Search is not available for this dataset
text
string | meta
dict |
---|---|
module Examples.Main where
import Examples.PingPong as PingPong
import Examples.InfiniteBind as InfiniteBind
import Examples.TestSelectiveReceive as SelectiveReceive
import Examples.TestCall as Call
open import Runtime
open import SimulationEnvironment
open import ActorMonad
import IO
open ∞ActorM
pingpongEntry = singleton-env (PingPong.spawner .force)
infinitebindEntry = singleton-env (InfiniteBind.binder .force)
selectiveReceiveEntry = singleton-env SelectiveReceive.spawner
callEntry = singleton-env (Call.calltestActor .force)
main = IO.run (run-env pingpongEntry)
| {
"alphanum_fraction": 0.8434782609,
"avg_line_length": 31.9444444444,
"ext": "agda",
"hexsha": "67f28d50bee844152eb42c2a486f9efd87fb6444",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Examples/Main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Examples/Main.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Examples/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 133,
"size": 575
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax GroupAction | GA
type
* : 0-ary
X : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
neg : * -> * | ⊖_ r40
act : * X -> X | _⊙_ r30
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊖N⊕ᴸ) a |> add (neg (a), a) = unit
(⊖N⊕ᴿ) a |> add (a, neg (a)) = unit
(εU⊙) x : X |> act (unit, x) = x
(⊕A⊙) g h x : X |> act (add(g, h), x) = act (g, act(h, x))
-}
module GroupAction.Signature where
open import SOAS.Context
-- Type declaration
data GAT : Set where
* : GAT
X : GAT
open import SOAS.Syntax.Signature GAT public
open import SOAS.Syntax.Build GAT public
-- Operator symbols
data GAₒ : Set where
unitₒ addₒ negₒ actₒ : GAₒ
-- Term signature
GA:Sig : Signature GAₒ
GA:Sig = sig λ
{ unitₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; negₒ → (⊢₀ *) ⟼₁ *
; actₒ → (⊢₀ *) , (⊢₀ X) ⟼₂ X
}
open Signature GA:Sig public
| {
"alphanum_fraction": 0.5314553991,
"avg_line_length": 19.7222222222,
"ext": "agda",
"hexsha": "efdca085184b7a71bbbbfec15f7cf3fbda12f549",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/GroupAction/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/GroupAction/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/GroupAction/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 492,
"size": 1065
} |
module Typechecker where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
data Fin : Nat -> Set where
f0 : {n : Nat} -> Fin (suc n)
fs : {n : Nat} -> Fin n -> Fin (suc n)
infixl 30 _::_ _++_
data Vect (A : Set) : Nat -> Set where
ε : Vect A zero
_::_ : {n : Nat} -> Vect A n -> A -> Vect A (suc n)
fs^ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n)
fs^ zero i = i
fs^ (suc m) i = fs (fs^ m i)
_++_ : {A : Set}{n m : Nat} -> Vect A n -> Vect A m -> Vect A (m + n)
xs ++ ε = xs
xs ++ (ys :: y) = (xs ++ ys) :: y
data Chop {A : Set} : {n : Nat} -> Vect A n -> Fin n -> Set where
chopGlue : {m n : Nat}(xs : Vect A n)(x : A)(ys : Vect A m) ->
Chop (xs :: x ++ ys) (fs^ m f0)
chop : {A : Set}{n : Nat}(xs : Vect A n)(i : Fin n) -> Chop xs i
chop ε ()
chop (xs :: x) f0 = chopGlue xs x ε
chop (xs :: y) (fs i) with chop xs i
chop (.(xs :: x ++ ys) :: y) (fs .(fs^ m f0))
| chopGlue {m} xs x ys = chopGlue xs x (ys :: y)
infixr 40 _⊃_
data Simp : Set where
o : Simp
_⊃_ : Simp -> Simp -> Simp
infix 20 Simp-_
data Simp-_ : Simp -> Set where
neqo : Simp -> Simp -> Simp- o
neq⊃ : {S T : Simp} -> Simp- (S ⊃ T)
neqT : {S T : Simp}(T' : Simp- T) -> Simp- (S ⊃ T)
neqS : {S : Simp}{T₁ : Simp}(S' : Simp- S)(T₂ : Simp) -> Simp- (S ⊃ T₁)
infixl 60 _∖_
_∖_ : (S : Simp) -> Simp- S -> Simp
.o ∖ neqo S T = S ⊃ T
.(_ ⊃ _) ∖ neq⊃ = o
.(S ⊃ T) ∖ neqT {S}{T} T' = S ⊃ T ∖ T'
.(S ⊃ _) ∖ neqS {S} S' T₂ = S ∖ S' ⊃ T₂
data SimpEq? (S : Simp) : Simp -> Set where
simpSame : SimpEq? S S
simpDiff : (T : Simp- S) -> SimpEq? S (S ∖ T)
simpEq? : (S T : Simp) -> SimpEq? S T
simpEq? o o = simpSame
simpEq? o (S ⊃ T) = simpDiff (neqo S T)
simpEq? (S ⊃ T) o = simpDiff neq⊃
simpEq? (S₁ ⊃ T₁) (S₂ ⊃ T₂) with simpEq? S₁ S₂
simpEq? (S ⊃ T₁) (.S ⊃ T₂) | simpSame with simpEq? T₁ T₂
simpEq? (S ⊃ T) (.S ⊃ .T) | simpSame | simpSame = simpSame
simpEq? (S ⊃ T) (.S ⊃ .(T ∖ T')) | simpSame | simpDiff T' = simpDiff (neqT T')
simpEq? (S ⊃ T₁) (.(S ∖ S') ⊃ T₂) | simpDiff S' = simpDiff (neqS S' T₂)
data Term : Nat -> Set where
var : {n : Nat} -> Fin n -> Term n
app : {n : Nat} -> Term n -> Term n -> Term n
lam : {n : Nat} -> Simp -> Term (suc n) -> Term n
data Good : {n : Nat} -> Vect Simp n -> Simp -> Set where
gVar : {n m : Nat}(Γ : Vect Simp n)(T : Simp)(Δ : Vect Simp m) ->
Good (Γ :: T ++ Δ) T
gApp : {n : Nat}{Γ : Vect Simp n}{S T : Simp} ->
Good Γ (S ⊃ T) -> Good Γ S -> Good Γ T
gLam : {n : Nat}{Γ : Vect Simp n}(S : Simp){T : Simp} ->
Good (Γ :: S) T -> Good Γ (S ⊃ T)
g : {n : Nat}{Γ : Vect Simp n}(T : Simp) -> Good Γ T -> Term n
g T (gVar{n}{m} Γ .T Δ) = var (fs^ m f0)
g T (gApp f s) = app (g _ f) (g _ s)
g .(S ⊃ _) (gLam S t) = lam S (g _ t)
data Bad {n : Nat}(Γ : Vect Simp n) : Set where
bNonFun : Good Γ o -> Term n -> Bad Γ
bMismatch : {S T : Simp}(S' : Simp- S) ->
Good Γ (S ⊃ T) -> Good Γ (S ∖ S') -> Bad Γ
bArg : {S T : Simp} -> Good Γ (S ⊃ T) -> Bad Γ -> Bad Γ
bFun : Bad Γ -> Term n -> Bad Γ
bLam : (S : Simp) -> Bad (Γ :: S) -> Bad Γ
b : {n : Nat}{Γ : Vect Simp n} -> Bad Γ -> Term n
b (bNonFun f s) = app (g o f) s
b (bMismatch _ f s) = app (g _ f) (g _ s)
b (bArg f s) = app (g _ f) (b s)
b (bFun f s) = app (b f) s
b (bLam S t) = lam S (b t)
data TypeCheck? {n : Nat}(Γ : Vect Simp n) : Term n -> Set where
good : (T : Simp)(t : Good Γ T) -> TypeCheck? Γ (g T t)
bad : (t : Bad Γ) -> TypeCheck? Γ (b t)
typeCheck? : {n : Nat}(Γ : Vect Simp n)(t : Term n) -> TypeCheck? Γ t
typeCheck? Γ (var i) with chop Γ i
typeCheck? .(Γ :: T ++ Δ) (var ._) | chopGlue Γ T Δ = good T (gVar Γ T Δ)
typeCheck? Γ (app f s) with typeCheck? Γ f
typeCheck? Γ (app .(g (S ⊃ T) f) s) | good (S ⊃ T) f with typeCheck? Γ s
typeCheck? Γ (app .(g (S ⊃ T) f) .(g S' s))
| good (S ⊃ T) f | good S' s with simpEq? S S'
typeCheck? Γ (app .(g (S ⊃ T) f) .(g S s))
| good (S ⊃ T) f | good .S s | simpSame = good T (gApp f s)
typeCheck? Γ (app .(g (S ⊃ T) f) .(g (S ∖ S') s))
| good (S ⊃ T) f | good .(S ∖ S') s | simpDiff S' = bad (bMismatch S' f s)
typeCheck? Γ (app .(g (S ⊃ T) f) .(b s))
| good (S ⊃ T) f | bad s = bad (bArg f s)
typeCheck? Γ (app .(g o f) s) | good o f = bad (bNonFun f s)
typeCheck? Γ (app .(b f) s) | bad f = bad (bFun f s)
typeCheck? Γ (lam S t) with typeCheck? (Γ :: S) t
typeCheck? Γ (lam S .(g T t)) | good T t = good (S ⊃ T) (gLam S t)
typeCheck? Γ (lam S .(b t)) | bad t = bad (bLam S t) | {
"alphanum_fraction": 0.4732570239,
"avg_line_length": 35.0729927007,
"ext": "agda",
"hexsha": "51669df557a25e5f6a1bba4eed060d6ba3519c9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/vfl/Typechecker.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/vfl/Typechecker.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/vfl/Typechecker.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 2121,
"size": 4805
} |
{-# OPTIONS --without-K #-}
open import Base
module Homotopy.VanKampen.Guide where
open import Homotopy.Truncation
open import Homotopy.Connected
record legend i (city : Set i) : Set (suc i) where
constructor leg_,_,_
field
name : Set i
loc : name → city
all-listed : ∀ c → [ hfiber loc c ]
id-legend : ∀ {i} (A : Set i) → legend i A
id-legend A = leg A , id A , λ x → proj $ x , refl
private
module Book {i} {city : Set i} {l : legend i city} where
open legend l
private
data #guide : Set i where
#point : name → #guide
guide : Set i
guide = #guide
point : name → guide
point = #point
postulate -- HIT
route : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point n₁ ≡ point n₂
guide-rec : ∀ {l} (P : guide → Set l)
(point* : (n : name) → P (point n))
(route* : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂)
→ transport P (route n₁ n₂ p) (point* n₁) ≡ point* n₂)
→ (x : guide) → P x
guide-rec P point* route* (#point n) = point* n
postulate -- HIT
guide-β-route : ∀ {l} (P : guide → Set l)
(point* : (n : name) → P (point n))
(route* : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂)
→ transport P (route n₁ n₂ p) (point* n₁) ≡ point* n₂)
n₁ n₂ (p : loc n₁ ≡ loc n₂)
→ apd (guide-rec {l} P point* route*) (route n₁ n₂ p)
≡ route* n₁ n₂ p
guide-rec-nondep : ∀ {l} (P : Set l) (point* : name → P)
(route* : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point* n₁ ≡ point* n₂)
→ (guide → P)
guide-rec-nondep P point* route* (#point n) = point* n
postulate -- HIT
guide-β-route-nondep : ∀ {l} (P : Set l) (point* : name → P)
(route* : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point* n₁ ≡ point* n₂)
n₁ n₂ (p : loc n₁ ≡ loc n₂)
→ ap (guide-rec-nondep P point* route*) (route n₁ n₂ p)
≡ route* n₁ n₂ p
open Book public hiding (guide)
module _ {i} {city : Set i} (l : legend i city) where
open legend l
guide : Set i
guide = Book.guide {i} {city} {l}
visit : guide → city
visit = guide-rec-nondep city loc (λ _ _ p → p)
visit-β-route : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂) → ap visit (route n₁ n₂ p) ≡ p
visit-β-route = guide-β-route-nondep city loc (λ _ _ p → p)
private
drawn-as-one : ∀ c → is-contr (π₀ $ hfiber visit c)
drawn-as-one c = []-extend-nondep
⦃ is-connected-is-prop ⟨0⟩ ⦄
( λ {(n₁ , p₁) → proj (point n₁ , p₁) , π₀-extend
⦃ λ _ → ≡-is-set $ π₀-is-set $ hfiber visit c ⦄
( uncurry $ guide-rec
(λ x → ∀ p₂ → proj (x , p₂) ≡ proj (point n₁ , p₁))
(λ n₂ p₂ → ap proj let p₃ = p₂ ∘ ! p₁ in
Σ-eq (route n₂ n₁ p₃) $
transport (λ x → visit x ≡ c) (route n₂ n₁ p₃) p₂
≡⟨ trans-app≡cst visit c (route n₂ n₁ p₃) p₂ ⟩
! (ap visit (route n₂ n₁ p₃)) ∘ p₂
≡⟨ ap (λ x → ! x ∘ p₂) $ visit-β-route n₂ n₁ p₃ ⟩
! (p₂ ∘ ! p₁) ∘ p₂
≡⟨ ap (λ x → x ∘ p₂) $ opposite-concat p₂ (! p₁) ⟩
(! (! p₁) ∘ ! p₂) ∘ p₂
≡⟨ concat-assoc (! (! p₁)) (! p₂) p₂ ⟩
! (! p₁) ∘ (! p₂ ∘ p₂)
≡⟨ ap (λ x → ! (! p₁) ∘ x) $ opposite-left-inverse p₂ ⟩
! (! p₁) ∘ refl
≡⟨ refl-right-unit $ ! (! p₁) ⟩
! (! p₁)
≡⟨ opposite-opposite p₁ ⟩∎
p₁
∎)
(λ _ _ _ → funext λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _))})
(all-listed c)
private
visit-fiber-rec′ : ∀ {j} (P : city → Set j)
(h₀-point : ∀ n → P (loc n))
(h₁-route : ∀ n₁ n₂ r → transport P r (h₀-point n₁) ≡ h₀-point n₂)
→ (∀ c → hfiber visit c → P c)
visit-fiber-rec′ P h₀-p h₁-r c (pt , p₁) =
transport P p₁ $ guide-rec (P ◯ visit) h₀-p
(λ n₁ n₂ r →
transport (P ◯ visit) (route n₁ n₂ r) (h₀-p n₁)
≡⟨ ! $ trans-ap P visit (route n₁ n₂ r) $ h₀-p n₁ ⟩
transport P (ap visit $ route n₁ n₂ r) (h₀-p n₁)
≡⟨ ap (λ x → transport P x $ h₀-p n₁) $ visit-β-route n₁ n₂ r ⟩
transport P r (h₀-p n₁)
≡⟨ h₁-r n₁ n₂ r ⟩∎
h₀-p n₂
∎) pt
visit-fiber-rec : ∀ {j} (P : city → Set j)
⦃ _ : ∀ (c : city) → is-set $ P c ⦄
(h₀-point : ∀ n → P (loc n))
(h₁-route : ∀ n₁ n₂ r → transport P r (h₀-point n₁) ≡ h₀-point n₂)
→ (∀ c → P c)
visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r c =
π₀-extend-nondep ⦃ P-is-set c ⦄
(visit-fiber-rec′ P h₀-p h₁-r c)
(π₁ $ drawn-as-one c)
visit-fiber-β-loc : ∀ {j} (P : city → Set j)
⦃ P-is-set : ∀ (c : city) → is-set $ P c ⦄
(h₀-p : ∀ n → P (loc n))
(h₁-r : ∀ n₁ n₂ r → transport P r (h₀-p n₁) ≡ h₀-p n₂)
→ ∀ n → visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r (loc n) ≡ h₀-p n
visit-fiber-β-loc P ⦃ P-is-set ⦄ h₀-p h₁-r n =
visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r (loc n)
≡⟨ ap (π₀-extend-nondep ⦃ P-is-set $ loc n ⦄ (visit-fiber-rec′ P h₀-p h₁-r $ loc n))
$ ! $ π₂ (drawn-as-one $ loc n) (proj $ point n , refl) ⟩∎
h₀-p n
∎
private
loc-fiber-rec′ : ∀ {j} (P : city → Set j)
(h₀-point : ∀ n → P (loc n))
→ (∀ c → hfiber loc c → P c)
loc-fiber-rec′ P h₀-p c (n , p) = transport P p (h₀-p n)
loc-fiber-rec : ∀ {j} (P : city → Set j)
⦃ _ : ∀ c → is-prop $ P c ⦄
(h₀-point : ∀ n → P (loc n))
→ (∀ c → P c)
loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p c = []-extend-nondep ⦃ P-is-prop c ⦄
(loc-fiber-rec′ P h₀-p c) (all-listed c)
loc-fiber-β-loc : ∀ {j} (P : city → Set j)
⦃ P-is-prop : ∀ (c : city) → is-prop $ P c ⦄
(h₀-p : ∀ n → P (loc n))
→ ∀ n → loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p (loc n) ≡ h₀-p n
loc-fiber-β-loc P ⦃ P-is-prop ⦄ h₀-p n =
loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p (loc n)
≡⟨ ap ([]-extend-nondep ⦃ P-is-prop $ loc n ⦄ (loc-fiber-rec′ P h₀-p $ loc n))
$ prop-has-all-paths []-is-prop (all-listed $ loc n) $ proj $ n , refl ⟩∎
h₀-p n
∎
-- Did I preserve the computational contents for identity legend?
private
module IdTest {i} {city : Set i} where
open legend (id-legend city)
visit-fiber-β-id : ∀ {j} (P : city → Set j)
⦃ P-is-set : ∀ (c : city) → is-set $ P c ⦄
(h₀-p : ∀ n → P n)
(h₁-r : ∀ n₁ n₂ r → transport P r (h₀-p n₁) ≡ h₀-p n₂)
→ ∀ n → visit-fiber-rec (id-legend city) P ⦃ P-is-set ⦄ h₀-p h₁-r n ≡ h₀-p n
visit-fiber-β-id P ⦃ P-is-set ⦄ h₀-p h₁-r n = refl
loc-fiber-β-id : ∀ {j} (P : city → Set j)
⦃ P-is-prop : ∀ (c : city) → is-prop $ P c ⦄
(h₀-p : ∀ n → P n)
→ ∀ n → loc-fiber-rec (id-legend city) P ⦃ P-is-prop ⦄ h₀-p n ≡ h₀-p n
loc-fiber-β-id P ⦃ P-is-prop ⦄ h₀-p n = refl
| {
"alphanum_fraction": 0.4853425067,
"avg_line_length": 35.5638297872,
"ext": "agda",
"hexsha": "315008bbec41dc6135d8089597aa90339d9d0d95",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/VanKampen/Guide.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/VanKampen/Guide.agda",
"max_line_length": 90,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/VanKampen/Guide.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2726,
"size": 6686
} |
{-# OPTIONS --profile=notclose #-}
| {
"alphanum_fraction": 0.6285714286,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "13d249f7b3d88fbadd843df4df4ae2b5cae1fba8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Fail/Issue5781a.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Fail/Issue5781a.agda",
"max_line_length": 34,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Fail/Issue5781a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 8,
"size": 35
} |
{-
Descriptor language for easily defining relational structures
-}
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Structures.Relational.Macro where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Data.Sigma
open import Cubical.Structures.Relational.Constant
open import Cubical.Structures.Relational.Function
open import Cubical.Structures.Relational.Maybe
open import Cubical.Structures.Relational.Parameterized
open import Cubical.Structures.Relational.Pointed
open import Cubical.Structures.Relational.Product
open import Cubical.Structures.Macro
open import Cubical.Structures.Maybe
data PosRelDesc (ℓ : Level) : Typeω where
-- constant structure: X ↦ A
constant : ∀ {ℓ'} → hSet ℓ' → PosRelDesc ℓ
-- pointed structure: X ↦ X
var : PosRelDesc ℓ
-- product of structures S,T : X ↦ (S X × T X)
_,_ : PosRelDesc ℓ → PosRelDesc ℓ → PosRelDesc ℓ
-- Maybe on a structure S: X ↦ Maybe (S X)
maybe : PosRelDesc ℓ → PosRelDesc ℓ
data RelDesc (ℓ : Level) : Typeω where
-- constant structure: X ↦ A
constant : ∀ {ℓ'} → hSet ℓ' → RelDesc ℓ
-- pointed structure: X ↦ X
var : RelDesc ℓ
-- product of structures S,T : X ↦ (S X × T X)
_,_ : RelDesc ℓ → RelDesc ℓ → RelDesc ℓ
-- structure S parameterized by constant A : X ↦ (A → S X)
param : ∀ {ℓ'} → (A : Type ℓ') → RelDesc ℓ → RelDesc ℓ
-- function from positive structure S to T: X ↦ (S X → T X)
function+ : PosRelDesc ℓ → RelDesc ℓ → RelDesc ℓ
-- Maybe on a structure S: X ↦ Maybe (S X)
maybe : RelDesc ℓ → RelDesc ℓ
infixr 4 _,_
posRelDesc→TranspDesc : ∀ {ℓ} → PosRelDesc ℓ → TranspDesc ℓ
posRelDesc→TranspDesc (constant A) = constant (A .fst)
posRelDesc→TranspDesc var = var
posRelDesc→TranspDesc (d₀ , d₁) = posRelDesc→TranspDesc d₀ , posRelDesc→TranspDesc d₁
posRelDesc→TranspDesc (maybe d) = maybe (posRelDesc→TranspDesc d)
posRelDesc→RelDesc : ∀ {ℓ} → PosRelDesc ℓ → RelDesc ℓ
posRelDesc→RelDesc (constant A) = constant A
posRelDesc→RelDesc var = var
posRelDesc→RelDesc (d₀ , d₁) = posRelDesc→RelDesc d₀ , posRelDesc→RelDesc d₁
posRelDesc→RelDesc (maybe d) = maybe (posRelDesc→RelDesc d)
relDesc→Desc : ∀ {ℓ} → RelDesc ℓ → Desc ℓ
relDesc→Desc (constant A) = constant (A .fst)
relDesc→Desc var = var
relDesc→Desc (d₀ , d₁) = relDesc→Desc d₀ , relDesc→Desc d₁
relDesc→Desc (param A d) = function+ (constant A) (relDesc→Desc d)
relDesc→Desc (function+ d₀ d₁) = function+ (posRelDesc→TranspDesc d₀) (relDesc→Desc d₁)
relDesc→Desc (maybe d) = maybe (relDesc→Desc d)
{- Universe level calculations -}
posRelMacroStrLevel : ∀ {ℓ} → PosRelDesc ℓ → Level
posRelMacroStrLevel d = transpMacroLevel (posRelDesc→TranspDesc d)
relMacroStrLevel : ∀ {ℓ} → RelDesc ℓ → Level
relMacroStrLevel d = macroStrLevel (relDesc→Desc d)
posRelMacroRelLevel : ∀ {ℓ} → PosRelDesc ℓ → Level
posRelMacroRelLevel (constant {ℓ'} A) = ℓ'
posRelMacroRelLevel {ℓ} var = ℓ
posRelMacroRelLevel (d₀ , d₁) = ℓ-max (posRelMacroRelLevel d₀) (posRelMacroRelLevel d₁)
posRelMacroRelLevel (maybe d) = posRelMacroRelLevel d
relMacroRelLevel : ∀ {ℓ} → RelDesc ℓ → Level
relMacroRelLevel (constant {ℓ'} A) = ℓ'
relMacroRelLevel {ℓ} var = ℓ
relMacroRelLevel (d₀ , d₁) = ℓ-max (relMacroRelLevel d₀) (relMacroRelLevel d₁)
relMacroRelLevel (param {ℓ'} A d) = ℓ-max ℓ' (relMacroRelLevel d)
relMacroRelLevel (function+ d₀ d₁) =
ℓ-max (posRelMacroStrLevel d₀) (ℓ-max (posRelMacroRelLevel d₀) (relMacroRelLevel d₁))
relMacroRelLevel (maybe d) = relMacroRelLevel d
{- Definition of structure -}
PosRelMacroStructure : ∀ {ℓ} (d : PosRelDesc ℓ) → Type ℓ → Type (posRelMacroStrLevel d)
PosRelMacroStructure d = TranspMacroStructure (posRelDesc→TranspDesc d)
RelMacroStructure : ∀ {ℓ} (d : RelDesc ℓ) → Type ℓ → Type (relMacroStrLevel d)
RelMacroStructure d = MacroStructure (relDesc→Desc d)
{- Notion of structured relation defined by a descriptor -}
PosRelMacroRelStr : ∀ {ℓ} (d : PosRelDesc ℓ) → StrRel {ℓ} (PosRelMacroStructure d) (posRelMacroRelLevel d)
PosRelMacroRelStr (constant A) = ConstantRelStr A
PosRelMacroRelStr var = PointedRelStr
PosRelMacroRelStr (d₀ , d₁) = ProductRelStr (PosRelMacroRelStr d₀) (PosRelMacroRelStr d₁)
PosRelMacroRelStr (maybe d) = MaybeRelStr (PosRelMacroRelStr d)
RelMacroRelStr : ∀ {ℓ} (d : RelDesc ℓ) → StrRel {ℓ} (RelMacroStructure d) (relMacroRelLevel d)
RelMacroRelStr (constant A) = ConstantRelStr A
RelMacroRelStr var = PointedRelStr
RelMacroRelStr (d₀ , d₁) = ProductRelStr (RelMacroRelStr d₀) (RelMacroRelStr d₁)
RelMacroRelStr (param A d) = ParamRelStr A (λ _ → RelMacroRelStr d)
RelMacroRelStr (function+ d₀ d₁) =
FunctionRelStr (PosRelMacroRelStr d₀) (RelMacroRelStr d₁)
RelMacroRelStr (maybe d) = MaybeRelStr (RelMacroRelStr d)
{- Proof that structure induced by descriptor is suitable or positive -}
posRelMacroSuitableRel : ∀ {ℓ} (d : PosRelDesc ℓ) → SuitableStrRel _ (PosRelMacroRelStr d)
posRelMacroSuitableRel (constant A) = constantSuitableRel A
posRelMacroSuitableRel var = pointedSuitableRel
posRelMacroSuitableRel (d₀ , d₁) =
productSuitableRel (posRelMacroSuitableRel d₀) (posRelMacroSuitableRel d₁)
posRelMacroSuitableRel (maybe d) = maybeSuitableRel (posRelMacroSuitableRel d)
posRelMacroPositiveRel : ∀ {ℓ} (d : PosRelDesc ℓ) → PositiveStrRel (posRelMacroSuitableRel d)
posRelMacroPositiveRel (constant A) = constantPositiveRel A
posRelMacroPositiveRel var = pointedPositiveRel
posRelMacroPositiveRel (d₀ , d₁) =
productPositiveRel (posRelMacroPositiveRel d₀) (posRelMacroPositiveRel d₁)
posRelMacroPositiveRel (maybe d) = maybePositiveRel (posRelMacroPositiveRel d)
relMacroSuitableRel : ∀ {ℓ} (d : RelDesc ℓ) → SuitableStrRel _ (RelMacroRelStr d)
relMacroSuitableRel (constant A) = constantSuitableRel A
relMacroSuitableRel var = pointedSuitableRel
relMacroSuitableRel (d₀ , d₁) = productSuitableRel (relMacroSuitableRel d₀) (relMacroSuitableRel d₁)
relMacroSuitableRel (param A d) = paramSuitableRel A (λ _ → relMacroSuitableRel d)
relMacroSuitableRel (function+ d₀ d₁) =
functionSuitableRel (posRelMacroSuitableRel d₀) (posRelMacroPositiveRel d₀) (relMacroSuitableRel d₁)
relMacroSuitableRel (maybe d) = maybeSuitableRel (relMacroSuitableRel d)
{- Proof that structured relations and equivalences agree -}
posRelMacroMatchesEquiv : ∀ {ℓ} (d : PosRelDesc ℓ)
→ StrRelMatchesEquiv (PosRelMacroRelStr d) (EquivAction→StrEquiv (transpMacroAction (posRelDesc→TranspDesc d)))
posRelMacroMatchesEquiv (constant A) _ _ _ = idEquiv _
posRelMacroMatchesEquiv var _ _ _ = idEquiv _
posRelMacroMatchesEquiv (d₀ , d₁) =
productRelMatchesTransp
(PosRelMacroRelStr d₀) (transpMacroAction (posRelDesc→TranspDesc d₀))
(PosRelMacroRelStr d₁) (transpMacroAction (posRelDesc→TranspDesc d₁))
(posRelMacroMatchesEquiv d₀) (posRelMacroMatchesEquiv d₁)
posRelMacroMatchesEquiv (maybe d) =
maybeRelMatchesTransp
(PosRelMacroRelStr d) (transpMacroAction (posRelDesc→TranspDesc d))
(posRelMacroMatchesEquiv d)
relMacroMatchesEquiv : ∀ {ℓ} (d : RelDesc ℓ)
→ StrRelMatchesEquiv (RelMacroRelStr d) (MacroEquivStr (relDesc→Desc d))
relMacroMatchesEquiv (constant A) = constantRelMatchesEquiv A
relMacroMatchesEquiv var = pointedRelMatchesEquiv
relMacroMatchesEquiv (d₁ , d₂) =
productRelMatchesEquiv
(RelMacroRelStr d₁) (RelMacroRelStr d₂)
(relMacroMatchesEquiv d₁) (relMacroMatchesEquiv d₂)
relMacroMatchesEquiv (param A d) =
paramRelMatchesEquiv A (λ _ → RelMacroRelStr d) (λ _ → relMacroMatchesEquiv d)
relMacroMatchesEquiv (function+ d₀ d₁) =
functionRelMatchesEquiv+
(PosRelMacroRelStr d₀) (transpMacroAction (posRelDesc→TranspDesc d₀))
(RelMacroRelStr d₁) (MacroEquivStr (relDesc→Desc d₁))
(posRelMacroMatchesEquiv d₀) (relMacroMatchesEquiv d₁)
relMacroMatchesEquiv (maybe d) =
maybeRelMatchesEquiv (RelMacroRelStr d) (relMacroMatchesEquiv d)
-- Module for easy importing
module RelMacro ℓ (d : RelDesc ℓ) where
relation = RelMacroRelStr d
suitable = relMacroSuitableRel d
matches = relMacroMatchesEquiv d
open Macro ℓ (relDesc→Desc d) public
| {
"alphanum_fraction": 0.7625598821,
"avg_line_length": 44.0054054054,
"ext": "agda",
"hexsha": "2d7ee9a9bffa53f5dd21125725858a028242c8d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Macro.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2708,
"size": 8141
} |
------------------------------------------------------------------------------
-- Totality properties respect to OrdList
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.SortList.Properties.Totality.OrdListI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.List.Type
open import FOTC.Data.Nat.Type
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Program.SortList.Properties.Totality.BoolI
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- If (i ∷ is) is ordered then 'is' is ordered.
subList-OrdList : ∀ {i is} → N i → ListN is → OrdList (i ∷ is) → OrdList is
subList-OrdList {i} Ni lnnil LOi∷is = ordList-[]
subList-OrdList {i} Ni (lncons {j} {js} Nj Ljs) LOi∷j∷js =
&&-list₂-t₂ (le-ItemList-Bool Ni (lncons Nj Ljs))
(ordList-Bool (lncons Nj Ljs))
(trans (sym (ordList-∷ i (j ∷ js))) LOi∷j∷js)
++-OrdList-helper : ∀ {item is js} → N item → ListN is → ListN js →
≤-ItemList item is →
≤-ItemList item js →
≤-Lists is js →
≤-ItemList item (is ++ js)
++-OrdList-helper {item} {js = js} _ lnnil _ _ item≤js _ =
subst (≤-ItemList item) (sym (++-leftIdentity js)) item≤js
++-OrdList-helper {item} {js = js} Nitem
(lncons {i} {is} Ni LNis) LNjs item≤i∷is item≤js i∷is≤js =
le-ItemList item ((i ∷ is) ++ js)
≡⟨ subst (λ t → le-ItemList item ((i ∷ is) ++ js) ≡ le-ItemList item t)
(++-∷ i is js)
refl
⟩
le-ItemList item (i ∷ (is ++ js))
≡⟨ le-ItemList-∷ item i (is ++ js) ⟩
le item i && le-ItemList item (is ++ js)
≡⟨ subst (λ t → le item i && le-ItemList item (is ++ js) ≡
t && le-ItemList item (is ++ js))
(&&-list₂-t₁ (le-Bool Nitem Ni)
(le-ItemList-Bool Nitem LNis)
(trans (sym (le-ItemList-∷ item i is)) item≤i∷is))
refl
⟩
true && le-ItemList item (is ++ js)
≡⟨ subst (λ t → true && le-ItemList item (is ++ js) ≡ true && t)
(++-OrdList-helper Nitem LNis LNjs lemma₁ item≤js lemma₂)
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
where
lemma₁ : le-ItemList item is ≡ true
lemma₁ = &&-list₂-t₂ (le-Bool Nitem Ni)
(le-ItemList-Bool Nitem LNis)
(trans (sym (le-ItemList-∷ item i is)) item≤i∷is)
lemma₂ : le-Lists is js ≡ true
lemma₂ = &&-list₂-t₂ (le-ItemList-Bool Ni LNjs)
(le-Lists-Bool LNis LNjs)
(trans (sym (le-Lists-∷ i is js)) i∷is≤js)
| {
"alphanum_fraction": 0.5130434783,
"avg_line_length": 39.3037974684,
"ext": "agda",
"hexsha": "7d63e4a17ffddddc7b7e3837ace4a1d477f8132a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdListI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdListI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdListI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 947,
"size": 3105
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This module contains properties that are only about the behavior of the handlers, nothing to do
-- with system state
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.Types
open import LibraBFT.Hash
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Util
module LibraBFT.Impl.Consensus.RoundManager.Properties where
open import LibraBFT.Impl.Consensus.RoundManager
voteForCurrentEpoch : ∀ {ts pm pre vm αs}
→ (SendVote vm αs) ∈ LBFT-outs (processProposalMsg ts pm) pre
→ (₋rmEC pre) ^∙ rmEpoch ≡ vm ^∙ vmVote ∙ vEpoch
voteForCurrentEpoch (here refl) = refl
-- The quorum certificates sent in SyncInfo with votes are those from the peer state
procPMCerts≡ : ∀ {ts pm pre vm αs}
→ (SendVote vm αs) ∈ LBFT-outs (processProposalMsg ts pm) pre
→ vm ^∙ vmSyncInfo ≡ SyncInfo∙new (₋rmHighestQC pre) (₋rmHighestCommitQC pre)
procPMCerts≡ (there x) = ⊥-elim (¬Any[] x) -- processProposalMsg sends only one vote
procPMCerts≡ (here refl) = refl
| {
"alphanum_fraction": 0.7185714286,
"avg_line_length": 41.1764705882,
"ext": "agda",
"hexsha": "c24db70067cf91820848fe104fdd026aa06f69bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Consensus/RoundManager/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Consensus/RoundManager/Properties.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Consensus/RoundManager/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 400,
"size": 1400
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Cones where
open import Level
open import Categories.Support.PropositionalEquality
open import Categories.Category
open import Categories.Functor hiding (_∘_; _≡_; equiv; id; assoc; identityˡ; identityʳ; ∘-resp-≡)
open import Categories.Cone
record ConeMorphism {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} {F : Functor J C} (c₁ c₂ : Cone F) : Set (ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where
module c₁ = Cone c₁
module c₂ = Cone c₂
module C = Category C
module J = Category J
open C
field
f : C [ c₁.N , c₂.N ]
.commute : ∀ {X} → c₁.ψ X ≡ c₂.ψ X ∘ f
Cones : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) → Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) (ℓ ⊔ e ⊔ o′ ⊔ ℓ′) e
Cones {C = C} F = record
{ Obj = Obj′
; _⇒_ = Hom′
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = record { f = id; commute = Equiv.sym identityʳ }
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; equiv = record
{ refl = Equiv.refl
; sym = Equiv.sym
; trans = Equiv.trans
}
; ∘-resp-≡ = ∘-resp-≡
}
where
open Category C
open Cone
open ConeMorphism
open Functor F
infixr 9 _∘′_
infix 4 _≡′_
Obj′ = Cone F
Hom′ : Obj′ → Obj′ → Set _
Hom′ = ConeMorphism
_≡′_ : ∀ {A B} → Hom′ A B → Hom′ A B → Set _
F ≡′ G = f F ≡ f G
_∘′_ : ∀ {A B C} → Hom′ B C → Hom′ A B → Hom′ A C
_∘′_ {A} {B} {C} F G = record
{ f = f F ∘ f G
; commute = commute′
}
where
.commute′ : ∀ {X} → ψ A X ≡ ψ C X ∘ (f F ∘ f G)
commute′ {X} =
begin
ψ A X
↓⟨ ConeMorphism.commute G ⟩
ψ B X ∘ f G
↓⟨ ∘-resp-≡ˡ (ConeMorphism.commute F) ⟩
(ψ C X ∘ f F) ∘ f G
↓⟨ assoc ⟩
ψ C X ∘ (f F ∘ f G)
∎
where
open HomReasoning
-- Equality of cone morphisms is equality of the underlying arrows in the
-- base category, but the same is not (directly) true of the heterogeneous
-- equality. These functions make the equivalence manifest.
module Heteroconic {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where
open Heterogeneous C
module ▵ = Heterogeneous (Cones F)
open ▵ public using () renaming (_∼_ to _▵̃_)
open ConeMorphism using () renaming (f to ⌞_⌝)
demote-∼ : ∀ {K L K′ L′} {f : ConeMorphism K L} {g : ConeMorphism K′ L′}
→ f ▵̃ g → ⌞ f ⌝ ∼ ⌞ g ⌝
demote-∼ (≡⇒∼ y) = Heterogeneous.≡⇒∼ y
-- XXX probably need another argument or something to nail things down
-- promote-∼ : ∀ {K L K′ L′} {f : ConeMorphism {C = C} K L} {g : ConeMorphism {C = C} K′ L′}
-- → ⌞ f ⌝ ∼ ⌞ g ⌝ → f ▵̃ g
-- promote-∼ h = {!h!}
-- The category of cones comes with an equivalence of objects, which can be
-- used to float morphisms from one to another. Really it should have a
-- setoid of objects, but we're not equipped for that.
module Float {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where
module H = Heterogeneous C
open H hiding (float₂; floatˡ; floatʳ; floatˡ-resp-trans; float₂-breakdown-lr; float₂-breakdown-rl)
private
lemma₁ : ∀ (A B : Cone F) {f₁ f₂ : C [ Cone.N A , Cone.N B ]} (f₁≣f₂ : f₁ ≣ f₂) .(pf₁ : ∀ {X} → C [ Cone.ψ A X ≡ C [ Cone.ψ B X ∘ f₁ ] ]) .(pf₂ : ∀ {X} → C [ Cone.ψ A X ≡ C [ Cone.ψ B X ∘ f₂ ] ]) → _≣_ {A = ConeMorphism A B} record { f = f₁ ; commute = pf₁ } record { f = f₂ ; commute = pf₂ }
lemma₁ A B ≣-refl = λ ._ ._ → ≣-refl
morphism-determines-cone-morphism-≣ : ∀ {A B} {m m′ : Cones F [ A , B ]} → ConeMorphism.f m ≣ ConeMorphism.f m′ → m ≣ m′
morphism-determines-cone-morphism-≣ {A} {B} {m} {m′} pf = lemma₁ A B pf (ConeMorphism.commute m) (ConeMorphism.commute m′)
float₂ : ∀ {A A′ B B′} → F [ A ≜ A′ ] → F [ B ≜ B′ ] → Cones F [ A , B ] → Cones F [ A′ , B′ ]
float₂ A≜A′ B≜B′ κ = record
{ f = H.float₂ (N-≣ A≜A′) (N-≣ B≜B′) f
; commute = λ {j} → ∼⇒≡ (trans (sym (ψ-≡ A≜A′ j)) (trans (≡⇒∼ commute) (∘-resp-∼ (ψ-≡ B≜B′ j) (float₂-resp-∼ (N-≣ A≜A′) (N-≣ B≜B′)))))
}
where
open ConeMorphism κ
open ConeOver._≜_
floatˡ : ∀ {A B B′} → F [ B ≜ B′ ] → Cones F [ A , B ] → Cones F [ A , B′ ]
floatˡ {A = A} B≜B′ κ = record
{ f = H.floatˡ N-≣ f
; commute = λ {j} → C.Equiv.trans commute (∼⇒≡ (∘-resp-∼ (ψ-≡ j) (floatˡ-resp-∼ N-≣)))
}
where
module A = Cone A
open ConeMorphism κ
open ConeOver._≜_ B≜B′
floatˡ-resp-refl : ∀ {A B} (κ : Cones F [ A , B ]) → floatˡ {A} {B} (ConeOver.≜-refl F) κ ≣ κ
floatˡ-resp-refl f = ≣-refl
floatˡ-resp-trans : ∀ {A B B′ B″} (B≜B′ : F [ B ≜ B′ ]) (B′≜B″ : F [ B′ ≜ B″ ]) (κ : Cones F [ A , B ]) → floatˡ {A} {B} {B″} (ConeOver.≜-trans F B≜B′ B′≜B″) κ ≣ floatˡ {A} {B′} {B″} B′≜B″ (floatˡ {A} {B} {B′} B≜B′ κ)
floatˡ-resp-trans {A} {B} {B′} {B″} B≜B′ B′≜B″ κ = morphism-determines-cone-morphism-≣ {A} {B″} {floatˡ {A} {B} {B″} (ConeOver.≜-trans F B≜B′ B′≜B″) κ} {floatˡ {A} {B′} {B″} B′≜B″ (floatˡ {A} {B} {B′} B≜B′ κ)} (H.floatˡ-resp-trans (N-≣ B≜B′) (N-≣ B′≜B″) f)
where
module A = Cone A
open ConeOver._≜_
open ConeMorphism κ
floatʳ : ∀ {A A′ B} → F [ A ≜ A′ ] → Cones F [ A , B ] → Cones F [ A′ , B ]
floatʳ {B = B} A≜A′ κ = record
{ f = ≣-subst (λ X → C [ X , B.N ]) N-≣ f
; commute = λ {j} → ∼⇒≡ (trans (sym (ψ-≡ j)) (trans (≡⇒∼ commute) (∘-resp-∼ʳ (floatʳ-resp-∼ N-≣))))
}
where
module B = Cone B
open ConeMorphism κ
open ConeOver._≜_ A≜A′
float₂-breakdown-lr : ∀ {A A′ B B′ : Cone F} (A≜A′ : F [ A ≜ A′ ]) (B≜B′ : F [ B ≜ B′ ]) (κ : Cones F [ A , B ]) → float₂ A≜A′ B≜B′ κ ≣ floatˡ B≜B′ (floatʳ A≜A′ κ)
float₂-breakdown-lr {A′ = A′} {B′ = B′} A≜A′ B≜B′ κ = morphism-determines-cone-morphism-≣ {A = A′} {B′} {float₂ A≜A′ B≜B′ κ} {floatˡ B≜B′ (floatʳ A≜A′ κ)} (H.float₂-breakdown-lr (N-≣ A≜A′) (N-≣ B≜B′) (ConeMorphism.f κ))
where open ConeOver._≜_
float₂-breakdown-rl : ∀ {A A′ B B′ : Cone F} (A≜A′ : F [ A ≜ A′ ]) (B≜B′ : F [ B ≜ B′ ]) (κ : Cones F [ A , B ]) → float₂ A≜A′ B≜B′ κ ≣ floatʳ A≜A′ (floatˡ B≜B′ κ)
float₂-breakdown-rl {A′ = A′} {B′ = B′} A≜A′ B≜B′ κ = morphism-determines-cone-morphism-≣ {A = A′} {B′} {float₂ A≜A′ B≜B′ κ} {floatʳ A≜A′ (floatˡ B≜B′ κ)} (H.float₂-breakdown-rl (N-≣ A≜A′) (N-≣ B≜B′) (ConeMorphism.f κ))
where open ConeOver._≜_
| {
"alphanum_fraction": 0.5288980629,
"avg_line_length": 40.1146496815,
"ext": "agda",
"hexsha": "10c0de888fa4e8be01ca51a34e5e63cbe09d683f",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Cones.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Cones.agda",
"max_line_length": 296,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Cones.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2979,
"size": 6298
} |
module L.Base.Core where
-- Reexport all of the Cores
open import L.Base.Sigma.Core public
open import L.Base.Coproduct.Core public
open import L.Base.Empty.Core public
open import L.Base.Unit.Core public
open import L.Base.Nat.Core public
open import L.Base.Id.Core public
| {
"alphanum_fraction": 0.7963636364,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "3bf375719f17379bd431f2e4f59c4d306398d0a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Core.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Core.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 67,
"size": 275
} |
module Data.DependentWidthTree where
import Lvl
open import Functional using (id)
open import Functional.Dependent
open import Numeral.Finite
open import Numeral.Natural
open import Type
private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level
private variable N N₁ N₂ L T A B : Type{ℓ}
module _ {N : Type{ℓₙ}} (Index : N → Type{ℓᵢ}) where
-- A tree where the number of children depends on the data stored in a node.
-- Leaves should be represented by having nodes that indicate no children.
-- Note: A tree that have no leaves will not be constructible.
data Tree : Type{ℓₙ Lvl.⊔ ℓᵢ} where
Node : (node : N) → (Index(node) → Tree) → Tree
-- The data of the root node of a tree.
root : Tree → N
root (Node node _) = node
-- The children of a node of a tree.
-- They are indexed by `Index`.
child : (t : Tree) → (Index(root t) → Tree)
child (Node _ child) = child
Tree-elim : ∀{P : Tree → Type{ℓ}} → (∀(node)(child) → (∀(i) → P(child(i))) → P(Node node child)) → ((tree : Tree) → P(tree))
Tree-elim{P = P} f (Node node child) = f node child (Tree-elim{P = P} f ∘ child)
open import Logic.Propositional
-- It is impossible for every node to have at least one child while at the same time a tree exists.
-- Note that constructively, this is not enough to prove the existence of leaves.
Tree-no-leaves-impossibility : (∀{node} → Index(node)) → Tree → ⊥
Tree-no-leaves-impossibility p (Node n c) = Tree-no-leaves-impossibility p (c(p{n}))
module _ {N : Type{ℓₙ}} (width : N → ℕ) where
FiniteTree = Tree(𝕟 ∘ width)
module _ where
open import Data.Boolean
-- A tree of finite variating width holding no data other than the structure of the tree (the number of children for each node).
-- Example:
-- 3:
-- ├1:
-- │└0
-- ├2:
-- │├0
-- │└1:
-- │ └0
-- └0
FiniteTreeStructure = FiniteTree id
-- An empty tree contains no children.
-- This is also functioning as a leaf to a tree.
empty : FiniteTreeStructure
empty = Node 0 \()
-- A tree containing a single child that contains a leaf.
singleton : FiniteTreeStructure
singleton = Node 1 \{𝟎 → empty}
isLeaf : FiniteTreeStructure → Bool
isLeaf(Node 𝟎 _) = 𝑇
isLeaf(Node (𝐒 _) _) = 𝐹
isNode : FiniteTreeStructure → Bool
isNode(Node 𝟎 _) = 𝐹
isNode(Node (𝐒 _) _) = 𝑇
import Numeral.CoordinateVector as CoordinateVector
open import Numeral.Natural.Function
open import Numeral.Natural.Oper
-- The height is the length of the longest path from the root node.
