Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Equalizer.Properties {o ℓ e} (C : Category o ℓ e) where
open import Categories.Diagram.Equalizer C
open import Categories.Morphism C
open import Categories.Morphism.Reasoning C
private
module C = Category C
open C
variable
X Y Z : Obj
module _ {f g : X ⇒ Y} (equalizer : Equalizer f g) where
open Equalizer equalizer
open HomReasoning
equalizer-≈⇒≈ : ∀ {h} → arr ∘ h ≈ id → f ≈ g
equalizer-≈⇒≈ {h} eq = begin
f ≈⟨ introʳ eq ⟩
f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩
(g ∘ arr) ∘ h ≈⟨ cancelʳ eq ⟩
g ∎
| {
"alphanum_fraction": 0.6226993865,
"avg_line_length": 23.2857142857,
"ext": "agda",
"hexsha": "7943b4831f4a790f080390ddf81b24a7216d6e16",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda",
"max_line_length": 81,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Equalizer/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 229,
"size": 652
} |
-- {-# OPTIONS --sized-types --show-implicit #-}
module _ where
open import Common.Size
data Either (A B : Set) : Set where
left : A → Either A B
right : B → Either A B
caseEither : ∀{A B C : Set} → Either A B → (A → C) → (B → C) → C
caseEither (left a) l r = l a
caseEither (right b) l r = r b
data Nat {i : Size} : Set where
zero : Nat
suc : {i' : Size< i} → Nat {i'} → Nat
-- subtraction is non size increasing
sub : {size : Size} → Nat {size} → Nat {∞} → Nat {size}
sub zero n = zero
sub (suc m) zero = suc m
sub (suc m) (suc n) = sub m n
-- div' m n computes ceiling(m/(n+1))
div' : {size : Size} → Nat {size} → Nat → Nat {size}
div' zero n = zero
div' (suc m) n = suc (div' (sub m n) n)
-- one can use sized types as if they were not sized
-- sizes default to ∞
add : Nat → Nat → Nat
add (zero ) n = n
add (suc m) n = suc (add m n)
nisse : {i : Size} → Nat {i} → Nat {i}
nisse zero = zero
nisse (suc zero) = suc zero
nisse (suc (suc n)) = suc zero
-- symmetric difference
-- @diff n m@ returns @left (n - m)@ if @n@ is bigger, otherwise @right (m - n)@
diff : ∀{i j} → Nat {i} → Nat {j} → Either (Nat {i}) (Nat {j})
diff zero m = right m
diff (suc n) zero = left (suc n)
diff (suc n) (suc m) = diff n m
module Case where
gcd : ∀{i j} → Nat {i} → Nat {j} → Nat
gcd zero m = m
gcd (suc n) zero = suc n
gcd (suc n) (suc m) = caseEither (diff n m)
(λ n' → gcd n' (suc m))
(λ m' → gcd (suc n) m')
module With where
gcd : ∀{i j} → Nat {i} → Nat {j} → Nat
gcd zero m = m
gcd (suc n) zero = suc n
gcd (suc n) (suc m) with diff n m
... | left n' = gcd n' (suc m)
... | right m' = gcd (suc n) m'
NatInfty = Nat {∞}
{-# BUILTIN NATURAL NatInfty #-}
-- {-# BUILTIN NATPLUS add #-} -- not accepted
| {
"alphanum_fraction": 0.5338797814,
"avg_line_length": 24.4,
"ext": "agda",
"hexsha": "fdc21dd616b081ad1e600072502c2076620baa98",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/SizedNatNew.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/SizedNatNew.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/SizedNatNew.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 706,
"size": 1830
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homomorphism proofs for exponentiation over polynomials
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.Polynomial.Parameters
module Tactic.RingSolver.Core.Polynomial.Homomorphism.Exponentiation
{r₁ r₂ r₃ r₄}
(homo : Homomorphism r₁ r₂ r₃ r₄)
where
open import Function
open import Data.Nat.Base as ℕ using (ℕ; suc; zero; compare)
open import Data.Product using (_,_; _×_; proj₁; proj₂)
open import Data.List.Kleene
open import Data.Vec using (Vec)
import Data.Nat.Properties as ℕ-Prop
import Relation.Binary.PropositionalEquality as ≡
open Homomorphism homo
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Multiplication homo
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
import Algebra.Operations.Ring rawRing as RawPow
import Algebra.Operations.Ring (RawCoeff.rawRing from) as CoPow
pow-eval-hom : ∀ x i → ⟦ x CoPow.^ i +1 ⟧ᵣ ≈ ⟦ x ⟧ᵣ RawPow.^ i +1
pow-eval-hom x ℕ.zero = refl
pow-eval-hom x (suc i) = (*-homo _ x) ⟨ trans ⟩ (≪* pow-eval-hom x i)
⊡-mult-hom : ∀ {n} i (xs : Poly n) ρ → ⟦ ⊡-mult i xs ⟧ ρ ≈ ⟦ xs ⟧ ρ RawPow.^ i +1
⊡-mult-hom ℕ.zero xs ρ = refl
⊡-mult-hom (suc i) xs ρ = ⊠-hom (⊡-mult i xs) xs ρ ⟨ trans ⟩ (≪* ⊡-mult-hom i xs ρ)
⊡-+1-hom : ∀ {n} → (xs : Poly n) → (i : ℕ) → ∀ ρ → ⟦ xs ⊡ i +1 ⟧ ρ ≈ ⟦ xs ⟧ ρ RawPow.^ i +1
⊡-+1-hom (Κ x ⊐ i≤n) i ρ = pow-eval-hom x i
⊡-+1-hom xs@(⅀ (_ & ∹ _) ⊐ i≤n) i ρ = ⊡-mult-hom i xs ρ
⊡-+1-hom (⅀ (x ≠0 Δ j & []) ⊐ i≤n) i ρ =
begin
⟦ x ⊡ i +1 Δ (j ℕ.+ i ℕ.* j) ∷↓ [] ⊐↓ i≤n ⟧ ρ
≈⟨ ⊐↓-hom (x ⊡ i +1 Δ (j ℕ.+ i ℕ.* j) ∷↓ []) i≤n ρ ⟩
⅀?⟦ x ⊡ i +1 Δ (j ℕ.+ i ℕ.* j) ∷↓ [] ⟧ (drop-1 i≤n ρ)
≈⟨ ∷↓-hom (x ⊡ i +1) (j ℕ.+ i ℕ.* j) [] ρ′ Ρ ⟩
(ρ′ RawPow.^ (j ℕ.+ i ℕ.* j)) * (⟦ x ⊡ i +1 ⟧ Ρ)
≈⟨ *≫ (( ⊡-+1-hom x i Ρ) ) ⟩
(ρ′ RawPow.^ (j ℕ.+ i ℕ.* j)) * (⟦ x ⟧ Ρ RawPow.^ i +1)
≈⟨ rearrange j ⟩
(( ⟦ x ⟧ Ρ) *⟨ ρ′ ⟩^ j) RawPow.^ i +1
∎
where
ρ′,Ρ = drop-1 i≤n ρ
ρ′ = proj₁ ρ′,Ρ
Ρ = proj₂ ρ′,Ρ
rearrange : ∀ j → (ρ′ RawPow.^ (j ℕ.+ i ℕ.* j)) * (⟦ x ⟧ Ρ RawPow.^ i +1)≈ (( ⟦ x ⟧ Ρ) *⟨ ρ′ ⟩^ j) RawPow.^ i +1
rearrange zero =
begin
(ρ′ RawPow.^ (i ℕ.* 0)) * (⟦ x ⟧ Ρ RawPow.^ i +1)
≡⟨ ≡.cong (λ k → (ρ′ RawPow.^ k) * (⟦ x ⟧ Ρ RawPow.^ i +1)) (ℕ-Prop.*-zeroʳ i) ⟩
1# * (⟦ x ⟧ Ρ RawPow.^ i +1)
≈⟨ *-identityˡ _ ⟩
⟦ x ⟧ Ρ RawPow.^ i +1
∎
rearrange j@(suc j′) =
begin
(ρ′ RawPow.^ (j ℕ.+ i ℕ.* j)) * (⟦ x ⟧ Ρ RawPow.^ i +1)
≈⟨ ≪* sym ( pow-mult-+1 ρ′ j′ i) ⟩
((ρ′ RawPow.^ j′ +1) RawPow.^ i +1) * (⟦ x ⟧ Ρ RawPow.^ i +1)
≈⟨ sym (pow-distrib-+1 _ (⟦ x ⟧ Ρ) i) ⟩
((ρ′ RawPow.^ j′ +1) * ⟦ x ⟧ Ρ) RawPow.^ i +1
∎
⊡-hom : ∀ {n} → (xs : Poly n) → (i : ℕ) → ∀ ρ → ⟦ xs ⊡ i ⟧ ρ ≈ ⟦ xs ⟧ ρ RawPow.^ i
⊡-hom xs ℕ.zero ρ = 1-homo
⊡-hom xs (suc i) ρ = ⊡-+1-hom xs i ρ
| {
"alphanum_fraction": 0.5171646535,
"avg_line_length": 37.4523809524,
"ext": "agda",
"hexsha": "8ac6abecdecc6ed601cb132ad72dfdb366f5fc10",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Exponentiation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Exponentiation.agda",
"max_line_length": 114,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Exponentiation.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1461,
"size": 3146
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; subst; setoid)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap)
import Function.Equality
open import Relation.Binary using (Setoid)
import Relation.Binary.Reasoning.Setoid as SetoidR
import Categories.Category
import Categories.Functor
import Categories.Category.Instance.Setoids
import Categories.Monad.Relative
import Categories.Category.Equivalence
import Categories.Category.Cocartesian
import Categories.Category.Construction.Functors
import Categories.Category.Product
import Categories.NaturalTransformation
import Categories.NaturalTransformation.NaturalIsomorphism
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
import SecondOrder.VRenaming
import SecondOrder.MRenaming
import SecondOrder.Term
import SecondOrder.Substitution
import SecondOrder.RelativeMonadMorphism
import SecondOrder.Instantiation
import SecondOrder.IndexedCategory
import SecondOrder.RelativeKleisli
module SecondOrder.Mslot
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.Metavariable Σ
open SecondOrder.Term Σ
open SecondOrder.VRenaming Σ
open SecondOrder.MRenaming Σ
-- open SecondOrder.Substitution Σ
-- open import SecondOrder.RelativeMonadMorphism
-- open SecondOrder.Instantiation
open Categories.Category
open Categories.Functor using (Functor)
open Categories.NaturalTransformation renaming (id to idNt)
open Categories.NaturalTransformation.NaturalIsomorphism renaming (refl to reflNt; sym to symNt; trans to transNt)
open Categories.Category.Construction.Functors
open Categories.Category.Instance.Setoids
open Categories.Category.Product
open Function.Equality using () renaming (setoid to Π-setoid)
open SecondOrder.IndexedCategory
-- open import SecondOrder.RelativeKleisli
MTele = MContexts
VTele = VContexts
-- the codomain category of the MSlots functor. It should be equivalent to the
-- functor category [ MTele x VTele , < Setoid >ₛₒᵣₜ ]
-- objects are functors, which are really pairs of functions, one on objects
-- one on morphisms
-- morphisms in this category are natural transformations
module _ where
open Category
open NaturalTransformation
open Function.Equality renaming (_∘_ to _∙_)
∘ᵥ-resp-≈ : ∀ {o l e o' l' e'} {𝒞 : Category o l e} {𝒟 : Category o' l' e'}
{F G H : Functor 𝒞 𝒟} {α β : NaturalTransformation F G} {γ δ : NaturalTransformation G H}
→ (∀ {X : Obj 𝒞} → (𝒟 Category.≈ (η α X)) (η β X))
→ (∀ {X : Obj 𝒞} → (𝒟 Category.≈ (η γ X)) (η δ X))
-------------------------------------------------------------------
→ (∀ {X : Obj 𝒞} → (𝒟 Category.≈ (η (γ ∘ᵥ α) X)) (η (δ ∘ᵥ β) X))
∘ᵥ-resp-≈ {𝒟 = 𝒟} α≈β γ≈δ {X = X} = ∘-resp-≈ 𝒟 γ≈δ α≈β
MCodom : Category (lsuc ℓ) ℓ ℓ
MCodom =
let open Category in
let open Functor in
let open NaturalTransformation in
let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in
let open Category.HomReasoning in
record
{ Obj = Functor MTele (Functors VTele (Setoids ℓ ℓ))
; _⇒_ = NaturalTransformation
; _≈_ = λ {F} {G} α β → ∀ (ψ : Obj MTele) (Γ : Obj VTele)
→ (Setoids ℓ ℓ Category.≈ (η ((η α) ψ) Γ)) (η ((η β) ψ) Γ)
; id = idNt
; _∘_ = _∘ᵥ_
; assoc = λ ψ Γ x≈y → Setoid.refl {!!}
; sym-assoc = λ ψ Γ x≈y → Setoid.refl {!!}
; identityˡ = λ {F} {G} {α} ψ Γ x≈y → Setoid.refl {!!}
; identityʳ = λ ψ Γ x → Setoid.refl {!!}
; identity² = Setoid.refl {!!}
; equiv = record
{ refl = Setoid.refl {!!}
; sym = Setoid.sym {!!}
; trans = Setoid.trans {!!}
}
; ∘-resp-≈ = λ {F} {G} {H} {α} {β} {γ} {δ} α≈β γ≈δ ψ Γ
→ ∘ᵥ-resp-≈ {α = γ} {δ} {γ = α} {β} (γ≈δ _ _) (α≈β _ _)
}
Mslots : Functor MContexts (IndexedCategory sort (MCodom))
Mslots =
let open Categories.NaturalTransformation in
let open NaturalTransformation in
record
{ F₀ = λ Θ A →
record
{ F₀ = λ ψ → Term-Functor {Θ ,, ψ} {A}
; F₁ = λ ι → MRenaming-NT (ᵐ⇑ᵐ ι)
; identity = λ t≈s → ≈-trans (≈-trans ([]ᵐ-resp-≡ᵐ ᵐ⇑ᵐ-resp-idᵐ) [idᵐ]) t≈s
; homomorphism = λ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) (≈-trans ([]ᵐ-resp-≡ᵐ ᵐ⇑ᵐ-resp-∘ᵐ) [∘ᵐ])
; F-resp-≈ = λ ι≡μ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) ([]ᵐ-resp-≡ᵐ (ᵐ⇑ᵐ-resp-≡ᵐ ι≡μ))
}
; F₁ = λ {Θ} {Θ'} ι A →
record
{ η = λ Ψ →
record { η = λ Γ → η (MRenaming-NT (⇑ᵐ ι)) Γ
; commute = commute (MRenaming-NT (⇑ᵐ ι))
; sym-commute = sym-commute (MRenaming-NT (⇑ᵐ ι))
}
; commute = λ ι t≈s
→ ≈-trans ([]ᵐ-resp-≈ ([]ᵐ-resp-≈ t≈s)) ⇑-resp-+
; sym-commute = λ ι t≈s → ≈-trans (≈-sym ⇑-resp-+) (([]ᵐ-resp-≈ ([]ᵐ-resp-≈ t≈s)))
}
; identity = λ Θ ψ Γ t≈s
→ ≈-trans ([]ᵐ-resp-≈ t≈s) (≈-trans ([]ᵐ-resp-≡ᵐ ⇑ᵐ-resp-idᵐ) [idᵐ])
; homomorphism = λ A ψ Γ t≈s
→ ≈-trans ([]ᵐ-resp-≈ t≈s) ∘ᵐ-resp-⇑-term
; F-resp-≈ = λ ι≡μ A ψ Γ t≈s → ≈-trans ([]ᵐ-resp-≈ t≈s) ([]ᵐ-resp-≡ᵐ (⇑ᵐ-resp-≡ᵐ ι≡μ))
}
| {
"alphanum_fraction": 0.5885175969,
"avg_line_length": 40.1857142857,
"ext": "agda",
"hexsha": "b1ab752fb2febb322eaf6720ae903455ff589df6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Mslot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Mslot.agda",
"max_line_length": 116,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/formal",
"max_stars_repo_path": "src/SecondOrder/Mslot.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z",
"num_tokens": 2009,
"size": 5626
} |
module StateSized.GUI.ShipBitMap where
open import StateSizedIO.GUI.WxBindingsFFI
ship : Bitmap
ship = bitmap "./StateSized/GUI/ship.ico"
| {
"alphanum_fraction": 0.8,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "253df446c6e0fa6c58128b7e236cf53d15a4e817",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/StateSized/GUI/ShipBitMap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/StateSized/GUI/ShipBitMap.agda",
"max_line_length": 42,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/StateSized/GUI/ShipBitMap.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 40,
"size": 140
} |
module NativePolyIO where
open import Data.String.Base using (String) public
open import Level
record Unit {α} : Set α where
constructor unit
{-# HASKELL type AgdaUnit a = () #-}
{-# COMPILED_DATA Unit AgdaUnit () #-}
postulate
NativeIO : ∀ {ℓ} → Set ℓ → Set ℓ
nativeReturn : ∀ {a} {A : Set a} → A → NativeIO A
_native>>=_ : ∀ {a b} {A : Set a} {B : Set b} → NativeIO A → (A → NativeIO B) → NativeIO B
{-# COMPILED_TYPE NativeIO MAlonzo.Code.NativePolyIO.AgdaIO #-}
{-# BUILTIN IO NativeIO #-}
{-# HASKELL type AgdaIO a b = IO b #-}
{-# COMPILED nativeReturn (\_ _ -> return :: a -> IO a) #-}
{-# COMPILED _native>>=_ (\_ _ _ _ ->
(>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# IMPORT Data.Text.IO #-}
postulate
nativePutStrLn : ∀ {ℓ} → String → NativeIO (Unit{ℓ})
nativeGetLine : NativeIO String
{-# COMPILED nativePutStrLn (\ _ s -> Data.Text.IO.putStrLn s) #-}
{-# COMPILED nativeGetLine Data.Text.IO.getLine #-}
| {
"alphanum_fraction": 0.5956790123,
"avg_line_length": 23.7073170732,
"ext": "agda",
"hexsha": "d7e2a66fb52e190ae2ef06992b182a14ef290589",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/NativePolyIO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/NativePolyIO.agda",
"max_line_length": 93,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/NativePolyIO.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 307,
"size": 972
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Products of nullary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Product where
open import Data.Bool.Base
open import Data.Product
open import Function
open import Level
open import Relation.Nullary.Reflects
open import Relation.Nullary
private
variable
p q : Level
P : Set p
Q : Set q
------------------------------------------------------------------------
-- Some properties which are preserved by _×_.
infixr 2 _×-reflects_ _×-dec_
_×-reflects_ : ∀ {bp bq} → Reflects P bp → Reflects Q bq →
Reflects (P × Q) (bp ∧ bq)
ofʸ p ×-reflects ofʸ q = ofʸ (p , q)
ofʸ p ×-reflects ofⁿ ¬q = ofⁿ (¬q ∘ proj₂)
ofⁿ ¬p ×-reflects _ = ofⁿ (¬p ∘ proj₁)
_×-dec_ : Dec P → Dec Q → Dec (P × Q)
does (p? ×-dec q?) = does p? ∧ does q?
proof (p? ×-dec q?) = proof p? ×-reflects proof q?
| {
"alphanum_fraction": 0.492248062,
"avg_line_length": 27.1578947368,
"ext": "agda",
"hexsha": "f0655607636b9ead268b87ab775ba575fa6b0e93",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Nullary/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Nullary/Product.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Nullary/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 285,
"size": 1032
} |
module Issue512 where
postulate
Level : Set
{-# BUILTIN LEVEL Level #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
data A : Set where
a b : A
proof : a ≡ a
proof = refl
f : A → A → A
f x y rewrite proof = ? -- gave error below (now complains about LEVELZERO instead of STRING)
{-
{-
No binding for builtin thing STRING, use {-# BUILTIN STRING name
#-} to bind it to 'name'
when checking that the type of the generated with function
(w : A) → _≡_ {"Max []"} {A} w w → (x y : A) → A is well-formed
-}
-}
| {
"alphanum_fraction": 0.6070826307,
"avg_line_length": 18.53125,
"ext": "agda",
"hexsha": "c5fe48d8d2c76906974f390c40b8e666838025bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue512.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue512.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue512.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 198,
"size": 593
} |
module Operations.Stateful where
import Data.Bool as B
open import Data.Fin
open import Data.Nat
open import Data.Vec hiding (head; tail)
open import Function
open import Relation.Binary.PropositionalEquality
open import Eval
open import Operations.Combinatorial
open import Types
alternator : Closed 𝔹 → Closed (ℂ 𝔹)
alternator x = reg x (lam (pair (not ∙ var zero refl) (var zero refl)))
constant : ∀ {τ} → Closed τ → Closed (ℂ τ)
constant x = reg x (lam (pair (var zero refl) (var zero refl)))
| {
"alphanum_fraction": 0.7391304348,
"avg_line_length": 26.6315789474,
"ext": "agda",
"hexsha": "621ea1dc54d904c86c6796f81518ea513eed0462",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "bens/hwlc",
"max_forks_repo_path": "Operations/Stateful.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "bens/hwlc",
"max_issues_repo_path": "Operations/Stateful.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "bens/hwlc",
"max_stars_repo_path": "Operations/Stateful.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 139,
"size": 506
} |
module Categories.Initial where
open import Library
open import Categories
open import Categories.Sets
open Cat
record Init {a b} (C : Cat {a}{b})(I : Obj C) : Set (a ⊔ b) where
constructor init
field i : ∀{X} → Hom C I X
law : ∀{X}{f : Hom C I X} → i {X} ≅ f
ZeroSet : Init Sets ⊥
ZeroSet = record {i = λ(); law = ext λ()}
| {
"alphanum_fraction": 0.6117647059,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "d44cda26e27790099ce1fcba3e425f5932dda4e5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Categories/Initial.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Categories/Initial.agda",
"max_line_length": 65,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Categories/Initial.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 115,
"size": 340
} |
-- Andreas, 2015-07-07 continuation of issue 665
-- Jesper, 2015-12-18 some of these don't work anymore with the new unifier,
-- but a few others that weren't accepted are now.
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.with.strip:10 #-}
-- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:20 -v tc.lhs.unify:20 #-}
postulate
C : Set
anything : C
record I : Set where
constructor c
field
{f} : C
data Wrap : (i : I) → Set where
wrap : ∀ {i} → Wrap i
-- Test 0: first argument not given
test0 : ∀ {j} → Wrap j → C
test0 wrap with anything
test0 wrap | z = z
test0a : ∀ {j} → Wrap j → C
test0a (wrap {c {x}}) with anything
test0a wrap | z = z
test0b : ∀ {j} → Wrap j → C
test0b (wrap {c {_}}) with anything
test0b wrap | z = z
test0c : ∀ {j} → Wrap j → C
test0c (wrap {c}) with anything
test0c wrap | z = z
test0d : ∀ {j} → Wrap j → C
test0d (wrap {c {._}}) with anything
test0d wrap | z = z
test0e : ∀ {j} → Wrap j → C
test0e (wrap .{c}) with anything
test0e wrap | z = z
test0f : ∀ {j} → Wrap j → C
test0f (wrap .{c {_}}) with anything
test0f wrap | z = z
test00 : ∀ {j} → Wrap j → C
test00 wrap with anything
test00 {.c} wrap | z = z
test00a : ∀ {j} → Wrap j → C
test00a (wrap {c {x}}) with anything
test00a {.c} wrap | z = z
test00b : ∀ {j} → Wrap j → C
test00b (wrap {c {_}}) with anything
test00b {.c} wrap | z = z
test00c : ∀ {j} → Wrap j → C
test00c (wrap {c}) with anything
test00c {.c} wrap | z = z
test00d : ∀ {j} → Wrap j → C
test00d (wrap {c {._}}) with anything
test00d {.c} wrap | z = z
test00e : ∀ {j} → Wrap j → C
test00e (wrap .{c}) with anything
test00e {.c} wrap | z = z
test00f : ∀ {j} → Wrap j → C
test00f (wrap .{c {_}}) with anything
test00f {.c} wrap | z = z
test000 : ∀ {j} → Wrap j → C
test000 wrap with anything
test000 .{c {_}} wrap | z = z
test000a : ∀ {j} → Wrap j → C
test000a (wrap {c {x}}) with anything
test000a .{c {_}} wrap | z = z
test000b : ∀ {j} → Wrap j → C
test000b (wrap {c {_}}) with anything
test000b .{c {_}} wrap | z = z
test000c : ∀ {j} → Wrap j → C
test000c (wrap {c}) with anything
test000c .{c {_}} wrap | z = z
test000d : ∀ {j} → Wrap j → C
test000d (wrap {c {._}}) with anything
test000d .{c {_}} wrap | z = z
test000e : ∀ {j} → Wrap j → C
test000e (wrap .{c}) with anything
test000e .{c {_}} wrap | z = z
test000f : ∀ {j} → Wrap j → C
test000f (wrap .{c {_}}) with anything
test000f .{c {_}} wrap | z = z
-- Test 1: first argument is dot pattern
test1a : ∀ {j} → Wrap j → C
test1a .{c} (wrap {c {x}}) with anything
test1a .{c} wrap | z = z
test1b : ∀ {j} → Wrap j → C
test1b .{c} (wrap {c {_}}) with anything
test1b .{c} wrap | z = z
test1c : ∀ {j} → Wrap j → C
test1c .{c} (wrap {c}) with anything
test1c .{c} wrap | z = z
test11a : ∀ {j} → Wrap j → C
test11a .{c} (wrap {c {x}}) with anything
test11a wrap | z = z
test11b : ∀ {j} → Wrap j → C
test11b .{c} (wrap {c {_}}) with anything
test11b wrap | z = z
test11c : ∀ {j} → Wrap j → C
test11c .{c} (wrap {c}) with anything
test11c wrap | z = z
test111a : ∀ {j} → Wrap j → C
test111a (wrap {c {x}}) with anything
test111a .{c} wrap | z = z
test111b : ∀ {j} → Wrap j → C
test111b (wrap {c {_}}) with anything
test111b .{c} wrap | z = z
test111c : ∀ {j} → Wrap j → C
test111c (wrap {c}) with anything
test111c .{c} wrap | z = z
-- Test 2: First argument is record pattern
test2a : ∀ {j} → Wrap j → C
test2a {c} wrap with anything
test2a {c} wrap | z = z
test2b : ∀ {j} → Wrap j → C
test2b {c} wrap with anything
test2b wrap | z = z
test2c : ∀ {j} → Wrap j → C
test2c {c} (wrap {c}) with anything
test2c {c} wrap | z = z
test2d : ∀ {j} → Wrap j → C
test2d {c} (wrap {c}) with anything
test2d wrap | z = z
test2e : ∀ {j} → Wrap j → C
test2e {c} (wrap {c {._}}) with anything
test2e {c} wrap | z = z
test2f : ∀ {j} → Wrap j → C
test2f {c} (wrap {c {._}}) with anything
test2f wrap | z = z
test2g : ∀ {j} → Wrap j → C
test2g {c} (wrap {c {x}}) with anything
test2g {c} wrap | z = z
test2h : ∀ {j} → Wrap j → C
test2h {c} (wrap {c {x}}) with anything
test2h wrap | z = z
test2i : ∀ {j} → Wrap j → C
test2i {c} (wrap {c {_}}) with anything
test2i {c} wrap | z = z
test2j : ∀ {j} → Wrap j → C
test2j {c} (wrap {c {_}}) with anything
test2j wrap | z = z
-- Test 3: First argument is record of dot pattern, second is record pattern
test3a : ∀ {j} → Wrap j → C
test3a {c {._}} wrap with anything
test3a {c {._}} wrap | z = z
test3b : ∀ {j} → Wrap j → C
test3b {c {._}} wrap with anything
test3b wrap | z = z
test3c : ∀ {j} → Wrap j → C
test3c {c {._}} (wrap {c}) with anything
test3c {c {._}} wrap | z = z
test3d : ∀ {j} → Wrap j → C
test3d {c {._}} (wrap {c}) with anything
test3d wrap | z = z
test3e : ∀ {j} → Wrap j → C
test3e {c {._}} (wrap {c {._}}) with anything
test3e {c {._}} wrap | z = z
test3f : ∀ {j} → Wrap j → C
test3f {c {._}} (wrap {c {._}}) with anything
test3f wrap | z = z
test3g : ∀ {j} → Wrap j → C
test3g {c {_}} (wrap {c {x}}) with anything
test3g {c {_}} wrap | z = z
test3h : ∀ {j} → Wrap j → C
test3h {c {_}} (wrap {c {x}}) with anything
test3h wrap | z = z
test3i : ∀ {j} → Wrap j → C
test3i {c {_}} (wrap {c {_}}) with anything
test3i {c {_}} wrap | z = z
test3j : ∀ {j} → Wrap j → C
test3j {c {_}} (wrap {c {_}}) with anything
test3j wrap | z = z
| {
"alphanum_fraction": 0.5769010863,
"avg_line_length": 22.9126637555,
"ext": "agda",
"hexsha": "3882806bb942ef9e458bb9b2e1a5e36ae05aef44",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue473-1606.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue473-1606.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue473-1606.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 2173,
"size": 5247
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using () renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal using (Monoidal)
module Categories.Bicategory.Instance.EnrichedCats
{o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) (v : Level) where
-- The 2-category of V-enriched categories
open import Data.Product as Prod using (_,_)
open import Categories.Bicategory using (Bicategory)
open import Categories.Category.Construction.EnrichedFunctors M
open import Categories.Enriched.Category M
open import Categories.Enriched.Functor M renaming (id to idF)
open import Categories.Enriched.NaturalTransformation M hiding (id)
import Categories.Enriched.NaturalTransformation.NaturalIsomorphism M as NI
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Construction.Constant using (const)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
private
module V = Setoid-Category V
module UnderlyingReasoning {c} (C : Category c) where
open Underlying C public hiding (id)
open HomReasoning public
open NaturalTransformation
open NI.NaturalIsomorphism
-- Aliases used to shorten some proof expressions
module UF = UnderlyingFunctor
infixr 14 _$₀_ _$₁_
_$₀_ = UF.F₀
_$₁_ = UF.F₁
-- The bicategory of V-enriched categories, functors and natural
-- transformations.
--
-- Note that all the equational reasoning happens in the underlying
-- (ordinary) categories!
EnrichedCats : Bicategory (ℓ ⊔ e ⊔ v) (ℓ ⊔ e ⊔ v) (e ⊔ v) (o ⊔ ℓ ⊔ e ⊔ suc v)
EnrichedCats = record
{ enriched = record
{ Obj = Category v
; hom = EnrichedFunctors
; id = const idF
; ⊚ = ⊚
; ⊚-assoc = λ {_ _ C D} →
let module C = Underlying C
module D = Underlying D
open UnderlyingReasoning D
in niHelper record
{ η = λ { ((F , G) , H) → from (NI.associator {F = F} {G} {H}) }
; η⁻¹ = λ { ((F , G) , H) → to (NI.associator {F = F} {G} {H}) }
; commute = λ { {(_ , G₁) , H₁} {(F₂ , G₂) , _} ((α , β) , γ) {X} →
begin
D.id ∘ (F₂ ∘F G₂) $₁ γ [ X ] ∘ F₂ $₁ β [ H₁ $₀ X ] ∘
α [ G₁ $₀ H₁ $₀ X ]
≈⟨ identityˡ ○ ⟺ assoc ⟩
((F₂ ∘F G₂) $₁ γ [ X ] ∘ F₂ $₁ β [ H₁ $₀ X ]) ∘ α [ G₁ $₀ H₁ $₀ X ]
≈⟨ V.assoc ⟩∘⟨refl ⟩∘⟨refl ⟩
(F₂ $₁ G₂ $₁ γ [ X ] ∘ F₂ $₁ β [ H₁ $₀ X ]) ∘ α [ G₁ $₀ H₁ $₀ X ]
≈˘⟨ UF.homomorphism F₂ ⟩∘⟨refl ⟩
F₂ $₁ (G₂ $₁ γ [ X ] C.∘ β [ H₁ $₀ X ]) ∘ α [ G₁ $₀ H₁ $₀ X ]
≈˘⟨ identityʳ ⟩
(F₂ $₁ (G₂ $₁ γ [ X ] C.∘ β [ H₁ $₀ X ]) ∘ α [ G₁ $₀ H₁ $₀ X ]) ∘
D.id
∎ }
; iso = λ{ ((F , G) , H) → iso (NI.associator {F = F} {G} {H}) }
}
; unitˡ = λ {A B} →
let module A = Underlying A
module B = Underlying B
open UnderlyingReasoning B
in niHelper record
{ η = λ _ → from NI.unitorˡ
; η⁻¹ = λ _ → to NI.unitorˡ
; commute = λ { {_ , F} {_ , G} (_ , α) {X} →
begin
B.id ∘ (V.id V.∘ α [ X ]) ∘ B.id ≈⟨ identityˡ ⟩
(V.id V.∘ α [ X ]) ∘ B.id ≈⟨ V.identityˡ ⟩∘⟨refl ⟩
α [ X ] ∘ B.id ∎ }
; iso = λ _ → iso NI.unitorˡ
}
; unitʳ = λ {A B} →
let module A = Underlying A
module B = Underlying B
open UnderlyingReasoning B
in niHelper record
{ η = λ _ → from NI.unitorʳ
; η⁻¹ = λ _ → to NI.unitorʳ
; commute = λ{ {_} {G , _} (α , _) {X} →
begin
B.id ∘ G $₁ A.id ∘ α [ X ] ≈⟨ identityˡ ⟩
G $₁ A.id ∘ α [ X ] ≈⟨ UF.identity G ⟩∘⟨refl ⟩
B.id ∘ α [ X ] ≈⟨ identityˡ ○ ⟺ identityʳ ⟩
α [ X ] ∘ B.id ∎ }
; iso = λ _ → iso NI.unitorʳ
}
}
; triangle = λ {_ B C _ G} →
let module B = Underlying B
module C = Underlying C
open UnderlyingReasoning C
in begin
(G $₁ B.id ∘ C.id) ∘ C.id ≈⟨ identityʳ ⟩
G $₁ B.id ∘ C.id ∎
; pentagon = λ {_ B _ D E _ G H I} →
let module B = Category B
module D = Category D
module E = Category E
open UnderlyingReasoning E
in begin
(I $₁ D.id ∘ E.id) ∘ E.id ∘ (I ∘F H ∘F G) $₁ B.id ∘ E.id
≈⟨ identityʳ ⟩∘⟨ (identityˡ ○ identityʳ) ⟩
I $₁ D.id ∘ (I ∘F H ∘F G) $₁ B.id
≈⟨ UF.identity I ⟩∘⟨ UF.identity (I ∘F H ∘F G) ⟩
E.id ∘ E.id
∎
}
| {
"alphanum_fraction": 0.5268207588,
"avg_line_length": 36.688,
"ext": "agda",
"hexsha": "ea59b0a30a4098382cc887de305b20dc4f36093b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory/Instance/EnrichedCats.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory/Instance/EnrichedCats.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory/Instance/EnrichedCats.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1679,
"size": 4586
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Function.Base using (_∋_; _$_; it; typeOf)
open import Cubical.Foundations.Logic renaming
( inl to inlᵖ
; inr to inrᵖ
; _⇒_ to infixr 0 _⇒_ -- shifting by -6
; _⇔_ to infixr -2 _⇔_ --
; ∃[]-syntax to infix -4 ∃[]-syntax --
; ∃[∶]-syntax to infix -4 ∃[∶]-syntax --
; ∀[∶]-syntax to infix -4 ∀[∶]-syntax --
; ∀[]-syntax to infix -4 ∀[]-syntax --
)
-- open import Cubical.Data.Unit.Base using (Unit)
open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣
open import Utils
open import MoreLogic.Reasoning
open import MoreLogic.Definitions renaming
( _ᵗ⇒_ to infixr 0 _ᵗ⇒_
; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax
; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax
; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax
; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax
; Σᵖ[]-syntax to infix -4 Σᵖ[]-syntax
; Σᵖ[∶]-syntax to infix -4 Σᵖ[∶]-syntax
) hiding (≡ˢ-syntax)
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions hiding (_≤''_)
open import MorePropAlgebra.Consequences
open import MorePropAlgebra.Bundles
module MorePropAlgebra.Booij2020 where
module Chapter4 {ℓ ℓ'} (assumptions : AlmostPartiallyOrderedField {ℓ} {ℓ'}) where
open import MorePropAlgebra.Properties.AlmostPartiallyOrderedField assumptions
open AlmostPartiallyOrderedField assumptions renaming (Carrier to F; _-_ to _-_) -- atlernative to module telescope
Item-1 = ∀[ x ] ∀[ y ] x ≤ y ⇔ ¬(y < x) -- (definition of _≤_)
Item-2 = ∀[ x ] ∀[ y ] x # y ⇔ [ <-asym x y ] (x < y) ⊎ᵖ (y < x) -- (definition of _#_)
Item-3 = ∀[ x ] ∀[ y ] ∀[ z ] x ≤ y ⇔ x + z ≤ y + z -- +-creates-≤
Item-4 = ∀[ x ] ∀[ y ] ∀[ z ] x < y ⇔ x + z < y + z -- +-creates-<
Item-5 = ∀[ x ] ∀[ y ] 0f < x + y ⇒ (0f < x) ⊔ (0f < y) -- 0<-reflects-+
Item-6 = ∀[ x ] ∀[ y ] ∀[ z ] x < y ⇒ y ≤ z ⇒ x < z -- <-≤-trans
Item-7 = ∀[ x ] ∀[ y ] ∀[ z ] x ≤ y ⇒ y < z ⇒ x < z -- ≤-<-trans
Item-8 = ∀[ x ] ∀[ y ] ∀[ z ] x ≤ y ⇒ 0f ≤ z ⇒ x · z ≤ y · z -- ·-preserves-≤
Item-9 = ∀[ x ] ∀[ y ] ∀[ z ] 0f < z ⇒ (x < y ⇔ x · z < y · z) -- ·-creates-<
Item-10 = 0f < 1f -- 0<1
item-1 : ∀ x y → [ x ≤ y ⇔ ¬(y < x) ]; _ = [ Item-1 ] ∋ item-1
item-2 : ∀ x y → [ x # y ⇔ [ <-asym x y ] (x < y) ⊎ᵖ (y < x) ]; _ = [ Item-2 ] ∋ item-2
item-6 : ∀ x y z → [ x < y ⇒ y ≤ z ⇒ x < z ]; _ : [ Item-6 ]; _ = item-6
item-7 : ∀ x y z → [ x ≤ y ⇒ y < z ⇒ x < z ]; _ : [ Item-7 ]; _ = item-7
-- 1. x ≤ y ⇔ ¬(y < x),
item-1 _ _ .fst x≤y = x≤y -- holds definitionally
item-1 _ _ .snd x≤y = x≤y
-- 2. x # y ⇔ (x < y) ∨ (y < x)
item-2 _ _ .fst x#y = x#y -- holds definitionally
item-2 _ _ .snd [x<y]⊎[y<x] = [x<y]⊎[y<x]
item-6 = <-≤-trans
item-7 = ≤-<-trans
module +-<-ext+·-preserves-<⇒
(+-<-ext : [ is-+-<-Extensional _+_ _<_ ])
(·-preserves-< : [ operation _·_ preserves _<_ when (λ z → 0f < z) ])
where
abstract
+-reflects-< : ∀ x y z → [ x + z < y + z ⇒ x < y ]
+-preserves-< : ∀ x y z → [ x < y ⇒ x + z < y + z ]
+-creates-< : ∀ x y z → [ x < y ⇔ x + z < y + z ]; _ : [ Item-4 ]; _ = +-creates-<
+-creates-≤ : ∀ x y z → [ x ≤ y ⇔ x + z ≤ y + z ]; _ : [ Item-3 ]; _ = +-creates-≤
·-reflects-< : ∀ x y z → [ 0f < z ⇒ (x · z < y · z ⇒ x < y ) ]
·-creates-< : ∀ x y z → [ 0f < z ⇒ ( x < y ⇔ x · z < y · z) ]; _ : [ Item-9 ]; _ = ·-creates-<
·-preserves-≤ : ∀ x y z → [ x ≤ y ⇒ 0f ≤ z ⇒ x · z ≤ y · z ]; _ : [ Item-8 ]; _ = ·-preserves-≤
0<-reflects-+ : ∀ x y → [ 0f < x + y ⇒ (0f < x) ⊔ (0f < y) ]; _ : [ Item-5 ]; _ = 0<-reflects-+
⁻¹-preserves-sign : ∀ z z⁻¹ → [ 0f < z ] → z · z⁻¹ ≡ 1f → [ 0f < z⁻¹ ]
is-0<1 : [ 0f < 1f ] ; _ : [ Item-10 ]; _ = is-0<1
item-3 : [ Item-3 ]
item-4 : [ Item-4 ]
item-5 : [ Item-5 ]
item-8 : [ Item-8 ]
item-9 : [ Item-9 ]
item-10 : [ Item-10 ]
-- NOTE: just a plain copy of the previous proof
+-preserves-< a b x = snd (
a < b ⇒ᵖ⟨ transport (λ i → [ sym (fst (+-identity a)) i < sym (fst (+-identity b)) i ]) ⟩
a + 0f < b + 0f ⇒ᵖ⟨ transport (λ i → [ a + sym (+-rinv x) i < b + sym (+-rinv x) i ]) ⟩
a + (x - x) < b + (x - x) ⇒ᵖ⟨ transport (λ i → [ +-assoc a x (- x) i < +-assoc b x (- x) i ]) ⟩
(a + x) - x < (b + x) - x ⇒ᵖ⟨ +-<-ext (a + x) (- x) (b + x) (- x) ⟩
(a + x < b + x) ⊔ (- x < - x) ⇒ᵖ⟨ (λ q → case q as (a + x < b + x) ⊔ (- x < - x) ⇒ a + x < b + x of λ
{ (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line
; (inr -x<-x ) → ⊥-elim {A = λ _ → [ a + x < b + x ]} (<-irrefl (- x) -x<-x)
}) ⟩
a + x < b + x ◼ᵖ)
+-reflects-< x y z = snd
( x + z < y + z ⇒ᵖ⟨ +-preserves-< _ _ (- z) ⟩
(x + z) - z < (y + z) - z ⇒ᵖ⟨ transport (λ i → [ +-assoc x z (- z) (~ i) < +-assoc y z (- z) (~ i) ]) ⟩
x + (z - z) < y + (z - z) ⇒ᵖ⟨ transport (λ i → [ x + +-rinv z i < y + +-rinv z i ]) ⟩
x + 0f < y + 0f ⇒ᵖ⟨ transport (λ i → [ fst (+-identity x) i < fst (+-identity y) i ]) ⟩
x < y ◼ᵖ)
-- 3. x ≤ y ⇔ x + z ≤ y + z,
+-creates-≤ x y z .fst = snd ( -- unfold the definition
x ≤ y ⇒ᵖ⟨ (λ z → z) ⟩
(y < x ⇒ ⊥) ⇒ᵖ⟨ (λ f → f ∘ (+-reflects-< y x z) ) ⟩
(y + z < x + z ⇒ ⊥) ⇒ᵖ⟨ (λ z → z) ⟩
x + z ≤ y + z ◼ᵖ) -- refold the definition
+-creates-≤ x y z .snd = snd (
x + z ≤ y + z ⇒ᵖ⟨ (λ z → z) ⟩ -- unfold the definition
(y + z < x + z ⇒ ⊥) ⇒ᵖ⟨ (λ f p → f (+-preserves-< y x z p)) ⟩ -- just a variant of the above
(y < x ⇒ ⊥) ⇒ᵖ⟨ (λ z → z) ⟩ -- refold the definition
x ≤ y ◼ᵖ)
item-3 = +-creates-≤
-- 4. x < y ⇔ x + z < y + z,
+-creates-< x y z .fst = +-preserves-< x y z
+-creates-< x y z .snd = +-reflects-< x y z
item-4 = +-creates-<
-- 5. 0 < x + y ⇒ 0 < x ∨ 0 < y,
0<-reflects-+ x y = snd (
(0f < x + y) ⇒ᵖ⟨ transport (λ i → [ fst (+-identity 0f) (~ i) < x + y ]) ⟩
(0f + 0f < x + y) ⇒ᵖ⟨ +-<-ext 0f 0f x y ⟩
(0f < x) ⊔ (0f < y) ◼ᵖ)
item-5 = 0<-reflects-+
-- -- 6. x < y ≤ z ⇒ x < z,
-- item-6 x y z x<y y≤z = snd (
-- x < y ⇒ᵖ⟨ +-preserves-< _ _ _ ⟩
-- x + z < y + z ⇒ᵖ⟨ pathTo⇒ (λ i → x + z < +-comm y z i) ⟩
-- x + z < z + y ⇒ᵖ⟨ +-<-ext x z z y ⟩
-- (x < z) ⊔ (z < y) ⇒ᵖ⟨ (λ q → case q as (x < z) ⊔ (z < y) ⇒ (x < z) of λ
-- { (inl x<z) → x<z
-- ; (inr z<y) → ⊥-elim (y≤z z<y)
-- }) ⟩
-- x < z ◼ᵖ) x<y
--
-- -- 7. x ≤ y < z ⇒ x < z,
-- item-7 x y z x≤y = snd ( -- very similar to the previous one
-- y < z ⇒ᵖ⟨ +-preserves-< y z x ⟩
-- y + x < z + x ⇒ᵖ⟨ pathTo⇒ (λ i → +-comm y x i < z + x) ⟩
-- x + y < z + x ⇒ᵖ⟨ +-<-ext x y z x ⟩
-- (x < z) ⊔ (y < x) ⇒ᵖ⟨ (λ q → case q as (x < z) ⊔ (y < x) ⇒ (x < z) of λ
-- { (inl x<z) → x<z
-- ; (inr y<x) → ⊥-elim (x≤y y<x)
-- }) ⟩
-- x < z ◼ᵖ)
-- 10. 0f < 1f
item-10 = is-0<1
⁻¹-preserves-sign z z⁻¹ 0<z z·z⁻¹≡1 with snd (·-inv#0 z z⁻¹ z·z⁻¹≡1)
... | inl z⁻¹<0 = snd (
z⁻¹ < 0f ⇒ᵖ⟨ ·-preserves-< _ _ z 0<z ⟩
z⁻¹ · z < 0f · z ⇒ᵖ⟨ transport (λ i → [ (·-comm _ _ ∙ z·z⁻¹≡1) i < RingTheory'.0-leftNullifies z i ]) ⟩
1f < 0f ⇒ᵖ⟨ <-trans _ _ _ item-10 ⟩
0f < 0f ⇒ᵖ⟨ <-irrefl _ ⟩
⊥ ⇒ᵖ⟨ ⊥-elim ⟩
0f < z⁻¹ ◼ᵖ) z⁻¹<0
... | inr 0<z⁻¹ = 0<z⁻¹
-- 8. x ≤ y ∧ 0 ≤ z ⇒ x z ≤ y z,
-- For item 8, suppose x ≤ y and 0 ≤ z and yz < xz.
·-preserves-≤ x y z x≤y 0≤z y·z<x·z = let
-- Then 0 < z (x − y) by (†),
i = ( y · z < x · z ⇒ᵖ⟨ pathTo⇒ (λ i → ·-comm y z i < ·-comm x z i) ⟩
z · y < z · x ⇒ᵖ⟨ +-preserves-< _ _ _ ⟩
(z · y) - (z · y) < (z · x) - (z · y ) ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (+-rinv (z · y))
( λ i → (z · x) + sym (RingTheory'.-commutesWithRight-· z y) i )) ⟩
0f < (z · x) + (z · (- y)) ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ refl (sym (fst (is-dist z x (- y))))) ⟩ -- [XX]
0f < z · (x - y) ◼ᵖ) .snd y·z<x·z
instance z·[x-y]#0 = [ z · (x - y) # 0f ] ∋ inr i
-- and so, being apart from 0, z (x − y) has a multiplicative inverse w.
w = (z · (x - y)) ⁻¹
ii : 1f ≡ (z · (x - y)) · w
ii = sym (·-rinv _ _)
-- Hence z itself has a multiplicative inverse w (x − y),
iii : 1f ≡ z · ((x - y) · w)
iii = transport (λ i → 1f ≡ ·-assoc z (x - y) w (~ i)) ii
instance z#0f = [ z # 0f ] ∋ fst (·-inv#0 _ _ (sym iii))
-- and so 0 < z ∨ z < 0, where the latter case contradicts the assumption 0 ≤ z, so that we have 0 < z.
instance _ = [ 0f < z ] ∋ case z#0f of λ where
(inl z<0) → ⊥-elim (0≤z z<0)
(inr 0<z) → 0<z
-- Now w (x − y) has multiplicative inverse z, so it is apart from 0,
iv : [ (x - y) · w # 0f ]
iv = snd (·-inv#0 _ _ (sym iii))
-- that is (0 < w (x − y)) ∨ (w (x − y) < 0).
in case iv of λ where
-- By (∗), from 0 < w (x − y) and yz < xz we get yzw (x − y) < xzw (x − y), so y < x, contradicting our assumption that x ≤ y.
(inr 0<[x-y]·w) → (
y · z < x · z ⇒ᵖ⟨ ·-preserves-< _ _ _ 0<[x-y]·w ⟩
(y · z) · ((x - y) · w) < (x · z) · ((x - y) · w) ⇒ᵖ⟨ pathTo⇒ (λ i →
(·-assoc y z ((x - y) · w)) (~ i)
< (·-assoc x z ((x - y) · w)) (~ i)) ⟩
y · (z · ((x - y) · w)) < x · (z · ((x - y) · w)) ⇒ᵖ⟨ pathTo⇒ (λ i →
y · (iii (~ i)) < x · (iii (~ i))) ⟩
y · 1f < x · 1f ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_
(fst (·-identity y)) (fst (·-identity x))) ⟩
y < x ⇒ᵖ⟨ x≤y ⟩
⊥ ◼ᵖ) .snd y·z<x·z
-- In the latter case, from (∗) we get zw (x − y) < 0, i.e.
-- 1 < 0 which contradicts item 10, so that we have 0 < w (x − y).
(inl p) → (
(x - y) · w < 0f ⇒ᵖ⟨ ·-preserves-< _ _ _ it ⟩
((x - y) · w) · z < 0f · z ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (·-comm _ _) (RingTheory'.0-leftNullifies z)) ⟩
z · ((x - y) · w) < 0f ⇒ᵖ⟨ pathTo⇒ (λ i → iii (~ i) < 0f) ⟩
1f < 0f ⇒ᵖ⟨ <-trans _ _ _ item-10 ⟩
0f < 0f ⇒ᵖ⟨ <-irrefl _ ⟩
⊥ ◼ᵖ) .snd p
item-8 = ·-preserves-≤
-- 9. 0 < z ⇒ (x < y ⇔ x z < y z),
·-creates-< x y z 0<z .fst = ·-preserves-< x y z 0<z
-- For the other direction of item 9, assume 0 < z and xz < yz,
·-creates-< x y z 0<z .snd x·z<y·z = let
instance _ = ( x · z < y · z ⇒ᵖ⟨ +-preserves-< _ _ _ ⟩
(x · z) - (x · z) < (y · z) - (x · z) ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (+-rinv (x · z)) refl) ⟩
0f < (y · z) - (x · z) ◼ᵖ) .snd x·z<y·z
_ = [ (y · z) - (x · z) # 0f ] ∋ inr it
-- so that yz − xz has a multiplicative inverse w,
w = ((y · z) - (x · z)) ⁻¹
o = ( (y · z) - ( x · z) ≡⟨ ( λ i → (y · z) + (RingTheory'.-commutesWithLeft-· x z) (~ i)) ⟩
(y · z) + ((- x) · z) ≡⟨ sym (snd (is-dist y (- x) z)) ⟩
(y - x) · z ∎)
instance _ = [ (y - x) · z # 0f ] ∋ pathTo⇒ (λ i → o i # 0f) it
-- and so z itself has multiplicative inverse w (y − x).
instance _ = ( x · z < y · z ⇒ᵖ⟨ +-preserves-< _ _ _ ⟩
(x · z) - (x · z) < (y · z) - (x · z) ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (+-rinv (x · z)) refl) ⟩
0f < (y · z) - (x · z) ◼ᵖ) .snd x·z<y·z
_ = [ (y · z) - (x · z) # 0f ] ∋ inr it
1≡z·[w·[y-x]] = (
1f ≡⟨ (λ i → ·-linv ((y · z) - (x · z)) it (~ i)) ⟩
w · ((y · z) - (x · z)) ≡⟨ (λ i → w · o i) ⟩
w · ((y - x) · z) ≡⟨ (λ i → w · ·-comm (y - x) z i ) ⟩
w · (z · (y - x)) ≡⟨ (λ i → ·-assoc w z (y - x) i) ⟩
(w · z) · (y - x) ≡⟨ (λ i → ·-comm w z i · (y - x)) ⟩
(z · w) · (y - x) ≡⟨ (λ i → ·-assoc z w (y - x) (~ i)) ⟩
z · (w · (y - x)) ∎)
1≡[w·[y-x]]·z : 1f ≡ (w · (y - x)) · z
1≡[w·[y-x]]·z = transport (λ i → 1f ≡ ·-comm z (w · (y - x)) i) 1≡z·[w·[y-x]]
-- Then since 0 < z and xz < yz, by (∗), we get xzw (y − x) < yzw (y − x), and hence x < y.
instance _ = [ z # 0f ] ∋ inr 0<z
z⁻¹ = w · (y - x)
z⁻¹≡w·[y-x] : z ⁻¹ ≡ (w · (y - x))
z⁻¹≡w·[y-x] = sym ((·-linv-unique (w · (y - x)) z (sym 1≡[w·[y-x]]·z)) it)
instance _ = 0<z
0<z⁻¹ : [ 0f < z ⁻¹ ]
0<z⁻¹ = ⁻¹-preserves-sign z (z ⁻¹) it (·-rinv z it)
instance _ = [ 0f < w · (y - x) ] ∋ pathTo⇒ (λ i → 0f < z⁻¹≡w·[y-x] i) 0<z⁻¹
in ( x · z < y · z ⇒ᵖ⟨ ·-preserves-< _ _ z⁻¹ it ⟩
(x · z) · z⁻¹ < (y · z) · z⁻¹ ⇒ᵖ⟨ pathTo⇒ (λ i → ·-assoc x z z⁻¹ (~ i) < ·-assoc y z z⁻¹ (~ i)) ⟩
x · (z · z⁻¹) < y · (z · z⁻¹) ⇒ᵖ⟨ pathTo⇒ (λ i → x · 1≡z·[w·[y-x]] (~ i) < y · 1≡z·[w·[y-x]] (~ i)) ⟩
x · 1f < y · 1f ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (fst (·-identity x)) (fst (·-identity y))) ⟩
x < y ◼ᵖ) .snd x·z<y·z
·-reflects-< x y z 0<z = ·-creates-< x y z 0<z .snd
item-9 = ·-creates-<
-- 10. 0 < 1.
is-0<1 with ·-inv#0 _ _ (·-identity 1f .fst) .fst
-- For item 10, since 1 has multiplicative inverse 1, it is apart from 0, hence 0 < 1 ∨ 1 < 0.
