Search is not available for this dataset
text
string | meta
dict |
---|---|
module Properties where
import Properties.Dec
| {
"alphanum_fraction": 0.8510638298,
"avg_line_length": 11.75,
"ext": "agda",
"hexsha": "a3c685d14e4bf15f70478c41eeec063755535eea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Properties.agda",
"max_line_length": 23,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 8,
"size": 47
} |
------------------------------------------------------------------------------
-- The alternating bit protocol (ABP)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module define the ABP following the presentation in Dybjer and
-- Sander (1989).
module FOTC.Program.ABP.ABP where
open import FOTC.Base
open import FOTC.Base.Loop
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Stream.Type
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- ABP equations
postulate
send ack out corrupt : D → D
await : D → D → D → D → D
postulate send-eq : ∀ b i is ds →
send b · (i ∷ is) · ds ≡ < i , b > ∷ await b i is ds
{-# ATP axioms send-eq #-}
postulate
await-ok≡ : ∀ b b' i is ds →
b ≡ b' →
await b i is (ok b' ∷ ds) ≡ send (not b) · is · ds
await-ok≢ : ∀ b b' i is ds →
b ≢ b' →
await b i is (ok b' ∷ ds) ≡ < i , b > ∷ await b i is ds
await-error : ∀ b i is ds →
await b i is (error ∷ ds) ≡ < i , b > ∷ await b i is ds
{-# ATP axioms await-ok≡ await-ok≢ await-error #-}
postulate
ack-ok≡ : ∀ b b' i bs →
b ≡ b' →
ack b · (ok < i , b' > ∷ bs) ≡ b ∷ ack (not b) · bs
ack-ok≢ : ∀ b b' i bs →
b ≢ b' →
ack b · (ok < i , b' > ∷ bs) ≡ not b ∷ ack b · bs
ack-error : ∀ b bs → ack b · (error ∷ bs) ≡ not b ∷ ack b · bs
{-# ATP axioms ack-ok≡ ack-ok≢ ack-error #-}
postulate
out-ok≡ : ∀ b b' i bs →
b ≡ b' →
out b · (ok < i , b' > ∷ bs) ≡ i ∷ out (not b) · bs
out-ok≢ : ∀ b b' i bs →
b ≢ b' →
out b · (ok < i , b' > ∷ bs) ≡ out b · bs
out-error : ∀ b bs → out b · (error ∷ bs) ≡ out b · bs
{-# ATP axioms out-ok≡ out-ok≢ out-error #-}
postulate
corrupt-T : ∀ os x xs →
corrupt (T ∷ os) · (x ∷ xs) ≡ ok x ∷ corrupt os · xs
corrupt-F : ∀ os x xs →
corrupt (F ∷ os) · (x ∷ xs) ≡ error ∷ corrupt os · xs
{-# ATP axioms corrupt-T corrupt-F #-}
postulate has hbs hcs hds : D → D → D → D → D → D → D
postulate has-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
has f₁ f₂ f₃ g₁ g₂ is ≡ f₁ · is · (hds f₁ f₂ f₃ g₁ g₂ is)
{-# ATP axioms has-eq #-}
postulate hbs-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hbs f₁ f₂ f₃ g₁ g₂ is ≡ g₁ · (has f₁ f₂ f₃ g₁ g₂ is)
{-# ATP axioms hbs-eq #-}
postulate hcs-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hcs f₁ f₂ f₃ g₁ g₂ is ≡ f₂ · (hbs f₁ f₂ f₃ g₁ g₂ is)
{-# ATP axioms hcs-eq #-}
postulate hds-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
hds f₁ f₂ f₃ g₁ g₂ is ≡ g₂ · (hcs f₁ f₂ f₃ g₁ g₂ is)
{-# ATP axioms hds-eq #-}
postulate
transfer : D → D → D → D → D → D → D
transfer-eq : ∀ f₁ f₂ f₃ g₁ g₂ is →
transfer f₁ f₂ f₃ g₁ g₂ is ≡ f₃ · (hbs f₁ f₂ f₃ g₁ g₂ is)
{-# ATP axioms transfer-eq #-}
postulate
abpTransfer : D → D → D → D → D
abpTransfer-eq :
∀ b os₁ os₂ is →
abpTransfer b os₁ os₂ is ≡
transfer (send b) (ack b) (out b) (corrupt os₁) (corrupt os₂) is
{-# ATP axiom abpTransfer-eq #-}
------------------------------------------------------------------------------
-- ABP relations
-- Start state for the ABP.
S : D → D → D → D → D → D → D → D → D → Set
S b is os₁ os₂ as bs cs ds js =
as ≡ send b · is · ds
∧ bs ≡ corrupt os₁ · as
∧ cs ≡ ack b · bs
∧ ds ≡ corrupt os₂ · cs
∧ js ≡ out b · bs
{-# ATP definition S #-}
-- Auxiliary state for the ABP.
S' : D → D → D → D → D → D → D → D → D → D → Set
S' b i' is' os₁' os₂' as' bs' cs' ds' js' =
as' ≡ await b i' is' ds' -- Typo in ds'.
∧ bs' ≡ corrupt os₁' · as'
∧ cs' ≡ ack (not b) · bs'
∧ ds' ≡ corrupt os₂' · (b ∷ cs')
∧ js' ≡ out (not b) · bs'
{-# ATP definition S' #-}
-- Auxiliary bisimulation.
B : D → D → Set
B is js = ∃[ b ] ∃[ os₁ ] ∃[ os₂ ] ∃[ as ] ∃[ bs ] ∃[ cs ] ∃[ ds ]
Stream is
∧ Bit b
∧ Fair os₁
∧ Fair os₂
∧ S b is os₁ os₂ as bs cs ds js
{-# ATP definition B #-}
------------------------------------------------------------------------------
-- References
--
-- Dybjer, Peter and Sander, Herbert P. (1989). A Functional
-- Programming Approach to the Specification and Verification of
-- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
| {
"alphanum_fraction": 0.4614882507,
"avg_line_length": 30.8456375839,
"ext": "agda",
"hexsha": "2da1b956fd09c20f584ee220aae1c32660a67a5c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/ABP/ABP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/ABP/ABP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/ABP/ABP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1606,
"size": 4596
} |
module HasDecidableSatisfaction where
open import OscarPrelude
open import 𝓐ssertion
open import HasSatisfaction
open import Interpretation
record HasDecidableSatisfaction (A : Set) ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ : Set₁
where
field
_⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x)
open HasDecidableSatisfaction ⦃ … ⦄ public
{-# DISPLAY HasDecidableSatisfaction._⊨?_ _ = _⊨?_ #-}
| {
"alphanum_fraction": 0.7212713936,
"avg_line_length": 24.0588235294,
"ext": "agda",
"hexsha": "1f50baa4b84cc7fb74dded1dc69c0813780f3f4d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/HasDecidableSatisfaction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/HasDecidableSatisfaction.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/HasDecidableSatisfaction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 147,
"size": 409
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lifting of two predicates
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Unary.All where
open import Level
open import Data.Product
open import Function.Base
open import Relation.Unary
private
variable
a b p q : Level
A : Set a
B : Set b
All : (A → Set p) → (B → Set q) → (A × B → Set (p ⊔ q))
All P Q (a , b) = P a × Q b
| {
"alphanum_fraction": 0.4582560297,
"avg_line_length": 22.4583333333,
"ext": "agda",
"hexsha": "7432b06e756f7fdfc0e0f214cfefc9242f1ad35a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Product/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Product/Relation/Unary/All.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Product/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 125,
"size": 539
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.TwoSided where
-- A "two sided" adjoint is an adjoint of two functors L and R where the
-- unit and counit are natural isomorphisms.
-- A two sided adjoint is the underlying data to an Adjoint Equivalence
open import Level
open import Categories.Adjoint
open import Categories.Category.Core using (Category)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_; NaturalIsomorphism)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
o′ ℓ′ e′ : Level
C D : Category o ℓ e
infix 5 _⊣⊢_
record _⊣⊢_ (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
private
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity)
module R = Functor R using (₀; ₁; op; identity)
field
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
op₁ : R.op ⊣⊢ L.op
op₁ = record
{ unit = counit.op
; counit = unit.op
; zig = zag
; zag = zig
}
zag⁻¹ : {B : D.Obj} → unit.⇐.η (R.₀ B) C.∘ R.₁ (counit.⇐.η B) C.≈ C.id
zag⁻¹ {B} = begin
unit.⇐.η (R.₀ B) C.∘ R.₁ (counit.⇐.η B) ≈˘⟨ flip-fromʳ unit.FX≅GX zag ⟩∘⟨refl ⟩
R.₁ (counit.⇒.η B) C.∘ R.₁ (counit.⇐.η B) ≈⟨ [ R ]-resp-∘ (counit.iso.isoʳ B) ⟩
R.₁ D.id ≈⟨ R.identity ⟩
C.id ∎
where open C.HomReasoning
open MR C
zig⁻¹ : {A : C.Obj} → L.₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.₀ A) D.≈ D.id
zig⁻¹ {A} = begin
L.₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.₀ A) ≈˘⟨ refl⟩∘⟨ flip-fromˡ counit.FX≅GX zig ⟩
L.₁ (unit.⇐.η A) D.∘ L.₁ (unit.⇒.η A) ≈⟨ [ L ]-resp-∘ (unit.iso.isoˡ A) ⟩
L.₁ C.id ≈⟨ L.identity ⟩
D.id ∎
where open D.HomReasoning
open MR D
op₂ : R ⊣⊢ L
op₂ = record
{ unit = ≃.sym counit
; counit = ≃.sym unit
; zig = zag⁻¹
; zag = zig⁻¹
}
L⊣R : L ⊣ R
L⊣R = record
{ unit = unit.F⇒G
; counit = counit.F⇒G
; zig = zig
; zag = zag
}
module L⊣R = Adjoint L⊣R
open L⊣R hiding (unit; counit; zig; zag; op) public
R⊣L : R ⊣ L
R⊣L = record
{ unit = counit.F⇐G
; counit = unit.F⇐G
; zig = zag⁻¹
; zag = zig⁻¹
}
module R⊣L = Adjoint R⊣L
private
record WithZig (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
private
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity)
module R = Functor R using (₀; ₁; op; identity; F-resp-≈)
field
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
zag {B} = F≃id⇒id (≃.sym unit) helper
where open C
open HomReasoning
helper : R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈ id
helper = begin
R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈⟨ Functor.homomorphism (R ∘F L) ⟩
R.₁ (L.₁ (R.₁ (counit.⇒.η B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈˘⟨ R.F-resp-≈ (F≃id-comm₁ counit) ⟩∘⟨refl ⟩
R.₁ (counit.⇒.η (L.₀ (R.₀ B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈⟨ [ R ]-resp-∘ zig ⟩
R.₁ D.id ≈⟨ R.identity ⟩
id ∎
record WithZag (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
private
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity; F-resp-≈)
module R = Functor R using (₀; ₁; op; identity)
field
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zig {A} = F≃id⇒id counit helper
where open D
open HomReasoning
helper : L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈ id
helper = begin
L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈⟨ Functor.homomorphism (L ∘F R) ⟩
(L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (R.₁ (L.₁ (unit.⇒.η A)))) ≈˘⟨ refl⟩∘⟨ L.F-resp-≈ (F≃id-comm₂ (≃.sym unit)) ⟩
L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (unit.⇒.η (R.₀ (L.₀ A))) ≈⟨ [ L ]-resp-∘ zag ⟩
L.₁ C.id ≈⟨ L.identity ⟩
id ∎
module _ {L : Functor C D} {R : Functor D C} where
withZig : WithZig L R → L ⊣⊢ R
withZig LR = record
{ unit = unit
; counit = counit
; zig = zig
; zag = zag
}
where open WithZig LR
withZag : WithZag L R → L ⊣⊢ R
withZag LR = record
{ unit = unit
; counit = counit
; zig = zig
; zag = zag
}
where open WithZag LR
id⊣⊢id : idF {C = C} ⊣⊢ idF
id⊣⊢id {C = C} = record
{ unit = ≃.sym ≃.unitor²
; counit = ≃.unitor²
; zig = identity²
; zag = identity²
}
where open Category C
| {
"alphanum_fraction": 0.5060335371,
"avg_line_length": 34.1229946524,
"ext": "agda",
"hexsha": "d1312dcecbb841265e486013ddd0f09af08453b1",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/TwoSided.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/TwoSided.agda",
"max_line_length": 128,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/TwoSided.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 2670,
"size": 6381
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types
module LibraBFT.Impl.Crypto.Crypto.Hash where
postulate -- TODO-1: valueZero
valueZero : HashValue
| {
"alphanum_fraction": 0.7791878173,
"avg_line_length": 30.3076923077,
"ext": "agda",
"hexsha": "d8fcadebe71c4698bcf4a539716f92af04b8b09f",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Crypto/Crypto/Hash.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Crypto/Crypto/Hash.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Crypto/Crypto/Hash.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 106,
"size": 394
} |
-- Andreas, 2014-09-01 restored this test case
module ClashingImport where
postulate A : Set
import Imports.A
open Imports.A public
-- only a public import creates a clash
-- since an ambiguous identifier would be exported
| {
"alphanum_fraction": 0.7719298246,
"avg_line_length": 17.5384615385,
"ext": "agda",
"hexsha": "d796dfeeed67339df43366b26e865a89516a8b87",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ClashingImport.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/ClashingImport.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/ClashingImport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 54,
"size": 228
} |
module Types.IND1 where
open import Data.Nat
open import Data.Fin hiding (_+_)
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Types.Direction
open import Auxiliary.Extensionality
open import Auxiliary.RewriteLemmas
private
variable
m n : ℕ
----------------------------------------------------------------------
-- session type inductively with explicit rec
-- without polarized variables
mutual
data Type n : Set where
TUnit TInt : Type n
