Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Product of type-many categories
{-# OPTIONS --safe #-}
module Cubical.Categories.Constructions.Product where
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
private
variable
ℓA ℓC ℓC' : Level
open Category
ΠC : (A : Type ℓA) → (catC : A → Category ℓC ℓC') → Category (ℓ-max ℓA ℓC) (ℓ-max ℓA ℓC')
ob (ΠC A catC) = (a : A) → ob (catC a)
Hom[_,_] (ΠC A catC) c c' = (a : A) → catC a [ c a , c' a ]
id (ΠC A catC) a = id (catC a)
_⋆_ (ΠC A catC) g f a = g a ⋆⟨ catC a ⟩ f a
⋆IdL (ΠC A catC) f = funExt λ a → ⋆IdL (catC a) (f a)
⋆IdR (ΠC A catC) f = funExt λ a → ⋆IdR (catC a) (f a)
⋆Assoc (ΠC A catC) h g f = funExt λ a → ⋆Assoc (catC a) (h a) (g a) (f a)
isSetHom (ΠC A catC) = isSetΠ (λ a → isSetHom (catC a))
| {
"alphanum_fraction": 0.6346381969,
"avg_line_length": 32.4230769231,
"ext": "agda",
"hexsha": "e249fe2ae5b9e24de8ec0967f0be7352d9bf1166",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/Constructions/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/Constructions/Product.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/Constructions/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 374,
"size": 843
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Category.Properties where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Category.Base hiding (isSetHom)
open Precategory
private
variable
ℓ ℓ' : Level
module _ {C : Precategory ℓ ℓ'} ⦃ isC : isCategory C ⦄ where
open isCategory isC
-- isSet where your allowed to compare paths where one side is only
-- equal up to path. Is there a generalization of this?
isSetHomP1 : ∀ {x y : C .ob} {n : C [ x , y ]}
→ isOfHLevelDep 1 (λ m → m ≡ n)
isSetHomP1 {x = x} {y} {n} = isOfHLevel→isOfHLevelDep 1 (λ m → isSetHom m n)
-- isSet where the arrows can be between non-definitionally equal obs
isSetHomP2l : ∀ {y : C .ob}
→ isOfHLevelDep 2 (λ x → C [ x , y ])
isSetHomP2l = isOfHLevel→isOfHLevelDep 2 (λ a → isSetHom {x = a})
isSetHomP2r : ∀ {x : C .ob}
→ isOfHLevelDep 2 (λ y → C [ x , y ])
isSetHomP2r = isOfHLevel→isOfHLevelDep 2 (λ a → isSetHom {y = a})
-- opposite of opposite is definitionally equal to itself
involutiveOp : ∀ {C : Precategory ℓ ℓ'} → (C ^op) ^op ≡ C
involutiveOp = refl
module _ {C : Precategory ℓ ℓ'} where
-- Other useful operations on categories
-- whisker the parallel morphisms g and g' with f
lPrecatWhisker : {x y z : C .ob} (f : C [ x , y ]) (g g' : C [ y , z ]) (p : g ≡ g') → f ⋆⟨ C ⟩ g ≡ f ⋆⟨ C ⟩ g'
lPrecatWhisker f _ _ p = cong (_⋆_ C f) p
rPrecatWhisker : {x y z : C .ob} (f f' : C [ x , y ]) (g : C [ y , z ]) (p : f ≡ f') → f ⋆⟨ C ⟩ g ≡ f' ⋆⟨ C ⟩ g
rPrecatWhisker _ _ g p = cong (λ v → v ⋆⟨ C ⟩ g) p
-- working with equal objects
idP : ∀ {x x'} {p : x ≡ x'} → C [ x , x' ]
idP {x = x} {x'} {p} = subst (λ v → C [ x , v ]) p (C .id x)
-- heterogeneous seq
seqP : ∀ {x y y' z} {p : y ≡ y'}
→ (f : C [ x , y ]) (g : C [ y' , z ])
→ C [ x , z ]
seqP {x = x} {_} {_} {z} {p} f g = f ⋆⟨ C ⟩ (subst (λ a → C [ a , z ]) (sym p) g)
-- also heterogeneous seq, but substituting on the left
seqP' : ∀ {x y y' z} {p : y ≡ y'}
→ (f : C [ x , y ]) (g : C [ y' , z ])
→ C [ x , z ]
seqP' {x = x} {_} {_} {z} {p} f g = subst (λ a → C [ x , a ]) p f ⋆⟨ C ⟩ g
-- show that they're equal
seqP≡seqP' : ∀ {x y y' z} {p : y ≡ y'}
→ (f : C [ x , y ]) (g : C [ y' , z ])
→ seqP {p = p} f g ≡ seqP' {p = p} f g
seqP≡seqP' {x = x} {z = z} {p = p} f g i =
(toPathP {A = λ i' → C [ x , p i' ]} {f} refl i)
⋆⟨ C ⟩
(toPathP {A = λ i' → C [ p (~ i') , z ]} {x = g} (sym refl) (~ i))
-- seqP is equal to normal seq when y ≡ y'
seqP≡seq : ∀ {x y z}
→ (f : C [ x , y ]) (g : C [ y , z ])
→ seqP {p = refl} f g ≡ f ⋆⟨ C ⟩ g
seqP≡seq {y = y} {z} f g i = f ⋆⟨ C ⟩ toPathP {A = λ _ → C [ y , z ]} {x = g} refl (~ i)
-- whiskering with heterogenous seq -- (maybe should let z be heterogeneous too)
lPrecatWhiskerP : {x y z y' : C .ob} {p : y ≡ y'}
→ (f : C [ x , y ]) (g : C [ y , z ]) (g' : C [ y' , z ])
→ (r : PathP (λ i → C [ p i , z ]) g g')
→ f ⋆⟨ C ⟩ g ≡ seqP {p = p} f g'
lPrecatWhiskerP f g g' r = cong (λ v → f ⋆⟨ C ⟩ v) (sym (fromPathP (symP r)))
rPrecatWhiskerP : {x y' y z : C .ob} {p : y' ≡ y}
→ (f' : C [ x , y' ]) (f : C [ x , y ]) (g : C [ y , z ])
→ (r : PathP (λ i → C [ x , p i ]) f' f)
→ f ⋆⟨ C ⟩ g ≡ seqP' {p = p} f' g
rPrecatWhiskerP f' f g r = cong (λ v → v ⋆⟨ C ⟩ g) (sym (fromPathP r))
| {
"alphanum_fraction": 0.4817477876,
"avg_line_length": 38.4680851064,
"ext": "agda",
"hexsha": "d4d0575f79cde2f25fca3dc344337e0a4a1acef0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Category/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Category/Properties.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Category/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1540,
"size": 3616
} |
module Assume where
postulate
assume : ∀ {a} {A : Set a} → A | {
"alphanum_fraction": 0.619047619,
"avg_line_length": 15.75,
"ext": "agda",
"hexsha": "b0d4d04597451d66353e10086de07da48775b108",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/reals",
"max_forks_repo_path": "src/Assume.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/reals",
"max_issues_repo_path": "src/Assume.agda",
"max_line_length": 32,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/reals",
"max_stars_repo_path": "src/Assume.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 22,
"size": 63
} |
{-# OPTIONS --sized-types #-}
module BinTree where
open import Data.Nat
open import Data.List
open import Data.List.Properties
open import Size
data Bin {T : Set} {i : Size} : Set where
Leaf : Bin {T} {i}
Node : T → Bin {T} {i} → Bin {T} {i} → Bin {T} {i}
data Rose {T : Set} {i : Size} : Set where
Empty : Rose {T} {i}
R : T → List (Rose {T} {i}) → Rose {T} {i}
BinListToBin : {T : Set} → List (Bin {T}) → Bin {T}
BinListToBin [] = Leaf
BinListToBin (Leaf ∷ bs) = BinListToBin bs
BinListToBin (Node x b b₁ ∷ bs) = Node x b (BinListToBin bs)
Seperate : {T : Set} → Bin {T} → List (Bin {T})
Seperate Leaf = []
Seperate (Node x b b₁) = Node x b Leaf ∷ Seperate b₁
RoseToBin : {i : Size} → {T : Set} → Rose {T} {∞} → Bin {T} {∞}
RoseToBin Empty = Leaf
RoseToBin (R x x₁) = Node x (BinListToBin (map RoseToBin x₁)) Leaf
BinToRose : {T : Set} → Bin {T} → Rose {T}
BinToRose Leaf = Empty
BinToRose (Node x b b₁) = R x (map BinToRose (Seperate b₁))
| {
"alphanum_fraction": 0.6091954023,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "496f0d257fc2caddbbaf53313ffd0fcbcebbac80",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/BinTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/BinTree.agda",
"max_line_length": 66,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/BinTree.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 370,
"size": 957
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Structures.Field.Utils
{k ℓ} (K : Field k ℓ)
where
open Field K hiding (zero)
open import Data.Fin
import Data.Nat as Nat
private
K' : Set k
K' = Carrier
δ : ∀ {n p} -> Fin n -> Fin p -> K'
δ zero zero = 1#
δ (suc i) zero = 0#
δ zero (suc j) = 0#
δ (suc i) (suc j) = δ i j
δ-comm : ∀ {n p} (i : Fin n) (j : Fin p) -> δ i j ≈ δ j i
δ-comm zero zero = refl
δ-comm (suc i) zero = refl
δ-comm zero (suc j) = refl
δ-comm (suc i) (suc j) = δ-comm i j
δ-cancelˡ : ∀ {n p} (j : Fin p) -> δ {Nat.suc n} zero (suc j) ≈ 0#
δ-cancelˡ zero = refl
δ-cancelˡ (suc j) = refl
δ-cancelʳ : ∀ {n p} (i : Fin n) -> δ {p = Nat.suc p} (suc i) zero ≈ 0#
δ-cancelʳ {n} {p} i = trans (δ-comm (suc i) (zero {Nat.suc p})) (δ-cancelˡ {p} {n} i)
| {
"alphanum_fraction": 0.5712560386,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "725bba59b62dbd23240415edcd113cefc38a1016",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Structures/Field/Utils.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Structures/Field/Utils.agda",
"max_line_length": 85,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Structures/Field/Utils.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 348,
"size": 828
} |
module Data.Num.Bij where
open import Data.List hiding ([_])
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_)
import Level
--------------------------------------------------------------------------------
-- Bijective Numeration
--
-- A numeral system which has a unique representation for every non-negative
-- interger
-- http://en.wikipedia.org/wiki/Bijective_numeration
--------------------------------------------------------------------------------
-- zeroless binary number
infixl 7 _*B_
infixl 6 _+B_
data DigitB : Set where
one : DigitB
two : DigitB
Bij : Set
Bij = List DigitB
incrB : Bij → Bij
incrB [] = one ∷ []
incrB (one ∷ a) = two ∷ a
incrB (two ∷ a) = one ∷ incrB a
-- addition
_+B_ : Bij → Bij → Bij
[] +B b = b
a +B [] = a
(one ∷ as) +B (one ∷ bs) = two ∷ as +B bs
(one ∷ as) +B (two ∷ bs) = one ∷ incrB (as +B bs)
(two ∷ as) +B (one ∷ bs) = one ∷ incrB (as +B bs)
(two ∷ as) +B (two ∷ bs) = two ∷ incrB (as +B bs)
-- arithmetic shift
*2_ : Bij → Bij
*2 [] = []
*2 (one ∷ as) = two ∷ *2 as
*2 (two ∷ as) = two ∷ incrB (*2 as)
-- multiplication
_*B_ : Bij → Bij → Bij
[] *B b = []
(one ∷ as) *B b = b +B (*2 (as *B b))
(two ∷ as) *B b = b +B b +B (*2 (as *B b))
--------------------------------------------------------------------------------
-- Ordering
--------------------------------------------------------------------------------
infix 4 _≤-digitB_ _≤B_ _<B_
data _≤-digitB_ : Rel DigitB Level.zero where
1≤1 : one ≤-digitB one
1≤2 : one ≤-digitB two
2≤2 : two ≤-digitB two
data _≤B_ : Rel Bij Level.zero where
[]≤all : ∀ {n} → [] ≤B n
≤here : ∀ {as bs a b} -- compare the least digit
→ {a≤b : a ≤-digitB b}
→ {as≡bs : as ≡ bs}
→ a ∷ as ≤B b ∷ bs
≤there : ∀ {as bs a b}
→ (as<bs : incrB as ≤B bs) -- compare the rest digits
→ a ∷ as ≤B b ∷ bs
_<B_ : Rel Bij Level.zero
a <B b = incrB a ≤B b
{-
decr : Bij → Bij
decr [] = []
decr (one ∷ a) = a
decr (two ∷ a) = one ∷ a
_-_ : Bij → Bij → Bij
[] - bs = []
as - [] = as
(one ∷ as) - (one ∷ bs) = as - bs
(one ∷ as) - (two ∷ bs) = one ∷ decr (as - bs)
(two ∷ as) - (one ∷ bs) = one ∷ as - bs
(two ∷ as) - (two ∷ bs) = as - bs
-}
--------------------------------------------------------------------------------
-- typeclass for converting data types to Bij
-- http://people.cs.kuleuven.be/~dominique.devriese/agda-instance-arguments/icfp001-Devriese.pdf
record Conversion (t : Set) : Set where
constructor conversion
field
[_] : t → Bij
!_! : Bij → t
-- split morphism
-- !_! is a section of [_]
-- [_] is a retraction of !_!
-- [!!]-id : ∀ n → [ ! n ! ] ≡ n
[_] : ∀ {t} → {{convT : Conversion t}} → t → Bij
[_] {{convT}} = Conversion.[ convT ]
!_! : ∀ {t} → {{convT : Conversion t}} → Bij → t
!_! {{convT}} = Conversion.! convT !
--[!!]-id : ∀ {t} → {{convT : Conversion t}} → (n : Bij) → [ ! n ! ] ≡ n
--[!!]-id {{convT}} = Conversion.[!!]-id convT
-- alias, more meaningful than the forgettable [_] and !_! (replace them some day)
toBij = [_]
fromBij = !_!
| {
"alphanum_fraction": 0.4555281038,
"avg_line_length": 26.325203252,
"ext": "agda",
"hexsha": "3fe37079ecc72a0ddfb7963fbe463b555f8c60a6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/Data/Num/Bij.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/Data/Num/Bij.agda",
"max_line_length": 97,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/Data/Num/Bij.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1090,
"size": 3238
} |
{-# OPTIONS --without-K #-}
module NTypes.HedbergsTheorem where
open import GroupoidStructure
open import NTypes
open import NTypes.Negation
open import PathOperations
open import Transport
open import Types
stable : ∀ {a} → Set a → Set a
stable A = ¬ ¬ A → A
dec : ∀ {a} → Set a → Set a
dec A = A ⊎ ¬ A
dec→stable : ∀ {a} {A : Set a} → dec A → stable A
dec→stable {A = A} = case (λ _ → stable A)
(λ a _ → a)
(λ ¬a ¬¬a → 0-elim (¬¬a ¬a))
dec-eq : ∀ {a} → Set a → Set a
dec-eq A = (x y : A) → dec (x ≡ y)
stable-eq : ∀ {a} → Set a → Set a
stable-eq A = (x y : A) → stable (x ≡ y)
dec-eq→stable-eq : ∀ {a} {A : Set a} → dec-eq A → stable-eq A
dec-eq→stable-eq dec x y = dec→stable (dec x y)
-- Lemma 2.9.6 from HoTT book.
lemma : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c}
{x y : A} (p : x ≡ y) (f : B x → C x) (g : B y → C y) →
tr _ p f ≡ g → (b : B x) → tr _ p (f b) ≡ g (tr _ p b)
lemma {B = B} {C = C} = J
(λ x y p → (f : B x → C x) (g : B y → C y) →
tr _ p f ≡ g → (b : B x) → tr _ p (f b) ≡ g (tr _ p b))
(λ _ _ _ → happly) _ _
stable-eq→set : ∀ {a} {A : Set a} → stable-eq A → isSet A
stable-eq→set {A = A} h _ _ p q = J
(λ x y p → (q : x ≡ y) → q ≡ p)
K _ _ q p
where
K : (x : A) (p : x ≡ x) → p ≡ refl
K x p
= id·p _ ⁻¹
· ap (λ z → z · p)
(p⁻¹·p (h x x r)) ⁻¹
· p·q·r (h x x r ⁻¹) (h x x r) p ⁻¹
· ap (λ z → h x x r ⁻¹ · z)
( tr-post x p (h x x r) ⁻¹
· lemma p (h x x) (h x x) (apd (h x) p) r
· ap (h x x)
(¬-isProp (tr (λ v → ¬ ¬ (x ≡ v)) p r) r)
)
· p⁻¹·p (h x x r)
where
-- Choice of r doesn't matter.
r : ¬ ¬ (x ≡ x)
r c = c refl
| {
"alphanum_fraction": 0.4627403846,
"avg_line_length": 26.8387096774,
"ext": "agda",
"hexsha": "f8e064b61a7a6443ec3b1de45f5652126a692a4a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/NTypes/HedbergsTheorem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/NTypes/HedbergsTheorem.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/NTypes/HedbergsTheorem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 777,
"size": 1664
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X] where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.Vec
open import Cubical.Data.Vec.OperationsNat
open import Cubical.Data.Sigma
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
private variable
ℓ : Level
-----------------------------------------------------------------------------
-- Lift
open IsRingHom
open CommRingStr
module _
(A'@(A , Astr) : CommRing ℓ)
(B'@(B , Bstr) : CommRing ℓ)
(n : ℕ)
where
private
PA = PolyCommRing A' n
PB = PolyCommRing B' n
makeCommRingHomPoly : (f : CommRingHom A' B') → CommRingHom (PolyCommRing A' n) (PolyCommRing B' n)
fst (makeCommRingHomPoly (f , fstr)) = DS-Rec-Set.f _ _ _ _ trunc
(0r (snd PB))
(λ v a → base v (f a))
(_+_ (snd PB))
(+Assoc (snd PB))
(+IdR (snd PB))
(+Comm (snd PB))
(λ v → (cong (base v) (pres0 fstr)) ∙ (base-neutral v))
(λ v a b → (base-add v (f a) (f b)) ∙ (cong (base v) (sym (pres+ fstr a b))))
snd (makeCommRingHomPoly (f , fstr)) = makeIsRingHom
(cong (base (replicate zero)) (pres1 fstr))
(λ _ _ → refl)
(DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ λ _ → trunc _ _)
(λ _ → refl)
(λ v a → DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ v' b → cong (base (v +n-vec v')) (pres· fstr a b))
(λ {U V} ind-U ind-V → cong₂ (_+_ (snd PB)) ind-U ind-V))
λ {U V} ind-U ind-V Q → cong₂ (_+_ (snd PB)) (ind-U Q) (ind-V Q))
-----------------------------------------------------------------------------
-- Lift preserve equivalence
module _
(A'@(A , Astr) : CommRing ℓ)
(B'@(B , Bstr) : CommRing ℓ)
(n : ℕ)
where
private
PA = PolyCommRing A' n
PB = PolyCommRing B' n
open Iso
open RingEquivs
lift-equiv-poly : (e : CommRingEquiv A' B') → CommRingEquiv (PolyCommRing A' n) (PolyCommRing B' n)
fst (lift-equiv-poly (e , fstr)) = isoToEquiv is
where
f = fst e
g = invEq e
gstr : IsRingHom (snd (CommRing→Ring B')) g (snd (CommRing→Ring A'))
gstr = isRingHomInv (e , fstr)
is : Iso (fst PA) (fst PB)
fun is = fst (makeCommRingHomPoly A' B' n (f , fstr))
inv is = fst (makeCommRingHomPoly B' A' n (g , gstr))
rightInv is = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ v a → cong (base v) (secEq e a))
λ {U V} ind-U ind-V → cong₂ (_+_ (snd PB)) ind-U ind-V
leftInv is = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ v a → cong (base v) (retEq e a))
λ {U V} ind-U ind-V → cong₂ (_+_ (snd PA)) ind-U ind-V
snd (lift-equiv-poly (e , fstr)) = snd (makeCommRingHomPoly A' B' n ((fst e) , fstr))
| {
"alphanum_fraction": 0.4672774869,
"avg_line_length": 39.381443299,
"ext": "agda",
"hexsha": "de02b8254c9ada7abb07ee07888f0534b79ec075",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/AB-An[X]Bn[X].agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/AB-An[X]Bn[X].agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/AB-An[X]Bn[X].agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1043,
"size": 3820
} |
module Imports.Issue5357-D where
A : Set₁
A = Set₁
| {
"alphanum_fraction": 0.7450980392,
"avg_line_length": 12.75,
"ext": "agda",
"hexsha": "405b997861ebbc555d6a9d2740c409d9087238bc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Imports/Issue5357-BadD.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Imports/Issue5357-BadD.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Imports/Issue5357-BadD.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 51
} |
{-# OPTIONS --rewriting #-}
data _≅_ {ℓ} {A : Set ℓ} (x : A) : {B : Set ℓ} → B → Set where
refl : x ≅ x
{-# BUILTIN REWRITE _≅_ #-}
| {
"alphanum_fraction": 0.4852941176,
"avg_line_length": 19.4285714286,
"ext": "agda",
"hexsha": "d373c456256e2c897bb123c24017c6e4a328f91f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1990.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1990.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1990.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 59,
"size": 136
} |
-- Andreas, 2011-04-07
module IrrelevantTelescopeRecord where
record Wrap .(A : Set) : Set where
field
out : A
-- cannot use A, because it is declared irrelevant
| {
"alphanum_fraction": 0.7117647059,
"avg_line_length": 18.8888888889,
"ext": "agda",
"hexsha": "c8d39c5297308aff9c83399da668b9ee9bd2c29d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/IrrelevantTelescopeRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/IrrelevantTelescopeRecord.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/IrrelevantTelescopeRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 50,
"size": 170
} |
{-# BUILTIN STRING String #-}
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
nonEmpty : String → Set
nonEmpty "" = Bool
nonEmpty _ = ⊤
foo : ∀ s → nonEmpty s → Bool
foo "" true = true
foo "" false = false
foo s p = false
| {
"alphanum_fraction": 0.6188679245,
"avg_line_length": 15.5882352941,
"ext": "agda",
"hexsha": "1bebe3370622d3d32b5b65ba3d1c0c23d7e9a1e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue708.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue708.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue708.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z",
"num_tokens": 82,
"size": 265
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor.Representable where
open import Level
open import Categories.Category
open import Categories.Agda
open import Categories.Functor using (Functor)
open import Categories.Functor.Hom
open import Categories.NaturalIsomorphism
record Representable {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ suc ℓ ⊔ suc e) where
open Category C
open Hom C
field
F : Functor C (ISetoids ℓ e) -- should this be a parameter to the record?
A : Obj
Iso : NaturalIsomorphism F Hom[ A ,-]
| {
"alphanum_fraction": 0.7371323529,
"avg_line_length": 28.6315789474,
"ext": "agda",
"hexsha": "c98e44c16176f83f3e0374f28b4362be570b2f02",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Representable.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Representable.agda",
"max_line_length": 81,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Representable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 151,
"size": 544
} |
-- Define the integers as a HIT by identifying +0 and -0
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Ints.QuoInt.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Int hiding (abs; sgn)
open import Cubical.Data.Nat
data ℤ : Type₀ where
pos : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
posneg : pos 0 ≡ neg 0
recℤ : ∀ {l} {A : Type l} → (pos' neg' : ℕ → A) → pos' 0 ≡ neg' 0 → ℤ → A
recℤ pos' neg' eq (pos m) = pos' m
recℤ pos' neg' eq (neg m) = neg' m
recℤ pos' neg' eq (posneg i) = eq i
indℤ : ∀ {l} (P : ℤ → Type l)
→ (pos' : ∀ n → P (pos n))
→ (neg' : ∀ n → P (neg n))
→ (λ i → P (posneg i)) [ pos' 0 ≡ neg' 0 ]
→ ∀ z → P z
indℤ P pos' neg' eq (pos n) = pos' n
indℤ P pos' neg' eq (neg n) = neg' n
indℤ P pos' neg' eq (posneg i) = eq i
Int→ℤ : Int → ℤ
Int→ℤ (pos n) = pos n
Int→ℤ (negsuc n) = neg (suc n)
ℤ→Int : ℤ → Int
ℤ→Int (pos n) = pos n
ℤ→Int (neg zero) = pos 0
ℤ→Int (neg (suc n)) = negsuc n
ℤ→Int (posneg _) = pos 0
ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n
ℤ→Int→ℤ (pos n) _ = pos n
ℤ→Int→ℤ (neg zero) i = posneg i
ℤ→Int→ℤ (neg (suc n)) _ = neg (suc n)
ℤ→Int→ℤ (posneg j) i = posneg (j ∧ i)
Int→ℤ→Int : ∀ (n : Int) → ℤ→Int (Int→ℤ n) ≡ n
Int→ℤ→Int (pos n) _ = pos n
Int→ℤ→Int (negsuc n) _ = negsuc n
Int≡ℤ : Int ≡ ℤ
Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int)
isSetℤ : isSet ℤ
isSetℤ = subst isSet Int≡ℤ isSetInt
sucℤ : ℤ → ℤ
sucℤ (pos n) = pos (suc n)
sucℤ (neg zero) = pos 1
sucℤ (neg (suc n)) = neg n
sucℤ (posneg _) = pos 1
predℤ : ℤ → ℤ
predℤ (pos zero) = neg 1
predℤ (pos (suc n)) = pos n
predℤ (neg n) = neg (suc n)
predℤ (posneg _) = neg 1
sucPredℤ : ∀ n → sucℤ (predℤ n) ≡ n
sucPredℤ (pos zero) = sym posneg
sucPredℤ (pos (suc _)) = refl
sucPredℤ (neg _) = refl
sucPredℤ (posneg i) j = posneg (i ∨ ~ j)
predSucℤ : ∀ n → predℤ (sucℤ n) ≡ n
predSucℤ (pos _) = refl
predSucℤ (neg zero) = posneg
predSucℤ (neg (suc _)) = refl
predSucℤ (posneg i) j = posneg (i ∧ j)
_+ℤ_ : ℤ → ℤ → ℤ
m +ℤ (pos (suc n)) = sucℤ (m +ℤ pos n)
m +ℤ (neg (suc n)) = predℤ (m +ℤ neg n)
m +ℤ _ = m
sucPathℤ : ℤ ≡ ℤ
sucPathℤ = isoToPath (iso sucℤ predℤ sucPredℤ predSucℤ)
-- We do the same trick as in Cubical.Data.Int to prove that addition
-- is an equivalence
addEqℤ : ℕ → ℤ ≡ ℤ
addEqℤ zero = refl
addEqℤ (suc n) = addEqℤ n ∙ sucPathℤ
predPathℤ : ℤ ≡ ℤ
predPathℤ = isoToPath (iso predℤ sucℤ predSucℤ sucPredℤ)
subEqℤ : ℕ → ℤ ≡ ℤ
subEqℤ zero = refl
subEqℤ (suc n) = subEqℤ n ∙ predPathℤ
addℤ : ℤ → ℤ → ℤ
addℤ m (pos n) = transport (addEqℤ n) m
addℤ m (neg n) = transport (subEqℤ n) m
addℤ m (posneg _) = m
isEquivAddℤ : (m : ℤ) → isEquiv (λ n → addℤ n m)
isEquivAddℤ (pos n) = isEquivTransport (addEqℤ n)
isEquivAddℤ (neg n) = isEquivTransport (subEqℤ n)
isEquivAddℤ (posneg _) = isEquivTransport refl
addℤ≡+ℤ : addℤ ≡ _+ℤ_
addℤ≡+ℤ i m (pos (suc n)) = sucℤ (addℤ≡+ℤ i m (pos n))
addℤ≡+ℤ i m (neg (suc n)) = predℤ (addℤ≡+ℤ i m (neg n))
addℤ≡+ℤ i m (pos zero) = m
addℤ≡+ℤ i m (neg zero) = m
addℤ≡+ℤ _ m (posneg _) = m
isEquiv+ℤ : (m : ℤ) → isEquiv (λ n → n +ℤ m)
isEquiv+ℤ = subst (λ _+_ → (m : ℤ) → isEquiv (λ n → n + m)) addℤ≡+ℤ isEquivAddℤ
data Sign : Type₀ where
pos neg : Sign
sign : ℤ → Sign
sign (pos n) = pos
sign (neg 0) = pos
sign (neg (suc n)) = neg
sign (posneg i) = pos
abs : ℤ → ℕ
abs (pos n) = n
abs (neg n) = n
abs (posneg i) = 0
signed : Sign → ℕ → ℤ
signed Sign.pos n = pos n
signed Sign.neg n = neg n
signed-inv : ∀ z → signed (sign z) (abs z) ≡ z
signed-inv (pos n) = refl
signed-inv (neg zero) = posneg
signed-inv (neg (suc n)) = refl
signed-inv (posneg i) = \ j → posneg (i ∧ j)
{-
The square for signed-inv (posneg i)
posneg i
--------------------->
^ ^
| |
pos 0 | | posneg j
| |
| |
| |
---------------------->
= pos 0
= signed Sign.pos 0
signed (sign (posneg i))
(abs (posneg i))
-}
-- * Multiplication
_*S_ : Sign → Sign → Sign
pos *S neg = neg
neg *S pos = neg
_ *S _ = pos
_*ℤ_ : ℤ → ℤ → ℤ
m *ℤ n = signed (sign m *S sign n) (abs m * abs n)
| {
"alphanum_fraction": 0.5412782956,
"avg_line_length": 24.8950276243,
"ext": "agda",
"hexsha": "ddf68dbf6b748a48a8cbe3eb820f239614a745c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/QuoInt/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2021,
"size": 4506
} |
module examplesPaperJFP.exampleFinFun where
open import examplesPaperJFP.finn
open import Data.Nat
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = 0
toℕ (suc n) = suc (toℕ n)
mutual
_+e_ : ∀ {n m} → Even n → Even m → Even (n + m)
0p +e p = p
sucp p +e q = sucp (p +o q)
_+o_ : ∀ {n m} → Odd n → Even m → Odd (n + m)
sucp p +o q = sucp (p +e q)
| {
"alphanum_fraction": 0.5064267352,
"avg_line_length": 21.6111111111,
"ext": "agda",
"hexsha": "0addd7142d7627cf261d0c576f42c94abd85bdbf",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/exampleFinFun.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/exampleFinFun.agda",
"max_line_length": 56,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/exampleFinFun.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 189,
"size": 389
} |
module Singleton where
open import Data.List
using (List ; [] ; _∷_)
open import Data.List.All
using (All ; [] ; _∷_)
open import Membership
using (_∈_; _⊆_ ; _∷_ ; [])
[_]ˡ : ∀{a}{A : Set a} → A → List A
[ a ]ˡ = a ∷ []
[_]ᵃ : ∀{a p} {A : Set a} {P : A → Set p} {x : A} → P x → All P (x ∷ [])
[ p ]ᵃ = p ∷ []
[_]ᵐ : ∀{a} {A : Set a} {x : A} {ys : List A} → (x ∈ ys) → ((x ∷ []) ⊆ ys)
[ p ]ᵐ = p ∷ []
| {
"alphanum_fraction": 0.4393203883,
"avg_line_length": 22.8888888889,
"ext": "agda",
"hexsha": "2e01160c069c86937ad3a6cd271a5119ced83604",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Singleton.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Singleton.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Singleton.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 196,
"size": 412
} |
-- Coalgebraic strength over an endofunctor
module SOAS.Coalgebraic.Strength {T : Set} where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core {T}
open import SOAS.Abstract.Hom {T}
import SOAS.Abstract.Coalgebra {T} as →□ ; open →□.Sorted
open import SOAS.Coalgebraic.Map
private
variable
Γ Δ Θ : Ctx
α : T
-- Pointed coalgebraic strength for a family endofunctor
record Strength (Fᶠ : Functor 𝔽amiliesₛ 𝔽amiliesₛ) : Set₁ where
open Functor Fᶠ
open Coalgₚ
field
-- Strength transformation that lifts a 𝒫-substitution over an endofunctor F₀
str : {𝒫 : Familyₛ}(𝒫ᴮ : Coalgₚ 𝒫)(𝒳 : Familyₛ)
→ F₀ 〖 𝒫 , 𝒳 〗 ⇾̣ 〖 𝒫 , F₀ 𝒳 〗
-- Naturality conditions for the two components
str-nat₁ : {𝒫 𝒬 𝒳 : Familyₛ}{𝒫ᴮ : Coalgₚ 𝒫}{𝒬ᴮ : Coalgₚ 𝒬}
→ {f : 𝒬 ⇾̣ 𝒫} (fᴮ⇒ : Coalgₚ⇒ 𝒬ᴮ 𝒫ᴮ f)
→ (h : F₀ 〖 𝒫 , 𝒳 〗 α Γ) (σ : Γ ~[ 𝒬 ]↝ Δ)
→ str 𝒫ᴮ 𝒳 h (f ∘ σ)
≡ str 𝒬ᴮ 𝒳 (F₁ (λ{ h′ ς → h′ (λ v → f (ς v))}) h) σ
str-nat₂ : {𝒫 𝒳 𝒴 : Familyₛ}{𝒫ᴮ : Coalgₚ 𝒫}
→ (f : 𝒳 ⇾̣ 𝒴)(h : F₀ 〖 𝒫 , 𝒳 〗 α Γ)(σ : Γ ~[ 𝒫 ]↝ Δ)
→ str 𝒫ᴮ 𝒴 (F₁ (λ{ h′ ς → f (h′ ς)}) h) σ
≡ F₁ f (str 𝒫ᴮ 𝒳 h σ)
-- Unit law
str-unit : (𝒳 : Familyₛ)(h : F₀ 〖 ℐ , 𝒳 〗 α Γ)
→ str ℐᴮ 𝒳 h id
≡ F₁ (i 𝒳) h
-- Associativity law for a particular pointed coalgebraic map f
str-assoc : (𝒳 : Familyₛ){𝒫 𝒬 ℛ : Familyₛ}
{𝒫ᴮ : Coalgₚ 𝒫} {𝒬ᴮ : Coalgₚ 𝒬} {ℛᴮ : Coalgₚ ℛ}
{f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗}
(fᶜ : Coalgebraic 𝒫ᴮ 𝒬ᴮ ℛᴮ f) (open Coalgebraic fᶜ)
(h : F₀ 〖 ℛ , 𝒳 〗 α Γ)(σ : Γ ~[ 𝒫 ]↝ Δ)(ς : Δ ~[ 𝒬 ]↝ Θ)
→ str ℛᴮ 𝒳 h (λ v → f (σ v) ς)
≡ str 𝒬ᴮ 𝒳 (str 〖𝒫,𝒴〗ᴮ 〖 𝒬 , 𝒳 〗 (F₁ (L 𝒬 ℛ 𝒳) h) (f ∘ σ)) ς
module _ (𝒳 {𝒫 𝒬 ℛ} : Familyₛ) where
-- Precompose an internal hom by a parametrised map
precomp : (f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗) → 〖 ℛ , 𝒳 〗 ⇾̣ 〖 𝒫 , 〖 𝒬 , 𝒳 〗 〗
precomp f h σ ς = h (λ v → f (σ v) ς)
-- Corollary: strength distributes over pointed coalgebraic maps
str-dist : {𝒫ᴮ : Coalgₚ 𝒫} {𝒬ᴮ : Coalgₚ 𝒬} {ℛᴮ : Coalgₚ ℛ}
{f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗}
(fᶜ : Coalgebraic 𝒫ᴮ 𝒬ᴮ ℛᴮ f)
(h : F₀ 〖 ℛ , 𝒳 〗 α Γ)(σ : Γ ~[ 𝒫 ]↝ Δ)(ς : Δ ~[ 𝒬 ]↝ Θ)
→ str ℛᴮ 𝒳 h (λ v → f (σ v) ς)
≡ str 𝒬ᴮ 𝒳 (str 𝒫ᴮ 〖 𝒬 , 𝒳 〗 (F₁ (precomp f) h) σ) ς
str-dist {𝒫ᴮ = 𝒫ᴮ} {𝒬ᴮ} {ℛᴮ} {f} fᶜ h σ ς =
begin
str ℛᴮ 𝒳 h (λ v → f (σ v) ς)
≡⟨ str-assoc 𝒳 fᶜ h σ ς ⟩
str 𝒬ᴮ 𝒳 (str 〖𝒫,𝒴〗ᴮ 〖 𝒬 , 𝒳 〗 (F₁ (L 𝒬 ℛ 𝒳) h) (f ∘ σ)) ς
≡⟨ cong (λ - → str 𝒬ᴮ 𝒳 - ς) (str-nat₁ fᴮ⇒ (F₁ (L 𝒬 ℛ 𝒳) h) σ) ⟩
str 𝒬ᴮ 𝒳 (str 𝒫ᴮ 〖 𝒬 , 𝒳 〗 (F₁ 〖 f , 〖 𝒬 , 𝒳 〗 〗ₗ
(F₁ (L 𝒬 ℛ 𝒳) h)) σ) ς
≡˘⟨ cong (λ - → str 𝒬ᴮ 𝒳 (str 𝒫ᴮ 〖 𝒬 , 𝒳 〗 - σ) ς) homomorphism ⟩
str 𝒬ᴮ 𝒳 (str 𝒫ᴮ 〖 𝒬 , 𝒳 〗 (F₁ (precomp f) h) σ) ς
∎
where
open ≡-Reasoning
open Coalgebraic fᶜ renaming (ᴮ⇒ to fᴮ⇒)
| {
"alphanum_fraction": 0.4826551034,
"avg_line_length": 35.6904761905,
"ext": "agda",
"hexsha": "dcb907ecd92c2056250e5f430ae2cee52b44204e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Coalgebraic/Strength.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Coalgebraic/Strength.agda",
"max_line_length": 81,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Coalgebraic/Strength.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1777,
"size": 2998
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Functor.Core where
open import Level
private
variable
o ℓ e o′ ℓ′ e′ : Level
record Functor (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
eta-equality
private module C = Category C
private module D = Category D
field
F₀ : C.Obj → D.Obj
F₁ : ∀ {A B} (f : C [ A , B ]) → D [ F₀ A , F₀ B ]
identity : ∀ {A} → D [ F₁ (C.id {A}) ≈ D.id ]
homomorphism : ∀ {X Y Z} {f : C [ X , Y ]} {g : C [ Y , Z ]} →
D [ F₁ (C [ g ∘ f ]) ≈ D [ F₁ g ∘ F₁ f ] ]
F-resp-≈ : ∀ {A B} {f g : C [ A , B ]} → C [ f ≈ g ] → D [ F₁ f ≈ F₁ g ]
-- nice shorthands
₀ = F₀
₁ = F₁
op : Functor C.op D.op
op = record
{ F₀ = F₀
; F₁ = F₁
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
| {
"alphanum_fraction": 0.4673097535,
"avg_line_length": 23.9230769231,
"ext": "agda",
"hexsha": "361098fcb579588cd835d2ac13d65e6e614474c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Core.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 376,
"size": 933
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Bundles
module Properties.ConstructiveField {ℓ ℓ'} (F : ConstructiveField {ℓ} {ℓ'}) where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Function.Base using (it) -- instance search
open import MoreLogic
open MoreLogic.Reasoning
import MoreAlgebra
-- Lemma 4.1.6.
-- For a constructive field (F, 0, 1, +, ·, #), the following hold.
-- 1. 1 # 0.
-- 2. Addition + is #-compatible in the sense that for all x, y, z : F
-- x # y ⇔ x + z # y + z.
-- 3. Multiplication · is #-extensional in the sense that for all w, x, y, z : F
-- w · x # y · z ⇒ w # y ∨ x # z.
open ConstructiveField F
open import Cubical.Structures.Ring
R = (makeRing 0f 1f _+_ _·_ -_ is-set +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+)
open Cubical.Structures.Ring.Theory R
open MoreAlgebra.Properties.Ring R
-- Lemma 4.1.6.1
1f#0f : 1f # 0f
1f#0f with ·-identity 1f
1f#0f | 1·1≡1 , _ = fst (·-inv-back _ _ 1·1≡1)
-- Lemma 4.1.6.2
-- For #-compatibility of +, suppose x # y, that is, (x +z) −z # (y +z) −z.
-- Then #-extensionality gives (x + z # y + z) ∨ (−z # −z), where the latter case is excluded by irreflexivity of #.
+-#-compatible : ∀(x y z : Carrier) → x # y → x + z # y + z
+-#-compatible x y z x#y with
let P = transport (λ i → a+b-b≡a x z i # a+b-b≡a y z i ) x#y
in +-#-extensional _ _ _ _ P
... | inl x+z#y+z = x+z#y+z
... | inr -z#-z = ⊥-elim (#-irrefl _ -z#-z)
-- The other direction is similar.
+-#-compatible-inv : ∀(x y z : Carrier) → x + z # y + z → x # y
+-#-compatible-inv _ _ _ x+z#y+z with +-#-extensional _ _ _ _ x+z#y+z
... | inl x#y = x#y
... | inr z#z = ⊥-elim (#-irrefl _ z#z)
-- Lemma 4.1.6.3
·-#-extensional-case1 : ∀(w x y z : Carrier) → w · x # y · z → w · x # w · z → x # z
·-#-extensional-case1 w x y z w·x#y·z w·x#w·z =
let
instance -- this allows to use ⁻¹ᶠ without an instance argument
w·[z-x]#0f =
( w · x # w · z ⇒⟨ +-#-compatible _ _ (- (w · x)) ⟩
w · x - w · x # w · z - w · x ⇒⟨ transport (λ i → (fst (+-inv (w · x)) i) # a·b-a·c≡a·[b-c] w z x i) ⟩
0f # w · (z - x) ⇒⟨ #-sym _ _ ⟩
w · (z - x) # 0f ◼) w·x#w·z
in ( w · (z - x) # 0f ⇒⟨ (λ _ → ·-rinv (w · (z - x)) it ) ⟩ -- NOTE: "plugging in" the instance did not work, ∴ `it`
w · (z - x) · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-comm w (z - x) i · (w · (z - x)) ⁻¹ᶠ ≡ 1f) ⟩
(z - x) · w · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-assoc (z - x) w ((w · (z - x)) ⁻¹ᶠ) (~ i) ≡ 1f) ⟩
(z - x) · (w · (w · (z - x)) ⁻¹ᶠ) ≡ 1f ⇒⟨ fst ∘ (·-inv-back _ _) ⟩
z - x # 0f ⇒⟨ +-#-compatible _ _ x ⟩
(z - x) + x # 0f + x ⇒⟨ transport (λ i → +-assoc z (- x) x (~ i) # snd (+-identity x) i) ⟩
z + (- x + x) # x ⇒⟨ transport (λ i → z + snd (+-inv x) i # x) ⟩
z + 0f # x ⇒⟨ transport (λ i → fst (+-identity z) i # x) ⟩
z # x ⇒⟨ #-sym _ _ ⟩
x # z ◼) it -- conceptually we would plug `w·[z-x]#0f` in, but this breaks the very first step
·-#-extensional : ∀(w x y z : Carrier) → w · x # y · z → (w # y) ⊎ (x # z)
·-#-extensional w x y z w·x#y·z with #-cotrans _ _ w·x#y·z (w · z)
... | inl w·x#w·z = inr (·-#-extensional-case1 w x y z w·x#y·z w·x#w·z) -- first case
... | inr w·z#y·z = let z·w≡z·y = (transport (λ i → ·-comm w z i # ·-comm y z i) w·z#y·z)
in inl (·-#-extensional-case1 _ _ _ _ z·w≡z·y z·w≡z·y) -- second case reduced to first case
| {
"alphanum_fraction": 0.4946236559,
"avg_line_length": 47.0344827586,
"ext": "agda",
"hexsha": "9be9ac540dc52e2a1f978121027930c9dba34b59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Properties/ConstructiveField.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Properties/ConstructiveField.agda",
"max_line_length": 145,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Properties/ConstructiveField.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1713,
"size": 4092
} |
{-# OPTIONS --without-K #-}
module sets.bool where
open import sets.empty using (⊥)
open import sets.unit using (⊤)
open import decidable using (Dec; yes; no)
open import equality.core using (_≡_; refl)
open import level using (Level)
infixr 6 _∧_
infixr 5 _∨_ _xor_
infix 0 if_then_else_
data Bool : Set where
true false : Bool
not : Bool → Bool
not true = false
not false = true
T : Bool → Set
T true = ⊤
T false = ⊥
if_then_else_ : {a : Level} {A : Set a} → Bool → A → A → A
if true then t else f = t
if false then t else f = f
_∧_ : Bool → Bool → Bool
true ∧ b = b
false ∧ b = false
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
_xor_ : Bool → Bool → Bool
true xor b = not b
false xor b = b
_≟_ : (a b : Bool) → Dec (a ≡ b)
true ≟ true = yes refl
false ≟ false = yes refl
true ≟ false = no λ ()
false ≟ true = no λ ()
| {
"alphanum_fraction": 0.6061643836,
"avg_line_length": 18.6382978723,
"ext": "agda",
"hexsha": "9a1b5459e2707c54360ea125a1f026ea3d839391",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/bool.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/bool.agda",
"max_line_length": 58,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "sets/bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 316,
"size": 876
} |
open import Relation.Binary.Core
module BBHeap.Everything {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BBHeap.Complete.Base _≤_
open import BBHeap.Drop _≤_ tot≤ trans≤
open import BBHeap.DropLast _≤_
open import BBHeap.Heap _≤_
open import BBHeap.Height.Convert _≤_ tot≤
open import BBHeap.Height.Log _≤_ tot≤
open import BBHeap.Last
| {
"alphanum_fraction": 0.6506849315,
"avg_line_length": 29.2,
"ext": "agda",
"hexsha": "9132c3e5841473fa666f0353fd2dcd0640881da7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Everything.agda",
"max_line_length": 49,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 134,
"size": 438
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------
-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.
{-# OPTIONS --without-K --safe #-}
module Data.List.Properties where
open import Algebra.Bundles
open import Algebra.Definitions as AlgebraicDefinitions using (Involutive)
import Algebra.Structures as AlgebraicStructures
open import Data.Bool.Base using (Bool; false; true; not; if_then_else_)
open import Data.Fin.Base using (Fin; zero; suc; cast; toℕ; inject₁)
open import Data.List.Base as List
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Product as Prod hiding (map; zip)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.These.Base as These using (These; this; that; these)
open import Function
open import Level using (Level)
open import Relation.Binary as B using (DecidableEquality)
import Relation.Binary.Reasoning.Setoid as EqR
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open import Relation.Binary as B using (Rel)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary using (¬_; Dec; does; _because_; yes; no)
open import Relation.Nullary.Negation using (contradiction; ¬?)
open import Relation.Nullary.Decidable as Decidable using (isYes; map′; ⌊_⌋)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary using (Pred; Decidable; ∁)
open import Relation.Unary.Properties using (∁?)