... | inl 1<0 = snd (
-- If 1 < 0 then by item 4 we have 0 < −1 and so by (∗) we get 0 < (−1) · (−1), that is, 0 < 1, so by transitivity 1 < 1, contradicting irreflexivity of <.
1f < 0f ⇒ᵖ⟨ +-preserves-< 1f 0f (- 1f) ⟩
1f - 1f < 0f - 1f ⇒ᵖ⟨ transport (λ i → [ +-rinv 1f i < snd (+-identity (- 1f)) i ]) ⟩
0f < - 1f ⇒ᵖ⟨ ( λ 0<-1 → ·-preserves-< 0f (- 1f) (- 1f) 0<-1 0<-1) ⟩
0f · (- 1f) < (- 1f) · (- 1f) ⇒ᵖ⟨ pathTo⇒ (cong₂ _<_ (RingTheory'.0-leftNullifies (- 1f)) refl) ⟩
0f < (- 1f) · (- 1f) ⇒ᵖ⟨ transport (λ i → [ 0f < RingTheory'.-commutesWithRight-· (- 1f) (1f) i ]) ⟩
0f < -((- 1f) · 1f )⇒ᵖ⟨ transport (λ i → [ 0f < RingTheory'.-commutesWithLeft-· (- 1f) 1f (~ i) ]) ⟩
0f < (-(- 1f))· 1f ⇒ᵖ⟨ transport (λ i → [ 0f < (Group'Properties.-involutive 1f i · 1f) ]) ⟩
0f < 1f · 1f ⇒ᵖ⟨ transport (λ i → [ 0f < fst (·-identity 1f) i ]) ⟩
0f < 1f ⇒ᵖ⟨ <-trans _ _ _ 1<0 ⟩
1f < 1f ⇒ᵖ⟨ <-irrefl 1f ⟩
⊥ ⇒ᵖ⟨ ⊥-elim ⟩
0f < 1f ◼ᵖ) 1<0
... | inr 0<1 = 0<1
-- Conversely, assume the 10 listed items—in particular, items 4, 5 and 9.
module item459⇒ -- 4. 5. 9. ⇒ 6.
(item-4 : [ Item-4 ]) -- ∀[ x ] ∀[ y ] ∀[ z ] x < y ⇔ x + z < y + z
(item-5 : [ Item-5 ]) -- ∀[ x ] ∀[ y ] 0f < x + y ⇒ (0f < x) ⊔ (0f < y)
(item-9 : [ Item-9 ]) -- ∀[ x ] ∀[ y ] ∀[ z ] 0f < z ⇒ (x < y ⇔ x · z < y · z)
where
abstract
+-<-ext : ∀ x y z w → [ (x + y) < (z + w) ⇒ (x < z) ⊔ (y < w) ]; _ : [ is-+-<-Extensional _+_ _<_ ]; _ = +-<-ext
·-preserves-< : ∀ x y z → [ 0f < z ⇒ x < y ⇒ (x · z) < (y · z) ]; _ : [ operation _·_ preserves _<_ when (λ z → 0f < z) ]; _ = ·-preserves-<
private
item-4' : ∀ x y → [ 0f < x - y ⇒ y < x ]
lemma : ∀ x y z w → (z + w) + ((- x) + (- y)) ≡ (z - x) + (w - y)
item-4' x y = snd (
0f < x - y ⇒ᵖ⟨ fst (item-4 0f (x + (- y)) y) ⟩
0f + y < (x - y) + y ⇒ᵖ⟨ transport (λ i → [ snd (+-identity y) i < sym (+-assoc x (- y) y) i ]) ⟩
y < x + (- y + y) ⇒ᵖ⟨ transport (λ i → [ y < x + snd (+-inv y) i ]) ⟩
y < x + 0f ⇒ᵖ⟨ transport (λ i → [ y < fst (+-identity x) i ]) ⟩
y < x ◼ᵖ)
lemma x y z w = (
-- NOTE: there has to be a shorter way to to this kind of calculations ...
-- also I got not much introspection while creating the paths
(z + w) + ((- x) + (- y)) ≡⟨ ( λ i → +-assoc z w ((- x) + (- y)) (~ i)) ⟩
(z + ( w + ((- x) + (- y)))) ≡⟨ ( λ i → z + (+-assoc w (- x) (- y) i)) ⟩
(z + ((w + (- x)) + (- y))) ≡⟨ ( λ i → z + ((+-comm w (- x) i) + (- y)) ) ⟩
(z + (((- x) + w) + (- y))) ≡⟨ ( λ i → z + (+-assoc (- x) w (- y) (~ i))) ⟩
(z + (( - x) + (w - y))) ≡⟨ ( λ i → +-assoc z (- x) (w - y) i ) ⟩
(z - x) + (w - y) ∎)
-- 6. (†)
-- In order to show (†), suppose x + y < z + w.
-- So, by item 4, we get (x + y) − (x + y) < (z + w) − (x + y), that is, 0 < (z − x) + (w − y).
-- By item 5, (0 < z − x) ∨ (0 < w − y), and so by item 4 in either case, we get x < z ∨ y < w.
+-<-ext x y z w = snd (
(x + y) < (z + w) ⇒ᵖ⟨ fst (item-4 (x + y) (z + w) (- (x + y))) ⟩
(x + y) - (x + y) < (z + w) - (x + y) ⇒ᵖ⟨ transport (λ i → [ +-rinv (x + y) i < (z + w) + (-dist x y) i ]) ⟩
0f < (z + w) + ((- x) + (- y)) ⇒ᵖ⟨ transport (λ i → [ 0f < lemma x y z w i ]) ⟩
0f < (z - x) + (w - y) ⇒ᵖ⟨ item-5 (z - x) (w - y) ⟩
(0f < z - x) ⊔ (0f < w - y) ⇒ᵖ⟨ (λ q → case q as (0f < z - x) ⊔ (0f < w - y) ⇒ ((x < z) ⊔ (y < w)) of λ
{ (inl p) → inlᵖ (item-4' z x p)
; (inr p) → inrᵖ (item-4' w y p)
}) ⟩
( x < z ) ⊔ ( y < w ) ◼ᵖ)
-- 6. (∗)
·-preserves-< x y z 0<z = item-9 x y z 0<z .fst
| {
"alphanum_fraction": 0.3428768201,
"avg_line_length": 58.5821325648,
"ext": "agda",
"hexsha": "8621a29377a52d438d33a352f62106416fec5ea9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Booij2020.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Booij2020.agda",
"max_line_length": 163,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Booij2020.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 8660,
"size": 20328
} |
import Lvl
open import Type
module Type.Singleton.Proofs {ℓ : Lvl.Level} {X : Type{ℓ}} where
open import Functional
open import Function.Domains
open import Logic.Predicate
open import Relator.Equals
open import Relator.Equals.Proofs
open import Type.Properties.Empty
open import Type.Singleton
open import Type.Properties.Singleton
open import Structure.Type.Identity
instance
-- There is always a construction of a singleton type
Singleton-existence : ∀{x : X} → Singleton(x)
Singleton-existence {x} = [∃]-intro(x) ⦃ [≡]-intro ⦄
instance
-- There is an unique construction of a singleton type
Singleton-is-unit : ∀{x : X} → IsUnit(Singleton(x))
Singleton-is-unit {x} = intro (Singleton-existence{x}) (g{x}) where
A : ∀{y x : X} → (y ≡ x) → Type{ℓ}
A {y}{x} (xy-proof) = ([∃]-intro y ⦃ xy-proof ⦄ ≡ Singleton-existence{x})
f : ∀{x : X} → A{x}{x}([≡]-intro {_}{_} {x})
f{x} = [≡]-intro {_}{_} {Singleton-existence{x}}
Φ : ∀{y x : X}{xy-proof : (y ≡ x)} → ([∃]-intro y ⦃ xy-proof ⦄ ≡ Singleton-existence{x})
Φ {y}{x}{xy-proof} = idElim(_≡_ {T = X}) (A)(f) {y}{x}(xy-proof)
g : ∀{x : X}{σ : Singleton(x)} → (σ ≡ Singleton-existence{x})
g{x}{[∃]-intro y ⦃ proof ⦄} = Φ{y}{x}{proof}
| {
"alphanum_fraction": 0.6251012146,
"avg_line_length": 34.3055555556,
"ext": "agda",
"hexsha": "dbfe41fdc6d24c87cefefff4b6f2fd8dc65ff073",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Singleton/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Singleton/Proofs.agda",
"max_line_length": 92,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Singleton/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 426,
"size": 1235
} |
module _ {a} {A : Set a} where
open import Agda.Builtin.Equality
open import Agda.Builtin.List
infix 4 _⊆_
postulate
_⊆_ : (xs ys : List A) → Set a
⊆-trans : ∀{xs ys zs} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs
private
variable
xs ys zs : List A
σ τ : ys ⊆ zs
x y : A
x≈y : x ≡ y
lemma : ∀ us (ρ : us ⊆ zs) (τ' : x ∷ xs ⊆ us) (σ' : ys ⊆ us)
(τ'∘ρ≡τ : ⊆-trans τ' ρ ≡ τ)
(σ'∘ρ≡σ : ⊆-trans σ' ρ ≡ σ)
→ us ⊆ us
lemma {τ = τ} {σ = σ} us ρ τ' σ' τ'∘ρ≡τ σ'∘ρ≡σ =
lem {τ = τ} {σ} us ρ τ' σ' τ'∘ρ≡τ σ'∘ρ≡σ
where
lem : ∀ {ys zs} {τ : (x ∷ xs) ⊆ zs} {σ : ys ⊆ zs}
us (ρ : us ⊆ zs) (τ' : x ∷ xs ⊆ us) (σ' : ys ⊆ us)
(τ'∘ρ≡τ : ⊆-trans τ' ρ ≡ τ)
(σ'∘ρ≡σ : ⊆-trans σ' ρ ≡ σ) →
{!!}
lem = {!!}
| {
"alphanum_fraction": 0.4162303665,
"avg_line_length": 23.875,
"ext": "agda",
"hexsha": "42f5e917c99a9ad34c20d404b7f31e19370d52f3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3982.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3982.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3982.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 401,
"size": 764
} |
module B where
open import A
B : Set
B = A
| {
"alphanum_fraction": 0.6444444444,
"avg_line_length": 6.4285714286,
"ext": "agda",
"hexsha": "443bc53c6fc698ae203ba55a44c4e87d546b909a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/relocatable/originals/B.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/relocatable/originals/B.agda",
"max_line_length": 14,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/relocatable/originals/B.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 16,
"size": 45
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Nondependent heterogeneous N-ary products
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Nary.NonDependent where
------------------------------------------------------------------------
-- Concrete examples can be found in README.Nary. This file's comments
-- are more focused on the implementation details and the motivations
-- behind the design decisions.
------------------------------------------------------------------------
open import Level as L using (Level; _⊔_; Lift; 0ℓ)
open import Agda.Builtin.Unit
open import Data.Product as Prod
import Data.Product.Properties as Prodₚ
open import Data.Sum.Base using (_⊎_)
open import Data.Nat.Base using (ℕ; zero; suc; pred)
open import Data.Fin.Base using (Fin; zero; suc)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂)
open import Function.Nary.NonDependent.Base
-- Provided n Levels and a corresponding "vector" of `n` Sets, we can build a big
-- right-nested product type packing a value for each one of these Sets.
-- We have two distinct but equivalent definitions:
-- the first which is always ⊤-terminated
-- the other which has a special case for n = 1 because we want our `(un)curryₙ`
-- functions to work for user-written functions and products and they rarely are
-- ⊤-terminated.
Product⊤ : ∀ n {ls} → Sets n ls → Set (⨆ n ls)
Product⊤ zero as = ⊤
Product⊤ (suc n) (a , as) = a × Product⊤ n as
Product : ∀ n {ls} → Sets n ls → Set (⨆ n ls)
Product 0 _ = ⊤
Product 1 (a , _) = a
Product (suc n) (a , as) = a × Product n as
-- Pointwise lifting of a relation on products
Allₙ : (∀ {a} {A : Set a} → Rel A a) →
∀ n {ls} {as : Sets n ls} (l r : Product n as) → Sets n ls
Allₙ R 0 l r = _
Allₙ R 1 a b = R a b , _
Allₙ R (suc n@(suc _)) (a , l) (b , r) = R a b , Allₙ R n l r
Equalₙ : ∀ n {ls} {as : Sets n ls} (l r : Product n as) → Sets n ls
Equalₙ = Allₙ _≡_
------------------------------------------------------------------------
-- Generic Programs
-- Once we have these type definitions, we can write generic programs
-- over them. They will typically be split into two or three definitions:
-- 1. action on the vector of n levels (if any)
-- 2. action on the corresponding vector of n Sets
-- 3. actual program, typed thank to the function defined in step 2.
------------------------------------------------------------------------
-- see Relation.Binary.PropositionalEquality for congₙ and substₙ, two
-- equality-related generic programs.
------------------------------------------------------------------------
-- equivalence of Product and Product⊤
toProduct : ∀ n {ls} {as : Sets n ls} → Product⊤ n as → Product n as
toProduct 0 _ = _
toProduct 1 (v , _) = v
toProduct (suc (suc n)) (v , vs) = v , toProduct _ vs
toProduct⊤ : ∀ n {ls} {as : Sets n ls} → Product n as → Product⊤ n as
toProduct⊤ 0 _ = _
toProduct⊤ 1 v = v , _
toProduct⊤ (suc (suc n)) (v , vs) = v , toProduct⊤ _ vs
------------------------------------------------------------------------
-- (un)curry
-- We start by defining `curryₙ` and `uncurryₙ` converting back and forth
-- between `A₁ → ⋯ → Aₙ → B` and `(A₁ × ⋯ × Aₙ) → B` by induction on `n`.
curryₙ : ∀ n {ls} {as : Sets n ls} {r} {b : Set r} →
(Product n as → b) → as ⇉ b
curryₙ 0 f = f _
curryₙ 1 f = f
curryₙ (suc n@(suc _)) f = curryₙ n ∘′ curry f
uncurryₙ : ∀ n {ls} {as : Sets n ls} {r} {b : Set r} →
as ⇉ b → (Product n as → b)
uncurryₙ 0 f = const f
uncurryₙ 1 f = f
uncurryₙ (suc n@(suc _)) f = uncurry (uncurryₙ n ∘′ f)
-- Variants for Product⊤
curry⊤ₙ : ∀ n {ls} {as : Sets n ls} {r} {b : Set r} →
(Product⊤ n as → b) → as ⇉ b
curry⊤ₙ zero f = f _
curry⊤ₙ (suc n) f = curry⊤ₙ n ∘′ curry f
uncurry⊤ₙ : ∀ n {ls} {as : Sets n ls} {r} {b : Set r} →
as ⇉ b → (Product⊤ n as → b)
uncurry⊤ₙ zero f = const f
uncurry⊤ₙ (suc n) f = uncurry (uncurry⊤ₙ n ∘′ f)
------------------------------------------------------------------------
-- decidability
Product⊤-dec : ∀ n {ls} {as : Sets n ls} → Product⊤ n (Dec <$> as) → Dec (Product⊤ n as)
Product⊤-dec zero _ = yes _
Product⊤-dec (suc n) (p? , ps?) = p? ×-dec Product⊤-dec n ps?
Product-dec : ∀ n {ls} {as : Sets n ls} → Product n (Dec <$> as) → Dec (Product n as)
Product-dec 0 _ = yes _
Product-dec 1 p? = p?
Product-dec (suc n@(suc _)) (p? , ps?) = p? ×-dec Product-dec n ps?
------------------------------------------------------------------------
-- pointwise liftings
toEqualₙ : ∀ n {ls} {as : Sets n ls} {l r : Product n as} →
l ≡ r → Product n (Equalₙ n l r)
toEqualₙ 0 eq = _
toEqualₙ 1 eq = eq
toEqualₙ (suc n@(suc _)) eq = Prod.map₂ (toEqualₙ n) (Prodₚ.,-injective eq)
fromEqualₙ : ∀ n {ls} {as : Sets n ls} {l r : Product n as} →
Product n (Equalₙ n l r) → l ≡ r
fromEqualₙ 0 eq = refl
fromEqualₙ 1 eq = eq
fromEqualₙ (suc n@(suc _)) eq = uncurry (cong₂ _,_) (Prod.map₂ (fromEqualₙ n) eq)
------------------------------------------------------------------------
-- projection of the k-th component
-- To know at which Set level the k-th projection out of an n-ary product
-- lives, we need to extract said level, by induction on k.
Levelₙ : ∀ {n} → Levels n → Fin n → Level
Levelₙ (l , _) zero = l
Levelₙ (_ , ls) (suc k) = Levelₙ ls k
-- Once we have the Sets used in the product, we can extract the one we
-- are interested in, once more by induction on k.
Projₙ : ∀ {n ls} → Sets n ls → ∀ k → Set (Levelₙ ls k)
Projₙ (a , _) zero = a
Projₙ (_ , as) (suc k) = Projₙ as k
-- Finally, provided a Product of these sets, we can extract the k-th value.
-- `projₙ` takes both `n` and `k` explicitly because we expect the user will
-- be using a concrete `k` (potentially manufactured using `Data.Fin`'s `#_`)
-- and it will not be possible to infer `n` from it.
projₙ : ∀ n {ls} {as : Sets n ls} k → Product n as → Projₙ as k
projₙ 1 zero v = v
projₙ (suc n@(suc _)) zero (v , _) = v
projₙ (suc n@(suc _)) (suc k) (_ , vs) = projₙ n k vs
projₙ 1 (suc ()) v
------------------------------------------------------------------------
-- removal of the k-th component
Levelₙ⁻ : ∀ {n} → Levels n → Fin n → Levels (pred n)
Levelₙ⁻ (_ , ls) zero = ls
Levelₙ⁻ {suc (suc _)} (l , ls) (suc k) = l , Levelₙ⁻ ls k
Levelₙ⁻ {1} _ (suc ())
Removeₙ : ∀ {n ls} → Sets n ls → ∀ k → Sets (pred n) (Levelₙ⁻ ls k)
Removeₙ (_ , as) zero = as
Removeₙ {suc (suc _)} (a , as) (suc k) = a , Removeₙ as k
Removeₙ {1} _ (suc ())
removeₙ : ∀ n {ls} {as : Sets n ls} k →
Product n as → Product (pred n) (Removeₙ as k)
removeₙ (suc zero) zero _ = _
removeₙ (suc (suc _)) zero (_ , vs) = vs
removeₙ (suc (suc zero)) (suc k) (v , _) = v
removeₙ (suc (suc (suc _))) (suc k) (v , vs) = v , removeₙ _ k vs
removeₙ (suc zero) (suc ()) _
------------------------------------------------------------------------
-- insertion of a k-th component
Levelₙ⁺ : ∀ {n} → Levels n → Fin (suc n) → Level → Levels (suc n)
Levelₙ⁺ ls zero l⁺ = l⁺ , ls
Levelₙ⁺ {suc _} (l , ls) (suc k) l⁺ = l , Levelₙ⁺ ls k l⁺
Levelₙ⁺ {0} _ (suc ())
Insertₙ : ∀ {n ls l⁺} → Sets n ls → ∀ k (a⁺ : Set l⁺) → Sets (suc n) (Levelₙ⁺ ls k l⁺)
Insertₙ as zero a⁺ = a⁺ , as
Insertₙ {suc _} (a , as) (suc k) a⁺ = a , Insertₙ as k a⁺
Insertₙ {zero} _ (suc ()) _
insertₙ : ∀ n {ls l⁺} {as : Sets n ls} {a⁺ : Set l⁺} k (v⁺ : a⁺) →
Product n as → Product (suc n) (Insertₙ as k a⁺)
insertₙ 0 zero v⁺ vs = v⁺
insertₙ (suc n) zero v⁺ vs = v⁺ , vs
insertₙ 1 (suc k) v⁺ vs = vs , insertₙ 0 k v⁺ _
insertₙ (suc (suc n)) (suc k) v⁺ (v , vs) = v , insertₙ _ k v⁺ vs
insertₙ 0 (suc ()) _ _
------------------------------------------------------------------------
-- update of a k-th component
Levelₙᵘ : ∀ {n} → Levels n → Fin n → Level → Levels n
Levelₙᵘ (_ , ls) zero lᵘ = lᵘ , ls
Levelₙᵘ (l , ls) (suc k) lᵘ = l , Levelₙᵘ ls k lᵘ
Updateₙ : ∀ {n ls lᵘ} (as : Sets n ls) k (aᵘ : Set lᵘ) → Sets n (Levelₙᵘ ls k lᵘ)
Updateₙ (_ , as) zero aᵘ = aᵘ , as
Updateₙ (a , as) (suc k) aᵘ = a , Updateₙ as k aᵘ
updateₙ : ∀ n {ls lᵘ} {as : Sets n ls} k {aᵘ : _ → Set lᵘ} (f : ∀ v → aᵘ v)
(vs : Product n as) → Product n (Updateₙ as k (aᵘ (projₙ n k vs)))
updateₙ 1 zero f v = f v
updateₙ (suc (suc _)) zero f (v , vs) = f v , vs
updateₙ (suc (suc _)) (suc k) f (v , vs) = v , updateₙ _ k f vs
updateₙ 1 (suc ()) _ _
updateₙ′ : ∀ n {ls lᵘ} {as : Sets n ls} k {aᵘ : Set lᵘ} (f : Projₙ as k → aᵘ) →
Product n as → Product n (Updateₙ as k aᵘ)
updateₙ′ n k = updateₙ n k
| {
"alphanum_fraction": 0.5086114101,
"avg_line_length": 39.5319148936,
"ext": "agda",
"hexsha": "55ba2ab16c5e419f2e692ff6363a38b350497932",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Product/Nary/NonDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Product/Nary/NonDependent.agda",
"max_line_length": 88,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Product/Nary/NonDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3232,
"size": 9290
} |
module Numeral.Finite.Category where
open import Functional
import Lvl
open import Numeral.Finite
open import Numeral.Natural
open import Type
open import Syntax.Function
-- Equality category on the type of finite natural numbers.
module _ where
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Relator.Equals.Category
open import Structure.Category
open import Structure.Category.Categories
import Structure.Category.Functor as Category
open import Structure.Function
open import Structure.Function.Domain
import Structure.Function.Names as Names
open import Structure.Groupoid
open import Structure.Groupoid.Groupoids
import Structure.Groupoid.Functor as Groupoid
𝕟-identityTypeGroupoid : Groupoid((_≡_) on₂ 𝕟)
𝕟-identityTypeGroupoid = on₂-groupoid identityTypeGroupoid 𝕟
-- The type constructor `𝕟` is a functor.
-- This means:
-- • `map: ∀(a: ℕ)(b: ℕ). (a ≡ b) → (𝕟(a) ≡ 𝕟(b))`
-- • `map(reflexivity(_≡_)) ≡ reflexivity(_≡_)`
-- • `transitivity(_≡_) (map p) (map q) ≡ map(transitivity(_≡_) p q)`
𝕟-functor : Groupoid.Functor(identityTypeGroupoid{T = ℕ})(𝕟-identityTypeGroupoid) id
𝕟-functor = idTransportFunctor
instance
𝕟-injectivity : Injective(𝕟)
𝕟-injectivity = intro proof where
proof : Names.Injective(𝕟)
proof {𝟎} {𝟎} [≡]-intro = [≡]-intro
proof {𝐒 a} {𝐒 .a} [≡]-intro = [≡]-with(𝐒) (proof [≡]-intro)
𝕟-inverse-functor : Groupoid.Functor(𝕟-identityTypeGroupoid)(identityTypeGroupoid{T = ℕ}) id
Groupoid.Functor.map 𝕟-inverse-functor = injective(𝕟)
Function.congruence (Groupoid.Functor.map-function 𝕟-inverse-functor) [≡]-intro = [≡]-intro
Groupoid.Functor.op-preserving 𝕟-inverse-functor {x} {x} {x} {[≡]-intro} {[≡]-intro} = proof{x} where
proof : ∀{x} → Groupoid.Functor.map 𝕟-inverse-functor (Groupoid._∘_ 𝕟-identityTypeGroupoid {x} [≡]-intro [≡]-intro) ≡ Groupoid._∘_ identityTypeGroupoid (Groupoid.Functor.map 𝕟-inverse-functor [≡]-intro) (Groupoid.Functor.map 𝕟-inverse-functor [≡]-intro)
proof {𝟎} = [≡]-intro
proof {𝐒 x}
rewrite proof{x}
rewrite Groupoid.Functor.id-preserving 𝕟-inverse-functor {x}
= [≡]-intro
Groupoid.Functor.id-preserving 𝕟-inverse-functor {x} = proof{x} where
proof : ∀{x} → (injective(𝕟) (Groupoid.id 𝕟-identityTypeGroupoid {x}) ≡ Category.id identityTypeCategory)
proof {𝟎} = [≡]-intro
proof {𝐒 x} rewrite proof{x} = [≡]-intro
Groupoid.Functor.inv-preserving 𝕟-inverse-functor {x} {x} {[≡]-intro} = proof where
proof : ∀{x} → Groupoid.Functor.map 𝕟-inverse-functor (Groupoid.inv 𝕟-identityTypeGroupoid {x} [≡]-intro) ≡ Groupoid.inv identityTypeGroupoid (Groupoid.Functor.map 𝕟-inverse-functor [≡]-intro)
proof {𝟎} = [≡]-intro
proof {𝐒 x}
rewrite proof{x}
rewrite Groupoid.Functor.id-preserving 𝕟-inverse-functor {x}
= [≡]-intro
open import Function.Equals
open import Numeral.Finite.Bound
open import Numeral.Natural.Relation.Order.Category
open import Numeral.Natural.Relation.Order.Proofs
open import Numeral.Natural.Relation.Order
open import Type.Category.ExtensionalFunctionsCategory
open import Structure.Relator.Properties
-- A functor for boundary changing of finite numeral types (𝕟).
bound-functor : Category.Functor [≤]-category (on₂-category typeExtensionalFnCategory 𝕟) id
Category.Functor.map bound-functor = bound-[≤]
Function.congruence (Category.Functor.map-function bound-functor) [≡]-intro = reflexivity(_⊜_)
Category.Functor.op-preserving bound-functor {x}{y}{z} {p}{q} = proof{x}{y}{z} {p}{q} where
proof : ∀{x y z}{p : (y ≤ z)}{q : (x ≤ y)} → (bound-[≤] (transitivity(_≤_) q p) ⊜ (bound-[≤] p) ∘ (bound-[≤] q))
_⊜_.proof (proof {𝐒 x} {𝐒 y} {𝐒 z} {succ _} {succ _}) {𝟎} = [≡]-intro
_⊜_.proof (proof {𝐒 x} {𝐒 y} {𝐒 z} {succ _} {succ _}) {𝐒 n} = congruence₁(𝐒) (_⊜_.proof (proof {x} {y} {z}) {n})
Category.Functor.id-preserving bound-functor {n} = proof{n} where
proof : ∀{n} → (bound-[≤] (reflexivity(_≤_) {n}) ⊜ id)
_⊜_.proof (proof {𝟎}) {()}
_⊜_.proof (proof {𝐒 n}) {𝟎} = [≡]-intro
_⊜_.proof (proof {𝐒 n}) {𝐒 x} = congruence₁(𝐒) (_⊜_.proof (proof {n}) {x})
| {
"alphanum_fraction": 0.6792093356,
"avg_line_length": 48.8255813953,
"ext": "agda",
"hexsha": "bbd8f0fa30b8eb4a7195de3e83a135ed0d06c784",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Category.agda",
"max_line_length": 257,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1524,
"size": 4199
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Neutral {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Wk
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Symmetry
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Neutral reflexive types are reducible.
neu : ∀ {l Γ A} (neA : Neutral A)
→ Γ ⊢ A
→ Γ ⊢ A ~ A ∷ U
→ Γ ⊩⟨ l ⟩ A
neu neA A A~A = ne′ _ (idRed:*: A) neA A~A
-- Helper function for reducible neutral equality of a specific type of derivation.
neuEq′ : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ne A)
(neA : Neutral A)
(neB : Neutral B)
→ Γ ⊢ A → Γ ⊢ B
→ Γ ⊢ A ~ B ∷ U
→ Γ ⊩⟨ l ⟩ A ≡ B / ne-intr [A]
neuEq′ (noemb (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neA neB A B A~B =
let A≡K = whnfRed* D (ne neA)
in ne₌ _ (idRed:*: B) neB (PE.subst (λ x → _ ⊢ x ~ _ ∷ _) A≡K A~B)
neuEq′ (emb 0<1 x) neB A:≡:B = neuEq′ x neB A:≡:B
-- Neutrally equal types are of reducible equality.
neuEq : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ A)
(neA : Neutral A)
(neB : Neutral B)
→ Γ ⊢ A → Γ ⊢ B
→ Γ ⊢ A ~ B ∷ U
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
neuEq [A] neA neB A B A~B =
irrelevanceEq (ne-intr (ne-elim neA [A]))
[A]
(neuEq′ (ne-elim neA [A]) neA neB A B A~B)
mutual
-- Neutral reflexive terms are reducible.
neuTerm : ∀ {l Γ A n} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n)
→ Γ ⊢ n ∷ A
→ Γ ⊢ n ~ n ∷ A
→ Γ ⊩⟨ l ⟩ n ∷ A / [A]
neuTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN n n~n =
Uₜ _ (idRedTerm:*: n) (ne neN) (~-to-≅ₜ n~n) (neu neN (univ n) n~n)
neuTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN n n~n =
let A≡ℕ = subset* D
n~n′ = ~-conv n~n A≡ℕ
n≡n = ~-to-≅ₜ n~n′
in ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′))
neuTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN n n~n =
let A≡Empty = subset* D
n~n′ = ~-conv n~n A≡Empty
n≡n = ~-to-≅ₜ n~n′
in Emptyₜ _ (idRedTerm:*: (conv n A≡Empty)) n≡n (ne (neNfₜ neN (conv n A≡Empty) n~n′))
neuTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN n n~n =
let A≡Unit = subset* D
n~n′ = ~-conv n~n A≡Unit
in Unitₜ _ (idRedTerm:*: (conv n A≡Unit)) (ne neN)
neuTerm (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) neN n n~n =
let A≡K = subset* D
in neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K)
(~-conv n~n A≡K))
neuTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n =
let A≡ΠFG = subset* (red D)
in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG))
(λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] →
let A≡ΠFG = subset* (red D)
ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D))
G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b])
(symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b])
(G-ext [ρ] ⊢Δ [a] [b] [a≡b]))
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
b = escapeTerm ([F] [ρ] ⊢Δ) [b]
a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b]
ρn = conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG
neN∘a = ∘ₙ (wkNeutral ρ neN)
neN∘b = ∘ₙ (wkNeutral ρ neN)
in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b
(ρn ∘ⱼ a)
(conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b]))
(~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b))
(λ {ρ} [ρ] ⊢Δ [a] →
let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D))
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a])
in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN))
(conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a)
(~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a))
neuTerm (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN ⊢n n~n =
let A≡ΣFG = subset* (red D)
⊢Γ = wf ⊢F
⊢n = conv ⊢n A≡ΣFG
n~n = ~-conv n~n A≡ΣFG
[F] = [F] Wk.id ⊢Γ
[fst] = neuTerm [F] (fstₙ neN)
(PE.subst
(λ x → _ ⊢ fst _ ∷ x)
(PE.sym (wk-id F))
(fstⱼ ⊢F ⊢G ⊢n))
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.sym (wk-id F))
(~-fst ⊢F ⊢G n~n))
[Gfst] = [G] Wk.id ⊢Γ [fst]
[snd] = neuTerm [Gfst] (sndₙ neN)
(PE.subst
(λ x → _ ⊢ snd _ ∷ x)
(PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G)))
(sndⱼ ⊢F ⊢G ⊢n))
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G)))
(~-snd ⊢F ⊢G n~n))
in Σₜ _ (idRedTerm:*: ⊢n) (ne neN) (~-to-≅ₜ n~n)
[fst]
[snd]
neuTerm (emb 0<1 x) neN n = neuTerm x neN n
-- Neutrally equal terms are of reducible equality.
neuEqTerm : ∀ {l Γ A n n′} ([A] : Γ ⊩⟨ l ⟩ A)
(neN : Neutral n) (neN′ : Neutral n′)
→ Γ ⊢ n ∷ A
→ Γ ⊢ n′ ∷ A
→ Γ ⊢ n ~ n′ ∷ A
→ Γ ⊩⟨ l ⟩ n ≡ n′ ∷ A / [A]
neuEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN neN′ n n′ n~n′ =
let [n] = neu neN (univ n) (~-trans n~n′ (~-sym n~n′))
[n′] = neu neN′ (univ n′) (~-trans (~-sym n~n′) n~n′)
in Uₜ₌ _ _ (idRedTerm:*: n) (idRedTerm:*: n′) (ne neN) (ne neN′)
(~-to-≅ₜ n~n′) [n] [n′] (neuEq [n] neN neN′ (univ n) (univ n′) n~n′)
neuEqTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ =
let A≡ℕ = subset* D
n~n′₁ = ~-conv n~n′ A≡ℕ
n≡n′ = ~-to-≅ₜ n~n′₁
in ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ))
n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁))
neuEqTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ =
let A≡Empty = subset* D
n~n′₁ = ~-conv n~n′ A≡Empty
n≡n′ = ~-to-≅ₜ n~n′₁
in Emptyₜ₌ _ _ (idRedTerm:*: (conv n A≡Empty)) (idRedTerm:*: (conv n′ A≡Empty))
n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁))
neuEqTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ =
let A≡Unit = subset* D
in Unitₜ₌ (conv n A≡Unit) (conv n′ A≡Unit)
neuEqTerm (ne (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neN neN′ n n′ n~n′ =
let A≡K = subset* D
in neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K))
(neNfₜ₌ neN neN′ (~-conv n~n′ A≡K))
neuEqTerm (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ =
let [ΠFG] = Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext
A≡ΠFG = subset* D
n~n′₁ = ~-conv n~n′ A≡ΠFG
n≡n′ = ~-to-≅ₜ n~n′₁
n~n = ~-trans n~n′ (~-sym n~n′)
n′~n′ = ~-trans (~-sym n~n′) n~n′
in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG))
(ne neN) (ne neN′) n≡n′
(neuTerm [ΠFG] neN n n~n) (neuTerm [ΠFG] neN′ n′ n′~n′)
(λ {ρ} [ρ] ⊢Δ [a] →
let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ A≡ΠFG
ρn = Wk.wkTerm [ρ] ⊢Δ n
ρn′ = Wk.wkTerm [ρ] ⊢Δ n′
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
a≡a = escapeTermEq ([F] [ρ] ⊢Δ)
(reflEqTerm ([F] [ρ] ⊢Δ) [a])
neN∙a = ∘ₙ (wkNeutral ρ neN)
neN′∙a′ = ∘ₙ (wkNeutral ρ neN′)
in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′
(conv ρn ρA≡ρΠFG ∘ⱼ a)
(conv ρn′ ρA≡ρΠFG ∘ⱼ a)
(~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a))
neuEqTerm (Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ ⊢n ⊢n′ n~n′ =
let [ΣFG] = Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext
A≡ΣFG = subset* D
n~n = ~-trans n~n′ (~-sym n~n′)
n′~n′ = ~-trans (~-sym n~n′) n~n′
⊢Γ = wf ⊢F
⊢nΣ = conv ⊢n A≡ΣFG
⊢n′Σ = conv ⊢n′ A≡ΣFG
n~n′Σ = ~-conv n~n′ A≡ΣFG
n~nΣ = ~-conv n~n A≡ΣFG
n′~n′Σ = ~-conv n′~n′ A≡ΣFG
[F] = [F] Wk.id ⊢Γ
⊢fstnΣ = (PE.subst
(λ x → _ ⊢ fst _ ∷ x)
(PE.sym (wk-id F))
(fstⱼ ⊢F ⊢G ⊢nΣ))
⊢fstn′Σ = (PE.subst
(λ x → _ ⊢ fst _ ∷ x)
(PE.sym (wk-id F))
(fstⱼ ⊢F ⊢G ⊢n′Σ))
[fstn] = neuTerm [F] (fstₙ neN)
⊢fstnΣ
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.sym (wk-id F))
(~-fst ⊢F ⊢G n~nΣ))
[fstn′] = neuTerm [F] (fstₙ neN′)
⊢fstn′Σ
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.sym (wk-id F))
(~-fst ⊢F ⊢G n′~n′Σ))
[fstn≡fstn′] = neuEqTerm [F] (fstₙ neN) (fstₙ neN′)
⊢fstnΣ
⊢fstn′Σ
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.sym (wk-id F))
(~-fst ⊢F ⊢G n~n′Σ))
[Gfstn] = [G] Wk.id ⊢Γ [fstn]
[Gfstn′] = PE.subst (λ x → _ ⊩⟨ _ ⟩ x [ fst _ ]) (wk-lift-id G) ([G] Wk.id ⊢Γ [fstn′])
[fstn′≡fstn] = symEqTerm [F] [fstn≡fstn′]
[Gfstn′≡Gfstn] = irrelevanceEq″
(PE.cong (λ x → x [ fst _ ]) (wk-lift-id G))
(PE.cong (λ x → x [ fst _ ]) (wk-lift-id G))
([G] Wk.id ⊢Γ [fstn′]) [Gfstn′]
(G-ext Wk.id ⊢Γ [fstn′] [fstn] [fstn′≡fstn])
Gfstn′≡Gfstn = ≅-eq (escapeEq [Gfstn′] [Gfstn′≡Gfstn])
[sndn≡sndn′] = neuEqTerm [Gfstn] (sndₙ neN) (sndₙ neN′)
(PE.subst
(λ x → _ ⊢ snd _ ∷ x)
(PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G)))
(sndⱼ ⊢F ⊢G ⊢nΣ))
(PE.subst
(λ x → _ ⊢ snd _ ∷ x)
(PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G)))
(conv (sndⱼ ⊢F ⊢G ⊢n′Σ) Gfstn′≡Gfstn))
(PE.subst
(λ x → _ ⊢ _ ~ _ ∷ x)
(PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G)))
(~-snd ⊢F ⊢G n~n′Σ))
in Σₜ₌ _ _ (idRedTerm:*: ⊢nΣ) (idRedTerm:*: ⊢n′Σ)
(ne neN) (ne neN′) (~-to-≅ₜ n~n′Σ)
(neuTerm [ΣFG] neN ⊢n n~n) (neuTerm [ΣFG] neN′ ⊢n′ n′~n′)
[fstn] [fstn′] [fstn≡fstn′] [sndn≡sndn′]
neuEqTerm (emb 0<1 x) neN neN′ n:≡:n′ = neuEqTerm x neN neN′ n:≡:n′
| {
"alphanum_fraction": 0.3960352423,
"avg_line_length": 43.8223938224,
"ext": "agda",
"hexsha": "293113a79d6ac77a984c275487a8634e93bc9f7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5019,
"size": 11350
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Coproduct
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.Pushout
open import lib.types.PushoutFlattening
open import lib.types.PushoutFmap
open import lib.types.Sigma
open import lib.types.Span
open import lib.types.Unit
-- Wedge of two pointed types is defined as a particular case of pushout
module lib.types.Wedge where
module _ {i j} (X : Ptd i) (Y : Ptd j) where
⊙∨-span : ⊙Span
⊙∨-span = ⊙span X Y ⊙Unit ⊙cst ⊙cst
⊙wedge-span = ⊙∨-span
∨-span : Span
∨-span = ⊙Span-to-Span ⊙∨-span
wedge-span = ∨-span
Wedge : Type (lmax i j)
Wedge = Pushout wedge-span
infix 80 _∨_
_∨_ = Wedge
⊙Wedge : Ptd (lmax i j)
⊙Wedge = ⊙Pushout ⊙wedge-span
infix 80 _⊙∨_
_⊙∨_ = ⊙Wedge
module _ {i j} {X : Ptd i} {Y : Ptd j} where
winl : de⊙ X → X ∨ Y
winl x = left x
winr : de⊙ Y → X ∨ Y
winr y = right y
wglue : winl (pt X) == winr (pt Y)
wglue = glue tt
⊙winl : X ⊙→ X ⊙∨ Y
⊙winl = (winl , idp)
⊙winr : Y ⊙→ X ⊙∨ Y
⊙winr = (winr , ! wglue)
module WedgeElim {k} {P : X ∨ Y → Type k}
(winl* : (x : de⊙ X) → P (winl x)) (winr* : (y : de⊙ Y) → P (winr y))
(glue* : winl* (pt X) == winr* (pt Y) [ P ↓ wglue ]) where
private
module M = PushoutElim winl* winr* (λ _ → glue*)
f = M.f
glue-β = M.glue-β unit
∨-elim = WedgeElim.f
Wedge-elim = WedgeElim.f
module WedgeRec {k} {C : Type k} (winl* : de⊙ X → C) (winr* : de⊙ Y → C)
(glue* : winl* (pt X) == winr* (pt Y)) where
private
module M = PushoutRec {d = wedge-span X Y} winl* winr* (λ _ → glue*)
f = M.f
glue-β = M.glue-β unit
∨-rec = WedgeRec.f
Wedge-rec = WedgeRec.f
module ⊙WedgeRec {k} {Z : Ptd k} (g : X ⊙→ Z) (h : Y ⊙→ Z) where
open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public
⊙f : X ⊙∨ Y ⊙→ Z
⊙f = (f , snd g)
⊙winl-β : ⊙f ⊙∘ ⊙winl == g
⊙winl-β = idp
⊙winr-β : ⊙f ⊙∘ ⊙winr == h
⊙winr-β = ⊙λ=' (λ _ → idp) lemma where
abstract
lemma : snd (⊙f ⊙∘ ⊙winr) == snd h
lemma =
ap (_∙ snd g)
(ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h)))
∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g)
∙ ap (! (! (snd h)) ∙_) (!-inv-l (snd g))
∙ ∙-unit-r (! (! (snd h)))
∙ !-! (snd h)
⊙∨-rec = ⊙WedgeRec.⊙f
⊙Wedge-rec = ⊙WedgeRec.⊙f
⊙Wedge-rec-post∘ : ∀ {k l} {Z : Ptd k} {W : Ptd l}
(k : Z ⊙→ W) (g : X ⊙→ Z) (h : Y ⊙→ Z)
→ k ⊙∘ ⊙Wedge-rec g h ⊙∼ ⊙Wedge-rec (k ⊙∘ g) (k ⊙∘ h)
⊙Wedge-rec-post∘ k g h =
(Wedge-elim (λ _ → idp) (λ _ → idp)
(↓-='-in' $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h)
∙ lemma (fst k) (snd g) (snd h) (snd k)
∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h))
∙ ∘-ap (fst k) (fst (⊙Wedge-rec g h)) wglue)) ,
idp
where
lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B}
(p : x == z) (q : y == z) (r : f z == w)
→ (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q)
lemma f idp idp idp = idp
⊙∨-rec-post∘ = ⊙Wedge-rec-post∘
⊙Wedge-rec-η : ⊙Wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y)
⊙Wedge-rec-η = ⊙λ='
(Wedge-elim (λ _ → idp) (λ _ → idp)
(↓-='-in' $ ap-idf wglue
∙ ! (!-! wglue)
∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr)))
idp
⊙∨-rec-η = ⊙Wedge-rec-η
add-wglue : de⊙ (X ⊙⊔ Y) → X ∨ Y
add-wglue (inl x) = winl x
add-wglue (inr y) = winr y
⊙add-wglue : X ⊙⊔ Y ⊙→ X ⊙∨ Y
⊙add-wglue = add-wglue , idp
module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y})
module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y)
projl = Projl.f
projr = Projr.f
⊙projl = Projl.⊙f
⊙projr = Projr.⊙f
module WedgeToProduct = ⊙WedgeRec ((_, pt Y) , idp) ((pt X ,_), idp)
∨-⊙to-× : X ⊙∨ Y ⊙→ X ⊙× Y
∨-⊙to-× = WedgeToProduct.⊙f
∨-to-× : X ∨ Y → de⊙ (X ⊙× Y)
∨-to-× = WedgeToProduct.f
∨-to-×-glue-β : ap ∨-to-× wglue == idp
∨-to-×-glue-β = WedgeToProduct.glue-β
abstract
↓-∨to×=cst-in : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)}
→ p == p'
→ p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ]
↓-∨to×=cst-in {p' = idp} q =
↓-app=cst-in' (q ∙ ! WedgeToProduct.glue-β)
↓-∨to×=cst-out : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)}
→ p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ]
→ p == p'
↓-∨to×=cst-out {p' = idp} q =
↓-app=cst-out' q ∙ WedgeToProduct.glue-β
↓-∨to×=cst-β : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)}
(q : p == p')
→ ↓-∨to×=cst-out (↓-∨to×=cst-in q) == q
↓-∨to×=cst-β {p' = idp} idp =
ap (_∙ WedgeToProduct.glue-β) (↓-app=cst-β' {p = wglue} (! WedgeToProduct.glue-β))
∙ !-inv-l WedgeToProduct.glue-β
↓-∨to×=cst-η : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)}
(q : p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ])
→ ↓-∨to×=cst-in (↓-∨to×=cst-out q) == q
↓-∨to×=cst-η {p = p} {p' = idp} q =
ap ↓-app=cst-in'
( ∙-assoc (↓-app=cst-out' q) WedgeToProduct.glue-β (! WedgeToProduct.glue-β)
∙ ap (↓-app=cst-out' q ∙_) (!-inv-r WedgeToProduct.glue-β)
∙ ∙-unit-r (↓-app=cst-out' q))
∙ ↓-app=cst-η' q
module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X)
fold = Fold.f
⊙fold = Fold.⊙f
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
(fX : X ⊙→ X') (fY : Y ⊙→ Y') where
wedge-span-map : SpanMap (wedge-span X Y) (wedge-span X' Y')
wedge-span-map = span-map (fst fX) (fst fY) (idf _)
(comm-sqr λ _ → snd fX)
(comm-sqr λ _ → snd fY)
module WedgeFmap where
private
module M = PushoutFmap wedge-span-map
f = M.f
glue-β = M.glue-β unit
∨-fmap : X ∨ Y → X' ∨ Y'
∨-fmap = WedgeFmap.f
⊙∨-fmap : X ⊙∨ Y ⊙→ X' ⊙∨ Y'
⊙∨-fmap = ∨-fmap , ap winl (snd fX)
Wedge-fmap = ∨-fmap
⊙Wedge-fmap = ⊙∨-fmap
module _ {i₀ i₁ i₂ j₀ j₁ j₂} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {X₂ : Ptd i₂}
{Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {Y₂ : Ptd j₂}
where
∨-fmap-∘ :
(gX : X₁ ⊙→ X₂) (fX : X₀ ⊙→ X₁)
(gY : Y₁ ⊙→ Y₂) (fY : Y₀ ⊙→ Y₁)
→ ∨-fmap (gX ⊙∘ fX) (gY ⊙∘ fY) ∼ ∨-fmap gX gY ∘ ∨-fmap fX fY
∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) =
Pushout-fmap-∘ (wedge-span-map (gX , idp) (gY , idp)) (wedge-span-map (fX , idp) (fY , idp))
⊙∨-fmap-∘ :
(gX : X₁ ⊙→ X₂) (fX : X₀ ⊙→ X₁)
(gY : Y₁ ⊙→ Y₂) (fY : Y₀ ⊙→ Y₁)
→ ⊙∨-fmap (gX ⊙∘ fX) (gY ⊙∘ fY) ⊙∼ ⊙∨-fmap gX gY ⊙∘ ⊙∨-fmap fX fY
⊙∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) =
∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) , idp
Wedge-fmap-∘ = ∨-fmap-∘
⊙Wedge-fmap-∘ = ⊙∨-fmap-∘
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
(eqX : X ⊙≃ X') (eqY : Y ⊙≃ Y') where
wedge-span-emap : SpanEquiv (wedge-span X Y) (wedge-span X' Y')
wedge-span-emap = wedge-span-map (⊙–> eqX) (⊙–> eqY)
, snd eqX , snd eqY , idf-is-equiv _
∨-emap : X ∨ Y ≃ X' ∨ Y'
∨-emap = Pushout-emap wedge-span-emap
⊙∨-emap : X ⊙∨ Y ⊙≃ X' ⊙∨ Y'
⊙∨-emap = ≃-to-⊙≃ ∨-emap (ap winl (⊙–>-pt eqX))
Wedge-emap = ∨-emap
⊙Wedge-emap = ⊙∨-emap
module _ {i i' j j' k} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j}
{Y' : Ptd j'} {Z : Ptd k} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z)
(f : X ⊙→ X') (g : Y ⊙→ Y') where
⊙Wedge-rec-fmap :
⊙Wedge-rec winl* winr* ⊙∘ ⊙∨-fmap f g
⊙∼ ⊙Wedge-rec (winl* ⊙∘ f) (winr* ⊙∘ g)
⊙Wedge-rec-fmap =
Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ winl* winr* f g) ,
lemma₁ winl* winr* f
where
abstract
lemma₀ : ∀ {X' Y' Z} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z)
(f : X ⊙→ X') (g : Y ⊙→ Y')
→ ap (⊙WedgeRec.f winl* winr* ∘ ∨-fmap f g) wglue
== ap (⊙WedgeRec.f (winl* ⊙∘ f) (winr* ⊙∘ g)) wglue
lemma₀ (winl* , idp) (winr* , winr*-pt) (f , idp) (g , idp) =
ap (Wedge-rec winl* winr* (! winr*-pt) ∘ ∨-fmap (f , idp) (g , idp)) wglue
=⟨ ap-∘ (Wedge-rec winl* winr* (! winr*-pt)) (∨-fmap (f , idp) (g , idp)) wglue ⟩
ap (Wedge-rec winl* winr* (! winr*-pt)) (ap (∨-fmap (f , idp) (g , idp)) wglue)
=⟨ ap (ap (Wedge-rec winl* winr* (! winr*-pt))) $ WedgeFmap.glue-β (f , idp) (g , idp) ⟩
ap (Wedge-rec winl* winr* (! winr*-pt)) wglue
=⟨ WedgeRec.glue-β winl* winr* (! winr*-pt) ⟩
! winr*-pt
=⟨ ! $ WedgeRec.glue-β (winl* ∘ f) (winr* ∘ g) (! winr*-pt) ⟩
ap (Wedge-rec (winl* ∘ f) (winr* ∘ g) (! winr*-pt)) wglue
=∎
lemma₁ : ∀ {X' Z} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z) (f : X ⊙→ X')
→ snd (⊙Wedge-rec winl* winr* ⊙∘ ⊙∨-fmap f g)
== snd (⊙Wedge-rec (winl* ⊙∘ f) (winr* ⊙∘ g))
lemma₁ (f , idp) _ (winl* , idp) = idp
⊙∨-rec-fmap = ⊙Wedge-rec-fmap
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j}
{Y' : Ptd j'} (f : X ⊙→ X') (g : Y ⊙→ Y') where
⊙projl-fmap : ⊙projl ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec f ⊙cst
⊙projl-fmap =
Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g
where
abstract
lemma₀ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y')
→ ap (projl ∘ ∨-fmap f g) wglue
== ap (⊙WedgeRec.f f ⊙cst) wglue
lemma₀ (f , idp) (g , idp) =
ap (projl ∘ ∨-fmap (f , idp) (g , idp)) wglue
=⟨ ap-∘ projl (∨-fmap (f , idp) (g , idp)) wglue ⟩
ap projl (ap (∨-fmap (f , idp) (g , idp)) wglue)
=⟨ ap (ap projl) (WedgeFmap.glue-β (f , idp) (g , idp)) ⟩
ap projl wglue
=⟨ Projl.glue-β ⟩
idp
=⟨ ! $ ⊙WedgeRec.glue-β (f , idp) ⊙cst ⟩
ap (⊙WedgeRec.f (f , idp) ⊙cst) wglue
=∎
lemma₁ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y')
→ snd (⊙projl ⊙∘ ⊙∨-fmap f g)
== snd (⊙Wedge-rec {Y = Y} f ⊙cst)
lemma₁ (f , idp) (g , idp) = idp
⊙projr-fmap : ⊙projr ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec ⊙cst g
⊙projr-fmap =
Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g
where
abstract
lemma₀ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y')
→ ap (projr ∘ ∨-fmap f g) wglue
== ap (⊙WedgeRec.f ⊙cst g) wglue
lemma₀ (f , idp) (g , idp) =
ap (projr ∘ ∨-fmap (f , idp) (g , idp)) wglue
=⟨ ap-∘ projr (∨-fmap (f , idp) (g , idp)) wglue ⟩
ap projr (ap (∨-fmap (f , idp) (g , idp)) wglue)
=⟨ ap (ap projr) (WedgeFmap.glue-β (f , idp) (g , idp)) ⟩
ap projr wglue
=⟨ Projr.glue-β ⟩
idp
=⟨ ! $ ⊙WedgeRec.glue-β ⊙cst (g , idp) ⟩
ap (⊙WedgeRec.f ⊙cst (g , idp)) wglue
=∎
lemma₁ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y')
→ snd (⊙projr ⊙∘ ⊙∨-fmap f g)
== snd (⊙Wedge-rec {X = X} ⊙cst g)
lemma₁ (f , idp) (g , idp) = idp
module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙→ Z) (g : Y ⊙→ Z) where
{- favonia: This is a special case, but still proved separately to make sure
it has good computational content. (Maybe this is overkilling.) -}
⊙fold-fmap : ⊙fold ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec f g
⊙fold-fmap =
Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g
where
abstract
lemma₀ : ∀ {Z} (f : X ⊙→ Z) (g : Y ⊙→ Z)
→ ap (⊙WedgeRec.f (⊙idf _) (⊙idf _) ∘ ∨-fmap f g) wglue
== ap (⊙WedgeRec.f f g) wglue
lemma₀ (f , idp) (g , g-pt) =
ap (⊙WedgeRec.f (⊙idf _) (⊙idf _) ∘ ∨-fmap (f , idp) (g , g-pt)) wglue
=⟨ ap-∘
(⊙WedgeRec.f (⊙idf _) (⊙idf _))
(∨-fmap (f , idp) (g , g-pt))
wglue ⟩
ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (ap (∨-fmap (f , idp) (g , g-pt)) wglue)
=⟨ ap (ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)))
(WedgeFmap.glue-β (f , idp) (g , g-pt)) ⟩
ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (wglue ∙' ap winr (! g-pt))
=⟨ ap-∙' (⊙WedgeRec.f (⊙idf _) (⊙idf _)) wglue (ap winr (! g-pt)) ⟩
ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) wglue
∙' ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (ap winr (! g-pt))
=⟨ ap2 _∙'_
(⊙WedgeRec.glue-β (⊙idf _) (⊙idf _))
( ∘-ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) winr (! g-pt)
∙ ap-idf (! g-pt)) ⟩
idp ∙' ! g-pt
=⟨ ∙'-unit-l (! g-pt) ⟩
! g-pt
=⟨ ! $ ⊙WedgeRec.glue-β (f , idp) (g , g-pt) ⟩
ap (⊙WedgeRec.f (f , idp) (g , g-pt) ) wglue
=∎
lemma₁ : ∀ {Z} (f : X ⊙→ Z) (g : Y ⊙→ Z)
→ snd (⊙Wedge-rec (⊙idf _) (⊙idf _) ⊙∘ ⊙∨-fmap f g)
== snd (⊙Wedge-rec f g)
lemma₁ (f , idp) (g , g-pt) = idp
module _ {i j k} (X : Ptd i) (Y : Ptd j) (Z : Ptd k) where
module WedgeAssocInl = WedgeRec {C = X ∨ (Y ⊙∨ Z)} winl (winr ∘ winl) wglue
module WedgeAssoc = WedgeRec {X = X ⊙∨ Y} WedgeAssocInl.f (winr ∘ winr) (wglue ∙ ap winr wglue)
∨-assoc : (X ⊙∨ Y) ∨ Z ≃ X ∨ (Y ⊙∨ Z)
∨-assoc = equiv to from to-from from-to where
to : (X ⊙∨ Y) ∨ Z → X ∨ (Y ⊙∨ Z)
to = WedgeAssoc.f
module FromInr = WedgeRec {C = (X ⊙∨ Y) ∨ Z} (winl ∘ winr) winr (! (ap winl wglue) ∙ wglue)
module From = WedgeRec {Y = Y ⊙∨ Z} (winl ∘ winl) FromInr.f (ap winl wglue)
from : X ∨ (Y ⊙∨ Z) → (X ⊙∨ Y) ∨ Z
from = From.f
abstract
to-from : ∀ x → to (from x) == x
to-from = Wedge-elim
(λ x → idp)
(Wedge-elim (λ y → idp) (λ z → idp) $ ↓-='-in' $ ! $
ap (to ∘ FromInr.f) wglue
=⟨ ap-∘ to FromInr.f wglue ⟩
ap to (ap FromInr.f wglue)
=⟨ ap (ap to) FromInr.glue-β ⟩
ap to (! (ap winl wglue) ∙ wglue)
=⟨ ap-∙ to (! (ap winl wglue)) wglue ⟩
ap to (! (ap winl wglue)) ∙ ap to wglue
=⟨ _∙2_ (ap-! to (ap winl wglue) ∙ ap ! (∘-ap to winl wglue ∙ WedgeAssocInl.glue-β)) WedgeAssoc.glue-β ⟩
! wglue ∙ wglue ∙ ap winr wglue
=⟨ ! $ ∙-assoc (! wglue) wglue (ap winr wglue) ⟩
(! wglue ∙ wglue) ∙ ap winr wglue
=⟨ ap (_∙ ap winr wglue) (!-inv-l wglue) ⟩
ap winr wglue
=∎)
(↓-∘=idf-in' to from (ap (ap to) From.glue-β ∙ ∘-ap to winl wglue ∙ WedgeAssocInl.glue-β))
from-to : ∀ x → from (to x) == x
from-to = Wedge-elim
(Wedge-elim (λ x → idp) (λ y → idp) $ ↓-='-in' $ ! $
ap-∘ from WedgeAssocInl.f wglue ∙ ap (ap from) WedgeAssocInl.glue-β ∙ From.glue-β)
(λ z → idp)
(↓-∘=idf-in' from to $
ap from (ap to wglue)
=⟨ ap (ap from) WedgeAssoc.glue-β ⟩
ap from (wglue ∙ ap winr wglue)
=⟨ ap-∙ from wglue (ap winr wglue) ⟩
ap from wglue ∙ ap from (ap winr wglue)
=⟨ From.glue-β ∙2 (∘-ap from winr wglue ∙ FromInr.glue-β) ⟩
ap winl wglue ∙ ! (ap winl wglue) ∙ wglue
=⟨ ! $ ∙-assoc (ap winl wglue) (! (ap winl wglue)) wglue ⟩
(ap winl wglue ∙ ! (ap winl wglue)) ∙ wglue
=⟨ ap (_∙ wglue) (!-inv-r (ap winl wglue)) ⟩
wglue
=∎)
⊙∨-assoc : (X ⊙∨ Y) ⊙∨ Z ⊙≃ X ⊙∨ (Y ⊙∨ Z)
⊙∨-assoc = ≃-to-⊙≃ ∨-assoc idp
{-
module _ {i₀ i₁ j₀ j₁ k₀ k₁}
{X₀ : Ptd i₀} {Y₀ : Ptd j₀} {Z₀ : Ptd k₀}
{X₁ : Ptd i₁} {Y₁ : Ptd j₁} {Z₁ : Ptd k₁}
where
⊙∨-assoc-nat : ∀ (f : X₀ ⊙→ X₁) (g : Y₀ ⊙→ Y₁) (h : Z₀ ⊙→ Z₁)
→ ⊙–> (⊙∨-assoc X₁ Y₁ Z₁) ⊙∘ ⊙∨-fmap (⊙∨-fmap f g) h
⊙∼ ⊙∨-fmap f (⊙∨-fmap g h) ⊙∘ ⊙–> (⊙∨-assoc X₀ Y₀ Z₀)
⊙∨-assoc-nat (f , idp) (g , idp) (h , idp) =
(Wedge-elim
-- {P = –> (∨-assoc X₁ Y₁ Z₁) ∘ ∨-fmap (⊙∨-fmap f g) h ∼ ∨-fmap f (⊙∨-fmap g h) ∘ –> (∨-assoc X₀ Y₀ Z₀)}
(Wedge-elim (λ _ → idp) (λ _ → idp)
(↓-='-in' $
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ∘ WedgeAssocInl.f X₀ Y₀ Z₀) wglue
=⟨ ap-∘ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (WedgeAssocInl.f X₀ Y₀ Z₀) wglue ⟩
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap (WedgeAssocInl.f X₀ Y₀ Z₀) wglue)
=⟨ ap (ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)))) (WedgeAssocInl.glue-β X₀ Y₀ Z₀) ⟩
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue
=⟨ WedgeFmap.glue-β (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ⟩
wglue
=⟨ ! $ WedgeAssocInl.glue-β X₁ Y₁ Z₁ ⟩
ap (WedgeAssocInl.f X₁ Y₁ Z₁) wglue
=⟨ ! $ ap (ap (WedgeAssocInl.f X₁ Y₁ Z₁)) $ WedgeFmap.glue-β (f , idp) (g , idp) ⟩
ap (WedgeAssocInl.f X₁ Y₁ Z₁) (ap (∨-fmap (f , idp) (g , idp)) wglue)
=⟨ ∘-ap (WedgeAssocInl.f X₁ Y₁ Z₁) (∨-fmap (f , idp) (g , idp)) wglue ⟩
ap (WedgeAssocInl.f X₁ Y₁ Z₁ ∘ ∨-fmap (f , idp) (g , idp)) wglue
=∎))
(λ _ → idp)
(↓-='-in' $
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ∘ WedgeAssoc.f X₀ Y₀ Z₀) wglue
=⟨ ap-∘ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (WedgeAssoc.f X₀ Y₀ Z₀) wglue ⟩
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap (WedgeAssoc.f X₀ Y₀ Z₀) wglue)
=⟨ ap (ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)))) (WedgeAssoc.glue-β X₀ Y₀ Z₀) ⟩
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (wglue ∙ ap winr wglue)
=⟨ ap-∙ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue (ap winr wglue) ⟩
ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue
∙ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap winr wglue)
=⟨ ap2 _∙_
(WedgeFmap.glue-β (f , idp) (⊙∨-fmap (g , idp) (h , idp)))
( ∘-ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) winr wglue
∙ ap-∘ winr (∨-fmap (g , idp) (h , idp)) wglue
∙ ap (ap winr) (WedgeFmap.glue-β (g , idp) (h , idp))) ⟩
wglue ∙ ap winr wglue
=⟨ ! $ WedgeAssoc.glue-β X₁ Y₁ Z₁ ⟩
ap (WedgeAssoc.f X₁ Y₁ Z₁) wglue
=⟨ ! $ ap (ap (WedgeAssoc.f X₁ Y₁ Z₁)) $ WedgeFmap.glue-β (⊙∨-fmap (f , idp) (g , idp)) (h , idp) ⟩
ap (WedgeAssoc.f X₁ Y₁ Z₁) (ap (∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue)
=⟨ ∘-ap (WedgeAssoc.f X₁ Y₁ Z₁) (∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue ⟩
ap (WedgeAssoc.f X₁ Y₁ Z₁ ∘ ∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue
=∎))
,
idp
-}
module _ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(f : X ⊙→ W) (g : Y ⊙→ W) (h : Z ⊙→ W) where
⊙Wedge-rec-assoc : ⊙Wedge-rec (⊙Wedge-rec f g) h
⊙∼ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X Y Z)
⊙Wedge-rec-assoc =
(Wedge-elim
(Wedge-elim (λ x → idp) (λ y → idp)
(↓-='-in' $
ap-∘ (⊙WedgeRec.f f (⊙Wedge-rec g h)) (WedgeAssocInl.f X Y Z) wglue
∙ ap (ap (⊙WedgeRec.f f (⊙Wedge-rec g h))) (WedgeAssocInl.glue-β X Y Z)
∙ ⊙WedgeRec.glue-β f (⊙Wedge-rec g h)
∙ ! (⊙WedgeRec.glue-β f g)))
(λ z → idp)
(↓-='-in' $
ap-∘ (⊙WedgeRec.f f (⊙Wedge-rec g h)) (WedgeAssoc.f X Y Z) wglue
∙ ap (ap (⊙WedgeRec.f f (⊙Wedge-rec g h))) (WedgeAssoc.glue-β X Y Z)
∙ ap-∙ (⊙WedgeRec.f f (⊙Wedge-rec g h)) wglue (ap winr wglue)
∙ _∙2_ (⊙WedgeRec.glue-β f (⊙Wedge-rec g h))
( ∘-ap (⊙WedgeRec.f f (⊙Wedge-rec g h)) winr wglue
∙ ⊙WedgeRec.glue-β g h)
∙ ∙-assoc (snd f) (! (snd g)) (snd g ∙ ! (snd h))
∙ ap (snd f ∙_) (! $ ∙-assoc (! (snd g)) (snd g) (! (snd h)))
∙ ap (λ p → snd f ∙ p ∙ ! (snd h)) (!-inv-l (snd g))
∙ ! (⊙WedgeRec.glue-β (⊙Wedge-rec f g) h)))
,
idp
⊙∨-rec-assoc = ⊙Wedge-rec-assoc
| {
"alphanum_fraction": 0.4484688168,
"avg_line_length": 37.4438095238,
"ext": "agda",
"hexsha": "22c3ea751a6040242164aeac58b92775e89dd1fc",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Wedge.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Wedge.agda",
"max_line_length": 116,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 9873,
"size": 19658
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.StrictCats where
-- The (large) 'strict' category of (small) categories.