TPair : (T₁ : Type n) (T₂ : Type n) → Type n
TChan : (S : SType n) → Type n
data SType n : Set where
gdd : (G : GType n) → SType n
rec : (G : GType (suc n) ) → SType n
var : (x : Fin n) → SType n
data GType n : Set where
transmit : (d : Dir) (T : Type n) (S : SType n) → GType n
choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n
end : GType n
TType = Type
-- weakening
weakenS : (n : ℕ) → SType m → SType (m + n)
weakenG : (n : ℕ) → GType m → GType (m + n)
weakenT : (n : ℕ) → TType m → TType (m + n)
weakenS n (gdd gst) = gdd (weakenG n gst)
weakenS n (rec gst) = rec (weakenG n gst)
weakenS n (var x) = var (inject+ n x)
weakenG n (transmit d t s) = transmit d (weakenT n t) (weakenS n s)
weakenG n (choice d m alt) = choice d m (weakenS n ∘ alt)
weakenG n end = end
weakenT n TUnit = TUnit
weakenT n TInt = TInt
weakenT n (TPair ty ty₁) = TPair (weakenT n ty) (weakenT n ty₁)
weakenT n (TChan x) = TChan (weakenS n x)
weaken1 : SType m → SType (suc m)
weaken1{m} stm with weakenS 1 stm
... | r rewrite n+1=suc-n {m} = r
module CheckWeaken where
s0 : SType 0
s0 = rec (transmit SND TUnit (var zero))
s1 : SType 1
s1 = rec (transmit SND TUnit (var zero))
s2 : SType 2
s2 = rec (transmit SND TUnit (var zero))
check-weakenS1 : weakenS 1 s0 ≡ s1
check-weakenS1 = cong rec (cong (transmit SND TUnit) refl)
check-weakenS2 : weakenS 2 s0 ≡ s2
check-weakenS2 = cong rec (cong (transmit SND TUnit) refl)
weaken1'N : Fin (suc n) → Fin n → Fin (suc n)
weaken1'N zero x = suc x
weaken1'N (suc i) zero = zero
weaken1'N (suc i) (suc x) = suc (weaken1'N i x)
weaken1'S : Fin (suc n) → SType n → SType (suc n)
weaken1'G : Fin (suc n) → GType n → GType (suc n)
weaken1'T : Fin (suc n) → TType n → TType (suc n)
weaken1'S i (gdd gst) = gdd (weaken1'G i gst)
weaken1'S i (rec gst) = rec (weaken1'G (suc i) gst)
weaken1'S i (var x) = var (weaken1'N i x)
weaken1'G i (transmit d t s) = transmit d (weaken1'T i t) (weaken1'S i s)
weaken1'G i (choice d m alt) = choice d m (weaken1'S i ∘ alt)
weaken1'G i end = end
weaken1'T i TUnit = TUnit
weaken1'T i TInt = TInt
weaken1'T i (TPair t₁ t₂) = TPair (weaken1'T i t₁) (weaken1'T i t₂)
weaken1'T i (TChan x) = TChan (weaken1'S i x)
weaken1S : SType n → SType (suc n)
weaken1G : GType n → GType (suc n)
weaken1T : Type n → Type (suc n)
weaken1S = weaken1'S zero
weaken1G = weaken1'G zero
weaken1T = weaken1'T zero
module CheckWeaken1' where
sxy : ∀ n → Fin (suc n) → SType n
sxy n x = rec (transmit SND TUnit (var x))
s00 : SType 0
s00 = sxy 0 zero
s10 : SType 1
s10 = sxy 1 zero
s11 : SType 1
s11 = sxy 1 (suc zero)
s22 : SType 2
s22 = sxy 2 (suc (suc zero))
check-weaken-s01 : weaken1'S zero s00 ≡ s10
check-weaken-s01 = refl
check-weaken-s1-s2 : weaken1'S zero s11 ≡ s22
check-weaken-s1-s2 = refl
check-weaken-s21 : weaken1'S (suc zero) (sxy 2 (suc zero)) ≡ sxy 3 (suc zero)
check-weaken-s21 = refl
--------------------------------------------------------------------
weak-weakN : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (x : Fin n)
→ weaken1'N (suc i) (weaken1'N j x) ≡ weaken1'N (inject₁ j) (weaken1'N i x)
weak-weakG : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (g : GType n)
→ weaken1'G (suc i) (weaken1'G j g) ≡ weaken1'G (inject₁ j) (weaken1'G i g)
weak-weakS : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s : SType n)
→ weaken1'S (suc i) (weaken1'S j s) ≡ weaken1'S (inject₁ j) (weaken1'S i s)
weak-weakT : (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (t : Type n)
→ weaken1'T (suc i) (weaken1'T j t) ≡ weaken1'T (inject₁ j) (weaken1'T i t)
weak-weakN zero zero le x = refl
weak-weakN (suc i) zero le x = refl
weak-weakN (suc i) (suc j) (s≤s le) zero = refl
weak-weakN{suc n} (suc i) (suc j) (s≤s le) (suc x) = cong suc (weak-weakN i j le x)
weak-weakG i j le (transmit d t s) = cong₂ (transmit d) (weak-weakT i j le t) (weak-weakS i j le s)
weak-weakG i j le (choice d m alt) = cong (choice d m) (ext (weak-weakS i j le ∘ alt))
weak-weakG i j le end = refl
weak-weakS i j le (gdd gst) = cong gdd (weak-weakG i j le gst)
weak-weakS i j le (rec gst) = cong rec (weak-weakG (suc i) (suc j) (s≤s le) gst)
weak-weakS i j le (var x) = cong (var) (weak-weakN i j le x)
weak-weakT i j le TUnit = refl
weak-weakT i j le TInt = refl
weak-weakT i j le (TPair t t₁) = cong₂ TPair (weak-weakT i j le t) (weak-weakT i j le t₁)
weak-weakT i j le (TChan s) = cong TChan (weak-weakS i j le s)
weaken1-weakenN : (m : ℕ) (j : Fin (suc n)) (x : Fin n)
→ inject+ m (weaken1'N j x) ≡ weaken1'N (inject+ m j) (inject+ m x)
weaken1-weakenN m zero zero = refl
weaken1-weakenN m zero (suc x) = refl
weaken1-weakenN m (suc j) zero = refl
weaken1-weakenN m (suc j) (suc x) = cong suc (weaken1-weakenN m j x)
weaken1-weakenS : (m : ℕ) (j : Fin (suc n)) (s : SType n)
→ weakenS m (weaken1'S j s) ≡ weaken1'S (inject+ m j) (weakenS m s)
weaken1-weakenG : (m : ℕ) (j : Fin (suc n)) (g : GType n)
→ weakenG m (weaken1'G j g) ≡ weaken1'G (inject+ m j) (weakenG m g)
weaken1-weakenT : (m : ℕ) (j : Fin (suc n)) (t : Type n)
→ weakenT m (weaken1'T j t) ≡ weaken1'T (inject+ m j) (weakenT m t)
weaken1-weakenS m j (gdd gst) = cong gdd (weaken1-weakenG m j gst)
weaken1-weakenS m j (rec gst) = cong rec (weaken1-weakenG m (suc j) gst)
weaken1-weakenS m zero (var zero) = refl
weaken1-weakenS m zero (var (suc x)) = refl
weaken1-weakenS {suc n} m (suc j) (var zero) = refl
weaken1-weakenS {suc n} m (suc j) (var (suc x)) = cong (var) (cong suc (weaken1-weakenN m j x))
weaken1-weakenG m j (transmit d t s) = cong₂ (transmit d) (weaken1-weakenT m j t) (weaken1-weakenS m j s)
weaken1-weakenG m j (choice d m₁ alt) = cong (choice d m₁) (ext (weaken1-weakenS m j ∘ alt))
weaken1-weakenG m j end = refl
weaken1-weakenT m j TUnit = refl
weaken1-weakenT m j TInt = refl
weaken1-weakenT m j (TPair t t₁) = cong₂ TPair (weaken1-weakenT m j t) (weaken1-weakenT m j t₁)
weaken1-weakenT m j (TChan x) = cong TChan (weaken1-weakenS m j x)
--------------------------------------------------------------------
-- substitution
st-substS : SType (suc n) → Fin (suc n) → SType 0 → SType n
st-substG : GType (suc n) → Fin (suc n) → SType 0 → GType n
st-substT : Type (suc n) → Fin (suc n) → SType 0 → Type n
st-substS (gdd gst) i st0 = gdd (st-substG gst i st0)
st-substS (rec gst) i st0 = rec (st-substG gst (suc i) st0)
st-substS {n} (var zero) zero st0 = weakenS n st0
st-substS {suc n} (var zero) (suc i) st0 = var zero
st-substS {suc n} (var (suc x)) zero st0 = var x
st-substS {suc n} (var (suc x)) (suc i) st0 = weaken1S (st-substS (var x) i st0)
st-substG (transmit d t s) i st0 = transmit d (st-substT t i st0) (st-substS s i st0)
st-substG (choice d m alt) i st0 = choice d m (λ j → st-substS (alt j) i st0)
st-substG end i st0 = end
st-substT TUnit i st0 = TUnit
st-substT TInt i st0 = TInt
st-substT (TPair ty ty₁) i st0 = TPair (st-substT ty i st0) (st-substT ty₁ i st0)
st-substT (TChan st) i st0 = TChan (st-substS st i st0)
--------------------------------------------------------------------
trivial-subst-var : (x : Fin n) (ist₁ ist₂ : SType 0)
→ st-substS (var (suc x)) zero ist₁ ≡ st-substS (var (suc x)) zero ist₂
trivial-subst-var zero ist1 ist2 = refl
trivial-subst-var (suc x) ist1 ist2 = refl
trivial-subst-var' : (i : Fin n) (ist₁ ist₂ : SType 0)
→ st-substS (var zero) (suc i) ist₁ ≡ st-substS (var zero) (suc i) ist₂
trivial-subst-var' zero ist1 ist2 = refl
trivial-subst-var' (suc x) ist1 ist2 = refl
--------------------------------------------------------------------
-- equivalence
variable
t t₁ t₂ t₁' t₂' : Type n
s s₁ s₂ : SType n
g g₁ g₂ : GType n
unfold : SType 0 → GType 0
unfold (gdd gst) = gst
unfold (rec gst) = st-substG gst zero (rec gst)
-- type equivalence
data EquivT (R : SType n → SType n → Set) : Type n → Type n → Set where
eq-unit : EquivT R TUnit TUnit
eq-int : EquivT R TInt TInt
eq-pair : EquivT R t₁ t₁' → EquivT R t₂ t₂' → EquivT R (TPair t₁ t₂) (TPair t₁' t₂')
eq-chan : R s₁ s₂ → EquivT R (TChan s₁) (TChan s₂)
-- session type equivalence
data EquivG (R : SType n → SType n → Set) : GType n → GType n → Set where
eq-transmit : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivG R (transmit d t₁ s₁) (transmit d t₂ s₂)
eq-choice : ∀ {alt alt'} → (d : Dir) → ((i : Fin m) → R (alt i) (alt' i)) → EquivG R (choice d m alt) (choice d m alt')
eq-end : EquivG R end end
record Equiv (s₁ s₂ : SType 0) : Set where
coinductive
field force : EquivG Equiv (unfold s₁) (unfold s₂)
open Equiv
_≈_ = Equiv
_≈'_ = EquivG Equiv
_≈ᵗ_ = EquivT Equiv
-- reflexive
≈-refl : s ≈ s
≈'-refl : g ≈' g
≈ᵗ-refl : t ≈ᵗ t
force (≈-refl {s}) = ≈'-refl
≈'-refl {transmit d t s} = eq-transmit d ≈ᵗ-refl ≈-refl
≈'-refl {choice d m alt} = eq-choice d (λ i → ≈-refl)
≈'-refl {end} = eq-end
≈ᵗ-refl {TUnit} = eq-unit
≈ᵗ-refl {TInt} = eq-int
≈ᵗ-refl {TPair t t₁} = eq-pair ≈ᵗ-refl ≈ᵗ-refl
≈ᵗ-refl {TChan x} = eq-chan ≈-refl
-- symmetric
≈-symm : s₁ ≈ s₂ → s₂ ≈ s₁
≈'-symm : g₁ ≈' g₂ → g₂ ≈' g₁
≈ᵗ-symm : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₁
force (≈-symm s₁≈s₂) = ≈'-symm (force s₁≈s₂)
≈'-symm (eq-transmit d x x₁) = eq-transmit d (≈ᵗ-symm x) (≈-symm x₁)
≈'-symm (eq-choice d x) = eq-choice d (≈-symm ∘ x)
≈'-symm eq-end = eq-end
≈ᵗ-symm eq-unit = eq-unit
≈ᵗ-symm eq-int = eq-int
≈ᵗ-symm (eq-pair t₁≈ᵗt₂ t₁≈ᵗt₃) = eq-pair (≈ᵗ-symm t₁≈ᵗt₂) (≈ᵗ-symm t₁≈ᵗt₃)
≈ᵗ-symm (eq-chan x) = eq-chan (≈-symm x)
| {
"alphanum_fraction": 0.6027059056,
"avg_line_length": 34.6780821918,
"ext": "agda",
"hexsha": "d5c6e97464ed73af4da66bb1fd7d43c2dab2bc2c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "peterthiemann/dual-session",
"max_forks_repo_path": "src/Types/IND1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "peterthiemann/dual-session",
"max_issues_repo_path": "src/Types/IND1.agda",
"max_line_length": 121,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "peterthiemann/dual-session",
"max_stars_repo_path": "src/Types/IND1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z",
"num_tokens": 4284,
"size": 10126
} |
open import Oscar.Prelude
open import Oscar.Data.¶
open import Oscar.Data.Fin
open import Oscar.Data.Substitunction
open import Oscar.Data.Term
open import Oscar.Data.Maybe
open import Oscar.Data.Proposequality
open import Oscar.Data.Vec
open import Oscar.Class.Congruity
open import Oscar.Class.Thickandthin
open import Oscar.Class.Injectivity
open import Oscar.Class.Smap
open import Oscar.Class.Pure
open import Oscar.Class.Apply
import Oscar.Property.Monad.Maybe
import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality
import Oscar.Class.Surjection.⋆
import Oscar.Class.Congruity.Proposequality
import Oscar.Class.Injectivity.Vec
import Oscar.Class.Smap.ExtensionFinExtensionTerm
module Oscar.Property.Thickandthin.FinTermProposequalityMaybeProposequality where
module _ {𝔭} {𝔓 : Ø 𝔭} where
open Substitunction 𝔓
open Term 𝔓
instance
[𝓣hick]FinTerm : [𝓣hick] Fin Term
[𝓣hick]FinTerm = ∁
𝓣hickFinTerm : 𝓣hick Fin Term
𝓣hickFinTerm .𝓣hick.thick x t = thick x ◃ t
[𝓣hick]FinTerms : ∀ {N} → [𝓣hick] Fin (Terms N)
[𝓣hick]FinTerms = ∁
𝓣hickFinTerms : ∀ {N} → 𝓣hick Fin (Terms N)
𝓣hickFinTerms .𝓣hick.thick x t = thick x ◃ t
[𝓣hin]FinTerm : [𝓣hin] Fin Term
[𝓣hin]FinTerm = ∁
𝓣hinFinTerm : 𝓣hin Fin Term
𝓣hinFinTerm .𝓣hin.thin = smap ∘ thin
[𝓣hin]FinTerms : ∀ {N} → [𝓣hin] Fin (Terms N)
[𝓣hin]FinTerms = ∁
𝓣hinFinTerms : ∀ {N} → 𝓣hin Fin (Terms N)
𝓣hinFinTerms .𝓣hin.thin = smap ∘ thin
[𝓘njectivity₂,₁]FinTerm : ∀ {m} → [𝓘njectivity₂,₁] (𝔱hin Fin Term m) Proposequality Proposequality
[𝓘njectivity₂,₁]FinTerm = ∁
𝓘njection₂FinTerm : ∀ {m} → 𝓘njection₂ (λ (_ : ¶⟨< ↑ m ⟩) (_ : Term m) → Term (↑ m))
𝓘njection₂FinTerm {m} .𝓘njection₂.injection₂ = thin
[𝓘njectivity₂,₁]FinTerms : ∀ {N m} → [𝓘njectivity₂,₁] (𝔱hin Fin (Terms N) m) Proposequality Proposequality
[𝓘njectivity₂,₁]FinTerms = ∁
𝓘njection₂FinTerms : ∀ {N m} → 𝓘njection₂ (λ (_ : ¶⟨< ↑ m ⟩) (_ : Terms N m) → Terms N (↑ m))
𝓘njection₂FinTerms {m} .𝓘njection₂.injection₂ = thin
𝓘njection₁-TermI : ∀ {n} → 𝓘njection₁ (λ (_ : ¶⟨< n ⟩) → Term n)
𝓘njection₁-TermI .𝓘njection₁.injection₁ = i
[𝓘njectivity₁]TermI : ∀ {n} → [𝓘njectivity₁] (λ (_ : ¶⟨< n ⟩) → Term n) Proposequality Proposequality
[𝓘njectivity₁]TermI = ∁
𝓘njectivity₁TermI : ∀ {n} → 𝓘njectivity₁ (λ (_ : ¶⟨< n ⟩) → Term n) Proposequality Proposequality
𝓘njectivity₁TermI {n} .𝓘njectivity₁.injectivity₁ ∅ = ∅
𝓘njection₂-TermFork : ∀ {n} → 𝓘njection₂ (λ (_ : Term n) (_ : Term n) → Term n)
𝓘njection₂-TermFork .𝓘njection₂.injection₂ = _fork_
