ≡ x) □
where
open Group G
------------------------------------------------------------------------
-- Some conversion functions
-- A map function.
--
-- The existence of such a function was suggested to me by Christian
-- Sattler.
map : G₁ →ᴳ G₂ → K[ G₁ ]1 → K[ G₂ ]1
map {G₁ = G₁} {G₂ = G₂} h = rec λ where
.is-groupoidʳ → is-groupoid
.baseʳ → base
.loopʳ x → loop (to x)
.loop-idʳ →
loop (to G₁.id) ≡⟨ cong loop (→ᴳ-id h) ⟩
loop G₂.id ≡⟨ loop-id ⟩∎
refl _ ∎
.loop-∘ʳ {x = x} {y = y} →
loop (to (x G₁.∘ y)) ≡⟨ cong loop (h .homomorphic x y) ⟩
loop (to x G₂.∘ to y) ≡⟨ loop-∘ ⟩∎
trans (loop (to x)) (loop (to y)) ∎
where
module G₁ = Group G₁
module G₂ = Group G₂
open Homomorphic h using (to)
-- If G₁ and G₂ are isomorphic groups, then K[ G₁ ]1 and K[ G₂ ]1 are
-- equivalent.
cong-≃ : G₁ ≃ᴳ G₂ → K[ G₁ ]1 ≃ K[ G₂ ]1
cong-≃ G₁≃G₂ = Eq.↔→≃
(map (↝ᴳ→→ᴳ G₁≃G₂))
(map (↝ᴳ→→ᴳ (≃ᴳ-sym G₁≃G₂)))
(lemma (↝ᴳ→→ᴳ G₁≃G₂) (↝ᴳ→→ᴳ (≃ᴳ-sym G₁≃G₂))
(_≃_.right-inverse-of (related G₁≃G₂)))
(lemma (↝ᴳ→→ᴳ (≃ᴳ-sym G₁≃G₂)) (↝ᴳ→→ᴳ G₁≃G₂)
(_≃_.left-inverse-of (related G₁≃G₂)))
where
open Homomorphic using (to)
lemma :
(f₁ : G₁ →ᴳ G₂) (f₂ : G₂ →ᴳ G₁) →
(∀ x → to f₁ (to f₂ x) ≡ x) →
∀ x → map f₁ (map f₂ x) ≡ x
lemma f₁ f₂ hyp = elim-set λ where
.is-setʳ _ → is-groupoid
.baseʳ → refl _
.loopʳ g →
subst (λ x → map f₁ (map f₂ x) ≡ x) (loop g) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym $ cong (map f₁ ⊚ map f₂) (loop g))
(trans (refl _) (cong P.id (loop g))) ≡⟨ cong₂ (trans ⊚ sym)
(sym $ cong-∘ _ _ _)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym $ cong (map f₁) $ cong (map f₂) (loop g)) (loop g) ≡⟨ cong (flip trans (loop g) ⊚ sym) $
trans (cong (cong _) rec-loop)
rec-loop ⟩
trans (sym $ loop (to f₁ (to f₂ g))) (loop g) ≡⟨ cong (flip trans _ ⊚ sym ⊚ loop) $ hyp _ ⟩
trans (sym $ loop g) (loop g) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
------------------------------------------------------------------------
-- A lemma
-- The pointed type (K[ G ]1 , base) is connected.
--
-- This result was pointed out to me by Christian Sattler.
connected : Connected (K[ G ]1 , base)
connected = elim-prop λ where
.is-propositionʳ _ → TP.truncation-is-proposition
.baseʳ → TP.∣ refl _ ∣
------------------------------------------------------------------------
-- Some lemmas related to the fundamental group of (K[ G ]1 , base)
-- A variant of the fundamental group of (K[ G ]1 , base) is
-- isomorphic to G (assuming univalence).
--
-- The proof is based on the one given in "Eilenberg-MacLane Spaces in
-- Homotopy Type Theory" by Licata and Finster.
Fundamental-group′[K1]≃ᴳ :
{G : Group g} →
Univalence g →
(s : Is-set (proj₁ (Ω (K[ G ]1 , base)))) →
Fundamental-group′ (K[ G ]1 , base) s ≃ᴳ G
Fundamental-group′[K1]≃ᴳ {g = g} {G = G} univ _ = λ where
.related → equiv
.homomorphic → hom
where
module FG = Group (Fundamental-group′ (K[ G ]1 , base) is-groupoid)
open Group G
-- Postcomposition is an equivalence.
to-≃ : Carrier → Carrier ≃ Carrier
to-≃ x = Eq.↔→≃
(_∘ x)
(_∘ x ⁻¹)
(λ y →
(y ∘ x ⁻¹) ∘ x ≡⟨ sym $ assoc _ _ _ ⟩
y ∘ (x ⁻¹ ∘ x) ≡⟨ cong (y ∘_) $ left-inverse _ ⟩
y ∘ id ≡⟨ right-identity _ ⟩∎
y ∎)
(λ y →
(y ∘ x) ∘ x ⁻¹ ≡⟨ sym $ assoc _ _ _ ⟩
y ∘ (x ∘ x ⁻¹) ≡⟨ cong (y ∘_) $ right-inverse _ ⟩
y ∘ id ≡⟨ right-identity _ ⟩∎
y ∎)
-- A family of codes.
Code : K[ G ]1 → Set g
Code = rec λ where
.is-groupoidʳ → ∃-H-level-H-level-1+ ext univ 2
.baseʳ → Carrier , Carrier-is-set
.loopʳ x → Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ x))
(H-level-propositional ext 2 _ _)
.loop-idʳ →
Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ id)) _ ≡⟨ _≃_.from (Eq.≃-≡ $ Eq.↔⇒≃ B.Σ-≡,≡↔≡) $
Σ-≡,≡→≡
(
≃⇒≡ univ (to-≃ id) ≡⟨ cong (≃⇒≡ univ) $ Eq.lift-equality ext $ ⟨ext⟩
right-identity ⟩
≃⇒≡ univ Eq.id ≡⟨ ≃⇒≡-id univ ⟩∎
refl _ ∎)
(H-level.⇒≡ 1 (H-level-propositional ext 2) _ _) ⟩
Σ-≡,≡→≡ (refl _) (subst-refl _ _) ≡⟨ Σ-≡,≡→≡-refl-subst-refl ⟩∎
refl _ ∎
.loop-∘ʳ {x = x} {y = y} →
Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ (x ∘ y))) _ ≡⟨ _≃_.from (Eq.≃-≡ $ Eq.↔⇒≃ B.Σ-≡,≡↔≡) $
Σ-≡,≡→≡
(
≃⇒≡ univ (to-≃ (x ∘ y)) ≡⟨ (cong (≃⇒≡ univ) $ Eq.lift-equality ext $ ⟨ext⟩ λ _ →
assoc _ _ _) ⟩
≃⇒≡ univ (to-≃ y Eq.∘ to-≃ x) ≡⟨ ≃⇒≡-∘ univ ext _ _ ⟩∎
trans (≃⇒≡ univ (to-≃ x)) (≃⇒≡ univ (to-≃ y)) ∎)
(H-level.⇒≡ 1 (H-level-propositional ext 2) _ _) ⟩
Σ-≡,≡→≡ (trans (≃⇒≡ univ (to-≃ x)) (≃⇒≡ univ (to-≃ y))) _ ≡⟨ sym $ trans-Σ-≡,≡→≡ _ _ _ _ ⟩∎
trans (Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ x)) _)
(Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ y)) _) ∎
-- Some "computation" rules.
≡⇒≃-cong-Code-loop :
≡⇒≃ (cong (proj₁ ⊚ Code) (loop x)) ≡ to-≃ x
≡⇒≃-cong-Code-loop {x = x} =
≡⇒≃ (cong (proj₁ ⊚ Code) (loop x)) ≡⟨ cong ≡⇒≃ $ sym $ cong-∘ proj₁ Code (loop x) ⟩
≡⇒≃ (cong proj₁ (cong Code (loop x))) ≡⟨ cong (≡⇒≃ ⊚ cong proj₁) rec-loop ⟩
≡⇒≃ (cong proj₁ $
Σ-≡,≡→≡ (≃⇒≡ univ (to-≃ x))
(H-level-propositional ext 2 _ _)) ≡⟨ cong ≡⇒≃ $ proj₁-Σ-≡,≡→≡ _ _ ⟩
≡⇒≃ (≃⇒≡ univ (to-≃ x)) ≡⟨ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎
to-≃ x ∎
subst-Code-loop :
subst (proj₁ ⊚ Code) (loop x) ≡ _∘ x
subst-Code-loop {x = x} = ⟨ext⟩ λ y →
subst (proj₁ ⊚ Code) (loop x) y ≡⟨ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
_≃_.to (≡⇒≃ (cong (proj₁ ⊚ Code) (loop x))) y ≡⟨ cong (λ eq → _≃_.to eq y) ≡⇒≃-cong-Code-loop ⟩∎
_≃_.to (to-≃ x) y ∎
subst-Code-sym-loop :
subst (proj₁ ⊚ Code) (sym (loop x)) ≡ _∘ x ⁻¹
subst-Code-sym-loop {x = x} = ⟨ext⟩ λ y →
subst (proj₁ ⊚ Code) (sym (loop x)) y ≡⟨ subst-in-terms-of-inverse∘≡⇒↝ equivalence _ _ _ ⟩
_≃_.from (≡⇒≃ (cong (proj₁ ⊚ Code) (loop x))) y ≡⟨ cong (λ eq → _≃_.from eq y) ≡⇒≃-cong-Code-loop ⟩∎
_≃_.from (to-≃ x) y ∎
-- An equivalence.
to : base ≡ x → proj₁ (Code x)
to eq = subst (proj₁ ⊚ Code) eq id
from : ∀ x → proj₁ (Code x) → base ≡ x
from = elim-set λ where
.is-setʳ _ → Π-closure ext 2 λ _ →
is-groupoid
.baseʳ → loop
.loopʳ x → ⟨ext⟩ λ y →
subst (λ x → proj₁ (Code x) → base ≡ x) (loop x) loop y ≡⟨ subst-→ ⟩
subst (base ≡_) (loop x)
(loop (subst (proj₁ ⊚ Code) (sym (loop x)) y)) ≡⟨ sym trans-subst ⟩
trans (loop (subst (proj₁ ⊚ Code) (sym (loop x)) y)) (loop x) ≡⟨ cong (flip trans (loop x) ⊚ loop ⊚ (_$ y))
subst-Code-sym-loop ⟩
trans (loop (y ∘ x ⁻¹)) (loop x) ≡⟨ cong (flip trans _) loop-∘ ⟩
trans (trans (loop y) (loop (x ⁻¹))) (loop x) ≡⟨ trans-assoc _ _ _ ⟩
trans (loop y) (trans (loop (x ⁻¹)) (loop x)) ≡⟨ cong (trans _) $ sym loop-∘ ⟩
trans (loop y) (loop (x ⁻¹ ∘ x)) ≡⟨ cong (trans (loop y) ⊚ loop) $ left-inverse _ ⟩
trans (loop y) (loop id) ≡⟨ cong (trans _) loop-id ⟩
trans (loop y) (refl base) ≡⟨ trans-reflʳ _ ⟩∎
loop y ∎
to-loop : ∀ x → to (loop x) ≡ x
to-loop x =
subst (proj₁ ⊚ Code) (loop x) id ≡⟨ cong (_$ id) subst-Code-loop ⟩
id ∘ x ≡⟨ left-identity _ ⟩∎
x ∎
from-to : ∀ eq → from x (to eq) ≡ eq
from-to = elim¹ (λ {x} eq → from x (to eq) ≡ eq)
(loop (subst (proj₁ ⊚ Code) (refl base) id) ≡⟨ cong loop $ subst-refl _ _ ⟩
loop id ≡⟨ loop-id ⟩∎
refl base ∎)
equiv : proj₁ (Ω (K[ G ]1 , base)) ≃ Carrier
equiv =
base ≡ base ↝⟨ Eq.↔→≃ to loop to-loop from-to ⟩□
Carrier □
-- The equivalence is homomorphic.
hom′ :
∀ x y →
_≃_.from equiv (x ∘ y) ≡
_≃_.from equiv x FG.∘ _≃_.from equiv y
hom′ x y =
loop (x ∘ y) ≡⟨ loop-∘ ⟩∎
trans (loop x) (loop y) ∎
hom :
∀ p q →
_≃_.to equiv (p FG.∘ q) ≡
_≃_.to equiv p ∘ _≃_.to equiv q
hom p q = _≃_.from-to equiv
(_≃_.from equiv (_≃_.to equiv p ∘ _≃_.to equiv q) ≡⟨ hom′ _ _ ⟩
_≃_.from equiv (_≃_.to equiv p) FG.∘
_≃_.from equiv (_≃_.to equiv q) ≡⟨ cong₂ FG._∘_
(_≃_.left-inverse-of equiv p)
(_≃_.left-inverse-of equiv q) ⟩∎
p FG.∘ q ∎)
-- The right-to-left direction of Fundamental-group′[K1]≃ᴳ is loop.
_ :
{G : Group g} {univ : Univalence g} {s : Is-set _} →
_≃_.from (Fundamental-group′[K1]≃ᴳ {G = G} univ s .related) ≡
loop
_ = refl _
-- The fundamental group of (K[ G ]1 , base) is isomorphic to G
-- (assuming univalence).
--
-- The proof is based on the one given in "Eilenberg-MacLane Spaces in
-- Homotopy Type Theory" by Licata and Finster.
Fundamental-group[K1]≃ᴳ :
{G : Group g} →
Univalence g →
Fundamental-group (K[ G ]1 , base) ≃ᴳ G
Fundamental-group[K1]≃ᴳ univ =
↝ᴳ-trans (≃ᴳ-sym Homotopy-group-[1+]′≃ᴳHomotopy-group-[1+])
(Fundamental-group′[K1]≃ᴳ univ is-groupoid)
-- If G is abelian, then the fundamental group of (K[ G ]1 , base) is
-- abelian.
Abelian→Abelian-Fundamental-group′ :
Abelian G → Abelian (Fundamental-group′ (K[ G ]1 , base) is-groupoid)
Abelian→Abelian-Fundamental-group′ {G = G} abelian =
flip $ EG.Transitivity-commutative.commutative base _∙_ ∙-base base-∙
where
open Group G
lemma : Carrier → (x : K[ G ]1) → x ≡ x
lemma g₁ = elim-set λ where
.is-setʳ → λ _ → is-groupoid
.baseʳ → loop g₁
.loopʳ g₂ → ≡⇒↝ _ (sym [subst≡]≡[trans≡trans])
(trans (loop g₁) (loop g₂) ≡⟨ sym loop-∘ ⟩
loop (g₁ ∘ g₂) ≡⟨ cong loop (abelian g₁ g₂) ⟩
loop (g₂ ∘ g₁) ≡⟨ loop-∘ ⟩∎
trans (loop g₂) (loop g₁) ∎)
lemma-id : ∀ x → lemma id x ≡ refl x
lemma-id = elim-prop λ where
.is-propositionʳ _ → is-groupoid
.baseʳ →
loop id ≡⟨ loop-id ⟩∎
refl base ∎
lemma-∘ :
∀ g₁ g₂ x → lemma (g₁ ∘ g₂) x ≡ trans (lemma g₁ x) (lemma g₂ x)
lemma-∘ g₁ g₂ = elim-prop λ where
.is-propositionʳ _ → is-groupoid
.baseʳ →
loop (g₁ ∘ g₂) ≡⟨ loop-∘ ⟩∎
trans (loop g₁) (loop g₂) ∎
_∙_ : K[ G ]1 → K[ G ]1 → K[ G ]1
_∙_ x = rec λ where
.is-groupoidʳ → is-groupoid
.baseʳ → x
.loopʳ g → lemma g x
.loop-idʳ → lemma-id x
.loop-∘ʳ → lemma-∘ _ _ x
base-∙ : ∀ x → x ∙ base ≡ x
base-∙ _ = refl _
∙-base : ∀ y → base ∙ y ≡ y
∙-base = elim-set λ where
.is-setʳ _ → is-groupoid
.baseʳ → refl _
.loopʳ y →
subst (λ y → base ∙ y ≡ y) (loop y) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (base ∙_) (loop y)))
(trans (refl _) (cong P.id (loop y))) ≡⟨ cong (trans _) $
trans (trans-reflˡ _) $
sym $ cong-id _ ⟩
trans (sym (cong (base ∙_) (loop y))) (loop y) ≡⟨ cong (flip trans (loop y) ⊚ sym) $
rec-loop ⟩
trans (sym (loop y)) (loop y) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
-- If P is a groupoid, then there is a based embedding from
-- (K[ Fundamental-group′ P s ]1 , base) to P (assuming univalence).
--
-- Christian Sattler showed me a similar proof of this result.
K[Fundamental-group′]1↣ᴮ :
{P : Pointed-type p} {s : Is-set (proj₁ (Ω P))} →
Univalence p →
H-level 3 (proj₁ P) →
(K[ Fundamental-group′ P s ]1 , base) ↝[ embedding ]ᴮ P
K[Fundamental-group′]1↣ᴮ {P = P@(A , a)} {s = s} univ g =
record { to = to; is-embedding = emb } , refl _
where
to : K[ Fundamental-group′ P s ]1 → A
to = rec λ where
.baseʳ → a
.loopʳ → P.id
.loop-idʳ → refl _
.loop-∘ʳ → refl _
.is-groupoidʳ → g
iso :
Fundamental-group′ P s ≃ᴳ
Fundamental-group′ (K[ Fundamental-group′ P s ]1 , base) is-groupoid
iso = ≃ᴳ-sym $ Fundamental-group′[K1]≃ᴳ univ is-groupoid
cong-to-iso : cong to ⊚ Homomorphic.to iso ≡ P.id
cong-to-iso = ⟨ext⟩ λ eq →
cong to (loop eq) ≡⟨ rec-loop ⟩∎
eq ∎
cong-to-equivalence :
Eq.Is-equivalence (cong {x = base} {y = base} to)
cong-to-equivalence = Eq.Two-out-of-three.g∘f-f
(Eq.two-out-of-three _ _)
(Is-equivalence-cong _ (ext⁻¹ (sym cong-to-iso))
(_≃_.is-equivalence Eq.id))
(_≃_.is-equivalence (iso .related))
emb : Is-embedding to
emb = elim-prop λ where
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Eq.propositional ext _
.baseʳ → elim-prop λ where
.is-propositionʳ _ → Eq.propositional ext _
.baseʳ → cong-to-equivalence
-- If P is a connected groupoid, then there is a based equivalence
-- from (K[ Fundamental-group′ P s ]1 , base) to P (assuming
-- univalence).
--
-- Christian Sattler showed me a similar proof of this result.
K[Fundamental-group′]1≃ᴮ :
{P : Pointed-type p} {s : Is-set (proj₁ (Ω P))} →
Univalence p →
H-level 3 (proj₁ P) →
Connected P →
(K[ Fundamental-group′ P s ]1 , base) ≃ᴮ P
K[Fundamental-group′]1≃ᴮ {P = P@(A , a)} {s = s} univ g conn =
Eq.⟨ Embedding.to (proj₁ f)
, _≃_.to TP.surjective×embedding≃equivalence
(surj , Embedding.is-embedding (proj₁ f)) ⟩
, proj₂ f
where
f = K[Fundamental-group′]1↣ᴮ univ g
surj : Surjective (Embedding.to (proj₁ f))
surj x = flip TP.∥∥-map (conn x) λ a≡x →
base
, (Embedding.to (proj₁ f) base ≡⟨⟩
a ≡⟨ a≡x ⟩∎
x ∎)
------------------------------------------------------------------------
-- Another result related to a fundamental group
-- If G is abelian, then the fundamental group of
-- (K[ G ]1 ≃ K[ G ]1 , Eq.id) is isomorphic to G (assuming
-- univalence).
--
-- I was informed of a related result by Christian Sattler.
Fundamental-group′[K1≃K1]≃ᴳ :
{G : Group g} {s : Is-set _} →
Univalence g →
Abelian G →
Fundamental-group′ ((K[ G ]1 ≃ K[ G ]1) , Eq.id) s ≃ᴳ G
Fundamental-group′[K1≃K1]≃ᴳ {G = G} univ abelian = λ where
.related →
_≡_ {A = K[ G ]1 ≃ K[ G ]1} Eq.id Eq.id ↝⟨ inverse $ ≃-to-≡≃≡ ext ext ⟩
((x : K[ G ]1) → x ≡ x) ↝⟨ Eq.↔→≃ to from to-from from-to ⟩□
Carrier □
.homomorphic p q →
Homomorphic.to iso (cong (λ eq → _≃_.to eq base) (trans p q)) ≡⟨ cong (Homomorphic.to iso) $
cong-trans _ _ _ ⟩
Homomorphic.to iso
(trans (cong (λ eq → _≃_.to eq base) p)
(cong (λ eq → _≃_.to eq base) q)) ≡⟨ Homomorphic.homomorphic iso _ _ ⟩∎
Homomorphic.to iso (cong (λ eq → _≃_.to eq base) p) ∘
Homomorphic.to iso (cong (λ eq → _≃_.to eq base) q) ∎
where
open Group G
iso = Fundamental-group′[K1]≃ᴳ {G = G} univ is-groupoid
to : ((x : K[ G ]1) → x ≡ x) → Carrier
to f = Homomorphic.to iso (f base)
from : Carrier → (x : K[ G ]1) → x ≡ x
from x = elim-set λ where
.is-setʳ _ → is-groupoid
.baseʳ → loop x
.loopʳ y → ≡⇒↝ _ (sym [subst≡]≡[trans≡trans])
(trans (loop x) (loop y) ≡⟨ sym loop-∘ ⟩
loop (x ∘ y) ≡⟨ cong loop $ abelian x y ⟩
loop (y ∘ x) ≡⟨ loop-∘ ⟩∎
trans (loop y) (loop x) ∎)
to-from : ∀ p → to (from p) ≡ p
to-from x =
Homomorphic.to iso (loop x) ≡⟨ _≃_.right-inverse-of (Homomorphic.related iso) _ ⟩∎
x ∎
from-to : ∀ f → from (to f) ≡ f
from-to f = ⟨ext⟩ $ elim-prop λ where
.is-propositionʳ _ → is-groupoid
.baseʳ →
loop (Homomorphic.to iso (f base)) ≡⟨ _≃_.left-inverse-of (Homomorphic.related iso) _ ⟩∎
f base ∎
| {
"alphanum_fraction": 0.475862069,
"avg_line_length": 35.3533568905,
"ext": "agda",
"hexsha": "f3dbcf41df92e6a7a705522dff6bd20c4315894c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Eilenberg-MacLane-space.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Eilenberg-MacLane-space.agda",
"max_line_length": 136,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Eilenberg-MacLane-space.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 11682,
"size": 30015
} |
------------------------------------------------------------------------
-- The equality can be turned into a groupoid which is sometimes
-- commutative
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Equality.Groupoid
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq using (_↔_)
open Derived-definitions-and-properties eq
open import Equality.Tactic eq
open import Groupoid eq
open import Pointed-type eq
open import Prelude hiding (id; _∘_)
------------------------------------------------------------------------
-- _≡_ comes with a groupoid structure
groupoid : ∀ {a} (A : Type a) → Groupoid a a
groupoid A = record
{ Object = A
; _∼_ = _≡_
; id = refl _
; _∘_ = flip trans
; _⁻¹ = sym
; left-identity = trans-reflʳ
; right-identity = trans-reflˡ
; assoc = λ z≡u y≡z x≡y → trans-assoc x≡y y≡z z≡u
; left-inverse = trans-symʳ
; right-inverse = trans-symˡ
}
------------------------------------------------------------------------
-- In some cases transitivity is commutative
-- This proof is based on an informal proof due to Thierry Coquand,
-- based on a result from homotopy theory.
module Transitivity-commutative
{a} {A : Type a} (e : A) (_∙_ : A → A → A)
(left-identity : ∀ x → (e ∙ x) ≡ x)
(right-identity : ∀ x → (x ∙ e) ≡ x)
where
open Groupoid (groupoid A) hiding (left-identity; right-identity)
abstract
commutative : (p q : e ≡ e) → p ∘ q ≡ q ∘ p
commutative p q =
p ∘ q ≡⟨ cong (_∘_ p) (lem₁ _) ⟩
p ∘ (ri ∘ li ⁻¹ ∘ q′ ∘ li ∘ ri ⁻¹) ≡⟨ prove (Trans (Trans (Trans (Trans (Trans (Sym (Lift ri)) (Lift li)) (Lift q′))
(Sym (Lift li))) (Lift ri)) (Lift p))
(Trans (Trans (Sym (Lift ri))
(Trans (Trans (Lift li) (Lift q′)) (Sym (Lift li))))
(Trans (Lift ri) (Lift p)))
(refl _) ⟩
(p ∘ ri) ∘ (li ⁻¹ ∘ q′ ∘ li) ∘ ri ⁻¹ ≡⟨ cong₂ (λ p q → p ∘ q ∘ ri ⁻¹) (lem₂ _) (lem₃ _) ⟩
(ri ∘ lc p) ∘ rc q′ ∘ ri ⁻¹ ≡⟨ prove (Trans (Trans (Sym (Lift ri)) (Lift (rc q′))) (Trans (Lift (lc p)) (Lift ri)))
(Trans (Trans (Sym (Lift ri)) (Trans (Lift (rc q′)) (Lift (lc p)))) (Lift ri))
(refl _) ⟩
ri ∘ (lc p ∘ rc q′) ∘ ri ⁻¹ ≡⟨ cong (λ p → ri ∘ p ∘ ri ⁻¹) (lem₄ _ _) ⟩
ri ∘ (rc q′ ∘ lc p) ∘ ri ⁻¹ ≡⟨ prove (Trans (Trans (Sym (Lift ri)) (Trans (Lift (lc p)) (Lift (rc q′)))) (Lift ri))
(Trans (Trans (Trans (Sym (Lift ri)) (Lift (lc p))) (Lift (rc q′))) (Lift ri))
(refl _) ⟩
ri ∘ rc q′ ∘ (lc p ∘ ri ⁻¹) ≡⟨ cong₂ (λ p q → ri ∘ p ∘ q) (sym (lem₃ _)) (lem₅ _) ⟩
ri ∘ (li ⁻¹ ∘ q′ ∘ li) ∘ (ri ⁻¹ ∘ p) ≡⟨ prove (Trans (Trans (Trans (Lift p) (Sym (Lift ri)))
(Trans (Trans (Lift li) (Lift q′)) (Sym (Lift li))))
(Lift ri))
(Trans (Lift p) (Trans (Trans (Trans (Trans (Sym (Lift ri)) (Lift li)) (Lift q′))
(Sym (Lift li)))
(Lift ri)))
(refl _) ⟩
(ri ∘ li ⁻¹ ∘ q′ ∘ li ∘ ri ⁻¹) ∘ p ≡⟨ cong (λ q → q ∘ p) (sym (lem₁ _)) ⟩∎
q ∘ p ∎
where
-- Abbreviations.
li : ∀ {x} → (e ∙ x) ≡ x
li = left-identity _
ri : ∀ {x} → (x ∙ e) ≡ x
ri = right-identity _
q′ : e ≡ e
q′ = li ∘ ri ⁻¹ ∘ q ∘ ri ∘ li ⁻¹
lc : ∀ {x y} → x ≡ y → (x ∙ e) ≡ (y ∙ e)
lc = cong (λ x → (x ∙ e))
rc : ∀ {x y} → x ≡ y → (e ∙ x) ≡ (e ∙ y)
rc = cong (λ y → (e ∙ y))
-- Lemmas.
lem₁ : (p : e ≡ e) →
p ≡ ri ∘ li ⁻¹ ∘ (li ∘ ri ⁻¹ ∘ p ∘ ri ∘ li ⁻¹) ∘ li ∘ ri ⁻¹
lem₁ p =
p ≡⟨ prove (Lift p) (Trans (Trans Refl (Lift p)) Refl) (refl _) ⟩
refl _ ∘ p ∘ refl _ ≡⟨ sym (cong₂ (λ q r → q ∘ p ∘ r)
(right-inverse _) (right-inverse _)) ⟩
(ri ∘ ri ⁻¹) ∘ p ∘ (ri ∘ ri ⁻¹) ≡⟨ prove (Trans (Trans (Trans (Sym (Lift ri)) (Lift ri)) (Lift p))
(Trans (Sym (Lift ri)) (Lift ri)))
(Trans (Trans (Trans (Trans (Trans (Trans
(Sym (Lift ri)) Refl) (Lift ri)) (Lift p))
(Sym (Lift ri))) Refl) (Lift ri))
(refl _) ⟩
ri ∘ refl _ ∘ ri ⁻¹ ∘ p ∘ ri ∘ refl _ ∘ ri ⁻¹ ≡⟨ sym (cong₂ (λ q r → ri ∘ q ∘ ri ⁻¹ ∘ p ∘ ri ∘ r ∘ ri ⁻¹)
(left-inverse _) (left-inverse _)) ⟩
ri ∘ (li ⁻¹ ∘ li) ∘ ri ⁻¹ ∘ p ∘ ri ∘ (li ⁻¹ ∘ li) ∘ ri ⁻¹ ≡⟨ prove (Trans (Trans (Trans (Trans (Trans (Trans
(Sym (Lift ri)) (Trans (Lift li) (Sym (Lift li))))
(Lift ri)) (Lift p)) (Sym (Lift ri)))
(Trans (Lift li) (Sym (Lift li)))) (Lift ri))
(Trans (Trans (Trans (Trans
(Sym (Lift ri)) (Lift li))
(Trans (Trans (Trans (Trans
(Sym (Lift li)) (Lift ri)) (Lift p)) (Sym (Lift ri)))
(Lift li))) (Sym (Lift li))) (Lift ri))
(refl _) ⟩∎
ri ∘ li ⁻¹ ∘ (li ∘ ri ⁻¹ ∘ p ∘ ri ∘ li ⁻¹) ∘ li ∘ ri ⁻¹ ∎
lem₂ : ∀ {x y} (p : x ≡ y) → p ∘ ri ≡ ri ∘ lc p
lem₂ = elim (λ p → p ∘ ri ≡ ri ∘ lc p) λ _ →
prove (Trans (Lift ri) Refl)
(Trans (Cong (λ x → (x ∙ e)) Refl) (Lift ri))
(refl _)
lem₃ : ∀ {x y} (p : x ≡ y) → li ⁻¹ ∘ p ∘ li ≡ rc p
lem₃ = elim (λ p → li ⁻¹ ∘ p ∘ li ≡ rc p) λ x →
li ⁻¹ ∘ refl x ∘ li ≡⟨ prove (Trans (Trans (Lift li) Refl) (Sym (Lift li)))
(Trans (Lift li) (Sym (Lift li)))
(refl _) ⟩
li ⁻¹ ∘ li ≡⟨ left-inverse _ ⟩
refl (e ∙ x) ≡⟨ prove Refl (Cong (λ y → (e ∙ y)) Refl) (refl _) ⟩∎
rc (refl x) ∎
lem₄ : (p q : e ≡ e) → lc p ∘ rc q ≡ rc q ∘ lc p
lem₄ p q = elim
(λ {x y} x≡y → lc x≡y ∘ cong (λ z → (x ∙ z)) q ≡
cong (λ z → (y ∙ z)) q ∘ lc x≡y)
(λ x → prove (Trans (Cong (λ z → x ∙ z) (Lift q))
(Cong (λ x → x ∙ e) Refl))
(Trans (Cong (λ x → x ∙ e) Refl)
(Cong (λ z → x ∙ z) (Lift q)))
(refl _))
p
lem₅ : ∀ {x y} (p : x ≡ y) → lc p ∘ ri ⁻¹ ≡ ri ⁻¹ ∘ p
lem₅ = elim (λ p → lc p ∘ ri ⁻¹ ≡ ri ⁻¹ ∘ p) λ _ →
prove (Trans (Sym (Lift ri)) (Cong (λ x → (x ∙ e)) Refl))
(Trans Refl (Sym (Lift ri)))
(refl _)
-- In particular, transitivity is commutative for proofs in
-- proj₁ (Ω[ 2 + n ] X).