-- The difference here is that _≈_ is not |NaturalIsomorphism| but |_≈F_|
open import Level
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.Functor.Equivalence
private
variable
o ℓ e : Level
Cats : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Cats o ℓ e = record
{ Obj = Category o ℓ e
; _⇒_ = Functor
; _≈_ = _≡F_
; id = id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} → ≡F-assoc {F = F} {G} {H}
; sym-assoc = λ {_ _ _ _ F G H} → ≡F-sym-assoc {F = F} {G} {H}
; identityˡ = ≡F-identityˡ
; identityʳ = ≡F-identityʳ
; identity² = ≡F-identity²
; equiv = ≡F-equiv
; ∘-resp-≈ = ∘F-resp-≡F
}
| {
"alphanum_fraction": 0.6026970954,
"avg_line_length": 29.2121212121,
"ext": "agda",
"hexsha": "6dc439972c0dd7000c33834003440cb4ed6e9d7f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/StrictCats.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/StrictCats.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/StrictCats.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 369,
"size": 964
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Ideals.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Prime.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where
record PrimeIdeal : Set (a ⊔ c) where
field
isPrime : {a b : A} → pred (a * b) → ((pred a) → False) → pred b
notContained : A
notContainedIsNotContained : (pred notContained) → False
| {
"alphanum_fraction": 0.6502463054,
"avg_line_length": 35.8235294118,
"ext": "agda",
"hexsha": "b23f247935df70bcc6f1946af93cfa17838dd05a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Ideals/Prime/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Ideals/Prime/Definition.agda",
"max_line_length": 176,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Ideals/Prime/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 205,
"size": 609
} |
-- {-# OPTIONS -v interaction:100 #-}
module Issue810 where
record T (A : Set) : Set where
constructor mkT
field unT : A
introHid : {A : Set} → T A
introHid = {!!}
data Sg {A : Set} : A → Set where
sg : (a : A) → Sg a
intro : ∀ {A}{a : A} → Sg a
intro = {!!}
intro′ : ∀ {A}(a : A) → Sg a
intro′ = {!!}
| {
"alphanum_fraction": 0.5207667732,
"avg_line_length": 16.4736842105,
"ext": "agda",
"hexsha": "33cba6adefe917f934a5c3a24483d5f9e0bc6d8b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue810.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue810.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue810.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 124,
"size": 313
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.InverseUniv where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Consequences.Syntactic
import Tools.Sum as Sum
open import Tools.Sum using (_⊎_; inj₁; inj₂)
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary
-- Proposition for terms if they contain a U.
data UFull : Term → Set where
∃U : UFull U
∃Π₁ : ∀ {F G} → UFull F → UFull (Π F ▹ G)
∃Π₂ : ∀ {F G} → UFull G → UFull (Π F ▹ G)
-- Terms cannot contain U.
noU : ∀ {t A Γ} → Γ ⊢ t ∷ A → ¬ (UFull t)
noU (ℕⱼ x) ()
noU (Πⱼ t ▹ t₁) (∃Π₁ ufull) = noU t ufull
noU (Πⱼ t ▹ t₁) (∃Π₂ ufull) = noU t₁ ufull
noU (var x₁ x₂) ()
noU (lamⱼ x t₁) ()
noU (t ∘ⱼ t₁) ()
noU (zeroⱼ x) ()
noU (sucⱼ t) ()
noU (natrecⱼ x t t₁ t₂) ()
noU (conv t₁ x) ufull = noU t₁ ufull
-- Neutrals cannot contain U.
noUNe : ∀ {A} → Neutral A → ¬ (UFull A)
noUNe (var n) ()
noUNe (∘ₙ neA) ()
noUNe (natrecₙ neA) ()
-- Helper function where if at least one Π-type does not contain U,
-- one of F and H will not contain U and one of G and E will not contain U.
pilem : ∀ {F G H E}
→ (¬ UFull (Π F ▹ G)) ⊎ (¬ UFull (Π H ▹ E))
→ (¬ UFull F) ⊎ (¬ UFull H) × (¬ UFull G) ⊎ (¬ UFull E)
pilem (inj₁ x) = inj₁ (λ x₁ → x (∃Π₁ x₁)) , inj₁ (λ x₁ → x (∃Π₂ x₁))
pilem (inj₂ x) = inj₂ (λ x₁ → x (∃Π₁ x₁)) , inj₂ (λ x₁ → x (∃Π₂ x₁))
-- If type A does not contain U, then A can be a term of type U.
inverseUniv : ∀ {A Γ} → ¬ (UFull A) → Γ ⊢ A → Γ ⊢ A ∷ U
inverseUniv q (ℕⱼ x) = ℕⱼ x
inverseUniv q (Uⱼ x) = ⊥-elim (q ∃U)
inverseUniv q (Πⱼ A ▹ A₁) = Πⱼ inverseUniv (λ x → q (∃Π₁ x)) A ▹ inverseUniv (λ x → q (∃Π₂ x)) A₁
inverseUniv q (univ x) = x
-- If A is a neutral type, then A can be a term of U.
inverseUnivNe : ∀ {A Γ} → Neutral A → Γ ⊢ A → Γ ⊢ A ∷ U
inverseUnivNe neA ⊢A = inverseUniv (noUNe neA) ⊢A
-- Helper function where if at least one type does not contain U, then the
-- equality of types can be an equality of term of type U.
inverseUnivEq′ : ∀ {A B Γ} → (¬ (UFull A)) ⊎ (¬ (UFull B)) → Γ ⊢ A ≡ B → Γ ⊢ A ≡ B ∷ U
inverseUnivEq′ q (univ x) = x
inverseUnivEq′ q (refl x) = refl (inverseUniv (Sum.id q) x)
inverseUnivEq′ q (sym A≡B) = sym (inverseUnivEq′ (Sum.sym q) A≡B)
inverseUnivEq′ (inj₁ x) (trans A≡B A≡B₁) =
let w = inverseUnivEq′ (inj₁ x) A≡B
_ , _ , t = syntacticEqTerm w
y = noU t
in trans w (inverseUnivEq′ (inj₁ y) A≡B₁)
inverseUnivEq′ (inj₂ x) (trans A≡B A≡B₁) =
let w = inverseUnivEq′ (inj₂ x) A≡B₁
_ , t , _ = syntacticEqTerm w
y = noU t
in trans (inverseUnivEq′ (inj₂ y) A≡B) w
inverseUnivEq′ q (Π-cong x A≡B A≡B₁) =
let w , e = pilem q
in Π-cong x (inverseUnivEq′ w A≡B) (inverseUnivEq′ e A≡B₁)
-- If A is a term of U, then the equality of types is an equality of terms of type U.
inverseUnivEq : ∀ {A B Γ} → Γ ⊢ A ∷ U → Γ ⊢ A ≡ B → Γ ⊢ A ≡ B ∷ U
inverseUnivEq A A≡B = inverseUnivEq′ (inj₁ (noU A)) A≡B
| {
"alphanum_fraction": 0.60742254,
"avg_line_length": 35.3855421687,
"ext": "agda",
"hexsha": "25adedaecafd3cc18a9538246f818bc8e372cf55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/InverseUniv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/InverseUniv.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/InverseUniv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1310,
"size": 2937
} |
{-# OPTIONS --cubical #-}
module Erased-cubical-Open-public.Cubical where
-- It instantiates and exports code from
-- Erased-cubical-Open-public.Erased.
open import Erased-cubical-Open-public.Erased Set public
| {
"alphanum_fraction": 0.7699530516,
"avg_line_length": 23.6666666667,
"ext": "agda",
"hexsha": "ad665eab19827a4368e0063bbd2525af9b9848c7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Erased-cubical-Open-public/Cubical.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Erased-cubical-Open-public/Cubical.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Erased-cubical-Open-public/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 59,
"size": 213
} |
{-
The flattening lemma for pushouts (Lemma 8.5.3 in the HoTT book) proved in a cubical style.
The proof in the HoTT book (the core lying in Lemma 6.12.2, the flattening lemma for coequalizers)
consists mostly of long strings of equalities about transport. This proof follows almost
entirely from definitional equalities involving glue/unglue.
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Pushout.Flattening where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.HITs.Pushout.Base
module FlatteningLemma {ℓa ℓb ℓc} {A : Type ℓa} {B : Type ℓb} {C : Type ℓc} (f : A → B) (g : A → C)
{ℓ} (F : B → Type ℓ) (G : C → Type ℓ) (e : ∀ a → F (f a) ≃ G (g a)) where
E : Pushout f g → Type ℓ
E (inl x) = F x
E (inr x) = G x
E (push a i) = ua (e a) i
Σf : Σ[ a ∈ A ] F (f a) → Σ[ b ∈ B ] F b
Σf (a , x) = (f a , x)
Σg : Σ[ a ∈ A ] F (f a) → Σ[ c ∈ C ] G c
Σg (a , x) = (g a , (e a) .fst x)
module FlattenIso where
fwd : Pushout Σf Σg → Σ (Pushout f g) E
fwd (inl (b , x)) = (inl b , x)
fwd (inr (c , x)) = (inr c , x)
fwd (push (a , x) i) = (push a i , ua-gluePt (e a) i x)
bwd : Σ (Pushout f g) E → Pushout Σf Σg
bwd (inl b , x) = inl (b , x)
bwd (inr c , x) = inr (c , x)
bwd (push a i , x) = hcomp (λ j → λ { (i = i0) → push (a , x) (~ j)
; (i = i1) → inr (g a , x) })
(inr (g a , ua-unglue (e a) i x))
bwd-fwd : ∀ x → bwd (fwd x) ≡ x
bwd-fwd (inl (b , x)) = refl
bwd-fwd (inr (c , x)) = refl
bwd-fwd (push (a , x) i) j =
hcomp (λ k → λ { (i = i0) → push (a , ua-gluePt (e a) i0 x) (~ k)
; (i = i1) → inr (g a , ua-gluePt (e a) i1 x)
; (j = i1) → push (a , x) (i ∨ ~ k) })
(inr (g a , ua-unglue (e a) i (ua-gluePt (e a) i x)))
-- Note: the (j = i1) case typechecks because of the definitional equalities:
-- ua-gluePt e i0 x ≡ x , ua-gluePt e i1 x ≡ e .fst x,
-- ua-unglue-glue : ua-unglue e i (ua-gluePt e i x) ≡ e .fst x
-- essentially: ua-glue e (i ∨ ~ k) ∘ ua-unglue e i
sq : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B)
→ SquareP (λ i k → ua e i → ua e (i ∨ ~ k))
{- i = i0 -} (λ k x → ua-gluePt e (~ k) x)
{- i = i1 -} (λ k x → x)
{- k = i0 -} (λ i x → ua-unglue e i x)
{- k = i1 -} (λ i x → x)
sq e i k x = ua-glue e (i ∨ ~ k) (λ { ((i ∨ ~ k) = i0) → x })
(inS (ua-unglue e i x))
-- Note: this typechecks because of the definitional equalities:
-- ua-unglue e i0 x ≡ e .fst x, ua-glue e i1 _ (inS y) ≡ y, ua-unglue e i1 x ≡ x,
-- ua-glue-unglue : ua-glue e i (λ { (i = i0) → x }) (inS (ua-unglue e i x)) ≡ x
fwd-bwd : ∀ x → fwd (bwd x) ≡ x
fwd-bwd (inl b , x) = refl
fwd-bwd (inr c , x) = refl
fwd-bwd (push a i , x) j =
-- `fwd` (or any function) takes hcomps to comps on a constant family, so we must use a comp here
comp (λ _ → Σ (Pushout f g) E)
(λ k → λ { (i = i0) → push a (~ k) , ua-gluePt (e a) (~ k) x
; (i = i1) → inr (g a) , x
; (j = i1) → push a (i ∨ ~ k) , sq (e a) i k x })
(inr (g a) , ua-unglue (e a) i x)
isom : Iso (Σ (Pushout f g) E) (Pushout Σf Σg)
isom = iso bwd fwd bwd-fwd fwd-bwd
flatten : Σ (Pushout f g) E ≃ Pushout Σf Σg
flatten = isoToEquiv FlattenIso.isom
| {
"alphanum_fraction": 0.5002714441,
"avg_line_length": 40.0434782609,
"ext": "agda",
"hexsha": "0f89700caf0b6d7a4fd0c70941687a10dea04768",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Pushout/Flattening.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Pushout/Flattening.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Pushout/Flattening.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1508,
"size": 3684
} |
module Issue794a where
open import Common.Prelude
open import Common.MAlonzo
postulate A : Set
id : .A → A → A
id x y = y
| {
"alphanum_fraction": 0.712,
"avg_line_length": 12.5,
"ext": "agda",
"hexsha": "d169417458750cfaf1cdebc195640492eb2aaa5b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue794a.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue794a.agda",
"max_line_length": 26,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue794a.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 41,
"size": 125
} |
{- Definition of vectors. Inspired by the Agda Standard Library -}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Vec.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Data.FinData
private
variable
ℓ ℓ' : Level
A : Type ℓ
infixr 5 _∷_
data Vec (A : Type ℓ) : ℕ → Type ℓ where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
-- Basic functions
length : ∀ {n} → Vec A n → ℕ
length {n = n} _ = n
head : ∀ {n} → Vec A (1 + n) → A
head (x ∷ xs) = x
tail : ∀ {n} → Vec A (1 + n) → Vec A n
tail (x ∷ xs) = xs
map : ∀ {A : Type ℓ} {B : Type ℓ'} {n} → (A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
replicate : ∀ {n} {A : Type ℓ} → A → Vec A n
replicate {n = zero} x = []
replicate {n = suc n} x = x ∷ replicate x
-- Concatenation
infixr 5 _++_
_++_ : ∀ {m n} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
concat : ∀ {m n} → Vec (Vec A m) n → Vec A (n · m)
concat [] = []
concat (xs ∷ xss) = xs ++ concat xss
lookup : ∀ {n} {A : Type ℓ} → Fin n → Vec A n → A
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
| {
"alphanum_fraction": 0.5256723716,
"avg_line_length": 21.1551724138,
"ext": "agda",
"hexsha": "005365dd2751e2091f9c102a630330f9c164e5b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Vec/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Vec/Base.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Vec/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 494,
"size": 1227
} |
{-# OPTIONS --without-K #-}
module HIT.Interval where
open import PathOperations
open import PathStructure.Id.Tr
open import Types
module I-Definition where
private
data #I : Set where
#0 : #I
#1 : #I
I : Set
I = #I
0ᵢ : I
0ᵢ = #0
1ᵢ : I
1ᵢ = #1
postulate
seg : 0ᵢ ≡ 1ᵢ
I-ind : ∀ {p} (P : I → Set p)
(x₀ : P 0ᵢ) (x₁ : P 1ᵢ) (p : tr P seg x₀ ≡ x₁) →
∀ i → P i
I-ind P x₀ x₁ p #0 = x₀
I-ind P x₀ x₁ p #1 = x₁
postulate
I-β-i : ∀ {p} (P : I → Set p)
(x₀ : P 0ᵢ) (x₁ : P 1ᵢ)
(p : tr P seg x₀ ≡ x₁) →
apd (I-ind P x₀ x₁ p) seg ≡ p
I-rec : ∀ {p} {P : Set p}
(x₀ x₁ : P) (p : x₀ ≡ x₁)
(i : I) → P
I-rec x₀ x₁ p #0 = x₀
I-rec x₀ x₁ p #1 = x₁
postulate
I-β-r : ∀ {p} {P : Set p}
(x₀ x₁ : P) (p : x₀ ≡ x₁) →
ap (I-rec x₀ x₁ p) seg ≡ p
open I-Definition public
from-path-space : ∀ {a} {A : Set a} →
(Σ A λ x → Σ A λ y → x ≡ y) → I → A
from-path-space (x , y , p) = I-rec x y p
to-path-space : ∀ {a} {A : Set a} →
(I → A) → Σ A λ x → Σ A λ y → x ≡ y
to-path-space f = f 0ᵢ , f 1ᵢ , ap f seg
| {
"alphanum_fraction": 0.4709618875,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "03e3495f88bf43678951313e2dfaa03c5ad9e29d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/HIT/Interval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/HIT/Interval.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/HIT/Interval.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 550,
"size": 1102
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties of equivalence closures.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Closure.Equivalence.Properties where
open import Data.Sum.Base using (inj₁)
open import Function using (_∘′_)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Construct.Closure.Equivalence
open import Relation.Binary.Construct.Closure.ReflexiveTransitive as RTrans
module _ {a ℓ} {A : Set a} {_⟶_ : Rel A ℓ} where
private
_—↠_ = Star _⟶_
_↔_ = EqClosure _⟶_
a—↠b⇒a↔b : ∀ {a b} → a —↠ b → a ↔ b
a—↠b⇒a↔b = RTrans.map inj₁
a—↠b⇒b↔a : ∀ {a b} → a —↠ b → b ↔ a
a—↠b⇒b↔a = symmetric _ ∘′ a—↠b⇒a↔b
a—↠b&a—↠c⇒b↔c : ∀ {a b c} → a —↠ b → a —↠ c → b ↔ c
a—↠b&a—↠c⇒b↔c a—↠b b—↠c = a—↠b⇒b↔a a—↠b ◅◅ a—↠b⇒a↔b b—↠c
| {
"alphanum_fraction": 0.521141649,
"avg_line_length": 30.5161290323,
"ext": "agda",
"hexsha": "d5b66ba124a9f90d5f192cd439e9b6df84116d2a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Equivalence/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Equivalence/Properties.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Equivalence/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 373,
"size": 946
} |
module Bin-predicates where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Nat.Properties using (+-identityʳ; +-suc; +-assoc; +-comm)
-- 2進数の表現
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
-- 2進数のインクリメント
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (b O) = b I
inc (b I) = inc b O
-- 自然数から2進数への変換
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
-- 2進数から自然数への変換
from : Bin → ℕ
from ⟨⟩ = zero
from (b O) = 2 * (from b)
from (b I) = 2 * (from b) + 1
2*n≡n+n : ∀ (n : ℕ) → 2 * n ≡ n + n
2*n≡n+n n rewrite +-identityʳ n = refl
+-suc-suc : ∀ (m n : ℕ) → (suc m) + (suc n) ≡ suc (suc (m + n))
+-suc-suc m n rewrite +-suc (suc m) n | sym (+-assoc 1 m n) = refl
-- 変換の前後どちらでインクリメントしても結果は等しい
from∘inc≡suc∘from : ∀ (b : Bin) → from (inc b) ≡ suc (from b)
from∘inc≡suc∘from ⟨⟩ = refl
from∘inc≡suc∘from (b O) rewrite +-suc (from (b O)) zero | +-identityʳ (from (b O)) = refl
from∘inc≡suc∘from (b I) rewrite from∘inc≡suc∘from b | 2*n≡n+n (suc (from b)) | +-suc-suc (from b) (from b) | sym (2*n≡n+n (from b)) | +-comm 1 (2 * (from b)) = refl
data One : Bin → Set where
⟨⟩I : One (⟨⟩ I)
_O : ∀ {b : Bin} → One b → One (b O)
_I : ∀ {b : Bin} → One b → One (b I)
data Can : Bin → Set where
⟨⟩O : Can (⟨⟩ O)
can : ∀ {b : Bin} → One b → Can b
-- Can b
-- ------------
-- Can (inc b)
inc-one : ∀ {b : Bin} → One b → One (inc b)
inc-one ⟨⟩I = ⟨⟩I O
inc-one (ob O) = ob I
inc-one (ob I) = (inc-one ob) O
inc-can : ∀ {b : Bin} → Can b → Can (inc b)
inc-can ⟨⟩O = can ⟨⟩I
inc-can (can ⟨⟩I) = can (⟨⟩I O)
inc-can (can (ob O)) = can (ob I)
inc-can (can (ob I)) = can (inc-one (ob I))
-- ----------
-- Can (to n)
can-ℕ : ∀ (n : ℕ) → Can (to n)
can-ℕ zero = ⟨⟩O
can-ℕ (suc n) = inc-can (can-ℕ n)
-- Can b
-- ---------------
-- to (from b) ≡ b
to∘from∘inc≡inc∘to∘from : ∀ (b : Bin) → to (from (inc b)) ≡ inc (to (from b))
to∘from∘inc≡inc∘to∘from ⟨⟩ =
begin
to (from (inc ⟨⟩))
≡⟨⟩
to (from (⟨⟩ I))
≡⟨⟩
to 1
≡⟨⟩
⟨⟩ I
≡⟨⟩
inc ⟨⟩
≡⟨⟩
inc (to zero)
≡⟨⟩
inc (to (from ⟨⟩))
∎
to∘from∘inc≡inc∘to∘from (b O) =
begin
to (from (inc (b O)))
≡⟨⟩
to (from (b I))
≡⟨⟩
to (2 * (from b) + 1)
≡⟨⟩
to (2 * (from b) + (suc zero))
≡⟨ cong to (+-suc (2 * (from b)) zero) ⟩
to (suc (2 * (from b) + zero))
≡⟨ cong (λ 2*fromb → to (suc 2*fromb)) (+-identityʳ (2 * (from b))) ⟩
to (suc (2 * (from b)))
≡⟨⟩
inc (to (2 * (from b)))
≡⟨⟩
inc (to (from (b O)))
∎
to∘from∘inc≡inc∘to∘from (b I) =
begin
to (from (inc (b I)))
≡⟨⟩
to (from ((inc b) O))
≡⟨⟩
to (2 * (from (inc b)))
≡⟨ cong (λ suc∘fromb → to (2 * suc∘fromb)) (from∘inc≡suc∘from b) ⟩
to (2 * (suc (from b)))
≡⟨ cong to (2*n≡n+n (suc (from b))) ⟩
to ((suc (from b)) + (suc (from b)))
≡⟨ cong to (+-suc-suc (from b) (from b)) ⟩
to (suc (suc ((from b) + (from b))))
≡⟨ cong (λ 2*fromb → to (suc (suc 2*fromb))) (sym (2*n≡n+n (from b))) ⟩
to (suc (suc (2 * (from b))))
≡⟨ cong (λ 2*fromb+1 → to (suc 2*fromb+1)) (+-comm 1 (2 * (from b))) ⟩
to (suc (2 * (from b) + 1))
≡⟨⟩
to (suc (from (b I)))
≡⟨⟩
inc (to (from (b I)))
∎
to∘from : ∀ {b : Bin} → Can b → to (from b) ≡ b
to∘from ⟨⟩O =
begin
to (from (⟨⟩ O))
≡⟨⟩
to (2 * from ⟨⟩)
≡⟨⟩
to (2 * zero)
≡⟨⟩
to zero
≡⟨⟩
⟨⟩ O
∎
to∘from (can ⟨⟩I) =
begin
to (from (⟨⟩ I))
≡⟨⟩
to (2 * from ⟨⟩ + 1)
≡⟨⟩
to (2 * zero + 1)
≡⟨⟩
to 1
≡⟨⟩
⟨⟩ I
∎
to∘from {b O} (can (ob O)) = {!!} -- TODO
to∘from {b I} (can (ob I)) =
begin
to (from (b I))
≡⟨⟩
to (from (inc (b O)))
≡⟨ to∘from∘inc≡inc∘to∘from (b O) ⟩
inc (to (from (b O)))
≡⟨ cong inc (to∘from (can (ob O))) ⟩
inc (b O)
≡⟨⟩
b I
∎
| {
"alphanum_fraction": 0.4660445827,
"avg_line_length": 22.0457142857,
"ext": "agda",
"hexsha": "bea210efbe0a0bd5f26cbe365026d382450abaf5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/relations/Bin-predicates.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/relations/Bin-predicates.agda",
"max_line_length": 164,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/relations/Bin-predicates.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 1956,
"size": 3858
} |
module Issue1258-2 where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
data Bool : Set where
true false : Bool
data Σ (A : Set) (B : A → Set) : Set where
_,_ : (x : A) → B x → Σ A B
_×_ : Set → Set → Set
A × B = Σ A (λ _ → B)
postulate f : (A : Set) -> A -> Bool
record Wrap (A : Set) : Set where
constructor wrap
field wrapped : A
data ⊥ : Set where
Foo : Bool -> Set
Foo true = ⊥
Foo false = ⊥
Alpha : Bool
Stuck = Foo Alpha
Beta : Stuck
test : f (Bool × Wrap Nat) (true , wrap zero) == f (Stuck × Stuck) (Beta , Beta)
Alpha = _
Beta = _
test = refl
| {
"alphanum_fraction": 0.5572755418,
"avg_line_length": 16.5641025641,
"ext": "agda",
"hexsha": "370daef6aabc4f9b245a0d06e7da0bbcedd6dbbd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1258-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1258-2.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1258-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 242,
"size": 646
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Structures for types of functions
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Function.Structures
{a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂)
where
open import Data.Product using (∃; _×_; _,_)
open import Function.Base
open import Function.Definitions
open import Level using (_⊔_)
------------------------------------------------------------------------
-- Definitions
record IsCongruent (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
cong : Congruent _≈₁_ _≈₂_ f
isEquivalence₁ : IsEquivalence _≈₁_
isEquivalence₂ : IsEquivalence _≈₂_
module Eq₁ where
setoid : Setoid a ℓ₁
setoid = record
{ isEquivalence = isEquivalence₁
}
open Setoid setoid public
module Eq₂ where
setoid : Setoid b ℓ₂
setoid = record
{ isEquivalence = isEquivalence₂
}
open Setoid setoid public
record IsInjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
injective : Injective _≈₁_ _≈₂_ f
open IsCongruent isCongruent public
record IsSurjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
surjective : Surjective _≈₁_ _≈₂_ f
open IsCongruent isCongruent public
record IsBijection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isInjection : IsInjection f
surjective : Surjective _≈₁_ _≈₂_ f
open IsInjection isInjection public
bijective : Bijective _≈₁_ _≈₂_ f
bijective = injective , surjective
isSurjection : IsSurjection f
isSurjection = record
{ isCongruent = isCongruent
; surjective = surjective
}
record IsLeftInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g
inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g
open IsCongruent isCongruent public
renaming (cong to cong₁)
record IsRightInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g
open IsCongruent isCongruent public
renaming (cong to cong₁)
record IsBiEquivalence
(f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f-isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g₁
cong₃ : Congruent _≈₂_ _≈₁_ g₂
open IsCongruent f-isCongruent public
renaming (cong to cong₁)
record IsBiInverse
(f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f-isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g₁
inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g₁
cong₃ : Congruent _≈₂_ _≈₁_ g₂
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g₂
open IsCongruent f-isCongruent public
renaming (cong to cong₁)
record IsInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isLeftInverse : IsLeftInverse f g
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g
open IsLeftInverse isLeftInverse public
isRightInverse : IsRightInverse f g
isRightInverse = record
{ isCongruent = isCongruent
; cong₂ = cong₂
; inverseʳ = inverseʳ
}
inverse : Inverseᵇ _≈₁_ _≈₂_ f g
inverse = inverseˡ , inverseʳ
| {
"alphanum_fraction": 0.5947086969,
"avg_line_length": 25.1985815603,
"ext": "agda",
"hexsha": "d1659aadf84e832df950b7bb2dde4df4a14d3145",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Structures.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1314,
"size": 3553
} |
-- Andreas, 2016-07-28, issue #779
record P : Set where
postulate Bla : Set
field F : Set
-- Current error:
-- Missing definition for Bla
-- Expected:
-- Success, or error outlawing postulate before last field.
| {
"alphanum_fraction": 0.6972477064,
"avg_line_length": 18.1666666667,
"ext": "agda",
"hexsha": "ab25e854be6051537d8df533234b2e022c061434",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue779postulate.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue779postulate.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue779postulate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 218
} |
{-
This is a HoTT-UF core library based on cubical type theory, where the
cubical machinery is hidden, using the HoTT Book terminology and
notation.
The point is that function extensionality, propositional truncation
and univalence compute (an example is given below).
For the moment, this requires the development version of Agda.
-}
{-# OPTIONS --cubical --exact-split --safe #-}
module Cubical.Foundations.HoTT-UF where
open import Cubical.Core.Primitives hiding ( _≡_ )
open import Cubical.Core.Id public
open import Cubical.Foundations.Id public
using ( _≡_ -- The identity type.
; refl -- Unfortunately, pattern matching on refl is not available.
; J -- Until it is, you have to use the induction principle J.
; transport -- As in the HoTT Book.
; ap
; _∙_
; _⁻¹
; _≡⟨_⟩_ -- Standard equational reasoning.
; _∎
; funExt -- Function extensionality
-- (can also be derived from univalence).
; Σ -- Sum type. Needed to define contractible types, equivalences
; _,_ -- and univalence.
; pr₁ -- The eta rule is available.
; pr₂
; isProp -- The usual notions of proposition, contractible type, set.
; isContr
; isSet
; isEquiv -- A map with contractible fibers
-- (Voevodsky's version of the notion).
; _≃_ -- The type of equivalences between two given types.
; EquivContr -- A formulation of univalence.
; ∥_∥ -- Propositional truncation.
; ∣_∣ -- Map into the propositional truncation.
; ∥∥-isProp -- A truncated type is a proposition.
; ∥∥-recursion -- Non-dependent elimination.
; ∥∥-induction -- Dependent elimination.
)
{-
Here is an illustration of how function extensionality computes.
-}
private
data ℕ : Type₀ where
zero : ℕ
succ : ℕ → ℕ
f g : ℕ → ℕ
f n = n
g zero = zero
g (succ n) = succ (g n)
h : (n : ℕ) → f n ≡ g n
h zero = refl
h (succ n) = ap succ (h n)
p : f ≡ g
p = funExt h
five : ℕ
five = succ (succ (succ (succ (succ zero))))
a : Σ ℕ (λ n → f n ≡ five)
a = five , refl
b : Σ ℕ (λ n → g n ≡ five)
b = transport (λ - → Σ ℕ (λ n → - n ≡ five)) p a
c : pr₁ b ≡ five
c = refl
{-
If we had funExt as a postulate, then the definition of c would not
type check. Moreover, the term pr₁ b would not evaluate to five, as it
does with the cubical type theory implementation of funext.
TODO. A similar computational example with univalence.
-}
| {
"alphanum_fraction": 0.5609929078,
"avg_line_length": 26.8571428571,
"ext": "agda",
"hexsha": "51eadf7e64687bae04ead5286611318deffb8517",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Foundations/HoTT-UF.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Foundations/HoTT-UF.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Foundations/HoTT-UF.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 745,
"size": 2820
} |
module Logic.Relations where
import Logic.Base
import Data.Bool
Rel : Set -> Set1
Rel A = A -> A -> Set
Reflexive : {A : Set} -> Rel A -> Set
Reflexive {A} _R_ = (x : A) -> x R x
Symmetric : {A : Set} -> Rel A -> Set
Symmetric {A} _R_ = (x y : A) -> x R y -> y R x
Transitive : {A : Set} -> Rel A -> Set
Transitive {A} _R_ = (x y z : A) -> x R y -> y R z -> x R z
Congruent : {A : Set} -> Rel A -> Set
Congruent {A} _R_ = (f : A -> A)(x y : A) -> x R y -> f x R f y
Substitutive : {A : Set} -> Rel A -> Set1
Substitutive {A} _R_ = (P : A -> Set)(x y : A) -> x R y -> P x -> P y
module PolyEq (_≡_ : {A : Set} -> Rel A) where
Antisymmetric : {A : Set} -> Rel A -> Set
Antisymmetric {A} _R_ = (x y : A) -> x R y -> y R x -> x ≡ y
module MonoEq {A : Set}(_≡_ : Rel A) where
Antisymmetric : Rel A -> Set
Antisymmetric _R_ = (x y : A) -> x R y -> y R x -> x ≡ y
open Logic.Base
Total : {A : Set} -> Rel A -> Set
Total {A} _R_ = (x y : A) -> (x R y) \/ (y R x)
Decidable : (P : Set) -> Set
Decidable P = P \/ ¬ P
| {
"alphanum_fraction": 0.5145348837,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "a87a668b665b1195588a7885b36f559129963008",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/lib/Logic/Relations.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/lib/Logic/Relations.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/lib/Logic/Relations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 430,
"size": 1032
} |
{- -}
-- starting from builtins
-- forgot what the point of this was...
module Oscar.Data6 where
open import Oscar.Category.Semigroupoid
open import Oscar.Category.Category
open import Oscar.Category.Morphism
open import Oscar.Category.Setoid
open import Oscar.Function
open import Agda.Builtin.Unit using () renaming (⊤ to 𝟙; tt to ∅)
open import Agda.Builtin.Nat using () renaming (Nat to ℕ; zero to ∅; suc to ↑_)
open import Agda.Builtin.List using () renaming (List to [_]ℕ; [] to ∅; _∷_ to _+_)
open import Oscar.Level
⟦_⟧ℕ[<_↓]
⟦_⟧ℕ[_≤_↓]
⟦_⟧ℕ[↥_≤_]
⟦_⟧ℕ[↓_≤_↓]
-- Fin (with a payload)
data ⟦_⟧ℕ[0…_-1] {a} (A : ℕ → Set a) : ℕ → Set a where
∅ : ∀ {n} → ⟦ A ⟧ℕ[<↑ ↑ n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ n ] → ⟦ A ⟧ℕ[<↑ ↑ n ]
-- Vec (with an (optional) index)
data ⟦_⟧ℕ[≤_] {a} (A : ℕ → Set a) : ℕ → Set a where
∅ : ⟦ A ⟧ℕ[ ∅ ₀]
_∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ n ₀] → ⟦ A ⟧ℕ[ ¡ n ₀]
-- m ≤ n, counting down from n-1 to m
data ⟦_⟧ℕ[_≤_↓] {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where
∅ : ⟦ A ⟧ℕ[ m ≤ m ↓]
_∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ m ≤ n ↓] → ⟦ A ⟧ℕ[ m ≤ ¡ n ↓]
-- m ≤ n, counting up from m to n-1
data ⟦_⟧ℕ[↑_≤_] {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where
∅ : ⟦ A ⟧ℕ[↑ m ≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧ℕ[↑ ¡ m ≤ n ] → ⟦ A ⟧ℕ[↑ m ≤ n ]
-- Inj (almost)
data ⟦_⟧ℕ[↓_≤_↓] {a} (A : ℕ → ℕ → Set a) : ℕ → ℕ → Set a where
∅ : ∀ {n} → ⟦ A ⟧ℕ[↓ ∅ ≤ n ↓]
_∷_ : ∀ {m n} → A m n → ⟦ A ⟧ℕ[↓ m ≤ n ↓] → ⟦ A ⟧ℕ[↓ ¡ m ≤ ¡ n ↓]
⟦_⟧ℕ[_⇒_]∞ : ∀ {a} (A : ℕ → Set a) → ℕ → ℕ → Set a
⟦ A ⟧ℕ[ m ⇒ n ]∞ = A m → A n
-- Fin (with a payload)
data ⟦_⟧ℕ[<_↓] {a} (A : ℕ → Set a) : ℕ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[< ↑ n ↓]
_∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[< n ] → ⟦ A ⟧[< ↑ n ↓]
-- -- Vec (with an (optional) index)
data ℕ[_]=_ {a} (A : ℕ → Set a) : ℕ → Set a where
∅ : ℕ[ A ]= ∅
_∷_ : ∀ {n} → A n → ℕ[ A ]= ↑ n → ℕ[ A ]= ↑ n
ℕ=_ = ℕ[ const 𝟙 ]=_
-- m ≤ n, counting down from n-1 to m
data ℕ[_]≥_<↓_ {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where
∅ : ℕ[ A ]≥ m <↓ m
_∷_ : ∀ {n} → A n → ℕ[ A ]≥ m <↓ n → ℕ[ A ]≥ m <↓ ↑ n
ℕ≥_<↓_ = ℕ[ const 𝟙 ]≥_<↓_
-- m ≤ n, counting up from m to n-1
data ℕ[_]≥↑_<_ {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where
∅ : ℕ[ A ]≥↑ m < m
_∷_ : ∀ {n} → A m → ℕ[ A ]≥↑ ↑ m < n → ℕ[ A ]≥↑ m < n
ℕ≥↑_<_ = ℕ[ const 𝟙 ]≥↑_<_
-- -- Inj (almost)
-- data ⟦_⟧[↓_≤_↓] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
-- ∅ : ∀ {n} → ⟦ A ⟧[↓ ∅ ≤ n ↓]
-- _∷_ : ∀ {m n} → A m n → ⟦ A ⟧[↓ m ≤ n ↓] → ⟦ A ⟧[↓ ¡ m ≤ ¡ n ↓]
-- ⟦⟧[↓_≤_↓] = ⟦ Const Const ⊤ ⟧[↓_≤_↓]
-- ⟦_⟧[_⇒_]∞ : ∀ {a} (A : ⟦⟧ → Set a) → ⟦⟧ → ⟦⟧ → Set a
-- ⟦ A ⟧[ m ⇒ n ]∞ = A m → A n
-- --open import Oscar.Data.Equality
-- --open import Oscar.Data.Equality.properties
-- module _ {𝔬 𝔪 𝔮} (G : Semigroupoid 𝔬 𝔪 𝔮) where
-- open Semigroupoid G
-- {-
-- _≋̇_ : ∀ {a} {A : ⋆ → Set a} {m n : ⋆} → (A m → A n) → (A m → A n) → Set 𝔮
-- _≋̇_ {A = A} {m = m} m→n₁ m→n₂ = {!∀ (am : A m) → m→n₁ am ≋ m→n₂ am!}
-- cat2 : ∀ {a} (A : ⋆ → Set a) → Category {!!} {!!} {!!}
-- Semigroupoid.⋆ (Category.semigroupoid (cat2 A)) = ⋆
-- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n) = A m → A n
-- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n)) = _≡̇_
-- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n)) = it
-- Semigroupoid._∙_ (Category.semigroupoid (cat2 A)) g f = g ∘ f
-- Semigroupoid.isSemigroupoid (Category.semigroupoid (cat2 A)) = it
-- Category.ε (cat2 A) = id
-- Category.isCategory (cat2 A) = it
-- cat2G : ∀ {a} (A : ⋆ → Set a) → ∀ ℓ ⦃ _ : ∀ {n : ⋆} → IsSetoid (A n) ℓ ⦄ → Category {!!} {!!} {!!}
-- Semigroupoid.⋆ (Category.semigroupoid (cat2G A ℓ)) = ⋆
-- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n) = A m → A n
-- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n)) m↦n₁ m↦n₂ = ∀ (am : A m) → m↦n₁ am ≋ m↦n₂ am
-- -- ∀ (am : A m) → m↦n₁ am ≋ m↦n₂ am
-- {-
-- _≋̇_ : ∀ {a} {A : ⋆ → Set a} {m n : ⋆} → (A m → A n) → (A m → A n) → Set 𝔮
-- _≋̇_ {A = A} {m = m} m→n₁ m→n₂ = {!∀ (am : A m) → m→n₁ am ≋ m→n₂ am!}
-- -}
-- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n)) = {!it!}
-- Semigroupoid._∙_ (Category.semigroupoid (cat2G A ℓ)) g f = g ∘ f
-- Semigroupoid.isSemigroupoid (Category.semigroupoid (cat2G A ℓ)) = {!it!}
-- Category.ε (cat2G A ℓ) = id
-- Category.isCategory (cat2G A ℓ) = {!it!}
-- -}
-- infix 21 ‼_
-- pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for any later-defined constructors
-- open import Agda.Primitive
-- open import Oscar.Data.Product
-- open import Oscar.Function
-- postulate
-- ℓ : Level
-- Term : ⟦⟧ → Set ℓ
-- Step : ⟦⟧ → Set ℓ
-- Fin = ⟦⟧[_]
-- Inj = ⟦ Const Fin ⟧[↓_≤_↓]
-- Terms = λ N n → ⟦ Const (Term n) ⟧[ N ₀]
-- AList = ⟦ (λ n → Term n × Fin (¡ n)) ⟧[_≤_↓]
-- Fx : ∀ {a} {A : Set a} → A → A → ∀ {b₁} (B₁ : A → Set b₁) → ∀ {b₂} (B₂ : A → Set b₂) → Set (b₁ ⊔ b₂)
-- Fx m n B₁ B₂ = B₁ m → B₂ n
-- Fx₁ : ∀ {a} {A : Set a} → A → ∀ {b₁} (B₁ : A → Set b₁) → ∀ {b₂} (B₂ : A → Set b₂) → Set (b₁ ⊔ b₂)
-- Fx₁ n B₁ B₂ = Fx n n B₁ B₂
-- ListStep = λ n → ⟦ Step n ⟧
-- Rel : ∀ {a} {A : Set a} {b₁} (B₁ : A → Set b₁) {b₂} (B₂ : A → Set b₂) {c₁} (C₁ : A → Set c₁) {c₂} (C₂ : A → Set c₂) → Set (a ⊔ b₁ ⊔ b₂ ⊔ c₁ ⊔ c₂)
-- Rel B₁ B₂ C₁ C₂ = ∀ {m n} → Fx m n B₁ B₂ → Fx m n C₁ C₂
-- Morph : ∀ {a} {A : Set a} {b₁} {b₂} (B : (A → Set b₁) × (A → Set b₂)) {c₁} {c₂} (C₂ : (A → Set c₁) × (A → Set c₂)) → Set (a ⊔ b₁ ⊔ b₂ ⊔ c₁ ⊔ c₂)
-- Morph (B₁ , B₂) (C₁ , C₂) = ∀ {m n} → Fx m n B₁ B₂ → Fx m n C₁ C₂
-- -- functor mappings
-- postulate
-- _◃_ : Morph (Fin , Term) (Term , Term)
-- _◃s_ : ∀ N → Morph (Fin , Term) (Terms N , Terms N)
-- sub : ∀ {m n} → AList m n → Fx m n Fin Term
-- fmapS : Morph (Term , Term) (Step , Step)
-- _◃S_ : Morph (Fin , Term) (ListStep , ListStep)
-- -- ?