-- Alternative implementation (will not pass the termination checker):
-- height(Node 𝟎 child) = 𝟎
-- height(Node (𝐒(node)) child) = 𝐒(CoordinateVector.foldᵣ(max ∘ height) 𝟎 child)
height : FiniteTreeStructure → ℕ
height = Tree-elim 𝕟 (\{𝟎 _ _ → 𝟎 ; (𝐒(c)) _ prev → 𝐒(CoordinateVector.foldᵣ max 𝟎 prev)})
-- The size of a tree is the number of nodes in the tree.
size : FiniteTreeStructure → ℕ
size = Tree-elim 𝕟 (\{𝟎 _ _ → 𝟎 ; (𝐒(c)) _ prev → 𝐒(CoordinateVector.foldᵣ (_+_) 𝟎 prev)})
| {
"alphanum_fraction": 0.6598751232,
"avg_line_length": 34.9770114943,
"ext": "agda",
"hexsha": "66269191a2c08ce5a4ffcc05fbdc678b1e224e21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/DependentWidthTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/DependentWidthTree.agda",
"max_line_length": 130,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/DependentWidthTree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1008,
"size": 3043
} |
module SafeFlagPrimTrustMe where
-- Cannot make an example with the correct type signature for
-- primTrustMe since it requires postulated universe level builtins,
-- which --safe flag will reject.
private
primitive
primTrustMe : Set
| {
"alphanum_fraction": 0.7875,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "75e7b27ae298537c396eb46836d5495cec6823c9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/SafeFlagPrimTrustMe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/SafeFlagPrimTrustMe.agda",
"max_line_length": 68,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 53,
"size": 240
} |
-- {-# OPTIONS --no-forcing #-}
{-# OPTIONS --rewriting #-}
{-# OPTIONS --sized-types #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
{-# BUILTIN REWRITE _≡_ #-}
variable i j : Size
postulate ANY : ∀{A : Set} → A
data Ty : Set where
bool : Ty
variable a b c d : Ty
infixl 5 _∘_
infixr 6 _∷_ _++_
mutual
data Tm (c : Ty) : Set where
tm : ∀{i a} (E : Stack i a c) → Tm c
data Stack (i : Size) : (a c : Ty) → Set where
ε : ∀{c} → Stack i c c
_∷_ : ∀{j : Size< i}{b} (u : Tm b) (E : Stack j b c) → Stack i bool c
variable E E' E′ : Stack i a c
_++_ : ∀{a b c} → Stack ∞ a b → Stack ∞ b c → Stack ∞ a c
ε ++ E′ = E′
(u ∷ E) ++ E′ = u ∷ (E ++ E′)
postulate
_∘_ : ∀{a c} → Tm a → Stack ∞ a c → Tm c
app-app : ∀{i j a b c}{t : Tm a} {E : Stack i a b} {E′ : Stack j b c} → t ∘ E ∘ E′ ≡ t ∘ E ++ E′
{-# REWRITE app-app #-}
infix 4 _↦_ _↦ₛ_
mutual
data _↦_ {c} : (t t′ : Tm c) → Set where
↦E : (r : E ↦ₛ E′) → tm E ↦ tm E′
-- ↦E : ∀{i a} {E E′ : Stack i a c} (r : E ↦ₛ E′) → tm E ↦ tm E′ -- no internal error
data _↦ₛ_ {c} : ∀ {i a} (E E′ : Stack i a c) → Set where
π : ∀{i a u v} {E : Stack i a c} → (u ∷ v ∷ E) ↦ₛ ((u ∘ v ∷ ε) ∷ E)
there : ∀{i a u} {E E′ : Stack i a c} (r : E ↦ₛ E′) → u ∷ E ↦ₛ u ∷ E′
data SN {a} (t : Tm a) : Set where
acc : (h : {t′ : Tm a} (r : t ↦ t′) → SN t′) → SN t
-- {-# TERMINATING #-} -- removes internal error
test : {i : Size} {a c : Ty} {t : Tm a} {E : Stack i a c}
(sntE : SN (t ∘ E))
→ SN (tm (t ∷ E))
test {i = i} {t = t} (acc sntE) = acc
λ { (↦E (there r)) → test (sntE ANY)
; (↦E (π {i = j})) → test {i = j} (acc sntE)
}
| {
"alphanum_fraction": 0.4563279857,
"avg_line_length": 25.1194029851,
"ext": "agda",
"hexsha": "a08b95d83b8f92e217f91ca67ae86ea00531c3c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4929.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4929.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4929.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 790,
"size": 1683
} |
module Sets where
import Equality
open Equality public
infixr 10 _$_
infixr 40 _[+]_ _<+>_ _>+<_
infixr 60 _[×]_ _<×>_ _>×<_
infixr 90 _∘_
id : {A : Set} -> A -> A
id x = x
_∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C
f ∘ g = \x -> f (g x)
_$_ : {A B : Set} -> (A -> B) -> A -> B
f $ x = f x
data _[+]_ (A B : Set) : Set where
inl : A -> A [+] B
inr : B -> A [+] B
_<+>_ : {A₁ A₂ B₁ B₂ : Set} -> (A₁ -> A₂) -> (B₁ -> B₂) -> A₁ [+] B₁ -> A₂ [+] B₂
(f <+> g) (inl x) = inl (f x)
(f <+> g) (inr y) = inr (g y)
_>+<_ : {A B C : Set} -> (A -> C) -> (B -> C) -> A [+] B -> C
(f >+< g) (inl x) = f x
(f >+< g) (inr y) = g y
data _[×]_ (A B : Set) : Set where
<_,_> : A -> B -> A [×] B
-- sections
<∙,_> : {A B : Set} -> B -> A -> A [×] B
<∙, x > = \y -> < y , x >
<_,∙> : {A B : Set} -> A -> B -> A [×] B
< x ,∙> = \y -> < x , y >
_<×>_ : {A₁ A₂ B₁ B₂ : Set} -> (A₁ -> A₂) -> (B₁ -> B₂) -> A₁ [×] B₁ -> A₂ [×] B₂
(f <×> g) < x , y > = < f x , g y >
_>×<_ : {A B C : Set} -> (A -> B) -> (A -> C) -> A -> B [×] C
(f >×< g) x = < f x , g x >
fst : {A B : Set} -> A [×] B -> A
fst < a , b > = a
snd : {A B : Set} -> A [×] B -> B
snd < a , b > = b
η-[×] : {A B : Set}(p : A [×] B) -> p == < fst p , snd p >
η-[×] < a , b > = refl
data [1] : Set where
<> : [1]
data [0] : Set where
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
| {
"alphanum_fraction": 0.3385345997,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "49a371521358f6f6b0a209ddab83df9877a91d13",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Sets.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Sets.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 745,
"size": 1474
} |
-- 2014-04-24
module _ where
open import Common.Size
open import Common.Prelude using (Bool; true; false; if_then_else_)
open import Common.Product
-- sized lists
data List A {i} : Set where
[] : List A
_∷_ : {i' : Size< i} (x : A) (xs : List A {i'}) → List A
_++_ : ∀{A} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
partition : ∀{A i} (p : A → Bool) (l : List A {i}) → List A {i} × List A {i}
partition p [] = [] , []
partition p (x ∷ xs) = let l , r = partition p xs in
if p x then ((x ∷ l) , r) else (l , (x ∷ r))
module Sort {A : Set} (_≤_ : A → A → Bool) where
quicksort : ∀{i} → List A {i} → List A
quicksort [] = []
quicksort (x ∷ []) = x ∷ []
quicksort (x ∷ xs) = let x≤ , ≤x = partition (_≤_ x) xs in
quicksort ≤x ++ (x ∷ quicksort x≤)
| {
"alphanum_fraction": 0.5171149144,
"avg_line_length": 26.3870967742,
"ext": "agda",
"hexsha": "0a11af416a2793f248bc96f383691f4eceeaae69",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/SizedQuicksort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/SizedQuicksort.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/SizedQuicksort.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 320,
"size": 818
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Functions.Definition
open import Groups.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Sets.FinSet.Definition
open import Vectors
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Modules.Definition
module Modules.Span {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+R_ _*_} {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} {G : AbelianGroup G'} {_·_ : A → M → M} (mod : Module R G _·_) where
open Group G'
open Setoid T
open Equivalence eq
_=V_ : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) {n1 : ℕ} → Rel {a} {b ⊔ n} (Vec A n1)
_=V_ G [] [] = True'
_=V_ {S = S} G (x ,- xs) (y ,- ys) = (Setoid._∼_ S x y) && (_=V_ G xs ys)
dot : {n : ℕ} → (Vec M n) → (Vec A n) → M
dot [] [] = 0G
dot (v ,- vs) (x ,- xs) = (x · v) + (dot vs xs)
Spans : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ m ⊔ n ⊔ c)
Spans {C = C} f = (m : M) → Sg ℕ (λ n → Sg ((Vec C n) && (Vec A n)) (λ t → (dot (vecMap f (_&&_.fst t)) (_&&_.snd t)) ∼ m))
Independent : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ b ⊔ n ⊔ c)
Independent {C = C} f = {n : ℕ} → (r : Vec C n) → ({a b : ℕ} → (a<n : a <N n) → (b<n : b <N n) → vecIndex r a a<n ≡ vecIndex r b b<n → a ≡ b) → (b : Vec A n) → (dot (vecMap f r) b) ∼ 0G → _=V_ (Ring.additiveGroup R) (vecPure (Group.0G (Ring.additiveGroup R))) b
independentSubset : {c : _} {C : Set c} (f : C → M) → {d : _} {D : Set d} {inj : D → C} (isInj : Injection inj) → Independent f → Independent (f ∘ inj)
independentSubset f {inj = inj} isInj indp {n = n} r coeffInj coeffs dotZero = indp {n = n} (vecMap inj r) inj' coeffs (transitive (identityOfIndiscernablesRight _∼_ reflexive (applyEquality (λ i → dot i coeffs) (vecMapCompose inj f r))) dotZero)
where
inj' : {a b : ℕ} (a<n : a <N n) (b<n : b <N n) → vecIndex (vecMap inj r) a a<n ≡ vecIndex (vecMap inj r) b b<n → a ≡ b
inj' a<n b<n x rewrite vecMapAndIndex r inj a<n | vecMapAndIndex r inj b<n = coeffInj a<n b<n (isInj x)
spanSuperset : {c : _} {C : Set c} (f : C → M) → {d : _} {D : Set d} {surj : D → C} (isSurj : Surjection surj) → Spans f → Spans (f ∘ surj)
spanSuperset f {surj = surj} isSurj spans m with spans m
spanSuperset {C = C} f {surj = surj} isSurj spans m | n , ((coeffs ,, basis) , b) = n , ((vecMap (λ c → underlying (isSurj c)) coeffs ,, basis) , transitive (identityOfIndiscernablesLeft _∼_ reflexive (applyEquality (λ i → dot i basis) (equalityCommutative {x = vecMap (λ i → f (surj i)) (vecMap (λ c → underlying (isSurj c)) coeffs)} {vecMap f coeffs} (transitivity (vecMapCompose (λ i → underlying (isSurj i)) (λ z → f (surj z)) coeffs) (t coeffs))))) b)
where
t : {n : ℕ} (coeffs : Vec C n) → vecMap (λ i → f (surj (underlying (isSurj i)))) coeffs ≡ vecMap f coeffs
t [] = refl
t (x ,- coeffs) with isSurj x
... | img , pr rewrite pr | t coeffs = refl
Basis : {c : _} {C : Set c} (f : C → M) → Set (a ⊔ b ⊔ m ⊔ n ⊔ c)
Basis v = Spans v && Independent v
| {
"alphanum_fraction": 0.5857230018,
"avg_line_length": 59.6,
"ext": "agda",
"hexsha": "c53c8be096e05f59282e50d8819a71e0f1604c07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Modules/Span.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Modules/Span.agda",
"max_line_length": 456,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Modules/Span.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1310,
"size": 3278
} |
------------------------------------------------------------------------
-- "Equational" reasoning combinator setup
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Weak.Equational-reasoning-instances
{ℓ} {lts : LTS ℓ} where
open import Prelude
open import Bisimilarity lts
import Bisimilarity.Equational-reasoning-instances
open import Bisimilarity.Weak lts
open import Equational-reasoning
open import Expansion lts
import Expansion.Equational-reasoning-instances
instance
reflexive≈ : ∀ {i} → Reflexive [ i ]_≈_
reflexive≈ = is-reflexive reflexive-≈
reflexive≈′ : ∀ {i} → Reflexive [ i ]_≈′_
reflexive≈′ = is-reflexive reflexive-≈′
symmetric≈ : ∀ {i} → Symmetric [ i ]_≈_
symmetric≈ = is-symmetric symmetric-≈
symmetric≈′ : ∀ {i} → Symmetric [ i ]_≈′_
symmetric≈′ = is-symmetric symmetric-≈′
convert≈≈ : ∀ {i} → Convertible [ i ]_≈_ [ i ]_≈_
convert≈≈ = is-convertible id
convert≈′≈ : ∀ {i} → Convertible _≈′_ [ i ]_≈_
convert≈′≈ = is-convertible (λ p≈′q → force p≈′q)
convert≈≈′ : ∀ {i} → Convertible [ i ]_≈_ [ i ]_≈′_
convert≈≈′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≈ q → [ i ] p ≈′ q
force (lemma p≈q) = p≈q
convert≈′≈′ : ∀ {i} → Convertible [ i ]_≈′_ [ i ]_≈′_
convert≈′≈′ = is-convertible id
convert∼≈ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≈_
convert∼≈ = is-convertible ∼⇒≈
convert∼′≈ : ∀ {i} → Convertible _∼′_ [ i ]_≈_
convert∼′≈ = is-convertible (convert ∘ ∼⇒≈′)
convert∼≈′ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≈′_
convert∼≈′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ∼ q → [ i ] p ≈′ q
force (lemma p∼q) = ∼⇒≈ p∼q
convert∼′≈′ : ∀ {i} → Convertible [ i ]_∼′_ [ i ]_≈′_
convert∼′≈′ = is-convertible ∼⇒≈′
convert≳≈ : ∀ {i} → Convertible [ i ]_≳_ [ i ]_≈_
convert≳≈ = is-convertible ≳⇒≈
convert≳′≈ : ∀ {i} → Convertible _≳′_ [ i ]_≈_
convert≳′≈ = is-convertible (convert ∘ ≳⇒≈′)
convert≳≈′ : ∀ {i} → Convertible [ i ]_≳_ [ i ]_≈′_
convert≳≈′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≳ q → [ i ] p ≈′ q
force (lemma p≳q) = ≳⇒≈ p≳q
convert≳′≈′ : ∀ {i} → Convertible [ i ]_≳′_ [ i ]_≈′_
convert≳′≈′ = is-convertible ≳⇒≈′
trans≈≈ : Transitive _≈_ _≈_
trans≈≈ = is-transitive transitive-≈
trans≈′≈ : Transitive _≈′_ _≈_
trans≈′≈ = is-transitive λ p≈′q → transitive (force p≈′q)
trans≈′≈′ : Transitive _≈′_ _≈′_
trans≈′≈′ = is-transitive λ p≈′q q≈′r →
transitive-≈′ p≈′q (convert q≈′r)
trans≈≈′ : Transitive _≈_ _≈′_
trans≈≈′ = is-transitive λ p≈q q≈′r →
transitive-≈′ (convert p≈q) (convert q≈′r)
trans∼≈ : ∀ {i} → Transitive _∼_ [ i ]_≈_
trans∼≈ = is-transitive (transitive-≳≈ ∘ convert {a = ℓ})
trans∼′≈ : ∀ {i} → Transitive _∼′_ [ i ]_≈_
trans∼′≈ = is-transitive (transitive-≳≈ ∘ convert {a = ℓ})
trans∼′≈′ : ∀ {i} → Transitive _∼′_ [ i ]_≈′_
trans∼′≈′ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → p ∼′ q → [ i ] q ≈′ r → [ i ] p ≈′ r
force (lemma p∼′q q≈′r) =
transitive-≳≈ (convert {a = ℓ} p∼′q) (force q≈′r)
trans∼≈′ : ∀ {i} → Transitive _∼_ [ i ]_≈′_
trans∼≈′ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → p ∼ q → [ i ] q ≈′ r → [ i ] p ≈′ r
force (lemma p∼q q≈′r) =
transitive-≳≈ (convert {a = ℓ} p∼q) (force q≈′r)
trans≈∼ : ∀ {i} → Transitive′ [ i ]_≈_ _∼_
trans≈∼ = is-transitive transitive-≈∼
trans≈∼′ : ∀ {i} → Transitive′ [ i ]_≈_ _∼′_
trans≈∼′ = is-transitive (λ p≈q q∼′r →
transitive-≈∼ p≈q (convert {a = ℓ} q∼′r))
trans≈′∼ : ∀ {i} → Transitive′ [ i ]_≈′_ _∼_
trans≈′∼ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → [ i ] p ≈′ q → q ∼ r → [ i ] p ≈′ r
force (lemma p≈′q q∼r) = transitive-≈∼ (force p≈′q) q∼r
trans≈′∼′ : ∀ {i} → Transitive′ [ i ]_≈′_ _∼′_
trans≈′∼′ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → [ i ] p ≈′ q → q ∼′ r → [ i ] p ≈′ r
force (lemma p≈′q q∼r) =
transitive-≈∼ (force p≈′q) (convert {a = ℓ} q∼r)
trans≳≈ : ∀ {i} → Transitive _≳_ [ i ]_≈_
trans≳≈ = is-transitive transitive-≳≈
trans≳′≈ : ∀ {i} → Transitive _≳′_ [ i ]_≈_
trans≳′≈ = is-transitive (transitive-≳≈ ∘ convert {a = ℓ})
trans≳′≈′ : ∀ {i} → Transitive _≳′_ [ i ]_≈′_
trans≳′≈′ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → p ≳′ q → [ i ] q ≈′ r → [ i ] p ≈′ r
force (lemma p≳′q q≈′r) =
transitive-≳≈ (convert {a = ℓ} p≳′q) (force q≈′r)
trans≳≈′ : ∀ {i} → Transitive _≳_ [ i ]_≈′_
trans≳≈′ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → p ≳ q → [ i ] q ≈′ r → [ i ] p ≈′ r
force (lemma p≳q q≈′r) = transitive-≳≈ p≳q (force q≈′r)
-- For a proof showing that the following lemma cannot, in general,
-- be made size-preserving in its first argument, see
-- Bisimilarity.Weak.Delay-monad.size-preserving-transitivity-≈≳ˡ⇔uninhabited.
trans≈≳ : Transitive′ _≈_ _≳_
trans≈≳ = is-transitive (λ p≈q → transitive p≈q ∘ ≳⇒≈)
trans≈≳′ : Transitive′ _≈_ _≳′_
trans≈≳′ = is-transitive (λ p≈q → transitive p≈q ∘ ≳⇒≈ ∘ convert)
trans≈′≳′ : Transitive′ _≈′_ _≳′_
trans≈′≳′ = is-transitive (λ p≈′q → transitive p≈′q ∘ ≳⇒≈′)
trans≈′≳ : Transitive′ _≈′_ _≳_
trans≈′≳ = is-transitive (λ p≈′q → transitive p≈′q ∘ ≳⇒≈′ ∘ convert)
trans≈≲ : ∀ {i} → Transitive′ [ i ]_≈_ _≲_
trans≈≲ = is-transitive transitive-≈≲
trans≈≲′ : ∀ {i} → Transitive′ [ i ]_≈_ _≲′_
trans≈≲′ = is-transitive (λ p≈q q≲r → transitive-≈≲ p≈q (force q≲r))
trans≈′≲ : ∀ {i} → Transitive′ [ i ]_≈′_ _≲_
trans≈′≲ {i} = is-transitive lemma
where
lemma : ∀ {p q r} → [ i ] p ≈′ q → q ≲ r → [ i ] p ≈′ r
force (lemma p≈′q q≳′r) =
transitive-≈≲ (force p≈′q) q≳′r
trans≈′≲′ : ∀ {i} → Transitive′ [ i ]_≈′_ _≲′_
trans≈′≲′ = is-transitive (λ p≈′q q≲′r →
transitive′ p≈′q (force q≲′r))
| {
"alphanum_fraction": 0.5204116059,
"avg_line_length": 32.0432432432,
"ext": "agda",
"hexsha": "6b837b90affa0078b0a03f8155687ea6f025466c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Equational-reasoning-instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Equational-reasoning-instances.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Equational-reasoning-instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2863,
"size": 5928
} |
open import Data.Product using ( _,_ )
open import Data.Sum using ( _⊎_ )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; _*_ )
open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; _⊨b_ ; *-resp-⟨ABox⟩ )
open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN )
open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _,_ ; BN ; impl )
open import Web.Semantic.DL.Category.Tensor using
( _⟨⊗⟩_ ; ⊨a-intro-⟨&⟩ ; ⊨b-intro-⟨&⟩ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.Util using ( _⊕_⊕_ ; up ; down )
module Web.Semantic.DL.Category.Properties.Tensor.Lemmas
{Σ : Signature} {S T : TBox Σ} where
tensor-up : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) I →
(I ⊨a impl (F₁ ⟨⊗⟩ F₂)) → (up * I ⊨a impl F₁)
tensor-up {X₁ , X₁∈Fin , A₁} {X₂ , X₂∈Fin , A₂} {Y₁ , Y₁∈Fin , B₁} {Y₂ , Y₂∈Fin , B₂}
(V₁ , F₁ , F₁✓) (V₂ , F₂ , F₂✓) I (I⊨F₁ , I⊨F₂) = *-resp-⟨ABox⟩ up I F₁ I⊨F₁
tensor-down : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) I →
(I ⊨a impl (F₁ ⟨⊗⟩ F₂)) → (down * I ⊨a impl F₂)
tensor-down {X₁ , X₁∈Fin , A₁} {X₂ , X₂∈Fin , A₂} {Y₁ , Y₁∈Fin , B₁} {Y₂ , Y₂∈Fin , B₂}
(V₁ , F₁ , F₁✓) (V₂ , F₂ , F₂✓) I (I⊨F₁ , I⊨F₂) = *-resp-⟨ABox⟩ down I F₂ I⊨F₂
tensor-resp-⊨a : ∀ {A₁ A₂ B₁ B₂ : Object S T}
(F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) →
(I : Interp Σ ((IN A₁ ⊎ IN A₂) ⊕ (BN F₁ ⊎ BN F₂) ⊕ (IN B₁ ⊎ IN B₂))) →
(up * I ⊨a impl F₁) → (down * I ⊨a impl F₂) → (I ⊨a impl (F₁ ⟨⊗⟩ F₂))
tensor-resp-⊨a {X₁ , X₁∈Fin , A₁} {X₂ , X₂∈Fin , A₂} {Y₁ , Y₁∈Fin , B₁} {Y₂ , Y₂∈Fin , B₂}
(V₁ , F₁ , F₁✓) (V₂ , F₂ , F₂✓) I I₁⊨F₁ I₂⊨F₂ =
⊨a-intro-⟨&⟩ I F₁ F₂ I₁⊨F₁ I₂⊨F₂
tensor-resp-⊨b : ∀ {A₁ A₂ B₁ B₂ : Object S T} {V₁ V₂ : Set}
(F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) →
(I : Interp Σ ((IN A₁ ⊎ IN A₂) ⊕ (V₁ ⊎ V₂) ⊕ (IN B₁ ⊎ IN B₂))) →
(up * I ⊨b impl F₁) → (down * I ⊨b impl F₂) → (I ⊨b impl (F₁ ⟨⊗⟩ F₂))
tensor-resp-⊨b {X₁ , X₁∈Fin , A₁} {X₂ , X₂∈Fin , A₂} {Y₁ , Y₁∈Fin , B₁} {Y₂ , Y₂∈Fin , B₂}
(V₁ , F₁ , F₁✓) (V₂ , F₂ , F₂✓) I I⊨F₁ I⊨F₂ =
⊨b-intro-⟨&⟩ I F₁ F₂ I⊨F₁ I⊨F₂
| {
"alphanum_fraction": 0.5424836601,
"avg_line_length": 52.243902439,
"ext": "agda",
"hexsha": "b7d9d21d89484a327379c5aadf86aeba687900f4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Lemmas.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Lemmas.agda",
"max_line_length": 92,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1166,
"size": 2142
} |
{-# OPTIONS --type-in-type #-}
module TabsInPragmas where
| {
"alphanum_fraction": 0.6949152542,
"avg_line_length": 14.75,
"ext": "agda",
"hexsha": "558e87bcdf5337d4585f95c6831b0c7f43ce1e71",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/TabsInPragmas.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/TabsInPragmas.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/TabsInPragmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 16,
"size": 59
} |
import Lvl
open import Structure.Setoid
open import Type
module Automaton.Deterministic.Accessible where
open import Automaton.Deterministic
open import Data.List renaming (∅ to ε ; _⊰_ to _·_)
open import Data.List.Functions using (postpend ; _++_)
open import Logic.Predicate
open import Logic.Predicate.Equiv
open import Sets.ExtensionalPredicateSet using (PredSet ; intro ; _∈_ ; _∋_ ; ⊶ ; [∋]-binaryRelator)
open import Structure.Operator
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
private variable ℓₚ ℓₛ ℓₑ₁ ℓₐ ℓₑ₂ : Lvl.Level
module _
{State : Type{ℓₛ}} ⦃ equiv-state : Equiv{ℓₑ₁}(State) ⦄
{Alphabet : Type{ℓₐ}} ⦃ equiv-alphabet : Equiv{ℓₑ₂}(Alphabet) ⦄
where
module _ (d : Deterministic{ℓₚ = ℓₚ}(State)(Alphabet)) where
open Deterministic(d)
-- The subset of State which are the accessible states from the start state by chained transitions.
Accessible : PredSet(State)
Accessible = ⊶(wordTransition start)
instance
accessible-start : (start ∈ Accessible)
accessible-start = [∃]-intro ε ⦃ reflexivity(_≡_) {x = start} ⦄
instance
accessible-transition : ∀{s}{a} → ⦃ _ : (s ∈ Accessible) ⦄ → (transition s a ∈ Accessible)
accessible-transition {s} {a = a} ⦃ [∃]-intro w ⦃ p ⦄ ⦄ = [∃]-intro (postpend a w)
⦃
wordTransition start (postpend a w) 🝖-[ wordTransition-postpend {d = d} {start}{w}{a} ]
transition (wordTransition start w) a 🝖-[ congruence₂ₗ(transition) a p ]
transition s a 🝖-end
⦄
module _ where
open Deterministic
accessibleAutomaton : (d : Deterministic{ℓₚ = ℓₚ}(State)(Alphabet)) → Deterministic(∃(_∈ Accessible d)) (Alphabet)
transition (accessibleAutomaton d) ([∃]-intro s) a = [∃]-intro (transition d s a) ⦃ accessible-transition d ⦄
BinaryOperator.congruence (transition-binaryOperator (accessibleAutomaton d)) = congruence₂(transition d)
start (accessibleAutomaton d) = [∃]-intro (start d) ⦃ accessible-start d ⦄
Final (accessibleAutomaton d) PredSet.∋ [∃]-intro s = s ∈ Final d
UnaryRelator.substitution (PredSet.preserve-equiv (Final (accessibleAutomaton d))) {[∃]-intro x} {[∃]-intro y} = substitute₂ᵣ(_∋_) {intro (_∈ Final d)}
| {
"alphanum_fraction": 0.6803672934,
"avg_line_length": 42.3518518519,
"ext": "agda",
"hexsha": "b7ef4d0befab66832d67c0697e97b40cfb10e290",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Automaton/Deterministic/Accessible.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Automaton/Deterministic/Accessible.agda",
"max_line_length": 155,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Automaton/Deterministic/Accessible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 726,
"size": 2287
} |
open import Data.Char using ( Char )
open import Data.Bool using ( Bool )
module Data.Char.Classifier.Primitive where
postulate
isAscii : Char → Bool
isLatin1 : Char → Bool
isControl : Char → Bool
isSpace : Char → Bool
isLower : Char → Bool
isUpper : Char → Bool
isAlpha : Char → Bool
isAlphaNum : Char → Bool
isPrint : Char → Bool
isDigit : Char → Bool
isOctDigit : Char → Bool
isHexDigit : Char → Bool
{-# FOREIGN GHC import qualified Data.Char #-}
{-# COMPILE GHC isAscii = type Data.Char.isAscii #-}
{-# COMPILE GHC isLatin1 = type Data.Char.isLatin1 #-}
{-# COMPILE GHC isControl = type Data.Char.isControl #-}
{-# COMPILE GHC isSpace = type Data.Char.isSpace #-}
{-# COMPILE GHC isLower = type Data.Char.isLower #-}
{-# COMPILE GHC isUpper = type Data.Char.isUpper #-}
{-# COMPILE GHC isAlpha = type Data.Char.isAlpha #-}
{-# COMPILE GHC isAlphaNum = type Data.Char.isAlphaNum #-}
{-# COMPILE GHC isPrint = type Data.Char.isPrint #-}
{-# COMPILE GHC isDigit = type Data.Char.isDigit #-}
{-# COMPILE GHC isOctDigit = type Data.Char.isOctDigit #-}
{-# COMPILE GHC isHexDigit = type Data.Char.isHexDigit #-}
| {
"alphanum_fraction": 0.6859649123,
"avg_line_length": 34.5454545455,
"ext": "agda",
"hexsha": "b27a81647eb4789bfa68b43c64002a898a5176a0",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-system-io",
"max_forks_repo_path": "src/Data/Char/Classifier/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-system-io",
"max_issues_repo_path": "src/Data/Char/Classifier/Primitive.agda",
"max_line_length": 58,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "121d6c66cba34b4c15b437366b80c65dd2b02a8d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-system-io",
"max_stars_repo_path": "src/Data/Char/Classifier/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 302,
"size": 1140
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.NConnected
open import lib.types.Truncation
open import lib.types.Group
module lib.types.EilenbergMacLane1.Core {i} where
module _ (G : Group i) where
private
module G = Group G
postulate -- HIT
EM₁ : Type i
embase' : EM₁
emloop' : G.El → embase' == embase'
emloop-comp' : ∀ g₁ g₂ → emloop' (G.comp g₁ g₂) == emloop' g₁ ∙ emloop' g₂
emloop-coh₁' : (g₁ g₂ g₃ : G.El)
→ emloop' (G.comp (G.comp g₁ g₂) g₃) =-= emloop' g₁ ∙ (emloop' g₂ ∙ emloop' g₃)
emloop-coh₁' g₁ g₂ g₃ =
emloop' (G.comp (G.comp g₁ g₂) g₃)
=⟪ emloop-comp' (G.comp g₁ g₂) g₃ ⟫
emloop' (G.comp g₁ g₂) ∙ emloop' g₃
=⟪ ap (λ l → l ∙ emloop' g₃) (emloop-comp' g₁ g₂) ⟫
(emloop' g₁ ∙ emloop' g₂) ∙ emloop' g₃
=⟪ ∙-assoc (emloop' g₁) (emloop' g₂) (emloop' g₃) ⟫
emloop' g₁ ∙ (emloop' g₂ ∙ emloop' g₃) ∎∎
emloop-coh₂' : (g₁ g₂ g₃ : G.El)
→ emloop' (G.comp (G.comp g₁ g₂) g₃) =-= emloop' g₁ ∙ (emloop' g₂ ∙ emloop' g₃)
emloop-coh₂' g₁ g₂ g₃ =
emloop' (G.comp (G.comp g₁ g₂) g₃)
=⟪ ap emloop' (Group.assoc G g₁ g₂ g₃) ⟫
emloop' (G.comp g₁ (G.comp g₂ g₃))
=⟪ emloop-comp' g₁ (Group.comp G g₂ g₃) ⟫
emloop' g₁ ∙ emloop' (G.comp g₂ g₃)
=⟪ ap (λ l → emloop' g₁ ∙ l) (emloop-comp' g₂ g₃) ⟫
emloop' g₁ ∙ (emloop' g₂ ∙ emloop' g₃) ∎∎
postulate
emloop-coh' : ∀ g₁ g₂ g₃ → emloop-coh₁' g₁ g₂ g₃ =ₛ emloop-coh₂' g₁ g₂ g₃
EM₁-level' : has-level 2 EM₁
⊙EM₁ : Ptd i
⊙EM₁ = ⊙[ EM₁ , embase' ]
module _ {G : Group i} where
private
module G = Group G
embase = embase' G
emloop = emloop' G
emloop-comp = emloop-comp' G
emloop-coh₁ = emloop-coh₁' G
emloop-coh₂ = emloop-coh₂' G
emloop-coh = emloop-coh' G
instance
EM₁-level : {n : ℕ₋₂} → has-level (S (S (S (S n)))) (EM₁ G)
EM₁-level {⟨-2⟩} = EM₁-level' G
EM₁-level {S n} = raise-level _ EM₁-level
abstract
-- This was in the original paper, but is actually derivable.
emloop-ident : emloop G.ident == idp
emloop-ident = ! $ anti-whisker-right (emloop G.ident) $
ap emloop (! $ G.unit-r G.ident) ∙ emloop-comp G.ident G.ident
module EM₁Elim {j} {P : EM₁ G → Type j}
{{_ : (x : EM₁ G) → has-level 2 (P x)}}
(embase* : P embase)
(emloop* : ∀ g → embase* == embase* [ P ↓ emloop g ])
(emloop-comp* : ∀ g₁ g₂ →
emloop* (G.comp g₁ g₂) == emloop* g₁ ∙ᵈ emloop* g₂
[ (λ p → embase* == embase* [ P ↓ p ]) ↓ emloop-comp g₁ g₂ ])
(emloop-coh* : ∀ g₁ g₂ g₃ →
emloop-comp* (G.comp g₁ g₂) g₃ ∙ᵈ
(emloop-comp* g₁ g₂ ∙ᵈᵣ emloop* g₃) ∙ᵈ
∙ᵈ-assoc (emloop* g₁) (emloop* g₂) (emloop* g₃)
==
↓-ap-in (λ p → embase* == embase* [ P ↓ p ]) emloop (apd emloop* (G.assoc g₁ g₂ g₃)) ∙ᵈ
emloop-comp* g₁ (G.comp g₂ g₃) ∙ᵈ
(emloop* g₁ ∙ᵈₗ emloop-comp* g₂ g₃)
[ (λ e → emloop* (G.comp (G.comp g₁ g₂) g₃) == emloop* g₁ ∙ᵈ (emloop* g₂ ∙ᵈ emloop* g₃)
[ (λ p → embase* == embase* [ P ↓ p ]) ↓ e ])
↓ =ₛ-out (emloop-coh g₁ g₂ g₃) ])
where
postulate -- HIT
f : Π (EM₁ G) P
embase-β : f embase ↦ embase*
{-# REWRITE embase-β #-}
postulate -- HIT
emloop-β : (g : G.El) → apd f (emloop g) == emloop* g
emloop-comp-path : (g₁ g₂ : G.El)
→ apd (apd f) (emloop-comp g₁ g₂) ▹
apd-∙ f (emloop g₁) (emloop g₂) ∙
ap2 _∙ᵈ_ (emloop-β g₁) (emloop-β g₂)
==
emloop-β (G.comp g₁ g₂) ◃
emloop-comp* g₁ g₂
open EM₁Elim public using () renaming (f to EM₁-elim)
module EM₁Level₁Elim {j} {P : EM₁ G → Type j}
{{is-1-type : (x : EM₁ G) → has-level 1 (P x)}}
(embase* : P embase)
(emloop* : (g : G.El) → embase* == embase* [ P ↓ emloop g ])
(emloop-comp* : (g₁ g₂ : G.El) →
emloop* (G.comp g₁ g₂) == emloop* g₁ ∙ᵈ emloop* g₂
[ (λ p → embase* == embase* [ P ↓ p ]) ↓ emloop-comp g₁ g₂ ]) where
private
module M = EM₁Elim {{λ x → raise-level 1 (is-1-type x)}}
embase* emloop* emloop-comp*
(λ g₁ g₂ g₃ → prop-has-all-paths-↓ {{↓-level (↓-level (is-1-type embase))}})
abstract
f : Π (EM₁ G) P
f = M.f
embase-β : f embase ↦ embase*
embase-β = M.embase-β
{-# REWRITE embase-β #-}
emloop-β : (g : G.El) → apd f (emloop g) == emloop* g
emloop-β = M.emloop-β
open EM₁Level₁Elim public using () renaming (f to EM₁-level₁-elim)
module EM₁SetElim {j} {P : EM₁ G → Type j}
{{is-set : (x : EM₁ G) → is-set (P x)}}
(embase* : P embase)
(emloop* : (g : G.El) → embase* == embase* [ P ↓ emloop g ]) where
private
module M = EM₁Level₁Elim {P = P} {{λ x → raise-level 0 (is-set x)}}
embase* emloop*
(λ g₁ g₂ → set-↓-has-all-paths-↓ {{is-set embase}})
open M public
open EM₁SetElim public using () renaming (f to EM₁-set-elim)
module EM₁PropElim {j} {P : EM₁ G → Type j}
{{is-prop : (x : EM₁ G) → is-prop (P x)}}
(embase* : P embase) where
module P = EM₁SetElim {{λ x → raise-level -1 (is-prop x)}}
embase*
(λ g → prop-has-all-paths-↓ {{is-prop embase}})
open P public
open EM₁PropElim public using () renaming (f to EM₁-prop-elim)
-- basic lemmas about [EM₁]
module _ {G : Group i} where
private
module G = Group G
abstract
emloop-inv : ∀ g → emloop' G (G.inv g) == ! (emloop g)
emloop-inv g = cancels-inverse _ _ lemma
where
cancels-inverse : ∀ {i} {A : Type i} {x y : A}
(p : x == y) (q : y == x) → p ∙ q == idp → p == ! q
cancels-inverse p idp r = ! (∙-unit-r p) ∙ r
lemma : emloop' G (G.inv g) ∙ emloop g == idp
lemma = ! (emloop-comp (G.inv g) g) ∙ ap emloop (G.inv-l g) ∙ emloop-ident
{- EM₁ is 0-connected -}
instance
EM₁-conn : is-connected 0 (EM₁ G)
EM₁-conn = has-level-in ([ embase ] , Trunc-elim
(EM₁-level₁-elim
{P = λ x → [ embase ] == [ x ]}
{{λ _ → raise-level _ (=-preserves-level Trunc-level)}}
idp
(λ _ → prop-has-all-paths-↓)
(λ _ _ → set-↓-has-all-paths-↓)))
| {
"alphanum_fraction": 0.5298256837,
"avg_line_length": 33.8,
"ext": "agda",
"hexsha": "140d42f78b8b73073e3b72c3e981988ab5b30849",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/EilenbergMacLane1/Core.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/EilenbergMacLane1/Core.agda",
"max_line_length": 101,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/EilenbergMacLane1/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2567,
"size": 6253
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.CMonoidEnriched where
-- A category where the Homs are not sets, but commutative monoids
-- There are weak kind of Ab-enriched.
-- The reason to do these "by hand" is that the
-- "free commutative monoid monad", i.e. Bag, is very hard to work
-- with in type theory, so it is easier to work axiomatically.
open import Level
open import Algebra.Bundles using (CommutativeMonoid)
open import Function.Base using (flip)
open import Relation.Binary using (Rel; IsEquivalence)
open import Categories.Category.Core using (Category)
record CM-Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
infix 4 _≈_ _⇒_
infixr 9 _∘_
infixl 7 _+_
open CommutativeMonoid using (_∙_; ε) renaming (Carrier to ∣_∣)
field
Obj : Set o
Hom : (A B : Obj) → CommutativeMonoid ℓ e
_⇒_ : (A B : Obj) → Set ℓ
A ⇒ B = ∣ Hom A B ∣
_+_ : {A B : Obj} → A ⇒ B → A ⇒ B → A ⇒ B
_+_ {A} {B} f g = _∙_ (Hom A B) f g
0M : {A B : Obj} → A ⇒ B
0M {A} {B} = ε (Hom A B)
field
_≈_ : ∀ {A B : Obj} → Rel (A ⇒ B) e
id : ∀ {A} → A ⇒ A
_∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C
-- The usual categorical structure
field
assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
-- We add a symmetric proof of associativity so that the opposite category of the
-- opposite category is definitionally equal to the original category. See how
-- `op` is implemented.
sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f
identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
-- We add a proof of "neutral" identity proof, in order to ensure the opposite of
-- constant functor is definitionally equal to itself.
identity² : ∀ {A} → id ∘ id {A} ≈ id {A}
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
-- preservation of additive structure
+-resp-∘ : ∀ {A B C D} {f g : B ⇒ C} {h : A ⇒ B} {k : C ⇒ D} →
k ∘ (f + g) ∘ h ≈ k ∘ f ∘ h + k ∘ g ∘ h
0-resp-∘ : ∀ {A C D} {h : A ⇒ C} {k : C ⇒ D} → k ∘ 0M ∘ h ≈ 0M
Underlying : {o ℓ e : Level} → CM-Category o ℓ e → Category o ℓ e
Underlying C = record { CM-Category C }
| {
"alphanum_fraction": 0.5505136986,
"avg_line_length": 35.9384615385,
"ext": "agda",
"hexsha": "b7898c2b879b0d1675a13a8052584fec13759437",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/CMonoidEnriched.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/CMonoidEnriched.agda",
"max_line_length": 91,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/CMonoidEnriched.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 931,
"size": 2336
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Structures.Nat where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Relation.Binary
open import Cubical.DStructures.Base
private
variable
ℓA ℓ≅A : Level
-- observational equality on ℕ
ℕ-≅ : ℕ → ℕ → Type ℓ-zero
ℕ-≅ 0 0 = Unit
ℕ-≅ 0 (suc _) = ⊥
ℕ-≅ (suc _) 0 = ⊥
ℕ-≅ (suc n) (suc m) = ℕ-≅ n m
-- observational equality is reflexive
ℕ-≅-ρ : isRefl ℕ-≅
ℕ-≅-ρ 0 = tt
ℕ-≅-ρ (suc n) = ℕ-≅-ρ n
-- observational equality implies identity
ℕ-≅→≡ : {n m : ℕ} → ℕ-≅ n m → n ≡ m
ℕ-≅→≡ {0} {0} p = refl
ℕ-≅→≡ {0} {suc _} p = rec p
ℕ-≅→≡ {suc _} {0} p = rec p
ℕ-≅→≡ {suc n} {suc m} p = cong suc (ℕ-≅→≡ {n} {m} p)
-- observational equality is prop-valued
ℕ-≅-prop : (n m : ℕ) → isProp (ℕ-≅ n m)
ℕ-≅-prop 0 0 = isContr→isProp isContrUnit
ℕ-≅-prop 0 (suc _) = isProp⊥
ℕ-≅-prop (suc _) 0 = isProp⊥
ℕ-≅-prop (suc n) (suc m) = ℕ-≅-prop n m
-- This module contains the first half of the proof of
-- theorem 10.2.3 of Egbert Rijkes Intro to Hott
-- TODO: privatize
module _ {A : Type ℓA}
(_≅_ : A → A → Type ℓ≅A)
(ρ : (a : A) → a ≅ a)
(prop : (a a' : A) → isProp (a ≅ a'))
(f : (a a' : A) → (a ≅ a') → a ≡ a')
where
module _ (a : A) where
φ : (a' : A) (p : a ≡ a') → a ≅ a'
φ a' p = J (λ b q → a ≅ b) (ρ a) p
tot-f : Σ[ a' ∈ A ] a ≅ a' → singl a
tot-f (a' , p) = a' , f a a' p
tot-φ : singl a → Σ[ a' ∈ A ] a ≅ a'
tot-φ (a' , p) = a' , (φ a' p)
ret-f-φ : (a' : A) → retract (f a a') (φ a')
ret-f-φ a' p = prop a a' (φ a' (f a a' p)) p
retract-totf-totφ : retract tot-f tot-φ
retract-totf-totφ (a' , p) = ΣPathP (refl , ret-f-φ a' p)
contr-singl-≅ : isContr (Σ[ a' ∈ A ] a ≅ a')
contr-singl-≅ = isContrRetract tot-f tot-φ retract-totf-totφ (isContrSingl a)
ℕ-≅-contrSingl : (n : ℕ) → isContr (Σ[ m ∈ ℕ ] ℕ-≅ n m)
ℕ-≅-contrSingl n = contr-singl-≅ ℕ-≅ ℕ-≅-ρ ℕ-≅-prop (λ m m' → ℕ-≅→≡ {m} {m'}) n
𝒮-Nat : URGStr ℕ ℓ-zero
𝒮-Nat = make-𝒮 {_≅_ = ℕ-≅} ℕ-≅-ρ ℕ-≅-contrSingl
| {
"alphanum_fraction": 0.5619765494,
"avg_line_length": 28.0941176471,
"ext": "agda",
"hexsha": "61d25b628da2c116fdc09173b10f98850cce3ed3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Structures/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Structures/Nat.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Structures/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1106,
"size": 2388
} |
open import SOAS.Common
open import SOAS.Families.Core
open import Categories.Object.Initial
open import SOAS.Coalgebraic.Strength
import SOAS.Metatheory.MetaAlgebra
-- Coalgebraic traversal maps
module SOAS.Metatheory.Coalgebraic {T : Set}
(⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F)
(𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛)
(𝕋:Init : Initial 𝕄etaAlgebras)
where
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Abstract.Hom
import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Coalgebraic.Map
open import SOAS.Metatheory.Algebra {T} ⅀F
open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Traversal ⅀F ⅀:Str 𝔛 𝕋:Init
open import SOAS.Metatheory.Renaming ⅀F ⅀:Str 𝔛 𝕋:Init
open Strength ⅀:Str
-- Relationship of traversal and interpretation, assuming 𝒜 has compatible renaming structure
module _ {𝒜 : Familyₛ}(𝒜ᵇ : Coalg 𝒜)(𝒜ᵃ : MetaAlg 𝒜)
(open Semantics 𝒜ᵃ)(open Coalg 𝒜ᵇ)
(rᵃ⇒ : MetaAlg⇒ 𝒜ᵃ (□ᵃ 𝒜ᵃ) r) where
open MetaAlg 𝒜ᵃ
open MetaAlg⇒ rᵃ⇒
𝒜ᴮ : Coalgₚ 𝒜
𝒜ᴮ = record { ᵇ = 𝒜ᵇ ; η = 𝑣𝑎𝑟 ; r∘η = cong (λ - → - _) ⟨𝑣𝑎𝑟⟩ }
-- Interpretation and renaming commute
𝕤𝕖𝕞∘ren : MapEq₁ ℐᴮ 𝑎𝑙𝑔 (λ t ρ → 𝕤𝕖𝕞 (𝕣𝕖𝕟 t ρ))
(λ t ρ → r (𝕤𝕖𝕞 t) ρ)
𝕤𝕖𝕞∘ren = record
{ φ = 𝑣𝑎𝑟
; χ = 𝑚𝑣𝑎𝑟
; f⟨𝑣⟩ = trans (cong 𝕤𝕖𝕞 Renaming.𝕥⟨𝕧⟩) ⟨𝕧⟩
; f⟨𝑚⟩ = trans (cong 𝕤𝕖𝕞 Renaming.𝕥⟨𝕞⟩) ⟨𝕞⟩
; f⟨𝑎⟩ = λ{ {σ = σ}{t} → begin
𝕤𝕖𝕞 (𝕣𝕖𝕟 (𝕒𝕝𝕘 t) σ)
≡⟨ cong 𝕤𝕖𝕞 Renaming.𝕥⟨𝕒⟩ ⟩
𝕤𝕖𝕞 (𝕒𝕝𝕘 (str ℐᴮ 𝕋 (⅀₁ 𝕣𝕖𝕟 t) σ))
≡⟨ ⟨𝕒⟩ ⟩
𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 (str ℐᴮ 𝕋 (⅀₁ 𝕣𝕖𝕟 t) σ))
≡˘⟨ cong 𝑎𝑙𝑔 (str-nat₂ 𝕤𝕖𝕞 (⅀₁ 𝕣𝕖𝕟 t) σ) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (⅀.F₁ (λ { h′ ς → 𝕤𝕖𝕞 (h′ ς) }) (⅀₁ 𝕣𝕖𝕟 t)) σ)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℐᴮ 𝒜 - σ)) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (⅀₁ (λ{ t ρ → 𝕤𝕖𝕞 (𝕣𝕖𝕟 t ρ)}) t) σ)
∎ }
; g⟨𝑣⟩ = trans (r≈₁ ⟨𝕧⟩) (cong (λ - → - _) ⟨𝑣𝑎𝑟⟩)
; g⟨𝑚⟩ = trans (r≈₁ ⟨𝕞⟩) (cong (λ - → - _) ⟨𝑚𝑣𝑎𝑟⟩)
; g⟨𝑎⟩ = λ{ {σ = σ}{t} → begin
r (𝕤𝕖𝕞 (𝕒𝕝𝕘 t)) σ
≡⟨ r≈₁ ⟨𝕒⟩ ⟩
r (𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)) σ
≡⟨ cong (λ - → - σ) ⟨𝑎𝑙𝑔⟩ ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (⅀₁ r (⅀₁ 𝕤𝕖𝕞 t)) σ)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℐᴮ 𝒜 - σ)) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (⅀₁ (λ{ t ρ → r (𝕤𝕖𝕞 t) ρ}) t) σ)
∎ }
} where open ≡-Reasoning
-- Interpretation is a pointed □-coalgebra homomorphism
𝕤𝕖𝕞ᵇ⇒ : Coalg⇒ 𝕋ᵇ 𝒜ᵇ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵇ⇒ = record { ⟨r⟩ = λ{ {t = t} → MapEq₁.≈ 𝕤𝕖𝕞∘ren t } }
𝕤𝕖𝕞ᴮ⇒ : Coalgₚ⇒ 𝕋ᴮ 𝒜ᴮ 𝕤𝕖𝕞
𝕤𝕖𝕞ᴮ⇒ = record { ᵇ⇒ = 𝕤𝕖𝕞ᵇ⇒ ; ⟨η⟩ = ⟨𝕧⟩ }
-- Coalgebraic traversal maps
module Travᶜ {𝒫 𝒜 : Familyₛ}(𝒫ᴮ : Coalgₚ 𝒫)(𝑎𝑙𝑔 : ⅀ 𝒜 ⇾̣ 𝒜)
(φ : 𝒫 ⇾̣ 𝒜)(χ : 𝔛 ⇾̣ 〖 𝒜 , 𝒜 〗) where
open Coalgₚ 𝒫ᴮ
open Traversal 𝒫ᴮ 𝑎𝑙𝑔 φ χ
-- Traversal is derived from 𝕤𝕖𝕞, so it is also a pointed coalgebra homomorphism
𝕥𝕣𝕒𝕧ᵇ⇒ : Coalg⇒ 𝕋ᵇ Travᵇ 𝕥𝕣𝕒𝕧
𝕥𝕣𝕒𝕧ᵇ⇒ = 𝕤𝕖𝕞ᵇ⇒ Travᵇ Travᵃ record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → dext² (λ ρ ς → cong 𝑎𝑙𝑔 (str-dist 𝒜 (jᶜ 𝒫ᴮ) t ρ ς)) }
; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = refl }
𝕥𝕣𝕒𝕧ᴮ⇒ : Coalgₚ⇒ 𝕋ᴮ Travᴮ 𝕥𝕣𝕒𝕧
𝕥𝕣𝕒𝕧ᴮ⇒ = record { ᵇ⇒ = 𝕥𝕣𝕒𝕧ᵇ⇒ ; ⟨η⟩ = ⟨𝕧⟩ }
-- Assuming 𝒜 is also a pointed □-coalgebra, traversal also commutes with renaming
module _ (𝒜ᴮ : Coalgₚ 𝒜)(φᴮ : Coalgₚ⇒ 𝒫ᴮ 𝒜ᴮ φ)
(𝒜rᵃ : MetaAlg⇒ 𝒜ᵃ (□ᵃ 𝒜ᵃ) (Coalgₚ.r 𝒜ᴮ)) where
private module 𝒜ᴮ = Coalgₚ 𝒜ᴮ
private module φᴮ = Coalgₚ⇒ φᴮ
private module 𝒜rᵃ = MetaAlg⇒ 𝒜rᵃ
-- Renaming and interpretation can commute
r∘𝕥𝕣𝕒𝕧 : MapEq₂ 𝒫ᴮ ℐᴮ 𝑎𝑙𝑔 (λ t σ ϱ → 𝒜ᴮ.r (𝕥𝕣𝕒𝕧 t σ) ϱ)
(λ t σ ϱ → 𝕥𝕣𝕒𝕧 t (λ v → r (σ v) ϱ))
r∘𝕥𝕣𝕒𝕧 = record
{ φ = 𝒜ᴮ.η
; ϕ = λ v → 𝒜ᴮ.r (φ v)
; χ = χ
; f⟨𝑣⟩ = 𝒜ᴮ.r≈₁ 𝕥⟨𝕧⟩
; f⟨𝑚⟩ = trans (𝒜ᴮ.r≈₁ 𝕥⟨𝕞⟩) (cong (λ - → - _) 𝒜rᵃ.⟨𝑚𝑣𝑎𝑟⟩)
; f⟨𝑎⟩ = λ{ {σ = σ}{ϱ}{t} → begin
𝒜ᴮ.r (𝕥𝕣𝕒𝕧 (𝕒𝕝𝕘 t) σ) ϱ
≡⟨ 𝒜ᴮ.r≈₁ 𝕥⟨𝕒⟩ ⟩
𝒜ᴮ.r (𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 (⅀₁ 𝕥𝕣𝕒𝕧 t) σ)) ϱ
≡⟨ cong (λ - → - ϱ) 𝒜rᵃ.⟨𝑎𝑙𝑔⟩ ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (⅀.F₁ 𝒜ᴮ.r (str 𝒫ᴮ 𝒜 (⅀.F₁ 𝕥𝕣𝕒𝕧 t) σ)) ϱ)
≡˘⟨ congr (str-nat₂ 𝒜ᴮ.r (⅀.F₁ 𝕥𝕣𝕒𝕧 t) σ) (λ - → 𝑎𝑙𝑔 (str ℐᴮ 𝒜 - ϱ)) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) (⅀.F₁ (λ { h ς → 𝒜ᴮ.r (h ς) }) (⅀.F₁ 𝕥𝕣𝕒𝕧 t)) σ) ϱ)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) - σ) ϱ)) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) (⅀₁ (λ{ t σ → 𝒜ᴮ.r (𝕥𝕣𝕒𝕧 t σ)}) t) σ) ϱ)
∎ }
; g⟨𝑣⟩ = trans 𝕥⟨𝕧⟩ φᴮ.⟨r⟩
; g⟨𝑚⟩ = 𝕥⟨𝕞⟩
; g⟨𝑎⟩ = λ{ {σ = σ}{ϱ}{t} → begin
𝕥𝕣𝕒𝕧 (𝕒𝕝𝕘 t) (λ x → r (σ x) ϱ)
≡⟨ 𝕥⟨𝕒⟩ ⟩
𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 (⅀₁ 𝕥𝕣𝕒𝕧 t) (λ x → r (σ x) ϱ))
≡⟨ cong 𝑎𝑙𝑔 (str-dist 𝒜 (rᶜ 𝒫ᴮ) (⅀₁ 𝕥𝕣𝕒𝕧 t) σ ϱ) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) (⅀.F₁ (precomp 𝒜 r) (⅀₁ 𝕥𝕣𝕒𝕧 t)) σ) ϱ)
≡˘⟨ congr ⅀.homomorphism (λ - → 𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) - σ) ϱ)) ⟩
𝑎𝑙𝑔 (str ℐᴮ 𝒜 (str 𝒫ᴮ (□ 𝒜) (⅀₁ (λ{ t σ ϱ → 𝕥𝕣𝕒𝕧 t (λ v → r (σ v) ϱ)}) t) σ) ϱ)
∎ }
} where open ≡-Reasoning
-- The traversal map 𝕋 ⇾ 〖𝒫, 𝒜〗 is pointed coalgebraic if 𝒜 has coalgebra structure
𝕥𝕣𝕒𝕧ᶜ : Coalgebraic 𝕋ᴮ 𝒫ᴮ 𝒜ᴮ 𝕥𝕣𝕒𝕧
𝕥𝕣𝕒𝕧ᶜ = record { r∘f = λ{ {σ = σ}{ϱ}{t = t} → MapEq₂.≈ r∘𝕥𝕣𝕒𝕧 t }
; f∘r = λ{ {ρ = ρ}{ς}{t = t} → cong (λ - → - ς) (Coalg⇒.⟨r⟩ 𝕥𝕣𝕒𝕧ᵇ⇒ {ρ = ρ}{t = t}) }
; f∘η = trans 𝕥⟨𝕧⟩ φᴮ.⟨η⟩ }
| {
"alphanum_fraction": 0.5091011447,
"avg_line_length": 37.5281690141,
"ext": "agda",
"hexsha": "a4a1e25df1ee718873c8d3ca2250ba3f27380942",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/Coalgebraic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/Coalgebraic.agda",
"max_line_length": 102,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/Coalgebraic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 3933,
"size": 5329
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Bool.SwitchStatement where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Bool.Base
open import Cubical.Data.Nat
{-
Switch-case:
_==_ : A → A → Bool
_ : B
_ = switch (λ x → x == fixedValue) cases
case value1 ⇒ result1 break
case value2 ⇒ result2 break
...