Ω[2+n]-commutative :
∀ {x} {X : Pointed-type x} n →
(p q : proj₁ (Ω[ 2 + n ] X)) → trans p q ≡ trans q p
Ω[2+n]-commutative {X = X} n p q =
Transitivity-commutative.commutative
id _∘_ left-identity right-identity q p
where
open Groupoid (groupoid (proj₁ (Ω[ n ] X)))
| {
"alphanum_fraction": 0.3328036322,
"avg_line_length": 51.2209302326,
"ext": "agda",
"hexsha": "19487340df17ceacb6700c8808a3e7ab2be3d724",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Groupoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Groupoid.agda",
"max_line_length": 135,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Groupoid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2694,
"size": 8810
} |
module Implicits.Syntax.Type.Unification.Lemmas where
open import Prelude
open import Data.Nat.Properties.Simple
open import Data.Maybe as Maybe
open import Data.Vec
open import Extensions.Vec
open import Implicits.Syntax
open import Implicits.Syntax.Type.Unification hiding (open-meta)
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas.MetaType
open MetaTypeMetaSubst
open MetaTypeMetaLemmas
open import Relation.Binary.HeterogeneousEquality as H using ()
-- the following properties of mgu are assumed to hold here but have been proven by
-- Conor McBride (and verified using the LEGO dependently typed language)
postulate sound : ∀ {m ν} (a : MetaType m ν) (b : SimpleType ν) →
Maybe.All (Unifier a b) (mgu a b)
postulate complete : ∀ {m ν} (a : MetaType m ν) (b : SimpleType ν) u →
Unifier a b u →
Is-just (mgu a b)
to-meta-zero-vanishes : ∀ {ν} {a : Type ν} → from-meta (to-meta a) ≡ a
to-meta-zero-vanishes {a = simpl (tc x)} = refl
to-meta-zero-vanishes {a = simpl (tvar n)} = refl
to-meta-zero-vanishes {a = simpl (a →' b)} =
cong₂ (λ u v → simpl (u →' v)) to-meta-zero-vanishes to-meta-zero-vanishes
to-meta-zero-vanishes {a = a ⇒ b} = cong₂ _⇒_ to-meta-zero-vanishes to-meta-zero-vanishes
to-meta-zero-vanishes {a = ∀' a} = cong ∀' to-meta-zero-vanishes
mutual
from-to-smeta : ∀ {ν} (a : SimpleType ν) → from-smeta (to-smeta a) ≡ a
from-to-smeta (tc x) = refl
from-to-smeta (tvar n) = refl
from-to-smeta (a →' b) = cong₂ _→'_ (from-to-meta a) (from-to-meta b)
from-to-meta : ∀ {ν} (a : Type ν) → from-meta (to-meta a) ≡ a
from-to-meta (simpl x) = cong simpl (from-to-smeta x)
from-to-meta (a ⇒ b) = cong₂ _⇒_ (from-to-meta a) (from-to-meta b)
from-to-meta (∀' a) = cong ∀' (from-to-meta a)
from-to-meta-/-vanishes : ∀ {ν} {a : Type ν} {s} →
from-meta (to-meta {zero} a MetaTypeMetaSubst./ s) ≡ a
from-to-meta-/-vanishes {a = a} {s = []} = begin
from-meta (MetaTypeMetaSubst._/_ (to-meta {zero} a) [])
≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩
from-meta (to-meta {zero} a)
≡⟨ to-meta-zero-vanishes ⟩
a ∎
mgu-id : ∀ {ν} → (a : SimpleType ν) → Unifiable {m = zero} (simpl (to-smeta a)) a
mgu-id a = [] , (begin
from-meta (MetaTypeMetaSubst._/_ (simpl (to-smeta a)) [])
≡⟨ from-to-meta-/-vanishes ⟩
simpl a ∎)
mvar-unifiable : ∀ {ν m} (n : Fin m) (τ : SimpleType ν) → Unifiable (simpl (mvar n)) τ
mvar-unifiable n τ = u , p
where
u = replicate (simpl (tc zero)) [ n ]≔ simpl (to-smeta τ)
p : from-meta (lookup n u) ≡ simpl τ
p = begin
from-meta (lookup n u)
≡⟨ cong from-meta (lookup-≔ (replicate (simpl (tc zero))) n _) ⟩
simpl (from-smeta (to-smeta τ))
≡⟨ cong simpl (from-to-smeta τ) ⟩
simpl τ ∎
| {
"alphanum_fraction": 0.6297589941,
"avg_line_length": 38.1733333333,
"ext": "agda",
"hexsha": "35fb1513cf030fa25dfbb636404244b7125c5d6c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Syntax/Type/Unification/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Syntax/Type/Unification/Lemmas.agda",
"max_line_length": 89,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Syntax/Type/Unification/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 983,
"size": 2863
} |
-- Andreas, 2017-01-13, issue #2402
-- Error message: incomplete pattern matching
open import Common.Bool
module _ (A B C D E F G H I J K L M O P Q R S T U V W X Y Z : Set) where
test2 : Bool → Bool
test2 x with true
test2 true | x = ?
-- WAS: Reports:
-- Incomplete pattern matching for .IncompletePattern.with-56.
-- Missing cases:
-- .IncompletePattern.with-56 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ false
-- when checking the definition of with-56
-- That's total bogus!
-- Expected:
-- Incomplete pattern matching for .Issue2402-2.with-56.
-- Missing cases:
-- test2 false | w
-- when checking the definition of with-56
| {
"alphanum_fraction": 0.6805555556,
"avg_line_length": 25.92,
"ext": "agda",
"hexsha": "da2737f5b8eb731b289b63ae071835d8f3cec18e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2402-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2402-2.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2402-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 197,
"size": 648
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsRing {R : Type ℓ}
(0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where
constructor isring
field
+IsAbGroup : IsAbGroup 0r _+_ -_
·IsMonoid : IsMonoid 1r _·_
dist : (x y z : R) → (x · (y + z) ≡ (x · y) + (x · z))
× ((x + y) · z ≡ (x · z) + (y · z))
-- This is in the Agda stdlib, but it's redundant
-- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r)
open IsAbGroup +IsAbGroup public
renaming
( assoc to +Assoc
; identity to +Identity
; lid to +Lid
; rid to +Rid
; inverse to +Inv
; invl to +Linv
; invr to +Rinv
; comm to +Comm
; isSemigroup to +IsSemigroup
; isMonoid to +IsMonoid
; isGroup to +IsGroup )
open IsMonoid ·IsMonoid public
renaming
( assoc to ·Assoc
; identity to ·Identity
; lid to ·Lid
; rid to ·Rid
; isSemigroup to ·IsSemigroup )
hiding
( is-set ) -- We only want to export one proof of this
·Rdist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)
·Rdist+ x y z = dist x y z .fst
·Ldist+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)
·Ldist+ x y z = dist x y z .snd
record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor ringstr
field
0r : A
1r : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
isRing : IsRing 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsRing isRing public
Ring : ∀ ℓ → Type (ℓ-suc ℓ)
Ring ℓ = TypeWithStr ℓ RingStr
isSetRing : (R : Ring ℓ) → isSet ⟨ R ⟩
isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
makeIsRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R}
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(r+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-lid : (x : R) → 1r · x ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z))
→ IsRing 0r 1r _+_ _·_ -_
makeIsRing is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ =
isring (makeIsAbGroup is-setR assoc +-rid +-rinv +-comm)
(makeIsMonoid is-setR ·-assoc ·-rid ·-lid)
λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z
makeRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
(is-setR : isSet R)
(+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : R) → x + 0r ≡ x)
(+-rinv : (x : R) → x + (- x) ≡ 0r)
(+-comm : (x y : R) → x + y ≡ y + x)
(+-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : R) → x · 1r ≡ x)
(·-lid : (x : R) → 1r · x ≡ x)
(·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z))
→ Ring ℓ
makeRing 0r 1r _+_ _·_ -_ is-setR assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ =
_ , ringstr 0r 1r _+_ _·_ -_
(makeIsRing is-setR assoc +-rid +-rinv +-comm
·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+ )
record IsRingHom {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module R = RingStr R
module S = RingStr S
field
pres0 : f R.0r ≡ S.0r
pres1 : f R.1r ≡ S.1r
pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y
pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y
pres- : (x : A) → f (R.- x) ≡ S.- (f x)
unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom)
RingHom : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ')
RingHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsRingHom (R .snd) f (S .snd)
IsRingEquiv : {A : Type ℓ} {B : Type ℓ'} (M : RingStr A) (e : A ≃ B) (N : RingStr B)
→ Type (ℓ-max ℓ ℓ')
IsRingEquiv M e N = IsRingHom M (e .fst) N
RingEquiv : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ')
RingEquiv R S = Σ[ e ∈ (⟨ R ⟩ ≃ ⟨ S ⟩) ] IsRingEquiv (R .snd) e (S .snd)
_$_ : {R S : Ring ℓ} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩
φ $ x = φ .fst x
RingEquiv→RingHom : {A B : Ring ℓ} → RingEquiv A B → RingHom A B
RingEquiv→RingHom (e , eIsHom) = e .fst , eIsHom
isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R)
→ isProp (IsRing 0r 1r _+_ _·_ -_)
isPropIsRing 0r 1r _+_ _·_ -_ (isring RG RM RD) (isring SG SM SD) =
λ i → isring (isPropIsAbGroup _ _ _ RG SG i)
(isPropIsMonoid _ _ RM SM i)
(isPropDistr RD SD i)
where
isSetR : isSet _
isSetR = RM .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropDistr : isProp ((x y z : _) → ((x · (y + z)) ≡ ((x · y) + (x · z)))
× (((x + y) · z) ≡ ((x · z) + (y · z))))
isPropDistr = isPropΠ3 λ _ _ _ → isProp× (isSetR _ _) (isSetR _ _)
isPropIsRingHom : {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B)
→ isProp (IsRingHom R f S)
isPropIsRingHom R f S = isOfHLevelRetractFromIso 1 IsRingHomIsoΣ
(isProp×4 (isSetRing (_ , S) _ _)
(isSetRing (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetRing (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetRing (_ , S) _ _)
(isPropΠ λ _ → isSetRing (_ , S) _ _))
isSetRingHom : (R : Ring ℓ) (S : Ring ℓ') → isSet (RingHom R S)
isSetRingHom R S = isSetΣSndProp (isSetΠ (λ _ → isSetRing S)) (λ f → isPropIsRingHom (snd R) f (snd S))
RingHomPathP : (R S T : Ring ℓ) (p : S ≡ T) (φ : RingHom R S) (ψ : RingHom R T)
→ PathP (λ i → R .fst → p i .fst) (φ .fst) (ψ .fst)
→ PathP (λ i → RingHom R (p i)) φ ψ
RingHomPathP R S T p φ ψ q = ΣPathP (q , isProp→PathP (λ _ → isPropIsRingHom _ _ _) _ _)
RingHom≡ : {R S : Ring ℓ} {φ ψ : RingHom R S} → fst φ ≡ fst ψ → φ ≡ ψ
RingHom≡ = Σ≡Prop λ f → isPropIsRingHom _ f _
𝒮ᴰ-Ring : DUARel (𝒮-Univ ℓ) RingStr ℓ
𝒮ᴰ-Ring =
𝒮ᴰ-Record (𝒮-Univ _) IsRingEquiv
(fields:
data[ 0r ∣ null ∣ pres0 ]
data[ 1r ∣ null ∣ pres1 ]
data[ _+_ ∣ bin ∣ pres+ ]
data[ _·_ ∣ bin ∣ pres· ]
data[ -_ ∣ un ∣ pres- ]
prop[ isRing ∣ (λ _ _ → isPropIsRing _ _ _ _ _) ])
where
open RingStr
open IsRingHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
un = autoDUARel (𝒮-Univ _) (λ A → A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
RingPath : (R S : Ring ℓ) → RingEquiv R S ≃ (R ≡ S)
RingPath = ∫ 𝒮ᴰ-Ring .UARel.ua
-- Rings have an abelian group and a monoid
Ring→AbGroup : Ring ℓ → AbGroup ℓ
Ring→AbGroup (A , ringstr _ _ _ _ _ R) = A , abgroupstr _ _ _ (IsRing.+IsAbGroup R)
Ring→Group : Ring ℓ → Group ℓ
Ring→Group = AbGroup→Group ∘ Ring→AbGroup
Ring→AddMonoid : Ring ℓ → Monoid ℓ
Ring→AddMonoid = Group→Monoid ∘ Ring→Group
Ring→MultMonoid : Ring ℓ → Monoid ℓ
Ring→MultMonoid (A , ringstr _ _ _ _ _ R) = monoid _ _ _ (IsRing.·IsMonoid R)
-- Smart constructor for ring homomorphisms
-- that infers the other equations from pres1, pres+, and pres·
module _ {R : Ring ℓ} {S : Ring ℓ'} {f : ⟨ R ⟩ → ⟨ S ⟩} where
private
module R = RingStr (R .snd)
module S = RingStr (S .snd)
module _
(p1 : f R.1r ≡ S.1r)
(p+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y)
(p· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y)
where
open IsRingHom
private
isGHom : IsGroupHom (Ring→Group R .snd) f (Ring→Group S .snd)
isGHom = makeIsGroupHom p+
makeIsRingHom : IsRingHom (R .snd) f (S .snd)
makeIsRingHom .pres0 = isGHom .IsGroupHom.pres1
makeIsRingHom .pres1 = p1
makeIsRingHom .pres+ = p+
makeIsRingHom .pres· = p·
makeIsRingHom .pres- = isGHom .IsGroupHom.presinv
| {
"alphanum_fraction": 0.5173710998,
"avg_line_length": 34.1056603774,
"ext": "agda",
"hexsha": "d12f9dddeb31b8e32e21e3a25eef80b2dd6a068d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring/Base.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3675,
"size": 9038
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Operations on and properties of decidable relations
--
-- This file contains some core definitions which are re-exported by
-- Relation.Nullary.Decidable
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Decidable.Core where
open import Level using (Level; Lift)
open import Data.Bool.Base using (Bool; false; true; not; T)
open import Data.Unit.Base using (⊤)
open import Data.Empty
open import Data.Product
open import Function.Base
open import Agda.Builtin.Equality
open import Relation.Nullary.Reflects
open import Relation.Nullary
private
variable
p q : Level
P : Set p
Q : Set q
-- `isYes` is a stricter version of `does`. The lack of computation means that
-- we can recover the proposition `P` from `isYes P?` by unification. This is
-- useful when we are using the decision procedure for proof automation.
isYes : Dec P → Bool
isYes ( true because _) = true
isYes (false because _) = false
isYes≗does : (P? : Dec P) → isYes P? ≡ does P?
isYes≗does ( true because _) = refl
isYes≗does (false because _) = refl
-- The traditional name for isYes is ⌊_⌋, indicating the stripping of evidence.
⌊_⌋ = isYes
isNo : Dec P → Bool
isNo = not ∘ isYes
True : Dec P → Set
True Q = T (isYes Q)
False : Dec P → Set
False Q = T (isNo Q)
-- Gives a witness to the "truth".
toWitness : {Q : Dec P} → True Q → P
toWitness {Q = true because [p]} _ = invert [p]
toWitness {Q = false because _ } ()
-- Establishes a "truth", given a witness.
fromWitness : {Q : Dec P} → P → True Q
fromWitness {Q = true because _ } = const _
fromWitness {Q = false because [¬p]} = invert [¬p]
-- Variants for False.
toWitnessFalse : {Q : Dec P} → False Q → ¬ P
toWitnessFalse {Q = true because _ } ()
toWitnessFalse {Q = false because [¬p]} _ = invert [¬p]
fromWitnessFalse : {Q : Dec P} → ¬ P → False Q
fromWitnessFalse {Q = true because [p]} = flip _$_ (invert [p])
fromWitnessFalse {Q = false because _ } = const _
-- If a decision procedure returns "yes", then we can extract the
-- proof using from-yes.
module _ {p} {P : Set p} where
From-yes : Dec P → Set p
From-yes (true because _) = P
From-yes (false because _) = Lift p ⊤
from-yes : (p : Dec P) → From-yes p
from-yes (true because [p]) = invert [p]
from-yes (false because _ ) = _
-- If a decision procedure returns "no", then we can extract the proof
-- using from-no.
From-no : Dec P → Set p
From-no (false because _) = ¬ P
From-no (true because _) = Lift p ⊤
from-no : (p : Dec P) → From-no p
from-no (false because [¬p]) = invert [¬p]
from-no (true because _ ) = _
------------------------------------------------------------------------
-- Result of decidability
dec-true : (p? : Dec P) → P → does p? ≡ true
dec-true (true because _ ) p = refl
dec-true (false because [¬p]) p = ⊥-elim (invert [¬p] p)
dec-false : (p? : Dec P) → ¬ P → does p? ≡ false
dec-false (false because _ ) ¬p = refl
dec-false (true because [p]) ¬p = ⊥-elim (¬p (invert [p]))
dec-yes : (p? : Dec P) → P → ∃ λ p′ → p? ≡ yes p′
dec-yes p? p with dec-true p? p
dec-yes (yes p′) p | refl = p′ , refl
dec-no : (p? : Dec P) → ¬ P → ∃ λ ¬p′ → p? ≡ no ¬p′
dec-no p? ¬p with dec-false p? ¬p
dec-no (no ¬p′) ¬p | refl = ¬p′ , refl
dec-yes-irr : (p? : Dec P) → Irrelevant P → (p : P) → p? ≡ yes p
dec-yes-irr p? irr p with dec-yes p? p
... | p′ , eq rewrite irr p p′ = eq
------------------------------------------------------------------------
-- Maps
map′ : (P → Q) → (Q → P) → Dec P → Dec Q
does (map′ P→Q Q→P p?) = does p?
proof (map′ P→Q Q→P (true because [p])) = ofʸ (P→Q (invert [p]))
proof (map′ P→Q Q→P (false because [¬p])) = ofⁿ (invert [¬p] ∘ Q→P)
| {
"alphanum_fraction": 0.5762360859,
"avg_line_length": 29.4885496183,
"ext": "agda",
"hexsha": "11734ac9c79b41c60ccbcd50b2f0069bdcda6122",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable/Core.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1227,
"size": 3863
} |
------------------------------------------------------------------------
-- Digits and digit expansions
------------------------------------------------------------------------
module Data.Digit where
open import Data.Nat
open import Data.Nat.Properties
open SemiringSolver
open import Data.Fin as Fin using (Fin; zero; suc; toℕ)
open import Relation.Nullary.Decidable
open import Data.Char using (Char)
open import Data.List
open import Data.Vec as Vec using (Vec; _∷_; [])
open import Induction.Nat
open import Data.Nat.DivMod
open ≤-Reasoning
open import Relation.Binary.PropositionalEquality
open import Data.Function
------------------------------------------------------------------------
-- A boring lemma
private
lem : ∀ x k r → 2 + x ≤′ r + (1 + x) * (2 + k)
lem x k r = ≤⇒≤′ $ begin
2 + x
≤⟨ m≤m+n _ _ ⟩
2 + x + (x + (1 + x) * k + r)
≡⟨ solve 3 (λ x r k → con 2 :+ x :+ (x :+ (con 1 :+ x) :* k :+ r)
:=
r :+ (con 1 :+ x) :* (con 2 :+ k))
refl x r k ⟩
r + (1 + x) * (2 + k)
∎
------------------------------------------------------------------------
-- Digits
-- Digit b is the type of digits in base b.
Digit : ℕ → Set
Digit b = Fin b
-- Some specific digit kinds.
Decimal = Digit 10
Bit = Digit 2
-- Some named digits.
0b : Bit
0b = zero
1b : Bit
1b = suc zero
------------------------------------------------------------------------
-- Showing digits
-- The characters used to show the first 16 digits.
digitChars : Vec Char 16
digitChars =
'0' ∷ '1' ∷ '2' ∷ '3' ∷ '4' ∷ '5' ∷ '6' ∷ '7' ∷ '8' ∷ '9' ∷
'a' ∷ 'b' ∷ 'c' ∷ 'd' ∷ 'e' ∷ 'f' ∷ []
-- showDigit shows digits in base ≤ 16.
showDigit : ∀ {base} {base≤16 : True (base ≤? 16)} →
Digit base → Char
showDigit {base≤16 = base≤16} d =
Vec.lookup (Fin.inject≤ d (witnessToTruth base≤16)) digitChars
------------------------------------------------------------------------
-- Digit expansions
-- fromDigits takes a digit expansion of a natural number, starting
-- with the _least_ significant digit, and returns the corresponding
-- natural number.
fromDigits : ∀ {base} → List (Fin base) → ℕ
fromDigits [] = 0
fromDigits {base} (d ∷ ds) = toℕ d + fromDigits ds * base
-- toDigits b n yields the digits of n, in base b, starting with the
-- _least_ significant digit.
--
-- Note that the list of digits is always non-empty.
--
-- This function should be linear in n, if optimised properly (see
-- Data.Nat.DivMod).
data Digits (base : ℕ) : ℕ → Set where
digits : (ds : List (Fin base)) → Digits base (fromDigits ds)
toDigits : (base : ℕ) {base≥2 : True (2 ≤? base)} (n : ℕ) →
Digits base n
toDigits zero {base≥2 = ()} _
toDigits (suc zero) {base≥2 = ()} _
toDigits (suc (suc k)) n = <-rec Pred helper n
where
base = suc (suc k)
Pred = Digits base
cons : ∀ {n} (r : Fin base) → Pred n → Pred (toℕ r + n * base)
cons r (digits ds) = digits (r ∷ ds)
helper : ∀ n → <-Rec Pred n → Pred n
helper n rec with n divMod base
helper .(toℕ r + 0 * base) rec | result zero r = digits (r ∷ [])
helper .(toℕ r + suc x * base) rec | result (suc x) r =
cons r (rec (suc x) (lem (pred (suc x)) k (toℕ r)))
theDigits : (base : ℕ) {base≥2 : True (2 ≤? base)} (n : ℕ) →
List (Fin base)
theDigits base {base≥2} n with toDigits base {base≥2} n
theDigits base .(fromDigits ds) | digits ds = ds
| {
"alphanum_fraction": 0.5093740986,
"avg_line_length": 28.8916666667,
"ext": "agda",
"hexsha": "dab111428285e30247b8e9f9d7a70e14c518e50e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Digit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Digit.agda",
"max_line_length": 73,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Digit.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1073,
"size": 3467
} |
-- Adding forcing to functions (f in this case) leaves
-- an unsolved meta of type I (for the argument to f).