[𝓘njection₂,₀,₁]-TermFork : ∀ {n} → [𝓘njectivity₂,₀,₁] (λ (_ : Term n) (_ : Term n) → Term n) Proposequality Proposequality
[𝓘njection₂,₀,₁]-TermFork = ∁
𝓘njection₂,₀,₁-TermFork : ∀ {n} → 𝓘njectivity₂,₀,₁ (λ (_ : Term n) (_ : Term n) → Term n) Proposequality Proposequality
𝓘njection₂,₀,₁-TermFork .𝓘njectivity₂,₀,₁.injectivity₂,₀,₁ ∅ = ∅
[𝓘njection₂,₀,₂]-TermFork : ∀ {n} → [𝓘njectivity₂,₀,₂] (λ (_ : Term n) (_ : Term n) → Term n) Proposequality Proposequality
[𝓘njection₂,₀,₂]-TermFork = ∁
𝓘njection₂,₀,₂-TermFork : ∀ {n} → 𝓘njectivity₂,₀,₂ (λ (_ : Term n) (_ : Term n) → Term n) Proposequality Proposequality
𝓘njection₂,₀,₂-TermFork .𝓘njectivity₂,₀,₂.injectivity₂,₀,₂ ∅ = ∅
𝓘njection₃TermFunction : ∀ {n} → 𝓘njection₃ (λ (_ : 𝔓) (N : ¶) (_ : Terms N n) → Term n)
𝓘njection₃TermFunction {n} .𝓘njection₃.injection₃ p N ts = function p ts
[𝓘njectivity₃,₀,₁]TermFunction : ∀ {n} → [𝓘njectivity₃,₀,₁] (λ (_ : 𝔓) (N : ¶) (_ : Terms N n) → Term n) Proposequality Proposequality
[𝓘njectivity₃,₀,₁]TermFunction = ∁
𝓘njectivity₃,₀,₁TermFunction : ∀ {n} → 𝓘njectivity₃,₀,₁ (λ (_ : 𝔓) (N : ¶) (_ : Terms N n) → Term n) Proposequality Proposequality
𝓘njectivity₃,₀,₁TermFunction .𝓘njectivity₃,₀,₁.injectivity₃,₀,₁ ∅ = ∅
[𝓘njectivity₃,₀,₂]TermFunction : ∀ {n} → [𝓘njectivity₃,₀,₂] (λ (_ : 𝔓) (N : ¶) (_ : Terms N n) → Term n) Proposequality Proposequality
[𝓘njectivity₃,₀,₂]TermFunction = ∁
𝓘njectivity₃,₀,₂TermFunction : ∀ {n} → 𝓘njectivity₃,₀,₂ (λ (_ : 𝔓) (N : ¶) (_ : Terms N n) → Term n) Proposequality Proposequality
𝓘njectivity₃,₀,₂TermFunction .𝓘njectivity₃,₀,₂.injectivity₃,₀,₂ ∅ = ∅
𝓘njection₂TermFunction : ∀ {N n} → 𝓘njection₂ (λ (_ : 𝔓) (_ : Terms N n) → Term n)
𝓘njection₂TermFunction {N} {n} .𝓘njection₂.injection₂ p ts = function p ts
[𝓘njectivity₂,₀,₂]TermFunction : ∀ {N n} → [𝓘njectivity₂,₀,₂] (λ (_ : 𝔓) (_ : Terms N n) → Term n) Proposequality Proposequality
[𝓘njectivity₂,₀,₂]TermFunction = ∁
𝓘njectivity₂,₀,₂TermFunction : ∀ {N n} → 𝓘njectivity₂,₀,₂ (λ (_ : 𝔓) (_ : Terms N n) → Term n) Proposequality Proposequality
𝓘njectivity₂,₀,₂TermFunction .𝓘njectivity₂,₀,₂.injectivity₂,₀,₂ ∅ = ∅
mutual
instance
𝓘njectivity₂,₁FinTerm : ∀ {m} → 𝓘njectivity₂,₁ (𝔱hin Fin Term m) Proposequality Proposequality
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ x {i _} {i _} eq = congruity i (injectivity₂,₁ x (injectivity₁[ Proposequality ] eq))
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {i _} {leaf} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {i _} {_ fork _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {i _} {function _ _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {leaf} {i _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {leaf} {leaf} _ = ∅
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {leaf} {_ fork _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {leaf} {function _ _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {_ fork _} {i _} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {_ fork _} {leaf} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ x {y₁ fork y₂} {y₃ fork y₄} eq
rewrite injectivity₂,₁ {_∼₂_ = Proposequality} x {y₁ = y₁} (injectivity₂,₀,₁[ Proposequality ] eq)
| injectivity₂,₁ {_∼₂_ = Proposequality} x {y₁ = y₂} (injectivity₂,₀,₂[ Proposequality ] eq)
= ∅
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {y₁ fork y₂} {function x₁ x₂} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {function _ _} {i x₃} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {function _ _} {leaf} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ _ {function _ _} {y₂ fork y₃} ()
𝓘njectivity₂,₁FinTerm .𝓘njectivity₂,₁.injectivity₂,₁ x {function p1 {N1} ts1} {function p2 {N2} ts2} t₁≡t₂
rewrite injectivity₃,₀,₁[ Proposequality ] {x₂ = p2} t₁≡t₂
with injectivity₃,₀,₂[ Proposequality ] {y₂ = N2} t₁≡t₂
… | ∅
with injectivity₂,₀,₂[ Proposequality ] {y₂ = thin x ts2} t₁≡t₂
… | ts₁≡ts₂ = congruity (function p2) (injectivity₂,₁ x ts₁≡ts₂)
𝓘njectivity₂,₁FinTerms : ∀ {N m} → 𝓘njectivity₂,₁ (𝔱hin Fin (Terms N) m) Proposequality Proposequality
𝓘njectivity₂,₁FinTerms .𝓘njectivity₂,₁.injectivity₂,₁ x {∅} {∅} x₁ = ∅
𝓘njectivity₂,₁FinTerms .𝓘njectivity₂,₁.injectivity₂,₁ x {_ , _} {t₂ , ts₂} eq
rewrite injectivity₂,₁ {_∼₂_ = Proposequality} x {y₂ = t₂} (injectivity₂,₀,₁[ Proposequality ] eq)
| injectivity₂,₁ {_∼₂_ = Proposequality} x {y₂ = ts₂} (injectivity₂,₀,₂[ Proposequality ] eq)
= ∅
instance
[𝓒heck]FinTermMaybe : [𝓒heck] Fin Term Maybe
[𝓒heck]FinTermMaybe = ∁
[𝓒heck]FinTermsMaybe : ∀ {N} → [𝓒heck] Fin (Terms N) Maybe
[𝓒heck]FinTermsMaybe = ∁
open import Oscar.Class.Smap
open import Oscar.Class.Fmap
mutual
instance
𝓒heckFinTermMaybe : 𝓒heck Fin Term Maybe
𝓒heckFinTermMaybe .𝓒heck.check x (i y) = ⦇ i (check x y) ⦈
𝓒heckFinTermMaybe .𝓒heck.check x leaf = ⦇ leaf ⦈
𝓒heckFinTermMaybe .𝓒heck.check x (y₁ fork y₂) = ⦇ _fork_ (check x y₁) (check x y₂) ⦈
𝓒heckFinTermMaybe .𝓒heck.check x (function p ts) = ⦇ (function p) (check x ts) ⦈
𝓒heckFinTermsMaybe : ∀ {N} → 𝓒heck Fin (Terms N) Maybe
𝓒heckFinTermsMaybe .𝓒heck.check _ ∅ = ⦇ ∅ ⦈
𝓒heckFinTermsMaybe .𝓒heck.check x (t , ts) = ⦇ check x t , check x ts ⦈
instance
[𝓣hick/thin=1]FinTermProposequality : [𝓣hick/thin=1] Fin Term Proposequality
[𝓣hick/thin=1]FinTermProposequality = ∁
[𝓣hick/thin=1]FinTermsProposequality : ∀ {N} → [𝓣hick/thin=1] Fin (Terms N) Proposequality
[𝓣hick/thin=1]FinTermsProposequality = ∁
mutual
instance
𝓣hick/thin=1FinTermProposequality : 𝓣hick/thin=1 Fin Term Proposequality
𝓣hick/thin=1FinTermProposequality .𝓣hick/thin=1.thick/thin=1 x (i y) rewrite thick/thin=1 {_≈_ = Proposequality} x y = ∅ -- congruity i $ thick/thin=1 x y
𝓣hick/thin=1FinTermProposequality .𝓣hick/thin=1.thick/thin=1 x leaf = ∅
𝓣hick/thin=1FinTermProposequality .𝓣hick/thin=1.thick/thin=1 x (y₁ fork y₂) = congruity₂ _fork_ (thick/thin=1 x y₁) (thick/thin=1 x y₂)
𝓣hick/thin=1FinTermProposequality .𝓣hick/thin=1.thick/thin=1 x (function p ts) = congruity (function p) (thick/thin=1 x ts)
𝓣hick/thin=1FinTermsProposequality : ∀ {N} → 𝓣hick/thin=1 Fin (Terms N) Proposequality
𝓣hick/thin=1FinTermsProposequality .𝓣hick/thin=1.thick/thin=1 x ∅ = ∅
𝓣hick/thin=1FinTermsProposequality .𝓣hick/thin=1.thick/thin=1 x (t , ts) = congruity₂ _,_ (thick/thin=1 x t) (thick/thin=1 x ts)
instance
[𝓒heck/thin=1]FinTermMaybe : [𝓒heck/thin=1] Fin Term Maybe Proposequality
[𝓒heck/thin=1]FinTermMaybe = ∁
[𝓒heck/thin=1]FinTermsMaybe : ∀ {N} → [𝓒heck/thin=1] Fin (Terms N) Maybe Proposequality
[𝓒heck/thin=1]FinTermsMaybe = ∁
mutual
instance
𝓒heck/thin=1FinTermMaybe : 𝓒heck/thin=1 Fin Term Maybe Proposequality
𝓒heck/thin=1FinTermMaybe .𝓒heck/thin=1.check/thin=1 x (i y) rewrite check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x y = ∅
𝓒heck/thin=1FinTermMaybe .𝓒heck/thin=1.check/thin=1 x leaf = ∅
𝓒heck/thin=1FinTermMaybe .𝓒heck/thin=1.check/thin=1 x (y₁ fork y₂)
rewrite check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x y₁
| check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x y₂
= ∅
𝓒heck/thin=1FinTermMaybe .𝓒heck/thin=1.check/thin=1 x (function p ys) rewrite check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x ys = ∅
𝓒heck/thin=1FinTermsMaybe : ∀ {N} → 𝓒heck/thin=1 Fin (Terms N) Maybe Proposequality
𝓒heck/thin=1FinTermsMaybe .𝓒heck/thin=1.check/thin=1 x ∅ = ∅
𝓒heck/thin=1FinTermsMaybe .𝓒heck/thin=1.check/thin=1 x (y , ys)
rewrite check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x y
| check/thin=1 {_≈_ = Proposequality⟦ Maybe _ ⟧} x ys
= ∅
instance
IsThickandthinFinTerm : IsThickandthin Fin Term Proposequality Maybe Proposequality
IsThickandthinFinTerm = ∁
IsThickandthinFinTerms : ∀ {N} → IsThickandthin Fin (Terms N) Proposequality Maybe Proposequality
IsThickandthinFinTerms = ∁
module _ {𝔭} (𝔓 : Ø 𝔭) where
open Substitunction 𝔓
open Term 𝔓
ThickandthinFinTerm : Thickandthin _ _ _ _ _ _
ThickandthinFinTerm = ∁ Fin Term Proposequality Maybe Proposequality
ThickandthinFinTerms : ∀ N → Thickandthin _ _ _ _ _ _
ThickandthinFinTerms N = ∁ Fin (Terms N) Proposequality Maybe Proposequality
| {
"alphanum_fraction": 0.674842823,
"avg_line_length": 45.3534136546,
"ext": "agda",
"hexsha": "5c7dd013dbcab808b49779c5f75c3f181aff5818",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Thickandthin/FinTermProposequalityMaybeProposequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Thickandthin/FinTermProposequalityMaybeProposequality.agda",
"max_line_length": 160,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Thickandthin/FinTermProposequalityMaybeProposequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4773,
"size": 11293
} |
------------------------------------------------------------------------------
-- Proving properties without using pattern matching on refl
------------------------------------------------------------------------------
{-# OPTIONS --no-pattern-matching #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
module FOT.PA.Inductive2Standard.NoPatternMatchingOnRefl where
open import PA.Inductive.Base
------------------------------------------------------------------------------
-- From PA.Inductive2Standard
-- 20 May 2013. Requires the predecessor function.
-- PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n
| {
"alphanum_fraction": 0.4349710983,
"avg_line_length": 36.4210526316,
"ext": "agda",
"hexsha": "640d5b89bf458f4428c983657e9e0e0f4d2d3ef4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/PA/Inductive2Standard/NoPatternMatchingOnRefl.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/PA/Inductive2Standard/NoPatternMatchingOnRefl.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/PA/Inductive2Standard/NoPatternMatchingOnRefl.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 121,
"size": 692
} |
module Syntax where
import Level
open import Data.Empty
open import Data.Unit as Unit
open import Data.Nat
open import Data.List as List renaming ([] to Ø; [_] to [_]L)
open import NonEmptyList as NList
open import Data.Vec as Vec hiding ([_]; _++_)
open import Data.Product as Prod
open import Function
open import Relation.Binary.PropositionalEquality as PE hiding ([_])
open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid)
open ≡-Reasoning
open import Common.Context as Context
open import Algebra
open Monoid {{ ... }} hiding (refl)
open import SyntaxRaw
infixr 5 _§ₒ_ _§ₘ_
-----------------------------------------
--- Separate types and terms
-----------------------------------------
mutual
data DecentType : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → Raw Θ Γ₁ Γ₂ → Set where
DT-⊤ : (Θ : TyCtx) (Γ : RawCtx) → DecentType (⊤-Raw Θ Γ)
DT-tyVar : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ : RawCtx} →
(X : TyVar Θ Γ₂) → DecentType (tyVarRaw Γ₁ X)
DT-inst : ∀{Θ Γ₁ Γ₂ A} →
(B : Raw Θ Γ₁ (Γ₂ ↑ A)) → (t : Raw Ø Γ₁ Ø) →
DecentType B → DecentTerm t →
DecentType (instRaw {Γ₂ = Γ₂} B t)
DT-paramAbstr : ∀{Θ Γ₂} {B : U} (Γ₁ : RawCtx) →
{A : Raw Θ (B ∷ Γ₁) Γ₂} →
DecentType A →
DecentType (paramAbstrRaw Γ₁ A)
DT-fp : ∀{Θ Γ₂} (Γ₁ : RawCtx) →
(ρ : FP) → (D : FpData Raw Θ Γ₂) →
DecentFpData D →
DecentType (fpRaw Γ₁ ρ D)
data DecentTerm : {Γ₁ Γ₂ : RawCtx} → Raw Ø Γ₁ Γ₂ → Set where
DO-unit : (Γ : RawCtx) → DecentTerm (unitRaw Γ)
DO-objVar : {Γ : RawCtx} {A : U} →
(x : RawVar Γ A) → DecentTerm (objVarRaw x)
DO-inst : {Γ₁ Γ₂ : RawCtx} {A : U} →
(t : Raw Ø Γ₁ (Γ₂ ↑ A)) → (s : Raw Ø Γ₁ Ø) →
DecentTerm t → DecentTerm s →
DecentTerm (instRaw {Γ₂ = Γ₂} t s)
DO-dialg : (Δ : RawCtx) (Γ : RawCtx) (A : U) →
(ρ : FP) (k : ℕ) →
DecentTerm (dialgRaw Δ Γ A ρ k)
DO-mapping : (Γ : RawCtx) (Δ : RawCtx) →
(gs : FpMapData Raw Γ) → (ρ : FP) →
DecentFpMapData gs →
DecentTerm (recRaw Γ Δ gs ρ)
DecentFpMapData : {Γ : RawCtx} → FpMapData Raw Γ → Set
DecentFpMapData [ (Γ' , A , f , t) ] =
DecentType A × DecentCtxMor f × DecentTerm t
DecentFpMapData ((Γ' , A , f , t) ∷ ts) =
DecentType A × DecentCtxMor f × DecentTerm t × DecentFpMapData ts
DecentCtxMor : {Γ₁ Γ₂ : RawCtx} → CtxMor Raw Γ₁ Γ₂ → Set
DecentCtxMor {Γ₂ = Ø} [] = ⊤
DecentCtxMor {Γ₂ = x ∷ Γ₂} (t ∷ f) = DecentTerm t × DecentCtxMor f
DecentFpData : ∀{Θ Γ₂} → FpData Raw Θ Γ₂ → Set
DecentFpData [ Γ , f , A ] = DecentCtxMor f × DecentType A
DecentFpData ((Γ , f , A) ∷ D)
= (DecentCtxMor f × DecentType A) × DecentFpData D
{-
DT-syntax : (Θ : TyCtx) (Γ₁ Γ₂ : RawCtx) → Raw Θ Γ₁ Γ₂ → Set
DT-syntax _ _ _ A = DecentType A
syntax DT-syntax Θ Γ₁ Γ₁ A = Θ ∥ Γ₁ ⊨ A ε Γ₂ ━
DO-syntax : (Γ₁ Γ₂ : RawCtx) → Raw Ø Γ₁ Γ₂ → Set
DO-syntax _ _ t = DecentTerm t
syntax DO-syntax Γ₁ Γ₂ t = Γ₁ ⊢ t ∈ Γ₂ ⊸?