case valueN ⇒ resultN break
default⇒ defaultResult
-}
private
variable
ℓ ℓ′ : Level
infixr 6 default⇒_
infixr 5 case_⇒_break_
infixr 4 switch_cases_
switch_cases_ : {A : Type ℓ} {B : Type ℓ′} → (A → Bool) → ((A → Bool) → B) → B
switch caseIndicator cases caseData = caseData caseIndicator
case_⇒_break_ : {A : Type ℓ} {B : Type ℓ′} → A → B → (otherCases : (A → Bool) → B) → (A → Bool) → B
case forValue ⇒ result break otherCases = λ caseIndicator → if (caseIndicator forValue) then result else (otherCases caseIndicator)
default⇒_ : {A : Type ℓ} {B : Type ℓ′} → B → (A → Bool) → B
default⇒_ value caseIndicator = value
| {
"alphanum_fraction": 0.6443014706,
"avg_line_length": 25.3023255814,
"ext": "agda",
"hexsha": "2a543d59ecb7a2a6b93e78eee408c82ee9069162",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Bool/SwitchStatement.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Bool/SwitchStatement.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Bool/SwitchStatement.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 351,
"size": 1088
} |
module Data.Lens.Proofs.LensComposition where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
-- We proof that if we have 2 valid lenses l1 and l2, that l1 ∘ l2 is also valid
-- We do this law by law
prop-Composition-ViewSet : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> ViewSet ((toLens l1) ∘ (toLens l2))
prop-Composition-ViewSet vl1@(CValidLens l1 vs1 sv1 ss1) vl2@(CValidLens l2 vs2 sv2 ss2) v s =
begin
view (l1 ∘ l2) (set (l1 ∘ l2) v s)
=⟨ prop-view-compose vl1 vl2 (set (l1 ∘ l2) v s) ⟩
view l2 ( view l1 (set (l1 ∘ l2) v s))
=⟨ cong (view l2 ∘ view l1) (prop-set-compose-dir vl1 vl2 s v) ⟩
view l2 ( view l1 (set l1 ((set l2 v) (view l1 s)) s))
=⟨ cong (view l2) (vs1 ((set l2 v) (view l1 s)) s) ⟩
view l2 (set l2 v (view l1 s))
=⟨ vs2 v (view l1 s) ⟩
v
end
prop-Composition-SetView : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> SetView ((toLens l1) ∘ (toLens l2))
prop-Composition-SetView vl1@(CValidLens l1 vs1 sv1 ss1) vl2@(CValidLens l2 vs2 sv2 ss2) s =
begin
set (l1 ∘ l2) (view (l1 ∘ l2) s) s
=⟨ cong (λ x -> set (l1 ∘ l2) x s) (prop-view-compose vl1 vl2 s) ⟩
set (l1 ∘ l2) (view l2 (view l1 s)) s
=⟨ prop-set-compose-dir vl1 vl2 s (view l2 (view l1 s)) ⟩
set l1 (set l2 (view l2 (view l1 s)) (view l1 s)) s
=⟨ cong (λ x -> set l1 x s) (sv2 (view l1 s)) ⟩
set l1 (view l1 s) s
=⟨ sv1 s ⟩
s
end
prop-Composition-SetSet : {a b c : Set}
-> (l1 : ValidLens a b)
-> (l2 : ValidLens b c)
-> SetSet ((toLens l1) ∘ (toLens l2))
prop-Composition-SetSet vl1@(CValidLens l1 vs1 sv1 ss1) vl2@(CValidLens l2 vs2 sv2 ss2) v1 v2 s =
begin
set (l1 ∘ l2) v2 (set (l1 ∘ l2) v1 s)
=⟨ cong (set (l1 ∘ l2) v2) (prop-set-compose-dir vl1 vl2 s v1) ⟩
set (l1 ∘ l2) v2 (set l1 (set l2 v1 (view l1 s)) s)
=⟨ prop-set-compose-dir vl1 vl2 (set l1 ((set l2 v1) (view l1 s)) s) v2 ⟩
set l1
(set l2
v2
(view l1
(set l1 ((set l2 v1) (view l1 s)) s)
)
)
(set l1 (set l2 v1 (view l1 s)) s)
=⟨ cong (λ x -> set l1 (set l2 v2 x) (set l1 ((set l2 v1) (view l1 s)) s)) (vs1 ((set l2 v1) (view l1 s)) s) ⟩
set l1
(set l2
v2
(set l2 v1 (view l1 s))
)
(set l1 (set l2 v1 (view l1 s)) s)
=⟨ cong (λ x -> set l1 x (set l1 (set l2 v1 (view l1 s)) s)) (ss2 v1 v2 (view l1 s)) ⟩
set l1
(set l2
v2
(view l1 s)
)
(set l1 (set l2 v1 (view l1 s)) s)
=⟨ ss1 ((set l2 v1 (view l1 s))) ((set l2 v2 (view l1 s))) s ⟩
set l1
(set l2
v2
(view l1 s)
)
s
=⟨ sym (prop-set-compose-dir vl1 vl2 s v2) ⟩
set (l1 ∘ l2) v2 s
end
-- Create a function that does the composition
composeLens : {a b c : Set} -> (ValidLens a b) -> (ValidLens b c) -> (ValidLens a c)
composeLens vl1@(CValidLens l1 vs1 sv1 ss1) vl2@(CValidLens l2 vs2 sv2 ss2)
= CValidLens (l1 ∘ l2) (prop-Composition-ViewSet vl1 vl2) (prop-Composition-SetView vl1 vl2) (prop-Composition-SetSet vl1 vl2) | {
"alphanum_fraction": 0.5265248227,
"avg_line_length": 37.9032258065,
"ext": "agda",
"hexsha": "769bb9537f617ed1d0a701b81203b415efae6ff4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/Lens/Proofs/LensComposition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/Lens/Proofs/LensComposition.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/Lens/Proofs/LensComposition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 1394,
"size": 3525
} |
-- Andreas, 2018-09-07 issue #3217 reported by Nisse
--
-- Missing range for cubical error
{-# OPTIONS --cubical #-}
-- {-# OPTIONS -v tc.term.lambda:100 -v tc.term:10 #-}
open import Agda.Builtin.Cubical.Path
data Bool : Set where
true false : Bool
eq : true ≡ false
eq = λ i → true
-- Expected error
-- Issue3217.agda:15,12-16
-- true != false of type Bool
-- when checking that the expression λ i → true has type true ≡ false
| {
"alphanum_fraction": 0.6727688787,
"avg_line_length": 20.8095238095,
"ext": "agda",
"hexsha": "90d813de971c828bae3f9bd2f7c497724d1de543",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3217.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3217.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3217.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 132,
"size": 437
} |
-- Andreas, 2015-07-07 continuation of issue 665
-- Jesper, 2015-12-18 some of these don't work anymore with the new unifier,
-- but a few others that weren't accepted are now.
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.with.strip:10 #-}
-- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:20 -v tc.lhs.unify:20 #-}
postulate
C : Set
anything : C
record I : Set where
constructor c
field
{f} : C
data Wrap : (i : I) → Set where
wrap : ∀ {i} → Wrap i
-- Test 0: first argument not given
test0 : ∀ {j} → Wrap j → C
test0 wrap with anything
test0 wrap | z = z
test0a : ∀ {j} → Wrap j → C
test0a (wrap {c {x}}) with anything
test0a wrap | z = z
test0b : ∀ {j} → Wrap j → C
test0b (wrap {c {_}}) with anything
test0b wrap | z = z
test0c : ∀ {j} → Wrap j → C
test0c (wrap {c}) with anything
test0c wrap | z = z
test0d : ∀ {j} → Wrap j → C
test0d (wrap {c {._}}) with anything
test0d wrap | z = z
test0e : ∀ {j} → Wrap j → C
test0e (wrap .{c}) with anything
test0e wrap | z = z
test0f : ∀ {j} → Wrap j → C
test0f (wrap .{c {_}}) with anything
test0f wrap | z = z
--test00 : ∀ {j} → Wrap j → C
--test00 wrap with anything
--test00 {.c} wrap | z = z
test00a : ∀ {j} → Wrap j → C
test00a (wrap {c {x}}) with anything
test00a {.c} wrap | z = z
--test00b : ∀ {j} → Wrap j → C
--test00b (wrap {c {_}}) with anything
--test00b {.c} wrap | z = z
--test00c : ∀ {j} → Wrap j → C
--test00c (wrap {c}) with anything
--test00c {.c} wrap | z = z
--test00d : ∀ {j} → Wrap j → C
--test00d (wrap {c {._}}) with anything
--test00d {.c} wrap | z = z
--test00e : ∀ {j} → Wrap j → C
--test00e (wrap .{c}) with anything
--test00e {.c} wrap | z = z
--test00f : ∀ {j} → Wrap j → C
--test00f (wrap .{c {_}}) with anything
--test00f {.c} wrap | z = z
--test000 : ∀ {j} → Wrap j → C
--test000 wrap with anything
--test000 .{c {_}} wrap | z = z
test000a : ∀ {j} → Wrap j → C
test000a (wrap {c {x}}) with anything
test000a .{c {_}} wrap | z = z
--test000b : ∀ {j} → Wrap j → C
--test000b (wrap {c {_}}) with anything
--test000b .{c {_}} wrap | z = z
--test000c : ∀ {j} → Wrap j → C
--test000c (wrap {c}) with anything
--test000c .{c {_}} wrap | z = z
--test000d : ∀ {j} → Wrap j → C
--test000d (wrap {c {._}}) with anything
--test000d .{c {_}} wrap | z = z
--test000e : ∀ {j} → Wrap j → C
--test000e (wrap .{c}) with anything
--test000e .{c {_}} wrap | z = z
--test000f : ∀ {j} → Wrap j → C
--test000f (wrap .{c {_}}) with anything
--test000f .{c {_}} wrap | z = z
-- Test 1: first argument is dot pattern
test1a : ∀ {j} → Wrap j → C
test1a .{c} (wrap {c {x}}) with anything
test1a .{c} wrap | z = z
test1b : ∀ {j} → Wrap j → C
test1b .{c} (wrap {c {_}}) with anything
test1b .{c} wrap | z = z
test1c : ∀ {j} → Wrap j → C
test1c .{c} (wrap {c}) with anything
test1c .{c} wrap | z = z
test11a : ∀ {j} → Wrap j → C
test11a .{c} (wrap {c {x}}) with anything
test11a wrap | z = z
test11b : ∀ {j} → Wrap j → C
test11b .{c} (wrap {c {_}}) with anything
test11b wrap | z = z
test11c : ∀ {j} → Wrap j → C
test11c .{c} (wrap {c}) with anything
test11c wrap | z = z
test111a : ∀ {j} → Wrap j → C
test111a (wrap {c {x}}) with anything
test111a .{c} wrap | z = z
--test111b : ∀ {j} → Wrap j → C
--test111b (wrap {c {_}}) with anything
--test111b .{c} wrap | z = z
--test111c : ∀ {j} → Wrap j → C
--test111c (wrap {c}) with anything
--test111c .{c} wrap | z = z
-- Test 2: First argument is record pattern
test2a : ∀ {j} → Wrap j → C
test2a {c} wrap with anything
test2a {c} wrap | z = z
test2b : ∀ {j} → Wrap j → C
test2b {c} wrap with anything
test2b wrap | z = z
test2c : ∀ {j} → Wrap j → C
test2c {c} (wrap {c}) with anything
test2c {c} wrap | z = z
test2d : ∀ {j} → Wrap j → C
test2d {c} (wrap {c}) with anything
test2d wrap | z = z
test2e : ∀ {j} → Wrap j → C
test2e {c} (wrap {c {._}}) with anything
test2e {c} wrap | z = z
test2f : ∀ {j} → Wrap j → C
test2f {c} (wrap {c {._}}) with anything
test2f wrap | z = z
test2g : ∀ {j} → Wrap j → C
test2g {c} (wrap {c {x}}) with anything
test2g {c} wrap | z = z
test2h : ∀ {j} → Wrap j → C
test2h {c} (wrap {c {x}}) with anything
test2h wrap | z = z
test2i : ∀ {j} → Wrap j → C
test2i {c} (wrap {c {_}}) with anything
test2i {c} wrap | z = z
test2j : ∀ {j} → Wrap j → C
test2j {c} (wrap {c {_}}) with anything
test2j wrap | z = z
-- Test 3: First argument is record of dot pattern, second is record pattern
-- The commented-out ones fail due to issue 1608
-- test3a : ∀ {j} → Wrap j → C
-- test3a {c {._}} wrap with anything
-- test3a {c {._}} wrap | z = z
test3b : ∀ {j} → Wrap j → C
test3b {c {._}} wrap with anything
test3b wrap | z = z
-- test3c : ∀ {j} → Wrap j → C
-- test3c {c {._}} (wrap {c}) with anything
-- test3c {c {._}} wrap | z = z
test3d : ∀ {j} → Wrap j → C
test3d {c {._}} (wrap {c}) with anything
test3d wrap | z = z
-- test3e : ∀ {j} → Wrap j → C
-- test3e {c {._}} (wrap {c {._}}) with anything
-- test3e {c {._}} wrap | z = z
-- test3f : ∀ {j} → Wrap j → C
-- test3f {c {._}} (wrap {c {._}}) with anything
-- test3f wrap | z = z
test3g : ∀ {j} → Wrap j → C
test3g {c {._}} (wrap {c {x}}) with anything
test3g {c {._}} wrap | z = z
test3h : ∀ {j} → Wrap j → C
test3h {c {._}} (wrap {c {x}}) with anything
test3h wrap | z = z
-- test3i : ∀ {j} → Wrap j → C
-- test3i {c {._}} (wrap {c {_}}) with anything
-- test3i {c {._}} wrap | z = z
test3j : ∀ {j} → Wrap j → C
test3j {c {._}} (wrap {c {_}}) with anything
test3j wrap | z = z
| {
"alphanum_fraction": 0.5641686614,
"avg_line_length": 23.6130434783,
"ext": "agda",
"hexsha": "e38a31e5c9dc1dbf70e303c041a0387015a5f223",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue473-1606.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue473-1606.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue473-1606.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2249,
"size": 5431
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; _[_,_]; _[_∘_]; _[_≈_])
-- Bundled versions of Idempotents, as well as maps between idempotents.
module Categories.Morphism.Idempotent.Bundles {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
import Categories.Morphism.Idempotent 𝒞 as Idem
open import Categories.Morphism.Reasoning 𝒞
private
module 𝒞 = Category 𝒞
open 𝒞.HomReasoning
open 𝒞.Equiv
--------------------------------------------------------------------------------
-- Bundled Idempotents, and maps between them
record Idempotent : Set (o ⊔ ℓ ⊔ e) where
field
{obj} : 𝒞.Obj
isIdempotent : Idem.Idempotent obj
open Idem.Idempotent isIdempotent public
open Idempotent
record Idempotent⇒ (I J : Idempotent) : Set (ℓ ⊔ e) where
private
module I = Idempotent I
module J = Idempotent J
field
hom : 𝒞 [ I.obj , J.obj ]
absorbˡ : 𝒞 [ 𝒞 [ J.idem ∘ hom ] ≈ hom ]
absorbʳ : 𝒞 [ 𝒞 [ hom ∘ I.idem ] ≈ hom ]
open Idempotent⇒
--------------------------------------------------------------------------------
-- Identity and Composition of maps between Idempotents
id : ∀ {I} → Idempotent⇒ I I
id {I} = record
{ hom = idem I
; absorbˡ = idempotent I
; absorbʳ = idempotent I
}
_∘_ : ∀ {I J K} → (f : Idempotent⇒ J K) → (g : Idempotent⇒ I J) → Idempotent⇒ I K
_∘_ {I} {J} {K} f g = record
{ hom = 𝒞 [ f.hom ∘ g.hom ]
; absorbˡ = pullˡ f.absorbˡ
; absorbʳ = pullʳ g.absorbʳ
}
where
module f = Idempotent⇒ f
module g = Idempotent⇒ g
| {
"alphanum_fraction": 0.5816655907,
"avg_line_length": 25.8166666667,
"ext": "agda",
"hexsha": "c838d7bd073f9e90714acfc9ff870147c061cffb",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Idempotent/Bundles.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Idempotent/Bundles.agda",
"max_line_length": 81,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Idempotent/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 547,
"size": 1549
} |
{-# OPTIONS --cubical --safe --no-import-sorts #-}
module Cubical.Algebra.Algebra.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Module renaming (⟨_⟩ to ⟨_⟩m)
open import Cubical.Algebra.Ring renaming (⟨_⟩ to ⟨_⟩r)
open import Cubical.Algebra.AbGroup hiding (⟨_⟩)
open import Cubical.Algebra.Group hiding (⟨_⟩)
open import Cubical.Algebra.Monoid hiding (⟨_⟩)
open Iso
private
variable
ℓ : Level
record IsAlgebra (R : Ring {ℓ}) {A : Type ℓ}
(0a 1a : A) (_+_ _·_ : A → A → A) (-_ : A → A)
(_⋆_ : ⟨ R ⟩r → A → A) : Type ℓ where
constructor isalgebra
open Ring R using (1r) renaming (_+_ to _+r_; _·_ to _·r_)
field
isLeftModule : IsLeftModule R 0a _+_ -_ _⋆_
·-isMonoid : IsMonoid 1a _·_
dist : (x y z : A) → (x · (y + z) ≡ (x · y) + (x · z))
× ((x + y) · z ≡ (x · z) + (y · z))
⋆-lassoc : (r : ⟨ R ⟩r) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)
⋆-rassoc : (r : ⟨ R ⟩r) (x y : A) → r ⋆ (x · y) ≡ x · (r ⋆ y)
open IsLeftModule isLeftModule public
isRing : IsRing _ _ _ _ _
isRing = isring (IsLeftModule.+-isAbGroup isLeftModule) ·-isMonoid dist
open IsRing isRing public hiding (_-_; +-assoc; +-lid; +-linv; +-rid; +-rinv; +-comm)
record Algebra (R : Ring {ℓ}) : Type (ℓ-suc ℓ) where
constructor algebra
field
Carrier : Type ℓ
0a : Carrier
1a : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_⋆_ : ⟨ R ⟩r → Carrier → Carrier
isAlgebra : IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_
open IsAlgebra isAlgebra public
module commonExtractors {R : Ring {ℓ}} where
⟨_⟩ : Algebra R → Type ℓ
⟨_⟩ = Algebra.Carrier
Algebra→Module : (A : Algebra R) → LeftModule R
Algebra→Module (algebra A _ _ _ _ _ _ (isalgebra isLeftModule _ _ _ _)) =
leftmodule A _ _ _ _ isLeftModule
Algebra→Ring : (A : Algebra R) → Ring {ℓ}
Algebra→Ring A = ring _ _ _ _ _ _ (IsAlgebra.isRing (Algebra.isAlgebra A))
Algebra→AbGroup : (A : Algebra R) → AbGroup {ℓ}
Algebra→AbGroup A = LeftModule→AbGroup (Algebra→Module A)
Algebra→Monoid : (A : Algebra R) → Monoid {ℓ}
Algebra→Monoid A = Ring→Monoid (Algebra→Ring A)
isSetAlgebra : (A : Algebra R) → isSet ⟨ A ⟩
isSetAlgebra A = isSetAbGroup (Algebra→AbGroup A)
open Ring R using (1r; ·-ldist-+) renaming (_+_ to _+r_; _·_ to _·s_)
makeIsAlgebra : {A : Type ℓ} {0a 1a : A}
{_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩r → A → A}
(isSet-A : isSet A)
(+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z)
(+-rid : (x : A) → x + 0a ≡ x)
(+-rinv : (x : A) → x + (- x) ≡ 0a)
(+-comm : (x y : A) → x + y ≡ y + x)
(·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z)
(·-rid : (x : A) → x · 1a ≡ x)
(·-lid : (x : A) → 1a · x ≡ x)
(·-rdist-+ : (x y z : A) → x · (y + z) ≡ (x · y) + (x · z))
(·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z))
(⋆-assoc : (r s : ⟨ R ⟩r) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x))
(⋆-ldist : (r s : ⟨ R ⟩r) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x))
(⋆-rdist : (r : ⟨ R ⟩r) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y))
(⋆-lid : (x : A) → 1r ⋆ x ≡ x)
(⋆-lassoc : (r : ⟨ R ⟩r) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y))
(⋆-rassoc : (r : ⟨ R ⟩r) (x y : A) → r ⋆ (x · y) ≡ x · (r ⋆ y))
→ IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_
makeIsAlgebra isSet-A
+-assoc +-rid +-rinv +-comm
·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+
⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc ⋆-rassoc =
isalgebra
(makeIsLeftModule isSet-A
+-assoc +-rid +-rinv +-comm
⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid)
(makeIsMonoid isSet-A ·-assoc ·-rid ·-lid)
(λ x y z → ·-rdist-+ x y z , ·-ldist-+ x y z)
⋆-lassoc ⋆-rassoc
open commonExtractors public
record AlgebraEquiv {R : Ring {ℓ}} (A B : Algebra R) : Type ℓ where
constructor algebraiso
instance
_ : Algebra R
_ = A
_ : Algebra R
_ = B
open Algebra {{...}}
field
e : ⟨ A ⟩ ≃ ⟨ B ⟩
isHom+ : (x y : ⟨ A ⟩) → equivFun e (x + y) ≡ equivFun e x + equivFun e y
isHom· : (x y : ⟨ A ⟩) → equivFun e (x · y) ≡ equivFun e x · equivFun e y
pres1 : equivFun e 1a ≡ 1a
comm⋆ : (r : ⟨ R ⟩r) (x : ⟨ A ⟩) → equivFun e (r ⋆ x) ≡ r ⋆ equivFun e x
record AlgebraHom {R : Ring {ℓ}} (A B : Algebra R) : Type ℓ where
constructor algebrahom
private
instance
_ : Algebra R
_ = A
_ : Algebra R
_ = B
open Algebra {{...}}
field
f : ⟨ A ⟩ → ⟨ B ⟩
isHom+ : (x y : ⟨ A ⟩) → f (x + y) ≡ f x + f y
isHom· : (x y : ⟨ A ⟩) → f (x · y) ≡ f x · f y
pres1 : f 1a ≡ 1a
comm⋆ : (r : ⟨ R ⟩r) (x : ⟨ A ⟩) → f (r ⋆ x) ≡ r ⋆ f x
pres0 : f 0a ≡ 0a
pres0 = sym (Theory.+-idempotency→0 (Algebra→Ring B) (f 0a)
(f 0a ≡⟨ cong f (sym (+-rid _)) ⟩
f (0a + 0a) ≡⟨ isHom+ _ _ ⟩
f 0a + f 0a ∎))
isHom- : (x : ⟨ A ⟩) → f (- x) ≡ - f x
isHom- x = Theory.implicitInverse (Algebra→Ring B) (f x) (f (- x))
(f (x) + f (- x) ≡⟨ sym (isHom+ _ _) ⟩
f (x - x) ≡⟨ cong f (+-rinv _) ⟩
f 0a ≡⟨ pres0 ⟩
0a ∎)
_$a_ : {R : Ring {ℓ}} {A B : Algebra R}
→ AlgebraHom A B
→ ⟨ A ⟩ → ⟨ B ⟩
f $a x = AlgebraHom.f f x
_∘a_ : {R : Ring {ℓ}} {A B C : Algebra R}
→ AlgebraHom B C → AlgebraHom A B → AlgebraHom A C
_∘a_ {ℓ} {R} {A} {B} {C}
(algebrahom f isHom+f isHom·f pres1f comm⋆f)
(algebrahom g isHom+g isHom·g pres1g comm⋆g)
=
let
open Algebra ⦃...⦄
instance
_ : Algebra R
_ = A
_ : Algebra R
_ = B
_ : Algebra R
_ = C
in algebrahom (f ∘ g)
(λ x y → f (g (x + y)) ≡⟨ cong f (isHom+g x y) ⟩
f (g x + g y) ≡⟨ isHom+f _ _ ⟩
f (g x) + f (g y) ∎)
(λ x y → f (g (x · y)) ≡⟨ cong f (isHom·g x y) ⟩
f (g x · g y) ≡⟨ isHom·f _ _ ⟩
f (g x) · f (g y) ∎)
(f (g 1a) ≡⟨ cong f pres1g ⟩ f 1a ≡⟨ pres1f ⟩ 1a ∎)
λ r x → f (g (r ⋆ x)) ≡⟨ cong f (comm⋆g _ _) ⟩
f (r ⋆ (g x)) ≡⟨ comm⋆f _ _ ⟩
r ⋆ (f (g x)) ∎
module AlgebraΣTheory (R : Ring {ℓ}) where
RawAlgebraStructure = λ (A : Type ℓ) → (A → A → A) × (A → A → A) × A × (⟨ R ⟩r → A → A)
RawAlgebraEquivStr = AutoEquivStr RawAlgebraStructure
rawAlgebraUnivalentStr : UnivalentStr _ RawAlgebraEquivStr
rawAlgebraUnivalentStr = autoUnivalentStr RawAlgebraStructure
open Ring R using (1r) renaming (_+_ to _+r_; _·_ to _·r_)
open RingΣTheory
open LeftModuleΣTheory R
open MonoidΣTheory
AlgebraAxioms : (A : Type ℓ) (str : RawAlgebraStructure A) → Type ℓ
AlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) =
LeftModuleAxioms A (_+_ , _⋆_)
× (MonoidAxioms A (1a , _·_))
× ((x y z : A) → (x · (y + z) ≡ (x · y) + (x · z))
× ((x + y) · z ≡ (x · z) + (y · z)))
× ((r : ⟨ R ⟩r) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y))
× ((r : ⟨ R ⟩r) (x y : A) → r ⋆ (x · y) ≡ x · (r ⋆ y))
AlgebraStructure : Type ℓ → Type ℓ
AlgebraStructure = AxiomsStructure RawAlgebraStructure AlgebraAxioms
AlgebraΣ : Type (ℓ-suc ℓ)
AlgebraΣ = TypeWithStr ℓ AlgebraStructure
AlgebraEquivStr : StrEquiv AlgebraStructure ℓ
AlgebraEquivStr = AxiomsEquivStr RawAlgebraEquivStr AlgebraAxioms
isSetAlgebraΣ : (A : AlgebraΣ) → isSet _
isSetAlgebraΣ (A , _ , (isLeftModule , _ , _) ) = isSetLeftModuleΣ (A , _ , isLeftModule)
isPropAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A)
→ isProp (AlgebraAxioms A s)
isPropAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) =
isPropΣ (isPropLeftModuleAxioms A (_+_ , _⋆_))
(λ isLeftModule →
isProp× (isPropMonoidAxioms A (1a , _·_))
(isProp× (isPropΠ3 (λ _ _ _ → isProp× ((isSetLeftModuleΣ (A , _ , isLeftModule)) _ _)
((isSetLeftModuleΣ (A , _ , isLeftModule)) _ _)))
(isProp× (isPropΠ3 (λ _ _ _ → (isSetLeftModuleΣ (A , _ , isLeftModule)) _ _))
(isPropΠ3 (λ _ _ _ → (isSetLeftModuleΣ (A , _ , isLeftModule)) _ _)))))
Algebra→AlgebraΣ : Algebra R → AlgebraΣ
Algebra→AlgebraΣ (algebra A 0a 1a _+_ _·_ -_ _⋆_
(isalgebra isLeftModule isMonoid dist ⋆-lassoc ⋆-rassoc)) =
A , (_+_ , _·_ , 1a , _⋆_) ,
(LeftModule→LeftModuleΣ (leftmodule A _ _ _ _ isLeftModule) .snd .snd) ,
Monoid→MonoidΣ (monoid A _ _ isMonoid) .snd .snd ,
dist ,
⋆-lassoc ,
⋆-rassoc
AlgebraΣ→Algebra : AlgebraΣ → Algebra R
AlgebraΣ→Algebra (A , (_+_ , _·_ , 1a , _⋆_) , isLeftModule , isMonoid , dist , lassoc , rassoc) =
algebra A _ 1a _+_ _·_ _ _⋆_
(isalgebra (LeftModule.isLeftModule (LeftModuleΣ→LeftModule (A , (_ , isLeftModule))))
(Monoid.isMonoid (MonoidΣ→Monoid (A , (_ , isMonoid))))
dist lassoc rassoc)
AlgebraIsoAlgebraΣ : Iso (Algebra R) AlgebraΣ
AlgebraIsoAlgebraΣ = iso Algebra→AlgebraΣ AlgebraΣ→Algebra (λ _ → refl) helper
where
-- helper will be refl, if eta-equality is activated for all structure-records
open MonoidΣTheory
monoid-helper : retract (Monoid→MonoidΣ {ℓ}) MonoidΣ→Monoid
monoid-helper = Iso.leftInv MonoidIsoMonoidΣ
module-helper : retract (LeftModule→LeftModuleΣ) LeftModuleΣ→LeftModule
module-helper = Iso.leftInv LeftModuleIsoLeftModuleΣ
open Algebra
helper : _
Carrier (helper a i) = Carrier a
0a (helper a i) = 0a a
1a (helper a i) = 1a a
_+_ (helper a i) = _+_ a
_·_ (helper a i) = _·_ a
-_ (helper a i) = -_ a
_⋆_ (helper a i) = _⋆_ a
IsAlgebra.isLeftModule (isAlgebra (helper a i)) =
LeftModule.isLeftModule (module-helper
(leftmodule _ _ _ _ _ (isLeftModule a)) i)
IsAlgebra.·-isMonoid (isAlgebra (helper a i)) =
Monoid.isMonoid (monoid-helper (monoid _ _ _ (·-isMonoid a)) i)
IsAlgebra.dist (isAlgebra (helper a i)) = dist a
IsAlgebra.⋆-lassoc (isAlgebra (helper a i)) = ⋆-lassoc a
IsAlgebra.⋆-rassoc (isAlgebra (helper a i)) = ⋆-rassoc a
algebraUnivalentStr : UnivalentStr AlgebraStructure AlgebraEquivStr
algebraUnivalentStr = axiomsUnivalentStr _ isPropAlgebraAxioms rawAlgebraUnivalentStr
AlgebraΣPath : (M N : AlgebraΣ) → (M ≃[ AlgebraEquivStr ] N) ≃ (M ≡ N)
AlgebraΣPath = SIP algebraUnivalentStr
AlgebraEquivΣ : (M N : Algebra R) → Type ℓ
AlgebraEquivΣ M N = Algebra→AlgebraΣ M ≃[ AlgebraEquivStr ] Algebra→AlgebraΣ N
AlgebraEquivΣPath : {M N : Algebra R} → Iso (AlgebraEquiv M N) (AlgebraEquivΣ M N)
fun AlgebraEquivΣPath (algebraiso e isHom+ isHom· pres1 comm⋆) =
e , isHom+ , (isHom· , (pres1 , comm⋆))
inv AlgebraEquivΣPath (f , isHom+ , isHom· , pres1 , comm⋆) =
algebraiso f isHom+ isHom· pres1 comm⋆
rightInv AlgebraEquivΣPath _ = refl
leftInv AlgebraEquivΣPath _ = refl
AlgebraPath : (M N : Algebra R) → (AlgebraEquiv M N) ≃ (M ≡ N)
AlgebraPath M N =
AlgebraEquiv M N ≃⟨ isoToEquiv AlgebraEquivΣPath ⟩
AlgebraEquivΣ M N ≃⟨ AlgebraΣPath _ _ ⟩
Algebra→AlgebraΣ M ≡ Algebra→AlgebraΣ N ≃⟨ isoToEquiv
(invIso
(congIso
AlgebraIsoAlgebraΣ))
⟩
M ≡ N ■
AlgebraPath : {R : Ring {ℓ}} (M N : Algebra R) → (AlgebraEquiv M N) ≃ (M ≡ N)
AlgebraPath {ℓ} {R} = AlgebraΣTheory.AlgebraPath R
module AlgebraTheory (R : Ring {ℓ}) (A : Algebra R) where
open Ring R renaming (_+_ to _+r_)
open Algebra A
0-actsNullifying : (x : ⟨ A ⟩) → 0r ⋆ x ≡ 0a
0-actsNullifying x =
let idempotent-+ = 0r ⋆ x ≡⟨ cong (λ u → u ⋆ x) (sym (Theory.0-idempotent R)) ⟩
(0r +r 0r) ⋆ x ≡⟨ ⋆-ldist 0r 0r x ⟩
(0r ⋆ x) + (0r ⋆ x) ∎
in sym (Theory.+-idempotency→0 (Algebra→Ring A) (0r ⋆ x) idempotent-+)
| {
"alphanum_fraction": 0.5158796969,
"avg_line_length": 38.2076023392,
"ext": "agda",
"hexsha": "a63fb17e05fe671500b915dbf2cb42c3cd8f4334",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Algebra/Algebra/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5107,
"size": 13067
} |
-- Andreas, 2016-10-03, re issue #2231
-- Termination checking a corecursive definition in abstract mode.
{-# OPTIONS --guardedness #-}
infix 1000 ♯_
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
abstract
data Functor : Set where
Id : Functor
_·_ : Functor → Set → Set
Id · A = A
data ν (F : Functor) : Set where
inn : ∞ (F · ν F) → ν F
-- Evaluation is required to see that Id · ν Id is a coinductive type.
foo : ∀ F → F · ν F
foo Id = inn (♯ foo Id)
-- The termination checker needs to treat the generated #-foo function
-- in abstract mode, to have constructor Id in scope.
| {
"alphanum_fraction": 0.6191950464,
"avg_line_length": 22.275862069,
"ext": "agda",
"hexsha": "23b3e61d701b71ac736c890f978366b1d139c9be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "caryoscelus/agda",
"max_forks_repo_path": "test/Succeed/Issue2231sharp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "caryoscelus/agda",
"max_issues_repo_path": "test/Succeed/Issue2231sharp.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "caryoscelus/agda",
"max_stars_repo_path": "test/Succeed/Issue2231sharp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 201,
"size": 646
} |
module _ (A : Set) where
open import Common.Prelude
open import Common.Reflection
macro
foo : Tactic
foo _ = returnTC _
bar : ⊤
bar = foo
| {
"alphanum_fraction": 0.6917808219,
"avg_line_length": 11.2307692308,
"ext": "agda",
"hexsha": "fd57bf68d08f0a0801d287a037339a6201acba4b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1538.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1538.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1538.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 45,
"size": 146
} |
------------------------------------------------------------------------
-- Some results related to CCS, implemented without using a fixed form
-- of bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Bisimilarity.CCS.General {ℓ} {Name : Type ℓ} where
open import Equality.Propositional
open import List equality-with-J
open import Prelude.Size
open import Labelled-transition-system
open import Labelled-transition-system.CCS Name
------------------------------------------------------------------------
-- Exercise 6.1.3 (1) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi
6-1-3-1-proc : Proc ∞ → Proc ∞ → ℕ → Proc ∞
6-1-3-1-proc P P′ zero = ! P ∣ P′
6-1-3-1-proc P P′ (suc n) = 6-1-3-1-proc P P′ n ∣ P
-- Note that the form of the expression is a bit more restrictive
-- than in the exercise formulation: (((! P | P′) | P)…) ∣ P.
6-1-3-1-without-τ :
∀ {a P P₀} → let μ = name a in
! P [ μ ]⟶ P₀ →
∃ λ P′ → ∃ λ n →
P [ μ ]⟶ P′ × P₀ ≡ 6-1-3-1-proc P P′ n
6-1-3-1-without-τ {a} {P} (replication (par-right {Q′ = P′} tr)) =
P′ , 0
, (P [ name a ]⟶⟨ tr ⟩
P′)
, (! P ∣ P′ ≡⟨ refl ⟩∎
6-1-3-1-proc P P′ 0 ∎)
6-1-3-1-without-τ {a} {P} (replication (par-left {P′ = P′} tr)) =
let P″ , n , tr′ , eq = 6-1-3-1-without-τ tr in
P″ , suc n
, (P [ name a ]⟶⟨ tr′ ⟩
P″)
, (P′ ∣ P ≡⟨ cong (_∣ _) eq ⟩
6-1-3-1-proc P P″ n ∣ P ≡⟨ refl ⟩∎
6-1-3-1-proc P P″ (suc n) ∎)
One-step-away : {A : Type ℓ} → (A → Action) → Proc ∞ → Type ℓ
One-step-away f P = ∃ λ a → ∃ λ P′ → P [ f a ]⟶ P′
cons : {A B : Type ℓ} → A → List A × B → List A × B
cons x (xs , y) = x ∷ xs , y
6-1-3-1-proc′ :
(P : Proc ∞) →
List (Maybe (One-step-away name P)) × One-step-away id P →
Proc ∞
6-1-3-1-proc′ P ([] , (_ , P′ , _)) = ! P ∣ P′
6-1-3-1-proc′ P (just (_ , P′ , _) ∷ Ps , o) = 6-1-3-1-proc′ P (Ps , o) ∣ P′
6-1-3-1-proc′ P (nothing ∷ Ps , o) = 6-1-3-1-proc′ P (Ps , o) ∣ P
6-1-3-1-with-τ :
∀ {μ P P₀} →
! P [ μ ]⟶ P₀ →
∃ λ Ps → P₀ ≡ 6-1-3-1-proc′ P Ps
6-1-3-1-with-τ {μ} {P} (replication (par-right {Q′ = P′} tr)) =
Ps
, (! P ∣ P′ ≡⟨ refl ⟩∎
6-1-3-1-proc′ P Ps ∎)
where
Ps = [] , (μ , P′ , tr)
6-1-3-1-with-τ {μ} {P} (replication (par-left {P′ = P′} tr)) =
let Ps , eq = 6-1-3-1-with-τ tr
Ps′ = cons nothing Ps
in
Ps′
, (P′ ∣ P ≡⟨ cong (_∣ _) eq ⟩
6-1-3-1-proc′ P Ps ∣ P ≡⟨ refl ⟩∎
6-1-3-1-proc′ P Ps′ ∎)
6-1-3-1-with-τ .{τ} {P}
(replication (par-τ {P′ = P′} {Q′ = Q′} {a = a}
tr₁ tr₂)) =
let Ps , eq = 6-1-3-1-with-τ tr₁
Ps′ = cons (just (co a , Q′ , tr₂)) Ps
in
Ps′
, (P′ ∣ Q′ ≡⟨ cong (_∣ _) eq ⟩
6-1-3-1-proc′ P Ps ∣ Q′ ≡⟨ refl ⟩∎
6-1-3-1-proc′ P Ps′ ∎)
------------------------------------------------------------------------
-- Exercise 6.1.3 (2) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi
-- Assumptions used to state and solve the exercise.
record 6-1-3-2-assumptions ℓ′ : Type (ℓ ⊔ lsuc ℓ′) where
infix 4 _∼_
infix -1 finally-∼
infixr -2 step-∼
syntax finally-∼ p q p∼q = p ∼⟨ p∼q ⟩∎ q ∎
syntax step-∼ p q∼r p∼q = p ∼⟨ p∼q ⟩ q∼r
field
_∼_ : Proc ∞ → Proc ∞ → Type ℓ′
step-∼ : ∀ P {Q R} → Q ∼ R → P ∼ Q → P ∼ R
finally-∼ : ∀ P Q → P ∼ Q → P ∼ Q
reflexive : ∀ {P} → P ∼ P
symmetric : ∀ {P Q} → P ∼ Q → Q ∼ P
∣-comm : ∀ {P Q} → P ∣ Q ∼ Q ∣ P
∣-assoc : ∀ {P Q R} → P ∣ (Q ∣ R) ∼ (P ∣ Q) ∣ R
_∣-cong_ : ∀ {P P′ Q Q′} → P ∼ P′ → Q ∼ Q′ → P ∣ Q ∼ P′ ∣ Q′
6-1-2 : ∀ {P} → ! P ∣ P ∼ ! P
module 6-1-3-2 {ℓ′} (assumptions : 6-1-3-2-assumptions ℓ′) where
open 6-1-3-2-assumptions assumptions
swap-rightmost : ∀ {P Q R} → (P ∣ Q) ∣ R ∼ (P ∣ R) ∣ Q
swap-rightmost {P} {Q} {R} =
(P ∣ Q) ∣ R ∼⟨ symmetric ∣-assoc ⟩
P ∣ (Q ∣ R) ∼⟨ reflexive ∣-cong ∣-comm ⟩
P ∣ (R ∣ Q) ∼⟨ ∣-assoc ⟩∎
(P ∣ R) ∣ Q ∎
6-1-3-2 :
∀ {μ P P₀} →
! P [ μ ]⟶ P₀ →
(∃ λ P′ → P [ μ ]⟶ P′ × P₀ ∼ ! P ∣ P′)
⊎
(μ ≡ τ × ∃ λ P′ → ∃ λ P″ → ∃ λ a →
P [ name a ]⟶ P′ × P [ name (co a) ]⟶ P″ × P₀ ∼ (! P ∣ P′) ∣ P″)
6-1-3-2 {μ} {P} (replication (par-right {Q′ = P′} P⟶P′)) =
inj₁ ( _
, (P [ μ ]⟶⟨ P⟶P′ ⟩
P′)
, (! P ∣ P′ ∼⟨ reflexive ⟩∎
! P ∣ P′ ∎))
6-1-3-2 {μ} {P} (replication (par-left {P′ = P′} tr)) with 6-1-3-2 tr
... | inj₁ (P″ , P⟶P″ , P′∼!P∣P″) =
inj₁ ( _
, (P [ μ ]⟶⟨ P⟶P″ ⟩
P″)
, (P′ ∣ P ∼⟨ P′∼!P∣P″ ∣-cong reflexive ⟩
(! P ∣ P″) ∣ P ∼⟨ swap-rightmost ⟩
(! P ∣ P) ∣ P″ ∼⟨ 6-1-2 ∣-cong reflexive ⟩∎
! P ∣ P″ ∎))
... | inj₂ (μ≡τ , P″ , P‴ , a , P⟶P″ , P⟶P‴ , P′∼!P∣P″∣P‴) =
inj₂ ( μ≡τ , _ , _ , _
, (P [ name a ]⟶⟨ P⟶P″ ⟩
P″)
, (P [ name (co a) ]⟶⟨ P⟶P‴ ⟩
P‴)
, (P′ ∣ P ∼⟨ P′∼!P∣P″∣P‴ ∣-cong reflexive ⟩
((! P ∣ P″) ∣ P‴) ∣ P ∼⟨ swap-rightmost ⟩
((! P ∣ P″) ∣ P) ∣ P‴ ∼⟨ swap-rightmost ∣-cong reflexive ⟩
((! P ∣ P) ∣ P″) ∣ P‴ ∼⟨ (6-1-2 ∣-cong reflexive) ∣-cong reflexive ⟩∎
(! P ∣ P″) ∣ P‴ ∎))
6-1-3-2 {P = P} (replication (par-τ {P′ = P′} {Q′ = Q′} {a = a}
tr P⟶Q′)) with 6-1-3-2 tr
... | inj₁ (P″ , P⟶P″ , P′∼!P∣P″) =
inj₂ ( refl , _ , _ , _
, (P [ name a ]⟶⟨ P⟶P″ ⟩
P″)
, (P [ name (co a) ]⟶⟨ P⟶Q′ ⟩
Q′)
, (P′ ∣ Q′ ∼⟨ P′∼!P∣P″ ∣-cong reflexive ⟩∎
(! P ∣ P″) ∣ Q′ ∎))
... | inj₂ (() , _)
| {
"alphanum_fraction": 0.390051458,
"avg_line_length": 33.3142857143,
"ext": "agda",
"hexsha": "708f021c64923e16083e363c1c5f555bed88293c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/CCS/General.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/CCS/General.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/CCS/General.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2810,
"size": 5830
} |
record R : Set₁
where
field
_f_ : Set → Set
postulate A : Set
I₁ : R
I₁ R.f x = A
| {
"alphanum_fraction": 0.5652173913,
"avg_line_length": 8.3636363636,
"ext": "agda",
"hexsha": "3f9946c26680b774ff7f8730ad03886e3352e53a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2332.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2332.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2332.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 92
} |
module A.B.M where
| {
"alphanum_fraction": 0.7368421053,
"avg_line_length": 9.5,
"ext": "agda",
"hexsha": "2e7461e02d1eeda7242ed10c4f36acf7656f25f4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/A/B/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/A/B/M.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/A/B/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 6,
"size": 19
} |
module SetClash where
postulate x : Set
y : Set1
y = x
| {
"alphanum_fraction": 0.6842105263,
"avg_line_length": 8.1428571429,
"ext": "agda",
"hexsha": "d608e4aef87b9c4a99c26122eec3e853f927e470",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/SetClash.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/SetClash.agda",
"max_line_length": 21,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/SetClash.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 21,
"size": 57
} |
------------------------------------------------------------------------------
-- Equivalent approaches for implement the inductive predicate N
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.EquivalenceInductivePredicateN where
open import FOTC.Base
------------------------------------------------------------------------------
-- Using succ : D instead of succ₁ : D → D.
module Constant where
module LFP where
NatF : (D → Set) → D → Set
NatF A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ · n' ∧ A n')
postulate
N : D → Set
N-in-ho : ∀ {n} → NatF N n → N n
N-ind'-ho : (A : D → Set) → (∀ {n} → NatF A n → A n) → ∀ {n} → N n → A n
N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ · n' ∧ N n') → N n
N-in = N-in-ho
N-ind' : (A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ · n' ∧ A n') → A n) →
∀ {n} → N n → A n
N-ind' = N-ind'-ho
--------------------------------------------------------------------------
-- The data constructors of N using LFP.
nzero : N zero
nzero = N-in (inj₁ refl)
nsucc : ∀ {n} → N n → N (succ · n)
nsucc Nn = N-in (inj₂ (_ , refl , Nn))
--------------------------------------------------------------------------
-- The induction principle of N using LFP.