module Issue330 where
postulate
I : Set
i : I
data D (n : I) : Set where
d : D n
f : ∀ n → D n → D n
f n d = d
data P : D i → Set where
c : ∀ v → P (f i v)
p : P d
p = c _
| {
"alphanum_fraction": 0.5773195876,
"avg_line_length": 14.55,
"ext": "agda",
"hexsha": "d9bd74f808e3b9a9471c6b79d1414b4a64a0d6c7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue330.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue330.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue330.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 106,
"size": 291
} |
module Language.Greek where
data Maybe A : Set where
none : Maybe A
just : A → Maybe A
data Unicode : Set where
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω : Unicode
grave acute diaeresis smooth rough circumflex iotaSubscript : Unicode
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
{-# COMPILED_TYPE Char Char #-}
charToUnicode : Char -> Maybe Unicode
charToUnicode 'Α' = just Α
charToUnicode 'Β' = just Β
charToUnicode 'Γ' = just Γ
charToUnicode 'Δ' = just Δ
charToUnicode 'Ε' = just Ε
charToUnicode 'Ζ' = just Ζ
charToUnicode 'Η' = just Η
charToUnicode 'Θ' = just Θ
charToUnicode 'Ι' = just Ι
charToUnicode 'Κ' = just Κ
charToUnicode 'Λ' = just Λ
charToUnicode 'Μ' = just Μ
charToUnicode 'Ν' = just Ν
charToUnicode 'Ξ' = just Ξ
charToUnicode 'Ο' = just Ο
charToUnicode 'Π' = just Π
charToUnicode 'Ρ' = just Ρ
charToUnicode 'Σ' = just Σ
charToUnicode 'Τ' = just Τ
charToUnicode 'Υ' = just Υ
charToUnicode 'Φ' = just Φ
charToUnicode 'Χ' = just Χ
charToUnicode 'Ψ' = just Ψ
charToUnicode 'Ω' = just Ω
charToUnicode 'α' = just α
charToUnicode 'β' = just β
charToUnicode 'γ' = just γ
charToUnicode 'δ' = just δ
charToUnicode 'ε' = just ε
charToUnicode 'ζ' = just ζ
charToUnicode 'η' = just η
charToUnicode 'θ' = just θ
charToUnicode 'ι' = just ι
charToUnicode 'κ' = just κ
charToUnicode 'λ' = just λ′
charToUnicode 'μ' = just μ
charToUnicode 'ν' = just ν
charToUnicode 'ξ' = just ξ
charToUnicode 'ο' = just ο
charToUnicode 'π' = just π
charToUnicode 'ρ' = just ρ
charToUnicode 'ς' = just ς
charToUnicode 'σ' = just σ
charToUnicode 'τ' = just τ
charToUnicode 'υ' = just υ
charToUnicode 'φ' = just φ
charToUnicode 'χ' = just χ
charToUnicode 'ψ' = just ψ
charToUnicode 'ω' = just ω
charToUnicode '\x0300' = just grave -- COMBINING GRAVE ACCENT
charToUnicode '\x0301' = just acute -- COMBINING ACUTE ACCENT
charToUnicode '\x0308' = just diaeresis -- COMBINING DIAERESIS
charToUnicode '\x0313' = just smooth -- COMBINING COMMA ABOVE
charToUnicode '\x0314' = just rough -- COMBINING REVERSED COMMA ABOVE
charToUnicode '\x0342' = just circumflex -- COMBINING GREEK PERISPOMENI
charToUnicode '\x0345' = just iotaSubscript -- COMBINING GREEK YPOGEGRAMMENI
charToUnicode _ = none
data UnicodeCategory : Set where
letter mark : UnicodeCategory
unicodeToCategory : Unicode → UnicodeCategory
unicodeToCategory Α = letter
unicodeToCategory Β = letter
unicodeToCategory Γ = letter
unicodeToCategory Δ = letter
unicodeToCategory Ε = letter
unicodeToCategory Ζ = letter
unicodeToCategory Η = letter
unicodeToCategory Θ = letter
unicodeToCategory Ι = letter
unicodeToCategory Κ = letter
unicodeToCategory Λ = letter
unicodeToCategory Μ = letter
unicodeToCategory Ν = letter
unicodeToCategory Ξ = letter
unicodeToCategory Ο = letter
unicodeToCategory Π = letter
unicodeToCategory Ρ = letter
unicodeToCategory Σ = letter
unicodeToCategory Τ = letter
unicodeToCategory Υ = letter
unicodeToCategory Φ = letter
unicodeToCategory Χ = letter
unicodeToCategory Ψ = letter
unicodeToCategory Ω = letter
unicodeToCategory α = letter
unicodeToCategory β = letter
unicodeToCategory γ = letter
unicodeToCategory δ = letter
unicodeToCategory ε = letter
unicodeToCategory ζ = letter
unicodeToCategory η = letter
unicodeToCategory θ = letter
unicodeToCategory ι = letter
unicodeToCategory κ = letter
unicodeToCategory λ′ = letter
unicodeToCategory μ = letter
unicodeToCategory ν = letter
unicodeToCategory ξ = letter
unicodeToCategory ο = letter
unicodeToCategory π = letter
unicodeToCategory ρ = letter
unicodeToCategory σ = letter
unicodeToCategory ς = letter
unicodeToCategory τ = letter
unicodeToCategory υ = letter
unicodeToCategory φ = letter
unicodeToCategory χ = letter
unicodeToCategory ψ = letter
unicodeToCategory ω = letter
unicodeToCategory grave = mark
unicodeToCategory acute = mark
unicodeToCategory diaeresis = mark
unicodeToCategory smooth = mark
unicodeToCategory rough = mark
unicodeToCategory circumflex = mark
unicodeToCategory iotaSubscript = mark
data List A : Set where
[] : List A
_∷_ : A → List A -> List A
infixr 6 _∷_
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f y [] = y
foldr f y (x ∷ xs) = f x (foldr f y xs)
data _And_ : (A : Set) → (B : Set) → Set₁ where
_and_ : {A B : Set} → A → B → A And B
data ConcreteLetter : Set where
Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ ι κ λ′ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω : ConcreteLetter
data ConcreteMark : Set where
grave acute diaeresis smooth rough circumflex iotaSubscript : ConcreteMark
| {
"alphanum_fraction": 0.7340008707,
"avg_line_length": 29.4487179487,
"ext": "agda",
"hexsha": "003a2c8e6e2edc7e09e4cead0452ad0665688535",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Language/Greek.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Language/Greek.agda",
"max_line_length": 117,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Language/Greek.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 1595,
"size": 4594
} |
module Issue481Record where
record Issue481Record : Set where
| {
"alphanum_fraction": 0.8412698413,
"avg_line_length": 15.75,
"ext": "agda",
"hexsha": "dacbcbf8fc9ccececdc0c440bc02ee2ef9b17237",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue481Record.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue481Record.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue481Record.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 14,
"size": 63
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using (Category)
module Categories.NaturalTransformation.Hom {o ℓ e : Level} (C : Category o ℓ e) where
open import Categories.Category.Instance.Setoids
open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][_,-]; Hom[_][-,-])
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN)
import Categories.Morphism.Reasoning as MR
open Category C
open HomReasoning
open MR C
open NaturalTransformation
private
module CE = Category.Equiv C
module C = Category C
Hom[A,C]⇒Hom[B,C] : {A B : Obj} → (A ⇒ B) → NaturalTransformation Hom[ C ][-, A ] Hom[ C ][-, B ]
Hom[A,C]⇒Hom[B,C] {A} A⇒B = ntHelper record
{ η = λ X → record { _⟨$⟩_ = λ X⇒A → A⇒B ∘ X⇒A ; cong = ∘-resp-≈ʳ }
; commute = λ f {g} {h} g≈h → begin
A⇒B ∘ id ∘ g ∘ f ≈⟨ sym-assoc ⟩
(A⇒B ∘ id) ∘ g ∘ f ≈⟨ id-comm ⟩∘⟨ g≈h ⟩∘⟨refl ⟩
(id ∘ A⇒B) ∘ h ∘ f ≈⟨ pullʳ sym-assoc ⟩
id ∘ (A⇒B ∘ h) ∘ f ∎
}
Hom[C,A]⇒Hom[C,B] : {A B : Obj} → (B ⇒ A) → NaturalTransformation Hom[ C ][ A ,-] Hom[ C ][ B ,-]
Hom[C,A]⇒Hom[C,B] {A} B⇒A = ntHelper record
{ η = λ X → record { _⟨$⟩_ = λ A⇒X → A⇒X ∘ B⇒A ; cong = ∘-resp-≈ˡ }
; commute = λ f {g} {h} g≈h → begin
(f ∘ g ∘ id) ∘ B⇒A ≈⟨ pullʳ assoc ⟩
f ∘ g ∘ id ∘ B⇒A ≈⟨ (refl⟩∘⟨ g≈h ⟩∘⟨ id-comm-sym) ⟩
f ∘ h ∘ B⇒A ∘ id ≈⟨ (refl⟩∘⟨ sym-assoc) ⟩
f ∘ (h ∘ B⇒A) ∘ id ∎
}
| {
"alphanum_fraction": 0.5621621622,
"avg_line_length": 37,
"ext": "agda",
"hexsha": "0a5111fe09222a15b15a9eee48ca6766ba608438",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/NaturalTransformation/Hom.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/NaturalTransformation/Hom.agda",
"max_line_length": 105,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/NaturalTransformation/Hom.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 668,
"size": 1480
} |
module Comments where
{- Single-line comments cannot be started inside multi-line ones:
-- -} postulate
foo-- : Set -- Note that -- does not start a comment when
-- located inside or at the end of an identifier.
-- The following comment marker is followed by an alphabetic
-- character:
--This is a {- non-nested comment.
{-This is a comment.-}
{-
-- The final comment marker {- is followed by -} the end of the file
-- without any intervening newline.
-}
-- | {
"alphanum_fraction": 0.662601626,
"avg_line_length": 24.6,
"ext": "agda",
"hexsha": "5d67b3da8fa25d5bc8b9f2d008e13b79b31b3661",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Comments.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Comments.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Comments.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 110,
"size": 492
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pairs of lists that share no common elements (propositional equality)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.List.Relation.Binary.Disjoint.Propositional
{a} {A : Set a} where
open import Relation.Binary.PropositionalEquality using (setoid)
open import Data.List.Relation.Binary.Disjoint.Setoid as DisjointUnique
------------------------------------------------------------------------
-- Re-export the contents of setoid uniqueness
open DisjointUnique (setoid A) public
| {
"alphanum_fraction": 0.5309352518,
"avg_line_length": 33.0952380952,
"ext": "agda",
"hexsha": "b7f5d1185003c8085b01c8ecf9c9835d907fdd6e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Propositional.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 117,
"size": 695
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
import LibraBFT.Impl.OBM.Crypto as Crypto
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
module LibraBFT.Impl.Types.LedgerInfoWithSignatures where
obmNewNoSigs : LedgerInfo → LedgerInfoWithSignatures
obmNewNoSigs li = LedgerInfoWithSignatures∙new li Map.empty
-- HC-TODO : refactor this and TimeoutCertificate
addSignature : AccountAddress → Signature → LedgerInfoWithSignatures → LedgerInfoWithSignatures
addSignature validator sig liws =
case Map.lookup validator (liws ^∙ liwsSignatures) of λ where
(just _) → liws
nothing →
liws & liwsSignatures ∙~ Map.kvm-insert-Haskell validator sig (liws ^∙ liwsSignatures)
verifySignatures : LedgerInfoWithSignatures → ValidatorVerifier → Either ErrLog Unit
verifySignatures self validator = withErrCtx'
("LedgerInfoWithSignatures" ∷ "verify" ∷ [])
(ValidatorVerifier.batchVerifyAggregatedSignatures
validator (self ^∙ liwsLedgerInfo) (self ^∙ liwsSignatures))
| {
"alphanum_fraction": 0.7735849057,
"avg_line_length": 40.8857142857,
"ext": "agda",
"hexsha": "4deb622afcf0c357ffe691640063e401705c18d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 382,
"size": 1431
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A bunch of properties about natural number operations
------------------------------------------------------------------------
-- See README.Nat for some examples showing how this module can be
-- used.
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Properties where
open import Axiom.UniquenessOfIdentityProofs
open import Algebra
open import Algebra.Morphism
open import Function
open import Function.Injection using (_↣_)
open import Data.Nat.Base
open import Data.Product
open import Data.Sum
open import Data.Empty
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Bool.Properties using (T?)
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable using (True; via-injection; map′)
open import Relation.Nullary.Negation using (contradiction)
open import Algebra.FunctionProperties (_≡_ {A = ℕ})
hiding (LeftCancellative; RightCancellative; Cancellative)
open import Algebra.FunctionProperties
using (LeftCancellative; RightCancellative; Cancellative)
open import Algebra.FunctionProperties.Consequences.Propositional
open import Algebra.Structures (_≡_ {A = ℕ})
open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of _≡_
suc-injective : ∀ {m n} → suc m ≡ suc n → m ≡ n
suc-injective refl = refl
≡ᵇ⇒≡ : ∀ m n → T (m ≡ᵇ n) → m ≡ n
≡ᵇ⇒≡ zero zero _ = refl
≡ᵇ⇒≡ (suc m) (suc n) eq = cong suc (≡ᵇ⇒≡ m n eq)
≡ᵇ⇒≡ zero (suc n) ()
≡ᵇ⇒≡ (suc m) zero ()
≡⇒≡ᵇ : ∀ m n → m ≡ n → T (m ≡ᵇ n)
≡⇒≡ᵇ zero zero eq = _
≡⇒≡ᵇ (suc m) (suc n) eq = ≡⇒≡ᵇ m n (suc-injective eq)
≡⇒≡ᵇ zero (suc n) ()
≡⇒≡ᵇ (suc m) zero ()
-- NB: we use the builtin function `_≡ᵇ_ : (m n : ℕ) → Bool` here so
-- that the function quickly decides whether to return `yes` or `no`.
-- It sill takes a linear amount of time to generate the proof if it
-- is inspected. We expect the main benefit to be visible in compiled
-- code: the backend erases proofs.
infix 4 _≟_
_≟_ : Decidable {A = ℕ} _≡_
m ≟ n = map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (T? (m ≡ᵇ n))
≡-irrelevant : Irrelevant {A = ℕ} _≡_
≡-irrelevant = Decidable⇒UIP.≡-irrelevant _≟_
≟-diag : ∀ {m n} (eq : m ≡ n) → (m ≟ n) ≡ yes eq
≟-diag = ≡-≟-identity _≟_
≡-isDecEquivalence : IsDecEquivalence (_≡_ {A = ℕ})
≡-isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = _≟_
}
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = record
{ Carrier = ℕ
; _≈_ = _≡_
; isDecEquivalence = ≡-isDecEquivalence
}
------------------------------------------------------------------------
-- Properties of _≤_
≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n
≤-pred (s≤s m≤n) = m≤n
-- Relation-theoretic properties of _≤_
≤-reflexive : _≡_ ⇒ _≤_
≤-reflexive {zero} refl = z≤n
≤-reflexive {suc m} refl = s≤s (≤-reflexive refl)
≤-refl : Reflexive _≤_
≤-refl = ≤-reflexive refl
≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym z≤n z≤n = refl
≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m)
≤-trans : Transitive _≤_
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤o) = s≤s (≤-trans m≤n n≤o)
≤-total : Total _≤_
≤-total zero _ = inj₁ z≤n
≤-total _ zero = inj₂ z≤n
≤-total (suc m) (suc n) with ≤-total m n
... | inj₁ m≤n = inj₁ (s≤s m≤n)
... | inj₂ n≤m = inj₂ (s≤s n≤m)
infix 4 _≤?_ _≥?_
_≤?_ : Decidable _≤_
zero ≤? _ = yes z≤n
suc m ≤? zero = no λ()
suc m ≤? suc n with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no m≰n = no (m≰n ∘ ≤-pred)
_≥?_ : Decidable _≥_
_≥?_ = flip _≤?_
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
{ isPreorder = ≤-isPreorder
}
≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
{ isPartialOrder = ≤-isPartialOrder
}
≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
{ isTotalOrder = ≤-isTotalOrder
}
≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
{ isDecTotalOrder = ≤-isDecTotalOrder
}
-- Other properties of _≤_
s≤s-injective : ∀ {m n} {p q : m ≤ n} → s≤s p ≡ s≤s q → p ≡ q
s≤s-injective refl = refl
≤-irrelevant : Irrelevant _≤_
≤-irrelevant z≤n z≤n = refl
≤-irrelevant (s≤s m≤n₁) (s≤s m≤n₂) = cong s≤s (≤-irrelevant m≤n₁ m≤n₂)
≤-step : ∀ {m n} → m ≤ n → m ≤ 1 + n
≤-step z≤n = z≤n
≤-step (s≤s m≤n) = s≤s (≤-step m≤n)
n≤1+n : ∀ n → n ≤ 1 + n
n≤1+n _ = ≤-step ≤-refl
1+n≰n : ∀ {n} → 1 + n ≰ n
1+n≰n (s≤s le) = 1+n≰n le
n≤0⇒n≡0 : ∀ {n} → n ≤ 0 → n ≡ 0
n≤0⇒n≡0 z≤n = refl
------------------------------------------------------------------------
-- Properties of _<_
-- Relation theoretic properties of _<_
<-irrefl : Irreflexive _≡_ _<_
<-irrefl refl (s≤s n<n) = <-irrefl refl n<n
<-asym : Asymmetric _<_
<-asym (s≤s n<m) (s≤s m<n) = <-asym n<m m<n
<-trans : Transitive _<_
<-trans (s≤s i≤j) (s≤s j<k) = s≤s (≤-trans i≤j (≤-trans (n≤1+n _) j<k))
<-transʳ : Trans _≤_ _<_ _<_
<-transʳ m≤n (s≤s n≤o) = s≤s (≤-trans m≤n n≤o)
<-transˡ : Trans _<_ _≤_ _<_
<-transˡ (s≤s m≤n) (s≤s n≤o) = s≤s (≤-trans m≤n n≤o)
<-cmp : Trichotomous _≡_ _<_
<-cmp zero zero = tri≈ (λ()) refl (λ())
<-cmp zero (suc n) = tri< (s≤s z≤n) (λ()) (λ())
<-cmp (suc m) zero = tri> (λ()) (λ()) (s≤s z≤n)
<-cmp (suc m) (suc n) with <-cmp m n
... | tri< ≤ ≢ ≱ = tri< (s≤s ≤) (≢ ∘ suc-injective) (≱ ∘ ≤-pred)
... | tri≈ ≰ ≡ ≱ = tri≈ (≰ ∘ ≤-pred) (cong suc ≡) (≱ ∘ ≤-pred)
... | tri> ≰ ≢ ≥ = tri> (≰ ∘ ≤-pred) (≢ ∘ suc-injective) (s≤s ≥)
infix 4 _<?_ _>?_
_<?_ : Decidable _<_
x <? y = suc x ≤? y
_>?_ : Decidable _>_
_>?_ = flip _<?_
<-resp₂-≡ : _<_ Respects₂ _≡_
<-resp₂-≡ = subst (_ <_) , subst (_< _)
<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = <-resp₂-≡
}
<-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder
}
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ
<-strictTotalOrder = record
{ isStrictTotalOrder = <-isStrictTotalOrder
}
-- Other properties of _<_
<-irrelevant : Irrelevant _<_
<-irrelevant = ≤-irrelevant
<⇒≤pred : ∀ {m n} → m < n → m ≤ pred n
<⇒≤pred (s≤s le) = le
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ (s≤s m≤n) = ≤-trans m≤n (≤-step ≤-refl)
<⇒≢ : _<_ ⇒ _≢_
<⇒≢ m<n refl = 1+n≰n m<n
≤⇒≯ : _≤_ ⇒ _≯_
≤⇒≯ z≤n ()
≤⇒≯ (s≤s m≤n) (s≤s n≤m) = ≤⇒≯ m≤n n≤m
<⇒≱ : _<_ ⇒ _≱_
<⇒≱ (s≤s m+1≤n) (s≤s n≤m) = <⇒≱ m+1≤n n≤m
<⇒≯ : _<_ ⇒ _≯_
<⇒≯ (s≤s m<n) (s≤s n<m) = <⇒≯ m<n n<m
≰⇒≮ : _≰_ ⇒ _≮_
≰⇒≮ m≰n 1+m≤n = m≰n (<⇒≤ 1+m≤n)
≰⇒> : _≰_ ⇒ _>_
≰⇒> {zero} z≰n = contradiction z≤n z≰n
≰⇒> {suc m} {zero} _ = s≤s z≤n
≰⇒> {suc m} {suc n} m≰n = s≤s (≰⇒> (m≰n ∘ s≤s))
≰⇒≥ : _≰_ ⇒ _≥_
≰⇒≥ = <⇒≤ ∘ ≰⇒>
≮⇒≥ : _≮_ ⇒ _≥_
≮⇒≥ {_} {zero} _ = z≤n
≮⇒≥ {zero} {suc j} 1≮j+1 = contradiction (s≤s z≤n) 1≮j+1
≮⇒≥ {suc i} {suc j} i+1≮j+1 = s≤s (≮⇒≥ (i+1≮j+1 ∘ s≤s))
≤∧≢⇒< : ∀ {m n} → m ≤ n → m ≢ n → m < n
≤∧≢⇒< {_} {zero} z≤n m≢n = contradiction refl m≢n
≤∧≢⇒< {_} {suc n} z≤n m≢n = s≤s z≤n
≤∧≢⇒< {_} {suc n} (s≤s m≤n) 1+m≢1+n =
s≤s (≤∧≢⇒< m≤n (1+m≢1+n ∘ cong suc))
n≮n : ∀ n → n ≮ n
n≮n n = <-irrefl (refl {x = n})
m<n⇒n≢0 : ∀ {m n} → m < n → n ≢ 0
m<n⇒n≢0 (s≤s m≤n) ()
------------------------------------------------------------------------
-- Properties of _≤′_
≤′-trans : Transitive _≤′_
≤′-trans m≤n ≤′-refl = m≤n
≤′-trans m≤n (≤′-step n≤o) = ≤′-step (≤′-trans m≤n n≤o)
z≤′n : ∀ {n} → zero ≤′ n