-}
-------------------------------------
------- Pre-types and terms
-------------------------------------
PreType : (Θ : TyCtx) (Γ₁ Γ₂ : RawCtx) → Set
PreType Θ Γ₁ Γ₂ = Σ (Raw Θ Γ₁ Γ₂) λ A → DecentType A
_∣_/_⊸Ty = PreType
mkPreType : ∀ {Θ Γ₁ Γ₂} {A : Raw Θ Γ₁ Γ₂} → DecentType A → PreType Θ Γ₁ Γ₂
mkPreType {A = A} p = (A , p)
PreTerm : (Γ₁ Γ₂ : RawCtx) → Set
PreTerm Γ₁ Γ₂ = Σ (Raw Ø Γ₁ Γ₂) λ t → DecentTerm t
mkPreTerm : ∀ {Γ₁ Γ₂} {t : Raw Ø Γ₁ Γ₂} → DecentTerm t → PreTerm Γ₁ Γ₂
mkPreTerm {t = t} p = (t , p)
CtxMorP = CtxMor (λ _ → PreTerm)
mkCtxMorP : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
DecentCtxMor f → CtxMorP Γ₁ Γ₂
mkCtxMorP {Γ₂ = Ø} p = []
mkCtxMorP {Γ₂ = x ∷ Γ₂} {t ∷ f} (p , ps) = (t , p) ∷ (mkCtxMorP ps)
TyCtxMorP : TyCtx → TyCtx → Set
TyCtxMorP Θ₁ Ø = ⊤
TyCtxMorP Θ₁ (Γ ∷ Θ₂) = PreType Θ₁ Ø Γ × TyCtxMorP Θ₁ Θ₂
FpDataP : TyCtx → RawCtx → Set
FpDataP Θ Γ = NList (Σ RawCtx (λ Γ' → CtxMorP Γ' Γ × PreType (Γ ∷ Θ) Γ' Ø))
mkFpDataP : ∀ {Θ Γ} {D : FpData Raw Θ Γ} → DecentFpData D → FpDataP Θ Γ
mkFpDataP {D = [ Γ , f , A ]} (p , q) = [ Γ , (mkCtxMorP p) , mkPreType q ]
mkFpDataP {D = (Γ , f , A) ∷ D} ((p , q) , r) =
(Γ , mkCtxMorP p , mkPreType q) ∷ mkFpDataP {D = D} r
-- | List of types, context morphisms and terms (Aₖ, fₖ, gₖ) such that
-- Γₖ, x : Aₖ[C/X] ⊢ gₖ : C fₖ or
-- Γₖ, x : C fₖ ⊢ gₖ : Aₖ[C/X],
-- which are the premisses of the rule for recursion and corecursion,
-- respectively.
FpMapDataP : RawCtx → Set
FpMapDataP Γ = NList (Σ RawCtx λ Γ' →
PreType [ Γ ]L Γ' Ø × CtxMorP Γ' Γ × PreTerm (∗ ∷ Γ') Ø)
mkFpMapDataP : ∀{Γ} {gs : FpMapData Raw Γ} → DecentFpMapData gs → FpMapDataP Γ
mkFpMapDataP {Γ} {[ Γ' , A , f , t ]} (A-decent , f-decent , t-decent) =
[ Γ' , mkPreType A-decent , mkCtxMorP f-decent , mkPreTerm t-decent ]
mkFpMapDataP {Γ} {(Γ' , A , f , t) ∷ gs} (A-decent , f-decent , t-decent , r) =
(Γ' , mkPreType A-decent , mkCtxMorP f-decent , mkPreTerm t-decent)
∷ mkFpMapDataP {Γ} {gs} r
getFpData : ∀{Γ} → FpMapDataP Γ → FpDataP Ø Γ
getFpData [ Γ' , A , f , _ ] = [ Γ' , f , A ]
getFpData ((Γ' , A , f , _) ∷ d) = (Γ' , f , A) ∷ getFpData d
projCtxMor₁ : {Γ₁ Γ₂ : RawCtx} → CtxMorP Γ₂ Γ₁ → CtxMor Raw Γ₂ Γ₁
projCtxMor₁ = Vec.map proj₁
projCtxMor₂ : {Γ₁ Γ₂ : RawCtx} →
(f : CtxMorP Γ₂ Γ₁) → DecentCtxMor (projCtxMor₁ f)
projCtxMor₂ {Ø} [] = tt
projCtxMor₂ {x ∷ Γ₁} ((t , p) ∷ f) = (p , projCtxMor₂ f)
projPTList₁ : ∀{Γ} → FpMapDataP Γ → FpMapData Raw Γ
projPTList₁ =
NList.map (Prod.map id (Prod.map proj₁ (Prod.map projCtxMor₁ proj₁)))
projPTList₂ : ∀{Γ} → (gs : FpMapDataP Γ) → DecentFpMapData (projPTList₁ gs)
projPTList₂ [ (Γ' , A , f , t) ] = (proj₂ A , projCtxMor₂ f , proj₂ t)
projPTList₂ ((Γ' , A , f , t) ∷ gs) =
(proj₂ A , projCtxMor₂ f , proj₂ t , projPTList₂ gs)
projFpData₁ : ∀ {Θ Γ} → FpDataP Θ Γ → FpData Raw Θ Γ
projFpData₁ = NList.map (Prod.map id (Prod.map projCtxMor₁ proj₁))
projFpData₂ : ∀ {Θ Γ} → (D : FpDataP Θ Γ) → DecentFpData (projFpData₁ D)
projFpData₂ [ (Γ , f , A) ] = (projCtxMor₂ f , proj₂ A)
projFpData₂ ((Γ , f , A) ∷ D) = ((projCtxMor₂ f , proj₂ A) , projFpData₂ D)
-----------------------------------------
----- Constructors for pre terms
-----------------------------------------
⊤-PT : (Θ : TyCtx) (Γ : RawCtx) → PreType Θ Γ Ø
⊤-PT Θ Γ = mkPreType (DT-⊤ Θ Γ)
instPT : ∀ {Θ Γ₁ Γ₂ A} → PreType Θ Γ₁ (Γ₂ ↑ A) → PreTerm Γ₁ Ø → PreType Θ Γ₁ Γ₂
instPT (B , p) (t , q) = mkPreType (DT-inst _ _ p q)
_⊙_ = instPT
tyVarPT : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ : RawCtx} → TyVar Θ Γ₂ → PreType Θ Γ₁ Γ₂
tyVarPT Γ₁ X = mkPreType (DT-tyVar _ X)
paramAbstrPT : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) {A : U} →
PreType Θ (A ∷ Γ₁) Γ₂ → PreType Θ Γ₁ (Γ₂ ↑ A)
paramAbstrPT Γ₁ (A , p) = mkPreType (DT-paramAbstr Γ₁ p)
fpPT : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) →
FP → FpDataP Θ Γ₂ → PreType Θ Γ₁ Γ₂
fpPT Γ₁ ρ D = mkPreType (DT-fp Γ₁ ρ (projFpData₁ D) (projFpData₂ D))
unitPO : (Γ : RawCtx) → PreTerm Γ Ø
unitPO Γ = mkPreTerm (DO-unit _)
varPO : {Γ : RawCtx} {A : U} → RawVar Γ A → PreTerm Γ Ø
varPO x = mkPreTerm (DO-objVar x)
instPO : ∀ {Γ₁ Γ₂ A} → PreTerm Γ₁ (Γ₂ ↑ A) → PreTerm Γ₁ Ø → PreTerm Γ₁ Γ₂
instPO (t , p) (s , q) = mkPreTerm (DO-inst _ _ p q)
_§ₒ_ = instPO
dialgPO : (Δ : RawCtx) (Γ : RawCtx) (A : U) → FP → ℕ → PreTerm Δ (A ∷ Γ)
dialgPO Δ Γ A ρ k = mkPreTerm (DO-dialg _ Γ A ρ k)
α : (Δ : RawCtx) (Γ : RawCtx) (A : U) → ℕ → PreTerm Δ (A ∷ Γ)
α Δ Γ A k = dialgPO Δ Γ A μ k
ξ : (Δ : RawCtx) (Γ : RawCtx) (A : U) → ℕ → PreTerm Δ (A ∷ Γ)
ξ Δ Γ A k = dialgPO Δ Γ A ν k
-- | Generalised recursion, does recursion or corecursion, depending on ρ
grec : (Γ : RawCtx) (Δ : RawCtx) →
FpMapDataP Γ → FP → PreTerm Δ (∗ ∷ Γ)
grec Γ Δ gs ρ = mkPreTerm (DO-mapping Γ Δ (projPTList₁ gs) ρ (projPTList₂ gs))
-- | Recursion for inductive types
rec : (Γ : RawCtx) (Δ : RawCtx) →
FpMapDataP Γ → PreTerm Δ (∗ ∷ Γ)
rec Γ Δ gs = grec Γ Δ gs μ
-- Corecursion
corec : (Γ : RawCtx) (Δ : RawCtx) →
FpMapDataP Γ → PreTerm Δ (∗ ∷ Γ)
corec Γ Δ gs = grec Γ Δ gs ν
instWCtxMorP : {Γ₁ Γ₂ Γ₃ : RawCtx} →
PreTerm Γ₁ (Γ₃ ++ Γ₂) → CtxMorP Γ₁ Γ₂ → PreTerm Γ₁ Γ₃
instWCtxMorP {Γ₁} {Ø} {Γ₃} t [] = subst (PreTerm Γ₁) (proj₂ identity Γ₃) t
instWCtxMorP {Γ₁} {x ∷ Γ₂} {Γ₃} t (s ∷ f) =
instPO
(instWCtxMorP {Γ₂ = Γ₂} {Γ₃ = Γ₃ ↑ x}
(subst (PreTerm Γ₁) (mvVar _ Γ₃ x) t) f)
s
_§ₘ'_ = instWCtxMorP
_§ₘ_ : {Γ₁ Γ₂ : RawCtx} →
PreTerm Γ₁ Γ₂ → CtxMorP Γ₁ Γ₂ → PreTerm Γ₁ Ø
t §ₘ f = instWCtxMorP {Γ₃ = Ø} t f
instTyWCtxMorP : ∀ {Θ Γ₁ Γ₂ Γ₃} →
PreType Θ Γ₁ (Γ₃ ++ Γ₂) → CtxMorP Γ₁ Γ₂ → PreType Θ Γ₁ Γ₃
instTyWCtxMorP {Θ} {Γ₁} {Ø} {Γ₃} A [] =
subst (PreType Θ Γ₁) (proj₂ identity Γ₃) A
instTyWCtxMorP {Θ} {Γ₁} {x ∷ Γ₂} {Γ₃} A (s ∷ f) =
(instTyWCtxMorP (subst (PreType Θ Γ₁) (mvVar _ Γ₃ x) A) f) ⊙ s
_§ₜ_ : ∀ {Θ Γ₁ Γ₂} →
PreType Θ Γ₁ Γ₂ → CtxMorP Γ₁ Γ₂ → PreType Θ Γ₁ Ø
A §ₜ f = instTyWCtxMorP {Γ₃ = Ø} A f
---------------------------------------------------------
--------- Recursion for pre-types
---------------------------------------------------------
FpDataP' : (TyCtx → RawCtx → RawCtx → Set) → TyCtx → RawCtx → Set
FpDataP' V Θ Γ = NList (Σ RawCtx (λ Γ' → CtxMorP Γ' Γ × V (Γ ∷ Θ) Γ' Ø))
{-# NON_TERMINATING #-}
mapPT : {V : TyCtx → RawCtx → RawCtx → Set} →
((Θ : TyCtx) (Γ₁ : RawCtx) → V Θ Γ₁ Ø) →
(∀{Θ Γ₁ Γ₂} → TyVar Θ Γ₂ → V Θ Γ₁ Γ₂) →
(∀{Θ Γ₁ Γ₂ A} → V Θ Γ₁ (Γ₂ ↑ A) → PreTerm Γ₁ Ø → V Θ Γ₁ Γ₂) →
(∀{Θ Γ₁ Γ₂ A} → V Θ (A ∷ Γ₁) Γ₂ → V Θ Γ₁ (Γ₂ ↑ A)) →
(∀{Θ Γ₁ Γ₂} → FP → FpDataP' V Θ Γ₂ → V Θ Γ₁ Γ₂) →
∀{Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → V Θ Γ₁ Γ₂
mapPT ⊤-x _ _ _ _ (._ , DT-⊤ Θ Γ) = ⊤-x Θ Γ
mapPT _ var-x _ _ _ (._ , DT-tyVar Γ₁ X) = var-x X
mapPT ⊤-x var-x inst-x abstr-x fp-x (._ , DT-inst B t B-dec t-dec) =
let r = mapPT ⊤-x var-x inst-x abstr-x fp-x (B , B-dec)
in inst-x r (t , t-dec)
mapPT ⊤-x var-x inst-x abstr-x fp-x (._ , DT-paramAbstr Γ₁ {A} A-dec) =
let r = mapPT ⊤-x var-x inst-x abstr-x fp-x (A , A-dec)
in abstr-x r
mapPT ⊤-x var-x inst-x abstr-x fp-x (._ , DT-fp Γ₁ ρ D D-dec) =
let D' = NList.map
(Prod.map id
(Prod.map id
(mapPT ⊤-x var-x inst-x abstr-x fp-x))) (mkFpDataP {D = D} D-dec)
in fp-x ρ D'
----------------------------------------------------------
--------- Meta theory for decent type predicate
---------------------------------------------------------
weakenDO : (Γ₁ : RawCtx) → {Γ₂ Γ₃ : RawCtx} {t : Raw Ø (Γ₁ ++ Γ₂) Γ₃} →
(A : U) → DecentTerm t → DecentTerm (weaken Γ₁ A t)
weakenDO Γ₁ B (DO-unit ._) = DO-unit _
weakenDO Γ₁ B (DO-objVar x) = DO-objVar (weakenObjVar Γ₁ B x)
weakenDO Γ₁ B (DO-inst t s p q) =
DO-inst _ _ (weakenDO Γ₁ B p) (weakenDO Γ₁ B q)
weakenDO Γ₁ B (DO-dialg ._ Γ A ρ k) = DO-dialg _ _ A ρ k
weakenDO Γ₁ B (DO-mapping Γ ._ gs ρ p) = DO-mapping Γ _ gs ρ p
weakenDT : ∀ {Θ} → (Γ₁ : RawCtx) → {Γ₂ Γ₃ : RawCtx} {A : Raw Θ (Γ₁ ++ Γ₂) Γ₃} →
(B : U) → DecentType A → DecentType (weaken Γ₁ B A)
weakenDT Γ₁ B (DT-⊤ Θ ._) = DT-⊤ Θ _
weakenDT Γ₁ B (DT-tyVar _ X) = DT-tyVar _ X
weakenDT Γ₁ B (DT-inst A t p q) =
DT-inst _ _ (weakenDT Γ₁ B p) (weakenDO Γ₁ B q)
weakenDT Γ₁ B (DT-paramAbstr _ p) = DT-paramAbstr _ (weakenDT _ B p)
weakenDT Γ₁ B (DT-fp _ ρ D p) = DT-fp _ ρ D p
weakenDO₁ : ∀ {Γ₁ Γ₂} {t : Raw Ø Γ₁ Γ₂} →
(A : U) → DecentTerm t → DecentTerm (weaken₁ A t)
weakenDO₁ = weakenDO Ø
weakenDT₁ : ∀ {Θ Γ₁ Γ₂} {A : Raw Θ Γ₁ Γ₂} →
(B : U) → DecentType A → DecentType (weaken₁ B A)
weakenDT₁ = weakenDT Ø
weakenDecentCtxMor : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
(A : U) → DecentCtxMor f →
DecentCtxMor (Vec.map (weaken₁ A) f)
weakenDecentCtxMor {Γ₂ = Ø} {[]} A p = tt
weakenDecentCtxMor {Γ₂ = x ∷ Γ₂} {t ∷ f} A (p , ps) =
(weakenDO₁ A p , weakenDecentCtxMor A ps)
weakenCtxMorP : {Γ₁ Γ₂ : RawCtx} → CtxMorP Γ₁ Γ₂ → CtxMorP (∗ ∷ Γ₁) Γ₂
weakenCtxMorP f = mkCtxMorP (weakenDecentCtxMor ∗ (projCtxMor₂ f))
-----------------------------------------------------
------ Meta operations on pre-terms and pre-types
-----------------------------------------------------
weakenPT : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ Γ₃ : RawCtx} →
(A : U) → PreType Θ (Γ₁ ++ Γ₂) Γ₃ → PreType Θ (Γ₁ ++ A ∷ Γ₂) Γ₃
weakenPT Γ₁ A (B , p) = (_ , weakenDT Γ₁ A p)