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ · n)) →
∀ {n} → N n → A n
N-ind A A0 h = N-ind' A h'
where
h' : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ · m' ∧ A m') → A m
h' (inj₁ m≡0) = subst A (sym m≡0) A0
h' (inj₂ (m' , prf , Am')) = subst A (sym prf) (h Am')
----------------------------------------------------------------------------
module Data where
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ · n)
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ · n)) →
∀ {n} → N n → A n
N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
--------------------------------------------------------------------------
-- The introduction rule of N using data.
N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ · n' ∧ N n') → N n
N-in {n} h = case prf₁ prf₂ h
where
prf₁ : n ≡ zero → N n
prf₁ n≡0 = subst N (sym n≡0) nzero
prf₂ : ∃[ n' ] n ≡ succ · n' ∧ N n' → N n
prf₂ (n' , prf , Nn') = subst N (sym prf) (nsucc Nn')
--------------------------------------------------------------------------
-- The induction principle for N using data.
N-ind' :
(A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ · n' ∧ A n') → A n) →
∀ {n} → N n → A n
N-ind' A h = N-ind A h₁ h₂
where
h₁ : A zero
h₁ = h (inj₁ refl)
h₂ : ∀ {m} → A m → A (succ · m)
h₂ {m} Am = h (inj₂ (m , refl , Am))
------------------------------------------------------------------------------
-- Using succ₁ : D → D instead of succ : D.
module UnaryFunction where
module LFP where
NatF : (D → Set) → D → Set
NatF A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')
postulate
N : D → Set
N-in-ho : ∀ {n} → NatF N n → N n
N-ind'-ho : (A : D → Set) → (∀ {n} → NatF A n → A n) → ∀ {n} → N n → A n
N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n
N-in = N-in-ho
N-ind' : (A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) →
∀ {n} → N n → A n
N-ind' = N-ind'-ho
--------------------------------------------------------------------------
-- The data constructors of N using LFP.
nzero : N zero
nzero = N-in (inj₁ refl)
nsucc : ∀ {n} → N n → N (succ₁ n)
nsucc Nn = N-in (inj₂ (_ , refl , Nn))
--------------------------------------------------------------------------
-- The induction principle of N using LFP.
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n
N-ind A A0 h = N-ind' A h'
where
h' : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ A m') → A m
h' (inj₁ m≡0) = subst A (sym m≡0) A0
h' (inj₂ (m' , prf , Am')) = subst A (sym prf) (h Am')
----------------------------------------------------------------------------
module Data where
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ₁ n)
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ n)) →
∀ {n} → N n → A n
N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
--------------------------------------------------------------------------
-- The introduction rule of N using data.
N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n
N-in {n} h = case prf₁ prf₂ h
where
prf₁ : n ≡ zero → N n
prf₁ n≡0 = subst N (sym n≡0) nzero
prf₂ : ∃[ n' ] n ≡ succ₁ n' ∧ N n' → N n
prf₂ (n' , prf , Nn') = subst N (sym prf) (nsucc Nn')
--------------------------------------------------------------------------
-- The induction principle for N using data.
N-ind' :
(A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) →
∀ {n} → N n → A n
N-ind' A h = N-ind A h₁ h₂
where
h₁ : A zero
h₁ = h (inj₁ refl)
h₂ : ∀ {m} → A m → A (succ₁ m)
h₂ {m} Am = h (inj₂ (m , refl , Am))
module EsikProposition2Dot1 where
postulate
N : D → Set
N-ind' : (A : D → Set) →
(∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) →
∀ {n} → N n → A n
| {
"alphanum_fraction": 0.3367122825,
"avg_line_length": 31.4840425532,
"ext": "agda",
"hexsha": "4c1e567ae37cde8899edf047cb073b495b442cba",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/FOTC/EquivalenceInductivePredicateN.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/FOTC/EquivalenceInductivePredicateN.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/FOTC/EquivalenceInductivePredicateN.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2009,
"size": 5919
} |
postulate
F : Set → Set
{-# POLARITY F * #-}
data D : Set where
d : F D → D
| {
"alphanum_fraction": 0.512195122,
"avg_line_length": 10.25,
"ext": "agda",
"hexsha": "d7ae3d0617662e71c154ef9feff88cbcc9f72c70",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Polarity-pragma-and-mixed-polarity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Polarity-pragma-and-mixed-polarity.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Polarity-pragma-and-mixed-polarity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 31,
"size": 82
} |
module Where where
-- all these examples should not termination check
f : forall {A : Set} -> A
f {A} = g
where g : A
g = f
f1 : forall {A : Set} -> A -> A
f1 {A} a = g a
where g : A -> A
g a = f1 a
f2 : forall {A : Set} -> A -> A
f2 {A} a = g a
where g : A -> A
g = f2
| {
"alphanum_fraction": 0.4341317365,
"avg_line_length": 13.9166666667,
"ext": "agda",
"hexsha": "804b9e16dd75eb7f6ba7d0c0d943b6ff8bcede01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/Termination/Where.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/Termination/Where.agda",
"max_line_length": 50,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/Termination/Where.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 120,
"size": 334
} |
module Cats.Util.Function where
open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_)
open import Relation.Binary.PropositionalEquality as ≡
open import Function as Fun public using (id ; _on_)
open import Relation.Binary.Construct.On public
renaming (isEquivalence to on-isEquivalence)
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → A → C
f ∘ g = f Fun.∘ g
| {
"alphanum_fraction": 0.6885245902,
"avg_line_length": 26.6875,
"ext": "agda",
"hexsha": "1dc00c0e89b3d9eb33593835750b2a2981210699",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/Function.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/Function.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 143,
"size": 427
} |
{- Name: Bowornmet (Ben) Hudson
-- define the complexity language from the paper
-}
open import Preliminaries
open import Preorder-withmax
module Comp-lang where
-- define the complexity language from the paper
-- we want to focus on arrow, cross, and nat types
-- do I need unit types?
data CTp : Set where
unit : CTp
nat : CTp
_->c_ : CTp → CTp → CTp
_×c_ : CTp → CTp → CTp
C : CTp
-- represent a context as a list of types
Ctx = List CTp
-- de Bruijn indices (for free variables)
data _∈_ : CTp → Ctx → Set where
i0 : ∀ {Γ τ}
→ τ ∈ (τ :: Γ)
iS : ∀ {Γ τ τ1}
→ τ ∈ Γ
→ τ ∈ (τ1 :: Γ)
data _|-_ : Ctx → CTp → Set where
unit : ∀ {Γ}
→ Γ |- unit
0C : ∀ {Γ}
→ Γ |- C
1C : ∀ {Γ}
→ Γ |- C
plusC : ∀ {Γ}
→ Γ |- C
→ Γ |- C
→ Γ |- C
var : ∀ {Γ τ}
→ τ ∈ Γ
→ Γ |- τ
z : ∀ {Γ}
→ Γ |- nat
suc : ∀ {Γ}
→ (e : Γ |- nat)
→ Γ |- nat
rec : ∀ {Γ τ}
→ Γ |- nat
→ Γ |- τ
→ (nat :: (τ :: Γ)) |- τ
→ Γ |- τ
lam : ∀ {Γ τ ρ}
→ (ρ :: Γ) |- τ
→ Γ |- (ρ ->c τ)
app : ∀ {Γ τ1 τ2}
→ Γ |- (τ2 ->c τ1)
→ Γ |- τ2
→ Γ |- τ1
prod : ∀ {Γ τ1 τ2}
→ Γ |- τ1
→ Γ |- τ2
→ Γ |- (τ1 ×c τ2)
l-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×c τ2)
→ Γ |- τ1
r-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×c τ2)
→ Γ |- τ2
_+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ)
c +C e = prod (plusC c (l-proj e)) (r-proj e)
------weakening and substitution lemmas
-- renaming function
rctx : Ctx → Ctx → Set
rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ
-- re: transferring variables in contexts
lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
lem1 d i0 = i0
lem1 d (iS x) = iS (d x)
-- renaming lemma
ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ
ren unit d = unit
ren 0C d = 0C
ren 1C d = 1C
ren (plusC e1 e2) d = plusC (ren e1 d) (ren e2 d)
ren (var x) d = var (d x)
ren z d = z
ren (suc e) d = suc (ren e d)
ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1 (lem1 d)))
ren (lam e) d = lam (ren e (lem1 d))
ren (app e1 e2) d = app (ren e1 d) (ren e2 d)
ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d)
ren (l-proj e) d = l-proj (ren e d)
ren (r-proj e) d = r-proj (ren e d)
-- substitution
sctx : Ctx → Ctx → Set
sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ
-- weakening a context
wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2
wkn e = ren e iS
-- weakening also works with substitution
wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ'
wkn-s d = λ f → wkn (d f)
wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ'
wkn-r d = λ x → iS (d x)
-- lem2 (need a lemma for subst like we did for renaming)
lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ')
lem2 d i0 = var i0
lem2 d (iS i) = wkn (d i)
-- another substitution lemma
lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ)
lem3 e i0 = e
lem3 e (iS i) = var i
lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ')
lem3' Θ e i0 = e
lem3' Θ e (iS i) = Θ i
-- one final lemma needed for the last stepping rule. Thank you Professor Licata!
lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ))
lem4 e1 e2 i0 = e1
lem4 e1 e2 (iS i0) = e2
lem4 e1 e2 (iS (iS i)) = var i
lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ'))
lem4' Θ a b i0 = a
lem4' Θ a b (iS i0) = b
lem4' Θ a b (iS (iS i)) = Θ i
-- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ)
subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ
subst d unit = unit
subst d 0C = 0C
subst d 1C = 1C
subst d (plusC e1 e2) = plusC (subst d e1) (subst d e2)
subst d (var x) = d x
subst d z = z
subst d (suc x) = suc (subst d x)
subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1)
subst d (lam e) = lam (subst (lem2 d) e)
subst d (app e1 e2) = app (subst d e1) (subst d e2)
subst d (prod e1 e2) = prod (subst d e1) (subst d e2)
subst d (l-proj e) = l-proj (subst d e)
subst d (r-proj e) = r-proj (subst d e)
postulate
subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) )
→ subst (lem3 v) (subst (lem2 Θ) e) == subst (lem3' Θ v) e
postulate
subst-compose2 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (n : Γ |- nat) (e1 : Γ' |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst (lem4 n (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2))) (subst (lem2 (lem2 Θ)) e2) ==
subst (lem4' Θ n (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2))) e2
postulate
subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2)
→ subst Θ (subst (lem4 v1 v2) e1) == subst (lem4' Θ (subst Θ v1) (subst Θ v2)) e1
postulate
subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst (lem4 v' r) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ v' r) e2
-------
-- define 'stepping' as a datatype (fig. 1 of proof)
data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where
refl-s : ∀ {Γ T}
→ {e : Γ |- T}
→ e ≤s e
trans-s : ∀ {Γ T}
→ {e e' e'' : Γ |- T}
→ e ≤s e' → e' ≤s e''
→ e ≤s e''
plus-s : ∀ {Γ}
→ {e1 e2 n1 n2 : Γ |- C}
→ e1 ≤s n1 → e2 ≤s n2
→ (plusC e1 e2) ≤s (plusC n1 n2)
cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e'
+-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e
+-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e)
+-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e
+-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C)
+-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3)
+-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3)
refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0)
cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1')
cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e')
cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e')
cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1)
cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ}
→ e ≤s e'
→ rec e e0 e1 ≤s rec e' e0 e1
lam-s : ∀ {Γ T T'}
→ {e : (T :: Γ) |- T'}
→ {e2 : Γ |- T}
→ subst (lem3 e2) e ≤s app (lam e) e2
l-proj-s : ∀ {Γ T1 T2}
→ {e1 : Γ |- T1} {e2 : Γ |- T2}
→ e1 ≤s (l-proj (prod e1 e2))
r-proj-s : ∀ {Γ T1 T2}
→ {e1 : Γ |- T1} → {e2 : Γ |- T2}
→ e2 ≤s (r-proj (prod e1 e2))
rec-steps-s : ∀ {Γ T}
→ {e : Γ |- nat}
→ {e0 : Γ |- T}
→ {e1 : (nat :: (T :: Γ)) |- T}
→ subst (lem4 e (rec e e0 e1)) e1 ≤s (rec (suc e) e0 e1)
rec-steps-z : ∀ {Γ T}
→ {e0 : Γ |- T}
→ {e1 : (nat :: (T :: Γ)) |- T}
→ e0 ≤s (rec z e0 e1)
_trans_ : ∀ {Γ T}
→ {e e' e'' : Γ |- T}
→ e ≤s e' → e' ≤s e''
→ e ≤s e''
_trans_ = trans-s
infixr 10 _trans_
-------
-- interpret complexity types as preorders
[_]t : CTp → PREORDER
[ unit ]t = unit-p
[ nat ]t = Nat , nat-p
[ A ->c B ]t = [ A ]t ->p [ B ]t
[ A ×c B ]t = [ A ]t ×p [ B ]t
[ C ]t = Nat , nat-p
-- interpret contexts as preorders
[_]c : Ctx → PREORDER
[ [] ]c = unit-p
[ τ :: Γ ]c = [ τ ]t ×p [ Γ ]c
| {
"alphanum_fraction": 0.4200251889,
"avg_line_length": 31.8875502008,
"ext": "agda",
"hexsha": "9a8ffe895ae376fb2cdc98dabb02df73c2b8cb70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity-drafts/Comp-lang.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity-drafts/Comp-lang.agda",
"max_line_length": 116,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity-drafts/Comp-lang.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 3538,
"size": 7940
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import cw.CW
module cw.cohomology.TipAndAugment {i} (OT : OrdinaryTheory i)
(⊙skel : ⊙Skeleton {i} 0) where
open OrdinaryTheory OT
open import homotopy.DisjointlyPointedSet
open import cohomology.DisjointlyPointedSet OT
module _ (m : ℤ) where
CX₀ : Group i
CX₀ = C m (⊙cw-head ⊙skel)
CX₀-is-abelian : is-abelian CX₀
CX₀-is-abelian = C-is-abelian m (⊙cw-head ⊙skel)
C2×CX₀ : Group i
C2×CX₀ = C2 m ×ᴳ CX₀
abstract
C2×CX₀-is-abelian : is-abelian C2×CX₀
C2×CX₀-is-abelian = ×ᴳ-is-abelian (C2 m) CX₀ (C2-is-abelian m) CX₀-is-abelian
C2×CX₀-abgroup : AbGroup i
C2×CX₀-abgroup = C2×CX₀ , C2×CX₀-is-abelian
CX₀-β : ⊙has-cells-with-choice 0 ⊙skel i
→ CX₀ ≃ᴳ Πᴳ (MinusPoint (⊙cw-head ⊙skel)) (λ _ → C2 m)
CX₀-β ac = C-set m (⊙cw-head ⊙skel) (snd (⊙Skeleton.skel ⊙skel)) (⊙Skeleton.pt-dec ⊙skel) ac
abstract
CX₀-≠-is-trivial : ∀ {m} (m≠0 : m ≠ 0)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CX₀ m)
CX₀-≠-is-trivial {m} m≠0 ac =
iso-preserves'-trivial (CX₀-β m ac) $
Πᴳ-is-trivial (MinusPoint (⊙cw-head ⊙skel))
(λ _ → C2 m) (λ _ → C-dimension m≠0)
cw-coε : C2 0 →ᴳ C2×CX₀ 0
cw-coε = ×ᴳ-inl {G = C2 0} {H = CX₀ 0}
| {
"alphanum_fraction": 0.6358653093,
"avg_line_length": 27.170212766,
"ext": "agda",
"hexsha": "3f7b5752591469cff8e4fbffeb045a91f9c78519",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/TipAndAugment.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/TipAndAugment.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/TipAndAugment.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 593,
"size": 1277
} |
module Class.Monad.State where
open import Class.Monad
open import Data.Product
open import Data.Unit.Polymorphic
open import Function
open import Level
private
variable
a : Level
A : Set a
record MonadState {a} (M : Set a → Set a) {{_ : Monad M}} (S : Set a) : Set (suc a) where
field
get : M S
put : S → M ⊤
modify : (S → S) → M ⊤
modify f = do
s <- get
put (f s)
gets : (S → A) → M A
gets f = do
s <- get
return (f s)
state : (S → A × S) → M A
state f = do
s ← get
let (a , s') = f s
put s'
return a
open MonadState {{...}} public
module _ {M : Set a → Set a} {{_ : Monad M}} {S S' : Set a} {{_ : MonadState M (S × S')}} where
MonadStateProj₁ : MonadState M S
MonadStateProj₁ = record
{ get = get >>= return ∘ proj₁
; put = λ x → modify λ { (s , s') → (x , s') } }
MonadStateProj₂ : MonadState M S'
MonadStateProj₂ = record
{ get = get >>= return ∘ proj₂
; put = λ x → modify λ { (s , s') → (s , x) } }
| {
"alphanum_fraction": 0.5418326693,
"avg_line_length": 20.4897959184,
"ext": "agda",
"hexsha": "d79537ff0f2dd09f7e96658433f609f55f0efa9d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Monad/State.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Monad/State.agda",
"max_line_length": 95,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Monad/State.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 360,
"size": 1004
} |
postulate
M : Set → Set
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>_ : ∀ {A B} → M A → M B → M B
_<|>_ : ∀ {A} → M A → M A → M A
infixr 4 _>>=_ _>>_
infixr -100 _<|>_
expr : ∀ {A} → (A → M A) → (A → M A)
expr f a = do
x ← {!f a!}
y ← {!f x <|> f a!}
{!f x <|> f y!}
{!f x <|> f y!}
| {
"alphanum_fraction": 0.3410596026,
"avg_line_length": 17.7647058824,
"ext": "agda",
"hexsha": "1372660b57ba6b890bd1d54780c03383fc46f233",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3152.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3152.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3152.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 163,
"size": 302
} |
{-# OPTIONS --no-copatterns #-}
-- Andreas, 2015-08-26: copatterns are on by default now.
-- Andreas, James, 2011-11-24
-- trigger error message 'NeedOptionCopatterns'
module NeedOptionCopatterns where
record Bla : Set2 where
field
bla : Set1
open Bla
f : Bla
bla f = Set
-- should request option --copatterns
| {
"alphanum_fraction": 0.7147335423,
"avg_line_length": 19.9375,
"ext": "agda",
"hexsha": "53985899ed087e14e733d0dd40411e5978ac6814",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NeedOptionCopatterns.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NeedOptionCopatterns.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NeedOptionCopatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 101,
"size": 319
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions of algebraic structures like monoids and rings
-- (packed in records together with sets, operations, etc.)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Algebra where
open import Algebra.Core public
open import Algebra.Definitions public
open import Algebra.Structures public
open import Algebra.Bundles public
| {
"alphanum_fraction": 0.5526838966,
"avg_line_length": 31.4375,
"ext": "agda",
"hexsha": "5d806b52448f550ca6d44380e1795202c84d8ab9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 77,
"size": 503
} |
variable
ℓ : _
A : Set ℓ
| {
"alphanum_fraction": 0.5172413793,
"avg_line_length": 7.25,
"ext": "agda",
"hexsha": "de253d6646d42232cc2d19374684cc403862e37b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5565.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5565.agda",
"max_line_length": 11,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5565.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 14,
"size": 29
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Sn where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.MayerVietorisUnreduced
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Connected
open import Cubical.ZCohomology.KcompPrelims
open import Cubical.ZCohomology.Groups.Prelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.S1
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) hiding (map)
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec)
open import Cubical.Data.Unit
open import Cubical.Algebra.Group
infixr 31 _□_
_□_ : _
_□_ = compGroupIso
open GroupEquiv
open vSES
open GroupIso
open GroupHom
open BijectionIso
Sn-connected : (n : ℕ) (x : typ (S₊∙ (suc n))) → ∥ pt (S₊∙ (suc n)) ≡ x ∥₁
Sn-connected zero = toPropElim (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc zero) = suspToPropElim base (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc (suc n)) = suspToPropElim north (λ _ → propTruncIsProp) ∣ refl ∣₁
H⁰-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr 0 (S₊ (suc n))) intGroup
H⁰-Sⁿ≅ℤ zero = H⁰-connected base (Sn-connected 0)
H⁰-Sⁿ≅ℤ (suc n) = H⁰-connected north (Sn-connected (suc n))
-- -- ----------------------------------------------------------------------
--- We will need to switch between Sⁿ defined using suspensions and using pushouts
--- in order to apply Mayer Vietoris.
S1Iso : Iso S¹ (Pushout {A = Bool} (λ _ → tt) λ _ → tt)
S1Iso = S¹IsoSuspBool ⋄ invIso PushoutSuspIsoSusp
coHomPushout≅coHomSn : (n m : ℕ) → GroupIso (coHomGr m (S₊ (suc n))) (coHomGr m (Pushout {A = S₊ n} (λ _ → tt) λ _ → tt))
coHomPushout≅coHomSn zero m =
Iso+Hom→GrIso (setTruncIso (domIso S1Iso))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
coHomPushout≅coHomSn (suc n) m =
Iso+Hom→GrIso (setTruncIso (domIso (invIso PushoutSuspIsoSusp)))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
-------------------------- H⁰(S⁰) -----------------------------
S0→Int : (a : Int × Int) → S₊ 0 → Int
S0→Int a true = fst a
S0→Int a false = snd a
H⁰-S⁰≅ℤ×ℤ : GroupIso (coHomGr 0 (S₊ 0)) (dirProd intGroup intGroup)
fun (map H⁰-S⁰≅ℤ×ℤ) = sRec (isSet× isSetInt isSetInt) λ f → (f true) , (f false)
isHom (map H⁰-S⁰≅ℤ×ℤ) = sElim2 (λ _ _ → isSet→isGroupoid (isSet× isSetInt isSetInt) _ _)
λ a b i → addLemma (a true) (b true) i , addLemma (a false) (b false) i
inv H⁰-S⁰≅ℤ×ℤ a = ∣ S0→Int a ∣₂
rightInv H⁰-S⁰≅ℤ×ℤ _ = refl
leftInv H⁰-S⁰≅ℤ×ℤ = sElim (λ _ → isSet→isGroupoid setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt (λ {true → refl ; false → refl}))
-- --------------------------H¹(S¹) -----------------------------------
{-
In order to apply Mayer-Vietoris, we need the following lemma.
Given the following diagram
a ↦ (a , 0) ψ ϕ
A --> A × A -------> B ---> C
If ψ is an isomorphism and ϕ is surjective with ker ϕ ≡ {ψ (a , a) ∣ a ∈ A}, then C ≅ B
-}
diagonalIso : ∀ {ℓ ℓ' ℓ''} {A : Group {ℓ}} (B : Group {ℓ'}) {C : Group {ℓ''}}
(ψ : GroupIso (dirProd A A) B) (ϕ : GroupHom B C)
→ isSurjective _ _ ϕ
→ ((x : ⟨ B ⟩) → isInKer B C ϕ x
→ ∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y))
→ ((x : ⟨ B ⟩) → (∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y))
→ isInKer B C ϕ x)
→ GroupIso A C
diagonalIso {A = A} B {C = C} ψ ϕ issurj ker→diag diag→ker = BijectionIsoToGroupIso bijIso
where
open GroupStr
module A = GroupStr (snd A)
module B = GroupStr (snd B)
module C = GroupStr (snd C)
module A×A = GroupStr (snd (dirProd A A))
module ψ = GroupIso ψ
module ϕ = GroupHom ϕ
ψ⁻ = inv ψ
fstProj : GroupHom A (dirProd A A)
fun fstProj a = a , GroupStr.0g (snd A)
isHom fstProj g0 g1 i = (g0 A.+ g1) , GroupStr.lid (snd A) (GroupStr.0g (snd A)) (~ i)
bijIso : BijectionIso A C
map' bijIso = compGroupHom fstProj (compGroupHom (map ψ) ϕ)
inj bijIso a inker = pRec (isSetCarrier A _ _)
(λ {(a' , id) → (cong fst (sym (leftInv ψ (a , GroupStr.0g (snd A))) ∙∙ cong ψ⁻ id ∙∙ leftInv ψ (a' , a')))
∙ cong snd (sym (leftInv ψ (a' , a')) ∙∙ cong ψ⁻ (sym id) ∙∙ leftInv ψ (a , GroupStr.0g (snd A)))})
(ker→diag _ inker)
surj bijIso c =
pRec propTruncIsProp
(λ { (b , id) → ∣ (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b)))
, ((sym (GroupStr.rid (snd C) _)
∙∙ cong ((fun ϕ) ((fun (map ψ)) (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b)) , GroupStr.0g (snd A))) C.+_)
(sym (diag→ker (fun (map ψ) ((snd (ψ⁻ b)) , (snd (ψ⁻ b))))
∣ (snd (ψ⁻ b)) , refl ∣₁))
∙∙ sym ((isHom ϕ) _ _))
∙∙ cong (fun ϕ) (sym ((isHom (map ψ)) _ _)
∙∙ cong (fun (map ψ)) (ΣPathP (sym (GroupStr.assoc (snd A) _ _ _)
∙∙ cong (fst (ψ⁻ b) A.+_) (GroupStr.invl (snd A) _)
∙∙ GroupStr.rid (snd A) _
, (GroupStr.lid (snd A) _)))
∙∙ rightInv ψ b)
∙∙ id) ∣₁ })
(issurj c)
H¹-S¹≅ℤ : GroupIso intGroup (coHomGr 1 (S₊ 1))
H¹-S¹≅ℤ =
diagonalIso (coHomGr 0 (S₊ 0))
(invGroupIso H⁰-S⁰≅ℤ×ℤ)
(K.d 0)
(λ x → K.Ker-i⊂Im-d 0 x
(ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _
, isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _)))
((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp)
(λ x inker
→ pRec propTruncIsProp
(λ {((f , g) , id') → helper x f g id' inker})
((K.Ker-d⊂Im-Δ 0 ∣ x ∣₂ inker)))))
((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ F surj
→ pRec (setTruncIsSet _ _)
(λ { (x , id) → K.Im-Δ⊂Ker-d 0 ∣ F ∣₂
∣ (∣ (λ _ → x) ∣₂ , ∣ (λ _ → 0) ∣₂) ,
(cong ∣_∣₂ (funExt (surjHelper x))) ∙ sym id ∣₁ })
surj) )
□ invGroupIso (coHomPushout≅coHomSn 0 1)
where
module K = MV Unit Unit (S₊ 0) (λ _ → tt) (λ _ → tt)
surjHelper : (x : Int) (x₁ : S₊ 0) → x -[ 0 ]ₖ 0 ≡ S0→Int (x , x) x₁
surjHelper x true = Iso.leftInv (Iso-Kn-ΩKn+1 0) x
surjHelper x false = Iso.leftInv (Iso-Kn-ΩKn+1 0) x
helper : (F : S₊ 0 → Int) (f g : ∥ (Unit → Int) ∥₂)
(id : GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂)
→ isInKer (coHomGr 0 (S₊ 0))
(coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt)))
(K.d 0)
∣ F ∣₂
→ ∃[ x ∈ Int ] ∣ F ∣₂ ≡ inv H⁰-S⁰≅ℤ×ℤ (x , x)
helper F =
sElim2 (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp)
λ f g id inker
→ pRec propTruncIsProp
(λ ((a , b) , id2)
→ sElim2 {C = λ f g → GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂ → _ }
(λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp)
(λ f g id → ∣ (helper2 f g .fst) , (sym id ∙ sym (helper2 f g .snd)) ∣₁)
a b id2)
(MV.Ker-d⊂Im-Δ _ _ (S₊ 0) (λ _ → tt) (λ _ → tt) 0 ∣ F ∣₂ inker)
where
helper2 : (f g : Unit → Int)
→ Σ[ x ∈ Int ] (inv H⁰-S⁰≅ℤ×ℤ (x , x))
≡ GroupHom.fun (K.Δ 0) (∣ f ∣₂ , ∣ g ∣₂)
helper2 f g = (f _ -[ 0 ]ₖ g _) , cong ∣_∣₂ (funExt λ {true → refl ; false → refl})
------------------------- H¹(S⁰) ≅ 0 -------------------------------
private
Hⁿ-S0≃Kₙ×Kₙ : (n : ℕ) → Iso (S₊ 0 → coHomK (suc n)) (coHomK (suc n) × coHomK (suc n))
Iso.fun (Hⁿ-S0≃Kₙ×Kₙ n) f = (f true) , (f false)
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) true = a
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) false = b
Iso.rightInv (Hⁿ-S0≃Kₙ×Kₙ n) a = refl
Iso.leftInv (Hⁿ-S0≃Kₙ×Kₙ n) b = funExt λ {true → refl ; false → refl}
isContrHⁿ-S0 : (n : ℕ) → isContr (coHom (suc n) (S₊ 0))
isContrHⁿ-S0 n = isContrRetract (Iso.fun (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.inv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.leftInv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(isContrHelper n)
where
isContrHelper : (n : ℕ) → isContr (∥ (coHomK (suc n) × coHomK (suc n)) ∥₂)
fst (isContrHelper zero) = ∣ (0₁ , 0₁) ∣₂
snd (isContrHelper zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₁ , 0₁) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet _ _)
(toPropElim2 (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc zero) = ∣ (0₂ , 0₂) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₂ , 0₂) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 3 setTruncIsSet _ _)
(suspToPropElim2 base (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc (suc n)) = ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isProp→isOfHLevelSuc (4 + n) (setTruncIsSet _ _))
(suspToPropElim2 north (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
H¹-S⁰≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ 0)) trivialGroup
H¹-S⁰≅0 n = IsoContrGroupTrivialGroup (isContrHⁿ-S0 n)
------------------------- H²(S¹) ≅ 0 -------------------------------
H²-S¹≅0 : GroupIso (coHomGr 2 (S₊ 1)) trivialGroup
H²-S¹≅0 =
coHomPushout≅coHomSn 0 2
□ invGroupIso (vSES→GroupIso _ _ vSES-helper)
□ H¹-S⁰≅0 0
where
module I = MV Unit Unit (S₊ 0) (λ _ → tt) (λ _ → tt)
vSES-helper : vSES (coHomGr 1 (S₊ 0)) (coHomGr 2 (Pushout (λ _ → tt) (λ _ → tt)))
_ _
isTrivialLeft vSES-helper = isOfHLevelSuc 0 (isOfHLevelΣ 0 (isContrHⁿ-Unit 0) (λ _ → isContrHⁿ-Unit 0))
isTrivialRight vSES-helper = isOfHLevelSuc 0 (isOfHLevelΣ 0 (isContrHⁿ-Unit 1) (λ _ → isContrHⁿ-Unit 1))
left vSES-helper = I.Δ 1
right vSES-helper = I.i 2
vSES.ϕ vSES-helper = I.d 1
Ker-ϕ⊂Im-left vSES-helper = I.Ker-d⊂Im-Δ 1
Ker-right⊂Im-ϕ vSES-helper = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) -- doesn't terminate without elimination
λ a → I.Ker-i⊂Im-d 1 ∣ a ∣₂
-- --------------- H¹(Sⁿ), n ≥ 1 --------------------------------------------
H¹-Sⁿ≅0 : (n : ℕ) → GroupIso (coHomGr 1 (S₊ (2 + n))) trivialGroup
H¹-Sⁿ≅0 zero = coHomPushout≅coHomSn 1 1
□ BijectionIsoToGroupIso bijIso
□ dirProdGroupIso (Hⁿ-Unit≅0 0) (Hⁿ-Unit≅0 0)
□ lUnitGroupIso
where
module K = MV Unit Unit (S₊ 1) (λ _ → tt) (λ _ → tt)
surj-helper : (x : ⟨ coHomGr 0 (S₊ _) ⟩) → isInIm _ _ (K.Δ 0) x
surj-helper =
sElim (λ _ → isOfHLevelSuc 1 propTruncIsProp)
λ f → ∣ (∣ (λ _ → f base) ∣₂ , 0ₕ 0)
, (cong ∣_∣₂ (funExt (toPropElim
(λ _ → isSetInt _ _)
(cong (λ x → f base +[ 0 ]ₖ x) (-0ₖ {n = 0}) ∙ rUnitₖ 0 (f base))))) ∣₁
helper : isInjective _ _ (K.i 1)
helper =
sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 (setTruncIsSet _ _))
λ x inker → pRec (setTruncIsSet _ _)
(sigmaElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ a id → sym id ∙ K.Im-Δ⊂Ker-d 0 ∣ a ∣₂ (surj-helper _))
(K.Ker-i⊂Im-d 0 ∣ x ∣₂ inker)
bijIso : BijectionIso (coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt)))
(dirProd (coHomGr 1 Unit) (coHomGr 1 Unit))
map' bijIso = K.i 1
inj bijIso = helper
surj bijIso x = ∣ 0ₕ _ , isOfHLevelSuc 0 (isOfHLevelΣ 0 (isContrHⁿ-Unit zero) (λ _ → isContrHⁿ-Unit 0)) _ x ∣₁
H¹-Sⁿ≅0 (suc n) = coHomPushout≅coHomSn (2 + n) 1
□ BijectionIsoToGroupIso bijIso
□ dirProdGroupIso (Hⁿ-Unit≅0 0) (Hⁿ-Unit≅0 0)
□ lUnitGroupIso
where
module K = MV Unit Unit (S₊ (2 + n)) (λ _ → tt) (λ _ → tt)
surj-helper : (x : ⟨ coHomGr 0 (S₊ _) ⟩) → isInIm _ _ (K.Δ 0) x
surj-helper =
sElim (λ _ → isOfHLevelSuc 1 propTruncIsProp)
λ f → ∣ (∣ (λ _ → f north) ∣₂ , 0ₕ 0)
, cong ∣_∣₂ (funExt (suspToPropElim
(ptSn (suc n))
(λ _ → isSetInt _ _)
(cong (λ x → f north +[ 0 ]ₖ x) (-0ₖ {n = 0}) ∙ rUnitₖ 0 (f north)))) ∣₁
helper : isInjective _ _ (K.i 1)
helper =
sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 (setTruncIsSet _ _))
λ x inker → pRec (setTruncIsSet _ _)
(sigmaElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ a id → sym id ∙ K.Im-Δ⊂Ker-d 0 ∣ a ∣₂ (surj-helper _))
(K.Ker-i⊂Im-d 0 ∣ x ∣₂ inker)
bijIso : BijectionIso (coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt)))
(dirProd (coHomGr 1 Unit) (coHomGr 1 Unit))
map' bijIso = K.i 1
inj bijIso = helper
surj bijIso x = ∣ 0ₕ _ , isOfHLevelSuc 0 (isOfHLevelΣ 0 (isContrHⁿ-Unit zero) (λ _ → isContrHⁿ-Unit 0)) _ x ∣₁
--------- Direct proof of H¹(S¹) ≅ ℤ without Mayer-Vietoris -------
-- The strategy is to use the proof that ΩS¹ ≃ ℤ. Since we only have this for S¹ with the base/loop definition
-- we begin with some functions translating between H¹(S₊ 1) and ∥ S¹ → S¹ ∥₀. The latter type is easy to characterise,
-- by (S¹ → S¹) ≃ S¹ × ℤ (see Cubical.ZCohomology.Groups.Prelims). Truncating this leaves only ℤ, since S¹ is connected.
-- The translation mentioned above uses the basechange function. We use basechange-lemma (Cubical.ZCohomology.Groups.Prelims) to prove the basechange2⁻ preserves
-- path composition (in a more general sense than what is proved in basechange2⁻-morph)
-- We can now give the group equivalence. The first bit is just a big composition of our previously defined translations and is pretty uninteresting.
-- The harder step is proving that the equivalence is a morphism. This relies heavily on the fact that addition the cohomology groups essentially is defined using an
-- application of cong₂, which allows us to use basechange-lemma.
coHom1S1≃ℤ : GroupIso (coHomGr 1 (S₊ 1)) intGroup
coHom1S1≃ℤ = theIso
where
F = Iso.fun S¹→S¹≡S¹×Int
F⁻ = Iso.inv S¹→S¹≡S¹×Int
theIso : GroupIso (coHomGr 1 (S₊ 1)) intGroup
fun (map theIso) = sRec isSetInt (λ f → snd (F f))
isHom (map theIso) = sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _)
λ f g → ((λ i → winding (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base)))
(λ i → S¹map (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i))))))))
∙∙ cong winding (helper (f base) (g base) f g refl refl)
∙∙ winding-hom (guy (f base) (λ i → S¹map (f (loop i))))
(guy (g base) (λ i → S¹map (g (loop i))))
where
guy = basechange2⁻ ∘ S¹map
helper : (x y : coHomK 1) (f g : S₊ 1 → coHomK 1)
→ (f base) ≡ x
→ (g base) ≡ y
→ (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base)))
(λ i → S¹map ((ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i)))))))
≡ (guy (f base)
(λ i → S¹map (f (loop i))))
∙ (guy (g base)
(λ i → S¹map ((g (loop i)))))
helper =
elim2 (λ _ _ → isGroupoidΠ4 λ _ _ _ _ → isOfHLevelPath 3 (isOfHLevelSuc 3 (isGroupoidS¹) base base) _ _)
(toPropElim2
(λ _ _ → isPropΠ4 λ _ _ _ _ → isGroupoidS¹ _ _ _ _)
λ f g reflf reflg →
basechange-lemma base base
(S¹map ∘ (ΩKn+1→Kn 1))
((Kn→ΩKn+1 1) ∘ f) ((Kn→ΩKn+1 1) ∘ g)
(cong (Kn→ΩKn+1 1) reflf ∙ Kn→ΩKn+10ₖ 1) (cong (Kn→ΩKn+1 1) reflg ∙ Kn→ΩKn+10ₖ 1)
∙ λ j → guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f base) j)
(λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f (loop i)) j))
∙ guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g base) j)
(λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g (loop i)) j)))
inv theIso a = ∣ (F⁻ (base , a)) ∣₂
rightInv theIso a = cong snd (Iso.rightInv S¹→S¹≡S¹×Int (base , a))
leftInv theIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ((sRec setTruncIsSet ∣_∣₂)
∘ sRec setTruncIsSet λ x → ∣ F⁻ (x , (snd (F f))) ∣₂)
(Iso.inv PathIdTrunc₀Iso (isConnectedS¹ (fst (F f))))
∙ cong ∣_∣₂ (Iso.leftInv S¹→S¹≡S¹×Int f)
---------------------------- Hⁿ(Sⁿ) ≅ ℤ , n ≥ 1 -------------------
Hⁿ-Sⁿ≅ℤ : (n : ℕ) → GroupIso intGroup (coHomGr (suc n) (S₊ (suc n)))
Hⁿ-Sⁿ≅ℤ zero = invGroupIso coHom1S1≃ℤ
Hⁿ-Sⁿ≅ℤ (suc n) =
Hⁿ-Sⁿ≅ℤ n
□ vSES→GroupIso _ _ theIso
□ invGroupIso (coHomPushout≅coHomSn (suc n) (suc (suc n)))
where
module K = MV Unit Unit (S₊ (suc n)) (λ _ → tt) (λ _ → tt)
theIso : vSES (coHomGr (suc n) (S₊ (suc n))) (coHomGr (suc (suc n))
(Pushout {A = S₊ (suc n)} (λ _ → tt) (λ _ → tt)))
_
_
isTrivialLeft theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit n) (fst p) (fst q)
, isOfHLevelSuc 0 (isContrHⁿ-Unit n) (snd p) (snd q))
isTrivialRight theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (fst p) (fst q)
, isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (snd p) (snd q))
left theIso = K.Δ (suc n)
right theIso = K.i (2 + n)
vSES.ϕ theIso = K.d (suc n)
Ker-ϕ⊂Im-left theIso = K.Ker-d⊂Im-Δ (suc n)
Ker-right⊂Im-ϕ theIso = K.Ker-i⊂Im-d (suc n)
| {
"alphanum_fraction": 0.5015839493,
"avg_line_length": 50.4746192893,
"ext": "agda",
"hexsha": "d6c1aebfbd37a2e2dd8509086b693796822734cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "69d358f6be7842f77105634712821eda22d9c044",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "aljungstrom/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_line_length": 165,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7569,
"size": 19887
} |
{-# OPTIONS --safe --sized-types #-}
module Generic.Semantics.Elaboration.LetBinder where
open import Size
open import Data.Product
open import Agda.Builtin.List
open import Function
open import Relation.Unary
open import Data.Environment
open import Generic.Syntax
open import Generic.Syntax.LetBinder
open import Generic.Semantics
open import Generic.Semantics.Syntactic
private
variable
I : Set
d : Desc I
σ : I
Γ Δ : List I
s : Size
-- Elaborating away a single let-binder. The algebra is defined by case analysis
-- over the constructors:
-- * let-binders are inlined thanks to the substitution _[_/0] which takes two
-- arguments t and e and instatiates the first free variable of t with e.