open ≡-Reasoning
private
variable
a b c d e p : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
-----------------------------------------------------------------------
-- _∷_
module _ {x y : A} {xs ys : List A} where
∷-injective : x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys
∷-injective refl = (refl , refl)
∷-injectiveˡ : x ∷ xs ≡ y List.∷ ys → x ≡ y
∷-injectiveˡ refl = refl
∷-injectiveʳ : x ∷ xs ≡ y List.∷ ys → xs ≡ ys
∷-injectiveʳ refl = refl
∷-dec : Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x List.∷ xs ≡ y ∷ ys)
∷-dec x≟y xs≟ys = Decidable.map′ (uncurry (cong₂ _∷_)) ∷-injective (x≟y ×-dec xs≟ys)
≡-dec : DecidableEquality A → DecidableEquality (List A)
≡-dec _≟_ [] [] = yes refl
≡-dec _≟_ (x ∷ xs) [] = no λ()
≡-dec _≟_ [] (y ∷ ys) = no λ()
≡-dec _≟_ (x ∷ xs) (y ∷ ys) = ∷-dec (x ≟ y) (≡-dec _≟_ xs ys)
------------------------------------------------------------------------
-- map
map-id : map id ≗ id {A = List A}
map-id [] = refl
map-id (x ∷ xs) = cong (x ∷_) (map-id xs)
map-id₂ : ∀ {f : A → A} {xs} → All (λ x → f x ≡ x) xs → map f xs ≡ xs
map-id₂ [] = refl
map-id₂ (fx≡x ∷ pxs) = cong₂ _∷_ fx≡x (map-id₂ pxs)
map-++-commute : ∀ (f : A → B) xs ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++-commute f [] ys = refl
map-++-commute f (x ∷ xs) ys = cong (f x ∷_) (map-++-commute f xs ys)
map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g
map-cong f≗g [] = refl
map-cong f≗g (x ∷ xs) = cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
map-cong₂ : ∀ {f g : A → B} {xs} →
All (λ x → f x ≡ g x) xs → map f xs ≡ map g xs
map-cong₂ [] = refl
map-cong₂ (fx≡gx ∷ fxs≡gxs) = cong₂ _∷_ fx≡gx (map-cong₂ fxs≡gxs)
length-map : ∀ (f : A → B) xs → length (map f xs) ≡ length xs
length-map f [] = refl
length-map f (x ∷ xs) = cong suc (length-map f xs)
map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f
map-compose [] = refl
map-compose (x ∷ xs) = cong (_ ∷_) (map-compose xs)
------------------------------------------------------------------------
-- mapMaybe
mapMaybe-just : (xs : List A) → mapMaybe just xs ≡ xs
mapMaybe-just [] = refl
mapMaybe-just (x ∷ xs) = cong (x ∷_) (mapMaybe-just xs)
mapMaybe-nothing : (xs : List A) →
mapMaybe {B = A} (λ _ → nothing) xs ≡ []
mapMaybe-nothing [] = refl
mapMaybe-nothing (x ∷ xs) = mapMaybe-nothing xs
module _ (f : A → Maybe B) where
mapMaybe-concatMap : mapMaybe f ≗ concatMap (fromMaybe ∘ f)
mapMaybe-concatMap [] = refl
mapMaybe-concatMap (x ∷ xs) with f x
... | just y = cong (y ∷_) (mapMaybe-concatMap xs)
... | nothing = mapMaybe-concatMap xs
length-mapMaybe : ∀ xs → length (mapMaybe f xs) ≤ length xs
length-mapMaybe [] = z≤n
length-mapMaybe (x ∷ xs) with f x
... | just y = s≤s (length-mapMaybe xs)
... | nothing = ≤-step (length-mapMaybe xs)
------------------------------------------------------------------------
-- _++_
length-++ : ∀ (xs : List A) {ys} →
length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = cong suc (length-++ xs)
module _ {A : Set a} where
open AlgebraicDefinitions {A = List A} _≡_
open AlgebraicStructures {A = List A} _≡_
++-assoc : Associative _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)
++-identityˡ : LeftIdentity [] _++_
++-identityˡ xs = refl
++-identityʳ : RightIdentity [] _++_
++-identityʳ [] = refl
++-identityʳ (x ∷ xs) = cong (x ∷_) (++-identityʳ xs)
++-identity : Identity [] _++_
++-identity = ++-identityˡ , ++-identityʳ
++-identityʳ-unique : ∀ (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ []
++-identityʳ-unique [] refl = refl
++-identityʳ-unique (x ∷ xs) eq =
++-identityʳ-unique xs (proj₂ (∷-injective eq))
++-identityˡ-unique : ∀ {xs} (ys : List A) → xs ≡ ys ++ xs → ys ≡ []
++-identityˡ-unique [] _ = refl
++-identityˡ-unique {xs = x ∷ xs} (y ∷ ys) eq
with ++-identityˡ-unique (ys ++ [ x ]) (begin
xs ≡⟨ proj₂ (∷-injective eq) ⟩
ys ++ x ∷ xs ≡⟨ sym (++-assoc ys [ x ] xs) ⟩
(ys ++ [ x ]) ++ xs ∎)
++-identityˡ-unique {xs = x ∷ xs} (y ∷ [] ) eq | ()
++-identityˡ-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | ()
++-cancelˡ : ∀ xs {ys zs : List A} → xs ++ ys ≡ xs ++ zs → ys ≡ zs
++-cancelˡ [] ys≡zs = ys≡zs
++-cancelˡ (x ∷ xs) x∷xs++ys≡x∷xs++zs = ++-cancelˡ xs (∷-injectiveʳ x∷xs++ys≡x∷xs++zs)
++-cancelʳ : ∀ {xs : List A} ys zs → ys ++ xs ≡ zs ++ xs → ys ≡ zs
++-cancelʳ {_} [] [] _ = refl
++-cancelʳ {xs} [] (z ∷ zs) eq =
contradiction (trans (cong length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs))
++-cancelʳ {xs} (y ∷ ys) [] eq =
contradiction (trans (sym (length-++ (y ∷ ys))) (cong length eq)) (m≢1+n+m (length xs) ∘ sym)
++-cancelʳ {_} (y ∷ ys) (z ∷ zs) eq =
cong₂ _∷_ (∷-injectiveˡ eq) (++-cancelʳ ys zs (∷-injectiveʳ eq))
++-cancel : Cancellative _++_
++-cancel = ++-cancelˡ , ++-cancelʳ
++-conicalˡ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → xs ≡ []
++-conicalˡ [] _ refl = refl
++-conicalʳ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → ys ≡ []
++-conicalʳ [] _ refl = refl
++-conical : Conical [] _++_
++-conical = ++-conicalˡ , ++-conicalʳ
++-isMagma : IsMagma _++_
++-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _++_
}
++-isSemigroup : IsSemigroup _++_
++-isSemigroup = record
{ isMagma = ++-isMagma
; assoc = ++-assoc
}
++-isMonoid : IsMonoid _++_ []
++-isMonoid = record
{ isSemigroup = ++-isSemigroup
; identity = ++-identity
}
module _ (A : Set a) where
++-semigroup : Semigroup a a
++-semigroup = record
{ Carrier = List A
; isSemigroup = ++-isSemigroup
}
++-monoid : Monoid a a
++-monoid = record
{ Carrier = List A
; isMonoid = ++-isMonoid
}
------------------------------------------------------------------------
-- alignWith
module _ {f g : These A B → C} where
alignWith-cong : f ≗ g → ∀ as → alignWith f as ≗ alignWith g as
alignWith-cong f≗g [] bs = map-cong (f≗g ∘ that) bs
alignWith-cong f≗g as@(_ ∷ _) [] = map-cong (f≗g ∘ this) as
alignWith-cong f≗g (a ∷ as) (b ∷ bs) =
cong₂ _∷_ (f≗g (these a b)) (alignWith-cong f≗g as bs)
length-alignWith : ∀ xs ys →
length (alignWith f xs ys) ≡ length xs ⊔ length ys
length-alignWith [] ys = length-map (f ∘′ that) ys
length-alignWith xs@(_ ∷ _) [] = length-map (f ∘′ this) xs
length-alignWith (x ∷ xs) (y ∷ ys) = cong suc (length-alignWith xs ys)
alignWith-map : (g : D → A) (h : E → B) →
∀ xs ys → alignWith f (map g xs) (map h ys) ≡
alignWith (f ∘′ These.map g h) xs ys
alignWith-map g h [] ys = sym (map-compose ys)
alignWith-map g h xs@(_ ∷ _) [] = sym (map-compose xs)
alignWith-map g h (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (alignWith-map g h xs ys)
map-alignWith : ∀ (g : C → D) → ∀ xs ys →
map g (alignWith f xs ys) ≡
alignWith (g ∘′ f) xs ys
map-alignWith g [] ys = sym (map-compose ys)
map-alignWith g xs@(_ ∷ _) [] = sym (map-compose xs)
map-alignWith g (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (map-alignWith g xs ys)
------------------------------------------------------------------------
-- zipWith
module _ (f : A → A → B) where
zipWith-comm : (∀ x y → f x y ≡ f y x) →
∀ xs ys → zipWith f xs ys ≡ zipWith f ys xs
zipWith-comm f-comm [] [] = refl
zipWith-comm f-comm [] (x ∷ ys) = refl
zipWith-comm f-comm (x ∷ xs) [] = refl
zipWith-comm f-comm (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ (f-comm x y) (zipWith-comm f-comm xs ys)
module _ (f : A → B → C) where
zipWith-identityˡ : ∀ xs → zipWith f [] xs ≡ []
zipWith-identityˡ [] = refl
zipWith-identityˡ (x ∷ xs) = refl
zipWith-identityʳ : ∀ xs → zipWith f xs [] ≡ []
zipWith-identityʳ [] = refl
zipWith-identityʳ (x ∷ xs) = refl
length-zipWith : ∀ xs ys →
length (zipWith f xs ys) ≡ length xs ⊓ length ys
length-zipWith [] [] = refl
length-zipWith [] (y ∷ ys) = refl
length-zipWith (x ∷ xs) [] = refl
length-zipWith (x ∷ xs) (y ∷ ys) = cong suc (length-zipWith xs ys)
zipWith-map : ∀ {d e} {D : Set d} {E : Set e} (g : D → A) (h : E → B) →
∀ xs ys → zipWith f (map g xs) (map h ys) ≡
zipWith (λ x y → f (g x) (h y)) xs ys
zipWith-map g h [] [] = refl
zipWith-map g h [] (y ∷ ys) = refl
zipWith-map g h (x ∷ xs) [] = refl
zipWith-map g h (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (zipWith-map g h xs ys)
map-zipWith : ∀ {d} {D : Set d} (g : C → D) → ∀ xs ys →
map g (zipWith f xs ys) ≡
zipWith (λ x y → g (f x y)) xs ys
map-zipWith g [] [] = refl
map-zipWith g [] (y ∷ ys) = refl
map-zipWith g (x ∷ xs) [] = refl
map-zipWith g (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (map-zipWith g xs ys)
------------------------------------------------------------------------
-- unalignWith
unalignWith-this : unalignWith ((A → These A B) ∋ this) ≗ (_, [])
unalignWith-this [] = refl
unalignWith-this (a ∷ as) = cong (Prod.map₁ (a ∷_)) (unalignWith-this as)
unalignWith-that : unalignWith ((B → These A B) ∋ that) ≗ ([] ,_)
unalignWith-that [] = refl
unalignWith-that (b ∷ bs) = cong (Prod.map₂ (b ∷_)) (unalignWith-that bs)
module _ {f g : C → These A B} where
unalignWith-cong : f ≗ g → unalignWith f ≗ unalignWith g
unalignWith-cong f≗g [] = refl
unalignWith-cong f≗g (c ∷ cs) with f c | g c | f≗g c
... | this a | ._ | refl = cong (Prod.map₁ (a ∷_)) (unalignWith-cong f≗g cs)
... | that b | ._ | refl = cong (Prod.map₂ (b ∷_)) (unalignWith-cong f≗g cs)
... | these a b | ._ | refl = cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-cong f≗g cs)
module _ (f : C → These A B) where
unalignWith-map : (g : D → C) → ∀ ds →
unalignWith f (map g ds) ≡ unalignWith (f ∘′ g) ds
unalignWith-map g [] = refl
unalignWith-map g (d ∷ ds) with f (g d)
... | this a = cong (Prod.map₁ (a ∷_)) (unalignWith-map g ds)
... | that b = cong (Prod.map₂ (b ∷_)) (unalignWith-map g ds)
... | these a b = cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-map g ds)
map-unalignWith : (g : A → D) (h : B → E) →
Prod.map (map g) (map h) ∘′ unalignWith f ≗ unalignWith (These.map g h ∘′ f)
map-unalignWith g h [] = refl
map-unalignWith g h (c ∷ cs) with f c
... | this a = cong (Prod.map₁ (g a ∷_)) (map-unalignWith g h cs)
... | that b = cong (Prod.map₂ (h b ∷_)) (map-unalignWith g h cs)
... | these a b = cong (Prod.map (g a ∷_) (h b ∷_)) (map-unalignWith g h cs)
unalignWith-alignWith : (g : These A B → C) → f ∘′ g ≗ id → ∀ as bs →
unalignWith f (alignWith g as bs) ≡ (as , bs)
unalignWith-alignWith g g∘f≗id [] bs = begin
unalignWith f (map (g ∘′ that) bs) ≡⟨ unalignWith-map (g ∘′ that) bs ⟩
unalignWith (f ∘′ g ∘′ that) bs ≡⟨ unalignWith-cong (g∘f≗id ∘ that) bs ⟩
unalignWith that bs ≡⟨ unalignWith-that bs ⟩
[] , bs ∎
unalignWith-alignWith g g∘f≗id as@(_ ∷ _) [] = begin
unalignWith f (map (g ∘′ this) as) ≡⟨ unalignWith-map (g ∘′ this) as ⟩
unalignWith (f ∘′ g ∘′ this) as ≡⟨ unalignWith-cong (g∘f≗id ∘ this) as ⟩
unalignWith this as ≡⟨ unalignWith-this as ⟩
as , [] ∎
unalignWith-alignWith g g∘f≗id (a ∷ as) (b ∷ bs)
rewrite g∘f≗id (these a b) =
cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-alignWith g g∘f≗id as bs)
------------------------------------------------------------------------
-- unzipWith
module _ (f : A → B × C) where
length-unzipWith₁ : ∀ xys →
length (proj₁ (unzipWith f xys)) ≡ length xys
length-unzipWith₁ [] = refl
length-unzipWith₁ (x ∷ xys) = cong suc (length-unzipWith₁ xys)
length-unzipWith₂ : ∀ xys →
length (proj₂ (unzipWith f xys)) ≡ length xys
length-unzipWith₂ [] = refl
length-unzipWith₂ (x ∷ xys) = cong suc (length-unzipWith₂ xys)
zipWith-unzipWith : (g : B → C → A) → uncurry′ g ∘ f ≗ id →
uncurry′ (zipWith g) ∘ (unzipWith f) ≗ id
zipWith-unzipWith g f∘g≗id [] = refl
zipWith-unzipWith g f∘g≗id (x ∷ xs) =
cong₂ _∷_ (f∘g≗id x) (zipWith-unzipWith g f∘g≗id xs)
------------------------------------------------------------------------
-- foldr
foldr-universal : ∀ (h : List A → B) f e → (h [] ≡ e) →
(∀ x xs → h (x ∷ xs) ≡ f x (h xs)) →
h ≗ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) = begin
h (x ∷ xs) ≡⟨ step x xs ⟩
f x (h xs) ≡⟨ cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs) ∎
foldr-cong : ∀ {f g : A → B → B} {d e : B} →
(∀ x y → f x y ≡ g x y) → d ≡ e →
foldr f d ≗ foldr g e
foldr-cong f≗g refl [] = refl
foldr-cong f≗g d≡e (x ∷ xs) rewrite foldr-cong f≗g d≡e xs = f≗g x _
foldr-fusion : ∀ (h : B → C) {f : A → B → B} {g : A → C → C} (e : B) →
(∀ x y → h (f x y) ≡ g x (h y)) →
h ∘ foldr f e ≗ foldr g (h e)
foldr-fusion h {f} {g} e fuse =
foldr-universal (h ∘ foldr f e) g (h e) refl
(λ x xs → fuse x (foldr f e xs))
id-is-foldr : id {A = List A} ≗ foldr _∷_ []
id-is-foldr = foldr-universal id _∷_ [] refl (λ _ _ → refl)
++-is-foldr : (xs ys : List A) → xs ++ ys ≡ foldr _∷_ ys xs
++-is-foldr xs ys = begin
xs ++ ys ≡⟨ cong (_++ ys) (id-is-foldr xs) ⟩
foldr _∷_ [] xs ++ ys ≡⟨ foldr-fusion (_++ ys) [] (λ _ _ → refl) xs ⟩
foldr _∷_ ([] ++ ys) xs ≡⟨⟩
foldr _∷_ ys xs ∎
foldr-++ : ∀ (f : A → B → B) x ys zs →
foldr f x (ys ++ zs) ≡ foldr f (foldr f x zs) ys
foldr-++ f x [] zs = refl
foldr-++ f x (y ∷ ys) zs = cong (f y) (foldr-++ f x ys zs)
map-is-foldr : {f : A → B} → map f ≗ foldr (λ x ys → f x ∷ ys) []
map-is-foldr {f = f} xs = begin
map f xs ≡⟨ cong (map f) (id-is-foldr xs) ⟩
map f (foldr _∷_ [] xs) ≡⟨ foldr-fusion (map f) [] (λ _ _ → refl) xs ⟩
foldr (λ x ys → f x ∷ ys) [] xs ∎
foldr-∷ʳ : ∀ (f : A → B → B) x y ys →
foldr f x (ys ∷ʳ y) ≡ foldr f (f y x) ys
foldr-∷ʳ f x y [] = refl
foldr-∷ʳ f x y (z ∷ ys) = cong (f z) (foldr-∷ʳ f x y ys)
-- Interaction with predicates
module _ {P : Pred A p} {f : A → A → A} where
foldr-forcesᵇ : (∀ x y → P (f x y) → P x × P y) →
∀ e xs → P (foldr f e xs) → All P xs
foldr-forcesᵇ _ _ [] _ = []
foldr-forcesᵇ forces _ (x ∷ xs) Pfold with forces _ _ Pfold
... | (px , pfxs) = px ∷ foldr-forcesᵇ forces _ xs pfxs
foldr-preservesᵇ : (∀ {x y} → P x → P y → P (f x y)) →
∀ {e xs} → P e → All P xs → P (foldr f e xs)
foldr-preservesᵇ _ Pe [] = Pe
foldr-preservesᵇ pres Pe (px ∷ pxs) = pres px (foldr-preservesᵇ pres Pe pxs)
foldr-preservesʳ : (∀ x {y} → P y → P (f x y)) →
∀ {e} → P e → ∀ xs → P (foldr f e xs)
foldr-preservesʳ pres Pe [] = Pe
foldr-preservesʳ pres Pe (_ ∷ xs) = pres _ (foldr-preservesʳ pres Pe xs)
foldr-preservesᵒ : (∀ x y → P x ⊎ P y → P (f x y)) →
∀ e xs → P e ⊎ Any P xs → P (foldr f e xs)
foldr-preservesᵒ pres e [] (inj₁ Pe) = Pe
foldr-preservesᵒ pres e (x ∷ xs) (inj₁ Pe) =
pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₁ Pe)))
foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (here px)) = pres _ _ (inj₁ px)
foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (there pxs)) =
pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₂ pxs)))
------------------------------------------------------------------------
-- foldl
foldl-++ : ∀ (f : A → B → A) x ys zs →
foldl f x (ys ++ zs) ≡ foldl f (foldl f x ys) zs
foldl-++ f x [] zs = refl
foldl-++ f x (y ∷ ys) zs = foldl-++ f (f x y) ys zs
foldl-∷ʳ : ∀ (f : A → B → A) x y ys →
foldl f x (ys ∷ʳ y) ≡ f (foldl f x ys) y
foldl-∷ʳ f x y [] = refl
foldl-∷ʳ f x y (z ∷ ys) = foldl-∷ʳ f (f x z) y ys
------------------------------------------------------------------------
-- concat
concat-map : ∀ {f : A → B} → concat ∘ map (map f) ≗ map f ∘ concat
concat-map {f = f} xss = begin
concat (map (map f) xss) ≡⟨ cong concat (map-is-foldr xss) ⟩
concat (foldr (λ xs → map f xs ∷_) [] xss) ≡⟨ foldr-fusion concat [] (λ _ _ → refl) xss ⟩
foldr (λ ys → map f ys ++_) [] xss ≡⟨ sym (foldr-fusion (map f) [] (map-++-commute f) xss) ⟩
map f (concat xss) ∎
------------------------------------------------------------------------
-- sum
sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute [] ys = refl
sum-++-commute (x ∷ xs) ys = begin
x + sum (xs ++ ys) ≡⟨ cong (x +_) (sum-++-commute xs ys) ⟩
x + (sum xs + sum ys) ≡⟨ sym (+-assoc x _ _) ⟩
(x + sum xs) + sum ys ∎
------------------------------------------------------------------------
-- replicate
length-replicate : ∀ n {x : A} → length (replicate n x) ≡ n
length-replicate zero = refl
length-replicate (suc n) = cong suc (length-replicate n)
------------------------------------------------------------------------
-- scanr
scanr-defn : ∀ (f : A → B → B) (e : B) →
scanr f e ≗ map (foldr f e) ∘ tails
scanr-defn f e [] = refl
scanr-defn f e (x ∷ []) = refl
scanr-defn f e (x ∷ y ∷ xs)
with scanr f e (y ∷ xs) | scanr-defn f e (y ∷ xs)
... | [] | ()
... | z ∷ zs | eq with ∷-injective eq
... | z≡fy⦇f⦈xs , _ = cong₂ (λ z → f x z ∷_) z≡fy⦇f⦈xs eq
------------------------------------------------------------------------
-- scanl
scanl-defn : ∀ (f : A → B → A) (e : A) →
scanl f e ≗ map (foldl f e) ∘ inits
scanl-defn f e [] = refl
scanl-defn f e (x ∷ xs) = cong (e ∷_) (begin
scanl f (f e x) xs
≡⟨ scanl-defn f (f e x) xs ⟩
map (foldl f (f e x)) (inits xs)
≡⟨ refl ⟩
map (foldl f e ∘ (x ∷_)) (inits xs)
≡⟨ map-compose (inits xs) ⟩
map (foldl f e) (map (x ∷_) (inits xs))
∎)
------------------------------------------------------------------------
-- applyUpTo
length-applyUpTo : ∀ (f : ℕ → A) n → length (applyUpTo f n) ≡ n
length-applyUpTo f zero = refl
length-applyUpTo f (suc n) = cong suc (length-applyUpTo (f ∘ suc) n)
lookup-applyUpTo : ∀ (f : ℕ → A) n i → lookup (applyUpTo f n) i ≡ f (toℕ i)
lookup-applyUpTo f (suc n) zero = refl
lookup-applyUpTo f (suc n) (suc i) = lookup-applyUpTo (f ∘ suc) n i
------------------------------------------------------------------------
-- applyUpTo
module _ (f : ℕ → A) where
length-applyDownFrom : ∀ n → length (applyDownFrom f n) ≡ n
length-applyDownFrom zero = refl
length-applyDownFrom (suc n) = cong suc (length-applyDownFrom n)
lookup-applyDownFrom : ∀ n i → lookup (applyDownFrom f n) i ≡ f (n ∸ (suc (toℕ i)))
lookup-applyDownFrom (suc n) zero = refl
lookup-applyDownFrom (suc n) (suc i) = lookup-applyDownFrom n i
------------------------------------------------------------------------
-- upTo
length-upTo : ∀ n → length (upTo n) ≡ n
length-upTo = length-applyUpTo id
lookup-upTo : ∀ n i → lookup (upTo n) i ≡ toℕ i
lookup-upTo = lookup-applyUpTo id
------------------------------------------------------------------------
-- downFrom
length-downFrom : ∀ n → length (downFrom n) ≡ n
length-downFrom = length-applyDownFrom id
lookup-downFrom : ∀ n i → lookup (downFrom n) i ≡ n ∸ (suc (toℕ i))
lookup-downFrom = lookup-applyDownFrom id
------------------------------------------------------------------------
-- tabulate
tabulate-cong : ∀ {n} {f g : Fin n → A} →
f ≗ g → tabulate f ≡ tabulate g
tabulate-cong {n = zero} p = refl
tabulate-cong {n = suc n} p = cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc))
tabulate-lookup : ∀ (xs : List A) → tabulate (lookup xs) ≡ xs
tabulate-lookup [] = refl
tabulate-lookup (x ∷ xs) = cong (_ ∷_) (tabulate-lookup xs)
length-tabulate : ∀ {n} → (f : Fin n → A) →
length (tabulate f) ≡ n
length-tabulate {n = zero} f = refl
length-tabulate {n = suc n} f = cong suc (length-tabulate (λ z → f (suc z)))
lookup-tabulate : ∀ {n} → (f : Fin n → A) →
∀ i → let i′ = cast (sym (length-tabulate f)) i
in lookup (tabulate f) i′ ≡ f i
lookup-tabulate f zero = refl
lookup-tabulate f (suc i) = lookup-tabulate (f ∘ suc) i
map-tabulate : ∀ {n} (g : Fin n → A) (f : A → B) →
map f (tabulate g) ≡ tabulate (f ∘ g)
map-tabulate {n = zero} g f = refl
map-tabulate {n = suc n} g f = cong (_ ∷_) (map-tabulate (g ∘ suc) f)
------------------------------------------------------------------------
-- _[_]%=_
length-%= : ∀ xs k (f : A → A) → length (xs [ k ]%= f) ≡ length xs
length-%= (x ∷ xs) zero f = refl
length-%= (x ∷ xs) (suc k) f = cong suc (length-%= xs k f)
------------------------------------------------------------------------
-- _[_]∷=_
length-∷= : ∀ xs k (v : A) → length (xs [ k ]∷= v) ≡ length xs
length-∷= xs k v = length-%= xs k (const v)
map-∷= : ∀ xs k (v : A) (f : A → B) →
let eq = sym (length-map f xs) in
map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v
map-∷= (x ∷ xs) zero v f = refl
map-∷= (x ∷ xs) (suc k) v f = cong (f x ∷_) (map-∷= xs k v f)
------------------------------------------------------------------------
-- _─_
length-─ : ∀ (xs : List A) k → length (xs ─ k) ≡ pred (length xs)
length-─ (x ∷ xs) zero = refl
length-─ (x ∷ y ∷ xs) (suc k) = cong suc (length-─ (y ∷ xs) k)
map-─ : ∀ xs k (f : A → B) →
let eq = sym (length-map f xs) in
map f (xs ─ k) ≡ map f xs ─ cast eq k
map-─ (x ∷ xs) zero f = refl
map-─ (x ∷ xs) (suc k) f = cong (f x ∷_) (map-─ xs k f)
------------------------------------------------------------------------
-- take
length-take : ∀ n (xs : List A) → length (take n xs) ≡ n ⊓ (length xs)
length-take zero xs = refl
length-take (suc n) [] = refl
length-take (suc n) (x ∷ xs) = cong suc (length-take n xs)
------------------------------------------------------------------------
-- drop
length-drop : ∀ n (xs : List A) → length (drop n xs) ≡ length xs ∸ n
length-drop zero xs = refl
length-drop (suc n) [] = refl
length-drop (suc n) (x ∷ xs) = length-drop n xs
take++drop : ∀ n (xs : List A) → take n xs ++ drop n xs ≡ xs
take++drop zero xs = refl
take++drop (suc n) [] = refl
take++drop (suc n) (x ∷ xs) = cong (x ∷_) (take++drop n xs)
------------------------------------------------------------------------
-- splitAt
splitAt-defn : ∀ n → splitAt {A = A} n ≗ < take n , drop n >
splitAt-defn zero xs = refl
splitAt-defn (suc n) [] = refl
splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs
... | (ys , zs) | ih = cong (Prod.map (x ∷_) id) ih
------------------------------------------------------------------------
-- takeWhile, dropWhile, and span
module _ {P : Pred A p} (P? : Decidable P) where
takeWhile++dropWhile : ∀ xs → takeWhile P? xs ++ dropWhile P? xs ≡ xs
takeWhile++dropWhile [] = refl
takeWhile++dropWhile (x ∷ xs) with does (P? x)
... | true = cong (x ∷_) (takeWhile++dropWhile xs)
... | false = refl
span-defn : span P? ≗ < takeWhile P? , dropWhile P? >
span-defn [] = refl
span-defn (x ∷ xs) with does (P? x)
... | true = cong (Prod.map (x ∷_) id) (span-defn xs)
... | false = refl
------------------------------------------------------------------------
-- filter
module _ {P : Pred A p} (P? : Decidable P) where
length-filter : ∀ xs → length (filter P? xs) ≤ length xs
length-filter [] = z≤n
length-filter (x ∷ xs) with does (P? x)
... | false = ≤-step (length-filter xs)
... | true = s≤s (length-filter xs)
filter-all : ∀ {xs} → All P xs → filter P? xs ≡ xs
filter-all {[]} [] = refl
filter-all {x ∷ xs} (px ∷ pxs) with P? x
... | no ¬px = contradiction px ¬px
... | true because _ = cong (x ∷_) (filter-all pxs)
filter-notAll : ∀ xs → Any (∁ P) xs → length (filter P? xs) < length xs
filter-notAll (x ∷ xs) (here ¬px) with P? x
... | false because _ = s≤s (length-filter xs)
... | yes px = contradiction px ¬px
filter-notAll (x ∷ xs) (there any) with does (P? x)
... | false = ≤-step (filter-notAll xs any)
... | true = s≤s (filter-notAll xs any)
filter-some : ∀ {xs} → Any P xs → 0 < length (filter P? xs)
filter-some {x ∷ xs} (here px) with P? x
... | true because _ = s≤s z≤n
... | no ¬px = contradiction px ¬px
filter-some {x ∷ xs} (there pxs) with does (P? x)
... | true = ≤-step (filter-some pxs)
... | false = filter-some pxs
filter-none : ∀ {xs} → All (∁ P) xs → filter P? xs ≡ []
filter-none {[]} [] = refl
filter-none {x ∷ xs} (¬px ∷ ¬pxs) with P? x
... | false because _ = filter-none ¬pxs
... | yes px = contradiction px ¬px
filter-complete : ∀ {xs} → length (filter P? xs) ≡ length xs →
filter P? xs ≡ xs
filter-complete {[]} eq = refl
filter-complete {x ∷ xs} eq with does (P? x)
... | false = contradiction eq (<⇒≢ (s≤s (length-filter xs)))
... | true = cong (x ∷_) (filter-complete (suc-injective eq))
filter-accept : ∀ {x xs} → P x → filter P? (x ∷ xs) ≡ x ∷ (filter P? xs)
filter-accept {x} Px with P? x
... | true because _ = refl
... | no ¬Px = contradiction Px ¬Px
filter-reject : ∀ {x xs} → ¬ P x → filter P? (x ∷ xs) ≡ filter P? xs
filter-reject {x} ¬Px with P? x
... | yes Px = contradiction Px ¬Px
... | false because _ = refl
filter-idem : filter P? ∘ filter P? ≗ filter P?
filter-idem [] = refl
filter-idem (x ∷ xs) with does (P? x) | inspect does (P? x)
... | false | _ = filter-idem xs
... | true | P.[ eq ] rewrite eq = cong (x ∷_) (filter-idem xs)
filter-++ : ∀ xs ys → filter P? (xs ++ ys) ≡ filter P? xs ++ filter P? ys
filter-++ [] ys = refl
filter-++ (x ∷ xs) ys with does (P? x)
... | true = cong (x ∷_) (filter-++ xs ys)
... | false = filter-++ xs ys
------------------------------------------------------------------------
-- derun and deduplicate
module _ {R : Rel A p} (R? : B.Decidable R) where
length-derun : ∀ xs → length (derun R? xs) ≤ length xs
length-derun [] = ≤-refl
length-derun (x ∷ []) = ≤-refl
length-derun (x ∷ y ∷ xs) with does (R? x y) | length-derun (y ∷ xs)
... | true | r = ≤-step r
... | false | r = s≤s r
length-deduplicate : ∀ xs → length (deduplicate R? xs) ≤ length xs
length-deduplicate [] = z≤n
length-deduplicate (x ∷ xs) = ≤-begin
1 + length (filter (¬? ∘ R? x) r) ≤⟨ s≤s (length-filter (¬? ∘ R? x) r) ⟩
1 + length r ≤⟨ s≤s (length-deduplicate xs) ⟩
1 + length xs ≤-∎
where
open ≤-Reasoning renaming (begin_ to ≤-begin_; _∎ to _≤-∎)
r = deduplicate R? xs
derun-reject : ∀ {x y} xs → R x y → derun R? (x ∷ y ∷ xs) ≡ derun R? (y ∷ xs)
derun-reject {x} {y} xs Rxy with R? x y
... | yes _ = refl
... | no ¬Rxy = contradiction Rxy ¬Rxy
derun-accept : ∀ {x y} xs → ¬ R x y → derun R? (x ∷ y ∷ xs) ≡ x ∷ derun R? (y ∷ xs)
derun-accept {x} {y} xs ¬Rxy with R? x y
... | yes Rxy = contradiction Rxy ¬Rxy
... | no _ = refl
------------------------------------------------------------------------
-- partition
module _ {P : Pred A p} (P? : Decidable P) where
partition-defn : partition P? ≗ < filter P? , filter (∁? P?) >
partition-defn [] = refl
partition-defn (x ∷ xs) with does (P? x)
... | true = cong (Prod.map (x ∷_) id) (partition-defn xs)
... | false = cong (Prod.map id (x ∷_)) (partition-defn xs)
------------------------------------------------------------------------
-- _ʳ++_
ʳ++-defn : ∀ (xs : List A) {ys} → xs ʳ++ ys ≡ reverse xs ++ ys
ʳ++-defn [] = refl
ʳ++-defn (x ∷ xs) {ys} = begin
(x ∷ xs) ʳ++ ys ≡⟨⟩
xs ʳ++ x ∷ ys ≡⟨⟩
xs ʳ++ [ x ] ++ ys ≡⟨ ʳ++-defn xs ⟩
reverse xs ++ [ x ] ++ ys ≡⟨ sym (++-assoc (reverse xs) _ _) ⟩
(reverse xs ++ [ x ]) ++ ys ≡⟨ cong (_++ ys) (sym (ʳ++-defn xs)) ⟩
(xs ʳ++ [ x ]) ++ ys ≡⟨⟩
reverse (x ∷ xs) ++ ys ∎
-- Reverse-append of append is reverse-append after reverse-append.
ʳ++-++ : ∀ (xs {ys zs} : List A) → (xs ++ ys) ʳ++ zs ≡ ys ʳ++ xs ʳ++ zs
ʳ++-++ [] = refl
ʳ++-++ (x ∷ xs) {ys} {zs} = begin
(x ∷ xs ++ ys) ʳ++ zs ≡⟨⟩
(xs ++ ys) ʳ++ x ∷ zs ≡⟨ ʳ++-++ xs ⟩
ys ʳ++ xs ʳ++ x ∷ zs ≡⟨⟩
ys ʳ++ (x ∷ xs) ʳ++ zs ∎
-- Reverse-append of reverse-append is commuted reverse-append after append.
ʳ++-ʳ++ : ∀ (xs {ys zs} : List A) → (xs ʳ++ ys) ʳ++ zs ≡ ys ʳ++ xs ++ zs
ʳ++-ʳ++ [] = refl
ʳ++-ʳ++ (x ∷ xs) {ys} {zs} = begin
((x ∷ xs) ʳ++ ys) ʳ++ zs ≡⟨⟩
(xs ʳ++ x ∷ ys) ʳ++ zs ≡⟨ ʳ++-ʳ++ xs ⟩
(x ∷ ys) ʳ++ xs ++ zs ≡⟨⟩
ys ʳ++ (x ∷ xs) ++ zs ∎
-- Length of reverse-append
length-ʳ++ : ∀ (xs {ys} : List A) →
length (xs ʳ++ ys) ≡ length xs + length ys
length-ʳ++ [] = refl
length-ʳ++ (x ∷ xs) {ys} = begin
length ((x ∷ xs) ʳ++ ys) ≡⟨⟩
length (xs ʳ++ x ∷ ys) ≡⟨ length-ʳ++ xs ⟩
length xs + length (x ∷ ys) ≡⟨ +-suc _ _ ⟩
length (x ∷ xs) + length ys ∎
-- map distributes over reverse-append.
map-ʳ++ : (f : A → B) (xs {ys} : List A) →
map f (xs ʳ++ ys) ≡ map f xs ʳ++ map f ys
map-ʳ++ f [] = refl
map-ʳ++ f (x ∷ xs) {ys} = begin
map f ((x ∷ xs) ʳ++ ys) ≡⟨⟩
map f (xs ʳ++ x ∷ ys) ≡⟨ map-ʳ++ f xs ⟩
map f xs ʳ++ map f (x ∷ ys) ≡⟨⟩
map f xs ʳ++ f x ∷ map f ys ≡⟨⟩
(f x ∷ map f xs) ʳ++ map f ys ≡⟨⟩
map f (x ∷ xs) ʳ++ map f ys ∎
-- A foldr after a reverse is a foldl.
foldr-ʳ++ : ∀ (f : A → B → B) b xs {ys} →
foldr f b (xs ʳ++ ys) ≡ foldl (flip f) (foldr f b ys) xs
foldr-ʳ++ f b [] {_} = refl
foldr-ʳ++ f b (x ∷ xs) {ys} = begin
foldr f b ((x ∷ xs) ʳ++ ys) ≡⟨⟩
foldr f b (xs ʳ++ x ∷ ys) ≡⟨ foldr-ʳ++ f b xs ⟩
foldl (flip f) (foldr f b (x ∷ ys)) xs ≡⟨⟩
foldl (flip f) (f x (foldr f b ys)) xs ≡⟨⟩
foldl (flip f) (foldr f b ys) (x ∷ xs) ∎
-- A foldl after a reverse is a foldr.
foldl-ʳ++ : ∀ (f : B → A → B) b xs {ys} →
foldl f b (xs ʳ++ ys) ≡ foldl f (foldr (flip f) b xs) ys
foldl-ʳ++ f b [] {_} = refl
foldl-ʳ++ f b (x ∷ xs) {ys} = begin
foldl f b ((x ∷ xs) ʳ++ ys) ≡⟨⟩
foldl f b (xs ʳ++ x ∷ ys) ≡⟨ foldl-ʳ++ f b xs ⟩
foldl f (foldr (flip f) b xs) (x ∷ ys) ≡⟨⟩
foldl f (f (foldr (flip f) b xs) x) ys ≡⟨⟩
foldl f (foldr (flip f) b (x ∷ xs)) ys ∎
------------------------------------------------------------------------
-- reverse
-- reverse of cons is snoc of reverse.
unfold-reverse : ∀ (x : A) xs → reverse (x ∷ xs) ≡ reverse xs ∷ʳ x
unfold-reverse x xs = ʳ++-defn xs
-- reverse is an involution with respect to append.
reverse-++-commute : (xs ys : List A) →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++-commute xs ys = begin
reverse (xs ++ ys) ≡⟨⟩
(xs ++ ys) ʳ++ [] ≡⟨ ʳ++-++ xs ⟩
ys ʳ++ xs ʳ++ [] ≡⟨⟩
ys ʳ++ reverse xs ≡⟨ ʳ++-defn ys ⟩
reverse ys ++ reverse xs ∎
-- reverse is involutive.
reverse-involutive : Involutive {A = List A} _≡_ reverse
reverse-involutive xs = begin
reverse (reverse xs) ≡⟨⟩
(xs ʳ++ []) ʳ++ [] ≡⟨ ʳ++-ʳ++ xs ⟩
[] ʳ++ xs ++ [] ≡⟨⟩
xs ++ [] ≡⟨ ++-identityʳ xs ⟩
xs ∎
-- reverse preserves length.
length-reverse : ∀ (xs : List A) → length (reverse xs) ≡ length xs
length-reverse xs = begin
length (reverse xs) ≡⟨⟩
length (xs ʳ++ []) ≡⟨ length-ʳ++ xs ⟩
length xs + 0 ≡⟨ +-identityʳ _ ⟩
length xs ∎
reverse-map-commute : (f : A → B) → map f ∘ reverse ≗ reverse ∘ map f
reverse-map-commute f xs = begin
map f (reverse xs) ≡⟨⟩
map f (xs ʳ++ []) ≡⟨ map-ʳ++ f xs ⟩
map f xs ʳ++ [] ≡⟨⟩
reverse (map f xs) ∎
reverse-foldr : ∀ (f : A → B → B) b →
foldr f b ∘ reverse ≗ foldl (flip f) b
reverse-foldr f b xs = foldr-ʳ++ f b xs
reverse-foldl : ∀ (f : B → A → B) b xs →
foldl f b (reverse xs) ≡ foldr (flip f) b xs
reverse-foldl f b xs = foldl-ʳ++ f b xs
------------------------------------------------------------------------
-- _∷ʳ_
module _ {x y : A} where
∷ʳ-injective : ∀ xs ys → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y
∷ʳ-injective [] [] refl = (refl , refl)
∷ʳ-injective (x ∷ xs) (y ∷ ys) eq with ∷-injective eq
... | refl , eq′ = Prod.map (cong (x ∷_)) id (∷ʳ-injective xs ys eq′)
∷ʳ-injective [] (_ ∷ _ ∷ _) ()
∷ʳ-injective (_ ∷ _ ∷ _) [] ()
∷ʳ-injectiveˡ : ∀ (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys
∷ʳ-injectiveˡ xs ys eq = proj₁ (∷ʳ-injective xs ys eq)
∷ʳ-injectiveʳ : ∀ (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → x ≡ y
∷ʳ-injectiveʳ xs ys eq = proj₂ (∷ʳ-injective xs ys eq)
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
gfilter-just = mapMaybe-just
{-# WARNING_ON_USAGE gfilter-just
"Warning: gfilter-just was deprecated in v0.15.
Please use mapMaybe-just instead."
#-}
gfilter-nothing = mapMaybe-nothing
{-# WARNING_ON_USAGE gfilter-nothing
"Warning: gfilter-nothing was deprecated in v0.15.
Please use mapMaybe-nothing instead."
#-}
gfilter-concatMap = mapMaybe-concatMap
{-# WARNING_ON_USAGE gfilter-concatMap
"Warning: gfilter-concatMap was deprecated in v0.15.
Please use mapMaybe-concatMap instead."
#-}
length-gfilter = length-mapMaybe
{-# WARNING_ON_USAGE length-gfilter
"Warning: length-gfilter was deprecated in v0.15.
Please use length-mapMaybe instead."
#-}
right-identity-unique = ++-identityʳ-unique
{-# WARNING_ON_USAGE right-identity-unique
"Warning: right-identity-unique was deprecated in v0.15.
Please use ++-identityʳ-unique instead."
#-}
left-identity-unique = ++-identityˡ-unique
{-# WARNING_ON_USAGE left-identity-unique
"Warning: left-identity-unique was deprecated in v0.15.
Please use ++-identityˡ-unique instead."
#-}
-- Version 0.16
module _ (p : A → Bool) where
boolTakeWhile++boolDropWhile : ∀ xs → boolTakeWhile p xs ++ boolDropWhile p xs ≡ xs
boolTakeWhile++boolDropWhile [] = refl
boolTakeWhile++boolDropWhile (x ∷ xs) with p x
... | true = cong (x ∷_) (boolTakeWhile++boolDropWhile xs)
... | false = refl
{-# WARNING_ON_USAGE boolTakeWhile++boolDropWhile
"Warning: boolTakeWhile and boolDropWhile were deprecated in v0.16.
Please use takeWhile and dropWhile instead."
#-}
boolSpan-defn : boolSpan p ≗ < boolTakeWhile p , boolDropWhile p >
boolSpan-defn [] = refl
boolSpan-defn (x ∷ xs) with p x
... | true = cong (Prod.map (x ∷_) id) (boolSpan-defn xs)
... | false = refl
{-# WARNING_ON_USAGE boolSpan-defn
"Warning: boolSpan, boolTakeWhile and boolDropWhile were deprecated in v0.16.
Please use span, takeWhile and dropWhile instead."
#-}
length-boolFilter : ∀ xs → length (boolFilter p xs) ≤ length xs
length-boolFilter xs =
length-mapMaybe (λ x → if p x then just x else nothing) xs
{-# WARNING_ON_USAGE length-boolFilter
"Warning: boolFilter was deprecated in v0.16.
Please use filter instead."
#-}
boolPartition-defn : boolPartition p ≗ < boolFilter p , boolFilter (not ∘ p) >
boolPartition-defn [] = refl
boolPartition-defn (x ∷ xs) with p x
... | true = cong (Prod.map (x ∷_) id) (boolPartition-defn xs)
... | false = cong (Prod.map id (x ∷_)) (boolPartition-defn xs)
{-# WARNING_ON_USAGE boolPartition-defn
"Warning: boolPartition and boolFilter were deprecated in v0.16.
Please use partition and filter instead."
#-}
module _ (P : A → Set p) (P? : Decidable P) where
boolFilter-filters : ∀ xs → All P (boolFilter (isYes ∘ P?) xs)
boolFilter-filters [] = []
boolFilter-filters (x ∷ xs) with P? x
... | true because [px] = invert [px] ∷ boolFilter-filters xs
... | false because _ = boolFilter-filters xs
{-# WARNING_ON_USAGE boolFilter-filters
"Warning: boolFilter was deprecated in v0.16.
Please use filter instead."
#-}
-- Version 0.17
idIsFold = id-is-foldr
{-# WARNING_ON_USAGE idIsFold
"Warning: idIsFold was deprecated in v0.17.
Please use id-is-foldr instead."
#-}
++IsFold = ++-is-foldr
{-# WARNING_ON_USAGE ++IsFold
"Warning: ++IsFold was deprecated in v0.17.
Please use ++-is-foldr instead."
#-}
mapIsFold = map-is-foldr
{-# WARNING_ON_USAGE mapIsFold
"Warning: mapIsFold was deprecated in v0.17.
Please use map-is-foldr instead."
#-}
| {
"alphanum_fraction": 0.50012791,
"avg_line_length": 36.8426013195,
"ext": "agda",
"hexsha": "121515af7fd8dd0ff65a48c72007fa6d08d43022",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Properties.agda",
"max_line_length": 102,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 14383,
"size": 39090
} |
{-# OPTIONS --cubical --safe #-}
module Cardinality.Finite.ManifestEnumerable.Isomorphism where
open import Prelude
import Cardinality.Finite.ManifestEnumerable.Container as ℒ
import Cardinality.Finite.ManifestEnumerable.Inductive as 𝕃
open import Container.List.Isomorphism
open import Data.Fin
open import HITs.PropositionalTruncation.Sugar
open import Data.List using (_∷_; [])
open import HITs.PropositionalTruncation
open import Cardinality.Finite.SplitEnumerable.Isomorphism
open import Data.Sigma.Properties
𝕃⇔ℒ⟨ℰ⟩ : 𝕃.ℰ A ⇔ ℒ.ℰ A
𝕃⇔ℒ⟨ℰ⟩ .fun (sup , cov) = 𝕃→ℒ sup , cov
𝕃⇔ℒ⟨ℰ⟩ .inv (sup , cov) = ℒ→𝕃 sup , λ x → ∈ℒ⇒∈𝕃 x sup ∥$∥ cov x
𝕃⇔ℒ⟨ℰ⟩ .rightInv (sup , cov) = ΣProp≡ (λ xs x y i t → squash (x t) (y t) i) (𝕃⇔ℒ .rightInv sup)
𝕃⇔ℒ⟨ℰ⟩ .leftInv (sup , cov) = ΣProp≡ (λ xs x y i t → squash (x t) (y t) i) (𝕃⇔ℒ .leftInv sup)
| {
"alphanum_fraction": 0.7124105012,
"avg_line_length": 36.4347826087,
"ext": "agda",
"hexsha": "91690f030368a555c223818fee2bfda559ec8da5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Cardinality/Finite/ManifestEnumerable/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Cardinality/Finite/ManifestEnumerable/Isomorphism.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Cardinality/Finite/ManifestEnumerable/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 354,
"size": 838
} |
data Tree : Set where
leaf : Tree
_∣_ : Tree → Tree → Tree
{-# FOREIGN GHC data Tree = Leaf | Tree :| Tree #-}
{-# COMPILE GHC Tree = data Tree (Leaf | (:|)) #-}
| {
"alphanum_fraction": 0.5562130178,
"avg_line_length": 18.7777777778,
"ext": "agda",
"hexsha": "a9bc5374ef5d850eb89356a4bec17382c3bb4cc3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/GHCInfixConstructor.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/GHCInfixConstructor.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/GHCInfixConstructor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 52,
"size": 169
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finite sets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin where
open import Relation.Nullary.Decidable.Core
open import Data.Nat.Base using (suc)
import Data.Nat.Properties as ℕₚ
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Data.Fin.Base public
------------------------------------------------------------------------
-- Publicly re-export queries
open import Data.Fin.Properties public
using (_≟_; _≤?_; _<?_)
-- # m = "m".
infix 10 #_
#_ : ∀ m {n} {m<n : True (suc m ℕₚ.≤? n)} → Fin n
#_ _ {m<n = m<n} = fromℕ< (toWitness m<n)
| {
"alphanum_fraction": 0.4275274056,
"avg_line_length": 25.65625,
"ext": "agda",
"hexsha": "ec7a28d4de8104c4d4a8bc08678e57561ede01e6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Fin.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 178,
"size": 821
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Universe where
open import Definition.Untyped hiding (_∷_)
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Conversion
open import Definition.Conversion.Reduction
open import Definition.Conversion.Lift
open import Tools.Nat
import Tools.PropositionalEquality as PE
private
variable
n : Nat
Γ : Con Term n
-- Algorithmic equality of terms in WHNF of type U are equal as types.
univConv↓ : ∀ {A B}
→ Γ ⊢ A [conv↓] B ∷ U
→ Γ ⊢ A [conv↓] B
univConv↓ (ne-ins t u () x)
univConv↓ (univ x x₁ x₂) = x₂
-- Algorithmic equality of terms of type U are equal as types.
univConv↑ : ∀ {A B}
→ Γ ⊢ A [conv↑] B ∷ U
→ Γ ⊢ A [conv↑] B
univConv↑ ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
rewrite PE.sym (whnfRed* D Uₙ) =
reductionConv↑ (univ* d) (univ* d′) (liftConv (univConv↓ t<>u))
| {
"alphanum_fraction": 0.6721479959,
"avg_line_length": 27.8,
"ext": "agda",
"hexsha": "16a79440cb32cbacdfb969a37bff39588e7391db",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Universe.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Universe.agda",
"max_line_length": 70,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Universe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 311,
"size": 973
} |
------------------------------------------------------------------------
-- Morphisms between algebraic structures
------------------------------------------------------------------------
module Algebra.Morphism where
open import Relation.Binary
open import Algebra
open import Algebra.FunctionProperties
open import Data.Function
------------------------------------------------------------------------
-- Basic definitions
module Definitions (From To : Set) (_≈_ : Rel To) where
Morphism : Set
Morphism = From → To
Homomorphic₀ : Morphism → From → To → Set
Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘
Homomorphic₁ : Morphism → Fun₁ From → Op₁ To → Set
Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ ∘ ⟦ x ⟧
Homomorphic₂ : Morphism → Fun₂ From → Op₂ To → Set
Homomorphic₂ ⟦_⟧ _∙_ _∘_ =
∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧)
------------------------------------------------------------------------
-- Some specific morphisms
-- Other morphisms could of course be defined.
record _-RawRing⟶_ (From To : RawRing) : Set where
open RawRing
open Definitions (carrier From) (carrier To) (_≈_ To)
field
⟦_⟧ : Morphism
+-homo : Homomorphic₂ ⟦_⟧ (_+_ From) (_+_ To)
*-homo : Homomorphic₂ ⟦_⟧ (_*_ From) (_*_ To)
-‿homo : Homomorphic₁ ⟦_⟧ (-_ From) (-_ To)
0-homo : Homomorphic₀ ⟦_⟧ (0# From) (0# To)
1-homo : Homomorphic₀ ⟦_⟧ (1# From) (1# To)
_-Ring⟶_ : Ring → Ring → Set
From -Ring⟶ To = rawRing From -RawRing⟶ rawRing To
where open Ring
| {
"alphanum_fraction": 0.5040431267,
"avg_line_length": 30.9166666667,
"ext": "agda",
"hexsha": "77dd6f2b583c6aa0000af2a592fad38d68d12173",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/Morphism.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/Morphism.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 463,
"size": 1484
} |
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture
module Lec3Done where
open import Lec1Done
open import Lec2Done
postulate
extensionality : {S : Set}{T : S -> Set}
{f g : (x : S) -> T x} ->
((x : S) -> f x == g x) ->
f == g
imp : {S : Set}{T : S -> Set}(f : (x : S) -> T x){x : S} -> T x
imp f {x} = f x
extensionality' : {S : Set}{T : S -> Set}
{f g : {x : S} -> T x} ->
((x : S) -> f {x} == g {x}) ->
_==_ {forall {x : S} -> T x} f g
extensionality' {f = f}{g = g} q =
refl imp =$= extensionality {f = \ x -> f {x}}{g = \ x -> g {x}}
q
_[QED] : {X : Set}(x : X) -> x == x
x [QED] = refl x
_=[_>=_ : {X : Set}(x : X){y z : X} -> x == y -> y == z -> x == z
x =[ refl .x >= q = q
_=<_]=_ : {X : Set}(x : X){y z : X} -> y == x -> y == z -> x == z
x =< refl .x ]= q = q
infixr 1 _=[_>=_ _=<_]=_
infixr 2 _[QED]
record Category : Set where
field
-- two types of thing
Obj : Set -- "objects"
_~>_ : Obj -> Obj -> Set -- "arrows" or "morphisms"
-- or "homomorphisms"
-- two operations
id~> : {T : Obj} -> T ~> T
_>~>_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T
-- three laws
law-id~>>~> : {S T : Obj} (f : S ~> T) ->
(id~> >~> f) == f
law->~>id~> : {S T : Obj} (f : S ~> T) ->
(f >~> id~>) == f
law->~>>~> : {Q R S T : Obj} (f : Q ~> R)(g : R ~> S)(h : S ~> T) ->
((f >~> g) >~> h) == (f >~> (g >~> h))
assocn : {Q R R' S T : Obj}
{f : Q ~> R} {g : R ~> S}
{f' : Q ~> R'}{g' : R' ~> S}
{h : S ~> T} ->
(f >~> g) == (f' >~> g') ->
(f >~> g >~> h) == (f' >~> g' >~> h)
assocn {f = f} {g = g} {f' = f'} {g' = g'} {h = h} q =
f >~> g >~> h
=< law->~>>~> _ _ _ ]=
(f >~> g) >~> h
=[ refl _>~>_ =$= q =$= refl h >=
(f' >~> g') >~> h
=[ law->~>>~> _ _ _ >=
f' >~> g' >~> h
[QED]
infixr 3 _>~>_
-- Sets and functions are the classic example of a category.
SET : Category
SET = record
{ Obj = Set
; _~>_ = \ S T -> S -> T
; id~> = id
; _>~>_ = _>>_
; law-id~>>~> = \ f -> refl f
; law->~>id~> = \ f -> refl f
; law->~>>~> = \ f g h -> refl (f >> (g >> h))
}
-- A PREORDER is a category where there is at most one arrow between
-- any two objects. (So arrows are unique.)
NAT->= : Category
unique->= : (m n : Nat)(p q : m >= n) -> p == q
unique->= m zero p q = refl <>
unique->= zero (suc n) () q
unique->= (suc m) (suc n) p q = unique->= m n p q
NAT->= = record
{ Obj = Nat
; _~>_ = _>=_
; id~> = \ {n} -> refl->= n
; _>~>_ = \ {m}{n}{p} m>=n n>=p -> trans->= m n p m>=n n>=p
; law-id~>>~> = \ {m}{n} m>=n -> unique->= m n _ _
; law->~>id~> = \ {m}{n} m>=n -> unique->= m n _ _
; law->~>>~> = \ {m}{n}{p}{q} m>n n>=p p>=q -> unique->= m q _ _
} where
-- A MONOID is a category with Obj = One.
-- The values in the monoid are the *arrows*.
ONE-Nat : Category
ONE-Nat = record
{ Obj = One
; _~>_ = \ _ _ -> Nat
; id~> = 0
; _>~>_ = _+N_
; law-id~>>~> = \ n -> zero-+N n
; law->~>id~> = \ n -> +N-zero n
; law->~>>~> = \ m n p -> assocLR-+N m n p
}
eqUnique : {X : Set}{x y : X}(p q : x == y) -> p == q
eqUnique (refl x) (refl .x) = refl (refl x)
-- A DISCRETE category is one where the only arrows are the identities.
DISCRETE : (X : Set) -> Category
DISCRETE X = record
{ Obj = X
; _~>_ = _==_
; id~> = refl _
; _>~>_ = \ { {x} (refl .x) (refl .x) -> refl x }
; law-id~>>~> = \ _ -> eqUnique _ _
; law->~>id~> = \ _ -> eqUnique _ _
; law->~>>~> = \ _ _ _ -> eqUnique _ _
}
module FUNCTOR where
open Category
record _=>_ (C D : Category) : Set where -- "Functor from C to D"
field
-- two actions
F-Obj : Obj C -> Obj D
F-map : {S T : Obj C} -> _~>_ C S T -> _~>_ D (F-Obj S) (F-Obj T)
-- two laws
F-map-id~> : {T : Obj C} -> F-map (id~> C {T}) == id~> D {F-Obj T}
F-map->~> : {R S T : Obj C}(f : _~>_ C R S)(g : _~>_ C S T) ->
F-map (_>~>_ C f g) == _>~>_ D (F-map f) (F-map g)
open FUNCTOR public
postulate homework : {A : Set} -> A
VEC : Nat -> SET => SET
VEC n = record
{ F-Obj = \ X -> Vec X n
; F-map = homework
; F-map-id~> = homework
; F-map->~> = homework
}
VTAKE : Set -> NAT->= => SET
VTAKE X = record
{ F-Obj = Vec X
; F-map = \ {m}{n} m>=n xs -> vTake m n m>=n xs
; F-map-id~> = \ {n} -> extensionality \ xs -> vTakeIdFact n xs
; F-map->~> = \ {m}{n}{p} m>=n n>=p -> extensionality \ xs ->
vTakeCpFact m n p m>=n n>=p xs
}
ADD : Nat -> NAT->= => NAT->=
ADD d = record { F-Obj = (d +N_)
; F-map = \ {m}{n} -> help d m n
; F-map-id~> = \ {n} -> unique->= (d +N n) (d +N n) _ _
; F-map->~> = \ {m}{n}{p} x y ->
unique->= (d +N m) (d +N p) _ _
} where
help : (d m n : Nat) -> m >= n -> (d +N m) >= (d +N n)
help zero m n m>=n = m>=n
help (suc d) m n m>=n = help d m n m>=n
Thing : {C D : Category}(F G : C => D) -> Set
Thing {C}{D}
(record { F-Obj = F-Obj ; F-map = F-map
; F-map-id~> = F-map-id~> ; F-map->~> = F-map->~> })
(record { F-Obj = G-Obj ; F-map = G-map
; F-map-id~> = G-map-id~> ; F-map->~> = G-map->~> })
= Sg (F-Obj == G-Obj)
\ { (refl _) ->
Sg (_==_ {forall {S T : Category.Obj C} →
(C Category.~> S) T → (D Category.~> F-Obj S) (F-Obj T)}
F-map G-map)
\ { (refl _) ->
_==_ {forall {T : Category.Obj C} →
F-map (Category.id~> C {T}) == Category.id~> D} F-map-id~> G-map-id~>
*
_==_ {forall {R S T : Category.Obj C} (f : (C Category.~> R) S)
(g : (C Category.~> S) T) →
F-map ((C Category.>~> f) g) == (D Category.>~> F-map f) (F-map g)}
F-map->~> G-map->~>
}}
Lemma : {C D : Category}{F G : C => D} -> Thing F G -> F == G
Lemma (refl _ , (refl _ , (refl _ , refl _))) = refl _
CATEGORY : Category
CATEGORY = record
{ Obj = Category
; _~>_ = _=>_
; id~> = record { F-Obj = \ X -> X
; F-map = \ a -> a
; F-map-id~> = refl _
; F-map->~> = \ _ _ -> refl _ }
; _>~>_ = \ {R}{S}{T} F G -> record
{ F-Obj = F-Obj F >> F-Obj G
; F-map = F-map F >> F-map G
; F-map-id~> = F-map G (F-map F (Category.id~> R))
=[ refl (F-map G) =$= F-map-id~> F >=
F-map G (Category.id~> S)
=[ F-map-id~> G >=
Category.id~> T
[QED]
; F-map->~> = \ f g ->
F-map G (F-map F (Category._>~>_ R f g))
=[ refl (F-map G) =$= F-map->~> F f g >=
F-map G (Category._>~>_ S (F-map F f) (F-map F g))
=[ F-map->~> G (F-map F f) (F-map F g) >=
Category._>~>_ T (F-map G (F-map F f))
(F-map G (F-map F g))
[QED]
}
; law-id~>>~> = \ F -> Lemma
((refl _) , ((refl _) ,
(extensionality' (\ x -> eqUnique _ _) ,
extensionality' (\ x ->
extensionality' \ y -> extensionality' \ z ->
extensionality \ f -> extensionality \ g ->
eqUnique _ _))))
; law->~>id~> = \ F -> Lemma
((refl _) , ((refl _) ,
(extensionality' (\ x -> eqUnique _ _) ,
extensionality' (\ x ->
extensionality' \ y -> extensionality' \ z ->
extensionality \ f -> extensionality \ g ->
eqUnique _ _))))
; law->~>>~> = \ F G H -> Lemma
((refl _) , ((refl _) ,
(extensionality' (\ x -> eqUnique _ _) ,
extensionality' (\ x ->
extensionality' \ y -> extensionality' \ z ->
extensionality \ f -> extensionality \ g ->
eqUnique _ _))))
} where
open _=>_
| {
"alphanum_fraction": 0.3548817061,
"avg_line_length": 35.8685258964,
"ext": "agda",
"hexsha": "52b8d95462a20ebd0b6b67ac8e30023cde93173e",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda",
"max_line_length": 83,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3110,
"size": 9003
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommAlgebra.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Reflection.StrictEquiv
open import Cubical.Structures.Axioms
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommAlgebra.Base
private
variable
ℓ ℓ′ : Level
-- An R-algebra is the same as a CommRing A with a CommRingHom φ : R → A
module CommAlgChar (R : CommRing ℓ) where
open Iso
open IsRingHom
open CommRingTheory
CommRingWithHom : Type (ℓ-suc ℓ)
CommRingWithHom = Σ[ A ∈ CommRing ℓ ] CommRingHom R A
toCommAlg : CommRingWithHom → CommAlgebra R ℓ
toCommAlg (A , φ , φIsHom) = ⟨ A ⟩ , ACommAlgStr
where
open CommRingStr (snd A)
ACommAlgStr : CommAlgebraStr R ⟨ A ⟩
CommAlgebraStr.0a ACommAlgStr = 0r
CommAlgebraStr.1a ACommAlgStr = 1r
CommAlgebraStr._+_ ACommAlgStr = _+_
CommAlgebraStr._·_ ACommAlgStr = _·_
CommAlgebraStr.- ACommAlgStr = -_
CommAlgebraStr._⋆_ ACommAlgStr r a = (φ r) · a
CommAlgebraStr.isCommAlgebra ACommAlgStr = makeIsCommAlgebra
is-set +Assoc +Rid +Rinv +Comm ·Assoc ·Lid ·Ldist+ ·Comm
(λ _ _ x → cong (λ y → y · x) (pres· φIsHom _ _) ∙ sym (·Assoc _ _ _))
(λ _ _ x → cong (λ y → y · x) (pres+ φIsHom _ _) ∙ ·Ldist+ _ _ _)
(λ _ _ _ → ·Rdist+ _ _ _)
(λ x → cong (λ y → y · x) (pres1 φIsHom) ∙ ·Lid x)
(λ _ _ _ → sym (·Assoc _ _ _))
fromCommAlg : CommAlgebra R ℓ → CommRingWithHom
fromCommAlg A = (CommAlgebra→CommRing A) , φ , φIsHom
where
open CommRingStr (snd R) renaming (_·_ to _·r_) hiding (·Lid)
open CommAlgebraStr (snd A)
open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A)
φ : ⟨ R ⟩ → ⟨ A ⟩
φ r = r ⋆ 1a
φIsHom : IsRingHom (CommRing→Ring R .snd) φ (CommRing→Ring (CommAlgebra→CommRing A) .snd)
φIsHom = makeIsRingHom (⋆-lid _) (λ _ _ → ⋆-ldist _ _ _)
λ x y → cong (λ a → (x ·r y) ⋆ a) (sym (·Lid _)) ∙ ⋆Dist· _ _ _ _
CommRingWithHomRoundTrip : (Aφ : CommRingWithHom) → fromCommAlg (toCommAlg Aφ) ≡ Aφ
CommRingWithHomRoundTrip (A , φ) = ΣPathP (APath , φPathP)
where
open CommRingStr
-- note that the proofs of the axioms might differ!
APath : fst (fromCommAlg (toCommAlg (A , φ))) ≡ A
fst (APath i) = ⟨ A ⟩
0r (snd (APath i)) = 0r (snd A)
1r (snd (APath i)) = 1r (snd A)
_+_ (snd (APath i)) = _+_ (snd A)
_·_ (snd (APath i)) = _·_ (snd A)
-_ (snd (APath i)) = -_ (snd A)
isCommRing (snd (APath i)) = isProp→PathP (λ i → isPropIsCommRing _ _ _ _ _ )
(isCommRing (snd (fst (fromCommAlg (toCommAlg (A , φ)))))) (isCommRing (snd A)) i
-- this only works because fst (APath i) = fst A definitionally!