weakenPT₁ : ∀ {Θ Γ₁ Γ₂} → (A : U) → PreType Θ Γ₁ Γ₂ → PreType Θ (A ∷ Γ₁) Γ₂
weakenPT₁ = weakenPT Ø
weakenPO : (Γ₁ : RawCtx) {Γ₂ Γ₃ : RawCtx} →
(A : U) → PreTerm (Γ₁ ++ Γ₂) Γ₃ → PreTerm (Γ₁ ++ A ∷ Γ₂) Γ₃
weakenPO Γ₁ A (t , p) = (_ , weakenDO Γ₁ A p)
weakenPO₁ : {Γ₁ Γ₂ : RawCtx} → (A : U) → PreTerm Γ₁ Γ₂ → PreTerm (A ∷ Γ₁) Γ₂
weakenPO₁ = weakenPO Ø
get' : {Γ₁ Γ₂ : RawCtx} {A : U} →
(f : CtxMor (λ _ → PreTerm) Γ₂ Γ₁) →
(x : RawVar Γ₁ A) →
DecentTerm (get {Raw} (projCtxMor₁ f) x)
get' (t ∷ f) zero = proj₂ t
get' (t ∷ f) (succ {b = _} _ x) = get' f x
-- | Lift substitutions to DecentTerm predicate
substDO : {Γ₁ Γ Γ₂ : RawCtx} {t : Raw Ø Γ₁ Γ} →
(f : CtxMorP Γ₂ Γ₁) →
DecentTerm t → DecentTerm (substRaw t (projCtxMor₁ f))
substDO f (DO-unit Γ₁) = DO-unit _
substDO f (DO-objVar x) = get' f x
substDO f (DO-inst t s p q) = DO-inst _ _ (substDO f p) (substDO f q)
substDO f (DO-dialg Γ₁ Γ A ρ k) = DO-dialg _ _ A ρ k
substDO f (DO-mapping Γ Γ₁ gs ρ p) = DO-mapping Γ _ _ _ p
-- | Lift substRaw to pre terms
substP : {Γ₁ Γ Γ₂ : RawCtx} →
PreTerm Γ₁ Γ → CtxMorP Γ₂ Γ₁ → PreTerm Γ₂ Γ
substP (t , p) f = (substRaw t (projCtxMor₁ f) , substDO f p)
_↓[_] = substP
-- | Context identity is a decent context morphism
ctxidDO : (Γ : RawCtx) → DecentCtxMor (ctxid Γ)
ctxidDO Ø = tt
ctxidDO (x ∷ Γ) = (DO-objVar zero , weakenDecentCtxMor _ (ctxidDO Γ))
mkCtxMorP₁ : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
(p : DecentCtxMor f) → projCtxMor₁ (mkCtxMorP p) ≡ f
mkCtxMorP₁ {Γ₂ = Ø} {[]} p = refl
mkCtxMorP₁ {Γ₂ = A ∷ Γ₂} {t ∷ f} (p , ps) =
begin
projCtxMor₁ {A ∷ Γ₂} ((t , p) ∷ mkCtxMorP ps)
≡⟨ refl ⟩
t ∷ projCtxMor₁ (mkCtxMorP ps)
≡⟨ cong (λ u → t ∷ u) (mkCtxMorP₁ ps) ⟩
t ∷ f
∎
ctxidP : (Γ : RawCtx) → CtxMorP Γ Γ
ctxidP Γ = mkCtxMorP (ctxidDO Γ)
_↓[_/0] : {Γ₁ Γ Γ₂ : RawCtx} →
PreTerm (∗ ∷ Γ₁) Γ → PreTerm Γ₁ Ø → PreTerm Γ₁ Γ
_↓[_/0] t s = t ↓[ s ∷ ctxidP _ ]
_•_ : {Γ₁ Γ₂ Γ₃ : RawCtx} → CtxMorP Γ₂ Γ₃ → CtxMorP Γ₁ Γ₂ → CtxMorP Γ₁ Γ₃
_•_ {Γ₃ = Ø} [] f = []
_•_ {Γ₃ = A ∷ Γ₃} (t ∷ g) f = substP t f ∷ (g • f)
-- | Context projection is a decent context morphism
ctxProjDO : (Γ₁ Γ₂ : RawCtx) → DecentCtxMor (ctxProjRaw Γ₁ Γ₂)
ctxProjDO Γ₁ Ø = ctxidDO Γ₁
ctxProjDO Γ₁ (x ∷ Γ₂) = weakenDecentCtxMor _ (ctxProjDO Γ₁ Γ₂)
ctxProjP : (Γ₁ Γ₂ : RawCtx) → CtxMorP (Γ₂ ++ Γ₁) Γ₁
ctxProjP Γ₁ Γ₂ = mkCtxMorP (ctxProjDO Γ₁ Γ₂)
ctxProjP' : (Γ₁ Γ₂ Γ₃ : RawCtx) → CtxMorP (Γ₁ ++ Γ₂ ++ Γ₃) Γ₂
ctxProjP' Γ₁ Γ₂ Ø =
subst (λ Γ → CtxMorP (Γ₁ ++ Γ) Γ₂)
(PE.sym (proj₂ identity Γ₂))
(ctxProjP Γ₂ Γ₁)
ctxProjP' Γ₁ Γ₂ (A ∷ Γ₃) =
let f = ctxProjP' Γ₁ Γ₂ Γ₃
in subst (λ Γ → Vec (PreTerm Γ Ø) (length' Γ₂))
(assoc Γ₁ Γ₂ (A ∷ Γ₃))
(Vec.map (weakenPO (Γ₁ ++ Γ₂) A)
(subst (λ Γ → Vec (PreTerm Γ Ø) (length' Γ₂))
(PE.sym (assoc Γ₁ Γ₂ Γ₃))
f
)
)
weakenDO' : {Γ₁ Γ₃ : RawCtx} {t : Raw Ø Γ₁ Γ₃} →
(Γ₂ : RawCtx) → DecentTerm t → DecentTerm (weaken' Γ₂ t)
weakenDO' {Γ₁} {t = t} Γ₂ p =
subst DecentTerm
(cong (substRaw t) (mkCtxMorP₁ (ctxProjDO Γ₁ Γ₂)))
(substDO (ctxProjP Γ₁ Γ₂) p)
weakenPO' : {Γ₁ Γ₃ : RawCtx} →
(Γ₂ : RawCtx) → PreTerm Γ₁ Γ₃ → PreTerm (Γ₂ ++ Γ₁) Γ₃
weakenPO' Γ₂ (t , p) = (weaken' Γ₂ t , weakenDO' Γ₂ p)
-- | Lift extension of context morphism to decent terms
extendP : {Γ₁ Γ₂ : RawCtx} →
(A : U) → (f : CtxMorP Γ₂ Γ₁) → CtxMorP (A ∷ Γ₂) (A ∷ Γ₁)
extendP {Γ₁} {Γ₂} A f = varPO zero ∷ Vec.map (weakenPO₁ A) f
getPO : {Γ₁ Γ₂ : RawCtx} {A : U} → CtxMorP Γ₂ Γ₁ → RawVar Γ₁ A → PreTerm Γ₂ Ø
getPO f x = (get {Raw} (projCtxMor₁ f) x , get' f x)
substPO : ∀ {Γ₁ Γ Γ₂} → PreTerm Γ₁ Γ → CtxMorP Γ₂ Γ₁ → PreTerm Γ₂ Γ
substPO (._ , DO-unit Γ₁) f = unitPO _
substPO (._ , DO-objVar x) f = getPO f x
substPO (._ , DO-inst t s p q) f =
instPO (substPO (t , p) f) (substPO (s , q) f)
substPO (._ , DO-dialg Γ₁ Γ A ρ k) f = dialgPO _ Γ A ρ k
substPO (._ , DO-mapping Γ Γ₁ gs ρ p) f = grec Γ _ (mkFpMapDataP {Γ} {gs} p) ρ
weakenPO'' : {Γ₁ Γ₃ : RawCtx} →
(Γ₂ Γ₂' : RawCtx) → PreTerm Γ₁ Γ₃ → PreTerm (Γ₂' ++ Γ₁ ++ Γ₂) Γ₃
weakenPO'' Γ₂ Γ₂' t = substPO t (ctxProjP' Γ₂' _ Γ₂)
-- | Lift substitution to pretypes
substPT : ∀ {Θ Γ₁ Γ Γ₂} → PreType Θ Γ₁ Γ → CtxMorP Γ₂ Γ₁ → PreType Θ Γ₂ Γ
substPT (._ , DT-⊤ Θ Γ) f = ⊤-PT _ _
substPT (._ , DT-tyVar Γ₁ X) f = tyVarPT _ X
substPT (._ , DT-inst B t p q) f =
(substPT (B , p) f) ⊙ (substPO (t , q) f)
substPT (._ , DT-paramAbstr Γ₁ {A} p) f =
paramAbstrPT _ (substPT (A , p) (extendP _ f))
substPT (._ , DT-fp Γ₁ ρ D q) f = fpPT _ ρ (mkFpDataP {D = D} q)
weakenPT' : ∀ {Θ Γ₁ Γ₂} (Γ : RawCtx) → PreType Θ Γ₁ Γ₂ → PreType Θ (Γ ++ Γ₁) Γ₂
weakenPT' {Γ₁ = Γ₁} Γ A = substPT A (ctxProjP Γ₁ Γ)
weakenPT'' : ∀ {Θ Γ₁} (Γ : RawCtx) → PreType Θ Ø Γ₁ → PreType Θ Γ Γ₁
weakenPT'' Γ A =
subst (λ u → PreType _ u _) (proj₂ identity Γ) (weakenPT' Γ A)
-- | Project a specific variable out
projVar : (Γ₁ Γ₂ : RawCtx) (A : U) → PreTerm (Γ₂ ++ A ∷ Γ₁) Ø
projVar Γ₁ Ø A = varPO zero
projVar Γ₁ (∗ ∷ Γ₂) A = weakenPO₁ _ (projVar Γ₁ Γ₂ A)
extendProj : {Γ₁ Γ₂ : RawCtx} → (Γ₃ Γ₄ : RawCtx) →
CtxMorP (Γ₄ ++ Γ₃ ++ Γ₂) Γ₁ →
CtxMorP (Γ₄ ++ Γ₃ ++ Γ₂) (Γ₃ ++ Γ₁)
extendProj Ø Γ₄ f = f
extendProj {Γ₁} {Γ₂ = Γ₂} (A ∷ Γ₃) Γ₄ f =
let p = (assoc Γ₄ (A ∷ Ø) (Γ₃ ++ Γ₂))
f' = subst (λ u → CtxMorP u Γ₁) (PE.sym p) f
g = extendProj {Γ₁} {Γ₂} Γ₃ (Γ₄ ↑ A) f'
g' = subst (λ u → CtxMorP u (Γ₃ ++ Γ₁)) p g
in projVar (Γ₃ ++ Γ₂) Γ₄ A ∷ g'
weakenTyVar₁ : ∀{Θ₂ Γ₁} (Θ₁ : TyCtx) (Γ : RawCtx) →
TyVar (Θ₁ ++ Θ₂) Γ₁ → TyVar (Θ₁ ++ Γ ∷ Θ₂) Γ₁
weakenTyVar₁ Ø Γ X = succ _ X
weakenTyVar₁ (Γ₁ ∷ Θ₁) Γ zero = zero
weakenTyVar₁ (Γ₂ ∷ Θ₁) Γ (succ Γ₁ X) = succ Γ₁ (weakenTyVar₁ Θ₁ Γ X)
weakenTyFpData'₁ : ∀ {Θ₂ Γ₁} (Θ₁ : TyCtx) →
{D : FpData Raw (Θ₁ ++ Θ₂) Γ₁} →
(Γ : RawCtx) → DecentFpData D →
Σ (FpData Raw (Θ₁ ++ Γ ∷ Θ₂) Γ₁) DecentFpData
-- | Auxiliary definition to allow Agda to see that it is provided with
-- a well-defined reursion.
weakenTy'₁ : ∀ {Θ₂ Γ₁ Γ₂} (Θ₁ : TyCtx) (Γ : RawCtx) →
(A : Raw (Θ₁ ++ Θ₂) Γ₁ Γ₂) → DecentType A →
PreType (Θ₁ ++ Γ ∷ Θ₂) Γ₁ Γ₂
weakenTy'₁ Θ₁ Γ ._ (DT-⊤ ._ Γ₁) =
⊤-PT _ _
weakenTy'₁ Θ₁ Γ .(tyVarRaw Γ₁ X) (DT-tyVar Γ₁ X) =
tyVarPT Γ₁ (weakenTyVar₁ Θ₁ Γ X)
weakenTy'₁ Θ₁ Γ .(instRaw B t) (DT-inst B t p q) =
(weakenTy'₁ Θ₁ Γ B p) ⊙ (t , q)
weakenTy'₁ Θ₁ Γ .(paramAbstrRaw Γ₁ A) (DT-paramAbstr Γ₁ {A} p) =
paramAbstrPT Γ₁ (weakenTy'₁ Θ₁ Γ A p)
weakenTy'₁ Θ₁ Γ .(fpRaw Γ₁ ρ D) (DT-fp Γ₁ ρ D p) =
let (D' , p') = weakenTyFpData'₁ Θ₁ {D} Γ p
in fpPT Γ₁ ρ (mkFpDataP {D = D'} p')
weakenTyFpData'₁ {Γ₁ = Γ₁} Θ₁ {[ Γ₂ , f , A ]} Γ (p , q) =
let (A' , q') = weakenTy'₁ (Γ₁ ∷ Θ₁) Γ A q
in ([ Γ₂ , f , A' ] , p , q')
weakenTyFpData'₁ {Γ₁ = Γ₁} Θ₁ {(Γ₂ , f , A) ∷ D} Γ ((p , q) , r) =
let (A' , q') = weakenTy'₁ (Γ₁ ∷ Θ₁) Γ A q
(D' , r') = weakenTyFpData'₁ Θ₁ {D} Γ r
in ((Γ₂ , f , A') ∷ D' , (p , q') , r')
weakenTy₁ : ∀ {Θ₂ Γ₁ Γ₂} (Θ₁ : TyCtx) (Γ : RawCtx) →
PreType (Θ₁ ++ Θ₂) Γ₁ Γ₂ →
PreType (Θ₁ ++ Γ ∷ Θ₂) Γ₁ Γ₂
weakenTy₁ Θ₁ Γ (A , p) = weakenTy'₁ Θ₁ Γ A p
weakenTyCtxMor₁ : ∀ {Θ₁ Θ₂} →
(Γ : RawCtx) → TyCtxMorP Θ₂ Θ₁ → TyCtxMorP (Γ ∷ Θ₂) Θ₁
weakenTyCtxMor₁ {Ø} Γ tt = tt
weakenTyCtxMor₁ {Γ₁ ∷ Θ₁} Γ (A , f) = (weakenTy₁ Ø Γ A , weakenTyCtxMor₁ Γ f)
getTy : ∀ {Θ₁ Θ₂ Γ₁ Γ₂} → TyCtxMorP Θ₁ Θ₂ → TyVar Θ₂ Γ₂ → PreType Θ₁ Γ₁ Γ₂
getTy {Θ₂ = Ø} tt ()
getTy {Θ₁} {Θ₂ = Γ ∷ Θ₂} {Γ₁} (B , f) zero =
subst (λ Γ' → PreType Θ₁ Γ' Γ) (proj₂ identity Γ₁) (weakenPT' Γ₁ B)
getTy {Θ₂ = Γ ∷ Θ₂} (B , f) (succ Γ₂ X) = getTy f X
extendTy : ∀ {Θ₁ Θ₂} →
TyCtxMorP Θ₁ Θ₂ → (Γ : RawCtx) → TyCtxMorP (Γ ∷ Θ₁) (Γ ∷ Θ₂)
extendTy f Γ = (tyVarPT Ø zero , weakenTyCtxMor₁ Γ f)
substTyFpData' : ∀ {Θ₁ Θ₂ Γ} →
(D : FpData Raw Θ₂ Γ) → DecentFpData D →
TyCtxMorP Θ₁ Θ₂ → FpDataP Θ₁ Γ
-- | Substitution for type variables, auxilary version to have a clearly
-- terminating definition.
substTy' : ∀ {Θ₁ Θ₂ Γ₁ Γ₂} →
(A : Raw Θ₂ Γ₁ Γ₂) → DecentType A → TyCtxMorP Θ₁ Θ₂ →
PreType Θ₁ Γ₁ Γ₂
substTy' {Θ₁} ._ (DT-⊤ Θ Γ) f = ⊤-PT Θ₁ _
substTy' {Θ₁} ._ (DT-tyVar Γ₁ X) f = getTy f X
substTy' {Θ₁} ._ (DT-inst B t p q) f =
(substTy' B p f) ⊙ (t , q)
substTy' {Θ₁} ._ (DT-paramAbstr Γ₁ {A} p) f =
paramAbstrPT Γ₁ (substTy' A p f)
substTy' {Θ₁} ._ (DT-fp Γ₁ ρ D p) f =
fpPT Γ₁ ρ (substTyFpData' D p f)
substTyFpData' {Γ = Γ} [ Γ₁ , g , A ] (p , q) f =
[ Γ₁ , mkCtxMorP p , substTy' A q (extendTy f Γ) ]
substTyFpData' {Γ = Γ} ((Γ₁ , g , A) ∷ D) ((p , q) , r) f =
(Γ₁ , mkCtxMorP p , substTy' A q (extendTy f Γ))
∷ substTyFpData' D r f
-- | Substitution for type variables
substTy : ∀ {Θ₁ Θ₂ Γ₁ Γ₂} →
PreType Θ₂ Γ₁ Γ₂ → TyCtxMorP Θ₁ Θ₂ → PreType Θ₁ Γ₁ Γ₂
substTy (A , p) = substTy' A p
{-
weakenTy : {Θ₁ : TyCtx} {Γ₁ Γ₂ : RawCtx}
(Θ₂ : TyCtx) → Raw Θ₁ Γ₁ Γ₂ → Raw (Θ₂ ++ Θ₁) Γ₁ Γ₂
weakenTy = {!!}
-}
-----------------------------------------------
--- Other operations
----------------------------------------------
Λ : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → PreType Θ Ø (Γ₂ ++ Γ₁)
Λ {Γ₁ = Ø} A =
subst (λ Γ → PreType _ Ø Γ) (PE.sym (proj₂ identity _)) A
Λ {Γ₁ = B ∷ Γ₁} {Γ₂} A =
let A' = Λ (paramAbstrPT Γ₁ A)
in subst (λ Γ → PreType _ Ø Γ) (assoc Γ₂ (B ∷ Ø) Γ₁) A'
--------------------------------------------------
-- Examples
--------------------------------------------------
-- We could prove the following
-- DT-Prod : (Γ : RawCtx) → DecentType (ProdRaw Γ)
-- However, it is easier to construct the product directly as pretype.