z≤′n {zero} = ≤′-refl
z≤′n {suc n} = ≤′-step z≤′n
s≤′s : ∀ {m n} → m ≤′ n → suc m ≤′ suc n
s≤′s ≤′-refl = ≤′-refl
s≤′s (≤′-step m≤′n) = ≤′-step (s≤′s m≤′n)
≤′⇒≤ : _≤′_ ⇒ _≤_
≤′⇒≤ ≤′-refl = ≤-refl
≤′⇒≤ (≤′-step m≤′n) = ≤-step (≤′⇒≤ m≤′n)
≤⇒≤′ : _≤_ ⇒ _≤′_
≤⇒≤′ z≤n = z≤′n
≤⇒≤′ (s≤s m≤n) = s≤′s (≤⇒≤′ m≤n)
≤′-step-injective : ∀ {m n} {p q : m ≤′ n} → ≤′-step p ≡ ≤′-step q → p ≡ q
≤′-step-injective refl = refl
-- Decidablity for _≤'_
infix 4 _≤′?_ _<′?_ _≥′?_ _>′?_
_≤′?_ : Decidable _≤′_
x ≤′? y = map′ ≤⇒≤′ ≤′⇒≤ (x ≤? y)
_<′?_ : Decidable _<′_
x <′? y = suc x ≤′? y
_≥′?_ : Decidable _≥′_
_≥′?_ = flip _≤′?_
_>′?_ : Decidable _>′_
_>′?_ = flip _<′?_
------------------------------------------------------------------------
-- Properties of pred
pred-mono : pred Preserves _≤_ ⟶ _≤_
pred-mono z≤n = z≤n
pred-mono (s≤s le) = le
≤pred⇒≤ : ∀ {m n} → m ≤ pred n → m ≤ n
≤pred⇒≤ {m} {zero} le = le
≤pred⇒≤ {m} {suc n} le = ≤-step le
≤⇒pred≤ : ∀ {m n} → m ≤ n → pred m ≤ n
≤⇒pred≤ {zero} le = le
≤⇒pred≤ {suc m} le = ≤-trans (n≤1+n m) le
m≢0⇒suc[pred[m]]≡m : ∀ {m} → m ≢ 0 → suc (pred m) ≡ m
m≢0⇒suc[pred[m]]≡m {zero} m≢0 = ⊥-elim (m≢0 refl)
m≢0⇒suc[pred[m]]≡m {suc m} m≢0 = refl
------------------------------------------------------------------------
-- Properties of _+_
-- Algebraic properties of _+_
+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
+-assoc : Associative _+_
+-assoc zero _ _ = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)
+-identityˡ : LeftIdentity 0 _+_
+-identityˡ _ = refl
+-identityʳ : RightIdentity 0 _+_
+-identityʳ zero = refl
+-identityʳ (suc n) = cong suc (+-identityʳ n)
+-identity : Identity 0 _+_
+-identity = +-identityˡ , +-identityʳ
+-comm : Commutative _+_
+-comm zero n = sym (+-identityʳ n)
+-comm (suc m) n = begin
suc m + n ≡⟨⟩
suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩
suc (n + m) ≡⟨ sym (+-suc n m) ⟩
n + suc m ∎
+-isMagma : IsMagma _+_
+-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _+_
}
+-magma : Magma 0ℓ 0ℓ
+-magma = record
{ isMagma = +-isMagma
}
+-isSemigroup : IsSemigroup _+_
+-isSemigroup = record
{ isMagma = +-isMagma
; assoc = +-assoc
}
+-semigroup : Semigroup 0ℓ 0ℓ
+-semigroup = record
{ isSemigroup = +-isSemigroup
}
+-0-isMonoid : IsMonoid _+_ 0
+-0-isMonoid = record
{ isSemigroup = +-isSemigroup
; identity = +-identity
}
+-0-monoid : Monoid 0ℓ 0ℓ
+-0-monoid = record
{ isMonoid = +-0-isMonoid
}
+-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0
+-0-isCommutativeMonoid = record
{ isSemigroup = +-isSemigroup
; identityˡ = +-identityˡ
; comm = +-comm
}
+-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
+-0-commutativeMonoid = record
{ isCommutativeMonoid = +-0-isCommutativeMonoid
}
-- Other properties of _+_ and _≡_
+-cancelˡ-≡ : LeftCancellative _≡_ _+_
+-cancelˡ-≡ zero eq = eq
+-cancelˡ-≡ (suc m) eq = +-cancelˡ-≡ m (cong pred eq)
+-cancelʳ-≡ : RightCancellative _≡_ _+_
+-cancelʳ-≡ = comm+cancelˡ⇒cancelʳ +-comm +-cancelˡ-≡
+-cancel-≡ : Cancellative _≡_ _+_
+-cancel-≡ = +-cancelˡ-≡ , +-cancelʳ-≡
m≢1+m+n : ∀ m {n} → m ≢ suc (m + n)
m≢1+m+n zero ()
m≢1+m+n (suc m) eq = m≢1+m+n m (cong pred eq)
m≢1+n+m : ∀ m {n} → m ≢ suc (n + m)
m≢1+n+m m m≡1+n+m = m≢1+m+n m (trans m≡1+n+m (cong suc (+-comm _ m)))
i+1+j≢i : ∀ i {j} → i + suc j ≢ i
i+1+j≢i zero ()
i+1+j≢i (suc i) = (i+1+j≢i i) ∘ suc-injective
i+j≡0⇒i≡0 : ∀ i {j} → i + j ≡ 0 → i ≡ 0
i+j≡0⇒i≡0 zero eq = refl
i+j≡0⇒i≡0 (suc i) ()
i+j≡0⇒j≡0 : ∀ i {j} → i + j ≡ 0 → j ≡ 0
i+j≡0⇒j≡0 i {j} i+j≡0 = i+j≡0⇒i≡0 j (trans (+-comm j i) (i+j≡0))
-- Properties of _+_ and orderings
+-cancelˡ-≤ : LeftCancellative _≤_ _+_
+-cancelˡ-≤ zero le = le
+-cancelˡ-≤ (suc m) (s≤s le) = +-cancelˡ-≤ m le
+-cancelʳ-≤ : RightCancellative _≤_ _+_
+-cancelʳ-≤ {m} n o le =
+-cancelˡ-≤ m (subst₂ _≤_ (+-comm n m) (+-comm o m) le)
+-cancel-≤ : Cancellative _≤_ _+_
+-cancel-≤ = +-cancelˡ-≤ , +-cancelʳ-≤
+-cancelˡ-< : LeftCancellative _<_ _+_
+-cancelˡ-< x {y} {z} = +-cancelˡ-≤ x ∘ subst (_≤ x + z) (sym (+-suc x y))
+-cancelʳ-< : RightCancellative _<_ _+_
+-cancelʳ-< y z y+x<z+x = +-cancelʳ-≤ (suc y) z y+x<z+x
+-cancel-< : Cancellative _<_ _+_
+-cancel-< = +-cancelˡ-< , +-cancelʳ-<
≤-stepsˡ : ∀ {m n} o → m ≤ n → m ≤ o + n
≤-stepsˡ zero m≤n = m≤n
≤-stepsˡ (suc o) m≤n = ≤-step (≤-stepsˡ o m≤n)
≤-stepsʳ : ∀ {m n} o → m ≤ n → m ≤ n + o
≤-stepsʳ {m} o m≤n = subst (m ≤_) (+-comm o _) (≤-stepsˡ o m≤n)
m≤m+n : ∀ m n → m ≤ m + n
m≤m+n zero n = z≤n
m≤m+n (suc m) n = s≤s (m≤m+n m n)
n≤m+n : ∀ m n → n ≤ m + n
n≤m+n m zero = z≤n
n≤m+n m (suc n) = subst (suc n ≤_) (sym (+-suc m n)) (s≤s (n≤m+n m n))
m+n≤o⇒m≤o : ∀ m {n o} → m + n ≤ o → m ≤ o
m+n≤o⇒m≤o zero m+n≤o = z≤n
m+n≤o⇒m≤o (suc m) (s≤s m+n≤o) = s≤s (m+n≤o⇒m≤o m m+n≤o)
m+n≤o⇒n≤o : ∀ m {n o} → m + n ≤ o → n ≤ o
m+n≤o⇒n≤o zero n≤o = n≤o
m+n≤o⇒n≤o (suc m) m+n<o = m+n≤o⇒n≤o m (<⇒≤ m+n<o)
+-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
+-mono-≤ {_} {m} z≤n o≤p = ≤-trans o≤p (n≤m+n m _)
+-mono-≤ {_} {_} (s≤s m≤n) o≤p = s≤s (+-mono-≤ m≤n o≤p)
+-monoˡ-≤ : ∀ n → (_+ n) Preserves _≤_ ⟶ _≤_
+-monoˡ-≤ n m≤o = +-mono-≤ m≤o (≤-refl {n})
+-monoʳ-≤ : ∀ n → (n +_) Preserves _≤_ ⟶ _≤_
+-monoʳ-≤ n m≤o = +-mono-≤ (≤-refl {n}) m≤o
+-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_
+-mono-<-≤ {_} {suc y} (s≤s z≤n) u≤v = s≤s (≤-stepsˡ y u≤v)
+-mono-<-≤ {_} {_} (s≤s (s≤s x<y)) u≤v = s≤s (+-mono-<-≤ (s≤s x<y) u≤v)
+-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_
+-mono-≤-< {_} {y} z≤n u<v = ≤-trans u<v (n≤m+n y _)
+-mono-≤-< {_} {_} (s≤s x≤y) u<v = s≤s (+-mono-≤-< x≤y u<v)
+-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
+-mono-< x≤y = +-mono-≤-< (<⇒≤ x≤y)
+-monoˡ-< : ∀ n → (_+ n) Preserves _<_ ⟶ _<_
+-monoˡ-< n = +-monoˡ-≤ n
+-monoʳ-< : ∀ n → (n +_) Preserves _<_ ⟶ _<_
+-monoʳ-< zero m≤o = m≤o
+-monoʳ-< (suc n) m≤o = s≤s (+-monoʳ-< n m≤o)
i+1+j≰i : ∀ i {j} → i + suc j ≰ i
i+1+j≰i zero ()
i+1+j≰i (suc i) le = i+1+j≰i i (≤-pred le)
m+n≮n : ∀ m n → m + n ≮ n
m+n≮n zero n = n≮n n
m+n≮n (suc m) (suc n) (s≤s m+n<n) = m+n≮n m (suc n) (≤-step m+n<n)
m+n≮m : ∀ m n → m + n ≮ m
m+n≮m m n = subst (_≮ m) (+-comm n m) (m+n≮n n m)
m≤′m+n : ∀ m n → m ≤′ m + n
m≤′m+n m n = ≤⇒≤′ (m≤m+n m n)
n≤′m+n : ∀ m n → n ≤′ m + n
n≤′m+n zero n = ≤′-refl
n≤′m+n (suc m) n = ≤′-step (n≤′m+n m n)
------------------------------------------------------------------------
-- Properties of _*_
+-*-suc : ∀ m n → m * suc n ≡ m + m * n
+-*-suc zero n = refl
+-*-suc (suc m) n = begin
suc m * suc n ≡⟨⟩
suc n + m * suc n ≡⟨ cong (suc n +_) (+-*-suc m n) ⟩
suc n + (m + m * n) ≡⟨⟩
suc (n + (m + m * n)) ≡⟨ cong suc (sym (+-assoc n m (m * n))) ⟩
suc (n + m + m * n) ≡⟨ cong (λ x → suc (x + m * n)) (+-comm n m) ⟩
suc (m + n + m * n) ≡⟨ cong suc (+-assoc m n (m * n)) ⟩
suc (m + (n + m * n)) ≡⟨⟩
suc m + suc m * n ∎
*-identityˡ : LeftIdentity 1 _*_
*-identityˡ x = +-identityʳ x
*-identityʳ : RightIdentity 1 _*_
*-identityʳ zero = refl
*-identityʳ (suc x) = cong suc (*-identityʳ x)
*-identity : Identity 1 _*_
*-identity = *-identityˡ , *-identityʳ
*-zeroˡ : LeftZero 0 _*_
*-zeroˡ _ = refl
*-zeroʳ : RightZero 0 _*_
*-zeroʳ zero = refl
*-zeroʳ (suc n) = *-zeroʳ n
*-zero : Zero 0 _*_
*-zero = *-zeroˡ , *-zeroʳ
*-comm : Commutative _*_
*-comm zero n = sym (*-zeroʳ n)
*-comm (suc m) n = begin
suc m * n ≡⟨⟩
n + m * n ≡⟨ cong (n +_) (*-comm m n) ⟩
n + n * m ≡⟨ sym (+-*-suc n m) ⟩
n * suc m ∎
*-distribʳ-+ : _*_ DistributesOverʳ _+_
*-distribʳ-+ m zero o = refl
*-distribʳ-+ m (suc n) o = begin
(suc n + o) * m ≡⟨⟩
m + (n + o) * m ≡⟨ cong (m +_) (*-distribʳ-+ m n o) ⟩
m + (n * m + o * m) ≡⟨ sym (+-assoc m (n * m) (o * m)) ⟩
m + n * m + o * m ≡⟨⟩
suc n * m + o * m ∎
*-distribˡ-+ : _*_ DistributesOverˡ _+_
*-distribˡ-+ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-+
*-distrib-+ : _*_ DistributesOver _+_
*-distrib-+ = *-distribˡ-+ , *-distribʳ-+
*-assoc : Associative _*_
*-assoc zero n o = refl
*-assoc (suc m) n o = begin
(suc m * n) * o ≡⟨⟩
(n + m * n) * o ≡⟨ *-distribʳ-+ o n (m * n) ⟩
n * o + (m * n) * o ≡⟨ cong (n * o +_) (*-assoc m n o) ⟩
n * o + m * (n * o) ≡⟨⟩
suc m * (n * o) ∎
*-isMagma : IsMagma _*_
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _*_
}
*-magma : Magma 0ℓ 0ℓ
*-magma = record
{ isMagma = *-isMagma
}
*-isSemigroup : IsSemigroup _*_
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
{ isSemigroup = *-isSemigroup
}
*-1-isMonoid : IsMonoid _*_ 1
*-1-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-1-monoid : Monoid 0ℓ 0ℓ
*-1-monoid = record
{ isMonoid = *-1-isMonoid
}
*-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1
*-1-isCommutativeMonoid = record
{ isSemigroup = *-isSemigroup
; identityˡ = *-identityˡ
; comm = *-comm
}
*-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-1-commutativeMonoid = record
{ isCommutativeMonoid = *-1-isCommutativeMonoid
}
*-+-isSemiring : IsSemiring _+_ _*_ 0 1
*-+-isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-0-isCommutativeMonoid
; *-isMonoid = *-1-isMonoid
; distrib = *-distrib-+ }
; zero = *-zero
}
*-+-semiring : Semiring 0ℓ 0ℓ
*-+-semiring = record
{ isSemiring = *-+-isSemiring
}
*-+-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0 1
*-+-isCommutativeSemiring = record
{ +-isCommutativeMonoid = +-0-isCommutativeMonoid
; *-isCommutativeMonoid = *-1-isCommutativeMonoid
; distribʳ = *-distribʳ-+
; zeroˡ = *-zeroˡ
}
*-+-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
*-+-commutativeSemiring = record
{ isCommutativeSemiring = *-+-isCommutativeSemiring
}
-- Other properties of _*_
*-cancelʳ-≡ : ∀ i j {k} → i * suc k ≡ j * suc k → i ≡ j
*-cancelʳ-≡ zero zero eq = refl
*-cancelʳ-≡ zero (suc j) ()
*-cancelʳ-≡ (suc i) zero ()
*-cancelʳ-≡ (suc i) (suc j) {k} eq =
cong suc (*-cancelʳ-≡ i j (+-cancelˡ-≡ (suc k) eq))
*-cancelˡ-≡ : ∀ {i j} k → suc k * i ≡ suc k * j → i ≡ j
*-cancelˡ-≡ {i} {j} k eq = *-cancelʳ-≡ i j
(subst₂ _≡_ (*-comm (suc k) i) (*-comm (suc k) j) eq)
i*j≡0⇒i≡0∨j≡0 : ∀ i {j} → i * j ≡ 0 → i ≡ 0 ⊎ j ≡ 0
i*j≡0⇒i≡0∨j≡0 zero {j} eq = inj₁ refl
i*j≡0⇒i≡0∨j≡0 (suc i) {zero} eq = inj₂ refl
i*j≡0⇒i≡0∨j≡0 (suc i) {suc j} ()
i*j≡1⇒i≡1 : ∀ i j → i * j ≡ 1 → i ≡ 1
i*j≡1⇒i≡1 (suc zero) j _ = refl
i*j≡1⇒i≡1 zero j ()
i*j≡1⇒i≡1 (suc (suc i)) (suc (suc j)) ()
i*j≡1⇒i≡1 (suc (suc i)) (suc zero) ()
i*j≡1⇒i≡1 (suc (suc i)) zero eq =
contradiction (trans (sym $ *-zeroʳ i) eq) λ()
i*j≡1⇒j≡1 : ∀ i j → i * j ≡ 1 → j ≡ 1
i*j≡1⇒j≡1 i j eq = i*j≡1⇒i≡1 j i (trans (*-comm j i) eq)
*-cancelʳ-≤ : ∀ i j k → i * suc k ≤ j * suc k → i ≤ j
*-cancelʳ-≤ zero _ _ _ = z≤n
*-cancelʳ-≤ (suc i) zero _ ()
*-cancelʳ-≤ (suc i) (suc j) k le =
s≤s (*-cancelʳ-≤ i j k (+-cancelˡ-≤ (suc k) le))
*-mono-≤ : _*_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
*-mono-≤ z≤n _ = z≤n
*-mono-≤ (s≤s m≤n) u≤v = +-mono-≤ u≤v (*-mono-≤ m≤n u≤v)
*-monoˡ-≤ : ∀ n → (_* n) Preserves _≤_ ⟶ _≤_
*-monoˡ-≤ n m≤o = *-mono-≤ m≤o (≤-refl {n})
*-monoʳ-≤ : ∀ n → (n *_) Preserves _≤_ ⟶ _≤_
*-monoʳ-≤ n m≤o = *-mono-≤ (≤-refl {n}) m≤o
*-mono-< : _*_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
*-mono-< (s≤s z≤n) (s≤s u≤v) = s≤s z≤n
*-mono-< (s≤s (s≤s m≤n)) (s≤s u≤v) =
+-mono-< (s≤s u≤v) (*-mono-< (s≤s m≤n) (s≤s u≤v))
*-monoˡ-< : ∀ n → (_* suc n) Preserves _<_ ⟶ _<_
*-monoˡ-< n (s≤s z≤n) = s≤s z≤n
*-monoˡ-< n (s≤s (s≤s m≤o)) =
+-mono-≤-< (≤-refl {suc n}) (*-monoˡ-< n (s≤s m≤o))
*-monoʳ-< : ∀ n → (suc n *_) Preserves _<_ ⟶ _<_
*-monoʳ-< zero (s≤s m≤o) = +-mono-≤ (s≤s m≤o) z≤n
*-monoʳ-< (suc n) (s≤s m≤o) =
+-mono-≤ (s≤s m≤o) (<⇒≤ (*-monoʳ-< n (s≤s m≤o)))
------------------------------------------------------------------------
-- Properties of _^_
^-identityʳ : RightIdentity 1 _^_
^-identityʳ zero = refl
^-identityʳ (suc x) = cong suc (^-identityʳ x)
^-zeroˡ : LeftZero 1 _^_
^-zeroˡ zero = refl
^-zeroˡ (suc e) = begin
1 ^ suc e ≡⟨⟩
1 * (1 ^ e) ≡⟨ *-identityˡ (1 ^ e) ⟩
1 ^ e ≡⟨ ^-zeroˡ e ⟩
1 ∎
^-distribˡ-+-* : ∀ m n p → m ^ (n + p) ≡ m ^ n * m ^ p
^-distribˡ-+-* m zero p = sym (+-identityʳ (m ^ p))
^-distribˡ-+-* m (suc n) p = begin
m * (m ^ (n + p)) ≡⟨ cong (m *_) (^-distribˡ-+-* m n p) ⟩
m * ((m ^ n) * (m ^ p)) ≡⟨ sym (*-assoc m _ _) ⟩
(m * (m ^ n)) * (m ^ p) ∎
^-semigroup-morphism : ∀ {n} → (n ^_) Is +-semigroup -Semigroup⟶ *-semigroup
^-semigroup-morphism = record
{ ⟦⟧-cong = cong (_ ^_)
; ∙-homo = ^-distribˡ-+-* _
}
^-monoid-morphism : ∀ {n} → (n ^_) Is +-0-monoid -Monoid⟶ *-1-monoid
^-monoid-morphism = record
{ sm-homo = ^-semigroup-morphism
; ε-homo = refl
}
^-*-assoc : ∀ m n p → (m ^ n) ^ p ≡ m ^ (n * p)
^-*-assoc m n zero = begin
1 ≡⟨⟩
m ^ 0 ≡⟨ cong (m ^_) (sym $ *-zeroʳ n) ⟩
m ^ (n * 0) ∎
^-*-assoc m n (suc p) = begin
(m ^ n) * ((m ^ n) ^ p) ≡⟨ cong ((m ^ n) *_) (^-*-assoc m n p) ⟩
(m ^ n) * (m ^ (n * p)) ≡⟨ sym (^-distribˡ-+-* m n (n * p)) ⟩
m ^ (n + n * p) ≡⟨ cong (m ^_) (sym (+-*-suc n p)) ⟩
m ^ (n * (suc p)) ∎
i^j≡0⇒i≡0 : ∀ i j → i ^ j ≡ 0 → i ≡ 0
i^j≡0⇒i≡0 i zero ()
i^j≡0⇒i≡0 i (suc j) eq = [ id , i^j≡0⇒i≡0 i j ]′ (i*j≡0⇒i≡0∨j≡0 i eq)
i^j≡1⇒j≡0∨i≡1 : ∀ i j → i ^ j ≡ 1 → j ≡ 0 ⊎ i ≡ 1
i^j≡1⇒j≡0∨i≡1 i zero _ = inj₁ refl
i^j≡1⇒j≡0∨i≡1 i (suc j) eq = inj₂ (i*j≡1⇒i≡1 i (i ^ j) eq)
------------------------------------------------------------------------
-- Properties of _≤‴_
≤‴⇒≤″ : ∀{m n} → m ≤‴ n → m ≤″ n
≤‴⇒≤″ {m = m} ≤‴-refl = less-than-or-equal {k = 0} (+-identityʳ m)
≤‴⇒≤″ {m = m} (≤‴-step x) = less-than-or-equal (trans (+-suc m _) (_≤″_.proof ind)) where
ind = ≤‴⇒≤″ x
m≤‴m+k : ∀{m n k} → m + k ≡ n → m ≤‴ n
m≤‴m+k {m} {k = zero} refl = subst (λ z → m ≤‴ z) (sym (+-identityʳ m)) (≤‴-refl {m})
m≤‴m+k {m} {k = suc k} proof
= ≤‴-step (m≤‴m+k {k = k} (trans (sym (+-suc m _)) proof))
≤″⇒≤‴ : ∀{m n} → m ≤″ n → m ≤‴ n
≤″⇒≤‴ (less-than-or-equal {k} proof) = m≤‴m+k proof
------------------------------------------------------------------------
-- Properties of _⊔_ and _⊓_
⊔-assoc : Associative _⊔_
⊔-assoc zero _ _ = refl
⊔-assoc (suc m) zero o = refl
⊔-assoc (suc m) (suc n) zero = refl
⊔-assoc (suc m) (suc n) (suc o) = cong suc $ ⊔-assoc m n o
⊔-identityˡ : LeftIdentity 0 _⊔_
⊔-identityˡ _ = refl
⊔-identityʳ : RightIdentity 0 _⊔_
⊔-identityʳ zero = refl
⊔-identityʳ (suc n) = refl
⊔-identity : Identity 0 _⊔_
⊔-identity = ⊔-identityˡ , ⊔-identityʳ
⊔-comm : Commutative _⊔_
⊔-comm zero n = sym $ ⊔-identityʳ n
⊔-comm (suc m) zero = refl
⊔-comm (suc m) (suc n) = cong suc (⊔-comm m n)
⊔-sel : Selective _⊔_
⊔-sel zero _ = inj₂ refl
⊔-sel (suc m) zero = inj₁ refl
⊔-sel (suc m) (suc n) with ⊔-sel m n
... | inj₁ m⊔n≡m = inj₁ (cong suc m⊔n≡m)
... | inj₂ m⊔n≡n = inj₂ (cong suc m⊔n≡n)
⊔-idem : Idempotent _⊔_
⊔-idem = sel⇒idem ⊔-sel
⊓-assoc : Associative _⊓_
⊓-assoc zero _ _ = refl
⊓-assoc (suc m) zero o = refl
⊓-assoc (suc m) (suc n) zero = refl
⊓-assoc (suc m) (suc n) (suc o) = cong suc $ ⊓-assoc m n o
⊓-zeroˡ : LeftZero 0 _⊓_
⊓-zeroˡ _ = refl
⊓-zeroʳ : RightZero 0 _⊓_
⊓-zeroʳ zero = refl
⊓-zeroʳ (suc n) = refl
⊓-zero : Zero 0 _⊓_
⊓-zero = ⊓-zeroˡ , ⊓-zeroʳ
⊓-comm : Commutative _⊓_
⊓-comm zero n = sym $ ⊓-zeroʳ n
⊓-comm (suc m) zero = refl
⊓-comm (suc m) (suc n) = cong suc (⊓-comm m n)
⊓-sel : Selective _⊓_
⊓-sel zero _ = inj₁ refl
⊓-sel (suc m) zero = inj₂ refl
⊓-sel (suc m) (suc n) with ⊓-sel m n
... | inj₁ m⊓n≡m = inj₁ (cong suc m⊓n≡m)
... | inj₂ m⊓n≡n = inj₂ (cong suc m⊓n≡n)
⊓-idem : Idempotent _⊓_
⊓-idem = sel⇒idem ⊓-sel
⊓-distribʳ-⊔ : _⊓_ DistributesOverʳ _⊔_
⊓-distribʳ-⊔ (suc m) (suc n) (suc o) = cong suc $ ⊓-distribʳ-⊔ m n o
⊓-distribʳ-⊔ (suc m) (suc n) zero = cong suc $ refl
⊓-distribʳ-⊔ (suc m) zero o = refl
⊓-distribʳ-⊔ zero n o = begin
(n ⊔ o) ⊓ 0 ≡⟨ ⊓-comm (n ⊔ o) 0 ⟩
0 ⊓ (n ⊔ o) ≡⟨⟩
0 ⊓ n ⊔ 0 ⊓ o ≡⟨ ⊓-comm 0 n ⟨ cong₂ _⊔_ ⟩ ⊓-comm 0 o ⟩
n ⊓ 0 ⊔ o ⊓ 0 ∎
⊓-distribˡ-⊔ : _⊓_ DistributesOverˡ _⊔_
⊓-distribˡ-⊔ = comm+distrʳ⇒distrˡ ⊓-comm ⊓-distribʳ-⊔
⊓-distrib-⊔ : _⊓_ DistributesOver _⊔_
⊓-distrib-⊔ = ⊓-distribˡ-⊔ , ⊓-distribʳ-⊔
⊔-abs-⊓ : _⊔_ Absorbs _⊓_
⊔-abs-⊓ zero n = refl
⊔-abs-⊓ (suc m) zero = refl
⊔-abs-⊓ (suc m) (suc n) = cong suc $ ⊔-abs-⊓ m n
⊓-abs-⊔ : _⊓_ Absorbs _⊔_
⊓-abs-⊔ zero n = refl
⊓-abs-⊔ (suc m) (suc n) = cong suc $ ⊓-abs-⊔ m n
⊓-abs-⊔ (suc m) zero = cong suc $ begin
m ⊓ m ≡⟨ cong (m ⊓_) $ sym $ ⊔-identityʳ m ⟩
m ⊓ (m ⊔ 0) ≡⟨ ⊓-abs-⊔ m zero ⟩
m ∎
⊓-⊔-absorptive : Absorptive _⊓_ _⊔_
⊓-⊔-absorptive = ⊓-abs-⊔ , ⊔-abs-⊓
⊔-isMagma : IsMagma _⊔_
⊔-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _⊔_
}
⊔-magma : Magma 0ℓ 0ℓ
⊔-magma = record
{ isMagma = ⊔-isMagma
}
⊔-isSemigroup : IsSemigroup _⊔_
⊔-isSemigroup = record
{ isMagma = ⊔-isMagma
; assoc = ⊔-assoc
}
⊔-semigroup : Semigroup 0ℓ 0ℓ
⊔-semigroup = record
{ isSemigroup = ⊔-isSemigroup
}
⊔-isBand : IsBand _⊔_
⊔-isBand = record
{ isSemigroup = ⊔-isSemigroup
; idem = ⊔-idem
}
⊔-band : Band 0ℓ 0ℓ
⊔-band = record
{ isBand = ⊔-isBand
}
⊔-isSemilattice : IsSemilattice _⊔_
⊔-isSemilattice = record
{ isBand = ⊔-isBand
; comm = ⊔-comm
}
⊔-semilattice : Semilattice 0ℓ 0ℓ
⊔-semilattice = record
{ isSemilattice = ⊔-isSemilattice
}
⊔-0-isCommutativeMonoid : IsCommutativeMonoid _⊔_ 0
⊔-0-isCommutativeMonoid = record
{ isSemigroup = ⊔-isSemigroup
; identityˡ = ⊔-identityˡ
; comm = ⊔-comm
}
⊔-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
⊔-0-commutativeMonoid = record
{ isCommutativeMonoid = ⊔-0-isCommutativeMonoid
}
⊓-isMagma : IsMagma _⊓_
⊓-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _⊓_
}
⊓-magma : Magma 0ℓ 0ℓ
⊓-magma = record
{ isMagma = ⊓-isMagma
}
⊓-isSemigroup : IsSemigroup _⊓_
⊓-isSemigroup = record
{ isMagma = ⊓-isMagma
; assoc = ⊓-assoc
}
⊓-semigroup : Semigroup 0ℓ 0ℓ
⊓-semigroup = record
{ isSemigroup = ⊔-isSemigroup
}
⊓-isBand : IsBand _⊓_
⊓-isBand = record
{ isSemigroup = ⊓-isSemigroup
; idem = ⊓-idem
}
⊓-band : Band 0ℓ 0ℓ
⊓-band = record
{ isBand = ⊓-isBand
}
⊓-isSemilattice : IsSemilattice _⊓_
⊓-isSemilattice = record