φPathP : PathP (λ i → CommRingHom R (APath i)) (snd (fromCommAlg (toCommAlg (A , φ)))) φ
φPathP = RingHomPathP _ _ _ _ _ _ λ i x → ·Rid (snd A) (fst φ x) i
CommAlgRoundTrip : (A : CommAlgebra R ℓ) → toCommAlg (fromCommAlg A) ≡ A
CommAlgRoundTrip A = ΣPathP (refl , AlgStrPathP)
where
open CommAlgebraStr ⦃...⦄
instance
_ = snd A
AlgStrPathP : PathP (λ i → CommAlgebraStr R ⟨ A ⟩) (snd (toCommAlg (fromCommAlg A))) (snd A)
CommAlgebraStr.0a (AlgStrPathP i) = 0a
CommAlgebraStr.1a (AlgStrPathP i) = 1a
CommAlgebraStr._+_ (AlgStrPathP i) = _+_
CommAlgebraStr._·_ (AlgStrPathP i) = _·_
CommAlgebraStr.-_ (AlgStrPathP i) = -_
CommAlgebraStr._⋆_ (AlgStrPathP i) r x = (⋆-lassoc r 1a x ∙ cong (r ⋆_) (·Lid x)) i
CommAlgebraStr.isCommAlgebra (AlgStrPathP i) = isProp→PathP
(λ i → isPropIsCommAlgebra _ _ _ _ _ _ (CommAlgebraStr._⋆_ (AlgStrPathP i)))
(CommAlgebraStr.isCommAlgebra (snd (toCommAlg (fromCommAlg A)))) isCommAlgebra i
CommAlgIso : Iso (CommAlgebra R ℓ) CommRingWithHom
fun CommAlgIso = fromCommAlg
inv CommAlgIso = toCommAlg
rightInv CommAlgIso = CommRingWithHomRoundTrip
leftInv CommAlgIso = CommAlgRoundTrip
| {
"alphanum_fraction": 0.6892117171,
"avg_line_length": 36.8333333333,
"ext": "agda",
"hexsha": "cfa46fbc1557b2702a658311c433326e6995d932",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1595,
"size": 4199
} |
module Krivine (Atom Const : Set) where
open import Data.Nat
open import Data.Sum
open import Data.Vec as Vec using (Vec; _∷_; [])
data Type : Set where
atom : Atom → Type
_⇒_ : Type → Type → Type
Basis : ℕ → Set
Basis = Vec Type
data Var : ∀ {n} → Basis n → Type → Set where
vzero : ∀ {n} {Γ : Basis n} {τ} → Var (τ ∷ Γ) τ
vsuc : ∀ {n} {Γ : Basis n} {σ τ} → Var Γ τ → Var (σ ∷ Γ) τ
data Term (Σ : Const → Type) {n} (Γ : Basis n) : Type → Set where
app : ∀ {σ τ} → Term Σ Γ (σ ⇒ τ) → Term Σ Γ σ → Term Σ Γ τ
lam : ∀ {σ τ} → Term Σ (σ ∷ Γ) τ → Term Σ Γ (σ ⇒ τ)
var : ∀ {τ} → Var Γ τ → Term Σ Γ τ
mutual
data Subst (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Set where
comp : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {n₃} {Γ₃ : Basis n₃} → Subst A Γ₁ Γ₂ → Subst A Γ₂ Γ₃ → Subst A Γ₁ Γ₃
cons : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → A Γ₂ τ → Subst A Γ₁ Γ₂ → Subst A (τ ∷ Γ₁) Γ₂
id : ∀ {n} {Γ : Basis n} → Subst A Γ Γ
lift : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Subst A Γ₁ Γ₂ → Subst A (τ ∷ Γ₁) (τ ∷ Γ₂)
shift : ∀ {n} {Γ : Basis n} {τ} → Subst A Γ (τ ∷ Γ)
data Thunk (A : ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
thunk : ∀ {n'} {Γ' : Basis n'} → A Γ' τ → Subst (Thunk A) Γ' Γ → Thunk A Γ τ
lookup : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} → (∀ {n} {Γ : Basis n} {σ} → Var Γ σ → Thunk A Γ σ) → (∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ}
→ Thunk A Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ) → ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Var Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ
lookup {A} box under = lookup'
where
lookup' : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Var Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ
lookup' v (comp ρ σ) = under (lookup' v ρ) σ
lookup' vzero (cons x _) = x
lookup' (vsuc v) (cons _ σ) = lookup' v σ
lookup' v id = box v
lookup' vzero (lift _) = box vzero
lookup' (vsuc v) (lift σ) = under (lookup' v σ) shift
lookup' v shift = box (vsuc v)
boxvar : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Var Γ τ → Thunk (Term Σ) Γ τ
boxvar v = thunk (var v) id
close : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Thunk (Term Σ) Γ₁ τ → Subst (Thunk (Term Σ)) Γ₁ Γ₂ → Thunk (Term Σ) Γ₂ τ
close (thunk t ρ) σ = thunk t (comp ρ σ)
mutual
subst : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Term Σ Γ₁ τ → Subst (Thunk (Term Σ)) Γ₁ Γ₂ → Term Σ Γ₂ τ
subst (app s t) σ = app (subst s σ) (subst t σ)
subst (lam t) σ = lam (subst t (lift σ))
subst (var v) id = var v
subst (var v) σ = force (lookup boxvar close v σ)
force : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Thunk (Term Σ) Γ τ → Term Σ Γ τ
force (thunk t ρ) = subst t ρ
data Context (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Type → Type → Set where
app₁ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → Context A Γ₁ Γ₂ σ τ → A Γ₁ ρ → Context A Γ₁ Γ₂ (ρ ⇒ σ) τ
app₂ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → A Γ₁ (ρ ⇒ σ) → Context A Γ₁ Γ₂ σ τ → Context A Γ₁ Γ₂ ρ τ
lam₁ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → Context A Γ₁ Γ₂ (ρ ⇒ σ) τ → Context A (ρ ∷ Γ₁) Γ₂ σ τ
top : ∀ {n} {Γ : Basis n} {τ} → Context A Γ Γ τ τ
foldctx : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {σ τ}
→ (∀ {n} {Γ : Basis n} {ρ} → A Γ ρ → Term Σ Γ ρ) → Term Σ Γ₁ σ → Context A Γ₁ Γ₂ σ τ → Term Σ Γ₂ τ
foldctx f z (app₁ ctx y) = foldctx f (app z (f y)) ctx
foldctx f z (app₂ x ctx) = foldctx f (app (f x) z) ctx
foldctx f z (lam₁ ctx) = foldctx f (lam z) ctx
foldctx _ z top = z
data Head (Σ : Const → Type) {n} (Γ : Basis n) : Type → Set where
var : ∀ {τ} → Var Γ τ → Head Σ Γ τ
data Spine (Σ : Const → Type) (A : (∀ {n} (Γ : Basis n) → Type → Set) → ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
spine : ∀ {n'} {Γ' : Basis n'} {σ} → Head Σ Γ' σ → Context (A (Term Σ)) Γ' Γ σ τ → Spine Σ A Γ τ
eval : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {σ τ} → Thunk (Term Σ) Γ₁ σ → Context (Thunk (Term Σ)) Γ₁ Γ₂ σ τ → Spine Σ Thunk Γ₂ τ
eval (thunk (app s t) σ) ctx = eval (thunk s σ) (app₁ ctx (thunk t σ))
eval (thunk (lam t) σ) (app₁ ctx x) = eval (thunk t (cons x σ)) ctx
eval (thunk (lam t) σ) ctx = eval (thunk t (lift σ)) (lam₁ ctx)
eval (thunk (var v) id) ctx = spine (var v) ctx
eval (thunk (var v) σ) ctx = eval (lookup boxvar close v σ) ctx
data Subst' (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Set where
comp : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {n₃} {Γ₃ : Basis n₃} → Subst A Γ₁ Γ₂ → Subst' A Γ₂ Γ₃ → Subst' A Γ₁ Γ₃
id : ∀ {n} {Γ : Basis n} → Subst' A Γ Γ
data Thunk' (A : ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
thunk : ∀ {n'} {Γ' : Basis n'} → A Γ' τ → Subst' (Thunk' A) Γ' Γ → Thunk' A Γ τ
data Machine (Σ : Const → Type) {n} (Γ : Basis n) τ : Set where
machine : ∀ {n'} {Γ' : Basis n'} {σ} → Thunk' (Term Σ) Γ' σ → Context (Thunk' (Term Σ)) Γ' Γ σ τ → Machine Σ Γ τ
coerce : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} → Subst' A Γ₁ Γ₂ → Subst A Γ₁ Γ₂
coerce (comp ρ σ) = comp ρ (coerce σ)
coerce id = id
step : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Machine Σ Γ τ → Spine Σ Thunk' Γ τ ⊎ Machine Σ Γ τ
step (machine (thunk (var v) (comp shift σ)) ctx) = inj₂ (machine (thunk (var (vsuc v)) σ) ctx)
step (machine (thunk (var vzero) (comp (cons (thunk u π) _) σ)) ctx) = inj₂ (machine (thunk u (comp (coerce π) σ)) ctx)
step (machine (thunk (var vzero) (comp (lift _) σ)) ctx) = inj₂ (machine (thunk (var vzero) σ) ctx)
step (machine (thunk (var (vsuc v)) (comp (cons (thunk _ _) ρ) σ)) ctx) = inj₂ (machine (thunk (var v) (comp ρ σ)) ctx)
step (machine (thunk (var (vsuc v)) (comp (lift ρ) σ)) ctx) = inj₂ (machine (thunk (var v) (comp ρ (comp shift σ))) ctx)
step (machine (thunk t (comp (comp π ρ) σ)) ctx) = inj₂ (machine (thunk t (comp π (comp ρ σ))) ctx)
step (machine (thunk t (comp id σ)) ctx) = inj₂ (machine (thunk t σ) ctx)
step (machine (thunk t σ) (app₂ (thunk s ρ) ctx)) = inj₂ (machine (thunk s ρ) (app₁ ctx (thunk t σ)))
step (machine (thunk (app s (var v)) σ) ctx) = inj₂ (machine (thunk (var v) σ) (app₂ (thunk s σ) ctx))
step (machine (thunk (app s t) σ) ctx) = inj₂ (machine (thunk s σ) (app₁ ctx (thunk t σ)))
step (machine (thunk (lam t) σ) (app₁ ctx x)) = inj₂ (machine (thunk t (comp (cons x (coerce σ)) id)) ctx)
step (machine (thunk (lam t) σ) ctx) = inj₂ (machine (thunk t (comp (lift (coerce σ)) id)) (lam₁ ctx))
step (machine (thunk (var v) id) ctx) = inj₁ (spine (var v) ctx)
reduce : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Machine Σ Γ τ → Spine Σ Thunk' Γ τ
reduce m with step m
... | inj₁ x = x
... | inj₂ m' = reduce m'
| {
"alphanum_fraction": 0.4793190416,
"avg_line_length": 61,
"ext": "agda",
"hexsha": "a99c87ea36792756e94ba739caefb9d2ddc57840",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "46b3960841fd45d7db9e92906c3c2be562df0385",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cls/strong-krivine",
"max_forks_repo_path": "Krivine.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "46b3960841fd45d7db9e92906c3c2be562df0385",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cls/strong-krivine",
"max_issues_repo_path": "Krivine.agda",
"max_line_length": 161,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "46b3960841fd45d7db9e92906c3c2be562df0385",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cls/strong-krivine",
"max_stars_repo_path": "Krivine.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-13T23:05:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-01-31T07:10:06.000Z",
"num_tokens": 3255,
"size": 7930
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
module Groups.FreeProduct.Definition {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where
data ReducedSequenceBeginningWith : I → Set (a ⊔ b ⊔ i) where
ofEmpty : (i : I) → (g : A i) → .(nonZero : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → ReducedSequenceBeginningWith i
prependLetter : (i : I) → (g : A i) → .(nonZero : Setoid._∼_ (S i) g (Group.0G (G i)) → False) → {j : I} → ReducedSequenceBeginningWith j → ((i ≡ j) → False) → ReducedSequenceBeginningWith i
data ReducedSequence : Set (a ⊔ b ⊔ i) where
empty : ReducedSequence
nonempty : (i : I) → ReducedSequenceBeginningWith i → ReducedSequence
injection : {i : I} (x : A i) .(nonzero : (Setoid._∼_ (S i) x (Group.0G (G i))) → False) → ReducedSequence
injection {i} x nonzero = nonempty i (ofEmpty i x nonzero)
| {
"alphanum_fraction": 0.6363636364,
"avg_line_length": 57.64,
"ext": "agda",
"hexsha": "2cb88e4a68c2519792f7bb427aabc8a08170e640",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeProduct/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeProduct/Definition.agda",
"max_line_length": 366,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeProduct/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 521,
"size": 1441
} |
open import Data.Product using ( _,_ )
open import Web.Semantic.DL.ABox using ( ε )
open import Web.Semantic.DL.Category.Object using ( Object ; _,_ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.Util using ( False ; False∈Fin )
module Web.Semantic.DL.Category.Unit {Σ : Signature} where
I : ∀ {S T : TBox Σ} → Object S T
I = (False , False∈Fin , ε)
| {
"alphanum_fraction": 0.7146118721,
"avg_line_length": 36.5,
"ext": "agda",
"hexsha": "8c621225dd64201ce4480842b012a669a18ca454",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Unit.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Unit.agda",
"max_line_length": 66,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 131,
"size": 438
} |
-- Andreas, 2016-07-29 issue #707, comment of 2012-10-31
data Bool : Set where true false : Bool
mutual
data D : Bool → Set where
c d : D ?
fixIx : (b : Bool) → D b → D b
fixIx true c = c
fixIx false d = d
-- Works, but maybe questionable.
-- The _ is duplicated into two different internal metas.
| {
"alphanum_fraction": 0.6392405063,
"avg_line_length": 19.75,
"ext": "agda",
"hexsha": "ffeb53704ea1b20562e9a7d642daf40e8b9b551b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Fail/Issue707-data.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Fail/Issue707-data.agda",
"max_line_length": 57,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Fail/Issue707-data.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 104,
"size": 316
} |
{-# OPTIONS --without-K --safe #-}
module TypeTheory.HoTT.Relation.Nullary.Negation.Properties where
-- agda-stdlib
open import Axiom.Extensionality.Propositional
open import Level renaming (zero to lzero)
open import Relation.Nullary
-- agda-misc
open import TypeTheory.HoTT.Base
open import TypeTheory.HoTT.Data.Empty.Properties
open import TypeTheory.HoTT.Function.Properties
private
variable
a b : Level
A : Set a
B : Set b
module _ {a} {A : Set a} where
isProp-¬ : Extensionality a lzero → isProp (¬ A)
isProp-¬ ext = isProp-→ ext isProp-⊥
| {
"alphanum_fraction": 0.7323943662,
"avg_line_length": 23.6666666667,
"ext": "agda",
"hexsha": "af96a46989378a0724d90d0b44697ca172afbe9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "TypeTheory/HoTT/Relation/Nullary/Negation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "TypeTheory/HoTT/Relation/Nullary/Negation/Properties.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "TypeTheory/HoTT/Relation/Nullary/Negation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 166,
"size": 568
} |
module Function.Inverse where
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Functional
open import Function.Equals
open import Function.Equals.Proofs
open import Function.Inverseₗ
open import Function.Inverseᵣ
open import Structure.Setoid
open import Structure.Setoid.Uniqueness
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
module _ {ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂} {A : Type{ℓ₁}} ⦃ eqA : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓ₂}} ⦃ eqB : Equiv{ℓₑ₂}(B) ⦄ where
private variable f : A → B
-- The inverse function of a bijective function f.
inv : (f : A → B) → ⦃ inver : Invertible(f) ⦄ → (B → A)
inv(f) ⦃ inver ⦄ = [∃]-witness inver
module _ {f : A → B} ⦃ inver : Invertible(f) ⦄ where
inv-inverse : Inverse(f)(inv f)
inv-inverse = [∧]-elimᵣ([∃]-proof inver)
inv-inverseₗ : Inverseₗ(f)(inv f)
inv-inverseₗ = [∧]-elimₗ inv-inverse
inv-inverseᵣ : Inverseᵣ(f)(inv f)
inv-inverseᵣ = [∧]-elimᵣ inv-inverse
inv-function : Function(inv f)
inv-function = [∧]-elimₗ([∃]-proof inver)
inv-surjective : Surjective(inv f)
inv-surjective = inverse-surjective ⦃ inver = [∧]-elimᵣ([∃]-proof inver) ⦄
module _ ⦃ func : Function(f) ⦄ where
inv-injective : Injective(inv f)
inv-injective = inverse-injective ⦃ inver = [∧]-elimᵣ([∃]-proof inver) ⦄
inv-bijective : Bijective(inv f)
inv-bijective = inverse-bijective ⦃ inver = [∧]-elimᵣ([∃]-proof inver) ⦄
{-
module _ {f : A → B} ⦃ inver : Invertible(f) ⦄ ⦃ inv-func : Function(inv f) ⦄ where
inv-sides-equality : (invₗ(f) ⊜ invᵣ(f))
inv-sides-equality =
invₗ(f) 🝖[ _⊜_ ]-[]
invₗ(f) ∘ id 🝖[ _⊜_ ]-[ [⊜][∘]-binaryOperator-raw {f₁ = invₗ(f)} ⦃ func₂ = {!!} ⦄ (reflexivity(_⊜_)) (intro(inverseᵣ(f)(invᵣ f) ⦃ inv-inverseᵣ ⦄)) ]-sym
invₗ(f) ∘ (f ∘ invᵣ(f)) 🝖[ _⊜_ ]-[]
(invₗ(f) ∘ f) ∘ invᵣ(f) 🝖[ _⊜_ ]-[ {!!} ]
id ∘ invᵣ(f) 🝖[ _⊜_ ]-[]
invᵣ(f) 🝖-end
-- congruence₂ᵣ(_∘_)(invₗ(f)) ?
-- x₁ ≡ x₂
-- inv f(y₁) ≡ inv f(y₂)
--f(x₁) ≡ f(x₂)
--invᵣ f(f(x₁)) ≡ invᵣ f(f(x₂))
--invᵣ f(f(x₁))
-}
{-
-- inv is a left inverse function to a bijective f.
inv-inverseₗ : Inverseₗ(f)(inv f)
inv-inverseₗ = invᵣ-inverseₗ ⦃ inj = {!invertibleₗ-to-injective!} ⦄
-- [∃!]-existence-eq-any (bijective(f)) (reflexivity(_≡_))
inv-injective : Injective(inv f)
inv-injective = {!invᵣ-injective!}-}
{-
-- inv(f) is surjective when f is bijective.
inv-surjective : Surjective(inv(f))
Surjective.proof(inv-surjective) {x} = [∃]-intro(f(x)) ⦃ inv-inverseₗ ⦄
inv-unique-inverseᵣ : ∀{f⁻¹} → (f ∘ f⁻¹ ⊜ id) → (f⁻¹ ⊜ inv(f))
inv-unique-inverseᵣ = invᵣ-unique-inverseᵣ ⦃ surj = bijective-to-surjective(f) ⦄ ⦃ inj = bijective-to-injective(f) ⦄
inv-unique-inverseₗ : ∀{f⁻¹} → ⦃ _ : Function(f⁻¹) ⦄ → (f⁻¹ ∘ f ⊜ id) → (f⁻¹ ⊜ inv(f))
inv-unique-inverseₗ = invᵣ-unique-inverseₗ ⦃ surj = bijective-to-surjective(f) ⦄
-- inv(f) is a function when f is a function.
inv-function : Function(inv(f))
inv-function = invᵣ-function ⦃ surj = bijective-to-surjective(f) ⦄ ⦃ inj = bijective-to-injective(f) ⦄
module _ ⦃ func : Function(f) ⦄ where
-- inv(f) is injective when f is a function and is bijective.
inv-injective : Injective(inv f)
inv-injective = invᵣ-injective ⦃ surj = bijective-to-surjective(f) ⦄
-- inv(f) is bijective when f is a function and is bijective.
inv-bijective : Bijective(inv(f))
inv-bijective = injective-surjective-to-bijective(inv(f)) ⦃ inv-injective ⦄ ⦃ inv-surjective ⦄
-}
| {
"alphanum_fraction": 0.6150875386,
"avg_line_length": 32.0991735537,
"ext": "agda",
"hexsha": "a946bc744a0e6ff254349135ab7ba308453da77d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/Inverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/Inverse.agda",
"max_line_length": 169,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/Inverse.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1512,
"size": 3884
} |
module Luau.Value where
open import Luau.Addr using (Addr)
open import Luau.Syntax using (Block; Expr; nil; addr; function⟨_⟩_end)
open import Luau.Var using (Var)
data Value : Set where
nil : Value
addr : Addr → Value
val : Value → Expr
val nil = nil
val (addr a) = addr a
| {
"alphanum_fraction": 0.6996466431,
"avg_line_length": 17.6875,
"ext": "agda",
"hexsha": "855e663e23be4087d908af15dd0a8823b483b52a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Luau/Value.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Luau/Value.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/Luau/Value.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 85,
"size": 283
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Raw.Construct.Constant where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels using (hProp)
open import Cubical.Relation.Binary.Raw
------------------------------------------------------------------------
-- Definition
Const : ∀ {a b c} {A : Type a} {B : Type b} → Type c → RawREL A B c
Const I = λ _ _ → I
------------------------------------------------------------------------
-- Properties
module _ {a c} {A : Type a} {C : Type c} where
reflexive : C → Reflexive {A = A} (Const C)
reflexive c = c
symmetric : Symmetric {A = A} (Const C)
symmetric c = c
transitive : Transitive {A = A} (Const C)
transitive c d = c
isPartialEquivalence : IsPartialEquivalence {A = A} (Const C)
isPartialEquivalence = record
{ symmetric = λ {x} {y} → symmetric {x} {y}
; transitive = λ {x} {y} {z} → transitive {x} {y} {z}
}
partialEquivalence : PartialEquivalence A c
partialEquivalence = record { isPartialEquivalence = isPartialEquivalence }
isEquivalence : C → IsEquivalence {A = A} (Const C)
isEquivalence c = record
{ isPartialEquivalence = isPartialEquivalence
; reflexive = λ {x} → reflexive c {x}
}
equivalence : C → Equivalence A c
equivalence x = record { isEquivalence = isEquivalence x }
| {
"alphanum_fraction": 0.5998583569,
"avg_line_length": 30.0425531915,
"ext": "agda",
"hexsha": "baa85a4d64338997dd7c5602e408093c621cddbc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Raw/Construct/Constant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Raw/Construct/Constant.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Raw/Construct/Constant.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 391,
"size": 1412
} |
{-# OPTIONS --allow-unsolved-metas #-}
module MGU-revised where
--open import Agda.Builtin.Nat using () renaming (Nat to ℕ)
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Prelude.Product using (Σ; _,_; fst; snd; _×_; curry; uncurry)
open import Prelude.Equality using (eqReasoningStep; _∎; sym; trans; cong)
open import Prelude.Function using (_∘_)
open import Prelude.Empty using (⊥)
open import Prelude.Sum using (left; right) renaming (Either to _⊎_)
open import Prelude.Maybe using (Maybe; just; nothing)
private
∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b)
∃ = Σ _
open import Prelude using (_$_)
open import Relation.Binary
open import Prolegomenon
import Relation.Binary.Indexed as I
open import Algebra
mcbrideMonoidTransformer : MonoidTransformer lzero lzero lzero lzero
Setoid.Carrier (MonoidTransformer.base mcbrideMonoidTransformer) = {!!}
Setoid._≈_ (MonoidTransformer.base mcbrideMonoidTransformer) = {!!}
Setoid.isEquivalence (MonoidTransformer.base mcbrideMonoidTransformer) = {!!}
Monoid.Carrier (MonoidTransformer.exponent mcbrideMonoidTransformer) = {!!}
Monoid._≈_ (MonoidTransformer.exponent mcbrideMonoidTransformer) = {!!}
Monoid._∙_ (MonoidTransformer.exponent mcbrideMonoidTransformer) = {!!}
Monoid.ε (MonoidTransformer.exponent mcbrideMonoidTransformer) = {!!}
Monoid.isMonoid (MonoidTransformer.exponent mcbrideMonoidTransformer) = {!!}
MonoidTransformer._◃_ mcbrideMonoidTransformer = {!!}
MonoidTransformer.isMonoidTransformer mcbrideMonoidTransformer = {!!}
record Unificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
field
monoidTransformer : MonoidTransformer ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
open module MT = MonoidTransformer monoidTransformer public
{-
open MonoidTransformer monoidTransformer public renaming
(_≈ˢ_ to _=ᵗ_
;Carrierˢ to T
;Carrierᵐ to S
;_≈ᵐ_ to _=ˢ_)
-}
Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ)
Property {ℓ} = E.Carrier → Set ℓ
Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ)
Nothing P = ∀ s → P s → ⊥
IsUnifier : (t₁ t₂ : B.Carrier) → Property
IsUnifier t₁ t₂ s = s ◃ t₁ B.≈ s ◃ t₂
field
unify : (t₁ t₂ : B.Carrier) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (IsUnifier t₁ t₂)
record MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
--infix 4 _≠ᵗ_
field
unificationoid : Unificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
open Unificationoid unificationoid public
_≤_ : (s₋ : E.Carrier) (s₊ : E.Carrier) → Set (ℓˢ ⊔ ℓ⁼ˢ)
_≤_ s₋ s₊ = ∃ λ s → s E.∙ s₊ E.≈ s₋
_≠ᵗ_ : B.Carrier → B.Carrier → Set ℓ⁼ᵗ
_≠ᵗ_ t₁ t₂ = t₁ B.≈ t₂ → ⊥
{-
_<_ : (s₋ : E.Carrier) (s₊ : E.Carrier) → Set (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)
_<_ s₋ s₊ = s₋ ≤ s₊ × (∀ t → (s₊ ◃ t) ≠ᵗ t → (s₋ ◃ t) ≠ᵗ t) × ∃ λ t → (s₋ ◃ t) ≠ᵗ t × (s₊ ◃ t) B.≈ t
--the set of T that are changed by a applying substitution is strictly less with s₊ than with s₋. That is, s₋ makes more changes than s₊.
--that is, if s₊ makes a change to t then so does s₋, but there is some t s.t. s₋ makes a change but s₊ does not
-}
MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property
MostGenerally P s₊ = P s₊ × ∀ s₋ → P s₋ → s₋ ≤ s₊
field
isMguIfUnifier : (t₁ t₂ : B.Carrier) → (ru : ∃ λ s → unify t₁ t₂ ≡ right s) →
Prelude.case ru of (λ {((u , _) , _) → MostGenerally (IsUnifier t₁ t₂) u})
mgu : (t₁ t₂ : B.Carrier) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally $ IsUnifier t₁ t₂)
mgu t₁ t₂ with unify t₁ t₂ | Prelude.graphAt (unify t₁) t₂
mgu t₁ t₂ | left x | ef = left x
mgu t₁ t₂ | right x | Prelude.ingraph eq with isMguIfUnifier t₁ t₂ (x , eq)
mgu t₁ t₂ | right (fst₁ , snd₁) | (Prelude.ingraph eq) | dfsd = right (fst₁ , dfsd)
record PairMostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
field
mostGeneralUnificationoid : MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
open MostGeneralUnificationoid mostGeneralUnificationoid public
field
separateExponents : E.Carrier → E.Carrier × E.Carrier
IsPairUnifier : (t₁ t₂ : B.Carrier) → Property
IsPairUnifier t₁ t₂ u = let (s₁ , s₂) = separateExponents u in s₁ ◃ t₁ B.≈ s₂ ◃ t₂
field
pair-mgu : (t₁ t₂ : B.Carrier)
→ Nothing (IsPairUnifier t₁ t₂) ⊎ ∃ (MostGenerally (IsPairUnifier t₁ t₂))
record MakePairFromRegular ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
field
mostGeneralUnificationoid : MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
open MostGeneralUnificationoid mostGeneralUnificationoid public
field
left-exponent : E.Carrier → E.Carrier
right-exponent : E.Carrier → E.Carrier
left-base : B.Carrier → B.Carrier
right-base : B.Carrier → B.Carrier
exponent-to-base : ∀ {s t₁ t₂} → left-exponent s ◃ t₁ B.≈ right-exponent s ◃ t₂ → s ◃ left-base t₁ B.≈ s ◃ right-base t₂
base-to-exponent : ∀ {s t₁ t₂} → s ◃ left-base t₁ B.≈ s ◃ right-base t₂ → left-exponent s ◃ t₁ B.≈ right-exponent s ◃ t₂
pairMostGeneralUnificationoid : PairMostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
PairMostGeneralUnificationoid.mostGeneralUnificationoid pairMostGeneralUnificationoid = mostGeneralUnificationoid
PairMostGeneralUnificationoid.separateExponents pairMostGeneralUnificationoid x = left-exponent x , right-exponent x
PairMostGeneralUnificationoid.pair-mgu pairMostGeneralUnificationoid t₁ t₂ with mgu (left-base t₁) (right-base t₂)
PairMostGeneralUnificationoid.pair-mgu pairMostGeneralUnificationoid t₁ t₂ | left notunifier = left (λ s x → notunifier s (exponent-to-base x))
PairMostGeneralUnificationoid.pair-mgu pairMostGeneralUnificationoid t₁ t₂ | right (s , x-base , unified-correct) = right (s , base-to-exponent x-base , (λ s₋ x-exponent → unified-correct s₋ (exponent-to-base x-exponent)))
--(s , base-to-exponent x , (λ s₋ x₁ → s₋ , {!snd (snd₁ s x)!}))
-- -- open import Algebra
-- -- record PairUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
-- -- field
-- -- monoidTransformer : MonoidTransformer ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- open module MT = MonoidTransformer monoidTransformer public -- renaming (module E to Exponent)
-- -- {-
-- -- open MonoidTransformer monoidTransformer public renaming
-- -- (_≈ˢ_ to _=ᵗ_
-- -- ;Carrierˢ to T
-- -- ;Carrierᵐ to S
-- -- ;_≈ᵐ_ to _=ˢ_)
-- -- -}
-- -- Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ)
-- -- Property {ℓ} = E.Carrier × E.Carrier → Set ℓ
-- -- Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ)
-- -- Nothing P = ∀ u → P u → ⊥
-- -- IsUnifier : ∀ t₁ t₂ → Property
-- -- IsUnifier t₁ t₂ u = let (s₁ , s₂) = u in s₁ ◃ t₁ B.≈ s₂ ◃ t₂
-- -- field
-- -- unify : ∀ t₁ t₂
-- -- → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (IsUnifier t₁ t₂)
-- -- module MakePairUnificationoidFromUnificationoid where
-- -- postulate
-- -- ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Level
-- -- unificationoid : Unificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- open Unificationoid unificationoid
-- -- pairUnificationoid : PairUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- PairUnificationoid.monoidTransformer pairUnificationoid = monoidTransformer
-- -- PairUnificationoid.unify pairUnificationoid t₁ t₂ with unify t₁ t₂
-- -- PairUnificationoid.unify pairUnificationoid t₁ t₂ | left x = left (λ {(s₁ , s₂) x₁ → x {!!} {!x₁!}})
-- -- PairUnificationoid.unify pairUnificationoid t₁ t₂ | right (s₁ , snd₁) = {!!}
-- -- {-
-- -- s ◃ swap ◃ t₁ = s ◃ t₂
-- -- swap ∙ swap = ε
-- -- want: x , y s.t. x ◃ t₁ = x ◃ t₂
-- -- easy: x = s ∙ swap, y = s
-- -- harder:
-- -- s₁ ◃ t₁ = s₂ ◃ t₂
-- -- want: x s.t. x ◃ t₁ = x ◃ t₂
-- -- -}
-- -- -- record Isomorphic {a} {A : Set a} {ℓᵃ} {_=ᵃ_ : A → A → Set ℓᵃ} (isEquivalenceᵃ : IsEquivalence _=ᵃ_) {b} {B : Set b} {ℓᵇ} {_=ᵇ_ : B → B → Set ℓᵇ} (isEquivalenceᵇ : IsEquivalence _=ᵇ_) : Set (a ⊔ ℓᵃ ⊔ b ⊔ ℓᵇ) where
-- -- -- field
-- -- -- toA : B → A
-- -- -- toB : A → B
-- -- -- rtA : (x : A) → toA (toB x) =ᵃ x
-- -- -- rtB : (x : B) → toB (toA x) =ᵇ x
-- -- -- isoA : (x₁ x₂ : A) → x₁ =ᵃ x₂ → toB x₁ =ᵇ toB x₂
-- -- -- isoB : (x₁ x₂ : B) → x₁ =ᵇ x₂ → toA x₁ =ᵃ toA x₂
-- -- -- record Splittable ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
-- -- -- field
-- -- -- mostGeneralUnificationoid : MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- -- open MostGeneralUnificationoid mostGeneralUnificationoid public
-- -- -- S-independent : (t₁ t₂ : T) → Set (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)
-- -- -- S-independent t₁ t₂ = ∀ t₁s s → s ◃ t₁ =ᵗ t₁s → MostGenerally (λ s → s ◃ t₁ =ᵗ t₁s) s → s ◃ t₂ =ᵗ t₂
-- -- -- S-Invertable : Property
-- -- -- S-Invertable s = s ∙ s =ˢ ε
-- -- -- Swapifies : (t₁ t₂ : T) → Property
-- -- -- Swapifies t₁ t₂ s = s ◃ t₁ =ᵗ t₂ × s ◃ t₂ =ᵗ t₁
-- -- -- UnifiesOnLeft : (t₁ t₂ : T) → Property
-- -- -- UnifiesOnLeft t₁ t₂ s = s ◃ t₁ =ᵗ t₂
-- -- -- RelativeIdentity : T → Property
-- -- -- RelativeIdentity t s = s ◃ t =ᵗ t
-- -- -- field
-- -- -- make-S-independent :
-- -- -- (t₁ t₂ : T) →
-- -- -- ∃ λ swap₁ → S-Invertable swap₁ ×
-- -- -- ∃ λ t₁′ → MostGenerally (Swapifies t₁ t₁′) swap₁ ×
-- -- -- ∃ λ s₁ → MostGenerally (UnifiesOnLeft t₁ t₁′) s₁ ×
-- -- -- RelativeIdentity t₂ s₁
-- -- -- Tᵢ : Prelude.List Prelude.Nat → Set
-- -- -- toTᵢ : T → ∃ Tᵢ
-- -- -- pairUnification : PairMostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- -- PairMostGeneralUnificationoid.monoidTransformer pairUnification = monoidTransformer
-- -- -- PairMostGeneralUnificationoid.mgu pairUnification t₁ t₂ with make-S-independent t₁ t₂
-- -- -- PairMostGeneralUnificationoid.mgu pairUnification t₁ t₂ | (swap₁ , swap₁∙swap₁=ε , t₁′ , ((swap₁◃t₁=t₁′ , swap₁◃t₁′=t₁) , mgswap) , slip₁ , (slip₁◃t₁=t₁′ , mgleft) , slip₁◃t₂=t₂) with mgu t₁′ t₂
-- -- -- -- … | (left NoT₁T₂) =
-- -- -- PairMostGeneralUnificationoid.mgu pairUnification t₁ t₂ | (swap₁ , swap₁∙swap₁=ε , t₁′ , ((swap₁◃t₁=t₁′ , swap₁◃t₁′=t₁) , mgswap) , slip₁ , (slip₁◃t₁=t₁′ , mgleft) , slip₁◃t₂=t₂) | (left NoT₁T₂) =
-- -- -- left
-- -- -- λ {(s₁ , s₂) s₁◃t₁=s₂◃t₂ →
-- -- -- {!let (s₁′ , s₂′ , s₁′◃t₁=s₂′◃t₂ , s₁′∙swap₁◃t₂=swap₁◃t₂ , s₂′∙swap₁∙s₂′◃t₂=swap₁∙s₂′◃t₂) = helper!}}
-- -- -- {-
-- -- -- NoT₁T₂ (slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁)
-- -- -- (let t₁′▹s₂=t₁′ : {!!} -- s₂ ◃ t₁′ =ᵗ t₁′
-- -- -- t₁′▹s₂=t₁′ = {!!} in {!!})}
-- -- -- -}
-- -- -- -- ? s₂ (s₁ ◃ t₁) (symˢ t₁▹s₁=t₂▹s₂ , (λ s₁₋ t₂▹s₁₋=t₁▹s₁ → {!!} , {!!})) in {!!})}) -- mgur s₂ (t₁ ▹ s₁) (symˢ t₁▹s₁=t₂▹s₂ , ?)
-- -- -- PairMostGeneralUnificationoid.mgu pairUnification t₁ t₂ | (swap₁ , swap₁∙swap₁=ε , t₁′ , ((swap₁◃t₁=t₁′ , swap₁◃t₁′=t₁) , mgswap) , slip₁ , (slip₁◃t₁=t₁′ , mgleft) , slip₁◃t₂=t₂) | (right (s , s◃t₁′=s◃t₂ , mgur)) = right $ (s ∙ slip₁ , s) , {!!} , (λ {(s₁′ , s₂′) s₁′◃t₁=s₂′◃t₂ → {!!}})
-- -- -- {-
-- -- -- goal
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁ ◃ t₁′ =ᵗ slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁ ◃ t₂
-- -- -- by slip₁◃t₁=t₁′
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁ ∙ slip₁ ◃ t₁ =ᵗ slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁ ◃ t₂
-- -- -- conjecture: swap₁ ∙ slip₁ ◃ t₁ = t₁
-- -- -- conjecture: s₁ ∙ swap₁ ◃ t₂ = swap₁ ◃ t₂
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ◃ t₁ =ᵗ slip₁ ∙ s₂ ∙ swap₁ ∙ swap₁ ◃ t₂
-- -- -- by swap₁∙swap₁=ε
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ◃ t₁ =ᵗ slip₁ ∙ s₂ ◃ t₂
-- -- -- by s₁◃t₁=s₂◃t₂
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₂ ◃ t₂ =ᵗ slip₁ ∙ s₂ ◃ t₂
-- -- -- conjecture: s₂ ∙ swap₁ ∙ s₂ ◃ t₂ = swap₁ ∙ s₂ ◃ t₂
-- -- -- slip₁ ∙ swap₁ ∙ s₂ ◃ t₂ =ᵗ slip₁ ∙ s₂ ◃ t₂
-- -- -- conjecture: swap₁ ∙ s₂ ◃ t₂ = slip₁ ∙ s₂ ◃ t₂
-- -- -- slip₁ ∙ slip₁ ∙ s₂ ◃ t₂ =ᵗ slip₁ ∙ s₂ ◃ t₂
-- -- -- conjecture: slip₁ ∙ slip₁ = slip₁
-- -- -- slip₁ ∙ s₂ ◃ t₂ =ᵗ slip₁ ∙ s₂ ◃ t₂
-- -- -- goal : ?0 ◃ t₁′ = ?0 ◃ t₂
-- -- -- e.g.
-- -- -- f(x,g(y),z) = f(g(y),x,h(z))
-- -- -- s₁ = x → g(y) , z → h(z) ; s₂ = x → g(y)
-- -- -- s = x → a ; y → b ; z → c
-- -- -- t₁′ = f(a,g(b),c)
-- -- -- S = a → g(y) , x → g(b) , c → h(z)
-- -- -- s⁻¹ = a → x , b → y , c → z
-- -- -- s₁ ∙ s⁻¹ = a → g(y) , b → y , c → h(z)
-- -- -- s₂ ∙ s₁ ∙ s⁻¹ = a → g(y) , b → y , c → h(z) , x → g(y)
-- -- -- S = s ∙ s₂ ∙ s₁ ∙ s⁻¹ = a → g(b) , b → b , c → h(c) , x → g(b) , y → b , z → c
-- -- -- t₁′ ▹ S = f(g(b),g(b),h(c))
-- -- -- t₂ ▹ S = f(g(b),g(b),h(c))
-- -- -- f(x,g(y),z) = f(g(y),x,h(z))
-- -- -- s₁ = x → g(x) , y → x , z → h(z) ; s₂ = y → x , x → g(x)
-- -- -- s = x → a ; y → b ; z → c
-- -- -- t₁′ = f(a,g(b),c)
-- -- -- s⁻¹ = a → x , b → y , c → z
-- -- -- s₁ ∙ s⁻¹ = a → g(x) , b → x , c → h(z) , x → g(x) , y → x , z → h(z)
-- -- -- s₂ ∙ s₁ ∙ s⁻¹ = a → g(g(x)) , b → g(x) , c → h(z) , x → g(g(x)) , y → g(x) , z → h(z)
-- -- -- s ∙ s₂ ∙ s₁ ∙ s⁻¹ = a → g(g(a)) , b → g(a) , c → h(c) , x → g(g(a)) , y → g(a) , z → h(c)
-- -- -- s⁻¹ = a → x , b → y , c → z
-- -- -- s₁ ∙ s⁻¹ = a → g(x) , b → x , c → h(z) , x → g(x) , y → x , z → h(z)
-- -- -- s ∙ s₁ ∙ s⁻¹ = a → g(a) , b → a , c → h(c) , x → g(a) , y → a , z → h(c)
-- -- -- s₁′ = a → g(a) , b → a , c → h(c)
-- -- -- s₂′ = y → a , x → g(a) , z → c
-- -- -- let swap₁ = x → a , y → b , z → c , a → x , b → y , c → z -- take variables common to t₁ and t₂, and swap them for variables outside of either (and outside of s₁ or s₂?)
-- -- -- s₁ ∙ swap₁ = x → a , y → b , z → c , a → g(x) , b → x , c → h(z)
-- -- -- s₁′ = swap₁ ∙ s₁ ∙ swap₁ = a → g(a) , b → a , c → h(c)
-- -- -- s₁′ = swap₁ ∙ s₁ ∙ swap₁
-- -- -- let slip₁ = x → a , y → b , z → c
-- -- -- let s₂′ = slip₁ ∙ s₂ = y → a , x → g(a) , z → c
-- -- -- s₂′ ∙ s₁′ = a → g(a) , b → a , c → h(c) , y → a , x → g(a) , z → c
-- -- -- slip₁ ∙ s₂ ∙ swap₁ ∙ s₁ ∙ swap₁
-- -- -- f(g(g(a)),g(g(a)),h(c)) = f(g(g(a)),g(g(a)),h(h(c)))
-- -- -- f(x,g(y),z) = f(g(y),x,h(z))
-- -- -- -}
-- -- -- {-
-- -- -- … | (t₁' , s-independent , s , t₁'= , s⁻¹ , t₁=) with mgu t₁' t₂
-- -- -- … | (left NoT₁T₂) = left $ λ {(s₁ , s₂) t₁▹s₁=t₂▹s₂ → NoT₁T₂ {!≈ˢ-over-▹-⟶-≈ᵐ!} {!isMonoidTransformer!}}
-- -- -- … | (right x) = right {!!}
-- -- -- -}
-- -- -- {-
-- -- -- suppose t₁ ▹ s₁ = t₂ ▹ s₂
-- -- -- given:
-- -- -- t₁' ▹ * ≠ t₂ ▹ *
-- -- -- t₁ = t₁' ▹ s
-- -- -- try s = the most general such
-- -- -- t₁ = t₁' ▹ s⁻¹
-- -- -- t₁' = t₁ ▹ s
-- -- -- t₁ ▹ s₁ = t₂ ▹ s₂
-- -- -- s ∙ s⁻¹ = ε
-- -- -- t₁' ▹ s⁻¹ ▹ s₁ = t₂ ▹ s₂
-- -- -- finx x = s₁
-- -- -- t₁ ▹ x = t₂ ▹ s⁻¹ ▹ x
-- -- -- t₁' ▹ x = t₂ ▹ x
-- -- -- t₁ ▹ s ▹ x = t₂ ▹ x
-- -- -- t₁ ▹ s ▹ x = t₂ ▹ s⁻¹ ▹ s ▹ x
-- -- -- -}
-- -- -- data STerm (A : Set) : Set where
-- -- -- ι : A → STerm A
-- -- -- _fork_ : STerm A → STerm A → STerm A
-- -- -- leaf : STerm A
-- -- -- sub : {V : Set} → (V → Maybe (STerm V)) → STerm V → STerm V
-- -- -- sub σ (ι x) with σ x
-- -- -- sub σ (ι x) | nothing = ι x
-- -- -- sub σ (ι x) | just x₁ = x₁
-- -- -- sub σ (t fork t₁) = sub σ t fork sub σ t₁
-- -- -- sub σ leaf = leaf
-- -- -- {-
-- -- -- Sᵢ : List (V × T) → S
-- -- -- Tᵢ : List V → T
-- -- -- indexS : S → ∃ Sᵢ
-- -- -- indexT : T → ∃ Tᵢ
-- -- -- _▹ᵢ_ : {vs : List V} {vts : List (V × T)} → Tᵢ vs → Sᵢ vts → ∃ λ
-- -- -- (t : T) (s : S) → t ▹ s
-- -- -- (V → T) → T → T
-- -- -- getTermIndexedByAVariable : (v : V) (t : T) → T → T
-- -- -- getTermFromIndexedTerm :
-- -- -- v ∈ variables s → t ▹ s
-- -- -- -}
-- -- -- record IsSeparableInto {sx s x} (SX : Set sx) (S : Set s) (X : Set x) : Set (s ⊔ x ⊔ sx) where
-- -- -- field
-- -- -- separate : SX → S × X
-- -- -- combine : S × X → SX
-- -- -- iso : ∀ sx → combine (separate sx) ≡ sx
-- -- -- record IsSeparableInto₂ {sx s x} (SX : Set sx) (X : Set x) (S : X → Set s) : Set (s ⊔ x ⊔ sx) where
-- -- -- field
-- -- -- separate : SX → Σ X S
-- -- -- combine : Σ X S → SX
-- -- -- iso : ∀ sx → combine (separate sx) ≡ sx
-- -- -- record Separableoid sx s x : Set (lsuc (sx ⊔ s ⊔ x)) where
-- -- -- field
-- -- -- SX : Set sx
-- -- -- S : Set s
-- -- -- X : Set x
-- -- -- separable : IsSeparableInto SX S X
-- -- -- -- record FreeVariableoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ℓᵛ ℓ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where
-- -- -- -- field
-- -- -- -- monoidTransformer : MonoidTransformer ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ
-- -- -- -- open MonoidTransformer monoidTransformer public renaming
-- -- -- -- (_≈ˢ_ to _=ᵗ_
-- -- -- -- ;Carrierˢ to T
-- -- -- -- ;Carrierᵐ to S
-- -- -- -- ;_≈ᵐ_ to _=ˢ_)
-- -- -- -- field
-- -- -- -- termVariableoid : Setoid ℓᵛ ℓ⁼ᵛ
-- -- -- -- termStructureoid :
-- -- -- -- open Setoid Variable public using () renaming
-- -- -- -- (Carrier to V
-- -- -- -- ;_≈_ to _=ᵛ_)
-- -- -- -- field
-- -- -- -- termVariables : Term → Pred Variable ℓᵛ
| {
"alphanum_fraction": 0.5218143838,
"avg_line_length": 41.2684729064,
"ext": "agda",
"hexsha": "910136dd0223b4b1a556b4c95ed340b4505ec67f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/MGU-revised.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/MGU-revised.agda",
"max_line_length": 297,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/MGU-revised.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7564,
"size": 16755
} |
open import Prelude
open import Nat
open import core
open import contexts
open import weakening
open import exchange
open import lemmas-disjointness
open import binders-disjoint-checks
module lemmas-subst-ta where
-- this is what makes the binders-unique assumption below good enough: it
-- tells us that we can pick fresh variables
mutual
binders-envfresh : ∀{Δ Γ Γ' y σ} → Δ , Γ ⊢ σ :s: Γ' → y # Γ → unbound-in-σ y σ → binders-unique-σ σ → envfresh y σ
binders-envfresh {Γ' = Γ'} {y = y} (STAId x) apt unbound unique with ctxindirect Γ' y
binders-envfresh {Γ' = Γ'} {y = y} (STAId x₁) apt unbound unique | Inl x = abort (somenotnone (! (x₁ y (π1 x) (π2 x)) · apt))
binders-envfresh (STAId x₁) apt unbound unique | Inr x = EFId x
binders-envfresh {Γ = Γ} {y = y} (STASubst {y = z} subst x₁) apt (UBσSubst x₂ unbound neq) (BUσSubst zz x₃ x₄) =
EFSubst (binders-fresh {y = y} x₁ zz x₂ apt)
(binders-envfresh subst (apart-extend1 Γ neq apt) unbound x₃)
neq
binders-fresh : ∀{ Δ Γ d2 τ y} → Δ , Γ ⊢ d2 :: τ
→ binders-unique d2
→ unbound-in y d2
→ Γ y == None
→ fresh y d2
binders-fresh TAConst BUHole UBConst apt = FConst
binders-fresh {y = y} (TAVar {x = x} x₁) BUVar UBVar apt with natEQ y x
binders-fresh (TAVar x₂) BUVar UBVar apt | Inl refl = abort (somenotnone (! x₂ · apt))
binders-fresh (TAVar x₂) BUVar UBVar apt | Inr x₁ = FVar x₁
binders-fresh {y = y} (TALam {x = x} x₁ wt) bu2 ub apt with natEQ y x
binders-fresh (TALam x₂ wt) bu2 (UBLam2 x₁ ub) apt | Inl refl = abort (x₁ refl)
binders-fresh {Γ = Γ} (TALam {x = x} x₂ wt) (BULam bu2 x₃) (UBLam2 x₄ ub) apt | Inr x₁ = FLam x₁ (binders-fresh wt bu2 ub (apart-extend1 Γ x₄ apt))
binders-fresh (TAAp wt wt₁) (BUAp bu2 bu3 x) (UBAp ub ub₁) apt = FAp (binders-fresh wt bu2 ub apt) (binders-fresh wt₁ bu3 ub₁ apt)
binders-fresh (TAEHole x₁ x₂) (BUEHole x) (UBHole x₃) apt = FHole (binders-envfresh x₂ apt x₃ x )
binders-fresh (TANEHole x₁ wt x₂) (BUNEHole bu2 x) (UBNEHole x₃ ub) apt = FNEHole (binders-envfresh x₂ apt x₃ x) (binders-fresh wt bu2 ub apt)
binders-fresh (TACast wt x₁) (BUCast bu2) (UBCast ub) apt = FCast (binders-fresh wt bu2 ub apt)
binders-fresh (TAFailedCast wt x x₁ x₂) (BUFailedCast bu2) (UBFailedCast ub) apt = FFailedCast (binders-fresh wt bu2 ub apt)
-- the substition lemma for preservation
lem-subst : ∀{Δ Γ x τ1 d1 τ d2 } →
x # Γ →
binders-disjoint d1 d2 →
binders-unique d2 →
Δ , Γ ,, (x , τ1) ⊢ d1 :: τ →
Δ , Γ ⊢ d2 :: τ1 →
Δ , Γ ⊢ [ d2 / x ] d1 :: τ
lem-subst apt bd bu2 TAConst wt2 = TAConst
lem-subst {x = x} apt bd bu2 (TAVar {x = x'} x₂) wt2 with natEQ x' x
lem-subst {Γ = Γ} apt bd bu2 (TAVar x₃) wt2 | Inl refl with lem-apart-union-eq {Γ = Γ} apt x₃
lem-subst apt bd bu2 (TAVar x₃) wt2 | Inl refl | refl = wt2
lem-subst {Γ = Γ} apt bd bu2 (TAVar x₃) wt2 | Inr x₂ = TAVar (lem-neq-union-eq {Γ = Γ} x₂ x₃)
lem-subst {Δ = Δ} {Γ = Γ} {x = x} {d2 = d2} x#Γ (BDLam bd bd') bu2 (TALam {x = y} {τ1 = τ1} {d = d} {τ2 = τ2} x₂ wt1) wt2
with lem-union-none {Γ = Γ} x₂
... | x≠y , y#Γ with natEQ y x
... | Inl eq = abort (x≠y (! eq))
... | Inr _ = TALam y#Γ (lem-subst {Δ = Δ} {Γ = Γ ,, (y , τ1)} {x = x} {d1 = d} (apart-extend1 Γ x≠y x#Γ) bd bu2 (exchange-ta-Γ {Γ = Γ} x≠y wt1)
(weaken-ta (binders-fresh wt2 bu2 bd' y#Γ) wt2))
lem-subst apt (BDAp bd bd₁) bu3 (TAAp wt1 wt2) wt3 = TAAp (lem-subst apt bd bu3 wt1 wt3) (lem-subst apt bd₁ bu3 wt2 wt3)
lem-subst apt bd bu2 (TAEHole inΔ sub) wt2 = TAEHole inΔ (STASubst sub wt2)
lem-subst apt (BDNEHole x₁ bd) bu2 (TANEHole x₃ wt1 x₄) wt2 = TANEHole x₃ (lem-subst apt bd bu2 wt1 wt2) (STASubst x₄ wt2)
lem-subst apt (BDCast bd) bu2 (TACast wt1 x₁) wt2 = TACast (lem-subst apt bd bu2 wt1 wt2) x₁
lem-subst apt (BDFailedCast bd) bu2 (TAFailedCast wt1 x₁ x₂ x₃) wt2 = TAFailedCast (lem-subst apt bd bu2 wt1 wt2) x₁ x₂ x₃
| {
"alphanum_fraction": 0.5623312331,
"avg_line_length": 68.3692307692,
"ext": "agda",
"hexsha": "c4753d7ac204b2d7920f39e299550d336cea2eed",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "lemmas-subst-ta.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "lemmas-subst-ta.agda",
"max_line_length": 153,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "lemmas-subst-ta.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1711,
"size": 4444
} |
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn(x : X) where
open X (x) public
open import OutsideIn.Prelude public
open import Data.Vec public hiding ([_])
import OutsideIn.Constraints as C
import OutsideIn.TypeSchema as TS
import OutsideIn.Expressions as E
import OutsideIn.Environments as V
import OutsideIn.TopLevel as TL
import OutsideIn.Inference as I
open E (x) public
open TL(x) public
open TS(x) public
open I (x) public
open V (x) public
open C (x)
| {
"alphanum_fraction": 0.7426900585,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "2a66259659304bf675bc9388b1277cbbdb85194c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn.agda",
"max_line_length": 43,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 148,
"size": 513
} |
{-# OPTIONS --cubical --postfix-projections --safe #-}
module Karatsuba where
open import Prelude
open import Data.List
open import Data.List.Syntax
open import TreeFold
open import Data.Integer
import Data.Nat as ℕ
open import Literals.Number
open import Data.Integer.Literals
Diff : Type a → Type a
Diff A = List A → List A
⌈⌉ : Diff A
⌈⌉ = id
⌈_⌉ : A → Diff A
⌈_⌉ = _∷_
⌊_⌋ : Diff A → List A
⌊ xs ⌋ = xs []
record K (A : Type a) : Type a where
constructor k
field
sh lo hi : Diff A
out : List A
open K
infixl 6 _⊕_ _⊝_
_⊕_ : List ℤ → List ℤ → List ℤ
[] ⊕ ys = ys
xs ⊕ [] = xs
(x ∷ xs) ⊕ (y ∷ ys) = (x + y) ∷ (xs ⊕ ys)
_⍟_ : List ℤ → List ℤ → List (K ℤ)
[] ⍟ ys = map (λ y → k ⌈ 0 ⌉ ⌈⌉ ⌈ y ⌉ []) ys
xs ⍟ [] = map (λ x → k ⌈ 0 ⌉ ⌈ x ⌉ ⌈⌉ []) xs
(x ∷ xs) ⍟ (y ∷ ys) = k ⌈ 0 ⌉ ⌈ x ⌉ ⌈ y ⌉ [ x * y ] ∷ xs ⍟ ys
_⊝_ : List ℤ → List ℤ → List ℤ
xs ⊝ ys = xs ⊕ map negate ys
-- The first parameter in these functions is just used for termination checking.
mutual
infixl 7 ⟨_⟩_⊛_
⟨_⟩_⊛_ : ℕ → List ℤ → List ℤ → List ℤ
⟨ n ⟩ [] ⊛ _ = []
⟨ n ⟩ _ ⊛ [] = []
⟨ n ⟩ (x ∷ []) ⊛ ys = map (x *_) ys
⟨ n ⟩ xs ⊛ (y ∷ []) = map (y *_) xs
⟨ n ⟩ xs ⊛ ys = maybe [] out (treeFoldMay ⟨ n ⟩_◆_ (xs ⍟ ys))
⟨_⟩_◆_ : ℕ → K ℤ → K ℤ → K ℤ
(⟨ _ ⟩ xs ◆ ys ) .sh = xs .sh ∘ ys .sh
(⟨ _ ⟩ xs ◆ ys ) .lo = xs .lo ∘ ys .lo
(⟨ _ ⟩ xs ◆ ys ) .hi = xs .hi ∘ ys .hi
(⟨ zero ⟩ _ ◆ _ ) .out = [] -- should not happen
(⟨ suc t ⟩ k p x₀ y₀ z₀ ◆ k _ x₁ y₁ z₂) .out =
let z₁ = ⟨ t ⟩ (⌊ x₀ ⌋ ⊕ ⌊ x₁ ⌋) ⊛ (⌊ y₀ ⌋ ⊕ ⌊ y₁ ⌋)
in p (p z₂ ⊕ z₁ ⊝ (z₀ ⊕ z₂)) ⊕ z₀
_⊛_ : List ℤ → List ℤ → List ℤ
xs ⊛ ys = ⟨ length xs ℕ.+ length ys ⟩ xs ⊛ ys
_ : [ 2 , 5 ] ⊛ [ 1 , 1 ] ≡ [ 2 , 7 , 5 ]
_ = refl
| {
"alphanum_fraction": 0.437994723,
"avg_line_length": 24.9342105263,
"ext": "agda",
"hexsha": "b40f22d25ead8c103a190dd21f7a09c52683d459",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Karatsuba.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Karatsuba.agda",
"max_line_length": 80,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Karatsuba.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 910,
"size": 1895
} |
open import Level using (Level; suc; zero; _⊔_)
open import Algebra.Structures
open import Algebra.FunctionProperties as FunctionProperties using (Op₁; Op₂)
open import Relation.Binary
-- Definition of an ordered monoid, which adds the law that ∙ must
-- preserve the partial order ≤ (or, equivalently, that an ordering x
-- ≤ y must allow for the substitution of y for x in a more complex
-- ordering) to an existing monoid and partial order.