-- postulate
-- _⊹_ : ∀ {n} → ⟦ Step n ⟧ → Fx₁ n Term Term
-- testNat : ⟦⟧
-- testNat = ¡ ∅
-- testListNat : ⟦ ⟦⟧ ⟧
-- testListNat = ¡ ∅ ∷ ‼ ∅ ∷ ‼ ‼ ∅ ∷ ∅ ∷ ¡ ¡ ¡ ∅ ∷ ∅
-- testFin : ⟦⟧[ ¡ ¡ ∅ ]
-- testFin = ‼ ∅
-- test≤↓ : ⟦⟧[ ‼ ‼ ‼ ∅ ≤ ‼ ‼ ‼ ‼ ‼ ∅ ↓]
-- test≤↓ = ‼ ‼ ∅
-- ⓪ ⑴ ⑵ ⑶ : ⟦⟧
-- ⓪ = ∅
-- ⑴ = ‼ ∅
-- ⑵ = ‼ ⑴
-- ⑶ = ‼ ⑵
-- testInj : Inj ⑵ ⑶
-- testInj = ‼ ∅ ∷ ∅ ∷ ∅
| {
"alphanum_fraction": 0.4716394716,
"avg_line_length": 32.8316326531,
"ext": "agda",
"hexsha": "04a2f3e48231e2010116a3b1be625f8ce2c6c193",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data6.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data6.agda",
"max_line_length": 161,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data6.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3333,
"size": 6435
} |
-- Currently postulates are not allowed in mutual blocks.
-- This might change.
module PostulateInMutual where
mutual
postulate A : Set
postulate B : Set
| {
"alphanum_fraction": 0.751552795,
"avg_line_length": 16.1,
"ext": "agda",
"hexsha": "afe643e5f713244dd19d85ea6801890d59d865d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/PostulateInMutual.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/PostulateInMutual.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/PostulateInMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 42,
"size": 161
} |
{-# OPTIONS --without-K --rewriting #-}
module Conaturals where
open import Basics
open import Bool
open import lib.Basics
open import lib.types.Nat
open import lib.types.Bool
{-
_is-increasing-b : (ℕ → Bool) → Type _
P is-increasing-b = (n m : ℕ) → n ≤ m → (P n) holds-b → (P m) holds-b
increasing-b-is-a-prop : (P : ℕ → Bool) → (P is-increasing-b) is-a-prop
increasing-b-is-a-prop P =
mp (λ _ → mp (λ x → mp (λ _ → mp (λ _ → (Bool-to-Prop₀ (P x)) holds-is-a-prop ))))
where mp = mapping-into-prop-is-a-prop
ℕ∞-prop : SubtypeProp (ℕ → Bool) _
ℕ∞-prop = _is-increasing-b , increasing-b-is-a-prop
ℕ∞ : Type₀
ℕ∞ = Subtype ℕ∞-prop
-}
-- I'm having trouble using coinduction =[
-- The type of conatural numbers
record ℕ∞ : Type₀ where
coinductive
field
pred∞ : ℕ∞ ⊔ ⊤
pattern go∞ x = inl x
pattern stop∞ = inr unit
open ℕ∞ public
coO : ℕ∞
pred∞ coO = stop∞
co∞ : ℕ∞
pred∞ co∞ = go∞ co∞
suc∞ : ℕ∞ → ℕ∞
pred∞ (suc∞ x) = go∞ x
ℕ-to-ℕ∞ : ℕ → ℕ∞
ℕ-to-ℕ∞ O = coO
ℕ-to-ℕ∞ (S n) = suc∞ (ℕ-to-ℕ∞ n)
case-pred∞_of_ : {i : ULevel} {A : Type i}
(n : ℕ∞) (f : ℕ∞ ⊔ ⊤ → A)
→ A
case-pred∞ n of f = f (pred∞ n)
{-
For a paradigmatic use of this function, see below:
-}
pred∞-is-coO : ℕ∞ → Bool
pred∞-is-coO n =
case-pred∞ n of (λ {
(go∞ _) → false ;
stop∞ → true })
case∞ : {i : ULevel} {A : Type i}
(a : A) (f : ℕ∞ → A)
→ ℕ∞ → A
case∞ a f n = case-pred∞ n of (λ {
stop∞ → a ;
(go∞ x) → f x })
syntax case∞ a (λ m → t) n = case∞ n of-co0→ a suc∞- m -→ t
-- ℕ∞-to-ℕ→Prop : ℕ∞ → (ℕ → Bool)
-- ℕ∞-to-ℕ→Prop n = case∞ n
-- of-co0→ (λ _ → true )
-- suc∞- m -→ {! λ { O → false ; (S k) → ℕ∞-to-ℕ→Prop m k }!}
-- previous 4 lines commented by jonas
{- ℕ∞-to-ℕ→Prop n O = pred∞-is-coO n
ℕ∞-to-ℕ→Prop n (S k) = {!helperS (pred∞ n) k!}
where
helperS : ℕ∞ ⊔ ⊤ → ℕ → Bool
helperS (go∞ pn) O = {!!}
helperS (go∞ pn) (S k) = {!!}
helperS stop∞ k = true -}
| {
"alphanum_fraction": 0.4694708277,
"avg_line_length": 25.125,
"ext": "agda",
"hexsha": "e67b6c30c6d707ec2365084988ac910885598617",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/Conaturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/Conaturals.agda",
"max_line_length": 86,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/Conaturals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 914,
"size": 2211
} |
module help where
open import univ
open import Base
-- Prelims
infixl 150 _#_
K : {A : S} -> S -> Fam A
K B = fam (\_ -> B) (\_ -> refS)
_#_ : {A : S}{F : Fam A} -> El (pi A F) -> (x : El A) -> El (F ! x)
el < f , _ > # x = f x
pFun : {A : S}{F : Fam A}(f : El (pi A F)){x y : El A}(x=y : x == y) ->
f # x == pFam F x=y << f # y
pFun (el < f , pf >) x=y = pf x=y
p# : {A : S}{F : Fam A}{f g : El (pi A F)}{x : El A} -> f == g -> f # x == g # x
p# {A}{F}{el < f , _ >}{el < g , _ >} (eq f=g) = f=g _
eqDom : {A B : S}{F : Fam A}{G : Fam B} ->
pi A F =S pi B G -> B =S A
eqDom (eqS < B=A , _ >) = B=A
eqCod : {A B : S}{F : Fam A}{G : Fam B} ->
(AF=BG : pi A F =S pi B G)(x : El A) ->
F ! x =S G ! (eqDom AF=BG << x)
eqCod (eqS < B=A , F=G >) = F=G
distr<<# : {A B : S}{F : Fam A}{G : Fam B}(f : El (pi A F)){x : El B}
(BG=AF : pi B G =S pi A F) ->
(BG=AF << f) # x == eqCod BG=AF x << f # (eqDom BG=AF << x)
distr<<# (el < f , pf >) {x} (eqS < A=B , G=F >) = ref
eqSnd : {A : S}{F : Fam A}{x : El A}{y z : El (F ! x)} ->
y == z -> _==_ {sigma A F} (el < x , y >) (el < x , z >)
eqSnd {A}{F}{x}{y}{z} y=z = eq < ref , y=cz >
where
y=cz : y == pFam F ref << z
y=cz = trans y=z (sym (castref _ _))
IsFun : {A : S}{F : Fam A}(f : (x : El A) -> El (F ! x)) -> Set
IsFun {A}{F} f = {x y : El A}(p : F ! x =S F ! y)(x=y : x == y) ->
f x == p << f y
mkFun : {A : S}{F : Fam A}(f : (x : El A) -> El (F ! x)) ->
IsFun {A}{F} f -> El (pi A F)
mkFun {A}{F} f pf = el < f , (\{x}{y} x=y -> pf (pFam F x=y) x=y) >
curryFam : {A : S}{F : Fam A} -> Fam (sigma A F) -> (x : El A) -> Fam (F ! x)
curryFam {A}{F} G x = fam H pH
where
H : El (F ! x) -> S
H y = G ! el < x , y >
pH : Map _==_ _=S_ H
pH y=z = pFam G (eq < ref , trans y=z (sym (castref _ _)) >)
| {
"alphanum_fraction": 0.392513369,
"avg_line_length": 30.6557377049,
"ext": "agda",
"hexsha": "10949891d8a9aa9a3b9d9adf462d740a5f811d7f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/help.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/help.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/help.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 866,
"size": 1870
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Transitivity where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Conversion
open import Definition.Conversion.Soundness
open import Definition.Conversion.Stability
open import Definition.Conversion.Whnf
open import Definition.Conversion.Conversion
open import Definition.Conversion.Reduction
open import Definition.Conversion.Lift
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Injectivity
import Definition.Typed.Consequences.Inequality as WF
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.NeTypeEq
open import Definition.Typed.Consequences.SucCong
open import Definition.Typed.Consequences.Inversion
open import Definition.Typed.Consequences.Reduction
open import Tools.Nat
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
mutual
-- Transitivity of algorithmic equality of neutrals.
trans~↑ : ∀ {t u v A B Γ}
→ Γ ⊢ t ~ u ↑ A
→ Γ ⊢ u ~ v ↑ B
→ Γ ⊢ t ~ v ↑ A
× Γ ⊢ A ≡ B
trans~↑ (var-refl x₁ x≡y) (var-refl x₂ x≡y₁) =
var-refl x₁ (PE.trans x≡y x≡y₁)
, neTypeEq (var _) x₁
(PE.subst (λ x → _ ⊢ var x ∷ _) (PE.sym x≡y)
x₂)
trans~↑ (app-cong t~u a<>b) (app-cong u~v b<>c) =
let t~v , ΠFG≡ΠF′G′ = trans~↓ t~u u~v
F≡F₁ , G≡G₁ = injectivity ΠFG≡ΠF′G′
a<>c = transConv↑Term F≡F₁ a<>b b<>c
in app-cong t~v a<>c , substTypeEq G≡G₁ (soundnessConv↑Term a<>b)
trans~↑ (fst-cong t~u) (fst-cong u~v) =
let t~v , ΣFG≡ΣF′G′ = trans~↓ t~u u~v
F≡F′ , _ = Σ-injectivity ΣFG≡ΣF′G′
in fst-cong t~v , F≡F′
trans~↑ (snd-cong t~u) (snd-cong u~v) =
let t~v , ΣFG≡ΣF′G′ = trans~↓ t~u u~v
F≡F′ , G≡G′ = Σ-injectivity ΣFG≡ΣF′G′
in snd-cong t~v , substTypeEq G≡G′ (soundness~↑ (fst-cong t~u))
trans~↑ (natrec-cong A<>B a₀<>b₀ aₛ<>bₛ t~u) (natrec-cong B<>C b₀<>c₀ bₛ<>cₛ u~v) =
let ⊢Γ = wf (proj₁ (syntacticEqTerm (soundness~↓ t~u)))
A≡B = soundnessConv↑ A<>B
F[0]≡F₁[0] = substTypeEq A≡B (refl (zeroⱼ ⊢Γ))
ΠℕFs≡ΠℕF₁s = sucCong A≡B
A<>C = transConv↑ A<>B B<>C
a₀<>c₀ = transConv↑Term F[0]≡F₁[0] a₀<>b₀ b₀<>c₀
aₛ<>cₛ = transConv↑Term ΠℕFs≡ΠℕF₁s aₛ<>bₛ bₛ<>cₛ
t~v , _ = trans~↓ t~u u~v
in natrec-cong A<>C a₀<>c₀ aₛ<>cₛ t~v
, substTypeEq A≡B (soundness~↓ t~u)
trans~↑ (Emptyrec-cong A<>B t~u) (Emptyrec-cong B<>C u~v) =
let A≡B = soundnessConv↑ A<>B
A<>C = transConv↑ A<>B B<>C
t~v , _ = trans~↓ t~u u~v
in Emptyrec-cong A<>C t~v , A≡B
-- Transitivity of algorithmic equality of neutrals with types in WHNF.
trans~↓ : ∀ {t u v A B Γ}
→ Γ ⊢ t ~ u ↓ A
→ Γ ⊢ u ~ v ↓ B
→ Γ ⊢ t ~ v ↓ A
× Γ ⊢ A ≡ B
trans~↓ ([~] A₁ D whnfA k~l) ([~] A₂ D₁ whnfA₁ k~l₁) =
let t~v , A≡B = trans~↑ k~l k~l₁
in [~] A₁ D whnfA t~v
, trans (sym (subset* D))
(trans A≡B
(subset* D₁))
-- Transitivity of algorithmic equality of types.
transConv↑ : ∀ {A B C Γ}
→ Γ ⊢ A [conv↑] B
→ Γ ⊢ B [conv↑] C
→ Γ ⊢ A [conv↑] C
transConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′)
([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) =
[↑] A′ B″ D D″ whnfA′ whnfB″
(transConv↓ A′<>B′
(PE.subst (λ x → _ ⊢ x [conv↓] B″)
(whrDet* (D₁ , whnfA″)
(D′ , whnfB′))
A′<>B″))
transConv↑′ : ∀ {A B C Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A [conv↑] B
→ Δ ⊢ B [conv↑] C
→ Γ ⊢ A [conv↑] C
transConv↑′ Γ≡Δ aConvB bConvC =
transConv↑ aConvB (stabilityConv↑ (symConEq Γ≡Δ) bConvC)
-- Transitivity of algorithmic equality of types in WHNF.
transConv↓ : ∀ {A B C Γ}
→ Γ ⊢ A [conv↓] B
→ Γ ⊢ B [conv↓] C
→ Γ ⊢ A [conv↓] C
transConv↓ (U-refl x) (U-refl x₁) = U-refl x
transConv↓ (ℕ-refl x) (ℕ-refl x₁) = ℕ-refl x
transConv↓ (Empty-refl x) (Empty-refl x₁) = Empty-refl x
transConv↓ (Unit-refl x) (Unit-refl x₁) = Unit-refl x
transConv↓ (ne x) (ne x₁) =
let A~C , U≡U = trans~↓ x x₁
in ne A~C
transConv↓ (Π-cong x x₁ x₂) (Π-cong x₃ x₄ x₅) =
Π-cong x (transConv↑ x₁ x₄) (transConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ x₁) x₂ x₅)
transConv↓ (Σ-cong x x₁ x₂) (Σ-cong x₃ x₄ x₅) =
Σ-cong x (transConv↑ x₁ x₄) (transConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ x₁) x₂ x₅)
-- Refutable cases
transConv↓ (U-refl x) (ne ([~] A D whnfB ()))
transConv↓ (ℕ-refl x) (ne ([~] A D whnfB ()))
transConv↓ (Empty-refl x) (ne ([~] A D whnfB ()))
transConv↓ (Π-cong x x₁ x₂) (ne ([~] A D whnfB ()))
transConv↓ (Σ-cong x x₁ x₂) (ne ([~] A D whnfB ()))
transConv↓ (ne ([~] A₁ D whnfB ())) (U-refl x₁)
transConv↓ (ne ([~] A₁ D whnfB ())) (ℕ-refl x₁)
transConv↓ (ne ([~] A₁ D whnfB ())) (Empty-refl x₁)
transConv↓ (ne ([~] A₁ D whnfB ())) (Π-cong x₁ x₂ x₃)
transConv↓ (ne ([~] A₁ D whnfB ())) (Σ-cong x₁ x₂ x₃)
-- Transitivity of algorithmic equality of terms.
transConv↑Term : ∀ {t u v A B Γ}
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↑] u ∷ A
→ Γ ⊢ u [conv↑] v ∷ B
→ Γ ⊢ t [conv↑] v ∷ A
transConv↑Term A≡B ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
([↑]ₜ B₂ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁) =
let B₁≡B₂ = trans (sym (subset* D))
(trans A≡B
(subset* D₁))
d₁″ = conv* d″ (sym B₁≡B₂)
d₁′ = conv* d′ B₁≡B₂
in [↑]ₜ B₁ t′ u″ D d d₁″ whnfB whnft′ whnfu″
(transConv↓Term B₁≡B₂ t<>u
(PE.subst (λ x → _ ⊢ x [conv↓] u″ ∷ B₂)
(whrDet*Term (d₁ , whnft″)
(d₁′ , whnfu′))
t<>u₁))
transConv↑Term′ : ∀ {t u v A B Γ Δ}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↑] u ∷ A
→ Δ ⊢ u [conv↑] v ∷ B
→ Γ ⊢ t [conv↑] v ∷ A
transConv↑Term′ Γ≡Δ A≡B tConvU uConvV =
transConv↑Term A≡B tConvU (stabilityConv↑Term (symConEq Γ≡Δ) uConvV)
-- Transitivity of algorithmic equality of terms in WHNF.
transConv↓Term : ∀ {t u v A B Γ}
→ Γ ⊢ A ≡ B
→ Γ ⊢ t [conv↓] u ∷ A
→ Γ ⊢ u [conv↓] v ∷ B
→ Γ ⊢ t [conv↓] v ∷ A
transConv↓Term A≡B (ℕ-ins x) (ℕ-ins x₁) =
ℕ-ins (proj₁ (trans~↓ x x₁))
transConv↓Term A≡B (Empty-ins x) (Empty-ins x₁) =
Empty-ins (proj₁ (trans~↓ x x₁))
transConv↓Term A≡B (Unit-ins t~u) uConvV =
let _ , [t] , _ = syntacticEqTerm (soundness~↓ t~u)
_ , tNe , _ = ne~↓ t~u
_ , _ , [v] = syntacticEqTerm (soundnessConv↓Term uConvV)
[v] = conv [v] (sym A≡B)
_ , _ , vWhnf = whnfConv↓Term uConvV
in η-unit [t] [v] (ne tNe) vWhnf
transConv↓Term A≡B (ne-ins t u x x₁) (ne-ins t′ u′ x₂ x₃) =
ne-ins t (conv u′ (sym A≡B)) x
(proj₁ (trans~↓ x₁ x₃))
transConv↓Term A≡B (univ x x₁ x₂) (univ x₃ x₄ x₅) =
univ x x₄ (transConv↓ x₂ x₅)
transConv↓Term A≡B (zero-refl x) conv↓ =
convConv↓Term (reflConEq x) (sym A≡B) ℕₙ conv↓
transConv↓Term A≡B conv↓ (zero-refl _) = conv↓
transConv↓Term A≡B (suc-cong x) (suc-cong x₁) =
suc-cong (transConv↑Term A≡B x x₁)
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (η-eq x₅ x₆ y₂ y₃ x₇) =
let F₁≡F , G₁≡G = injectivity A≡B
in η-eq x₁ (conv x₆ (sym A≡B))
y y₃ (transConv↑Term′ (reflConEq (wfEq F₁≡F) ∙ F₁≡F) G₁≡G x₃ x₇)
transConv↓Term A≡B (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv)
(Σ-η ⊢r′ ⊢q _ qProd fstConv′ sndConv′) =
let F≡ , G≡ = Σ-injectivity A≡B
Gfst≡ = substTypeEq G≡ (soundnessConv↑Term fstConv)
in Σ-η ⊢p (conv ⊢q (sym A≡B)) pProd qProd
(transConv↑Term F≡ fstConv fstConv′)
(transConv↑Term Gfst≡ sndConv sndConv′)
transConv↓Term A≡B (η-unit [t] [u] tUnit uUnit) uConvV =
let _ , _ , [v] = syntacticEqTerm (soundnessConv↓Term uConvV)
[v] = conv [v] (sym A≡B)
_ , _ , vWhnf = whnfConv↓Term uConvV
in η-unit [t] [v] tUnit vWhnf
-- Refutable cases
transConv↓Term A≡B (ℕ-ins x) (ne-ins t u x₂ x₃) = ⊥-elim (WF.ℕ≢ne x₂ A≡B)
transConv↓Term A≡B (ℕ-ins x) (univ x₂ x₃ x₄) = ⊥-elim (WF.U≢ℕ (sym A≡B))
transConv↓Term A≡B (ℕ-ins x) (Empty-ins x₁) = ⊥-elim (WF.ℕ≢Emptyⱼ A≡B)
transConv↓Term A≡B (ℕ-ins x) (Unit-ins x₁) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B)
transConv↓Term A≡B (ℕ-ins ([~] A D whnfB ())) (suc-cong x₂)
transConv↓Term A≡B (ℕ-ins x) (η-eq x₃ x₄ y y₁ x₅) = ⊥-elim (WF.ℕ≢Π A≡B)
transConv↓Term A≡B (ℕ-ins x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.ℕ≢Σ A≡B)
transConv↓Term A≡B (ℕ-ins x) (η-unit _ _ _ _) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B)
transConv↓Term A≡B (Empty-ins x) (ne-ins t u x₂ x₃) = ⊥-elim (WF.Empty≢neⱼ x₂ A≡B)
transConv↓Term A≡B (Empty-ins x) (univ x₂ x₃ x₄) = ⊥-elim (WF.U≢Emptyⱼ (sym A≡B))
transConv↓Term A≡B (Empty-ins x₁) (ℕ-ins x) = ⊥-elim (WF.ℕ≢Emptyⱼ (sym A≡B))
transConv↓Term A≡B (Empty-ins x₁) (Unit-ins x) = ⊥-elim (WF.Empty≢Unitⱼ A≡B)
transConv↓Term A≡B (Empty-ins ([~] A D whnfB ())) (suc-cong x₂)
transConv↓Term A≡B (Empty-ins x) (η-eq x₃ x₄ y y₁ x₅) = ⊥-elim (WF.Empty≢Πⱼ A≡B)
transConv↓Term A≡B (Empty-ins x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.Empty≢Σⱼ A≡B)
transConv↓Term A≡B (Empty-ins x₁) (η-unit _ _ _ _) = ⊥-elim (WF.Empty≢Unitⱼ A≡B)
transConv↓Term A≡B (ne-ins t u x x₁) (ℕ-ins x₂) = ⊥-elim (WF.ℕ≢ne x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x x₁) (Empty-ins x₂) = ⊥-elim (WF.Empty≢neⱼ x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x x₁) (Unit-ins x₂) = ⊥-elim (WF.Unit≢neⱼ x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x x₁) (univ x₃ x₄ x₅) = ⊥-elim (WF.U≢ne x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x ([~] A D whnfB ())) (suc-cong x₃)
transConv↓Term A≡B (ne-ins t u x x₁) (η-eq x₄ x₅ y y₁ x₆) = ⊥-elim (WF.Π≢ne x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x x₁) (Σ-η x₅ x₆ x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Σ≢ne x (sym A≡B))
transConv↓Term A≡B (ne-ins t u x x₁) (η-unit _ _ _ _) = ⊥-elim (WF.Unit≢neⱼ x (sym A≡B))
transConv↓Term A≡B (univ x x₁ x₂) (ℕ-ins x₃) = ⊥-elim (WF.U≢ℕ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (Empty-ins x₃) = ⊥-elim (WF.U≢Emptyⱼ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (Unit-ins x₃) = ⊥-elim (WF.U≢Unitⱼ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (ne-ins t u x₃ x₄) = ⊥-elim (WF.U≢ne x₃ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (suc-cong x₃) = ⊥-elim (WF.U≢ℕ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (η-eq x₄ x₅ y y₁ x₆) = ⊥-elim (WF.U≢Π A≡B)
transConv↓Term A≡B (univ x₁ x₂ x₃) (Σ-η x₄ x₅ x₆ x₇ x₈ x₉) = ⊥-elim (WF.U≢Σ A≡B)
transConv↓Term A≡B (univ x x₁ x₂) (η-unit _ _ _ _) = ⊥-elim (WF.U≢Unitⱼ A≡B)
transConv↓Term A≡B (suc-cong x) (ℕ-ins ([~] A D whnfB ()))
transConv↓Term A≡B (suc-cong x) (Empty-ins ([~] A D whnfB ()))
transConv↓Term A≡B (suc-cong x) (ne-ins t u x₁ ([~] A D whnfB ()))
transConv↓Term A≡B (suc-cong x) (univ x₁ x₂ x₃) = ⊥-elim (WF.U≢ℕ (sym A≡B))
transConv↓Term A≡B (suc-cong x) (η-eq x₂ x₃ y y₁ x₄) = ⊥-elim (WF.ℕ≢Π A≡B)
transConv↓Term A≡B (suc-cong x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.ℕ≢Σ A≡B)
transConv↓Term A≡B (suc-cong x) (η-unit _ _ _ _) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B)
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (ℕ-ins x₄) = ⊥-elim (WF.ℕ≢Π (sym A≡B))
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (Empty-ins x₄) = ⊥-elim (WF.Empty≢Πⱼ (sym A≡B))
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (Unit-ins _) = ⊥-elim (WF.Unit≢Πⱼ (sym A≡B))
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (ne-ins t u x₄ x₅) = ⊥-elim (WF.Π≢ne x₄ A≡B)
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (univ x₄ x₅ x₆) = ⊥-elim (WF.U≢Π (sym A≡B))
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (suc-cong x₄) = ⊥-elim (WF.ℕ≢Π (sym A≡B))
transConv↓Term A≡B (η-eq x₂ x₃ x₄ x₅ x₆) (Σ-η x₇ x₈ x₉ x₁₀ x₁₁ x₁₂) = ⊥-elim (WF.Π≢Σ A≡B)
transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (η-unit _ _ _ _) = ⊥-elim (WF.Unit≢Πⱼ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (ℕ-ins x₇) = ⊥-elim (WF.ℕ≢Σ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (Empty-ins x₇) = ⊥-elim (WF.Empty≢Σⱼ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (Unit-ins x₇) = ⊥-elim (WF.Unit≢Σⱼ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (ne-ins x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Σ≢ne x₉ A≡B)
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (univ x₇ x₈ x₉) = ⊥-elim (WF.U≢Σ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (suc-cong x₇) = ⊥-elim (WF.ℕ≢Σ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (η-eq x₈ x₉ x₁₀ x₁₁ x₁₂) = ⊥-elim (WF.Π≢Σ (sym A≡B))
transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (η-unit x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Unit≢Σⱼ (sym A≡B))
-- Transitivity of algorithmic equality of types of the same context.
transConv : ∀ {A B C Γ}
→ Γ ⊢ A [conv↑] B
→ Γ ⊢ B [conv↑] C
→ Γ ⊢ A [conv↑] C
transConv A<>B B<>C = transConv↑ A<>B B<>C
-- Transitivity of algorithmic equality of terms of the same context.
transConvTerm : ∀ {t u v A Γ}
→ Γ ⊢ t [conv↑] u ∷ A
→ Γ ⊢ u [conv↑] v ∷ A
→ Γ ⊢ t [conv↑] v ∷ A
transConvTerm t<>u u<>v =
let t≡u = soundnessConv↑Term t<>u
⊢A , _ , _ = syntacticEqTerm t≡u
in transConv↑Term (refl ⊢A) t<>u u<>v
| {
"alphanum_fraction": 0.5510653931,
"avg_line_length": 48.2624113475,
"ext": "agda",
"hexsha": "5eb743dd3978e5db3cebb86a56369d94a0316c86",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Transitivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Transitivity.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Transitivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6493,
"size": 13610
} |
module Test where
import Lvl
{- TODO: Unsolved metas
module NumAndDivisionProofs where
open import Functional
open import Logic.Propositional{Lvl.𝟎}
open import Logic.Convenience{Lvl.𝟎}
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Divisibility
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎}
ℕ4IsEven : Even((𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎))
ℕ4IsEven = Even0 ⇒ Even𝐒 ⇒ Even𝐒
ℕ5IsOdd : Odd((𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎))
ℕ5IsOdd = Odd0 ⇒ Odd𝐒 ⇒ Odd𝐒
ℕ2Dividesℕ4 : (𝐒 ∘ 𝐒)(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ2Dividesℕ4 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒
ℕ6IsDividesℕ12 : (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ6IsDividesℕ12 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒
ℕ4IsDividesℕ12 : (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ4IsDividesℕ12 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒
ℕ3IsDividesℕ12 : (𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ3IsDividesℕ12 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒
ℕ2IsDividesℕ12 : (𝐒 ∘ 𝐒)(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ2IsDividesℕ12 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒
ℕ1IsDividesℕ12 : 𝐒(𝟎) ∣ (𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎)
ℕ1IsDividesℕ12 = Div𝟎 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒 ⇒ Div𝐒
test22 : (2 ∣ 4) → (2 ∣ 2)
test22 (Div𝐒{2} (proof)) = proof
test23 : ¬(2 ∣ 3)
test23 (Div𝐒{1} ())
-- TODO
-- ℕ3IsDividesℕ7Remℕ1 : 3 ∣ 7 withRemainder 1
-- ℕ3IsDividesℕ7Remℕ1 = DivRem𝟎 ⇒ DivRem𝐒 ⇒ DivRem𝐒
ℕ3Eqℕ2+1 : (𝐒 ∘ 𝐒 ∘ 𝐒)(𝟎) ≡ (𝐒 ∘ 𝐒)(𝟎) + 𝐒(𝟎)
ℕ3Eqℕ2+1 = reflexivity
testImpl : 𝐒(𝟎) ≡ (𝟎 ⇒ 𝐒)
testImpl = reflexivity
fnℕ+1 : (𝟎 ≡ 𝐒(𝟎)) → (𝐒(𝟎) ≡ (𝐒 ∘ 𝐒)(𝟎))
fnℕ+1 = congruence₁(𝐒)
fnℕ+3 : ∀{x} → (x ≡ 5) → (x + 3 ≡ 8)
fnℕ+3 = congruence₁(x ↦ x + 3)
ℕ8Eqℕ2⋅4 : 8 ≡ 2 ⋅ 4
ℕ8Eqℕ2⋅4 = reflexivity
ℕ0Eqℕ0⋅4 : 0 ≡ 0 ⋅ 4
ℕ0Eqℕ0⋅4 = reflexivity
testBottom : (⊥ ∧ ℕ) → ℕ
testBottom = [∧]-elimᵣ
-}
module DataTest where
open import Data
open import Type{Lvl.𝟎}
data Data1 : Type where
data1,1 : Data1
data Data2 : Type where
data2,1 : Data2
data2,2 : Data2
data Data3 : Type where
data3,1 : Data3
data3,2 : Data3
data3,3 : Data3
dataTest : (Data1 ⨯ Data2 ⨯ Data3) → Data3
dataTest(x , y , z) = z
-- coprimes m n = ((2*m-n,m) , (2*m+n,m) , (m+2*n,n))
-- coprimes' m n = (a1/a2,b1/b2,c1/c2) where ((a1,a2),(b1,b2),(c1,c2))=f m n
-- map (\m -> map (\n -> (m,n,coprimes m n,coprimes' m n)) [1..m-1]) [1..10]
-- 2 − n/m
-- 2 + n/m
-- 2 + m/n
-- 2 − n₁/m₁ + 2 − n₂/m₂
-- 4 − n₁/m₁ − n₂/m₂
-- 4 − (m₂⋅n₁ − m₁⋅n₂)/(m₁⋅m₂)
-- 4 + (m₁⋅n₂ − m₂⋅n₁)/(m₁⋅m₂)
-- 2 + 2 + (m₁⋅n₂ − m₂⋅n₁)/(m₁⋅m₂)
-- 2 + (2⋅m₁⋅m₂)/(m₁⋅m₂) + (m₁⋅n₂ − m₂⋅n₁)/(m₁⋅m₂)
-- 2 + (2⋅m₁⋅m₂ + m₁⋅n₂ − m₂⋅n₁)/(m₁⋅m₂)
-- 1 1
-- 2 3
-- 3 6
-- 4 10
-- 5 15
-- 6 21
-- 7 28
-- 8 36
-- 9 45
-- 10 55
-- n⋅(n+1)/2 = x
-- n⋅(n+1) = 2⋅x
-- n²+n = 2⋅x
-- n = 1/2 + √(1/4+2⋅x)
-- n = 1/2 + √(9⋅x/4)
-- n = 1/2 + 3⋅√x/2
-- n = (1 + 3⋅√x)/2
-- permutation with sum 4: 1/3 2/2 3/1
-- curryN : {T : Set}{a : _} → ℕ → (a → T) → (a → T)
-- curryN 𝟎 = id
-- curryN (𝐒(n)) = Tuple.curry ∘ (curryN n)
-- test : {a b b1 c : _} → (((a , b) , b1) -> c) -> a -> b -> b1 -> c
-- test = curryN 2
-- test : {a b c d : Set} → (((a ⨯ b) ⨯ c) -> d) -> a -> b -> c -> d
-- test = Tuple.curry ∘ Tuple.curry
-- data repeatType (b : Set) : ∀{q} {a : Set q} -> a -> Set where
-- simple : repeatType b (b -> b)
-- complex : repeatType b (b -> (∀{c : Set} -> b -> c))
-- repeat2 : ∀{b d c} {q : repeatType c d} -> (r : repeatType b c) -> c -> b -> d
-- repeat2 f x simple = f (f x)
-- repeat2 f x complex = f (f x)
module TestRepeatingStuff where
open import Data
open import Data.Tuple.Raise
open import Numeral.Natural
open import Type
repeat' : {R : Set} → R → (R → R) → ℕ → R
repeat' x _ 𝟎 = x
repeat' x f (𝐒 n) = f(repeat' x f n)
_⨯^_ : ∀{n} → Set n → ℕ → Set n
_⨯^_ _ 𝟎 = Unit
_⨯^_ type (𝐒(𝟎)) = type
_⨯^_ type (𝐒(n)) = type ⨯ (type ⨯^ n)
_→^_ : ∀{n} → Set n → ℕ → Set n
_→^_ _ 𝟎 = Unit
_→^_ type (𝐒(𝟎)) = type
_→^_ type (𝐒(n)) = type → (type →^ n)
repeatOp : ∀{n} → Set n → (Set n → Set n → Set n) → ℕ → Set n
repeatOp type _ 𝟎 = type
repeatOp type op (𝐒(n)) = op type (repeatOp type op n)
_⨯^₂_ : ∀{n} → Set n → ℕ → Set n
_⨯^₂_ _ 𝟎 = Unit
_⨯^₂_ type (𝐒(n)) = repeatOp type (_⨯_) n
testTupleRaise : (ℕ ^ 4) → ℕ ⨯ ℕ ⨯ ℕ ⨯ ℕ
testTupleRaise x = x
-- curryN : {n : ℕ} → ∀{T} → (T →^ n)
-- not mine
-- data repeatType (b : Set) : ∀{q} {a : Set q} -> a -> Set where
-- simple : repeatType b (b -> b)
-- complex : repeatType b (b -> (∀{c : Set} -> b -> c))
-- repeat2 : ∀{b d c} {q : repeatType c d} -> (r : repeatType b c) -> c -> b -> d
-- repeat2 f x simple = f (f x)
-- repeat2 f x complex = f (f x)
-- module Test1 where
-- F : (ℕ ⨯ ℕ) → ℕ
-- F(x , y) = x + y
-- f : ℕ → ℕ → ℕ
-- f = (Function.Iteration.repeatᵣ 1 Tuple.curry (_∘_) id) F
--
-- testf₁ : F(1 , 2) ≡ 1 + 2
-- testf₁ = [≡]-reflexivity
--
-- testf₂ : f 1 2 ≡ 1 + 2
-- testf₂ = [≡]-reflexivity
module Test2 where
open import Functional
open import Function.Iteration
open import Numeral.Natural
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎}
f : ℕ
f = (repeatᵣ 4 𝐒 (_∘_) id) 0
testf₁ : f ≡ 4
testf₁ = reflexivity
-- f₂ : ∀{n}{A B C D : TypeN n} → (((A ⨯ B) ⨯ C) -> D) -> (A -> B -> C -> D)
-- f₂ = Function.Iteration.repeatᵣ 2 id (_∘_) Tuple.curry
module TestTypeAscription where
open import Numeral.Natural
open import Type{Lvl.𝟎}
ty = 1 :of: ℕ
-- ty2 = 1 :of: ⊥
-- Testing universes
module TestSetUniverses {n} (Type : Set n) where
postulate _→₂_ : Type → Type → Set n
data TestData1 (A : Type) (B : Type) : Set n where
-- data TestData2 (A : Type) (B : Type) : Type where -- Data of arbitrary type seems to not be okay
data TestData3 (A : Type) (B : Type) : Set n where
testConstruct1 : TestData3 A B
-- testConstruct2 : A → TestData3 A B -- Because of (_→_ : (Set _) → (Set _))?
-- testConstruct3 : A →₂ (TestData3 A B)
testConstruct4 : (A →₂ B) → (TestData3 A B)
testFn : Type → Type
testFn x = x
module testEqProof where
open import Logic.Propositional{Lvl.𝟎}
open import Numeral.Natural.Oper
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Operator.Properties{Lvl.𝟎}
open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎}
open import Type{Lvl.𝟎}
minSkit : ⦃ _ : Absorberₗ (_⋅_) (0) ⦄ → ⦃ _ : Identityᵣ (_+_) (0) ⦄ → ∀{x} → (1 ≡ ((0 ⋅ x) + 1) + 0)
minSkit ⦃ absorb ⦄ ⦃ id ⦄ {x} =
((congruence₁(_+ 1)
((symmetry (absorb {x})) :of: (0 ≡ 0 ⋅ x))
) :of: (1 ≡ (0 ⋅ x) + 1))
🝖 ((symmetry id) :of: (_ ≡ ((0 ⋅ x) + 1) + 0))
module testDiv where
open import Numeral.Natural.Oper
open import Numeral.Natural.UnclosedOper
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎}
testDiv1 : 4 ⌈/₀⌉ 2 ≡ 2
testDiv1 = reflexivity
testDiv2 : 2 ⌈/₀⌉ 2 ≡ 1
testDiv2 = reflexivity
testDiv3 : 1 ⌈/₀⌉ 2 ≡ 1
testDiv3 = reflexivity
-- test1 : ∀{f : ℕ → ℕ} → (f(0) ≡ 0) ∧ (∀{n : ℕ} → f(n + 1) ≡ f(n) + n + 1) → (∀{n : ℕ} → f(n) ≡ (n ⋅ (n + 1)) ⌈/₀⌉ 2)
-- test1 ()
module testList where
open import Data.List
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Numeral.Natural
-- rev1 : (4 ⊰ 3 ⊰ 2 ⊰ 1 ⊰ ∅) → reverse(1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅)
-- rev1 = id
len1 : length{_}{ℕ}(1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅) ≡ 4
len1 = [≡]-intro
testFoldᵣ : (foldᵣ{_}{_}{ℕ} (_⊰_) ∅ (1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅)) ≡ (1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅)
testFoldᵣ = [≡]-intro
testReduceOrᵣ0 : (reduceOrᵣ (_++_ {_}{ℕ}) (0 ⊰ ∅) ∅) ≡ (0 ⊰ ∅)
testReduceOrᵣ0 = [≡]-intro
testReduceOrᵣ1 : (reduceOrᵣ (_++_ {_}{ℕ}) (0 ⊰ ∅) ((1 ⊰ ∅) ⊰ ∅)) ≡ (1 ⊰ ∅)
testReduceOrᵣ1 = [≡]-intro
testReduceOrᵣ2 : (reduceOrᵣ (_++_ {_}{ℕ}) (0 ⊰ ∅) ((1 ⊰ ∅) ⊰ (2 ⊰ ∅) ⊰ (3 ⊰ ∅) ⊰ (4 ⊰ ∅) ⊰ ∅)) ≡ (1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅)
testReduceOrᵣ2 = [≡]-intro
module testTransitivity where
open import Numeral.Natural
open import Structure.Relator.Properties{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
open import Type
test1 : (0 :of: ℕ ≡ 1) → (1 ≡ 2) → (0 ≡ 2)
test1 (0≡1) (1≡2) = (0≡1) 🝖 (1≡2)
-- module testPropositionalLogic where
-- open import Functional
-- open import Logic.Propositional{Lvl.𝟎}
-- module Propositional = Logic.Classical.Propositional
-- open import Type{Lvl.𝟎}
--
-- symbols : ∀{T : Set(Lvl.𝟎)} → Propositional.Syntax.Symbols T (const (Set(Lvl.𝟎)))
-- symbols =
-- record {
-- •_ = typeOf ;
-- ⊤ = ⊤ ;
-- ⊥ = ⊥ ;
-- ¬_ = ¬_ ;
-- _∧_ = _∧_ ;
-- _∨_ = _∨_ ;
-- _⇒_ = _→ᶠ_ ;
-- _⇔_ = _↔_
-- -- _⊕_ = a ↦ b ↦ ((a ∨ b) ∧ ¬(a ∧ b))
-- }
module testListSublist where
open import Functional
open import Numeral.Natural
open import Data.List
import List.Theorems
open List.Theorems{Lvl.𝟎}{Lvl.𝟎}
open List.Theorems.Sublist hiding (_⊑_)
open import Type
test1 : ([ 1 ]) ⊑ ([ 1 ] :of: List(ℕ))
test1 = use(empty)
test2 : ([ 1 ⊰ 2 ]) ⊑ ([ 1 ] :of: List(ℕ))
test2 = (use ∘ skip)(empty)
test3 : ([ 1 ⊰ 2 ]) ⊑ ([ 1 ⊰ 2 ] :of: List(ℕ))
test3 = (use ∘ use)(empty)
test4 : ([ 1 ⊰ 10 ⊰ 2 ]) ⊑ ([ 1 ⊰ 2 ] :of: List(ℕ))
test4 = (use ∘ skip ∘ use)(empty)
test5 : ([ 1 ⊰ 10 ⊰ 2 ⊰ 3 ]) ⊑ ([ 1 ⊰ 2 ⊰ 3 ] :of: List(ℕ))
test5 = (use ∘ skip ∘ use ∘ use)(empty)
test6 : ([ 1 ⊰ 10 ⊰ 2 ⊰ 3 ⊰ 20 ⊰ 30 ⊰ 4 ⊰ 40 ]) ⊑ ([ 1 ⊰ 2 ⊰ 3 ⊰ 4 ] :of: List(ℕ))
test6 = (use ∘ skip ∘ use ∘ use ∘ skip ∘ skip ∘ use ∘ skip)(empty)
module testPrimitiveRecursiveDefinitions where
open import Data
import Function.PrimitiveRecursion
open Function.PrimitiveRecursion
open Function.PrimitiveRecursion.OperShortcut
open import Numeral.Natural
import Numeral.Natural.Oper as Nat
import Numeral.Natural.Function as Nat
open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals.Proofs{Lvl.𝟎}{Lvl.𝟎}
plus = Rec(2) (P(1)(0)) (Comp(1)(3) (Succ) (P(3)(1)))
pred = Rec(1) (Zero) (P(2)(0))
monus = Comp(2)(2) (Rec(2) (P(1)(0)) (Comp(1)(3) (pred) (P(3)(1)))) (P(2)(1) , P(2)(0))
max = Comp(2)(2) (plus) (P(2)(0) , Comp(2)(2) (monus) (P(2)(1) , P(2)(0)))
min = Comp(2)(2) (monus) (plus , max)
iszero = Rec(1) (Comp(1)(0) (Succ) (Zero)) (Comp(0)(2) (Zero) <>)
const3 = Comp(1)(0) (Succ) (Comp(1)(0) (Succ) (Comp(1)(0) (Succ) (Zero)))
-- testPlus1 : evaluate plus(4 , 2) ≡ 6
-- testPlus1 = [≡]-intro
-- testMonus1 : evaluate monus(4 , 0) ≡ 4
-- testMonus1 = [≡]-intro
-- testMonus2 : evaluate monus(0 , 4) ≡ 0
-- testMonus2 = [≡]-intro
-- testMonus3 : evaluate monus(10 , 2) ≡ 8
-- testMonus3 = [≡]-intro
-- testMonus4 : evaluate monus(2 , 10) ≡ 0
-- testMonus4 = [≡]-intro
-- testMin1 : evaluate min(3 , 2) ≡ Nat.min(3)(2)
-- testMin1 = [≡]-intro
proofPred : ∀{n} → evaluate pred(n) ≡ 𝐏(n)
proofPred{𝟎} = [≡]-intro
proofPred{𝐒(n)} = [≡]-intro
proofPlus : ∀{a b} → evaluate plus(b , a) ≡ (a Nat.+ b)
proofPlus{𝟎} {𝟎} = [≡]-intro
proofPlus{𝐒(_)}{𝟎} = [≡]-intro
proofPlus{a} {𝐒(b)} = congruence₁(𝐒) (proofPlus{a}{b})
is-zero : ℕ → ℕ
is-zero(0) = 1
is-zero(_) = 0
proofIsZero : ∀{n} → evaluate iszero(n) ≡ is-zero(n)
proofIsZero{𝟎} = [≡]-intro
proofIsZero{𝐒(_)} = [≡]-intro
proofMonus : ∀{a} → evaluate monus(a , 𝟎) ≡ (a Nat.−₀ 𝟎)
proofMonus{𝟎} = [≡]-intro
proofMonus{_} = [≡]-intro
proofMax : ∀{a} → evaluate max(0 , a) ≡ Nat.max(a)(0)
proofMax{𝟎} = [≡]-intro
proofMax{𝐒(_)} = [≡]-intro
-- proofMin : ∀{a} → evaluate min(0 , a) ≡ Nat.min(a)(0)
-- proofMin{𝟎} = [≡]-intro
-- proofMin{𝐒(_)} = [≡]-intro
module testEq where
-- testEqInstance : ∀{T} ⦃ _ : Equivalence {T} (_≡_ {T}) ⦄ → Symmetry {T} (_≡_ {T})
-- testEqInstance ⦃ eq ⦄ = Equivalence.symmetry eq
-- testEqInstance2 : ∀{T} → Symmetry {T} (_≡_ {T})
-- testEqInstance2 = testEqInstance
-- testSymInstance : ∀{T} ⦃ _ : Symmetry {T} (_≡_ {T}) ⦄ → Symmetry {T} (_≡_ {T})
-- testSymInstance ⦃ sym ⦄ = sym
module testExistential where
-- TODO
-- testExists : ∀{T : Type}{f : T → Type} → (∃[ x ∈ T ] (f x)) → (∃ {T} (x ↦ f x))
-- testExists x = x
module testCantor where
import Boolean
open Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Functional
open import Logic.Propositional{Lvl.𝟎}
open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎}
open import Logic.DiagonalProof{Lvl.𝟎}{Lvl.𝟎}
open import Numeral.Natural
open import Numeral.Natural.Relation.Countable{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Bijection{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals {Lvl.𝟎}{Lvl.𝟎}
open import Type{Lvl.𝟎}
BitSequence = (ℕ → Bool)
CountableBitSequences = (ℕ → BitSequence)
-- ∀l∃seq∀n. l(n)(n)≠seq(n)
-- There is a bit sequence that is not in the countable list of bit sequences
bitSequenceCantor : (l : CountableBitSequences) → ∃{BitSequence}(seq ↦ ∀{n : ℕ} → (l(n)(n) ≢ seq(n)))
bitSequenceCantor = diagonal-proof (!_) ([!]-unequality) where
[!]-unequality : ∀{b : Bool} → (b ≢ ! b)
[!]-unequality {𝑇} ()
[!]-unequality {𝐹} ()
-- uncountableProof : CountableBitSequences → ¬(Countable(BitSequence))
-- uncountableProof (l) ([∃]-intro(seq-to-n) ⦃ inj ⦄) =
-- [∃]-elim f (bitSequenceCantor(l)) where
-- postulate f : ∀{seq}{x : ℕ → Bool} → {n : ℕ} → (l n n ≢ x n) → ⊥ -- ∀{T}{seq}{n : ℕ} → (l(n)(n) ≢ seq(n)) → T
-- f : ∀{_}{_}(₎
-- f{_}{n}(lnn≢seqn) = lnn≢seqn ∘ inj
-- Countable: ∃(seq-to-n: (ℕ → Bool) → ℕ)∀(x₁ : ℕ → Bool)∀(x₂: ℕ → Bool). (seq-to-n(seq₁)=seq-to-n(seq₂)) → (seq₁=seq₂)
module testListSets where
open import Functional
open import Data.List
import Data.List.Relation.Membership
open Data.List.Relation.Membership{Lvl.𝟎}
open Data.List.Relation.Membership.[∈]-proof
open import Logic.Propositional
open import Type{Lvl.𝟎}
-- TODO: Probably incorrectly formulated
-- Example:
-- (∀a. a∈{P,Q} → R)
-- P → Q → R
-- [∈]-list : ∀{L : List(Type)}{Out : Type} → (∀{a} → (a ∈ L) → Out) → (foldᵣ (_→ᶠ_) (Out) (L))
-- [∈]-list{∅}(f) = f ∘ [⊥]-elim ∘ [∉]-empty
-- f : ∀{a} → (a ∈ ∅) → Out
-- f ∘ [⊥]-elim : ⊥ → Out
-- [∈]-list : ∀{L : List(Type)}{Out : Type} → (foldᵣ (_→ᶠ_) (Out) (L)) → (∀{a} → (a ∈ L) → Out)
-- [∈]-list{∅} (out) (a∈∅) = out
-- [∈]-list{x ⊰ l} (f) (a∈x⊰l) = [∈]-list{l} (f)
module testFinite where
open import Numeral.FiniteInclusive
test2-0 : ℕfin(2)
test2-0 = 𝟎fin
test2-1 : ℕfin(2)
test2-1 = 𝐒fin(𝟎fin)
test2-2 : ℕfin(2)
test2-2 = 𝐒fin(𝐒fin(𝟎fin))
-- test2-3 : ℕfin(2)
-- test2-3 = 𝐒fin(𝐒fin(𝐒fin(𝟎fin)))
-- test2-4 : ℕfin(2)
-- test2-4 = 𝐒fin(𝐒fin(𝐒fin(𝐒fin(𝟎fin))))
module testResolveInstance where
open import Functional
open import Data.List
open import Numeral.Natural
open import Type
data _∈_ {T : Set} (x : T) : List(T) → Set where
instance
𝟎 : ∀{l} → x ∈ (x ⊰ l)
𝐒 : ∀{l}{y} → (x ∈ l) → (x ∈ (y ⊰ l))
test1 : 2 ∈ ((1 ⊰ 2 ⊰ 3 ⊰ 4 ⊰ ∅) :of: List(ℕ))
test1 = resolve(_) -- Becomes 𝐒(𝐒(𝟎))
module testPureSet where
open import Logic.Propositional{Lvl.𝟎}
-- TODO: Does not seem to work. Undefinable because of positivity requirement
data PureSet : Set₁ where
∅ : PureSet
_∪_ : PureSet → PureSet → PureSet
℘ : PureSet → PureSet
-- subset : PureSet → (PureSet → Stmt) → PureSet
data _∈_ (x : PureSet) : PureSet → Set₀ where
empty : ⊥ → (x ∈ ∅)
union : ∀{s₁ s₂} → (x ∈ s₁)∨(x ∈ s₂) → (x ∈ (s₁ ∪ s₂))
-- power : ∀{s} → (∀{y} → (y ∈ x) → (y ∈ s)) → (x ∈ ℘(s))
{- TODO: Stuck
module testInstanceResolution where
open import Logic.Propositional{Lvl.𝟎}
open import Functional
postulate A₁ : Set → Set
postulate A₂ : Set
instance postulate test0 : ∀{x}{y} → ⦃ _ : x ← y ⦄ → ⦃ _ : x → y ⦄ → (x ↔ y)
instance postulate test1 : A₁(A₂) ← A₁(A₂)
instance postulate test2 : A₁(A₂) → A₁(A₂)
B = A₁(A₂) ↔ A₁(A₂)
f : (B → ⊤) → ⊤
f(g) = g(resolve(B))
-}
module inferAbstract where
open import Functional
postulate A : Set -> Set
abstract -- TODO: This pattern could be a macro? See http://agda.readthedocs.io/en/v2.5.3/language/reflection.html for docs and https://github.com/asr/my-agda/blob/4ef826275053a502075e66de7a5cc77964b4291c/test/Succeed/UnquoteDef.agda for examples of macros
Test = ∀{a} → A(a) → A(a)
Test-elim : Test → ∀{a} → A(a) → A(a)
Test-elim(x) = x
instance
postulate test2 : Test
postulate test3 : Test → Test
test4 : Test
test4 = test3(infer)
module testDomainRaise where
open import Function.DomainRaise
open import Data.List
open import Numeral.Natural
open import Numeral.Finite
open import Numeral.Natural.Oper
open import Syntax.Number
open import Relator.Equals {Lvl.𝟎}{Lvl.𝟎}
f : (ℕ →̂ List(ℕ))(3)
f a b c = (a ⋅ 10) ⊰ (b ⋅ 100) ⊰ (c ⋅ 1000) ⊰ ∅
testApplyRepeated : applyRepeated{Lvl.𝟎}{Lvl.𝟎}{3}(f)(1) ≡ 10 ⊰ 100 ⊰ 1000 ⊰ ∅
testApplyRepeated = [≡]-intro
g : 𝕟(3) → ℕ
g(𝐒(𝐒(𝟎))) = 1
g(𝐒(𝟎)) = 2
g(𝟎) = 3
testApplyFn : applyFn{Lvl.𝟎}{Lvl.𝟎}{3}(f)(g) ≡ 10 ⊰ 200 ⊰ 3000 ⊰ ∅
testApplyFn = [≡]-intro
testOn : _on_{Lvl.𝟎}{Lvl.𝟎}{Lvl.𝟎}{3} (𝐒) f 1 2 3 ≡ (𝐒(1) ⋅ 10) ⊰ (𝐒(2) ⋅ 100) ⊰ (𝐒(3) ⋅ 1000) ⊰ ∅
testOn = [≡]-intro
testNaryL1 : naryₗ{Lvl.𝟎}{2}{List(ℕ)}(_++_) (0 ⊰ ∅) (1 ⊰ ∅) (2 ⊰ ∅) (3 ⊰ ∅) ≡ 0 ⊰ 1 ⊰ 2 ⊰ 3 ⊰ ∅
testNaryL1 = [≡]-intro
testNaryL2 : naryₗ{Lvl.𝟎}{2}{ℕ}(_−₀_) (12) (5) (2) (1) ≡ ((12 −₀ 5) −₀ 2) −₀ 1
testNaryL2 = [≡]-intro
-- 12−(5−(2−1)) = 8
-- (((12−5)−2)−1) = 4
testNaryR1 : naryᵣ{Lvl.𝟎}{2}{List(ℕ)}(_++_) (0 ⊰ ∅) (1 ⊰ ∅) (2 ⊰ ∅) (3 ⊰ ∅) ≡ 0 ⊰ 1 ⊰ 2 ⊰ 3 ⊰ ∅
testNaryR1 = [≡]-intro
testNaryR2 : naryᵣ{Lvl.𝟎}{2}{ℕ}(_−₀_) (12) (5) (2) (1) ≡ 12 −₀ (5 −₀ (2 −₀ 1))
testNaryR2 = [≡]-intro
| {
"alphanum_fraction": 0.5477592411,
"avg_line_length": 30.0196399345,
"ext": "agda",
"hexsha": "e9bbd37530532881ab7dfdd2cf959d7d7d089198",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Test.agda",
"max_line_length": 258,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 9122,
"size": 18342
} |
{-# OPTIONS --type-in-type --without-K #-}
{- Semi-simplicial types: A small demonstration that the "usual approach"
works if we postulate the required coherence for the functorial behaviour
of the "Skeleton" functor.