{ isBand = ⊓-isBand
; comm = ⊓-comm
}
⊓-semilattice : Semilattice 0ℓ 0ℓ
⊓-semilattice = record
{ isSemilattice = ⊓-isSemilattice
}
⊔-⊓-isSemiringWithoutOne : IsSemiringWithoutOne _⊔_ _⊓_ 0
⊔-⊓-isSemiringWithoutOne = record
{ +-isCommutativeMonoid = ⊔-0-isCommutativeMonoid
; *-isSemigroup = ⊓-isSemigroup
; distrib = ⊓-distrib-⊔
; zero = ⊓-zero
}
⊔-⊓-isCommutativeSemiringWithoutOne
: IsCommutativeSemiringWithoutOne _⊔_ _⊓_ 0
⊔-⊓-isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = ⊔-⊓-isSemiringWithoutOne
; *-comm = ⊓-comm
}
⊔-⊓-commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne 0ℓ 0ℓ
⊔-⊓-commutativeSemiringWithoutOne = record
{ isCommutativeSemiringWithoutOne =
⊔-⊓-isCommutativeSemiringWithoutOne
}
⊓-⊔-isLattice : IsLattice _⊓_ _⊔_
⊓-⊔-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ⊓-comm
; ∨-assoc = ⊓-assoc
; ∨-cong = cong₂ _⊓_
; ∧-comm = ⊔-comm
; ∧-assoc = ⊔-assoc
; ∧-cong = cong₂ _⊔_
; absorptive = ⊓-⊔-absorptive
}
⊓-⊔-lattice : Lattice 0ℓ 0ℓ
⊓-⊔-lattice = record
{ isLattice = ⊓-⊔-isLattice
}
⊓-⊔-isDistributiveLattice : IsDistributiveLattice _⊓_ _⊔_
⊓-⊔-isDistributiveLattice = record
{ isLattice = ⊓-⊔-isLattice
; ∨-∧-distribʳ = ⊓-distribʳ-⊔
}
⊓-⊔-distributiveLattice : DistributiveLattice 0ℓ 0ℓ
⊓-⊔-distributiveLattice = record
{ isDistributiveLattice = ⊓-⊔-isDistributiveLattice
}
-- Ordering properties of _⊔_ and _⊓_
m⊓n≤m : ∀ m n → m ⊓ n ≤ m
m⊓n≤m zero _ = z≤n
m⊓n≤m (suc m) zero = z≤n
m⊓n≤m (suc m) (suc n) = s≤s $ m⊓n≤m m n
m⊓n≤n : ∀ m n → m ⊓ n ≤ n
m⊓n≤n m n = subst (_≤ n) (⊓-comm n m) (m⊓n≤m n m)
m≤m⊔n : ∀ m n → m ≤ m ⊔ n
m≤m⊔n zero _ = z≤n
m≤m⊔n (suc m) zero = ≤-refl
m≤m⊔n (suc m) (suc n) = s≤s $ m≤m⊔n m n
n≤m⊔n : ∀ m n → n ≤ m ⊔ n
n≤m⊔n m n = subst (n ≤_) (⊔-comm n m) (m≤m⊔n n m)
m≤n⇒m⊓n≡m : ∀ {m n} → m ≤ n → m ⊓ n ≡ m
m≤n⇒m⊓n≡m z≤n = refl
m≤n⇒m⊓n≡m (s≤s m≤n) = cong suc (m≤n⇒m⊓n≡m m≤n)
m≤n⇒n⊓m≡m : ∀ {m n} → m ≤ n → n ⊓ m ≡ m
m≤n⇒n⊓m≡m {m} m≤n = trans (⊓-comm _ m) (m≤n⇒m⊓n≡m m≤n)
m⊓n≡m⇒m≤n : ∀ {m n} → m ⊓ n ≡ m → m ≤ n
m⊓n≡m⇒m≤n m⊓n≡m = subst (_≤ _) m⊓n≡m (m⊓n≤n _ _)
m⊓n≡n⇒n≤m : ∀ {m n} → m ⊓ n ≡ n → n ≤ m
m⊓n≡n⇒n≤m m⊓n≡n = subst (_≤ _) m⊓n≡n (m⊓n≤m _ _)
m≤n⇒n⊔m≡n : ∀ {m n} → m ≤ n → n ⊔ m ≡ n
m≤n⇒n⊔m≡n z≤n = ⊔-identityʳ _
m≤n⇒n⊔m≡n (s≤s m≤n) = cong suc (m≤n⇒n⊔m≡n m≤n)
m≤n⇒m⊔n≡n : ∀ {m n} → m ≤ n → m ⊔ n ≡ n
m≤n⇒m⊔n≡n {m} m≤n = trans (⊔-comm m _) (m≤n⇒n⊔m≡n m≤n)
n⊔m≡m⇒n≤m : ∀ {m n} → n ⊔ m ≡ m → n ≤ m
n⊔m≡m⇒n≤m n⊔m≡m = subst (_ ≤_) n⊔m≡m (m≤m⊔n _ _)
n⊔m≡n⇒m≤n : ∀ {m n} → n ⊔ m ≡ n → m ≤ n
n⊔m≡n⇒m≤n n⊔m≡n = subst (_ ≤_) n⊔m≡n (n≤m⊔n _ _)
m⊓n≤m⊔n : ∀ m n → m ⊓ n ≤ m ⊔ n
m⊓n≤m⊔n zero n = z≤n
m⊓n≤m⊔n (suc m) zero = z≤n
m⊓n≤m⊔n (suc m) (suc n) = s≤s (m⊓n≤m⊔n m n)
m≤n⇒m⊓o≤n : ∀ {m n} o → m ≤ n → m ⊓ o ≤ n
m≤n⇒m⊓o≤n o m≤n = ≤-trans (m⊓n≤m _ o) m≤n
m≤n⇒o⊓m≤n : ∀ {m n} o → m ≤ n → o ⊓ m ≤ n
m≤n⇒o⊓m≤n n m≤n = ≤-trans (m⊓n≤n n _) m≤n
m≤n⊓o⇒m≤n : ∀ {m} n o → m ≤ n ⊓ o → m ≤ n
m≤n⊓o⇒m≤n n o m≤n⊓o = ≤-trans m≤n⊓o (m⊓n≤m n o)
m≤n⊓o⇒m≤o : ∀ {m} n o → m ≤ n ⊓ o → m ≤ o
m≤n⊓o⇒m≤o n o m≤n⊓o = ≤-trans m≤n⊓o (m⊓n≤n n o)
m≤n⇒m≤n⊔o : ∀ {m n} o → m ≤ n → m ≤ n ⊔ o
m≤n⇒m≤n⊔o o m≤n = ≤-trans m≤n (m≤m⊔n _ o)
m≤n⇒m≤o⊔n : ∀ {m n} o → m ≤ n → m ≤ o ⊔ n
m≤n⇒m≤o⊔n n m≤n = ≤-trans m≤n (n≤m⊔n n _)
m⊔n≤o⇒m≤o : ∀ m n {o} → m ⊔ n ≤ o → m ≤ o
m⊔n≤o⇒m≤o m n m⊔n≤o = ≤-trans (m≤m⊔n m n) m⊔n≤o
m⊔n≤o⇒n≤o : ∀ m n {o} → m ⊔ n ≤ o → n ≤ o
m⊔n≤o⇒n≤o m n m⊔n≤o = ≤-trans (n≤m⊔n m n) m⊔n≤o
m<n⇒m⊓o<n : ∀ {m n} o → m < n → m ⊓ o < n
m<n⇒m⊓o<n o m<n = <-transʳ (m⊓n≤m _ o) m<n
m<n⇒o⊓m<n : ∀ {m n} o → m < n → o ⊓ m < n
m<n⇒o⊓m<n o m<n = <-transʳ (m⊓n≤n o _) m<n
m<n⊓o⇒m<n : ∀ {m} n o → m < n ⊓ o → m < n
m<n⊓o⇒m<n = m≤n⊓o⇒m≤n
m<n⊓o⇒m<o : ∀ {m} n o → m < n ⊓ o → m < o
m<n⊓o⇒m<o = m≤n⊓o⇒m≤o
m<n⇒m<n⊔o : ∀ {m n} o → m < n → m < n ⊔ o
m<n⇒m<n⊔o = m≤n⇒m≤n⊔o
m<n⇒m<o⊔n : ∀ {m n} o → m < n → m < o ⊔ n
m<n⇒m<o⊔n = m≤n⇒m≤o⊔n
m⊔n<o⇒m<o : ∀ m n {o} → m ⊔ n < o → m < o
m⊔n<o⇒m<o m n m⊔n<o = <-transʳ (m≤m⊔n m n) m⊔n<o
m⊔n<o⇒n<o : ∀ m n {o} → m ⊔ n < o → n < o
m⊔n<o⇒n<o m n m⊔n<o = <-transʳ (n≤m⊔n m n) m⊔n<o
⊔-mono-≤ : _⊔_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
⊔-mono-≤ {x} {y} {u} {v} x≤y u≤v with ⊔-sel x u
... | inj₁ x⊔u≡x rewrite x⊔u≡x = ≤-trans x≤y (m≤m⊔n y v)
... | inj₂ x⊔u≡u rewrite x⊔u≡u = ≤-trans u≤v (n≤m⊔n y v)
⊔-monoˡ-≤ : ∀ n → (_⊔ n) Preserves _≤_ ⟶ _≤_
⊔-monoˡ-≤ n m≤o = ⊔-mono-≤ m≤o (≤-refl {n})
⊔-monoʳ-≤ : ∀ n → (n ⊔_) Preserves _≤_ ⟶ _≤_
⊔-monoʳ-≤ n m≤o = ⊔-mono-≤ (≤-refl {n}) m≤o
⊔-mono-< : _⊔_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
⊔-mono-< = ⊔-mono-≤
⊓-mono-≤ : _⊓_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_
⊓-mono-≤ {x} {y} {u} {v} x≤y u≤v with ⊓-sel y v
... | inj₁ y⊓v≡y rewrite y⊓v≡y = ≤-trans (m⊓n≤m x u) x≤y
... | inj₂ y⊓v≡v rewrite y⊓v≡v = ≤-trans (m⊓n≤n x u) u≤v
⊓-monoˡ-≤ : ∀ n → (_⊓ n) Preserves _≤_ ⟶ _≤_
⊓-monoˡ-≤ n m≤o = ⊓-mono-≤ m≤o (≤-refl {n})
⊓-monoʳ-≤ : ∀ n → (n ⊓_) Preserves _≤_ ⟶ _≤_
⊓-monoʳ-≤ n m≤o = ⊓-mono-≤ (≤-refl {n}) m≤o
⊓-mono-< : _⊓_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_
⊓-mono-< = ⊓-mono-≤
-- Properties of _⊔_ and _⊓_ and _+_
m⊔n≤m+n : ∀ m n → m ⊔ n ≤ m + n
m⊔n≤m+n m n with ⊔-sel m n
... | inj₁ m⊔n≡m rewrite m⊔n≡m = m≤m+n m n
... | inj₂ m⊔n≡n rewrite m⊔n≡n = n≤m+n m n
m⊓n≤m+n : ∀ m n → m ⊓ n ≤ m + n
m⊓n≤m+n m n with ⊓-sel m n
... | inj₁ m⊓n≡m rewrite m⊓n≡m = m≤m+n m n
... | inj₂ m⊓n≡n rewrite m⊓n≡n = n≤m+n m n
+-distribˡ-⊔ : _+_ DistributesOverˡ _⊔_
+-distribˡ-⊔ zero y z = refl
+-distribˡ-⊔ (suc x) y z = cong suc (+-distribˡ-⊔ x y z)
+-distribʳ-⊔ : _+_ DistributesOverʳ _⊔_
+-distribʳ-⊔ = comm+distrˡ⇒distrʳ +-comm +-distribˡ-⊔
+-distrib-⊔ : _+_ DistributesOver _⊔_
+-distrib-⊔ = +-distribˡ-⊔ , +-distribʳ-⊔
+-distribˡ-⊓ : _+_ DistributesOverˡ _⊓_
+-distribˡ-⊓ zero y z = refl
+-distribˡ-⊓ (suc x) y z = cong suc (+-distribˡ-⊓ x y z)
+-distribʳ-⊓ : _+_ DistributesOverʳ _⊓_
+-distribʳ-⊓ = comm+distrˡ⇒distrʳ +-comm +-distribˡ-⊓
+-distrib-⊓ : _+_ DistributesOver _⊓_
+-distrib-⊓ = +-distribˡ-⊓ , +-distribʳ-⊓
-- Other properties
⊓-triangulate : ∀ x y z → x ⊓ y ⊓ z ≡ (x ⊓ y) ⊓ (y ⊓ z)
⊓-triangulate x y z = begin
x ⊓ y ⊓ z ≡⟨ cong (λ v → x ⊓ v ⊓ z) (sym (⊓-idem y)) ⟩
x ⊓ (y ⊓ y) ⊓ z ≡⟨ ⊓-assoc x _ _ ⟩
x ⊓ ((y ⊓ y) ⊓ z) ≡⟨ cong (x ⊓_) (⊓-assoc y _ _) ⟩
x ⊓ (y ⊓ (y ⊓ z)) ≡⟨ sym (⊓-assoc x _ _) ⟩
(x ⊓ y) ⊓ (y ⊓ z) ∎
⊔-triangulate : ∀ x y z → x ⊔ y ⊔ z ≡ (x ⊔ y) ⊔ (y ⊔ z)
⊔-triangulate x y z = begin
x ⊔ y ⊔ z ≡⟨ cong (λ v → x ⊔ v ⊔ z) (sym (⊔-idem y)) ⟩
x ⊔ (y ⊔ y) ⊔ z ≡⟨ ⊔-assoc x _ _ ⟩
x ⊔ ((y ⊔ y) ⊔ z) ≡⟨ cong (x ⊔_) (⊔-assoc y _ _) ⟩
x ⊔ (y ⊔ (y ⊔ z)) ≡⟨ sym (⊔-assoc x _ _) ⟩
(x ⊔ y) ⊔ (y ⊔ z) ∎
------------------------------------------------------------------------
-- Properties of _∸_
0∸n≡0 : LeftZero zero _∸_
0∸n≡0 zero = refl
0∸n≡0 (suc _) = refl
n∸n≡0 : ∀ n → n ∸ n ≡ 0
n∸n≡0 zero = refl
n∸n≡0 (suc n) = n∸n≡0 n
-- Ordering properties of _∸_
n∸m≤n : ∀ m n → n ∸ m ≤ n
n∸m≤n zero n = ≤-refl
n∸m≤n (suc m) zero = ≤-refl
n∸m≤n (suc m) (suc n) = ≤-trans (n∸m≤n m n) (n≤1+n n)
m≮m∸n : ∀ m n → m ≮ m ∸ n
m≮m∸n zero (suc n) ()
m≮m∸n m zero = n≮n m
m≮m∸n (suc m) (suc n) = m≮m∸n m n ∘ ≤-trans (n≤1+n (suc m))
∸-mono : _∸_ Preserves₂ _≤_ ⟶ _≥_ ⟶ _≤_
∸-mono z≤n (s≤s n₁≥n₂) = z≤n
∸-mono (s≤s m₁≤m₂) (s≤s n₁≥n₂) = ∸-mono m₁≤m₂ n₁≥n₂
∸-mono m₁≤m₂ (z≤n {n = n₁}) = ≤-trans (n∸m≤n n₁ _) m₁≤m₂
∸-monoˡ-≤ : ∀ {m n} o → m ≤ n → m ∸ o ≤ n ∸ o
∸-monoˡ-≤ o m≤n = ∸-mono {u = o} m≤n ≤-refl
∸-monoʳ-≤ : ∀ {m n} o → m ≤ n → o ∸ m ≥ o ∸ n
∸-monoʳ-≤ _ m≤n = ∸-mono ≤-refl m≤n
m∸n≡0⇒m≤n : ∀ {m n} → m ∸ n ≡ 0 → m ≤ n
m∸n≡0⇒m≤n {zero} {_} _ = z≤n
m∸n≡0⇒m≤n {suc m} {zero} ()
m∸n≡0⇒m≤n {suc m} {suc n} eq = s≤s (m∸n≡0⇒m≤n eq)
m≤n⇒m∸n≡0 : ∀ {m n} → m ≤ n → m ∸ n ≡ 0
m≤n⇒m∸n≡0 {n = n} z≤n = 0∸n≡0 n
m≤n⇒m∸n≡0 {_} (s≤s m≤n) = m≤n⇒m∸n≡0 m≤n
-- Properties of _∸_ and _+_
+-∸-comm : ∀ {m} n {o} → o ≤ m → (m + n) ∸ o ≡ (m ∸ o) + n
+-∸-comm {zero} _ {suc o} ()
+-∸-comm {zero} _ {zero} _ = refl
+-∸-comm {suc m} _ {zero} _ = refl
+-∸-comm {suc m} n {suc o} (s≤s o≤m) = +-∸-comm n o≤m
∸-+-assoc : ∀ m n o → (m ∸ n) ∸ o ≡ m ∸ (n + o)
∸-+-assoc m n zero = cong (m ∸_) (sym $ +-identityʳ n)
∸-+-assoc zero zero (suc o) = refl
∸-+-assoc zero (suc n) (suc o) = refl
∸-+-assoc (suc m) zero (suc o) = refl
∸-+-assoc (suc m) (suc n) (suc o) = ∸-+-assoc m n (suc o)
+-∸-assoc : ∀ m {n o} → o ≤ n → (m + n) ∸ o ≡ m + (n ∸ o)
+-∸-assoc m (z≤n {n = n}) = begin m + n ∎
+-∸-assoc m (s≤s {m = o} {n = n} o≤n) = begin
(m + suc n) ∸ suc o ≡⟨ cong (_∸ suc o) (+-suc m n) ⟩
suc (m + n) ∸ suc o ≡⟨⟩
(m + n) ∸ o ≡⟨ +-∸-assoc m o≤n ⟩
m + (n ∸ o) ∎
n≤m+n∸m : ∀ m n → n ≤ m + (n ∸ m)
n≤m+n∸m m zero = z≤n
n≤m+n∸m zero (suc n) = ≤-refl
n≤m+n∸m (suc m) (suc n) = s≤s (n≤m+n∸m m n)
m+n∸n≡m : ∀ m n → (m + n) ∸ n ≡ m
m+n∸n≡m m n = begin
(m + n) ∸ n ≡⟨ +-∸-assoc m (≤-refl {x = n}) ⟩
m + (n ∸ n) ≡⟨ cong (m +_) (n∸n≡0 n) ⟩
m + 0 ≡⟨ +-identityʳ m ⟩
m ∎
m+n∸m≡n : ∀ {m n} → m ≤ n → m + (n ∸ m) ≡ n
m+n∸m≡n {m} {n} m≤n = begin
m + (n ∸ m) ≡⟨ sym $ +-∸-assoc m m≤n ⟩
(m + n) ∸ m ≡⟨ cong (_∸ m) (+-comm m n) ⟩
(n + m) ∸ m ≡⟨ m+n∸n≡m n m ⟩
n ∎
m∸n+n≡m : ∀ {m n} → n ≤ m → (m ∸ n) + n ≡ m
m∸n+n≡m {m} {n} n≤m = begin
(m ∸ n) + n ≡⟨ sym (+-∸-comm n n≤m) ⟩
(m + n) ∸ n ≡⟨ m+n∸n≡m m n ⟩
m ∎
m∸[m∸n]≡n : ∀ {m n} → n ≤ m → m ∸ (m ∸ n) ≡ n
m∸[m∸n]≡n {m} {_} z≤n = n∸n≡0 m
m∸[m∸n]≡n {suc m} {suc n} (s≤s n≤m) = begin
suc m ∸ (m ∸ n) ≡⟨ +-∸-assoc 1 (n∸m≤n n m) ⟩
suc (m ∸ (m ∸ n)) ≡⟨ cong suc (m∸[m∸n]≡n n≤m) ⟩
suc n ∎
[i+j]∸[i+k]≡j∸k : ∀ i j k → (i + j) ∸ (i + k) ≡ j ∸ k
[i+j]∸[i+k]≡j∸k zero j k = refl
[i+j]∸[i+k]≡j∸k (suc i) j k = [i+j]∸[i+k]≡j∸k i j k
-- Properties of _∸_ and _*_
*-distribʳ-∸ : _*_ DistributesOverʳ _∸_
*-distribʳ-∸ i zero zero = refl
*-distribʳ-∸ zero zero (suc k) = sym (0∸n≡0 (k * zero))
*-distribʳ-∸ (suc i) zero (suc k) = refl
*-distribʳ-∸ i (suc j) zero = refl
*-distribʳ-∸ i (suc j) (suc k) = begin
(j ∸ k) * i ≡⟨ *-distribʳ-∸ i j k ⟩
j * i ∸ k * i ≡⟨ sym $ [i+j]∸[i+k]≡j∸k i _ _ ⟩
i + j * i ∸ (i + k * i) ∎
*-distribˡ-∸ : _*_ DistributesOverˡ _∸_
*-distribˡ-∸ = comm+distrʳ⇒distrˡ *-comm *-distribʳ-∸
*-distrib-∸ : _*_ DistributesOver _∸_
*-distrib-∸ = *-distribˡ-∸ , *-distribʳ-∸
-- Properties of _∸_ and _⊓_ and _⊔_
m⊓n+n∸m≡n : ∀ m n → (m ⊓ n) + (n ∸ m) ≡ n
m⊓n+n∸m≡n zero n = refl
m⊓n+n∸m≡n (suc m) zero = refl
m⊓n+n∸m≡n (suc m) (suc n) = cong suc $ m⊓n+n∸m≡n m n
[m∸n]⊓[n∸m]≡0 : ∀ m n → (m ∸ n) ⊓ (n ∸ m) ≡ 0
[m∸n]⊓[n∸m]≡0 zero zero = refl
[m∸n]⊓[n∸m]≡0 zero (suc n) = refl
[m∸n]⊓[n∸m]≡0 (suc m) zero = refl
[m∸n]⊓[n∸m]≡0 (suc m) (suc n) = [m∸n]⊓[n∸m]≡0 m n
∸-distribˡ-⊓-⊔ : ∀ x y z → x ∸ (y ⊓ z) ≡ (x ∸ y) ⊔ (x ∸ z)
∸-distribˡ-⊓-⊔ x zero zero = sym (⊔-idem x)
∸-distribˡ-⊓-⊔ zero zero (suc z) = refl
∸-distribˡ-⊓-⊔ zero (suc y) zero = refl
∸-distribˡ-⊓-⊔ zero (suc y) (suc z) = refl
∸-distribˡ-⊓-⊔ (suc x) (suc y) zero = sym (m≤n⇒m⊔n≡n (≤-step (n∸m≤n y x)))
∸-distribˡ-⊓-⊔ (suc x) zero (suc z) = sym (m≤n⇒n⊔m≡n (≤-step (n∸m≤n z x)))
∸-distribˡ-⊓-⊔ (suc x) (suc y) (suc z) = ∸-distribˡ-⊓-⊔ x y z
∸-distribʳ-⊓ : _∸_ DistributesOverʳ _⊓_
∸-distribʳ-⊓ zero y z = refl
∸-distribʳ-⊓ (suc x) zero z = refl
∸-distribʳ-⊓ (suc x) (suc y) zero = sym (⊓-zeroʳ (y ∸ x))
∸-distribʳ-⊓ (suc x) (suc y) (suc z) = ∸-distribʳ-⊓ x y z
∸-distribˡ-⊔-⊓ : ∀ x y z → x ∸ (y ⊔ z) ≡ (x ∸ y) ⊓ (x ∸ z)
∸-distribˡ-⊔-⊓ x zero zero = sym (⊓-idem x)
∸-distribˡ-⊔-⊓ zero zero z = 0∸n≡0 z
∸-distribˡ-⊔-⊓ zero (suc y) z = 0∸n≡0 (suc y ⊔ z)
∸-distribˡ-⊔-⊓ (suc x) (suc y) zero = sym (m≤n⇒m⊓n≡m (≤-step (n∸m≤n y x)))
∸-distribˡ-⊔-⊓ (suc x) zero (suc z) = sym (m≤n⇒n⊓m≡m (≤-step (n∸m≤n z x)))
∸-distribˡ-⊔-⊓ (suc x) (suc y) (suc z) = ∸-distribˡ-⊔-⊓ x y z
∸-distribʳ-⊔ : _∸_ DistributesOverʳ _⊔_
∸-distribʳ-⊔ zero y z = refl
∸-distribʳ-⊔ (suc x) zero z = refl
∸-distribʳ-⊔ (suc x) (suc y) zero = sym (⊔-identityʳ (y ∸ x))
∸-distribʳ-⊔ (suc x) (suc y) (suc z) = ∸-distribʳ-⊔ x y z
------------------------------------------------------------------------
-- Properties of ∣_-_∣
n≡m⇒∣n-m∣≡0 : ∀ {n m} → n ≡ m → ∣ n - m ∣ ≡ 0
n≡m⇒∣n-m∣≡0 {zero} refl = refl
n≡m⇒∣n-m∣≡0 {suc n} refl = n≡m⇒∣n-m∣≡0 {n} refl
m≤n⇒∣n-m∣≡n∸m : ∀ {n m} → m ≤ n → ∣ n - m ∣ ≡ n ∸ m
m≤n⇒∣n-m∣≡n∸m {zero} z≤n = refl
m≤n⇒∣n-m∣≡n∸m {suc n} z≤n = refl
m≤n⇒∣n-m∣≡n∸m (s≤s m≤n) = m≤n⇒∣n-m∣≡n∸m m≤n
∣n-m∣≡0⇒n≡m : ∀ {n m} → ∣ n - m ∣ ≡ 0 → n ≡ m
∣n-m∣≡0⇒n≡m {zero} {zero} eq = refl
∣n-m∣≡0⇒n≡m {zero} {suc m} ()
∣n-m∣≡0⇒n≡m {suc n} {zero} ()
∣n-m∣≡0⇒n≡m {suc n} {suc m} eq = cong suc (∣n-m∣≡0⇒n≡m eq)
∣n-m∣≡n∸m⇒m≤n : ∀ {n m} → ∣ n - m ∣ ≡ n ∸ m → m ≤ n
∣n-m∣≡n∸m⇒m≤n {zero} {zero} eq = z≤n
∣n-m∣≡n∸m⇒m≤n {zero} {suc m} ()
∣n-m∣≡n∸m⇒m≤n {suc n} {zero} eq = z≤n
∣n-m∣≡n∸m⇒m≤n {suc n} {suc m} eq = s≤s (∣n-m∣≡n∸m⇒m≤n eq)
∣n-n∣≡0 : ∀ n → ∣ n - n ∣ ≡ 0
∣n-n∣≡0 n = n≡m⇒∣n-m∣≡0 {n} refl
∣n-n+m∣≡m : ∀ n m → ∣ n - n + m ∣ ≡ m
∣n-n+m∣≡m zero m = refl
∣n-n+m∣≡m (suc n) m = ∣n-n+m∣≡m n m
∣n+m-n+o∣≡∣m-o| : ∀ n m o → ∣ n + m - n + o ∣ ≡ ∣ m - o ∣
∣n+m-n+o∣≡∣m-o| zero m o = refl
∣n+m-n+o∣≡∣m-o| (suc n) m o = ∣n+m-n+o∣≡∣m-o| n m o
n∸m≤∣n-m∣ : ∀ n m → n ∸ m ≤ ∣ n - m ∣
n∸m≤∣n-m∣ n m with ≤-total m n
... | inj₁ m≤n = subst (n ∸ m ≤_) (sym (m≤n⇒∣n-m∣≡n∸m m≤n)) ≤-refl
... | inj₂ n≤m = subst (_≤ ∣ n - m ∣) (sym (m≤n⇒m∸n≡0 n≤m)) z≤n
∣n-m∣≤n⊔m : ∀ n m → ∣ n - m ∣ ≤ n ⊔ m
∣n-m∣≤n⊔m zero m = ≤-refl
∣n-m∣≤n⊔m (suc n) zero = ≤-refl
∣n-m∣≤n⊔m (suc n) (suc m) = ≤-step (∣n-m∣≤n⊔m n m)
∣-∣-comm : Commutative ∣_-_∣
∣-∣-comm zero zero = refl
∣-∣-comm zero (suc m) = refl
∣-∣-comm (suc n) zero = refl
∣-∣-comm (suc n) (suc m) = ∣-∣-comm n m
∣n-m∣≡[n∸m]∨[m∸n] : ∀ m n → (∣ n - m ∣ ≡ n ∸ m) ⊎ (∣ n - m ∣ ≡ m ∸ n)
∣n-m∣≡[n∸m]∨[m∸n] m n with ≤-total m n
... | inj₁ m≤n = inj₁ $ m≤n⇒∣n-m∣≡n∸m m≤n
... | inj₂ n≤m = inj₂ $ begin
∣ n - m ∣ ≡⟨ ∣-∣-comm n m ⟩
∣ m - n ∣ ≡⟨ m≤n⇒∣n-m∣≡n∸m n≤m ⟩
m ∸ n ∎
private
*-distribˡ-∣-∣-aux : ∀ a m n → m ≤ n → a * ∣ n - m ∣ ≡ ∣ a * n - a * m ∣
*-distribˡ-∣-∣-aux a m n m≤n = begin
a * ∣ n - m ∣ ≡⟨ cong (a *_) (m≤n⇒∣n-m∣≡n∸m m≤n) ⟩
a * (n ∸ m) ≡⟨ *-distribˡ-∸ a n m ⟩
a * n ∸ a * m ≡⟨ sym $′ m≤n⇒∣n-m∣≡n∸m (*-monoʳ-≤ a m≤n) ⟩
∣ a * n - a * m ∣ ∎
*-distribˡ-∣-∣ : _*_ DistributesOverˡ ∣_-_∣
*-distribˡ-∣-∣ a m n with ≤-total m n
... | inj₁ m≤n = begin
a * ∣ m - n ∣ ≡⟨ cong (a *_) (∣-∣-comm m n) ⟩
a * ∣ n - m ∣ ≡⟨ *-distribˡ-∣-∣-aux a m n m≤n ⟩
∣ a * n - a * m ∣ ≡⟨ ∣-∣-comm (a * n) (a * m) ⟩
∣ a * m - a * n ∣ ∎
... | inj₂ n≤m = *-distribˡ-∣-∣-aux a n m n≤m
*-distribʳ-∣-∣ : _*_ DistributesOverʳ ∣_-_∣
*-distribʳ-∣-∣ = comm+distrˡ⇒distrʳ *-comm *-distribˡ-∣-∣
*-distrib-∣-∣ : _*_ DistributesOver ∣_-_∣
*-distrib-∣-∣ = *-distribˡ-∣-∣ , *-distribʳ-∣-∣
------------------------------------------------------------------------
-- Properties of ⌊_/2⌋
⌊n/2⌋-mono : ⌊_/2⌋ Preserves _≤_ ⟶ _≤_
⌊n/2⌋-mono z≤n = z≤n
⌊n/2⌋-mono (s≤s z≤n) = z≤n
⌊n/2⌋-mono (s≤s (s≤s m≤n)) = s≤s (⌊n/2⌋-mono m≤n)
⌈n/2⌉-mono : ⌈_/2⌉ Preserves _≤_ ⟶ _≤_
⌈n/2⌉-mono m≤n = ⌊n/2⌋-mono (s≤s m≤n)
⌈n/2⌉≤′n : ∀ n → ⌈ n /2⌉ ≤′ n
⌈n/2⌉≤′n zero = ≤′-refl
⌈n/2⌉≤′n (suc zero) = ≤′-refl
⌈n/2⌉≤′n (suc (suc n)) = s≤′s (≤′-step (⌈n/2⌉≤′n n))
⌊n/2⌋≤′n : ∀ n → ⌊ n /2⌋ ≤′ n
⌊n/2⌋≤′n zero = ≤′-refl
⌊n/2⌋≤′n (suc n) = ≤′-step (⌈n/2⌉≤′n n)
------------------------------------------------------------------------
-- Properties of _<″_, and _≤″_
-- equivalence to _<ᵇ_
m<ᵇn⇒1+m+[n-1+m]≡n : ∀ m n → T (m <ᵇ n) → suc m + (n ∸ suc m) ≡ n
m<ᵇn⇒1+m+[n-1+m]≡n m zero ()
m<ᵇn⇒1+m+[n-1+m]≡n zero (suc n) lt = refl
m<ᵇn⇒1+m+[n-1+m]≡n (suc m) (suc n) lt = cong suc (m<ᵇn⇒1+m+[n-1+m]≡n m n lt)
<ᵇ⇒<″ : ∀ {m n} → T (m <ᵇ n) → m <″ n
<ᵇ⇒<″ {m} {n} eq = less-than-or-equal {k = n ∸ suc m} (m<ᵇn⇒1+m+[n-1+m]≡n m n eq)
m<ᵇ1+m+n : ∀ m {n} → T (m <ᵇ suc (m + n))
m<ᵇ1+m+n zero = _
m<ᵇ1+m+n (suc m) = m<ᵇ1+m+n m
<″⇒<ᵇ : ∀ {m n} → m <″ n → T (m <ᵇ n)
<″⇒<ᵇ {m} (less-than-or-equal refl) = m<ᵇ1+m+n m
-- equivalence to _≤_
≤″⇒≤ : _≤″_ ⇒ _≤_
≤″⇒≤ {zero} (less-than-or-equal refl) = z≤n
≤″⇒≤ {suc m} (less-than-or-equal refl) =
s≤s (≤″⇒≤ (less-than-or-equal refl))
≤⇒≤″ : _≤_ ⇒ _≤″_
≤⇒≤″ m≤n = less-than-or-equal (proof m≤n)
where
k : ∀ m n → m ≤ n → ℕ
k zero n _ = n
k (suc m) zero ()
k (suc m) (suc n) m≤n = k m n (≤-pred m≤n)
proof : ∀ {m n} (m≤n : m ≤ n) → m + k m n m≤n ≡ n
proof z≤n = refl
proof (s≤s m≤n) = cong suc (proof m≤n)
-- decidability
-- NB: we use the builtin function `_<ᵇ_ : (m n : ℕ) → Bool` here so
-- that the function quickly decides whether to return `yes` or `no`.
-- It sill takes a linear amount of time to generate the proof if it
-- is inspected. We expect the main benefit to be visible for compiled
-- code: the backend erases proofs.
infix 4 _<″?_ _≤″?_ _≥″?_ _>″?_
_<″?_ : Decidable _<″_
m <″? n = map′ <ᵇ⇒<″ <″⇒<ᵇ (T? (m <ᵇ n))
_≤″?_ : Decidable _≤″_
zero ≤″? n = yes (less-than-or-equal refl)
suc m ≤″? n = m <″? n
_≥″?_ : Decidable _≥″_
_≥″?_ = flip _≤″?_
_>″?_ : Decidable _>″_
_>″?_ = flip _<″?_
-- irrelevance
≤″-irrelevant : Irrelevant _≤″_
≤″-irrelevant {m} (less-than-or-equal {k₁} eq₁)
(less-than-or-equal {k₂} eq₂)
with +-cancelˡ-≡ m (trans eq₁ (sym eq₂))
... | refl = cong less-than-or-equal (≡-irrelevant eq₁ eq₂)
<″-irrelevant : Irrelevant _<″_
<″-irrelevant = ≤″-irrelevant
>″-irrelevant : Irrelevant _>″_
>″-irrelevant = ≤″-irrelevant
≥″-irrelevant : Irrelevant _≥″_
≥″-irrelevant = ≤″-irrelevant
------------------------------------------------------------------------
-- Other properties
-- If there is an injection from a type to ℕ, then the type has
-- decidable equality.
eq? : ∀ {a} {A : Set a} → A ↣ ℕ → Decidable {A = A} _≡_
eq? inj = via-injection inj _≟_
------------------------------------------------------------------------
-- A module for reasoning about the _≤_ and _<_ relations
module ≤-Reasoning where
open import Relation.Binary.Reasoning.Base.Triple
≤-isPreorder
<-trans
(resp₂ _<_)
<⇒≤
<-transˡ
<-transʳ
public
hiding (_≈⟨_⟩_)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.14
_*-mono_ = *-mono-≤
{-# WARNING_ON_USAGE _*-mono_
"Warning: _*-mono_ was deprecated in v0.14.