module Algebra.OrderedMonoid where
record IsOrderedMonoid {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isMonoid : IsMonoid ≈ ∙ ε
isPartialOrder : IsPartialOrder ≈ ≤
compatibility : ∙ Preserves₂ ≤ ⟶ ≤ ⟶ ≤
open IsMonoid isMonoid public
hiding (isEquivalence)
open IsPartialOrder isPartialOrder public
renaming (refl to ≤-refl; trans to ≤-trans; reflexive to ≤-reflexive)
record OrderedMonoid c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infixl 7 _∙_
infix 4 _≈_
infix 4 _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
_∙_ : Op₂ Carrier
ε : Carrier
isOrderedMonoid : IsOrderedMonoid _≈_ _≤_ _∙_ ε
open IsOrderedMonoid isOrderedMonoid public
substitutivity : ∀ {x y z w} → x ≤ y → z ∙ x ∙ w ≤ z ∙ y ∙ w
substitutivity x≤y = compatibility (compatibility ≤-refl x≤y) ≤-refl
| {
"alphanum_fraction": 0.6480055983,
"avg_line_length": 36.641025641,
"ext": "agda",
"hexsha": "aacdd6b1e7e0b1e6ca0ae64e74421f76faa97cb3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/agda-pregroup",
"max_forks_repo_path": "Algebra/OrderedMonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/agda-pregroup",
"max_issues_repo_path": "Algebra/OrderedMonoid.agda",
"max_line_length": 120,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/agda-pregroup",
"max_stars_repo_path": "Algebra/OrderedMonoid.agda",
"max_stars_repo_stars_event_max_datetime": "2017-03-02T01:23:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-02T01:23:52.000Z",
"num_tokens": 490,
"size": 1429
} |
module Tools where
import PolyDepPrelude
-- import Sigma
-- import And
open PolyDepPrelude using(Datoid; Bool; true; false; _&&_; Nat; True; Taut; unit)
liftAnd : (a : Bool)(b : Bool)(ta : True a)(tb : True b) -> True (a && b)
liftAnd (true) (true) ta tb = unit
liftAnd (true) (false) ta () -- empty
liftAnd (false) _ () _ -- empty
{-
sigmaCond (D:Datoid)
(B:D.Elem -> Set)
(C:Set)
(ifTrue:(b:D.Elem) -> B b -> B b -> C)
(ifFalse:C)
(x:Sigma D.Elem B)
(y:Sigma D.Elem B)
: C
= case x of {
(si a pa) ->
case y of {
(si b pb) ->
let caseOn (e:Bool)(cast:True e -> B a -> B b) : C
= case e of {
(false) -> ifFalse;
(true) -> ifTrue b (cast tt@_ pa) pb;}
in caseOn (D.eq a b) (D.subst B);};}
-- trueAnd = \a b -> (LogicBool.spec_and a b).snd
trueAnd (a:Bool)(b:Bool)(p:And (True a) (True b)) : True (a && b)
= case p of {
(Pair a' b') ->
case a of {
(true) ->
case b of {
(true) -> tt@_;
(false) -> b';};
(false) -> a';};}
splitAnd (a:Bool)(b:Bool)(p:True (_&&_ a b))
: Times (True a) (True b)
= case a of {
(true) ->
case b of {
(true) ->
struct {
fst = tt@_;
snd = tt@_;};
(false) -> case p of { };};
(false) -> case p of { };}
trueSigma (D:Set)(f:D -> Bool)(s:Sigma D (\(d:D) -> True (f d)))
: True (f (si1 D (\(d:D) -> True (f d)) s))
= case s of { (si a b) -> b;}
Maybe (A:Set) : Set
= data Nothing | Just (a:A)
mapMaybe (|A,|B:Set)(f:A -> B)(x:Maybe A) : Maybe B
= case x of {
(Nothing) -> Nothing@_;
(Just a) -> Just@_ (f a);}
maybe (|A,|B:Set)(e:B)(f:A -> B) : Maybe A -> B
= \x -> case x of {
(Nothing) -> e;
(Just a) -> f a;}
open SET
use List, Absurd, Unit, Either, mapEither, Times, mapTimes, id,
uncur, elimEither
elimList (|A:Set)
(C:List A -> Type)
(n:C nil@_)
(c:(a:A) -> (as:List A) -> C as -> C (con@_ a as))
(as:List A)
: C as
= case as of {
(nil) -> n;
(con x xs) -> c x xs (elimList C n c xs);}
-- Common generalization of sum and product of a list of sets
-- (represented as a decoding function f and a list of codes)
O (A:Set)(E:Set)(Op:Set -> Set -> Set)(f:A -> Set)
: List A -> Set
= elimList (\as -> Set) E (\a -> \as -> Op (f a))
-- The corresponding map function! (Takes a nullary and a binary
-- functor as arguments.)
mapO (|A,|E:Set)
(|Op:Set -> Set -> Set)
(mapE:E -> E)
(mapOp:(A1,B1,A2,B2:Set) |->
(f1:A1 -> B1) ->
(f2:A2 -> B2) ->
Op A1 A2 -> Op B1 B2)
(X:A -> Set)
(Y:A -> Set)
(f:(a:A) -> X a -> Y a)
: (as:List A) -> O A E Op X as -> O A E Op Y as
= elimList (\(as:List A) -> O A E Op X as -> O A E Op Y as) mapE
(\a -> \as -> mapOp (f a))
mapAbsurd : Absurd -> Absurd = id
eqAbsurd : Absurd -> Absurd -> Bool = \h -> \h' -> case h of { }
-- the name of OPlus and OTimes indicate the symbols they should be
-- shown as in algebra: a big ring (a big "O") with the operator +
-- or x in
-- Disjoint sum over a list of codes
OPlus (A:Set) : (A -> Set) -> List A -> Set
= O A Absurd Either
-- corresponding map function
mapOPlus (|A:Set)(X:A -> Set)(Y:A -> Set)(f:(a:A) -> X a -> Y a)
: (as:List A) -> OPlus A X as -> OPlus A Y as
= mapO id mapEither X Y f
-- Cartesian product over a list of codes
OTimes (A:Set) : (A -> Set) -> List A -> Set
= O A Unit Times
-- corresponding map
mapOTimes (|A:Set)(X:A -> Set)(Y:A -> Set)(f:(a:A) -> X a -> Y a)
: (as:List A) -> OTimes A X as -> OTimes A Y as
= mapO id mapTimes X Y f
sizeOPlus (|A:Set)
(f:A -> Set)
(n:(a:A) -> f a -> Nat)
(as:List A)
(t:OPlus A f as)
: Nat
= case as of {
(nil) -> case t of { };
(con a as) ->
case t of {
(inl x) -> n a x;
(inr y) -> sizeOPlus f n as y;};}
triv (x:Absurd) : Set = case x of { }
trivT (x:Absurd) : Type = case x of { }
sizeOTimes (|A:Set)
(f:A -> Set)
(z:Nat)
(n:(a:A) -> f a -> Nat)
(as:List A)
(t:OTimes A f as)
: Nat
= case as of {
(nil) -> case t of { (tt) -> z;};
(con a as) -> uncur (+) (mapTimes (n a) (sizeOTimes f z n as) t);}
eqUnit (x:Unit)(y:Unit) : Bool
= true@_
eqTimes (|A1,|A2,|B1,|B2:Set)
(eq1:A1 -> B1 -> Bool)
(eq2:A2 -> B2 -> Bool)
: Times A1 A2 -> Times B1 B2 -> Bool
= \x -> \y -> _&&_ (eq1 x.fst y.fst) (eq2 x.snd y.snd)
EqFam (A:Set)(f:A -> Set)(g:A -> Set) : Set
= (a:A) -> f a -> g a -> Bool
eqOTimes (A:Set)(f:A -> Set)(g:A -> Set)(eq:EqFam A f g)
: EqFam (List A) (OTimes A f) (OTimes A g)
= elimList
(\as -> (OTimes A f as -> OTimes A g as -> Bool))
eqUnit
(\a -> \as -> eqTimes (eq a))
eqEither (|A1,|A2,|B1,|B2:Set)
(eq1:A1 -> B1 -> Bool)
(eq2:A2 -> B2 -> Bool)
: Either A1 A2 -> Either B1 B2 -> Bool
= \x -> \y ->
case x of {
(inl x') ->
case y of {
(inl x0) -> eq1 x' x0;
(inr y') -> false@_;};
(inr y') ->
case y of {
(inl x') -> false@_;
(inr y0) -> eq2 y' y0;};}
eqOPlus (A:Set)(f:A -> Set)(g:A -> Set)(eq:EqFam A f g)
: EqFam (List A) (OPlus A f) (OPlus A g)
= elimList
(\(as:List A) -> OPlus A f as -> OPlus A g as -> Bool)
eqAbsurd
(\a -> \as -> eqEither (eq a))
Fam (I:Set)(X:I -> Set) : Type
= (i:I) -> X i -> Set
eitherSet (A:Set)(B:Set)(f:A -> Set)(g:B -> Set)(x:Either A B)
: Set
= case x of {
(inl x') -> f x';
(inr y) -> g y;}
famOPlus (A:Set)(G:A -> Set) : Fam A G -> Fam (List A) (OPlus A G)
= \(f:Fam A G) ->
elimList (\(as:List A) -> OPlus A G as -> Set) triv
(\(a:A) -> \(as:List A) -> eitherSet (G a) (OPlus A G as) (f a))
bothSet (A:Set)(B:Set)(f:A -> Set)(g:B -> Set)(x:Times A B)
: Set
= Times (f x.fst) (g x.snd)
famOTimes (A:Set)(G:A -> Set)
: Fam A G -> Fam (List A) (OTimes A G)
= \(f:Fam A G) ->
elimList (\(as:List A) -> OTimes A G as -> Set)
(\(u:OTimes A G nil@_) -> Unit)
(\(a:A) -> \(as:List A) -> bothSet (G a) (OTimes A G as) (f a))
FAM (I:Set)(X:I -> Set)(Y:(i:I) -> X i -> Set) : Type
= (i:I) -> (x:X i) -> Y i x
eitherFAM (A:Set)
(A2:Set)
(G:A -> Set)
(G2:A2 -> Set)
(H:Fam A G)
(H2:Fam A2 G2)
(a:A)
(a2:A2)
(f:(x:G a) -> H a x)
(f2:(x2:G2 a2) -> H2 a2 x2)
(x:Either (G a) (G2 a2))
: eitherSet (G a) (G2 a2) (H a) (H2 a2) x
= case x of {
(inl y) -> f y;
(inr y2) -> f2 y2;}
FAMOPlus (A:Set)(G:A -> Set)(H:Fam A G)
: FAM A G H -> FAM (List A) (OPlus A G) (famOPlus A G H)
= \(f:FAM A G H) ->
elimList (\(as:List A) -> (x:OPlus A G as) -> famOPlus A G H as x)
(\(x:OPlus A G nil@_) -> whenZero (famOPlus A G H nil@_ x) x)
(\(a:A) ->
\(as:List A) ->
eitherFAM A (List A) G (OPlus A G) H (famOPlus A G H) a as (f a))
bothFAM (A:Set)
(A2:Set)
(G:A -> Set)
(G2:A2 -> Set)
(H:Fam A G)
(H2:Fam A2 G2)
(a:A)
(a2:A2)
(f:(x:G a) -> H a x)
(f2:(x2:G2 a2) -> H2 a2 x2)
(x:Times (G a) (G2 a2))
: bothSet (G a) (G2 a2) (H a) (H2 a2) x
= struct {
fst = f x.fst;
snd = f2 x.snd;}
FAMOTimes (A:Set)(G:A -> Set)(H:Fam A G)
: FAM A G H -> FAM (List A) (OTimes A G) (famOTimes A G H)
= \(f:FAM A G H) ->
elimList
(\(as:List A) -> (x:OTimes A G as) -> famOTimes A G H as x)
(\(x:OTimes A G nil@_) -> x)
(\(a:A) ->
\(as:List A) ->
bothFAM A (List A) G (OTimes A G) H (famOTimes A G H) a as (f a))
-}
{-
Size (A:Set) : Type
= A -> Nat
size_OPlus (A:Set)
(f:A -> Set)
(size_f:(a:A) -> f a -> Nat)
(as:List A)
: OPlus f as -> Nat
= \(x:OPlus f as) -> ?
size_OPlus (A:Set)
(f:A -> Set)
(size_f:(a:A) -> Size (f a))
(as:List A)
: Size (OPlus f as)
= \(x:OPlus f as) ->
-}
{- Alfa unfoldgoals off
brief on
hidetypeannots off
wide
nd
hiding on
var "mapMaybe" hide 2
var "sigmaCond" hide 3
var "maybe" hide 2
var "O" hide 1
var "OTimes" hide 1
var "OPlus" hide 1
var "mapOPlus" hide 3
var "id" hide 1
var "mapOTimes" hide 3
var "mapO" hide 3
var "mapOp" hide 4
var "uncur" hide 3
var "mapTimes" hide 4
var "sizeOTimes" hide 2
var "sizeOPlus" hide 2
var "eqTimes" hide 4
var "OTimesEq" hide 3
var "elimList" hide 1
var "eqOTimes" hide 3
var "eqEither" hide 4
var "eqOPlus" hide 3
var "eitherSet" hide 2
var "bothSet" hide 2
var "famOPlus" hide 2
var "famOTimes" hide 2
var "helper4" hide 4
var "eitherFAM" hide 4
var "FAMOTimes" hide 3
var "FAMOPlus" hide 3
#-}
| {
"alphanum_fraction": 0.4682170543,
"avg_line_length": 30.1,
"ext": "agda",
"hexsha": "f851daae74007e47915c25b1a5148fbf3367c8d7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM5/PolyDep/Tools.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM5/PolyDep/Tools.agda",
"max_line_length": 85,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM5/PolyDep/Tools.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 3508,
"size": 9030
} |
{-# OPTIONS --without-K #-}
module Leftovers.TraverseTerm where
open import Data.List
-- We only need the writer monad, but as far as I can tell
-- it's not in the Agda stdlib
open import Category.Monad.State
open import Reflection using (Term ; Meta ; Name ; Arg)
import Leftovers.Everywhere
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Nat
open import Data.Maybe
open import Data.String
LCxt : Set
LCxt = List (String × Arg Term)
record LeafInfoMaker (A : Set) : Set where
field
onVar : LCxt → ℕ → Maybe A
onMeta : LCxt → Meta → Maybe A
onCon : LCxt → Name → Maybe A
onDef : LCxt → Name → Maybe A
collectFromSubterms : ∀ {A : Set} → LeafInfoMaker A → Term → List A
collectFromSubterms {A} f t = proj₂ (stateResult [])
where
open RawMonadState (StateMonadState (List A))
open import Leftovers.Everywhere (StateMonad (List A))
toAction : ∀ {X : Set} → (LCxt → X → Maybe A) → Action X
toAction f cxt x with f (Cxt.context cxt) x
... | nothing = return x
... | just fx =
do
modify (fx ∷_)
return x
stateResult : State (List A) Term
stateResult =
everywhere (record
{ onVar = toAction (LeafInfoMaker.onVar f)
; onMeta = toAction (LeafInfoMaker.onMeta f)
; onCon = toAction (LeafInfoMaker.onCon f)
; onDef = toAction (LeafInfoMaker.onDef f) }) (λ Γ x → return x) t
| {
"alphanum_fraction": 0.6606018195,
"avg_line_length": 27.4807692308,
"ext": "agda",
"hexsha": "03a10492932a1594f61de8f3ed029dae8fdcd9ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_forks_repo_path": "src/Leftovers/TraverseTerm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_issues_repo_path": "src/Leftovers/TraverseTerm.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_stars_repo_path": "src/Leftovers/TraverseTerm.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 411,
"size": 1429
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Closed using (Closed)
module Categories.Category.Monoidal.Closed.IsClosed.L
{o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where
open import Data.Product using (_,_)
open import Function using (_$_) renaming (_∘_ to _∙_)
open import Function.Equality as Π using (Π)
open import Categories.Morphism.Reasoning C
using (pull-last; pull-first; pullˡ; pushˡ; center; center⁻¹; pullʳ)
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor.Properties
open Closed Cl
open Category C
open HomReasoning
private
module ℱ = Functor
α⇒ = associator.from
α⇐ = associator.to
module ⊗ = Functor ⊗
open Π.Π
open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′;
Ladjunct-resp-≈ to 𝕃-resp-≈)
L : (X Y Z : Obj) → [ Y , Z ]₀ ⇒ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀
L X Y Z = 𝕃 (𝕃 (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒))
private
[g]₁ : {W Z Z′ : Obj} {g : Z ⇒ Z′} → [ W , Z ]₀ ⇒ [ W , Z′ ]₀
[g]₁ {g = g} = [ id , g ]₁
push-α⇒-right : {X Y Z Z′ : Obj} {g : Z ⇒ Z′} → (ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id ≈ (g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒
push-α⇒-right {X} {Y} {Z} {Z′} {g} = begin
(ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩
ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ ([g]₁ ⊗₁ (id ⊗₁ id)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ℱ.F-resp-≈ ⊗ (refl , ⊗.identity) ⟩∘⟨refl ⟩
ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ [g]₁ ⊗₁ id ∘ α⇒ ≈⟨ refl⟩∘⟨ pullˡ [ ⊗ ]-commute ⟩
ε.η Z′ ∘ ([g]₁ ⊗₁ id ∘ (id ⊗₁ ε.η Y)) ∘ α⇒ ≈⟨ pull-first (ε.commute g) ⟩
(g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒ ∎
L-g-swap : {X Y Z Z′ : Obj} {g : Z ⇒ Z′} → L X Y Z′ ∘ [ id , g ]₁ ≈ [ [ id , id ]₁ , [ id , g ]₁ ]₁ ∘ L X Y Z
L-g-swap {X} {Y} {Z} {Z′} {g} = begin
L X Y Z′ ∘ [g]₁ ≈˘⟨ 𝕃-comm′ ⟩
𝕃 (𝕃 (ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ [g]₁ ⊗₁ id) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩
𝕃 (𝕃 $ (ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ push-α⇒-right ⟩
𝕃 (𝕃 $ (g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ≈⟨ 𝕃-resp-≈ $ pushˡ $ X-resp-≈ assoc ○ ℱ.homomorphism [ X ,-] ⟩
𝕃 ([ id , g ]₁ ∘ 𝕃 (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒)) ≈⟨ pushˡ (ℱ.homomorphism [ XY ,-]) ⟩
[ id , [g]₁ ]₁ ∘ L X Y Z ≈˘⟨ [-,-].F-resp-≈ ([-,-].identity , refl) ⟩∘⟨refl ⟩
[ [ id , id ]₁ , [g]₁ ]₁ ∘ L X Y Z ∎
where
XY = [ X , Y ]₀
X-resp-≈ = ℱ.F-resp-≈ [ X ,-]
L-f-swap : {X Y Y′ Z : Obj} {f : Y′ ⇒ Y} → L X Y′ Z ∘ [ f , id ]₁ ≈ [ [ id , f ]₁ , [ id , id ]₁ ]₁ ∘ L X Y Z
L-f-swap {X} {Y} {Y′} {Z} {f} = begin
L X Y′ Z ∘ [fˡ]₁ ≈˘⟨ 𝕃-comm′ ⟩
𝕃 (𝕃 inner-L ∘ [fˡ]₁ ⊗₁ id) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩
𝕃 (𝕃 (inner-L ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id)) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ fˡ⇒fʳ ⟩
𝕃 (𝕃 $ inner-L ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ ∘-resp-≈ˡ $ ℱ.homomorphism [ X ,-] ⟩
𝕃 (([ id , inner-L ]₁ ∘ [ id , (id ⊗₁ [fʳ]₁) ⊗₁ id ]₁)
∘ η.η (YZ ⊗₀ XY′)) ≈⟨ 𝕃-resp-≈ $ pullʳ (⟺ (η.commute _)) ○ (⟺ assoc) ⟩
𝕃 (𝕃 inner-L ∘ id ⊗₁ [fʳ]₁) ≈⟨ ℱ.homomorphism [ XY′ ,-] ⟩∘⟨refl ⟩
([ id , 𝕃 inner-L ]₁ ∘ [ id , id ⊗₁ [fʳ]₁ ]₁) ∘ η.η YZ ≈⟨ pullʳ (mate.commute₁ [fʳ]₁) ⟩
[ id , 𝕃 inner-L ]₁ ∘ [ [fʳ]₁ , id ]₁ ∘ η.η YZ ≈⟨ pullˡ [ [-,-] ]-commute ○ assoc ○ ∘-resp-≈ˡ ([-,-].F-resp-≈ (refl , ⟺ [-,-].identity)) ⟩
[ [fʳ]₁ , [ id , id ]₁ ]₁ ∘ L X Y Z ∎
where
XY′ = [ X , Y′ ]₀
YZ = [ Y , Z ]₀
[fʳ]₁ : ∀ {W} → [ W , Y′ ]₀ ⇒ [ W , Y ]₀
[fʳ]₁ = [ id , f ]₁
[fˡ]₁ : ∀ {W} → [ Y , W ]₀ ⇒ [ Y′ , W ]₀
[fˡ]₁ = [ f , id ]₁
inner-L : ∀ {W} → ([ W , Z ]₀ ⊗₀ [ X , W ]₀) ⊗₀ X ⇒ Z
inner-L {W} = ε.η Z ∘ id ⊗₁ ε.η {X} W ∘ α⇒
fˡ⇒fʳ : inner-L {Y′} ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id ≈ inner-L {Y} ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id
fˡ⇒fʳ = begin
inner-L ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩
ε.η Z ∘ (id ⊗₁ ε.η Y′) ∘ [fˡ]₁ ⊗₁ id ⊗₁ id ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ pullˡ
(∘-resp-≈ʳ (ℱ.F-resp-≈ ⊗ (refl , ⊗.identity)) ○ [ ⊗ ]-commute) ⟩
ε.η Z ∘ ([fˡ]₁ ⊗₁ id ∘ id ⊗₁ ε.η Y′) ∘ α⇒ ≈⟨ pull-first (mate.commute₂ f) ⟩
(ε.η Z ∘ id ⊗₁ f) ∘ id ⊗₁ ε.η Y′ ∘ α⇒ ≈⟨ center $ ⟺ (ℱ.homomorphism (YZ ⊗-)) ⟩
ε.η Z ∘ id ⊗₁ (f ∘ ε.η Y′) ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ℱ.F-resp-≈ (YZ ⊗-) $ ⟺ (ε.commute f) ⟩
ε.η Z ∘ id ⊗₁ (ε.η Y ∘ [fʳ]₁ ⊗₁ id) ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ℱ.homomorphism (YZ ⊗-) ⟩
ε.η Z ∘ (id ⊗₁ ε.η Y ∘ id ⊗₁ [fʳ]₁ ⊗₁ id) ∘ α⇒ ≈⟨ (center⁻¹ refl (⟺ assoc-commute-from)) ○ pullˡ assoc ⟩
inner-L ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id ∎
| {
"alphanum_fraction": 0.4179873217,
"avg_line_length": 53.7021276596,
"ext": "agda",
"hexsha": "38fc06798144a2be7529dfa347509dcbc1cc5592",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/L.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/L.agda",
"max_line_length": 149,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/L.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2682,
"size": 5048
} |
-- Andreas, 2011-10-02
module IrrelevantLambdasDoNotNeedDotsAlways where
bla : ((.Set → Set1) → Set1) -> Set1
bla f = f (λ x → Set)
-- here, the lambda does not need a dot, like in (λ .x → Set)
-- because the dot from the function space can be taken over | {
"alphanum_fraction": 0.6875,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "d4213223ffe6fd359f856f7778f453635f4061c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/IrrelevantLambdasDoNotNeedDotsAlways.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/IrrelevantLambdasDoNotNeedDotsAlways.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/IrrelevantLambdasDoNotNeedDotsAlways.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 84,
"size": 256
} |
open import Data.Empty using ( ⊥ )
open import Data.Nat using ( ℕ ; zero ; suc ; _+_ ; _≤_ ; z≤n ; s≤s )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong )
open import Relation.Binary.PropositionalEquality.TrustMe using ( trustMe )
open import Relation.Nullary using ( ¬_ )
module FRP.LTL.Util where
infixr 5 _trans_ _∋_
-- Irrelevant projections
postulate
.irrelevant : ∀ {A : Set} → .A → A
-- Irrelevant ≡ can be promoted to relevant ≡
≡-relevant : ∀ {A : Set} {a b : A} → .(a ≡ b) → (a ≡ b)
≡-relevant a≡b = trustMe
-- A version of ⊥-elim which takes an irrelevant argument
⊥-elim : {A : Set} → .⊥ → A
⊥-elim ()
-- An infix variant of trans
_trans_ : ∀ {X : Set} {x y z : X} → (x ≡ y) → (y ≡ z) → (x ≡ z)
refl trans refl = refl
-- Help the type inference engine out by being explicit about X.
_∋_ : (X : Set) → X → X
X ∋ x = x
-- Lemmas about addition on ℕ
-- These are from Data.Nat.Properties,
-- included here to avoid having to load all of Data.Nat.Properties' dependencies.
m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n)
m+1+n≡1+m+n zero n = refl
m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n)
+-comm : ∀ m n → (m + n ≡ n + m)
+-comm zero zero = refl
+-comm zero (suc n) = cong suc (+-comm zero n)
+-comm (suc m) n = (cong suc (+-comm m n)) trans (sym (m+1+n≡1+m+n n m))
+-assoc : ∀ l m n → ((l + m) + n ≡ l + (m + n))
+-assoc zero m n = refl
+-assoc (suc l) m n = cong suc (+-assoc l m n)
m+n≡0-impl-m≡0 : ∀ m n → (m + n ≡ 0) → (m ≡ 0)
m+n≡0-impl-m≡0 zero n m+n≡0 = refl
m+n≡0-impl-m≡0 (suc m) n ()
1+n≰n : ∀ n → ¬(suc n ≤ n)
1+n≰n zero ()
1+n≰n (suc n) (s≤s m≤n) = 1+n≰n n m≤n
≤0-impl-≡0 : ∀ {n} → (n ≤ 0) → (n ≡ 0)
≤0-impl-≡0 z≤n = refl
| {
"alphanum_fraction": 0.564665127,
"avg_line_length": 27.4920634921,
"ext": "agda",
"hexsha": "00d816bb840fc7b7b056ad7e2983b71a097f6f39",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/Util.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/Util.agda",
"max_line_length": 83,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/Util.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 728,
"size": 1732
} |
open import Coinduction using ( ♭ )
open import Data.Empty using ( ⊥-elim )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import System.IO.Transducers.Lazy
using ( _⇒_ ; inp ; out ; done ; ⟦_⟧ ; _≃_ ; out' ; out* ;
_⟫_ ;_[&]_ ; unit₁ ; unit₂ ; assoc ; assoc⁻¹ ; swap'' ; swap' ; swap )
open import System.IO.Transducers.Reflective using ( Reflective )
open import System.IO.Transducers.Strict using ( Strict )
open import System.IO.Transducers.Session using ( I ; Σ ; IsΣ ; _&_ )
open import System.IO.Transducers.Trace
using ( Trace ; _✓ ; _≤_ ; [] ; _∷_ ; revApp )
open import System.IO.Transducers.Properties.Lemmas
using ( ✓? ; I-✓ ; I-η ; ⟦⟧-resp-✓ ; ⟦⟧-refl-✓ ; ⟦⟧-resp-[] )
open import System.IO.Transducers.Properties.Category
using ( ⟦done⟧ ; _⟦⟫⟧_ ; ⟫-≃-⟦⟫⟧ ; done-semantics )
open import System.IO.Transducers.Properties.Monoidal
using ( _++_ ; front ; back ; _⟦[&]⟧_ ; ⟦unit₁⟧ ; ⟦unit₂⟧ ; ⟦assoc⟧ ; ⟦assoc⁻¹⟧ ;
++-cong ; ++-β₁ ; ++-β₂ ; ++-β₂-[] ; ++-η ; back≡[] ; back-resp-[] ; ++-resp-[] ;
++-refl-✓₁ ; ++-refl-✓₂ ; front-refl-✓ ; back-refl-✓ ; ++-resp-✓ ; front-resp-✓ ;
⟦[&]⟧-++ ; ⟦assoc⟧-++ ; ⟦assoc⁻¹⟧-++ ;
[&]-≃-⟦[&]⟧ ; [&]-semantics ;
assoc-semantics ; assoc⁻¹-semantics ;
unit₁-semantics ; unit₂-semantics ; unit₂⁻¹-semantics )
open import Relation.Binary.PropositionalEquality
using ( _≡_ ; sym ; refl ; trans ; cong ; cong₂ )
open import Relation.Nullary using ( Dec ; yes ; no )
module System.IO.Transducers.Properties.LaxBraided where
open Relation.Binary.PropositionalEquality.≡-Reasoning
-- Semantics of out*
⟦out*⟧ : ∀ {S T U} → (T ≤ U) → (Trace S → Trace T) → (Trace S → Trace U)
⟦out*⟧ cs f as = revApp cs (f as)
out*-semantics : ∀ {S T U} (cs : T ≤ U) (P : S ⇒ T) →
⟦ out* cs P ⟧ ≃ ⟦out*⟧ cs ⟦ P ⟧
out*-semantics [] P as = refl
out*-semantics (_∷_ {Σ V F} c cs) P as = out*-semantics cs (out c P) as
out*-semantics (_∷_ {I} () cs) P as
-- Semantics of swap
⟦swap''⟧ : ∀ {T U} → (I ≤ U) → (Trace T) → (Trace (T & U))
⟦swap''⟧ cs as = as ++ revApp cs []
⟦swap'⟧ : ∀ {S T U} → (S ≤ U) → (Trace (S & T)) → (Trace (T & U))
⟦swap'⟧ {S} cs as = back {S} as ++ revApp cs (front {S} as)
⟦swap⟧ : ∀ {S T} → (Trace (S & T) → Trace (T & S))
⟦swap⟧ {S} as = back {S} as ++ front {S} as
swap''-semantics : ∀ {T U} cs → ⟦ swap'' {T} {U} cs ⟧ ≃ ⟦swap''⟧ cs
swap''-semantics {I} cs [] = out*-semantics cs done []
swap''-semantics {Σ W G} cs [] = refl
swap''-semantics {Σ W G} cs (a ∷ as) = cong (_∷_ a) (swap''-semantics cs as)
swap''-semantics {I} cs (() ∷ as)
swap'-semantics : ∀ {S T isΣ U} cs → ⟦ swap' {S} {T} {isΣ} {U} cs ⟧ ≃ ⟦swap'⟧ cs
swap'-semantics {I} cs as = swap''-semantics cs as
swap'-semantics {Σ V F} {Σ W G} cs [] = refl
swap'-semantics {Σ V F} {Σ W G} cs (a ∷ as) = swap'-semantics (a ∷ cs) as
swap'-semantics {Σ V F} {I} {} cs as
swap-semantics : ∀ {S T} → ⟦ swap {S} {T} ⟧ ≃ ⟦swap⟧ {S} {T}
swap-semantics {I} as = unit₂⁻¹-semantics as
swap-semantics {Σ V F} {I} as = cong₂ _++_ (sym (I-η (back {Σ V F} as))) (unit₂-semantics as)
swap-semantics {Σ V F} {Σ W G} as = swap'-semantics {Σ V F} [] as
-- Swap reflects completion
⟦swap⟧-refl-✓ : ∀ {S T} as → (⟦swap⟧ {S} {T} as ✓) → (as ✓)
⟦swap⟧-refl-✓ {S} {I} as ✓bs = front-refl-✓ {S} as (++-refl-✓₂ {I} {S} {back {S} as} ✓bs)
⟦swap⟧-refl-✓ {S} {Σ W G} as ✓bs = back-refl-✓ {S} as (++-refl-✓₁ {Σ W G} ✓bs)
-- Swap plays nicely with concatenation
⟦swap⟧-++ : ∀ {S T} (as : Trace S) (bs : Trace T) → (as ✓ ⊎ bs ≡ []) →
⟦swap⟧ {S} {T} (as ++ bs) ≡ bs ++ as
⟦swap⟧-++ as bs ✓as/bs≡[] with ✓? as
⟦swap⟧-++ as bs ✓as/bs≡[] | yes ✓as = cong₂ _++_ (++-β₂ ✓as bs) (++-β₁ as bs)
⟦swap⟧-++ as bs (inj₁ ✓as) | no ¬✓as = cong₂ _++_ (++-β₂ ✓as bs) (++-β₁ as bs)
⟦swap⟧-++ as bs (inj₂ bs≡[]) | no ¬✓as = cong₂ _++_ (trans (++-β₂-[] ¬✓as bs) (sym bs≡[])) (++-β₁ as bs)
-- Swap is natural when f respects completion, and g reflects completion and is strict
⟦swap⟧-natural : ∀ {S T U V} → (f : Trace S → Trace T) → (g : Trace U → Trace V) →
(∀ as → (as ✓) → (f as ✓)) →
(∀ as → ((g as ✓)) → (as ✓)) → (g [] ≡ []) →
(f ⟦[&]⟧ g ⟦⟫⟧ ⟦swap⟧ {T} {V}) ≃ (⟦swap⟧ {S} {U} ⟦⟫⟧ g ⟦[&]⟧ f)
⟦swap⟧-natural {S} {T} {U} {V} f g f-resp-✓ g-refl-✓ g-resp-[] as =
begin
⟦swap⟧ {T} {V} (f as₁ ++ g as₂)
≡⟨ ⟦swap⟧-++ (f as₁) (g as₂) ✓fas₁/gas₂≡[] ⟩
g as₂ ++ f as₁
≡⟨ sym (⟦[&]⟧-++ g f g-refl-✓ as₂ as₁) ⟩
(g ⟦[&]⟧ f) (as₂ ++ as₁)
∎ where
as₁ = front {S} as
as₂ = back {S} as
✓fas₁/gas₂≡[] : f as₁ ✓ ⊎ g as₂ ≡ []
✓fas₁/gas₂≡[] with ✓? as₁
✓fas₁/gas₂≡[] | yes ✓as₁ = inj₁ (f-resp-✓ as₁ ✓as₁)
✓fas₁/gas₂≡[] | no ¬✓as₁ = inj₂ (trans (cong g (back≡[] ¬✓as₁)) g-resp-[])
swap-natural : ∀ {S T U V} (P : S ⇒ T) {Q : U ⇒ V} →
(Reflective Q) → (Strict Q) →
⟦ P [&] Q ⟫ swap {T} {V} ⟧ ≃ ⟦ swap {S} {U} ⟫ Q [&] P ⟧
swap-natural {S} {T} {U} {V} P {Q} ⟳Q #Q as =
begin
⟦ P [&] Q ⟫ swap {T} {V} ⟧ as
≡⟨ ⟫-≃-⟦⟫⟧ ([&]-semantics P Q) (swap-semantics {T} {V}) as ⟩
(⟦ P ⟧ ⟦[&]⟧ ⟦ Q ⟧ ⟦⟫⟧ ⟦swap⟧ {T} {V}) as
≡⟨ ⟦swap⟧-natural ⟦ P ⟧ ⟦ Q ⟧ (⟦⟧-resp-✓ P) (⟦⟧-refl-✓ ⟳Q) (⟦⟧-resp-[] #Q) as ⟩
(⟦swap⟧ {S} {U} ⟦⟫⟧ ⟦ Q ⟧ ⟦[&]⟧ ⟦ P ⟧) as
≡⟨ sym (⟫-≃-⟦⟫⟧ (swap-semantics {S} {U}) ([&]-semantics Q P) as) ⟩
⟦ swap {S} {U} ⟫ Q [&] P ⟧ as
∎
-- Coherence of swap with units
⟦swap⟧-⟦unit₁⟧ : ∀ {S} →
⟦swap⟧ {S} {I} ⟦⟫⟧ ⟦unit₁⟧ ≃ ⟦unit₂⟧
⟦swap⟧-⟦unit₁⟧ {S} as = cong₂ _++_ (I-η (back {S} as)) refl
swap-unit₁ : ∀ {S} →
⟦ swap {S} {I} ⟫ unit₁ ⟧ ≃ ⟦ unit₂ ⟧
swap-unit₁ {S} as =
begin
⟦ swap {S} {I} ⟫ unit₁ ⟧ as
≡⟨ ⟫-≃-⟦⟫⟧ (swap-semantics {S}) unit₁-semantics as ⟩
(⟦swap⟧ {S} {I} ⟦⟫⟧ ⟦unit₁⟧) as
≡⟨ ⟦swap⟧-⟦unit₁⟧ as ⟩
⟦unit₂⟧ as
≡⟨ sym (unit₂-semantics as) ⟩
⟦ unit₂ ⟧ as
∎
⟦swap⟧-⟦unit₂⟧ : ∀ {S} →
⟦swap⟧ {I} {S} ⟦⟫⟧ ⟦unit₂⟧ ≃ ⟦unit₁⟧
⟦swap⟧-⟦unit₂⟧ as = ++-β₁ as []
swap-unit₂ : ∀ {S} →
⟦ swap {I} {S} ⟫ unit₂ ⟧ ≃ ⟦ unit₁ ⟧
swap-unit₂ {S} as =
begin
⟦ swap {I} {S} ⟫ unit₂ ⟧ as
≡⟨ ⟫-≃-⟦⟫⟧ (swap-semantics {I}) (unit₂-semantics {S}) as ⟩
(⟦swap⟧ {I} {S} ⟦⟫⟧ ⟦unit₂⟧) as
≡⟨ ⟦swap⟧-⟦unit₂⟧ as ⟩
⟦unit₁⟧ as
≡⟨ sym (unit₁-semantics as) ⟩
⟦ unit₁ ⟧ as
∎
-- Coherence of swap with associators
⟦swap⟧-⟦assoc⟧ : ∀ {S T U} →
⟦assoc⟧ {S} {T} {U} ⟦⟫⟧ ⟦swap⟧ {S & T} {U} ⟦⟫⟧ ⟦assoc⟧ {U} {S} {T}
≃ ⟦done⟧ {S} ⟦[&]⟧ ⟦swap⟧ {T} {U} ⟦⟫⟧
⟦assoc⟧ {S} {U} {T} ⟦⟫⟧ ⟦swap⟧ {S} {U} ⟦[&]⟧ ⟦done⟧ {T}
⟦swap⟧-⟦assoc⟧ {S} {T} {U} as =
begin
⟦assoc⟧ {U} {S} {T} (⟦swap⟧ {S & T} {U} ((as₁ ++ as₂) ++ as₃))
≡⟨ cong (⟦assoc⟧ {U} {S} {T}) (⟦swap⟧-++ (as₁ ++ as₂) as₃ ✓as₁₂/as₃≡[]) ⟩
⟦assoc⟧ {U} {S} {T} (as₃ ++ as₁ ++ as₂)
≡⟨ ⟦assoc⟧-++ as₃ as₁ as₂ ⟩
(as₃ ++ as₁) ++ as₂
≡⟨ cong₂ _++_ (sym (⟦swap⟧-++ as₁ as₃ ✓as₁/as₃≡[])) refl ⟩
⟦swap⟧ {S} {U} (as₁ ++ as₃) ++ as₂
≡⟨ (sym (⟦[&]⟧-++ (⟦swap⟧ {S} {U}) ⟦done⟧ (⟦swap⟧-refl-✓ {S} {U}) (as₁ ++ as₃) as₂)) ⟩
(⟦swap⟧ {S} {U} ⟦[&]⟧ ⟦done⟧ {T}) ((as₁ ++ as₃) ++ as₂)
≡⟨ cong (⟦swap⟧ {S} {U} ⟦[&]⟧ ⟦done⟧ {T}) (sym (⟦assoc⟧-++ as₁ as₃ as₂)) ⟩
(⟦swap⟧ {S} {U} ⟦[&]⟧ ⟦done⟧ {T}) (⟦assoc⟧ {S} {U} {T} (as₁ ++ as₃ ++ as₂))
∎ where
as₁ = front {S} as
as₂ = front {T} (back {S} as)
as₃ = back {T} (back {S} as)
✓as₁₂/as₃≡[] : as₁ ++ as₂ ✓ ⊎ as₃ ≡ []
✓as₁₂/as₃≡[] with ✓? as₁ | ✓? as₂
✓as₁₂/as₃≡[] | yes ✓as₁ | yes ✓as₂ = inj₁ (++-resp-✓ ✓as₁ ✓as₂)
✓as₁₂/as₃≡[] | _ | no ¬✓as₂ = inj₂ (back≡[] ¬✓as₂)
✓as₁₂/as₃≡[] | no ¬✓as₁ | _ = inj₂ (back-resp-[] {T} (back≡[] ¬✓as₁))
✓as₁/as₃≡[] : as₁ ✓ ⊎ as₃ ≡ []
✓as₁/as₃≡[] with ✓? as₁
✓as₁/as₃≡[] | yes ✓as₁ = inj₁ ✓as₁
✓as₁/as₃≡[] | no ¬✓as₁ = inj₂ (back-resp-[] {T} (back≡[] ¬✓as₁))
swap-assoc : ∀ {S T U} →
⟦ assoc {S} {T} {U} ⟫ swap {S & T} {U} ⟫ assoc {U} {S} {T} ⟧
≃ ⟦ done {S} [&] swap {T} {U} ⟫ assoc {S} {U} {T} ⟫ swap {S} {U} [&] done {T} ⟧
swap-assoc {S} {T} {U} as =
begin
⟦ assoc {S} {T} {U} ⟫ swap {S & T} {U} ⟫ assoc {U} {S} {T} ⟧ as
≡⟨ ⟫-≃-⟦⟫⟧ (assoc-semantics {S} {T} {U})
(⟫-≃-⟦⟫⟧ (swap-semantics {S & T} {U}) (assoc-semantics {U} {S} {T})) as ⟩
(⟦assoc⟧ {S} {T} {U} ⟦⟫⟧ ⟦swap⟧ {S & T} {U} ⟦⟫⟧ ⟦assoc⟧ {U} {S} {T}) as
≡⟨ ⟦swap⟧-⟦assoc⟧ {S} {T} {U} as ⟩
(⟦done⟧ {S} ⟦[&]⟧ ⟦swap⟧ {T} {U} ⟦⟫⟧
⟦assoc⟧ {S} {U} {T} ⟦⟫⟧ ⟦swap⟧ {S} {U} ⟦[&]⟧ ⟦done⟧ {T}) as
≡⟨ sym (⟫-≃-⟦⟫⟧ ([&]-≃-⟦[&]⟧ {P = done} (done-semantics {S}) (swap-semantics {T} {U}))
(⟫-≃-⟦⟫⟧ (assoc-semantics {S} {U} {T})
([&]-≃-⟦[&]⟧ {Q = done} (swap-semantics {S} {U}) (done-semantics {T}))) as) ⟩
⟦ done {S} [&] swap {T} {U} ⟫ assoc {S} {U} {T} ⟫ swap {S} {U} [&] done {T} ⟧ as
∎
⟦swap⟧-⟦assoc⁻¹⟧ : ∀ {S T U} →
⟦assoc⁻¹⟧ {S} {T} {U} ⟦⟫⟧ ⟦swap⟧ {S} {T & U} ⟦⟫⟧ ⟦assoc⁻¹⟧ {T} {U} {S}
≃ ⟦swap⟧ {S} {T} ⟦[&]⟧ ⟦done⟧ {U} ⟦⟫⟧
⟦assoc⁻¹⟧ {T} {S} {U} ⟦⟫⟧ ⟦done⟧ {T} ⟦[&]⟧ ⟦swap⟧ {S} {U}
⟦swap⟧-⟦assoc⁻¹⟧ {S} {T} {U} as =
begin
⟦assoc⁻¹⟧ {T} {U} {S} (⟦swap⟧ {S} {T & U} (as₁ ++ as₂ ++ as₃))
≡⟨ cong (⟦assoc⁻¹⟧ {T} {U} {S}) (⟦swap⟧-++ as₁ (as₂ ++ as₃) ✓as₁/as₂₃≡[]) ⟩
⟦assoc⁻¹⟧ {T} {U} {S} ((as₂ ++ as₃) ++ as₁)
≡⟨ ⟦assoc⁻¹⟧-++ as₂ as₃ as₁ ⟩
as₂ ++ as₃ ++ as₁
≡⟨ cong (_++_ as₂) (sym (⟦swap⟧-++ as₁ as₃ ✓as₁/as₃≡[])) ⟩
as₂ ++ ⟦swap⟧ {S} {U} (as₁ ++ as₃)
≡⟨ sym (⟦[&]⟧-++ (⟦done⟧ {T}) (⟦swap⟧ {S} {U}) (λ cs → λ ✓cs → ✓cs) as₂ (as₁ ++ as₃)) ⟩
(⟦done⟧ {T} ⟦[&]⟧ ⟦swap⟧ {S} {U}) (as₂ ++ as₁ ++ as₃)
≡⟨ cong (⟦done⟧ {T} ⟦[&]⟧ ⟦swap⟧ {S} {U}) (sym (⟦assoc⁻¹⟧-++ as₂ as₁ as₃)) ⟩
(⟦done⟧ {T} ⟦[&]⟧ ⟦swap⟧ {S} {U}) (⟦assoc⁻¹⟧ {T} {S} {U} ((as₂ ++ as₁) ++ as₃))
∎ where
as₁ = front {S} (front {S & T} as)
as₂ = back {S} (front {S & T} as)
as₃ = back {S & T} as
✓as₁/as₂₃≡[] : as₁ ✓ ⊎ as₂ ++ as₃ ≡ []
✓as₁/as₂₃≡[] with ✓? as₁
✓as₁/as₂₃≡[] | yes ✓as₁ = inj₁ ✓as₁
✓as₁/as₂₃≡[] | no ¬✓as₁ = inj₂ (++-resp-[] (back≡[] ¬✓as₁) (back≡[] (λ ✓as₁₂ → ¬✓as₁ (front-resp-✓ ✓as₁₂))))
✓as₁/as₃≡[] : as₁ ✓ ⊎ as₃ ≡ []
✓as₁/as₃≡[] with ✓? as₁
✓as₁/as₃≡[] | yes ✓as₁ = inj₁ ✓as₁
✓as₁/as₃≡[] | no ¬✓as₁ = inj₂ (back≡[] (λ ✓as₁₂ → ¬✓as₁ (front-resp-✓ ✓as₁₂)))
swap-assoc⁻¹ : ∀ {S T U} →
⟦ assoc⁻¹ {S} {T} {U} ⟫ swap {S} {T & U} ⟫ assoc⁻¹ {T} {U} {S} ⟧
≃ ⟦ swap {S} {T} [&] done {U} ⟫ assoc⁻¹ {T} {S} {U} ⟫ done {T} [&] swap {S} {U} ⟧
swap-assoc⁻¹ {S} {T} {U} as =
begin
⟦ assoc⁻¹ {S} {T} {U} ⟫ swap {S} {T & U} ⟫ assoc⁻¹ {T} {U} {S} ⟧ as
≡⟨ ⟫-≃-⟦⟫⟧ (assoc⁻¹-semantics {S} {T} {U})
(⟫-≃-⟦⟫⟧ (swap-semantics {S} {T & U}) (assoc⁻¹-semantics {T} {U} {S})) as ⟩
(⟦assoc⁻¹⟧ {S} {T} {U} ⟦⟫⟧ ⟦swap⟧ {S} {T & U} ⟦⟫⟧ ⟦assoc⁻¹⟧ {T} {U} {S}) as
≡⟨ ⟦swap⟧-⟦assoc⁻¹⟧ {S} {T} {U} as ⟩
(⟦swap⟧ {S} {T} ⟦[&]⟧ ⟦done⟧ {U} ⟦⟫⟧
⟦assoc⁻¹⟧ {T} {S} {U} ⟦⟫⟧ ⟦done⟧ {T} ⟦[&]⟧ ⟦swap⟧ {S} {U}) as
≡⟨ sym (⟫-≃-⟦⟫⟧ ([&]-≃-⟦[&]⟧ {Q = done} (swap-semantics {S} {T}) (done-semantics {U}))
(⟫-≃-⟦⟫⟧ (assoc⁻¹-semantics {T} {S} {U})
([&]-≃-⟦[&]⟧ {P = done} (done-semantics {T}) (swap-semantics {S} {U}))) as) ⟩
⟦ swap {S} {T} [&] done {U} ⟫ assoc⁻¹ {T} {S} {U} ⟫ done {T} [&] swap {S} {U} ⟧ as
∎
| {
"alphanum_fraction": 0.4574555404,
"avg_line_length": 42.83203125,
"ext": "agda",
"hexsha": "44960cebb2e6d605f7766408eae6c45c87563f87",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Properties/LaxBraided.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Properties/LaxBraided.agda",
"max_line_length": 110,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Properties/LaxBraided.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 6121,
"size": 10965
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
module Number.Inclusions where
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base -- Rel
-- open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_)
open import Cubical.Data.Nat using (ℕ; zero; suc) renaming (_+_ to _+ₙ_)
open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s; _≤_ to _≤ₙ_; _<_ to _<ₙ_)
open import Cubical.Data.Unit.Base -- Unit
open import Cubical.Data.Empty -- ⊥
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Cubical.Data.Maybe.Base
-- open import Number.Structures ℝℓ ℝℓ'
open import Number.Bundles
-- Finₖ ℕ ℤ ℚ ℚ₀⁺ ℚ⁺ ℝ ℝ₀⁺ ℝ⁺
record IsRLatticeInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : RLattice {ℓ} {ℓₚ}) (G : RLattice {ℓ'} {ℓₚ'})
(f : (RLattice.Carrier F) → (RLattice.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = RLattice F
module G = RLattice G
field
-- injectivity? might follow from preserves-#?