Prod : (Γ : RawCtx) → PreType (Γ ︵ Γ) Ø Γ
Prod Γ = fpPT Ø ν D
where
Δ = Γ ︵ Γ
A : TyVar (Γ ∷ Δ) Γ
A = succ Γ zero
B : TyVar (Γ ∷ Δ) Γ
B = succ Γ (succ Γ zero)
D₁ = (Γ , ctxidP Γ , instTyWCtxMorP (tyVarPT Γ A) (ctxidP Γ))
D₂ = (Γ , ctxidP Γ , instTyWCtxMorP (tyVarPT Γ B) (ctxidP Γ))
D : FpDataP Δ Γ
D = D₁ ∷ [ D₂ ]
| {
"alphanum_fraction": 0.5346849793,
"avg_line_length": 37.1717990276,
"ext": "agda",
"hexsha": "44f920dff546eabc67194b2663c7898203239bc5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-24T10:54:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-24T10:54:38.000Z",
"max_forks_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "StillerHarpo/CoindDepTypes",
"max_forks_repo_path": "Syntax/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3",
"max_issues_repo_issues_event_max_datetime": "2020-07-24T12:53:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-07-24T12:53:30.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "StillerHarpo/CoindDepTypes",
"max_issues_repo_path": "Syntax/Syntax.agda",
"max_line_length": 80,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "StillerHarpo/CoindDepTypes",
"max_stars_repo_path": "Syntax/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2018-04-06T02:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-27T14:45:11.000Z",
"num_tokens": 10208,
"size": 22935
} |
module Structure.Operator.Vector.FiniteDimensional.LinearMaps.ChangeOfBasis where
open import Functional
import Lvl
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.Finite
open import Numeral.Natural
open import Structure.Function.Multi
open import Structure.Operator.Properties
open import Structure.Operator.Vector.FiniteDimensional
open import Structure.Operator.Vector.LinearCombination
open import Structure.Operator.Vector.LinearMap
open import Structure.Operator.Vector.Proofs
open import Structure.Operator.Vector
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
private variable ℓ ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ : Lvl.Level
private variable V Vₗ Vᵣ S : Type{ℓ}
private variable _+ᵥ_ : V → V → V
private variable _⋅ₛᵥ_ : S → V → V
private variable _+ₛ_ _⋅ₛ_ : S → S → S
private variable n : ℕ
private variable i j k : 𝕟(n)
private variable vf : Vec(n)(V)
module _
⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_))
where
open VectorSpace(vectorSpace)
-- changeBasis : LinearOperator(vectorSpace)(linearCombination )
| {
"alphanum_fraction": 0.7737704918,
"avg_line_length": 32.1052631579,
"ext": "agda",
"hexsha": "8e8095dc7afa5b919083323733dd2a2cdca464e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/FiniteDimensional/LinearMaps/ChangeOfBasis.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/FiniteDimensional/LinearMaps/ChangeOfBasis.agda",
"max_line_length": 81,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/FiniteDimensional/LinearMaps/ChangeOfBasis.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 380,
"size": 1220
} |
open import Common.Prelude hiding (tt)
instance
tt : ⊤
tt = record{}
_<_ : Nat → Nat → Set
m < zero = ⊥
zero < suc n = ⊤
suc m < suc n = m < n
instance
<-suc : ∀ {m n} {{_ : m < n}} → m < suc n
<-suc {zero} = tt
<-suc {suc m} {zero} {{}}
<-suc {suc m} {suc n} = <-suc {m} {n}
| {
"alphanum_fraction": 0.4794520548,
"avg_line_length": 16.2222222222,
"ext": "agda",
"hexsha": "dd2d27ad3c494ae4eaf33be20321425bdf0a5fa8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NonUniqueInstance2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NonUniqueInstance2.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NonUniqueInstance2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 130,
"size": 292
} |
S : Set
S = S
| {
"alphanum_fraction": 0.4285714286,
"avg_line_length": 4.6666666667,
"ext": "agda",
"hexsha": "9c8045dfe512169f456e607dc517ed8dd7501599",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue623/B.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue623/B.agda",
"max_line_length": 7,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue623/B.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8,
"size": 14
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommMonoid where
open import Cubical.Algebra.CommMonoid.Base public
open import Cubical.Algebra.CommMonoid.Properties public
| {
"alphanum_fraction": 0.8139534884,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "651f1e3ccac150daf8b0ccafa30c3b03137a0dcc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommMonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommMonoid.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommMonoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 39,
"size": 172
} |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Identity
open import HoTT.Equivalence
open import HoTT.Equivalence.Sigma
open import HoTT.Identity.Sigma
open import HoTT.Identity.Pi
open import HoTT.Transport.Identity
open import HoTT.HLevel
open import HoTT.Exercises.Chapter2.Exercise11 using (module Square ; pullback)
module HoTT.Exercises.Chapter2.Exercise12
{i} {A B C D E F : 𝒰 i}
{ac : A → C} {ab : A → B} {cd : C → D} {bd : B → D}
{ce : C → E} {ef : E → F} {df : D → F} where
module Squareₗ = Square ac ab cd bd
module Squareᵣ = Square ce cd ef df
module Squareₒ = Square (ce ∘ ac) ab ef (df ∘ bd)
module _ {commₗ : Squareₗ.IsCommutative} {commᵣ : Squareᵣ.IsCommutative}
{pullbackᵣ : Squareᵣ.IsPullback commᵣ {i}}
where
commₒ : Squareₒ.IsCommutative
commₒ = commᵣ ∘ ac ∙ₕ ap df ∘ commₗ
open Squareₗ.Commutative commₗ using () renaming (inducedMap to fₗ)
open Squareᵣ.Commutative commᵣ using () renaming (inducedMap to fᵣ)
open Squareₒ.Commutative commₒ using () renaming (inducedMap to fₒ)
-- Solution based on https://pcapriotti.github.io/hott-exercises/chapter2.ex12.core.html
equiv : (X : 𝒰 i) →
pullback (X → C) (X → B) (cd ∘_) (bd ∘_) ≃
pullback (X → E) (X → B) (ef ∘_) ((df ∘ bd) ∘_)
equiv X =
-- Use pullbackᵣ to expand X → C to pullback (X → E) (X → D) (ef ∘_) (df ∘_)
pullback (X → C) (X → B) (cd ∘_) (bd ∘_)
≃⟨ Σ-equiv₁ (fᵣ , pullbackᵣ X) ⟩
-- Reassociate pairs
Σ[ (_ , xd , _) ∶ pullback (X → E) (X → D) (ef ∘_) (df ∘_) ] Σ[ xb ∶ (X → B) ] (xd == bd ∘ xb)
≃⟨ (λ{((xe , xd , pᵣ) , xb , pₗ) → xe , xb , xd , pₗ , pᵣ}) , qinv→isequiv
( (λ{(xe , xb , xd , pₗ , pᵣ) → (xe , xd , pᵣ) , xb , pₗ})
, (λ{((xe , xd , pᵣ) , xb , refl) → refl})
, (λ{(xe , xb , xd , pₗ , pᵣ) → refl}) ) ⟩
Σ[ xe ∶ (X → E) ] Σ[ xb ∶ (X → B) ] Σ[ xd ∶ (X → D) ] (xd == bd ∘ xb) × (ef ∘ xe == df ∘ xd)
≃⟨ Σ-equiv₂ (λ xe → Σ-equiv₂ λ xb →
-- Use pₗ to rewrite ef ∘ xe == df ∘ xd as df ∘ bd ∘ xb,
-- removing the dependency on xd
Σ[ xd ∶ (X → D) ] (xd == bd ∘ xb) × (ef ∘ xe == df ∘ xd)
≃⟨ Σ-equiv₂ (λ xd → Σ-equiv₂ (idtoeqv ∘ ap (λ xf → ef ∘ xe == df ∘ xf))) ⟩
-- Associate pₗ with xd
Σ[ xd ∶ (X → D) ] (xd == bd ∘ xb) × (ef ∘ xe == df ∘ bd ∘ xb)
≃⟨ Σ-assoc ⟩
-- Use Lemmas 3.11.8 and 3.11.9 (ii) to contract xd to bd ∘ xb
(Σ[ xd ∶ (X → D) ] (xd == bd ∘ xb)) × (ef ∘ xe == df ∘ bd ∘ xb)
≃⟨ Σ-contr₁ ⦃ =-contrᵣ (bd ∘ xb) ⦄ ⟩
ef ∘ xe == df ∘ bd ∘ xb
∎) ⟩
pullback (X → E) (X → B) (ef ∘_) ((df ∘ bd) ∘_)
∎
where
open ≃-Reasoning
-- Proves that we compose the above equivalence with fₗ, we get out fₒ
equiv-fₗ→fₒ : {X : 𝒰 i} (xa : X → A) → pr₁ (equiv X) (fₗ xa) == fₒ xa
equiv-fₗ→fₒ {X = X} xa = pair⁼ (refl , pair⁼ (refl , p))
where
xe = ce ∘ ac ∘ xa
q : (cd ∘ ac ∘ xa , _) == (bd ∘ ab ∘ xa , _)
q = pair⁼ (funext (commₗ ∘ xa) ⁻¹ , _) ⁻¹
p : pr₂ (pr₂ (pr₁ (equiv X) (fₗ xa))) == funext (commᵣ ∘ ac ∘ xa ∙ₕ ap df ∘ commₗ ∘ xa)
p =
-- Simplify the constant transport
transport _ q _
=⟨ transportconst q _ ⟩
-- Move the ap function into the transport
transport id (ap (λ xd → ef ∘ xe == df ∘ xd) (funext (commₗ ∘ xa))) (funext (commᵣ ∘ ac ∘ xa))
=⟨ transport-ap id (λ xd → ef ∘ xe == df ∘ xd) (funext (commₗ ∘ xa)) (funext (commᵣ ∘ ac ∘ xa)) ⟩
-- Apply Theorem 2.11.3 to eliminate the transport
transport (λ xf → ef ∘ xe == df ∘ xf) (funext (commₗ ∘ xa)) (funext (commᵣ ∘ ac ∘ xa))
=⟨ transport=-constₗ (ef ∘ xe) (df ∘_) (funext (commₗ ∘ xa)) (funext (commᵣ ∘ ac ∘ xa)) ⟩
-- Combine the ap df into the funext on the right
funext (commᵣ ∘ ac ∘ xa) ∙ ap (df ∘_) (funext (commₗ ∘ xa))
=⟨ _ ∙ₗ funext-ap df (commₗ ∘ xa) ⁻¹ ⟩
-- Combine the two funext
funext (commᵣ ∘ ac ∘ xa) ∙ funext (ap df ∘ commₗ ∘ xa)
=⟨ funext-∙ₕ (commᵣ ∘ ac ∘ xa) (ap df ∘ commₗ ∘ xa) ⁻¹ ⟩
funext (commᵣ ∘ ac ∘ xa ∙ₕ ap df ∘ commₗ ∘ xa)
∎
where open =-Reasoning
prop₁ : Squareₗ.IsPullback commₗ → Squareₒ.IsPullback commₒ
prop₁ pullbackₗ X = transport isequiv (funext equiv-fₗ→fₒ) (pr₂ ((fₗ , pullbackₗ X) ∙ₑ equiv X))
equiv-fₒ→fₗ : {X : 𝒰 i} (xa : X → A) → pr₁ (equiv X ⁻¹ₑ) (fₒ xa) == fₗ xa
equiv-fₒ→fₗ {X = X} xa = ap g (equiv-fₗ→fₒ xa ⁻¹) ∙ η (fₗ xa)
where
open qinv (isequiv→qinv (pr₂ (equiv X)))
prop₂ : Squareₒ.IsPullback commₒ {i} → Squareₗ.IsPullback commₗ {i}
prop₂ pullbackₒ X = transport isequiv (funext equiv-fₒ→fₗ) (pr₂ ((fₒ , pullbackₒ X) ∙ₑ equiv X ⁻¹ₑ))
-- I tried quite hard to come up with the equivalences directly,
-- but was only able to find one of the four necessary homotopies.
-- The other three quickly spiraled out of control.