-- * the other constructors are left as is by reusing Substitution's algebra
UnLet : Semantics (d `+ Let) (Tm d ∞) (Tm d ∞)
Semantics.th^𝓥 UnLet = th^Tm
Semantics.var UnLet = id
Semantics.alg UnLet = case (Semantics.alg Sub) $ λ where
(`IN' e t) → extract t (ε ∙ e)
unLet : (Γ ─Env) (Tm d ∞) Δ → Tm (d `+ Let) s σ Γ → Tm d ∞ σ Δ
unLet ρ t = Semantics.semantics UnLet ρ t
unlet : ∀[ Tm (d `+ Let) ∞ σ ⇒ Tm d ∞ σ ]
unlet = Semantics.semantics UnLet (pack `var)
| {
"alphanum_fraction": 0.6980817348,
"avg_line_length": 24.9791666667,
"ext": "agda",
"hexsha": "e9dda8c75643394ca509bbca3a1ae65b81f2ee0c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/gallais/generic-syntax/d458d7520ad52f8e089691348780caab991a0b2d/src/Generic/Semantics/Elaboration/LetBinder.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/gallais/generic-syntax/d458d7520ad52f8e089691348780caab991a0b2d/src/Generic/Semantics/Elaboration/LetBinder.agda",
"max_line_length": 80,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/gallais/generic-syntax/d458d7520ad52f8e089691348780caab991a0b2d/src/Generic/Semantics/Elaboration/LetBinder.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 377,
"size": 1199
} |
module reverse-involution where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; cong)
open Eq.≡-Reasoning
open import lists using (List; []; _∷_; [_]; _++_; reverse)
open import reverse-++-distrib using (reverse-++-distrib)
-- reverseが対合(involution)である事の証明
reverse-involution : {A : Set} → (xs : List A)
→ reverse (reverse xs) ≡ xs
reverse-involution [] =
begin
reverse (reverse [])
≡⟨⟩
reverse []
≡⟨⟩
[]
∎
reverse-involution (x ∷ xs) =
begin
reverse (reverse (x ∷ xs))
≡⟨⟩
reverse ((reverse xs) ++ [ x ])
≡⟨ reverse-++-distrib (reverse xs) [ x ] ⟩
(reverse [ x ]) ++ (reverse (reverse xs))
≡⟨⟩
[ x ] ++ reverse (reverse xs)
≡⟨ cong (x ∷_) (reverse-involution xs) ⟩
x ∷ xs
∎
| {
"alphanum_fraction": 0.6,
"avg_line_length": 23.90625,
"ext": "agda",
"hexsha": "410fc1fba380510879efdb75d6548fd019c45a12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/lists/reverse-involution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/lists/reverse-involution.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/lists/reverse-involution.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 276,
"size": 765
} |
------------------------------------------------------------------------------
-- Definition of the gcd of two natural numbers using the Euclid's algorithm
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Partial.GCD where
open import FOTC.Base
open import FOTC.Base.Loop
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
------------------------------------------------------------------------------
-- In GHC ≤ 7.0.4 the gcd is a partial function, i.e. gcd 0 0 = undefined.
postulate
gcd : D → D → D
gcd-eq : ∀ m n → gcd m n ≡
(if (iszero₁ n)
then (if (iszero₁ m)
then error
else m)
else (if (iszero₁ m)
then n
else (if (gt m n)
then gcd (m ∸ n) n
else gcd m (n ∸ m))))
{-# ATP axiom gcd-eq #-}
| {
"alphanum_fraction": 0.3913808267,
"avg_line_length": 34.4545454545,
"ext": "agda",
"hexsha": "fcfd7516f91b5e7fb1d88f92f738cdd694c56cde",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/GCD.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/GCD.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/GCD.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 238,
"size": 1137
} |
module Cats.Limit.Product where
open import Data.Bool using (Bool ; true ; false)
open import Data.Product using (_×_ ; _,_ ; ∃-syntax ; proj₁ ; proj₂)
open import Cats.Category
open import Cats.Category.Cones using (Cones ; Cone ; HasObj-Cone)
open import Cats.Category.Discrete as Discrete using (Discrete)
open import Cats.Functor using (Functor)
open import Cats.Limit
open import Cats.Util.Conv
module _ {lo la l≈ li}
{Cat : Category lo la l≈}
{I : Set li} {O : I → Category.Obj Cat}
where
open Category Cat
open Product using (isProduct)
open Cone using (arr)
F : Functor (Discrete I) Cat
F = Discrete.functor I O
private
module Cones = Category (Cones F)
productData→cone : ∀ {P} → (∀ i → P ⇒ O i) → Cone F
productData→cone {P} proj = record
{ Apex = P
; arr = proj
; commute = λ { Discrete.id → ≈.sym id-l }
}
cone→productData : Cone F → ∃[ P ] (∀ i → P ⇒ O i)
cone→productData c = c ᴼ , arr c
terminal : ∀ {P} {proj : ∀ i → P ⇒ O i}
→ IsProduct O P proj
→ Cones.IsTerminal (productData→cone proj)
terminal {P} {proj} isProduct c = record
{ arr = record
{ θ = θ
; commute = commute
}
; unique = λ where
{record { θ = θ′ ; commute = commute′ }} _ →
∃!′.unique prod (λ i → ≈.sym (commute′ i))
}
where
prod : ∃![ u ] (∀ i → arr c i ≈ proj i ∘ u)
prod = isProduct (arr c)
θ : c ᴼ ⇒ P
θ = prod ⃗
commute : ∀ j → arr (productData→cone proj) j ∘ θ ≈ arr c j
commute j = ≈.sym (∃!′.prop prod j)
product : ∀ {c}
→ Cones.IsTerminal c
→ let (P , proj) = cone→productData c
in IsProduct O P proj
product {c} term {X} x = record
{ arr = f
; prop = prop
; unique = uniq
}
where
open Cats.Category.Cones._⇒_ using (θ ; commute)
P = proj₁ (cone→productData c)
proj = proj₂ (cone→productData c)
u : Cones.∃! (productData→cone x) c
u = term (productData→cone x)
f : X ⇒ P
f = θ (u ⃗)
prop : ∀ i → x i ≈ proj i ∘ f
prop i = ≈.sym (commute (u ⃗) _)
uniq : IsUniqueSuchThat (λ g → ∀ i → x i ≈ proj i ∘ g) f
uniq {g} eq = Cones.∃!′.unique u {f′} _
where
f′ : productData→cone x Cones.⇒ c
f′ = record
{ θ = g
; commute = λ i → ≈.sym (eq i)
}
product→limit : Product O → Limit F
product→limit P = record
{ cone = productData→cone (Product.proj P)
; isLimit = terminal (isProduct P)
}
limit→product : Limit F → Product O
limit→product L
= let (P , proj) = cone→productData (L ᴼ) in
record
{ prod = P
; proj = proj
; isProduct = product (Limit.isLimit L)
}
product-unique : (P Q : Product O) → P ᴼ ≅ Q ᴼ
product-unique P Q = obj-unique (product→limit P) (product→limit Q)
| {
"alphanum_fraction": 0.540328093,
"avg_line_length": 24.3833333333,
"ext": "agda",
"hexsha": "d33d5f7ad65785ce9751924e87dbad8955a59e82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Limit/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Limit/Product.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Limit/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 977,
"size": 2926
} |
-- Very simple facts about natural numbers
module NatSimple where
import Data.Fin as F
open import Data.Empty
open import Data.Unit
open import Data.Unit.Core
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Function renaming (_∘_ to _○_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import FT
------------------------------------------------------------------------------
-- Equivalences (not used)
data Dec (A : Set) : Set where
yes : A → Dec A
no : (A → ⊥) → Dec A
sucEq : {n : ℕ} → (i j : F.Fin n) → (F.suc i) ≡ (F.suc j) → i ≡ j
sucEq i .i refl = refl
_=F=_ : {n : ℕ} → (i j : F.Fin n) → Dec (i ≡ j)
F.zero =F= F.zero = yes refl
(F.suc i) =F= F.zero = no (λ ())
F.zero =F= (F.suc j) = no (λ ())
(F.suc i) =F= (F.suc j) with i =F= j
(F.suc i) =F= (F.suc .i) | yes refl = yes refl
(F.suc i) =F= (F.suc j) | no p = no (λ q → p (sucEq i j q))
------------------------------------------------------------------
-- Finite Types and the natural numbers are intimately related.
toℕ : FT → ℕ
toℕ ZERO = zero
toℕ ONE = suc zero
toℕ (PLUS b₀ b₁) = (toℕ b₀) + (toℕ b₁)
toℕ (TIMES b₀ b₁) = (toℕ b₀) * (toℕ b₁)
fromℕ : ℕ → FT
fromℕ zero = ZERO
fromℕ (suc n) = PLUS ONE (fromℕ n)
normalize : FT → FT
normalize = fromℕ ○ toℕ
assocr : {m : ℕ} (n : ℕ) → (PLUS (fromℕ n) (fromℕ m)) ⇛ fromℕ (n + m)
assocr zero = unite₊⇛
assocr (suc n) = assocr₊⇛ ◎ (id⇛ ⊕ (assocr n))
distr : (n₀ : ℕ) {n₁ : ℕ} → TIMES (fromℕ n₀) (fromℕ n₁) ⇛ fromℕ (n₀ * n₁)
distr zero = distz⇛
distr (suc n) {m} = dist⇛ ◎ (unite⋆⇛ ⊕ distr n) ◎ assocr m
normal : (b : FT) → b ⇛ normalize b
normal ZERO = id⇛
normal ONE = uniti₊⇛ ◎ swap₊⇛
normal (PLUS b₀ b₁) = (normal b₀ ⊕ normal b₁) ◎ assocr (toℕ b₀)
normal (TIMES b₀ b₁) = (normal b₀ ⊗ normal b₁) ◎ distr (toℕ b₀)
-- normalize a finite type to (1 + (1 + (1 + ... + (1 + 0) ... )))
-- a bunch of ones ending with zero with left biased + in between
⟦_⟧ℕ : ℕ → Set
⟦ zero ⟧ℕ = ⊥
⟦ suc n ⟧ℕ = ⊤ ⊎ ⟦ n ⟧ℕ
-- Take a natural number n, and a value of the type represented by that n,
-- and return the canonical finite set of size n.
fromNormalNat : (n : ℕ) → ⟦ n ⟧ℕ → F.Fin n
fromNormalNat zero ()
fromNormalNat (suc n) (inj₁ tt) = F.zero
fromNormalNat (suc n) (inj₂ x) = F.suc (fromNormalNat n x)
-- Take a natural number n, a finite set of size n, and return a
-- (canonical) value of the type represented by n
toNormalNat : (n : ℕ) → F.Fin n → ⟦ n ⟧ℕ
toNormalNat zero ()
toNormalNat (suc n) F.zero = inj₁ tt
toNormalNat (suc n) (F.suc f) = inj₂ (toNormalNat n f)
-- BEGIN CODE COPIED (AND SOMEWHAT MODIFIED) FROM Nat.Properties
-- (for some reason +-comm is a private field so I can't get to it without
-- importing superfluous files and going through a bunch of administrative
-- garbage that isn't worth my time)
m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n)
m+1+n≡1+m+n zero n = refl
m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n)
+-identity : {n : ℕ} → n + zero ≡ n
+-identity = n+0≡n _
where
n+0≡n : (n : ℕ) → n + zero ≡ n
n+0≡n zero = refl
n+0≡n (suc n) = cong suc (n+0≡n n)
+-comm : (m n : ℕ) → m + n ≡ n + m
+-comm zero n = sym +-identity
+-comm (suc m) n = begin
suc m + n
≡⟨ refl ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨ sym (m+1+n≡1+m+n n m) ⟩
n + suc m
∎
-- END CODE COPIED FROM Nat.Properties
--
add1modn : ℕ → ℕ → ℕ → ℕ
add1modn zero zero acc = zero
add1modn zero (suc n) acc = (suc n) + acc
add1modn (suc max) zero acc = suc acc
add1modn (suc max) (suc n) acc = add1modn max n (suc acc)
-- Useful for testing
one : ℕ
one = suc (zero)
two : ℕ
two = suc one
three : ℕ
three = suc two
four : ℕ
four = suc three
five : ℕ
five = suc four
six : ℕ
six = suc five | {
"alphanum_fraction": 0.5658097686,
"avg_line_length": 27.5886524823,
"ext": "agda",
"hexsha": "8d41ffffa5a5e4951e1e38f46910ec5f3d56dbcb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/NatSimple.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/NatSimple.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/NatSimple.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1543,
"size": 3890
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group where
open import Cubical.Algebra.Base public
open import Cubical.Algebra.Definitions public
open import Cubical.Algebra.Structures public using (IsGroup; isgroup)
open import Cubical.Algebra.Bundles public using (Group; mkgroup; GroupCarrier)
open import Cubical.Structures.Carrier public
open import Cubical.Algebra.Group.Properties public
open import Cubical.Algebra.Group.Morphism public
open import Cubical.Algebra.Group.MorphismProperties public hiding (isPropIsGroup)
| {
"alphanum_fraction": 0.8261648746,
"avg_line_length": 39.8571428571,
"ext": "agda",
"hexsha": "9beeed7e15423850201f4c97e585a07012607c30",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Group.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Group.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 558
} |
------------------------------------------------------------------------
-- List-related properties
------------------------------------------------------------------------
-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.
module Data.List.Properties where
open import Data.List
open import Data.Nat
open import Data.Nat.Properties
open import Data.Bool
open import Data.Function
open import Data.Product as Prod hiding (map)
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
import Relation.Binary.EqReasoning as Eq
open import Algebra
∷-injective : ∀ {A} {x y xs ys} →
(List A ∶ x ∷ xs) ≡ (y ∷ ys) → (x ≡ y) × (xs ≡ ys)
∷-injective refl = (refl , refl)
right-identity-unique : ∀ {A} (xs : List A) {ys} →
xs ≡ xs ++ ys → ys ≡ []
right-identity-unique [] refl = refl
right-identity-unique (x ∷ xs) eq =
right-identity-unique xs (proj₂ (∷-injective eq))
-- Map, sum, and append.
map-++-commute : ∀ {a b} (f : a → b) xs ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++-commute f [] ys = refl
map-++-commute f (x ∷ xs) ys =
cong (_∷_ (f x)) (map-++-commute f xs ys)
sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute [] ys = refl
sum-++-commute (x ∷ xs) ys = begin
x + sum (xs ++ ys)
≡⟨ cong (_+_ x) (sum-++-commute xs ys) ⟩
x + (sum xs + sum ys)
≡⟨ sym $ +-assoc x _ _ ⟩
(x + sum xs) + sum ys
∎
where
open CommutativeSemiring commutativeSemiring hiding (_+_; sym)
open ≡-Reasoning
-- Various properties about folds.
foldr-universal : ∀ {a b} (h : List a → b) f e →
(h [] ≡ e) →
(∀ x xs → h (x ∷ xs) ≡ f x (h xs)) →
h ≗ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) = begin
h (x ∷ xs)
≡⟨ step x xs ⟩
f x (h xs)
≡⟨ cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs)
∎
where open ≡-Reasoning
foldr-fusion : ∀ {a b c} (h : b → c)
{f : a → b → b} {g : a → c → c} (e : b) →
(∀ x y → h (f x y) ≡ g x (h y)) →
h ∘ foldr f e ≗ foldr g (h e)
foldr-fusion h {f} {g} e fuse =
foldr-universal (h ∘ foldr f e) g (h e) refl
(λ x xs → fuse x (foldr f e xs))
idIsFold : ∀ {a} → id {a = List a} ≗ foldr _∷_ []
idIsFold = foldr-universal id _∷_ [] refl (λ _ _ → refl)
++IsFold : ∀ {a} (xs ys : List a) →
xs ++ ys ≡ foldr _∷_ ys xs
++IsFold xs ys =
begin
xs ++ ys
≡⟨ cong (λ xs → xs ++ ys) (idIsFold xs) ⟩
foldr _∷_ [] xs ++ ys
≡⟨ foldr-fusion (λ xs → xs ++ ys) [] (λ _ _ → refl) xs ⟩
foldr _∷_ ([] ++ ys) xs
≡⟨ refl ⟩
foldr _∷_ ys xs
∎
where open ≡-Reasoning
mapIsFold : ∀ {a b} {f : a → b} →
map f ≗ foldr (λ x ys → f x ∷ ys) []
mapIsFold {f = f} =
begin
map f
≈⟨ cong (map f) ∘ idIsFold ⟩
map f ∘ foldr _∷_ []
≈⟨ foldr-fusion (map f) [] (λ _ _ → refl) ⟩
foldr (λ x ys → f x ∷ ys) []
∎
where open Eq (_ →-setoid _)
concat-map : ∀ {a b} {f : a → b} →
concat ∘ map (map f) ≗ map f ∘ concat
concat-map {f = f} =
begin
concat ∘ map (map f)
≈⟨ cong concat ∘ mapIsFold ⟩
concat ∘ foldr (λ xs ys → map f xs ∷ ys) []
≈⟨ foldr-fusion concat [] (λ _ _ → refl) ⟩
foldr (λ ys zs → map f ys ++ zs) []
≈⟨ sym ∘
foldr-fusion (map f) [] (λ ys zs → map-++-commute f ys zs) ⟩
map f ∘ concat
∎
where open Eq (_ →-setoid _)
map-id : ∀ {A} → map id ≗ id {List A}
map-id = begin
map id ≈⟨ mapIsFold ⟩
foldr _∷_ [] ≈⟨ sym ∘ idIsFold ⟩
id ∎
where open Eq (_ →-setoid _)
map-compose : ∀ {a b c} {g : b → c} {f : a → b} →
map (g ∘ f) ≗ map g ∘ map f
map-compose {g = g} {f} =
begin
map (g ∘ f)
≈⟨ cong (map (g ∘ f)) ∘ idIsFold ⟩
map (g ∘ f) ∘ foldr _∷_ []
≈⟨ foldr-fusion (map (g ∘ f)) [] (λ _ _ → refl) ⟩
foldr (λ a y → g (f a) ∷ y) []
≈⟨ sym ∘ foldr-fusion (map g) [] (λ _ _ → refl) ⟩
map g ∘ foldr (λ a y → f a ∷ y) []
≈⟨ cong (map g) ∘ sym ∘ mapIsFold ⟩
map g ∘ map f
∎
where open Eq (_ →-setoid _)
foldr-cong : ∀ {a b} {f₁ f₂ : a → b → b} {e₁ e₂ : b} →
(∀ x y → f₁ x y ≡ f₂ x y) → e₁ ≡ e₂ →
foldr f₁ e₁ ≗ foldr f₂ e₂
foldr-cong {f₁ = f₁} {f₂} {e} f₁≗₂f₂ refl =
begin
foldr f₁ e
≈⟨ cong (foldr f₁ e) ∘ idIsFold ⟩
foldr f₁ e ∘ foldr _∷_ []
≈⟨ foldr-fusion (foldr f₁ e) [] (λ x xs → f₁≗₂f₂ x (foldr f₁ e xs)) ⟩
foldr f₂ e
∎
where open Eq (_ →-setoid _)
map-cong : ∀ {a b} {f g : a → b} → f ≗ g → map f ≗ map g
map-cong {f = f} {g} f≗g =
begin
map f
≈⟨ mapIsFold ⟩
foldr (λ x ys → f x ∷ ys) []
≈⟨ foldr-cong (λ x ys → cong₂ _∷_ (f≗g x) refl) refl ⟩
foldr (λ x ys → g x ∷ ys) []
≈⟨ sym ∘ mapIsFold ⟩
map g
∎
where open Eq (_ →-setoid _)
-- Take, drop, and splitAt.
take++drop : ∀ {a} n (xs : List a) → take n xs ++ drop n xs ≡ xs
take++drop zero xs = refl
take++drop (suc n) [] = refl
take++drop (suc n) (x ∷ xs) =
cong (λ xs → x ∷ xs) (take++drop n xs)
splitAt-defn : ∀ {a} n → splitAt {a} n ≗ < take n , drop n >
splitAt-defn zero xs = refl
splitAt-defn (suc n) [] = refl
splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs
... | (ys , zs) | ih = cong (Prod.map (_∷_ x) id) ih
-- TakeWhile, dropWhile, and span.
takeWhile++dropWhile : ∀ {a} (p : a → Bool) (xs : List a) →
takeWhile p xs ++ dropWhile p xs ≡ xs
takeWhile++dropWhile p [] = refl
takeWhile++dropWhile p (x ∷ xs) with p x
... | true = cong (_∷_ x) (takeWhile++dropWhile p xs)
... | false = refl
span-defn : ∀ {a} (p : a → Bool) →
span p ≗ < takeWhile p , dropWhile p >
span-defn p [] = refl
span-defn p (x ∷ xs) with p x
... | true = cong (Prod.map (_∷_ x) id) (span-defn p xs)
... | false = refl
-- Partition.
partition-defn : ∀ {a} (p : a → Bool) →
partition p ≗ < filter p , filter (not ∘ p) >
partition-defn p [] = refl
partition-defn p (x ∷ xs)
with p x | partition p xs | partition-defn p xs
... | true | (ys , zs) | eq = cong (Prod.map (_∷_ x) id) eq
... | false | (ys , zs) | eq = cong (Prod.map id (_∷_ x)) eq
-- Inits, tails, and scanr.
scanr-defn : ∀ {a b} (f : a → b → b) (e : b) →
scanr f e ≗ map (foldr f e) ∘ tails
scanr-defn f e [] = refl
scanr-defn f e (x ∷ []) = refl
scanr-defn f e (x₁ ∷ x₂ ∷ xs)
with scanr f e (x₂ ∷ xs) | scanr-defn f e (x₂ ∷ xs)
... | [] | ()
... | y ∷ ys | eq with ∷-injective eq
... | y≡fx₂⦇f⦈xs , _ = cong₂ (λ z zs → f x₁ z ∷ zs) y≡fx₂⦇f⦈xs eq
scanl-defn : ∀ {a b} (f : a → b → a) (e : a) →
scanl f e ≗ map (foldl f e) ∘ inits
scanl-defn f e [] = refl
scanl-defn f e (x ∷ xs) = cong (_∷_ e) (begin
scanl f (f e x) xs
≡⟨ scanl-defn f (f e x) xs ⟩
map (foldl f (f e x)) (inits xs)
≡⟨ refl ⟩
map (foldl f e ∘ (_∷_ x)) (inits xs)
≡⟨ map-compose (inits xs) ⟩
map (foldl f e) (map (_∷_ x) (inits xs))
∎)
where open ≡-Reasoning
-- Length.
length-map : ∀ {A B} (f : A → B) xs →
length (map f xs) ≡ length xs
length-map f [] = refl
length-map f (x ∷ xs) = cong suc (length-map f xs)
length-gfilter : ∀ {A B} (p : A → Maybe B) xs →
length (gfilter p xs) ≤ length xs
length-gfilter p [] = z≤n
length-gfilter p (x ∷ xs) with p x
length-gfilter p (x ∷ xs) | just y = s≤s (length-gfilter p xs)
length-gfilter p (x ∷ xs) | nothing = ≤-step (length-gfilter p xs)
| {
"alphanum_fraction": 0.4937172775,
"avg_line_length": 30.8064516129,
"ext": "agda",
"hexsha": "702067fa8a77f846e51261aa98a3690d132b38b4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/List/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/List/Properties.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/List/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 3083,
"size": 7640
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Logging.Logging
import LibraBFT.Impl.Types.Verifier as Verifier
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Encode
open import Util.PKCS hiding (verify)
open import Util.Prelude
------------------------------------------------------------------------------
import Data.List.Base as List
open import Data.String using (String)
module LibraBFT.Impl.Types.EpochChangeProof where
obmLastLIWS : EpochChangeProof → Either ErrLog LedgerInfoWithSignatures
obmLastLIWS self = maybeS (lastMay (self ^∙ ecpLedgerInfoWithSigs))
(Left fakeErr {-["EpochChangeProof", "obmLastLIWS", "empty"]-})
pure
-- first/lowest epoch of the proof to indicate which epoch this proof is helping with
epoch : EpochChangeProof -> Either ErrLog Epoch
epoch self = maybeS (headMay (self ^∙ ecpLedgerInfoWithSigs))
(Left fakeErr {-["EpochChangeProof", "epoch", "empty"]-})
(pure ∘ (_^∙ liwsLedgerInfo ∙ liEpoch))
obmLastEpoch : EpochChangeProof → Epoch
obmLastEpoch self = eitherS (obmLastLIWS self) (const ({-Epoch-} 0)) (_^∙ liwsLedgerInfo ∙ liEpoch)
verify
: {verifier : Set} ⦃ _ : Verifier.Verifier verifier ⦄
→ EpochChangeProof → verifier
→ Either ErrLog LedgerInfoWithSignatures
verify self verifier = do
lcheck (not (null (self ^∙ ecpLedgerInfoWithSigs)))
(here' ("empty" ∷ []))
lastLedgerInfoWithSigs ← last (self ^∙ ecpLedgerInfoWithSigs)
lcheckInfo (not (Verifier.isLedgerInfoStale verifier (lastLedgerInfoWithSigs ^∙ liwsLedgerInfo)))
(here' ("stale" ∷ []))
-- Skip stale ledger infos in the proof prefix.
let ledgerInfosWithSigs =
List.boolFilter
(λ liws → not (Verifier.isLedgerInfoStale verifier (liws ^∙ liwsLedgerInfo)))
(self ^∙ ecpLedgerInfoWithSigs)
-- check the non-stale chain
loop verifier ledgerInfosWithSigs
pure lastLedgerInfoWithSigs
where
loop
: {verifier : Set} ⦃ _ : Verifier.Verifier verifier ⦄
→ verifier → List LedgerInfoWithSignatures
→ Either ErrLog Unit
loop verifierRef = λ where
[] → pure unit
(liws ∷ liwss) → do
Verifier.verify verifierRef liws
verifierRef' ← case liws ^∙ liwsLedgerInfo ∙ liNextEpochState of λ where
nothing → Left fakeErr -- ["empty ValidatorSet"]
(just vs) → pure vs
loop verifierRef' liwss
here' : List String → List String
here' t = "EpochChangeProof" ∷ "verify" ∷ t
last : ∀ {A : Set} → List A → Either ErrLog A
last [] = Left fakeErr
last (x ∷ []) = Right x
last (_ ∷ x ∷ xs) = last xs
| {
"alphanum_fraction": 0.649535809,
"avg_line_length": 39.6842105263,
"ext": "agda",
"hexsha": "3330fa767c17a58624d8f64f37207d920c50db0f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/EpochChangeProof.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/EpochChangeProof.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/EpochChangeProof.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 852,
"size": 3016
} |
------------------------------------------------------------------------------
-- The program to sort a list is correct
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module proves the correctness of a program which sorts a list
-- by converting it into an ordered tree and then back to a list
-- (Burstall, 1969, p. 45).
module FOTC.Program.SortList.CorrectnessProofATP where
open import FOTC.Base
open import FOTC.Data.Nat.List.Type
open import FOTC.Program.SortList.PropertiesATP
open import FOTC.Program.SortList.Properties.Totality.TreeATP
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- Main theorem: The sort program generates an ordered list.
postulate sortCorrect : ∀ {is} → ListN is → OrdList (sort is)
{-# ATP prove sortCorrect flatten-OrdList makeTree-Tree makeTree-OrdTree #-}
------------------------------------------------------------------------------
-- References
--
-- Burstall, R. M. (1969). Proving properties of programs by
-- structural induction. The Computer Journal 12.1, pp. 41–48.
| {
"alphanum_fraction": 0.5409961686,
"avg_line_length": 40.78125,
"ext": "agda",
"hexsha": "cba2af89148bc43f973f694b31fadf1b738def7e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/CorrectnessProofATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 258,
"size": 1305
} |
module Builtin.Coinduction where
open import Agda.Builtin.Coinduction public
| {
"alphanum_fraction": 0.8481012658,
"avg_line_length": 15.8,
"ext": "agda",
"hexsha": "898d6a5b6326be89a132516c5f35ca7977a14a91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Builtin/Coinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Builtin/Coinduction.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Builtin/Coinduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20,
"size": 79
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax TLC | Λ
type
N : 0-ary
_↣_ : 2-ary | r30
𝟙 : 0-ary
_⊗_ : 2-ary | l40
𝟘 : 0-ary
_⊕_ : 2-ary | l30
term
app : α ↣ β α -> β | _$_ l20
lam : α.β -> α ↣ β | ƛ_ r10
unit : 𝟙
pair : α β -> α ⊗ β | ⟨_,_⟩
fst : α ⊗ β -> α
snd : α ⊗ β -> β
abort : 𝟘 -> α
inl : α -> α ⊕ β
inr : β -> α ⊕ β
case : α ⊕ β α.γ β.γ -> γ
ze : N
su : N -> N
nrec : N α (α,N).α -> α
theory
(ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a]
(ƛη) f : α ↣ β |> lam (x. app(f, x)) = f
(𝟙η) u : 𝟙 |> u = unit
(fβ) a : α b : β |> fst (pair(a, b)) = a
(sβ) a : α b : β |> snd (pair(a, b)) = b
(pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p
(𝟘η) e : 𝟘 c : α |> abort(e) = c
(lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a]
(rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b]
(cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s]
(zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z
(suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n]
(ift) t f : α |> if (true, t, f) = t
(iff) t f : α |> if (false, t, f) = f
-}
module TLC.Signature where
open import SOAS.Context
-- Type declaration
data ΛT : Set where
N : ΛT
_↣_ : ΛT → ΛT → ΛT
𝟙 : ΛT
_⊗_ : ΛT → ΛT → ΛT
𝟘 : ΛT
_⊕_ : ΛT → ΛT → ΛT
infixr 30 _↣_
infixl 40 _⊗_
infixl 30 _⊕_
-- Derived types
B : ΛT
B = 𝟙 ⊕ 𝟙
open import SOAS.Syntax.Signature ΛT public
open import SOAS.Syntax.Build ΛT public
-- Operator symbols
data Λₒ : Set where
appₒ lamₒ pairₒ fstₒ sndₒ inlₒ inrₒ : {α β : ΛT} → Λₒ
unitₒ zeₒ suₒ : Λₒ
abortₒ nrecₒ : {α : ΛT} → Λₒ
caseₒ : {α β γ : ΛT} → Λₒ
-- Term signature
Λ:Sig : Signature Λₒ
Λ:Sig = sig λ
{ (appₒ {α}{β}) → (⊢₀ α ↣ β) , (⊢₀ α) ⟼₂ β
; (lamₒ {α}{β}) → (α ⊢₁ β) ⟼₁ α ↣ β
; unitₒ → ⟼₀ 𝟙
; (pairₒ {α}{β}) → (⊢₀ α) , (⊢₀ β) ⟼₂ α ⊗ β
; (fstₒ {α}{β}) → (⊢₀ α ⊗ β) ⟼₁ α
; (sndₒ {α}{β}) → (⊢₀ α ⊗ β) ⟼₁ β
; (abortₒ {α}) → (⊢₀ 𝟘) ⟼₁ α
; (inlₒ {α}{β}) → (⊢₀ α) ⟼₁ α ⊕ β
; (inrₒ {α}{β}) → (⊢₀ β) ⟼₁ α ⊕ β
; (caseₒ {α}{β}{γ}) → (⊢₀ α ⊕ β) , (α ⊢₁ γ) , (β ⊢₁ γ) ⟼₃ γ
; zeₒ → ⟼₀ N
; suₒ → (⊢₀ N) ⟼₁ N
; (nrecₒ {α}) → (⊢₀ N) , (⊢₀ α) , (α , N ⊢₂ α) ⟼₃ α
}
open Signature Λ:Sig public
| {
"alphanum_fraction": 0.415615142,
"avg_line_length": 26.6947368421,
"ext": "agda",
"hexsha": "5a7e31d0c1b40043e55860a088d878d829a5b4c4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/TLC/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/TLC/Signature.agda",
"max_line_length": 100,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/TLC/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1438,
"size": 2536
} |
-- A discussion from -- https://twitter.com/YuumuKonpaku/status/1052959340468953088
module MdJustHighlightAgdaAsHtml where
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Primitive public using (lzero)
renaming (Level to ULevel; lsuc to lsucc; _⊔_ to lmax)
Type : (i : ULevel) -> Set (lsucc i)
Type i = Set i
data ⊥ : Type lzero where
pattern O = zero
pattern S n = (suc n)
variable i : ULevel
¬ : (A : Type i) → Type i
¬ A = A → ⊥
_≠_ : {A : Type i} → (A → A → Type i)
x ≠ y = ¬ (x ≡ y)
infix 10 _∨_
data _∨_ {a b} (A : Type a) (B : Type b) : Set (lmax a b) where
a-intro : A -> A ∨ B
b-intro : B -> A ∨ B
test : (x y : Nat) -> (x ≡ y) ∨ (x ≠ y)
test O O = a-intro refl
test O (S y) = b-intro (λ ())
test (S x) O = b-intro (λ ())
test (S x) (S y) with test x y
... | a-intro refl = a-intro refl
... | b-intro k = b-intro (lemma k)
where
lemma : {a b : Nat} -> a ≠ b -> S a ≠ S b
lemma p refl = p refl
| {
"alphanum_fraction": 0.5897703549,
"avg_line_length": 24.5641025641,
"ext": "agda",
"hexsha": "86a0d13a4b1b08bde1424cfe610e3ad90b876db3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/LaTeXAndHTML/succeed/MdJustHighlightAgdaAsHtml.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/LaTeXAndHTML/succeed/MdJustHighlightAgdaAsHtml.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/LaTeXAndHTML/succeed/MdJustHighlightAgdaAsHtml.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 380,
"size": 958
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Reduction
open import Tools.Product
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- The different cases of the logical relation are spread out through out
-- this file. This is due to them having different dependencies.
-- We will refer to expressions that satisfies the logical relation as reducible.
-- Reducibility of Neutrals:
-- Neutral type
record _⊩ne_^[_,_] (Γ : Con Term) (A : Term) (r : Relevance) (l : Level) : Set where
constructor ne
field
K : Term
D : Γ ⊢ A :⇒*: K ^ [ r , ι l ]
neK : Neutral K
K≡K : Γ ⊢ K ~ K ∷ (Univ r l) ^ [ ! , next l ]
-- Neutral type equality
record _⊩ne_≡_^[_,_]/_ (Γ : Con Term) (A B : Term) (r : Relevance) (l : Level) ([A] : Γ ⊩ne A ^[ r , l ]) : Set where
constructor ne₌
open _⊩ne_^[_,_] [A]
field
M : Term
D′ : Γ ⊢ B :⇒*: M ^ [ r , ι l ]
neM : Neutral M
K≡M : Γ ⊢ K ~ M ∷ (Univ r l) ^ [ ! , next l ]
-- Neutral term in WHNF
record _⊩neNf_∷_^_ (Γ : Con Term) (k A : Term) (r : TypeInfo) : Set where
inductive
constructor neNfₜ
field
neK : Neutral k
⊢k : Γ ⊢ k ∷ A ^ r
k≡k : Γ ⊢ k ~ k ∷ A ^ r
-- Neutral relevant term
record _⊩ne_∷_^_/_ (Γ : Con Term) (t A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ ! , l ]) : Set where
inductive
constructor neₜ
open _⊩ne_^[_,_] [A]
field
k : Term
d : Γ ⊢ t :⇒*: k ∷ K ^ ι l
nf : Γ ⊩neNf k ∷ K ^ [ ! , ι l ]
-- Neutral irrelevant term
record _⊩neIrr_∷_^_/_ (Γ : Con Term) (t A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ % , l ]) : Set where
inductive
constructor neₜ
open _⊩ne_^[_,_] [A]
field
d : Γ ⊢ t ∷ A ^ [ % , ι l ]
-- Neutral term equality in WHNF
record _⊩neNf_≡_∷_^_ (Γ : Con Term) (k m A : Term) (r : TypeInfo) : Set where
inductive
constructor neNfₜ₌
field
neK : Neutral k
neM : Neutral m
k≡m : Γ ⊢ k ~ m ∷ A ^ r
-- Neutral relevant term equality
record _⊩ne_≡_∷_^_/_ (Γ : Con Term) (t u A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ ! , l ]) : Set where
constructor neₜ₌
open _⊩ne_^[_,_] [A]
field
k m : Term
d : Γ ⊢ t :⇒*: k ∷ K ^ ι l
d′ : Γ ⊢ u :⇒*: m ∷ K ^ ι l
nf : Γ ⊩neNf k ≡ m ∷ K ^ [ ! , ι l ]
-- Neutral irrelevant term equality
record _⊩neIrr_≡_∷_^_/_ (Γ : Con Term) (t u A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ % , l ]) : Set where
constructor neₜ₌
open _⊩ne_^[_,_] [A]
field
d : Γ ⊢ t ∷ A ^ [ % , ι l ]
d′ : Γ ⊢ u ∷ A ^ [ % , ι l ]
-- Reducibility of natural numbers:
-- Natural number type
_⊩ℕ_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩ℕ A = Γ ⊢ A :⇒*: ℕ ^ [ ! , ι ⁰ ]
-- Natural number type equality
_⊩ℕ_≡_ : (Γ : Con Term) (A B : Term) → Set
Γ ⊩ℕ A ≡ B = Γ ⊢ B ⇒* ℕ ^ [ ! , ι ⁰ ]
mutual
-- Natural number term
data _⊩ℕ_∷ℕ (Γ : Con Term) (t : Term) : Set where
ℕₜ : (n : Term) (d : Γ ⊢ t :⇒*: n ∷ ℕ ^ ι ⁰) (n≡n : Γ ⊢ n ≅ n ∷ ℕ ^ [ ! , ι ⁰ ])
(prop : Natural-prop Γ n)
→ Γ ⊩ℕ t ∷ℕ
-- WHNF property of natural number terms
data Natural-prop (Γ : Con Term) : (n : Term) → Set where
sucᵣ : ∀ {n} → Γ ⊩ℕ n ∷ℕ → Natural-prop Γ (suc n)
zeroᵣ : Natural-prop Γ zero
ne : ∀ {n} → Γ ⊩neNf n ∷ ℕ ^ [ ! , ι ⁰ ] → Natural-prop Γ n
mutual
-- Natural number term equality
data _⊩ℕ_≡_∷ℕ (Γ : Con Term) (t u : Term) : Set where
ℕₜ₌ : (k k′ : Term) (d : Γ ⊢ t :⇒*: k ∷ ℕ ^ ι ⁰) (d′ : Γ ⊢ u :⇒*: k′ ∷ ℕ ^ ι ⁰)
(k≡k′ : Γ ⊢ k ≅ k′ ∷ ℕ ^ [ ! , ι ⁰ ])
(prop : [Natural]-prop Γ k k′) → Γ ⊩ℕ t ≡ u ∷ℕ
-- WHNF property of Natural number term equality
data [Natural]-prop (Γ : Con Term) : (n n′ : Term) → Set where
sucᵣ : ∀ {n n′} → Γ ⊩ℕ n ≡ n′ ∷ℕ → [Natural]-prop Γ (suc n) (suc n′)
zeroᵣ : [Natural]-prop Γ zero zero
ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ ℕ ^ [ ! , ι ⁰ ] → [Natural]-prop Γ n n′
-- Natural extraction from term WHNF property
natural : ∀ {Γ n} → Natural-prop Γ n → Natural n
natural (sucᵣ x) = sucₙ
natural zeroᵣ = zeroₙ
natural (ne (neNfₜ neK ⊢k k≡k)) = ne neK
-- Natural extraction from term equality WHNF property
split : ∀ {Γ a b} → [Natural]-prop Γ a b → Natural a × Natural b
split (sucᵣ x) = sucₙ , sucₙ
split zeroᵣ = zeroₙ , zeroₙ
split (ne (neNfₜ₌ neK neM k≡m)) = ne neK , ne neM
-- Reducibility of Empty
-- Empty type
_⊩Empty_^_ : (Γ : Con Term) (A : Term) (l : Level) → Set
Γ ⊩Empty A ^ l = Γ ⊢ A :⇒*: Empty l ^ [ % , ι l ]
-- Empty type equality
_⊩Empty_≡_^_ : (Γ : Con Term) (A B : Term) (l : Level) → Set
Γ ⊩Empty A ≡ B ^ l = Γ ⊢ B ⇒* Empty l ^ [ % , ι l ]
data Empty-prop (Γ : Con Term) (n : Term) (l : Level) : Set where
ne : Γ ⊢ n ∷ Empty l ^ [ % , ι l ] → Empty-prop Γ n l
-- -- Empty term
data _⊩Empty_∷Empty^_ (Γ : Con Term) (t : Term) (l : Level) : Set where
Emptyₜ : (prop : Empty-prop Γ t l) → Γ ⊩Empty t ∷Empty^ l
data [Empty]-prop (Γ : Con Term) : (n n′ : Term) (l : Level) → Set where
ne : ∀ {n n′ l} → Γ ⊢ n ∷ Empty l ^ [ % , ι l ] → Γ ⊢ n′ ∷ Empty l ^ [ % , ι l ] → [Empty]-prop Γ n n′ l
-- Empty term equality
data _⊩Empty_≡_∷Empty^_ (Γ : Con Term) (t u : Term) (l : Level) : Set where
Emptyₜ₌ : (prop : [Empty]-prop Γ t u l) → Γ ⊩Empty t ≡ u ∷Empty^ l
-- Logical relation
record LogRelKit : Set₁ where
constructor Kit
field
_⊩U_^_ : (Γ : Con Term) → Term → TypeLevel → Set
_⊩Π_^[_,_] : (Γ : Con Term) → Term → Relevance → Level → Set
_⊩∃_^_ : (Γ : Con Term) → Term → Level → Set
_⊩_^_ : (Γ : Con Term) → Term → TypeInfo → Set
_⊩_≡_^_/_ : (Γ : Con Term) (A B : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set
_⊩_∷_^_/_ : (Γ : Con Term) (t A : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set
_⊩_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set
module LogRel (l : TypeLevel) (rec : ∀ {l′} → l′ <∞ l → LogRelKit) where
-- Reducibility of Universe:
-- Universe type
record _⊩¹U_^_ (Γ : Con Term) (A : Term) (ll : TypeLevel) : Set where
constructor Uᵣ
field
r : Relevance
l′ : Level
l< : ι l′ <∞ l
eq : next l′ PE.≡ ll
d : Γ ⊢ A :⇒*: Univ r l′ ^ [ ! , next l′ ]
-- Universe type equality
_⊩¹U_≡_^_/_ : (Γ : Con Term) (A B : Term) (ll : TypeLevel) ([A] : Γ ⊩¹U A ^ ll) → Set
Γ ⊩¹U A ≡ B ^ ll / [A] = Γ ⊢ B ⇒* Univ (_⊩¹U_^_.r [A]) (_⊩¹U_^_.l′ [A]) ^ [ ! , ll ]
-- Universe term
record _⊩¹U_∷_^_/_ (Γ : Con Term) (t : Term) (A : Term) (ll : TypeLevel) ([A] : Γ ⊩¹U A ^ ll) : Set where
constructor Uₜ
open _⊩¹U_^_ [A]
open LogRelKit (rec l<)
field
K : Term
d : Γ ⊢ t :⇒*: K ∷ Univ r l′ ^ next l′
typeK : Type K
K≡K : Γ ⊢ K ≅ K ∷ Univ r l′ ^ [ ! , next l′ ]
[t] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩ U.wk ρ t ^ [ r , ι l′ ]
-- Universe term equality
record _⊩¹U_≡_∷_^_/_ (Γ : Con Term) (t u : Term) (X : Term) (ll : TypeLevel) ([X] : Γ ⊩¹U X ^ ll) : Set where
constructor Uₜ₌
open _⊩¹U_^_ [X]
open LogRelKit (rec l<)
field
[t] : Γ ⊩¹U t ∷ X ^ ll / [X]
[u] : Γ ⊩¹U u ∷ X ^ ll / [X]
A≡B : Γ ⊢ _⊩¹U_∷_^_/_.K [t] ≅ _⊩¹U_∷_^_/_.K [u] ∷ Univ r l′ ^ [ ! , next l′ ]
[t≡u] : ∀ {ρ Δ} → ([ρ] : ρ ∷ Δ ⊆ Γ) → (⊢Δ : ⊢ Δ) → Δ ⊩ U.wk ρ t ≡ U.wk ρ u ^ [ r , ι l′ ] / _⊩¹U_∷_^_/_.[t] [t] [ρ] ⊢Δ
mutual
-- Reducibility of Π:
-- Π-type
record _⊩¹Π_^[_,_] (Γ : Con Term) (A : Term) (r : Relevance) (lΠ : Level) : Set where
inductive
eta-equality
constructor Πᵣ
field
rF : Relevance
lF : Level
lG : Level
lF≤ : lF ≤ lΠ
lG≤ : lG ≤ lΠ
F : Term
G : Term
D : Γ ⊢ A :⇒*: Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ]
⊢F : Γ ⊢ F ^ [ rF , ι lF ]
⊢G : Γ ∙ F ^ [ rF , ι lF ] ⊢ G ^ [ r , ι lG ]
A≡A : Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≅ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ]
[F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ^ [ rF , ι lF ]
[G] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ^ [ r , ι lG ]
G-ext : ∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] ^ [ r , ι lG ] / [G] [ρ] ⊢Δ [a]
-- Π-type equality
record _⊩¹Π_≡_^[_,_]/_ (Γ : Con Term) (A B : Term) (r : Relevance) (lΠ : Level) ([A] : Γ ⊩¹Π A ^[ r , lΠ ]) : Set where
inductive
eta-equality
constructor Π₌
open _⊩¹Π_^[_,_] [A]
field
F′ : Term
G′ : Term
D′ : Γ ⊢ B ⇒* Π F′ ^ rF ° lF ▹ G′ ° lG ° lΠ ^ [ r , ι lΠ ]
A≡B : Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≅ Π F′ ^ rF ° lF ▹ G′ ° lG ° lΠ ^ [ r , ι lΠ ]
[F≡F′] : ∀ {ρ Δ}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ
[G≡G′] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] ^ [ r , ι lG ] / [G] [ρ] ⊢Δ [a]
-- relevant Term of Π-type
_⊩¹Π_∷_^_/_ : (Γ : Con Term) (t A : Term) (lΠ : Level) ([A] : Γ ⊩¹Π A ^[ ! , lΠ ]) → Set
Γ ⊩¹Π t ∷ A ^ lΠ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
∃ λ f → Γ ⊢ t :⇒*: f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ ι lΠ
× Function f
× Γ ⊢ f ≅ f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ]
× (∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
([a≡b] : Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ^ lΠ ≡ U.wk ρ f ∘ b ^ lΠ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a])
× (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ^ lΠ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a])
-- Issue: Agda complains about record use not being strictly positive.
-- Therefore we have to use ×
-- Irrelevant term of Π-type
_⊩¹Πirr_∷_^_/_ : (Γ : Con Term) (t A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ % , l′ ]) → Set
Γ ⊩¹Πirr t ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
Γ ⊢ t ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ]
-- Term equality of Π-type
_⊩¹Π_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ ! , l′ ]) → Set
Γ ⊩¹Π t ≡ u ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
let [A] = Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext
in ∃₂ λ f g →
( Γ ⊢ t :⇒*: f ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ ι l′ )
× ( Γ ⊢ u :⇒*: g ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ ι l′ )
× Function f
× Function g
× Γ ⊢ f ≅ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ ! , ι l′ ]
× Γ ⊩¹Π t ∷ A ^ l′ / [A]
× Γ ⊩¹Π u ∷ A ^ l′ / [A]
× (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ^ l′ ≡ U.wk ρ g ∘ a ^ l′ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a])
-- Issue: Same as above.