reflects-≡ : ∀ x y → f x ≡ f y → x ≡ y
-- lattice
preserves-< : ∀ x y → x F.< y → f x G.< f y
preserves-≤ : ∀ x y → x F.≤ y → f x G.≤ f y
preserves-# : ∀ x y → x F.# y → f x G.# f y
reflects-< : ∀ x y → f x G.< f y → x F.< y
reflects-≤ : ∀ x y → f x G.≤ f y → x F.≤ y
reflects-# : ∀ x y → f x G.# f y → x F.# y
preserves-min : ∀ x y → f (F.min x y) ≡ G.min (f x) (f y)
preserves-max : ∀ x y → f (F.max x y) ≡ G.max (f x) (f y)
-- ℕ ℤ ℚ ℚ₀⁺ ℚ⁺ ℝ ℝ₀⁺ ℝ⁺
-- ring without additive inverse
record IsROrderedCommSemiringInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : ROrderedCommSemiring {ℓ} {ℓₚ}) (G : ROrderedCommSemiring {ℓ'} {ℓₚ'})
(f : (ROrderedCommSemiring.Carrier F) → (ROrderedCommSemiring.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = ROrderedCommSemiring F
module G = ROrderedCommSemiring G
field
isRLatticeInclusion : IsRLatticeInclusion (record {F}) (record {G}) f
preserves-0 : f F.0f ≡ G.0f
preserves-1 : f F.1f ≡ G.1f
preserves-+ : ∀ x y → f (x F.+ y) ≡ f x G.+ f y
preserves-· : ∀ x y → f (x F.· y) ≡ f x G.· f y
open IsRLatticeInclusion isRLatticeInclusion public
preserves-#0 : ∀ x → x F.# F.0f → f x G.# G.0f
preserves-0≤ : ∀ x → F.0f F.≤ x → G.0f G.≤ f x
preserves-0< : ∀ x → F.0f F.< x → G.0f G.< f x
preserves-<0 : ∀ x → x F.< F.0f → f x G.< G.0f
preserves-≤0 : ∀ x → x F.≤ F.0f → f x G.≤ G.0f
preserves-#0 x q = transport (λ i → f x G.# preserves-0 i) (preserves-# _ _ q)
preserves-0≤ x q = transport (λ i → preserves-0 i G.≤ f x) (preserves-≤ _ _ q)
preserves-0< x q = transport (λ i → preserves-0 i G.< f x) (preserves-< _ _ q)
preserves-<0 x q = transport (λ i → f x G.< preserves-0 i) (preserves-< _ _ q)
preserves-≤0 x q = transport (λ i → f x G.≤ preserves-0 i) (preserves-≤ _ _ q)
-- ℤ ℚ ℝ
record IsROrderedCommRingInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : ROrderedCommRing {ℓ} {ℓₚ}) (G : ROrderedCommRing {ℓ'} {ℓₚ'})
(f : (ROrderedCommRing.Carrier F) → (ROrderedCommRing.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = ROrderedCommRing F
module G = ROrderedCommRing G
field
isROrderedCommSemiringInclusion : IsROrderedCommSemiringInclusion (record {F}) (record {G}) f
preserves- : ∀ x → f ( F.- x) ≡ G.- (f x)
open IsROrderedCommSemiringInclusion isROrderedCommSemiringInclusion public
-- ℚ ℝ
record IsROrderedFieldInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : ROrderedField {ℓ} {ℓₚ}) (G : ROrderedField {ℓ'} {ℓₚ'})
(f : (ROrderedField.Carrier F) → (ROrderedField.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = ROrderedField F
module G = ROrderedField G
field
isROrderedCommRingInclusion : IsROrderedCommRingInclusion (record {F}) (record {G}) f
preserves-⁻¹ : ∀ x → (p : x F.# F.0f) → (q : f x G.# G.0f) → f (F._⁻¹ x {{p}}) ≡ G._⁻¹ (f x) {{q}}
open IsROrderedCommRingInclusion isROrderedCommRingInclusion public
-- ℚ ℝ ℂ
record IsRFieldInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : RField {ℓ} {ℓₚ}) (G : RField {ℓ'} {ℓₚ'})
(f : (RField.Carrier F) → (RField.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = RField F
module G = RField G
field
-- CommSemiringInclusion
preserves-0 : f F.0f ≡ G.0f
preserves-1 : f F.1f ≡ G.1f
preserves-+ : ∀ x y → f (x F.+ y) ≡ f x G.+ f y
preserves-· : ∀ x y → f (x F.· y) ≡ f x G.· f y
-- other
reflects-≡ : ∀ x y → f x ≡ f y → x ≡ y
preserves-# : ∀ x y → x F.# y → f x G.# f y
reflects-# : ∀ x y → f x G.# f y → x F.# y
-- TODO: properties
preserves-#0 : ∀ x → x F.# F.0f → f x G.# G.0f
preserves-#0 x q = transport (λ i → f x G.# preserves-0 i) (preserves-# _ _ q)
-- ℕ ℤ ℚ ℝ ℂ
record IsRCommSemiringInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : RCommSemiring {ℓ} {ℓₚ}) (G : RCommSemiring {ℓ'} {ℓₚ'})
(f : (RCommSemiring.Carrier F) → (RCommSemiring.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = RCommSemiring F
module G = RCommSemiring G
field
-- CommSemiringInclusion
preserves-0 : f F.0f ≡ G.0f
preserves-1 : f F.1f ≡ G.1f
preserves-+ : ∀ x y → f (x F.+ y) ≡ f x G.+ f y
preserves-· : ∀ x y → f (x F.· y) ≡ f x G.· f y
-- other
reflects-≡ : ∀ x y → f x ≡ f y → x ≡ y
preserves-# : ∀ x y → x F.# y → f x G.# f y
reflects-# : ∀ x y → f x G.# f y → x F.# y
-- TODO: properties
-- ℤ ℚ ℝ ℂ
record IsRCommRingInclusion
{ℓ ℓ' ℓₚ ℓₚ'}
(F : RCommRing {ℓ} {ℓₚ}) (G : RCommRing {ℓ'} {ℓₚ'})
(f : (RCommRing.Carrier F) → (RCommRing.Carrier G)) : Type (ℓ-max (ℓ-max ℓ ℓ') (ℓ-max ℓₚ ℓₚ'))
where
private
module F = RCommRing F
module G = RCommRing G
field
-- CommSemiringInclusion
preserves-0 : f F.0f ≡ G.0f
preserves-1 : f F.1f ≡ G.1f
preserves-+ : ∀ x y → f (x F.+ y) ≡ f x G.+ f y
preserves-· : ∀ x y → f (x F.· y) ≡ f x G.· f y
-- other
reflects-≡ : ∀ x y → f x ≡ f y → x ≡ y
preserves-# : ∀ x y → x F.# y → f x G.# f y
reflects-# : ∀ x y → f x G.# f y → x F.# y
-- TODO: properties
| {
"alphanum_fraction": 0.5580808081,
"avg_line_length": 39.6,
"ext": "agda",
"hexsha": "f1835b3e835511e273626e707ff37c8a5bf88ad2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Inclusions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Inclusions.agda",
"max_line_length": 118,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Inclusions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 2919,
"size": 6732
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Kernel where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Algebra.CommRing.Base
open import Cubical.Algebra.CommRing.Ideal using (Ideal→CommIdeal)
open import Cubical.Algebra.Ring.Kernel using () renaming (kernelIdeal to ringKernel)
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommAlgebra.Properties
open import Cubical.Algebra.CommAlgebra.Ideal
private
variable
ℓ : Level
module _ {R : CommRing ℓ} (A B : CommAlgebra R ℓ) (ϕ : CommAlgebraHom A B) where
kernel : IdealsIn A
kernel = Ideal→CommIdeal (ringKernel (CommAlgebraHom→RingHom {A = A} {B = B} ϕ))
| {
"alphanum_fraction": 0.7788732394,
"avg_line_length": 32.2727272727,
"ext": "agda",
"hexsha": "41d8e9af969fbdb0eda589a66a99977f41e52837",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Kernel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Kernel.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Kernel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 202,
"size": 710
} |
module Prelude.Ord.Reasoning where
open import Prelude.Equality
open import Prelude.Ord
open import Prelude.Function
module _ {a} {A : Set a} {{OrdA : Ord/Laws A}} where
private
lt/leq-trans : ∀ {x y z : A} → x < y → y ≤ z → x < z
lt/leq-trans x<y y≤z =
case leq-to-lteq {A = A} y≤z of λ where
(less y<z) → less-trans {A = A} x<y y<z
(equal refl) → x<y
leq/lt-trans : ∀ {x y z : A} → x ≤ y → y < z → x < z
leq/lt-trans x≤y y<z =
case leq-to-lteq {A = A} x≤y of λ where
(less x<y) → less-trans {A = A} x<y y<z
(equal refl) → y<z
data _≲_ (x y : A) : Set a where
strict : x < y → x ≲ y
nonstrict : x ≤ y → x ≲ y
module _ {x y : A} where
OrdProof : x ≲ y → Set a
OrdProof (strict _) = x < y
OrdProof (nonstrict _) = x ≤ y
infix -1 ordProof_
ordProof_ : (p : x ≲ y) → OrdProof p
ordProof strict p = p
ordProof nonstrict p = p
infixr 0 eqOrdStep ltOrdStep leqOrdStep
infix 1 _∎Ord
syntax eqOrdStep x q p = x ≡[ p ] q
eqOrdStep : ∀ (x : A) {y z} → y ≲ z → x ≡ y → x ≲ z
x ≡[ x=y ] strict y<z = strict (case x=y of λ where refl → y<z)
x ≡[ x=y ] nonstrict y≤z = nonstrict (case x=y of λ where refl → y≤z)
-- ^ Note: don't match on the proof here, we need to decide strict vs nonstrict for neutral proofs
syntax eqOrdStepʳ x q p = x ≡[ p ]ʳ q
eqOrdStepʳ : ∀ (x : A) {y z} → y ≲ z → y ≡ x → x ≲ z
x ≡[ y=x ]ʳ strict y<z = strict (case y=x of λ where refl → y<z)
x ≡[ y=x ]ʳ nonstrict y≤z = nonstrict (case y=x of λ where refl → y≤z)
syntax ltOrdStep x q p = x <[ p ] q
ltOrdStep : ∀ (x : A) {y z} → y ≲ z → x < y → x ≲ z
x <[ x<y ] strict y<z = strict (less-trans {A = A} x<y y<z)
x <[ x<y ] nonstrict y≤z = strict (lt/leq-trans x<y y≤z)
syntax leqOrdStep x q p = x ≤[ p ] q
leqOrdStep : ∀ (x : A) {y z} → y ≲ z → x ≤ y → x ≲ z
x ≤[ x≤y ] strict y<z = strict (leq/lt-trans x≤y y<z)
x ≤[ x≤y ] nonstrict y≤z = nonstrict (leq-trans {A = A} x≤y y≤z)
_∎Ord : ∀ (x : A) → x ≲ x
x ∎Ord = nonstrict (eq-to-leq {A = A} refl)
| {
"alphanum_fraction": 0.5282929149,
"avg_line_length": 33.380952381,
"ext": "agda",
"hexsha": "379c23c8e15be16bab00e7019fc1a0665cbdab36",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Ord/Reasoning.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Ord/Reasoning.agda",
"max_line_length": 102,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Ord/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 906,
"size": 2103
} |
module ModuleInfix where
open import Data.List using (List; _∷_; [])
open import Data.Bool using (Bool; true; false)
module Sort(A : Set)(_≤_ : A → A → Bool)(_⊝_ : A → A → A)(zero : A) where
infix 1 _≤_
infix 2 _⊝_
insert : A → List A → List A
insert x [] = x ∷ []
insert x (y ∷ ys) with zero ≤ (y ⊝ x)
insert x (y ∷ ys) | true = x ∷ y ∷ ys
insert x (y ∷ ys) | false = y ∷ insert x ys
sort : List A → List A
sort [] = []
sort (x ∷ xs) = insert x (sort xs)
| {
"alphanum_fraction": 0.5384615385,
"avg_line_length": 24.7,
"ext": "agda",
"hexsha": "0ea6ffe55196230d4ca832575f7bbc308561ea25",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/ModuleInfix.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/ModuleInfix.agda",
"max_line_length": 73,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/ModuleInfix.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 191,
"size": 494
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Optics.All where
open import Optics.Functorial public
open import Optics.Reflection public
| {
"alphanum_fraction": 0.7842565598,
"avg_line_length": 38.1111111111,
"ext": "agda",
"hexsha": "a6c555559d03d8adbd290a887b0f9c69f9e45c50",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "Optics/All.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "Optics/All.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "Optics/All.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 86,
"size": 343
} |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong)
open import Syntax
import Renaming
-- Substitutions
module Substitution where
module _ {𝕊 : Signature} where
open Expression 𝕊
open Renaming
open Equality
infix 5 _∥_→ˢ_
-- the set of substitutions
_∥_→ˢ_ : MShape → VShape → VShape → Set
𝕄 ∥ γ →ˢ δ = var γ → ExprTm 𝕄 δ
-- equality of substitutions
infix 4 _≈ˢ_
_≈ˢ_ : ∀ {𝕄} {γ δ} (σ : 𝕄 ∥ γ →ˢ δ) (σ : 𝕄 ∥ γ →ˢ δ) → Set
σ ≈ˢ τ = ∀ x → σ x ≈ τ x
-- equality is an equivalence relation
≈ˢ-refl : ∀ {𝕄} {γ δ} {σ : 𝕄 ∥ γ →ˢ δ} → σ ≈ˢ σ
≈ˢ-refl x = ≈-refl
≈ˢ-sym : ∀ {𝕄} {γ δ} {σ τ : 𝕄 ∥ γ →ˢ δ} → σ ≈ˢ τ → τ ≈ˢ σ
≈ˢ-sym ξ x = ≈-sym (ξ x)
≈ˢ-trans : ∀ {𝕄} {γ δ} {σ τ χ : 𝕄 ∥ γ →ˢ δ} → σ ≈ˢ τ → τ ≈ˢ χ → σ ≈ˢ χ
≈ˢ-trans ζ ξ x = ≈-trans (ζ x) (ξ x)
-- identity substitution
𝟙ˢ : ∀ {𝕄} {γ} → 𝕄 ∥ γ →ˢ γ
𝟙ˢ = expr-var
-- inclusions
inlˢ : ∀ {𝕄} {γ δ} → 𝕄 ∥ γ →ˢ γ ⊕ δ
inlˢ x = expr-var (var-left x)
inrˢ : ∀ {𝕄} {γ δ} → 𝕄 ∥ δ →ˢ γ ⊕ δ
inrˢ x = expr-var (var-right x)
-- join of substitutions
[_,_]ˢ : ∀ {𝕄} {γ δ η} → (𝕄 ∥ γ →ˢ η) → (𝕄 ∥ δ →ˢ η) → (𝕄 ∥ γ ⊕ δ →ˢ η)
[ ξ , σ ]ˢ (var-left x) = ξ x
[ ξ , σ ]ˢ (var-right y) = σ y
-- join respect equality
[,]ˢ-resp-≈ˢ : ∀ {𝕄} {γ δ η} {ρ₁ ρ₂ : 𝕄 ∥ γ →ˢ η} {τ₁ τ₂ : 𝕄 ∥ δ →ˢ η} →
ρ₁ ≈ˢ ρ₂ → τ₁ ≈ˢ τ₂ → [ ρ₁ , τ₁ ]ˢ ≈ˢ [ ρ₂ , τ₂ ]ˢ
[,]ˢ-resp-≈ˢ ζ ξ (var-left x) = ζ x
[,]ˢ-resp-≈ˢ ζ ξ (var-right y) = ξ y
-- substutution extension
⇑ˢ : ∀ {𝕄} {γ δ η} → (𝕄 ∥ γ →ˢ δ) → (𝕄 ∥ γ ⊕ η →ˢ δ ⊕ η)
⇑ˢ σ (var-left x) = [ var-left ]ʳ σ x
⇑ˢ σ (var-right y) = expr-var (var-right y)
-- extension preserves equality
⇑ˢ-resp-≈ˢ : ∀ {𝕄} {γ δ η} {σ τ : 𝕄 ∥ γ →ˢ δ} → σ ≈ˢ τ → ⇑ˢ {η = η} σ ≈ˢ ⇑ˢ τ
⇑ˢ-resp-≈ˢ ξ (var-left x) = []ʳ-resp-≈ var-left (ξ x)
⇑ˢ-resp-≈ˢ ξ (var-right y) = ≈-refl
-- extension preserves identity
⇑ˢ-𝟙ˢ : ∀ {𝕄} {γ δ} → ⇑ˢ 𝟙ˢ ≈ˢ 𝟙ˢ {𝕄 = 𝕄} {γ = γ ⊕ δ}
⇑ˢ-𝟙ˢ (var-left x) = ≈-refl
⇑ˢ-𝟙ˢ (var-right x) = ≈-refl
-- action of a substitution
infix 5 [_]ˢ_
[_]ˢ_ : ∀ {cl 𝕄} {γ δ} → (𝕄 ∥ γ →ˢ δ) → Expr cl 𝕄 γ → Expr cl 𝕄 δ
[ σ ]ˢ (expr-var x) = σ x
[ σ ]ˢ (expr-symb S es) = expr-symb S (λ i → [ ⇑ˢ σ ]ˢ es i)
[ σ ]ˢ (expr-meta M ts) = expr-meta M (λ i → [ σ ]ˢ ts i )
[ σ ]ˢ expr-eqty = expr-eqty
[ σ ]ˢ expr-eqtm = expr-eqtm
-- the action respects equality
[]ˢ-resp-≈ : ∀ {cl 𝕄} {γ δ} (σ : 𝕄 ∥ γ →ˢ δ) {t u : Expr cl 𝕄 γ} → t ≈ u → [ σ ]ˢ t ≈ [ σ ]ˢ u
[]ˢ-resp-≈ σ (≈-≡ ξ) = ≈-≡ (cong ([ σ ]ˢ_) ξ)
[]ˢ-resp-≈ σ (≈-symb ξ) = ≈-symb (λ i → []ˢ-resp-≈ (⇑ˢ σ) (ξ i))
[]ˢ-resp-≈ σ (≈-meta ξ) = ≈-meta (λ i → []ˢ-resp-≈ σ (ξ i))
[]ˢ-resp-≈ˢ : ∀ {cl 𝕄} {γ δ} {σ τ : 𝕄 ∥ γ →ˢ δ} → σ ≈ˢ τ → ∀ (t : Expr cl 𝕄 γ) → [ σ ]ˢ t ≈ [ τ ]ˢ t
[]ˢ-resp-≈ˢ ξ (expr-var x) = ξ x
[]ˢ-resp-≈ˢ ξ (expr-symb S es) = ≈-symb (λ i → []ˢ-resp-≈ˢ (⇑ˢ-resp-≈ˢ ξ) (es i))
[]ˢ-resp-≈ˢ ξ (expr-meta M ts) = ≈-meta (λ i → []ˢ-resp-≈ˢ ξ (ts i))
[]ˢ-resp-≈ˢ ξ expr-eqty = ≈-eqty
[]ˢ-resp-≈ˢ ξ expr-eqtm = ≈-eqtm
[]ˢ-resp-≈ˢ-≈ : ∀ {cl 𝕄} {γ δ} {σ τ : 𝕄 ∥ γ →ˢ δ} {t u : Expr cl 𝕄 γ} → σ ≈ˢ τ → t ≈ u → [ σ ]ˢ t ≈ [ τ ]ˢ u
[]ˢ-resp-≈ˢ-≈ {τ = τ} {t = t} ζ ξ = ≈-trans ([]ˢ-resp-≈ˢ ζ t) ([]ˢ-resp-≈ τ ξ)
-- composition of substitutions
infixl 7 _∘ˢ_
_∘ˢ_ : ∀ {𝕄} {γ δ η} → (𝕄 ∥ δ →ˢ η) → (𝕄 ∥ γ →ˢ δ) → (𝕄 ∥ γ →ˢ η)
(ξ ∘ˢ σ) x = [ ξ ]ˢ (σ x)
-- sum of substitutions
infixl 8 _⊕ˢ_
_⊕ˢ_ : ∀ {𝕄} {γ δ η χ} → (𝕄 ∥ γ →ˢ δ) → (𝕄 ∥ η →ˢ χ) → (𝕄 ∥ γ ⊕ η →ˢ δ ⊕ χ)
σ ⊕ˢ τ = [ inlˢ ∘ˢ σ , inrˢ ∘ˢ τ ]ˢ
-- composition of renaming and substitition
infixr 7 _ʳ∘ˢ_
_ʳ∘ˢ_ : ∀ {𝕄} {γ δ η} → (δ →ʳ η) → (𝕄 ∥ γ →ˢ δ) → (𝕄 ∥ γ →ˢ η)
(ρ ʳ∘ˢ σ) x = [ ρ ]ʳ σ x
infixl 7 _ˢ∘ʳ_
_ˢ∘ʳ_ : ∀ {𝕄} {γ δ η} → (𝕄 ∥ δ →ˢ η) → (γ →ʳ δ) → (𝕄 ∥ γ →ˢ η)
(σ ˢ∘ʳ ρ) x = σ (ρ x)
-- extension commutes with the composition of renaming and substitution
⇑ˢ-resp-ʳ∘ˢ : ∀ {𝕄} {γ δ η θ} {ρ : δ →ʳ η} → {σ : 𝕄 ∥ γ →ˢ δ} →
⇑ˢ {η = θ} (ρ ʳ∘ˢ σ) ≈ˢ ⇑ʳ ρ ʳ∘ˢ ⇑ˢ σ
⇑ˢ-resp-ʳ∘ˢ {σ = σ} (var-left x) =
≈-trans
(≈-sym ([∘ʳ] (σ x)))
(≈-trans
([]ʳ-resp-≡ʳ (σ x) ≡ʳ-refl)
([∘ʳ] (σ x)))
⇑ˢ-resp-ʳ∘ˢ (var-right y) = ≈-refl
⇑ˢ-resp-ˢ∘ʳ : ∀ {𝕄} {β γ δ η} {ρ : β →ʳ γ} {σ : 𝕄 ∥ γ →ˢ δ} → ⇑ˢ {η = η} (σ ˢ∘ʳ ρ) ≈ˢ ⇑ˢ σ ˢ∘ʳ ⇑ʳ ρ
⇑ˢ-resp-ˢ∘ʳ (var-left x) = ≈-refl
⇑ˢ-resp-ˢ∘ʳ (var-right y) = ≈-refl
⇑ˢ-ʳ∘ˢ : ∀ {𝕄} {β γ δ η} {σ : 𝕄 ∥ β →ˢ γ} {ρ : γ →ʳ δ} → ⇑ˢ {η = η} (ρ ʳ∘ˢ σ) ≈ˢ ⇑ʳ ρ ʳ∘ˢ ⇑ˢ σ
⇑ˢ-ʳ∘ˢ (var-left x) = ≈-trans (≈-trans (≈-sym ([∘ʳ] _)) ([]ʳ-resp-≡ʳ _ λ x → refl)) ([∘ʳ] _)
⇑ˢ-ʳ∘ˢ (var-right x) = ≈-refl
-- action of a composition of a renaming and a substitition
[ˢ∘ʳ] : ∀ {𝕄 cl} {γ δ η} → {σ : 𝕄 ∥ δ →ˢ η} → {ρ : γ →ʳ δ} (t : Expr cl 𝕄 γ) → [ σ ˢ∘ʳ ρ ]ˢ t ≈ [ σ ]ˢ [ ρ ]ʳ t
[ˢ∘ʳ] (expr-var x) = ≈-refl
[ˢ∘ʳ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ˢ-resp-≈ˢ ⇑ˢ-resp-ˢ∘ʳ (es i)) ([ˢ∘ʳ] (es i)))
[ˢ∘ʳ] (expr-meta M ts) = ≈-meta (λ i → [ˢ∘ʳ] (ts i))
[ˢ∘ʳ] expr-eqty = ≈-eqty
[ˢ∘ʳ] expr-eqtm = ≈-eqtm
[ʳ∘ˢ] : ∀ {𝕄 cl} {γ δ η} → {σ : 𝕄 ∥ γ →ˢ δ} → {ρ : δ →ʳ η} (t : Expr cl 𝕄 γ) → [ ρ ʳ∘ˢ σ ]ˢ t ≈ [ ρ ]ʳ ([ σ ]ˢ t)
[ʳ∘ˢ] (expr-var x) = ≈-refl
[ʳ∘ˢ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ˢ-resp-≈ˢ ⇑ˢ-ʳ∘ˢ (es i)) ([ʳ∘ˢ] (es i)))
[ʳ∘ˢ] (expr-meta M ts) = ≈-meta (λ i → [ʳ∘ˢ] (ts i))
[ʳ∘ˢ] expr-eqty = ≈-eqty
[ʳ∘ˢ] expr-eqtm = ≈-eqtm
-- composition commutes with extensions
⇑ˢ-resp-∘ˢ : ∀ {𝕄} {β γ δ η} {σ : 𝕄 ∥ β →ˢ γ} {τ : 𝕄 ∥ γ →ˢ δ} → ⇑ˢ {η = η} (τ ∘ˢ σ) ≈ˢ ⇑ˢ τ ∘ˢ ⇑ˢ σ
⇑ˢ-resp-∘ˢ {σ = σ} (var-left x) = ≈-trans (≈-trans (≈-sym ([ʳ∘ˢ] (σ x))) ([]ˢ-resp-≈ˢ (λ x₁ → ≈-refl) (σ x))) ([ˢ∘ʳ] (σ x))
⇑ˢ-resp-∘ˢ (var-right y) = ≈-refl
-- action of substitutions is functorial
[𝟙ˢ] : ∀ {cl 𝕄 γ} (t : Expr cl 𝕄 γ) → [ 𝟙ˢ ]ˢ t ≈ t
[𝟙ˢ] (expr-var x) = ≈-refl
[𝟙ˢ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ˢ-resp-≈ˢ ⇑ˢ-𝟙ˢ (es i)) ([𝟙ˢ] (es i)))
[𝟙ˢ] (expr-meta M ts) = ≈-meta (λ i → [𝟙ˢ] (ts i))
[𝟙ˢ] expr-eqty = ≈-eqty
[𝟙ˢ] expr-eqtm = ≈-eqtm
[∘ˢ] : ∀ {cl 𝕄} {γ δ η} {σ : 𝕄 ∥ γ →ˢ δ} {τ : 𝕄 ∥ δ →ˢ η} (t : Expr cl 𝕄 γ) → [ τ ∘ˢ σ ]ˢ t ≈ [ τ ]ˢ [ σ ]ˢ t
[∘ˢ] (expr-var x) = ≈-refl
[∘ˢ] (expr-symb S es) = ≈-symb (λ i → ≈-trans ([]ˢ-resp-≈ˢ ⇑ˢ-resp-∘ˢ (es i)) ([∘ˢ] (es i)))
[∘ˢ] (expr-meta M ts) = ≈-meta (λ i → [∘ˢ] (ts i))
[∘ˢ] expr-eqty = ≈-eqty
[∘ˢ] expr-eqtm = ≈-eqtm
[]ˢ-id : ∀ {cl 𝕄 γ} {σ : 𝕄 ∥ γ →ˢ γ} {t : Expr cl 𝕄 γ} → σ ≈ˢ 𝟙ˢ → [ σ ]ˢ t ≈ t
[]ˢ-id {t = t} ξ = ≈-trans ([]ˢ-resp-≈ˢ ξ t) ([𝟙ˢ] t)
[]ˢ-𝟘-initial : ∀ {cl 𝕄 γ} {σ : 𝕄 ∥ γ →ˢ 𝟘} (t : Expr cl 𝕄 𝟘) → [ σ ]ˢ [ 𝟘-initial ]ʳ t ≈ t
[]ˢ-𝟘-initial (expr-symb S es) =
≈-symb (λ i → ≈-trans (≈-sym ([ˢ∘ʳ] (es i))) ([]ˢ-id (λ {(var-right x) → ≈-refl})))
[]ˢ-𝟘-initial (expr-meta M ts) = ≈-meta (λ i → []ˢ-𝟘-initial (ts i))
[]ˢ-𝟘-initial expr-eqty = ≈-eqty
[]ˢ-𝟘-initial expr-eqtm = ≈-eqtm
infix 5 _%_∥_→ˢ_
_%_∥_→ˢ_ : ∀ (𝕊 : Signature) → MShape → VShape → VShape → Set
_%_∥_→ˢ_ 𝕊 = _∥_→ˢ_ {𝕊 = 𝕊}
| {
"alphanum_fraction": 0.4369281952,
"avg_line_length": 34.8502415459,
"ext": "agda",
"hexsha": "8e72bf3666e1b497ce1603f4abb26c47fd6e99a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_forks_repo_path": "src/Substitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_issues_repo_path": "src/Substitution.agda",
"max_line_length": 127,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax",
"max_stars_repo_path": "src/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z",
"num_tokens": 4490,
"size": 7214
} |
{-# OPTIONS --without-K #-}
--
-- This module defines/proves some basic functions/theorem using only
-- the induction principle of the equality types the way they are done
-- in the HoTT book. The functions defined/theorems proved in this
-- module is often exposed in a better way from the main equality
-- module, the word better means simpler definitions/proofs. This
-- module is thus not meant for use in "production" hott.
--
module hott.core.equality.induction-proofs where
open import hott.core
-- The symmetry of ≡ defined in terms of the induction principle
sym : ∀{ℓ} {A : Type ℓ} {x y : A}
→ x ≡ y → y ≡ x
sym {ℓ} {A} = induction≡ D d
where
D : {u v : A} → u ≡ v → Type ℓ
D {u} {v} _ = v ≡ u
d : {u : A} → D {u} refl
d = refl
-- The transitivity of ≡.
trans : ∀{ℓ} {A : Type ℓ} {x y z : A}
→ x ≡ y → y ≡ z → x ≡ z
trans {ℓ} {A} xEy = induction≡ D d xEy
where
D : {u v : A} → u ≡ v → Type ℓ
D {u} {v} _ = {w : A} → v ≡ w → u ≡ w
d : {u : A} → D {u} refl
d uEw = uEw
symIsInv : ∀{ℓ} {A : Type ℓ} {x y : A}
→ (p : x ≡ y) → sym p ≡ p ⁻¹
symIsInv refl = refl
| {
"alphanum_fraction": 0.5759717314,
"avg_line_length": 28.3,
"ext": "agda",
"hexsha": "840e6ae7a9eca9122c521aa240006e4c816ece17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/equality/induction-proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/equality/induction-proofs.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/equality/induction-proofs.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 421,
"size": 1132
} |
{-# OPTIONS --without-K --exact-split #-}
module rational-numbers where
import integers
open integers public
--------------------------------------------------------------------------------
{- We introduce the type of non-zero integers. -}
ℤ\0 : UU lzero
ℤ\0 = Σ ℤ (λ k → ¬ (Id zero-ℤ k))
int-ℤ\0 : ℤ\0 → ℤ
int-ℤ\0 = pr1
{- We first show that multiplication by a non-zero integer is an injective
function. -}
mul-ℤ-ℤ\0 : ℤ → ℤ\0 → ℤ
mul-ℤ-ℤ\0 x y = mul-ℤ x (int-ℤ\0 y)
mul-ℤ\0 : ℤ\0 → ℤ\0 → ℤ\0
mul-ℤ\0 (pair x Hx) (pair y Hy) = pair (mul-ℤ x y) (neq-zero-mul-ℤ x y Hx Hy)
postulate is-emb-mul-ℤ-ℤ\0 : (y : ℤ\0) → is-emb (λ x → mul-ℤ-ℤ\0 x y)
is-injective-mul-ℤ-ℤ\0 :
(y : ℤ\0) (x1 x2 : ℤ) → Id (mul-ℤ-ℤ\0 x1 y) (mul-ℤ-ℤ\0 x2 y) → Id x1 x2
is-injective-mul-ℤ-ℤ\0 y x1 x2 = inv-is-equiv (is-emb-mul-ℤ-ℤ\0 y x1 x2)
--------------------------------------------------------------------------------
{- We introduce the prerational numbers. -}
ℚ' : UU lzero
ℚ' = ℤ × ℤ\0
--------------------------------------------------------------------------------
{- We introduce the equivalence relation on the prerational numbers that will
define the rational numbers. -}
equiv-ℚ' : ℚ' → ℚ' → UU lzero
equiv-ℚ' (pair x1 x2) (pair y1 y2) =
Id (mul-ℤ-ℤ\0 x1 y2) (mul-ℤ-ℤ\0 y1 x2)
refl-equiv-ℚ' :
(x : ℚ') → equiv-ℚ' x x
refl-equiv-ℚ' (pair x1 x2) = refl
symmetric-equiv-ℚ' :
(x y : ℚ') → equiv-ℚ' x y → equiv-ℚ' y x
symmetric-equiv-ℚ' (pair x1 x2) (pair y1 y2) = inv
transitive-equiv-ℚ' :
(x y z : ℚ') →
equiv-ℚ' x y → equiv-ℚ' y z → equiv-ℚ' x z
transitive-equiv-ℚ' (pair x1 x2) (pair y1 y2) (pair z1 z2) p q =
is-injective-mul-ℤ-ℤ\0 y2
( mul-ℤ-ℤ\0 x1 z2)
( mul-ℤ-ℤ\0 z1 x2)
( ( associative-mul-ℤ x1 (int-ℤ\0 z2) (int-ℤ\0 y2)) ∙
( ( ap ( mul-ℤ x1)
( commutative-mul-ℤ (int-ℤ\0 z2) (int-ℤ\0 y2))) ∙
( ( inv (associative-mul-ℤ x1 (int-ℤ\0 y2) (int-ℤ\0 z2))) ∙
( ( ap ( λ t → mul-ℤ t (int-ℤ\0 z2))
( p ∙ (commutative-mul-ℤ y1 (int-ℤ\0 x2)))) ∙
( ( associative-mul-ℤ (int-ℤ\0 x2) y1 (int-ℤ\0 z2)) ∙
( ( ap (mul-ℤ (int-ℤ\0 x2)) q) ∙
( ( inv (associative-mul-ℤ (int-ℤ\0 x2) z1 (int-ℤ\0 y2))) ∙
( ap ( λ t → mul-ℤ-ℤ\0 t y2)
( commutative-mul-ℤ (int-ℤ\0 x2) z1)))))))))
--------------------------------------------------------------------------------
{- We define addition on the prerational numbers. -}
add-ℚ' : ℚ' → ℚ' → ℚ'
add-ℚ' (pair x1 x2) (pair y1 y2) =
pair (add-ℤ (mul-ℤ-ℤ\0 x1 y2) (mul-ℤ-ℤ\0 y1 x2)) (mul-ℤ\0 x2 y2)
equiv-add-ℚ' :
(x y x' y' : ℚ') → equiv-ℚ' x x' → equiv-ℚ' y y' →
equiv-ℚ' (add-ℚ' x y) (add-ℚ' x' y')
equiv-add-ℚ'
( pair x1 (pair x2 Hx))
( pair y1 (pair y2 Hy))
( pair x1' (pair x2' Hx'))
( pair y1' (pair y2' Hy')) e f =
( right-distributive-mul-add-ℤ
( mul-ℤ x1 y2)
( mul-ℤ y1 x2)
( mul-ℤ x2' y2')) ∙
( ( ap-add-ℤ
( ( interchange-2-3-mul-ℤ {x1}) ∙
( ( ap (λ t → mul-ℤ t (mul-ℤ y2 y2')) e) ∙
( move-four-mul-ℤ {x1'})))
( ( move-five-mul-ℤ {y1}) ∙
( ( ap (mul-ℤ (mul-ℤ x2 x2')) f) ∙
( interchange-1-3-mul-ℤ {x2} {x2'} {y1'})))) ∙
( inv
( right-distributive-mul-add-ℤ
( mul-ℤ x1' y2')
( mul-ℤ y1' x2')
( mul-ℤ x2 y2))))
--------------------------------------------------------------------------------
{- We define multiplication on the prerational numbers. -}
mul-ℚ' : ℚ' → ℚ' → ℚ'
mul-ℚ' (pair x1 x2) (pair y1 y2) = pair (mul-ℤ x1 y1) (mul-ℤ\0 x2 y2)
ap-mul-ℤ :
{a b a' b' : ℤ} →
Id a a' → Id b b' → Id (mul-ℤ a b) (mul-ℤ a' b')
ap-mul-ℤ refl refl = refl
equiv-mul-ℚ' :
(x y x' y' : ℚ') → equiv-ℚ' x x' → equiv-ℚ' y y' →
equiv-ℚ' (mul-ℚ' x y) (mul-ℚ' x' y')
equiv-mul-ℚ'
( pair x1 (pair x2 Hx))
( pair y1 (pair y2 Hy))
( pair x1' (pair x2' Hx'))
( pair y1' (pair y2' Hy')) e f =
( interchange-2-3-mul-ℤ {x1} {y1} {x2'}) ∙
( ( ap-mul-ℤ e f) ∙
( interchange-2-3-mul-ℤ {x1'}))
| {
"alphanum_fraction": 0.4654699576,
"avg_line_length": 30.3863636364,
"ext": "agda",
"hexsha": "f093bcada185b0b0763c10dbaff2d2f28569c3d4",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/rational-numbers.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/rational-numbers.agda",
"max_line_length": 80,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/rational-numbers.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 1822,
"size": 4011
} |
-- Christian Sattler, 2013-12-31
-- Testing eta-expansion of bound record metavars, as implemented by Andreas.
module Issue376-2 where
{- A simple example. -}
module example-0 {A B : Set} where
record Prod : Set where
constructor _,_
field
fst : A
snd : B
module _ (F : (Prod → Set) → Set) where
q : (∀ f → F f) → (∀ f → F f)
q h _ = h (λ {(a , b) → _})
{- A more complex, real-life-based example: the dependent
generalization of (A × B) × (C × D) ≃ (A × C) × (B × D). -}
module example-1 where
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
postulate
_≃_ : (A B : Set) → Set
Σ-interchange-Type =
(A : Set) (B C : A → Set) (D : (a : A) → B a → C a → Set)
→ Σ (Σ A B) (λ {(a , b) → Σ (C a) (λ c → D a b c)})
≃ Σ (Σ A C) (λ {(a , c) → Σ (B a) (λ b → D a b c)})
postulate
Σ-interchange : Σ-interchange-Type
{- Can the implicit arguments to Σ-interchange
be inferred from the global type? -}
Σ-interchange' : Σ-interchange-Type
Σ-interchange' A B C D = Σ-interchange _ _ _ _
| {
"alphanum_fraction": 0.5501792115,
"avg_line_length": 27.2195121951,
"ext": "agda",
"hexsha": "d4178d87d9e4986b9286af2d65830dc11c69519d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue376-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue376-2.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue376-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 412,
"size": 1116
} |
module _ where
module M where
data D : Set where
c : D
private
pattern c′ = c
open M
x : D
x = c′
| {
"alphanum_fraction": 0.5517241379,
"avg_line_length": 7.25,
"ext": "agda",
"hexsha": "81ccc717c7ccefa83c780132fbb85211a26e4bb5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4121-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4121-1.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4121-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 42,
"size": 116
} |
open import Nat
open import Prelude
open import dynamics-core
module lemmas-progress-checks where
-- boxed values don't have an instruction transition
boxedval-not-trans : ∀{d d'} → d boxedval → d →> d' → ⊥
boxedval-not-trans (BVVal VNum) ()
boxedval-not-trans (BVVal VLam) ()
boxedval-not-trans (BVArrCast x bv) (ITCastID) = x refl
boxedval-not-trans (BVHoleCast () bv) (ITCastID)
boxedval-not-trans (BVHoleCast () bv) (ITCastSucceed x₁)
boxedval-not-trans (BVHoleCast GArrHole bv) (ITGround (MGArr x)) = x refl
boxedval-not-trans (BVHoleCast x a) (ITExpand ())
boxedval-not-trans (BVHoleCast x x₁) (ITCastFail x₂ () x₄)
boxedval-not-trans (BVVal (VInl x)) ()
boxedval-not-trans (BVVal (VInr x)) ()
boxedval-not-trans (BVSumCast x x₁) ITCastID = x refl
boxedval-not-trans (BVHoleCast GSumHole x₁) (ITGround (MGSum x₂)) = x₂ refl
boxedval-not-trans (BVInl bv) ()
boxedval-not-trans (BVInr bv) ()
boxedval-not-trans (BVPair bv bv₁) ()
boxedval-not-trans (BVProdCast x bv) ITCastID = x refl
boxedval-not-trans (BVHoleCast GProdHole bv) (ITGround (MGProd x)) = x refl
-- indets don't have an instruction transition
indet-not-trans : ∀{d d'} → d indet → d →> d' → ⊥
indet-not-trans IEHole ()
indet-not-trans (INEHole x) ()
indet-not-trans (IAp x₁ () x₂) (ITLam)
indet-not-trans (IAp x (ICastArr x₁ ind) x₂) ITApCast = x _ _ _ _ _ refl
indet-not-trans (ICastArr x ind) (ITCastID) = x refl
indet-not-trans (ICastGroundHole () ind) (ITCastID)
indet-not-trans (ICastGroundHole x ind) (ITCastSucceed ())
indet-not-trans (ICastGroundHole GArrHole ind) (ITGround (MGArr x)) = x refl
indet-not-trans (ICastHoleGround x ind ()) (ITCastID)
indet-not-trans (ICastHoleGround x ind x₁) (ITCastSucceed x₂) = x _ _ refl
indet-not-trans (ICastHoleGround x ind GArrHole) (ITExpand (MGArr x₂)) = x₂ refl
indet-not-trans (ICastGroundHole x a) (ITExpand ())
indet-not-trans (ICastHoleGround x a x₁) (ITGround ())
indet-not-trans (ICastGroundHole x x₁) (ITCastFail x₂ () x₄)
indet-not-trans (ICastHoleGround x x₁ x₂) (ITCastFail x₃ x₄ x₅) = x _ _ refl
indet-not-trans (IFailedCast x x₁ x₂ x₃) ()
indet-not-trans (IPlus1 () x₁) (ITPlus x₂)
indet-not-trans (IPlus2 x ()) (ITPlus x₂)
indet-not-trans (ICase x x₂ x₃ (IInl x₄)) ITCaseInl = x _ _ refl
indet-not-trans (ICase x x₂ x₃ (IInr x₄)) ITCaseInr = x₂ _ _ refl
indet-not-trans (ICase x x₂ x₃ (ICastSum x₁ x₄)) ITCaseCast = x₃ _ _ _ _ _ refl
indet-not-trans (ICastSum x x₂) ITCastID = x refl
indet-not-trans (ICastGroundHole GSumHole x₂) (ITGround (MGSum x₁)) = x₁ refl
indet-not-trans (ICastGroundHole GProdHole ind) (ITGround (MGProd x)) = x refl
indet-not-trans (ICastHoleGround x x₂ GSumHole) (ITExpand (MGSum x₁)) = x₁ refl
indet-not-trans (ICastHoleGround x ind GProdHole) (ITExpand (MGProd x₁)) = x₁ refl
indet-not-trans (IInl ind) ()
indet-not-trans (IInr ind) ()
indet-not-trans (IPair1 ind x) ()
indet-not-trans (IPair2 x ind) ()
indet-not-trans (IFst x x₁ ind) ITFstPair = x _ _ refl
indet-not-trans (IFst x x₁ ind) ITFstCast = x₁ _ _ _ _ _ refl
indet-not-trans (ISnd x x₁ ind) ITSndPair = x _ _ refl
indet-not-trans (ISnd x x₁ ind) ITSndCast = x₁ _ _ _ _ _ refl
indet-not-trans (ICastProd x ind) ITCastID = x refl
indet-not-trans (ICastGroundHole GNum ind) (ITGround ())
indet-not-trans (ICastHoleGround x ind GNum) (ITExpand ())
-- finals don't have an instruction transition
final-not-trans : ∀{d d'} → d final → d →> d' → ⊥
final-not-trans (FBoxedVal x) = boxedval-not-trans x
final-not-trans (FIndet x) = indet-not-trans x
-- finals cast from a ground are still final
final-gnd-cast : ∀{ d τ } → d final → τ ground → (d ⟨ τ ⇒ ⦇-⦈ ⟩) final
final-gnd-cast (FBoxedVal x) gnd = FBoxedVal (BVHoleCast gnd x)
final-gnd-cast (FIndet x) gnd = FIndet (ICastGroundHole gnd x)
-- if an expression results from filling a hole in an evaluation context,
-- the hole-filler must have been final
final-sub-final : ∀{d ε x} → d final → d == ε ⟦ x ⟧ → x final
final-sub-final x FHOuter = x
final-sub-final (FBoxedVal (BVVal ())) (FHPlus1 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHPlus2 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHAp1 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHAp2 eps)
final-sub-final (FBoxedVal (BVVal ())) (FHNEHole eps)
final-sub-final (FBoxedVal (BVVal ())) (FHCast eps)
final-sub-final (FBoxedVal (BVVal ())) (FHFailedCast y)
final-sub-final (FBoxedVal (BVArrCast x₁ x₂)) (FHCast eps) = final-sub-final (FBoxedVal x₂) eps
final-sub-final (FBoxedVal (BVHoleCast x₁ x₂)) (FHCast eps) = final-sub-final (FBoxedVal x₂) eps
final-sub-final (FIndet (IPlus1 x x₁)) (FHPlus1 eps) = final-sub-final (FIndet x) eps
final-sub-final (FIndet (IPlus2 x x₁)) (FHPlus1 eps) = final-sub-final x eps
final-sub-final (FIndet (IPlus1 x x₁)) (FHPlus2 eps) = final-sub-final x₁ eps
final-sub-final (FIndet (IPlus2 x x₁)) (FHPlus2 eps) = final-sub-final (FIndet x₁) eps
final-sub-final (FIndet (IAp x₁ x₂ x₃)) (FHAp1 eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (IAp x₁ x₂ x₃)) (FHAp2 eps) = final-sub-final x₃ eps
final-sub-final (FIndet (INEHole x₁)) (FHNEHole eps) = final-sub-final x₁ eps
final-sub-final (FIndet (ICastArr x₁ x₂)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (ICastGroundHole x₁ x₂)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (ICastHoleGround x₁ x₂ x₃)) (FHCast eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (IFailedCast x₁ x₂ x₃ x₄)) (FHFailedCast y) = final-sub-final x₁ y
final-sub-final (FBoxedVal (BVVal ())) (FHCase eps)
final-sub-final (FBoxedVal (BVSumCast x x₁)) (FHCast eps) = final-sub-final (FBoxedVal x₁) eps
final-sub-final (FIndet (ICase x x₁ x₂ x₃)) (FHCase eps) = final-sub-final (FIndet x₃) eps
final-sub-final (FIndet (ICastSum x x₁)) (FHCast eps) = final-sub-final (FIndet x₁) eps
final-sub-final (FBoxedVal (BVVal (VInl x))) (FHInl eps) = final-sub-final (FBoxedVal (BVVal x)) eps
final-sub-final (FBoxedVal (BVInl x)) (FHInl eps) = final-sub-final (FBoxedVal x) eps
final-sub-final (FIndet (IInl x)) (FHInl eps) = final-sub-final (FIndet x) eps
final-sub-final (FBoxedVal (BVVal (VInr x))) (FHInr eps) = final-sub-final (FBoxedVal (BVVal x)) eps
final-sub-final (FBoxedVal (BVInr x)) (FHInr eps) = final-sub-final (FBoxedVal x) eps
final-sub-final (FBoxedVal (BVProdCast x x₁)) (FHCast eps) = final-sub-final (FBoxedVal x₁) eps
final-sub-final (FIndet (IInr x)) (FHInr eps) = final-sub-final (FIndet x) eps
final-sub-final (FBoxedVal (BVVal ())) (FHFst eps)
final-sub-final (FBoxedVal (BVVal ())) (FHSnd eps)
final-sub-final (FBoxedVal (BVVal (VPair x x₁))) (FHPair1 eps) = final-sub-final (FBoxedVal (BVVal x)) eps
final-sub-final (FBoxedVal (BVPair x x₁)) (FHPair1 eps) = final-sub-final (FBoxedVal x) eps
final-sub-final (FBoxedVal (BVVal (VPair x x₁))) (FHPair2 eps) = final-sub-final (FBoxedVal (BVVal x₁)) eps
final-sub-final (FBoxedVal (BVPair x x₁)) (FHPair2 eps) = final-sub-final (FBoxedVal x₁) eps
final-sub-final (FIndet (IFst x x₁ x₂)) (FHFst eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (ISnd x x₁ x₂)) (FHSnd eps) = final-sub-final (FIndet x₂) eps
final-sub-final (FIndet (IPair1 x x₁)) (FHPair1 eps) = final-sub-final (FIndet x) eps
final-sub-final (FIndet (IPair2 x x₁)) (FHPair1 eps) = final-sub-final x eps
final-sub-final (FIndet (IPair1 x x₁)) (FHPair2 eps) = final-sub-final x₁ eps
final-sub-final (FIndet (IPair2 x x₁)) (FHPair2 eps) = final-sub-final (FIndet x₁) eps
final-sub-final (FIndet (ICastProd x x₁)) (FHCast eps) = final-sub-final (FIndet x₁) eps
final-sub-not-trans : ∀{d d' d'' ε} → d final → d == ε ⟦ d' ⟧ → d' →> d'' → ⊥
final-sub-not-trans f sub step = final-not-trans (final-sub-final f sub) step
| {
"alphanum_fraction": 0.6899402264,
"avg_line_length": 62.4047619048,
"ext": "agda",
"hexsha": "9caf1adb193f244e8d49d4b1ade8b2233f4b9ebd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "lemmas-progress-checks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "lemmas-progress-checks.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "lemmas-progress-checks.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2971,
"size": 7863
} |
module Structure.Category.Functor where
open import Functional using (_on₂_)
open import Lang.Instance
import Lvl
open import Logic.Predicate
open import Structure.Category
open import Structure.Function
open import Structure.Function.Multi
import Structure.Relator.Names as Names
open import Structure.Setoid
open import Syntax.Function
open import Type
private variable ℓ ℓₒ ℓₘ ℓₗₒ ℓₗₘ ℓᵣₒ ℓᵣₘ ℓₑ ℓₗₑ ℓᵣₑ : Lvl.Level
private variable Obj Objₗ Objᵣ : Type{ℓ}
private variable Morphism Morphismₗ Morphismᵣ : Objₗ → Objᵣ → Type{ℓ}
module _
⦃ morphism-equivₗ : ∀{x y : Objₗ} → Equiv{ℓₗₑ}(Morphismₗ x y) ⦄
⦃ morphism-equivᵣ : ∀{x y : Objᵣ} → Equiv{ℓᵣₑ}(Morphismᵣ x y) ⦄
(Categoryₗ : Category(Morphismₗ))
(Categoryᵣ : Category(Morphismᵣ))
where
-- A covariant functor.
-- A mapping which transforms objects and morphisms from one category to another while "preserving" the categorical structure.
-- A homomorphism between categories.
-- In the context of equivalence relations instead of categories, this is the "function"/"congruence" property of the function `F`.
record Functor (F : Objₗ → Objᵣ) : Type{Lvl.of(Type.of(Categoryₗ)) Lvl.⊔ Lvl.of(Type.of(Categoryᵣ))} where
constructor intro
open Category ⦃ … ⦄
open Category.ArrowNotation ⦃ … ⦄
private instance _ = Categoryₗ
private instance _ = Categoryᵣ
field
-- Morphs/Transforms morphisms from the left category to the right category.
-- ∀{x y : Objₗ} → (x ⟶ y) → (F(x) ⟶ F(y))
map : Names.Subrelation(_⟶_) ((_⟶_) on₂ F)
field
⦃ map-function ⦄ : ∀{x y} → Function(map{x}{y})
⦃ op-preserving ⦄ : ∀{x y z : Objₗ}{f : y ⟶ z}{g : x ⟶ y} → (map(f ∘ g) ≡ map(f) ∘ map(g))
⦃ id-preserving ⦄ : ∀{x : Objₗ} → Names.Preserving₀(map{x})(id)(id) --(map(id {x = x}) ≡ id)
open import Structure.Categorical.Properties
open import Structure.Function.Domain
Faithful = ∀{x y} → Injective (map{x}{y}) -- TODO: F also? Not sure
Full = ∀{x y} → Surjective(map{x}{y})
FullyFaithful = ∀{x y} → Bijective (map{x}{y})
-- TODO: Conservative = ∀{x y : Objₗ}{f : x ⟶ y} → Morphism.Isomorphism(\{x} → _∘_ {x = x})(\{x} → id{x = x})(map f) → Morphism.Isomorphism(\{x} → _∘_ {x = x})(id)(f)
module _
⦃ morphism-equiv : ∀{x y : Obj} → Equiv{ℓₑ}(Morphism x y) ⦄
(Category : Category(Morphism))
where
Endofunctor = Functor(Category)(Category)
module Endofunctor = Functor{Categoryₗ = Category}{Categoryᵣ = Category}
_→ᶠᵘⁿᶜᵗᵒʳ_ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ} → CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ} → Type
catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ = ∃(Functor (CategoryObject.category(catₗ)) ((CategoryObject.category(catᵣ))))
⟲ᶠᵘⁿᶜᵗᵒʳ_ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ} → Type
⟲ᶠᵘⁿᶜᵗᵒʳ cat = cat →ᶠᵘⁿᶜᵗᵒʳ cat
| {
"alphanum_fraction": 0.6642494561,
"avg_line_length": 40.5588235294,
"ext": "agda",
"hexsha": "31be1320022b8c0c497e2391167f5d0e5264c62b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Functor.agda",
"max_line_length": 171,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1108,
"size": 2758
} |
-- exercises-03-wednesday.agda
open import mylib
{-
Part 1 : Recursion via patterns
Define the following functions using pattern matching and structural
recursion on the natural numbers.
-}
-- Define a function even that determines wether its input is even.
even : ℕ → Bool
{-
even zero = true
even (suc n) = ! even n
-}
even zero = true
even (suc zero) = false
even (suc (suc n)) = even n
-- Define a function sum that sums the numbers from 0 until n-1
sum : ℕ → ℕ
sum 0 = 0
sum (suc n) = n + sum n
-- Define a function max that calculates the maximum of 2 numbers
max : ℕ → ℕ → ℕ
max zero n = n
max (suc m) zero = suc m
max (suc m) (suc n) = suc (max m n)
-- Define a function fib which calculates the nth item of the
-- Fibonacci sequence: 1,1,2,3,5,8,13
-- (each number is the sum of the two previous ones).
fib : ℕ → ℕ
fib zero = 1
fib (suc zero) = 1
fib (suc (suc n)) = fib n + fib (suc n)
-- Define a function eq that determines wether two numbers are equal.
eq : ℕ → ℕ → Bool
eq zero zero = true
eq zero (suc m) = false
eq (suc n) zero = false
eq (suc n) (suc m) = eq n m
-- Define a function rem such that rem m n returns the remainder
-- when dividing m by suc n (this way we avoid division by 0).
rem : ℕ → ℕ → ℕ
rem zero n = zero
rem (suc m) n = if eq (rem m n) n then 0 else suc (rem m n)
-- Define a function div such that div m n returns the result
-- of dividing m by suc n (ignoring the remainder)
div : ℕ → ℕ → ℕ
div zero n = zero
div (suc m) n = if eq (rem m n) n then suc (div m n) else div m n
{-
Part 2 : Iterator and recursor
Define all the functions of part 1 but this time only use the
iterator Itℕ. That is NO PATTERNMATCHING (not even in lambdas) and
NO RECURSION.
Naming convention if the function in part 1 is called f then call it
f-i if you only use the iterator.
Test the functions with at least the same test cases.
Hint: you may want to derive the recursor first (from the iterator):
Rℕ : M → (ℕ → M → M) → ℕ → M
where the method can access the current number. Using pattern matching
the recursor can be defined as follows:
Rℕ z s zero = z
Rℕ z s (suc n) = s n (Rℕ z s n)
-}
Itℕ : M → (M → M) → ℕ → M
Itℕ z s zero = z
Itℕ z s (suc n) = s (Itℕ z s n)
even-i : ℕ → Bool
even-i = Itℕ true (λ even-n → ! even-n)
{-
sum : ℕ → ℕ
sum 0 = 0
sum (suc n) = n + sum n
-}
sum-i-aux : ℕ → ℕ × ℕ -- sum-i-aux n = (n , sum n)
sum-i-aux = Itℕ (0 , 0)
λ n-sum-n → (suc (proj₁ n-sum-n)) , ((proj₁ n-sum-n) + (proj₂ n-sum-n))
sum-i : ℕ → ℕ
sum-i n = proj₂ (sum-i-aux n)
{-
fib : ℕ → ℕ
fib zero = 1
fib (suc zero) = 1
fib (suc (suc n)) = fib n + fib (suc n)
fib-i-aux : ℕ → ℕ × ℕ = fib-i-aux n = fib n , fib (suc n)
-}
| {
"alphanum_fraction": 0.6350851221,
"avg_line_length": 25.7333333333,
"ext": "agda",
"hexsha": "a7a3c3a9c1b06c80d0a1aeafe824e6786ecf33d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FoxySeta/mgs-2021",
"max_forks_repo_path": "Type Theory/exercises-03-wednesday.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FoxySeta/mgs-2021",
"max_issues_repo_path": "Type Theory/exercises-03-wednesday.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FoxySeta/mgs-2021",
"max_stars_repo_path": "Type Theory/exercises-03-wednesday.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 959,
"size": 2702
} |
{-
Agda file from the exercise session(s).
-}
{-# OPTIONS --without-K #-}
open import Agda.Primitive
{-
Two inductive implementations of the
Martin-Löf identity type
aka
equality type
aka
identification type
aka
path type.
-}
data _≡_ {A : Set} (a : A) : A → Set where
refl : a ≡ a
infixr 10 _≡_
-- explcit
data _≡'_ {A : Set} : A → A → Set where
refl : (a : A) → a ≡' a
-- variables can be used later and are understood as Pi-quantified.
variable
A B C : Set
-- sym' for ≡'
sym' : {a b : A} → a ≡' b → b ≡' a
sym' {a = x} {.x} (refl .x) = refl x
-- sym for ≡
sym : {a b : A} → a ≡ b → b ≡ a
sym refl = refl
_⁻¹ = sym
symsym : {a b : A} → (p : a ≡ b) → sym (sym p) ≡ p
symsym refl = refl
ap : (f : A → B) → {a b : A} → a ≡ b → f a ≡ f b
ap f {a} {.a} refl = refl
_∘_ : {A B C : Set} → (g : B → C) → (f : A → B) → A → C
g ∘ f = λ x → g (f x)
infixl 26 _∘_
ap-g∘f : (f : A → B) (g : B → C) {a b : A} (p : a ≡ b)
→ ap (g ∘ f) p ≡ (ap g ∘ ap f) p
ap-g∘f f g refl = refl
trans : {a b c : A} → a ≡ b → b ≡ c → a ≡ c
trans refl q = q
_∙_ = trans
infixr 30 _∙_
sym-refl : {a b : A} → (p : a ≡ b) → (p ⁻¹) ∙ p ≡ refl
sym-refl refl = refl
trans2 : {a b c : A} -> a ≡ b -> b ≡ c -> a ≡ c
trans2 p refl = p
trans-trans2 : {a b c : A} -> (p : a ≡ b) -> (q : b ≡ c)
-> trans p q ≡ trans2 p q
trans-trans2 {a = x} {b = .x} {c = .x} refl refl = refl
trans3 : {a b c : A} -> a ≡ b -> b ≡ c -> a ≡ c
trans3 refl refl = refl
trans-trans3 : {a b c : A} -> (p : a ≡ b) -> (q : b ≡ c)
-> trans p q ≡ trans3 p q
trans-trans3 {a = x} {b = .x} {c = .x} refl refl = refl
test : {a c : A} → (q : a ≡ c) → trans refl q ≡ q
test q = refl
test2 : {a c : A} → (q : a ≡ c) → trans2 q refl ≡ q
test2 q = refl
test3 : {a c : A} → (q : a ≡ c) → trans3 refl q ≡ q
test3 refl = refl
{-
In test3 above, we have to pattern match (path induct) on q!
What if we cannot, as in
test4 : {a : A} → (q : a ≡ a) → trans3 refl q ≡ q
?
-}
-- solution:
test4 : {a : A} → (q : a ≡ a) → trans3 refl q ≡ q
test4 q = test3 q
-- We can only pattern match on q if we remove the --without-K option:
uip : {a b : A} → (p q : a ≡ b) → p ≡ q
uip {a = x} {b = .x} refl q = {!q!}
-- implementation of the J eliminator (aka path induction)
module _ (C : (a b : A) → a ≡ b → Set) where
J-elim : (d : (a : A) → C a a refl) → (a b : A) → (p : a ≡ b) → C a b p
J-elim d a .a refl = d a
-- implementation of the Paulin-Mohring version of J (based bath induction)
module _ (a₀ : A) (C : (b : A) → a₀ ≡ b → Set) where
J-elim-PM : (d : C a₀ refl) → (b : A) → (p : a₀ ≡ b) → C b p
J-elim-PM d b refl = d
-- this is "Axiom K" (which is disabled in the options)
module _ (a₀ : A) (C : a₀ ≡ a₀ → Set) where
K : (d : C refl) → (p : a₀ ≡ a₀) → C p
K d p = {!p!}
-- Caveat:
-- judgmental equality in Agda: = but on paper: ≡
-- path type in Agda: ≡ but on paper: =
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open Σ public
infixr 4 _,_
_×_ : (A B : Set) → Set
A × B = Σ A (λ _ → B)
{-
Exercise 5
For a given function f : A -> B, a *pointwise left inverse* is a
function g : B -> A such that (a : A) -> g (f a) = a.
Show: If f has a pointwise left inverse then, for all a,b : A, the
function ap_f {a} {b} has a pointwise left inverse. (Does the other
direction hold as well?)
Solution of the easy part:
-}
has-ptw-left-inv : {A B : Set} → (f : A → B) → Set
has-ptw-left-inv {A} {B} f = Σ (B → A) λ g → (a : A) → g (f a) ≡ a
ptw-left-inv-ap : {A B : Set} → (f : A → B) →
has-ptw-left-inv f →
{a₁ a₂ : A} → has-ptw-left-inv (ap f {a₁} {a₂})
ptw-left-inv-ap f (g , g∘f) {a₁} {a₂} =
(λ q → (g∘f a₁ ⁻¹) ∙ ap g {f a₁} {f a₂} q ∙ g∘f a₂) ,
λ {refl → sym-refl (g∘f a₁) }
{-
Exercise 6: a1 a2 : A, b1 b2 : B
(a1 , b1) ≡ (a2 , b2) is equivalent to (a1 = a2) × (b1 = b2).