Please use *-mono-≤ instead."
#-}
_+-mono_ = +-mono-≤
{-# WARNING_ON_USAGE _+-mono_
"Warning: _+-mono_ was deprecated in v0.14.
Please use +-mono-≤ instead."
#-}
+-right-identity = +-identityʳ
{-# WARNING_ON_USAGE +-right-identity
"Warning: +-right-identity was deprecated in v0.14.
Please use +-identityʳ instead."
#-}
*-right-zero = *-zeroʳ
{-# WARNING_ON_USAGE *-right-zero
"Warning: *-right-zero was deprecated in v0.14.
Please use *-zeroʳ instead."
#-}
distribʳ-*-+ = *-distribʳ-+
{-# WARNING_ON_USAGE distribʳ-*-+
"Warning: distribʳ-*-+ was deprecated in v0.14.
Please use *-distribʳ-+ instead."
#-}
*-distrib-∸ʳ = *-distribʳ-∸
{-# WARNING_ON_USAGE *-distrib-∸ʳ
"Warning: *-distrib-∸ʳ was deprecated in v0.14.
Please use *-distribʳ-∸ instead."
#-}
cancel-+-left = +-cancelˡ-≡
{-# WARNING_ON_USAGE cancel-+-left
"Warning: cancel-+-left was deprecated in v0.14.
Please use +-cancelˡ-≡ instead."
#-}
cancel-+-left-≤ = +-cancelˡ-≤
{-# WARNING_ON_USAGE cancel-+-left-≤
"Warning: cancel-+-left-≤ was deprecated in v0.14.
Please use +-cancelˡ-≤ instead."
#-}
cancel-*-right = *-cancelʳ-≡
{-# WARNING_ON_USAGE cancel-*-right
"Warning: cancel-*-right was deprecated in v0.14.
Please use *-cancelʳ-≡ instead."
#-}
cancel-*-right-≤ = *-cancelʳ-≤
{-# WARNING_ON_USAGE cancel-*-right-≤
"Warning: cancel-*-right-≤ was deprecated in v0.14.
Please use *-cancelʳ-≤ instead."
#-}
strictTotalOrder = <-strictTotalOrder
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v0.14.
Please use <-strictTotalOrder instead."
#-}
isCommutativeSemiring = *-+-isCommutativeSemiring
{-# WARNING_ON_USAGE isCommutativeSemiring
"Warning: isCommutativeSemiring was deprecated in v0.14.
Please use *-+-isCommutativeSemiring instead."
#-}
commutativeSemiring = *-+-commutativeSemiring
{-# WARNING_ON_USAGE commutativeSemiring
"Warning: commutativeSemiring was deprecated in v0.14.
Please use *-+-commutativeSemiring instead."
#-}
isDistributiveLattice = ⊓-⊔-isDistributiveLattice
{-# WARNING_ON_USAGE isDistributiveLattice
"Warning: isDistributiveLattice was deprecated in v0.14.
Please use ⊓-⊔-isDistributiveLattice instead."
#-}
distributiveLattice = ⊓-⊔-distributiveLattice
{-# WARNING_ON_USAGE distributiveLattice
"Warning: distributiveLattice was deprecated in v0.14.
Please use ⊓-⊔-distributiveLattice instead."
#-}
⊔-⊓-0-isSemiringWithoutOne = ⊔-⊓-isSemiringWithoutOne
{-# WARNING_ON_USAGE ⊔-⊓-0-isSemiringWithoutOne
"Warning: ⊔-⊓-0-isSemiringWithoutOne was deprecated in v0.14.
Please use ⊔-⊓-isSemiringWithoutOne instead."
#-}
⊔-⊓-0-isCommutativeSemiringWithoutOne = ⊔-⊓-isCommutativeSemiringWithoutOne
{-# WARNING_ON_USAGE ⊔-⊓-0-isCommutativeSemiringWithoutOne
"Warning: ⊔-⊓-0-isCommutativeSemiringWithoutOne was deprecated in v0.14.
Please use ⊔-⊓-isCommutativeSemiringWithoutOne instead."
#-}
⊔-⊓-0-commutativeSemiringWithoutOne = ⊔-⊓-commutativeSemiringWithoutOne
{-# WARNING_ON_USAGE ⊔-⊓-0-commutativeSemiringWithoutOne
"Warning: ⊔-⊓-0-commutativeSemiringWithoutOne was deprecated in v0.14.
Please use ⊔-⊓-commutativeSemiringWithoutOne instead."
#-}
-- Version 0.15
¬i+1+j≤i = i+1+j≰i
{-# WARNING_ON_USAGE ¬i+1+j≤i
"Warning: ¬i+1+j≤i was deprecated in v0.15.
Please use i+1+j≰i instead."
#-}
≤-steps = ≤-stepsˡ
{-# WARNING_ON_USAGE ≤-steps
"Warning: ≤-steps was deprecated in v0.15.
Please use ≤-stepsˡ instead."
#-}
-- Version 0.17
i∸k∸j+j∸k≡i+j∸k : ∀ i j k → i ∸ (k ∸ j) + (j ∸ k) ≡ i + j ∸ k
i∸k∸j+j∸k≡i+j∸k zero j k = cong (_+ (j ∸ k)) (0∸n≡0 (k ∸ j))
i∸k∸j+j∸k≡i+j∸k (suc i) j zero = cong (λ x → suc i ∸ x + j) (0∸n≡0 j)
i∸k∸j+j∸k≡i+j∸k (suc i) zero (suc k) = begin
i ∸ k + 0 ≡⟨ +-identityʳ _ ⟩
i ∸ k ≡⟨ cong (_∸ k) (sym (+-identityʳ _)) ⟩
i + 0 ∸ k ∎
i∸k∸j+j∸k≡i+j∸k (suc i) (suc j) (suc k) = begin
suc i ∸ (k ∸ j) + (j ∸ k) ≡⟨ i∸k∸j+j∸k≡i+j∸k (suc i) j k ⟩
suc i + j ∸ k ≡⟨ cong (_∸ k) (sym (+-suc i j)) ⟩
i + suc j ∸ k ∎
{-# WARNING_ON_USAGE i∸k∸j+j∸k≡i+j∸k
"Warning: i∸k∸j+j∸k≡i+j∸k was deprecated in v0.17."
#-}
im≡jm+n⇒[i∸j]m≡n : ∀ i j m n → i * m ≡ j * m + n → (i ∸ j) * m ≡ n
im≡jm+n⇒[i∸j]m≡n i j m n eq = begin
(i ∸ j) * m ≡⟨ *-distribʳ-∸ m i j ⟩
(i * m) ∸ (j * m) ≡⟨ cong (_∸ j * m) eq ⟩
(j * m + n) ∸ (j * m) ≡⟨ cong (_∸ j * m) (+-comm (j * m) n) ⟩
(n + j * m) ∸ (j * m) ≡⟨ m+n∸n≡m n (j * m) ⟩
n ∎
{-# WARNING_ON_USAGE im≡jm+n⇒[i∸j]m≡n
"Warning: im≡jm+n⇒[i∸j]m≡n was deprecated in v0.17."
#-}
≤+≢⇒< = ≤∧≢⇒<
{-# WARNING_ON_USAGE ≤+≢⇒<
"Warning: ≤+≢⇒< was deprecated in v0.17.
Please use ≤∧≢⇒< instead."
#-}
-- Version 1.0
≤-irrelevance = ≤-irrelevant
{-# WARNING_ON_USAGE ≤-irrelevance
"Warning: ≤-irrelevance was deprecated in v1.0.
Please use ≤-irrelevant instead."
#-}
<-irrelevance = <-irrelevant
{-# WARNING_ON_USAGE <-irrelevance
"Warning: <-irrelevance was deprecated in v1.0.
Please use <-irrelevant instead."
#-}
| {
"alphanum_fraction": 0.4983211263,
"avg_line_length": 28.6751126126,
"ext": "agda",
"hexsha": "c878d4993f2b53ac3b12dfee9ff279c846085f61",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Properties.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 28165,
"size": 50927
} |
{-# OPTIONS --cubical #-}
open import 17-number-theory public
{- streams -}
record stream (A : Set) : Set where
coinductive
field
hd : A
tl : stream A
open stream public
from : ℕ → stream ℕ
hd (from n) = n
tl (from n) = from (succ-ℕ n)
map-stream : {A B : Set} → (A → B) → stream A → stream B
hd (map-stream f xs) = f (hd xs)
tl (map-stream f xs) = map-stream f (tl xs)
list-stream :
{A : Set} → stream A → ℕ → list A
list-stream xs zero-ℕ = nil
list-stream xs (succ-ℕ n) = cons (hd xs) (list-stream xs n)
record ℕ∞ : Set where
coinductive
field
pred∞ : coprod ℕ∞ unit
zero-ℕ∞ : ℕ∞
pred∞ zero-ℕ∞ = {!inr star!}
| {
"alphanum_fraction": 0.6028037383,
"avg_line_length": 18.3428571429,
"ext": "agda",
"hexsha": "9b74c24413a85baf8994e0fbe152cbb17545af51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tmoux/HoTT-Intro",
"max_forks_repo_path": "Agda/coinductive-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tmoux/HoTT-Intro",
"max_issues_repo_path": "Agda/coinductive-types.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tmoux/HoTT-Intro",
"max_stars_repo_path": "Agda/coinductive-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 238,
"size": 642
} |
module BasicIS4.Metatheory.DyadicGentzen-TarskiGluedDyadicImplicit where
open import BasicIS4.Syntax.DyadicGentzen public
open import BasicIS4.Semantics.TarskiGluedDyadicImplicit public
open ImplicitSyntax (_⊢_) public
-- Soundness with respect to all models, or evaluation.
-- FIXME
postulate
reify⋆ : ∀ {{_ : Model}} {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (lam t) γ δ = λ ψ a → eval t (mono²⊩⋆ ψ γ , a) (mono²⊩⋆ ψ δ)
eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ)
eval (mvar i) γ δ = mlookup i δ
eval (box t) γ δ = λ ψ → let δ′ = mono²⊩⋆ ψ δ
in mmulticut (reify⋆ δ′) (box t) ⅋
eval t ∙ δ′
eval (unbox t u) γ δ = eval u γ (δ , λ ψ →
let γ′ = mono²⊩⋆ ψ γ
δ′ = mono²⊩⋆ ψ δ
in multicut² (reify⋆ γ′) (reify⋆ δ′) t ⅋
⟪↓⟫ (eval t γ′ δ′))
eval (pair t u) γ δ = eval t γ δ , eval u γ δ
eval (fst t) γ δ = π₁ (eval t γ δ)
eval (snd t) γ δ = π₂ (eval t γ δ)
eval unit γ δ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
-- The canonical model.
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Π P → Π ⊢ α P
; mono²⊩ᵅ = mono²⊢
}
-- Soundness and completeness with respect to the canonical model.
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t
in λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s (weak⊆²₁) (reflectᶜ {A} v₀)))
reifyᶜ {□ A} s = syn (s refl⊆²)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
-- Reflexivity and transitivity.
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
-- Completeness with respect to all models, or quotation.
quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)
-- Normalisation by evaluation.
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = quot ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| {
"alphanum_fraction": 0.4811413578,
"avg_line_length": 30.1881188119,
"ext": "agda",
"hexsha": "1a3a6b01e159cb89dfc9c01f08d696c48533c814",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicImplicit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicImplicit.agda",
"max_line_length": 77,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicImplicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1469,
"size": 3049
} |
module Adjunctions.Adj2Mon where
open import Library
open import Categories
open import Functors
open import Monads
open import Adjunctions
open Cat
open Fun
Adj2Mon : ∀{a b}{C D : Cat {a}{b}} → Adj C D → Monad C
Adj2Mon {C = C}{D} A = record{
T = OMap R ∘ OMap L;
η = left (iden D);
bind = HMap R ∘ right;
law1 =
proof
HMap R (right (left (iden D)))
≅⟨ cong (HMap R) (lawa (iden D)) ⟩
HMap R (iden D)
≅⟨ fid R ⟩
iden C ∎;
law2 = λ{_}{_}{f} →
proof
comp C (HMap R (right f)) (left (iden D))
≅⟨ cong (comp C (HMap R (right f))) (sym (idr C)) ⟩
comp C (HMap R (right f)) (comp C (left (iden D)) (iden C))
≅⟨ natleft (iden C) (right f) (iden D) ⟩
left (comp D (right f) (comp D (iden D) (HMap L (iden C))))
≅⟨ cong (left ∘ comp D (right f)) (idl D) ⟩
left (comp D (right f) (HMap L (iden C)))
≅⟨ cong (left ∘ comp D (right f)) (fid L) ⟩
left (comp D (right f) (iden D))
≅⟨ cong (left) (idr D) ⟩
left (right f)
≅⟨ lawb f ⟩
f ∎;
law3 = λ{_}{_}{_}{f}{g} →
proof
HMap R (right (comp C (HMap R (right g)) f))
≅⟨ cong (HMap R ∘ right ∘ comp C (HMap R (right g)))
(sym (idr C)) ⟩
HMap R (right (comp C (HMap R (right g)) (comp C f (iden C))))
≅⟨ cong (HMap R) (natright (iden C) (right g) f) ⟩
HMap R (comp D (right g) (comp D (right f) (HMap L (iden C))))
≅⟨ cong (HMap R ∘ comp D (right g) ∘ comp D (right f)) (fid L)⟩
HMap R (comp D (right g) (comp D (right f) (iden D)))
≅⟨ cong (HMap R ∘ comp D (right g)) (idr D) ⟩
HMap R (comp D (right g) (right f))
≅⟨ fcomp R ⟩
comp C (HMap R (right g)) (HMap R (right f))
∎}
where open Adj A
| {
"alphanum_fraction": 0.5279576221,
"avg_line_length": 30.8909090909,
"ext": "agda",
"hexsha": "e59fa01bc2efbe6e2dadfa68d85b52c83be941e3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Adjunctions/Adj2Mon.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Adjunctions/Adj2Mon.agda",
"max_line_length": 67,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Adjunctions/Adj2Mon.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 716,
"size": 1699
} |
{-
Definition of subfinite sets
A set is subfinite if it is merely a subset of `Fin n` for some `n`. This
definition is weaker than `isFinSet` if we don't assume LEM, but they
are equivalent if we do.
Every subfinite set is guaranteed to be a set and discrete.
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.SubFinSet where
open import Cubical.Data.Nat
open import Cubical.Data.Fin
open import Cubical.Data.Sigma
open import Cubical.Data.FinSet
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Embedding
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A B : Type ℓ
isSubFinSet : Type ℓ → Type ℓ
isSubFinSet A = ∃[ n ∈ ℕ ] A ↪ Fin n
isFinSet→isSubFinSet : isFinSet A → isSubFinSet A
isFinSet→isSubFinSet = PT.map
λ (n , f , isEquiv-f) →
n , f , isEquiv→isEmbedding isEquiv-f
isSubFinSet→isSet : isSubFinSet A → isSet A
isSubFinSet→isSet = PT.rec
isPropIsSet
λ (n , emb) → Embedding-into-isSet→isSet emb isSetFin
isSubFinSet→Discrete : isSubFinSet A → Discrete A
isSubFinSet→Discrete isSubFinSet-A x y = PT.rec
(isPropDec (isSubFinSet→isSet isSubFinSet-A x y))
(λ (n , emb) → Embedding-into-Discrete→Discrete emb discreteFin x y)
isSubFinSet-A
| {
"alphanum_fraction": 0.7475728155,
"avg_line_length": 26.78,
"ext": "agda",
"hexsha": "ef0dc2af86eb28bc78e56a7953b5c51dc9a307f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/SubFinSet.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/SubFinSet.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/SubFinSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 442,
"size": 1339
} |
module Haskell.Prim.Maybe where
--------------------------------------------------
-- Maybe
data Maybe {ℓ} (a : Set ℓ) : Set ℓ where
Nothing : Maybe a
Just : a -> Maybe a
maybe : ∀ {ℓ₁ ℓ₂} {a : Set ℓ₁} {b : Set ℓ₂} → b → (a → b) → Maybe a → b
maybe n j Nothing = n
maybe n j (Just x) = j x
| {
"alphanum_fraction": 0.4635761589,
"avg_line_length": 21.5714285714,
"ext": "agda",
"hexsha": "e3e7c665e16c138907eb64e55ed7f82157ee0ad6",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Maybe.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Maybe.agda",
"max_line_length": 71,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 107,
"size": 302
} |
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.String
open import Common.IO
open import Common.Unit
data ⊥ : Set where
record Pair : Set where
constructor _,_
field fst snd : String
open Pair
record ERing : Set where
constructor ering
field divRem : (⊥ → ⊥) → Pair
open ERing
eRing : ERing
eRing = ering λ _ → "fst" , "snd"
test : String
test = snd (divRem eRing (λ ()))
main : IO Unit
main = putStrLn test
| {
"alphanum_fraction": 0.697309417,
"avg_line_length": 14.8666666667,
"ext": "agda",
"hexsha": "582f1c0e39a01ddaf2ce3c66e514b82945826eae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2123.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2123.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2123.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 446
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.Presheaves.CartesianClosed where
open import Level
open import Data.Unit
open import Data.Product using (_,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Function.Equality using (Π) renaming (_∘_ to _∙_)
open import Relation.Binary
open import Categories.Category
open import Categories.Category.Cartesian
open import Categories.Category.CartesianClosed
open import Categories.Category.CartesianClosed.Canonical renaming (CartesianClosed to CCartesianClosed)
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Instance.Setoids
open import Categories.Functor
open import Categories.Functor.Hom
open import Categories.Functor.Properties
open import Categories.Functor.Presheaf
open import Categories.NaturalTransformation
import Categories.Category.Construction.Properties.Presheaves.Cartesian as Preₚ
import Categories.Object.Product as Prod
import Categories.Object.Exponential as Exp
import Categories.Morphism.Reasoning as MR
import Relation.Binary.Reasoning.Setoid as SetoidR
open Π using (_⟨$⟩_)
module HasClosedStructure o′ ℓ′ {o ℓ e} {C : Category o ℓ e} (Car : Cartesian C) where
private
module C = Category C
open Preₚ C
open C
P = Presheaves′ o′ ℓ′ C
module P = Category P
S = Setoids o′ ℓ′
module S = Category S
open Prod C
open Cartesian Car
Pres-exp : (F : Presheaf C (Setoids o′ ℓ′)) (X : Obj) → Presheaf C (Setoids o′ ℓ′)
Pres-exp F X = record
{ F₀ = λ Y → F.₀ (X × Y)
; F₁ = λ f → F.₁ (second f)
; identity = λ {A} {x y} eq →
let open Setoid (F.₀ (X × A))
open SetoidR (F.₀ (X × A))
in begin
F.₁ (second C.id) ⟨$⟩ x ≈⟨ F.F-resp-≈ (id×id (product {X} {A})) refl ⟩
F.F₁ C.id ⟨$⟩ x ≈⟨ F.identity eq ⟩
y ∎
; homomorphism = λ {Y Z W} {f} {g} {x y} eq →
let open Setoid (F.₀ (X × Y))
open SetoidR (F.₀ (X × W))
in begin
F.₁ (second (f ∘ g)) ⟨$⟩ x ≈˘⟨ [ F ]-resp-∘ second∘second (sym eq) ⟩
F.₁ (second g) ⟨$⟩ (F.₁ (second f) ⟨$⟩ y) ∎
; F-resp-≈ = λ {Y Z} {f g} eq → F.F-resp-≈ (⁂-cong₂ Equiv.refl eq)
}
where module F = Functor F
ExpF : (F : Presheaf C (Setoids o′ ℓ′)) → Functor C.op P
ExpF F = record
{ F₀ = Pres-exp F
; F₁ = λ {A B} f → ntHelper record
{ η = λ X → F₁ (first f)
; commute = λ {X Y} g {x y} eq →
[ F ]-resp-square (Equiv.sym first↔second) eq
}
; identity = λ {A B} {x y} eq →
let open Setoid (F₀ (A × B))
open SetoidR (F₀ (A × B))
in begin
F₁ (first C.id) ⟨$⟩ x ≈⟨ F-resp-≈ (id×id product) eq ⟩
F₁ C.id ⟨$⟩ y ≈⟨ identity refl ⟩
y ∎
; homomorphism = λ {X Y Z} {f g} {W} {x y} eq →
let open Setoid (F₀ (X × W))
open SetoidR (F₀ (Z × W))
in begin
F₁ (first (f ∘ g)) ⟨$⟩ x ≈˘⟨ [ F ]-resp-∘ first∘first (sym eq) ⟩
F₁ (first g) ⟨$⟩ (F₁ (first f) ⟨$⟩ y) ∎
; F-resp-≈ = λ {A B} {f g} eq → F-resp-≈ (⁂-cong₂ eq Equiv.refl)
}
where open Functor F
module _ (F G : Presheaf C (Setoids o′ ℓ′)) where
private
module F = Functor F
module G = Functor G
Presheaf^ : Presheaf C (Setoids (o′ ⊔ ℓ′ ⊔ o ⊔ ℓ) (o′ ⊔ ℓ′ ⊔ o))
Presheaf^ = record
{ F₀ = λ X → Hom[ Presheaves C ][ G , Pres-exp F X ]
; F₁ = λ {A B} f → record
{ _⟨$⟩_ = λ α →
let module α = NaturalTransformation α
in ntHelper record
{ η = λ X → F.₁ (first f) ∙ α.η X
; commute = λ {X Y} g {x y} eq →
let open SetoidR (F.₀ (B × Y))
in begin
F.₁ (first f) ⟨$⟩ (α.η Y ⟨$⟩ (G.₁ g ⟨$⟩ x)) ≈⟨ Π.cong (F.₁ (first f)) (α.commute g eq) ⟩
F.₁ (first f) ⟨$⟩ (F.₁ (second g) ⟨$⟩ (α.η X ⟨$⟩ y)) ≈˘⟨ [ F ]-resp-square first↔second (Setoid.refl (F.₀ (A × X))) ⟩
F.₁ (second g) ⟨$⟩ (F.₁ (first f) ⟨$⟩ (α.η X ⟨$⟩ y)) ∎
}
; cong = λ eq eq′ → Π.cong (F.₁ (first f)) (eq eq′)
}
; identity = λ {X} {α β} eq {Y} {x y} eq′ →
let module α = NaturalTransformation α
module β = NaturalTransformation β
open SetoidR (F.₀ (X × Y))
in begin
F.₁ (first C.id) ⟨$⟩ (α.η Y ⟨$⟩ x) ≈⟨ F.F-resp-≈ (id×id product) (eq eq′) ⟩
F.₁ C.id ⟨$⟩ (β.η Y ⟨$⟩ y) ≈⟨ F.identity (Setoid.refl (F.₀ (X × Y))) ⟩
β.η Y ⟨$⟩ y ∎
; homomorphism = λ {X Y Z} eq {W} eq′ →
let open Setoid (F.₀ (X × W))
in Setoid.sym (F.₀ (Z × W)) ([ F ]-resp-∘ first∘first (sym (eq eq′)))
; F-resp-≈ = λ eq eq′ eq″ → F.F-resp-≈ (⁂-cong₂ eq Equiv.refl) (eq′ eq″)
}
module IsCCC {o} {C : Category o o o} (Car : Cartesian C) where
private
module C = Category C
module CH = C.HomReasoning
open Preₚ C
open C
open Prod C
P = Presheaves′ o o C
module P = Category P
open Cartesian Car
open IsCartesian o o
open HasClosedStructure o o Car
CanonicalCCC : CCartesianClosed P
CanonicalCCC = record
{ ⊤ = PC.terminal.⊤
; _×_ = PC._×_
; ! = PC.!