-- Irrelevant term equality of Π-type
_⊩¹Πirr_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ % , l′ ] ) → Set
Γ ⊩¹Πirr t ≡ u ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
(Γ ⊢ t ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ])
×
(Γ ⊢ u ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ])
-- Existential types
record _⊩¹∃_^_ (Γ : Con Term) (A : Term) (l′ : Level) : Set where
inductive
eta-equality
constructor ∃ᵣ
field
F : Term
G : Term
D : Γ ⊢ A :⇒*: ∃ F ▹ G ^ [ % , ι l′ ]
⊢F : Γ ⊢ F ^ [ % , ι l′ ]
⊢G : Γ ∙ F ^ [ % , ι l′ ] ⊢ G ^ [ % , ι l′ ]
A≡A : Γ ⊢ (∃ F ▹ G) ≅ (∃ F ▹ G) ^ [ % , ι l′ ]
[F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ^ [ % , ι l′ ]
[G] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ^ [ % , ι l′ ]
G-ext : ∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] ^ [ % , ι l′ ] / [G] [ρ] ⊢Δ [a]
-- ∃-type equality
record _⊩¹∃_≡_^_/_ (Γ : Con Term) (A B : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) : Set where
inductive
eta-equality
constructor ∃₌
open _⊩¹∃_^_ [A]
field
F′ : Term
G′ : Term
D′ : Γ ⊢ B ⇒* ∃ F′ ▹ G′ ^ [ % , ι l′ ]
A≡B : Γ ⊢ ∃ F ▹ G ≅ ∃ F′ ▹ G′ ^ [ % , ι l′ ]
[F≡F′] : ∀ {ρ Δ}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ
[G≡G′] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] ^ [ % , ι l′ ] / [G] [ρ] ⊢Δ [a]
-- Terms of ∃-types (always irrelevant)
_⊩¹∃_∷_^_/_ : (Γ : Con Term) (t A : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) → Set
Γ ⊩¹∃ t ∷ A ^ l′ / ∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
Γ ⊢ t ∷ ∃ F ▹ G ^ [ % , ι l′ ]
-- Term equality for ∃-types
_⊩¹∃_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) → Set
Γ ⊩¹∃ t ≡ u ∷ A ^ l′ / ∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
(Γ ⊢ t ∷ ∃ F ▹ G ^ [ % , ι l′ ])
×
(Γ ⊢ u ∷ ∃ F ▹ G ^ [ % , ι l′ ])
-- Logical relation definition
data _⊩¹_^_ (Γ : Con Term) : Term → TypeInfo → Set where
Uᵣ : ∀ {A ll} → (UA : Γ ⊩¹U A ^ ll) → Γ ⊩¹ A ^ [ ! , ll ]
ℕᵣ : ∀ {A} → Γ ⊩ℕ A → Γ ⊩¹ A ^ [ ! , ι ⁰ ]
Emptyᵣ : ∀ {A l} → Γ ⊩Empty A ^ l → Γ ⊩¹ A ^ [ % , ι l ]
ne : ∀ {A r l} → Γ ⊩ne A ^[ r , l ] → Γ ⊩¹ A ^ [ r , ι l ]
Πᵣ : ∀ {A r l} → Γ ⊩¹Π A ^[ r , l ] → Γ ⊩¹ A ^ [ r , ι l ]
∃ᵣ : ∀ {A l} → Γ ⊩¹∃ A ^ l → Γ ⊩¹ A ^ [ % , ι l ]
emb : ∀ {A r l′} (l< : l′ <∞ l) (let open LogRelKit (rec l<))
([A] : Γ ⊩ A ^ r) → Γ ⊩¹ A ^ r
_⊩¹_≡_^_/_ : (Γ : Con Term) (A B : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set
Γ ⊩¹ A ≡ B ^ [ .! , l ] / Uᵣ UA = Γ ⊩¹U A ≡ B ^ l / UA
Γ ⊩¹ A ≡ B ^ [ .! , .ι ⁰ ] / ℕᵣ D = Γ ⊩ℕ A ≡ B
Γ ⊩¹ A ≡ B ^ [ .% , .ι l ] / Emptyᵣ D = Γ ⊩Empty A ≡ B ^ l
Γ ⊩¹ A ≡ B ^ [ r , ι l ] / ne neA = Γ ⊩ne A ≡ B ^[ r , l ]/ neA
Γ ⊩¹ A ≡ B ^ [ r , ι l ] / Πᵣ ΠA = Γ ⊩¹Π A ≡ B ^[ r , l ]/ ΠA
Γ ⊩¹ A ≡ B ^ [ .% , ι l ] / ∃ᵣ ∃A = Γ ⊩¹∃ A ≡ B ^ l / ∃A
Γ ⊩¹ A ≡ B ^ r / emb l< [A] = Γ ⊩ A ≡ B ^ r / [A]
where open LogRelKit (rec l<)
_⊩¹_∷_^_/_ : (Γ : Con Term) (t A : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set
Γ ⊩¹ t ∷ A ^ [ .! , ll ] / Uᵣ UA = Γ ⊩¹U t ∷ A ^ ll / UA
Γ ⊩¹ t ∷ A ^ .([ ! , ι ⁰ ]) / ℕᵣ x = Γ ⊩ℕ t ∷ℕ
Γ ⊩¹ t ∷ A ^ [ .% , ι ll ] / Emptyᵣ x = Γ ⊩Empty t ∷Empty^ ll
Γ ⊩¹ t ∷ A ^ .([ ! , ι l ]) / ne {r = !} {l} neA = Γ ⊩ne t ∷ A ^ l / neA
Γ ⊩¹ t ∷ A ^ .([ % , ι l ]) / ne {r = %} {l} neA = Γ ⊩neIrr t ∷ A ^ l / neA
Γ ⊩¹ t ∷ A ^ [ ! , ι l ] / Πᵣ ΠA = Γ ⊩¹Π t ∷ A ^ l / ΠA
Γ ⊩¹ t ∷ A ^ [ % , ι l ] / Πᵣ ΠA = Γ ⊩¹Πirr t ∷ A ^ l / ΠA
Γ ⊩¹ t ∷ A ^ .([ % , ι l ]) / ∃ᵣ {l = l} ∃A = Γ ⊩¹∃ t ∷ A ^ l / ∃A
Γ ⊩¹ t ∷ A ^ r / emb l< [A] = Γ ⊩ t ∷ A ^ r / [A]
where open LogRelKit (rec l<)
_⊩¹_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set
Γ ⊩¹ t ≡ u ∷ A ^ [ .! , ll ] / Uᵣ UA = Γ ⊩¹U t ≡ u ∷ A ^ ll / UA
Γ ⊩¹ t ≡ u ∷ A ^ .([ ! , ι ⁰ ]) / ℕᵣ D = Γ ⊩ℕ t ≡ u ∷ℕ
Γ ⊩¹ t ≡ u ∷ A ^ [ .% , ι ll ] / Emptyᵣ D = Γ ⊩Empty t ≡ u ∷Empty^ ll
Γ ⊩¹ t ≡ u ∷ A ^ .([ ! , ι l ]) / ne {r = !} {l} neA = Γ ⊩ne t ≡ u ∷ A ^ l / neA
Γ ⊩¹ t ≡ u ∷ A ^ .([ % , ι l ]) / ne {r = %} {l} neA = Γ ⊩neIrr t ≡ u ∷ A ^ l / neA
Γ ⊩¹ t ≡ u ∷ A ^ [ ! , ι l ] / Πᵣ ΠA = Γ ⊩¹Π t ≡ u ∷ A ^ l / ΠA
Γ ⊩¹ t ≡ u ∷ A ^ [ % , ι l ] / Πᵣ ΠA = Γ ⊩¹Πirr t ≡ u ∷ A ^ l / ΠA
Γ ⊩¹ t ≡ u ∷ A ^ .([ % , ι l ]) / ∃ᵣ {l = l} ∃A = Γ ⊩¹∃ t ≡ u ∷ A ^ l / ∃A
Γ ⊩¹ t ≡ u ∷ A ^ r / emb l< [A] = Γ ⊩ t ≡ u ∷ A ^ r / [A]
where open LogRelKit (rec l<)
kit : LogRelKit
kit = Kit _⊩¹U_^_ _⊩¹Π_^[_,_] _⊩¹∃_^_
_⊩¹_^_ _⊩¹_≡_^_/_ _⊩¹_∷_^_/_ _⊩¹_≡_∷_^_/_
open LogRel public using (Uᵣ; ℕᵣ; Emptyᵣ; ne; Πᵣ ; ∃ᵣ ; emb; Uₜ; Uₜ₌; Π₌; ∃₌)
-- Patterns for the non-records of Π
pattern Πₜ a b c d e f = a , b , c , d , e , f
pattern Πₜ₌ a b c d e f g h i j = a , b , c , d , e , f , g , h , i , j
pattern Uᵣ′ A ll r l a e d = Uᵣ {A = A} {ll = ll} (Uᵣ r l a e d)
pattern ne′ b c d e = ne (ne b c d e)
pattern Πᵣ′ a a' a'' lf lg b c d e f g h i j = Πᵣ (Πᵣ a a' a'' lf lg b c d e f g h i j)
pattern ∃ᵣ′ a b c d e f g h i = ∃ᵣ (∃ᵣ a b c d e f g h i)
-- we need to split the LogRelKit into the level part and the general part to convince Agda termination checker
logRelRec : ∀ l {l′} → l′ <∞ l → LogRelKit
logRelRec (ι ⁰) = λ ()
logRelRec (ι ¹) X = LogRel.kit (ι ⁰) λ ()
logRelRec ∞ X = LogRel.kit (ι ¹) (λ X → LogRel.kit (ι ⁰) λ ())
kit : ∀ (i : TypeLevel) → LogRelKit
kit l = LogRel.kit l (logRelRec l)
_⊩′⟨_⟩U_^_ : (Γ : Con Term) (l : TypeLevel) → Term → TypeLevel → Set
Γ ⊩′⟨ l ⟩U A ^ ll = Γ ⊩U A ^ ll where open LogRelKit (kit l)
_⊩′⟨_⟩Π_^[_,_] : (Γ : Con Term) (l : TypeLevel) → Term → Relevance → Level → Set
Γ ⊩′⟨ l ⟩Π A ^[ r , lΠ ] = Γ ⊩Π A ^[ r , lΠ ] where open LogRelKit (kit l)
_⊩′⟨_⟩∃_^_ : (Γ : Con Term) (l : TypeLevel) → Term → Level → Set
Γ ⊩′⟨ l ⟩∃ A ^ l' = Γ ⊩∃ A ^ l' where open LogRelKit (kit l)
_⊩⟨_⟩_^_ : (Γ : Con Term) (l : TypeLevel) → Term → TypeInfo → Set
Γ ⊩⟨ l ⟩ A ^ r = Γ ⊩ A ^ r where open LogRelKit (kit l)
_⊩⟨_⟩_≡_^_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set
Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] = Γ ⊩ A ≡ B ^ r / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_∷_^_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set
Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] = Γ ⊩ t ∷ A ^ r / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_≡_∷_^_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set
Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] = Γ ⊩ t ≡ u ∷ A ^ r / [A] where open LogRelKit (kit l)
-- Well-typed irrelevant terms are always reducible
logRelIrr : ∀ {l t Γ l' A} ([A] : Γ ⊩⟨ l ⟩ A ^ [ % , l' ]) (⊢t : Γ ⊢ t ∷ A ^ [ % , l' ]) → Γ ⊩⟨ l ⟩ t ∷ A ^ [ % , l' ] / [A]
logRelIrr (Emptyᵣ [[ ⊢A , ⊢B , D ]]) ⊢t = Emptyₜ (ne (conv ⊢t (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B))))
logRelIrr (ne x) ⊢t = neₜ ⊢t
logRelIrr (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D)))
logRelIrr (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D)))
logRelIrr {ι ¹} (emb X [A]) ⊢t = logRelIrr [A] ⊢t
logRelIrr {∞} (emb X [A]) ⊢t = logRelIrr [A] ⊢t
-- Well-typed irrelevant terms are reducibly equal as soon as they have the same type
logRelIrrEq : ∀ {l t u Γ l' A} ([A] : Γ ⊩⟨ l ⟩ A ^ [ % , l' ]) (⊢t : Γ ⊢ t ∷ A ^ [ % , l' ]) (⊢u : Γ ⊢ u ∷ A ^ [ % , l' ]) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ % , l' ] / [A]
logRelIrrEq (Emptyᵣ [[ ⊢A , ⊢B , D ]]) ⊢t ⊢u = Emptyₜ₌ (ne ((conv ⊢t (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B))))
(conv ⊢u (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B))))
logRelIrrEq (ne x) ⊢t ⊢u = neₜ₌ ⊢t ⊢u
logRelIrrEq (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t ⊢u = (conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) , (conv ⊢u (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D))) )
logRelIrrEq (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t ⊢u = (conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) , (conv ⊢u (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D))) )
logRelIrrEq {ι ¹} (emb X [A]) ⊢t = logRelIrrEq [A] ⊢t
logRelIrrEq {∞} (emb X [A]) ⊢t = logRelIrrEq [A] ⊢t
| {
"alphanum_fraction": 0.4235373299,
"avg_line_length": 42.2784552846,
"ext": "agda",
"hexsha": "0e7dbfd211145d66629440d6605316a326c8e0aa",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation.agda",
"max_line_length": 240,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 10855,
"size": 20801
} |
module DualCoinductive where
open import Data.Nat hiding (compare)
open import Data.Nat.Properties
open import Data.Fin hiding (_+_)
open import Function
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Agda.Builtin.Equality.Rewrite
open import Direction
-- variables
variable
n m : ℕ
-- session types coinductively
module COI where
mutual
data Type : Set where
TUnit TInt : Type
TPair : Type → Type → Type
TChan : SType → Type
data STypeF (S : Set) : Set where
transmit : (d : Dir) (t : Type) (s : S) → STypeF S
choice : (d : Dir) (m : ℕ) (alt : Fin m → S) → STypeF S
end : STypeF S
record SType : Set where
coinductive
constructor delay
field force : STypeF SType
open SType
variable
t t₁ t₂ t₃ t₁' t₂' t₃' : Type
s s₁ s₂ s₃ : SType
s' s₁' s₂' s₃' : STypeF SType
-- type equivalence
data EquivT (R : SType → SType → Set) : Type → Type → Set where
eq-unit : EquivT R TUnit TUnit
eq-int : EquivT R TInt TInt
eq-pair : EquivT R t₁ t₁' → EquivT R t₂ t₂' → EquivT R (TPair t₁ t₂) (TPair t₁' t₂')
eq-chan : R s₁ s₂ → EquivT R (TChan s₁) (TChan s₂)
-- session type equivalence
data EquivF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where
eq-transmit : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivF R (transmit d t₁ s₁) (transmit d t₂ s₂)
eq-choice : ∀ {alt alt'} → (d : Dir) → ((i : Fin m) → R (alt i) (alt' i)) → EquivF R (choice d m alt) (choice d m alt')
eq-end : EquivF R end end
record Equiv (s₁ : SType) (s₂ : SType) : Set where
coinductive
field force : EquivF Equiv (force s₁) (force s₂)
open Equiv
_≈_ = Equiv
_≈'_ = EquivF Equiv
_≈ᵗ_ = EquivT Equiv
-- reflexivity
≈ᵗ-refl : t ≈ᵗ t
≈-refl : s ≈ s
≈'-refl : s' ≈' s'
force (≈-refl {s}) = ≈'-refl
≈'-refl {transmit d t s} = eq-transmit d ≈ᵗ-refl ≈-refl
≈'-refl {choice d m alt} = eq-choice d λ i → ≈-refl
≈'-refl {end} = eq-end
≈ᵗ-refl {TUnit} = eq-unit
≈ᵗ-refl {TInt} = eq-int
≈ᵗ-refl {TPair t t₁} = eq-pair ≈ᵗ-refl ≈ᵗ-refl
≈ᵗ-refl {TChan x} = eq-chan ≈-refl
-- symmetry
≈-symm : s₁ ≈ s₂ → s₂ ≈ s₁
≈'-symm : s₁' ≈' s₂' → s₂' ≈' s₁'
≈ᵗ-symm : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₁
force (≈-symm s₁≈s₂) = ≈'-symm (force s₁≈s₂)
≈'-symm (eq-transmit d x x₁) = eq-transmit d (≈ᵗ-symm x) (≈-symm x₁)
≈'-symm (eq-choice d x) = eq-choice d (λ i → ≈-symm (x i))
≈'-symm eq-end = eq-end
≈ᵗ-symm eq-unit = eq-unit
≈ᵗ-symm eq-int = eq-int
≈ᵗ-symm (eq-pair t₁≈t₂ t₁≈t₃) = eq-pair (≈ᵗ-symm t₁≈t₂) (≈ᵗ-symm t₁≈t₃)
≈ᵗ-symm (eq-chan x) = eq-chan (≈-symm x)
-- transitivity
≈-trans : s₁ ≈ s₂ → s₂ ≈ s₃ → s₁ ≈ s₃
≈'-trans : s₁' ≈' s₂' → s₂' ≈' s₃' → s₁' ≈' s₃'
≈ᵗ-trans : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₃ → t₁ ≈ᵗ t₃
force (≈-trans s₁≈s₂ s₂≈s₃) = ≈'-trans (force s₁≈s₂) (force s₂≈s₃)
≈'-trans (eq-transmit d tt₁ ss₁) (eq-transmit .d tt₂ ss₂) = eq-transmit d (≈ᵗ-trans tt₁ tt₂) (≈-trans ss₁ ss₂)
≈'-trans (eq-choice d x) (eq-choice .d x₁) = eq-choice d (λ i → ≈-trans (x i) (x₁ i))
≈'-trans eq-end eq-end = eq-end
≈ᵗ-trans eq-unit eq-unit = eq-unit
≈ᵗ-trans eq-int eq-int = eq-int
≈ᵗ-trans (eq-pair t₁≈ᵗt₂ t₁≈ᵗt₃) (eq-pair t₂≈ᵗt₃ t₂≈ᵗt₄) = eq-pair (≈ᵗ-trans t₁≈ᵗt₂ t₂≈ᵗt₃) (≈ᵗ-trans t₁≈ᵗt₃ t₂≈ᵗt₄)
≈ᵗ-trans (eq-chan ss₁) (eq-chan ss₂) = eq-chan (≈-trans ss₁ ss₂)
----------------------------------------------------------------------
-- relational duality
data DualD : Dir → Dir → Set where
dual-sr : DualD SND RCV
dual-rs : DualD RCV SND
-- session type duality
data DualF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where
dual-transmit : DualD d₁ d₂ → t₁ ≈ᵗ t₂ → R s₁ s₂ → DualF R (transmit d₁ t₁ s₁) (transmit d₂ t₂ s₂)
dual-choice : ∀ {alt alt'} → DualD d₁ d₂ → ((i : Fin m) → R (alt i) (alt' i)) → DualF R (choice d₁ m alt) (choice d₂ m alt')
dual-end : DualF R end end
record Dual (s₁ : SType) (s₂ : SType) : Set where
coinductive
field force : DualF Dual (force s₁) (force s₂)
-- open Dual
_⊥_ = Dual
_⊥'_ = DualF Dual
-- _≈ᵗ_ = EquivT Equiv
-- symmetric
DualD-symm : DualD d₁ d₂ → DualD d₂ d₁
DualD-symm dual-sr = dual-rs
DualD-symm dual-rs = dual-sr
⊥-symm : s₁ ⊥ s₂ → s₂ ⊥ s₁
⊥'-symm : s₁' ⊥' s₂' → s₂' ⊥' s₁'
Dual.force (⊥-symm s₁⊥s₂) = ⊥'-symm (Dual.force s₁⊥s₂)
⊥'-symm (dual-transmit x x₁ x₂) = dual-transmit (DualD-symm x) (≈ᵗ-symm x₁) (⊥-symm x₂)
⊥'-symm (dual-choice x x₁) = dual-choice (DualD-symm x) (⊥-symm ∘ x₁)
⊥'-symm dual-end = dual-end
-- involutory
DualD-inv : DualD d₁ d₂ → DualD d₂ d₃ → d₁ ≡ d₃
DualD-inv dual-sr dual-rs = refl
DualD-inv dual-rs dual-sr = refl
⊥-inv : s₁ ⊥ s₂ → s₂ ⊥ s₃ → s₁ ≈ s₃
⊥'-inv : s₁' ⊥' s₂' → s₂' ⊥' s₃' → s₁' ≈' s₃'
force (⊥-inv s₁⊥s₂ s₂⊥s₃) = ⊥'-inv (Dual.force s₁⊥s₂) (Dual.force s₂⊥s₃)
⊥'-inv (dual-transmit dd₁ tt₁ ss₁) (dual-transmit dd₂ tt₂ ss₂) rewrite DualD-inv dd₁ dd₂ = eq-transmit _ (≈ᵗ-trans tt₁ tt₂) (⊥-inv ss₁ ss₂)
⊥'-inv (dual-choice dd₁ ss₁) (dual-choice dd₂ ss₂) rewrite DualD-inv dd₁ dd₂ = eq-choice _ (λ i → ⊥-inv (ss₁ i) (ss₂ i))
⊥'-inv dual-end dual-end = eq-end
----------------------------------------------------------------------
-- duality
dual : SType → SType
dualF : STypeF SType → STypeF SType
force (dual s) = dualF (force s)
dualF (transmit d t s) = transmit (dual-dir d) t (dual s)
dualF (choice d m alt) = choice (dual-dir d) m (dual ∘ alt)
dualF end = end
-- properties
dual-involution : ∀ s → s ≈ dual (dual s)
dual-involutionF : ∀ s' → s' ≈' dualF (dualF s')
force (dual-involution s) = dual-involutionF (force s)
dual-involutionF (transmit d t s)
rewrite dual-dir-inv d = eq-transmit d ≈ᵗ-refl (dual-involution s)
dual-involutionF (choice d m alt)
rewrite dual-dir-inv d = eq-choice d (dual-involution ∘ alt)
dual-involutionF end = eq-end
-----------------------------------------------------------------------
-- relational duality vs functional duality
-- soundness
dual-soundD : DualD d (dual-dir d)
dual-soundD {SND} = dual-sr
dual-soundD {RCV} = dual-rs
dual-soundS : s ⊥ dual s
dual-soundF : s' ⊥' dualF s'
Dual.force dual-soundS = dual-soundF
dual-soundF {transmit d t s} = dual-transmit dual-soundD ≈ᵗ-refl dual-soundS
dual-soundF {choice d m alt} = dual-choice dual-soundD (λ i → dual-soundS)
dual-soundF {end} = dual-end
-- completeness
dual-completeD : DualD d₁ d₂ → d₁ ≡ dual-dir d₂
dual-completeD dual-sr = refl
dual-completeD dual-rs = refl
dual-completeS : s₁ ⊥ s₂ → s₁ ≈ dual s₂
dual-completeF : s₁' ⊥' s₂' → s₁' ≈' dualF s₂'
force (dual-completeS s₁⊥s₂) = dual-completeF (Dual.force s₁⊥s₂)
dual-completeF (dual-transmit dd tt ss) rewrite dual-completeD dd = eq-transmit _ tt (dual-completeS ss)
dual-completeF (dual-choice dd x₁) rewrite dual-completeD dd = eq-choice _ (λ i → dual-completeS (x₁ i))
dual-completeF dual-end = eq-end
| {
"alphanum_fraction": 0.5900273028,
"avg_line_length": 31.6318181818,
"ext": "agda",
"hexsha": "588226f43b247ffb1bdb78ede97b2b98d593d045",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "kcaliban/dual-session",
"max_forks_repo_path": "src/DualCoinductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "kcaliban/dual-session",
"max_issues_repo_path": "src/DualCoinductive.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "kcaliban/dual-session",
"max_stars_repo_path": "src/DualCoinductive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3034,
"size": 6959
} |
------------------------------------------------------------------------
-- A simplified parser type
------------------------------------------------------------------------
module StructurallyRecursiveDescentParsing.Simplified where
open import Category.Monad
open import Codata.Musical.Notation
open import Data.Bool
open import Data.List using (List; _∷_; []; _++_)
import Data.List.Categorical as ListMonad
import Data.List.Properties as ListProp
open import Data.List.Relation.Binary.BagAndSetEquality
open import Data.List.NonEmpty
using (List⁺; _∷_; [_]; _⁺++_; head; tail)
import Data.List.NonEmpty.Categorical as List⁺
open import Data.List.NonEmpty.Properties
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open RawMonad {f = zero} ListMonad.monad
using () renaming (_>>=_ to _>>=′_)
open RawMonad {f = zero} List⁺.monad
using () renaming (_>>=_ to _>>=⁺_)
private
open module BagS {A : Set} = Setoid ([ bag ]-Equality A)
using () renaming (_≈_ to _Bag-≈_)
open import TotalParserCombinators.Parser as P
hiding (Parser; module Parser)
------------------------------------------------------------------------
-- Parsers
infixl 10 _!>>=_ _?>>=_
infixl 5 _∣_
-- A type for parsers which are not left recursive.
--
-- The boolean index is true iff the parser is nullable (accepts the
-- empty string).
data Parser (Tok : Set) : Bool → Set → Set1 where
return : ∀ {R} (x : R) → Parser Tok true R
fail : ∀ {R} → Parser Tok false R
token : Parser Tok false Tok
_∣_ : ∀ {e₁ e₂ R}
(p₁ : Parser Tok e₁ R)
(p₂ : Parser Tok e₂ R) →
Parser Tok (e₁ ∨ e₂) R
_?>>=_ : ∀ {e₂ R₁ R₂}
(p₁ : Parser Tok true R₁)
(p₂ : R₁ → Parser Tok e₂ R₂) →
Parser Tok e₂ R₂
_!>>=_ : ∀ {R₁ R₂} {e₂ : R₁ → Bool}
(p₁ : Parser Tok false R₁)
(p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)) →
Parser Tok false R₂
-- Note that Parser has only one coinductive recursive component.
-- Making any other recursive component coinductive would allow left
-- recursive grammars to be formed, but it is safe to use coinduction
-- in _>>=_ when we know that a token has been consumed, because for
-- every successive use of coinduction we are at least one step closer
-- to the end of the input.
------------------------------------------------------------------------
-- "Initial bags"
-- The initial bag of a parser is calculated in such a way that it is
-- obvious, given the nullability of the parser, whether or not the
-- bag is empty.
mutual
initial⁺ : ∀ {Tok e R} → Parser Tok e R → e ≡ true → List⁺ R
initial⁺ (return x) refl = [ x ]
initial⁺ fail ()
initial⁺ token ()
initial⁺ (_∣_ {true} p₁ p₂) refl = initial⁺ p₁ refl ⁺++ initial p₂
initial⁺ (_∣_ {false} {true} p₁ p₂) refl = initial⁺ p₂ refl
initial⁺ (_∣_ {false} {false} p₁ p₂) ()
initial⁺ (p₁ ?>>= p₂) refl = initial⁺ p₁ refl >>=⁺ λ x →
initial⁺ (p₂ x) refl
initial⁺ (p₁ !>>= p₂) ()
initial : ∀ {e Tok R} → Parser Tok e R → List R
initial {false} p = []
initial {true} p = head is ∷ tail is
where is = initial⁺ p refl
-- Some boring lemmas.
private
∣-lemma : ∀ {e₁ e₂ Tok R}
(p₁ : Parser Tok e₁ R) (p₂ : Parser Tok e₂ R) →
initial p₁ ++ initial p₂ ≡ initial (p₁ ∣ p₂)
∣-lemma {false} {false} p₁ p₂ = refl
∣-lemma {false} {true} p₁ p₂ = refl
∣-lemma {true} p₁ p₂ = refl
?>>=-lemma : ∀ {e₂ Tok R₁ R₂}
(p₁ : Parser Tok true R₁) (p₂ : R₁ → Parser Tok e₂ R₂) →
initial (p₂ (head (initial⁺ p₁ refl))) ++
(tail (initial⁺ p₁ refl) >>=′ λ x → initial (p₂ x)) ≡
initial (p₁ ?>>= p₂)
?>>=-lemma {false} p₁ p₂ = ListMonad.MonadProperties.right-zero
(tail (initial⁺ p₁ refl))
?>>=-lemma {true} p₁ p₂ = toList->>= f xs
where f = λ x → initial⁺ (p₂ x) refl
xs = initial⁺ p₁ refl
------------------------------------------------------------------------
-- Semantics
-- The semantics of simplified parsers is defined by translation.
⟦_⟧ : ∀ {Tok e R} (p : Parser Tok e R) → P.Parser Tok R (initial p)
⟦ return x ⟧ = return x
⟦ fail ⟧ = fail
⟦ token ⟧ = token
⟦ p₁ ∣ p₂ ⟧ = cast lem (⟦ p₁ ⟧ ∣ ⟦ p₂ ⟧)
where
lem : _ Bag-≈ _
lem = BagS.reflexive (∣-lemma p₁ p₂)
⟦ p₁ !>>= p₂ ⟧ = ⟦ p₁ ⟧ >>= λ x → ♯ ⟦ ♭ (p₂ x) ⟧
⟦ p₁ ?>>= p₂ ⟧ = cast lem (⟦ p₁ ⟧ >>= λ x → ⟦ p₂ x ⟧)
where
lem : _ Bag-≈ _
lem = BagS.reflexive (?>>=-lemma p₁ p₂)
| {
"alphanum_fraction": 0.5151205558,
"avg_line_length": 36.7969924812,
"ext": "agda",
"hexsha": "ebca6f9a6bbe65e0dcfe18f4bda7ff7cfb2d3530",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "StructurallyRecursiveDescentParsing/Simplified.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "StructurallyRecursiveDescentParsing/Simplified.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "StructurallyRecursiveDescentParsing/Simplified.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1469,
"size": 4894
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core definitions for Functions
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
{-# OPTIONS --without-K --safe #-}
module Function.Core where
------------------------------------------------------------------------
-- Types
Fun₁ : ∀ {a} → Set a → Set a
Fun₁ A = A → A
Fun₂ : ∀ {a} → Set a → Set a
Fun₂ A = A → A → A
| {
"alphanum_fraction": 0.3662239089,
"avg_line_length": 25.0952380952,
"ext": "agda",
"hexsha": "7997882df06ed77c46b7e72ba79b7066a7edb14c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Core.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 96,
"size": 527
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Pointed.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed.Base
open import Cubical.Data.Prod
Π∙ : ∀ {ℓ ℓ'} (A : Type ℓ) (B∙ : A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ')
Π∙ A B∙ = (∀ a → typ (B∙ a)) , (λ a → pt (B∙ a))
Σ∙ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : typ A∙ → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ')
Σ∙ A∙ B∙ = (Σ[ a ∈ typ A∙ ] typ (B∙ a)) , (pt A∙ , pt (B∙ (pt A∙)))
_×∙_ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ')
A∙ ×∙ B∙ = ((typ A∙) × (typ B∙)) , (pt A∙ , pt B∙)
| {
"alphanum_fraction": 0.5375626043,
"avg_line_length": 37.4375,
"ext": "agda",
"hexsha": "b093c0e1ef6644ab67478c545cc38b859a594226",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/cubical",
"max_forks_repo_path": "Cubical/Foundations/Pointed/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/cubical",
"max_issues_repo_path": "Cubical/Foundations/Pointed/Properties.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/cubical",
"max_stars_repo_path": "Cubical/Foundations/Pointed/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 300,
"size": 599
} |
module FStream.Containers where
------------------------------------------------------------------------
-- Containers & their extension
------------------------------------------------------------------------
open import Data.Fin
open import Data.Maybe
open import Data.Unit
open import Library
ListC : Container ℓ₀
Shape ListC = ℕ
Position ListC n = Fin n
StateC : ∀ {ℓ} → Set ℓ → Container ℓ
Shape (StateC S) = S → S
Position (StateC S) _ = S
StreamC : Container ℓ₀
Shape StreamC = ⊤
Position StreamC = const ℕ
ReaderC : Set → Container ℓ₀
Shape (ReaderC R) = ⊤
Position (ReaderC R) _ = R
runReader : {R A : Set} → ⟦ ReaderC R ⟧ A → R → A
runReader (proj₁ , proj₂) r = proj₂ r
ask : ∀ {R} → ⟦ ReaderC R ⟧ R
proj₁ ask = tt
proj₂ ask x = x
returnReader : ∀ {ℓ} {A : Set ℓ} {R : Set} → A → ⟦ ReaderC R ⟧ A
returnReader a = tt , (λ _ → a)
ExceptC : Set → Container ℓ₀
Shape (ExceptC E) = Maybe E
Position (ExceptC E₁) (just x) = ⊥
Position (ExceptC E₁) nothing = ⊤
-- TODO Use stdlib
IdC : Container ℓ₀
Shape IdC = ⊤
Position IdC tt = ⊤
| {
"alphanum_fraction": 0.5612535613,
"avg_line_length": 21.9375,
"ext": "agda",
"hexsha": "9f5812801b1c6ff2aa44d6590732ad90b1e2fef7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "FStream/Containers.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "FStream/Containers.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "FStream/Containers.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 338,
"size": 1053
} |
module MJ.Types where
open import Prelude hiding (_≟_)
open import Data.Fin.Properties as FinP using ()
open import Data.Vec
open import Data.List
open import Relation.Binary.Core
open import Relation.Nullary
open import Relation.Binary
data Cid (c : ℕ) : Set where
cls : Fin c → Cid c
Object : Cid c
_cid≟_ : ∀ {c} → Decidable (_≡_ {A = Cid c})
cls x cid≟ cls y with x FinP.≟ y
cls x cid≟ cls .x | yes refl = yes refl
cls x cid≟ cls y | no ¬p = no (λ{ refl → ¬p refl})
cls x cid≟ Object = no (λ ())
Object cid≟ cls x = no (λ ())
Object cid≟ Object = yes refl
data Ty (c : ℕ) : Set where
void : Ty c
int : Ty c
ref : Cid c → Ty c
data Ty⁺ (c : ℕ) : Set where
vty : Ty c → Ty⁺ c
obj : Cid c → Ty⁺ c
World : ℕ → Set
World c = List (Ty⁺ c)
Sig : ℕ → Set
Sig c = List (Ty c) × Ty c
_≟_ : ∀ {c} → Decidable (_≡_ {A = Ty c})
void ≟ void = yes refl
void ≟ int = no (λ ())
void ≟ ref x = no (λ ())
int ≟ void = no (λ ())
int ≟ int = yes refl
int ≟ ref x = no (λ ())
ref x ≟ void = no (λ ())
ref x ≟ int = no (λ ())
ref x ≟ ref y with x cid≟ y
ref x ≟ ref y | yes p = yes (cong ref p)
ref x ≟ ref y | no ¬p = no λ{ refl → ¬p refl }
| {
"alphanum_fraction": 0.581010453,
"avg_line_length": 22.5098039216,
"ext": "agda",
"hexsha": "ea2eac19e81667ef6c633ae6e4d695294a74540c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Types.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Types.agda",
"max_line_length": 50,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 440,
"size": 1148
} |
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Summation.Generic where
-- agda-stdlib
open import Algebra
open import Data.Nat
module MonoidSummation {c e} (M : Monoid c e) where
open Monoid M renaming (Carrier to A)
-- Σ< n f = Σₖ₌₀ⁿ⁻¹[f k]
Σ< : ℕ → (ℕ → A) → A
Σ< 0 f = ε
Σ< (suc n) f = Σ< n f ∙ f n
-- Σ≤ n f = Σₖ₌₀ⁿ[f k]
Σ≤ : ℕ → (ℕ → A) → A
Σ≤ n f = Σ< (suc n) f
-- Σ<range m n f = Σₖ₌ₘⁿ⁻¹[f k]
Σ<range : ℕ → ℕ → (ℕ → A) → A
Σ<range m n f = Σ< (n ∸ m) (λ o → f (m + o))
-- Σ≤range m n f = Σₖ₌ₘⁿ[f k]
Σ≤range : ℕ → ℕ → (ℕ → A) → A
Σ≤range m n f = Σ<range m (suc n) f
-- syntax
syntax Σ< n (λ k → e) = Σ[ k < n ] e
syntax Σ≤ n (λ k → e) = Σ[ k ≤ n ] e
syntax Σ<range m n (λ k → e) = Σ[ m ≤ k < n ] e
syntax Σ≤range m n (λ k → e) = Σ[ m ≤ k ≤ n ] e
| {
"alphanum_fraction": 0.4852941176,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "a41cdf1d6e1cbaf83660dbb75479dee796e48873",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Summation/Generic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Summation/Generic.agda",
"max_line_length": 51,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Summation/Generic.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 433,
"size": 816
} |
module Type.Dependent where
import Lvl
open import Type
private
module Module where
-- Dependent product type (pi-type).
-- Also called: Dependent function type.
-- The right-hand side's type is a function type that uses the left-hand side's type as its "domain".
-- And then the type of the resulting function of the two types depends on the argument.
record Π {ℓ₁ ℓ₂} (A : Type{ℓ₁}) (B : A → Type{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field
apply : (a : A) → B(a)
-- Dependent sum type (sigma-type).
-- Also called: Dependent pair type.
-- The right-hand side's type is a function type that uses the left-hand side's type as its "domain".
-- And then the type of the resulting pair depends on the left-hand side.
record Σ {ℓ₁ ℓ₂} (A : Type{ℓ₁}) (B : A → Type{ℓ₂}) : Type{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field
left : A
right : B(left)
ℰ : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}} → (A → Type{ℓ₂}) → Type{ℓ₁ Lvl.⊔ ℓ₂}
ℰ {A = A} B = Module.Σ A B
module ℰ where
pattern intro {left} right = Module.intro left right
open Module public
{-# BUILTIN SIGMA Σ #-}
| {
"alphanum_fraction": 0.6309420916,
"avg_line_length": 34.0294117647,
"ext": "agda",
"hexsha": "91bae74156478b4cbff5e1fe5d65faa3d0976423",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Dependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Dependent.agda",
"max_line_length": 105,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Dependent.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 379,
"size": 1157
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
module Categories.Object.Product.Limit {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Data.Nat.Base using (ℕ)
open import Data.Fin.Base using (Fin)
open import Data.Fin.Patterns
open import Categories.Category.Lift
open import Categories.Category.Finite.Fin
open import Categories.Category.Finite.Fin.Construction.Discrete
open import Categories.Object.Product C
open import Categories.Diagram.Limit
open import Categories.Functor.Core
import Categories.Category.Construction.Cones as Co
import Categories.Morphism.Reasoning as MR
private
module C = Category C
open C
open MR C
open HomReasoning
module _ {o′ ℓ′ e′} {F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C} where
private
module F = Functor F
open F
limit⇒product : Limit F → Product (F₀ (lift 0F)) (F₀ (lift 1F))
limit⇒product L = record
{ A×B = apex
; π₁ = proj (lift 0F)
; π₂ = proj (lift 1F)
; ⟨_,_⟩ = λ f g → rep record
{ apex = record
{ ψ = λ { (lift 0F) → f
; (lift 1F) → g }
; commute = λ { {lift 0F} {lift 0F} (lift 0F) → elimˡ identity
; {lift 1F} {lift 1F} (lift 0F) → elimˡ identity }
}
}
; project₁ = commute
; project₂ = commute
; unique = λ {_} {h} eq eq′ → terminal.!-unique record
{ arr = h
; commute = λ { {lift 0F} → eq
; {lift 1F} → eq′ }
}
}
where open Limit L
module _ o′ ℓ′ e′ A B where
open Equiv
product⇒limit-F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C
product⇒limit-F = record
{ F₀ = λ { (lift 0F) → A
; (lift 1F) → B }
; F₁ = λ { {lift 0F} {lift 0F} _ → C.id
; {lift 1F} {lift 1F} _ → C.id }
; identity = λ { {lift 0F} → refl
; {lift 1F} → refl }
; homomorphism = λ { {lift 0F} {lift 0F} {lift 0F} → sym identity²
; {lift 1F} {lift 1F} {lift 1F} → sym identity² }
; F-resp-≈ = λ { {lift 0F} {lift 0F} _ → refl
; {lift 1F} {lift 1F} _ → refl }
}
module _ o′ ℓ′ e′ {A B} (p : Product A B) where
open Product p
private
F = product⇒limit-F o′ ℓ′ e′ A B
open Functor F
product⇒limit : Limit F
product⇒limit = record
{ terminal = record
{ ⊤ = record
{ N = A×B
; apex = record
{ ψ = λ { (lift 0F) → π₁
; (lift 1F) → π₂ }
; commute = λ { {lift 0F} {lift 0F} (lift 0F) → identityˡ
; {lift 1F} {lift 1F} (lift 0F) → identityˡ }
}
}
; ! = λ {K} →
let open Co.Cone F K
in record
{ arr = ⟨ ψ (lift 0F) , ψ (lift 1F) ⟩
; commute = λ { {lift 0F} → project₁
; {lift 1F} → project₂ }
}
; !-unique = λ {K} f →
let module K = Co.Cone F K
module f = Co.Cone⇒ F f
in begin
⟨ K.ψ (lift 0F) , K.ψ (lift 1F) ⟩ ≈˘⟨ ⟨⟩-cong₂ f.commute f.commute ⟩
⟨ π₁ ∘ f.arr , π₂ ∘ f.arr ⟩ ≈⟨ g-η ⟩
f.arr ∎
}
}
| {
"alphanum_fraction": 0.4947948561,
"avg_line_length": 30.523364486,
"ext": "agda",
"hexsha": "60fe46a373f8672b70af4a3838e02a2c3bce15da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/agda-categories",
"max_forks_repo_path": "src/Categories/Object/Product/Limit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/agda-categories",
"max_issues_repo_path": "src/Categories/Object/Product/Limit.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/agda-categories",
"max_stars_repo_path": "src/Categories/Object/Product/Limit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1131,
"size": 3266
} |
module Scratch.FinDecEq1 where
open import Data.Bool.Base hiding (_≤_)
open import Data.Product
open import Data.Sum
open import Level renaming (suc to lsuc; _⊔_ to _⊔ℓ_; zero to lzero)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Unary using (Decidable)
open import Relation.Binary hiding (Decidable)
open import Function.Base
-- open import Function.Bijection hiding (_∘_)
-- open import Function.Equality hiding (≡-setoid; _∘_)
open import Data.Nat.Base hiding (_≤_)
open import Data.Fin renaming (zero to fzero; suc to fsuc)
open import Data.Fin.Properties hiding (to-from)
-- see http://firsov.ee/finset/finset.pdf
open import Data.List.Base renaming (tabulate to tab;
lookup to nth;
filter to lfilter;
allFin to allF)
open import Data.List.Properties
open import Data.List.Relation.Unary.Any
-- open import Data.List.Membership.Propositional renaming (_∈_ to _∈ℓ_)
-- open import Data.List.Membership.Propositional.Properties
open import Data.List.Relation.Unary.Any as Any -- hiding (tail)
open import Data.List.Relation.Unary.Any.Properties hiding (tabulate⁺)
open import Data.List.Relation.Unary.All as All hiding (tabulate)
open import Data.List.Relation.Unary.AllPairs as AllPairs
open import Data.List.Relation.Unary.AllPairs.Properties renaming (map⁺ to ap-map⁺)
-- :-( can't use Vector because it doesn't have a filter
-- open import Data.Vec.Functional as Coll
-- open import Data.Vec.Functional.Relation.Unary.Any
-- renaming (here to here'; there to there')
open import Relation.Binary.PropositionalEquality as Eq
open Eq.≡-Reasoning
open import Scratch.Data.List.Relation.Helpers
open import Scratch.Subset
-- record StronglyFiniteSetoid (n : ℕ) : Set (lsuc (c ⊔ℓ ℓ)) where
-- field
-- S : Setoid c ℓ
-- χ : Bijection (≡-setoid n) S
--
-- open Setoid S
-- open Bijection χ
-- open Π to renaming (_⟨$⟩_ to to')
-- open Π from renaming (_⟨$⟩_ to from')
--
-- ι : Fin n → Carrier
-- ι x = to' x
--
-- ρ : Carrier → Fin n
-- ρ y = from' y
-- TODO: pullback of ω where ω ≤ _≈_ (see orbital relation)
-- /Users/amantini/dev/agda/agda-stdlib/README/Data/Interleaving.agda
-- if ω is decidable then the pullback is a FinDecEq
open import Data.Vec hiding (length)
renaming (lookup to vlookup)
open import Data.Vec.Properties
-- open import Data.Vec.Relation.Unary.Any
open import Data.Fin.Subset
open import Data.Fin.Subset.Properties
lmap = Data.List.Base.map
syntax lmap (λ x → B) L = ⟦ B ∣ x ∈ℓ L ⟧
fsuc∈ : ∀ {n} → { p : Subset n} → {x : Fin n} → {s : Side} → (x ∈ p) → (fsuc x) ∈ (s Data.Vec.∷ p)
fsuc∈ here = there here
fsuc∈ (there x∈p) = there (fsuc∈ x∈p)
fst₊ : ∀ {n} → (s : Subset n) → Nonempty s → Σ (Fin n) (λ x → ( x ∈ s × (∀ {y} → (y ∈ s) → x ≤ y )))
fst₊ {suc n} (inside ∷ rest) ne = ( fzero , here , λ _ → z≤n )
fst₊ {suc n} (outside ∷ rest) ne with (∃-toSum ne)
... | inj₂ b = let w = drop-there (proj₂ b)
z = (proj₁ b , w)
( a , bb , c ) = (fst₊ rest z)
in (fsuc a , fsuc∈ bb , λ { (there y∈s) → s≤s (c y∈s) } )
fst₋ : ∀ {n} → (s : Subset n) → Nonempty s → Fin n
fst₋ s ne = proj₁ (fst₊ s ne)
fst₋unique : ∀ {n} → ∀ (s t : Subset n) → (ns : Nonempty s) → (nt : Nonempty t) →
s ≡ t → (fst₋ s ns) ≡ (fst₋ t nt)
fst₋unique s t ns nt s≡t = let fs , fs∈s , fs≤ = (fst₊ s ns)
ft , ft∈t , ft≤ = (fst₊ t nt)
ft∈s : ft ∈ s
ft∈s = subst _ (sym s≡t) ft∈t
fs∈t : fs ∈ t
fs∈t = subst _ s≡t fs∈s
in ≤-antisym (fs≤ ft∈s) (ft≤ fs∈t)
open import Data.Unit hiding (_≟_; ⊤)
-- TODO: see src/Data/List/Membership/Setoid.agda
-- see src/Relation/Nullary/Decidable.agda
≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T refl = tt
record FinDecEq {a} (n : ℕ) : Set (lsuc a) where
field
_ω_ : Rel (Fin n) a
isDecEq : IsDecEquivalence _ω_
std : DecSetoid _ _
std = record { Carrier = (Fin n) ;
_≈_ = _ω_ ;
isDecEquivalence = isDecEq }
open DecSetoid std
renaming (_≟_ to _ω?_ ;
refl to r ;
sym to s ;
trans to t ;
Carrier to F;
setoid to std')
public
import Data.List.Membership.Propositional
module MP = Data.List.Membership.Propositional {A = F}
open MP renaming (_∈_ to _∈ℓ_)
-- open import Data.List.Membership.Propositional renaming (_∈_ to _∈ℓ_)
open import Data.List.Membership.Propositional.Properties
[_]ω : (Fin n) → Subset n
[ o ]ω = tabulate (does ∘ (_ω? o))
-- TODO: use src/Data/List/Membership/Setoid.agda
-- and src/Data/Fin/Subset/Properties.agda
ω⇒∈ : ∀ {x y} → x ω y → x ∈ [ y ]ω
ω⇒∈ {x} {y} xωy = let lkp = begin vlookup [ y ]ω x ≡⟨ lookup∘tabulate _ x ⟩
does (x ω? y) ≡⟨ dec-true (x ω? y) xωy ⟩
true ∎
in lookup⇒[]= x [ y ]ω lkp
-- in particular classes are not empty
o∈[o]ω : ∀ { o : Fin n } → o ∈ [ o ]ω
o∈[o]ω = ω⇒∈ r
-- and actually equal
-- conversely
∈⇒ω : ∀ {x y} → x ∈ [ y ]ω → x ω y
∈⇒ω {x} {y} x∈[y] = let w = begin true ≡˘⟨ []=⇒lookup x∈[y] ⟩
vlookup [ y ]ω x ≡⟨ lookup∘tabulate _ x ⟩
does (x ω? y) ≡˘⟨ isYes≗does _ ⟩
isYes (x ω? y) ∎
r : True (x ω? y)
r = ≡→T (sym w)
in toWitness r
ω⇒⊆ : ∀ {x y} → x ω y → [ x ]ω ⊆ [ y ]ω
ω⇒⊆ {x} {y} xωy {s} s∈[x] = ω⇒∈ (t (∈⇒ω s∈[x]) xωy )
ω⇒≡ : ∀ {x y} → x ω y → [ x ]ω ≡ [ y ]ω
ω⇒≡ {x} {y} xωy = ⊆-antisym (ω⇒⊆ xωy) (ω⇒⊆ (s xωy))
-- canonical choice - TODO
c : F → F
c f = fst₋ {n} [ f ]ω ( f , o∈[o]ω )
--
cx∈[x] : ∀ (x : Fin n) → (c x) ∈ [ x ]ω
cx∈[x] x = proj₁ (proj₂ (fst₊ [ x ]ω ( x , o∈[o]ω )))
xωcx : ∀ (x : F) → x ω (c x)
xωcx x = s (∈⇒ω (cx∈[x] x))
--
c⇒ω : ∀ {x y} → c x ≡ c y → x ω y
c⇒ω {x} {y} cx≡cy = let P = λ q → q ∈ [ y ]ω
w : (c x) ∈ [ y ]ω
w = subst P (sym cx≡cy) (cx∈[x] y)
in t (xωcx x) (∈⇒ω w)
--
ω⇒c : ∀ {x y} → x ω y → c x ≡ c y
ω⇒c {x} {y} xωy = fst₋unique _ _ _ _ (ω⇒≡ xωy)
c-idempt : (x : F) → c (c x) ≡ c x
c-idempt x = ω⇒c {c x} {x} (s (xωcx x))
ω-disj : ∀ {x y} → ¬ (x ω y) → Empty ([ x ]ω ∩ [ y ]ω)
ω-disj {x} {y} ¬xωy f∈∩ = let f , [x]∩[y] = f∈∩
l , r = x∈p∩q⁻ _ _ [x]∩[y]
fωx : f ω x
fωx = ∈⇒ω l
fωy = ∈⇒ω r
in ¬xωy (t (s fωx) fωy)
ω-Disj : ∀ {x y} → ¬ (x ω y) → Disj [ x ]ω [ y ]ω
ω-Disj ¬xωy = Empty-unique (ω-disj ¬xωy)
-- canonical representative
cr : (i : F) → Set
cr i = i ≡ (c i)
-- c' : (i : F) → cr i × i ω (c i)
-- _≟_
cr? : Decidable cr
cr? = λ i → i ≟ (c i)
cr-disj : ∀ {x y} → (cr x) → (cr y) → x ≢ y → ¬ (x ω y)
cr-disj {x} {y} crx cry x≢y xωy = let x≡y = begin x ≡⟨ crx ⟩
c x ≡⟨ ω⇒c xωy ⟩
c y ≡˘⟨ cry ⟩
y ∎
in x≢y x≡y
Tr : List F
Tr = (lfilter cr? (allF n))
-- ∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v
-- C : List (Subset n)
-- C = ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧
-- ap x≢y allF
-- ap ¬ x ω y Tr
-- ap Disj (map [_] Tr)
ap1 : AllPairs _≢_ (allF n)
ap1 = tabulate⁺ id
ap2 : AllPairs (λ x y → ¬ x ω y) Tr
ap2 = filter⁺⁺ cr? cr-disj ap1
ap3 : AllPairs Disj ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧
ap3 = ap-map⁺ (AllPairs.map ω-Disj ap2)
C-cover' : ∀ (x : F) → (∃ λ k → cr k × x ω k)
C-cover' x = (c x) , sym (c-idempt x) , xωcx x
C-cover : ∀ (x : F) → Any (x ∈_) ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧
C-cover x = let (k , crk , xωk) = C-cover' x
k∈ℓallF : k ∈ℓ allF n
k∈ℓallF = ∈-allFin {n} k
k∈ℓTr : k ∈ℓ Tr
k∈ℓTr = ∈-filter⁺ cr? k∈ℓallF crk
a : Any (x ω_) Tr
a = lose k∈ℓTr xωk
b : Any ((x ∈_) ∘ [_]ω) Tr
b = Any.map ω⇒∈ a
-- map⁺ : Any (P ∘ f) xs → Any P (List.map f xs)
in map⁺ b
--
[]ω-cover : ⊤ ≡ ⋃ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧
[]ω-cover = cover-⊤ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ C-cover
-- Cardinality : n ≡ Data.List.Base.sum ⟦ ∣ [ x ]ω ∣ ∣ x ∈ℓ Tr ⟧
-- Cardinality =
-- let c = ∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ ap3
-- in begin
-- n ≡˘⟨ ∣⊤∣≡n n ⟩
-- ∣ ⊤ {n} ∣ ≡⟨ cong ∣_∣ []ω-cover ⟩
-- ∣ ⋃ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ ∣ ≡⟨ c ⟩
-- -- cong List.sum (map-compose λ t → ∣ [ t ]ω ∣ ) refl
-- Data.List.Base.sum (lmap ∣_∣ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧) ≡˘⟨ ? ⟩
-- Data.List.Base.sum ⟦ ∣ [ x ]ω ∣ ∣ x ∈ℓ Tr ⟧ ∎
| {
"alphanum_fraction": 0.4762787654,
"avg_line_length": 33.2210144928,
"ext": "agda",
"hexsha": "4a0ea43afec71e24f6d20cb96cf547d2cce05282",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zampino/ggt",
"max_forks_repo_path": "src/scratch/FinDecEq1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zampino/ggt",
"max_issues_repo_path": "src/scratch/FinDecEq1.agda",
"max_line_length": 100,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zampino/ggt",
"max_stars_repo_path": "src/scratch/FinDecEq1.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z",
"num_tokens": 3646,
"size": 9169
} |
module Web.Semantic.DL.Signature where
infixr 4 _,_
-- a Signature is constructed from Concept Names and Role/Relation Names
data Signature : Set₁ where
_,_ : (CN RN : Set) → Signature
-- concept name (maps to Sets)
CN : Signature → Set
CN (CN , RN) = CN
-- Role Names (or relation names)
RN : Signature → Set
RN (CN , RN) = RN
| {
"alphanum_fraction": 0.6886227545,
"avg_line_length": 20.875,
"ext": "agda",
"hexsha": "8db396dd7a181a6f298e36566ac53f4c3f736c2e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Signature.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Signature.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-22T09:43:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-22T09:43:23.000Z",
"num_tokens": 98,
"size": 334
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Every respectful binary relation induces a preorder. No claim is
-- made that this preorder is unique.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
open Setoid using (Carrier)
module Relation.Binary.Construct.FromRel
{s₁ s₂} (S : Setoid s₁ s₂) -- The underlying equality
{a r} {A : Set a} (_R_ : REL A (Carrier S) r) -- The relation
where
open import Data.Product
open import Function
open import Level using (_⊔_)
open module Eq = Setoid S using (_≈_) renaming (Carrier to B)
------------------------------------------------------------------------
-- Definition
Resp : Rel B (a ⊔ r)
Resp x y = ∀ {a} → a R x → a R y
------------------------------------------------------------------------
-- Properties
reflexive : (∀ {a} → (a R_) Respects _≈_) → _≈_ ⇒ Resp
reflexive resp x≈y = resp x≈y
trans : Transitive Resp
trans x∼y y∼z = y∼z ∘ x∼y
isPreorder : (∀ {a} → (a R_) Respects _≈_) → IsPreorder _≈_ Resp
isPreorder resp = record
{ isEquivalence = Eq.isEquivalence
; reflexive = reflexive resp
; trans = trans
}
preorder : (∀ {a} → (a R_) Respects _≈_) → Preorder _ _ _
preorder resp = record
{ isPreorder = isPreorder resp
}
| {
"alphanum_fraction": 0.5086580087,
"avg_line_length": 27.72,
"ext": "agda",
"hexsha": "c228bd1f7b68348496c193ebdd54c79dd98e88ae",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/FromRel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/FromRel.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/FromRel.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 369,
"size": 1386
} |
module regular-star where
open import Level renaming ( suc to Suc ; zero to Zero )
open import Data.List
open import Data.Nat hiding ( _≟_ )
open import Data.Fin hiding ( _+_ )
open import Data.Empty
open import Data.Unit
open import Data.Product
-- open import Data.Maybe
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import logic
open import nat
open import automaton
open import regular-language
open import nfa
open import sbconst2
open import finiteSet
open import finiteSetUtil
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import regular-concat
open Automaton
open FiniteSet
open RegularLanguage
Star-NFA : {Σ : Set} → (A : RegularLanguage Σ ) → NAutomaton (states A ) Σ
Star-NFA {Σ} A = record { Nδ = δnfa ; Nend = nend }
module Star-NFA where
δnfa : states A → Σ → states A → Bool
δnfa q i q₁ with aend (automaton A) q
... | true = equal? (afin A) ( astart A) q₁
... | false = equal? (afin A) (δ (automaton A) q i) q₁
nend : states A → Bool
nend q = aend (automaton A) q
Star-NFA-start : {Σ : Set} → (A : RegularLanguage Σ ) → states A → Bool
Star-NFA-start A q = equal? (afin A) (astart A) q \/ aend (automaton A) q
SNFA-exist : {Σ : Set} → (A : RegularLanguage Σ ) → (states A → Bool) → Bool
SNFA-exist A qs = exists (afin A) qs
M-Star : {Σ : Set} → (A : RegularLanguage Σ ) → RegularLanguage Σ
M-Star {Σ} A = record {
states = states A → Bool
; astart = Star-NFA-start A
; afin = fin→ (afin A)
; automaton = subset-construction (SNFA-exist A ) (Star-NFA A )
}
open Split
open _∧_
open NAutomaton
open import Data.List.Properties
closed-in-star : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Star (contain A) ) x ( M-Star A )
closed-in-star {Σ} A B x = ≡-Bool-func closed-in-star→ closed-in-star← where
NFA = (Star-NFA A )
closed-in-star→ : Star (contain A) x ≡ true → contain (M-Star A ) x ≡ true
closed-in-star→ star = {!!}
open Found
closed-in-star← : contain (M-Star A ) x ≡ true → Star (contain A) x ≡ true
closed-in-star← C with subset-construction-lemma← (SNFA-exist A ) NFA {!!} x C
... | CC = {!!}
| {
"alphanum_fraction": 0.6412516527,
"avg_line_length": 29.4675324675,
"ext": "agda",
"hexsha": "df6c57d9c4a5497b18535f6543357d0c01433d32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/regular-star.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/regular-star.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/regular-star.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 726,
"size": 2269
} |
-- Andreas, Ulf, 2022-05-06, AIM XXXV
-- Make sure you cannot trick Agda into admitting data types in IUniv.