Exercise 7:
eqv2iso : isEqv(f) -> isIso(f) [easy]
iso2eqv : isIso(f) -> isEqv(f) [hard]
-}
module _ (A B : Set) (g : B → A) (a b : B) where
lemma : (pair1 pair2 : Σ A λ x → x ≡ g a) → pair1 ≡ pair2
lemma (.(g a) , refl) (.(g a) , refl) = refl
wrong : (pair1 pair2 : Σ A λ x → g a ≡ g b) → pair1 ≡ pair2
wrong (x1 , p1) (x2 , p2) = {!p1!}
split-equality : {x y : A × B} → x ≡ y → (fst x ≡ fst y) × (snd x ≡ snd y)
split-equality = {!!}
combine-equalities : {x y : A × B} → (fst x ≡ fst y) × (snd x ≡ snd y) → x ≡ y
combine-equalities = {!!}
| {
"alphanum_fraction": 0.4974641676,
"avg_line_length": 24.781420765,
"ext": "agda",
"hexsha": "9fc55a7140fc88c34132227b51fafd1d5690c867",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FoxySeta/mgs-2021",
"max_forks_repo_path": "Homotopy Type Theory/exercises.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FoxySeta/mgs-2021",
"max_issues_repo_path": "Homotopy Type Theory/exercises.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FoxySeta/mgs-2021",
"max_stars_repo_path": "Homotopy Type Theory/exercises.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1977,
"size": 4535
} |
module par-swap.dpg-pot where
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Data.Bool
open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym)
open import Data.Maybe using ()
open import Data.List.Any using (here ; there)
open import Data.List.Any.Properties using ( ++-comm ; ++⁻ ; ++⁺ˡ ; ++⁺ʳ )
open import Data.Nat as Nat using (ℕ)
open import par-swap
open import par-swap.properties
open import Esterel.Lang.CanFunction
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Lang.CanFunction.Plug
open import Esterel.Environment as Env
open import Esterel.Context
open import utility
open import sn-calculus
open import context-properties -- get view, E-views
open import sn-calculus-props
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
canₛ-par :
∀ r₁ r₂ -> ∀ (θ : Env) (S : ℕ) →
S ∈ Canₛ (r₂ ∥ r₁) θ →
S ∈ Canₛ (r₁ ∥ r₂) θ
canₛ-par r₁ r₂ θ S S∈r₂∥r₁
= ++-comm (proj₁ (Can r₂ θ)) (proj₁ (Can r₁ θ)) S∈r₂∥r₁
canₖ-par :
∀ r₁ r₂ -> ∀ (θ : Env) (k : Code) →
k ∈ Canₖ (r₂ ∥ r₁) θ →
k ∈ Canₖ (r₁ ∥ r₂) θ
canₖ-par
= \ {r₁ r₂ θ S S∈r₂∥r₁ ->
thing S
(proj₁ (proj₂ (Can r₁ θ)))
(proj₁ (proj₂ (Can r₂ θ)))
S∈r₂∥r₁} where
simplify-foldr++-[] : ∀ (l2 : List Code) ->
(Data.List.foldr{A = (List Code)}
_++_
[]
(Data.List.map (λ (k : Code) → []) l2)) ≡ []
simplify-foldr++-[] [] = refl
simplify-foldr++-[] (x ∷ l2) = simplify-foldr++-[] l2
whatevs-left : ∀ S (whatevs : Code -> Code) l1 l2 ->
Data.List.Any.Any (_≡_ S)
(Data.List.foldr _++_ []
(Data.List.map (λ k → Data.List.map (Code._⊔_ k) l2) l1))
->
Data.List.Any.Any (_≡_ S)
(Data.List.foldr _++_ []
(Data.List.map (λ k → (whatevs k) ∷ Data.List.map (Code._⊔_ k) l2) l1))
whatevs-left S whatevs [] l2 ()
whatevs-left S whatevs (x ∷ l1) l2 blob
with ++⁻ (Data.List.map (Code._⊔_ x) l2) blob
... | inj₁ y = there (++⁺ˡ y)
... | inj₂ y
with whatevs-left S whatevs l1 l2 y
... | R = there (++⁺ʳ (Data.List.map (Code._⊔_ x) l2) R)
whatevs-right :
∀ S (whatevs : Code -> List Code) x l1 ->
Data.List.Any.Any (_≡_ S) (Data.List.map (Code._⊔_ x) l1)
->
Data.List.Any.Any (_≡_ S)
(Data.List.foldr _++_ []
(Data.List.map (λ k → (k Code.⊔ x) ∷ whatevs k)
l1))
whatevs-right S whatevs x [] blob = blob
whatevs-right S whatevs x (x₁ ∷ l1) (here px)
rewrite px = here (Code.⊔-comm x x₁)
whatevs-right S whatevs x (x₁ ∷ l1) (there blob)
= there (++⁺ʳ (whatevs x₁) (whatevs-right S whatevs x l1 blob))
thing : ∀ S l1 l2 ->
Data.List.Any.Any (_≡_ S)
(Data.List.foldr _++_ []
(Data.List.map
(λ k → Data.List.map (Code._⊔_ k) l1)
l2))
->
Data.List.Any.Any (_≡_ S)
(Data.List.foldr _++_ []
(Data.List.map
(λ k → Data.List.map (Code._⊔_ k) l2)
l1))
thing S l1 [] blob
rewrite simplify-foldr++-[] l1
= blob
thing S l1 (x ∷ l2) blob
with ++⁻ (Data.List.map (Code._⊔_ x) l1) blob
thing S l1 (x ∷ l2) _ | inj₁ y =
whatevs-right S (λ { k → Data.List.map (Code._⊔_ k) l2 }) x l1 y
thing S l1 (x ∷ l2) _ | inj₂ y =
whatevs-left S (\ { k -> (k Code.⊔ x)}) l1 l2 (thing S l1 l2 y)
canₛₕ-par :
∀ r₁ r₂ -> ∀ (θ : Env) →
Canₛₕ (r₂ ∥ r₁) θ ⊆¹ Canₛₕ (r₁ ∥ r₂) θ
canₛₕ-par r₁ r₂ θ S S∈r₂∥r₁
= ++-comm (proj₂ (proj₂ (Can r₂ θ))) (proj₂ (proj₂ (Can r₁ θ))) S∈r₂∥r₁
canθₛ-C-par : ∀ sigs S'' -> ∀ {C p r₁ r₂} ->
p ≐ C ⟦ r₁ ∥ r₂ ⟧c ->
∀ {θ} S' ->
S' ∉ Canθₛ sigs S'' p θ ->
S' ∉ Canθₛ sigs S'' (C ⟦ r₂ ∥ r₁ ⟧c) θ
canθₛ-C-par sigs S'' {C} {p} {r₁} {r₂} pC {θ} S' S'∉Canθₛ[p] S'∈Canθₛ[C⟦r₂∥r₁⟧c]
with canθₛ-plug S'' sigs C (r₁ ∥ r₂) (r₂ ∥ r₁)
(canₛ-par r₁ r₂) (canₖ-par r₁ r₂) θ S'
... | r₂r₁->r₁r₂ rewrite sym (unplugc pC) = S'∉Canθₛ[p] (r₂r₁->r₁r₂ S'∈Canθₛ[C⟦r₂∥r₁⟧c])
canθₛₕ-C-par : ∀ sigs S' -> ∀ {C p r₁ r₂} ->
p ≐ C ⟦ r₁ ∥ r₂ ⟧c ->
∀ {θ} s' ->
s' ∉ Canθₛₕ sigs S' p θ ->
s' ∉ Canθₛₕ sigs S' (C ⟦ r₂ ∥ r₁ ⟧c) θ
canθₛₕ-C-par sigs S' {C} {p} {r₁} {r₂} pC {θ} s' s'∉Canθₛₕ[p] s'∈Canθₛₕ[C⟦r₂∥r₁⟧c]
with canθₛₕ-plug S' sigs C (r₁ ∥ r₂) (r₂ ∥ r₁)
(canₛₕ-par r₁ r₂) (canₖ-par r₁ r₂) (canₛ-par r₁ r₂) θ s'
... | r₂r₁->r₁r₂ rewrite sym (unplugc pC) = s'∉Canθₛₕ[p] (r₂r₁->r₁r₂ s'∈Canθₛₕ[C⟦r₂∥r₁⟧c])
DPG-pot-view :
∀ {C r₁ r₂ p q θ θ' A A'} ->
p ≐ C ⟦ r₁ ∥ r₂ ⟧c ->
(psn⟶₁q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A' ⟩· q) ->
(p≡q : p ≡ q) ->
(A≡A' : A ≡ A') ->
->pot-view psn⟶₁q p≡q A≡A' ->
Σ[ dd′ ∈ Term × Term ]
(ρ⟨ θ , A ⟩· C ⟦ r₂ ∥ r₁ ⟧c sn⟶ (proj₂ dd′))
×
((proj₂ dd′) sn⟶* (proj₁ dd′))
×
((ρ⟨ θ' , A' ⟩· q) ∥R* (proj₁ dd′))
DPG-pot-view pC (ris-present S∈ x x₁) p≡q A≡A' ()
DPG-pot-view pC (ris-absent S∈ x x₁) p≡q A≡A' ()
DPG-pot-view pC (remit S∈ ¬S≡a x) p≡q A≡A' ()
DPG-pot-view pC (rraise-shared e' x) p≡q A≡A' ()
DPG-pot-view pC (rset-shared-value-old e' s∈ x x₁) p≡q A≡A' ()
DPG-pot-view pC (rset-shared-value-new e' s∈ x x₁) p≡q A≡A' ()
DPG-pot-view pC (rraise-var e' x₁) p≡q A≡A' ()
DPG-pot-view pC (rset-var x∈ e' x₁) p≡q A≡A' ()
DPG-pot-view pC (rif-false x∈ x₁ x₂) p≡q A≡A' ()
DPG-pot-view pC (rif-true x∈ x₁ x₂) p≡q A≡A' ()
DPG-pot-view pC (rabsence{θ}{_}{S} S∈ x x₁) .refl .refl (vabsence .S .S∈ .x .x₁)
= _ , rcontext [] dchole
(rabsence{θ}{_}{S} S∈ x (canθₛ-C-par (sig θ) 0 pC (Signal.unwrap S) x₁)) ,
rrefl ,
Context1-∥R* (cenv _ _) (∥Rn (∥Rstep pC) ∥R0)
DPG-pot-view pC (rreadyness{θ}{_}{s} s∈ x x₁) .refl .refl (vreadyness .s .s∈ .x .x₁)
= _ , rcontext [] dchole
(rreadyness{s = s} s∈ x (canθₛₕ-C-par (sig θ) 0 pC (SharedVar.unwrap s) x₁)) ,
rrefl ,
Context1-∥R* (cenv _ _) (∥Rn (∥Rstep pC) ∥R0)
DPG-pot-view pC (rmerge x) p≡q A≡A' ()
| {
"alphanum_fraction": 0.5636694817,
"avg_line_length": 32.8206521739,
"ext": "agda",
"hexsha": "103a873656a066d756994221ed57155022748f09",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/par-swap/dpg-pot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/par-swap/dpg-pot.agda",
"max_line_length": 90,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/par-swap/dpg-pot.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 2855,
"size": 6039
} |
module Pi.NoRepeat where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Pi.Syntax
open import Pi.Opsem
open import Pi.AuxLemmas
import RevNoRepeat
-- Forward deterministic
deterministic : ∀ {st st₁ st₂} → st ↦ st₁ → st ↦ st₂ → st₁ ≡ st₂
deterministic (↦₁ {b = b₁}) (↦₁ {b = b₂}) with base-is-prop _ b₁ b₂
... | refl = refl
deterministic ↦₂ ↦₂ = refl
deterministic ↦₃ ↦₃ = refl
deterministic ↦₄ ↦₄ = refl
deterministic ↦₅ ↦₅ = refl
deterministic ↦₆ ↦₆ = refl
deterministic ↦₇ ↦₇ = refl
deterministic ↦₈ ↦₈ = refl
deterministic ↦₉ ↦₉ = refl
deterministic ↦₁₀ ↦₁₀ = refl
deterministic ↦₁₁ ↦₁₁ = refl
deterministic ↦₁₂ ↦₁₂ = refl
-- Backward deterministic
deterministicᵣₑᵥ : ∀ {st st₁ st₂} → st₁ ↦ st → st₂ ↦ st → st₁ ≡ st₂
deterministicᵣₑᵥ {[ c ∣ _ ∣ κ ]} {⟨ c ∣ v ∣ κ ⟩} {⟨ c' ∣ v' ∣ κ' ⟩} ↦₁ r with Lemma₁ r
... | refl , refl with Lemma₂ r
deterministicᵣₑᵥ {[ unite₊l ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ y ∣ κ ⟩} {⟨ _ ∣ inj₂ y ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ uniti₊l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {⟨ _ ∣ v ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₁ x ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ y ∣ κ ⟩} {⟨ _ ∣ inj₂ y ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₁ x ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} ↦₁ () | refl , refl | refl , refl
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} ↦₁ () | refl , refl | refl , refl
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} ↦₁ () | refl , refl | refl , refl
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} ↦₁ () | refl , refl | refl , refl
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₂ z ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ (tt , v) ∣ κ ⟩} {⟨ _ ∣ (tt , v) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {⟨ _ ∣ v ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ (x , y) ∣ κ ⟩} {⟨ _ ∣ (x , y) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩} ↦₁ ↦₁ | refl , refl | refl , refl = refl
deterministicᵣₑᵥ {[ unite₊l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ uniti₊l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ ()
deterministicᵣₑᵥ {[ id↔ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()})
deterministicᵣₑᵥ {[ c₁ ⨾ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()})
deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()})
deterministicᵣₑᵥ {[ c₁ ⊗ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()})
deterministicᵣₑᵥ ↦₂ ↦₂ = refl
deterministicᵣₑᵥ ↦₃ ↦₃ = refl
deterministicᵣₑᵥ ↦₄ ↦₄ = refl
deterministicᵣₑᵥ ↦₅ ↦₅ = refl
deterministicᵣₑᵥ ↦₆ ↦₆ = refl
deterministicᵣₑᵥ ↦₇ ↦₇ = refl
deterministicᵣₑᵥ ↦₈ ↦₈ = refl
deterministicᵣₑᵥ ↦₉ ↦₉ = refl
deterministicᵣₑᵥ ↦₁₀ ↦₁₀ = refl
deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₁ v ∣ κ ]} {_} {⟨ c₁' ⊕ c₂' ∣ v' ∣ κ' ⟩} ↦₁₁ r with Lemma₁ r
... | refl , refl with Lemma₂ r
... | refl , refl with Lemma₃ r
... | inj₂ refl with Lemma₄ r
... | inj₁ ()
... | inj₂ ()
deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₁ v ∣ κ ]} {[ c₁ ∣ v ∣ ☐⊕ c₂ • κ ]} {[ c₁ ∣ v ∣ ☐⊕ c₂ • κ ]} ↦₁₁ ↦₁₁ = refl
deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]} {[ c₂ ∣ y ∣ c₁ ⊕☐• κ ]} {⟨ c ∣ x ∣ x₁ ⟩} ↦₁₂ r with Lemma₁ r
... | refl , refl with Lemma₂ r
... | refl , refl with Lemma₃ r
... | inj₂ refl with Lemma₄ r
... | inj₂ ()
deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]} {[ c₂ ∣ y ∣ c₁ ⊕☐• κ ]} {[ c₂ ∣ y ∣ (c₁ ⊕☐• κ) ]} ↦₁₂ ↦₁₂ = refl
-- Non-repeating Lemma
open RevNoRepeat (record { State = State
; _↦_ = _↦_
; deterministic = deterministic
; deterministicᵣₑᵥ = deterministicᵣₑᵥ }) public
| {
"alphanum_fraction": 0.4781416603,
"avg_line_length": 66.3131313131,
"ext": "agda",
"hexsha": "0fd416dd4835797291f184fbf25a6681a43c8d0c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/NoRepeat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/NoRepeat.agda",
"max_line_length": 136,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/NoRepeat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3914,
"size": 6565
} |
module examplesPaperJFP.BasicIO where
open import Data.Maybe hiding ( _>>=_ )
open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either)
open import Function
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.triangleRightOperator
module _ where -- for indentation
record IOInterface : Set₁ where
field Command : Set
Response : (c : Command) → Set
open IOInterface public
module _ {C : Set} {R : C → Set} (let
I = record { Command = C; Response = R }
) where
module Postulated {I : IOInterface} (let C = Command I) (let R = Response I) where
postulate
IO : (I : IOInterface) (A : Set) → Set
exec : ∀{A} (c : C) (f : R c → IO I A) → IO I A
return : ∀{A} (a : A) → IO I A
_>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B
mutual
record IO I A : Set where
coinductive
constructor delay
field force : IO′ I A
data IO′ I A : Set where
exec′ : (c : Command I) (f : Response I c → IO I A) → IO′ I A
return′ : (a : A) → IO′ I A
open IO public
delay′ : ∀{I A} → IO′ I A → IO I A
force (delay′ x) = x
module _ {I : IOInterface} (let C = Command I) (let R = Response I) where
-- module _ {I : IOInterface} (let record { Command = C; Response = R } = I) where
-- module _ {I : IOInterface} (let ioInterface C R = I) where
exec : ∀{A} (c : C) (f : R c → IO I A) → IO I A
force (exec c f) = exec′ c f
return : ∀{A} (a : A) → IO I A
force (return a) = return′ a
infixl 2 _>>=_
_>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B
force (m >>= k) with force m
... | exec′ c f = exec′ c λ x → f x >>= k
... | return′ a = force (k a)
module _ {I : IOInterface} (let C = Command I) (let R = Response I)
where
{-# NON_TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO I A → NativeIO A
translateIO tr m = force m ▹ λ
{ (exec′ c f) → (tr c) native>>= λ r → translateIO tr (f r)
; (return′ a) → nativeReturn a
}
-- Recursion
-- trampoline provides a generic form of loop (generalizing while/repeat).
-- Starting at state s : S, step function f is iterated until it returns
-- a result in A.
module _ (I : IOInterface)(let C = Command I) (let R = Response I)
where
data IO+ (A : Set) : Set where
exec′ : (c : C) (f : R c → IO I A) → IO+ A
module _ {I : IOInterface}(let C = Command I) (let R = Response I)
where
fromIO+′ : ∀{A} → IO+ I A → IO′ I A
fromIO+′ (exec′ c f) = exec′ c f
fromIO+ : ∀{A} → IO+ I A → IO I A
force (fromIO+ (exec′ c f)) = exec′ c f
_>>=+′_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO′ I B
exec′ c f >>=+′ k = exec′ c λ x → f x >>= k
_>>=+_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO I B
force (m >>=+ k) = m >>=+′ k
mutual
_>>+_ : ∀{A B} (m : IO I (A ⊎ B)) (k : A → IO I B) → IO I B
force (m >>+ k) = force m >>+′ k
_>>+′_ : ∀{A B} (m : IO′ I (A ⊎ B)) (k : A → IO I B) → IO′ I B
exec′ c f >>+′ k = exec′ c λ x → f x >>+ k
return′ (left a) >>+′ k = force (k a)
return′ (right b) >>+′ k = return′ b
-- loop
{-# TERMINATING #-}
trampoline : ∀{A S} (f : S → IO+ I (S ⊎ A)) (s : S) → IO I A
force (trampoline f s) = case (f s) of
\ { (exec′ c k) → exec′ c λ r → k r >>+ trampoline f }
-- simple infinite loop
{-# TERMINATING #-}
forever : ∀{A B} → IO+ I A → IO I B
force (forever (exec′ c f)) = exec′ c λ r → f r >>= λ _ → forever (exec′ c f)
whenJust : {A : Set} → Maybe A → (A → IO I Unit) → IO I Unit
whenJust nothing k = return _
whenJust (just a) k = k a
main : NativeIO Unit
main = nativePutStrLn "Hello, world!"
| {
"alphanum_fraction": 0.5038839979,
"avg_line_length": 30.171875,
"ext": "agda",
"hexsha": "df81469c4ebaf5ff47d733345f6b7d09f7d03506",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/BasicIO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/BasicIO.agda",
"max_line_length": 82,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/BasicIO.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1435,
"size": 3862
} |
module _ where
data Nat : Set where
zero : Nat
suc : Nat → Nat
data L : Nat → Set where
nil : L zero
cons : ∀ n → L n → L (suc n)
pattern one = cons .zero nil
| {
"alphanum_fraction": 0.5813953488,
"avg_line_length": 13.2307692308,
"ext": "agda",
"hexsha": "faadab36c7e0483d08213a6ef93ad348e5c51ce1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoDotInPatSyn.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoDotInPatSyn.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoDotInPatSyn.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 61,
"size": 172
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Integer division
------------------------------------------------------------------------
module Data.Nat.DM where
open import Data.Fin as Fin using (Fin; toℕ)
import Data.Fin.Properties as FinP
open import Data.Nat as Nat
open import Data.Nat.Properties as NatP
open import Data.Nat.Properties.Simple
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.PropositionalEquality.TrustMe as TrustMe
using (erase)
open NatP.SemiringSolver
open P.≡-Reasoning
open Nat.≤-Reasoning
renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩′_)
infixl 7 _div_ _mod_ _divMod_
-- Integer division.
private
div-helper : ℕ → ℕ → ℕ → ℕ → ℕ
div-helper acc s zero n = acc
div-helper acc s (suc d) zero = div-helper (suc acc) s d s
div-helper acc s (suc d) (suc n) = div-helper acc s d n
-- {-# BUILTIN NATDIVSUCAUX div-helper #-}
_div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
(d div 0) {}
(d div suc s) = div-helper 0 s d s
-- The remainder after integer division.
private
mod-helper : ℕ → ℕ → ℕ → ℕ → ℕ
mod-helper acc s zero n = acc
mod-helper acc s (suc d) zero = mod-helper zero s d s
mod-helper acc s (suc d) (suc n) = mod-helper (suc acc) s d n
-- {-# BUILTIN NATMODSUCAUX mod-helper #-}
-- The remainder is not too large.
mod-lemma : (acc d n : ℕ) →
let s = acc + n in
mod-helper acc s d n ≤ s
mod-lemma acc zero n = start
acc ≤⟨ m≤m+n acc n ⟩
acc + n □
mod-lemma acc (suc d) zero = start
mod-helper zero (acc + 0) d (acc + 0) ≤⟨ mod-lemma zero d (acc + 0) ⟩
acc + 0 □
mod-lemma acc (suc d) (suc n) =
P.subst (λ x → mod-helper (suc acc) x d n ≤ x)
(P.sym (+-suc acc n))
(mod-lemma (suc acc) d n)
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
(d mod 0) {}
(d mod suc s) =
Fin.fromℕ≤″ (mod-helper 0 s d s)
(Nat.erase (≤⇒≤″ (s≤s (mod-lemma 0 d s))))
-- Integer division with remainder.
private
-- The quotient and remainder are related to the dividend and
-- divisor in the right way.
division-lemma :
(mod-acc div-acc d n : ℕ) →
let s = mod-acc + n in
mod-acc + div-acc * suc s + d
≡
mod-helper mod-acc s d n + div-helper div-acc s d n * suc s
division-lemma mod-acc div-acc zero n = begin
mod-acc + div-acc * suc s + zero ≡⟨ +-right-identity _ ⟩
mod-acc + div-acc * suc s ∎
where s = mod-acc + n
division-lemma mod-acc div-acc (suc d) zero = begin
mod-acc + div-acc * suc s + suc d ≡⟨ solve 3
(λ mod-acc div-acc d →
let s = mod-acc :+ con 0 in
mod-acc :+ div-acc :* (con 1 :+ s) :+ (con 1 :+ d)
:=
(con 1 :+ div-acc) :* (con 1 :+ s) :+ d)
P.refl mod-acc div-acc d ⟩
suc div-acc * suc s + d ≡⟨ division-lemma zero (suc div-acc) d s ⟩
mod-helper zero s d s +
div-helper (suc div-acc) s d s * suc s ≡⟨⟩
mod-helper mod-acc s (suc d) zero +
div-helper div-acc s (suc d) zero * suc s ∎
where s = mod-acc + 0
division-lemma mod-acc div-acc (suc d) (suc n) = begin
mod-acc + div-acc * suc s + suc d ≡⟨ solve 4
(λ mod-acc div-acc n d →
mod-acc :+ div-acc :* (con 1 :+ (mod-acc :+ (con 1 :+ n))) :+ (con 1 :+ d)
:=
con 1 :+ mod-acc :+ div-acc :* (con 2 :+ mod-acc :+ n) :+ d)
P.refl mod-acc div-acc n d ⟩
suc mod-acc + div-acc * suc s′ + d ≡⟨ division-lemma (suc mod-acc) div-acc d n ⟩
mod-helper (suc mod-acc) s′ d n +
div-helper div-acc s′ d n * suc s′ ≡⟨ P.cong (λ s → mod-helper (suc mod-acc) s d n +
div-helper div-acc s d n * suc s)
(P.sym (+-suc mod-acc n)) ⟩
mod-helper (suc mod-acc) s d n +
div-helper div-acc s d n * suc s ≡⟨⟩
mod-helper mod-acc s (suc d) (suc n) +
div-helper div-acc s (suc d) (suc n) * suc s ∎
where
s = mod-acc + suc n
s′ = suc mod-acc + n
-- A specification of integer division.
record DivMod (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} : Set where
constructor result
field
quotient : ℕ
remainder : Fin divisor
property : dividend ≡ toℕ remainder + quotient * divisor
div-eq : _div_ dividend divisor {≢0} ≡ quotient
mod-eq : _mod_ dividend divisor {≢0} ≡ remainder
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor {≢0}
(d divMod 0) {}
(d divMod suc s) =
result
(d div suc s)
(d mod suc s)
(TrustMe.erase (begin
d
≡⟨ division-lemma 0 0 d s ⟩
mod-helper 0 s d s + div-helper 0 s d s * suc s
≡⟨ P.cong₂ _+_ (P.sym (FinP.toℕ-fromℕ≤ lemma)) P.refl ⟩
toℕ (Fin.fromℕ≤ lemma) + div-helper 0 s d s * suc s
≡⟨ P.cong (λ n → toℕ n + div-helper 0 s d s * suc s) (FinP.fromℕ≤≡fromℕ≤″ lemma _) ⟩
toℕ (Fin.fromℕ≤″ _ lemma′) + div-helper 0 s d s * suc s
∎))
_≡_.refl
_≡_.refl
where
lemma = s≤s (mod-lemma 0 d s)
lemma′ = Nat.erase (≤⇒≤″ lemma)
| {
"alphanum_fraction": 0.4636083644,
"avg_line_length": 34.6573033708,
"ext": "agda",
"hexsha": "ea73779e00ce8a31d3024fed9d1b932a82707134",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Nat/DM.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Nat/DM.agda",
"max_line_length": 144,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Nat/DM.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1930,
"size": 6169
} |
{-# OPTIONS --without-K #-}
{- Our goal in this file is to observe some structure possessed by the
universes of types, reflexive graphs, type families, and so on. Somewhat
more precisely, we develop an imperfect structure of internal model of type
theory, with enough ingredients to get some type theoretic developments off
the ground.
We begin with the basic structure of type dependency, with operations for
context extension, weakening, substitution, and identity morphisms (the
`variable rule'). Once this structure is implemented, we introduce the
structure of usual type constructors Σ, Π, Id, the unit type, and ℕ.
The reason this is an `imperfect' notion of model structure is that
in our internal model structure, we have identifications in the role of
judgmental equalities. This leads to the usual coherence problem, which we
do not attempt to solve. As we said before, our goal is merely to postulate
enough equalities so that we can introduce and work with the type
constructors. We then proceed to develop some examples.
-}
module models where
import Lecture15
open Lecture15 public
Contexts :
( l : Level) → UU (lsuc l)
Contexts l = UU l
Families :
{ l1 : Level} (l2 : Level) (ctx : Contexts l1) → UU (l1 ⊔ (lsuc l2))
Families l2 ctx = ctx → UU l2
Terms :
{ l1 l2 : Level} (l3 : Level)
( ctx : Contexts l1) (fam : Families l2 ctx) → UU (l1 ⊔ (l2 ⊔ (lsuc l3)))
Terms l3 ctx fam = (Γ : ctx) → (fam Γ) → UU l3
Context-Extensions :
{ l1 l2 : Level}
( ctx : Contexts l1) (fam : Families l2 ctx) → UU (l1 ⊔ l2)
Context-Extensions ctx fam = (Γ : ctx) → (fam Γ) → ctx
Family-Extensions :
{ l1 l2 : Level}
( ctx : Contexts l1) (fam : Families l2 ctx)
( ctx-ext : Context-Extensions ctx fam) → UU (l1 ⊔ l2)
Family-Extensions ctx fam ctx-ext =
( Γ : ctx) → (A : fam Γ) → (fam (ctx-ext Γ A)) → fam Γ
Model-Base :
( l1 l2 l3 : Level) → UU (lsuc l1 ⊔ (lsuc l2 ⊔ lsuc l3))
Model-Base l1 l2 l3 =
Σ ( Contexts l1)
( λ ctx → Σ (Families l2 ctx)
( λ fam → Σ (Terms l3 ctx fam)
( λ tm → Σ (Context-Extensions ctx fam) (Family-Extensions ctx fam))))
Hom-Model-Base :
{ l1 l2 l3 l1' l2' l3' : Level} →
Model-Base l1 l2 l3 → Model-Base l1' l2' l3' → UU _
Hom-Model-Base
( pair ctx (pair fam (pair tm (pair ctx-ext fam-ext))))
( pair ctx' (pair fam' (pair tm' (pair ctx-ext' fam-ext')))) =
Σ ( ctx → ctx')
( λ h-ctx → Σ ((Γ : ctx) → (fam Γ) → (fam' (h-ctx Γ)))
( λ h-fam →
Σ ((Γ : ctx) (A : fam Γ) → (tm Γ A) → tm' (h-ctx Γ) (h-fam Γ A))
( λ h-tm →
Σ ( (Γ : ctx) (A : fam Γ) →
Id
( h-ctx (ctx-ext Γ A))
( ctx-ext' (h-ctx Γ) (h-fam Γ A)))
( λ h-ctx-ext → (Γ : ctx) (A : fam Γ) (B : fam (ctx-ext Γ A)) →
Id
( h-fam Γ (fam-ext Γ A B))
( fam-ext'
( h-ctx Γ)
( h-fam Γ A)
( tr fam' (h-ctx-ext Γ A) (h-fam (ctx-ext Γ A) B)))))))
Assoc-Ctx-ext :
{ l1 l2 l3 : Level} (M : Model-Base l1 l2 l3) → UU (l1 ⊔ l2)
Assoc-Ctx-ext (pair ctx (pair fam (pair tm (pair ctx-ext fam-ext)))) =
( Γ : ctx) (A : fam Γ) (B : fam (ctx-ext Γ A)) →
Id (ctx-ext (ctx-ext Γ A) B) (ctx-ext Γ (fam-ext Γ A B))
Slice-Model-Base :
{ l1 l2 l3 : Level} (M : Model-Base l1 l2 l3)
( assoc : Assoc-Ctx-ext M) →
( Γ : pr1 M) → Model-Base l2 l2 l3
Slice-Model-Base
( pair ctx (pair fam (pair tm (pair ctx-ext fam-ext)))) assoc Γ =
pair (fam Γ)
( pair (λ A → fam (ctx-ext Γ A))
( pair (λ A B → tm (ctx-ext Γ A) B)
( pair (fam-ext Γ)
( λ A B C →
fam-ext (ctx-ext Γ A) B (tr fam (inv (assoc Γ A B)) C)))))
Empty-context :
{ l1 l2 l3 : Level} (M : Model-Base l1 l2 l3) → UU l1
Empty-context M = pr1 M
Axiom-Empty-Context :
{ l1 l2 l3 : Level}
(M : Model-Base l1 l2 l3) (empty-ctx : Empty-context M) → UU (l1 ⊔ l2)
Axiom-Empty-Context
( pair ctx (pair fam (pair tm (pair ctx-ext fam-ext)))) empty-ctx =
is-equiv (ctx-ext empty-ctx)
| {
"alphanum_fraction": 0.5832308827,
"avg_line_length": 36.3125,
"ext": "agda",
"hexsha": "223fbfdcba334d12f3a82c758436fd12c121b6f2",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tadejpetric/HoTT-Intro",
"max_forks_repo_path": "Agda/models.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tadejpetric/HoTT-Intro",
"max_issues_repo_path": "Agda/models.agda",
"max_line_length": 78,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tadejpetric/HoTT-Intro",
"max_stars_repo_path": "Agda/models.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 1410,
"size": 4067
} |
-- An ATP local hint can be only a postulate, function or a data
-- constructor.
-- This error is detected by Syntax.Translation.ConcreteToAbstract.
module ATPBadLocalHint3 where
postulate
D : Set
_≡_ : D → D → Set
zero : D
succ : D → D
data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)
refl : ∀ n → N n → n ≡ n
refl n Nn = prf
where
postulate prf : n ≡ n
{-# ATP prove prf Nn #-}
| {
"alphanum_fraction": 0.5804988662,
"avg_line_length": 19.1739130435,
"ext": "agda",
"hexsha": "52d244cbeca51f2af18ff7086cd58ba2c1bce9ca",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadLocalHint3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadLocalHint3.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadLocalHint3.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 156,
"size": 441
} |
------------------------------------------------------------------------
-- The reader monad transformer
------------------------------------------------------------------------
-- The interface is based on that used by the "mtl" package on
-- Hackage.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Monad.Reader
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Prelude
open Derived-definitions-and-properties eq
open import Monad eq
-- The reader monad transformer, defined using a wrapper type to make
-- instance resolution easier.
record ReaderT {s} (S : Type s)
(M : Type s → Type s)
(A : Type s) : Type s where
constructor wrap
field
run : S → M A
open ReaderT public
instance
-- ReaderT is a "raw monad" transformer.
raw-monad-transformer :
∀ {s} {S : Type s} →
Raw-monad-transformer (ReaderT S)
run (Raw-monad.return (Raw-monad-transformer.transform
raw-monad-transformer) x) =
λ _ → return x
run (Raw-monad._>>=_ (Raw-monad-transformer.transform
raw-monad-transformer) x f) =
λ s → run x s >>= λ x → run (f x) s
run (Raw-monad-transformer.liftʳ raw-monad-transformer m) =
λ _ → m
transform : ∀ {s} {S : Type s} {M} ⦃ is-raw-monad : Raw-monad M ⦄ →
Raw-monad (ReaderT S M)
transform = Raw-monad-transformer.transform raw-monad-transformer
-- ReaderT is a monad transformer (assuming extensionality).
monad-transformer :
∀ {s} {S : Type s} →
Extensionality s s →
Monad-transformer (ReaderT S)
Monad.raw-monad (Monad-transformer.transform (monad-transformer _)) =
Raw-monad-transformer.transform raw-monad-transformer
Monad.left-identity (Monad-transformer.transform
(monad-transformer ext)) x f =
cong wrap (apply-ext ext λ s →
(return x >>= λ x → run (f x) s) ≡⟨ left-identity _ _ ⟩∎
run (f x) s ∎)
Monad.right-identity (Monad-transformer.transform
(monad-transformer ext)) x =
cong wrap (apply-ext ext λ s →
run x s >>= return ≡⟨ right-identity _ ⟩∎
run x s ∎)
Monad.associativity (Monad-transformer.transform
(monad-transformer ext)) x f g =
cong wrap (apply-ext ext λ s →
(run x s >>= λ x → run (f x) s >>= λ x → run (g x) s) ≡⟨ associativity _ _ _ ⟩∎
((run x s >>= λ x → run (f x) s) >>= λ x → run (g x) s) ∎)
Monad-transformer.liftᵐ (monad-transformer _) = liftʳ
Monad-transformer.lift-return (monad-transformer ext) x =
cong wrap (apply-ext ext λ _ →
return x ∎)
Monad-transformer.lift->>= (monad-transformer ext) x f =
cong wrap (apply-ext ext λ _ →
x >>= f ∎)
-- Returns the "state".
ask : ∀ {s} {S : Type s} {M} ⦃ is-monad : Raw-monad M ⦄ →
ReaderT S M S
run ask = return
-- Modifies the "state" in a given computation.
local : ∀ {s} {S : Type s} {M A} ⦃ is-monad : Raw-monad M ⦄ →
(S → S) → ReaderT S M A → ReaderT S M A
run (local f m) = run m ∘ f
| {
"alphanum_fraction": 0.5733464309,
"avg_line_length": 30.2376237624,
"ext": "agda",
"hexsha": "6095dd129257091271cd76e8e5d36e2b1014b2f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Monad/Reader.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Monad/Reader.agda",
"max_line_length": 86,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Monad/Reader.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 896,
"size": 3054
} |
open import Agda.Builtin.Equality
open import Agda.Primitive
record R a : Set (lsuc a) where
field
P : {A : Set a} → A → A → Set a
r : ∀ ℓ → R ℓ
R.P (r _) = _≡_
postulate
cong : ∀ {a b} {A : Set a} {B : Set b} {x y : A}
(f : A → B) → R.P (r a) x y → R.P (r b) (f x) (f y)
magic : ∀ {a} {A : Set a} {x y : A} (z : A) → y ≡ z → x ≡ z
record Raw-monad {f : Level → Level}
(M : ∀ {ℓ} → Set ℓ → Set (f ℓ)) ℓ₁ ℓ₂ :
Set (f ℓ₁ ⊔ f ℓ₂ ⊔ lsuc (ℓ₁ ⊔ ℓ₂)) where
infixl 5 _>>=_
field
return : {A : Set ℓ₁} → A → M A
_>>=_ : {A : Set ℓ₁} {B : Set ℓ₂} → M A → (A → M B) → M B
module Raw-monad⁺
{f : Level → Level}
{M : ∀ {ℓ} → Set ℓ → Set (f ℓ)}
(m : ∀ {ℓ₁ ℓ₂} → Raw-monad M ℓ₁ ℓ₂)
where
private
module M′ {ℓ₁ ℓ₂} = Raw-monad (m {ℓ₁ = ℓ₁} {ℓ₂ = ℓ₂})
open M′ public using (_>>=_)
return : ∀ {a} {A : Set a} → A → M A
return = M′.return {ℓ₂ = lzero}
open Raw-monad⁺ ⦃ … ⦄ public
record Monad⁻ {f : Level → Level}
(M : ∀ {ℓ} → Set ℓ → Set (f ℓ))
⦃ raw-monad : ∀ {ℓ₁ ℓ₂} → Raw-monad M ℓ₁ ℓ₂ ⦄
ℓ₁ ℓ₂ ℓ₃ :
Set (f ℓ₁ ⊔ f ℓ₂ ⊔ f ℓ₃ ⊔ lsuc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)) where
field
associativity :
{A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} →
(x : M A) (f : A → M B) (g : B → M C) →
x >>= (λ x → f x >>= g) ≡ x >>= f >>= g
module Monad⁻⁺
{f : Level → Level}
{M : ∀ {ℓ} → Set ℓ → Set (f ℓ)}
⦃ raw-monad : ∀ {ℓ₁ ℓ₂} → Raw-monad M ℓ₁ ℓ₂ ⦄
(m : ∀ {ℓ₁ ℓ₂ ℓ₃} → Monad⁻ M ℓ₁ ℓ₂ ℓ₃)
where
private
module M′ {ℓ₁ ℓ₂ ℓ₃} = Monad⁻ (m {ℓ₁ = ℓ₁} {ℓ₂ = ℓ₂} {ℓ₃ = ℓ₃})
open M′ public
open Monad⁻⁺ ⦃ … ⦄ public
data Maybe {a} (A : Set a) : Set a where
nothing : Maybe A
just : A → Maybe A
postulate
maybe : ∀ {a b} {A : Set a} {B : Maybe A → Set b} →
((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x
record MaybeT {ℓ}
(f : Level → Level)
(M : Set ℓ → Set (f ℓ))
(A : Set ℓ) : Set (f ℓ) where
constructor wrap
field
run : M (Maybe A)
open MaybeT
instance
transformʳ :
∀ {ℓ₁ ℓ₂}
{f : Level → Level}
{M : ∀ {ℓ} → Set ℓ → Set (f ℓ)} →
⦃ raw-monad : ∀ {ℓ₁ ℓ₂} → Raw-monad M ℓ₁ ℓ₂ ⦄ →
Raw-monad (MaybeT f M) ℓ₁ ℓ₂
run (Raw-monad.return transformʳ x) = return (just x)
run (Raw-monad._>>=_ transformʳ x f) =
run x >>= maybe (λ x → run (f x)) (return nothing)
transformᵐ :
{f : Level → Level}
{M : ∀ {ℓ} → Set ℓ → Set (f ℓ)}
⦃ raw-monad : ∀ {ℓ₁ ℓ₂} → Raw-monad M ℓ₁ ℓ₂ ⦄
⦃ monad : ∀ {ℓ₁ ℓ₂ ℓ₃} → Monad⁻ M ℓ₁ ℓ₂ ℓ₃ ⦄ →
Monad⁻ (MaybeT f M) lzero lzero lzero
Monad⁻.associativity transformᵐ x f g = cong wrap (
magic ((run x >>= maybe (λ x → run (f x)) (return nothing)) >>=
maybe (λ x → run (g x)) (return nothing))
(associativity _ _ _))
-- WAS: rejected in 2.6.0 with
-- No instance of type Raw-monad _M_345 ℓ₁ ℓ₂ was found in scope.
-- Should succeed.
| {
"alphanum_fraction": 0.4826057299,
"avg_line_length": 27.1481481481,
"ext": "agda",
"hexsha": "2025ad04931cf9f85ca11af138615d8c51347e8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4066.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4066.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4066.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1358,
"size": 2932
} |
module Categories.2-Category.Categories where
open import Level
open import Data.Product
open import Categories.Category
open import Categories.2-Category
open import Categories.Functor using (module Functor) renaming (id to idF; _∘_ to _∘F_)
open import Categories.Functor.Constant
open import Categories.FunctorCategory
open import Categories.Bifunctor using (Bifunctor)
open import Categories.NaturalTransformation
open import Categories.Product using (Product)
Categories : ∀ o ℓ e → 2-Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
Categories o ℓ e = record
{ Obj = Category o ℓ e
; _⇒_ = Functors
; id = λ {A} → Constant {D = Functors A A} idF
; —∘— = my-∘
; assoc = {!!}
; identityˡ = λ {A B} η → Heterogeneous.≡⇒∼ {C = Functors A B} {f = proj₂ η ∘₁ id} {proj₂ η} (Category.identityʳ B)
; identityʳ = λ {A B f g} η → Heterogeneous.≡⇒∼ {_} {_} {_} {C = Functors A B} {proj₁ f} {proj₁ g} {f = record {
η =
λ X →
Category._∘_ B (Functor.F₁ (proj₁ g) (Category.id A))
(NaturalTransformation.η (proj₁ η) X);
commute = λ {a} {b} h → let open Category.HomReasoning B in begin
B [ B [ Functor.F₁ (proj₁ g) (Category.id A) ∘ NaturalTransformation.η (proj₁ η) b ] ∘ {!.Categories.NaturalTransformation.Core.F.F₁ (proj₁ f) (proj₁ g) h!} ]
↓⟨ {!!} ⟩
B [ Functor.F₁ {!!} {!!} ∘ B [ Functor.F₁ (proj₁ g) (Category.id A) ∘ NaturalTransformation.η (proj₁ η) a ] ]
∎ }
} {proj₁ {_} {_} {_} {_} η} (Category.Equiv.trans B (Category.∘-resp-≡ˡ B (Functor.identity (proj₁ g))) (Category.identityˡ B))
}
where
my-∘ : {A B C : Category o ℓ e} → Bifunctor (Functors B C) (Functors A B) (Functors A C)
my-∘ {A} {B} {C} = record
{ F₀ = uncurry′ _∘F_
; F₁ = uncurry′ _∘₀_
; identity = λ {Fs} → Category.Equiv.trans C (Category.identityʳ C) (Functor.identity (proj₁ Fs))
; homomorphism = λ {_ _ _ f g} → Category.Equiv.sym C (interchange {α = proj₁ g} {proj₂ g} {proj₁ f} {proj₂ f})
; F-resp-≡ = λ {_ _ f g} → my-resp {f = f} {g}
}
where
PF = Product (Functors B C) (Functors A B)
.my-resp : ∀ {F G} {f g : PF [ F , G ]} → PF [ f ≡ g ] → Functors A C [ uncurry′ _∘₀_ f ≡ uncurry _∘₀_ g ]
my-resp {f = f₁ , f₂} {g₁ , g₂} (f₁≡g₁ , f₂≡g₂) = ∘₀-resp-≡ {f = f₁} {g₁} {f₂} {g₂} f₁≡g₁ f₂≡g₂ | {
"alphanum_fraction": 0.4943181818,
"avg_line_length": 58.6666666667,
"ext": "agda",
"hexsha": "cf3bc5cb5e3497645ad09ea5dc8c604fad020c47",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/2-Category/Categories.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/2-Category/Categories.agda",
"max_line_length": 178,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/2-Category/Categories.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 917,
"size": 2816
} |
module Data.Num where
open import Data.List using (List; []; _∷_; foldr)
open import Data.Nat
open ≤-Reasoning
open import Data.Nat.Etc
open import Data.Nat.DivMod
open import Data.Nat.DivMod.Properties using (div-mono)
open import Data.Nat.Properties using (m≤m+n; n≤m+n;_+-mono_; pred-mono; ∸-mono; ≰⇒>; n∸n≡0; +-∸-assoc; m+n∸n≡m)
open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; distribʳ-*-+)
open import Data.Fin.Properties using (bounded)
open import Data.Fin using (Fin; fromℕ≤; inject≤; #_)
renaming (toℕ to F→N; fromℕ to N→F; zero to Fz; suc to Fs)
open import Data.Product
open import Data.Maybe
open import Induction.Nat using (rec; Rec)
import Level
open import Function
open import Data.Unit using (tt)
open import Relation.Nullary
open import Relation.Nullary.Decidable using (True; False; toWitness; toWitnessFalse; fromWitness; fromWitnessFalse)
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; sym; trans; inspect)
open PropEq.≡-Reasoning
renaming (begin_ to beginEq_; _≡⟨_⟩_ to _≡Eq⟨_⟩_; _∎ to _∎Eq)
-- Surjective (ℕm):
-- base = 1, digits = {m ... (m + n) - 1}, m ≥ 1, n ≥ m
-- base > 1, digits = {m ... (m + n) - 1}, m ≥ 0, n ≥ max base (base × m)
-- Bijective:
-- base ≥ 1, digits = {1 .. base}
--
-- Digits:
-- Digit m n represents a Digit ranging from m to (m + n - 1)
-- e.g. Digit 2 0 2 = {0, 1} for ordinary binary number
-- Digit 2 1 2 = {1, 2} for zeroless binary number
-- Digit 2 0 3 = {0, 1, 2} for redundant binary number
--
data Digit : (base from range : ℕ) → Set where
-- unary digit: {0, 1 .. n-1}
U0 : ∀ {n} → Fin n
→ {2≤n : True (2 ≤? n)} -- i.e. must have digit '1'
→ Digit 1 0 n
-- unary digit: {m .. m+n-1}
U1 : ∀ {m n}
→ Fin n
→ {m≤n : True (suc m ≤? n)}
→ Digit 1 (suc m) n
-- k-adic digit: {m .. m+n-1}
D : ∀ {b m n}
→ Fin n
→ let base = suc (suc b) in
{b≤n : True (base ≤? n)} → {bm≤n : True ((base * m) ≤? n)}
→ Digit base m n
-- without offset, {0 .. n-1}
D→F : ∀ {b m n} → Digit b m n → Fin n
D→F (U0 x) = x
D→F (U1 x) = x
D→F (D x) = x
-- with offset, {m .. m+n-1}
D→N : ∀ {b m n} → Digit b m n → ℕ
D→N {m = m} d = m + F→N (D→F d)
-- infix 4 _D≤_ -- _D<_ _≥′_ _>′_
-- data _D≤_ {b m n} (x : Digit b m n) : (y : Digit b m n) → Set where
-- D≤-refl : x D≤ x
-- D≤-step : ∀ {y} (xD≤y : x D≤ y) → x D≤
-- ≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n
private
-- alias
ℕ-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder
ℕ-isTotalOrder = IsDecTotalOrder.isTotalOrder ℕ-isDecTotalOrder
ℕ-isPartialOrder = IsTotalOrder.isPartialOrder ℕ-isTotalOrder
ℕ-isPreorder = IsPartialOrder.isPreorder ℕ-isPartialOrder
≤-refl = IsPreorder.reflexive ℕ-isPreorder
≤-antisym = IsPartialOrder.antisym ℕ-isPartialOrder
≤-total = IsTotalOrder.total ℕ-isTotalOrder
-- helper function for adding two 'Fin n' with offset 'm'
-- (m + x) + (m + y) - m = m + x + y
D+sum : ∀ {n} (m : ℕ) → (x y : Fin n) → ℕ
D+sum m x y = m + (F→N x) + (F→N y)
maxpress-pred : ℕ → Set
maxpress-pred _ = ℕ → ℕ
maxpress-rec-struct : (x : ℕ) → Rec Level.zero maxpress-pred x → (bound : ℕ) → ℕ
maxpress-rec-struct zero p bound = 0
maxpress-rec-struct (suc x) p bound with bound ≤? suc (p bound)
maxpress-rec-struct (suc x) p bound | yes q = suc (p bound) ∸ bound
maxpress-rec-struct (suc x) p bound | no ¬q = suc (p bound)
-- if x ≥ bound, then substract bound from x, until x < bound
maxpress : (x bound : ℕ) → ℕ
maxpress = rec maxpress-pred maxpress-rec-struct
maxpressed<bound : (x bound : ℕ) → (≢0 : False (bound ≟ 0)) → maxpress x bound < bound
maxpressed<bound zero zero ()
maxpressed<bound zero (suc bound) ≢0 = s≤s z≤n
maxpressed<bound (suc x) zero ()
maxpressed<bound (suc x) (suc bound) ≢0 with suc bound ≤? suc (maxpress x (suc bound))
maxpressed<bound (suc x) (suc bound) ≢0 | yes p =
begin
suc (maxpress x (suc bound) ∸ bound)
≤⟨ ≤-refl (sym (+-∸-assoc 1 p)) ⟩
suc (maxpress x (suc bound)) ∸ bound
≤⟨ ∸-mono {suc (maxpress x (suc bound))} {suc bound} {bound} {bound} (maxpressed<bound x (suc bound) tt) (≤-refl refl) ⟩
suc bound ∸ bound
≤⟨ ≤-refl (m+n∸n≡m 1 bound) ⟩
suc zero
≤⟨ s≤s z≤n ⟩
suc bound
∎
maxpressed<bound (suc x) (suc bound) ≢0 | no ¬p = ≰⇒> ¬p
maxpress′ : (x bound : ℕ) → (≢0 : False (bound ≟ 0)) → Fin bound
maxpress′ x bound ≢0 = fromℕ≤ {maxpress x bound} (maxpressed<bound x bound ≢0)
_D+_ : ∀ {b m n} → Digit b m n → Digit b m n → Digit b m n
_D+_ {zero} () ()
_D+_ {suc zero} x _ = x
_D+_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) = D (maxpress′ (D+sum m x y) n n≢0) {b≤n} {bm≤n}
where n≢0 = fromWitnessFalse $ >⇒≢ $
begin
suc zero
≤⟨ s≤s z≤n ⟩
suc (suc b)
≤⟨ toWitness b≤n ⟩
n
∎
-- 2 ≤ base
-- ⇒ max * 2 ≤ max * base
-- ⇒ max * 2 / base ≤ max
{-
_D⊕_ : ∀ {b m n} → Digit b m n → Digit b m n → Maybe (Digit b m n)
_D⊕_ (U0 x) y = just y
_D⊕_ (U1 x) y = just y
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y) with suc (D+sum m x y) ≤? n
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y) | yes p = nothing
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) | no ¬p with D+sum m x y divMod (suc (suc b)) | inspect (λ w → _divMod_ (D+sum m x y) (suc (suc b)) {≢0 = w}) tt
_D⊕_ {suc (suc b)} {m} {n} (D x) (D y {b≤n} {bm≤n}) | no ¬p | result quotient remainder property | PropEq.[ eq ] =
let base = suc (suc b)
sum = D+sum m x y
quotient<n = begin
suc quotient
≤⟨ div-mono base tt {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
n
∎
in just (D (fromℕ≤ {quotient} quotient<n) {b≤n} {bm≤n})
-}
{-
let base = suc (suc b)
sum = D+sum m x y
result quotient remainder property = _divMod_ sum base {tt}
quotient<n = begin
DivMod.quotient (sum divMod {! base !})
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
n
∎
in just (D (fromℕ≤ {quotient} quotient<n) {b≤n} {bm≤n})
-}
{-
begin
{! !}
<⟨ {! !} ⟩
{! !}
<⟨ {! !} ⟩
{! !}
∎
begin
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
∎
beginEq
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
≡Eq⟨ {! !} ⟩
{! !}
∎Eq
-}
data System : (base from range : ℕ) → Set where
Sys : ∀ {b m n} → List (Digit (suc b) m n) → System (suc b) m n
{-
_S+_ : ∀ {b m n} → System b m n → System b m n → System b m n
Sys [] S+ Sys ys = Sys ys
Sys xs S+ Sys [] = Sys xs
Sys (x ∷ xs) S+ Sys (y ∷ ys) = {! x !}
S→N : ∀ {b m n} → System b m n → ℕ
S→N {zero} ()
S→N {suc b} (Sys list) = foldr (shift-then-add (suc b)) 0 list
where shift-then-add : ∀ {m n} → (b : ℕ) → Digit b m n → ℕ → ℕ
shift-then-add b x acc = (D→N x) + (acc * b)
-}
--
-- Example
--
private
one : Digit 2 1 2
one = D Fz
two : Digit 2 1 2
two = D (Fs Fz)
u0 : Digit 1 0 2
u0 = U0 Fz
u1 : Digit 1 1 1
u1 = U1 Fz
a0 : Digit 3 0 4
a0 = D Fz
a1 : Digit 3 0 4
a1 = D (Fs Fz)
a2 : Digit 3 0 4
a2 = D (Fs (Fs Fz))
a3 : Digit 3 0 4
a3 = D (Fs (Fs (Fs Fz)))
a : System 2 1 2
a = Sys (one ∷ two ∷ two ∷ [])
| {
"alphanum_fraction": 0.4854095145,
"avg_line_length": 30.3197026022,
"ext": "agda",
"hexsha": "35d0191060b48fa96dc95ee2edbe1eb7c418e202",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/Data/Num.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/Data/Num.agda",
"max_line_length": 164,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/Data/Num.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 3246,
"size": 8156
} |
-- Various small test cases that failed at some point or another
-- during the development of the parameter refinement feature.
module _ where
open import Agda.Primitive
open import Agda.Builtin.Nat hiding (_<_)
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.List
[_≡_] : ∀ {a} {A : Set a} (x y : A) → x ≡ y → A
[ x ≡ y ] refl = x
pattern ! = refl
module CoPatterns where
record R : Set where
field b : Nat
open R
sharp : Nat → R
sharp n = f n
where
f : Nat → R
b (f m) = m
r₁ : (n : Nat) → R
b (r₁ n) = n
module _ (n : Nat) where
r : R
b r = n
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open Σ public
data T : Nat → Set where
zero : T zero
suc : ∀ {n} → T n → T (suc n)
module _ (A : Set) where
ex : Σ Nat T
fst ex = suc zero
snd ex = suc zero
module SimpleWith where
module P (A : Set) where
f : Nat → Nat
f zero = 0
f (suc n) with n
f (suc n) | z = z
module MergeSort where
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
module Sort (A : Set) where
merge : ∀ {n} → Vec A n → Vec A zero
merge [] = []
merge (x ∷ xs) = merge xs
module LetPatternBinding where
record Wrap : Set where
constructor wrap
field wrapped : Nat
fails : Wrap → Nat
fails w = let wrap n = w in n
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field fst : A
snd : B
module _ (A B : Set) where
const : A → B → A
const x _ = x
plus : A × B → A
plus p = let a , b = p in const a b
module RefineStuff where
module _ (x y : Nat) where
foo : x ≡ suc y → Nat
foo refl = y
bar : (x y : Nat) → x ≡ y → Nat
bar x y refl = y
test : foo 2 1 refl ≡ 1
test = refl
module Projections where
module _ (X : Set) where
record ∃ (a : Set) : Set where
field
witness : a
f : ∃ X → X
f r = ∃.witness r
module Delay where
data Vec (A : Set) : Nat → Set where
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
data Unit : Set where
unit : Unit
record DNat : Set₁ where
field
D : Set
force : D → Nat
open DNat
nonNil : ∀ {n} → Vec Unit n → Nat
nonNil (i ∷ is) = suc (force f i)
where
f : DNat
D f = Unit
force f unit = zero
module Folds where
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f z [] = z
foldr f z (x ∷ xs) = f x (foldr f z xs)
foldl : {A B : Set} → (B → A → B) → B → List A → B
foldl f z [] = z
foldl f z (x ∷ xs) = foldl f (f z x) xs
module FoldAssoc
{A : Set}(_∙_ : A → A → A)
(assoc : ∀ x y z → ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))) where
smashr = foldr _∙_
smashl = foldl _∙_
postulate
foldl-plus : ∀ z₁ z₂ xs → smashl (z₁ ∙ z₂) xs ≡ (z₁ ∙ smashl z₂ xs)
foldr=foldl : ∀ ∅ → (∀ x → (∅ ∙ x) ≡ (x ∙ ∅)) →
∀ xs → Set
foldr=foldl ∅ id [] = Nat
foldr=foldl ∅ id (x ∷ xs) rewrite id x
| foldl-plus x ∅ xs
= Nat
module With where
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
idV : ∀ {A n} → Vec A n → Vec A n
idV [] = []
idV (x ∷ xs) = x ∷ idV xs
len : ∀ {A n} → Vec A n → Nat
len {n = n} _ = n
module _ (n : Nat) (xs : Vec Nat n) where
f : Vec Nat n → Nat
f [] = 0
f (x ∷ ys) with idV ys
f (x ∷ ys) | [] = [ n ≡ 1 ] !
f (x ∷ ys) | z ∷ zs = [ n ≡ suc (suc (len zs)) ] !
module NestedWith where
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
cons : ∀ n → A → Vec A n → Vec A (suc n)
module _ (X Y : Set) where
f : ∀ n → Vec Nat n → Nat
f _ [] = 0
f .(suc m) (cons m x xs) with x
f n (cons m x xs) | 0 = [ n ≡ suc m ] !
f n (cons m x xs) | y with xs
f n (cons m x xs) | y | [] = [ n ≡ 1 ] !
f n (cons m x xs) | z | cons k y ys = [ n ≡ suc (suc k) ] !
module LetCase where
record _×_ (A B : Set) : Set where
constructor _,_
field fst : A
snd : B
case_of_ : {A B : Set} → A → (A → B) → B
case x of f = f x
g : Nat × Nat → Nat
g p = let a , b = p in
case b of λ where
zero → a
(suc b) → a
f : Nat × (Nat × Nat) → Nat
f p =
let a , q = p
b , c = q
in a + b + c
module _ {a} {A : Set a} where
h : List A → Nat → Nat → Nat
h [] = λ _ _ → 0
h (x ∷ xs) =
let ys = xs in
λ n → λ where m → h ys n m
| {
"alphanum_fraction": 0.4792380137,
"avg_line_length": 20.6725663717,
"ext": "agda",
"hexsha": "e07ba9618b8c89d71f16948bd9277f9ce9a9493e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Succeed/RefineParamsBugs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Succeed/RefineParamsBugs.agda",
"max_line_length": 73,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Succeed/RefineParamsBugs.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 1809,
"size": 4672
} |
------------------------------------------------------------------------
-- Indexed applicative functors
------------------------------------------------------------------------
-- Note that currently the applicative functor laws are not included
-- here.
module Category.Applicative.Indexed where
open import Data.Function
open import Data.Product
open import Category.Functor
IFun : Set → Set₁
IFun I = I → I → Set → Set
record RawIApplicative {I : Set} (F : IFun I) : Set₁ where
infixl 4 _⊛_ _<⊛_ _⊛>_
infix 4 _⊗_
field
pure : ∀ {i A} → A → F i i A
_⊛_ : ∀ {i j k A B} → F i j (A → B) → F j k A → F i k B
rawFunctor : ∀ {i j} → RawFunctor (F i j)
rawFunctor = record
{ _<$>_ = λ g x → pure g ⊛ x
}
private
open module RF {i j : I} =
RawFunctor (rawFunctor {i = i} {j = j})
public
_<⊛_ : ∀ {i j k A B} → F i j A → F j k B → F i k A
x <⊛ y = const <$> x ⊛ y
_⊛>_ : ∀ {i j k A B} → F i j A → F j k B → F i k B
x ⊛> y = flip const <$> x ⊛ y
_⊗_ : ∀ {i j k A B} → F i j A → F j k B → F i k (A × B)
x ⊗ y = (_,_) <$> x ⊛ y
| {
"alphanum_fraction": 0.4567788899,
"avg_line_length": 25.5581395349,
"ext": "agda",
"hexsha": "ba21606725126670a2d8eacc4992bda2531c2a5c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Category/Applicative/Indexed.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Category/Applicative/Indexed.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Category/Applicative/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 401,
"size": 1099
} |
-- Andreas, 2017-08-24, issue #2253
--
-- Better error message for matching on abstract constructor.