=pullback-intro : {A B C : 𝒰 i} {ac : A → C} {bc : B → C}
{x@(a₁ , b₁ , p) y@(a₂ , b₂ , q) : pullback A B ac bc} →
Σ[ p₁ ∶ a₁ == a₂ ] Σ[ p₂ ∶ b₁ == b₂ ] (p ∙ ap bc p₂ == ap ac p₁ ∙ q) → x == y
=pullback-intro {x = _ , _ , _} {y = _ , _ , _} (refl , refl , p) rewrite unitᵣ ∙ p ∙ unitₗ ⁻¹ = refl
=pullback-elim : {A B C : 𝒰 i} {ac : A → C} {bc : B → C}
{x@(a₁ , b₁ , p) y@(a₂ , b₂ , q) : pullback A B ac bc} →
x == y → Σ[ p₁ ∶ a₁ == a₂ ] Σ[ p₂ ∶ b₁ == b₂ ] (p ∙ ap bc p₂ == ap ac p₁ ∙ q)
=pullback-elim {x = _ , _ , _} {y = _ , _ , _} refl = refl , refl , unitᵣ ⁻¹ ∙ unitₗ
prop₁' : Squareₗ.IsPullback commₗ → Squareₒ.IsPullback commₒ
prop₁' pullbackₗ X with isequiv→qinv (pullbackᵣ X) | isequiv→qinv (pullbackₗ X)
... | (gᵣ , ηᵣ , εᵣ) | (gₗ , ηₗ , εₗ) = qinv→isequiv (gₒ , ηₒ , εₒ)
where
gₒ : pullback (X → E) (X → B) (ef ∘_) ((df ∘ bd) ∘_) → (X → A)
gₒ (xe , xb , p) = gₗ (gᵣ xc' , xb , ap (pr₁ ∘ pr₂) (εᵣ xc'))
where
xc' = (xe , bd ∘ xb , p)
ηₒ : gₒ ∘ fₒ ~ id
ηₒ xa = ap gₗ (=pullback-intro (p-xc , refl , p-pₗ)) ∙ ηₗ xa
where
pᵣ = funext (commᵣ ∘ ac ∘ xa ∙ₕ ap df ∘ commₗ ∘ xa)
xc' = ce ∘ ac ∘ xa , bd ∘ ab ∘ xa , pᵣ
p-xd = funext (commₗ ∘ xa) ⁻¹
p-pᵣ : pᵣ ∙ ap (df ∘_) p-xd == refl ∙ funext (commᵣ ∘ ac ∘ xa)
p-pᵣ =
pᵣ ∙ ap (df ∘_) p-xd =⟨ _ ∙ₗ ap-inv (df ∘_) (funext (commₗ ∘ xa)) ⟩
_ ∙ p ⁻¹ =⟨ funext-∙ₕ (commᵣ ∘ ac ∘ xa) (ap df ∘ commₗ ∘ xa) ∙ᵣ _ ⟩
_ ∙ funext (ap df ∘ commₗ ∘ xa) ∙ _ =⟨ _ ∙ₗ funext-ap df (commₗ ∘ xa) ∙ᵣ _ ⟩
funext (commᵣ ∘ ac ∘ xa) ∙ p ∙ p ⁻¹ =⟨ assoc ⁻¹ ⟩
funext (commᵣ ∘ ac ∘ xa) ∙ (p ∙ p ⁻¹) =⟨ _ ∙ₗ invᵣ ⟩
funext (commᵣ ∘ ac ∘ xa) ∙ refl =⟨ unitᵣ ⁻¹ ⟩
funext (commᵣ ∘ ac ∘ xa) =⟨ unitₗ ⟩
refl ∙ funext (commᵣ ∘ ac ∘ xa) ∎
where
open =-Reasoning
p = ap (df ∘_) (funext (commₗ ∘ xa))
p-xc : gᵣ xc' == ac ∘ xa
p-xc = ap gᵣ (=pullback-intro (refl , p-xd , p-pᵣ)) ∙ ηᵣ (ac ∘ xa)
-- TODO
postulate
p-pₗ : ap (pr₁ ∘ pr₂) (εᵣ xc') ∙ refl == ap (cd ∘_) p-xc ∙ funext (commₗ ∘ xa)
-- TODO
postulate
εₒ : fₒ ∘ gₒ ~ id
prop₂' : Squareₒ.IsPullback commₒ → Squareₗ.IsPullback commₗ
prop₂' sₒ-pullback X = qinv→isequiv (gₗ , ηₗ , εₗ)
where
open qinv (isequiv→qinv (sₒ-pullback X)) renaming (g to gₒ ; η to ηₒ ; ε to εₒ)
open qinv (isequiv→qinv (pullbackᵣ X)) renaming (g to gᵣ ; η to ηᵣ ; ε to εᵣ)
gₗ : pullback (X → C) (X → B) (cd ∘_) (bd ∘_) → (X → A)
gₗ (xc , xb , pₗ) = gₒ (ce ∘ xc , xb , funext (commᵣ ∘ xc) ∙ ap (df ∘_) pₗ)
ηₗ : gₗ ∘ fₗ ~ id
ηₗ xa = ap gₒ (pair⁼ (refl , pair⁼ (refl ,
_ ∙ₗ funext-ap df (commₗ ∘ xa) ⁻¹ ∙
funext-∙ₕ (commᵣ ∘ ac ∘ xa) (ap df ∘ commₗ ∘ xa) ⁻¹))) ∙ ηₒ xa
εₗ : fₗ ∘ gₗ ~ id
εₗ (xc , xb , pₗ) = =pullback-intro (p-xc , p-xb , p-pₗ)
where
xa = gₗ (xc , xb , pₗ)
xa' = ce ∘ xc , xb , funext (commᵣ ∘ xc) ∙ ap (df ∘_) pₗ
p-xa' = =pullback-elim (εₒ xa')
p-xe = pr₁ p-xa'
p-xb = pr₁ (pr₂ p-xa')
p-pₒ = pr₂ (pr₂ p-xa')
p-xd = funext (commₗ ∘ xa) ∙ ap (bd ∘_) p-xb ∙ pₗ ⁻¹
-- TODO
postulate
p-pᵣ : funext (commᵣ ∘ ac ∘ xa) ∙ ap (df ∘_) p-xd == ap (ef ∘_) p-xe ∙ funext (commᵣ ∘ xc)
p-xc : ac ∘ xa == xc
p-xc = ηᵣ (ac ∘ xa) ⁻¹ ∙ ap gᵣ (=pullback-intro (p-xe , p-xd , p-pᵣ)) ∙ ηᵣ xc
-- TODO
postulate
p-pₗ : funext (commₗ ∘ xa) ∙ ap (bd ∘_) p-xb == ap (cd ∘_) p-xc ∙ pₗ
| {
"alphanum_fraction": 0.5046486995,
"avg_line_length": 45.1968085106,
"ext": "agda",
"hexsha": "cec52c5c29dd28d514452b234ba0f308f1435fc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Exercises/Chapter2/Exercise12.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Exercises/Chapter2/Exercise12.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Exercises/Chapter2/Exercise12.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4002,
"size": 8497
} |
-- {-# OPTIONS -v tc.constr.findInScope:15 -v tc.meta.new:50 #-}
-- Andreas, 2012-10-20 issue raised by d.starosud
-- solved by dropping UnBlock constraints during trial candidate assignment
module Fail.Issue723 where
import Common.Level
open import Common.Prelude using (Bool; false; zero) renaming (Nat to ℕ)
record Default {ℓ} (A : Set ℓ) : Set ℓ where
constructor create
field default : A
open Default {{...}} using (default)
instance
defBool : Default Bool
defBool = create false
defSet : Default Set
defSet = create Bool
defNat : Default ℕ
defNat = create zero
defDef : Default (Default ℕ)
defDef = create defNat
defFunc : ∀ {ℓ} {A : Set ℓ} → Default (A → A)
defFunc = create (λ x → x)
-- these lines are compiled successfully
id : ∀ {a} (A : Set a) → A → A
id A x = x
syntax id A x = x ∶ A
n₁ = default ∶ ℕ
f₁ = default ∶ (ℕ → ℕ)
-- WAS: but this one hangs on "Checking"
n₂ = default (5 ∶ ℕ) ∶ ℕ
-- n₂ = id ℕ (default (id ℕ 5))
n : ℕ
n = default 5
-- now we get unsolved metas
-- that's kind of ok
n₃ = (default ∶ (_ → _)) 5
-- this one works again (before: also unsolved metas (worked before switching of the occurs-error (Issue 795)))
| {
"alphanum_fraction": 0.6582278481,
"avg_line_length": 22.7884615385,
"ext": "agda",
"hexsha": "05d744a779d2b1af838f9a2dec7c264950fb8ecc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue723.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue723.agda",
"max_line_length": 111,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue723.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 383,
"size": 1185
} |
------------------------------------------------------------------------------
-- Testing the translation of function, predicates and variables names
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From the technical manual of TPTP
-- (http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml)
-- ... variables start with upper case letters, ... predicates and
-- functors either start with lower case and contain alphanumerics and
-- underscore ...
module Names where
infix 4 _≡_
------------------------------------------------------------------------------
-- Testing funny names
postulate
D : Set
_≡_ : D → D → Set
FUN! : D → D -- A funny function name.
PRED! : D → Set -- A funny predicate name.
-- Using a funny function and variable name.
postulate funnyFV : (nx∎ : D) → FUN! nx∎ ≡ nx∎
{-# ATP axiom funnyFV #-}
-- Using a funny predicate name.
postulate funnyP : (n : D) → PRED! n
{-# ATP axiom funnyP #-}
-- We need to have at least one conjecture to generate a TPTP file.
postulate refl : ∀ d → d ≡ d
{-# ATP prove refl #-}
| {
"alphanum_fraction": 0.5103011094,
"avg_line_length": 30.7804878049,
"ext": "agda",
"hexsha": "0cadabd2b304c2a939e9ea051bcb75100e994030",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Names.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Names.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 288,
"size": 1262
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.TwoSemiCategory
module lib.two-semi-categories.Functor where
record TwoSemiFunctor {i₁ j₁ i₂ j₂} (C : TwoSemiCategory i₁ j₁) (D : TwoSemiCategory i₂ j₂)
: Type (lmax (lmax i₁ j₁) (lmax i₂ j₂)) where
private
module C = TwoSemiCategory C
module D = TwoSemiCategory D
field
F₀ : C.El → D.El
F₁ : {x y : C.El} → C.Arr x y → D.Arr (F₀ x) (F₀ y)
pres-comp : {x y z : C.El} (f : C.Arr x y) (g : C.Arr y z)
→ F₁ (C.comp f g) == D.comp (F₁ f) (F₁ g)
pres-comp-coh-seq₁ : {w x y z : C.El} (f : C.Arr w x) (g : C.Arr x y) (h : C.Arr y z)
→ F₁ (C.comp (C.comp f g) h) =-= D.comp (F₁ f) (D.comp (F₁ g) (F₁ h))
pres-comp-coh-seq₁ f g h =
F₁ (C.comp (C.comp f g) h)
=⟪ pres-comp (C.comp f g) h ⟫
D.comp (F₁ (C.comp f g)) (F₁ h)
=⟪ ap (λ s → D.comp s (F₁ h)) (pres-comp f g) ⟫
D.comp (D.comp (F₁ f) (F₁ g)) (F₁ h)
=⟪ D.assoc (F₁ f) (F₁ g) (F₁ h) ⟫
D.comp (F₁ f) (D.comp (F₁ g) (F₁ h)) ∎∎
pres-comp-coh-seq₂ : {w x y z : C.El} (f : C.Arr w x) (g : C.Arr x y) (h : C.Arr y z)
→ F₁ (C.comp (C.comp f g) h) =-= D.comp (F₁ f) (D.comp (F₁ g) (F₁ h))
pres-comp-coh-seq₂ f g h =
F₁ (C.comp (C.comp f g) h)
=⟪ ap F₁ (C.assoc f g h) ⟫
F₁ (C.comp f (C.comp g h))
=⟪ pres-comp f (C.comp g h) ⟫
D.comp (F₁ f) (F₁ (C.comp g h))
=⟪ ap (D.comp (F₁ f)) (pres-comp g h) ⟫
D.comp (F₁ f) (D.comp (F₁ g) (F₁ h)) ∎∎
field
pres-comp-coh : {w x y z : C.El} (f : C.Arr w x) (g : C.Arr x y) (h : C.Arr y z)
→ pres-comp-coh-seq₁ f g h =ₛ pres-comp-coh-seq₂ f g h
module FunctorComposition
{i₁ j₁ i₂ j₂ i₃ j₃} {C : TwoSemiCategory i₁ j₁} {D : TwoSemiCategory i₂ j₂} {E : TwoSemiCategory i₃ j₃}
(F : TwoSemiFunctor C D) (G : TwoSemiFunctor D E) where
private
module C = TwoSemiCategory C
module D = TwoSemiCategory D
module E = TwoSemiCategory E
module F = TwoSemiFunctor F
module G = TwoSemiFunctor G
F₀ : C.El → E.El
F₀ = G.F₀ ∘ F.F₀
F₁ : {x y : C.El} → C.Arr x y → E.Arr (F₀ x) (F₀ y)
F₁ f = G.F₁ (F.F₁ f)
pres-comp-seq : {x y z : C.El} (f : C.Arr x y) (g : C.Arr y z)
→ G.F₁ (F.F₁ (C.comp f g)) =-= E.comp (G.F₁ (F.F₁ f)) (G.F₁ (F.F₁ g))
pres-comp-seq f g =
G.F₁ (F.F₁ (C.comp f g))
=⟪ ap G.F₁ (F.pres-comp f g) ⟫
G.F₁ (D.comp (F.F₁ f) (F.F₁ g))
=⟪ G.pres-comp (F.F₁ f) (F.F₁ g) ⟫
E.comp (G.F₁ (F.F₁ f)) (G.F₁ (F.F₁ g)) ∎∎
abstract
pres-comp : {x y z : C.El} (f : C.Arr x y) (g : C.Arr y z)
→ G.F₁ (F.F₁ (C.comp f g)) == E.comp (G.F₁ (F.F₁ f)) (G.F₁ (F.F₁ g))
pres-comp f g = ↯ (pres-comp-seq f g)
pres-comp-β : {x y z : C.El} (f : C.Arr x y) (g : C.Arr y z)
→ pres-comp f g ◃∎ =ₛ pres-comp-seq f g
pres-comp-β f g = =ₛ-in idp
private
abstract
pres-comp-coh : {w x y z : C.El} (f : C.Arr w x) (g : C.Arr x y) (h : C.Arr y z)
→ pres-comp (C.comp f g) h ◃∙ ap (λ s → E.comp s (F₁ h)) (pres-comp f g) ◃∙ E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ
ap F₁ (C.assoc f g h) ◃∙ pres-comp f (C.comp g h) ◃∙ ap (E.comp (F₁ f)) (pres-comp g h) ◃∎
pres-comp-coh f g h =
pres-comp (C.comp f g) h ◃∙
ap (λ s → E.comp s (F₁ h)) (pres-comp f g) ◃∙
E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ⟨ 0 & 1 & expand (pres-comp-seq (C.comp f g) h) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
G.pres-comp (F.F₁ (C.comp f g)) (F.F₁ h) ◃∙
ap (λ s → E.comp s (F₁ h)) (pres-comp f g) ◃∙
E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ⟨ 2 & 1 & ap-seq-∙ (λ s → E.comp s (F₁ h)) (pres-comp-seq f g) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
G.pres-comp (F.F₁ (C.comp f g)) (F.F₁ h) ◃∙
ap (λ s → E.comp s (F₁ h)) (ap G.F₁ (F.pres-comp f g)) ◃∙
ap (λ s → E.comp s (F₁ h)) (G.pres-comp (F.F₁ f) (F.F₁ g)) ◃∙
E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap (λ s → E.comp s (F₁ h)) G.F₁ (F.pres-comp f g) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
G.pres-comp (F.F₁ (C.comp f g)) (F.F₁ h) ◃∙
ap (λ s → E.comp (G.F₁ s) (F₁ h)) (F.pres-comp f g) ◃∙
ap (λ s → E.comp s (F₁ h)) (G.pres-comp (F.F₁ f) (F.F₁ g)) ◃∙
E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ⟨ 1 & 2 & !ₛ $
homotopy-naturality (λ s → G.F₁ (D.comp s (F.F₁ h)))
(λ s → E.comp (G.F₁ s) (F₁ h))
(λ s → G.pres-comp s (F.F₁ h))
(F.pres-comp f g) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
ap (λ s → G.F₁ (D.comp s (F.F₁ h))) (F.pres-comp f g) ◃∙
G.pres-comp (D.comp (F.F₁ f) (F.F₁ g)) (F.F₁ h) ◃∙
ap (λ s → E.comp s (F₁ h)) (G.pres-comp (F.F₁ f) (F.F₁ g)) ◃∙
E.assoc (F₁ f) (F₁ g) (F₁ h) ◃∎
=ₛ⟨ 2 & 3 & G.pres-comp-coh (F.F₁ f) (F.F₁ g) (F.F₁ h) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
ap (λ s → G.F₁ (D.comp s (F.F₁ h))) (F.pres-comp f g) ◃∙
ap G.F₁ (D.assoc (F.F₁ f) (F.F₁ g) (F.F₁ h)) ◃∙
G.pres-comp (F.F₁ f) (D.comp (F.F₁ g) (F.F₁ h)) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ₁⟨ 1 & 1 & ap-∘ G.F₁ (λ s → D.comp s (F.F₁ h)) (F.pres-comp f g) ⟩
ap G.F₁ (F.pres-comp (C.comp f g) h) ◃∙
ap G.F₁ (ap (λ s → D.comp s (F.F₁ h)) (F.pres-comp f g)) ◃∙
ap G.F₁ (D.assoc (F.F₁ f) (F.F₁ g) (F.F₁ h)) ◃∙
G.pres-comp (F.F₁ f) (D.comp (F.F₁ g) (F.F₁ h)) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ⟨ 0 & 3 & ap-seq-=ₛ G.F₁ (F.pres-comp-coh f g h) ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
ap G.F₁ (F.pres-comp f (C.comp g h)) ◃∙
ap G.F₁ (ap (D.comp (F.F₁ f)) (F.pres-comp g h)) ◃∙
G.pres-comp (F.F₁ f) (D.comp (F.F₁ g) (F.F₁ h)) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ₁⟨ 2 & 1 & ∘-ap G.F₁ (D.comp (F.F₁ f)) (F.pres-comp g h) ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
ap G.F₁ (F.pres-comp f (C.comp g h)) ◃∙
ap (G.F₁ ∘ D.comp (F.F₁ f)) (F.pres-comp g h) ◃∙
G.pres-comp (F.F₁ f) (D.comp (F.F₁ g) (F.F₁ h)) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ⟨ 2 & 2 &
homotopy-naturality (G.F₁ ∘ D.comp (F.F₁ f))
(E.comp (F₁ f) ∘ G.F₁)
(G.pres-comp (F.F₁ f))
(F.pres-comp g h) ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
ap G.F₁ (F.pres-comp f (C.comp g h)) ◃∙
G.pres-comp (F.F₁ f) (F.F₁ (C.comp g h)) ◃∙
ap (λ s → E.comp (F₁ f) (G.F₁ s)) (F.pres-comp g h) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ⟨ 1 & 2 & contract ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
pres-comp f (C.comp g h) ◃∙
ap (λ s → E.comp (F₁ f) (G.F₁ s)) (F.pres-comp g h) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ₁⟨ 2 & 1 & ap-∘ (E.comp (F₁ f)) G.F₁ (F.pres-comp g h) ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
pres-comp f (C.comp g h) ◃∙
ap (E.comp (F₁ f)) (ap G.F₁ (F.pres-comp g h)) ◃∙
ap (E.comp (F₁ f)) (G.pres-comp (F.F₁ g) (F.F₁ h)) ◃∎
=ₛ⟨ 2 & 2 & ∙-ap-seq (E.comp (F₁ f)) (pres-comp-seq g h) ⟩
ap G.F₁ (ap F.F₁ (C.assoc f g h)) ◃∙
pres-comp f (C.comp g h) ◃∙
ap (E.comp (F₁ f)) (pres-comp g h) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap G.F₁ F.F₁ (C.assoc f g h) ⟩
ap F₁ (C.assoc f g h) ◃∙
pres-comp f (C.comp g h) ◃∙
ap (E.comp (F₁ f)) (pres-comp g h) ◃∎ ∎ₛ
composition : TwoSemiFunctor C E
composition =
record
{ F₀ = F₀
; F₁ = F₁
; pres-comp = pres-comp
; pres-comp-coh = pres-comp-coh
}
open FunctorComposition
renaming ( composition to comp-functors
; pres-comp-seq to comp-functors-pres-comp-seq