-- The previous check let this exploit through.
-- Note: I : IUniv : SSet₁
open import Agda.Primitive.Cubical
mutual
Univ = _
data False : Univ where
I' : Univ
I' = I
-- Should fail.
-- Error:
-- The universe _6 of False
-- is unresolved, thus does not permit data or record declarations
-- when checking the definition of False
| {
"alphanum_fraction": 0.7050997783,
"avg_line_length": 21.4761904762,
"ext": "agda",
"hexsha": "fabcbd2c65c1f0d15d5f08ce7edee34c342db4a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5891DataInIUniv.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5891DataInIUniv.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5891DataInIUniv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 129,
"size": 451
} |
module Run where
open import Data.Bool
open import Data.Maybe
open import Data.Nat
open import Data.List
open import Data.List.All
open import Typing
open import Syntax
open import Global
open import Channel
open import Values
open import Session
open import Schedule
open import Examples
open import Aexamples
gas : ℕ → Gas
gas zero = Empty
gas (suc n) = More (gas n)
-- the magic number shows the last state before termination
-- runs to completion: the magic number is 7
runex1 : Outcome
runex1 = start (gas 8) ex1
-- runs to completion, but gets slow at 9
runex2 : Outcome
runex2 = start (gas 14) ex2
-- need more steps, but gets *very* slow
runex3 : Outcome
runex3 = start (gas 6) ex3
-- runs to completion
runex4 : Outcome
runex4 = start (gas 11) ex4
-- just lambda calculus
-- runs to completion: the magic number is 2
runex5 : Outcome
runex5 = start (gas 3) ex5
-- just lambda calculus
-- magic number is 6
runex6 : Outcome
runex6 = start (gas 7) ex6
-- now asynchronous examples
runaex1 : Outcome
runaex1 = start (gas 40) aex1
runasyncex1 : Outcome
runasyncex1 = start (gas 40) asyncex1
runasyncex2 : Outcome
runasyncex2 = start (gas 80) asyncex2
| {
"alphanum_fraction": 0.7452991453,
"avg_line_length": 19.1803278689,
"ext": "agda",
"hexsha": "440d887d30771ec0efab0001a2d656d38fa72b96",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Run.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Run.agda",
"max_line_length": 59,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Run.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 358,
"size": 1170
} |
import Lvl
open import Type
module Type.Cardinality.Proofs {ℓₗ : Lvl.Level} where
open import Functional
import Logic.Predicate
import Logic.Predicate.Theorems
import Relator.Equals
import Relator.Equals.Proofs
import Type.Cardinality
import Type.Functions
import Type.Functions.Proofs
import Type.Functions.Inverse
import Type.Functions.Inverse.Proofs
module _ {ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where
open Logic.Predicate {ℓₗ}
open Logic.Predicate.Theorems {ℓₗ}
open Type.Cardinality {ℓₗ}
open Type.Functions {ℓₗ}
open Type.Functions.Inverse {ℓₗ}
open Type.Functions.Inverse.Proofs {ℓₗ}
open Type.Functions.Proofs {ℓₗ}
instance
[≍]-to-[≼] : ⦃ _ : X ≍ Y ⦄ → (X ≼ Y)
[≍]-to-[≼] ⦃ proof ⦄ = [∃]-map (proof ↦ bijective-to-injective ⦃ proof ⦄) proof
instance
[≍]-to-[≽] : ⦃ _ : X ≍ Y ⦄ → (X ≼ Y)
[≍]-to-[≽] ⦃ proof ⦄ = [∃]-map (proof ↦ bijective-to-injective ⦃ proof ⦄) proof
[≍]-symmetry : (X ≍ Y) → (Y ≍ X)
[≍]-symmetry ([∃]-intro f ⦃ proof ⦄) = [∃]-intro (inv f ⦃ proof ⦄) ⦃ inv-bijective {ℓₒ₁}{ℓₒ₂} {_}{_} {f} ⦃ proof ⦄ ⦄
-- TODO: Is it possible to prove these?
-- [≍]-antisymmetry : (X ≼ Y) → (X ≽ Y) → (X ≍ Y)
-- [≍]-antisymmetry = [∃]-map ()
-- [≼][≽]-swap : (X ≼ Y) → (Y ≽ X)
-- [≽][≼]-swap : (X ≽ Y) → (Y ≼ X)
module _ {ℓₒ} {X : Type{ℓₒ}} where
open Logic.Predicate {ℓₗ Lvl.⊔ ℓₒ}
open Logic.Predicate.Theorems {ℓₗ Lvl.⊔ ℓₒ}
open Type.Cardinality {ℓₗ Lvl.⊔ ℓₒ}
open Type.Functions.Proofs {ℓₗ Lvl.⊔ ℓₒ}
instance
[≍]-reflexivity : (X ≍ X)
[≍]-reflexivity = [∃]-intro (id) ⦃ id-is-bijective ⦄
instance
[≼]-reflexivity : (X ≼ X)
[≼]-reflexivity = [∃]-intro(id) ⦃ bijective-to-injective ⦃ id-is-bijective ⦄ ⦄
instance
[≽]-reflexivity : (X ≽ X)
[≽]-reflexivity = [∃]-intro(id) ⦃ bijective-to-surjective ⦃ id-is-bijective ⦄ ⦄
module _ {ℓₒ} {X : Type{ℓₒ}} {Y : Type{ℓₒ}} where
open Type.Cardinality {ℓₗ Lvl.⊔ ℓₒ}
open Relator.Equals {ℓₗ Lvl.⊔ ℓₒ}{Lvl.𝐒(ℓₒ)}
[≡]-to-[≍] : (X ≡ Y) → (X ≍ Y)
[≡]-to-[≍] [≡]-intro = [≍]-reflexivity
| {
"alphanum_fraction": 0.5574448529,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "e433950842ac64f05c01ab02a2a045973df8e1a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Type/Cardinality/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Type/Cardinality/Proofs.agda",
"max_line_length": 118,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Type/Cardinality/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 983,
"size": 2176
} |
-- Andreas, 2016-06-03, bug found by Ulf
-- {-# OPTIONS -v tc.cover:20 #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field fst : A
snd : B fst
open Σ
record ⊤ : Set where
data ⊥ : Set where
T : Bool → Set
T true = ⊤
T false = ⊥
p : Σ Bool T
fst p = false
p = true , _
loop : ⊥
loop = snd p
| {
"alphanum_fraction": 0.6035805627,
"avg_line_length": 15.0384615385,
"ext": "agda",
"hexsha": "dd2471acaa0a68d7954cb6dba851a23fb37a9c1a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1986u.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1986u.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1986u.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 391
} |
module Data.List.Relation.Permutation where
import Data
open import Data.Boolean
open import Data.List
open import Data.List.Functions renaming (module LongOper to List)
open import Data.List.Relation
open import Functional using (id ; _∘_ ; const)
open import Logic.Propositional
open import Logic
import Lvl
open import Numeral.Finite
open import Syntax.Function
open import Type
private variable ℓ : Lvl.Level
private variable T A B : Type{ℓ}
private variable l l₁ l₂ l₃ l₄ : List(T)
private variable x y z : T
private variable f : A → B
private variable P : T → Bool
-- The relation for two lists that are permutations of each other.
-- This means that they contain the same elements and the same number of them but possibly in a different order.
-- Or in other words, the first list is a reordered list of the second.
data _permutes_ {ℓ} : List{ℓ}(T) → List{ℓ}(T) → Stmt{Lvl.𝐒(ℓ)} where
empty : ∅ permutes (∅ {T = T})
prepend : (l₁ permutes l₂) → ((x ⊰ l₁) permutes (x ⊰ l₂))
swap : (x ⊰ y ⊰ l) permutes (y ⊰ x ⊰ l)
trans : (l₁ permutes l₂) → (l₂ permutes l₃) → (l₁ permutes l₃)
trans-swap : (l₁ permutes l₂) → ((x ⊰ y ⊰ l₁) permutes (y ⊰ x ⊰ l₂))
trans-swap p = trans swap (prepend (prepend p))
-- TODO
-- _partition-of_ : List(List(T)) → List(T) → Stmt
-- p partition-of l = (foldᵣ (x ↦ ¬ Empty(x) ∧_) Data.Unit p) ∧ (concat(p) permutes l)
-- The permutation as a function between the permutated elements' indices.
-- Example:
-- p : [a,b,c,d,e,f] permutes [a,f,e,d,b,c]
-- map(permutation-mapping(p)) [0,1,2,3,4,5] = [0,4,5,3,2,1]
permutation-mapping : (l₁ permutes l₂) → (𝕟(length(l₁)) → 𝕟(length(l₂)))
permutation-mapping empty = id
permutation-mapping (prepend p) 𝟎 = 𝟎
permutation-mapping (prepend p) (𝐒 n) = 𝐒(permutation-mapping p n)
permutation-mapping swap 𝟎 = 𝐒(𝟎)
permutation-mapping swap (𝐒 𝟎) = 𝟎
permutation-mapping swap (𝐒(𝐒 n)) = 𝐒 (𝐒 n)
permutation-mapping (trans p q) = permutation-mapping q ∘ permutation-mapping p
-- TODO: It should be possible to make (_permutes_) the morphism of a category with some correct notion of equivalence (maybe trans swap swap ≡ refl for example?). Then permutation-mapping would be an instance of Functor(length) for the ((_→_) on₂ 𝕟) category?
module Proofs where
open import Data.List.Proofs
open import Data.List.Equiv.Id
open import Lang.Inspect
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Finite.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
import Structure.Function.Names as Names
open import Structure.Function.Proofs
open import Structure.Function
import Structure.Operator.Names as Names
open import Structure.Operator.Properties
open import Structure.Operator
import Structure.Relator.Names as Names
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid using (Equiv)
open import Syntax.Function
open import Syntax.Transitivity
instance
permutes-reflexivity : Reflexivity(_permutes_ {T = T})
permutes-reflexivity = intro proof where
proof : Names.Reflexivity(_permutes_)
proof {∅} = empty
proof {_ ⊰ _} = prepend proof
instance
permutes-symmetry : Symmetry(_permutes_ {T = T})
permutes-symmetry = intro proof where
proof : Names.Symmetry(_permutes_)
proof empty = empty
proof (prepend p) = prepend (proof p)
proof swap = swap
proof (trans p q) = trans (proof q) (proof p)
instance
permutes-transitivity : Transitivity(_permutes_ {T = T})
permutes-transitivity = intro trans
instance
permutes-equivalence : Equivalence(_permutes_ {T = T})
permutes-equivalence = intro
permutes-equiv : Equiv(List(T))
Equiv._≡_ permutes-equiv = _permutes_
Equiv.equivalence permutes-equiv = permutes-equivalence
-- If permutation relation had empty, prepend and trans-swap
module _ where
swap-from-trans-swap : (x ⊰ y ⊰ l) permutes (y ⊰ x ⊰ l)
swap-from-trans-swap = trans-swap(reflexivity(_permutes_))
PermutationMappingCorrectness : (l₁ l₂ : List(T)) → (𝕟(length(l₁)) → 𝕟(length(l₂))) → Stmt
PermutationMappingCorrectness l₁ l₂ mapping = ∀{i} → (index l₁(i) ≡ index l₂(mapping i))
permutation-mapping-correctness : (p : (l₁ permutes l₂)) → PermutationMappingCorrectness l₁ l₂ (permutation-mapping p)
permutation-mapping-correctness empty = reflexivity(_≡_)
permutation-mapping-correctness (prepend p) {𝟎} = reflexivity(_≡_)
permutation-mapping-correctness (prepend p) {𝐒 i} = permutation-mapping-correctness p {i}
permutation-mapping-correctness swap {𝟎} = reflexivity(_≡_)
permutation-mapping-correctness swap {𝐒 𝟎} = reflexivity(_≡_)
permutation-mapping-correctness swap {𝐒 (𝐒 i)} = reflexivity(_≡_)
permutation-mapping-correctness (trans p q) = permutation-mapping-correctness p 🝖 permutation-mapping-correctness q
instance
permutation-mapping-injective : ∀{p : (l₁ permutes l₂)} → Injective(permutation-mapping p)
permutation-mapping-injective {p = p} = intro(proof p) where
proof : (p : (l₁ permutes l₂)) → Names.Injective(permutation-mapping p)
proof (prepend p) {𝟎} {𝟎} eq = [≡]-intro
proof (prepend p) {𝐒 x} {𝐒 y} eq = congruence₁(𝐒) (proof p (injective(𝐒) ⦃ [𝐒]-injective ⦄ eq))
proof swap {𝟎} {𝟎} eq = [≡]-intro
proof swap {𝟎} {𝐒 (𝐒 y)} ()
proof swap {𝐒 (𝐒 x)} {𝟎} ()
proof swap {𝐒 𝟎} {𝐒 𝟎} eq = [≡]-intro
proof swap {𝐒 (𝐒 x)} {𝐒 (𝐒 y)} eq = eq
proof (trans p q) = proof p ∘ proof q
instance
permutation-mapping-surjective : ∀{p : (l₁ permutes l₂)} → Surjective(permutation-mapping p)
permutation-mapping-surjective {p = p} = intro(proof p) where
proof : (p : (l₁ permutes l₂)) → Names.Surjective(permutation-mapping p)
∃.witness (proof p {y}) = permutation-mapping(symmetry(_permutes_) p) y
∃.proof (proof (prepend p) {𝟎}) = [≡]-intro
∃.proof (proof (prepend p) {𝐒 y}) = congruence₁(𝐒) (∃.proof (proof p {y}))
∃.proof (proof swap {𝟎}) = [≡]-intro
∃.proof (proof swap {𝐒 𝟎}) = [≡]-intro
∃.proof (proof swap {𝐒 (𝐒 y)}) = [≡]-intro
∃.proof (proof (trans p q) {y}) =
permutation-mapping (trans p q) (∃.witness (proof (trans p q))) 🝖[ _≡_ ]-[]
(permutation-mapping (trans p q) ∘ permutation-mapping(symmetry(_permutes_) p) ∘ permutation-mapping (symmetry(_permutes_) q)) y 🝖[ _≡_ ]-[]
(permutation-mapping q ∘ permutation-mapping p ∘ permutation-mapping(symmetry(_permutes_) p) ∘ permutation-mapping (symmetry(_permutes_) q)) y 🝖[ _≡_ ]-[ congruence₁(permutation-mapping q) (∃.proof (proof p {_})) ]
(permutation-mapping q ∘ permutation-mapping (symmetry(_permutes_) q)) y 🝖[ _≡_ ]-[ ∃.proof (proof q {y}) ]
y 🝖[ _≡_ ]-end
permutation-mapping-bijective : ∀{p : (l₁ permutes l₂)} → Bijective(permutation-mapping p)
permutation-mapping-bijective {p = p} = injective-surjective-to-bijective(permutation-mapping p) ⦃ permutation-mapping-injective {p = p} ⦄ ⦃ permutation-mapping-surjective {p = p} ⦄
{-
permutation-from-mapping : (p : 𝕟(length(l₁)) → 𝕟(length(l₂))) ⦃ bij : Bijective(p) ⦄ (correctness : PermutationMappingCorrectness l₁ l₂ p) → (l₁ permutes l₂)
permutation-from-mapping {l₁ = ∅} {l₂ = ∅} p _ = empty
permutation-from-mapping {l₁ = ∅} {l₂ = x₂ ⊰ l₂} p _ = {!!}
permutation-from-mapping {l₁ = x₁ ⊰ l₁} {l₂ = ∅} p _ = {!!}
permutation-from-mapping {l₁ = x₁ ⊰ l₁} {l₂ = x₂ ⊰ l₂} p correctness with p(𝟎) | correctness{𝟎}
... | 𝟎 | [≡]-intro = prepend (permutation-from-mapping (forgetFirstCutoffOfBij p) ⦃ forgetFirstCutoffOfBij-bijective ⦄ {!!}) where
bijective-equinumerous : ∀{a b}{f : 𝕟(a) → 𝕟(b)} → Bijective(f) → (a ≡ b)
forgetFirstCutoff : ∀{a} → (𝕟(𝐒(a)) → 𝕟(𝐒(a))) → (𝕟(a) → 𝕟(a))
forgetFirstCutoff {𝐒(a)} f(x) with f(𝐒(x))
... | 𝟎 = 𝟎
... | 𝐒(y) = y
forgetFirstCutoffOfBij : ∀{a b} → (f : 𝕟(𝐒(a)) → 𝕟(𝐒(b))) ⦃ bij : Bijective(f) ⦄ → (𝕟(a) → 𝕟(b))
forgetFirstCutoffOfBij {𝐒 a} f ⦃ bij ⦄ with [≡]-intro ← bijective-equinumerous bij = forgetFirstCutoff f
forgetFirstCutoffOfBij-bijective : ∀{a b}{f : 𝕟(𝐒(a)) → 𝕟(𝐒(b))} ⦃ bij : Bijective(f) ⦄ → Bijective(forgetFirstCutoffOfBij f)
-- proof : ∀{l₁ l₂ : List(T)}{p : 𝕟(length(l₁)) → 𝕟(length(l₂))} → PermutationMappingCorrectness l₁ l₂ (forgetFirstCutoffOfBij p)
proof : PermutationMappingCorrectness l₁ l₂ (forgetFirstCutoffOfBij p)
proof {i} =
index l₁ i 🝖[ _≡_ ]-[ {!correctness!} ]
index l₂ (forgetFirstCutoffOfBij p i) 🝖-end
... | 𝐒 w | _ = {!!}
-}
permutes-prepend-function : Function ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (List.prepend x)
permutes-prepend-function = intro prepend
permutes-postpend-function : Function ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (postpend x)
permutes-postpend-function = intro proof where
proof : (l₁ permutes l₂) → (postpend x l₁) permutes (postpend x l₂)
proof empty = prepend empty
proof (prepend x) = prepend (proof x)
proof swap = swap
proof (trans x y) = trans (proof x) (proof y)
postpend-prepend-permutes : (postpend x l) permutes (List.prepend x l)
postpend-prepend-permutes {l = ∅} = prepend empty
postpend-prepend-permutes {l = x ⊰ l} = trans (prepend postpend-prepend-permutes) swap
permutes-reverse : (reverse l) permutes l
permutes-reverse {l = ∅} = empty
permutes-reverse {l = x ⊰ l} = trans (Function.congruence ⦃ _ ⦄ ⦃ _ ⦄ permutes-postpend-function(permutes-reverse {l = l})) postpend-prepend-permutes
permutes-length-function : Function ⦃ permutes-equiv {T = T} ⦄ (length)
permutes-length-function = intro proof where
proof : (l₁ permutes l₂) → (length l₁ ≡ length l₂)
proof empty = [≡]-intro
proof (prepend p) = congruence₁(𝐒) (proof p)
proof swap = [≡]-intro
proof (trans p q) = transitivity(_≡_) (proof p) (proof q)
permutes-countᵣ-function : Function ⦃ permutes-equiv ⦄ (count P)
permutes-countᵣ-function = intro proof where
proof : (l₁ permutes l₂) → (count P l₁ ≡ count P l₂)
proof empty = [≡]-intro
proof {l₁ = x₁ ⊰ l₁} {P = P} (prepend {x = x} p) with P(x)
... | 𝑇 = [≡]-with 𝐒(proof {l₁ = l₁} {P = P} p)
... | 𝐹 = proof {l₁ = l₁} {P = P} p
proof {P = P} (swap {x = x} {y = y}) with P(x) | P(y)
... | 𝑇 | 𝑇 = [≡]-intro
... | 𝑇 | 𝐹 = [≡]-intro
... | 𝐹 | 𝑇 = [≡]-intro
... | 𝐹 | 𝐹 = [≡]-intro
proof (trans p q) = proof p 🝖 proof q
permutes-satisfiesAny-functionᵣ : Function ⦃ permutes-equiv ⦄ (satisfiesAny f)
permutes-satisfiesAny-functionᵣ = intro proof where
proof : (l₁ permutes l₂) → (satisfiesAny f l₁ ≡ satisfiesAny f l₂)
proof empty = [≡]-intro
proof {f = f} (prepend{x = x} p) with f(x)
... | 𝑇 = [≡]-intro
... | 𝐹 = proof p
proof {l₁ = x ⊰ y ⊰ l₁}{y ⊰ x ⊰ l₂}{f = f} (swap{x = x}{y = y}) with f(x) | f(y) | inspect f(x) | inspect f(y)
... | 𝑇 | 𝑇 | intro _ | intro _ = [≡]-intro
... | 𝑇 | 𝐹 | intro _ | intro _ with 𝑇 ← f(x) = [≡]-intro
... | 𝐹 | 𝑇 | intro _ | intro _ with 𝑇 ← f(y) = [≡]-intro
... | 𝐹 | 𝐹 | intro _ | intro _ with 𝐹 ← f(x) | 𝐹 ← f(y)= reflexivity(_≡_)
proof (trans p q) = proof p 🝖 proof q
{- TODO
permutes-countₗ : (∀{P} → count P l₁ ≡ count P l₂) → (l₁ permutes l₂)
permutes-countₗ {l₁ = ∅} {l₂ = ∅} p = empty
permutes-countₗ {l₁ = ∅} {l₂ = x ⊰ l₂} p with () ← p{const 𝑇}
permutes-countₗ {l₁ = x ⊰ l₁} {l₂ = ∅} p with () ← p{const 𝑇}
permutes-countₗ {l₁ = x ⊰ l₁} {l₂ = x₁ ⊰ l₂} p = {!!} -- TODO: The rest of the cases from _permutes_. Maybe decidable equality on the items are required?
-}
permutes-[++]-function : BinaryOperator ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (_++_ {T = T})
permutes-[++]-function = binaryOperator-from-function ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ ⦃ \{l} → intro(R{l = l}) ⦄ ⦃ intro L ⦄ where
L : Names.Congruence₁ ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (_++ l)
L {l = l} empty = reflexivity(_permutes_)
L {l = l} (prepend l12) = prepend (L {l = l} l12)
L {l = l} swap = swap
L {l = l} (trans l13 l32) = transitivity(_permutes_) (L {l = l} l13) (L {l = l} l32)
R : Names.Congruence₁ ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (l ++_)
R {l = ∅} l12 = l12
R {l = x ⊰ l} l12 = prepend (R {l = l} l12)
permutes-[++]-commutativity : Commutativity ⦃ permutes-equiv {T = T} ⦄ (_++_)
permutes-[++]-commutativity = intro(\{l₁}{l₂} → proof{l₁}{l₂}) where
proof : Names.Commutativity ⦃ permutes-equiv ⦄ (_++_)
proof {∅} {l₂} rewrite identityᵣ(_++_)(∅) {l₂} = reflexivity(_permutes_)
proof {x ⊰ l₁} {l₂} =
(x ⊰ l₁) ++ l₂ 🝖[ _permutes_ ]-[]
x ⊰ (l₁ ++ l₂) 🝖[ _permutes_ ]-[ prepend (proof {l₁} {l₂}) ]
x ⊰ (l₂ ++ l₁) 🝖[ _permutes_ ]-[]
(x ⊰ l₂) ++ l₁ 🝖[ _permutes_ ]-[ BinaryOperator.congruence ⦃ _ ⦄ ⦃ _ ⦄ ⦃ _ ⦄ permutes-[++]-function (postpend-prepend-permutes {l = l₂}) (reflexivity(_permutes_)) ]-sym
(postpend x l₂) ++ l₁ 🝖[ _permutes_ ]-[ sub₂(_≡_)(_permutes_) ([++]-middle-prepend-postpend {l₁ = l₂}{l₂ = l₁}) ]
l₂ ++ (x ⊰ l₁) 🝖[ _permutes_ ]-end
permutes-empty-not-empty : ¬(∅ permutes (x ⊰ l))
permutes-empty-not-empty (trans {l₂ = ∅} p q) = permutes-empty-not-empty q
permutes-empty-not-empty (trans {l₂ = _ ⊰ _} p q) = permutes-empty-not-empty p
permutes-map : ∀{f : A → B} → Function ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (map f)
permutes-map {f = f} = intro proof where
proof : Names.Congruence₁ ⦃ permutes-equiv ⦄ ⦃ permutes-equiv ⦄ (map f)
proof empty = empty
proof (prepend p) = prepend (proof p)
proof swap = swap
proof (trans p q) = trans(proof p) (proof q)
permutes-on-empty : (l permutes ∅) → (l ≡ ∅)
permutes-on-empty empty = [≡]-intro
permutes-on-empty (trans p q)
rewrite permutes-on-empty q
rewrite permutes-on-empty p
= [≡]-intro
permutes-on-singleton : (l permutes (singleton x)) → (l ≡ singleton x)
permutes-on-singleton (prepend empty) = [≡]-intro
permutes-on-singleton (prepend (trans p q))
rewrite permutes-on-empty q
rewrite permutes-on-empty p
= [≡]-intro
permutes-on-singleton (trans p q)
rewrite permutes-on-singleton q
rewrite permutes-on-singleton p
= [≡]-intro
permutes-insertIn : ∀{n} → ((insertIn x l n) permutes (x ⊰ l))
permutes-insertIn {n = 𝟎} = reflexivity(_permutes_)
permutes-insertIn {l = x ⊰ l} {n = 𝐒 n} = trans (prepend (permutes-insertIn {n = n})) swap
module InsertionPermutation where
data _insertion-permutes_ {ℓ} : List{ℓ}(T) → List{ℓ}(T) → Stmt{Lvl.𝐒(ℓ)} where
empty : ∅ insertion-permutes (∅ {T = T})
ins : (n : 𝕟₌(length l₁)) → (l₁ insertion-permutes l₂) → ((insertIn x l₁ n) insertion-permutes (x ⊰ l₂))
open import Data.List.Proofs.Length
open import Relator.Equals.Proofs
open import Structure.Relator
insertion-permutation-mapping : (l₁ insertion-permutes l₂) → (𝕟(length(l₁)) → 𝕟(length(l₂)))
insertion-permutation-mapping empty ()
insertion-permutation-mapping (ins 𝟎 p) 𝟎 = 𝟎
insertion-permutation-mapping (ins 𝟎 p) (𝐒 i) = 𝐒(insertion-permutation-mapping p i)
insertion-permutation-mapping (ins {l₁ = x ⊰ l₁} (𝐒 n) p) 𝟎 = 𝟎
insertion-permutation-mapping (ins {l₁ = x ⊰ l₁} (𝐒 n) p) (𝐒 i) = 𝐒(insertion-permutation-mapping p (substitute₁(𝕟) (length-insertIn {l = l₁} {n = n}) i))
open import Data using ()
open import Numeral.Natural
open import Relator.Equals
open import Syntax.Number
insertion-permutes-prepend : (l₁ insertion-permutes l₂) → ((x ⊰ l₁) insertion-permutes (x ⊰ l₂))
insertion-permutes-prepend p = ins 𝟎 p
insertion-permutes-refl : l insertion-permutes l
insertion-permutes-refl {l = ∅} = empty
insertion-permutes-refl {l = x ⊰ l} = insertion-permutes-prepend insertion-permutes-refl
insertion-permutes-swap : (x ⊰ y ⊰ l) insertion-permutes (y ⊰ x ⊰ l)
insertion-permutes-swap = ins 1 (insertion-permutes-prepend insertion-permutes-refl)
insertion-permutes-to-permutes : (l₁ insertion-permutes l₂) → (l₁ permutes l₂)
insertion-permutes-to-permutes empty = empty
insertion-permutes-to-permutes (ins n p) = trans Proofs.permutes-insertIn (prepend (insertion-permutes-to-permutes p))
insertion-permutes-flipped-ins : ∀{n} → (l₁ insertion-permutes l₂) → ((x ⊰ l₁) insertion-permutes (insertIn x l₂ n))
insertion-permutes-flipped-ins {n = 𝟎} empty = insertion-permutes-refl
insertion-permutes-flipped-ins {n = 𝟎} (ins k p) = insertion-permutes-prepend (ins k p)
insertion-permutes-flipped-ins {n = 𝐒 n} (ins k p) = ins (𝐒 k) (insertion-permutes-flipped-ins {n = n} p)
insertion-permutes-sym : (l₁ insertion-permutes l₂) → (l₂ insertion-permutes l₁)
insertion-permutes-sym empty = empty
insertion-permutes-sym (ins n p) = insertion-permutes-flipped-ins(insertion-permutes-sym p)
{-
insertion-permutes-trans : (l₁ insertion-permutes l₂) → (l₃ insertion-permutes l₂) → (l₁ insertion-permutes l₃)
ins2 : ∀{n₁ n₂} → (l₁ insertion-permutes l₂) → ((insertIn x l₁ n₁) insertion-permutes (insertIn x l₂ n₂))
ins2 {l₁ = l₁} {l₂} {n₁ = n₁} {𝟎} p = ins n₁ p
ins2 {l₁ = .(insertIn x _ n)} {x ⊰ l₂} {n₁ = 𝟎} {𝐒 n₂} (ins n p) = insertion-permutes-trans (insertion-permutes-prepend (ins n p)) (ins(𝐒 n₂) insertion-permutes-refl)
ins2 {l₁ = .(insertIn x _ n)} {x ⊰ l₂} {n₁ = 𝐒 n₁} {𝐒 n₂} (ins n p) = {!!}
insertion-permutes-trans empty empty = empty
insertion-permutes-trans (ins m p) (ins n q) = {!!}
-- ins2(insertion-permutes-trans p q)
-}
{-
insertion-permutation-mapping-correctness : (p : (l₁ insertion-permutes l₂)) → Proofs.PermutationMappingCorrectness l₁ l₂ (insertion-permutation-mapping p)
insertion-permutation-mapping-correctness (ins {l₁ = ∅} 𝟎 p) {𝟎} = [≡]-intro
insertion-permutation-mapping-correctness (ins {l₁ = x ⊰ l₁} 𝟎 p) {𝟎} = [≡]-intro
insertion-permutation-mapping-correctness (ins {l₁ = x ⊰ l₁} 𝟎 p) {𝐒 i} = insertion-permutation-mapping-correctness p
insertion-permutation-mapping-correctness (ins {l₁ = x ⊰ l₁} (𝐒 n) p) {𝟎} = {!!}
insertion-permutation-mapping-correctness (ins {l₁ = x ⊰ l₁} (𝐒 n) p) {𝐒 i} = {!!}
-}
-- test : (p : (l₁ insertion-permutes l₂)) → (∀{i} → (index l₁(insertion-permutation-mapping p i) ≡ index l₂(i)))
-- test p = ?
{-
open import Data.Boolean.Stmt
open import Numeral.Finite.Oper.Comparisons
test : ∀{l : List(T)}{n₁ : 𝕟(𝐒(length l))}{n₂ : 𝕟(𝐒(length (insertIn y l n₁)))} → IsTrue(n₁ >? n₂) → (insertIn y (insertIn x l n₁) n₂ ≡ insertIn x (insertIn y l n₁) n₂)
test p = {!!}
-}
{-
ins2 : ∀{n₁ n₂} → (l₁ insertion-permutes l₂) → ((insertIn x l₁ n₁) insertion-permutes (insertIn x l₂ n₂))
ins2 {n₁ = 𝟎} {𝟎} empty = insertion-permutes-refl
ins2 {n₁ = n₁} {𝟎} (ins n p) = ins n₁ (ins n p)
ins2 {x = x} {n₁ = n₁} {𝐒 n₂} (ins {x = y} n p) = {!(ins2 {x = x}{n₁ = n}{n₂ = n₂} p)!}
insertion-permutes-trans : (l₁ insertion-permutes l₂) → (l₃ insertion-permutes l₂) → (l₁ insertion-permutes l₃)
insertion-permutes-trans empty empty = empty
insertion-permutes-trans (ins m p) (ins n q) = {!!}
-}
{-
test : ∀{n} → (l₁ insertion-permutes (y ⊰ insertIn x l₂ n)) → (l₁ insertion-permutes (x ⊰ insertIn y l₂ n))
test {l₂ = l₂} (ins {l₁ = l₁} n p) = {!!}
ins2 : ∀{n₁ n₂} → (l₁ insertion-permutes l₂) → ((insertIn x l₁ n₁) insertion-permutes (insertIn x l₂ n₂))
ins2 {n₁ = n₁} {𝟎} p = ins n₁ p
ins2 {n₁ = n₁} {𝐒 n₂} (ins {x = x} n p) = test(ins n₁ (ins2{x = x}{n}{n₂} p))
-- insertIn x₁ (insertIn x l₁ n) n₁
-- x ⊰ insertIn x₁ l₂ n₂
tr : (l₁ insertion-permutes l₂) → (l₃ insertion-permutes l₂) → (l₁ insertion-permutes l₃)
tr {l₂ = ∅} empty empty = empty
tr {l₂ = x₂ ⊰ l₂} (ins n₁ p) (ins n₂ q) = ins2(tr p q)
sym : (l₁ insertion-permutes l₂) → (l₂ insertion-permutes l₁)
sym = tr insertion-permutes-refl
-}
| {
"alphanum_fraction": 0.6315137706,
"avg_line_length": 49.601965602,
"ext": "agda",
"hexsha": "6569ef05376ccf6560bf6021296f98f7acf8160c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Permutation.agda",
"max_line_length": 260,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 7474,
"size": 20188
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Span
open import lib.types.Paths
import lib.types.Generic1HIT as Generic1HIT
open import lib.types.Pushout
module lib.types.PushoutFlattening {i} {j} {k} {d : Span {i} {j} {k}} where
open Span d renaming (f to g; g to h)
module PushoutRecType {l} (left* : A → Type l) (right* : B → Type l)
(glue* : (c : C) → left* (g c) ≃ right* (h c)) where
open PushoutRec left* right* (ua ∘ glue*) public
abstract
coe-glue-β : (c : C) (a : left* (g c))
→ coe (ap f (glue c)) a == –> (glue* c) a
coe-glue-β c a =
coe (ap f (glue c)) a =⟨ glue-β c |in-ctx (λ u → coe u a) ⟩
coe (ua (glue* c)) a =⟨ coe-β (glue* c) a ⟩
–> (glue* c) a ∎
coe!-glue-β : (c : C) (b : right* (h c))
→ coe! (ap f (glue c)) b == <– (glue* c) b
coe!-glue-β c b =
coe! (ap f (glue c)) b =⟨ glue-β c |in-ctx (λ u → coe! u b) ⟩
coe! (ua (glue* c)) b =⟨ coe!-β (glue* c) b ⟩
<– (glue* c) b ∎
↓-glue-out : (c : C) {a : left* (g c)} {b : right* (h c)}
→ a == b [ f ↓ glue c ]
→ –> (glue* c) a == b
↓-glue-out c {a} {b} p =
–> (glue* c) a =⟨ ! (coe-glue-β c a) ⟩
coe (ap f (glue c)) a =⟨ to-transp p ⟩
b ∎
↓-glue-in : (c : C) {a : left* (g c)} {b : right* (h c)}
→ –> (glue* c) a == b
→ a == b [ f ↓ glue c ]
↓-glue-in c {a} {b} p = from-transp f (glue c) (coe-glue-β c a ∙ p)
private
module _ where
fA : Type _
fA = Σ A left*
fB : Type _
fB = Σ B right*
fC : Type _
fC = Σ C (left* ∘ g)
fg : fC → fA
fg (c , c') = (g c , c')
fh : fC → fB
fh (c , c') = (h c , –> (glue* c) c')
f-d : Span
f-d = span fA fB fC fg fh
flattening : Σ (Pushout d) f == Pushout f-d
flattening = Σ= p p' ∙ q ∙ r ∙ s where
module G = PushoutGeneric {d = d}
P-cc : Coprod A B → Type _
P-cc (inl a) = left* a
P-cc (inr b) = right* b
module P = G.RecType P-cc glue*
import lib.types.Flattening as Flattening
module FlatteningPushout = Flattening
(Coprod A B) C (inl ∘ g) (inr ∘ h) P-cc glue*
open FlatteningPushout public hiding (flattening-equiv; module P)
p-equiv : Pushout d ≃ G.T
p-equiv = G.generic-pushout
p : Pushout d == G.T
p = ua p-equiv
p' : f == P.f [ (λ X → (X → Type _)) ↓ p ]
p' = ↓-app→cst-in (λ {t} {t'} q →
Pushout-elim {P = λ t → f t == P.f (–> p-equiv t)}
(λ a → idp) (λ b → idp)
(λ c → ↓-='-in
(ap (P.f ∘ (–> p-equiv)) (glue c) =⟨ ap-∘ P.f (–> p-equiv) (glue c) ⟩
ap P.f (ap (–> p-equiv) (glue c)) =⟨ G.To.glue-β c |in-ctx ap P.f ⟩
ap P.f (pp c) =⟨ P.pp-β c ⟩
ua (glue* c) =⟨ ! (glue-β c) ⟩
ap f (glue c) ∎))
t ∙ ap P.f (↓-idf-ua-out _ q))
--
module fG' = Generic1HIT At Bt ft gt
q : Σ G.T P.f == fG'.T
q = ua FlatteningPushout.flattening-equiv
--
{-
This part is basically [Generic1HIT=] applied to the flattening lemma
for coproducts. Maybe it would make sense to refactor it that way.
-}
module fG = PushoutGeneric {d = f-d}
r : fG'.T == fG.T
r = ua (equiv to from to-from from-to) where
to-cc : At → fG.T
to-cc (inl a , a') = fG.cc (inl (a , a'))
to-cc (inr b , b') = fG.cc (inr (b , b'))
module To = fG'.Rec to-cc fG.pp
to : fG'.T → fG.T
to = To.f
from-cc : Coprod fA fB → fG'.T
from-cc (inl (a , a')) = fG'.cc (inl a , a')
from-cc (inr (b , b')) = fG'.cc (inr b , b')
module From = fG.Rec from-cc fG'.pp
from : fG.T → fG'.T
from = From.f
abstract
to-from : (x : fG.T) → to (from x) == x
to-from = fG.elim to-from-cc to-from-pp where
to-from-cc : (x : Coprod fA fB)
→ to (from (fG.cc x)) == fG.cc x
to-from-cc (inl _) = idp
to-from-cc (inr _) = idp
to-from-pp : (c : fC)
→ idp == idp [ (λ x → to (from x) == x) ↓ fG.pp c ]
to-from-pp c = ↓-∘=idf-in to from
(ap to (ap from (fG.pp c)) =⟨ From.pp-β c |in-ctx ap to ⟩
ap to (fG'.pp c) =⟨ To.pp-β c ⟩
fG.pp c ∎)
from-to : (x : fG'.T) → from (to x) == x
from-to = fG'.elim from-to-cc from-to-pp where
from-to-cc : (a : At) → from (to (fG'.cc a)) == fG'.cc a
from-to-cc (inl _ , _) = idp
from-to-cc (inr _ , _) = idp
from-to-pp : (b : Bt)
→ idp == idp [ (λ x → from (to x) == x) ↓ fG'.pp b ]
from-to-pp b = ↓-∘=idf-in from to
(ap from (ap to (fG'.pp b)) =⟨ To.pp-β b |in-ctx ap from ⟩
ap from (fG.pp b) =⟨ From.pp-β b ⟩
fG'.pp b ∎)
--
s : fG.T == Pushout f-d
s = ! (ua fG.generic-pushout)
| {
"alphanum_fraction": 0.4530254777,
"avg_line_length": 29.3801169591,
"ext": "agda",
"hexsha": "63c42070eba81dc52353eb7e6bb723023793127d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "lib/types/PushoutFlattening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "lib/types/PushoutFlattening.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "lib/types/PushoutFlattening.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 2041,
"size": 5024
} |
postulate
A : Set
I : (@erased _ : A) → Set
R : A → Set
f : ∀ (@erased x : A) (r : R x) → I x
-- can now be used here ^
| {
"alphanum_fraction": 0.4615384615,
"avg_line_length": 16.25,
"ext": "agda",
"hexsha": "92939634d6e9cde826630ccd9af4a1f45cdcd159",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2128.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2128.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2128.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 57,
"size": 130
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.NatMinusOne.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne.Base
-1+Path : ℕ ≡ ℕ₋₁
-1+Path = isoToPath (iso -1+_ 1+_ (λ _ → refl) (λ _ → refl))
| {
"alphanum_fraction": 0.7393767705,
"avg_line_length": 32.0909090909,
"ext": "agda",
"hexsha": "af797a3dcd7eeb3e29102c9943dd5045a2144dbf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/NatMinusOne/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 111,
"size": 353
} |
data _ : Set where
| {
"alphanum_fraction": 0.6842105263,
"avg_line_length": 9.5,
"ext": "agda",
"hexsha": "61ec1fffe9463c8feb41860d570d4cf103419101",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1465-data.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1465-data.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1465-data.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 6,
"size": 19
} |
-- Andreas, 2016-09-28, Level meta below neutral level
-- Agda previously simplified X <= a to X = a.
-- This loses the solution X = lzero.