-- {-# OPTIONS -v tc.lhs.split:30 #-}
-- {-# OPTIONS -v tc.lhs:30 #-}
-- {-# OPTIONS -v tc.lhs.flex:60 #-}
abstract
data B : Set where
x : B
data C : Set where
c : B → C
f : C → C
f (c x) = c x
-- WAS:
--
-- Not in scope:
-- AbstractPatternShadowsConstructor.B.x
-- (did you mean 'x'?)
-- when checking that the pattern c x has type C
-- Expected:
--
-- Cannot split on abstract data type B
-- when checking that the pattern x has type B
| {
"alphanum_fraction": 0.6135957066,
"avg_line_length": 18.6333333333,
"ext": "agda",
"hexsha": "7ca4cdca84232603cd1af2addb20962547ef88a8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2253.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2253.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2253.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 172,
"size": 559
} |
{-# OPTIONS --without-K --safe #-}
-- Actually, we're cheating (for expediency); this is
-- Symmetric Rig, not just Rig.
open import Categories.Category
module Categories.Category.RigCategory {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Data.Fin renaming (zero to 0F; suc to sucF)
open import Data.Product using (_,_)
open import Categories.Functor renaming (id to idF)
open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Braided
open import Categories.Category.Monoidal.Symmetric
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘ᵥ_; _∘ₕ_; _∘ˡ_; _∘ʳ_; NaturalTransformation)
open import Categories.Morphism C
-- Should probably split out Distributive Category out and make this be 'over' that.
record RigCategory {M⊎ M× : Monoidal C} (S⊎ : Symmetric M⊎)
(S× : Symmetric M×) : Set (o ⊔ ℓ ⊔ e) where
private
module C = Category C
open C hiding (_≈_)
open Commutation
module M⊎ = Monoidal M⊎
module M× = Monoidal M×
module S⊎ = Symmetric S⊎
module S× = Symmetric S×
open M⊎ renaming (_⊗₀_ to _⊕₀_; _⊗₁_ to _⊕₁_)
open M×
private
0C : C.Obj
0C = M⊎.unit
1C : C.Obj
1C = M×.unit
private
B⊗ : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X
B⊗ {X} {Y} = S×.braiding.⇒.η (X , Y)
B⊕ : ∀ {X Y} → X ⊕₀ Y ⇒ Y ⊕₀ X
B⊕ {X} {Y} = S⊎.braiding.⇒.η (X , Y)
field
annₗ : ∀ {X} → 0C ⊗₀ X ≅ 0C
annᵣ : ∀ {X} → X ⊗₀ 0C ≅ 0C
distribₗ : ∀ {X Y Z} → X ⊗₀ (Y ⊕₀ Z) ≅ (X ⊗₀ Y) ⊕₀ (X ⊗₀ Z)
distribᵣ : ∀ {X Y Z} → (X ⊕₀ Y) ⊗₀ Z ≅ (X ⊗₀ Z) ⊕₀ (Y ⊗₀ Z)
private
λ* : ∀ {X} → 0C ⊗₀ X ⇒ 0C
λ* {X} = _≅_.from (annₗ {X})
ρ* : ∀ {X} → X ⊗₀ 0C ⇒ 0C
ρ* {X} = _≅_.from (annᵣ {X})
module dl {X} {Y} {Z} = _≅_ (distribₗ {X} {Y} {Z})
module dr {X} {Y} {Z} = _≅_ (distribᵣ {X} {Y} {Z})
⊗λ⇒ = M×.unitorˡ.from
⊗λ⇐ = M×.unitorˡ.to
⊗ρ⇒ = M×.unitorʳ.from
⊗ρ⇐ = M×.unitorʳ.to
⊗α⇒ = M×.associator.from
⊗α⇐ = M×.associator.to
⊕λ⇒ = M⊎.unitorˡ.from
⊕λ⇐ = M⊎.unitorˡ.to
⊕ρ⇒ = M⊎.unitorʳ.from
⊕ρ⇐ = M⊎.unitorʳ.to
⊕α⇒ = M⊎.associator.from
⊕α⇐ = M⊎.associator.to
-- need II, IX, X, XV
-- choose I, IV, VI, XI, XIII, XIX, XXIII and (XVI, XVII)
field
laplazaI : ∀ {A B C} →
[ A ⊗₀ (B ⊕₀ C) ⇒ (A ⊗₀ C) ⊕₀ (A ⊗₀ B) ]⟨
dl.from ⇒⟨ (A ⊗₀ B) ⊕₀ (A ⊗₀ C) ⟩
B⊕
≈
C.id ⊗₁ B⊕ ⇒⟨ A ⊗₀ (C ⊕₀ B) ⟩
dl.from
⟩
laplazaII : ∀ {A B C} →
[ (A ⊕₀ B) ⊗₀ C ⇒ (C ⊗₀ A) ⊕₀ (C ⊗₀ B) ]⟨
B⊗ ⇒⟨ C ⊗₀ (A ⊕₀ B) ⟩
dl.from
≈
dr.from ⇒⟨ (A ⊗₀ C) ⊕₀ (B ⊗₀ C) ⟩
B⊗ ⊕₁ B⊗
⟩
laplazaIV : {A B C D : Obj} →
[ (A ⊕₀ B ⊕₀ C) ⊗₀ D ⇒ ((A ⊗₀ D) ⊕₀ (B ⊗₀ D)) ⊕₀ (C ⊗₀ D) ]⟨
dr.from ⇒⟨ (A ⊗₀ D) ⊕₀ ((B ⊕₀ C) ⊗₀ D) ⟩
C.id ⊕₁ dr.from ⇒⟨ (A ⊗₀ D) ⊕₀ ((B ⊗₀ D) ⊕₀ (C ⊗₀ D)) ⟩
⊕α⇐
≈
⊕α⇐ ⊗₁ C.id ⇒⟨ ((A ⊕₀ B) ⊕₀ C) ⊗₀ D ⟩
dr.from ⇒⟨ ((A ⊕₀ B) ⊗₀ D) ⊕₀ (C ⊗₀ D) ⟩
dr.from ⊕₁ C.id
⟩
laplazaVI : {A B C D : Obj} →
[ A ⊗₀ B ⊗₀ (C ⊕₀ D) ⇒ ((A ⊗₀ B) ⊗₀ C) ⊕₀ ((A ⊗₀ B) ⊗₀ D) ]⟨
C.id ⊗₁ dl.from ⇒⟨ A ⊗₀ ((B ⊗₀ C) ⊕₀ (B ⊗₀ D)) ⟩
dl.from ⇒⟨ (A ⊗₀ B ⊗₀ C) ⊕₀ (A ⊗₀ B ⊗₀ D) ⟩
⊗α⇐ ⊕₁ ⊗α⇐
≈
⊗α⇐ ⇒⟨ (A ⊗₀ B) ⊗₀ (C ⊕₀ D) ⟩
dl.from
⟩
laplazaIX : ∀ {A B C D} → [ (A ⊕₀ B) ⊗₀ (C ⊕₀ D) ⇒ (((A ⊗₀ C) ⊕₀ (B ⊗₀ C)) ⊕₀ (A ⊗₀ D)) ⊕₀ (B ⊗₀ D) ]⟨
dr.from ⇒⟨ (A ⊗₀ (C ⊕₀ D)) ⊕₀ (B ⊗₀ (C ⊕₀ D)) ⟩
dl.from ⊕₁ dl.from ⇒⟨ ((A ⊗₀ C) ⊕₀ (A ⊗₀ D)) ⊕₀ ((B ⊗₀ C) ⊕₀ (B ⊗₀ D)) ⟩
⊕α⇐ ⇒⟨ (((A ⊗₀ C) ⊕₀ (A ⊗₀ D)) ⊕₀ (B ⊗₀ C)) ⊕₀ (B ⊗₀ D) ⟩
⊕α⇒ ⊕₁ C.id ⇒⟨ ((A ⊗₀ C) ⊕₀ ((A ⊗₀ D) ⊕₀ (B ⊗₀ C))) ⊕₀ (B ⊗₀ D) ⟩
(C.id ⊕₁ B⊕) ⊕₁ C.id ⇒⟨ ((A ⊗₀ C) ⊕₀ ((B ⊗₀ C) ⊕₀ (A ⊗₀ D))) ⊕₀ (B ⊗₀ D) ⟩
⊕α⇐ ⊕₁ C.id
≈
dl.from ⇒⟨ ((A ⊕₀ B) ⊗₀ C) ⊕₀ ((A ⊕₀ B) ⊗₀ D) ⟩
dr.from ⊕₁ dr.from ⇒⟨ ((A ⊗₀ C) ⊕₀ (B ⊗₀ C)) ⊕₀ ((A ⊗₀ D) ⊕₀ (B ⊗₀ D)) ⟩
⊕α⇐
⟩
laplazaX : [ 0C ⊗₀ 0C ⇒ 0C ]⟨ λ* ≈ ρ* ⟩
laplazaXI : ∀ {A B} →
[ 0C ⊗₀ (A ⊕₀ B) ⇒ 0C ]⟨
dl.from ⇒⟨ (0C ⊗₀ A) ⊕₀ (0C ⊗₀ B) ⟩
λ* ⊕₁ λ* ⇒⟨ 0C ⊕₀ 0C ⟩
⊕λ⇒
≈
λ*
⟩
laplazaXIII : [ 0C ⊗₀ 1C ⇒ 0C ]⟨ ⊗ρ⇒ ≈ λ* ⟩
laplazaXV : ∀ {A : Obj} →
[ A ⊗₀ 0C ⇒ 0C ]⟨
ρ*
≈
B⊗ ⇒⟨ 0C ⊗₀ A ⟩
λ*
⟩
laplazaXVI : ∀ {A B} → [ 0C ⊗₀ (A ⊗₀ B) ⇒ 0C ]⟨
⊗α⇐ ⇒⟨ (0C ⊗₀ A) ⊗₀ B ⟩
λ* ⊗₁ C.id ⇒⟨ 0C ⊗₀ B ⟩
λ*
≈
λ*
⟩
laplazaXVII : ∀ {A B} → [ A ⊗₀ (0C ⊗₀ B) ⇒ 0C ]⟨
⊗α⇐ ⇒⟨ (A ⊗₀ 0C) ⊗₀ B ⟩
ρ* ⊗₁ C.id ⇒⟨ 0C ⊗₀ B ⟩
λ*
≈
C.id ⊗₁ λ* ⇒⟨ A ⊗₀ 0C ⟩
ρ*
⟩
laplazaXIX : ∀ {A B} → [ A ⊗₀ (0C ⊕₀ B) ⇒ A ⊗₀ B ]⟨
dl.from ⇒⟨ (A ⊗₀ 0C) ⊕₀ (A ⊗₀ B) ⟩
ρ* ⊕₁ C.id ⇒⟨ 0C ⊕₀ (A ⊗₀ B) ⟩
⊕λ⇒
≈
C.id ⊗₁ ⊕λ⇒
⟩
laplazaXXIII : ∀ {A B} → [ 1C ⊗₀ (A ⊕₀ B) ⇒ (A ⊕₀ B) ]⟨
⊗λ⇒
≈
dl.from ⇒⟨ (1C ⊗₀ A) ⊕₀ (1C ⊗₀ B) ⟩
⊗λ⇒ ⊕₁ ⊗λ⇒
⟩
| {
"alphanum_fraction": 0.4030680729,
"avg_line_length": 30.4970760234,
"ext": "agda",
"hexsha": "b8137caf1b7655ea21a8cc00819fe741c519de25",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/RigCategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/RigCategory.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/RigCategory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2849,
"size": 5215
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.QuotientRing where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Data.Nat
open import Cubical.Data.FinData
open import Cubical.HITs.SetQuotients using ([_]; squash/; elimProp2)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.Kernel
open import Cubical.Algebra.Ring
import Cubical.Algebra.Ring.QuotientRing as Ring
private
variable
ℓ ℓ' : Level
_/_ : (R : CommRing ℓ) → (I : IdealsIn R) → CommRing ℓ
R / I =
fst asRing , commringstr _ _ _ _ _
(iscommring (RingStr.isRing (snd asRing))
(elimProp2 (λ _ _ → squash/ _ _)
commEq))
where
asRing = (CommRing→Ring R) Ring./ (CommIdeal→Ideal I)
_·/_ : fst asRing → fst asRing → fst asRing
_·/_ = RingStr._·_ (snd asRing)
commEq : (x y : fst R) → ([ x ] ·/ [ y ]) ≡ ([ y ] ·/ [ x ])
commEq x y i = [ CommRingStr.·Comm (snd R) x y i ]
[_]/ : {R : CommRing ℓ} {I : IdealsIn R} → (a : fst R) → fst (R / I)
[ a ]/ = [ a ]
module Quotient-FGideal-CommRing-Ring
(A : CommRing ℓ)
(B : Ring ℓ')
(g : RingHom (CommRing→Ring A) B)
{n : ℕ}
(v : FinVec ⟨ A ⟩ n)
(gnull : (k : Fin n) → g $ v k ≡ RingStr.0r (snd B))
where
open RingStr (snd B) using (0r)
zeroOnGeneratedIdeal : (x : ⟨ A ⟩) → x ∈ fst (generatedIdeal A v) → g $ x ≡ 0r
zeroOnGeneratedIdeal x x∈FGIdeal =
PT.elim
(λ _ → isSetRing B (g $ x) 0r)
(λ {(α , isLC) → subst _ (sym isLC) (cancelLinearCombination A B g _ α v gnull)})
x∈FGIdeal
inducedHom : RingHom (CommRing→Ring (A / (generatedIdeal _ v))) B
inducedHom = Ring.UniversalProperty.inducedHom (CommRing→Ring A) (CommIdeal→Ideal ideal) g zeroOnGeneratedIdeal
where ideal = generatedIdeal A v
module Quotient-FGideal-CommRing-CommRing
(A : CommRing ℓ)
(B : CommRing ℓ')
(g : CommRingHom A B)
{n : ℕ}
(v : FinVec ⟨ A ⟩ n)
(gnull : (k : Fin n) → g $ v k ≡ CommRingStr.0r (snd B))
where
inducedHom : CommRingHom (A / (generatedIdeal _ v)) B
inducedHom = Quotient-FGideal-CommRing-Ring.inducedHom A (CommRing→Ring B) g v gnull
quotientHom : (R : CommRing ℓ) → (I : IdealsIn R) → CommRingHom R (R / I)
quotientHom R I = Ring.quotientHom (CommRing→Ring R) (CommIdeal→Ideal I)
module _ {R : CommRing ℓ} (I : IdealsIn R) where
private
π = quotientHom R I
kernel≡I : kernelIdeal R (R / I) π ≡ I
kernel≡I = cong Ideal→CommIdeal (Ring.kernel≡I (CommIdeal→Ideal I))
| {
"alphanum_fraction": 0.6390101892,
"avg_line_length": 31.5862068966,
"ext": "agda",
"hexsha": "36cd1e4be24cf407b66ed0cab5290d2f018e9bb3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 954,
"size": 2748
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Increment where
open import Data.Binary.Definition
open import Strict
inc : 𝔹 → 𝔹
inc 0ᵇ = 1ᵇ 0ᵇ
inc (1ᵇ xs) = 2ᵇ xs
inc (2ᵇ xs) = 1ᵇ inc xs
| {
"alphanum_fraction": 0.6600985222,
"avg_line_length": 16.9166666667,
"ext": "agda",
"hexsha": "f812d86bb25592d723e9995158fc15278e6aa8a8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/Increment.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/Increment.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/Increment.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 88,
"size": 203
} |
module Agda.Builtin.Strict where
open import Agda.Builtin.Equality
primitive
primForce : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x
primForceLemma : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) (f : ∀ x → B x) → primForce x f ≡ f x
| {
"alphanum_fraction": 0.5340909091,
"avg_line_length": 29.3333333333,
"ext": "agda",
"hexsha": "6b299de70265e6168af574376204fe26902266b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Strict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Strict.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Strict.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 109,
"size": 264
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of binary relations to sigma types
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Binary.Pointwise.Dependent where
open import Data.Product as Prod
open import Level
open import Function
open import Relation.Binary as B
using (_⇒_; Setoid; IsEquivalence)
open import Relation.Binary.Indexed.Heterogeneous as I
using (IREL; IRel; IndexedSetoid; IsIndexedEquivalence)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Pointwise lifting
infixr 4 _,_
record POINTWISE {a₁ a₂ b₁ b₂ ℓ₁ ℓ₂}
{A₁ : Set a₁} (B₁ : A₁ → Set b₁)
{A₂ : Set a₂} (B₂ : A₂ → Set b₂)
(_R₁_ : B.REL A₁ A₂ ℓ₁) (_R₂_ : IREL B₁ B₂ ℓ₂)
(xy₁ : Σ A₁ B₁) (xy₂ : Σ A₂ B₂)
: Set (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂ ⊔ ℓ₁ ⊔ ℓ₂) where
constructor _,_
field
proj₁ : (proj₁ xy₁) R₁ (proj₁ xy₂)
proj₂ : (proj₂ xy₁) R₂ (proj₂ xy₂)
open POINTWISE public
Pointwise : ∀ {a b ℓ₁ ℓ₂} {A : Set a} (B : A → Set b)
(_R₁_ : B.Rel A ℓ₁) (_R₂_ : IRel B ℓ₂) → B.Rel (Σ A B) _
Pointwise B = POINTWISE B B
------------------------------------------------------------------------
-- Pointwise preserves many relational properties
module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : A → Set b}
{R : B.Rel A ℓ₁} {S : IRel B ℓ₂} where
private
R×S = Pointwise B R S
refl : B.Reflexive R → I.Reflexive B S → B.Reflexive R×S
refl refl₁ refl₂ = (refl₁ , refl₂)
symmetric : B.Symmetric R → I.Symmetric B S → B.Symmetric R×S
symmetric sym₁ sym₂ (x₁Rx₂ , y₁Ry₂) = (sym₁ x₁Rx₂ , sym₂ y₁Ry₂)
transitive : B.Transitive R → I.Transitive B S → B.Transitive R×S
transitive trans₁ trans₂ (x₁Rx₂ , y₁Ry₂) (x₂Rx₃ , y₂Ry₃) =
(trans₁ x₁Rx₂ x₂Rx₃ , trans₂ y₁Ry₂ y₂Ry₃)
isEquivalence : IsEquivalence R → IsIndexedEquivalence B S →
IsEquivalence R×S
isEquivalence eq₁ eq₂ = record
{ refl = refl Eq.refl IEq.refl
; sym = symmetric Eq.sym IEq.sym
; trans = transitive Eq.trans IEq.trans
} where
module Eq = IsEquivalence eq₁
module IEq = IsIndexedEquivalence eq₂
module _ {a b ℓ₁ ℓ₂} where
setoid : (A : Setoid a ℓ₁) →
IndexedSetoid (Setoid.Carrier A) b ℓ₂ →
Setoid _ _
setoid s₁ s₂ = record
{ isEquivalence = isEquivalence Eq.isEquivalence IEq.isEquivalence
} where
module Eq = Setoid s₁
module IEq = IndexedSetoid s₂
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
Rel = Pointwise
{-# WARNING_ON_USAGE Rel
"Warning: Rel was deprecated in v0.15.
Please use Pointwise instead."
#-}
-- Version 0.15
REL = POINTWISE
{-# WARNING_ON_USAGE REL
"Warning: REL was deprecated in v1.0.
Please use POINTWISE instead."
#-}
| {
"alphanum_fraction": 0.5572279712,
"avg_line_length": 30.9611650485,
"ext": "agda",
"hexsha": "95bda87ed8be9eed2fb37e55e17b951a89877010",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 973,
"size": 3189
} |
open import Mockingbird.Forest using (Forest)
module Mockingbird.Forest.Extensionality {b ℓ} (forest : Forest {b} {ℓ}) where
open import Algebra using (RightCongruent)
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
open import Level using (_⊔_)
open Forest forest
-- TODO: if the arguments to the predicates is{Mockingbird,Thrush,Cardinal,...}
-- are made implicit, then x can be implicit too.
Similar : Rel Bird (b ⊔ ℓ)
Similar A₁ A₂ = ∀ x → A₁ ∙ x ≈ A₂ ∙ x
infix 4 _≋_
_≋_ = Similar
-- A forest is called extensional if similarity implies equality.
IsExtensional : Set (b ⊔ ℓ)
IsExtensional = ∀ {A₁ A₂} → A₁ ≋ A₂ → A₁ ≈ A₂
-- A record to be used as an instance argument.
record Extensional : Set (b ⊔ ℓ) where
field
ext : IsExtensional
open Extensional ⦃ ... ⦄ public
ext′ : ⦃ _ : Extensional ⦄ → ∀ {A₁ A₂} → (∀ {x} → A₁ ∙ x ≈ A₂ ∙ x) → A₁ ≈ A₂
ext′ A₁≋A₂ = ext λ _ → A₁≋A₂
-- Similarity is an equivalence relation.
≋-isEquivalence : IsEquivalence _≋_
≋-isEquivalence = record
{ refl = λ _ → refl
; sym = λ x≋y z → sym (x≋y z)
; trans = λ x≋y y≋z w → trans (x≋y w) (y≋z w)
}
≋-congʳ : RightCongruent _≋_ _∙_
≋-congʳ {w} {x} {y} x≋y = λ _ → congʳ (x≋y w)
| {
"alphanum_fraction": 0.6532999165,
"avg_line_length": 27.8372093023,
"ext": "agda",
"hexsha": "f083a16eb484e1c6f5f98b7bcb056260aa09c85d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Forest/Extensionality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Forest/Extensionality.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Forest/Extensionality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 468,
"size": 1197
} |
-- 2012-02-13 Andreas: testing correct polarity of data types
-- sized types are the only source of subtyping, I think...
-- {-# OPTIONS -v tc.polarity.set:10 #-}
-- {-# OPTIONS -v tc.size.solve:20 #-}
{-# OPTIONS --show-implicit #-}
{-# OPTIONS --sized-types #-}
module DataPolarity where
open import Common.Size
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {↑ size}
suc : {size : Size} -> Nat {size} -> Nat {↑ size}
data Pair (A : Set) : Set where
_,_ : A -> A -> Pair A
split : {i : Size} → Nat {i} → Pair (Nat {i})
split zero = zero , zero
split (suc n) with split n
... | (l , r) = suc r , l
-- this should work, due to the monotonicity of Pair
-- without subtyping, Agda would complain about i != ↑ i
MyPair : Nat → Set → Set
MyPair zero A = Pair A
MyPair (suc n) A = MyPair n A
-- polarity should be preserved by functions
mysplit : {i : Size} → (n : Nat {i}) → MyPair (suc zero) (Nat {i})
mysplit zero = zero , zero
mysplit (suc n) with mysplit n
... | (l , r) = suc r , l
-- it should also work in modules
module M (s : Set1) where
data P (A : Set) : Set where
_,_ : A -> A -> P A
sp : {i : Size} → (n : Nat {i}) → P (Nat {i})
sp zero = zero , zero
sp (suc n) with sp n
... | (l , r) = suc r , l
-- open import Common.Prelude
postulate A : Set
data Color : Set where
red : Color
black : Color
data Bounds : Set where
leftOf : Bounds → Bounds
rightOf : Bounds → Bounds
-- works not:
data Tree' (β : Bounds) : {i : Size} -> Color → (Nat {∞}) → Set where
lf : ∀ {i} → Tree' β {↑ i} black zero
nr : ∀ {i n}(a : A) -- → .(a is β)
→ Tree' (leftOf β) {i} black n
→ Tree' (rightOf β) {i} black n
→ Tree' β {↑ i} red n
nb : ∀ {i c n}(a : A) -- → .(a is β)
→ Tree' (leftOf β) {i} c n
→ Tree' (rightOf β) {i} black n
→ Tree' β {↑ i} black (suc n)
-- works:
data Tr (A : Set) : {i : Size} -> Color → Set where
lf : ∀ {i} → Tr A {↑ i} black
nr : ∀ {i}(a : A)
→ Tr A {i} black → Tr A {i} black
→ Tr A {↑ i} red
nb : ∀ {i c}(a : A)
→ Tr A {i} c → Tr A {i} black
→ Tr A {↑ i} black
| {
"alphanum_fraction": 0.5443338075,
"avg_line_length": 25.7195121951,
"ext": "agda",
"hexsha": "ce8a34414eeaeaff36a3faeb1ee230abbfb7e433",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/DataPolarity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/DataPolarity.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/DataPolarity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 769,
"size": 2109
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.FunctionSeq
open import lib.types.Pointed
open import lib.types.Suspension.Core
open import lib.types.Suspension.Iterated
open import lib.types.Suspension.Trunc
open import lib.types.TLevel
open import lib.types.Truncation
module lib.types.Suspension.IteratedTrunc where
module _ {i} (A : Type i) (m : ℕ₋₂) where
Susp^-Trunc-swap : ∀ (n : ℕ)
→ Susp^ n (Trunc m A)
→ Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A)
Susp^-Trunc-swap O = idf _
Susp^-Trunc-swap (S n) =
Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) ∘
Susp-fmap (Susp^-Trunc-swap n)
private
to : ∀ n → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A)) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A)
to n = Trunc-rec {{Trunc-level}} (Susp^-Trunc-swap n)
from : ∀ n → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A))
from n = Trunc-fmap (Susp^-fmap n [_])
abstract
from-Susp^-Trunc-swap : ∀ n → from n ∘ Susp^-Trunc-swap n ∼ [_]
from-Susp^-Trunc-swap O =
Trunc-elim
{P = λ s → from 0 (Susp^-Trunc-swap 0 s) == [ s ]}
{{λ s → =-preserves-level Trunc-level}}
(λ a → idp)
from-Susp^-Trunc-swap (S n) x =
(from (S n) $
Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (Susp^-Trunc-swap n) x)
=⟨ ! $ Susp-Trunc-swap-natural (Susp^-fmap n [_]) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (Susp^-Trunc-swap n) x ⟩
(Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (Trunc-fmap (Susp^-fmap n [_])) $
Susp-fmap (Susp^-Trunc-swap n) x)
=⟨ ap (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m)) $
! $ Susp-fmap-∘ (Trunc-fmap (Susp^-fmap n [_])) (Susp^-Trunc-swap n) x ⟩
(Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (from n ∘ Susp^-Trunc-swap n) x)
=⟨ ap (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m)) $
ap (λ f → Susp-fmap f x) (λ= (from-Susp^-Trunc-swap n)) ⟩
Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) (Susp-fmap [_] x)
=⟨ Susp-Trunc-swap-Susp-fmap-trunc (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) x ⟩
[ x ] =∎
from-to : ∀ n → from n ∘ to n ∼ idf _
from-to n =
Trunc-elim
{P = λ t → from n (to n t) == t}
{{λ t → =-preserves-level Trunc-level}}
(from-Susp^-Trunc-swap n)
Susp^-Trunc-swap-Susp^-fmap-trunc : ∀ n →
Susp^-Trunc-swap n ∘ Susp^-fmap n [_] ∼ [_]
Susp^-Trunc-swap-Susp^-fmap-trunc 0 s = idp
Susp^-Trunc-swap-Susp^-fmap-trunc (S n) s =
(Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (Susp^-Trunc-swap n) $
Susp^-fmap (S n) [_] s)
=⟨ ap (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m)) $
! $ Susp-fmap-∘ (Susp^-Trunc-swap n) (Susp^-fmap n [_]) s ⟩
(Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $
Susp-fmap (Susp^-Trunc-swap n ∘ Susp^-fmap n [_]) s)
=⟨ ap (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m)) $
app= (ap Susp-fmap (λ= (Susp^-Trunc-swap-Susp^-fmap-trunc n))) s ⟩
Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) (Susp-fmap [_] s)
=⟨ Susp-Trunc-swap-Susp-fmap-trunc (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) s ⟩
[ s ] =∎
to-from : ∀ n → to n ∘ from n ∼ idf _
to-from n = Trunc-elim {{λ t → =-preserves-level Trunc-level}}
(Susp^-Trunc-swap-Susp^-fmap-trunc n)
Susp^-Trunc-equiv : ∀ (n : ℕ)
→ Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A)) ≃ Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A)
Susp^-Trunc-equiv n = equiv (to n) (from n) (to-from n) (from-to n)
module _ {i} (X : Ptd i) (m : ℕ₋₂) where
Susp^-Trunc-swap-pt : ∀ (n : ℕ)
→ Susp^-Trunc-swap (de⊙ X) m n (pt (⊙Susp^ n (⊙Trunc m X))) ==
pt (⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X))
Susp^-Trunc-swap-pt O = idp
Susp^-Trunc-swap-pt (S n) = idp
⊙Susp^-Trunc-swap : ∀ (n : ℕ)
→ ⊙Susp^ n (⊙Trunc m X) ⊙→ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)
⊙Susp^-Trunc-swap n = Susp^-Trunc-swap (de⊙ X) m n , Susp^-Trunc-swap-pt n
⊙Susp^-⊙Trunc-equiv : ∀ (n : ℕ)
→ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n (⊙Trunc m X)) ⊙≃ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)
⊙Susp^-⊙Trunc-equiv n =
⊙to , snd (Susp^-Trunc-equiv (de⊙ X) m n)
where
⊙to : ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n (⊙Trunc m X))
⊙→ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)
⊙to = ⊙Trunc-rec {{Trunc-level}} (⊙Susp^-Trunc-swap n)
module _ {i} {X Y : Ptd i} (f : X ⊙→ Y) (m : ℕ₋₂) where
⊙Susp^-Trunc-swap-natural : ∀ (n : ℕ)
→ ⊙Susp^-Trunc-swap Y m n ◃⊙∘
⊙Susp^-fmap n (⊙Trunc-fmap f) ◃⊙idf
=⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘
⊙Susp^-Trunc-swap X m n ◃⊙idf
⊙Susp^-Trunc-swap-natural O = =⊙∘-in (⊙λ= (⊙∘-unit-l _))
⊙Susp^-Trunc-swap-natural (S n) =
⊙Susp^-Trunc-swap Y m (S n) ◃⊙∘
⊙Susp^-fmap (S n) (⊙Trunc-fmap f) ◃⊙idf
=⊙∘⟨ 0 & 1 & ⊙expand $
⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ Y) m n) ◃⊙idf ⟩
⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ Y) m n) ◃⊙∘
⊙Susp^-fmap (S n) (⊙Trunc-fmap f) ◃⊙idf
=⊙∘⟨ 1 & 2 & ⊙Susp-fmap-seq-=⊙∘ $
de⊙-seq-=⊙∘ $ ⊙Susp^-Trunc-swap-natural n ⟩
⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Trunc-fmap (Susp^-fmap n (fst f))) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf
=⊙∘⟨ 0 & 2 & =⊙∘-in
{gs = ⊙Trunc-fmap (⊙Susp-fmap (Susp^-fmap n (fst f))) ◃⊙∘
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙idf} $
⊙Susp-Trunc-swap-natural (Susp^-fmap n (fst f)) (⟨ n ⟩₋₂ +2+ m) ⟩
⊙Trunc-fmap (⊙Susp-fmap (Susp^-fmap n (fst f))) ◃⊙∘
⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘
⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & ⊙contract ⟩
⊙Trunc-fmap (⊙Susp^-fmap (S n) f) ◃⊙∘
⊙Susp^-Trunc-swap X m (S n) ◃⊙idf ∎⊙∘
⊙Susp^-⊙Trunc-equiv-natural : ∀ (n : ℕ)
→ ⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙idf
=⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘
⊙–> (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf
⊙Susp^-⊙Trunc-equiv-natural n = =⊙∘-in $
⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f))
=⟨ ⊙Trunc-rec-⊙Trunc-fmap {{Trunc-level}}
(⊙Susp^-Trunc-swap Y m n)
(⊙Susp^-fmap n (⊙Trunc-fmap f)) ⟩
⊙Trunc-rec {{Trunc-level}} (⊙Susp^-Trunc-swap Y m n ⊙∘ ⊙Susp^-fmap n (⊙Trunc-fmap f))
=⟨ ap (⊙Trunc-rec {{Trunc-level}}) $
=⊙∘-out $ ⊙Susp^-Trunc-swap-natural n ⟩
⊙Trunc-rec {{Trunc-level}} (⊙Trunc-fmap (⊙Susp^-fmap n f) ⊙∘ ⊙Susp^-Trunc-swap X m n)
=⟨ ⊙Trunc-rec-post-⊙∘ {{Trunc-level}} {{Trunc-level}}
(⊙Trunc-fmap (⊙Susp^-fmap n f))
(⊙Susp^-Trunc-swap X m n) ⟩
⊙Trunc-fmap (⊙Susp^-fmap n f) ⊙∘ ⊙–> (⊙Susp^-⊙Trunc-equiv X m n) =∎
⊙Susp^-⊙Trunc-equiv-natural' : ∀ (n : ℕ)
→ ⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙idf
=⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘
⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf
⊙Susp^-⊙Trunc-equiv-natural' n =
⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙idf
=⊙∘⟨ 2 & 0 & !⊙∘ $ ⊙<–-inv-r-=⊙∘ (⊙Susp^-⊙Trunc-equiv X m n) ⟩
⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘
⊙–> (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙∘
⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf
=⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙Susp^-⊙Trunc-equiv-natural n ⟩
⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘
⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘
⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf
=⊙∘⟨ 0 & 2 & ⊙<–-inv-l-=⊙∘ (⊙Susp^-⊙Trunc-equiv Y m n) ⟩
⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘
⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf ∎⊙∘
| {
"alphanum_fraction": 0.4891398784,
"avg_line_length": 42.8563829787,
"ext": "agda",
"hexsha": "1cf1eeb474ab642b7bbe0caf050eee112b3ccf39",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Suspension/IteratedTrunc.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Suspension/IteratedTrunc.agda",
"max_line_length": 96,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Suspension/IteratedTrunc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4099,
"size": 8057
} |
{-# OPTIONS --no-sized-types --no-guardedness #-}
module Agda.Builtin.TrustMe where
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Erase
private
postulate
unsafePrimTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
primTrustMe = primEraseEquality unsafePrimTrustMe
{-# DISPLAY primEraseEquality unsafePrimTrustMe = primTrustMe #-}
| {
"alphanum_fraction": 0.7034313725,
"avg_line_length": 27.2,
"ext": "agda",
"hexsha": "5a91830b27439ff2e50b33912b7bbe70627a8608",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_line_length": 65,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 130,
"size": 408
} |
{-# OPTIONS --safe #-}
module Cubical.Data.NatPlusOne.MoreNats.AssocNat.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.NatPlusOne.MoreNats.AssocNat.Base
open import Cubical.Data.NatPlusOne renaming (ℕ₊₁ to Nat; one to one'; _+₁_ to _+₁'_)
Nat→ℕ₊₁ : Nat → ℕ₊₁
Nat→ℕ₊₁ one' = 1
Nat→ℕ₊₁ (2+ n) = 1 +₁ Nat→ℕ₊₁ (1+ n)
ℕ₊₁→Nat : ℕ₊₁ → Nat
ℕ₊₁→Nat one = 1
ℕ₊₁→Nat (a +₁ b) = ℕ₊₁→Nat a +₁' ℕ₊₁→Nat b
ℕ₊₁→Nat (assoc a b c i) = +₁-assoc (ℕ₊₁→Nat a) (ℕ₊₁→Nat b) (ℕ₊₁→Nat c) i
ℕ₊₁→Nat (trunc m n p q i j) =
1+ (isSetℕ _ _ (λ k → -1+ (ℕ₊₁→Nat (p k))) (λ k → -1+ (ℕ₊₁→Nat (q k))) i j)
ℕ₊₁→Nat→ℕ₊₁ : ∀ n → ℕ₊₁→Nat (Nat→ℕ₊₁ n) ≡ n
ℕ₊₁→Nat→ℕ₊₁ one' = refl
ℕ₊₁→Nat→ℕ₊₁ (2+ n) = cong (1+_ ∘ suc ∘ -1+_) (ℕ₊₁→Nat→ℕ₊₁ (1+ n))
private
Nat→ℕ₊₁-+ : ∀ a b → Nat→ℕ₊₁ (a +₁' b) ≡ Nat→ℕ₊₁ a +₁ Nat→ℕ₊₁ b
Nat→ℕ₊₁-+ one' b = refl
Nat→ℕ₊₁-+ (2+ a) b = cong (one +₁_) (Nat→ℕ₊₁-+ (1+ a) b)
∙ assoc one (Nat→ℕ₊₁ (1+ a)) (Nat→ℕ₊₁ b)
Nat→ℕ₊₁→Nat : ∀ n → Nat→ℕ₊₁ (ℕ₊₁→Nat n) ≡ n
Nat→ℕ₊₁→Nat = ElimProp.f (trunc _ _) (λ i → one)
λ {a} {b} m n → Nat→ℕ₊₁-+ (ℕ₊₁→Nat a) (ℕ₊₁→Nat b) ∙ (λ i → m i +₁ n i)
ℕ₊₁≡Nat : ℕ₊₁ ≡ Nat
ℕ₊₁≡Nat = isoToPath (iso ℕ₊₁→Nat Nat→ℕ₊₁ ℕ₊₁→Nat→ℕ₊₁ Nat→ℕ₊₁→Nat)
| {
"alphanum_fraction": 0.5886681383,
"avg_line_length": 33.975,
"ext": "agda",
"hexsha": "5bc7841216a3313a440cedf09b9b7e51536c68a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Properties.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 776,
"size": 1359
} |
module UnsolvedMetas where
foo = ?
| {
"alphanum_fraction": 0.7105263158,
"avg_line_length": 6.3333333333,
"ext": "agda",
"hexsha": "569538f2e5952bcb807b29c49bef8533f3aa70a0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnsolvedMetas.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnsolvedMetas.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnsolvedMetas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 11,
"size": 38
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use Data.List.Relation.Unary.Any
-- directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Any where
open import Data.List.Relation.Unary.Any public
| {
"alphanum_fraction": 0.4438502674,
"avg_line_length": 28.7692307692,
"ext": "agda",
"hexsha": "796e12266213f3dbec92f1eeb732c500f51108ff",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Any.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Any.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 57,
"size": 374
} |
module TypeTheory.Nat.AnotherMono.Structure where
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.Empty using (⊥)
open import Data.Product using (Σ; _×_; _,_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (¬_)
record Nat : Set₁ where
field
N : Set
zero : N
suc : N → N
ind : (P : N → Set) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n
ind-zero : ∀ P P-zero P-suc → ind P P-zero P-suc zero ≡ P-zero
ind-suc : ∀ P P-zero P-suc n → ind P P-zero P-suc (suc n) ≡
P-suc n (ind P P-zero P-suc n)
s≢z : ∀ {n} → suc n ≢ zero
0N : N
0N = zero
1N : N
1N = suc zero
z≢s : ∀ {n} → zero ≢ suc n
z≢s = ≢-sym s≢z
rec : {A : Set} → A → (A → A) → N → A
rec {A} z s = ind (λ _ → A) z (λ _ → s)
rec-zero : ∀ {A} (z : A) s → rec z s zero ≡ z
rec-zero z s = ind-zero _ _ _
rec-suc : ∀ {A} (z : A) s n → rec z s (suc n) ≡ s (rec z s n)
rec-suc z s n = ind-suc _ _ _ _
infixl 6 _+_
infixl 7 _*_
infix 4 _≤_ _<_ _≥_ _>_ _≰_
-- Arithematic
-- Addition
_+_ : N → N → N
m + n = rec n suc m
-- Multiplication
_*_ : N → N → N
m * n = rec zero (n +_) m
-- Order
_≤_ : Rel N lzero
m ≤ n = Σ N λ o → o + m ≡ n
_<_ : Rel N lzero
m < n = suc m ≤ n
_≥_ : Rel N lzero
m ≥ n = n ≤ m
_>_ : Rel N lzero
m > n = n < m
_≰_ : Rel N lzero
m ≰ n = ¬ m ≤ n
_≮_ : Rel N lzero
m ≮ n = ¬ m < n
_≱_ : Rel N lzero
m ≱ n = ¬ m ≥ n
_≯_ : Rel N lzero
m ≯ n = ¬ m > n
| {
"alphanum_fraction": 0.4968905473,
"avg_line_length": 21.1578947368,
"ext": "agda",
"hexsha": "1d3f9c06705a8cdfcd32c04fe78d0186e20c4f79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "TypeTheory/Nat/AnotherMono/Structure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "TypeTheory/Nat/AnotherMono/Structure.agda",
"max_line_length": 75,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "TypeTheory/Nat/AnotherMono/Structure.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 690,
"size": 1608
} |
module Main where
import univ
import cwf
import help
import proofs
| {
"alphanum_fraction": 0.8,
"avg_line_length": 7.7777777778,
"ext": "agda",
"hexsha": "9d26fcfc838730e74abc40b17549f2c877ca2972",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/Main.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/Main.agda",
"max_line_length": 17,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 70
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Unary relations
------------------------------------------------------------------------
module Relation.Unary where
open import Data.Empty
open import Function
open import Data.Unit hiding (setoid)
open import Data.Product
open import Data.Sum
open import Level
open import Relation.Nullary
open import Relation.Binary using (Setoid; IsEquivalence)
------------------------------------------------------------------------
-- Unary relations
Pred : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ)
Pred A ℓ = A → Set ℓ
------------------------------------------------------------------------
-- Unary relations can be seen as sets
-- I.e., they can be seen as subsets of the universe of discourse.
module _ {a} {A : Set a} -- The universe of discourse.
where
-- Set membership.
infix 4 _∈_ _∉_
_∈_ : ∀ {ℓ} → A → Pred A ℓ → Set _
x ∈ P = P x
_∉_ : ∀ {ℓ} → A → Pred A ℓ → Set _
x ∉ P = ¬ x ∈ P
-- The empty set.
∅ : Pred A zero
∅ = λ _ → ⊥
-- The property of being empty.
Empty : ∀ {ℓ} → Pred A ℓ → Set _
Empty P = ∀ x → x ∉ P
∅-Empty : Empty ∅
∅-Empty x ()
-- The universe, i.e. the subset containing all elements in A.
U : Pred A zero
U = λ _ → ⊤
-- The property of being universal.
Universal : ∀ {ℓ} → Pred A ℓ → Set _
Universal P = ∀ x → x ∈ P
U-Universal : Universal U
U-Universal = λ _ → _
-- Set complement.
∁ : ∀ {ℓ} → Pred A ℓ → Pred A ℓ
∁ P = λ x → x ∉ P
∁∅-Universal : Universal (∁ ∅)
∁∅-Universal = λ x x∈∅ → x∈∅
∁U-Empty : Empty (∁ U)
∁U-Empty = λ x x∈∁U → x∈∁U _
-- P ⊆ Q means that P is a subset of Q. _⊆′_ is a variant of _⊆_.
infix 4 _⊆_ _⊇_ _⊆′_ _⊇′_
_⊆_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q
_⊆′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊆′ Q = ∀ x → x ∈ P → x ∈ Q
_⊇_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
Q ⊇ P = P ⊆ Q
_⊇′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
Q ⊇′ P = P ⊆′ Q
∅-⊆ : ∀ {ℓ} → (P : Pred A ℓ) → ∅ ⊆ P
∅-⊆ P ()
⊆-U : ∀ {ℓ} → (P : Pred A ℓ) → P ⊆ U
⊆-U P _ = _
-- Positive version of non-disjointness, dual to inclusion.
infix 4 _≬_
_≬_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ≬ Q = ∃ λ x → x ∈ P × x ∈ Q
-- Set union.
infixr 6 _∪_
_∪_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q
-- Set intersection.
infixr 7 _∩_
_∩_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ∩ Q = λ x → x ∈ P × x ∈ Q
-- Implication.
infixl 8 _⇒_
_⇒_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ⇒ Q = λ x → x ∈ P → x ∈ Q
-- Infinitary union and intersection.
infix 9 ⋃ ⋂
⋃ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _
⋃ I P = λ x → Σ[ i ∈ I ] P i x
syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P
⋂ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _
⋂ I P = λ x → (i : I) → P i x
syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P
------------------------------------------------------------------------
-- Unary relation combinators
infixr 2 _⟨×⟩_
infixr 2 _⟨⊙⟩_
infixr 1 _⟨⊎⟩_
infixr 0 _⟨→⟩_
infixl 9 _⟨·⟩_
infixr 9 _⟨∘⟩_
infixr 2 _//_ _\\_
_⟨×⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _
(P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q
_⟨⊙⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _
(P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q
_⟨⊎⟩_ : ∀ {a b ℓ} {A : Set a} {B : Set b} →
Pred A ℓ → Pred B ℓ → Pred (A ⊎ B) _
P ⟨⊎⟩ Q = [ P , Q ]
_⟨→⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _
(P ⟨→⟩ Q) f = P ⊆ Q ∘ f
_⟨·⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(P : Pred A ℓ₁) (Q : Pred B ℓ₂) →
(P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_)
(P ⟨·⟩ Q) (p , f) = f p
-- Converse.
_~ : ∀ {a b ℓ} {A : Set a} {B : Set b} →
Pred (A × B) ℓ → Pred (B × A) ℓ
P ~ = P ∘ swap
-- Composition.
_⟨∘⟩_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × B) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × C) _
(P ⟨∘⟩ Q) (x , z) = ∃ λ y → (x , y) ∈ P × (y , z) ∈ Q
-- Post and pre-division.
_//_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × C) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × B) _
(P // Q) (x , y) = Q ∘ _,_ y ⊆ P ∘ _,_ x
_\\_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × C) ℓ₁ → Pred (A × B) ℓ₂ → Pred (B × C) _
P \\ Q = (P ~ // Q ~) ~
------------------------------------------------------------------------
-- Properties of unary relations
Decidable : ∀ {a ℓ} {A : Set a} (P : Pred A ℓ) → Set _
Decidable P = ∀ x → Dec (P x)
| {
"alphanum_fraction": 0.4257762654,
"avg_line_length": 23.2772277228,
"ext": "agda",
"hexsha": "03aa8e3fb48c5468326ef3ac5d9e9759de2bd571",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Unary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Unary.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Unary.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2099,
"size": 4702
} |
------------------------------------------------------------------------
-- Lenses defined in terms of a getter, equivalences between the
-- getter's "preimages", and a coherence property
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Lens.Non-dependent.Equivalent-preimages
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude renaming (_∘_ to _⊚_)
open import Bijection equality-with-J as B using (_↔_)
open import Equality.Path.Isomorphisms eq hiding (univ)
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as PT using (∥_∥; ∣_∣)
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher eq as Higher
import Lens.Non-dependent.Traditional eq as Traditional
private
variable
ℓ : Level
A B C : Set ℓ
a b c z : A
------------------------------------------------------------------------
-- The lens type family
-- Lenses defined in terms of a getter, equivalences between the
-- getter's "preimages", and a coherence property.
--
-- This definition is based on a suggestion from Andrea Vezzosi. Note
-- that the fields and some derived properties correspond to things
-- discussed by Paolo Capriotti in the context of his higher lenses
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
record Lens (A : Set a) (B : Set b) : Set (a ⊔ b) where
no-eta-equality
pattern
constructor lens
field
-- A getter.
get : A → B
-- A function from one "preimage" of get to another.
get⁻¹-const : (b₁ b₂ : B) → get ⁻¹ b₁ → get ⁻¹ b₂
-- This function is an equivalence.
get⁻¹-const-equivalence :
(b₁ b₂ : B) → Is-equivalence (get⁻¹-const b₁ b₂)
-- A coherence property.
get⁻¹-const-∘ :
(b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p
-- All the getter's "preimages" are equivalent.
get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂
get⁻¹-constant b₁ b₂ = Eq.⟨ _ , get⁻¹-const-equivalence b₁ b₂ ⟩
-- The inverse of get⁻¹-const.
get⁻¹-const⁻¹ : (b₁ b₂ : B) → get ⁻¹ b₂ → get ⁻¹ b₁
get⁻¹-const⁻¹ b₁ b₂ = _≃_.from (get⁻¹-constant b₁ b₂)
-- Some derived coherence properties.
get⁻¹-const-id :
(b : B) (p : get ⁻¹ b) → get⁻¹-const b b p ≡ p
get⁻¹-const-id b p =
get⁻¹-const b b p ≡⟨ sym $ _≃_.left-inverse-of (get⁻¹-constant _ _) _ ⟩
get⁻¹-const⁻¹ b b (get⁻¹-const b b (get⁻¹-const b b p)) ≡⟨ cong (get⁻¹-const⁻¹ b b) $ get⁻¹-const-∘ _ _ _ _ ⟩
get⁻¹-const⁻¹ b b (get⁻¹-const b b p) ≡⟨ _≃_.left-inverse-of (get⁻¹-constant _ _) _ ⟩∎
p ∎
get⁻¹-const-inverse :
(b₁ b₂ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₁ b₂ p ≡ get⁻¹-const⁻¹ b₂ b₁ p
get⁻¹-const-inverse b₁ b₂ p =
sym $ _≃_.to-from (get⁻¹-constant _ _) (
get⁻¹-const b₂ b₁ (get⁻¹-const b₁ b₂ p) ≡⟨ get⁻¹-const-∘ _ _ _ _ ⟩
get⁻¹-const b₁ b₁ p ≡⟨ get⁻¹-const-id _ _ ⟩∎
p ∎)
-- A setter.
set : A → B → A
set a b = $⟨ a , refl _ ⟩
get ⁻¹ get a ↝⟨ get⁻¹-const (get a) b ⟩
get ⁻¹ b ↝⟨ proj₁ ⟩□
A □
-- The lens laws can be proved.
get-set : ∀ a b → get (set a b) ≡ b
get-set a b =
get (proj₁ (get⁻¹-const (get a) b (a , refl _))) ≡⟨ proj₂ (get⁻¹-const (get a) b (a , refl _)) ⟩∎
b ∎
set-get : ∀ a → set a (get a) ≡ a
set-get a =
proj₁ (get⁻¹-const (get a) (get a) (a , refl _)) ≡⟨ cong proj₁ $ get⁻¹-const-id _ _ ⟩∎
a ∎
set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂
set-set a b₁ b₂ =
proj₁ (get⁻¹-const (get (set a b₁)) b₂ (set a b₁ , refl _)) ≡⟨ elim¹
(λ {b} eq →
proj₁ (get⁻¹-const (get (set a b₁)) b₂ (set a b₁ , refl _)) ≡
proj₁ (get⁻¹-const b b₂ (set a b₁ , eq)))
(refl _)
(get-set a b₁) ⟩
proj₁ (get⁻¹-const b₁ b₂ (set a b₁ , get-set a b₁)) ≡⟨⟩
proj₁ (get⁻¹-const b₁ b₂
(get⁻¹-const (get a) b₁ (a , refl _))) ≡⟨ cong proj₁ $ get⁻¹-const-∘ _ _ _ _ ⟩∎
proj₁ (get⁻¹-const (get a) b₂ (a , refl _)) ∎
-- A traditional lens.
traditional-lens : Traditional.Lens A B
traditional-lens = record
{ get = get
; set = set
; get-set = get-set
; set-get = set-get
; set-set = set-set
}
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- The record type above is equivalent to a nested Σ-type.
Lens-as-Σ :
Lens A B ≃
∃ λ (get : A → B) →
∃ λ (get⁻¹-const : (b₁ b₂ : B) → get ⁻¹ b₁ → get ⁻¹ b₂) →
((b₁ b₂ : B) → Is-equivalence (get⁻¹-const b₁ b₂)) ×
((b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p)
Lens-as-Σ = Eq.↔→≃
(λ l → get l
, get⁻¹-const l
, get⁻¹-const-equivalence l
, get⁻¹-const-∘ l)
(λ (g , c , c-e , c-∘) → record
{ get = g
; get⁻¹-const = c
; get⁻¹-const-equivalence = c-e
; get⁻¹-const-∘ = c-∘
})
refl
(λ { (lens _ _ _ _) → refl _ })
where
open Lens
-- A variant of Lens-as-Σ.