; π₁ = PC.π₁
; π₂ = PC.π₂
; ⟨_,_⟩ = PC.⟨_,_⟩
; !-unique = PC.!-unique
; π₁-comp = λ {_ _ f} {_ g} → PC.project₁ {h = f} {g}
; π₂-comp = λ {_ _ f} {_ g} → PC.project₂ {h = f} {g}
; ⟨,⟩-unique = λ {_ _ _ f g h} → PC.unique {h = h} {i = f} {j = g}
; _^_ = Presheaf^
; eval = λ {F G} →
let module F = Functor F
module G = Functor G
in ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (α , x) →
let module α = NaturalTransformation α
in F.₁ Δ ⟨$⟩ (α.η X ⟨$⟩ x) }
; cong = λ { (eq , eq′) → Π.cong (F.₁ Δ) (eq eq′) }
}
; commute = λ {X Y} f → λ { {α , x} {β , y} (eq , eq′) →
let module α = NaturalTransformation α
module β = NaturalTransformation β
open Setoid (F.₀ (X × X))
open SetoidR (F.₀ Y)
in begin
F.₁ Δ ⟨$⟩ (F.₁ (first f) ⟨$⟩ (α.η Y ⟨$⟩ (G.₁ f ⟨$⟩ x)))
≈⟨ Π.cong (F.₁ Δ ∙ F.₁ (first f)) (α.commute f eq′) ⟩
F.₁ Δ ∙ F.₁ (first f) ∙ F.₁ (second f) ⟨$⟩ (α.η X ⟨$⟩ y)
≈⟨ Π.cong (F.₁ Δ) ([ F ]-resp-∘ second∘first refl) ⟩
F.₁ Δ ⟨$⟩ (F.F₁ (f ⁂ f) ⟨$⟩ (α.η X ⟨$⟩ y))
≈⟨ [ F ]-resp-∘ ⁂∘Δ refl ⟩
F.F₁ ⟨ f , f ⟩ ⟨$⟩ (α.η X ⟨$⟩ y)
≈˘⟨ [ F ]-resp-∘ Δ∘ (sym (eq (Setoid.refl (G.₀ X)))) ⟩
F.₁ f ⟨$⟩ (F.₁ Δ ⟨$⟩ (β.η X ⟨$⟩ y))
∎ }
}
; curry = λ {F G H} α →
let module F = Functor F
module G = Functor G
module H = Functor H
module α = NaturalTransformation α
in ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ x → ntHelper record
{ η = λ Y → record
{ _⟨$⟩_ = λ y → α.η (X × Y) ⟨$⟩ (F.₁ π₁ ⟨$⟩ x , G.₁ π₂ ⟨$⟩ y)
; cong = λ eq → Π.cong (α.η (X × Y)) (Setoid.refl (F.₀ (X × Y)) , Π.cong (G.₁ π₂) eq)
}
; commute = λ {Y Z} f {y z} eq →
let open SetoidR (H.₀ (X × Z))
in begin
α.η (X × Z) ⟨$⟩ (F.₁ π₁ ⟨$⟩ x , G.₁ π₂ ⟨$⟩ (G.₁ f ⟨$⟩ y))
≈˘⟨ Π.cong (α.η (X × Z)) ( [ F ]-resp-∘ (π₁∘⁂ CH.○ identityˡ) (Setoid.refl (F.₀ X))
, [ G ]-resp-square π₂∘⁂ (Setoid.refl (G.₀ Y))) ⟩
α.η (X × Z) ⟨$⟩ (F.₁ (second f) ∙ F.₁ π₁ ⟨$⟩ x , G.₁ (second f) ⟨$⟩ (G.₁ π₂ ⟨$⟩ y))
≈⟨ α.commute (second f) (Setoid.refl (F.₀ (X × Y)) , Π.cong (G.₁ π₂) eq) ⟩
H.₁ (second f) ⟨$⟩ (α.η (X × Y) ⟨$⟩ (F.₁ π₁ ⟨$⟩ x , G.₁ π₂ ⟨$⟩ z))
∎
}
; cong = λ eq₁ eq₂ → Π.cong (α.η _) (Π.cong (F.F₁ π₁) eq₁ , Π.cong (G.₁ π₂) eq₂)
}
; commute = λ {X Y} f {x y} eq₁ {Z} {z w} eq₂ →
let open SetoidR (H.₀ (Y × Z))
in begin
α.η (Y × Z) ⟨$⟩ (F.₁ π₁ ⟨$⟩ (F.₁ f ⟨$⟩ x) , G.₁ π₂ ⟨$⟩ z)
≈˘⟨ Π.cong (α.η _) ( [ F ]-resp-square π₁∘⁂ (Setoid.refl (F.₀ X))
, [ G ]-resp-∘ (π₂∘⁂ CH.○ identityˡ) (Setoid.refl (G.₀ Z))) ⟩
α.η (Y × Z) ⟨$⟩ (F.₁ (first f) ⟨$⟩ (F.₁ π₁ ⟨$⟩ x) , G.₁ (first f) ⟨$⟩ (G.₁ π₂ ⟨$⟩ z))
≈⟨ α.commute (first f) (Π.cong (F.₁ π₁) eq₁ , Π.cong (G.₁ π₂) eq₂) ⟩
H.₁ (first f) ⟨$⟩ (α.η (X × Z) ⟨$⟩ (F.₁ π₁ ⟨$⟩ y , G.₁ π₂ ⟨$⟩ w))
∎
}
; eval-comp = λ {F G H} {α} → λ { {X} {x , y} {z , w} (eq₁ , eq₂) →
let module F = Functor F
module G = Functor G
module H = Functor H
module α = NaturalTransformation α
module HX = Setoid (H.₀ X)
module GX = Setoid (G.₀ X)
open SetoidR (F.₀ X)
in begin
F.₁ Δ ⟨$⟩ (α.η (X × X) ⟨$⟩ (H.₁ π₁ ⟨$⟩ x , G.₁ π₂ ⟨$⟩ y))
≈⟨ α.sym-commute Δ (Π.cong (H.₁ π₁) eq₁ , Π.cong (G.₁ π₂) eq₂) ⟩
α.η X ⟨$⟩ (H.₁ Δ ⟨$⟩ (H.F₁ π₁ ⟨$⟩ z) , G.₁ Δ ⟨$⟩ (G.₁ π₂ ⟨$⟩ w))
≈⟨ Π.cong (α.η X) ([ H ]-resp-∘ project₁ HX.refl , [ G ]-resp-∘ project₂ GX.refl) ⟩
α.η X ⟨$⟩ (H.F₁ C.id ⟨$⟩ z , G.F₁ C.id ⟨$⟩ w)
≈⟨ Π.cong (α.η X) (H.identity HX.refl , G.identity GX.refl) ⟩
α.η X ⟨$⟩ (z , w)
∎ }
; curry-resp-≈ = λ {F G H} eq eq₁ eq₂ →
let module G = Functor G
module H = Functor H
in eq (Π.cong (G.₁ π₁) eq₁ , Π.cong (H.₁ π₂) eq₂)
; curry-unique = λ {F G H} {α β} eq {X} {x y} eq₁ {Y} {z w} eq₂ →
let module F = Functor F
module G = Functor G
module H = Functor H
module α = NaturalTransformation α
module β = NaturalTransformation β
module GXY = Setoid (G.₀ (X × Y))
module αXx = NaturalTransformation (α.η X ⟨$⟩ x)
open SetoidR (G.₀ (X × Y))
in begin
αXx.η Y ⟨$⟩ z
≈˘⟨ G.identity GXY.refl ⟩
G.₁ C.id ⟨$⟩ (αXx.η Y ⟨$⟩ z)
≈˘⟨ [ G ]-resp-∘ (⁂∘Δ CH.○ η) GXY.refl ⟩
G.₁ Δ ⟨$⟩ (G.F₁ (π₁ ⁂ π₂) ⟨$⟩ (αXx.η Y ⟨$⟩ z))
≈˘⟨ Π.cong (G.₁ Δ) ([ G ]-resp-∘ second∘first GXY.refl) ⟩
G.₁ Δ ⟨$⟩ (G.₁ (first π₁) ⟨$⟩ (G.₁ (second π₂) ⟨$⟩ (αXx.η Y ⟨$⟩ z)))
≈⟨ Π.cong (G.₁ Δ ∙ G.₁ (first π₁)) (αXx.sym-commute π₂ (Setoid.refl (H.₀ Y))) ⟩
G.₁ Δ ⟨$⟩ (G.₁ (first π₁) ⟨$⟩ (αXx.η (X × Y) ⟨$⟩ (H.₁ π₂ ⟨$⟩ z)))
≈⟨ Π.cong (G.₁ Δ) (α.sym-commute π₁ (Setoid.refl (F.₀ X)) (Setoid.refl (H.₀ (X × Y)))) ⟩
G.₁ Δ ⟨$⟩ (NaturalTransformation.η (α.η (X × Y) ⟨$⟩ (F.₁ π₁ ⟨$⟩ x)) (X × Y) ⟨$⟩ (H.₁ π₂ ⟨$⟩ z))
≈⟨ eq (Π.cong (F.₁ π₁) eq₁ , Π.cong (H.₁ π₂) eq₂) ⟩
β.η (X × Y) ⟨$⟩ (F.₁ π₁ ⟨$⟩ y , H.₁ π₂ ⟨$⟩ w)
∎
}
where module PC = Presheaves-Cartesian
Presheaves-CartesianClosed : CartesianClosed P
Presheaves-CartesianClosed = Equivalence.fromCanonical P CanonicalCCC
module Presheaves-CartesianClosed = CartesianClosed Presheaves-CartesianClosed
| {
"alphanum_fraction": 0.4612399683,
"avg_line_length": 42.468164794,
"ext": "agda",
"hexsha": "b7dc9f6bd6ad154c90c68e46333583606baff502",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4528,
"size": 11339
} |
{-# OPTIONS --universe-polymorphism #-}
module SetOmega where
open import Imports.Level
postulate
IsType : ∀ {a} → Set a → Set
Bad : IsType ((a : Level) → Set a)
| {
"alphanum_fraction": 0.650887574,
"avg_line_length": 16.9,
"ext": "agda",
"hexsha": "1e18c913c0eda5b33c9048f2c607167b15769a1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/SetOmega.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/SetOmega.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/SetOmega.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 50,
"size": 169
} |
------------------------------------------------------------------------
-- Higher lenses, defined using the requirement that the remainder
-- function should be surjective
------------------------------------------------------------------------
{-# OPTIONS --cubical #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Surjective-remainder
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Prelude
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J hiding (_∘_)
open import H-level.Truncation.Propositional eq
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher eq as Higher
private
variable
a b : Level
A B : Type a
-- A variant of the lenses defined in Lens.Non-dependent.Higher. In
-- this definition the function called inhabited is replaced by a
-- requirement that the remainder function should be surjective.
record Lens (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where
field
-- Remainder type.
R : Type (a ⊔ b)
-- Equivalence.
equiv : A ≃ (R × B)
-- Remainder.
remainder : A → R
remainder a = proj₁ (_≃_.to equiv a)
field
-- The remainder function is surjective.
remainder-surjective : Surjective remainder
-- Getter.
get : A → B
get a = proj₂ (_≃_.to equiv a)
-- Setter.
set : A → B → A
set a b = _≃_.from equiv (remainder a , b)
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- Lens can be expressed as a nested Σ-type.
Lens-as-Σ :
{A : Type a} {B : Type b} →
Lens A B ≃
∃ λ (R : Type (a ⊔ b)) →
∃ λ (equiv : A ≃ (R × B)) →
Surjective (proj₁ ∘ _≃_.to equiv)
Lens-as-Σ = Eq.↔→≃
(λ l → R l , equiv l , remainder-surjective l)
(λ (R , equiv , remainder-surjective) → record
{ R = R
; equiv = equiv
; remainder-surjective = remainder-surjective
})
refl
refl
where
open Lens
-- Higher.Lens A B is equivalent to Lens A B.
Higher-lens≃Lens : Higher.Lens A B ≃ Lens A B
Higher-lens≃Lens {A = A} {B = B} =
Higher.Lens A B ↔⟨ Higher.Lens-as-Σ ⟩
(∃ λ (R : Type _) →
(A ≃ (R × B)) ×
(R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-cong Higher.inhabited≃remainder-surjective) ⟩
(∃ λ (R : Type _) →
∃ λ (equiv : A ≃ (R × B)) →
Surjective (proj₁ ∘ _≃_.to equiv)) ↝⟨ inverse Lens-as-Σ ⟩□
Lens A B □
-- The equivalence preserves getters and setters.
Higher-lens≃Lens-preserves-getters-and-setters :
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence Higher-lens≃Lens)
Higher-lens≃Lens-preserves-getters-and-setters =
(λ _ → refl _ , refl _)
, (λ _ → refl _ , refl _)
| {
"alphanum_fraction": 0.5777116402,
"avg_line_length": 26.2956521739,
"ext": "agda",
"hexsha": "2e790bed89d5ca0e327751d86cb42758181b2af1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda",
"max_line_length": 111,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Surjective-remainder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 909,
"size": 3024
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.Empty
open import lib.types.Lift
open import lib.types.Sigma
open import lib.types.Pi
module lib.types.Coproduct where
module _ {i j} {A : Type i} {B : Type j} where
Coprod= : Coprod A B → Coprod A B → Type (lmax i j)
Coprod= (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂
Coprod= (inl a₁) (inr b₂) = Lift Empty
Coprod= (inr b₁) (inl a₂) = Lift Empty
Coprod= (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂
Coprod=-in : {x y : Coprod A B} → (x == y) → Coprod= x y
Coprod=-in {inl _} idp = lift idp
Coprod=-in {inr _} idp = lift idp
Coprod=-out : {x y : Coprod A B} → Coprod= x y → (x == y)
Coprod=-out {inl _} {inl _} c = ap inl $ lower c
Coprod=-out {inl _} {inr _} c = Empty-rec $ lower c
Coprod=-out {inr _} {inl _} c = Empty-rec $ lower c
Coprod=-out {inr _} {inr _} c = ap inr (lower c)
Coprod=-in-equiv : (x y : Coprod A B) → (x == y) ≃ Coprod= x y
Coprod=-in-equiv x y = equiv Coprod=-in Coprod=-out (f-g x y) (g-f x y)
where f-g : ∀ x' y' → ∀ c → Coprod=-in (Coprod=-out {x'} {y'} c) == c
f-g (inl a₁) (inl .a₁) (lift idp) = idp
f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b
f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b
f-g (inr b₁) (inr .b₁) (lift idp) = idp
g-f : ∀ x' y' → ∀ p → Coprod=-out (Coprod=-in {x'} {y'} p) == p
g-f (inl _) .(inl _) idp = idp
g-f (inr _) .(inr _) idp = idp
inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂)
inl=inl-equiv a₁ a₂ = lower-equiv ∘e Coprod=-in-equiv (inl a₁) (inl a₂)
inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂)
inr=inr-equiv b₁ b₂ = lower-equiv ∘e Coprod=-in-equiv (inr b₁) (inr b₂)
inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂)
inl≠inr a₁ b₂ p = lower $ Coprod=-in p
inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂)
inr≠inl a₁ b₂ p = lower $ Coprod=-in p
⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B
→ has-level (S (S n)) (Coprod A B)
⊔-level pA _ (inl a₁) (inl a₂) =
equiv-preserves-level (inl=inl-equiv a₁ a₂ ⁻¹) (pA a₁ a₂)
⊔-level _ _ (inl a₁) (inr b₂) = λ p → Empty-rec (inl≠inr a₁ b₂ p)
⊔-level _ _ (inr b₁) (inl a₂) = λ p → Empty-rec (inr≠inl b₁ a₂ p)
⊔-level _ pB (inr b₁) (inr b₂) =
equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹) (pB b₁ b₂)
Coprod-level = ⊔-level
infix 80 _⊙⊔_
_⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙⊔ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inl (pt X) ]
_⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊔⊙ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inr (pt Y) ]
codiag : ∀ {i} {A : Type i} → A ⊔ A → A
codiag (inl a) = a
codiag (inr a) = a
⊙codiag : ∀ {i} {X : Ptd i} → X ⊙⊔ X ⊙→ X
⊙codiag = (codiag , idp)
-- A binary sigma is a coproduct
ΣBool-equiv-⊔ : ∀ {i} (Pick : Bool → Type i)
→ Σ Bool Pick ≃ Pick true ⊔ Pick false
ΣBool-equiv-⊔ Pick = equiv into out into-out out-into
where
into : Σ _ Pick → Pick true ⊔ Pick false
into (true , a) = inl a
into (false , b) = inr b
out : (Pick true ⊔ Pick false) → Σ _ Pick
out (inl a) = (true , a)
out (inr b) = (false , b)
abstract
into-out : ∀ c → into (out c) == c
into-out (inl a) = idp
into-out (inr b) = idp
out-into : ∀ s → out (into s) == s
out-into (true , a) = idp
out-into (false , b) = idp
module _ {i j k} {A : Type i} {B : Type j} (P : A ⊔ B → Type k) where
Π₁-⊔-equiv-× : Π (A ⊔ B) P ≃ Π A (P ∘ inl) × Π B (P ∘ inr)
Π₁-⊔-equiv-× = equiv to from to-from from-to
where
to : Π (A ⊔ B) P → Π A (P ∘ inl) × Π B (P ∘ inr)
to f = (λ a → f (inl a)) , (λ b → f (inr b))
from : Π A (P ∘ inl) × Π B (P ∘ inr) → Π (A ⊔ B) P
from (f , g) (inl a) = f a
from (f , g) (inr b) = g b
abstract
to-from : ∀ fg → to (from fg) == fg
to-from _ = idp
from-to : ∀ fg → from (to fg) == fg
from-to fg = λ= λ where (inl _) → idp
(inr _) → idp
| {
"alphanum_fraction": 0.5191351889,
"avg_line_length": 33.8151260504,
"ext": "agda",
"hexsha": "2e7b00323d3284c4500ca607f3e66488fd237793",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Coproduct.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1884,
"size": 4024
} |
open import Data.Empty
open import Data.List hiding ([_]) renaming (_∷_ to _∷ₗ_)
open import Data.Maybe
open import Data.Product
open import Data.Sum
open import Data.Unit
open import AEff
open import AwaitingComputations
open import EffectAnnotations
open import Preservation
open import Progress
open import Renamings
open import Substitutions
open import Types
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Negation
module Finality where
-- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED COMPUTATIONS
-- WITH INLINED EVALUATION CONTEXT RULES
mutual
infix 10 _↝↝_
data _↝↝_ {Γ : Ctx} : {C : CType} → Γ ⊢M⦂ C → Γ ⊢M⦂ C → Set where
-- COMPUTATIONAL RULES
apply : {X : VType}
{C : CType} →
(M : Γ ∷ X ⊢M⦂ C) →
(V : Γ ⊢V⦂ X) →
----------------------
(ƛ M) · V
↝↝
M [ id-subst [ V ]s ]m
let-return : {X Y : VType}
{o : O}
{i : I} →
(V : Γ ⊢V⦂ X) →
(N : Γ ∷ X ⊢M⦂ Y ! (o , i)) →
-----------------------------
let= (return V) `in N
↝↝
N [ id-subst [ V ]s ]m
let-↑ : {X Y : VType}
{o : O}
{i : I}
{op : Σₛ} →
(p : op ∈ₒ o) →
(V : Γ ⊢V⦂ ``(payload op)) →
(M : Γ ⊢M⦂ X ! (o , i)) →
(N : Γ ∷ X ⊢M⦂ Y ! (o , i)) →
-----------------------------
let= (↑ op p V M) `in N
↝↝
↑ op p V (let= M `in N)
let-promise : {X Y Z : VType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
(p : lkpᵢ op i ≡ just (o' , i')) →
(M₁ : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) →
(M₂ : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) →
(N : Γ ∷ Y ⊢M⦂ Z ! (o , i)) →
---------------------------------------------------------------------------
let= (promise op ∣ p ↦ M₁ `in M₂) `in N
↝↝
(promise op ∣ p ↦ M₁ `in (let= M₂ `in (M-rename (comp-ren exchange wk₁) N)))
letrec-unfold : {X : VType}
{C D : CType}
(M : Γ ∷ (X ⇒ C) ∷ X ⊢M⦂ C) →
(N : Γ ∷ (X ⇒ C) ⊢M⦂ D) →
----------------------------------------
(letrec M `in N)
↝↝
N [ id-subst [ ƛ (letrec M-rename wk₃ M `in M-rename exchange M) ]s ]m
promise-↑ : {X Y : VType}
{o o' : O}
{i i' : I}
{op op' : Σₛ} →
(p : lkpᵢ op i ≡ just (o' , i')) →
(q : op' ∈ₒ o) →
(V : Γ ∷ ⟨ X ⟩ ⊢V⦂ ``(payload op')) →
(M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) →
--------------------------------------------
(promise op ∣ p ↦ M `in (↑ op' q V N))
↝↝
↑ op' q (strengthen-val {Δ = X ∷ₗ []} V) (promise op ∣ p ↦ M `in N)
↓-return : {X : VType}
{o : O}
{i : I}
{op : Σₛ} →
(V : Γ ⊢V⦂ ``(payload op)) →
(W : Γ ⊢V⦂ X) →
----------------------------------------------------------------
↓ {o = o} {i = i} op V (return W)
↝↝
return {o = proj₁ (op ↓ₑ (o , i))} {i = proj₂ (op ↓ₑ (o , i))} W
↓-↑ : {X : VType}
{o : O}
{i : I}
{op : Σₛ}
{op' : Σₛ} →
(p : op' ∈ₒ o) →
(V : Γ ⊢V⦂ ``(payload op)) →
(W : Γ ⊢V⦂ ``(payload op')) →
(M : Γ ⊢M⦂ X ! (o , i)) →
-------------------------------
↓ op V (↑ op' p W M)
↝↝
↑ op' (↓ₑ-⊑ₒ op' p) W (↓ op V M)
↓-promise-op : {X Y : VType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
(p : lkpᵢ op i ≡ just (o' , i')) →
(V : Γ ⊢V⦂ ``(payload op)) →
(M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) →
---------------------------------------------------------------------------------------
↓ op V (promise op ∣ p ↦ M `in N )
↝↝
(let= (coerce (↓ₑ-⊑ₒ-o' {o} p) (↓ₑ-⊑ₒ-i' {o} p) (M [ id-subst [ V ]s ]m)) `in
↓ op (V-rename wk₁ V) ((M-rename (comp-ren exchange wk₁) N) [ id-subst [ ` Hd ]s ]m))
↓-promise-op' : {X Y : VType}
{o o' : O}
{i i' : I}
{op op' : Σₛ} →
(p : ¬ op ≡ op') →
(q : lkpᵢ op' i ≡ just (o' , i')) →
(V : Γ ⊢V⦂ ``(payload op)) →
(M : Γ ∷ ``(payload op') ⊢M⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) →
------------------------------------------------------------------------------------------
↓ op V (promise op' ∣ q ↦ M `in N )
↝↝
promise_∣_↦_`in_ {o' = proj₁ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)}
{i' = proj₁ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))}
op'
(proj₁ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))))
(coerce (proj₁ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)))))
(proj₂ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)))))
M)
(↓ op (V-rename wk₁ V) N)
await-promise : {X : VType}
{C : CType} →
(V : Γ ⊢V⦂ X) →
(M : Γ ∷ X ⊢M⦂ C) →
--------------------
await ⟨ V ⟩ until M
↝↝
M [ id-subst [ V ]s ]m
-- INLINED EVALUATION CONTEXT RULES
context-let : {X Y : VType}
{o : O}
{i : I} →
{M M' : Γ ⊢M⦂ X ! (o , i)} →
{N : Γ ∷ X ⊢M⦂ Y ! (o , i)} →
M ↝↝ M' →
-----------------------------
let= M `in N
↝↝
let= M' `in N
context-↑ : {X : VType}
{o : O}
{i : I}
{op : Σₛ}
{p : op ∈ₒ o}
{V : Γ ⊢V⦂ ``(payload op)}
{M N : Γ ⊢M⦂ X ! (o , i)} →
M ↝↝ N →
---------------------------
↑ op p V M
↝↝
↑ op p V N
context-↓ : {X : VType}
{o : O}
{i : I}
{op : Σₛ}
{V : Γ ⊢V⦂ ``(payload op)}
{M N : Γ ⊢M⦂ X ! (o , i)} →
M ↝↝ N →
---------------------------
↓ op V M
↝↝
↓ op V N
context-promise : {X Y : VType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
{r : lkpᵢ op i ≡ just (o' , i')}
{M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')} →
{N N' : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)} →
N ↝↝ N' →
------------------------------------------------
promise op ∣ r ↦ M `in N
↝↝
promise op ∣ r ↦ M `in N'
context-coerce : {X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'} →
{M N : Γ ⊢M⦂ X ! (o , i)} →
M ↝↝ N →
---------------------------
coerce p q M
↝↝
coerce p q N
-- COERCION RULES
coerce-return : {X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'} →
(V : Γ ⊢V⦂ X) →
--------------------------------
coerce p q (return V) ↝↝ return V
coerce-↑ : {X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'}
{op : Σₛ} →
(r : op ∈ₒ o) →
(V : Γ ⊢V⦂ ``(payload op)) →
(M : Γ ⊢M⦂ X ! (o , i)) →
-------------------------------
coerce p q (↑ op r V M)
↝↝
↑ op (p op r) V (coerce p q M)
coerce-promise : {X Y : VType}
{o o' o'' : O}
{i i' i'' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'}
{op : Σₛ} →
(r : lkpᵢ op i ≡ just (o'' , i''))
(M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o'' , i'')) →
(N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) →
------------------------------------------------------------------
coerce p q (promise op ∣ r ↦ M `in N)
↝↝
promise_∣_↦_`in_ {o' = lkpᵢ-nextₒ q r}
{i' = lkpᵢ-nextᵢ q r}
op
(lkpᵢ-next-eq q r)
(coerce (lkpᵢ-next-⊑ₒ q r) (lkpᵢ-next-⊑ᵢ q r) M)
(coerce p q N)
-- ONE-TO-ONE CORRESPONDENCE BETWEEN THE TWO SETS OF REDUCTION RULES
↝↝-to-↝ : {Γ : Ctx}
{C : CType}
{M N : Γ ⊢M⦂ C} →
M ↝↝ N →
-----------------
M ↝ N
↝↝-to-↝ (apply M V) =
apply M V
↝↝-to-↝ (let-return V N) =
let-return V N
↝↝-to-↝ (let-↑ p V M N) =
let-↑ p V M N
↝↝-to-↝ (let-promise p M₁ M₂ N) =
let-promise p M₁ M₂ N
↝↝-to-↝ (letrec-unfold M N) =
letrec-unfold M N
↝↝-to-↝ (promise-↑ p q V M N) =
promise-↑ p q V M N
↝↝-to-↝ (↓-return V W) =
↓-return V W
↝↝-to-↝ (↓-↑ p V W M) =
↓-↑ p V W M
↝↝-to-↝ (↓-promise-op p V M N) =
↓-promise-op p V M N
↝↝-to-↝ (↓-promise-op' p q V M N) =
↓-promise-op' p q V M N
↝↝-to-↝ (await-promise V M) =
await-promise V M
↝↝-to-↝ (context-let r) =
context _ (↝↝-to-↝ r)
↝↝-to-↝ (context-↑ r) =
context _ (↝↝-to-↝ r)
↝↝-to-↝ (context-↓ r) =
context _ (↝↝-to-↝ r)
↝↝-to-↝ (context-promise r) =
context _ (↝↝-to-↝ r)
↝↝-to-↝ (context-coerce r) =
context _ (↝↝-to-↝ r)
↝↝-to-↝ (coerce-return V) =
coerce-return V
↝↝-to-↝ (coerce-↑ p V M) =
coerce-↑ p V M
↝↝-to-↝ (coerce-promise p M N) =
coerce-promise p M N
mutual
↝-context-to-↝↝ : {Γ : Ctx}
{Δ : BCtx}
{C : CType} →
(E : Γ ⊢E[ Δ ]⦂ C) →
{M N : (Γ ⋈ Δ) ⊢M⦂ hole-ty-e E} →
M ↝ N →
---------------------------
E [ M ] ↝↝ E [ N ]
↝-context-to-↝↝ [-] r =
↝-to-↝↝ r
↝-context-to-↝↝ (let= E `in x) r =
context-let (↝-context-to-↝↝ E r)
↝-context-to-↝↝ (↑ op p V E) r =
context-↑ (↝-context-to-↝↝ E r)
↝-context-to-↝↝ (↓ op V E) r =
context-↓ (↝-context-to-↝↝ E r)
↝-context-to-↝↝ (promise op ∣ p ↦ M `in E) r =
context-promise (↝-context-to-↝↝ E r)
↝-context-to-↝↝ (coerce p q E) r =
context-coerce (↝-context-to-↝↝ E r)
↝-to-↝↝ : {Γ : Ctx}
{C : CType}
{M N : Γ ⊢M⦂ C} →
M ↝ N →
-----------------
M ↝↝ N
↝-to-↝↝ (apply M V) =
apply M V
↝-to-↝↝ (let-return V N) =
let-return V N
↝-to-↝↝ (let-↑ p V M N) =
let-↑ p V M N
↝-to-↝↝ (let-promise p M₁ M₂ N) =
let-promise p M₁ M₂ N
↝-to-↝↝ (letrec-unfold M N) =
letrec-unfold M N
↝-to-↝↝ (promise-↑ p q V M N) =
promise-↑ p q V M N
↝-to-↝↝ (↓-return V W) =
↓-return V W
↝-to-↝↝ (↓-↑ p V W M) =
↓-↑ p V W M
↝-to-↝↝ (↓-promise-op p V M N) =
↓-promise-op p V M N
↝-to-↝↝ (↓-promise-op' p q V M N) =
↓-promise-op' p q V M N
↝-to-↝↝ (await-promise V M) =
await-promise V M
↝-to-↝↝ (context E r) =
↝-context-to-↝↝ E r
↝-to-↝↝ (coerce-return V) =
coerce-return V
↝-to-↝↝ (coerce-↑ p V M) =
coerce-↑ p V M
↝-to-↝↝ (coerce-promise p M N) =
coerce-promise p M N
-- FINALITY OF RESULT FORMS
run-invert-let : {Γ : Ctx}
{X Y : VType}
{o : O}
{i : I}
{M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ X ! (o , i)}
{N : (⟨⟨ Γ ⟩⟩ ∷ X) ⊢M⦂ Y ! (o , i)} →
RunResult⟨ Γ ∣ let= M `in N ⟩ →
-------------------------------------
RunResult⟨ Γ ∣ M ⟩
run-invert-let (awaiting (let-in R)) =
awaiting R
run-invert-↓ : {Γ : Ctx}
{X : VType}
{o : O}
{i : I}
{op : Σₛ}
{V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ ``(payload op)}
{M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ X ! (o , i)} →
RunResult⟨ Γ ∣ ↓ op V M ⟩ →
-------------------------------
RunResult⟨ Γ ∣ M ⟩
run-invert-↓ (awaiting (interrupt await)) =
awaiting await
run-invert-↓ (awaiting (interrupt (let-in R))) =
awaiting (let-in R)
run-invert-↓ (awaiting (interrupt (interrupt R))) =
awaiting (interrupt R)
run-invert-↓ (awaiting (interrupt (coerce R))) =
awaiting (coerce R)
run-invert-promise : {Γ : Ctx}
{X Y : VType}
{o o' : O}
{i i' : I}
{op : Σₛ}
{p : lkpᵢ op i ≡ just (o' , i')}
{M : (⟨⟨ Γ ⟩⟩ ∷ `` (payload op)) ⊢M⦂ (⟨ X ⟩ ! (o' , i'))}
{N : (⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩) ⊢M⦂ (Y ! (o , i))} →
RunResult⟨ Γ ∣ (promise op ∣ p ↦ M `in N) ⟩ →
--------------------------------------------------------
RunResult⟨ Γ ∷ X ∣ N ⟩
run-invert-promise (promise R) =
R
run-invert-coerce : {Γ : Ctx}
{X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'}
{M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ X ! (o , i)} →
RunResult⟨ Γ ∣ coerce p q M ⟩ →
-------------------------------
RunResult⟨ Γ ∣ M ⟩
run-invert-coerce (awaiting (coerce R)) =
awaiting R
run-apply-⊥ : {Γ : Ctx}
{X : VType}
{C : CType}
{M : (⟨⟨ Γ ⟩⟩ ∷ X) ⊢M⦂ C}
{V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ X} →
RunResult⟨ Γ ∣ ƛ M · V ⟩ →
--------------------------
⊥
run-apply-⊥ (awaiting ())
run-↑-⊥ : {Γ : Ctx}
{X : VType}
{o : O}
{i : I}
{op : Σₛ}
{p : op ∈ₒ o}
{V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ ``(payload op)}
{M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ (X ! (o , i))} →
RunResult⟨ Γ ∣ ↑ op p V M ⟩ →
--------------------------------
⊥
run-↑-⊥ (awaiting ())
run-let-return-⊥ : {Γ : Ctx}
{X Y : VType}
{o : O}
{i : I}
{V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ X}
{N : (⟨⟨ Γ ⟩⟩ ∷ X) ⊢M⦂ (Y ! (o , i))} →
RunResult⟨ Γ ∣ let= return V `in N ⟩ →
--------------------------------------
⊥
run-let-return-⊥ (awaiting (let-in ()))
run-let-promise-⊥ : {Γ : Ctx}
{X Y Z : VType}
{o o' : O}
{i i' : I}
{op : Σₛ}
{p : lkpᵢ op i ≡ just (o' , i')}
{M₁ : (⟨⟨ Γ ⟩⟩ ∷ `` (payload op)) ⊢M⦂ (⟨ X ⟩ ! (o' , i'))}
{M₂ : (⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩) ⊢M⦂ (Y ! (o , i))}
{N : (⟨⟨ Γ ⟩⟩ ∷ Y) ⊢M⦂ (Z ! (o , i))} →
RunResult⟨ Γ ∣ let= promise op ∣ p ↦ M₁ `in M₂ `in N ⟩ →
----------------------------------------------------------
⊥
run-let-promise-⊥ (awaiting (let-in ()))
run-finality-↝↝ : {Γ : Ctx}
{C : CType}
{M N : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} →
RunResult⟨ Γ ∣ M ⟩ →
M ↝↝ N →
-----------------------
⊥
run-finality-↝↝ (awaiting ()) (apply M V)
run-finality-↝↝ R (let-return V N) =
run-let-return-⊥ R
run-finality-↝↝ R (let-↑ p V M N) =
run-↑-⊥ (run-invert-let R)
run-finality-↝↝ R (let-promise p M₁ M₂ N) =
run-let-promise-⊥ R
run-finality-↝↝ (awaiting ()) (letrec-unfold M N)
run-finality-↝↝ (promise (awaiting ())) (promise-↑ p q V M N)
run-finality-↝↝ (awaiting (interrupt ())) (↓-return V W)
run-finality-↝↝ (awaiting (interrupt ())) (↓-↑ p V W M)
run-finality-↝↝ (awaiting (interrupt ())) (↓-promise-op p V M N)
run-finality-↝↝ (awaiting (interrupt ())) (↓-promise-op' p q V M N)
run-finality-↝↝ (awaiting ()) (await-promise V M)
run-finality-↝↝ R (context-let r) =
run-finality-↝↝ (run-invert-let R) r
run-finality-↝↝ R (context-↑ r) =
run-↑-⊥ R
run-finality-↝↝ R (context-↓ r) =
run-finality-↝↝ (run-invert-↓ R) r
run-finality-↝↝ R (context-promise r) =
run-finality-↝↝ (run-invert-promise R) r
run-finality-↝↝ R (context-coerce r) =
run-finality-↝↝ (run-invert-coerce R) r
run-finality-↝↝ (awaiting (coerce ())) (coerce-return V)
run-finality-↝↝ (awaiting (coerce ())) (coerce-↑ p V M)
run-finality-↝↝ (awaiting (coerce ())) (coerce-promise p M N)
comp-finality-↝↝ : {Γ : Ctx}
{C : CType}
{M N : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} →
CompResult⟨ Γ ∣ M ⟩ →
M ↝↝ N →
-----------------------
⊥
comp-finality-↝↝ (comp R) r =
run-finality-↝↝ R r
comp-finality-↝↝ (signal R) (context-↑ r) =
comp-finality-↝↝ R r
{- LEMMA 3.2 -}
comp-finality : {Γ : Ctx}
{C : CType}
{M N : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} →
CompResult⟨ Γ ∣ M ⟩ →
M ↝ N →
-----------------------
⊥
comp-finality R r =
comp-finality-↝↝ R (↝-to-↝↝ r)
| {
"alphanum_fraction": 0.2851319678,
"avg_line_length": 33.896373057,
"ext": "agda",
"hexsha": "950fce3548bb5463430415ae592a4de3c5f63657",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danelahman/aeff-agda",
"max_forks_repo_path": "Finality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danelahman/aeff-agda",
"max_issues_repo_path": "Finality.agda",
"max_line_length": 112,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danelahman/aeff-agda",
"max_stars_repo_path": "Finality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z",
"num_tokens": 6676,
"size": 19626
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.BinNat where
open import Cubical.Data.BinNat.BinNat public
| {
"alphanum_fraction": 0.7480916031,
"avg_line_length": 26.2,
"ext": "agda",
"hexsha": "db9daa048e5a57b8ba1f27dc5faf61016a3eaa63",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/BinNat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/BinNat.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/BinNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 36,
"size": 131
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.MonoidSolver.MonoidExpression where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat
open import Cubical.Data.Vec
open import Cubical.Algebra.CommMonoid
private
variable
ℓ : Level
infixl 7 _⊗_
-- Expression in a type M with n variables
data Expr (M : Type ℓ) (n : ℕ) : Type ℓ where
∣ : Fin n → Expr M n
ε⊗ : Expr M n
_⊗_ : Expr M n → Expr M n → Expr M n
| {
"alphanum_fraction": 0.7046413502,
"avg_line_length": 20.6086956522,
"ext": "agda",
"hexsha": "cc8b1c27ba6d05b143693b7a64ee02c25784bd8c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/MonoidSolver/MonoidExpression.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/MonoidSolver/MonoidExpression.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/MonoidSolver/MonoidExpression.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 156,
"size": 474
} |
{-
The equivalent "goodness" of can-θ w.r.t. the rmerge reduction.