This coherence can be achieved in a 2-level system, where the required
functor law can be shown to hold strictly. -}
module nicolai.SemiSimp.SStypes where
open import lib.Basics
open import lib.types.Unit
open import lib.types.Nat
-- This is the usual lemma about equality of pairs
-- (ideally, it should be imported from lib.types.Sigma )
pair== : {A : Set}{B : A → Set}{ab ab' : Σ A B}
→ (Σ (fst ab == fst ab') (λ α → transport B α (snd ab) == snd ab')) → ab == ab'
pair== {ab = (a , b)}{ab' = (.a , .b)} ( idp , idp ) = idp
-- Finite types
data Fin : ℕ → Set where
fz : {n : ℕ} → Fin (S n)
fs : {n : ℕ} → Fin n → Fin (S n)
_>fin_ : {n : ℕ} → (i j : Fin n) → Set
fz >fin i = Empty
fs j >fin fz = ⊤
fs j >fin fs i = j >fin i
-- The category Δ₊ can be implemented such that the categorical laws
-- (unit, associativity) hold strictly (see my thesis).
-- Objects are natural numbers.
is-increasing : {m n : ℕ} → (Fin m → Fin n) → Set
is-increasing {m} {n} f = {j i : Fin m} → (j >fin i) → ((f j) >fin (f i))
-- hom-sets of Δ₊
_⇒+_ : ℕ → ℕ → Set
m ⇒+ n = Σ (Fin (S m) → Fin (S n)) is-increasing
-- composition:
_∘+_ : {l m n : ℕ} → (m ⇒+ n) → (l ⇒+ m) → (l ⇒+ n)
(g , p₂) ∘+ (f , p₁) = (λ i → g(f(i))) , (λ p → p₂ (p₁ p))
-- general lemmas (possibly in the library, should be added if they are not there)
trans-ap : {A B : Set} → (f : B → A) → (F : A → Set) → {b₁ b₂ : B} → (p : b₁ == b₂) → (x : F (f b₁)) → (transport (λ b → F (f b)) p x) == (transport F (ap f p) x)
trans-ap f F idp x = idp
trans-λ : {A B : Set} → (F : A → B → Set) → {a₁ a₂ : A} → (f : (b : B) → F a₁ b) → (p : a₁ == a₂) → transport (λ a → (b : B) → F a b) p f == λ b → transport (λ a → F a b) p (f b)
trans-λ F f idp = idp
-- Semi-simplicial types
-- SST j is the type of (j-1)-truncated semi-simplicial types, i.e. "Σ X₀ Σ ... Xⱼ₋₁"
SST : ℕ → Set
-- skeleton of a k-simplex: cells lower (!) than level j
Sk : {j : ℕ} → (SST j) → (k : ℕ) → Set
Skm : {j : ℕ} → (X : SST j) → {k₁ k₂ : ℕ} → (k₁ ⇒+ k₂) → Sk {j = j} X k₂ → Sk {j = j} X k₁
Skm-∘ : {j : ℕ} → (X : SST j) → {k₁ k₂ k₃ : ℕ} → (f : k₁ ⇒+ k₂) → (g : k₂ ⇒+ k₃) → (x : Sk X k₃) → Skm X (g ∘+ f) x == Skm X f (Skm X g x)
-- We postulate that Skm is coherent. This is automatic if we use equality with K.
-- We want to demonstrate that the "usual" construction of semi-simplicial types
-- (the one that many people have tried; see Herbelin's paper) works if we can
-- somehow get this coherence.
-- Of course, this is not new (see e.g. Herbelin).
postulate
Skm-∘-coh : {j : ℕ} → (X : SST j) → {k₀ k₁ k₂ k₃ : ℕ} → (h : k₀ ⇒+ k₁) → (f : k₁ ⇒+ k₂) → (g : k₂ ⇒+ k₃) → (x : Sk X k₃)
→ ((Skm-∘ X h (g ∘+ f) x) ∙ (ap (Skm X h) (Skm-∘ X f g x)))
==
(Skm-∘ X (f ∘+ h) g x) ∙ (Skm-∘ X h f (Skm X g x))
SST O = ⊤
SST (S j) = Σ (SST j) λ X →
Sk X j → Set
Sk {O} ⋆ k = ⊤
Sk {S j} (X , Fibʲ) k = Σ (Sk {j} X k) λ sk →
(f : j ⇒+ k) → Fibʲ (Skm X f sk)
Skm {O} ⋆ f sk = ⋆
Skm {S j} (X , Fibʲ) f (x , fibs) = Skm {j} X f x , λ g → transport Fibʲ (Skm-∘ X g f x) (fibs (f ∘+ g))
Skm-∘ {O} ⊤ f g x = idp
Skm-∘ {S j} (X , Fibʲ) {k₁} {k₂} {k₃} f g (x , fibs) =
Skm (X , Fibʲ) (g ∘+ f) (x , fibs)
=⟨ idp ⟩
Skm X (g ∘+ f) x , (λ h → transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h)))
=⟨ pair== (Skm-∘ X f g x , idp) ⟩
Skm X f (Skm X g x) , transport (λ y → (h : j ⇒+ k₁) → Fibʲ (Skm X h y)) (Skm-∘ X f g x) (λ h → transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h)))
=⟨ idp ⟩
Skm X f (Skm X g x) , transport (λ y → (h : j ⇒+ k₁) → Fibʲ (Skm X h y)) (Skm-∘ X f g x) (λ h → transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h)))
=⟨ pair== (idp , trans-λ {B = j ⇒+ k₁} (λ y h → Fibʲ (Skm X h y))
(λ h → transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h)))
(Skm-∘ X f g x)) ⟩
Skm X f (Skm X g x) , (λ (h : j ⇒+ k₁) → transport (λ y → Fibʲ (Skm X h y)) (Skm-∘ X f g x) (transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h))))
=⟨ pair== (idp , λ= (λ (h : j ⇒+ k₁) → trans-ap (Skm X h) Fibʲ (Skm-∘ X f g x) (transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h))) )) ⟩
Skm X f (Skm X g x) , (λ (h : j ⇒+ k₁) → transport Fibʲ (ap (Skm X h) (Skm-∘ X f g x)) (transport Fibʲ (Skm-∘ X h (g ∘+ f) x) (fibs ((g ∘+ f) ∘+ h))))
=⟨ pair== (idp , λ= (λ (h : j ⇒+ k₁) → ! (trans-∙ ((Skm-∘ X h (g ∘+ f) x)) ((ap (Skm X h) (Skm-∘ X f g x))) _))) ⟩
Skm X f (Skm X g x) , (λ (h : j ⇒+ k₁) → transport Fibʲ ((Skm-∘ X h (g ∘+ f) x) ∙ (ap (Skm X h) (Skm-∘ X f g x))) (fibs ((g ∘+ f) ∘+ h)))
=⟨ pair== (idp , λ= (λ (h : j ⇒+ k₁) → ap (λ p → transport Fibʲ p (fibs ((g ∘+ f) ∘+ h))) (Skm-∘-coh X h f g _ ))) ⟩ -- crucial step that requires coherence! Easy with equality that has K.
Skm X f (Skm X g x) , (λ (h : j ⇒+ k₁) → transport Fibʲ ((Skm-∘ X (f ∘+ h) g x) ∙ (Skm-∘ X h f (Skm X g x))) (fibs ((g ∘+ f) ∘+ h)))
=⟨ pair== (idp , λ= (λ (h : j ⇒+ k₁) → trans-∙ (Skm-∘ X (f ∘+ h) g x) ((Skm-∘ X h f (Skm X g x))) (fibs ((g ∘+ f) ∘+ h))) ) ⟩ -- functoriality of transport; very simple. Uses funext.
Skm X f (Skm X g x) , (λ (h : j ⇒+ k₁) → transport Fibʲ (Skm-∘ X h f (Skm X g x)) (transport Fibʲ (Skm-∘ X (f ∘+ h) g x) (fibs ((g ∘+ f) ∘+ h))))
=⟨ idp ⟩ -- nothing happening here, only formatting
Skm X f (Skm X g x) , (λ h → transport Fibʲ (Skm-∘ X h f (Skm X g x)) (transport Fibʲ (Skm-∘ X (f ∘+ h) g x) (fibs ((g ∘+ f) ∘+ h))))
=⟨ idp ⟩ -- at this point, we use the strictness of Δ₊ in Agda!
Skm X f (Skm X g x) , (λ h → transport Fibʲ (Skm-∘ X h f (Skm X g x)) (transport Fibʲ (Skm-∘ X (f ∘+ h) g x) (fibs (g ∘+ (f ∘+ h)))))
=⟨ idp ⟩
Skm (X , Fibʲ) f (Skm X g x , λ h' → transport Fibʲ (Skm-∘ X h' g x) (fibs (g ∘+ h')))
=⟨ idp ⟩
Skm (X , Fibʲ) f (Skm (X , Fibʲ) g (x , fibs))
∎
| {
"alphanum_fraction": 0.4836052334,
"avg_line_length": 39.4331210191,
"ext": "agda",
"hexsha": "83d50f1a60882b44192b08092031537fabed260a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/SemiSimp/SStypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/SemiSimp/SStypes.agda",
"max_line_length": 190,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/SemiSimp/SStypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 2887,
"size": 6191
} |
record R : Set₁ where
field
_A : Set
P : Set → Set₁
P R.A = Set
| {
"alphanum_fraction": 0.5633802817,
"avg_line_length": 10.1428571429,
"ext": "agda",
"hexsha": "6a5626fb58b607eec0797c9cdf30786ca93afef8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2332.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2332.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2332.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 71
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Vec.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat
open import Cubical.Data.Vec.Base
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A : Type ℓ
-- This is really cool!
-- Compare with: https://github.com/agda/agda-stdlib/blob/master/src/Data/Vec/Properties/WithK.agda#L32
++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) →
PathP (λ i → Vec A (+-assoc m n k (~ i))) ((xs ++ ys) ++ zs) (xs ++ ys ++ zs)
++-assoc {m = zero} [] ys zs = refl
++-assoc {m = suc m} (x ∷ xs) ys zs i = x ∷ ++-assoc xs ys zs i
-- Equivalence between Fin n → A and Vec A n
FinVec : (A : Type ℓ) (n : ℕ) → Type ℓ
FinVec A n = Fin n → A
FinVec→Vec : {n : ℕ} → FinVec A n → Vec A n
FinVec→Vec {n = zero} xs = []
FinVec→Vec {n = suc _} xs = xs zero ∷ FinVec→Vec (λ x → xs (suc x))
Vec→FinVec : {n : ℕ} → Vec A n → FinVec A n
Vec→FinVec xs f = lookup f xs
FinVec→Vec→FinVec : {n : ℕ} (xs : FinVec A n) → Vec→FinVec (FinVec→Vec xs) ≡ xs
FinVec→Vec→FinVec {n = zero} xs = funExt λ f → ⊥.rec (¬Fin0 f)
FinVec→Vec→FinVec {n = suc n} xs = funExt goal
where
goal : (f : Fin (suc n))
→ Vec→FinVec (xs zero ∷ FinVec→Vec (λ x → xs (suc x))) f ≡ xs f
goal zero = refl
goal (suc f) i = FinVec→Vec→FinVec (λ x → xs (suc x)) i f
Vec→FinVec→Vec : {n : ℕ} (xs : Vec A n) → FinVec→Vec (Vec→FinVec xs) ≡ xs
Vec→FinVec→Vec {n = zero} [] = refl
Vec→FinVec→Vec {n = suc n} (x ∷ xs) i = x ∷ Vec→FinVec→Vec xs i
FinVecIsoVec : (n : ℕ) → Iso (FinVec A n) (Vec A n)
FinVecIsoVec n = iso FinVec→Vec Vec→FinVec Vec→FinVec→Vec FinVec→Vec→FinVec
FinVec≃Vec : (n : ℕ) → FinVec A n ≃ Vec A n
FinVec≃Vec n = isoToEquiv (FinVecIsoVec n)
FinVec≡Vec : (n : ℕ) → FinVec A n ≡ Vec A n
FinVec≡Vec n = ua (FinVec≃Vec n)
isContrVec0 : isContr (Vec A 0)
isContrVec0 = [] , λ { [] → refl }
| {
"alphanum_fraction": 0.6276747504,
"avg_line_length": 32.3538461538,
"ext": "agda",
"hexsha": "9f8f0d3164d3fdb118ac59060d38220d11561e3e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Vec/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Vec/Properties.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Vec/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 815,
"size": 2103
} |
open import Agda.Primitive using (_⊔_ ; lsuc ; Level)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Product using (Product)
open import MultiSorted.AlgebraicTheory
open import MultiSorted.Substitution
import MultiSorted.Product as Product
import MultiSorted.Interpretation as Interpretation
import MultiSorted.Model as Is-Model
import MultiSorted.InterpretationCategory as InterpretationCategory
module MultiSorted.ModelCategory
{ℓt o ℓ e}
{𝓈 ℴ}
{Σ : Signature {𝓈} {ℴ}}
(T : Theory ℓt Σ)
{𝒞 : Category.Category o ℓ e}
(cartesian-𝒞 : Cartesian.Cartesian 𝒞) where
open Signature Σ
open Theory T
open Category.Category 𝒞
open Interpretation Σ cartesian-𝒞
open Is-Model {o = o} {ℓ = ℓ} {e = e} {Σ = Σ} T
-- Useful shortcuts for levels
ℓℴ : Level
ℓℴ = lsuc (o ⊔ ℓ ⊔ e ⊔ 𝓈 ⊔ ℴ ⊔ ℓt)
ℓ𝒽 : Level
ℓ𝒽 = ℓ ⊔ o ⊔ e ⊔ 𝓈 ⊔ ℴ
ℓ𝓇 : Level
ℓ𝓇 = e ⊔ 𝓈
-- New definition of models (as a set, not only a property of interpretations)
record Model : Set ℓℴ where
field
interpretation : Interpretation
is-model : Is-Model.Is-Model T interpretation
open Model
-- Homomorphisms of models
_⇒M_ : ∀ (M N : Model) → Set ℓ𝒽
_⇒M_ M N = (interpretation M) ⇒I (interpretation N)
-- Equality of homomorphisms of models (the same as for the interpretations)
_≈M_ : ∀ {M N : Model} → M ⇒M N → M ⇒M N → Set ℓ𝓇
_≈M_ {M} {N} ϕ ψ =
let open _⇒I_ in
∀ A → (hom-morphism ϕ {A}) ≈ (hom-morphism ψ)
-- The identity morphism on models
id-M : (M : Model) → M ⇒M M
id-M = λ M → id-I {interpretation M}
-- Composition of morphisms of Models
_∘M_ : ∀ {M N O : Model} → N ⇒M O → M ⇒M N → M ⇒M O
_∘M_ ϕ ψ = ϕ ∘I ψ
-- The category of Models of Σ in 𝒞
ℳ : Category.Category ℓℴ ℓ𝒽 ℓ𝓇
ℳ = record
{ Obj = Model
; _⇒_ = _⇒M_
; _≈_ = λ {M} {N} ϕ ψ → _≈M_ {M} {N} ϕ ψ
; id = λ {M} → id-M M
; _∘_ = λ {M} {N} {O} ϕ ψ → _∘M_ {M} {N} {O} ϕ ψ
; assoc = λ A → assoc -- λ A → assoc
; sym-assoc = λ A → sym-assoc
; identityˡ = λ A → identityˡ
; identityʳ = λ A → identityʳ
; identity² = λ A → identity²
; equiv = record { refl = λ A → Equiv.refl
; sym = λ p A → Equiv.sym (p A)
; trans = λ p₁ p₂ A → Equiv.trans (p₁ A) (p₂ A)
}
; ∘-resp-≈ = λ p₁ p₂ A → ∘-resp-≈ (p₁ A) (p₂ A)
}
-- The product of "Model proofs"
module _ (M N : Model) where
open Product.Producted
open HomReasoning
open InterpretationCategory
open Cartesian.Cartesian cartesian-𝒞
open Interpretation.Interpretation
open import Categories.Object.Product.Morphisms {o} {ℓ} {e} 𝒞
open Equation
-- A proof that an axiom holds in a product interpretation amounts to a apir of proofs that the axiom holds in each model
is-model-pairs : ∀ ε → (interp-term (interpretation M) (Equation.eq-lhs (ax-eq ε)) ⁂ interp-term (interpretation N) (Equation.eq-lhs (ax-eq ε)))
≈ (interp-term (interpretation M) (Equation.eq-rhs (ax-eq ε)) ⁂ interp-term (interpretation N) (Equation.eq-rhs (ax-eq ε))) →
Interpretation.interp-term (A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N)) (Equation.eq-lhs (ax-eq ε))
≈ Interpretation.interp-term (A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N)) (Equation.eq-rhs (ax-eq ε))
is-model-pairs ε p =
begin
Interpretation.interp-term
(A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N))
(Equation.eq-lhs (ax-eq ε)) ≈⟨ ⟺
(Cartesian.Cartesian.unique cartesian-𝒞
(natural-π₁ Σ cartesian-𝒞 {I = interpretation M} {interpretation N} (ax-lhs ε))
(natural-π₂ Σ cartesian-𝒞 {I = interpretation M} {interpretation N} (ax-lhs ε))) ⟩
product.⟨
Interpretation.interp-term (interpretation M) (eq-lhs (ax-eq ε)) ∘
π₁
,
Interpretation.interp-term (interpretation N) (eq-lhs (ax-eq ε)) ∘
π₂
⟩ ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ (Is-Model.model-eq (is-model M) ε)) (∘-resp-≈ˡ (Is-Model.model-eq (is-model N) ε)) ⟩
product.⟨
Interpretation.interp-term (interpretation M) (eq-rhs (ax-eq ε)) ∘
π₁
,
Interpretation.interp-term (interpretation N) (eq-rhs (ax-eq ε)) ∘
π₂
⟩ ≈⟨ Cartesian.Cartesian.unique cartesian-𝒞
(natural-π₁ Σ cartesian-𝒞 {I = interpretation M} {interpretation N} (ax-rhs ε))
(natural-π₂ Σ cartesian-𝒞 {I = interpretation M} {interpretation N} (ax-rhs ε)) ⟩
Interpretation.interp-term
(A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N))
(eq-rhs (ax-eq ε)) ∎
-- The proof that the product interpetation of two models is a model
is-model-product : Is-Model (A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N))
Is-Model.model-eq is-model-product ε =
begin
Interpretation.interp-term
(A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N))
(Equation.eq-lhs (ax-eq ε)) ≈⟨ is-model-pairs ε (⁂-cong₂ (Is-Model.model-eq (is-model M) ε) (Is-Model.model-eq (is-model N) ε)) ⟩
Interpretation.interp-term
(A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N))
(Equation.eq-rhs (ax-eq ε)) ∎
-- The product of ℐ𝓃𝓉 carries over the models : the product of two models is a model
module _ (M N : Model) where
open Product.Producted
open HomReasoning
open InterpretationCategory
A×B-ℳ : Model
A×B-ℳ = record
{ interpretation = A×B-ℐ𝓃𝓉 Σ cartesian-𝒞 (interpretation M) (interpretation N)
; is-model = is-model-product M N
}
-- The cartesian structure of the category of models
module _ {M N : Model} where
import Categories.Object.Product.Core
open Categories.Object.Product.Core.Product
open InterpretationCategory Σ cartesian-𝒞
private
UM UN : Interpretation
UM = interpretation M
UN = interpretation N
UM×UN : Product ℐ𝓃𝓉 UM UN
UM×UN = product-ℐ𝓃𝓉
product-ℳ : Product ℳ M N
-- Structure
A×B product-ℳ = A×B-ℳ M N
π₁ product-ℳ = π₁ UM×UN
π₂ product-ℳ = π₂ UM×UN
⟨_,_⟩ product-ℳ = ⟨_,_⟩ UM×UN
-- Properties
project₁ product-ℳ {O} {h} {i} = project₁ UM×UN {interpretation O} {h} {i}
project₂ product-ℳ {O} {h} {i} = project₂ UM×UN {interpretation O} {h} {i}
unique product-ℳ {O} {h} {i} {j} = unique UM×UN {interpretation O} {h} {i} {j}
| {
"alphanum_fraction": 0.5227069208,
"avg_line_length": 44.1638418079,
"ext": "agda",
"hexsha": "f00287a8400f8f3e79f8cc1e391883c30b3b6135",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/ModelCategory.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/ModelCategory.agda",
"max_line_length": 176,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/ModelCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 2388,
"size": 7817
} |
-- Andreas, 2017-08-14, issue #2682, test case by Ulf
-- WAS: CheckInternal treats abstract projections as not in scope,
-- while the type checker allows them.
-- Adapted solution: allow also in CheckInternal
-- {-# OPTIONS -v tc.rec.proj:20 #-}
-- {-# OPTIONS -v tc.deftype:25 #-}
-- {-# OPTIONS -v tc:20 #-}
abstract
record R : Set₁ where
field X : Set
works : R → Set
works r = R.X r
test : R → Set
test r = {!R.X r!}
-- WAS: On give:
-- Expected non-abstract record type, found R
-- when checking that the expression R.X r has type Set
test2 : R → Set
test2 r = {! r .X !}
where open R
| {
"alphanum_fraction": 0.6402640264,
"avg_line_length": 20.8965517241,
"ext": "agda",
"hexsha": "942b932b6d40f18c7bfd48e3f69372852a3c38b6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2682.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2682.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2682.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 184,
"size": 606
} |
module CoprodMonad where
open import functor
open import monad
data PlusT (t₁ t₂ : Set → Set) (a : Set) (p₁ : Triple t₁)(p₂ : Triple t₂) : Set where
T₁ : (t₁ (PlusT t₁ t₂ a p₁ p₂)) → PlusT t₁ t₂ a p₁ p₂
| {
"alphanum_fraction": 0.6523809524,
"avg_line_length": 23.3333333333,
"ext": "agda",
"hexsha": "ea8d1a04b1e39616787c04a329d0855b8ff2e404",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "CoprodMonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "CoprodMonad.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "CoprodMonad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 85,
"size": 210
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.CommRings where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FiberedProduct
open import Cubical.Algebra.CommRing.Instances.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.Pullback
open Category hiding (_∘_)
open CommRingHoms
private
variable
ℓ : Level
CommRingsCategory : Category (ℓ-suc ℓ) ℓ
ob CommRingsCategory = CommRing _
Hom[_,_] CommRingsCategory = CommRingHom
id CommRingsCategory {R} = idCommRingHom R
_⋆_ CommRingsCategory {R} {S} {T} = compCommRingHom R S T
⋆IdL CommRingsCategory {R} {S} = compIdCommRingHom {R = R} {S}
⋆IdR CommRingsCategory {R} {S} = idCompCommRingHom {R = R} {S}
⋆Assoc CommRingsCategory {R} {S} {T} {U} = compAssocCommRingHom {R = R} {S} {T} {U}
isSetHom CommRingsCategory = isSetRingHom _ _
TerminalCommRing : Terminal {ℓ-suc ℓ-zero} CommRingsCategory
fst TerminalCommRing = UnitCommRing
fst (fst (snd TerminalCommRing y)) _ = tt
snd (fst (snd TerminalCommRing y)) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl)
snd (snd TerminalCommRing y) f = RingHom≡ (funExt (λ _ → refl))
open Pullback
{-
A x_C B -----> A
| |
| | α
| |
V V
B --------> C
β
-}
PullbackCommRing : Pullbacks {ℓ-suc ℓ} CommRingsCategory
pbOb (PullbackCommRing (cospan A C B α β)) = fiberedProduct A B C α β
pbPr₁ (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₁ A B C α β
pbPr₂ (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₂ A B C α β
pbCommutes (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₁₂Commutes A B C α β
univProp (PullbackCommRing (cospan A C B α β)) {d = D} = fiberedProductUnivProp A B C α β D
| {
"alphanum_fraction": 0.6888888889,
"avg_line_length": 34.8387096774,
"ext": "agda",
"hexsha": "1944b479cb72eb23fb4f52a312b4cd5b0cf0e9c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/CommRings.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 676,
"size": 2160
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.AssocList.Properties where
open import Cubical.HITs.AssocList.Base as AL
open import Cubical.Foundations.Everything
open import Cubical.HITs.FiniteMultiset as FMS
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_)
private
variable
ℓ : Level
A : Type₀
multiPer : (a b : A) (m n : ℕ) (xs : AssocList A)
→ ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs
multiPer a b zero n xs = del a (⟨ b , n ⟩∷ xs) ∙ cong (λ ys → ⟨ b , n ⟩∷ ys) (sym (del a xs))
multiPer a b (suc m) zero xs = cong (λ ys → ⟨ a , suc m ⟩∷ ys) (del b xs) ∙ sym (del b (⟨ a , suc m ⟩∷ xs))
multiPer a b (suc m) (suc n) xs =
⟨ a , suc m ⟩∷ ⟨ b , suc n ⟩∷ xs ≡⟨ sym (agg a 1 m (⟨ b , suc n ⟩∷ xs)) ⟩
⟨ a , 1 ⟩∷ ⟨ a , m ⟩∷ ⟨ b , suc n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ a , 1 ⟩∷ ys) (multiPer a b m (suc n) xs) ⟩
⟨ a , 1 ⟩∷ ⟨ b , suc n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ cong (λ ys → ⟨ a , 1 ⟩∷ ys) (sym (agg b 1 n (⟨ a , m ⟩∷ xs))) ⟩
⟨ a , 1 ⟩∷ ⟨ b , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ per a b (⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs) ⟩
⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ys) (multiPer b a n m xs) ⟩
⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ys) (agg a 1 m (⟨ b , n ⟩∷ xs)) ⟩
⟨ b , 1 ⟩∷ ⟨ a , suc m ⟩∷ ⟨ b , n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ys) (multiPer a b (suc m) n xs) ⟩
⟨ b , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , suc m ⟩∷ xs ≡⟨ agg b 1 n (⟨ a , suc m ⟩∷ xs) ⟩
⟨ b , suc n ⟩∷ ⟨ a , suc m ⟩∷ xs ∎
-- Show that association lists and finite multisets are equivalent
multi-∷ : A → ℕ → FMSet A → FMSet A
multi-∷ x zero xs = xs
multi-∷ x (suc n) xs = x ∷ multi-∷ x n xs
multi-∷-agg : (x : A) (m n : ℕ) (b : FMSet A) → multi-∷ x m (multi-∷ x n b) ≡ multi-∷ x (m + n) b
multi-∷-agg x zero n b = refl
multi-∷-agg x (suc m) n b i = x ∷ (multi-∷-agg x m n b i)
AL→FMS : AssocList A → FMSet A
AL→FMS = AL.Rec.f FMS.trunc [] multi-∷ comm multi-∷-agg λ _ _ → refl
FMS→AL : FMSet A → AssocList A
FMS→AL = FMS.Rec.f AL.trunc ⟨⟩ (λ x xs → ⟨ x , 1 ⟩∷ xs) per
AL→FMS∘FMS→AL≡id : section {A = AssocList A} AL→FMS FMS→AL
AL→FMS∘FMS→AL≡id = FMS.ElimProp.f (FMS.trunc _ _) refl (λ x p → cong (λ ys → x ∷ ys) p)
-- need a little lemma for other direction
multi-∷-id : (x : A) (n : ℕ) (u : FMSet A)
→ FMS→AL (multi-∷ x n u) ≡ ⟨ x , n ⟩∷ FMS→AL u
multi-∷-id x zero u = sym (del x (FMS→AL u))
multi-∷-id x (suc n) u = FMS→AL (multi-∷ x (suc n) u) ≡⟨ cong (λ ys → ⟨ x , 1 ⟩∷ ys) (multi-∷-id x n u) ⟩
⟨ x , 1 ⟩∷ ⟨ x , n ⟩∷ (FMS→AL u) ≡⟨ agg x 1 n (FMS→AL u) ⟩
⟨ x , (suc n) ⟩∷ (FMS→AL u) ∎
FMS→AL∘AL→FMS≡id : retract {A = AssocList A} AL→FMS FMS→AL
FMS→AL∘AL→FMS≡id = AL.ElimProp.f (AL.trunc _ _) refl (λ x n {xs} p → (multi-∷-id x n (AL→FMS xs)) ∙ cong (λ ys → ⟨ x , n ⟩∷ ys) p)
AssocList≃FMSet : AssocList A ≃ FMSet A
AssocList≃FMSet = isoToEquiv (iso AL→FMS FMS→AL AL→FMS∘FMS→AL≡id FMS→AL∘AL→FMS≡id)
AssocList≡FMSet : AssocList A ≡ FMSet A
AssocList≡FMSet = ua AssocList≃FMSet
| {
"alphanum_fraction": 0.4907737132,
"avg_line_length": 39.6025641026,
"ext": "agda",
"hexsha": "e0f5bec1dee9bcf35beaa94cbea39571b7af64bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1553,
"size": 3089
} |
module Agda.Builtin.FromString where
open import Agda.Primitive
open import Agda.Builtin.String
record IsString {a} (A : Set a) : Set (lsuc a) where
field
Constraint : String → Set a
fromString : (s : String) {{_ : Constraint s}} → A
open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}
{-# DISPLAY IsString.fromString _ s = fromString s #-}
| {
"alphanum_fraction": 0.6871794872,
"avg_line_length": 24.375,
"ext": "agda",
"hexsha": "774a1277d3aee01d8f9bf6dbb0bd75548629833e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/FromString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/FromString.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/FromString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 107,
"size": 390
} |
{-# OPTIONS --cubical --safe #-}
module Data.Tree.Braun where
open import Prelude
open import Data.Nat
data Bal (n : ℕ) : ℕ → ℕ → Type where
one : Bal n n (1 + n * 2)
two : Bal n (suc n) (2 + n * 2)
data Tree {a} (A : Type a) : ℕ → Type a where
leaf : Tree A 0
node : ∀ {n m r} → (bal : Bal n m r) → A → (ls : Tree A m) → (rs : Tree A n) → Tree A r
private
variable
n : ℕ
inc : A → Tree A n → Tree A (suc n)
inc x leaf = node one x leaf leaf
inc x (node one y ls rs) = node two x (inc y rs) ls
inc x (node two y ls rs) = node one x (inc y rs) ls
| {
"alphanum_fraction": 0.5594405594,
"avg_line_length": 23.8333333333,
"ext": "agda",
"hexsha": "83469987289e8a9e2b6633b488a812f41e60361d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Tree/Braun.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Tree/Braun.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Tree/Braun.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 217,
"size": 572
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A solver for proving that one list is a sublist of the other.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Reflexive; Decidable)
module Data.List.Relation.Binary.Sublist.Heterogeneous.Solver
{a r} {A : Set a} (R : Rel A r)
(R-refl : Reflexive R) (R? : Decidable R)
where
-- Note that we only need the above two constraints to define the
-- solver itself. The data structures do not depend on them. However,
-- having the whole module parametrised by them means that we can
-- instantiate them upon import.
open import Level using (_⊔_)
open import Data.Fin as Fin
open import Data.Maybe as M
open import Data.Nat.Base as Nat using (ℕ)
open import Data.Product
open import Data.Vec as Vec using (Vec ; lookup)
open import Data.List hiding (lookup)
open import Data.List.Properties
open import Data.List.Relation.Binary.Sublist.Heterogeneous
hiding (lookup)
open import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
open import Function
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≗_; sym; cong; cong₂; subst₂)
open import Relation.Nullary
open P.≡-Reasoning
------------------------------------------------------------------------
-- Reified list expressions
-- Basic building blocks: variables and values
data Item (n : ℕ) : Set a where
var : Fin n → Item n
val : A → Item n
-- Abstract Syntax Trees
infixr 5 _<>_
data TList (n : ℕ) : Set a where
It : Item n → TList n
_<>_ : TList n → TList n → TList n
[] : TList n
-- Equivalent linearised representation
RList : ∀ n → Set a
RList n = List (Item n)
-- Semantics
⟦_⟧I : ∀ {n} → Item n → Vec (List A) n → List A
⟦ var k ⟧I ρ = lookup ρ k
⟦ val a ⟧I ρ = [ a ]
⟦_⟧T : ∀ {n} → TList n → Vec (List A) n → List A
⟦ It it ⟧T ρ = ⟦ it ⟧I ρ
⟦ t <> u ⟧T ρ = ⟦ t ⟧T ρ ++ ⟦ u ⟧T ρ
⟦ [] ⟧T ρ = []
⟦_⟧R : ∀ {n} → RList n → Vec (List A) n → List A
⟦ [] ⟧R ρ = []
⟦ x ∷ xs ⟧R ρ = ⟦ x ⟧I ρ ++ ⟦ xs ⟧R ρ
-- Orders
data _⊆I_ {n} : (d e : Item n) → Set (a ⊔ r) where
var : ∀ {k l} → k ≡ l → var k ⊆I var l
val : ∀ {a b} → R a b → val a ⊆I val b
_⊆T_ : ∀ {n} → (d e : TList n) → Set (a ⊔ r)
d ⊆T e = ∀ ρ → Sublist R (⟦ d ⟧T ρ) (⟦ e ⟧T ρ)
_⊆R_ : ∀ {n} (d e : RList n) → Set (a ⊔ r)
d ⊆R e = ∀ ρ → Sublist R (⟦ d ⟧R ρ) (⟦ e ⟧R ρ)
-- Flattening in a semantics-respecting manner
⟦++⟧R : ∀ {n} xs ys (ρ : Vec (List A) n) → ⟦ xs ++ ys ⟧R ρ ≡ ⟦ xs ⟧R ρ ++ ⟦ ys ⟧R ρ
⟦++⟧R [] ys ρ = P.refl
⟦++⟧R (x ∷ xs) ys ρ = begin
⟦ x ⟧I ρ ++ ⟦ xs ++ ys ⟧R ρ
≡⟨ cong (⟦ x ⟧I ρ ++_) (⟦++⟧R xs ys ρ) ⟩
⟦ x ⟧I ρ ++ ⟦ xs ⟧R ρ ++ ⟦ ys ⟧R ρ
≡⟨ sym $ ++-assoc (⟦ x ⟧I ρ) (⟦ xs ⟧R ρ) (⟦ ys ⟧R ρ) ⟩
(⟦ x ⟧I ρ ++ ⟦ xs ⟧R ρ) ++ ⟦ ys ⟧R ρ
∎
flatten : ∀ {n} (t : TList n) → Σ[ r ∈ RList n ] ⟦ r ⟧R ≗ ⟦ t ⟧T
flatten [] = [] , λ _ → P.refl
flatten (It it) = it ∷ [] , λ ρ → ++-identityʳ (⟦ It it ⟧T ρ)
flatten (t <> u) =
let (rt , eqt) = flatten t
(ru , equ) = flatten u
in rt ++ ru , λ ρ → begin
⟦ rt ++ ru ⟧R ρ ≡⟨ ⟦++⟧R rt ru ρ ⟩
⟦ rt ⟧R ρ ++ ⟦ ru ⟧R ρ ≡⟨ cong₂ _++_ (eqt ρ) (equ ρ) ⟩
⟦ t ⟧T ρ ++ ⟦ u ⟧T ρ ≡⟨⟩
⟦ t <> u ⟧T ρ ∎
------------------------------------------------------------------------
-- Solver for the sublist problem
-- auxiliary lemmas
private
keep-it : ∀ {n a b} → a ⊆I b → (xs ys : RList n) → xs ⊆R ys → (a ∷ xs) ⊆R (b ∷ ys)
keep-it (var a≡b) xs ys hyp ρ = ++⁺ (reflexive R-refl (cong _ a≡b)) (hyp ρ)
keep-it (val rab) xs ys hyp ρ = rab ∷ hyp ρ
skip-it : ∀ {n} it (d e : RList n) → d ⊆R e → d ⊆R (it ∷ e)
skip-it it d ys hyp ρ = ++ˡ (⟦ it ⟧I ρ) (hyp ρ)
-- Solver for items
solveI : ∀ {n} (a b : Item n) → Maybe (a ⊆I b)
solveI (var k) (var l) = M.map var $ decToMaybe (k Fin.≟ l)
solveI (val a) (val b) = M.map val $ decToMaybe (R? a b)
solveI _ _ = nothing
-- Solver for linearised expressions
solveR : ∀ {n} (d e : RList n) → Maybe (d ⊆R e)
-- trivial
solveR [] e = just (λ ρ → minimum _)
solveR d [] = nothing
-- actual work
solveR (a ∷ d) (b ∷ e) with solveI a b
... | just it = M.map (keep-it it d e) (solveR d e)
... | nothing = M.map (skip-it b (a ∷ d) e) (solveR (a ∷ d) e)
-- Coming back to ASTs thanks to flatten
solveT : ∀ {n} (t u : TList n) → Maybe (t ⊆T u)
solveT t u =
let (rt , eqt) = flatten t
(ru , equ) = flatten u
in case solveR rt ru of λ where
(just hyp) → just (λ ρ → subst₂ (Sublist R) (eqt ρ) (equ ρ) (hyp ρ))
nothing → nothing
-- Prover for ASTs
prove : ∀ {n} (d e : TList n) → From-just (solveT d e)
prove d e = from-just (solveT d e)
| {
"alphanum_fraction": 0.5241437992,
"avg_line_length": 30.9276315789,
"ext": "agda",
"hexsha": "b37096b5ef102ecdf37ad4baec5b52848b38b7cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Solver.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Heterogeneous/Solver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1888,
"size": 4701
} |
open import Relation.Binary.Core
module TreeSort.Everything {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import TreeSort.Impl1.Correctness.Order _≤_ tot≤ trans≤
open import TreeSort.Impl1.Correctness.Permutation _≤_ tot≤
open import TreeSort.Impl2.Correctness.Order _≤_ tot≤ trans≤
open import TreeSort.Impl2.Correctness.Permutation _≤_ tot≤
| {
"alphanum_fraction": 0.6659090909,
"avg_line_length": 33.8461538462,
"ext": "agda",
"hexsha": "c79b131aaa71c05f6f643fe1423d2837032a4c4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/TreeSort/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/TreeSort/Everything.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/TreeSort/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 140,
"size": 440
} |
------------------------------------------------------------------------
-- The reflexive transitive closures of McBride, Norell and Jansson
------------------------------------------------------------------------
-- This module could be placed under Relation.Binary. However, since
-- its primary purpose is to be used for _data_ it has been placed
-- under Data instead.
module Data.Star where
open import Relation.Binary
open import Data.Function
infixr 5 _◅_
-- Reflexive transitive closure.
data Star {I : Set} (T : Rel I) : Rel I where
ε : Reflexive (Star T)
_◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k
-- The type of _◅_ is Trans T (Star T) (Star T); I expanded
-- the definition in order to be able to name the arguments (x
-- and xs).
-- Append/transitivity.
infixr 5 _◅◅_
_◅◅_ : ∀ {I} {T : Rel I} → Transitive (Star T)
ε ◅◅ ys = ys
(x ◅ xs) ◅◅ ys = x ◅ (xs ◅◅ ys)
-- Sometimes you want to view cons-lists as snoc-lists. Then the
-- following "constructor" is handy. Note that this is _not_ snoc for
-- cons-lists, it is just a synonym for cons (with a different
-- argument order).
infixl 5 _▻_
_▻_ : ∀ {I} {T : Rel I} {i j k} →
Star T j k → T i j → Star T i k
_▻_ = flip _◅_
-- A corresponding variant of append.
infixr 5 _▻▻_
_▻▻_ : ∀ {I} {T : Rel I} {i j k} →
Star T j k → Star T i j → Star T i k
_▻▻_ = flip _◅◅_
-- A generalised variant of map which allows the index type to change.
gmap : ∀ {I} {T : Rel I} {J} {U : Rel J} →
(f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U
gmap f g ε = ε
gmap f g (x ◅ xs) = g x ◅ gmap f g xs
map : ∀ {I} {T U : Rel I} → T ⇒ U → Star T ⇒ Star U
map = gmap id
-- TransFlip is used to state the type signature of gfold.
TransFlip : ∀ {a} → Rel a → Rel a → Rel a → Set
TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k
-- A generalised variant of fold.
gfold : ∀ {I J T} (f : I → J) P →
Trans T (P on₁ f) (P on₁ f) →
TransFlip (Star T) (P on₁ f) (P on₁ f)
gfold f P _⊕_ ∅ ε = ∅
gfold f P _⊕_ ∅ (x ◅ xs) = x ⊕ gfold f P _⊕_ ∅ xs
fold : ∀ {I T} (P : Rel I) →
Trans T P P → Reflexive P → Star T ⇒ P
fold P _⊕_ ∅ = gfold id P _⊕_ ∅
gfoldl : ∀ {I J T} (f : I → J) P →
Trans (P on₁ f) T (P on₁ f) →
Trans (P on₁ f) (Star T) (P on₁ f)
gfoldl f P _⊕_ ∅ ε = ∅
gfoldl f P _⊕_ ∅ (x ◅ xs) = gfoldl f P _⊕_ (∅ ⊕ x) xs
foldl : ∀ {I T} (P : Rel I) →
Trans P T P → Reflexive P → Star T ⇒ P
foldl P _⊕_ ∅ = gfoldl id P _⊕_ ∅
concat : ∀ {I} {T : Rel I} → Star (Star T) ⇒ Star T
concat {T = T} = fold (Star T) _◅◅_ ε
-- If the underlying relation is symmetric, then the reflexive
-- transitive closure is also symmetric.
revApp : ∀ {I} {T U : Rel I} → Sym T U →
∀ {i j k} → Star T j i → Star U j k → Star U i k
revApp rev ε ys = ys
revApp rev (x ◅ xs) ys = revApp rev xs (rev x ◅ ys)
reverse : ∀ {I} {T U : Rel I} → Sym T U → Sym (Star T) (Star U)
reverse rev xs = revApp rev xs ε
-- Reflexive transitive closures form a (generalised) monad.
-- return could also be called singleton.
return : ∀ {I} {T : Rel I} → T ⇒ Star T
return x = x ◅ ε
-- A generalised variant of the Kleisli star (flip bind, or
-- concatMap).
kleisliStar : ∀ {I J} {T : Rel I} {U : Rel J} (f : I → J) →
T =[ f ]⇒ Star U → Star T =[ f ]⇒ Star U
kleisliStar f g = concat ∘ gmap f g
_⋆ : ∀ {I} {T U : Rel I} →
T ⇒ Star U → Star T ⇒ Star U
_⋆ = kleisliStar id
infixl 1 _>>=_
_>>=_ : ∀ {I} {T U : Rel I} {i j} →
Star T i j → T ⇒ Star U → Star U i j
m >>= f = (f ⋆) m
-- Note that the monad-like structure above is not an indexed monad
-- (as defined in Category.Monad.Indexed). If it were, then _>>=_
-- would have a type similar to
--
-- ∀ {I} {T U : Rel I} {i j k} →
-- Star T i j → (T i j → Star U j k) → Star U i k.
-- ^^^^^
-- Note, however, that there is no scope for applying T to any indices
-- in the definition used in Category.Monad.Indexed.
| {
"alphanum_fraction": 0.5373692078,
"avg_line_length": 29.5147058824,
"ext": "agda",
"hexsha": "3b5910931c7402b10a727da71e65ce024f601656",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Star.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Star.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Star.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1504,
"size": 4014
} |
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
idTrue : ∀ b → b ≡ true → Bool
idTrue b eq = {!!}
-- C-c C-c b RET gives us:
-- idTrue false eq = {!!}
-- idTrue true eq = {!!}
-- Now that we can leave `idTrue false eq` out because it's
-- trivially an impossible clause, it'd be nice to only get:
-- idTrue true eq = {!!}
-- But we should still get an absurd clause when we explictly
-- ask for it as in the following example:
-- C-c C-c e RET should give use
-- absurd ()
data Empty : Set where
absurd : ∀ {a} {A : Set a} → Empty → A
absurd e = {!!}
-- Similarly, C-C C-c b eq RET should give us
-- idTrue' false ()
-- idTrue' true refl = {!!}
idTrue' : ∀ b → b ≡ true → Bool
idTrue' b eq = {!!}
-- If the demanded split leads to trivially absurd clauses but the
-- function has a single clause, then we need to generate at least
-- one clause.
-- Therefore C-c C-c e RET should give us:
-- both .true refl f = {!!}
both : ∀ b → b ≡ true → b ≡ false → Bool
both b e f = {!!}
-- This should still be true in an already specialised context
both' : ∀ (c : Bool) b → b ≡ true → b ≡ false → Bool
both' false b e f = {!!}
both' true b e f = {!!}
| {
"alphanum_fraction": 0.6211604096,
"avg_line_length": 24.4166666667,
"ext": "agda",
"hexsha": "a408be179e6d4df579c90e84ba1ad629cd71a2f9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3526.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3526.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3526.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 355,
"size": 1172
} |
{-# OPTIONS --prop --without-K --rewriting #-}
module Calf.Types.List where
open import Calf.Prelude
open import Calf.Metalanguage
open import Data.List public using (List; []; _∷_; _∷ʳ_; [_]; length; _++_)
list : tp pos → tp pos
list A = U (meta (List (val A)))
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 22.25,
"ext": "agda",
"hexsha": "4c3d5117e7c50332868b597fd72c59cec51f5c23",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf/Types/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf/Types/List.agda",
"max_line_length": 75,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf/Types/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 81,
"size": 267
} |
{-# OPTIONS --rewriting --allow-unsolved-metas #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
postulate
I : Set
A : I → Set
HEq : (i0 i1 : I) → A i0 → A i1 → Set
HEq-on-refl : (i : I) (a0 a1 : A i) → HEq i i a0 a1 ≡ I
{-# REWRITE HEq-on-refl #-}
record Con : Set where
field
f : I → I
open Con public
postulate
Ty : Con → Set
module M (Γ : Con) (_ : Ty Γ) where
test : let aux1 : A (f Γ _)
aux1 = _
aux2 : A (f Γ _)
aux2 = _
in HEq _ _ aux1 aux2
test = _
| {
"alphanum_fraction": 0.5427046263,
"avg_line_length": 19.3793103448,
"ext": "agda",
"hexsha": "e38e6e2c4843dffbb98ad120ada1b472199f5eb3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue4721.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue4721.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue4721.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 208,
"size": 562
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Code for converting Vec A n → B to and from n-ary functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.N-ary where
open import Data.Nat.Base hiding (_⊔_)
open import Data.Product as Prod
open import Data.Vec
open import Function
open import Function.Equivalence using (_⇔_; equivalence)
open import Level using (Level; _⊔_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable
------------------------------------------------------------------------
-- N-ary functions
N-ary-level : Level → Level → ℕ → Level
N-ary-level ℓ₁ ℓ₂ zero = ℓ₂
N-ary-level ℓ₁ ℓ₂ (suc n) = ℓ₁ ⊔ N-ary-level ℓ₁ ℓ₂ n
N-ary : ∀ {ℓ₁ ℓ₂} (n : ℕ) → Set ℓ₁ → Set ℓ₂ → Set (N-ary-level ℓ₁ ℓ₂ n)
N-ary zero A B = B
N-ary (suc n) A B = A → N-ary n A B
------------------------------------------------------------------------
-- Conversion
curryⁿ : ∀ {n a b} {A : Set a} {B : Set b} →
(Vec A n → B) → N-ary n A B
curryⁿ {zero} f = f []
curryⁿ {suc n} f = λ x → curryⁿ (f ∘ _∷_ x)
_$ⁿ_ : ∀ {n a b} {A : Set a} {B : Set b} → N-ary n A B → (Vec A n → B)
f $ⁿ [] = f
f $ⁿ (x ∷ xs) = f x $ⁿ xs
------------------------------------------------------------------------
-- Quantifiers
-- Universal quantifier.