-- {-# OPTIONS -v tc.constr.add:40 #-}
open import Common.Level
module _ (a : Level) where
module WorksWithSwappedDeclarations where
mutual
X : Level
X = _
data E : Set₁ where
c : Set X → E -- constraint lsuc X <= 1 solves X = lzero
data D : Set (lsuc a) where
c : Set X → D -- fine since lzero <= a
module WorksWithGivenSolution where
mutual
X : Level
X = lzero
data D : Set (lsuc a) where
c : Set X → D
data E : Set₁ where
c : Set X → E
module Test where
mutual
X : Level
X = _
data D : Set (lsuc a) where
c : Set X → D -- solved X (prematurely) since X <= a implies X = a ?? (Wrong!)
data E : Set₁ where
c : Set X → E -- constraint X <= 0 became contradictory constraint a <= 0
-- ERROR WAS:
-- The type of the constructor does not fit in the sort of the
-- datatype, since Set (lsuc a) is not less or equal than Set₁
-- when checking the constructor c in the declaration of E
-- should succeed
| {
"alphanum_fraction": 0.6144473455,
"avg_line_length": 21.679245283,
"ext": "agda",
"hexsha": "434905d00b2d4b9bc14fc2cb5cf880d9773241b0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/LevelMetaLeqNeutralLevel.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/LevelMetaLeqNeutralLevel.agda",
"max_line_length": 85,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/LevelMetaLeqNeutralLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 344,
"size": 1149
} |
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ) renaming
( Interp to Interp′ ; emp to emp′ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.Util using ( False ; id )
module Web.Semantic.DL.ABox.Interp where
infixr 4 _,_
infixr 5 _*_
data Interp (Σ : Signature) (X : Set) : Set₁ where
_,_ : ∀ I → (X → Δ {Σ} I) → (Interp Σ X)
⌊_⌋ : ∀ {Σ X} → Interp Σ X → Interp′ Σ
⌊ I , i ⌋ = I
ind : ∀ {Σ X} → (I : Interp Σ X) → X → Δ ⌊ I ⌋
ind (I , i) = i
ind² : ∀ {Σ X} → (I : Interp Σ X) → (X × X) → (Δ ⌊ I ⌋ × Δ ⌊ I ⌋)
ind² I (x , y) = (ind I x , ind I y)
_*_ : ∀ {Σ X Y} → (Y → X) → Interp Σ X → Interp Σ Y
f * I = (⌊ I ⌋ , λ x → ind I (f x))
emp : ∀ {Σ} → Interp Σ False
emp = (emp′ , id)
data Surjective {Σ X} (I : Interp Σ X) : Set where
surj : (∀ x → ∃ λ y → ⌊ I ⌋ ⊨ x ≈ ind I y) → (I ∈ Surjective)
ind⁻¹ : ∀ {Σ X} {I : Interp Σ X} → (I ∈ Surjective) → (Δ ⌊ I ⌋ → X)
ind⁻¹ (surj i) x = proj₁ (i x)
surj✓ : ∀ {Σ X} {I : Interp Σ X} (I∈Surj : I ∈ Surjective) → ∀ x → (⌊ I ⌋ ⊨ x ≈ ind I (ind⁻¹ I∈Surj x))
surj✓ (surj i) x = proj₂ (i x)
| {
"alphanum_fraction": 0.5287739783,
"avg_line_length": 30.7435897436,
"ext": "agda",
"hexsha": "beba36f3b1b7b5919ef5e8e12b6934eb06520ad2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda",
"max_line_length": 103,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/ABox/Interp.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 584,
"size": 1199
} |
module cwf where
open import Nat
open import Base
open import univ
open import help
-- Category with Families
infix 40 _─→_
infixl 50 _,_ _,,_
infixl 70 _∘_ _∙_
infixl 60 _/_ _//_
Con : Set
Con = S
_─→_ : Con -> Con -> Set
Γ ─→ Δ = El (pi Γ (K Δ))
p─→ : {Γ Δ : Con}(σ : Γ ─→ Δ){x y : El Γ} -> x == y -> σ # x == σ # y
p─→ σ {x}{y} x=y =
chain> σ # x
=== refS << σ # y by pFun σ x=y
=== σ # y by ref<< (σ # y)
where open module C13 = Chain _==_ (ref {_}) (trans {_})
id : {Γ : Con} -> Γ ─→ Γ
id = el < (\x -> x) , (\{x}{y} -> prf x y) >
where
prf : (x y : El _)(x=y : x == y) -> x == refS << y
prf x y x=y =
chain> x
=== refS << x by sym (ref<< x)
=== refS << y by p<< refS x=y
where open module C0 = Chain _==_ (ref {_}) (trans {_})
_∘_ : {Γ Δ Θ : Con} -> (Δ ─→ Θ) -> (Γ ─→ Δ) -> Γ ─→ Θ
σ ∘ δ = el < (\x -> σ # (δ # x))
, (\{x}{y} -> prf x y)
>
where
prf : (x y : El _)(x=y : x == y) -> σ # (δ # x) == _ << σ # (δ # y)
prf x y x=y =
chain> σ # (δ # x)
=== σ # (δ # y) by p─→ σ (p─→ δ x=y)
=== _ << σ # (δ # y) by sym (castref _ _)
where open module C1 = Chain _==_ (ref {_}) (trans {_})
Type : Con -> Set
Type Γ = Fam Γ
data _=Ty_ {Γ : Con}(A B : Type Γ) : Set where
eqTy : A =Fam B -> A =Ty B
symTy : {Γ : Con}{A B : Type Γ} -> A =Ty B -> B =Ty A
symTy {Γ}{A}{B} (eqTy A=B) = eqTy (symFam {Γ}{A}{B} A=B)
_/_ : {Γ Δ : Con} -> Type Γ -> (Δ ─→ Γ) -> Type Δ
_/_ {Γ}{Δ} A (el < σ , pσ >) = fam B pB
where
B : El Δ -> S
B x = A ! σ x
σ' : Δ ─→ Γ
σ' = el < σ , (\{x}{y} -> pσ) >
pB : Map _==_ _=S_ B
pB {x}{y} x=y = pFam A (p─→ σ' x=y)
lem-/id : {Γ : Con}{A : Type Γ} -> A / id =Ty A
lem-/id {Γ}{A} = eqTy \x -> refS
data Elem (Γ : Con)(A : Type Γ) : Set where
elem : El (pi Γ A) -> Elem Γ A
_=El'_ : {Γ : Con}{A : Type Γ} -> Elem Γ A -> Elem Γ A -> Set
elem u =El' elem v = u == v
data _=El_ {Γ : Con}{A : Type Γ}(u v : Elem Γ A) : Set where
eqEl : u =El' v -> u =El v
castElem : {Γ : Con}{A B : Type Γ} -> B =Ty A -> Elem Γ A -> Elem Γ B
castElem {Γ}{A}{B} (eqTy B=A) (elem u) = elem (ΓB=ΓA << u)
where
ΓB=ΓA : pi Γ B =S pi Γ A
ΓB=ΓA = eqS < refS , Bx=Acx >
where
Bx=Acx : (x : El Γ) -> B ! x =S A ! (refS << x)
Bx=Acx x =
chain> B ! x
=== A ! x by B=A x
=== A ! (refS << x) by pFam A (sym (ref<< x))
where open module C2-5 = Chain _=S_ refS transS
_//_ : {Γ Δ : Con}{A : Type Γ} -> Elem Γ A -> (σ : Δ ─→ Γ) -> Elem Δ (A / σ)
_//_ {Γ}{Δ}{A} (elem t) (el < σ , pσ >) =
elem (el < tσ , (\{x}{y} -> prf x y) >)
where
tσ : (x : El Δ) -> El (A ! σ x)
tσ x = t # σ x
σ' : Δ ─→ Γ
σ' = el < σ , (\{x}{y} -> pσ) >
prf : (x y : El Δ)(x=y : x == y) -> t # σ x == _ << t # σ y
prf x y x=y =
chain> t # σ x
=== _ << t # σ y by pFun t (p─→ σ' x=y)
=== _ << t # σ y by pfi _ _ _
where open module C3 = Chain _==_ (ref {_}) (trans {_})
_,_ : (Γ : Con)(A : Type Γ) -> Con
Γ , A = sigma Γ A
wk : {Γ : Con}{A : Type Γ} -> Γ , A ─→ Γ
wk {Γ}{A} = el < f , (\{x}{y} -> pf x y) >
where
f : El (Γ , A) -> El Γ
f (el < x , _ >) = x
pf : (x y : El (Γ , A))(x=y : x == y) -> f x == _ << f y
pf (el < x , _ >) (el < y , _ >) (eq < x=y , _ >) =
chain> x
=== y by x=y
=== _ << y by sym (castref _ _)
where open module C4 = Chain _==_ (ref {_}) (trans {_})
vz : {Γ : Con}{A : Type Γ} -> Elem (Γ , A) (A / wk)
vz {Γ}{A} = elem (el < f , (\{x}{y} -> pf x y) >)
where
f : (x : El (Γ , A)) -> El ((A / wk) ! x)
f (el < _ , z >) = z
pf : (x y : El (Γ , A))(x=y : x == y) -> f x == _ << f y
pf (el < _ , x >)(el < _ , y >)(eq < _ , x=y >) =
chain> x
=== _ << y by x=y
=== _ << y by pfi _ _ _
where open module C5 = Chain _==_ (ref {_}) (trans {_})
_,,_ : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> Δ ─→ Γ , A
_,,_ {Γ}{Δ}{A} (el < σ , pσ >) (elem (el < u , pu >)) = build δ pδ
where
-- We need to generalise to be able to infer the proof of Γ, A =S Γ, A
Ok : (f : El Δ -> El (Γ , A)) -> Set
Ok f = (x y : El Δ)(p : Γ , A =S Γ , A)(x=y : x == y) -> f x == p << f y
build : (f : El Δ -> El (Γ , A)) -> Ok f -> Δ ─→ Γ , A
build f p = el < f , (\{x}{y} -> p x y _) >
δ : El Δ -> El (Γ , A)
δ x = el {Γ , A} < σ x , u x >
pδ : Ok δ
pδ x y (eqS < Γ=Γ , A=A >) x=y =
eq < σx=cσy , ux=ccuy >
where
σx=cσy = trans (pσ x=y) (pfi _ _ _)
ux=ccuy =
chain> u x
=== _ << u y by pu x=y
=== _ << _ << u y by sym (casttrans _ _ _ _)
where open module C6 = Chain _==_ (ref {_}) (trans {_})
{- TODO: Prove
wk ∘ (σ ,, u) = σ
vz / (σ ,, u) = u
(σ ,, u) ∘ δ = (σ ∘ δ ,, u)
wk ,, vz = id
-}
[_] : {Γ : Con}{A : Type Γ} -> Elem Γ A -> Γ ─→ Γ , A
[_] {Γ}{A} u = id ,, castElem lem-/id u
Π : {Γ : Con}(A : Type Γ)(B : Type (Γ , A)) -> Type Γ
Π {Γ} A B = fam F pF
where
F : El Γ -> S
F x = pi (A ! x) (curryFam B x)
pF : Map _==_ _=S_ F
pF {y}{z} y=z = eqS
< pFam A (sym y=z)
, (\x -> pFam B (eq < y=z
, trans (sym (castref _ _)) (trans<< _ _ _)
>
)
)
>
{- TODO: Prove
(Π A B) / σ = Π (A / σ) (B / (σ / wk ,, vz))
-}
ƛ : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)} -> Elem (Γ , A) B -> Elem Γ (Π A B)
ƛ {Γ}{A}{B} (elem u) = elem (mkFun f pf)
where
f : (x : El Γ) -> El (Π A B ! x)
f x = el < g , (\{x}{y} -> pg) >
where
g : (y : El (A ! x)) -> El (B ! el < x , y >)
g y = u # el < x , y >
pg : {y z : El (A ! x)}(y=z : y == z) -> g y == _ << g z
pg {y}{z} y=z =
chain> u # el < x , y >
=== _ << u # el < x , z > by pFun u (eqSnd y=z)
=== _ << u # el < x , z > by pfi _ _ _
where open module C7 = Chain _==_ (ref {_}) (trans {_})
pf : IsFun {F = Π A B} f
pf {y}{z} (eqS < Ay=Az , B'=B' >) y=z = eq prf
where
prf : (x : El (A ! y)) -> _ == _
prf x =
chain> u # el < y , x >
=== _ << u # el < z , _ << x >
by pFun u (eq < y=z , sym (castref2 _ _ _) >)
=== _ << u # el < z , _ << x > by pfi _ _ _
where open module C8 = Chain _==_ (ref {_}) (trans {_})
_∙_ : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}
(w : Elem Γ (Π A B))(u : Elem Γ A) -> Elem Γ (B / [ u ])
_∙_ {Γ}{A}{B} (elem w) (elem u) = elem (el < f , (\{x}{y} -> pf) >)
where
f : (x : El Γ) -> El ((B / [ elem u ]) ! x)
f x = p u << y
where
y : El (B ! el < x , u # x >)
y = (w # x) # (u # x)
p : (u : El (pi Γ A)) -> (B / [ elem u ]) ! x =S B ! el < x , u # x >
p (el < u , pu >) = pFam B (
chain> el < x , _ << u (refS << x) >
=== el < x , _ << _ << u x > by eqSnd (p<< _ (pu (ref<< _)))
=== el < x , u x > by eqSnd (castref2 _ _ _)
)
where open module C9 = Chain _==_ (ref {_}) (trans {_})
pf : {x y : El Γ}(x=y : x == y) -> f x == _ << f y
pf {x}{y} x=y =
chain> q1 << (w # x) # (u # x)
=== q1 << (q3 << w # y) ## (u # x)
by p<< q1 (p# (pFun w x=y))
=== q1 << q4 << (w # y) # (q5 << u # x)
by p<< q1 (distr<<# (w # y) q3)
=== q7 << (w # y) # (q5 << u # x)
by sym (trans<< q1 q4 _)
=== q7 << q8 << (w # y) # (q5 << q9 << u # y)
by p<< q7 (pFun (w # y) (p<< q5 (pFun u x=y)))
=== qA << (w # y) # (q5 << q9 << u # y)
by sym (trans<< q7 q8 _)
=== qA << qB << (w # y) # (u # y)
by p<< qA (pFun (w # y) (castref2 q5 q9 _))
=== q2 << q6 << (w # y) # (u # y)
by pfi2 qA q2 qB q6 _
where
open module C10 = Chain _==_ (ref {_}) (trans {_})
q1 = _
q2 = _
q3 = _
q4 = _
q5 = _
q6 = _
q7 = _
q8 = _
q9 = _
qA = _
qB = _
infixl 150 _##_
_##_ = _#_ {F = curryFam B x}
{- TODO: Prove
(ƛ v) ∙ u = v // [ u ] (β)
w = ƛ ((w // wk) ∙ vz) (η)
ƛ v // σ = ƛ (v // (σ ∘ wk ,, vz))
w ∙ u // σ = (w // σ) ∙ (u // σ)
-}
| {
"alphanum_fraction": 0.3632900845,
"avg_line_length": 29.0692041522,
"ext": "agda",
"hexsha": "40bf35c7fa6128ac65eda2449fe037d4a2b5bd9f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/cwf.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/cwf.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/cwf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 3636,
"size": 8401
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+n_)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.GradedRing.DirectSumFun
private variable
ℓ : Level
module _
(ACommRing@(A , Astr) : CommRing ℓ)
where
open CommRingStr Astr
open RingTheory (CommRing→Ring ACommRing)
UnivariatePolyFun-CommRing : CommRing ℓ
UnivariatePolyFun-CommRing = ⊕FunGradedRing-CommRing
_+n_ (makeIsMonoid isSetℕ +-assoc +-zero λ _ → refl) (λ _ _ → refl)
(λ _ → A)
(λ _ → snd (Ring→AbGroup (CommRing→Ring ACommRing)))
1r _·_ 0LeftAnnihilates 0RightAnnihilates
(λ a b c → ΣPathP ((+-assoc _ _ _) , (·Assoc _ _ _)))
(λ a → ΣPathP ((+-zero _) , (·IdR _)))
(λ a → ΣPathP (refl , (·IdL _)))
·DistR+
·DistL+
λ x y → ΣPathP ((+-comm _ _) , (·Comm _ _))
nUnivariatePolyFun : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ
nUnivariatePolyFun A' zero = A'
nUnivariatePolyFun A' (suc n) = UnivariatePolyFun-CommRing (nUnivariatePolyFun A' n)
| {
"alphanum_fraction": 0.6345246123,
"avg_line_length": 35.3095238095,
"ext": "agda",
"hexsha": "d0b05d7a4a3dc47a9ecd01af2f7313dc1cc9dc81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 449,
"size": 1483
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
module LibraBFT.Impl.Execution.ExecutorTypes.StateComputeResult where
extensionProof : StateComputeResult → AccumulatorExtensionProof
extensionProof self = AccumulatorExtensionProof∙new (self ^∙ scrObmNumLeaves)
| {
"alphanum_fraction": 0.8162878788,
"avg_line_length": 37.7142857143,
"ext": "agda",
"hexsha": "6b3c4e52d37da0d70e09e8e984586b4a7b3cb94f",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Execution/ExecutorTypes/StateComputeResult.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Execution/ExecutorTypes/StateComputeResult.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Execution/ExecutorTypes/StateComputeResult.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 131,
"size": 528
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Sigma
module lib.types.Modality where
-- Where to put this? Or maybe there's
-- a simpler proof from some library function?
!ᵈ-inv-l-out : ∀ {ℓ} {A : Type ℓ} {P : A → Type ℓ}
{a₀ a₁ : A} {p : a₀ == a₁} {x₀ x₁ : P a₁}
→ (q : x₀ == x₁ [ P ↓ ! p ∙ p ])
→ x₀ == x₁
!ᵈ-inv-l-out {p = idp} q = q
record Modality ℓ : Type (lsucc ℓ) where
field
is-local : Type ℓ → Type ℓ
is-local-is-prop : {A : Type ℓ} → is-prop (is-local A)
◯ : Type ℓ → Type ℓ
◯-is-local : {A : Type ℓ} → is-local (◯ A)
η : {A : Type ℓ} → A → ◯ A
◯-elim : {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-local : (x : ◯ A) → is-local (B x))
→ Π A (B ∘ η) → Π (◯ A) B
◯-elim-β : {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-local : (x : ◯ A) → is-local (B x)) (f : Π A (B ∘ η))
→ (a : A) → ◯-elim B-local f (η a) == f a
◯-=-is-local : {A : Type ℓ} (a₀ a₁ : ◯ A) → is-local (a₀ == a₁)
◯-Type : Type (lsucc ℓ)
◯-Type = Σ (Type ℓ) is-local
{- elimination rules -}
module ◯Elim {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-local : (x : ◯ A) → is-local (B x)) (η* : Π A (B ∘ η)) where
f = ◯-elim B-local η*
η-β = ◯-elim-β B-local η*
module ◯Rec {A : Type ℓ} {B : Type ℓ}
(B-local : is-local B) (η* : A → B)
= ◯Elim (λ _ → B-local) η*
◯-rec = ◯Rec.f
◯-rec-β = ◯Rec.η-β
{- functoriality -}
module ◯Fmap {A B : Type ℓ} (f : A → B) =
◯Rec ◯-is-local (η ∘ f)
◯-fmap = ◯Fmap.f
◯-fmap-β = ◯Fmap.η-β
◯-isemap : {A B : Type ℓ} (f : A → B) → is-equiv f → is-equiv (◯-fmap f)
◯-isemap f f-ise = is-eq _ (◯-fmap g) to-from from-to where
open is-equiv f-ise
abstract
to-from : ∀ ◯b → ◯-fmap f (◯-fmap g ◯b) == ◯b
to-from = ◯-elim
(λ ◯b → ◯-=-is-local (◯-fmap f (◯-fmap g ◯b)) ◯b)
(λ b → ap (◯-fmap f) (◯-fmap-β g b) ∙ ◯-fmap-β f (g b) ∙ ap η (f-g b))
from-to : ∀ ◯a → ◯-fmap g (◯-fmap f ◯a) == ◯a
from-to = ◯-elim
(λ ◯a → ◯-=-is-local (◯-fmap g (◯-fmap f ◯a)) ◯a)
(λ a → ap (◯-fmap g) (◯-fmap-β f a) ∙ ◯-fmap-β g (f a) ∙ ap η (g-f a))
◯-emap : {A B : Type ℓ} → A ≃ B → ◯ A ≃ ◯ B
◯-emap (f , f-ise) = ◯-fmap f , ◯-isemap f f-ise
{- equivalences preserve locality -}
-- This is the only appearence of univalence, but ...
local-is-replete : {A B : Type ℓ} → is-local A → A ≃ B → is-local B
local-is-replete w eq = transport is-local (ua eq) w
-- This name aligns with the current codebase better.
equiv-preserves-local : {A B : Type ℓ} → A ≃ B → is-local A → is-local B
equiv-preserves-local e A-is-loc = local-is-replete A-is-loc e
{- locality and [η] being an equivalence -}
local-implies-η-equiv : {A : Type ℓ} → is-local A → is-equiv (η {A})
local-implies-η-equiv {A} w = is-eq (η {A}) η-inv inv-l inv-r
where η-inv : ◯ A → A
η-inv = ◯-rec w (idf A)
abstract
inv-r : (a : A) → η-inv (η a) == a
inv-r = ◯-rec-β w (idf A)
inv-l : (a : ◯ A) → η (η-inv a) == a
inv-l = ◯-elim (λ a₀ → ◯-=-is-local _ _)
(λ a₀ → ap η (inv-r a₀))
abstract
η-equiv-implies-local : {A : Type ℓ} → is-equiv (η {A}) → is-local A
η-equiv-implies-local {A} eq = local-is-replete {◯ A} {A} ◯-is-local ((η , eq) ⁻¹)
retract-is-local : {A B : Type ℓ} (w : is-local A)
(f : A → B) (g : B → A) (r : (b : B) → f (g b) == b) →
is-local B
retract-is-local {A} {B} w f g r = η-equiv-implies-local (is-eq η η-inv inv-l inv-r)
where η-inv : ◯ B → B
η-inv = f ∘ (◯-rec w g)
inv-r : (b : B) → η-inv (η b) == b
inv-r b = ap f (◯-rec-β w g b) ∙ r b
inv-l : (b : ◯ B) → η (η-inv b) == b
inv-l = ◯-elim (λ b → ◯-=-is-local _ _) (λ b → ap η (inv-r b))
{- locality of identification -}
abstract
=-preserves-local : {A : Type ℓ} → is-local A → {a₀ a₁ : A} → is-local (a₀ == a₁)
=-preserves-local {A} w {a₀} {a₁} = local-is-replete
(◯-=-is-local (η a₀) (η a₁)) (ap-equiv (η , local-implies-η-equiv w) a₀ a₁ ⁻¹)
{- ◯-connectness and ◯-equivalences -}
is-◯-connected : Type ℓ → Type ℓ
is-◯-connected A = is-contr (◯ A)
is-◯-connected-is-prop : ∀ {A} → is-prop (is-◯-connected A)
is-◯-connected-is-prop {A} = is-contr-is-prop
is-◯-equiv : {A B : Type ℓ} → (A → B) → Type ℓ
is-◯-equiv {B = B} f = (b : B) → is-◯-connected (hfiber f b)
has-◯-conn-fibers = is-◯-equiv
is-lex : Type (lsucc ℓ)
is-lex = {A B : Type ℓ} (f : A → B)
→ is-◯-connected A → is-◯-connected B → is-◯-equiv f
equiv-preserves-◯-conn : {A B : Type ℓ} → A ≃ B → is-◯-connected A → is-◯-connected B
equiv-preserves-◯-conn e c = equiv-preserves-level (◯-emap e) {{c}}
total-◯-equiv : {A : Type ℓ} {P Q : A → Type ℓ} (φ : ∀ a → P a → Q a) →
(∀ a → is-◯-equiv (φ a)) → is-◯-equiv (Σ-fmap-r φ)
total-◯-equiv φ e (a , q) = equiv-preserves-◯-conn (hfiber-Σ-fmap-r φ q ⁻¹) (e a q)
module _ {A B : Type ℓ} {h : A → B} (c : is-◯-equiv h) (P : B → ◯-Type) where
abstract
pre∘-◯-conn-is-equiv : is-equiv (λ (s : Π B (fst ∘ P)) → s ∘ h)
pre∘-◯-conn-is-equiv = is-eq f g f-g g-f
where f : Π B (fst ∘ P) → Π A (fst ∘ P ∘ h)
f k a = k (h a)
helper : Π A (fst ∘ P ∘ h) → (b : B) → ◯ (Σ A (λ a → h a == b)) → (fst (P b))
helper t b = ◯-rec (snd (P b)) (λ x → transport (fst ∘ P) (snd x) (t (fst x)))
helper-β : (t : Π A (fst ∘ P ∘ h)) → (b : B) → (r : hfiber h b) →
helper t b (η r) == transport (fst ∘ P) (snd r) (t (fst r))
helper-β t b = ◯-rec-β (snd (P b)) (λ x → transport (fst ∘ P) (snd x) (t (fst x)))
g : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
g t b = helper t b (contr-center (c b))
f-g : ∀ t → f (g t) == t
f-g t = λ= $ λ a → transport
(λ r → ◯-rec (snd (P (h a))) _ r == t a)
(! (contr-path (c (h a)) (η (a , idp))))
(◯-rec-β (snd (P (h a))) _ (a , idp))
g-f : ∀ k → g (f k) == k
g-f k = λ= λ (b : B) →
◯-elim {A = hfiber h b}
(λ r → =-preserves-local (snd (P b)) {g (f k) b})
(λ r → lemma₁ (fst r) b (snd r))
(contr-center (c b))
where lemma₀ : (a : A) → (b : B) → (p : h a == b) →
helper (k ∘ h) b (η (a , p)) == k b
lemma₀ a .(h a) idp = helper-β (k ∘ h) (h a) (a , idp)
lemma₁ : (a : A) → (b : B) → (p : h a == b) →
helper (k ∘ h) b (contr-center (c b)) == k b
lemma₁ a b p = transport! (λ r → helper (k ∘ h) b r == k b)
(contr-path (c b) (η (a , p))) (lemma₀ a b p)
◯-extend : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)
◯-extend = is-equiv.g pre∘-◯-conn-is-equiv
◯-extend-β : ∀ f a → ◯-extend f (h a) == f a
◯-extend-β f = app= (is-equiv.f-g pre∘-◯-conn-is-equiv f)
{- locality of function types -}
abstract
Π-is-local : {A : Type ℓ} {B : A → Type ℓ} (w : (a : A) → is-local (B a)) → is-local (Π A B)
Π-is-local {A} {B} w = retract-is-local {◯ (Π A B)} {Π A B} ◯-is-local η-inv η r
where η-inv : ◯ (Π A B) → Π A B
η-inv φ' a = ◯-rec (w a) (λ φ → φ a) φ'
r : (φ : Π A B) → η-inv (η φ) == φ
r φ = λ= (λ a → ◯-rec-β (w a) (λ φ₀ → φ₀ a) φ)
→-is-local : {A B : Type ℓ} → is-local B → is-local (A → B)
→-is-local w = Π-is-local (λ _ → w)
-- Fmap2 because of locality of function types
module ◯Fmap2 {A B C : Type ℓ} (η* : A → B → C) where
private module M = ◯Rec (→-is-local ◯-is-local) (◯-fmap ∘ η*)
f = M.f
η-β : ∀ a b → f (η a) (η b) == η (η* a b)
η-β a b = app= (M.η-β a) (η b) ∙ ◯-fmap-β (η* a) b
◯-fmap2 = ◯Fmap2.f
◯-fmap2-β = ◯Fmap2.η-β
{- locality of sigma types -}
abstract
Σ-is-local : {A : Type ℓ} (B : A → Type ℓ)
→ is-local A → ((a : A) → is-local (B a))
→ is-local (Σ A B)
Σ-is-local {A} B lA lB = retract-is-local {◯ (Σ A B)} {Σ A B} ◯-is-local η-inv η r
where h : ◯ (Σ A B) → A
h = ◯-rec lA fst
h-β : (ab : Σ A B) → h (η ab) == fst ab
h-β = ◯-rec-β lA fst
k : (w : ◯ (Σ A B)) → B (h w)
k = ◯-elim (lB ∘ h) λ ab → transport! B (h-β ab) (snd ab)
k-β : (ab : Σ A B) → k (η ab) == snd ab [ B ↓ h-β ab ]
k-β ab = from-transp! B (h-β ab) $
◯-elim-β (lB ∘ h) (λ ab → transport! B (h-β ab) (snd ab)) ab
η-inv : ◯ (Σ A B) → Σ A B
η-inv w = h w , k w
r : (x : Σ A B) → η-inv (η x) == x
r ab = pair= (h-β ab) (k-β ab)
×-is-local : {A B : Type ℓ}
→ is-local A → is-local B → is-local (A × B)
×-is-local {B = B} lA lB = Σ-is-local (λ _ → B) lA (λ _ → lB)
◯-×-econv : {A B : Type ℓ} → ◯ (A × B) ≃ ◯ A × ◯ B
◯-×-econv {A} {B} = equiv ◯-split ◯-pair inv-l inv-r
where ◯-fst : ◯ (A × B) → ◯ A
◯-fst = ◯-fmap fst
◯-fst-β : (ab : A × B) → ◯-fst (η ab) == η (fst ab)
◯-fst-β = ◯-fmap-β fst
◯-snd : ◯ (A × B) → ◯ B
◯-snd = ◯-fmap snd
◯-snd-β : (ab : A × B) → ◯-snd (η ab) == η (snd ab)
◯-snd-β = ◯-fmap-β snd
◯-split : ◯ (A × B) → ◯ A × ◯ B
◯-split = fanout ◯-fst ◯-snd
◯-pair : ◯ A × ◯ B → ◯ (A × B)
◯-pair = uncurry (◯-fmap2 _,_)
◯-pair-β : (a : A) (b : B) → ◯-pair (η a , η b) == η (a , b)
◯-pair-β = ◯-fmap2-β _,_
abstract
inv-l : (ab : ◯ A × ◯ B) → ◯-split (◯-pair ab) == ab
inv-l = uncurry $
◯-elim (λ _ → Π-is-local λ _ → =-preserves-local (×-is-local ◯-is-local ◯-is-local))
(λ a → ◯-elim (λ _ → =-preserves-local (×-is-local ◯-is-local ◯-is-local))
(λ b → ap ◯-split (◯-pair-β a b)
∙ pair×= (◯-fst-β (a , b)) (◯-snd-β (a , b))))
inv-r : (ab : ◯ (A × B)) → ◯-pair (◯-split ab) == ab
inv-r = ◯-elim (λ _ → ◯-=-is-local _ _)
(λ ab → ap ◯-pair (pair×= (◯-fst-β ab) (◯-snd-β ab)) ∙ ◯-pair-β (fst ab) (snd ab))
| {
"alphanum_fraction": 0.4124953652,
"avg_line_length": 37.0721649485,
"ext": "agda",
"hexsha": "c7b40b41c557889beedf15d31cfedae58d341107",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Modality.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Modality.agda",
"max_line_length": 111,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Modality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4527,
"size": 10788
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.DiffInt where
open import Cubical.Data.DiffInt.Base public
open import Cubical.Data.DiffInt.Properties public
| {
"alphanum_fraction": 0.7865853659,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "eb47c48d0829ff25f97d7fc456d2500c22b58642",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/DiffInt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/DiffInt.agda",
"max_line_length": 50,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/DiffInt.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 37,
"size": 164
} |
module MLib.Fin.Parts where
open import MLib.Prelude
open import MLib.Prelude.RelProps
import MLib.Fin.Parts.Core as C
open import MLib.Fin.Parts.Nat
open import Function.Surjection using (_↠_)
open import Function.Related renaming (module EquationalReasoning to BijReasoning)
import Relation.Binary.Indexed as I
open Nat using (_*_; _+_; _<_)
open Fin using (toℕ; fromℕ≤)
open Table
open C using (Parts; constParts) hiding (module Parts) public
module Parts {a} {A : Set a} {size : A → ℕ} (P : Parts A size) where
open C.Parts P public
module PN = Partsℕ P
-- Fin functions
private
bounded′ : ∀ {i} (j : Fin (sizeAt i)) → toℕ j < PN.sizeAt (fromℕ≤ (Fin.bounded i))
bounded′ j = Nat.≤-trans (Fin.bounded j) (Nat.≤-reflexive (≡.sym (≡.cong sizeAt (Fin.fromℕ≤-toℕ _ _))))
fromParts : Σ (Fin numParts) (Fin ∘ sizeAt) → Fin totalSize
fromParts (i , j) = fromℕ≤ {PN.fromParts (toℕ i , toℕ j)} (PN.fromParts-prop (Fin.bounded i) (bounded′ j))
toParts : Fin totalSize → Σ (Fin numParts) (Fin ∘ sizeAt)
toParts k =
let p , q = PN.toParts-prop (Fin.bounded k)
in fromℕ≤ p , fromℕ≤ q
abstract
fromParts-fromPartsℕ : (i : Fin numParts) (j : Fin (sizeAt i)) → toℕ (fromParts (i , j)) ≡ PN.fromParts (toℕ i , toℕ j)
fromParts-fromPartsℕ _ _ = Fin.toℕ-fromℕ≤ _
toParts-toPartsℕ : (k : Fin totalSize) → Σ.map toℕ toℕ (toParts k) ≡ PN.toParts (toℕ k)
toParts-toPartsℕ k = Σ.≡×≡⇒≡ (Fin.toℕ-fromℕ≤ _ , Fin.toℕ-fromℕ≤ _)
toParts-fromParts : ∀ {i j} → toParts (fromParts (i , j)) ≡ (i , j)
toParts-fromParts {i} {j} = Fin.toℕ-injective₂ (begin
Σ.map toℕ toℕ (toParts (fromParts (i , j))) ≡⟨ toParts-toPartsℕ _ ⟩
PN.toParts (toℕ (fromParts (i , j))) ≡⟨ ≡.cong PN.toParts (fromParts-fromPartsℕ i j) ⟩
PN.toParts (PN.fromParts (toℕ i , toℕ j)) ≡⟨ PN.toParts-fromParts (Fin.bounded i) (bounded′ j) ⟩
(toℕ i , toℕ j) ∎)
where open ≡.Reasoning
fromParts-toParts : ∀ {k} → fromParts (toParts k) ≡ k
fromParts-toParts {k} = Fin.toℕ-injective (
begin
toℕ (fromParts (toParts k)) ≡⟨ uncurry fromParts-fromPartsℕ (toParts k) ⟩
PN.fromParts (Σ.map toℕ toℕ (toParts k)) ≡⟨ ≡.cong PN.fromParts (toParts-toPartsℕ k) ⟩
PN.fromParts (PN.toParts (toℕ k)) ≡⟨ PN.fromParts-toParts (toℕ k) (Fin.bounded k) ⟩
toℕ k ∎)
where open ≡.Reasoning
asParts : Fin totalSize ↔ Σ (Fin numParts) (Fin ∘ sizeAt)
asParts = record
{ to = ≡.→-to-⟶ toParts
; from = ≡.→-to-⟶ fromParts
; inverse-of = record
{ left-inverse-of = λ _ → fromParts-toParts
; right-inverse-of = λ _ → toParts-fromParts
}
}
Parts² : ∀ {a} (A : Set a) (size : A → ℕ) → Set a
Parts² A size = Parts (Parts A size) Parts.totalSize
module _ {a} {A : Set a} {size : A → ℕ} (P₁ : Parts² A size) where
private
module P₁ = Parts P₁
module _ (i : Fin P₁.numParts) where
private
P₂ = P₁.partAt i
module P₂ = Parts P₂
fromParts² : (j : Fin P₂.numParts) → Fin (size (P₂.partAt j)) → Fin P₁.totalSize
fromParts² j = curry P₁.fromParts i ∘ curry P₂.fromParts j
asParts² :
Fin P₁.totalSize ↔
Σ (Fin P₁.numParts) (λ i →
let P₂ = P₁.partAt i
module P₂ = Parts P₂
in Σ (Fin P₂.numParts) (Fin ∘ P₂.sizeAt))
asParts² =
Fin P₁.totalSize ↔⟨ P₁.asParts ⟩
Σ (Fin P₁.numParts) (Fin ∘ P₁.sizeAt) ↔⟨ Σ-bij (Parts.asParts ∘ P₁.partAt) ⟩
Σ (Fin P₁.numParts) (λ i →
let P₂ = P₁.partAt i
module P₂ = Parts P₂
in Σ (Fin P₂.numParts) (Fin ∘ P₂.sizeAt)) ∎
where open BijReasoning
| {
"alphanum_fraction": 0.6025606102,
"avg_line_length": 36.71,
"ext": "agda",
"hexsha": "fa6ba18ad0844606add92d8bd4504de36ffb9988",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Fin/Parts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Fin/Parts.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Fin/Parts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1394,
"size": 3671
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Algebra.Semigroup
module Cubical.Algebra.Semigroup.Construct.Opposite {ℓ} (S : Semigroup ℓ) where
open import Cubical.Foundations.Prelude
open Semigroup S
import Cubical.Algebra.Magma.Construct.Opposite magma as OpMagma
open OpMagma public hiding (Op-isMagma; Mᵒᵖ)
•ᵒᵖ-assoc : Associative _•ᵒᵖ_
•ᵒᵖ-assoc _ _ _ = sym (assoc _ _ _)
Op-isSemigroup : IsSemigroup Carrier _•ᵒᵖ_
Op-isSemigroup = record
{ isMagma = OpMagma.Op-isMagma
; assoc = •ᵒᵖ-assoc
}
Sᵒᵖ : Semigroup ℓ
Sᵒᵖ = record { isSemigroup = Op-isSemigroup }
| {
"alphanum_fraction": 0.744913928,
"avg_line_length": 23.6666666667,
"ext": "agda",
"hexsha": "8f98b841a87cffa5473b99e17b485514cfde58d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Opposite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Opposite.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Opposite.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 242,
"size": 639
} |
-- Andreas, 2014-09-09
{-# NON_TERMINATING #-}
Foo : Set
Foo = Foo
| {
"alphanum_fraction": 0.6176470588,
"avg_line_length": 11.3333333333,
"ext": "agda",
"hexsha": "5018ea66e48c3cdf467466b50cef6ccc66954e76",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue586a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue586a.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue586a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 68
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.SucCong where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Congurence of the type of the successor case in natrec.
sucCong : ∀ {F G rF lF Γ} → Γ ∙ ℕ ^ [ ! , ι ⁰ ] ⊢ F ≡ G ^ [ rF , ι lF ]
→ Γ ⊢ Π ℕ ^ ! ° ⁰ ▹ (F ^ rF ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF
≡ Π ℕ ^ ! ° ⁰ ▹ (G ^ rF ° lF ▹▹ G [ suc (var 0) ]↑ ° lF ° lF) ° lF ° lF ^ [ rF , ι lF ]
sucCong F≡G with wfEq F≡G
sucCong {lF = lF} F≡G | ⊢Γ ∙ ⊢ℕ =
let ⊢F , _ = syntacticEq F≡G
in univ (Π-cong (⁰min lF) (≡is≤ PE.refl) ⊢ℕ (refl (un-univ ⊢ℕ))
(Π-cong (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F (un-univ≡ F≡G)
(wkEqTerm (step id) (⊢Γ ∙ ⊢ℕ ∙ ⊢F)
(un-univ≡ (subst↑TypeEq F≡G
(refl (sucⱼ (var (⊢Γ ∙ ⊢ℕ) here))))))))
| {
"alphanum_fraction": 0.5472027972,
"avg_line_length": 40.8571428571,
"ext": "agda",
"hexsha": "f627c313a35a07df2689fb60218460d0ddf4fab5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/SucCong.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/SucCong.agda",
"max_line_length": 99,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/SucCong.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 456,
"size": 1144
} |
module Reasoning where
open import Algebra
-- Standard syntax sugar for writing equational proofs
infix 4 _≈_
data _≈_ {A} (x y : Graph A) : Set where
prove : x ≡ y -> x ≈ y
infix 1 begin_
begin_ : ∀ {A} {x y : Graph A} -> x ≈ y -> x ≡ y
begin prove p = p
infixr 2 _≡⟨_⟩_
_≡⟨_⟩_ : ∀ {A} (x : Graph A) {y z : Graph A} -> x ≡ y -> y ≈ z -> x ≈ z
_ ≡⟨ p ⟩ prove q = prove (transitivity p q)
infix 3 _∎
_∎ : ∀ {A} (x : Graph A) -> x ≈ x
_∎ _ = prove reflexivity
infixl 8 _>>_
_>>_ : ∀ {A} {x y z : Graph A} -> x ≡ y -> y ≡ z -> x ≡ z
_>>_ = transitivity
data BinaryOperator : Set where
+op : BinaryOperator
*op : BinaryOperator
apply : ∀ {A} -> BinaryOperator -> Graph A -> Graph A -> Graph A
apply +op a b = a + b
apply *op a b = a * b
L : ∀ {op : BinaryOperator} -> ∀ {A} {x y z : Graph A} -> x ≡ y -> apply op x z ≡ apply op y z
L {+op} {x} {y} {z} eq = +left-congruence {x} {y} {z} eq
L {*op} {x} {y} {z} eq = *left-congruence {x} {y} {z} eq
R : ∀ {op : BinaryOperator} -> ∀ {A} {x y z : Graph A} -> x ≡ y -> apply op z x ≡ apply op z y
R {+op} {x} {y} {z} eq = +right-congruence {x} {y} {z} eq
R {*op} {x} {y} {z} eq = *right-congruence {x} {y} {z} eq
| {
"alphanum_fraction": 0.5345858241,
"avg_line_length": 28.5609756098,
"ext": "agda",
"hexsha": "5a051d2c44f2f866c4bc3ae01783dfc1ea546347",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/alga",
"max_forks_repo_path": "src/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/alga",
"max_issues_repo_path": "src/Reasoning.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/alga",
"max_stars_repo_path": "src/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 520,
"size": 1171
} |
module CTL.Modalities.EG where
open import FStream.Core
open import Library
-- Possibly forever : s₀ ⊧ φ ⇔ ∃ s₀ R s₁ R ... ∀ i . sᵢ ⊧ φ
{-# NO_POSITIVITY_CHECK #-} -- Not necessary from EGda 2.6 upwards
record EG' {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁}
(props : FStream' C (Set ℓ₂)) : Set (ℓ₁ ⊔ ℓ₂) where
coinductive
field
nowE : head props
laterE : {j : Size< i} → E (fmap EG' (inF (tail props)))
open EG' public
EG : ∀ {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
EG props = EPred EG' (inF props)
mutual
EGₛ' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂))
head (EGₛ' props) = EG' props
tail (EGₛ' props) = EGₛ (tail props)
EGₛ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂))
inF (EGₛ props) = fmap EGₛ' (inF props)
| {
"alphanum_fraction": 0.5837155963,
"avg_line_length": 30.0689655172,
"ext": "agda",
"hexsha": "abd4b1c0533b50e842f35e5518131db72c8228c6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Modalities/EG.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Modalities/EG.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Modalities/EG.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 390,
"size": 872
} |
module IPL where
data _∧_ (P : Set) (Q : Set) : Set where
∧-intro : P → Q → (P ∧ Q)
_⇔_ : (P : Set) → (Q : Set) → Set
a ⇔ b = (a → b) ∧ (b → a)
proof₁ : {P Q : Set} → (P ∧ Q) → P
proof₁ (∧-intro p q) = p
proof₂ : {P Q : Set} → (P ∧ Q) → Q
proof₂ (∧-intro p q) = q
∧-assoc₁ : { P Q R : Set } → ((P ∧ Q) ∧ R) → (P ∧ (Q ∧ R))
∧-assoc₁ (∧-intro (∧-intro p q) r) = ∧-intro p (∧-intro q r)
∧-assoc₂ : { P Q R : Set } → (P ∧ (Q ∧ R)) → ((P ∧ Q) ∧ R)
∧-assoc₂ (∧-intro p (∧-intro q r)) = ∧-intro (∧-intro p q) r
∧-assoc : { P Q R : Set } → ((P ∧ Q) ∧ R) ⇔ (P ∧ (Q ∧ R))
∧-assoc = ∧-intro ∧-assoc₁ ∧-assoc₂
data _∨_ (P Q : Set) : Set where
∨-intro₁ : P → P ∨ Q
∨-intro₂ : Q → P ∨ Q
∨-elim : {A B C : Set} → (A → C) → (B → C) → (A ∨ B) → C
∨-elim ac bc (∨-intro₁ a) = ac a
∨-elim ac bc (∨-intro₂ b) = bc b
∨-comm′ : {P Q : Set} → (P ∨ Q) → (Q ∨ P)
∨-comm′ (∨-intro₁ p) = ∨-intro₂ p
∨-comm′ (∨-intro₂ q) = ∨-intro₁ q
∨-comm : {P Q : Set} → (P ∨ Q) ⇔ (Q ∨ P)
∨-comm = ∧-intro ∨-comm′ ∨-comm′
∨-assoc : { P Q R : Set } → ((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R))
∨-assoc (∨-intro₁ (∨-intro₁ p)) = ∨-intro₁ p
∨-assoc (∨-intro₁ (∨-intro₂ q)) = ∨-intro₂ (∨-intro₁ q)
∨-assoc (∨-intro₂ r) = ∨-intro₂ (∨-intro₂ r)
data ⊥ : Set where
¬ : Set → Set
¬ A = A → ⊥
| {
"alphanum_fraction": 0.4145785877,
"avg_line_length": 26.8775510204,
"ext": "agda",
"hexsha": "177f58f77f5094cc5cfa428722708771dc81856d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alf239/tao",
"max_forks_repo_path": "IPL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alf239/tao",
"max_issues_repo_path": "IPL.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alf239/tao",
"max_stars_repo_path": "IPL.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 683,
"size": 1317
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Connected
{-
An example of using the overkilling covering space library.
-}
module Homotopy.Cover.ExamplePi1Circle where
open import Homotopy.Truncation
open import Homotopy.PathTruncation
open import Spaces.Circle
{-
The 1st step: Show that the circle is connected.
-}
S¹-is-conn : is-connected ⟨0⟩ S¹
S¹-is-conn = proj base ,
τ-extend ⦃ λ _ → ≡-is-set $ π₀-is-set S¹ ⦄
(S¹-rec (λ x → proj x ≡ proj base) refl
(prop-has-all-paths (π₀-is-set S¹ _ _) _ _))
open import Integers
open import Homotopy.Pointed
open import Homotopy.Cover.Def S¹
open import Homotopy.Cover.HomotopyGroupSetIsomorphism (⋆[ S¹ , base ]) S¹-is-conn
S¹-covering : covering
S¹-covering = let fiber = S¹-rec-nondep Set ℤ (eq-to-path succ-equiv) in
cov[ fiber , S¹-rec (is-set ◯ fiber) ℤ-is-set (prop-has-all-paths is-set-is-prop _ _) ]
open covering S¹-covering
{-
The 2nd step : Show that S¹ is contractible.
-}
-- One step.
trans-fiber-!loop : ∀ z → transport fiber (! loop) z ≡ pred z
trans-fiber-!loop z =
transport fiber (! loop) z
≡⟨ ! $ trans-ap (id _) fiber (! loop) z ⟩
transport (id _) (ap fiber (! loop)) z
≡⟨ ap (λ x → transport (id _) x z) $ ap-opposite fiber loop ⟩
transport (id _) (! (ap fiber loop)) z
≡⟨ ap (λ x → transport (id _) (! x) z) $ S¹-β-loop-nondep Set ℤ (eq-to-path _) ⟩
transport (id _) (! (eq-to-path succ-equiv)) z
≡⟨ trans-id-!eq-to-path _ _ ⟩∎
pred z
∎
-- The end of this function. This can save some type annotations.
loop⁻ⁿ-end : Σ S¹ fiber
loop⁻ⁿ-end = (base , O)
-- Climbing up the stairs.
loop⁻¹ : ∀ z → _≡_ {A = Σ S¹ fiber} (base , z) (base , pred z)
loop⁻¹ z = Σ-eq (! loop) (trans-fiber-!loop z)
-- Agda needs us to show the induction order explicitly,
-- and so there are so many functions.
loop⁻ⁿ : ∀ z → (base , z) ≡ loop⁻ⁿ-end
loop⁻ⁿ-pos : ∀ n → (base , pos n) ≡ loop⁻ⁿ-end
loop⁻ⁿ-neg : ∀ n → (base , neg n) ≡ loop⁻ⁿ-end
loop⁻ⁿ O = refl
loop⁻ⁿ (pos _) = loop⁻ⁿ-pos _
loop⁻ⁿ (neg _) = loop⁻ⁿ-neg _
loop⁻ⁿ-pos 0 = loop⁻¹ _
loop⁻ⁿ-pos (S _) = loop⁻¹ _ ∘ loop⁻ⁿ-pos _
loop⁻ⁿ-neg 0 = ! (loop⁻¹ _)
loop⁻ⁿ-neg (S _) = ! (loop⁻¹ _) ∘ loop⁻ⁿ-neg _
private
-- These are specialized J rules that work for this development only.
-- I am too lazy to generalize them.
lemma₁ : ∀ {x₁ x₂} (q : x₁ ≡ x₂) (f : ∀ z → (x₁ , z) ≡ loop⁻ⁿ-end) (z : fiber x₂)
→ transport (λ s → ∀ z → (s , z) ≡ loop⁻ⁿ-end) q f z
≡ Σ-eq (! q) refl ∘ f (transport fiber (! q) z)
lemma₁ refl f z = refl
lemma₂ : ∀ {b₁} {b₂} (q : b₁ ≡ b₂) p
→ transport (λ z → (base , z) ≡ loop⁻ⁿ-end) (! q) p
≡ Σ-eq refl q ∘ p
lemma₂ refl p = refl
compose-Σ-eq : ∀ {a₁} {a₂} (p : a₁ ≡ a₂)
{b₁ : fiber a₁} {b₂} (q : transport fiber p b₁ ≡ b₂)
→ Σ-eq {A = S¹} {P = fiber} p refl ∘ Σ-eq refl q ≡ Σ-eq p q
compose-Σ-eq refl q = refl
loop⁻¹-loop⁻ⁿ-pred : ∀ z → loop⁻¹ z ∘ loop⁻ⁿ (pred z) ≡ loop⁻ⁿ z
loop⁻¹-loop⁻ⁿ-pred O = opposite-right-inverse (loop⁻¹ _)
loop⁻¹-loop⁻ⁿ-pred (pos O) = refl-right-unit _
loop⁻¹-loop⁻ⁿ-pred (pos (S _)) = refl
loop⁻¹-loop⁻ⁿ-pred (neg _) =
loop⁻¹ _ ∘ (! (loop⁻¹ _) ∘ loop⁻ⁿ-neg _)
≡⟨ ! $ concat-assoc (loop⁻¹ _) (! (loop⁻¹ _)) _ ⟩
(loop⁻¹ _ ∘ ! (loop⁻¹ _)) ∘ loop⁻ⁿ-neg _
≡⟨ ap (λ x → x ∘ loop⁻ⁿ-neg _) $ opposite-right-inverse (loop⁻¹ _) ⟩∎
loop⁻ⁿ-neg _
∎
path : ∀ x z → (x , z) ≡ loop⁻ⁿ-end
path = S¹-rec (λ s → ∀ z → (s , z) ≡ loop⁻ⁿ-end) loop⁻ⁿ $ funext λ z →
transport (λ s → ∀ z → (s , z) ≡ loop⁻ⁿ-end) loop loop⁻ⁿ z
≡⟨ lemma₁ loop loop⁻ⁿ z ⟩
Σ-eq (! loop) refl ∘ loop⁻ⁿ (transport fiber (! loop) z)
≡⟨ ap (λ x → Σ-eq (! loop) refl ∘ x) $ apd! loop⁻ⁿ (trans-fiber-!loop z) ⟩
Σ-eq (! loop) refl ∘
(transport (λ z → (base , z) ≡ loop⁻ⁿ-end) (! $ trans-fiber-!loop z) (loop⁻ⁿ (pred z)))
≡⟨ ap (λ x → Σ-eq (! loop) refl ∘ x) $ lemma₂ (trans-fiber-!loop z) (loop⁻ⁿ (pred z)) ⟩
Σ-eq (! loop) refl ∘ (Σ-eq refl (trans-fiber-!loop z) ∘ loop⁻ⁿ (pred z))
≡⟨ ! $ concat-assoc (Σ-eq (! loop) refl) _ _ ⟩
(Σ-eq (! loop) refl ∘ Σ-eq refl (trans-fiber-!loop z)) ∘ loop⁻ⁿ (pred z)
≡⟨ ap (λ x → x ∘ loop⁻ⁿ (pred z)) $ compose-Σ-eq (! loop) (trans-fiber-!loop z) ⟩
loop⁻¹ z ∘ loop⁻ⁿ (pred z)
≡⟨ loop⁻¹-loop⁻ⁿ-pred z ⟩∎
loop⁻ⁿ z
∎
S¹-covering-is-universal : is-universal S¹-covering
S¹-covering-is-universal = contr-is-connected ⟨1⟩ $ loop⁻ⁿ-end , uncurry path
ℤ-π¹S¹-equiv : ℤ ≃ (base ≡₀ base)
ℤ-π¹S¹-equiv = GiveMeAPoint.fiber-a≃fg S¹-covering S¹-covering-is-universal O
| {
"alphanum_fraction": 0.5661375661,
"avg_line_length": 36.3461538462,
"ext": "agda",
"hexsha": "2510fe04426533034cce078b2977d413be76d15a",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Cover/ExamplePi1Circle.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Cover/ExamplePi1Circle.agda",
"max_line_length": 95,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Cover/ExamplePi1Circle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2003,
"size": 4725
} |
-- The NO_POSITIVITY_CHECK pragma can only precede a mutual block or a
-- data/record definition.
module Issue1614c where
{-# NO_POSITIVITY_CHECK #-}
postulate Foo : Set
| {
"alphanum_fraction": 0.7674418605,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "787d802240bdc30dabc444c690c5df26d70ac143",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue1614c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue1614c.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue1614c.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 44,
"size": 172
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.