The main properties of the Can function proved in this file are:
canθₛ-mergeˡ : ∀ {E θ' r p BV FV} sigs θ →
CorrectBinding p BV FV →
p ≐ E ⟦ ρ θ' · r ⟧e →
∀ S' →
Signal.unwrap S' ∉ SigMap.keys (Env.sig θ') →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ →
Signal.unwrap S' ∈ Canθₛ sigs 0 p θ
canθₛ-mergeʳ : ∀ sigs θ' r θ →
distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) →
∀ S' →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 r θ →
Signal.unwrap S' ∈ Canθₛ (Env.sig θ') 0 r θ
and their corresponding counterparts for the shared variables.
-}
module Esterel.Lang.CanFunction.MergePotentialRuleTheta where
open import utility
renaming (_U̬_ to _∪_ ; _|̌_ to _-_)
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Base
open import Esterel.Lang.CanFunction.CanThetaContinuation
open import Esterel.Lang.CanFunction.MergePotentialRuleLeftInductive
open import Esterel.Lang.CanFunction.NonMergePotentialRules
open import Esterel.Context
using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e)
open import Esterel.Context.Properties
using (plug ; unplug)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open EvaluationContext1
open _≐_⟦_⟧e
open import Data.Bool
using (Bool ; not ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr)
open import Data.List.Properties
using (map-id)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using ()
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_)
open import Data.Nat.Properties.Simple
using (+-comm)
open import Data.Product
using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; id ; _∋_)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning)
open ListSet Data.Nat._≟_
using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge
; set-subtract-notin
; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed
; set-subtract-[a]≡set-remove)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ≡-Reasoning
canθₖ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ →
CorrectBinding p BV FV →
p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e →
∀ k →
k ∈ Canθₖ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ →
k ∈ Canθₖ sigs 0 p θ
canθₖ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ k k∈canθ-sigs←θ'-E⟦r⟧-θ
rewrite sym (unplug p≐E⟦ρθ'r⟧)
with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl)
... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp)
with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
CBnothing
... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin
rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ =
canθₖ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ
((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin
(distinct'-sym
(dist'++ˡ
(distinct'-sym
(proj₁
(distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin)))))
k k∈canθ-sigs←θ'-E⟦r⟧-θ
canθₛ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ →
CorrectBinding p BV FV →
p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e →
∀ S' →
Signal.unwrap S' ∉ SigMap.keys (Env.sig θ') →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ →
Signal.unwrap S' ∈ Canθₛ sigs 0 p θ
canθₛ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ S' S'∉Domθ' S'∈canθ-sigs←θ'-E⟦r⟧-θ
rewrite sym (unplug p≐E⟦ρθ'r⟧)
with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl)
... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp)
with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
CBnothing
... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin
rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ =
canθₛ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ
((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin
(distinct'-sym
(dist'++ˡ
(distinct'-sym
(proj₁
(distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin)))))
(Signal.unwrap S')
S'∉Domθ' S'∈canθ-sigs←θ'-E⟦r⟧-θ
canθₛₕ-mergeˡ : ∀ {E θ' r p BV FV A} sigs θ →
CorrectBinding p BV FV →
p ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e →
∀ s' →
SharedVar.unwrap s' ∉ ShrMap.keys (Env.shr θ') →
SharedVar.unwrap s' ∈ Canθₛₕ (SigMap.union sigs (Env.sig θ')) 0 (E ⟦ r ⟧e) θ →
SharedVar.unwrap s' ∈ Canθₛₕ sigs 0 p θ
canθₛₕ-mergeˡ {E} {θ'} {r} {A = A} sigs θ cb p≐E⟦ρθ'r⟧ s' s'∉Domθ' s'∈canθ-sigs←θ'-E⟦r⟧-θ
rewrite sym (unplug p≐E⟦ρθ'r⟧)
with binding-extract cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl)
... | (BVp , FVp) , (BVp⊆BV , FVp⊆FV) , cbρθ'r@(CBρ cbp)
with binding-subst cb (((E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ≐ E ⟦ ρ⟨ θ' , A ⟩· r ⟧e) ∋ plug refl) cbρθ'r
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
((λ _ ()) ,′ (λ _ ()) ,′ (λ _ ()))
CBnothing
... | (BV' , FV') , (BVnothin⊆BV , FVnothin⊆FV) , cbnothin
rewrite canθ'-←-distribute sigs (Env.sig θ') 0 (E ⟦ r ⟧e) θ =
canθₛₕ-mergeˡ-sigs-induction sigs 0 (Env.sig θ') (Env.shr θ') (Env.var θ') r θ
((E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e) ∋ plug refl) cbnothin
(distinct'-sym
(dist'++ˡ
(distinct'-sym
(proj₁
(distinct-term-context-help (ρ⟨ θ' , A ⟩· r) E cb cbρθ'r BVp⊆BV cbnothin)))))
(SharedVar.unwrap s')
s'∉Domθ' s'∈canθ-sigs←θ'-E⟦r⟧-θ
canθₛ-mergeʳ-add-sig-notin : ∀ sigs' r θ S status →
S ∉ proj₁ (Dom θ) →
S ∉ SigMap.keys sigs' →
∀ S'' →
S'' ∈ Canθₛ sigs' 0 r (θ ← [ (S ₛ) ↦ status ]) →
S'' ∈ Canθₛ sigs' 0 r θ
canθₛ-mergeʳ-add-sig-notin sigs' r θ S status S∉Domθ S∉sigs'
S'' S''∈canθ-sigs'-r-θ←[S]
rewrite canθ-is-unknown-lemma sigs' 0 r θ (S ₛ) S∉Domθ
(subst (S ∉_)
(sym (map-id (SigMap.keys sigs')))
S∉sigs')
= canθₛ-add-sig-monotonic sigs' 0 r θ (S ₛ) status
S'' S''∈canθ-sigs'-r-θ←[S]
canθₛ-mergeʳ-sigs-induction : ∀ sigs S sigs' r θ →
distinct' (proj₁ (Dom θ)) (map (_+_ S) (SigMap.keys sigs)) →
∀ S'' →
S'' ∈ proj₁ (Canθ' sigs S (Canθ sigs' 0 r) θ) →
S'' ∈ proj₁ (Canθ sigs' 0 r θ)
canθₛ-mergeʳ-sigs-induction [] S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
= S''∈canθ'-sigs-canθ-sigs'-r-θ
canθₛ-mergeʳ-sigs-induction (nothing ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
= canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
canθₛ-mergeʳ-sigs-induction (just Signal.present ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.present θ S∈sigs'
= canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.present
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S''
(canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-present (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.present S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-present (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛ-mergeʳ-sigs-induction (just Signal.absent ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs'
= canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S''
(canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 r) (θ ← [S]-env (S ₛ))))
canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
| yes S∈canθ'-sigs-canθ-sigs'-r-θ←[S]
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.unknown θ S∈sigs'
= canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.unknown
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S''
(canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.unknown S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
| no S∉canθ'-sigs-canθ-sigs'-r-θ←[S]
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs'
= canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) S'' S''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' S''
(canθₛ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
S'' S''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛ-mergeʳ : ∀ sigs θ' r θ →
distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) →
∀ S' →
Signal.unwrap S' ∈ Canθₛ (SigMap.union sigs (Env.sig θ')) 0 r θ →
Signal.unwrap S' ∈ Canθₛ (Env.sig θ') 0 r θ
canθₛ-mergeʳ sigs θ' r θ θ≠sigs S' S'∈canθ-sigs←θ'-r-θ
rewrite canθ'-←-distribute sigs (Env.sig θ') 0 r θ
= canθₛ-mergeʳ-sigs-induction sigs 0 (Env.sig θ') r θ
(subst (distinct' _) (sym (map-id (SigMap.keys sigs))) θ≠sigs)
(Signal.unwrap S') S'∈canθ-sigs←θ'-r-θ
canθₛₕ-mergeʳ-add-sig-notin : ∀ sigs' r θ S status →
S ∉ proj₁ (Dom θ) →
S ∉ SigMap.keys sigs' →
∀ s'' →
s'' ∈ Canθₛₕ sigs' 0 r (θ ← [ (S ₛ) ↦ status ]) →
s'' ∈ Canθₛₕ sigs' 0 r θ
canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S status S∉Domθ S∉sigs'
s'' s''∈canθ-sigs'-r-θ←[S]
rewrite canθ-is-unknown-lemma sigs' 0 r θ (S ₛ) S∉Domθ
(subst (S ∉_)
(sym (map-id (SigMap.keys sigs')))
S∉sigs')
= canθₛₕ-add-sig-monotonic sigs' 0 r θ (S ₛ) status
s'' s''∈canθ-sigs'-r-θ←[S]
canθₛₕ-mergeʳ-sigs-induction : ∀ sigs S sigs' r θ →
distinct' (proj₁ (Dom θ)) (map (_+_ S) (SigMap.keys sigs)) →
∀ s'' →
s'' ∈ proj₂ (proj₂ (Canθ' sigs S (Canθ sigs' 0 r) θ)) →
s'' ∈ proj₂ (proj₂ (Canθ sigs' 0 r θ))
canθₛₕ-mergeʳ-sigs-induction [] S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
= s''∈canθ'-sigs-canθ-sigs'-r-θ
canθₛₕ-mergeʳ-sigs-induction (nothing ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
= canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
canθₛₕ-mergeʳ-sigs-induction (just Signal.present ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.present θ S∈sigs'
= canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.present
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s''
(canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-present (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.present S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-present (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛₕ-mergeʳ-sigs-induction (just Signal.absent ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs'
= canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s''
(canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 r) (θ ← [S]-env (S ₛ))))
canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
| yes S∈canθ'-sigs-canθ-sigs'-r-θ←[S]
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.unknown θ S∈sigs'
= canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.unknown
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s''
(canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.unknown S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛₕ-mergeʳ-sigs-induction (just Signal.unknown ∷ sigs) S sigs' r θ θ≠sigs
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
| no S∉canθ'-sigs-canθ-sigs'-r-θ←[S]
rewrite map-+-compose-suc S (SigMap.keys sigs)
with any (_≟_ S) (SigMap.keys sigs')
... | yes S∈sigs'
rewrite canθ'-inner-shadowing-irr sigs (suc S) sigs' r S Signal.absent θ S∈sigs'
= canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r θ
(dist'++ʳ {V2 = S + 0 ∷ []} θ≠sigs) s'' s''∈canθ'-sigs-canθ-sigs'-r-θ
... | no S∉sigs'
rewrite +-comm S 0
= canθₛₕ-mergeʳ-add-sig-notin sigs' r θ S Signal.absent
(λ S∈Domθ → θ≠sigs S S∈Domθ (here refl)) S∉sigs' s''
(canθₛₕ-mergeʳ-sigs-induction sigs (suc S) sigs' r (θ ← [S]-env-absent (S ₛ))
(λ S'' S''∈Domθ←[S] S''∈map-+-suc-S-sigs → -- TODO: should make this a function
Data.Sum.[ (λ S''∈Domθ → θ≠sigs S'' S''∈Domθ (there S''∈map-+-suc-S-sigs)) ,
(λ S''∈[S] →
subst (_∉ _)
(sym (Env.sig-single-∈-eq (S'' ₛ) (S ₛ) Signal.absent S''∈[S]))
(n∉map-suc-n-+ S (SigMap.keys sigs))
S''∈map-+-suc-S-sigs) ]
(Env.sig-←⁻ {θ} {[S]-env-absent (S ₛ)} (S'' ₛ) S''∈Domθ←[S]))
s'' s''∈canθ'-sigs-canθ-sigs'-r-θ)
canθₛₕ-mergeʳ : ∀ sigs θ' r θ →
distinct' (proj₁ (Dom θ)) (SigMap.keys sigs) →
∀ s' →
SharedVar.unwrap s' ∈ Canθₛₕ (SigMap.union sigs (Env.sig θ')) 0 r θ →
SharedVar.unwrap s' ∈ Canθₛₕ (Env.sig θ') 0 r θ
canθₛₕ-mergeʳ sigs θ' r θ θ≠sigs s' s'∈canθ-sigs←θ'-r-θ
rewrite canθ'-←-distribute sigs (Env.sig θ') 0 r θ
= canθₛₕ-mergeʳ-sigs-induction sigs 0 (Env.sig θ') r θ
(subst (distinct' _) (sym (map-id (SigMap.keys sigs))) θ≠sigs)
(SharedVar.unwrap s') s'∈canθ-sigs←θ'-r-θ
| {
"alphanum_fraction": 0.5510540344,
"avg_line_length": 45.9576837416,
"ext": "agda",
"hexsha": "127fd24d80eec13e858c02c085dfba927ef5bd94",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda",
"max_line_length": 97,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleTheta.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 9290,
"size": 20635
} |
------------------------------------------------------------------------------
-- Conversion rules for the nest function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Nest.ConversionRulesATP where
open import FOT.FOTC.Program.Nest.NestConditional
open import FOTC.Base
------------------------------------------------------------------------------
postulate nest-0 : nest zero ≡ zero
{-# ATP prove nest-0 #-}
postulate nest-S : ∀ n → nest (succ₁ n) ≡ nest (nest n)
{-# ATP prove nest-S #-}
| {
"alphanum_fraction": 0.4228650138,
"avg_line_length": 31.5652173913,
"ext": "agda",
"hexsha": "ce8f5ec5f2cb72d1e66d7a94eb96495fbd9ffd9a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Nest/ConversionRulesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Nest/ConversionRulesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Nest/ConversionRulesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 129,
"size": 726
} |
module Structure.Relator.Function where
import Lvl
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Functional
open import Structure.Setoid
open import Structure.Setoid.Uniqueness
open import Structure.Relator
open import Type
private variable ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₑ₂ : Lvl.Level
module _ {A : Type{ℓₒ₁}}{B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (φ : A → B → Stmt{ℓₒ₃}) where
module _ (f : A → B) where
record Computable : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₒ₃ Lvl.⊔ ℓₑ₂} where
constructor intro
field proof : ∀{x}{y} → (f(x) ≡ y) → φ(x)(y)
computable = inst-fn Computable.proof
-- A binary operation is total when every LHS have at least one RHS in which the relation holds.
record Total : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₒ₃} where
constructor intro
field proof : ∀{x} → ∃(y ↦ φ(x)(y))
compute : A → B
compute(x) = [∃]-witness(proof{x})
computableFunction : ⦃ _ : ∀{x} → UnaryRelator(φ(x)) ⦄ → ∃(Computable)
∃.witness computableFunction = compute
Computable.proof (∃.proof computableFunction) {x} eq = substitute₁(φ(x)) eq ([∃]-proof(proof{x}))
total = inst-fn Total.proof
-- A binary operation is a function when every LHS have at least one RHS in which the relation holds.
record Function : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₒ₃ Lvl.⊔ ℓₑ₂} where
constructor intro
field proof : ∀{x} → Unique(φ(x))
function = inst-fn Function.proof
-- (∀{x}{y₁ y₂} → φ(x)(y₁) → φ(x)(y₂) → (y₁ ≡ y₂))
totalFunction : ⦃ _ : Total ⦄ → ⦃ _ : Function ⦄ → (∀{x} → ∃!(φ(x)))
totalFunction = [∧]-intro total function
| {
"alphanum_fraction": 0.6572133169,
"avg_line_length": 36.0444444444,
"ext": "agda",
"hexsha": "53c679512d69472527ff8261cc1e23f4e347f2da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Function.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 629,
"size": 1622
} |
data ⊥ : Set where
record ⊤ : Set where
data Bool : Set where
false : Bool
true : Bool
True : Bool → Set
True false = ⊥
True true = ⊤
Foo : (b : Bool) → True b → Set
Foo true _ = ⊤
-- The problem rises because I have removed this impossible case.
-- Foo false ()
test : (b : Bool) (t : True b) → Foo b t → ⊤
test true p x = _
test false p x = _
| {
"alphanum_fraction": 0.5927977839,
"avg_line_length": 17.1904761905,
"ext": "agda",
"hexsha": "7e1f75b02546d378d63d02abdeef3f77a430b6bd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3407.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3407.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3407.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 124,
"size": 361
} |
------------------------------------------------------------------------------
-- Testing nested axioms
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module NestedAxioms.B where
open import NestedAxioms.A
------------------------------------------------------------------------------
postulate
c : D
b≡c : b ≡ c
{-# ATP axiom b≡c #-}
| {
"alphanum_fraction": 0.3120437956,
"avg_line_length": 27.4,
"ext": "agda",
"hexsha": "6a0c168d262b4400997eb1fdc9456e6f13fab4dc",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/NestedAxioms/B.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/NestedAxioms/B.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/NestedAxioms/B.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 87,
"size": 548
} |
module LearnYouAn where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc n) + m = suc (n + m)
-- if_then_else_ : ∀ { a } → Bool → a → a → a
data _even : ℕ → Set where
ZERO : zero even
STEP : ∀ {x} → x even → suc (suc x) even
proof₁ : suc (suc (suc (suc zero))) even
proof₁ = STEP (STEP ZERO)
proof₂′ : (A : Set) → A → A
proof₂′ _ x = x
proof₂ : ℕ → ℕ
proof₂ = proof₂′ ℕ
| {
"alphanum_fraction": 0.5056689342,
"avg_line_length": 18.375,
"ext": "agda",
"hexsha": "ee5e15f9e0faeda8627db7eef48b03cbcb0ec2f4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alf239/tao",
"max_forks_repo_path": "LearnYouAn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alf239/tao",
"max_issues_repo_path": "LearnYouAn.agda",
"max_line_length": 47,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alf239/tao",
"max_stars_repo_path": "LearnYouAn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 180,
"size": 441
} |
{-# OPTIONS --warning=error #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Vectors
open import Semirings.Definition
open import Categories.Definition
open import Orders
open import Categories.Functor.Definition
open import Categories.Examples
module Categories.Category where
postulate
extensionality : {a b : _} {S : Set a} {T : S → Set b} {f g : (x : S) → T x} → ((x : S) → f x ≡ g x) → f ≡ g
≡Unique : {a : _} {X : Set a} → {a b : X} → (p1 p2 : a ≡ b) → (p1 ≡ p2)
≡Unique refl refl = refl
NatPreorder : Category {lzero} {lzero}
NatPreorder = record { objects = ℕ ; arrows = λ m n → m ≤N n ; id = λ x → inr refl ; _∘_ = λ f g → leqTransitive g f ; rightId = λ x<y → leqUnique (leqTransitive x<y (inr refl)) x<y ; leftId = λ x<y → leqUnique (leqTransitive (inr refl) x<y) x<y ; associative = λ z<=w y<=z x<=y → leqUnique (leqTransitive (leqTransitive x<=y y<=z) z<=w) (leqTransitive x<=y (leqTransitive y<=z z<=w)) }
where
leqTransitive : {a b c : ℕ} → (a ≤N b) → (b ≤N c) → (a ≤N c)
leqTransitive (inl a<b) (inl b<c) = inl (TotalOrder.<Transitive ℕTotalOrder a<b b<c)
leqTransitive (inl a<b) (inr b=c) rewrite b=c = inl a<b
leqTransitive (inr a=b) (inl b<c) rewrite a=b = inl b<c
leqTransitive (inr a=b) (inr b=c) rewrite a=b | b=c = inr refl
<Nunique : {a b : ℕ} → (p1 p2 : a <N b) → p1 ≡ p2
<Nunique {a} {b} (le a-b pr1) (le a-b2 pr2) = go a-b pr1 a-b2 pr2 p'
where
p : a-b2 +N a ≡ a-b +N a
p rewrite equalityCommutative pr1 = succInjective pr2
p' : a-b2 ≡ a-b
p' = canSubtractFromEqualityRight p
go : (a-b : ℕ) (pr1 : succ (a-b +N a) ≡ b) (a-b2 : ℕ) (pr2 : succ (a-b2 +N a) ≡ b) (p : a-b2 ≡ a-b) → (le a-b pr1) ≡ (le a-b2 pr2)
go a-b pr1 a-b2 pr2 eq rewrite eq = applyEquality (λ i → le a-b i) (≡Unique pr1 pr2)
leqUnique : {a b : ℕ} → (p1 : a ≤N b) → (p2 : a ≤N b) → p1 ≡ p2
leqUnique (inl a<b) (inl a<b2) = applyEquality inl (<Nunique a<b a<b2)
leqUnique (inl a<b) (inr a=b) rewrite a=b = exFalso (lessIrreflexive a<b)
leqUnique (inr a=b) (inl a<b) rewrite a=b = exFalso (lessIrreflexive a<b)
leqUnique (inr a=b1) (inr a=b2) rewrite a=b1 | a=b2 = refl
NatMonoid : Category {lzero} {lzero}
NatMonoid = record { objects = True ; arrows = λ _ _ → ℕ ; id = λ x → 0 ; _∘_ = λ f g → f +N g ; rightId = λ f → refl ; leftId = λ f → Semiring.sumZeroRight ℕSemiring f ; associative = λ a b c → Semiring.+Associative ℕSemiring a b c }
typeCastCat : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (S T : Category.objects C) (pr : Functor.onObj F ≡ Functor.onObj G) → Category.arrows D (Functor.onObj G S) (Functor.onObj G T) ≡ Category.arrows D (Functor.onObj F S) (Functor.onObj F T)
typeCastCat F G S T pr rewrite pr = refl
equalityFunctionsEqual : {a b : _} {A : Set a} {B : Set b} (f : A → (B ≡ B)) → (g : A → (B ≡ B)) → (f ≡ g)
equalityFunctionsEqual f g = extensionality λ x → ≡Unique (f x) (g x)
equalityFunctionsEqual' : {a b : _} {A : Set a} {B : Set b} (f : A → (B ≡ B)) → (g : A → (B ≡ B)) → (f ≡ g)
equalityFunctionsEqual' f g = extensionality λ x → ≡Unique (f x) (g x)
functorsEqual' : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (objEq : (Functor.onObj F) ≡ Functor.onObj G) (arrEq : ∀ {S T : Category.objects C} → {f : Category.arrows C S T} → (Functor.onArrow F {S} {T} f ≡ (typeCast (Functor.onArrow G {S} {T} f) (typeCastCat F G S T objEq)))) → F ≡ G
functorsEqual' record { onObj = onObjF ; onArrow = onArrowF ; mapId = mapIdF ; mapCompose = mapComposeF } record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } prObj prArr rewrite prObj = {!!}
VEC : {a : _} → ℕ → Functor (SET {a}) (SET {a})
VEC {a} n = record { onObj = λ X → Vec X n ; onArrow = λ f → λ v → vecMap f v ; mapId = extensionality mapId' ; mapCompose = λ f g → extensionality λ vec → help f g vec }
where
vecMapLemma : {a : _} {T : Set a} {n : ℕ} (v : Vec T n) → vecMap (Category.id SET T) v ≡ v
vecMapLemma {a} v with inspect (SET {a})
vecMapLemma {a} v | y with≡ SetCopy = vecMapIdFact (λ i → refl) v
mapId' : {a : _} {T : Set a} {n : ℕ} → (v : Vec T n) → vecMap (Category.id SET T) v ≡ Category.id SET (Vec T n) v
mapId' v rewrite vecMapLemma v = refl
help : ∀ {a n} {X Y Z : Category.objects (SET {a})} (f : X → Y) (g : Y → Z) (vec : Vec X n) → vecMap (λ x → g (f x)) vec ≡ vecMap g (vecMap f vec)
help f g vec = equalityCommutative (vecMapCompositionFact (λ x → refl) vec)
CATEGORY : {a b : _} → Category {lsuc b ⊔ lsuc a} {b ⊔ a}
CATEGORY {a} {b} = record { objects = Category {a} {b} ; arrows = λ C D → Functor C D ; _∘_ = λ F G → functorCompose F G ; id = λ C → idFunctor C ; rightId = λ F → {!!} ; leftId = λ F → {!!} ; associative = {!!} }
where
rightIdFact : {a b c d : _} → {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) → functorCompose (idFunctor D) F ≡ F
rightIdFact {C = C} {D} F = {!!}
| {
"alphanum_fraction": 0.5952380952,
"avg_line_length": 65.6923076923,
"ext": "agda",
"hexsha": "41dde7d2d35259c4cbe18ff829272c4a1ca337fb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Categories/Category.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Categories/Category.agda",
"max_line_length": 386,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2010,
"size": 5124
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.