∀ⁿ : ∀ n {a ℓ} {A : Set a} →
N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∀ⁿ zero P = P
∀ⁿ (suc n) P = ∀ x → ∀ⁿ n (P x)
-- Universal quantifier with implicit (hidden) arguments.
∀ⁿʰ : ∀ n {a ℓ} {A : Set a} →
N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∀ⁿʰ zero P = P
∀ⁿʰ (suc n) P = ∀ {x} → ∀ⁿʰ n (P x)
-- Existential quantifier.
∃ⁿ : ∀ n {a ℓ} {A : Set a} →
N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∃ⁿ zero P = P
∃ⁿ (suc n) P = ∃ λ x → ∃ⁿ n (P x)
------------------------------------------------------------------------
-- N-ary function equality
Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n →
REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n)
Eq n _∼_ f g = ∀ⁿ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs))
-- A variant where all the arguments are implicit (hidden).
Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n →
REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n)
Eqʰ n _∼_ f g = ∀ⁿʰ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs))
------------------------------------------------------------------------
-- Some lemmas
-- The functions curryⁿ and _$ⁿ_ are inverses.
left-inverse : ∀ {n a b} {A : Set a} {B : Set b} (f : Vec A n → B) →
∀ xs → (curryⁿ f $ⁿ xs) ≡ f xs
left-inverse f [] = refl
left-inverse f (x ∷ xs) = left-inverse (f ∘ _∷_ x) xs
right-inverse : ∀ {a b} {A : Set a} {B : Set b} n (f : N-ary n A B) →
Eq n _≡_ (curryⁿ (_$ⁿ_ {n} f)) f
right-inverse zero f = refl
right-inverse (suc n) f = λ x → right-inverse n (f x)
-- ∀ⁿ can be expressed in an "uncurried" way.
uncurry-∀ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} →
∀ⁿ n P ⇔ (∀ (xs : Vec A n) → P $ⁿ xs)
uncurry-∀ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n)
where
⇒ : ∀ n {P : N-ary n A (Set ℓ)} →
∀ⁿ n P → (∀ (xs : Vec A n) → P $ⁿ xs)
⇒ zero p [] = p
⇒ (suc n) p (x ∷ xs) = ⇒ n (p x) xs
⇐ : ∀ n {P : N-ary n A (Set ℓ)} →
(∀ (xs : Vec A n) → P $ⁿ xs) → ∀ⁿ n P
⇐ zero p = p []
⇐ (suc n) p = λ x → ⇐ n (p ∘ _∷_ x)
-- ∃ⁿ can be expressed in an "uncurried" way.
uncurry-∃ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} →
∃ⁿ n P ⇔ (∃ λ (xs : Vec A n) → P $ⁿ xs)
uncurry-∃ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n)
where
⇒ : ∀ n {P : N-ary n A (Set ℓ)} →
∃ⁿ n P → (∃ λ (xs : Vec A n) → P $ⁿ xs)
⇒ zero p = ([] , p)
⇒ (suc n) (x , p) = Prod.map (_∷_ x) id (⇒ n p)
⇐ : ∀ n {P : N-ary n A (Set ℓ)} →
(∃ λ (xs : Vec A n) → P $ⁿ xs) → ∃ⁿ n P
⇐ zero ([] , p) = p
⇐ (suc n) (x ∷ xs , p) = (x , ⇐ n (xs , p))
-- Conversion preserves equality.
curryⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
(_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) →
(∀ xs → f xs ∼ g xs) →
Eq n _∼_ (curryⁿ f) (curryⁿ g)
curryⁿ-cong {zero} _∼_ f g hyp = hyp []
curryⁿ-cong {suc n} _∼_ f g hyp = λ x →
curryⁿ-cong _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (λ xs → hyp (x ∷ xs))
curryⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
(_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) →
Eq n _∼_ (curryⁿ f) (curryⁿ g) →
∀ xs → f xs ∼ g xs
curryⁿ-cong⁻¹ _∼_ f g hyp [] = hyp
curryⁿ-cong⁻¹ _∼_ f g hyp (x ∷ xs) =
curryⁿ-cong⁻¹ _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (hyp x) xs
appⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
(_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) →
Eq n _∼_ f g →
(xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)
appⁿ-cong _∼_ f g hyp [] = hyp
appⁿ-cong _∼_ f g hyp (x ∷ xs) = appⁿ-cong _∼_ (f x) (g x) (hyp x) xs
appⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
(_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) →
((xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) →
Eq n _∼_ f g
appⁿ-cong⁻¹ {zero} _∼_ f g hyp = hyp []
appⁿ-cong⁻¹ {suc n} _∼_ f g hyp = λ x →
appⁿ-cong⁻¹ _∼_ (f x) (g x) (λ xs → hyp (x ∷ xs))
-- Eq and Eqʰ are equivalent.
Eq-to-Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} →
Eq n _∼_ f g → Eqʰ n _∼_ f g
Eq-to-Eqʰ zero _∼_ eq = eq
Eq-to-Eqʰ (suc n) _∼_ eq = Eq-to-Eqʰ n _∼_ (eq _)
Eqʰ-to-Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} →
Eqʰ n _∼_ f g → Eq n _∼_ f g
Eqʰ-to-Eq zero _∼_ eq = eq
Eqʰ-to-Eq (suc n) _∼_ eq = λ _ → Eqʰ-to-Eq n _∼_ eq
| {
"alphanum_fraction": 0.4366500829,
"avg_line_length": 34.6551724138,
"ext": "agda",
"hexsha": "d4498b29fd1334db9bef07e828a5f7847f1f6ca4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/N-ary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/N-ary.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/N-ary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2680,
"size": 6030
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Concrete.Obligations
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open EpochConfig
open import LibraBFT.Concrete.System
open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk})
-- In this module, we assume that the implementation meets its
-- obligations, and use this assumption to prove that, in any reachable
-- state, the implementatioon enjoys one of the per-epoch correctness
-- conditions proved in Abstract.Properties. It can be extended to other
-- properties later.
module LibraBFT.Concrete.Properties
(impl-correct : ImplObligations)
(st : SystemState)
(r : ReachableSystemState st)
(𝓔 : EpochConfig)
where
open ImplObligations impl-correct
open WithSPS sps-cor
open PerState st r
open PerEpoch 𝓔
open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Abs
open import LibraBFT.Concrete.Intermediate 𝓔 (ConcreteVoteEvidence 𝓔)
import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO-obl
import LibraBFT.Concrete.Obligations.PreferredRound 𝓔 (ConcreteVoteEvidence 𝓔) as PR-obl
open import LibraBFT.Concrete.Properties.VotesOnce as VO
open import LibraBFT.Concrete.Properties.PreferredRound as PR
--------------------------------------------------------------------------------------------
-- * A /ValidSysState/ is one in which both peer obligations are obeyed by honest peers * --
--------------------------------------------------------------------------------------------
record ValidSysState {ℓ}(𝓢 : IntermediateSystemState ℓ) : Set (ℓ+1 ℓ0 ℓ⊔ ℓ) where
field
vss-votes-once : VO-obl.Type 𝓢
vss-preferred-round : PR-obl.Type 𝓢
open ValidSysState public
-- TODO-2 : This should be provided as a module parameter here, and the
-- proofs provided to instantiate it should be refactored into LibraBFT.Impl.
-- However, see the TODO-3 in LibraBFT.Concrete.Intermediate, which suggests
-- that those proofs may change, perhaps some parts of them will remain in
-- Concrete and others should be in Impl, depending on how that TODO-3 is
-- addressed. There is not much point in doing said refactoring until we
-- make progress on that question.
validState : ValidSysState IntSystemState
validState = record
{ vss-votes-once = VO.Proof.voo sps-cor vo₁ vo₂ st r 𝓔
; vss-preferred-round = PR.Proof.prr sps-cor pr₁ st r 𝓔
}
open IntermediateSystemState IntSystemState
open All-InSys-props InSys
open WithAssumptions InSys
-- We can now invoke the various abstract correctness properties. Note that the arguments are
-- expressed in Abstract terms (RecordChain, CommitRule). Proving the corresponding properties
-- for the actual implementation will involve proving that the implementation decides to commit
-- only if it has evidence of the required RecordChains and CommitRules such that the records in
-- the RecordChains are all "InSys" according to the implementation's notion thereof (defined in
-- Concrete.System.IntSystemState).
ConcCommitsDoNotConflict :
∀{q q'}
→ {rc : RecordChain (Abs.Q q)} → All-InSys rc
→ {rc' : RecordChain (Abs.Q q')} → All-InSys rc'
→ {b b' : Abs.Block}
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ Abs.bId ⊎ ((Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc)
ConcCommitsDoNotConflict = CommitsDoNotConflict
(VO-obl.proof IntSystemState (vss-votes-once validState))
(PR-obl.proof IntSystemState (vss-preferred-round validState))
module _ (∈QC⇒AllSent : Complete InSys) where
ConcCommitsDoNotConflict' :
∀{q q'}{rc : RecordChain (Abs.Q q)}{rc' : RecordChain (Abs.Q q')}{b b' : Abs.Block}
→ InSys (Abs.Q q) → InSys (Abs.Q q')
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ Abs.bId ⊎ ((Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc)
ConcCommitsDoNotConflict' = CommitsDoNotConflict'
(VO-obl.proof IntSystemState (vss-votes-once validState))
(PR-obl.proof IntSystemState (vss-preferred-round validState))
∈QC⇒AllSent
ConcCommitsDoNotConflict''
: ∀{o o' q q'}
→ {rcf : RecordChainFrom o (Abs.Q q)}
→ {rcf' : RecordChainFrom o' (Abs.Q q')}
→ {b b' : Abs.Block}
→ InSys (Abs.Q q)
→ InSys (Abs.Q q')
→ CommitRuleFrom rcf b
→ CommitRuleFrom rcf' b'
→ NonInjective-≡ Abs.bId ⊎ Σ (RecordChain (Abs.Q q')) ((Abs.B b) ∈RC_)
⊎ Σ (RecordChain (Abs.Q q)) ((Abs.B b') ∈RC_)
ConcCommitsDoNotConflict'' = CommitsDoNotConflict''
(VO-obl.proof IntSystemState (vss-votes-once validState))
(PR-obl.proof IntSystemState (vss-preferred-round validState))
∈QC⇒AllSent
| {
"alphanum_fraction": 0.6383209698,
"avg_line_length": 48.4824561404,
"ext": "agda",
"hexsha": "7459c6e84bcb147fb1baf1e9886408c52315ccb2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1518,
"size": 5527
} |
module empty where
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data ⊥ : Set where
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
----------------------------------------------------------------------
-- theorems
----------------------------------------------------------------------
⊥-elim : ⊥ → ∀ {P : Set} → P
⊥-elim ()
| {
"alphanum_fraction": 0.1180811808,
"avg_line_length": 30.1111111111,
"ext": "agda",
"hexsha": "750dc99e3c9819be7e6633eae8dec856b40fe3c4",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "empty.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "empty.agda",
"max_line_length": 70,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "empty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 55,
"size": 542
} |
module Dave.Equality where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
infix 4 _≡_
{-# BUILTIN EQUALITY _≡_ #-}
sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl b = b
cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y
cong f refl = refl
cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B}
→ u ≡ x
→ v ≡ y
→ f u v ≡ f x y
cong₂ f refl refl = refl
cong-app : ∀ {A B : Set} {f g : A → B}
→ f ≡ g
→ ∀ (x : A) → f x ≡ g x
cong-app refl x = refl
subst : ∀ {A : Set} {x y : A} (P : A → Set)
→ x ≡ y
→ P x → P y
subst P refl px = px
infix 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 3 _∎
begin_ : ∀ {A : Set} {x y : A}
→ x ≡ y
-----
→ x ≡ y
begin x≡y = x≡y
_≡⟨⟩_ : ∀ {A : Set} (x : A) {y : A}
→ x ≡ y
-----
→ x ≡ y
x ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_∎ : ∀ {A : Set} (x : A)
-----
→ x ≡ x
x ∎ = refl | {
"alphanum_fraction": 0.3601398601,
"avg_line_length": 19.0666666667,
"ext": "agda",
"hexsha": "91cc4b74e636b26696e0f2b336b808d0f68730d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/Equality.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 588,
"size": 1144
} |
{-# OPTIONS --universe-polymorphism #-}
module UniversePolymorphicIO where
open import Common.Level
postulate
IO : ∀ {ℓ} → Set ℓ → Set ℓ
{-# IMPORT UniversePolymorphicIO #-}
{-# COMPILED_TYPE IO UniversePolymorphicIO.AgdaIO #-}
{-# BUILTIN IO IO #-}
postulate
return : ∀ {a} {A : Set a} → A → IO A
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
postulate
String : Set
{-# BUILTIN STRING String #-}
{-# COMPILED return (\_ _ -> return :: a -> IO a) #-}
{-# COMPILED _>>=_ (\_ _ _ _ ->
(>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# IMPORT Data.Text.IO #-}
postulate
Unit : Set
putStrLn : String → IO Unit
{-# COMPILED_TYPE Unit () #-}
{-# COMPILED putStrLn Data.Text.IO.putStrLn #-}
data List A : Set where
[] : List A
_∷_ : A → List A → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
main = putStrLn "ok" >>= λ _ → return lzero
| {
"alphanum_fraction": 0.552715655,
"avg_line_length": 20.4130434783,
"ext": "agda",
"hexsha": "8193c91f919569d7797fa67c8ab527d7194f12a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Compiler/simple/UniversePolymorphicIO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Compiler/simple/UniversePolymorphicIO.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Compiler/simple/UniversePolymorphicIO.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 299,
"size": 939
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Algebra.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open import Cubical.Algebra.Module
open import Cubical.Algebra.Ring
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Group
open import Cubical.Algebra.Monoid
open Iso
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
record IsAlgebra (R : Ring ℓ) {A : Type ℓ'}
(0a 1a : A) (_+_ _·_ : A → A → A) (-_ : A → A)
(_⋆_ : ⟨ R ⟩ → A → A) : Type (ℓ-max ℓ ℓ') where
constructor isalgebra
open RingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·r_)
field
isLeftModule : IsLeftModule R 0a _+_ -_ _⋆_
·-isMonoid : IsMonoid 1a _·_
dist : (x y z : A) → (x · (y + z) ≡ (x · y) + (x · z))
× ((x + y) · z ≡ (x · z) + (y · z))
⋆-lassoc : (r : ⟨ R ⟩) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)
⋆-rassoc : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x · y) ≡ x · (r ⋆ y)
open IsLeftModule isLeftModule public
isRing : IsRing _ _ _ _ _
isRing = isring (IsLeftModule.+-isAbGroup isLeftModule) ·-isMonoid dist
open IsRing isRing public hiding (_-_; +Assoc; +Lid; +Linv; +Rid; +Rinv; +Comm)
unquoteDecl IsAlgebraIsoΣ = declareRecordIsoΣ IsAlgebraIsoΣ (quote IsAlgebra)
record AlgebraStr (R : Ring ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where
constructor algebrastr
field
0a : A
1a : A
_+_ : A → A → A
_·_ : A → A → A
-_ : A → A
_⋆_ : ⟨ R ⟩ → A → A
isAlgebra : IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_
open IsAlgebra isAlgebra public
Algebra : (R : Ring ℓ) → ∀ ℓ' → Type (ℓ-max ℓ (ℓ-suc ℓ'))
Algebra R ℓ' = Σ[ A ∈ Type ℓ' ] AlgebraStr R A
module commonExtractors {R : Ring ℓ} where
Algebra→Module : (A : Algebra R ℓ') → LeftModule R ℓ'
Algebra→Module (_ , algebrastr A _ _ _ _ _ (isalgebra isLeftModule _ _ _ _)) =
_ , leftmodulestr A _ _ _ isLeftModule
Algebra→Ring : (A : Algebra R ℓ') → Ring ℓ'
Algebra→Ring (_ , str) = _ , ringstr _ _ _ _ _ (IsAlgebra.isRing (AlgebraStr.isAlgebra str))
Algebra→AbGroup : (A : Algebra R ℓ') → AbGroup ℓ'
Algebra→AbGroup A = LeftModule→AbGroup (Algebra→Module A)
Algebra→Group : (A : Algebra R ℓ') → Group ℓ'
Algebra→Group A = Ring→Group (Algebra→Ring A)
Algebra→AddMonoid : (A : Algebra R ℓ') → Monoid ℓ'
Algebra→AddMonoid A = Group→Monoid (Algebra→Group A)
Algebra→MultMonoid : (A : Algebra R ℓ') → Monoid ℓ'
Algebra→MultMonoid A = Ring→MultMonoid (Algebra→Ring A)
isSetAlgebra : (A : Algebra R ℓ') → isSet ⟨ A ⟩
isSetAlgebra A = isSetAbGroup (Algebra→AbGroup A)
open RingStr (snd R) using (1r; ·Ldist+) renaming (_+_ to _+r_; _·_ to _·s_)
makeIsAlgebra : {A : Type ℓ'} {0a 1a : A}
{_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩ → A → A}
(isSet-A : isSet A)
(+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : A) → x + 0a ≡ x)
(+-rinv : (x : A) → x + (- x) ≡ 0a)
(+-comm : (x y : A) → x + y ≡ y + x)
(·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : A) → x · 1a ≡ x)
(·-lid : (x : A) → 1a · x ≡ x)
(·-rdist-+ : (x y z : A) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z))
(⋆-assoc : (r s : ⟨ R ⟩) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x))
(⋆-ldist : (r s : ⟨ R ⟩) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x))
(⋆-rdist : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y))
(⋆-lid : (x : A) → 1r ⋆ x ≡ x)
(⋆-lassoc : (r : ⟨ R ⟩) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y))
(⋆-rassoc : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x · y) ≡ x · (r ⋆ y))
→ IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_
makeIsAlgebra isSet-A
+-assoc +-rid +-rinv +-comm
·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+
⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc ⋆-rassoc =
isalgebra
(makeIsLeftModule isSet-A
+-assoc +-rid +-rinv +-comm
⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid)
(makeIsMonoid isSet-A ·-assoc ·-rid ·-lid)
(λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z)
⋆-lassoc ⋆-rassoc
open commonExtractors public
record IsAlgebraHom {R : Ring ℓ} {A : Type ℓ'} {B : Type ℓ''}
(M : AlgebraStr R A) (f : A → B) (N : AlgebraStr R B)
: Type (ℓ-max ℓ (ℓ-max ℓ' ℓ''))
where
-- Shorter qualified names
private
module M = AlgebraStr M
module N = AlgebraStr N
field
pres0 : f M.0a ≡ N.0a
pres1 : f M.1a ≡ N.1a
pres+ : (x y : A) → f (x M.+ y) ≡ f x N.+ f y
pres· : (x y : A) → f (x M.· y) ≡ f x N.· f y
pres- : (x : A) → f (M.- x) ≡ N.- (f x)
pres⋆ : (r : ⟨ R ⟩) (y : A) → f (r M.⋆ y) ≡ r N.⋆ f y
unquoteDecl IsAlgebraHomIsoΣ = declareRecordIsoΣ IsAlgebraHomIsoΣ (quote IsAlgebraHom)
open IsAlgebraHom
AlgebraHom : {R : Ring ℓ} (M : Algebra R ℓ') (N : Algebra R ℓ'') → Type (ℓ-max ℓ (ℓ-max ℓ' ℓ''))
AlgebraHom M N = Σ[ f ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsAlgebraHom (M .snd) f (N .snd)
IsAlgebraEquiv : {R : Ring ℓ} {A : Type ℓ'} {B : Type ℓ''}
(M : AlgebraStr R A) (e : A ≃ B) (N : AlgebraStr R B)
→ Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
IsAlgebraEquiv M e N = IsAlgebraHom M (e .fst) N
AlgebraEquiv : {R : Ring ℓ} (M : Algebra R ℓ') (N : Algebra R ℓ'') → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
AlgebraEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsAlgebraEquiv (M .snd) e (N .snd)
_$a_ : {R : Ring ℓ} {A : Algebra R ℓ'} {B : Algebra R ℓ''} → AlgebraHom A B → ⟨ A ⟩ → ⟨ B ⟩
f $a x = fst f x
AlgebraEquiv→AlgebraHom : {R : Ring ℓ} {A : Algebra R ℓ'} {B : Algebra R ℓ''}
→ AlgebraEquiv A B → AlgebraHom A B
AlgebraEquiv→AlgebraHom (e , eIsHom) = e .fst , eIsHom
isPropIsAlgebra : (R : Ring ℓ) {A : Type ℓ'}
(0a 1a : A)
(_+_ _·_ : A → A → A)
(-_ : A → A)
(_⋆_ : ⟨ R ⟩ → A → A)
→ isProp (IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_)
isPropIsAlgebra R _ _ _ _ _ _ = let open IsLeftModule in
isOfHLevelRetractFromIso 1 IsAlgebraIsoΣ
(isPropΣ
(isPropIsLeftModule _ _ _ _ _)
(λ mo → isProp×3 (isPropIsMonoid _ _)
(isPropΠ3 λ _ _ _ → isProp× (mo .is-set _ _) (mo .is-set _ _))
(isPropΠ3 λ _ _ _ → mo .is-set _ _)
(isPropΠ3 λ _ _ _ → mo .is-set _ _) ))
isPropIsAlgebraHom : (R : Ring ℓ) {A : Type ℓ'} {B : Type ℓ''}
(AS : AlgebraStr R A) (f : A → B) (BS : AlgebraStr R B)
→ isProp (IsAlgebraHom AS f BS)
isPropIsAlgebraHom R AS f BS = isOfHLevelRetractFromIso 1 IsAlgebraHomIsoΣ
(isProp×5 (isSetAlgebra (_ , BS) _ _)
(isSetAlgebra (_ , BS) _ _)
(isPropΠ2 λ _ _ → isSetAlgebra (_ , BS) _ _)
(isPropΠ2 λ _ _ → isSetAlgebra (_ , BS) _ _)
(isPropΠ λ _ → isSetAlgebra (_ , BS) _ _)
(isPropΠ2 λ _ _ → isSetAlgebra (_ , BS) _ _))
isSetAlgebraHom : {R : Ring ℓ} (M : Algebra R ℓ') (N : Algebra R ℓ'')
→ isSet (AlgebraHom M N)
isSetAlgebraHom _ N = isSetΣ (isSetΠ (λ _ → isSetAlgebra N))
λ _ → isProp→isSet (isPropIsAlgebraHom _ _ _ _)
isSetAlgebraEquiv : {R : Ring ℓ} (M N : Algebra R ℓ')
→ isSet (AlgebraEquiv M N)
isSetAlgebraEquiv M N = isSetΣ (isOfHLevel≃ 2 (isSetAlgebra M) (isSetAlgebra N))
λ _ → isProp→isSet (isPropIsAlgebraHom _ _ _ _)
AlgebraHom≡ : {R : Ring ℓ} {A B : Algebra R ℓ'} {φ ψ : AlgebraHom A B} → fst φ ≡ fst ψ → φ ≡ ψ
AlgebraHom≡ = Σ≡Prop λ f → isPropIsAlgebraHom _ _ f _
𝒮ᴰ-Algebra : (R : Ring ℓ) → DUARel (𝒮-Univ ℓ') (AlgebraStr R) (ℓ-max ℓ ℓ')
𝒮ᴰ-Algebra R =
𝒮ᴰ-Record (𝒮-Univ _) (IsAlgebraEquiv {R = R})
(fields:
data[ 0a ∣ nul ∣ pres0 ]
data[ 1a ∣ nul ∣ pres1 ]
data[ _+_ ∣ bin ∣ pres+ ]
data[ _·_ ∣ bin ∣ pres· ]
data[ -_ ∣ autoDUARel _ _ ∣ pres- ]
data[ _⋆_ ∣ autoDUARel _ _ ∣ pres⋆ ]
prop[ isAlgebra ∣ (λ _ _ → isPropIsAlgebra _ _ _ _ _ _ _) ])
where
open AlgebraStr
-- faster with some sharing
nul = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
AlgebraPath : {R : Ring ℓ} (A B : Algebra R ℓ') → (AlgebraEquiv A B) ≃ (A ≡ B)
AlgebraPath {R = R} = ∫ (𝒮ᴰ-Algebra R) .UARel.ua
uaAlgebra : {R : Ring ℓ} {A B : Algebra R ℓ'} → AlgebraEquiv A B → A ≡ B
uaAlgebra {A = A} {B = B} = equivFun (AlgebraPath A B)
isGroupoidAlgebra : {R : Ring ℓ} → isGroupoid (Algebra R ℓ')
isGroupoidAlgebra _ _ = isOfHLevelRespectEquiv 2 (AlgebraPath _ _) (isSetAlgebraEquiv _ _)
-- Smart constructor for ring homomorphisms
-- that infers the other equations from pres1, pres+, and pres·
module _ {R : Ring ℓ} {A : Algebra R ℓ'} {B : Algebra R ℓ''} {f : ⟨ A ⟩ → ⟨ B ⟩} where
private
module A = AlgebraStr (A .snd)
module B = AlgebraStr (B .snd)
module _
(p1 : f A.1a ≡ B.1a)
(p+ : (x y : ⟨ A ⟩) → f (x A.+ y) ≡ f x B.+ f y)
(p· : (x y : ⟨ A ⟩) → f (x A.· y) ≡ f x B.· f y)
(p⋆ : (r : ⟨ R ⟩) (x : ⟨ A ⟩) → f (r A.⋆ x) ≡ r B.⋆ f x)
where
open IsAlgebraHom
private
isGHom : IsGroupHom (Algebra→Group A .snd) f (Algebra→Group B .snd)
isGHom = makeIsGroupHom p+
makeIsAlgebraHom : IsAlgebraHom (A .snd) f (B .snd)
makeIsAlgebraHom .pres0 = isGHom .IsGroupHom.pres1
makeIsAlgebraHom .pres1 = p1
makeIsAlgebraHom .pres+ = p+
makeIsAlgebraHom .pres· = p·
makeIsAlgebraHom .pres- = isGHom .IsGroupHom.presinv
makeIsAlgebraHom .pres⋆ = p⋆
| {
"alphanum_fraction": 0.5184935465,
"avg_line_length": 38.4518518519,
"ext": "agda",
"hexsha": "8db230f92e551b05af4d5e5171b5fdbc0196fceb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4171,
"size": 10382
} |
open import Common.Prelude
open import Common.Reflect
module TermSplicing1 where
x = unquote Set
| {
"alphanum_fraction": 0.8181818182,
"avg_line_length": 14.1428571429,
"ext": "agda",
"hexsha": "8d7416e4ff0aa42ac0df3c59137f8307b54bd0b4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/TermSplicing1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/TermSplicing1.agda",
"max_line_length": 26,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/TermSplicing1.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 25,
"size": 99
} |
{-# OPTIONS --prop --without-K --rewriting #-}
-- The basic CBPV metalanguage.
open import Calf.CostMonoid
module Calf.Metalanguage where
open import Calf.Prelude
open import Relation.Binary.PropositionalEquality
open import Data.Product
postulate
mode : □
pos : mode
neg : mode
tp : mode → □
val : tp pos → □
F : tp pos → tp neg
U : tp neg → tp pos
-- This is equivalent to adding "thunk / force" operations. But less bureaucratic.
cmp : tp neg → □
cmp X = val (U X)
postulate
ret : ∀ {A} → val A → cmp (F A)
tbind : ∀ {A} → cmp (F A) → (val A → tp neg) → tp neg
tbind_ret : ∀ {A} {X : val A → tp neg} {v : val A} → tbind (ret v) X ≡ X v
{-# REWRITE tbind_ret #-}
dbind : ∀ {A} (X : val A → tp neg) (e : cmp (F A)) (f : (x : val A) → cmp (X x)) → cmp (tbind e X)
-- note that bind is not a special case of dbind: in general, one does not expect (tbind e (λ _ → m)) ≡ m.
-- This would hold, however, in the case of a language where there are no true effects. But we don't want
-- to assume that.
bind : ∀ {A} X → cmp (F A) → (val A → cmp X) → cmp X
bind/ret : ∀ {A X} {v : val A} {f : (x : val A) → cmp X} → bind X (ret v) f ≡ f v
dbind/ret : ∀ {A} {X : val A → tp neg} {v : val A} {f : (x : val A) → cmp (X x)} → dbind X (ret v) f ≡ f v
{-# REWRITE bind/ret dbind/ret #-}
tbind/assoc : ∀ {A B X} {e : cmp (F A)} {f : val A → cmp (F B)} →
tbind {B} (bind (F B) e f) X ≡ tbind {A} e (λ v → tbind {B} (f v) X)
bind/assoc : ∀ {A B C} {e : cmp (F A)} {f1 : val A → cmp (F B)} {f2 : val B → cmp C} →
bind C (bind (F B) e f1) f2 ≡ bind C e (λ v → bind C (f1 v) f2)
{-# REWRITE tbind/assoc bind/assoc #-}
-- dependent product
Π : (A : tp pos) (X : val A → tp neg) → tp neg
Π/decode : ∀ {A} {X : val A → tp neg} → val (U (Π A X)) ≡ ((x : val A) → cmp (X x))
{-# REWRITE Π/decode #-}
-- mixed polarity dependent sum
Σ+- : (A : tp pos) (X : val A → tp neg) → tp neg
Σ+-/decode : ∀ {A} {X : val A → tp neg} → val (U (Σ+- A X)) ≡ Σ (val A) λ x → cmp (X x)
{-# REWRITE Σ+-/decode #-}
-- positive dependent sum
Σ++ : (A : tp pos) (B : val A → tp pos) → tp pos
Σ++/decode : ∀ {A} {B : val A → tp pos} → val (Σ++ A B) ≡ Σ (val A) λ x → val (B x)
{-# REWRITE Σ++/decode #-}
-- agda sets
meta : Set → tp neg
meta/out : ∀ {A} → val (U (meta A)) ≡ A
{-# REWRITE meta/out #-}
bind/meta : ∀ A 𝕊 𝕋 e f (g : 𝕊 → 𝕋) → g (bind {A} (meta 𝕊) e f) ≡ bind {A} (meta 𝕋) e (λ a → g(f a))
tbind/meta : ∀ A 𝕊 e f (p : 𝕊 → □) → p (bind {A} (meta 𝕊) e f) ≡ cmp (tbind {A} e (λ a → meta (p (f a))))
bind/idem : ∀ A 𝕊 e (f : val A → val A → 𝕊) → bind {A} (meta 𝕊) e (λ a → (bind {A} (meta 𝕊) e (λ a' → f a a'))) ≡ bind {A} (meta 𝕊) e (λ a → f a a)
| {
"alphanum_fraction": 0.5206033848,
"avg_line_length": 36.7297297297,
"ext": "agda",
"hexsha": "72b8ffe8cac57a34159bb90c838edd215e2514f1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf/Metalanguage.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf/Metalanguage.agda",
"max_line_length": 149,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf/Metalanguage.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 1150,
"size": 2718
} |
open import Mockingbird.Forest using (Forest)
module Mockingbird.Forest.Combination.Vec.Base {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Fin using (Fin; zero; suc; #_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Nat.Properties using (_≤?_)
open import Data.Vec as Vec using (Vec; _∷_)
open import Data.Vec.Relation.Unary.Any using (here; there) public
open import Level using (_⊔_)
open import Relation.Nullary.Decidable.Core using (True)
open import Relation.Unary using (Pred; _∈_)
open Forest forest
import Mockingbird.Forest.Combination.Base forest as Base
import Mockingbird.Forest.Combination.Properties forest as Combinationₚ
open import Mockingbird.Forest.Combination.Base forest using ([_]; _⟨∙⟩_∣_; _⟨∙⟩_) public
open import Data.Vec.Membership.Setoid setoid using () renaming (_∈_ to _∈′_)
⟨_⟩ : ∀ {n} → Vec Bird n → Pred Bird (b ⊔ ℓ)
⟨ bs ⟩ = Base.⟨ _∈′ bs ⟩
[_]′ : ∀ {n} {bs : Vec Bird n} (i : Fin n) → Vec.lookup bs i ∈ ⟨ bs ⟩
[_]′ {suc n} {x ∷ bs} zero = [ here refl ]
[_]′ {suc n} {x ∷ bs} (suc i) = Combinationₚ.⟨ _ ⟩⊆⟨ _ ⟩ there [ i ]′
[#_] : ∀ m {n} {m<n : True (suc m ≤? n)} {bs : Vec Bird n}
→ Vec.lookup bs (#_ m {m<n = m<n}) ∈ ⟨ bs ⟩
[# m ] = [ # m ]′
| {
"alphanum_fraction": 0.6570247934,
"avg_line_length": 39.0322580645,
"ext": "agda",
"hexsha": "c39acf3958edabfd6027262f34a4160fb5455eb4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Forest/Combination/Vec/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Forest/Combination/Vec/Base.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Forest/Combination/Vec/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 439,
"size": 1210
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Injections
------------------------------------------------------------------------
module Function.Injection where
open import Function as Fun using () renaming (_∘_ to _⟨∘⟩_)
open import Level
open import Relation.Binary
open import Function.Equality as F
using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_)
import Relation.Binary.PropositionalEquality as P
-- Injective functions.
Injective : ∀ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} →
A ⟶ B → Set _
Injective {A = A} {B} f = ∀ {x y} → f ⟨$⟩ x ≈₂ f ⟨$⟩ y → x ≈₁ y
where
open Setoid A renaming (_≈_ to _≈₁_)
open Setoid B renaming (_≈_ to _≈₂_)
-- The set of all injections between two setoids.
record Injection {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
to : From ⟶ To
injective : Injective to
-- The set of all injections from one set to another.
infix 3 _↣_
_↣_ : ∀ {f t} → Set f → Set t → Set _
From ↣ To = Injection (P.setoid From) (P.setoid To)
-- Identity and composition.
infixr 9 _∘_
id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Injection S S
id = record { to = F.id; injective = Fun.id }
_∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂}
{F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} →
Injection M T → Injection F M → Injection F T
f ∘ g = record
{ to = to f ⟪∘⟫ to g
; injective = (λ {_} → injective g) ⟨∘⟩ injective f
} where open Injection
| {
"alphanum_fraction": 0.5344283007,
"avg_line_length": 28.7818181818,
"ext": "agda",
"hexsha": "dfc774397ad32f666efc78bb596a2fe7320fbd8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Function/Injection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Function/Injection.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Function/Injection.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 534,
"size": 1583
} |
open import Oscar.Prelude
open import Oscar.Class
module Oscar.Class.Quadricity where
module Quadricity
{𝔞} {𝔄 : Ø 𝔞}
{𝔟} {𝔅 : Ø 𝔟}
{ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ) (let infix 4 _↦_; _↦_ = _↦_)
(_∧_ : 𝔅 → 𝔅 → 𝔅) (let infixr 15 _∧_; _∧_ = _∧_)
(_∼_ : 𝔄 → 𝔄 → 𝔅) (let infix 18 _∼_; _∼_ = _∼_)
(_⊛_ : 𝔄 → 𝔄 → 𝔄)
= ℭLASS (_↦_ , _∼_ , _∧_ , _⊛_) (∀ s1 s2 t1 t2 → s1 ⊛ s2 ∼ t1 ⊛ t2 ↦ s1 ∼ t1 ∧ s2 ∼ t2)
module _
{𝔞} {𝔄 : Ø 𝔞}
{𝔟} {𝔅 : Ø 𝔟}
{ℓ} {_↦_ : 𝔅 → 𝔅 → Ø ℓ}
{_∧_ : 𝔅 → 𝔅 → 𝔅}
{_∼_ : 𝔄 → 𝔄 → 𝔅}
{_⊛_ : 𝔄 → 𝔄 → 𝔄}
where
quadricity = Quadricity.method _↦_ _∧_ _∼_ _⊛_
open import Oscar.Class.Properthing
open import Oscar.Class.HasEquivalence
module Properfact1
{𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} (∼ : 𝔄 → 𝔄 → 𝔅) {ℓ} ⦃ _ : Properthing ℓ 𝔅 ⦄ (⊛ : 𝔄 → 𝔄 → 𝔄)
= Quadricity _≈_ _∧_ ∼ ⊛
| {
"alphanum_fraction": 0.504358655,
"avg_line_length": 25.09375,
"ext": "agda",
"hexsha": "1356adc24632fa66bdc30fd91e6f1c13f5fa65be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Quadricity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Quadricity.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Quadricity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 499,
"size": 803
} |
module Data.Num.Redundant where
-- Base: 2
-- Digit: { 0, 1, 2 }
--
-- Numeral System which maxports efficient addition, substraction
-- and arithmetic shift.
open import Data.List using (List ; []; _∷_) public
open import Data.Nat renaming (_+_ to _+ℕ_; _<_ to _<ℕ_)
open import Data.Num.Bij
open import Data.Empty
open import Relation.Nullary
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_)
import Level
open PropEq.≡-Reasoning
--------------------------------------------------------------------------------
-- Digits
--------------------------------------------------------------------------------
data Digit : Set where
zero : Digit
one : Digit
two : Digit
-- plus
_⊕_ : Digit → Digit → Digit
zero ⊕ y = y
x ⊕ zero = x
one ⊕ one = two
one ⊕ two = one
two ⊕ one = one
two ⊕ two = two
-- minus
_⊝_ : Digit → Digit → Digit
zero ⊝ y = zero
x ⊝ zero = x
one ⊝ one = zero
one ⊝ two = one
two ⊝ one = one
two ⊝ two = zero
-- carry
_⊙_ : Digit → Digit → Digit
one ⊙ two = one
two ⊙ one = one
two ⊙ two = one
_ ⊙ _ = zero
-- borrow
_⊘_ : Digit → Digit → Digit
zero ⊘ one = one
zero ⊘ two = one
one ⊘ two = one
_ ⊘ _ = zero
--------------------------------------------------------------------------------
-- Sequence of Digits
--------------------------------------------------------------------------------
Redundant : Set
Redundant = List Digit
-- "one-sided"
incr : Digit → Redundant → Redundant
incr x [] = x ∷ []
incr x (y ∷ ys) = x ⊕ y ∷ incr (x ⊙ y) ys
decr : Digit → Redundant → Redundant
decr x [] = []
decr x (y ∷ ys) = x ⊝ y ∷ decr (x ⊘ y) ys
-- "two-sided"
_+_ : Redundant → Redundant → Redundant
[] + ys = ys
xs + [] = xs
(x ∷ xs) + (y ∷ ys) = x ⊕ y ∷ incr (x ⊙ y) (xs + ys)
_─_ : Redundant → Redundant → Redundant
[] ─ ys = []
xs ─ [] = xs
(x ∷ xs) ─ (y ∷ ys) = x ⊝ y ∷ decr (x ⊘ y) (xs ─ ys)
-- arithmetic shift
>> : Redundant → Redundant
>> xs = zero ∷ xs
<< : Redundant → Redundant
<< [] = []
<< (x ∷ xs) = xs
_>>>_ : ℕ → Redundant → Redundant
zero >>> xs = xs
suc n >>> xs = n >>> (>> xs)
_<<<_ : ℕ → Redundant → Redundant
zero <<< xs = xs
suc n <<< [] = []
suc n <<< (x ∷ xs) = n <<< xs
--------------------------------------------------------------------------------
-- instances of Conversion, so that we can convert Redundant to B
--------------------------------------------------------------------------------
instance convRedundant : Conversion Redundant
convRedundant = conversion [_]' !_!' [!!]-id'
where [_]' : Redundant → Bij
[ [] ]' = []
[ zero ∷ xs ]' = *2 [ xs ]'
[ one ∷ xs ]' = one ∷ [ xs ]'
[ two ∷ xs ]' = two ∷ [ xs ]'
!_!' : Bij → Redundant
! [] !' = []
! one ∷ xs !' = one ∷ ! xs !'
! two ∷ xs !' = two ∷ ! xs !'
[!!]-id' : ∀ xs → [ ! xs !' ]' ≡ xs
[!!]-id' [] = PropEq.refl
[!!]-id' (one ∷ xs) = PropEq.cong (λ x → one ∷ x) ([!!]-id' xs)
[!!]-id' (two ∷ xs) = PropEq.cong (λ x → two ∷ x) ([!!]-id' xs)
--------------------------------------------------------------------------------
-- Equivalence relation
--------------------------------------------------------------------------------
infix 4 _≈_ _≉_
data _≈_ (a b : Redundant) : Set where
eq : ([a]≡[b] : [ a ] ≡ [ b ]) → a ≈ b
-- the inverse of `eq`
to≡ : ∀ {a b} → a ≈ b → [ a ] ≡ [ b ]
to≡ (eq x) = x
_≉_ : (a b : Redundant) → Set
a ≉ b = a ≈ b → ⊥
-- decidable
{-
_≈?_ : Decidable {A = Redundant} _≈_
a ≈? b with [ a ] ≟ [ b ]
a ≈? b | yes p = yes (eq p)
a ≈? b | no ¬p = no (contraposition to≡ ¬p)
-}
--------------------------------------------------------------------------------
-- Ordering
--------------------------------------------------------------------------------
infix 4 _≲_ _<_
data _≲_ : Rel Redundant Level.zero where
le : ∀ {a b} ([a]≤[b] : [ a ] ≤B [ b ]) → a ≲ b
-- the inverse of `le`
to≤ : ∀ {a b} → a ≲ b → [ a ] ≤B [ b ]
to≤ (le [a]≤B[b]) = [a]≤B[b]
_<_ : Rel Redundant Level.zero
a < b = incr one a ≲ b
{-
-- decidable
_≲?_ : Decidable _≲_
a ≲? b with [ a ] ≤? [ b ]
a ≲? b | yes p = yes (le p)
a ≲? b | no ¬p = no (contraposition to≤ ¬p)
-}
| {
"alphanum_fraction": 0.4139908257,
"avg_line_length": 24.9142857143,
"ext": "agda",
"hexsha": "17bcec9daac48b7ea35b54144e9dadaa9899397d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/Data/Num/Redundant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/Data/Num/Redundant.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/Data/Num/Redundant.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1465,
"size": 4360
} |
module Data.Vec.Membership.Propositional.Distinct where
open import Data.Vec as Vec using (Vec; []; _∷_; _++_)
open import Data.Vec.Membership.Propositional
open import Data.Vec.Any hiding (map; index; head; tail)
open import Data.List as List using (List)
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_ )
open import Relation.Binary.HeterogeneousEquality as H using (_≅_; _≇_)
import Data.List.Membership.Propositional.Distinct as ListDistinct
open import Data.Product as Prod hiding (map)
open import Data.Sum hiding (map)
open import Data.Empty using (⊥-elim)
open import Relation.Nullary
open import Data.Fin as Fin
open import Data.Fin.Properties using (suc-injective)
open import Data.Nat as ℕ
open import Function using (_∘_)
open import Function.Equivalence using (_⇔_; equivalence)
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Injection using (_↣_; Injection)
data Distinct {a}{A : Set a} : ∀ {n} → Vec A n → Set a where
distinct-[] : Distinct []
_distinct-∷_by_ : ∀ {n} x {xs : Vec A n} → Distinct xs → x ∉ xs → Distinct (x ∷ xs)
head : ∀ {a}{A : Set a} {n} {x}{xs : Vec A n} → Distinct (x ∷ xs) → A
head (x distinct-∷ _ by _) = x
tail : ∀ {a}{A : Set a} {n} {x}{xs : Vec A n} → Distinct (x ∷ xs) → Distinct xs
tail (_ distinct-∷ dis by _) = dis
head∉tail : ∀ {a}{A : Set a} {n} {x}{xs : Vec A n} → Distinct (x ∷ xs) → x ∉ xs
head∉tail (_ distinct-∷ _ by x∉xs) = x∉xs
[_] : ∀{a}{A : Set a}(x : A) → Distinct Vec.[ x ]
[ x ] = x distinct-∷ distinct-[] by (λ ())
{-
_distinct-∷ʳ_by_ : ∀ {a}{A : Set a} {n} {xs : Vec A n} → Distinct xs → (x : A) → x ∉ xs → Distinct (xs Vec.∷ʳ x)
distinct-[] distinct-∷ʳ x by x∉xs = x distinct-∷ distinct-[] by x∉xs
(y distinct-∷ dxs by y∉xs) distinct-∷ʳ x by x∉yxs = y distinct-∷ dxs distinct-∷ʳ x by (x∉yxs ∘ there) by lemma y∉xs x∉yxs
where
lemma : ∀ {a}{A : Set a} {n} {xs : Vec A n} {x y} → y ∉ xs → x ∉ y Vec.∷ xs → y ∉ xs Vec.∷ʳ x
lemma {xs = []} y∉xs x∉y∷xs (here P.refl) = x∉y∷xs (here P.refl)
lemma {xs = []} y∉xs x∉y∷xs (there ())
lemma {xs = _ ∷ xs} y∉xs x∉y∷xs (here P.refl) = y∉xs (here P.refl)
lemma {xs = x₁ ∷ xs}{x}{y} y∉xs x∉y∷xs (there y∈xs∷ʳx) = {!!}
-}
initLast : ∀ {a n} {A : Set a}{xs : Vec A (suc n)} → Distinct xs →
let (ys , y , xs≡ysy) = Vec.initLast xs in Distinct ys × y ∉ ys
initLast {n = zero} {xs = x ∷ []} (.x distinct-∷ distinct-[] by x∉[]) = distinct-[] , x∉[]
initLast {n = suc n} {xs = x ∷ xs} (.x distinct-∷ dxs by x∉xs) with Vec.initLast xs | initLast dxs
initLast {_} {suc n} {_} {x ∷ .(ys Vec.∷ʳ y)} (.x distinct-∷ dxs by x∉xs) | ys , y , P.refl | dys , y∉ys =
x distinct-∷ dys by (x∉xs ∘ ∈-∷ʳ) , λ { (here P.refl) → x∉xs (∷ʳ-∈ y ys)
; ( there p) → y∉ys p }
where
∈-∷ʳ : ∀ {a n} {A : Set a}{xs : Vec A n}{x y} → x ∈ xs → x ∈ xs Vec.∷ʳ y
∈-∷ʳ {xs = []} ()
∈-∷ʳ {xs = x ∷ xs} (here eq) = here eq
∈-∷ʳ {xs = x ∷ xs} (there x∈xs) = there (∈-∷ʳ x∈xs)
∷ʳ-∈ : ∀ {a n} {A : Set a} x (xs : Vec A n) → x ∈ xs Vec.∷ʳ x
∷ʳ-∈ x [] = here P.refl
∷ʳ-∈ x (y ∷ xs) = there (∷ʳ-∈ x xs)
private
initLast₁≡init : ∀ {a n} {A : Set a}(xs : Vec A (suc n)) → proj₁ (Vec.initLast xs) ≡ Vec.init xs
initLast₁≡init xs with Vec.initLast xs
initLast₁≡init .(ys Vec.∷ʳ y) | ys , y , P.refl = P.refl
initLast₂≡last : ∀ {a n} {A : Set a}(xs : Vec A (suc n)) → proj₁ (proj₂ (Vec.initLast xs)) ≡ Vec.last xs
initLast₂≡last xs with Vec.initLast xs
initLast₂≡last .(ys Vec.∷ʳ y) | ys , y , P.refl = P.refl
init : ∀ {a n} {A : Set a}{xs : Vec A (suc n)} → Distinct xs → Distinct (Vec.init xs)
init {xs = xs} dxs with initLast dxs
... | dys , y∉ys rewrite initLast₁≡init xs = dys
last : ∀ {a n} {A : Set a}{xs : Vec A (suc n)} → Distinct xs → Vec.last xs ∉ Vec.init xs
last {xs = xs} dxs with initLast dxs
... | dys , y∉ys rewrite initLast₁≡init xs | initLast₂≡last xs = y∉ys
map : ∀ {a b}{A : Set a}{B : Set b} → (f : A ↣ B) → ∀ {n}{xs : Vec A n} → Distinct xs → Distinct (Vec.map (Injection.to f ⟨$⟩_) xs)
map f {0}{[]} distinct-[] = distinct-[]
map {A = A} f {ℕ.suc _} {x ∷ xs} (.x distinct-∷ dis by x∉xs) = fx distinct-∷ map f dis by fx∉mapfxs
where
fx = Injection.to f ⟨$⟩ x
-- missing
∈-map⁻ : ∀{a b}{A : Set a}{B : Set b}(f : A → B){m}{xs : Vec A m}{y} →
y ∈ Vec.map f xs → ∃ λ x → x ∈ xs × y ≡ f x
∈-map⁻ f {xs = []} ()
∈-map⁻ f {xs = x ∷ xs} (here P.refl) = x , here P.refl , P.refl
∈-map⁻ f {xs = x ∷ xs} (there y∈mapfxs) with ∈-map⁻ _ y∈mapfxs
... | v , v∈xs , eq = v , there v∈xs , eq
fx∉mapfxs : fx ∉ Vec.map (Injection.to f ⟨$⟩_) xs
fx∉mapfxs fx∈mapfxs with ∈-map⁻ _ fx∈mapfxs
... | v , v∈xs , fx≡fv with Injection.injective f fx≡fv
fx∉mapfxs fx∈mapfxs | v , v∈xs , fx≡fv | P.refl = x∉xs v∈xs
private
injection : ∀ {a b}{A : Set a}{B : Set b} {f : A → B} → (∀ {x y} → f x ≡ f y → x ≡ y) → A ↣ B
Injection.to (injection {f = f} inj) = P.→-to-⟶ f
Injection.injective (injection inj) = inj
tabulate : ∀ {a}{A : Set a}{n} → (f : Fin n ↣ A) → Distinct (Vec.tabulate (Injection.to f ⟨$⟩_))
tabulate {n = zero} f = distinct-[]
tabulate {n = suc n} f = (Injection.to f ⟨$⟩ zero) distinct-∷ tabulate (f ⟨∘⟩ injection suc-injective) by lemma
where
open import Function.Injection using () renaming (_∘_ to _⟨∘⟩_)
open import Data.Vec.Membership.Propositional.Properties
∈-tabulateˡ : ∀ {a}{A : Set a}{n}{x}(f : Fin n → A) → x ∈ Vec.tabulate f →
∃ λ i → x ≡ f i
∈-tabulateˡ {n = zero} f ()
∈-tabulateˡ {n = suc n} f (here P.refl) = _ , P.refl
∈-tabulateˡ {n = suc n} f (there x∈tabf) with ∈-tabulateˡ _ x∈tabf
... | i , eq = suc i , eq
lemma : (Injection.to f ⟨$⟩ zero) ∉ Vec.tabulate ((Injection.to f ⟨$⟩_) ∘ Fin.suc)
lemma p with ∈-tabulateˡ _ p
lemma p | i , fi≡f0 with Injection.injective f fi≡f0
lemma p | i , fi≡f0 | ()
allFin : ∀ n → Distinct (Vec.allFin n)
allFin n = tabulate ⟨id⟩
where
open import Function.Injection using () renaming (id to ⟨id⟩)
private
∈-zipˡ : ∀ {a b n}{A : Set a}{B : Set b}{xs : Vec A n}{ys : Vec B n} {x y} →
(x , y) ∈ Vec.zip xs ys → x ∈ xs
∈-zipˡ {xs = []} {[]} ()
∈-zipˡ {xs = x ∷ xs} {y ∷ ys} (here P.refl) = here P.refl
∈-zipˡ {xs = x ∷ xs} {y ∷ ys} (there p) = there (∈-zipˡ p)
∈-zipʳ : ∀ {a b n}{A : Set a}{B : Set b}{xs : Vec A n}{ys : Vec B n} {x y} →
(x , y) ∈ Vec.zip xs ys → y ∈ ys
∈-zipʳ {xs = []} {[]} ()
∈-zipʳ {xs = x ∷ xs} {y ∷ ys} (here P.refl) = here P.refl
∈-zipʳ {xs = x ∷ xs} {y ∷ ys} (there p) = there (∈-zipʳ p)
zipˡ : ∀ {a b n}{A : Set a}{B : Set b}{xs : Vec A n} →
Distinct xs → (ys : Vec B n) → Distinct (Vec.zip xs ys)
zipˡ distinct-[] [] = distinct-[]
zipˡ (x distinct-∷ dxs by x∉xs) (y ∷ ys) = (x , y) distinct-∷ zipˡ dxs ys
by λ p → x∉xs (∈-zipˡ p)
zipʳ : ∀ {a b n}{A : Set a}{B : Set b}(xs : Vec A n){ys : Vec B n} →
Distinct ys → Distinct (Vec.zip xs ys)
zipʳ [] distinct-[] = distinct-[]
zipʳ (x ∷ xs) (y distinct-∷ dys by y∉ys) = (x , y) distinct-∷ zipʳ xs dys
by λ p → y∉ys (∈-zipʳ p)
toList : ∀ {a n}{A : Set a}{xs : Vec A n} → Distinct xs → ListDistinct.Distinct (Vec.toList xs)
toList distinct-[] = ListDistinct.distinct-[]
toList (x distinct-∷ dxs by x∉xs) = x ListDistinct.distinct-∷ toList dxs
by λ x∈xs → x∉xs (lemma x∈xs)
where
import Data.List.Membership.Propositional as ListMem
import Data.List.Any as ListAny
lemma : ∀ {a n}{A : Set a}{x}{xs : Vec A n} → x ListMem.∈ Vec.toList xs → x ∈ xs
lemma {xs = []} ()
lemma {xs = x ∷ xs} (ListAny.here P.refl) = here P.refl
lemma {xs = x ∷ xs} (ListAny.there p) = there (lemma p)
fromList : ∀ {a}{A : Set a}{xs : List A} → ListDistinct.Distinct xs → Distinct (Vec.fromList xs)
fromList ListDistinct.distinct-[] = distinct-[]
fromList (x ListDistinct.distinct-∷ dxs by x∉xs) =
x distinct-∷ fromList dxs by λ x∈xs → x∉xs (lemma x∈xs)
where
import Data.List.Membership.Propositional as ListMem
import Data.List.Any as ListAny
lemma : ∀ {a}{A : Set a}{x}{xs : List A} → x ∈ Vec.fromList xs →
x ListMem.∈ xs
lemma {xs = List.[]} ()
lemma {xs = x List.∷ xs} (here P.refl) = ListAny.here P.refl
lemma {xs = x List.∷ xs} (there p) = ListAny.there (lemma p)
| {
"alphanum_fraction": 0.5546568336,
"avg_line_length": 46.1923076923,
"ext": "agda",
"hexsha": "46f86b7a99297dfb75c19abb6e80ba7c9568374f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-distinct-disjoint",
"max_forks_repo_path": "src/Data/Vec/Membership/Propositional/Distinct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-distinct-disjoint",
"max_issues_repo_path": "src/Data/Vec/Membership/Propositional/Distinct.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-distinct-disjoint",
"max_stars_repo_path": "src/Data/Vec/Membership/Propositional/Distinct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3489,
"size": 8407
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.DiffInt.Base where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetQuotients.Base
open import Cubical.Data.Prod
open import Cubical.Data.Nat
rel : (ℕ ×Σ ℕ) → (ℕ ×Σ ℕ) → Type₀
rel (a₀ , b₀) (a₁ , b₁) = x ≡ y
where
x = a₀ + b₁
y = a₁ + b₀
ℤ = (ℕ ×Σ ℕ) / rel
| {
"alphanum_fraction": 0.6405797101,
"avg_line_length": 18.1578947368,
"ext": "agda",
"hexsha": "f597c5ad72477a987d62a934357c0f148605ba6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/DiffInt/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/DiffInt/Base.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/DiffInt/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 136,
"size": 345
} |
module SystemF.Substitutions where
open import Prelude hiding (subst)
open import SystemF.Syntax
open import Data.Fin.Substitution
open import Data.Star hiding (map)
open import Data.Vec hiding ([_])
open import SystemF.Substitutions.Types public
module TermTypeSubst where
module TermTypeApp {T} (l : Lift T Type) where
open Lift l hiding (var)
open TypeSubst.TypeApp l renaming (_/_ to _tp/_)
infixl 8 _/_
-- Apply a type substitution to a term
_/_ : ∀ {ν μ n} → Term ν n → Sub T ν μ → Term μ n
var x / σ = var x
Λ t / σ = Λ (t / σ ↑)
λ' a t / σ = λ' (a tp/ σ) (t / σ)
t [ a ] / σ = (t / σ) [ a tp/ σ ]
s · t / σ = (s / σ) · (t / σ)
open TypeSubst using (varLift; termLift; sub)
module Lifted {T} (lift : Lift T Type) {n} where
application : Application (λ ν → Term ν n) T
application = record { _/_ = TermTypeApp._/_ lift {n = n} }
open Application application public
open Lifted termLift public
-- apply a type variable substitution (renaming) to a term
_/Var_ : ∀ {ν μ n} → Term ν n → Sub Fin ν μ → Term μ n
_/Var_ = TermTypeApp._/_ varLift
-- weaken a term with an additional type variable
weaken : ∀ {ν n} → Term ν n → Term (suc ν) n
weaken t = t /Var VarSubst.wk
infix 8 _[/_]
-- shorthand for single-variable type substitutions in terms
_[/_] : ∀ {ν n} → Term (suc ν) n → Type ν → Term ν n
t [/ b ] = t / sub b
module CtxSubst where
_/_ : ∀ {ν μ n} → Ctx ν n → Sub Type ν μ → Ctx μ n
Γ / σ = Γ TypeSubst.⊙ σ
weaken : ∀ {ν n} → Ctx ν n → Ctx (suc ν) n
weaken Γ = Γ / TypeSubst.wk
-- Variable substitution (renaming) lifted to typing contexts
_/Var_ : ∀ {ν m k} → Sub Fin k m → Ctx ν m → Ctx ν k
σ /Var Γ = map (λ x → lookup x Γ) σ
module TermTermSubst where
-- Substitutions of terms in terms
TermSub : (ℕ → ℕ → Set) → ℕ → ℕ → ℕ → Set
TermSub T ν m n = Sub (T ν) m n
record TermLift (T : ℕ → ℕ → Set) : Set where
infix 10 _↑tm _↑tp
field
lift : ∀ {ν n} → T ν n → Term ν n
_↑tm : ∀ {ν m n} → TermSub T ν m n → TermSub T ν (suc m) (suc n)
_↑tp : ∀ {ν m n} → TermSub T ν m n → TermSub T (suc ν) m n
module TermTermApp {T} (l : TermLift T) where
open TermLift l
infixl 8 _/_
-- Apply a term substitution to a term
_/_ : ∀ {ν m n} → Term ν m → TermSub T ν m n → Term ν n
var x / σ = lift (lookup x σ)
Λ t / σ = Λ (t / (σ ↑tp))
λ' a t / σ = λ' a (t / σ ↑tm)
t [ a ] / σ = (t / σ) [ a ]
s · t / σ = (s / σ) · (t / σ)
Fin′ : ℕ → ℕ → Set
Fin′ _ m = Fin m
varLift : TermLift Fin′
varLift = record { lift = var; _↑tm = VarSubst._↑; _↑tp = id }
infixl 8 _/Var_
_/Var_ : ∀ {ν m n} → Term ν m → Sub Fin m n → Term ν n
_/Var_ = TermTermApp._/_ varLift
private
module ExpandSimple {n : ℕ} where
simple : Simple (Term n)
simple = record { var = var; weaken = λ t → t /Var VarSubst.wk }
open Simple simple public
open ExpandSimple using (_↑; simple)
open TermTypeSubst using () renaming (weaken to weakenTp)
termLift : TermLift Term
termLift = record
{ lift = id; _↑tm = _↑ ; _↑tp = λ ρ → map weakenTp ρ }
private
module ExpandSubst {ν : ℕ} where
app : Application (Term ν) (Term ν)
app = record { _/_ = TermTermApp._/_ termLift {ν = ν} }
subst : Subst (Term ν)
subst = record
{ simple = simple
; application = app
}
open Subst subst public
open ExpandSubst public hiding (var; simple)
infix 8 _[/_]
-- Shorthand for single-variable term substitutions in terms
_[/_] : ∀ {ν n} → Term ν (suc n) → Term ν n → Term ν n
s [/ t ] = s / sub t
open TermTermSubst public using ()
renaming (_/_ to _tm/tm_; _[/_] to _tm[/tm_]; weaken to tmtm-weaken)
open TermTypeSubst public using ()
renaming (_/_ to _tm/tp_; _[/_] to _tm[/tp_]; weaken to tm-weaken)
open CtxSubst public using ()
renaming (_/_ to _ctx/_; weaken to ctx-weaken; _/Var_ to _ctx/Var_)
| {
"alphanum_fraction": 0.5794833582,
"avg_line_length": 28.3521126761,
"ext": "agda",
"hexsha": "a141406e92c7cb9c2800d4bfb9fdb67f21dcefe8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Substitutions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Substitutions.agda",
"max_line_length": 70,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Substitutions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 1430,
"size": 4026
} |
{-
Theory about isomorphisms
- Definitions of [section] and [retract]
- Definition of isomorphisms ([Iso])
- Any isomorphism is an equivalence ([isoToEquiv])
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Isomorphism where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
private
variable
ℓ : Level
-- Section and retract
module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where
section : (f : A → B) → (g : B → A) → Type ℓ'
section f g = ∀ b → f (g b) ≡ b
-- NB: `g` is the retraction!