Lens-as-Σ′ :
Lens A B ≃
∃ λ (get : A → B) →
∃ λ (get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂) →
let get⁻¹-const : ∀ _ _ → _
get⁻¹-const = λ b₁ b₂ → _≃_.to (get⁻¹-constant b₁ b₂) in
(b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p
Lens-as-Σ′ {A = A} {B = B} =
Lens A B ↝⟨ Lens-as-Σ ⟩
(∃ λ (get : A → B) →
∃ λ (get⁻¹-const : (b₁ b₂ : B) → get ⁻¹ b₁ → get ⁻¹ b₂) →
((b₁ b₂ : B) → Is-equivalence (get⁻¹-const b₁ b₂)) ×
((b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p)) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩
(∃ λ (get : A → B) →
∃ λ ((get⁻¹-const , _) :
∃ λ (get⁻¹-const : (b₁ b₂ : B) → get ⁻¹ b₁ → get ⁻¹ b₂) →
(b₁ b₂ : B) → Is-equivalence (get⁻¹-const b₁ b₂)) →
(b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p) ↝⟨ (∃-cong λ _ →
Σ-cong-contra (ΠΣ-comm F.∘ ∀-cong ext (λ _ → ΠΣ-comm)) λ _ → F.id) ⟩
(∃ λ (get : A → B) →
∃ λ (f :
(b₁ b₂ : B) →
∃ λ (get⁻¹-const : get ⁻¹ b₁ → get ⁻¹ b₂) →
Is-equivalence get⁻¹-const) →
let get⁻¹-const : ∀ _ _ → _
get⁻¹-const = λ b₁ b₂ → proj₁ (f b₁ b₂) in
(b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p) ↝⟨ (∃-cong λ _ →
Σ-cong-contra (∀-cong ext λ _ → ∀-cong ext λ _ → Eq.≃-as-Σ) λ _ →
F.id) ⟩□
(∃ λ (get : A → B) →
∃ λ (get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂) →
let get⁻¹-const : ∀ _ _ → _
get⁻¹-const = λ b₁ b₂ → _≃_.to (get⁻¹-constant b₁ b₂) in
(b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) →
get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p) □
------------------------------------------------------------------------
-- Some results related to h-levels
-- If the domain of a lens is inhabited and has h-level n,
-- then the codomain also has h-level n.
h-level-respects-lens-from-inhabited :
∀ n → Lens A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited {A = A} {B = B} n l a =
H-level n A ↝⟨ H-level.respects-surjection surj n ⟩□
H-level n B □
where
open Lens l
surj : A ↠ B
surj = record
{ logical-equivalence = record
{ to = get
; from = set a
}
; right-inverse-of = λ b →
get (set a b) ≡⟨ get-set a b ⟩∎
b ∎
}
-- If A and B have h-level n given the assumption that the other type
-- is inhabited, then Lens A B has h-level n.
lens-preserves-h-level :
∀ n → (B → H-level n A) → (A → H-level n B) →
H-level n (Lens A B)
lens-preserves-h-level {B = B} {A = A} n hA hB =
H-level-cong _ n (inverse Lens-as-Σ′) $
Σ-closure n (Π-closure ext n λ a →
hB a) λ _ →
Σ-closure n (Π-closure ext n λ b →
Π-closure ext n λ _ →
Eq.h-level-closure ext n
(⁻¹-closure (hA b) hB)
(⁻¹-closure (hA b) hB)) λ _ →
(Π-closure ext n λ b →
Π-closure ext n λ _ →
Π-closure ext n λ _ →
Π-closure ext n λ _ →
⇒≡ n (⁻¹-closure (hA b) hB))
where
⁻¹-closure :
{f : A → B} {x : B} →
H-level n A → (A → H-level n B) →
H-level n (f ⁻¹ x)
⁻¹-closure hA hB =
Σ-closure n hA λ a →
⇒≡ n (hB a)
-- If A has positive h-level n, then Lens A B also has h-level n.
lens-preserves-h-level-of-domain :
∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B)
lens-preserves-h-level-of-domain n hA =
[inhabited⇒+]⇒+ n λ l →
lens-preserves-h-level (1 + n) (λ _ → hA) λ a →
h-level-respects-lens-from-inhabited _ l a hA
------------------------------------------------------------------------
-- Some equality characterisation lemmas
-- An equality characterisation lemma.
equality-characterisation :
let open Lens in
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
(l₁ ≡ l₂)
≃
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (gc : ∀ b₁ b₂ p →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡
get⁻¹-const l₂ b₁ b₂ p) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(Σ-≡,≡→≡ (⟨ext⟩ g)
(⟨ext⟩ λ b₁ → ⟨ext⟩ λ b₂ → ⟨ext⟩ λ p → gc b₁ b₂ p))
(get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂)
equality-characterisation {l₁ = l₁} {l₂ = l₂} =
l₁ ≡ l₂ ↝⟨ inverse $ Eq.≃-≡ (lemma₁ F.∘ Lens-as-Σ) ⟩
( ((get l₁ , get⁻¹-const l₁) , get⁻¹-const-∘ l₁)
, get⁻¹-const-equivalence l₁
) ≡
( ((get l₂ , get⁻¹-const l₂) , get⁻¹-const-∘ l₂)
, get⁻¹-const-equivalence l₂
) ↔⟨ inverse $
ignore-propositional-component
(Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Eq.propositional ext _) ⟩
((get l₁ , get⁻¹-const l₁) , get⁻¹-const-∘ l₁) ≡
((get l₂ , get⁻¹-const l₂) , get⁻¹-const-∘ l₂) ↔⟨ inverse B.Σ-≡,≡↔≡ ⟩
(∃ λ (p : (get l₁ , get⁻¹-const l₁) ≡
(get l₂ , get⁻¹-const l₂)) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
p (get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) ↝⟨ (Σ-cong-contra B.Σ-≡,≡↔≡ λ _ → F.id) ⟩
(∃ λ (p : ∃ λ (g : get l₁ ≡ get l₂) →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
g (get⁻¹-const l₁) ≡
get⁻¹-const l₂) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(uncurry Σ-≡,≡→≡ p) (get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) ↔⟨ inverse Σ-assoc ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (gc : subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
g (get⁻¹-const l₁) ≡
get⁻¹-const l₂) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(Σ-≡,≡→≡ g gc) (get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) ↝⟨ (Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ → F.id) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (gc : subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) ≡
get⁻¹-const l₂) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(Σ-≡,≡→≡ (⟨ext⟩ g) gc) (get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) ↝⟨ (∃-cong λ _ → Σ-cong-contra (inverse $ lemma₂ _) λ _ → F.id) ⟩□
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (gc : ∀ b₁ b₂ p →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡
get⁻¹-const l₂ b₁ b₂ p) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(Σ-≡,≡→≡ (⟨ext⟩ g)
(⟨ext⟩ λ b₁ → ⟨ext⟩ λ b₂ → ⟨ext⟩ λ p → gc b₁ b₂ p))
(get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) □
where
open Lens
lemma₁ :
{P : A → Set ℓ} {Q R : (x : A) → P x → Set ℓ} →
(∃ λ (x : A) → ∃ λ (y : P x) → Q x y × R x y) ≃
(∃ λ (((x , y) , _) : Σ (Σ A P) (uncurry R)) → Q x y)
lemma₁ {A = A} {P = P} {Q = Q} {R = R} =
(∃ λ (x : A) → ∃ λ (y : P x) → Q x y × R x y) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ×-comm) ⟩
(∃ λ (x : A) → ∃ λ (y : P x) → R x y × Q x y) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩
(∃ λ (x : A) → ∃ λ ((y , _) : ∃ λ (y : P x) → R x y) → Q x y) ↔⟨ Σ-assoc ⟩
(∃ λ ((x , y , _) : ∃ λ (x : A) → ∃ λ (y : P x) → R x y) → Q x y) ↝⟨ (Σ-cong Σ-assoc λ _ → F.id) ⟩□
(∃ λ (((x , y) , _) : Σ (Σ A P) (uncurry R)) → Q x y) □
lemma₂ : (g : ∀ a → get l₁ a ≡ get l₂ a) → _
lemma₂ g =
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) ≡
get⁻¹-const l₂ ↝⟨ inverse $ Eq.extensionality-isomorphism bad-ext ⟩
(∀ b₁ → subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ ≡
get⁻¹-const l₂ b₁) ↝⟨ (∀-cong ext λ _ → inverse $ Eq.extensionality-isomorphism bad-ext) ⟩
(∀ b₁ b₂ → subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ ≡
get⁻¹-const l₂ b₁ b₂) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → inverse $ Eq.extensionality-isomorphism bad-ext) ⟩□
(∀ b₁ b₂ p →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡
get⁻¹-const l₂ b₁ b₂ p) □
-- An equality characterisation lemma for lenses from sets.
equality-characterisation-for-sets :
let open Lens in
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
Is-set A →
(l₁ ≡ l₂)
≃
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∀ b₁ b₂ p →
proj₁ (get⁻¹-const l₁ b₁ b₂ (subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p)) ≡
proj₁ (get⁻¹-const l₂ b₁ b₂ p))
equality-characterisation-for-sets
{A = A} {B = B} {l₁ = l₁} {l₂ = l₂} A-set =
l₁ ≡ l₂ ↝⟨ equality-characterisation ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (gc : ∀ b₁ b₂ p →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡
get⁻¹-const l₂ b₁ b₂ p) →
subst
(λ (get , gc) →
∀ b₁ b₂ b₃ (p : get ⁻¹ b₁) →
gc b₂ b₃ (gc b₁ b₂ p) ≡ gc b₁ b₃ p)
(Σ-≡,≡→≡
(⟨ext⟩ g)
(⟨ext⟩ λ b₁ → ⟨ext⟩ λ b₂ → ⟨ext⟩ λ p → gc b₁ b₂ p))
(get⁻¹-const-∘ l₁) ≡
get⁻¹-const-∘ l₂) ↔⟨ (∃-cong λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ +⇒≡ $
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⁻¹-set) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∀ b₁ b₂ p →
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡
get⁻¹-const l₂ b₁ b₂ p) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_≡ _) $ lemma₁ _ _ _ _) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∀ b₁ b₂ p →
subst (_⁻¹ b₂) (⟨ext⟩ g)
(get⁻¹-const l₁ b₁ b₂ (subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p)) ≡
get⁻¹-const l₂ b₁ b₂ p) ↔⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ p →
drop-⊤-right (λ _ → _⇔_.to contractible⇔↔⊤ $
+⇒≡ (B-set (proj₁ p))) F.∘
inverse B.Σ-≡,≡↔≡) ⟩
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∀ b₁ b₂ p →
proj₁ (subst (_⁻¹ b₂) (⟨ext⟩ g)
(get⁻¹-const l₁ b₁ b₂
(subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p))) ≡
proj₁ (get⁻¹-const l₂ b₁ b₂ p)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_≡ _) $ lemma₂ _ _ _ _) ⟩□
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∀ b₁ b₂ p →
proj₁ (get⁻¹-const l₁ b₁ b₂ (subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p)) ≡
proj₁ (get⁻¹-const l₂ b₁ b₂ p)) □
where
open Lens
B-set : A → Is-set B
B-set a = h-level-respects-lens-from-inhabited 2 l₁ a A-set
⁻¹-set : Is-set (get l₂ ⁻¹ b)
⁻¹-set =
Σ-closure 2 A-set λ a →
mono₁ 1 (B-set a)
lemma₁ : ∀ g b₁ b₂ p → _
lemma₁ g b₁ b₂ p =
subst (λ get → ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁) b₁ b₂ p ≡⟨ cong (λ f → f b₂ p) $ sym $
push-subst-application (⟨ext⟩ g) (λ get b₁ → ∀ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂) ⟩
subst (λ get → ∀ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁ b₁) b₂ p ≡⟨ cong (λ f → f p) $ sym $
push-subst-application (⟨ext⟩ g) (λ get b₂ → get ⁻¹ b₁ → get ⁻¹ b₂) ⟩
subst (λ get → get ⁻¹ b₁ → get ⁻¹ b₂)
(⟨ext⟩ g) (get⁻¹-const l₁ b₁ b₂) p ≡⟨ subst-→ {x₁≡x₂ = ⟨ext⟩ g} ⟩∎
subst (_⁻¹ b₂) (⟨ext⟩ g)
(get⁻¹-const l₁ b₁ b₂ (subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p)) ∎
lemma₂ : ∀ g b₁ b₂ p → _
lemma₂ g b₁ b₂ p =
proj₁ (subst (_⁻¹ b₂) (⟨ext⟩ g)
(get⁻¹-const l₁ b₁ b₂
(subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p))) ≡⟨ cong proj₁ $
push-subst-pair {y≡z = ⟨ext⟩ g} _ _ ⟩
subst (λ _ → A) (⟨ext⟩ g)
(proj₁ (get⁻¹-const l₁ b₁ b₂
(subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p))) ≡⟨ subst-const (⟨ext⟩ g) ⟩∎
proj₁ (get⁻¹-const l₁ b₁ b₂ (subst (_⁻¹ b₁) (sym $ ⟨ext⟩ g) p)) ∎
------------------------------------------------------------------------
-- Conversions between different kinds of lenses
-- Higher lenses can be converted to the ones defined above.
higher→ : Higher.Lens A B → Lens A B
higher→ l@(Higher.⟨ _ , _ , _ ⟩) = _≃_.from Lens-as-Σ′
( Higher.Lens.get l
, Higher.get⁻¹-constant l
, Higher.get⁻¹-constant-∘ l
)
-- The conversion preserves getters and setters.
higher→-preserves-getters-and-setters :
Preserves-getters-and-setters-→ A B higher→
higher→-preserves-getters-and-setters Higher.⟨ _ , _ , _ ⟩ =
refl _ , refl _
-- A lens of the kind defined above can be converted to a higher one
-- if the codomain is inhabited when it is merely inhabited.
→higher : (∥ B ∥ → B) → Lens A B → Higher.Lens A B
→higher {B = B} {A = A} ∥B∥→B l@(lens _ _ _ _) = record
{ R = ∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b)
; equiv =
A ↔⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∃ λ a → ∃ λ b → Lens.get l a ≡ b) ↔⟨ ∃-comm ⟩
(∃ λ b → Lens.get l ⁻¹ b) ↝⟨ (Σ-cong (inverse PT.∥∥×≃) λ _ → Lens.get⁻¹-constant l _ _) ⟩
(∃ λ ((b , _) : ∥ B ∥ × B) → Lens.get l ⁻¹ (∥B∥→B b)) ↔⟨ inverse Σ-assoc ⟩
(∃ λ (b : ∥ B ∥) → B × Lens.get l ⁻¹ (∥B∥→B b)) ↔⟨ (∃-cong λ _ → ×-comm) ⟩
(∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b) × B) ↔⟨ Σ-assoc ⟩□
(∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b)) × B □
; inhabited = proj₁
}
-- The conversion preserves getters and setters.
→higher-preserves-getters-and-setters :
{B : Set b}
(∥B∥→B : ∥ B ∥ → B) →
Preserves-getters-and-setters-→ A B (→higher ∥B∥→B)
→higher-preserves-getters-and-setters {A = A} ∥B∥→B l@(lens _ _ _ _) =
refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
let a′ = set a b in
_≃_.to-from (Higher.Lens.equiv (→higher ∥B∥→B l)) $ cong₂ _,_
(∣ get a′ ∣ ,
get⁻¹-const (get a′) (∥B∥→B ∣ get a′ ∣) (a′ , refl _) ≡⟨ Σ-≡,≡→≡ (PT.truncation-is-proposition _ _)
(
subst (λ b → get ⁻¹ ∥B∥→B b)
(PT.truncation-is-proposition _ _)
(get⁻¹-const (get a′) (∥B∥→B ∣ get a′ ∣) (a′ , refl _)) ≡⟨ elim¹
(λ {f} _ →
subst (λ b → get ⁻¹ f b)
(PT.truncation-is-proposition _ _)
(get⁻¹-const (get a′) (f ∣ get a′ ∣) (a′ , refl _)) ≡
get⁻¹-const (get a) (f ∣ get a ∣) (a , refl _))
(
subst (λ _ → get ⁻¹ ∥B∥→B ∣ b ∣)
(PT.truncation-is-proposition _ _)
(get⁻¹-const (get a′) (∥B∥→B ∣ b ∣) (a′ , refl _)) ≡⟨ subst-const (PT.truncation-is-proposition _ _) ⟩
get⁻¹-const (get a′) (∥B∥→B ∣ b ∣) (a′ , refl _) ≡⟨ sym $ get⁻¹-const-∘ _ _ _ _ ⟩
get⁻¹-const (get a) (∥B∥→B ∣ b ∣)
(get⁻¹-const (get a′) (get a) (a′ , refl _)) ≡⟨ cong (get⁻¹-const (get a) (∥B∥→B ∣ b ∣)) $
elim¹
(λ {b} eq → get⁻¹-const (get a′) (get a) (a′ , refl _) ≡
get⁻¹-const b (get a) (a′ , eq))
(refl _)
(get-set a b) ⟩
get⁻¹-const (get a) (∥B∥→B ∣ b ∣)
(get⁻¹-const b (get a) (set a b , get-set a b)) ≡⟨⟩
get⁻¹-const (get a) (∥B∥→B ∣ b ∣)
(get⁻¹-const b (get a)
(get⁻¹-const (get a) b (a , refl _))) ≡⟨ cong (λ p → get⁻¹-const (get a) (∥B∥→B ∣ b ∣)
(get⁻¹-const b (get a) p)) $
get⁻¹-const-inverse _ _ _ ⟩
get⁻¹-const (get a) (∥B∥→B ∣ b ∣)
(get⁻¹-const b (get a)
(get⁻¹-const⁻¹ b (get a) (a , refl _))) ≡⟨ cong (get⁻¹-const (get a) (∥B∥→B ∣ b ∣)) $
_≃_.right-inverse-of (get⁻¹-constant _ _) _ ⟩∎
get⁻¹-const (get a) (∥B∥→B ∣ b ∣) (a , refl _) ∎)
(⟨ext⟩ λ _ → cong ∥B∥→B $ PT.truncation-is-proposition _ _) ⟩∎
get⁻¹-const (get a) (∥B∥→B ∣ get a ∣) (a , refl _) ∎) ⟩∎
∣ get a ∣ ,
get⁻¹-const (get a) (∥B∥→B ∣ get a ∣) (a , refl _) ∎)
(get (set a b) ≡⟨ get-set a b ⟩∎
b ∎)
where
open Lens l
-- There is a split surjection from Lens A B to Higher.Lens A B if B
-- is inhabited when it is merely inhabited (assuming univalence).
↠higher :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(∥ B ∥ → B) →
Lens A B ↠ Higher.Lens A B
↠higher {A = A} {B = B} univ ∥B∥→B = record
{ logical-equivalence = record
{ to = →higher ∥B∥→B
; from = higher→
}
; right-inverse-of = λ l →
Higher.lenses-equal-if-setters-equal
univ _ _
(λ _ → ∥B∥→B)
(set (→higher ∥B∥→B (higher→ l)) ≡⟨ proj₂ $ →higher-preserves-getters-and-setters ∥B∥→B (higher→ l) ⟩
Lens.set (higher→ l) ≡⟨ proj₂ $ higher→-preserves-getters-and-setters l ⟩∎
set l ∎)
}
where
open Higher.Lens
-- The split surjection preserves getters and setters.
↠higher-preserves-getters-and-setters :
{A : Set a} {B : Set b}
(univ : Univalence (a ⊔ b))
(∥B∥→B : ∥ B ∥ → B) →
Preserves-getters-and-setters-⇔ A B
(_↠_.logical-equivalence (↠higher univ ∥B∥→B))
↠higher-preserves-getters-and-setters _ ∥B∥→B =
→higher-preserves-getters-and-setters ∥B∥→B
, higher→-preserves-getters-and-setters
-- If B is inhabited when it is merely inhabited and A has positive
-- h-level n, then Higher.Lens A B also has h-level n (assuming
-- univalence).
higher-lens-preserves-h-level-of-domain :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(∥ B ∥ → B) →
∀ n → H-level (1 + n) A → H-level (1 + n) (Higher.Lens A B)
higher-lens-preserves-h-level-of-domain {A = A} {B = B} univ ∥B∥→B n =
H-level (1 + n) A ↝⟨ lens-preserves-h-level-of-domain n ⟩
H-level (1 + n) (Lens A B) ↝⟨ H-level.respects-surjection (↠higher univ ∥B∥→B) (1 + n) ⟩□
H-level (1 + n) (Higher.Lens A B) □
-- Traditional lenses that satisfy some coherence properties can be
-- translated to lenses of the kind defined above.
coherent→ :
Block "conversion" →
Traditional.Coherent-lens A B → Lens A B
coherent→ ⊠ l = _≃_.from Lens-as-Σ′
( get
, (λ b₁ b₂ →
Eq.↔→≃ (gg b₁ b₂) (gg b₂ b₁) (gg∘gg b₁ b₂) (gg∘gg b₂ b₁))
, (λ b₁ b₂ b₃ (a , _) →
Σ-≡,≡→≡
(set (set a b₂) b₃ ≡⟨ set-set a b₂ b₃ ⟩∎
set a b₃ ∎)
(subst (λ a → get a ≡ b₃) (set-set a b₂ b₃)
(get-set (set a b₂) b₃) ≡⟨ subst-∘ _ _ (set-set a b₂ b₃) ⟩
subst (_≡ b₃) (cong get (set-set a b₂ b₃))
(get-set (set a b₂) b₃) ≡⟨ subst-trans-sym {y≡x = cong get (set-set a b₂ b₃)} ⟩
trans (sym (cong get (set-set a b₂ b₃)))
(get-set (set a b₂) b₃) ≡⟨ get-set-set′ _ _ _ ⟩∎
get-set a b₃ ∎))
)
where
open Traditional.Coherent-lens l
get-set-set′ :
∀ a b₁ b₂ →
trans (sym (cong get (set-set a b₁ b₂))) (get-set (set a b₁) b₂) ≡
get-set a b₂
get-set-set′ a b₁ b₂ =
trans (sym (cong get (set-set a b₁ b₂))) (get-set (set a b₁) b₂) ≡⟨ cong (λ eq → trans (sym eq) (get-set _ _)) $
get-set-set _ _ _ ⟩
trans (sym (trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))
(get-set (set a b₁) b₂) ≡⟨ cong (flip trans (get-set _ _)) $
sym-trans _ (sym (get-set _ _)) ⟩
trans (trans (sym (sym (get-set a b₂)))
(sym (get-set (set a b₁) b₂)))
(get-set (set a b₁) b₂) ≡⟨ trans-[trans-sym]- _ (get-set _ _) ⟩
sym (sym (get-set a b₂)) ≡⟨ sym-sym (get-set _ _) ⟩∎
get-set a b₂ ∎
gg : ∀ b₁ b₂ → get ⁻¹ b₁ → get ⁻¹ b₂
gg b₁ b₂ (a , _) = set a b₂ , get-set a b₂
gg∘gg : ∀ b₁ b₂ p → gg b₁ b₂ (gg b₂ b₁ p) ≡ p
gg∘gg b₁ b₂ (a , get-a≡b₂) =
Σ-≡,≡→≡ eq₁
(subst (λ a → get a ≡ b₂) eq₁ (get-set (set a b₁) b₂) ≡⟨ subst-∘ _ _ eq₁ ⟩
subst (_≡ b₂) (cong get eq₁) (get-set (set a b₁) b₂) ≡⟨ subst-trans-sym {y≡x = cong get eq₁} ⟩
trans (sym (cong get eq₁)) (get-set (set a b₁) b₂) ≡⟨ cong (flip trans (get-set (set a b₁) b₂))
lemma₂ ⟩
trans (trans (trans (sym (cong get (set-get a)))
(cong (get ⊚ set a) get-a≡b₂))
(sym (cong get (set-set a b₁ b₂))))
(get-set (set a b₁) b₂) ≡⟨ trans-assoc _ _ (get-set (set a b₁) b₂) ⟩
trans (trans (sym (cong get (set-get a)))
(cong (get ⊚ set a) get-a≡b₂))
(trans (sym (cong get (set-set a b₁ b₂)))
(get-set (set a b₁) b₂)) ≡⟨ trans-assoc _ _ (trans (sym (cong get (set-set a b₁ b₂)))
(get-set (set a b₁) b₂)) ⟩
trans (sym (cong get (set-get a)))
(trans (cong (get ⊚ set a) get-a≡b₂)
(trans (sym (cong get (set-set a b₁ b₂)))
(get-set (set a b₁) b₂))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong (get ⊚ set a) get-a≡b₂) q))
(get-set-get _)
(get-set-set′ _ _ _) ⟩
trans (sym (get-set a (get a)))
(trans (cong (get ⊚ set a) get-a≡b₂)
(get-set a b₂)) ≡⟨ cong (λ eq → trans (sym (eq (get a)))
(trans (cong (get ⊚ set a) get-a≡b₂) (eq b₂))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩
trans (sym (ext⁻¹ (⟨ext⟩ (get-set a)) (get a)))
(trans (cong (get ⊚ set a) get-a≡b₂)
(ext⁻¹ (⟨ext⟩ (get-set a)) b₂)) ≡⟨ elim₁
(λ {f} gs →
trans (sym (ext⁻¹ gs (get a))) (trans (cong f get-a≡b₂) (ext⁻¹ gs b₂)) ≡
get-a≡b₂)
(
trans (sym (ext⁻¹ (refl id) (get a)))
(trans (cong id get-a≡b₂)
(ext⁻¹ (refl id) b₂)) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong id get-a≡b₂) q))
(ext⁻¹-refl _)
(ext⁻¹-refl _) ⟩
trans (sym (refl _))
(trans (cong id get-a≡b₂) (refl _)) ≡⟨ cong₂ trans sym-refl (trans-reflʳ _) ⟩
trans (refl _) (cong id get-a≡b₂) ≡⟨ trans-reflˡ (cong id get-a≡b₂) ⟩
cong id get-a≡b₂ ≡⟨ sym $ cong-id get-a≡b₂ ⟩∎
get-a≡b₂ ∎)
(⟨ext⟩ (get-set a)) ⟩
get-a≡b₂ ∎)
where
eq₁ =
set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩
set a b₂ ≡⟨ cong (set a) (sym get-a≡b₂) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎
lemma₁ =
sym (cong get (cong (set a) (sym get-a≡b₂))) ≡⟨ cong sym $ cong-∘ _ _ (sym get-a≡b₂) ⟩
sym (cong (get ⊚ set a) (sym get-a≡b₂)) ≡⟨ sym $ cong-sym _ (sym get-a≡b₂) ⟩
cong (get ⊚ set a) (sym (sym get-a≡b₂)) ≡⟨ cong (cong (get ⊚ set a)) $ sym-sym get-a≡b₂ ⟩∎
cong (get ⊚ set a) get-a≡b₂ ∎
lemma₂ =
sym (cong get eq₁) ≡⟨⟩
sym (cong get
(trans (set-set a b₁ b₂)
(trans (cong (set a) (sym get-a≡b₂))
(set-get a)))) ≡⟨ cong sym $
cong-trans _ _ (trans (cong (set a) (sym get-a≡b₂)) (set-get a)) ⟩
sym (trans (cong get (set-set a b₁ b₂))
(cong get (trans (cong (set a) (sym get-a≡b₂))
(set-get a)))) ≡⟨ cong (λ eq → sym (trans _ eq)) $
cong-trans _ _ (set-get a) ⟩
sym (trans (cong get (set-set a b₁ b₂))
(trans (cong get (cong (set a) (sym get-a≡b₂)))
(cong get (set-get a)))) ≡⟨ sym-trans _ (trans (cong get (cong (set a) (sym get-a≡b₂)))
(cong get (set-get a))) ⟩
trans (sym (trans (cong get (cong (set a) (sym get-a≡b₂)))
(cong get (set-get a))))
(sym (cong get (set-set a b₁ b₂))) ≡⟨ cong (flip trans (sym (cong get (set-set a b₁ b₂)))) $
sym-trans _ (cong get (set-get a)) ⟩
trans (trans (sym (cong get (set-get a)))
(sym (cong get (cong (set a) (sym get-a≡b₂)))))
(sym (cong get (set-set a b₁ b₂))) ≡⟨ cong (λ eq → trans (trans (sym (cong get (set-get a))) eq)
(sym (cong get (set-set a b₁ b₂))))
lemma₁ ⟩∎
trans (trans (sym (cong get (set-get a)))
(cong (get ⊚ set a) get-a≡b₂))
(sym (cong get (set-set a b₁ b₂))) ∎
-- The conversion preserves getters and setters.
coherent→-preserves-getters-and-setters :
(b : Block "conversion") →
Preserves-getters-and-setters-→ A B (coherent→ b)
coherent→-preserves-getters-and-setters ⊠ _ =
refl _ , refl _
-- If A is a set, then Traditional.Lens A B is equivalent to Lens A B.
traditional≃ :
Block "conversion" →
Is-set A → Traditional.Lens A B ≃ Lens A B
traditional≃ {A = A} {B = B} b@⊠ A-set = Eq.↔→≃
(Traditional.Lens A B ↔⟨ Traditional.≃coherent A-set ⟩
Traditional.Coherent-lens A B ↝⟨ coherent→ b ⟩□
Lens A B □)
Lens.traditional-lens
(λ l → _≃_.from (equality-characterisation-for-sets A-set)
( (λ _ → refl _)
, (λ b₁ b₂ p@(a , _) →
let l′ = traditional-lens l
l″ = coherent→ b (_≃_.to (Traditional.≃coherent A-set) l′)
in
proj₁ (get⁻¹-const l″ b₁ b₂
(subst (_⁻¹ b₁) (sym $ ⟨ext⟩ λ _ → refl _) p)) ≡⟨ cong (λ eq → proj₁ (get⁻¹-const l″ b₁ b₂ (subst (_⁻¹ b₁) (sym eq) p)))
ext-refl ⟩
proj₁ (get⁻¹-const l″ b₁ b₂ (subst (_⁻¹ b₁) (sym (refl _)) p)) ≡⟨ cong (λ eq → proj₁ (get⁻¹-const l″ b₁ b₂ (subst (_⁻¹ b₁) eq p)))
sym-refl ⟩
proj₁ (get⁻¹-const l″ b₁ b₂ (subst (_⁻¹ b₁) (refl _) p)) ≡⟨ cong (proj₁ ⊚ get⁻¹-const l″ b₁ b₂) $
subst-refl _ _ ⟩
proj₁ (get⁻¹-const l″ b₁ b₂ p) ≡⟨⟩
set l (proj₁ p) b₂ ≡⟨⟩
proj₁ (get⁻¹-const l (get l a) b₂ (a , refl _)) ≡⟨ elim¹
(λ {b} eq →
proj₁ (get⁻¹-const l (get l a) b₂ (a , refl _)) ≡
proj₁ (get⁻¹-const l b b₂ (a , eq)))
(refl _)
(proj₂ p) ⟩∎
proj₁ (get⁻¹-const l b₁ b₂ p) ∎)
))
(λ _ →
_↔_.from (Traditional.equality-characterisation-for-sets A-set)
(refl _))
where
open Lens
B-set : Traditional.Lens A B → A → Is-set B
B-set l a =
Traditional.h-level-respects-lens-from-inhabited 2 l a A-set
-- The equivalence preserves getters and setters.
traditional≃-preserves-getters-and-setters :
{A : Set a}
(b : Block "conversion")
(s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence (traditional≃ b s))
traditional≃-preserves-getters-and-setters ⊠ _ =
(λ _ → refl _ , refl _)
, (λ _ → refl _ , refl _)
-- If B is inhabited when it is merely inhabited, then
-- Traditional.Coherent-lens A B is logically equivalent to
-- Higher.Lens A B.
coherent⇔higher :
Block "conversion" →
(∥ B ∥ → B) →
Traditional.Coherent-lens A B ⇔ Higher.Lens A B
coherent⇔higher {B = B} {A = A} b ∥B∥→B = record
{ to = Traditional.Coherent-lens A B ↝⟨ coherent→ b ⟩
Lens A B ↝⟨ →higher ∥B∥→B ⟩□
Higher.Lens A B □
; from = Higher.Lens.coherent-lens
}
-- The logical equivalence preserves getters and setters.
coherent⇔higher-preserves-getters-and-setters :
{B : Set b}
(bc : Block "conversion")
(∥B∥→B : ∥ B ∥ → B) →
Preserves-getters-and-setters-⇔ A B (coherent⇔higher bc ∥B∥→B)
coherent⇔higher-preserves-getters-and-setters b ∥B∥→B =
Preserves-getters-and-setters-→-∘
{f = →higher ∥B∥→B}
{g = coherent→ b}
(→higher-preserves-getters-and-setters ∥B∥→B)
(coherent→-preserves-getters-and-setters b)
, (λ _ → refl _ , refl _)
-- If B is inhabited when it is merely inhabited, then there is a
-- split surjection from Traditional.Coherent-lens A B to
-- Higher.Lens A B (assuming univalence).
coherent↠higher :
{A : Set a} {B : Set b} →
Block "conversion" →
Univalence (a ⊔ b) →
(∥ B ∥ → B) →
Traditional.Coherent-lens A B ↠ Higher.Lens A B
coherent↠higher {A = A} {B = B} b univ ∥B∥→B = record
{ logical-equivalence = coherent⇔higher b ∥B∥→B
; right-inverse-of = λ l →
Higher.lenses-equal-if-setters-equal univ _ _ (λ _ → ∥B∥→B) $
proj₂ (proj₁ (coherent⇔higher-preserves-getters-and-setters
b ∥B∥→B)
_)
}
-- The split surjection preserves getters and setters.
coherent↠higher-preserves-getters-and-setters :
{A : Set a} {B : Set b}
(bc : Block "conversion")
(univ : Univalence (a ⊔ b))
(∥B∥→B : ∥ B ∥ → B) →
Preserves-getters-and-setters-⇔ A B
(_↠_.logical-equivalence (coherent↠higher bc univ ∥B∥→B))
coherent↠higher-preserves-getters-and-setters b _ ∥B∥→B =
coherent⇔higher-preserves-getters-and-setters b ∥B∥→B
------------------------------------------------------------------------
-- Composition
-- A lemma used to define composition.
∘⁻¹≃ :
Block "∘⁻¹≃" →
(f : B → C) (g : A → B) →
f ⊚ g ⁻¹ z ≃ ∃ λ ((y , _) : f ⁻¹ z) → g ⁻¹ y
∘⁻¹≃ {z = z} ⊠ f g =
f ⊚ g ⁻¹ z ↔⟨⟩
(∃ λ a → f (g a) ≡ z) ↔⟨ (∃-cong λ _ → ∃-intro _ _) ⟩
(∃ λ a → ∃ λ y → f y ≡ z × y ≡ g a) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩
(∃ λ a → ∃ λ ((y , _) : f ⁻¹ z) → y ≡ g a) ↔⟨ ∃-comm ⟩
(∃ λ ((y , _) : f ⁻¹ z) → ∃ λ a → y ≡ g a) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ≡-comm) ⟩
(∃ λ ((y , _) : f ⁻¹ z) → g ⁻¹ y) □
-- Composition.
infixr 9 _∘_
_∘_ : Lens B C → Lens A B → Lens A C
l₁@(lens _ _ _ _) ∘ l₂@(lens _ _ _ _) = block λ b → _≃_.from Lens-as-Σ′
( get l₁ ⊚ get l₂
, (λ c₁ c₂ →
get l₁ ⊚ get l₂ ⁻¹ c₁ ↝⟨ ∘⁻¹≃ b _ _ ⟩
(∃ λ ((b , _) : get l₁ ⁻¹ c₁) → get l₂ ⁻¹ b) ↝⟨ (Σ-cong (get⁻¹-constant l₁ c₁ c₂) λ p@(b , _) →
get⁻¹-constant l₂ b (proj₁ (get⁻¹-const l₁ c₁ c₂ p))) ⟩
(∃ λ ((b , _) : get l₁ ⁻¹ c₂) → get l₂ ⁻¹ b) ↝⟨ inverse $ ∘⁻¹≃ b _ _ ⟩□
get l₁ ⊚ get l₂ ⁻¹ c₂ □)
, (λ c₁ c₂ c₃ p →
_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃)
(λ {p@(b , _)} →
get⁻¹-const l₂ b (proj₁ (get⁻¹-const l₁ c₂ c₃ p)))
(_≃_.to (∘⁻¹≃ b _ _)
(_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₁ c₂)
(λ {p@(b , _)} →
get⁻¹-const l₂ b
(proj₁ (get⁻¹-const l₁ c₁ c₂ p)))
(_≃_.to (∘⁻¹≃ b _ _) p))))) ≡⟨ cong (λ x → _≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃)
(λ {p@(b , _)} →
get⁻¹-const l₂ b
(proj₁ (get⁻¹-const l₁ c₂ c₃ p))) x)) $
_≃_.right-inverse-of (∘⁻¹≃ b _ _) _ ⟩
_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃)
(λ {p@(b , _)} →
get⁻¹-const l₂ b (proj₁ (get⁻¹-const l₁ c₂ c₃ p)))
(Σ-map (get⁻¹-const l₁ c₁ c₂)
(λ {p@(b , _)} →
get⁻¹-const l₂ b (proj₁ (get⁻¹-const l₁ c₁ c₂ p)))
(_≃_.to (∘⁻¹≃ b _ _) p))) ≡⟨⟩
_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃ ⊚ get⁻¹-const l₁ c₁ c₂)
(λ {p@(b , _)} →
get⁻¹-const l₂ (proj₁ (get⁻¹-const l₁ c₁ c₂ p))
(proj₁ (get⁻¹-const l₁ c₂ c₃
(get⁻¹-const l₁ c₁ c₂ p))) ⊚
get⁻¹-const l₂ b (proj₁ (get⁻¹-const l₁ c₁ c₂ p)))
(_≃_.to (∘⁻¹≃ b _ _) p)) ≡⟨ cong (λ f → _≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃ ⊚ get⁻¹-const l₁ c₁ c₂)
(λ {p} → f {p})
(_≃_.to (∘⁻¹≃ b _ _) p))) $
(implicit-extensionality ext λ p →
⟨ext⟩ (get⁻¹-const-∘ l₂ _ (proj₁ (get⁻¹-const l₁ c₁ c₂ p)) _)) ⟩
_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₂ c₃ ⊚ get⁻¹-const l₁ c₁ c₂)
(λ {p@(b , _)} →
get⁻¹-const l₂ b
(proj₁ (get⁻¹-const l₁ c₂ c₃
(get⁻¹-const l₁ c₁ c₂ p))))
(_≃_.to (∘⁻¹≃ b _ _) p)) ≡⟨ cong (λ f → _≃_.from (∘⁻¹≃ b _ _)
(Σ-map f (λ {p@(b , _)} → get⁻¹-const l₂ b (proj₁ (f p)))
(_≃_.to (∘⁻¹≃ b _ _) p))) $
⟨ext⟩ (get⁻¹-const-∘ l₁ _ _ _) ⟩∎
_≃_.from (∘⁻¹≃ b _ _)
(Σ-map (get⁻¹-const l₁ c₁ c₃)
(λ {p@(b , _)} →
get⁻¹-const l₂ b (proj₁ (get⁻¹-const l₁ c₁ c₃ p)))
(_≃_.to (∘⁻¹≃ b _ _) p)) ∎)
)
where
open Lens
-- The setter of the resulting lens is defined in the "right" way.
set-∘≡ :
(l₁ : Lens B C) (l₂ : Lens A B) →
Lens.set (l₁ ∘ l₂) a c ≡
Lens.set l₂ a (Lens.set l₁ (Lens.get l₂ a) c)
set-∘≡ {a = a} {c = c} l₁@(lens _ _ _ _) l₂@(lens _ _ _ _) =
proj₁ (get⁻¹-const l₂ (get l₂ a)
(proj₁ (get⁻¹-const l₁ c′ c
( get l₂ a
, _↔_.to (subst (λ b → get l₁ b ≡ c′ ↔ c′ ≡ c′)
(refl _) F.id)
(refl _))
))
(a , sym (refl _))) ≡⟨ cong₂ (λ f eq → proj₁ (get⁻¹-const l₂ _
(proj₁ (get⁻¹-const l₁ _ _
(_ , _↔_.to f (refl _)))) (_ , eq)))
(subst-refl _ _)
sym-refl ⟩
proj₁ (get⁻¹-const l₂ (get l₂ a)
(proj₁ (get⁻¹-const l₁ c′ c (get l₂ a , refl _)))
(a , refl _)) ≡⟨⟩
set l₂ a (set l₁ (get l₂ a) c) ∎
where
open Lens
c′ = get l₁ (get l₂ a)
-- Composition for higher lenses, defined under the assumption that
-- the resulting codomain is inhabited if it is merely inhabited.
infix 9 ⟨_⟩_⊚_
⟨_⟩_⊚_ :
(∥ C ∥ → C) →
Higher.Lens B C → Higher.Lens A B → Higher.Lens A C
⟨_⟩_⊚_ {C = C} {B = B} {A = A} ∥C∥→C = curry (
Higher.Lens B C × Higher.Lens A B ↝⟨ Σ-map higher→ higher→ ⟩
Lens B C × Lens A B ↝⟨ uncurry _∘_ ⟩
Lens A C ↝⟨ →higher ∥C∥→C ⟩□
Higher.Lens A C □)
-- The setter of the resulting lens is defined in the "right" way.
set-⊚≡ :
∀ ∥C∥→C (l₁ : Higher.Lens B C) (l₂ : Higher.Lens A B) →
Higher.Lens.set (⟨ ∥C∥→C ⟩ l₁ ⊚ l₂) a c ≡
Higher.Lens.set l₂ a (Higher.Lens.set l₁ (Higher.Lens.get l₂ a) c)
set-⊚≡ {a = a} {c = c} ∥C∥→C l₁ l₂ =
set (⟨ ∥C∥→C ⟩ l₁ ⊚ l₂) a c ≡⟨ cong (λ f → f a c) $ proj₂ $
→higher-preserves-getters-and-setters ∥C∥→C (higher→ l₁ ∘ higher→ l₂) ⟩
Lens.set (higher→ l₁ ∘ higher→ l₂) a c ≡⟨ set-∘≡ (higher→ l₁) (higher→ l₂) ⟩
Lens.set (higher→ l₂) a
(Lens.set (higher→ l₁) (Lens.get (higher→ l₂) a) c) ≡⟨ cong (λ f → Lens.set (higher→ l₂) a (Lens.set (higher→ l₁) (f a) c)) $ proj₁ $
higher→-preserves-getters-and-setters l₂ ⟩
Lens.set (higher→ l₂) a (Lens.set (higher→ l₁) (get l₂ a) c) ≡⟨ cong (λ f → Lens.set (higher→ l₂) a (f (get l₂ a) c)) $ proj₂ $
higher→-preserves-getters-and-setters l₁ ⟩
Lens.set (higher→ l₂) a (set l₁ (get l₂ a) c) ≡⟨ cong (λ f → f a (set l₁ (get l₂ a) c)) $ proj₂ $
higher→-preserves-getters-and-setters l₂ ⟩∎
set l₂ a (set l₁ (get l₂ a) c) ∎
where
open Higher.Lens
-- The implementation of composition for higher lenses given above
-- matches the one in Higher when both are defined (assuming
-- univalence).
⊚≡∘ :
∀ a b {A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} →
Univalence (a ⊔ b ⊔ c) →
(∥C∥→C : ∥ C ∥ → C) →
⟨_⟩_⊚_ {B = B} {A = A} ∥C∥→C ≡
Higher.Lens-combinators.⟨ a , b ⟩_∘_
⊚≡∘ a b {A = A} {B = B} {C = C} univ ∥C∥→C =
Higher.Lens-combinators.composition≡∘
a b univ ∥C∥→C ⟨ ∥C∥→C ⟩_⊚_
(λ l₁ l₂ _ _ → set-⊚≡ ∥C∥→C l₁ l₂)
| {
"alphanum_fraction": 0.3994531593,
"avg_line_length": 45.099909991,
"ext": "agda",
"hexsha": "52b5be80acaa58d7fb5d59315704c0cad9aecee2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Equivalent-preimages.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Equivalent-preimages.agda",
"max_line_length": 153,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Equivalent-preimages.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 17815,
"size": 50106
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Join where
open import Cubical.HITs.Join.Base public
-- open import Cubical.HITs.Join.Properties public
| {
"alphanum_fraction": 0.7547169811,
"avg_line_length": 22.7142857143,
"ext": "agda",
"hexsha": "b949fcec822897a448cc4088e950f86d332be833",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/cubical",
"max_forks_repo_path": "Cubical/HITs/Join.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/cubical",
"max_issues_repo_path": "Cubical/HITs/Join.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/cubical",
"max_stars_repo_path": "Cubical/HITs/Join.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 41,
"size": 159
} |
-- imports
open import Data.Nat as ℕ using (ℕ; suc; zero; _+_; _∸_)
open import Data.Vec as Vec using (Vec; _∷_; []; tabulate; foldr)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Function using (_∘_; const; id)
open import Data.List as List using (List; _∷_; [])
open import Data.Maybe using (Maybe; just; nothing)
-- Without square cutoff optimization
module Simple where
primes : ∀ n → List (Fin n)
primes zero = []
primes (suc zero) = []
primes (suc (suc zero)) = []
primes (suc (suc (suc m))) = sieve (tabulate (just ∘ suc))
where
sieve : ∀ {n} → Vec (Maybe (Fin (2 + m))) n → List (Fin (3 + m))
sieve [] = []
sieve (nothing ∷ xs) = sieve xs
sieve (just x ∷ xs) = suc x ∷ sieve (foldr B remove (const []) xs x)
where
B = λ n → ∀ {i} → Fin i → Vec (Maybe (Fin (2 + m))) n
remove : ∀ {n} → Maybe (Fin (2 + m)) → B n → B (suc n)
remove _ ys zero = nothing ∷ ys x
remove y ys (suc z) = y ∷ ys z
-- With square cutoff optimization
module SquareOpt where
primes : ∀ n → List (Fin n)
primes zero = []
primes (suc zero) = []
primes (suc (suc zero)) = []
primes (suc (suc (suc m))) = sieve 1 m (Vec.tabulate (just ∘ Fin.suc ∘ Fin.suc))
where
sieve : ∀ {n} → ℕ → ℕ → Vec (Maybe (Fin (3 + m))) n → List (Fin (3 + m))
sieve _ zero = List.mapMaybe id ∘ Vec.toList
sieve _ (suc _) [] = []
sieve i (suc l) (nothing ∷ xs) = sieve (suc i) (l ∸ i ∸ i) xs
sieve i (suc l) (just x ∷ xs) = x ∷ sieve (suc i) (l ∸ i ∸ i) (Vec.foldr B remove (const []) xs i)
where
B = λ n → ℕ → Vec (Maybe (Fin (3 + m))) n
remove : ∀ {i} → Maybe (Fin (3 + m)) → B i → B (suc i)
remove _ ys zero = nothing ∷ ys i
remove y ys (suc j) = y ∷ ys j
| {
"alphanum_fraction": 0.5342541436,
"avg_line_length": 38.5106382979,
"ext": "agda",
"hexsha": "aa17f521e88209f8484cf153212f8f1c7e1d13bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_forks_repo_licenses": [
"Info-ZIP"
],
"max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_forks_repo_path": "Task/Sieve-of-Eratosthenes/Agda/sieve-of-eratosthenes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Info-ZIP"
],
"max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_issues_repo_path": "Task/Sieve-of-Eratosthenes/Agda/sieve-of-eratosthenes.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_stars_repo_licenses": [
"Info-ZIP"
],
"max_stars_repo_name": "LaudateCorpus1/RosettaCodeData",
"max_stars_repo_path": "Task/Sieve-of-Eratosthenes/Agda/sieve-of-eratosthenes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T13:42:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-05T13:42:20.000Z",
"num_tokens": 640,
"size": 1810
} |
-- Andreas, 2020-09-28, issue #4950
-- Ranges for missing definitions should not include
-- non-missing definitions.
A B C : Set₁ -- only B should be highlighted
A = Set
C = Set
-- The following names are declared but not accompanied by a
-- definition: B
-- Error range was:
-- line,3-13
-- The error range should not include C nor Set₁.
-- line,3-4
| {
"alphanum_fraction": 0.6974789916,
"avg_line_length": 19.8333333333,
"ext": "agda",
"hexsha": "a347f7b85e58149a67f9b38b7c016d39d952b756",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4950.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4950.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4950.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 102,
"size": 357
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Filter where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; _≢_; refl; subst; cong; cong₂) renaming (sym to ≡-sym; trans to ≡-trans)
open import Level using (Level; _⊔_)
open import Data.Empty using (⊥)
open import Data.Product using (∃-syntax; _,_)
open import Relation.Unary using (Pred; _∈_)
open import Relation.Binary using (Rel; Transitive)
open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_)
-- Local imports
open import Dodo.Unary.Equality
open import Dodo.Unary.Unique
open import Dodo.Binary.Equality
open import Dodo.Binary.Transitive
-- # Definitions
-- | A value of type `A` with a proof that it satisfies the given predicate `P`.
--
--
-- # Design Decision: Alternative to `P x`
--
-- One might argue that a function could just as well take:
-- > f : {x : A} → P x → ...
--
-- In that case, the `with-pred` constructor adds nothing. However, crucially,
-- the inhabitant of `A` is /not/ included in the type signature of `WithPred`.
-- This means, a relation may be defined over elements of type `WithPred`.
-- While a relation /cannot/ be defined over elements of type `P x`, because
-- `x` varies.
data WithPred {a ℓ : Level} {A : Set a} (P : Pred A ℓ) : Set (a ⊔ ℓ) where
with-pred : (x : A) → P x → WithPred P
-- | Helper for extracting element equality from an instance of `WithPred`.
--
-- This is tricky to unify otherwise in larger contexts, as `Px` and `Py` have
-- different /types/ when `x` and `y` are unequal.
with-pred-≡ : ∀ {a ℓ : Level} {A : Set a} {P : Pred A ℓ} {x y : A} {Px : P x} {Py : P y}
→ with-pred x Px ≡ with-pred y Py
-------------------------------
→ x ≡ y
with-pred-≡ refl = refl
-- | Instances of `WithPred` are equal if they are defined over the same value,
-- and its predicate is unique.
with-pred-unique : ∀ {a ℓ : Level} {A : Set a} {P : Pred A ℓ}
→ UniquePred P
→ {x y : A}
→ x ≡ y
→ (Px : P x) (Py : P y)
-------------------------------
→ with-pred x Px ≡ with-pred y Py
with-pred-unique uniqueP {x} refl Px Py = cong (with-pred x) (uniqueP _ Px Py)
with-pred-≢ : ∀ {a ℓ : Level} {A : Set a} {P : Pred A ℓ}
→ UniquePred P
→ {x y : A} {Px : P x} {Py : P y}
→ with-pred x Px ≢ with-pred y Py
-------------------------------
→ x ≢ y
with-pred-≢ uniqueP Px≢Py x≡y = Px≢Py (with-pred-unique uniqueP x≡y _ _)
-- | A relation whose elements all satisfy `P`.
--
-- Note that this differs from defining:
-- > R ∩₂ ( P ×₂ P )
--
-- In that case, the type signature is still identical to the type signature of
-- `R` (except for the universe level). However, `filter-rel` alters the type,
-- which proves no other inhabitants can exist.
--
-- This is in particular useful for properties that are declared over an entire
-- relation (such as `Trichotomous`), while they should only hold over a subset
-- of it.
--
--
-- # Example
--
-- For instance, consider:
-- (1) > Trichotomous _≡_ (filter-rel P R)
-- and
-- (2) > Trichotomous _≡_ (R ∩₂ ( P ×₂ P ))
--
-- Where the corresponding types are:
-- > R : Rel A ℓzero
-- > P : Pred A ℓzero
--
-- The type of the relation in (1) is then:
-- > filter-rel P R : Rel (WithPred P) ℓzero
-- While the type of the relation in (2) is:
-- > (R ∩₂ (P ×₂ P)) : Rel A ℓzero
--
-- So, for (2), defining `Trichotomous` means that it finds an instance of
-- `P` for both elements, even when no such `P x` exists; Which leads to a
-- contradiction. Whereas (1) will only find the relation if `P` holds for both
-- elements.
--
-- Effectively, (2) implies:
-- > ∀ (x : A) → P x
--
-- Whereas (1) makes no such strong claims.
filter-rel : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a}
→ (P : Pred A ℓ₁)
→ Rel A ℓ₂
-------------------
→ Rel (WithPred P) ℓ₂
filter-rel P R (with-pred x Px) (with-pred y Py) = R x y
-- | Effectively the inverse of `filter-rel`.
--
-- It loses the type-level restrictions, but preserves the restrictions on
-- value-level.
unfilter-rel : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a}
→ {P : Pred A ℓ₁}
→ Rel (WithPred P) ℓ₂
-------------------
→ Rel A (ℓ₁ ⊔ ℓ₂)
unfilter-rel R x y = ∃[ Px ] ∃[ Py ] R (with-pred x Px) (with-pred y Py)
-- | Helper for unwrapping the value from the `with-pred` constructor.
un-with-pred : {a ℓ : Level} {A : Set a} {P : Pred A ℓ}
→ WithPred P
----------
→ A
un-with-pred (with-pred x _) = x
⁺-strip-filter : {a ℓ₁ ℓ₂ : Level} {A : Set a}
→ {P : Pred A ℓ₁}
→ {R : Rel A ℓ₂}
→ {x y : A}
→ {Px : P x} {Py : P y}
→ TransClosure (filter-rel P R) (with-pred x Px) (with-pred y Py)
---------------------------------------------------------------
→ TransClosure R x y
⁺-strip-filter [ x∼y ] = [ x∼y ]
⁺-strip-filter (_∷_ {_} {with-pred z Pz} Rxz R⁺zy) = Rxz ∷ ⁺-strip-filter R⁺zy
-- | Apply a relation filter to a chain /from right to left/.
--
-- This applies when a predicate `P x` is true whenever `R x y` and `P y` are true.
-- Then, for any chain where `P` holds for the final element, it holds for every
-- element in the chain.
⁺-filter-relˡ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂}
→ (f : ∀ {x y : A} → P y → R x y → P x)
→ {x y : A}
→ (Px : P x) (Py : P y)
→ (R⁺xy : TransClosure R x y)
---------------------------------------------------------------
→ TransClosure (filter-rel P R) (with-pred x Px) (with-pred y Py)
⁺-filter-relˡ f Px Py [ Rxy ] = [ Rxy ]
⁺-filter-relˡ f Px Py ( Rxz ∷ R⁺zy ) = Rxz ∷ ⁺-filter-relˡ f (⁺-predˡ f R⁺zy Py) Py R⁺zy
-- | Apply a relation filter to a chain /from left to right/.
--
-- This applies when a predicate `P y` is true whenever `R x y` and `P x` are true.
-- Then, for any chain where `P` holds for the first element, it holds for every
-- element in the chain.
⁺-filter-relʳ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂}
→ (f : ∀ {x y : A} → P x → R x y → P y)
→ {x y : A}
→ (Px : P x) (Py : P y)
→ (R⁺xy : TransClosure R x y)
---------------------------------------------------------------
→ TransClosure (filter-rel P R) (with-pred x Px) (with-pred y Py)
⁺-filter-relʳ f Px Py [ Rxy ] = [ Rxy ]
⁺-filter-relʳ f Px Py ( Rxz ∷ R⁺zy ) = Rxz ∷ ⁺-filter-relʳ f (f Px Rxz) Py R⁺zy
-- # Properties
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where
with-pred-⊆₁ :
P ⊆₁ Q
→ WithPred P
----------
→ WithPred Q
with-pred-⊆₁ P⊆Q (with-pred x Px) = with-pred x (⊆₁-apply P⊆Q Px)
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} where
filter-rel-⊆₂ :
(R : Rel A ℓ₁)
→ {P : Pred A ℓ₂}
----------------------------------
→ unfilter-rel (filter-rel P R) ⊆₂ R
filter-rel-⊆₂ R {P} = ⊆: ⊆-proof
where
⊆-proof : unfilter-rel (filter-rel P R) ⊆₂' R
⊆-proof _ _ (_ , _ , Rxy) = Rxy
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Rel A ℓ₃} where
filter-rel-preserves-⊆₁ :
P ⊆₁ Q
--------------------------------------------------------------
→ unfilter-rel (filter-rel P R) ⊆₂ unfilter-rel (filter-rel Q R)
filter-rel-preserves-⊆₁ P₁⊆P₂ = ⊆: lemma
where
lemma : unfilter-rel (filter-rel P R) ⊆₂' unfilter-rel (filter-rel Q R)
lemma _ _ (P₁x , P₁y , Qxy) = (⊆₁-apply P₁⊆P₂ P₁x , ⊆₁-apply P₁⊆P₂ P₁y , Qxy)
-- |
--
-- Note that this does /not/ hold in general for subsets of relations.
-- That is, the following does /not/ hold:
-- > Q ⊆₂ R → Transitive R → Transitive Q
--
-- After all, if `Q x y` and `Q y z` hold, then `R x y` and `R y z` hold,
-- then `R x z` holds. However, it does not mean that `Q x z` holds.
trans-filter-rel-⊆₁ :
P ⊆₁ Q
→ Transitive (filter-rel Q R)
---------------------------
→ Transitive (filter-rel P R)
trans-filter-rel-⊆₁ P⊆Q transQR {Pi} {Pj} {Pk} Rij Rjk =
let Qi = with-pred-⊆₁ P⊆Q Pi
Qj = with-pred-⊆₁ P⊆Q Pj
Qk = with-pred-⊆₁ P⊆Q Pk
in Q⇒P {Pi} {Pk} (transQR {Qi} {Qj} {Qk} (P⇒Q {Pi} {Pj} Rij) (P⇒Q {Pj} {Pk} Rjk))
where
P⇒Q : ∀ {x y : WithPred P} → filter-rel P R x y → filter-rel Q R (with-pred-⊆₁ P⊆Q x) (with-pred-⊆₁ P⊆Q y)
P⇒Q {with-pred _ _} {with-pred _ _} Rxy = Rxy
Q⇒P : ∀ {x y : WithPred P} → filter-rel Q R (with-pred-⊆₁ P⊆Q x) (with-pred-⊆₁ P⊆Q y) → filter-rel P R x y
Q⇒P {with-pred _ _} {with-pred _ _} Rxy = Rxy
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} {Q : Rel A ℓ₃} where
filter-rel-preserved-⊆₂ :
R ⊆₂ Q
--------------------------------------------------------------
→ unfilter-rel (filter-rel P R) ⊆₂ unfilter-rel (filter-rel P Q)
filter-rel-preserved-⊆₂ R⊆Q = ⊆: lemma
where
lemma : unfilter-rel (filter-rel P R) ⊆₂' unfilter-rel (filter-rel P Q)
lemma x y (Px , Py , Rxy) = Px , Py , ⊆₂-apply R⊆Q Rxy
-- # Operations
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {R : Rel A ℓ₁} {P : Pred A ℓ₂} {x y : A} where
filter-rel-dom :
unfilter-rel (filter-rel P R) x y
---------------------------------
→ x ∈ P
filter-rel-dom (Px , Py , Rxy) = Px
filter-rel-codom :
unfilter-rel (filter-rel P R) x y
---------------------------------
→ y ∈ P
filter-rel-codom (Px , Py , Rxy) = Py
| {
"alphanum_fraction": 0.5556399957,
"avg_line_length": 34.6278195489,
"ext": "agda",
"hexsha": "938cb4b2047bbac767736ce033785aaebb9227aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Filter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Filter.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Filter.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3354,
"size": 9211
} |
module _ where
open import DeadCodePatSyn.Lib
typeOf : {A : Set} → A → Set
typeOf {A} _ = A
-- Check that pattern synonyms count when computing dead code
f : typeOf not-hidden → Set₁
f not-hidden = Set
| {
"alphanum_fraction": 0.7038834951,
"avg_line_length": 17.1666666667,
"ext": "agda",
"hexsha": "278ec2dbbb848e0810fad9923028f5a5c5532677",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/DeadCodePatSyn.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/DeadCodePatSyn.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/DeadCodePatSyn.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 206
} |
module Hide where
record 𝔹ottom : Set₁ where
field
⊥ : Set
open 𝔹ottom ⦃ … ⦄ public
𝔹ottomPrelude : 𝔹ottom
𝔹ottomPrelude = record { ⊥ = P.⊥ } where
open import Prelude.Empty as P
instance instance𝔹ottom : 𝔹ottom
instance𝔹ottom = 𝔹ottomPrelude
| {
"alphanum_fraction": 0.7215686275,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "ce675e13b7f1b55f6a108b7119ba274b1b143484",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Hide.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Hide.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Hide.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 102,
"size": 255
} |
module All where
import Prelude
import Star
import Nat
import List
import Vec
import Elem
import Fin
import Modal
import Lambda
import Span
import MapTm
import Examples
| {
"alphanum_fraction": 0.8352941176,
"avg_line_length": 11.3333333333,
"ext": "agda",
"hexsha": "3d8d371cf1d54491a427382446c87e8a97f8dc11",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM6/Path/All.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM6/Path/All.agda",
"max_line_length": 16,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM6/Path/All.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 42,
"size": 170
} |
-- Andreas, 2020-12-15, re PR #5020
-- Test error message "Must not specify multiple frontends"
-- See respective .flags file
-- Expected error:
-- Must not specify multiple frontends (--interaction, --interaction-json)
| {
"alphanum_fraction": 0.7297297297,
"avg_line_length": 27.75,
"ext": "agda",
"hexsha": "0eeb700e339592853af4c1c387fd6ae464451274",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/MultipleFrontEnds.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/MultipleFrontEnds.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/MultipleFrontEnds.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 54,
"size": 222
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.