retract : (f : A → B) → (g : B → A) → Type ℓ
retract f g = ∀ a → g (f a) ≡ a
record Iso {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
constructor iso
field
fun : A → B
inv : B → A
rightInv : section fun inv
leftInv : retract fun inv
-- Any iso is an equivalence
module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (i : Iso A B) where
open Iso i renaming ( fun to f
; inv to g
; rightInv to s
; leftInv to t)
private
module _ (y : B) (x0 x1 : A) (p0 : f x0 ≡ y) (p1 : f x1 ≡ y) where
fill0 : I → I → A
fill0 i = hfill (λ k → λ { (i = i1) → t x0 k
; (i = i0) → g y })
(inS (g (p0 (~ i))))
fill1 : I → I → A
fill1 i = hfill (λ k → λ { (i = i1) → t x1 k
; (i = i0) → g y })
(inS (g (p1 (~ i))))
fill2 : I → I → A
fill2 i = hfill (λ k → λ { (i = i1) → fill1 k i1
; (i = i0) → fill0 k i1 })
(inS (g y))
p : x0 ≡ x1
p i = fill2 i i1
sq : I → I → A
sq i j = hcomp (λ k → λ { (i = i1) → fill1 j (~ k)
; (i = i0) → fill0 j (~ k)
; (j = i1) → t (fill2 i i1) (~ k)
; (j = i0) → g y })
(fill2 i j)
sq1 : I → I → B
sq1 i j = hcomp (λ k → λ { (i = i1) → s (p1 (~ j)) k
; (i = i0) → s (p0 (~ j)) k
; (j = i1) → s (f (p i)) k
; (j = i0) → s y k })
(f (sq i j))
lemIso : (x0 , p0) ≡ (x1 , p1)
lemIso i .fst = p i
lemIso i .snd = λ j → sq1 i (~ j)
isoToIsEquiv : isEquiv f
isoToIsEquiv .equiv-proof y .fst .fst = g y
isoToIsEquiv .equiv-proof y .fst .snd = s y
isoToIsEquiv .equiv-proof y .snd z = lemIso y (g y) (fst z) (s y) (snd z)
isoToPath : ∀ {ℓ} {A B : Type ℓ} → (Iso A B) → A ≡ B
isoToPath {A = A} {B = B} f i =
Glue B (λ { (i = i0) → (A , (Iso.fun f , isoToIsEquiv f))
; (i = i1) → (B , (λ x → x) ,
record { equiv-proof = λ y → (y , refl)
, λ z i → z .snd (~ i)
, λ j → z .snd (~ i ∨ j)})})
| {
"alphanum_fraction": 0.3964536634,
"avg_line_length": 31.1354166667,
"ext": "agda",
"hexsha": "169b83ba873f49f1906787bd81f2a02e8aed4a2d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Foundations/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Foundations/Isomorphism.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Foundations/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1044,
"size": 2989
} |
module PiNF-syntax where
infixr 30 _⟷_
infixr 20 _◎_
------------------------------------------------------------------------------
-- First we define a universe of our value types
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
NEG : B → B
TIMES : B → B → B
RECIP : B → B
------------------------------------------------------------------------------
-- Now we define another universe for our equivalences. First the codes for
-- equivalences.
data _⟷_ : B → B → Set where
unite₊ : { b : B } → PLUS ZERO b ⟷ b
uniti₊ : { b : B } → b ⟷ PLUS ZERO b
swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁
assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
unite⋆ : { b : B } → TIMES ONE b ⟷ b
uniti⋆ : { b : B } → b ⟷ TIMES ONE b
swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
dist : { b₁ b₂ b₃ : B } →
TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
factor : { b₁ b₂ b₃ : B } →
PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
η₊ : { b : B } → ZERO ⟷ PLUS (NEG b) b
ε₊ : { b : B } → PLUS b (NEG b) ⟷ ZERO
refe⋆ : { b : B } → RECIP (RECIP b) ⟷ b
refi⋆ : { b : B } → b ⟷ RECIP (RECIP b)
rile⋆ : { b : B } → TIMES b (TIMES b (RECIP b)) ⟷ b
rili⋆ : { b : B } → b ⟷ TIMES b (TIMES b (RECIP b))
id⟷ : { b : B } → b ⟷ b
sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
_◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
--
adjoint : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
adjoint unite₊ = uniti₊
adjoint uniti₊ = unite₊
adjoint swap₊ = swap₊
adjoint assocl₊ = assocr₊
adjoint assocr₊ = assocl₊
adjoint unite⋆ = uniti⋆
adjoint uniti⋆ = unite⋆
adjoint swap⋆ = swap⋆
adjoint assocl⋆ = assocr⋆
adjoint assocr⋆ = assocl⋆
adjoint dist = factor
adjoint factor = dist
adjoint η₊ = swap₊ ◎ ε₊
adjoint ε₊ = η₊ ◎ swap₊
adjoint refe⋆ = refi⋆
adjoint refi⋆ = refe⋆
adjoint rile⋆ = rili⋆
adjoint rili⋆ = rile⋆
adjoint id⟷ = id⟷
adjoint (sym c) = c
adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁
adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂
adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂
--
dist' : {b₁ b₂ b₃ : B} → TIMES b₁ (PLUS b₂ b₃) ⟷ PLUS (TIMES b₁ b₂) (TIMES b₁ b₃)
dist' = swap⋆ ◎ dist ◎ (swap⋆ ⊕ swap⋆)
midtofront : {a b c : B} → TIMES a (TIMES b c) ⟷ TIMES b (TIMES a c)
midtofront = assocl⋆ ◎ (swap⋆ ⊗ id⟷) ◎ assocr⋆
neg : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (NEG b₁ ⟷ NEG b₂)
neg {b₁} {b₂} c = -- -b1
uniti₊ ◎ -- 0 + (-b1)
(η₊ {b₂} ⊕ id⟷) ◎ -- (-b2 + b2) + (-b1)
((id⟷ ⊕ sym c) ⊕ id⟷) ◎ -- (-b2 + b1) + (-b1)
assocr₊ ◎ -- (-b2) + (b1 + (-b1))
(id⟷ ⊕ ε₊) ◎ -- (-b2) + 0
swap₊ ◎ -- 0 + (-b2)
unite₊ -- -b2
--
mul0 : {b : B} → TIMES ZERO b ⟷ ZERO
mul0 = -- 0*b
uniti₊ ◎ -- 0 + 0*b
(η₊ ⊕ id⟷) ◎ -- (-(0*b) + 0*b) + 0*b
assocr₊ ◎ -- -(0*b) + (0*b + 0*b)
(id⟷ ⊕ factor) ◎ -- -(0*b) + (0+0)*b
(id⟷ ⊕ (unite₊ ⊗ id⟷)) ◎ -- -(0*b) + 0*b
swap₊ ◎ ε₊ -- 0
{-
mul0 : {b : B} → TIMES ZERO b ⟷ ZERO
mul0 {b} = ⟷-begin
TIMES ZERO b
⟷⟨ uniti₊ ⟩
0 + 0*b
⟷⟨ η₊ ⊕ id⟷ ⟩
(-(0*b) + 0*b) + 0*b
⟷⟨ assocr₊ ⟩
-(0*b) + (0*b + 0*b)
⟷⟨ id⟷ ⊕ factor ⟩
-(0*b) + (0+0)*b
(id⟷ ⊕ (unite₊ ⊗ id⟷)) ◎ -- -(0*b) + 0*b
swap₊ ◎ ε₊ -- 0
∎
-}
-- conType T cond = Σ[ x ∶ T ] cond x
inv0 : TIMES ZERO (RECIP ZERO) ⟷ ZERO
inv0 = mul0
--
recip : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (RECIP b₁ ⟷ RECIP b₂)
recip {b₁} {b₂} c = -- 1/a
rili⋆ {RECIP b₁} ◎ -- 1/a * (1/a * 1/1/a)
(id⟷ ⊗ (id⟷ ⊗ refe⋆)) ◎ -- 1/a * (1/a * a)
assocl⋆ ◎ -- (1/a * 1/a) * a
(id⟷ ⊗ reciplem c) ◎ -- (1/a * 1/a) * (a * ((a * 1/b) * (b * 1/b)))
assocl⋆ ◎ -- (((1/a * 1/a) * a) * ((a * 1/b) * (b * 1/b)))
((id⟷ ⊗ refi⋆ ) ⊗ id⟷) ◎ -- (((1/a *1/a) * 1/(1/a)) * ((a * 1/b) * (b * 1/b))
((assocr⋆ ◎ rile⋆ ) ⊗ (id⟷ ⊗ ((sym c) ⊗ id⟷))) ◎ -- 1/a * ((a * 1/b) * (a * 1/b))
(id⟷ ⊗ (assocr⋆ ◎ (id⟷ ⊗ midtofront))) ◎ -- 1/a * (a * (a * (1/b * 1/b)))
(assocl⋆ ◎ assocl⋆) ◎ -- ((1/a * a) * a) * (1/b * 1/b)
(((swap⋆ ⊗ id⟷) ◎ swap⋆) ⊗ id⟷) ◎ -- ((a * (a * 1/a)) * (1/b * 1/b))
(rile⋆ ⊗ id⟷ ) ◎ -- a * (1/b * 1/b)
((c ◎ refi⋆ ) ⊗ id⟷) ◎ swap⋆ ◎ -- (1/b * 1/b) * 1/(1/b)
assocr⋆ ◎ rile⋆ -- 1/b
where
reciplem : {b₁ b₂ : B} → (b₁ ⟷ b₂) → (b₁ ⟷ (TIMES b₁ (TIMES (TIMES b₁ (RECIP b₂)) (TIMES b₂ (RECIP b₂)))))
reciplem {b₁} {b₂} c = c ◎ -- b
rili⋆ ◎ -- b * (b * 1/b)
(rili⋆ ⊗ id⟷) ◎ -- (b * (b * 1/b)) * (b * 1/b)
(((sym c) ⊗ ((sym c) ⊗ id⟷)) ⊗ id⟷) ◎ -- ((a * (a * 1/b)) * (b * 1/b))
assocr⋆ -- a * ((a * 1/b) * (b * 1/b))
------------------------------------------------------------------------------
-- Examples
BOOL : B
BOOL = PLUS ONE ONE
notπ : BOOL ⟷ BOOL
notπ = swap₊
BOOL² : B
BOOL² = TIMES BOOL BOOL
BOOL³ : B
BOOL³ = TIMES BOOL BOOL²
ifc : { b : B } → (b ⟷ b) → (TIMES BOOL b ⟷ TIMES BOOL b)
ifc c = dist ◎ ((id⟷ ⊗ c) ⊕ id⟷) ◎ factor
cnot : BOOL² ⟷ BOOL²
cnot = ifc notπ
toffoli : BOOL³ ⟷ BOOL³
toffoli = ifc cnot
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3929589271,
"avg_line_length": 32.955801105,
"ext": "agda",
"hexsha": "e59f753778a299f74bd0fe1c63b7dbeed0660de0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/PiNF-syntax.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/PiNF-syntax.agda",
"max_line_length": 110,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/PiNF-syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2885,
"size": 5965
} |
module Human.Maybe where
data Maybe (A : Set) : Set where
just : A -> Maybe A
nothing : Maybe A
| {
"alphanum_fraction": 0.6346153846,
"avg_line_length": 17.3333333333,
"ext": "agda",
"hexsha": "3a4273d9a53539c95cf384b10e868b2c4e461747",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/Maybe.agda",
"max_line_length": 32,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 31,
"size": 104
} |
module Issue2575 where
import Issue2575.M
| {
"alphanum_fraction": 0.8372093023,
"avg_line_length": 10.75,
"ext": "agda",
"hexsha": "d4285031e9470bb19ef49482bc170a9c7e11d10d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2575.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2575.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2575.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 12,
"size": 43
} |
module Issue373 where
data ⊤ : Set where
tt : ⊤
{-# COMPILED_DATA ⊤ () () #-}
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# IMPORT Imports.Nat #-}
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
{-# COMPILED_DATA List [] [] (:) #-}
postulate
String : Set
{-# BUILTIN STRING String #-}
postulate
IO : Set → Set
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
infixl 1 _>>=_
postulate
_>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B
{-# COMPILED _>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# IMPORT Data.Text.IO #-}
postulate
putStrLn : String → IO ⊤
{-# COMPILED putStrLn Data.Text.IO.putStrLn #-}
f : ℕ → String
f zero = "bad"
f _ = "ok"
-- Works:
-- main = putStrLn (f (suc zero))
-- Compiles, but when the program is run we (used to) get the output
-- "bad":
main = putStrLn (f 1)
| {
"alphanum_fraction": 0.5302564103,
"avg_line_length": 15.9836065574,
"ext": "agda",
"hexsha": "2e50115f9c2fcefdbda5cf4334a33f06333d4557",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue373.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue373.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue373.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 329,
"size": 975
} |
module BuiltinMustBeConstructor where
data Nat : Set where
zero : Nat
one : Nat
suc : Nat -> Nat
suc x = x
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN SUC suc #-}
| {
"alphanum_fraction": 0.6369047619,
"avg_line_length": 12.9230769231,
"ext": "agda",
"hexsha": "6992df53f3837b1de51871d7c102524020037b50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/BuiltinMustBeConstructor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/BuiltinMustBeConstructor.agda",
"max_line_length": 37,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/BuiltinMustBeConstructor.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 53,
"size": 168
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Construction.Zero where
-- The Zero functor maps everything to the initial object of a
-- category (when it exists). Note quite const.
open import Level
open import Categories.Category
open import Categories.Functor using (Functor)
open import Categories.Object.Initial
private
variable
o ℓ e : Level
C D : Category o ℓ e
Zero : Initial D → Functor C D
Zero {D = D} init = record
{ F₀ = λ _ → ⊥
; F₁ = λ _ → id
; identity = Equiv.refl
; homomorphism = Equiv.sym identity²
; F-resp-≈ = λ _ → Equiv.refl
}
where
open Initial init
open Category D
| {
"alphanum_fraction": 0.6880877743,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "50970f679e04c68d876953008a825628505e796f",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Construction/Zero.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Construction/Zero.agda",
"max_line_length": 62,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Construction/Zero.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 184,
"size": 638
} |
{-
Theory about equivalences (definitions are in Core/Glue.agda)
- isEquiv is a proposition ([isPropIsEquiv])
- Any isomorphism is an equivalence ([isoToEquiv])
There are more statements about equivalences in Equiv/Properties.agda:
- if f is an equivalence then (cong f) is an equivalence
- if f is an equivalence then precomposition with f is an equivalence
- if f is an equivalence then postcomposition with f is an equivalence
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Equiv where
open import Cubical.Core.Glue
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Nat
private
variable
ℓ ℓ' : Level
A B C : Type ℓ
fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ')
fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y
equivIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e)
equivIsEquiv e = snd e
equivCtr : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y
equivCtr e y = e .snd .equiv-proof y .fst
equivCtrPath : ∀ {A : Type ℓ} {B : Type ℓ'} (e : A ≃ B) (y : B) →
(v : fiber (equivFun e) y) → Path _ (equivCtr e y) v
equivCtrPath e y = e .snd .equiv-proof y .snd
-- The identity equivalence
idIsEquiv : ∀ (A : Type ℓ) → isEquiv (idfun A)
equiv-proof (idIsEquiv A) y =
((y , refl) , λ z i → z .snd (~ i) , λ j → z .snd (~ i ∨ j))
idEquiv : ∀ (A : Type ℓ) → A ≃ A
idEquiv A = (idfun A , idIsEquiv A)
-- Proof using isPropIsContr. This is slow and the direct proof below is better
isPropIsEquiv' : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv' f u0 u1 i) y =
isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i
-- Direct proof that computes quite ok (can be optimized further if
-- necessary, see:
-- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562
isPropIsEquiv : (f : A → B) → isProp (isEquiv f)
equiv-proof (isPropIsEquiv f p q i) y =
let p2 = p .equiv-proof y .snd
q2 = q .equiv-proof y .snd
in p2 (q .equiv-proof y .fst) i
, λ w j → hcomp (λ k → λ { (i = i0) → p2 w j
; (i = i1) → q2 w (j ∨ ~ k)
; (j = i0) → p2 (q2 w (~ k)) i
; (j = i1) → w })
(p2 w (i ∨ j))
equivEq : (e f : A ≃ B) → (h : e .fst ≡ f .fst) → e ≡ f
equivEq e f h = λ i → (h i) , isProp→PathP isPropIsEquiv h (e .snd) (f .snd) i
isoToEquiv : Iso A B → A ≃ B
isoToEquiv i = _ , isoToIsEquiv i
module _ (w : A ≃ B) where
invEq : B → A
invEq y = fst (fst (snd w .equiv-proof y))
secEq : section invEq (w .fst)
secEq x = λ i → fst (snd (snd w .equiv-proof (fst w x)) (x , (λ j → fst w x)) i)
retEq : retract invEq (w .fst)
retEq y = λ i → snd (fst (snd w .equiv-proof y)) i
equivToIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Iso A B
equivToIso {A = A} {B = B} e = iso (e .fst) (invEq e ) (retEq e) (secEq e)
invEquiv : A ≃ B → B ≃ A
invEquiv f = isoToEquiv (iso (invEq f) (fst f) (secEq f) (retEq f))
invEquivIdEquiv : (A : Type ℓ) → invEquiv (idEquiv A) ≡ idEquiv A
invEquivIdEquiv _ = equivEq _ _ refl
compEquiv : A ≃ B → B ≃ C → A ≃ C
compEquiv f g = isoToEquiv
(iso (λ x → g .fst (f .fst x))
(λ x → invEq f (invEq g x))
(λ y → (cong (g .fst) (retEq f (invEq g y))) ∙ (retEq g y))
(λ y → (cong (invEq f) (secEq g (f .fst y))) ∙ (secEq f y)))
compEquivIdEquiv : {A B : Type ℓ} (e : A ≃ B) → compEquiv (idEquiv A) e ≡ e
compEquivIdEquiv e = equivEq _ _ refl
compIso : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} →
Iso A B → Iso B C → Iso A C
compIso i j = equivToIso (compEquiv (isoToEquiv i) (isoToEquiv j))
LiftEquiv : {A : Type ℓ} → A ≃ Lift {i = ℓ} {j = ℓ'} A
LiftEquiv = isoToEquiv (iso lift lower (λ _ → refl) (λ _ → refl))
-- module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where
-- invEquivInvol : (f : A ≃ B) → invEquiv (invEquiv f) ≡ f
-- invEquivInvol f i .fst = fst f
-- invEquivInvol f i .snd = propIsEquiv (fst f) (snd (invEquiv (invEquiv f))) (snd f) i
PropEquiv→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → (A ≃ B)
PropEquiv→Equiv Aprop Bprop f g = isoToEquiv (iso f g (λ b → Bprop (f (g b)) b) λ a → Aprop (g (f a)) a)
homotopyNatural : {f g : A → B} (H : ∀ a → f a ≡ g a) {x y : A} (p : x ≡ y) →
H x ∙ cong g p ≡ cong f p ∙ H y
homotopyNatural H p = homotopyNatural' H p ∙ □≡∙ _ _
where
homotopyNatural' : {f g : A → B} (H : ∀ a → f a ≡ g a) {x y : A} (p : x ≡ y) →
H x ∙ cong g p ≡ cong f p □ H y
homotopyNatural' {f = f} {g = g} H {x} {y} p i j =
hcomp (λ k → λ { (i = i0) → compPath-filler (H x) (cong g p) k j
; (i = i1) → compPath'-filler (cong f p) (H y) k j
; (j = i0) → cong f p (i ∧ (~ k))
; (j = i1) → cong g p (i ∨ k) })
(H (p i) j)
Hfa≡fHa : ∀ {A : Type ℓ} (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a)
Hfa≡fHa {A = A} f H a =
H (f a) ≡⟨ rUnit (H (f a)) ⟩
H (f a) ∙ refl ≡⟨ cong (_∙_ (H (f a))) (sym (rCancel (H a))) ⟩
H (f a) ∙ H a ∙ sym (H a) ≡⟨ assoc _ _ _ ⟩
(H (f a) ∙ H a) ∙ sym (H a) ≡⟨ cong (λ x → x ∙ (sym (H a))) (homotopyNatural H (H a)) ⟩
(cong f (H a) ∙ H a) ∙ sym (H a) ≡⟨ sym (assoc _ _ _) ⟩
cong f (H a) ∙ H a ∙ sym (H a) ≡⟨ cong (_∙_ (cong f (H a))) (rCancel _) ⟩
cong f (H a) ∙ refl ≡⟨ sym (rUnit _) ⟩
cong f (H a) ∎
equivPi
: ∀{F : A → Set ℓ} {G : A → Set ℓ'}
→ ((x : A) → F x ≃ G x) → (((x : A) → F x) ≃ ((x : A) → G x))
equivPi k .fst f x = k x .fst (f x)
equivPi k .snd .equiv-proof f
.fst .fst x = equivCtr (k x) (f x) .fst
equivPi k .snd .equiv-proof f
.fst .snd i x = equivCtr (k x) (f x) .snd i
equivPi k .snd .equiv-proof f
.snd (g , p) i .fst x = equivCtrPath (k x) (f x) (g x , λ j → p j x) i .fst
equivPi k .snd .equiv-proof f
.snd (g , p) i .snd j x = equivCtrPath (k x) (f x) (g x , λ k → p k x) i .snd j
| {
"alphanum_fraction": 0.5351246358,
"avg_line_length": 38.6125,
"ext": "agda",
"hexsha": "f4df9a5e9597eb9341b95cdc7df3254758473158",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2565,
"size": 6178
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Definition where
open import Data.List.Base using (map)
import Data.List.Properties as Listₚ
import Data.Nat.Properties as ℕₚ
import Data.Nat.Show as NatShow
open import Data.Product using (_×_; <_,_>; uncurry)
open import Data.String as String using (String; _<+>_; intersperse; braces)
open import Function using (_∘′_)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Binary using (DecidableEquality)
open import Relation.Binary.PropositionalEquality
import Reflection.Argument as Arg
import Reflection.Name as Name
import Reflection.Term as Term
------------------------------------------------------------------------
-- Re-exporting type publically
open import Agda.Builtin.Reflection public
using ( Definition
; function
; data-type
; axiom
)
renaming ( record-type to record′
; data-cons to constructor′
; prim-fun to primitive′ )
------------------------------------------------------------------------
-- Decidable equality
function-injective : ∀ {cs cs′} → function cs ≡ function cs′ → cs ≡ cs′
function-injective refl = refl
data-type-injective₁ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′
data-type-injective₁ refl = refl
data-type-injective₂ : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → cs ≡ cs′
data-type-injective₂ refl = refl
data-type-injective : ∀ {pars pars′ cs cs′} → data-type pars cs ≡ data-type pars′ cs′ → pars ≡ pars′ × cs ≡ cs′
data-type-injective = < data-type-injective₁ , data-type-injective₂ >
record′-injective₁ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′
record′-injective₁ refl = refl
record′-injective₂ : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → fs ≡ fs′
record′-injective₂ refl = refl
record′-injective : ∀ {c c′ fs fs′} → record′ c fs ≡ record′ c′ fs′ → c ≡ c′ × fs ≡ fs′
record′-injective = < record′-injective₁ , record′-injective₂ >
constructor′-injective : ∀ {c c′} → constructor′ c ≡ constructor′ c′ → c ≡ c′
constructor′-injective refl = refl
_≟_ : DecidableEquality Definition
function cs ≟ function cs′ =
Dec.map′ (cong function) function-injective (cs Term.≟-Clauses cs′)
data-type pars cs ≟ data-type pars′ cs′ =
Dec.map′ (uncurry (cong₂ data-type)) data-type-injective
(pars ℕₚ.≟ pars′ ×-dec Listₚ.≡-dec Name._≟_ cs cs′)
record′ c fs ≟ record′ c′ fs′ =
Dec.map′ (uncurry (cong₂ record′)) record′-injective
(c Name.≟ c′ ×-dec Listₚ.≡-dec (Arg.≡-dec Name._≟_) fs fs′)
constructor′ d ≟ constructor′ d′ =
Dec.map′ (cong constructor′) constructor′-injective (d Name.≟ d′)
axiom ≟ axiom = yes refl
primitive′ ≟ primitive′ = yes refl
-- antidiagonal
function cs ≟ data-type pars cs₁ = no (λ ())
function cs ≟ record′ c fs = no (λ ())
function cs ≟ constructor′ d = no (λ ())
function cs ≟ axiom = no (λ ())
function cs ≟ primitive′ = no (λ ())
data-type pars cs ≟ function cs₁ = no (λ ())
data-type pars cs ≟ record′ c fs = no (λ ())
data-type pars cs ≟ constructor′ d = no (λ ())
data-type pars cs ≟ axiom = no (λ ())
data-type pars cs ≟ primitive′ = no (λ ())
record′ c fs ≟ function cs = no (λ ())
record′ c fs ≟ data-type pars cs = no (λ ())
record′ c fs ≟ constructor′ d = no (λ ())
record′ c fs ≟ axiom = no (λ ())
record′ c fs ≟ primitive′ = no (λ ())
constructor′ d ≟ function cs = no (λ ())
constructor′ d ≟ data-type pars cs = no (λ ())
constructor′ d ≟ record′ c fs = no (λ ())
constructor′ d ≟ axiom = no (λ ())
constructor′ d ≟ primitive′ = no (λ ())
axiom ≟ function cs = no (λ ())
axiom ≟ data-type pars cs = no (λ ())
axiom ≟ record′ c fs = no (λ ())
axiom ≟ constructor′ d = no (λ ())
axiom ≟ primitive′ = no (λ ())
primitive′ ≟ function cs = no (λ ())
primitive′ ≟ data-type pars cs = no (λ ())
primitive′ ≟ record′ c fs = no (λ ())
primitive′ ≟ constructor′ d = no (λ ())
primitive′ ≟ axiom = no (λ ())
| {
"alphanum_fraction": 0.5943134535,
"avg_line_length": 38.2831858407,
"ext": "agda",
"hexsha": "591105af40ae94e331e3e8a703eb0ec97c3f6187",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Definition.agda",
"max_line_length": 111,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1246,
"size": 4326
} |
{-# OPTIONS --without-K --safe #-}
-- Quicksort
module Experiment.Induction where
-- agda-stdlib
open import Level
open import Data.List
open import Data.Product
open import Data.Nat as ℕ
open import Data.Nat.Induction as Ind
open import Relation.Binary as B
open import Relation.Unary as U
import Relation.Unary.Properties as Uₚ
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Function.Base
open import Induction.WellFounded
private
variable
a p r : Level
| {
"alphanum_fraction": 0.773359841,
"avg_line_length": 21.8695652174,
"ext": "agda",
"hexsha": "eaf4efbda5ce84ad0b4f06e912fa709185128386",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Induction.agda",
"max_line_length": 66,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 125,
"size": 503
} |
module Syntacticosmos (Gnd : Set)(U : Set)(El : U -> Set) where
open import Basics
open import Pr
open import Nom
import Kind
open Kind Gnd U El public
import Cxt
open Cxt Kind public
import Loc
open Loc Kind public
import Term
open Term Gnd U El public
import Shift
open Shift Gnd U El public
import Eta
open Eta Gnd U El public
import Inst
open Inst Gnd U El public
import Subst
open Subst Gnd U El public
| {
"alphanum_fraction": 0.7707317073,
"avg_line_length": 17.8260869565,
"ext": "agda",
"hexsha": "06eb29eddfe7b84a17a8a610df83b4aa81f2f066",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Syntacticosmos.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Syntacticosmos.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/Syntacticosmos/Syntacticosmos.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 124,
"size": 410
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.MonoidSolver.Examples where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.CommMonoid.Base
open import Cubical.Algebra.MonoidSolver.Reflection
private
variable
ℓ : Level
module ExamplesMonoid (M : Monoid ℓ) where
open MonoidStr (snd M)
_ : ε ≡ ε
_ = solveMonoid M
_ : ε · ε · ε ≡ ε
_ = solveMonoid M
_ : ∀ x → ε · x ≡ x
_ = solveMonoid M
_ : ∀ x y z → (x · y) · z ≡ x · (y · z)
_ = solveMonoid M
_ : ∀ x y z → z · (x · y) · ε · z ≡ z · x · (y · z)
_ = solveMonoid M
module ExamplesCommMonoid (M : CommMonoid ℓ) where
open CommMonoidStr (snd M)
_ : ε ≡ ε
_ = solveCommMonoid M
_ : ε · ε · ε ≡ ε
_ = solveCommMonoid M
_ : ∀ x → ε · x ≡ x
_ = solveCommMonoid M
_ : ∀ x y z → (x · z) · y ≡ x · (y · z)
_ = solveCommMonoid M
_ : ∀ x y → (x · y) · y · x · (x · y) ≡ x · x · x · (y · y · y)
_ = solveCommMonoid M
| {
"alphanum_fraction": 0.5763747454,
"avg_line_length": 19.64,
"ext": "agda",
"hexsha": "22f266cf5df1086cda99d274685ff6a54b130af9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/MonoidSolver/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/MonoidSolver/Examples.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/MonoidSolver/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 388,
"size": 982
} |
-- Andreas, 2019-02-17, issue #3417
--
-- We want to see highlighting for all the warnings,
-- even if the last thing is a hard error.
open import Agda.Builtin.Nat
reachable : Nat → Nat
reachable zer = 0
reachable (suc n) = suc (reachable n)
coverage : Nat → Nat
coverage zero = zero
Termination : Set
Termination = Termination
data Positivity : Set where
abs : (Positivity → Nat) → Positivity
Universe : Set
Universe = Set
-- Problem was: Termination and Positivity got no highlighting.
| {
"alphanum_fraction": 0.722334004,
"avg_line_length": 19.88,
"ext": "agda",
"hexsha": "97d1fb84f84010a8e5c116bce4784550f8ee1ae9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/interaction/Issue3417.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3417.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3417.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 497
} |
{-# OPTIONS --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.Uniqueness-Derivations
module MCaTT.Desuspension where
↓GC : ∀ (Γ : Pre-Ctx) → Γ ⊢C → Pre-Ctx
↓GT : ∀ (Γ : Pre-Ctx) (A : Pre-Ty) → Γ ⊢T A → Pre-Ty
↓Gt : ∀ (Γ : Pre-Ctx) (A : Pre-Ty) (x : ℕ) → Γ ⊢t (Var x) # A → ℕ
count-points : ∀ (Γ : Pre-Ctx) → ℕ
↓GC nil _ = nil
↓GC (Γ :: (x , ∗)) (cc Γ⊢ _ _) = ↓GC Γ Γ⊢
↓GC Γ+@(Γ :: (x , A@(_ ⇒[ _ ] _))) Γ+⊢@(cc Γ⊢ Γ⊢A _) = ↓GC Γ Γ⊢ :: (↓Gt Γ+ A x (var Γ+⊢ (inr (idp , idp))) , ↓GT Γ A Γ⊢A)
↓GT Γ ∗ Γ⊢∗ = ∗
↓GT Γ (_ ⇒[ ∗ ] _) _ = ∗
↓GT Γ (Var x ⇒[ A@(_ ⇒[ _ ] _) ] Var y) (ar Γ⊢A Γ⊢x Γ⊢y) = Var (↓Gt Γ A x Γ⊢x) ⇒[ ↓GT Γ A Γ⊢A ] Var (↓Gt Γ A y Γ⊢y)
count-points nil = 0
count-points (Γ :: (x , ∗)) = S (count-points Γ)
count-points (Γ :: (x , _ ⇒[ _ ] _)) = count-points Γ
-- goes to Prelude
_-_ : ℕ → ℕ → ℕ
n - O = n
O - S m = O
S n - S m = n - m
Sn-m : ∀ (n m : ℕ) → m ≤ n → (S n - m) == S (n - m)
Sn-m n O _ = idp
Sn-m O (S m) Sm≤0 = ⊥-elim (Sn≰0 _ Sm≤0)
Sn-m (S n) (S m) (S≤ m≤n) = Sn-m n m m≤n
-- end of Prelude partA x₁ x₂
↓Gt (Γ :: (y , B)) A x (var _ (inr (_ , _))) = x - (count-points Γ)
↓Gt (Γ :: (y , B)) A x (var (cc Γ⊢ _ _) (inl x∈Γ)) = ↓Gt Γ A x (var Γ⊢ x∈Γ)
count-points≤length : ∀ (Γ : Pre-Ctx) → count-points Γ ≤ length Γ
count-points≤length nil = 0≤ 0
count-points≤length (Γ :: (_ , ∗)) = S≤ (count-points≤length Γ)
count-points≤length (Γ :: (_ , _ ⇒[ _ ] _)) = n≤m→n≤Sm (count-points≤length Γ)
↓length : ∀ (Γ : Pre-Ctx) (Γ⊢ : Γ ⊢C) → (length Γ - count-points Γ) == length (↓GC Γ Γ⊢)
↓length nil _ = idp
↓length (Γ :: (_ , ∗)) (cc Γ⊢ _ _) = ↓length Γ Γ⊢
↓length (Γ :: (x , _ ⇒[ _ ] _)) (cc Γ⊢ _ _) = Sn-m (length Γ) (count-points Γ) (count-points≤length Γ) >> ap S (↓length Γ Γ⊢)
wk↓GT : ∀ (Γ : Pre-Ctx) (B : Pre-Ty) (y : ℕ) (A : Pre-Ty) (Γ⊢A : Γ ⊢T A) (Γ+⊢A : (Γ :: (y , B)) ⊢T A) → ↓GT Γ A Γ⊢A == ↓GT (Γ :: (y , B)) A Γ+⊢A
wk↓Gt : ∀ (Γ : Pre-Ctx) (B : Pre-Ty) (y : ℕ) (x : ℕ) (A : Pre-Ty) (Γ⊢x : Γ ⊢t (Var x) # A) (Γ+⊢x : (Γ :: (y , B)) ⊢t (Var x) # A) → ↓Gt Γ A x Γ⊢x == ↓Gt (Γ :: (y , B)) A x Γ+⊢x
wk↓GT Γ B y ∗ Γ⊢A Γ+⊢A = idp
wk↓GT Γ B y (_ ⇒[ ∗ ] _) _ _ = idp
wk↓GT Γ B y (Var x ⇒[ A@(_ ⇒[ _ ] _)] Var x') (ar Γ⊢A Γ⊢x Γ⊢x') (ar Γ+⊢A Γ+⊢x Γ+⊢x') = ⇒= (wk↓GT Γ B y A Γ⊢A Γ+⊢A) (Var= (wk↓Gt Γ B y x A Γ⊢x Γ+⊢x)) (Var= (wk↓Gt Γ B y x' A Γ⊢x' Γ+⊢x'))
wk↓Gt (Γ :: (z , C)) B y x A (var (cc Γ⊢ _ _) (inl x∈Γ)) (var (cc Γ+⊢ _ _) (inl (inl x∈Γ+))) = wk↓Gt Γ C z x A (var Γ⊢ x∈Γ) (var Γ+⊢ (inl (x∈Γ+)))
wk↓Gt (Γ :: (.(length Γ) , C)) B .(length (Γ :: (length Γ , C))) .(length Γ) .C (var (cc Γ⊢ _ idp) (inl x∈Γ)) (var (cc _ _ idp) (inl (inr (idp , idp)))) = ⊥-elim (lΓ∉Γ Γ⊢ x∈Γ)
wk↓Gt (Γ :: (z , C)) B .(length (Γ :: (z , C))) .(length (Γ :: (z , C))) .B (var (cc Γ⊢ _ _) (inl x∈Γ)) (var (cc _ _ idp) (inr (idp , idp))) = ⊥-elim (n∉Γ Γ⊢ (n≤Sn _) x∈Γ)
wk↓Gt (Γ :: (.(length Γ) , C)) B .(length (Γ :: (length Γ , C))) .(length Γ) .C (var (cc Γ⊢ _ idp) (inr (idp , idp))) (var (cc _ _ idp) (inl (inl lΓ∈Γ))) = ⊥-elim (lΓ∉Γ Γ⊢ lΓ∈Γ)
wk↓Gt (Γ :: (.(length Γ) , C)) B .(length (Γ :: (length Γ , C))) .(length Γ) .C (var (cc Γ⊢ _ idp) (inr (idp , idp))) (var (cc _ _ idp) (inl (inr _))) = idp
wk↓Gt (Γ :: (.(length Γ) , C)) B .(length (Γ :: (length Γ , C))) .(length Γ) .C (var (cc Γ⊢ _ idp) (inr (idp , idp))) (var (cc Γ+⊢ _ idp) (inr (contra , _))) = ⊥-elim (n≠Sn _ contra)
↓⊢C : ∀ (Γ : Pre-Ctx) (Γ⊢ : Γ ⊢C) → (↓GC Γ Γ⊢) ⊢C
↓⊢T : ∀ (Γ : Pre-Ctx) (A : Pre-Ty) (A≠∗ : A ≠ ∗) (Γ⊢ : Γ ⊢C) (Γ⊢A : Γ ⊢T A) → (↓GC Γ Γ⊢) ⊢T (↓GT Γ A Γ⊢A)
↓⊢t : ∀ (Γ : Pre-Ctx) (A : Pre-Ty) (x : ℕ) (A≠∗ : A ≠ ∗) (Γ⊢ : Γ ⊢C) (Γ⊢A : Γ ⊢T A) (Γ⊢x : Γ ⊢t (Var x) # A) → (↓GC Γ Γ⊢) ⊢t Var (↓Gt Γ A x Γ⊢x) # (↓GT Γ A Γ⊢A)
↓wkt : ∀ (Γ : Pre-Ctx) (C : Pre-Ty) (y : ℕ) {A B : Pre-Ty} {t u : Pre-Tm} (Γ⊢ : Γ ⊢C) (Γ+⊢ : (Γ :: (y , C)) ⊢C) (↓Γ⊢t : ↓GC Γ Γ⊢ ⊢t t # A) → A == B → t == u → ↓GC (Γ :: (y , C)) Γ+⊢ ⊢t u # B
↓wkt Γ ∗ y {A = A} {t = t} Γ⊢ (cc Γ⊢' _ _) ↓Γ⊢t idp idp = transport {B = λ p → ↓GC Γ p ⊢t t # A} (has-all-paths-⊢C Γ⊢ Γ⊢') ↓Γ⊢t
↓wkt Γ (_ ⇒[ C ] _) y {A = A} {t = t} Γ⊢ Γ+⊢@(cc Γ⊢' _ _) ↓Γ⊢t idp idp = wkt (transport {B = λ p → ↓GC Γ p ⊢t t # A} (has-all-paths-⊢C Γ⊢ Γ⊢') ↓Γ⊢t) (↓⊢C _ Γ+⊢)
↓⊢C nil ec = ec
↓⊢C (Γ :: (x , ∗)) (cc Γ⊢ _ _) = ↓⊢C Γ Γ⊢
↓⊢C (Γ :: (x , A@(_ ⇒[ _ ] _))) (cc Γ⊢ Γ⊢A idp) = cc (↓⊢C Γ Γ⊢) (↓⊢T Γ A (λ{()}) Γ⊢ Γ⊢A) (↓length Γ Γ⊢)
↓⊢T Γ ∗ A≠∗ Γ⊢A = ⊥-elim (A≠∗ idp)
↓⊢T Γ (_ ⇒[ ∗ ] _) A≠∗ Γ⊢ (ar Γ⊢A _ _) = ob (↓⊢C Γ Γ⊢)
↓⊢T Γ (Var x ⇒[ A@(_ ⇒[ _ ] _) ] Var y) A≠∗ Γ⊢ (ar Γ⊢A Γ⊢x Γ⊢y) = ar (↓⊢T Γ A (λ{()}) Γ⊢ Γ⊢A) (↓⊢t Γ A x (λ{()}) Γ⊢ Γ⊢A Γ⊢x) (↓⊢t Γ A y (λ{()}) Γ⊢ Γ⊢A Γ⊢y)
↓⊢t (Γ :: (y , B)) A x A≠∗ Γ+⊢@(cc Γ⊢ x₁ x₂) Γ+⊢A Γ+⊢x@(var _ (inl x∈Γ)) =
let Γ⊢x = var Γ⊢ x∈Γ in
let Γ⊢A = Γ⊢t:A→Γ⊢A Γ⊢x in
↓wkt Γ B y Γ⊢ Γ+⊢ (↓⊢t Γ A x A≠∗ Γ⊢ Γ⊢A Γ⊢x) (wk↓GT Γ B y A Γ⊢A Γ+⊢A) (Var= (wk↓Gt Γ B y x A Γ⊢x Γ+⊢x))
↓⊢t Γ+@(Γ :: (x , ∗)) .∗ .x A≠∗ Γ+⊢@(cc _ _ _) Γ⊢A (var _ (inr (idp , idp))) = ⊥-elim (A≠∗ idp)
↓⊢t Γ+@(Γ :: (.(length Γ) , A@(_ ⇒[ _ ] _))) .(_ ⇒[ _ ] _) .(length Γ) A≠∗ Γ+⊢@(cc Γ⊢ Γ⊢A idp) Γ+⊢A@(ar _ _ _) (var (cc _ _ _) (inr (idp , idp))) =
var (↓⊢C Γ+ Γ+⊢) (inr (idp , (wk↓GT Γ A (length Γ) A Γ⊢A Γ+⊢A ^)))
| {
"alphanum_fraction": 0.4263047219,
"avg_line_length": 58.1222222222,
"ext": "agda",
"hexsha": "c4bbcbe7e50f6b6e9dd703b62e00043172d371ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ThiBen/catt-formalization",
"max_forks_repo_path": "MCaTT/Desuspension.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ThiBen/catt-formalization",
"max_issues_repo_path": "MCaTT/Desuspension.agda",
"max_line_length": 192,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ThiBen/catt-formalization",
"max_stars_repo_path": "MCaTT/Desuspension.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-20T00:41:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-01T08:26:53.000Z",
"num_tokens": 3249,
"size": 5231
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Species.Constructions where
-- Construction of basic species
open import Level
open import Data.Empty
open import Data.Fin.Base as Fin using (Fin)
open import Data.Fin.Properties using (¬Fin0)
open import Data.Fin.Permutation using (↔⇒≡)
open import Data.Nat.Base using (ℕ; suc; zero)
open import Data.Nat.Properties using (_≟_)
open import Data.Product as × using (Σ; proj₁; proj₂; _,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Data.Sum.Base as ⊎ using (inj₁; inj₂)
open import Data.Sum.Relation.Binary.Pointwise using (_⊎ₛ_; inj₁; inj₂)
open import Data.Unit.Polymorphic using (⊤; tt)
open import Function.Base using () renaming (id to id→)
open import Function.Equality using (_⟨$⟩_; cong; Π) renaming (id to idΠ)
open import Function.Bundles using (Inverse)
open import Relation.Nullary using (Dec; yes; no)
import Function.Inverse as Inv
open import Relation.Binary.Bundles using (Setoid)
import Relation.Binary.PropositionalEquality as ≡
open import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial using (indexedSetoid)
open import Categories.Category.Core using (Category)
open import Categories.Category.Construction.ObjectRestriction using (ObjectRestriction)
open import Categories.Category.Construction.Core using (Core)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Category.Instance.FinSetoids using (FinSetoids; IsFiniteSetoid)
open import Categories.Category.Product
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Construction.Constant using (const)
open import Categories.Functor.Hom
open import Categories.Morphism.IsoEquiv using (_≃_)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Category.Species
import Categories.Morphism as Mor
-- Some useful preliminary definitions. Should be in stdlib
module _ {o ℓ : Level} where
-- the Setoid version of ⊥
⊥-Setoid : Setoid o ℓ
⊥-Setoid = record
{ Carrier = Lift o ⊥
; _≈_ = λ ()
; isEquivalence = record { refl = λ { {()} } ; sym = λ { {()} } ; trans = λ { {()} } } }
⊤-Setoid : Setoid o ℓ
⊤-Setoid = record { Carrier = ⊤ ; _≈_ = λ _ _ → ⊤}
⊤-FinSetoid : Σ (Setoid o ℓ) IsFiniteSetoid
⊤-FinSetoid =
⊤-Setoid ,
1 ,
record
{ f = λ _ → Fin.zero
; f⁻¹ = λ _ → tt
; cong₁ = λ _ → ≡.refl
; cong₂ = λ _ → tt
; inverse = (λ { Fin.zero → ≡.refl}) , λ _ → tt
}
-- We could have 4 levels, and still define Zero and One′.
-- But X needs o ≡ o′ and ℓ ≡ ℓ′. And then the 'proper' definition of One makes that all the same.
module _ (o : Level) where
-- Setoid o ℓ is used a lot, name it too
S = Setoid o o
FinSet = FinSetoids o o
𝔹 = Core FinSet
Sp = Species o o o o
open Category Sp
open Mor FinSet
open _≅_
-- convenient alias: a structure is an Object of Species
-- (which is of course a functor)
Structure = Obj
Zero : Structure
Zero = const ⊥-Setoid
-- One can be specified in two ways. The traditional one (which doesn't generalize as well)
-- uses 'counting' directly.
One′ : Structure
One′ = record
{ F₀ = on-singleton
; F₁ = map-singleton
; identity = λ {A} x≈y → identity′ {A} x≈y -- eta expansion needed
; homomorphism = λ {X} {Y} {Z} → homomorphism′ {X} {Y} {Z} -- eta needed
; F-resp-≈ = resp
}
where
iso⇒Inverse : (A B : Σ S IsFiniteSetoid) (A≅B : A ≅ B) → Inverse (proj₁ A) (proj₁ B)
iso⇒Inverse (s , n , p) (s′ , n′ , p′) A≅B = record
{ f = from A≅B ⟨$⟩_
; f⁻¹ = to A≅B ⟨$⟩_
; cong₁ = cong (from A≅B)
; cong₂ = cong (to A≅B)
; inverse = (λ x → isoʳ A≅B (Setoid.refl s′ {x})) , λ x → isoˡ A≅B (Setoid.refl s {x})
}
iso⇒≡ : {A B : Σ S IsFiniteSetoid} (A≅B : A ≅ B) → proj₁ (proj₂ A) ≡.≡ proj₁ (proj₂ B)
iso⇒≡ {A@(s , n , p)} {B@(s′ , n′ , p′)} A≅B = ↔⇒≡ ( (translate p′) Inv.∘ (translate X Inv.∘ Inv.sym (translate p)))
where
X : Inverse (proj₁ A) (proj₁ B)
X = iso⇒Inverse A B A≅B
translate : {a b c d : Level} {X : Setoid a b} {Y : Setoid c d} → Inverse X Y → Inv.Inverse X Y
translate I = record
{ to = record { _⟨$⟩_ = Inverse.f I ; cong = Inverse.cong₁ I }
; from = record { _⟨$⟩_ = Inverse.f⁻¹ I ; cong = Inverse.cong₂ I }
; inverse-of = record
{ left-inverse-of = Inverse.inverseʳ I
; right-inverse-of = Inverse.inverseˡ I
}
}
-- one can do this in 3 cases structurally, but that leads to 9 cases elsewhere
-- so a dispatch on size makes sense
on-singleton : Σ S IsFiniteSetoid → S
on-singleton (s , n , _) with n ≟ 1
... | yes p = s
... | no ¬p = ⊥-Setoid
map-singleton : {A B : Σ S IsFiniteSetoid} → A ≅ B → Π (on-singleton A) (indexedSetoid (on-singleton B))
map-singleton {s , n , p} {s′ , n′ , p′} A≅B with n ≟ 1 | n′ ≟ 1
map-singleton A≅B | yes ≡.refl | yes ≡.refl = from A≅B
map-singleton A≅B | yes ≡.refl | no n′≢1 = ⊥-elim (n′≢1 (≡.sym (iso⇒≡ A≅B)))
map-singleton A≅B | no n≢1 | yes n′≡1 = ⊥-elim (n≢1 (≡.trans (iso⇒≡ A≅B) n′≡1))
map-singleton A≅B | no n≢1 | no n′≢1 = idΠ
identity′ : {A : Σ S IsFiniteSetoid} {x y : Setoid.Carrier (on-singleton A)} →
let SA = on-singleton A in
Setoid._≈_ SA x y → Setoid._≈_ SA (map-singleton {A} {A} ≅.refl ⟨$⟩ x) y
identity′ {s , ℕ.suc ℕ.zero , p} x≈y = x≈y
homomorphism′ : {X Y Z : Σ S IsFiniteSetoid} {f : X ≅ Y} {g : Y ≅ Z} {x y : Setoid.Carrier (on-singleton X)} →
Setoid._≈_ (on-singleton X) x y →
Setoid._≈_ (on-singleton Z) (map-singleton (≅.trans f g) ⟨$⟩ x) (map-singleton g ⟨$⟩ (map-singleton f ⟨$⟩ y))
homomorphism′ {f = f} {g} x≈y with iso⇒≡ f | iso⇒≡ g
homomorphism′ {_ , 1 , _} {f = f} {g} x≈y | ≡.refl | ≡.refl = cong (from g) (cong (from f) x≈y)
resp : {A B : Σ S IsFiniteSetoid} {f g : A ≅ B} →
(_≃_ FinSet f g) →
{x y : Setoid.Carrier (on-singleton A)} →
Setoid._≈_ (on-singleton A) x y → Setoid._≈_ (on-singleton B) (map-singleton f ⟨$⟩ x) (map-singleton g ⟨$⟩ y)
resp {_ , 1 , _} {f = f} {g} f≈g x≈y with iso⇒≡ f
resp {_ , 1 , _} {f = f} {g} f≈g x≈y | ≡.refl = _≃_.from-≈ f≈g x≈y
-- There is a much nicer specification.
One : Structure
One = Hom[ 𝔹 ][ ⊤-FinSetoid ,-]
-- the 'identity' Functor isn't really, it needs to forget the proof.
X : Structure
X = record
{ F₀ = proj₁
; F₁ = λ f → record
{ _⟨$⟩_ = from f ⟨$⟩_
; cong = cong (from f) }
; identity = id→
; homomorphism = λ { {f = f} {g} x≈y → cong (from g) (cong (from f) x≈y)}
; F-resp-≈ = _≃_.from-≈
}
-- generally this should be defined elsewhere
_+_ : Structure → Structure → Structure
A + B = record
{ F₀ = λ x → A.₀ x ⊎ₛ B.₀ x
; F₁ = λ X≅Y → record
{ _⟨$⟩_ = ⊎.map (A.₁ X≅Y ⟨$⟩_) (B.₁ X≅Y ⟨$⟩_)
; cong = λ { (inj₁ x≈y) → inj₁ (cong (A.₁ X≅Y) x≈y )
; (inj₂ x≈y) → inj₂ (cong (B.₁ X≅Y) x≈y)}
}
; identity = λ { (inj₁ x) → inj₁ (A.identity x)
; (inj₂ x) → inj₂ (B.identity x)}
; homomorphism = λ { (inj₁ x) → inj₁ (A.homomorphism x)
; (inj₂ x) → inj₂ (B.homomorphism x) }
; F-resp-≈ = λ { f≃g (inj₁ x) → inj₁ (A.F-resp-≈ f≃g x)
; f≃g (inj₂ x) → inj₂ (B.F-resp-≈ f≃g x)}
}
where
module A = Functor A
module B = Functor B
-- Hadamard product
_×_ : Structure → Structure → Structure
A × B = record
{ F₀ = λ x → ×-setoid (A.₀ x) (B.₀ x)
; F₁ = λ X≅Y → record
{ _⟨$⟩_ = ×.map (A.₁ X≅Y ⟨$⟩_) (B.₁ X≅Y ⟨$⟩_)
; cong = ×.map (cong (A.₁ X≅Y)) (cong (B.₁ X≅Y))
}
; identity = ×.map A.identity B.identity
; homomorphism = ×.map A.homomorphism B.homomorphism
; F-resp-≈ = λ f≈g → ×.map (A.F-resp-≈ f≈g) (B.F-resp-≈ f≈g)
}
where
module A = Functor A
module B = Functor B
| {
"alphanum_fraction": 0.5890222556,
"avg_line_length": 39.0146341463,
"ext": "agda",
"hexsha": "281f6f41ccc35e2e27898a5531f0686a2b01d7f4",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Species/Constructions.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Species/Constructions.agda",
"max_line_length": 120,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Species/Constructions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 3027,
"size": 7998
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Proofs.Semantics where
open import Relation.Binary.PropositionalEquality
open import Data.Binary.Operations.Unary
open import Data.Binary.Proofs.Unary
open import Data.Binary.Definitions
open import Data.Binary.Operations.Semantics
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Relation.Binary.PropositionalEquality.FasterReasoning
import Data.Nat.Properties as ℕ
open import Function
open import Data.Nat.Reasoning
2*-distrib : ∀ x y → 2* (x ℕ.+ y) ≡ 2* x ℕ.+ 2* y
2*-distrib x y =
begin
2* (x ℕ.+ y)
≡⟨⟩
(x ℕ.+ y) ℕ.+ (x ℕ.+ y)
≡⟨ ℕ.+-assoc x y (x ℕ.+ y) ⟩
x ℕ.+ (y ℕ.+ (x ℕ.+ y))
≡⟨ x +≫ ℕ.+-comm y (x ℕ.+ y) ⟩
x ℕ.+ ((x ℕ.+ y) ℕ.+ y)
≡⟨ x +≫ ℕ.+-assoc x y y ⟩
x ℕ.+ (x ℕ.+ (y ℕ.+ y))
≡˘⟨ ℕ.+-assoc x x _ ⟩
2* x ℕ.+ 2* y
∎
s2*-distrib : ∀ x y → I ∷⇓ (x ℕ.+ y) ≡ suc (2* x ℕ.+ 2* y)
s2*-distrib x y = cong suc (2*-distrib x y)
| {
"alphanum_fraction": 0.5974440895,
"avg_line_length": 27.6176470588,
"ext": "agda",
"hexsha": "e87772826efe9fa2c814caa567403790b2d33b84",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Proofs/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Proofs/Semantics.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Proofs/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 378,
"size": 939
} |
module std-reduction where
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; sig ; []env ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Variable.Signal as Signal
using (Signal)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import sn-calculus using (all-ready ; [s,δe]-env ; [x,δe]-env ; δ)
open import std-reduction.Base
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Relation.Nullary
using (¬_)
open import Relation.Binary.PropositionalEquality
using (_≡_)
open _≡_
open import Data.Nat using (_+_ ; zero ; suc)
open import Data.List
using ([])
infix 4 _⇁_
data _⇁_ : Term → Term → Set where
std-par-right : ∀ {p q r E θ A} →
left-most θ E →
(p' : halted p) →
(q' : done q) →
r ≐ E ⟦ (p ∥ q) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (value-max (dhalted p') q' (inj₁ p')) ⟧e)
std-par-left : ∀ {p q r E θ A} →
left-most θ E →
(p' : paused p) →
(q' : halted q) →
r ≐ E ⟦ (p ∥ q) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (value-max (dpaused p') (dhalted q') (inj₂ q')) ⟧e)
std-is-present : ∀ {p q r E θ A} →
left-most θ E →
∀ S →
(S∈ : Env.isSig∈ S θ) →
Env.sig-stats{S} θ S∈ ≡ Signal.present →
r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e)
std-is-absent : ∀ {p q r E θ A} →
left-most θ E →
∀ S →
(S∈ : Env.isSig∈ S θ) →
Env.sig-stats{S} θ S∈ ≡ Signal.absent →
r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e)
std-emit : ∀{θ E r} →
left-most θ E →
∀ S →
(S∈ : (Env.isSig∈ S θ)) →
(¬S≡a : ¬ (Env.sig-stats{S} θ S∈) ≡ Signal.absent) →
r ≐ E ⟦ emit S ⟧e →
(ρ⟨ θ , GO ⟩· r) ⇁ (ρ⟨ (Env.set-sig{S} θ S∈ Signal.present) , GO ⟩· E ⟦ nothin ⟧e)
std-loop-unroll : ∀{θ E r p A} →
left-most θ E →
r ≐ E ⟦ loop p ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (loopˢ p p) ⟧e)
std-seq-done : ∀{θ E r q A} →
left-most θ E →
r ≐ E ⟦ (nothin >> q) ⟧e →
ρ⟨ θ , A ⟩· r ⇁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e)
std-seq-exit : ∀{θ E r q n A} →
left-most θ E →
r ≐ E ⟦ (exit n >> q) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (exit n) ⟧e)
std-loopˢ-exit : ∀{θ E r q n A} →
left-most θ E →
r ≐ E ⟦ (loopˢ (exit n) q) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (exit n) ⟧e)
std-suspend-done : ∀{θ E r p S A} →
left-most θ E →
(p' : halted p) →
r ≐ E ⟦ (suspend p S) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e)
std-trap-done : ∀{θ E r p A} →
left-most θ E →
(p' : halted p) →
r ≐ E ⟦ (trap p) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ (↓ p') ⟧e)
std-raise-signal : ∀{θ E r p S A} →
left-most θ E →
r ≐ E ⟦ (signl S p) ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁
(ρ⟨ θ , A ⟩·
E ⟦ (ρ⟨ (Θ SigMap.[ S ↦ Signal.unknown ] ShrMap.empty VarMap.empty) , WAIT ⟩·
p) ⟧e)
std-raise-shared : ∀{θ r s e p E A} →
left-most θ E →
(e' : all-ready e θ) →
r ≐ E ⟦ shared s ≔ e in: p ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁
(ρ⟨ θ , A ⟩·
E ⟦ (ρ⟨ [s,δe]-env s (δ e') , WAIT ⟩· p) ⟧e)
std-set-shared-value-old : ∀{θ r s e E} →
left-most θ E →
(e' : all-ready e θ) →
(s∈ : (Env.isShr∈ s θ)) →
Env.shr-stats{s} θ s∈ ≡ SharedVar.old →
r ≐ E ⟦ s ⇐ e ⟧e →
(ρ⟨ θ , GO ⟩· r) ⇁
(ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (δ e')) , GO ⟩·
E ⟦ nothin ⟧e)
std-set-shared-value-new : ∀{θ r s e E} →
left-most θ E →
(e' : all-ready e θ) →
(s∈ : (Env.isShr∈ s θ)) →
Env.shr-stats{s} θ s∈ ≡ SharedVar.new →
r ≐ E ⟦ s ⇐ e ⟧e →
(ρ⟨ θ , GO ⟩· r) ⇁
(ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , GO ⟩·
E ⟦ nothin ⟧e)
-- unshared state
std-raise-var : ∀{θ r x p e E A} →
left-most θ E →
(e' : all-ready e θ) →
r ≐ E ⟦ var x ≔ e in: p ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁
(ρ⟨ θ , A ⟩·
E ⟦ (ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p) ⟧e)
std-set-var : ∀{θ r x e E A} →
left-most θ E →
(x∈ : (Env.isVar∈ x θ)) →
(e' : all-ready e θ) →
r ≐ E ⟦ x ≔ e ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁
(ρ⟨ (Env.set-var{x} θ x∈ (δ e')) , A ⟩·
E ⟦ nothin ⟧e)
-- if
std-if-false : ∀{θ r p q x E A} →
left-most θ E →
(x∈ : (Env.isVar∈ x θ)) →
Env.var-vals{x} θ x∈ ≡ zero →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e)
std-if-true : ∀{θ r p q x E n A} →
left-most θ E →
(x∈ : (Env.isVar∈ x θ)) →
Env.var-vals{x} θ x∈ ≡ suc n →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
(ρ⟨ θ , A ⟩· r) ⇁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e)
std-merge : ∀{θ₁ θ₂ r p E A₁ A₂} →
left-most θ₁ E →
r ≐ E ⟦ ρ⟨ θ₂ , A₂ ⟩· p ⟧e →
(ρ⟨ θ₁ , A₁ ⟩· r) ⇁ (ρ⟨ (θ₁ ← θ₂) , (A-max A₁ A₂) ⟩· E ⟦ p ⟧e)
std-absent : ∀{θ p A} →
blocked-or-done θ A p →
¬ (can-set-absent θ p ≡ []) →
ρ⟨ θ , A ⟩· p ⇁ ρ⟨ (set-all-absent θ (can-set-absent θ p)) , A ⟩· p
std-readyness : ∀{θ p A} →
blocked-or-done θ A p →
(can-set-absent θ p ≡ []) →
¬ (can-set-ready θ p ≡ []) →
ρ⟨ θ , A ⟩· p ⇁ ρ⟨ (set-all-ready θ (can-set-ready θ p)) , A ⟩· p
| {
"alphanum_fraction": 0.4567855143,
"avg_line_length": 30.4375,
"ext": "agda",
"hexsha": "8161aae8295319e6d76a8f8c04041fba8e8de36a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/std-reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/std-reduction.agda",
"max_line_length": 90,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/std-reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 2752,
"size": 5357
} |
{-# OPTIONS --without-K #-}
module hott.equivalence.biinvertible where
open import sum
open import equality
open import function.core
open import function.isomorphism.core
open import function.isomorphism.utils
open import function.overloading
open import function.extensionality
open import hott.level.core
open import hott.level.closure
open import hott.equivalence.core
open import hott.equivalence.alternative
open import sets.unit
module _ {i j}{X : Set i}{Y : Set j} where
InvL : (X → Y) → Set _
InvL f = Σ (Y → X) λ g → (x : X) → g (f x) ≡ x
InvR : (X → Y) → Set _
InvR f = Σ (Y → X) λ g → (y : Y) → f (g y) ≡ y
BiInv : (X → Y) → Set _
BiInv f = InvL f × InvR f
_≈₂_ : ∀ {i j} → Set i → Set j → Set _
X ≈₂ Y = Σ (X → Y) BiInv
module _ {i j}{X : Set i}{Y : Set j} where
≅⇒b : X ≅ Y → X ≈₂ Y
≅⇒b f = apply f , (invert f , _≅_.iso₁ f) , (invert f , _≅_.iso₂ f)
b⇒≅ : X ≈₂ Y → X ≅ Y
b⇒≅ (f , (g , α) , (h , β)) = record
{ to = f
; from = g
; iso₁ = α
; iso₂ = λ y → sym (ap (f ∘' g) (β y)) · ap f (α (h y)) · β y }
module _ (isom : X ≅ Y) where
private
f : X → Y
f = apply isom
φ : ∀ {k} (Z : Set k) → (X → Z) ≅ (Y → Z)
φ Z = record
{ to = λ u → u ∘ invert isom
; from = λ v → v ∘ f
; iso₁ = λ u → funext λ x → ap u (_≅_.iso₁ isom x)
; iso₂ = λ v → funext λ y → ap v (_≅_.iso₂ isom y) }
invl-level : contr (InvL f)
invl-level = iso-level (Σ-ap-iso refl≅ λ g → sym≅ strong-funext-iso)
(proj₂ (≅⇒≈ (sym≅ (φ X))) id)
private
ψ : ∀ {k} (Z : Set k) → (Z → X) ≅ (Z → Y)
ψ Z = record
{ to = λ u → f ∘ u
; from = λ v → invert isom ∘ v
; iso₁ = λ u → funext λ x → _≅_.iso₁ isom (u x)
; iso₂ = λ v → funext λ y → _≅_.iso₂ isom (v y) }
invr-level : contr (InvR f)
invr-level = iso-level (Σ-ap-iso refl≅ λ h → sym≅ strong-funext-iso)
(proj₂ (≅⇒≈ (ψ Y)) id)
BiInv-level : (f : X → Y) → h 1 (BiInv f)
BiInv-level f b₁ b₂ = h↑ (×-contr (invl-level isom) (invr-level isom)) b₁ b₂
where
isom : X ≅ Y
isom = b⇒≅ (f , b₁)
b⇔≈ : (X ≈₂ Y) ≅ (X ≈ Y)
b⇔≈ = record
{ to = λ b → ≅⇒≈ (b⇒≅ b)
; from = λ φ → (≅⇒b (≈⇒≅ φ))
; iso₁ = λ { (f , b) → ap (λ b → f , b) (h1⇒prop (BiInv-level f) _ _) }
; iso₂ = λ { (f , e) → ap (λ e → f , e) (h1⇒prop (weak-equiv-h1 f) _ _) } }
| {
"alphanum_fraction": 0.4925496689,
"avg_line_length": 29.8271604938,
"ext": "agda",
"hexsha": "46caa7f0741e3086114a2292ce801b4f627bffca",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/equivalence/biinvertible.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/equivalence/biinvertible.agda",
"max_line_length": 79,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/equivalence/biinvertible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 1041,
"size": 2416
} |
data Nat : Set where
zero : Nat
suc : Nat → Nat
test : ∀{N M : Nat} → Nat → Nat → Nat
test L K = {!N L M!}
-- Andreas, 2016-07-10, issue 2088
-- Changed behavior:
-- The hidden variables N and M are made visible
-- only the visible L is split.
| {
"alphanum_fraction": 0.6265060241,
"avg_line_length": 22.6363636364,
"ext": "agda",
"hexsha": "8eb86518f98fced2bde26e56837f2a7f1cdc4a0d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/SplitOnHidden.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/SplitOnHidden.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/SplitOnHidden.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 83,
"size": 249
} |
-- pull in Haskell Ints
module int where
open import bool
open import string
open import list
open import char
open import functions
open import nat
postulate
int : Set
int0 : int
int1 : int
_+int_ : int → int → int
_*int_ : int → int → int
_-int_ : int → int → int
𝕃char-to-int : 𝕃 char → int
int-to-𝕃char : int → 𝕃 char
is-zero-int : int → 𝔹
{-# COMPILE GHC int = type Int #-}
{-# COMPILE GHC int0 = 0 #-}
{-# COMPILE GHC int1 = 1 #-}
{-# COMPILE GHC _+int_ = (+) #-}
{-# COMPILE GHC _*int_ = (*) #-}
{-# COMPILE GHC _-int_ = (-) #-}
{-# COMPILE GHC 𝕃char-to-int = \ x -> read x :: Int #-}
{-# COMPILE GHC int-to-𝕃char = \ x -> show x #-}
{-# COMPILE GHC is-zero-int = (==) 0 #-}
string-to-int : string → int
string-to-int = 𝕃char-to-int ∘ string-to-𝕃char
int-to-string : int → string
int-to-string = 𝕃char-to-string ∘ int-to-𝕃char
int-from-nat : ℕ → int
int-from-nat zero = int0
int-from-nat (suc n) = int1 +int (int-from-nat n)
| {
"alphanum_fraction": 0.6079249218,
"avg_line_length": 23.3902439024,
"ext": "agda",
"hexsha": "499439a2befe328895ad38fb29fcee8b79b6489e",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "int.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "int.agda",
"max_line_length": 55,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 343,
"size": 959
} |
{-# OPTIONS --overlapping-instances #-}
module Sort where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.List using (List; _∷_; [])
open import Data.Variant using (Variants; inj; `_)
-- instance search methods
open import Data.List.Membership.Propositional.Instances
using (⦃here⦄; ⦃there⦄)
open import Data.List.Relation.Binary.Subset.Propositional.Instances
using (⦃[]⊆xs⦄; ⦃x∈ys-xs⊆ys⇒x∷xs⊆ys⦄; ⦅_⊆_⦆)
open import Data.Union.Relation.Binary.Subtype.Instances
using (⦃refl⦄; ⦃generalize⦄; ⦃function⦄; ⌊_⌋)
-- ----------------------------------------------------------------------
-- Example (Injections)
data Sort : Set where
term type : Sort
_ : Variants Sort (term ∷ [])
_ = ` term
_-Bounds : List Sort → Set
𝒮 -Bounds = Variants Sort 𝒮 → ℕ
Index : {𝒮 : List Sort} → Variants Sort 𝒮 → (𝒮 -Bounds) → Set
Index 𝓈 Γ = Fin (Γ 𝓈)
term-sorts : List Sort
term-sorts = term ∷ type ∷ []
infix 9 #_
data Term : term-sorts -Bounds → Set where
#_ : ∀ {Γ} → Index (` term) Γ → Term Γ
-- ----------------------------------------------------------------------
-- Example (Subtyping)
type-sorts : List Sort
type-sorts = type ∷ []
infix 9 ~_
data Type : type-sorts -Bounds → Set where
~_ : ∀ {Γ} → Index (` type) Γ → Type Γ
it : ∀ {a} {A : Set a} → {{A}} → A
it {{x}} = x
_ : ⦅ type-sorts ⊆ term-sorts ⦆
_ = it
_ : term-sorts -Bounds → Set
_ = ⌊ Type ⌋
infixl 7 _[_]
data Term′ : term-sorts -Bounds → Set where
#_ : ∀ {Γ} → Index (` term) Γ → Term′ Γ
_[_] : ∀ {Γ} → Term′ Γ → ⌊ Type ⌋ Γ → Term′ Γ | {
"alphanum_fraction": 0.5630198337,
"avg_line_length": 22.652173913,
"ext": "agda",
"hexsha": "b7f9e90a9651bbb54841228ed6da2f75ce4a0b31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-union",
"max_forks_repo_path": "examples/Sort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-union",
"max_issues_repo_path": "examples/Sort.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-union",
"max_stars_repo_path": "examples/Sort.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 564,
"size": 1563
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.IdUPiPi {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm)
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Weakening
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Introductions.Sigma
open import Definition.LogicalRelation.Substitution.Introductions.Fst
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.Lambda
open import Definition.LogicalRelation.Substitution.Introductions.Application
open import Definition.LogicalRelation.Substitution.Introductions.Cast
open import Definition.LogicalRelation.Substitution.Introductions.Id
open import Definition.LogicalRelation.Substitution.Introductions.Transp
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.MaybeEmbed
open import Definition.LogicalRelation.Substitution.Escape
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Definition.LogicalRelation.Substitution.Reduction
open import Definition.LogicalRelation.Substitution.Weakening
open import Definition.LogicalRelation.Substitution.ProofIrrelevance
open import Definition.LogicalRelation.Fundamental.Variable
open import Tools.Product
open import Tools.Nat
import Tools.PropositionalEquality as PE
lemma0 : ∀ σ A → (wk1 (wk1 (subst σ A))) PE.≡ subst (liftSubst (liftSubst σ)) (wk1 (wk1 A))
lemma0 σ A = PE.trans (PE.cong wk1 (PE.sym (Idsym-subst-lemma σ A))) (PE.sym (Idsym-subst-lemma (liftSubst σ) (wk1 A)))
lemma1 : ∀ {σ rA} A A' B →
wk1d (subst (liftSubst σ) B) [
cast ⁰ (wk1 (wk1 (subst σ A')))
(wk1 (wk1 (subst σ A)))
(Idsym (Univ rA ⁰) (wk1 (wk1 (subst σ A))) (wk1 (wk1 (subst σ A'))) (var 1))
(var 0)]↑
PE.≡
subst (liftSubst (liftSubst σ)) (U.wk (lift (step id)) B [
cast ⁰ (wk1 (wk1 A'))
(wk1 (wk1 A))
(Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))
(var 0)]↑)
lemma1 {σ} {rA} A A' B = PE.trans (PE.cong₂ (λ X Y → X [ Y ]↑) (PE.sym (Idsym-subst-lemma-wk1d σ B))
(PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (lemma0 σ A') (lemma0 σ A)
(PE.trans (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (var 1)) (lemma0 σ A) (lemma0 σ A'))
(PE.sym (subst-Idsym (liftSubst (liftSubst σ)) (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))))))
(PE.sym ((singleSubstLift↑ (liftSubst σ) (U.wk (lift (step id)) B) _)))
lemma2 : ∀ {σ} B → U.wk (lift (step id)) (subst (liftSubst σ) B)
PE.≡
subst (liftSubst (liftSubst σ)) (U.wk (lift (step id)) B)
lemma2 B = PE.sym (Idsym-subst-lemma-wk1d _ B)
Id-U-ΠΠ-resᵗᵛ : ∀ {A B A' B' rA Γ} ([Γ] : ⊩ᵛ Γ) →
let l = ∞
lΠ = ⁰
[UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ])
[UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ])
Id-U-ΠΠ-res A A' B B' =
(Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰)
(wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(wk1d B') ° ¹ ° ¹)
in
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ])
([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ])
([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A])
([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'])
([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA])
([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ}))
([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA])
([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) →
let [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ
[ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA']
[wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ
[wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A']
[wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A]
[wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ
[ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']'
[wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']'
[wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA']
[wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA]
[wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ}
[wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA']
[SProp] = Uᵛ {rU = %} ∞< [ΓId]
in
([var0]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 A') ^ [ rA , ι ⁰ ] / [ΓIdA'] / [wwA']')
([var1]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) ^ [ % , ι ¹ ] / [ΓIdA'] / [wwIdAA'])
→ Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ [ ! , ∞ ] / [ΓId] / (λ {Δ} {σ} → [SProp] {Δ} {σ})
Id-U-ΠΠ-resᵗᵛ {A} {B} {A'} {B'} {rA} {Γ}
[Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [var0]ₜ [var1]ₜ =
let l = ∞
lΠ = ⁰
[SProp] = Uᵛ {rU = %} ∞< [Γ]
[UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ])
[UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ])
⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ]))
⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ]))
⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ]))
⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ]))
[ΓA] = (_∙_ {Γ} {A} [Γ] [A])
[ΓA'] = (_∙_ {Γ} {A'} [Γ] [A'])
⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ]))
[A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ
[A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ
[B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ
[B] = maybeEmbᵛ {A = B} [ΓA] [B]'
[B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ
[B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']'
⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ]))
[liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ]
[liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ]
[ΠAB] = Πᵗᵛ {A} {B} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [A]ₜ [B]ₜ
[ΠA'B'] = Πᵗᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A']ₜ [B']ₜ
[IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ])
[IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ
Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹
(Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰)
((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(U.wk (lift (step id)) B') ° ¹ ° ¹)
[ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA']
[wSProp] = Uᵛ {rU = %} ∞< [ΓId]
[wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ
[wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A']
[wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A]
[wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ
[ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']'
[wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ}
[wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ}
[wwUA']ᵗ = Uᵗᵛ [ΓIdA']
[ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]'
[wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA']
[wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA]
[wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']'
[wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]'
[wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ})
[wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ
[wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ
[wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA']
[wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA]
in Πᵗᵛ {wk1 A'} {Id (U ⁰) (U.wk (lift (step id)) B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A))
(Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(U.wk (lift (step id)) B')} (<is≤ 0<1) (≡is≤ PE.refl) [ΓId] [wA']' (λ {Δ} {σ} → [wwU¹] {Δ} {σ} %) [wA']
(Idᵗᵛ {A = U ⁰} {t = (U.wk (lift (step id)) B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A))
(Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)}
{u = U.wk (lift (step id)) B'} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !)
(subst↑STerm {F = wk1 A'} {F' = wk1 A} {G = wk1d B}
{t = cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0)}
[ΓId] [wA']' [wA]' (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [wB]
(castᵗᵛ {A = wk1 (wk1 A')} {B = wk1 (wk1 A)} {t = var 0} {e = (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))}
[ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] [wwA']' [wwA]' [var0]ₜ
(Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA])
(IdSymᵗᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} {e = var 1} [ΓIdA'] ((λ {Δ} {σ} → [wwU¹] {Δ} {σ} !))
(λ {Δ} {σ} → [wwUA']ᵗ {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA)
[wwA] [wwA'] [wwIdAA'] [wwIdA'A] [var1]ₜ))) [wB']
(λ {Δ} {σ} → Uᵗᵛ [ΓIdA'] {Δ} {σ}))
abstract
Id-U-ΠΠᵗᵛ : ∀ {A B A' B' rA Γ} ([Γ] : ⊩ᵛ Γ) →
let l = ∞
lΠ = ⁰
[UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ])
[UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ])
in
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ])
([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ])
([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A])
([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'])
([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA])
([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ}))
([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA])
([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ}))
→ [ Γ ⊩ᵛ⟨ l ⟩ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰))
≡ ∃ (Id (Univ rA ⁰) A A') ▹
(Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰)
((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(U.wk (lift (step id)) B') ° ¹ ° ¹)
∷ SProp ¹ ^ [ ! , next ¹ ] / [Γ] ]
Id-U-ΠΠᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ =
let l = ∞
lΠ = ⁰
[SProp] = Uᵛ {rU = %} ∞< [Γ]
[UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ])
[UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ])
⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ]))
⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ]))
⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ]))
⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ]))
[ΓA] = (_∙_ {Γ} {A} [Γ] [A])
[ΓA'] = (_∙_ {Γ} {A'} [Γ] [A'])
⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ]))
[A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ
[A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ
[B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ
[B] = maybeEmbᵛ {A = B} [ΓA] [B]'
[B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ
[B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']'
⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ]))
[liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ]
[liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ]
[ΠAB] = Πᵗᵛ {A} {B} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [A]ₜ [B]ₜ
[ΠA'B'] = Πᵗᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A']ₜ [B']ₜ
[IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ])
[IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ
Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹
(Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰)
((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(U.wk (lift (step id)) B') ° ¹ ° ¹)
[ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA']
[wSProp] = Uᵛ {rU = %} ∞< [ΓId]
[wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ
[wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A']
[wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A]
[wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ
[ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']'
[wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ}
[wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ}
[ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]'
[wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA']
[wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA]
[wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']'
[wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]'
[wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ})
[wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ
[wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ
[wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA']
[wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA]
[var0]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 A') ^ [ rA , ι ⁰ ] / [ΓIdA'] / [wwA']'
[var0]ₜ = proj₂ (fundamentalVar here [ΓIdA'])
[var1]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) ^ [ % , ι ¹ ] / [ΓIdA'] / [wwIdAA']
[var1]ₜ = let X = fundamentalVar (there here) [ΓIdA'] in S.irrelevanceTerm {A = Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A'))} {t = var 1}
[ΓIdA'] [ΓIdA'] (proj₁ X) [wwIdAA'] (proj₂ X)
[Id-U-ΠΠ-res] : Γ ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ [ ! , ∞ ] / [Γ] / [SProp]
[Id-U-ΠΠ-res] = ∃ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰)
((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)
(U.wk (lift (step id)) B') ° ¹ ° ¹)} [Γ] [IdAA'] (λ {Δ} {σ} → [wSProp] {Δ} {σ}) [IdAA']ₜ
(Id-U-ΠΠ-resᵗᵛ {A} {B} {A'} {B'} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ [var0]ₜ [var1]ₜ)
[Id-U-ΠΠ] : Γ ⊩ᵛ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) ⇒ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ ∞ / [Γ]
[Id-U-ΠΠ] = λ {Δ} {σ} ⊢Δ [σ] → let Aσ = ⊢AΔ {Δ} {σ} ⊢Δ [σ]
Bσ = ⊢BΔ {Δ ∙ subst σ A ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ])
A'σ = ⊢A'Δ {Δ} {σ} ⊢Δ [σ]
B'σ = ⊢B'Δ {Δ ∙ subst σ A' ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A' {Δ} {σ} ⊢Δ [σ]) ([liftσ'] {Δ} {σ} ⊢Δ [σ])
X : Δ ⊢ Id (U ⁰) (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰)
⇒ Id-U-ΠΠ-res (subst σ A) (subst σ A') (subst (liftSubst σ) B) (subst (liftSubst σ) B')
∷ SProp ¹ ^ ∞
X = Id-U-ΠΠ {Δ} {subst σ A} {subst σ A'} {rA} {subst (liftSubst σ) B} {subst (liftSubst σ) B'} Aσ Bσ A'σ B'σ
in PE.subst (λ BB → Δ ⊢ Id (U ⁰) (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰)
⇒ BB ∷ SProp ¹ ^ ∞ )
(PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (subst σ A) (subst σ A') ▹ Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹)
((PE.sym (Idsym-subst-lemma σ A'))) (lemma1 A A' B) (lemma2 B')) X
[id] , [eq] = redSubstTermᵛ {SProp ¹} {Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰)} {Id-U-ΠΠ-res A A' B B'}
[Γ] [Id-U-ΠΠ]
(λ {Δ} {σ} → [SProp] {Δ} {σ}) [Id-U-ΠΠ-res]
in modelsTermEq [SProp] [id] [Id-U-ΠΠ-res] [eq]
| {
"alphanum_fraction": 0.4002208247,
"avg_line_length": 75.7490909091,
"ext": "agda",
"hexsha": "adf1903088ea88ed8968ff8744acd82741d0ba80",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda",
"max_line_length": 192,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 10807,
"size": 20831
} |
module GUIgeneric.GUIModel where
open import GUIgeneric.Prelude renaming (inj₁ to secondButton; inj₂ to firstButton; WxColor to Color) hiding (IOInterfaceˢ)
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) --; ComponentEls to Frame)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.writingOOsUsingIOVers4ReaderMethods
open import StateSizedIO.Base
open import GUIgeneric.GUIExample -- hiding (HandlerGUIObject)
open IOInterfaceˢ public
open import Data.Product
-- How many trivial io commands such as putStrLn are ignored in the model
skippedIOcmds : ℕ
skippedIOcmds = 2
data MethodStarted
(f : Frame)
(prop : properties f)
(obj : HandlerObject ∞ f) : Set where
notStarted : MethodStarted f prop obj
started : (m : methodsG f)
(pr : IO' GuiLev1Interface ∞ StateAndGuiObj)
→ MethodStarted f prop obj
data ModelGuiState : Set where
state : (f : Frame)
(prop : properties f)
(obj : HandlerObject ∞ f)
(m : MethodStarted f prop obj)
→ ModelGuiState
modelGuiCommand : (s : ModelGuiState) → Set
modelGuiCommand (state g prop obj notStarted)
= methodsG g
modelGuiCommand (state g prop obj (started m (do' c f)))
= GuiLev1Response c
modelGuiCommand (state g prop obj
(started m (return' a)))
= ⊤
-- modelGuiResponse : Set
-- modelGuiResponse = ⊤
handlerReturnTypeToStateAndGuiObj :
(g : Frame)
(prop : properties g)
(obj : HandlerObject ∞ g)
(res : Σ[ r ∈ returnType g ]
IOObjectˢ GuiLev1Interface handlerInterface ∞ (nextStateFrame g r))
→ StateAndGuiObj
handlerReturnTypeToStateAndGuiObj g prop obj (noChange , obj') = g , prop , obj'
handlerReturnTypeToStateAndGuiObj g prop obj (changedAttributes prop' , obj') = g , prop' , obj'
handlerReturnTypeToStateAndGuiObj g prop obj (changedGUI g' prop' , obj') = g' , prop' , obj'
modelGuiNextProgramStarted : (g : Frame)
(prop : properties g)
(obj : HandlerObject ∞ g)
(m : methodsG g)
→ IO GuiLev1Interface ∞ StateAndGuiObj
modelGuiNextProgramStarted g prop obj m =
fmap ∞ (handlerReturnTypeToStateAndGuiObj g prop obj ) (obj .method m)
modelGuiNextProgramStarted' : (g : Frame)
(prop : properties g)
(obj : HandlerObject ∞ g)
(m : methodsG g)
→ IO' GuiLev1Interface ∞ StateAndGuiObj
modelGuiNextProgramStarted' s prop obj m = force (modelGuiNextProgramStarted s prop obj m)
modelGuiNextaux : (g : Frame)(prop : properties g)(obj : HandlerObject ∞ g)
(m : methodsG g)(pr : IO' GuiLev1Interface ∞ StateAndGuiObj)
(skippedCms : ℕ)
→ ModelGuiState
modelGuiNextaux g prop obj m (do' (putStrLn s) f) (suc n) =
modelGuiNextaux g prop obj m (force (f _)) n
modelGuiNextaux g prop obj m (do' c' f) n =
state g prop obj (started m (do' c' f))
modelGuiNextaux g prop obj m (return' (gNew , propNew , objNew)) n =
state gNew propNew objNew notStarted
modelGuiNext : (s : ModelGuiState)
(c : modelGuiCommand s)
→ ModelGuiState
modelGuiNext (state g prop obj notStarted) m =
modelGuiNextaux g prop obj m (modelGuiNextProgramStarted' g prop obj m) skippedIOcmds
modelGuiNext (state g prop obj (started m (do' c' f))) c =
modelGuiNextaux g prop obj m (force (f c)) skippedIOcmds
modelGuiNext (state g prop obj (started m (return' (gNew , propNew , objNew)))) c =
state gNew propNew objNew notStarted
modelGuiInterface : IOInterfaceˢ
IOStateˢ modelGuiInterface = ModelGuiState
Commandˢ modelGuiInterface = modelGuiCommand
Responseˢ modelGuiInterface s m = ⊤
IOnextˢ modelGuiInterface s m r = modelGuiNext s m
_-gui->_ : (s s' : ModelGuiState ) → Set
s -gui-> s' = IOˢindₚ modelGuiInterface ⊤ s s'
data _-gui->¹_ (s : ModelGuiState )
: (s' : ModelGuiState)→ Set where
step : (c : modelGuiCommand s)
→ s -gui->¹ modelGuiNext s c
nextGui : (s : ModelGuiState)(c : modelGuiCommand s) → ModelGuiState
nextGui s c = modelGuiNext s c
modelToIOprog : (s : ModelGuiState) → Maybe (IO' GuiLev1Interface ∞ StateAndGuiObj)
modelToIOprog (state g prop obj notStarted) = nothing
modelToIOprog (state g prop obj (started s pr)) = just pr
nextGuiProg : (s : ModelGuiState)(c : modelGuiCommand s)
→ Maybe (IO' GuiLev1Interface ∞ StateAndGuiObj)
nextGuiProg s c = modelToIOprog (nextGui s c)
| {
"alphanum_fraction": 0.6348547718,
"avg_line_length": 39.1869918699,
"ext": "agda",
"hexsha": "38c116a2d7b253dbe09365e987de665dc8145e6c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIModel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIModel.agda",
"max_line_length": 123,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIModel.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 1332,
"size": 4820
} |
open import Coinduction using ( ∞ ; ♭ ; ♯_ )
open import Data.Bool using ( Bool ; true ; false )
open import Data.Nat using ( ℕ ; zero ; suc )
open import Data.Natural using ( Natural ; # ; % ; _+_ )
open import Data.Strict using ( Strict ; ! )
open import System.IO.Transducers.List using ( S⊆S&*T )
open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; out* ; _[&]_ ; _⟫_ )
open import System.IO.Transducers.Session using ( I ; Σ ; ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ )
open import System.IO.Transducers.Trace using ( [] ; _∷_ ; _≤_ )
module System.IO.Transducers.Stateful where
-- We apply the usual state transformer construction
-- for a premonoial category: morphisms
-- from T to U with state S are just regular morphisms
-- from T & S to U & S.
-- We are particularly interested in the case where T is I
-- and S is Bytes, since this collapses to Bytes ⇒ U & Bytes,
-- that is, the type for a parser over a byte stream.
-- The type Bytes ⇒ U & Bytes (or more generally * ⟨ B ⟩ ⇒ U & * ⟨ B ⟩)
-- is the type of an iteratee returning U.
-- Lookahead.
-- Lookahead buffers up all input until some output is produced.
-- If the output is (just x), then we discard the buffer, and
-- continue with the process. If the output is nothing, then we
-- return the buffer to the output stream and discard the process.
lookahead¿' : ∀ {T S S'} → (S' ≤ S) → (S' ⇒ ¿ T & S) → (S' ⇒ ¿ T & S)
lookahead¿' {T} as (inp F) = inp (♯ λ a → lookahead¿' {T} (a ∷ as) (♭ F a))
lookahead¿' {T} as (out true P) = out true P
lookahead¿' {T} as (out false P) = out false (out* as done)
lookahead¿' {T} as (done) = inp (♯ λ a → lookahead¿' {T} (a ∷ as) (out a done))
lookahead¿ : ∀ {T S} → (S ⇒ ¿ T & S) → (S ⇒ ¿ T & S)
lookahead¿ {T} = lookahead¿' {T} []
lookahead*' : ∀ {T S S'} → (S' ≤ S) → (S' ⇒ * T & S) → (S' ⇒ * T & S)
lookahead*' {T} as (inp F) = inp (♯ λ a → lookahead*' {T} (a ∷ as) (♭ F a))
lookahead*' {T} as (out true P) = out true P
lookahead*' {T} as (out false P) = out false (out* as done)
lookahead*' {T} as (done) = inp (♯ λ a → lookahead*' {T} (a ∷ as) (out a done))
lookahead* : ∀ {T S} → (S ⇒ * T & S) → (S ⇒ * T & S)
lookahead* {T} = lookahead*' {T} []
-- Iteration structure.
-- Deep breath.
-- This is the trickiest bit of building a stateful transducer
-- library. The idea is to turn a stateful transducer generating
-- an optional U into a stateful transducer generating many Us.
-- We transform the transducer P into one which runs P, then
-- if P returns nothing, then loop P returns nothing and terminates, and
-- if P returns (just x), then loop P finishes running P, then runs loop P again.
-- For example, given a function nat? : ℤ → (Maybe ℕ) which
-- such that nat? n = nothing if n < 0 and just n otherwise,
-- we can define:
-- loop (lookahead (inp (♯ λ n → out (nat? n) done))) :
-- * ⟨ ℤ ⟩ ⇒ * ⟨ ℕ ⟩ & * ⟨ ℤ ⟩
-- This transducer will return the longest non-negative prefix
-- of its input, for example on input just 2 ∷ just 5 ∷ just -3 ∷ ...
-- it will produce output just 2 ∷ just 5 ∷ nothing ∷ just -3 ∷ ...
mutual
-- This is a remarkably obscure piece of code, given that all its doing is wiring...
-- The n : ℕ parameter is the induction scheme that gets it all to pass the
-- termination checker. When loop P is used properly, it is with a contracting
-- P, that is one which produces stricly fewer S tokens than it consumes.
-- Without the n parameter, loop P could produce infinite output if P isn't
-- contracting. For example loop (out (just x) done) would just produce the stream
-- (just x) ∷ (just x) ∷ ... without ever consuming any input. With the n parameter
-- we keep track of how many tokens have been consumed. If we ever hit
-- a loop where n==0, we just run P one last time, then terminate.
-- For example, loop (out (just x) done) just produces the trace (just x) ∷ [].
-- For efficiency, we also pass n around as a Natural, not just an ℕ. When we
-- read input a, we add the weight of a onto n, strictly (in order to
-- avoid potentially keeping a live), discard the previous ℕ and build a new ℕ.
-- It would be nice to have an induction scheme for Natural.
-- It would be a bit nicer to track statically which processes are contractions,
-- and only allow loop P on contraction maps.
-- Note that contractions come up in many contexts with treatments of recursion,
-- for example in Plotkin uniformity, they're called strict maps. They're
-- closely related to the notion of guarded recursion which is used in checking
-- productivity of coinductive functions in Agda.
-- TODO: Find a way to statically enforce contraction and non-expansion maps.
-- Or alternatively, give in and allow coinductive output,
-- and hence lose termination for transducers.
-- TODO: Present this as a trace structure? Show that
-- it has the expected properties on contracting morphisms.
-- loop''' 0 P Q R is equivant to P ⟫ Q ⟫ (done ⟨&⟩ loop R)
loop'''' : ∀ {T T' U S S'} → (Strict Natural) → (U ⇒ S) → (S ⇒ T' & S') → (S' ⇒ ¿ T & S') → (U ⇒ (T' &* T) & S')
loop'''' {T} {T'} (! n) P Q R = loop''' {T} {T'} (% n) n P Q R
loop''' : ∀ {T T' U S S'} → ℕ → Natural → (U ⇒ S) → (S ⇒ T' & S') → (S' ⇒ ¿ T & S') → (U ⇒ (T' &* T) & S')
loop''' {T} {I} m n P Q R = loop' {T} m n (P ⟫ Q) R R
loop''' {T} {Σ V F} {Σ W G} m n (inp P) (inp Q) R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) (♭ P a) (inp Q) R)
loop''' {T} {Σ V F} m n (out a P) (inp Q) R = loop''' {T} {Σ V F} m n P (♭ Q a) R
loop''' {T} {Σ V F} {Σ W G} m n done (inp P) R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) done (♭ P a) R)
loop''' {T} {Σ V F} m n P (out b Q) R = out b (loop''' {T} {♭ F b} m n P Q R)
loop''' {T} {Σ V F} {Σ W G} m n (inp P) done R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) (♭ P a) done R)
loop''' {T} {Σ V F} m n (out a P) done R = out a (loop''' {T} {♭ F a} m n P done R)
loop''' {T} {Σ V F} m n done done R = inp (♯ λ a → out a (loop'''' {T} {♭ F a} (! (n + (V a))) done done R))
-- loop' 0 P Q R is equivalent to P ⟫ Q ⟫ loop R ⟨¿⟩ done
loop'' : ∀ {T U S S'} → (Strict Natural) → (U ⇒ S) → (S ⇒ ¿ T & S') → (S' ⇒ ¿ T & S') → (U ⇒ * T & S')
loop'' {T} (! n) P Q R = loop' {T} (% n) n P Q R
loop' : ∀ {T U S S'} → ℕ → Natural → (U ⇒ S) → (S ⇒ ¿ T & S') → (S' ⇒ ¿ T & S') → (U ⇒ * T & S')
loop' {T} {Σ V F} m n (inp P) (inp Q) R = inp (♯ λ a → loop'' {T} (! (n + V a)) (♭ P a) (inp Q) R)
loop' {T} m n (out a P) (inp Q) R = loop' {T} m n P (♭ Q a) R
loop' {T} {Σ V F} m n done (inp Q) R = inp (♯ λ a → loop'' {T} (! (n + V a)) done (♭ Q a) R)
loop' {T} zero n P (out true Q) R = out true (P ⟫ Q ⟫ S⊆S&*T {T} [&] done)
loop' {T} (suc m) n P (out true Q) R = out true (loop''' {T} {T} m n P Q R)
loop' {T} m n P (out false Q) R = out false (P ⟫ Q)
loop' {T} {Σ V F} m n (inp P) done R = inp (♯ λ a → loop'' {T} (! (n + V a)) (♭ P a) done R)
loop' {T} m n (out a P) done R = loop' {T} m n P (out a done) R
loop' {T} m n done done R = inp (♯ λ a → loop'' {T} (! (n + # 1)) done (out a done) R)
loop : ∀ {T S} → (S ⇒ ¿ T & S) → (S ⇒ * T & S)
loop {T} P = loop' {T} zero (# 0) done P P | {
"alphanum_fraction": 0.5541392728,
"avg_line_length": 54.0072463768,
"ext": "agda",
"hexsha": "371bd65767e27d996f6c68a5c791dee5ac766c37",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Stateful.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Stateful.agda",
"max_line_length": 128,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Stateful.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 2625,
"size": 7453
} |
open import Data.Product using (_×_; _,_)
open import IMP
open import OperationalSemantics
open import Hoare
soundness : ∀{P Q : assn} {c}
→ ⊢[ P ] c [ Q ]
→ ⊨[ P ] c [ Q ]
soundness Skip p Skip = p
soundness Loc p Loc = p
soundness (Comp r r₁) p (Comp z z₁) = soundness r₁ (soundness r p z) z₁
soundness (If r r₁) p (IfTrue x s) = soundness r (p , x) s
soundness (If r r₁) p (IfFalse x s) = soundness r₁ (p , x) s
soundness (While r) p (WhileFalse x₁) = p , x₁
soundness (While r) p (WhileTrue x₁ s s₁) = soundness (While r) (soundness r (p , x₁) s) s₁
soundness (Conseq x₁ r x₂) {s₁} {t} p s = x₂ t (soundness r (x₁ s₁ p) s)
| {
"alphanum_fraction": 0.62403698,
"avg_line_length": 36.0555555556,
"ext": "agda",
"hexsha": "2c1f727eb6240566b5e7bb5cfd67d23865d31bcb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/imp-semantics",
"max_forks_repo_path": "HoareSoundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/imp-semantics",
"max_issues_repo_path": "HoareSoundness.agda",
"max_line_length": 91,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/imp-semantics",
"max_stars_repo_path": "HoareSoundness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z",
"num_tokens": 255,
"size": 649
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Int where
open import Cubical.Data.Int.Base public
open import Cubical.Data.Int.Properties public
| {
"alphanum_fraction": 0.7602339181,
"avg_line_length": 24.4285714286,
"ext": "agda",
"hexsha": "1fadb65857dec9d53d70a4440e7a73c0f5e38541",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Int.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Int.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 39,
"size": 171
} |
-- Andreas, 2016-06-26 issue #2066, reported by Mietek Bak
-- already fixed on stable-2.5
open import Data.Nat using (ℕ ; zero ; suc ; _≟_)
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl)
open import Relation.Nullary using (yes ; no)
data Tm : Set where
var : ℕ → Tm
lam : ℕ → Tm → Tm
app : Tm → Tm → Tm
data _∥_ (x : ℕ) : Tm → Set where
var∥ : ∀ {y} → y ≢ x → x ∥ var y
≡lam∥ : ∀ {t} → x ∥ lam x t
≢lam∥ : ∀ {y t} → x ∥ t → x ∥ lam y t
app∥ : ∀ {t u} → x ∥ t → x ∥ u → x ∥ app t u
_∥?_ : Decidable _∥_
x ∥? var y with y ≟ x
x ∥? var .x | yes refl = no (λ { (var∥ x≢x) → x≢x refl })
x ∥? var y | no y≢x = yes (var∥ y≢x)
x ∥? lam y t with y ≟ x | x ∥? t
x ∥? lam .x t | yes refl | _ = yes ≡lam∥
x ∥? lam y t | no y≢x | yes x∥t = yes (≢lam∥ x∥t)
x ∥? lam y t | no y≢x | no x∦t = no (λ { ≡lam∥ → {!!} ; (≢lam∥ p) → {!!} })
x ∥? app t u with x ∥? t | x ∥? u
x ∥? app t u | yes x∥t | yes x∥u = yes (app∥ x∥t x∥u)
x ∥? app t u | no x∦t | _ = no (λ { (app∥ x∥t x∥u) → x∦t x∥t })
x ∥? app t u | _ | no x∦u = no (λ { (app∥ x∥t x∥u) → x∦u x∥u })
| {
"alphanum_fraction": 0.4918032787,
"avg_line_length": 36.21875,
"ext": "agda",
"hexsha": "25191e3f3b4440f542e68901969789ee671fb839",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/lib-interaction/Issue2066.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/lib-interaction/Issue2066.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/lib-interaction/Issue2066.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 591,
"size": 1159
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.