; pres-comp to comp-functors-pres-comp
; pres-comp-β to comp-functors-pres-comp-β
) public
infixr 80 _–F→_
_–F→_ = comp-functors
| {
"alphanum_fraction": 0.4655660958,
"avg_line_length": 42.9470899471,
"ext": "agda",
"hexsha": "815e5c974cf841fd48d26e45f5927341be7f35d4",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/two-semi-categories/Functor.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/two-semi-categories/Functor.agda",
"max_line_length": 115,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/two-semi-categories/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 3730,
"size": 8117
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import Fields.Lemmas
module Rings.EuclideanDomains.Examples where
polynomialField : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → (Setoid._∼_ S (Ring.1R R) (Ring.0R R) → False) → EuclideanDomain R
EuclideanDomain.isIntegralDomain (polynomialField F 1!=0) = fieldIsIntDom F
EuclideanDomain.norm (polynomialField F _) a!=0 = zero
EuclideanDomain.normSize (polynomialField F _) a!=0 b!=0 c b=ac = inr refl
DivisionAlgorithmResult.quotient (EuclideanDomain.divisionAlg (polynomialField {_*_ = _*_} F _) {a = a} {b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = a * bInv
DivisionAlgorithmResult.rem (EuclideanDomain.divisionAlg (polynomialField F _) a!=0 b!=0) = Field.0F F
DivisionAlgorithmResult.remSmall (EuclideanDomain.divisionAlg (polynomialField {S = S} F _) a!=0 b!=0) = inl (Equivalence.reflexive (Setoid.eq S))
DivisionAlgorithmResult.divAlg (EuclideanDomain.divisionAlg (polynomialField {S = S} {R = R} F _) {a = a} {b = b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = transitive (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric prB)))) *Associative) (symmetric identRight)
where
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup
| {
"alphanum_fraction": 0.735347432,
"avg_line_length": 53.3870967742,
"ext": "agda",
"hexsha": "fc02ac5f011209026b3fb5e15b3ca2ec4a528efe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/EuclideanDomains/Examples.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/EuclideanDomains/Examples.agda",
"max_line_length": 188,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/EuclideanDomains/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 515,
"size": 1655
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Rings.Definition
open import Groups.Definition
open import Fields.Fields
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Lemmas
open import Setoids.Subset
module Fields.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) where
open Setoid S
open Field F
open Ring R
open Group additiveGroup
open Equivalence eq
open import Rings.Lemmas R
halve : (charNot2 : ((1R + 1R) ∼ 0R) → False) → (a : A) → Sg A (λ i → i + i ∼ a)
halve charNot2 a with allInvertible (1R + 1R) charNot2
... | 1/2 , pr1/2 = (a * 1/2) , transitive (+WellDefined *Commutative *Commutative) (transitive (symmetric (*DistributesOver+ {1/2} {a} {a})) (transitive (*WellDefined (reflexive) r) (transitive (*Associative) (transitive (*WellDefined pr1/2 (reflexive)) identIsIdent))))
where
r : a + a ∼ (1R + 1R) * a
r = symmetric (transitive *Commutative (transitive *DistributesOver+ (+WellDefined (transitive *Commutative identIsIdent) (transitive *Commutative identIsIdent))))
abstract
halfHalves : {x : A} (1/2 : A) (pr : 1/2 + 1/2 ∼ 1R) → (x + x) * 1/2 ∼ x
halfHalves {x} 1/2 pr = transitive (transitive (transitive *Commutative (transitive (transitive *DistributesOver+ (transitive (+WellDefined *Commutative *Commutative) (symmetric *DistributesOver+))) *Commutative)) (*WellDefined pr (reflexive))) identIsIdent
fieldIsIntDom : IntegralDomain R
IntegralDomain.intDom fieldIsIntDom {a} {b} ab=0 a!=0 with Field.allInvertible F a a!=0
IntegralDomain.intDom fieldIsIntDom {a} {b} ab=0 a!=0 | 1/a , prA = transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric prA) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive ab=0) (Ring.timesZero R))))
IntegralDomain.nontrivial fieldIsIntDom 1=0 = Field.nontrivial F (symmetric 1=0)
allInvertibleWellDefined : {a b : A} {a!=0 : (a ∼ 0F) → False} {b!=0 : (b ∼ 0F) → False} → (a ∼ b) → underlying (allInvertible a a!=0) ∼ underlying (allInvertible b b!=0)
allInvertibleWellDefined {a} {b} {a!=0} {b!=0} a=b with allInvertible a a!=0
... | x , prX with allInvertible b b!=0
... | y , prY with transitive (transitive prX (symmetric prY)) (*WellDefined reflexive (symmetric a=b))
... | xa=ya = cancelIntDom fieldIsIntDom (transitive *Commutative (transitive xa=ya *Commutative)) a!=0
private
mulNonzeros : Sg A (λ m → (Setoid._∼_ S m (Ring.0R R)) → False) → Sg A (λ m → (Setoid._∼_ S m (Ring.0R R)) → False) → Sg A (λ m → (Setoid._∼_ S m (Ring.0R R)) → False)
mulNonzeros (a , a!=0) (b , b!=0) = (a * b) , λ ab=0 → b!=0 (IntegralDomain.intDom (fieldIsIntDom) ab=0 a!=0)
fieldMultiplicativeGroup : Group (subsetSetoid S {pred = λ m → ((Setoid._∼_ S m (Ring.0R R)) → False)}(λ {x} {y} x=y x!=0 → λ y=0 → x!=0 (Equivalence.transitive (Setoid.eq S) x=y y=0))) (mulNonzeros)
Group.+WellDefined (fieldMultiplicativeGroup) {x , prX} {y , prY} {z , prZ} {w , prW} = Ring.*WellDefined R
Group.0G (fieldMultiplicativeGroup) = Ring.1R R , λ 1=0 → Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) 1=0)
Group.inverse (fieldMultiplicativeGroup) (x , pr) with Field.allInvertible F x pr
... | 1/x , pr1/x = 1/x , λ 1/x=0 → Field.nontrivial F (Equivalence.transitive (Setoid.eq S) (Equivalence.symmetric (Setoid.eq S) (Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R 1/x=0 (Equivalence.reflexive (Setoid.eq S))) (Ring.timesZero' R))) pr1/x)
Group.+Associative (fieldMultiplicativeGroup) {x , prX} {y , prY} {z , prZ} = Ring.*Associative R
Group.identRight (fieldMultiplicativeGroup) {x , prX} = Ring.identIsIdent' R
Group.identLeft (fieldMultiplicativeGroup) {x , prX} = Ring.identIsIdent R
Group.invLeft (fieldMultiplicativeGroup) {x , prX} with Field.allInvertible F x prX
... | 1/x , pr1/x = pr1/x
Group.invRight (fieldMultiplicativeGroup) {x , prX} with Field.allInvertible F x prX
... | 1/x , pr1/x = Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) pr1/x
| {
"alphanum_fraction": 0.6960855823,
"avg_line_length": 67.4262295082,
"ext": "agda",
"hexsha": "f3ea3daeee51246a97ac06eac6c71d480f49d4e5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/Lemmas.agda",
"max_line_length": 271,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1475,
"size": 4113
} |
{-
Product of structures S and T: X ↦ S X × T X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Product where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
private
variable
ℓ ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level
ProductStructure : (S₁ : Type ℓ → Type ℓ₁) (S₂ : Type ℓ → Type ℓ₂)
→ Type ℓ → Type (ℓ-max ℓ₁ ℓ₂)
ProductStructure S₁ S₂ X = S₁ X × S₂ X
ProductEquivStr : {S₁ : Type ℓ → Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁')
{S₂ : Type ℓ → Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂')
→ StrEquiv (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂')
ProductEquivStr ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f)
ProductUnivalentStr : {S₁ : Type ℓ → Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') (θ₁ : UnivalentStr S₁ ι₁)
{S₂ : Type ℓ → Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') (θ₂ : UnivalentStr S₂ ι₂)
→ UnivalentStr (ProductStructure S₁ S₂) (ProductEquivStr ι₁ ι₂)
ProductUnivalentStr {S₁ = S₁} ι₁ θ₁ {S₂} ι₂ θ₂ {X , s₁ , s₂} {Y , t₁ , t₂} e =
isoToEquiv (iso φ ψ η ε)
where
φ : ProductEquivStr ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e
→ PathP (λ i → ProductStructure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂)
φ (p , q) i = (θ₁ e .fst p i) , (θ₂ e .fst q i)
ψ : PathP (λ i → ProductStructure S₁ S₂ (ua e i)) (s₁ , s₂) (t₁ , t₂)
→ ProductEquivStr ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) e
ψ p = invEq (θ₁ e) (λ i → p i .fst) , invEq (θ₂ e) (λ i → p i .snd)
η : section φ ψ
η p i j = retEq (θ₁ e) (λ k → p k .fst) i j , retEq (θ₂ e) (λ k → p k .snd) i j
ε : retract φ ψ
ε (p , q) i = secEq (θ₁ e) p i , secEq (θ₂ e) q i
| {
"alphanum_fraction": 0.5996827076,
"avg_line_length": 36.3653846154,
"ext": "agda",
"hexsha": "5ff6623aacf1420089481a0aad67aa1711d920fe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Product.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 818,
"size": 1891
} |
-- Andreas, 2017-01-12, issue #2386
-- Relaxing the constraints of BUILTIN EQUALITY
open import Agda.Primitive
postulate
ℓ : Level
A : Set ℓ
a b : A
P : A → Set
-- Level-polymorphic equality, living in the first universe
data _≡_ {a} {A : Set a} (x : A) : A → Set where
instance refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
-- The type of primTrustMe has to match the flavor of EQUALITY
primitive primTrustMe : ∀ {a}{A : Set a} {x y : A} → x ≡ y
testTM : primTrustMe {x = a} {y = a} ≡ refl
testTM = refl
-- Testing rewrite
subst : a ≡ b → P a → P b
subst eq p rewrite eq = p
| {
"alphanum_fraction": 0.6317567568,
"avg_line_length": 19.7333333333,
"ext": "agda",
"hexsha": "e57b83032e0664044f08cb039fb1970715d92c3e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2386BuiltinEqualityPolySet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2386BuiltinEqualityPolySet.agda",
"max_line_length": 62,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2386BuiltinEqualityPolySet.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 212,
"size": 592
} |
{-# OPTIONS --enable-prop #-}
open import Agda.Builtin.Nat
-- You can define datatypes in Prop, even with multiple constructors.
-- However, all constructors are considered (definitionally) equal.
data TestProp : Prop where
p₁ p₂ : TestProp
-- Pattern matching on a datatype in Prop is disallowed unless the
-- target type is a Prop:
test-case : {P : Prop} (x₁ x₂ : P) → TestProp → P
test-case x₁ x₂ p₁ = x₁
test-case x₁ x₂ p₂ = x₂
-- All elements of a Prop are definitionally equal:
data _≡Prop_ {A : Prop} (x : A) : A → Set where
refl : x ≡Prop x
p₁≡p₂ : p₁ ≡Prop p₂
p₁≡p₂ = refl
-- A special case are empty types in Prop: these can be eliminated to
-- any other type.
data ⊥ : Prop where
absurd : {A : Set} → ⊥ → A
absurd ()
-- We can also define record types in Prop, such as the unit:
record ⊤ : Prop where
constructor tt
-- We have Prop : Set₀, so we can store predicates in a small datatype:
data NatProp : Set₁ where
c : (Nat → Prop) → NatProp
-- To define more interesting predicates, we need to define them by pattern matching:
_≤_ : Nat → Nat → Prop
zero ≤ y = ⊤
suc x ≤ suc y = x ≤ y
_ ≤ _ = ⊥
-- We can also define the induction principle for predicates defined in this way,
-- using the fact that we can eliminate absurd propositions with a () pattern.
≤-ind : (P : (m n : Nat) → Set)
→ (pzy : (y : Nat) → P zero y)
→ (pss : (x y : Nat) → P x y → P (suc x) (suc y))
→ (m n : Nat) → m ≤ n → P m n
≤-ind P pzy pss zero y pf = pzy y
≤-ind P pzy pss (suc x) (suc y) pf = pss x y (≤-ind P pzy pss x y pf)
≤-ind P pzy pss (suc _) zero ()
-- We can define equality as a Prop, but (currently) we cannot define
-- the corresponding eliminator, so the equality is only useful for
-- refuting impossible equations.
data _≡P_ {A : Set} (x : A) : A → Prop where
refl : x ≡P x
0≢1 : 0 ≡P 1 → ⊥
0≢1 ()
| {
"alphanum_fraction": 0.6400862069,
"avg_line_length": 29.935483871,
"ext": "agda",
"hexsha": "a1ef269f8f45ff1b14b12150b9f58b50950223a0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Succeed/PropTests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Succeed/PropTests.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Succeed/PropTests.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 625,
"size": 1856
} |
module bool where
------------------------
-- Datatypes
------------------------
data 𝔹 : Set where
true : 𝔹
false : 𝔹
----------------------
-- AND
----------------------
infixr 6 _∧_
_∧_ : 𝔹 → 𝔹 → 𝔹
true ∧ b = b
false ∧ b = false
---------------------
-- OR
---------------------
infixr 5 _∨_
_∨_ : 𝔹 → 𝔹 → 𝔹
true ∨ b = true
false ∨ b = b
--------------------
-- NEFATION
--------------------
infixr 7 ¬_
¬_ : 𝔹 → 𝔹
¬ true = false
¬ false = true
| {
"alphanum_fraction": 0.3275488069,
"avg_line_length": 13.9696969697,
"ext": "agda",
"hexsha": "5ed0c3335476cde35966ce46f6535bc2419b636f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2c92eb9520dc83f0258e43b4227ce281dfadaffe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mrLSD/agda-emacs",
"max_forks_repo_path": "bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2c92eb9520dc83f0258e43b4227ce281dfadaffe",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mrLSD/agda-emacs",
"max_issues_repo_path": "bool.agda",
"max_line_length": 24,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2c92eb9520dc83f0258e43b4227ce281dfadaffe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mrLSD/agda-emacs",
"max_stars_repo_path": "bool.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 168,
"size": 461
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.EilenbergMacLane1 {i} (G : Group i) where
private
module G = Group G
comp-equiv : ∀ g → G.El ≃ G.El
comp-equiv g = equiv
(λ x → G.comp x g)
(λ x → G.comp x (G.inv g))
(λ x → G.assoc x (G.inv g) g ∙ ap (G.comp x) (G.inv-l g) ∙ G.unit-r x)
(λ x → G.assoc x g (G.inv g) ∙ ap (G.comp x) (G.inv-r g) ∙ G.unit-r x)
comp-equiv-id : comp-equiv G.ident == ide G.El
comp-equiv-id =
pair= (λ= G.unit-r)
(prop-has-all-paths-↓ {B = is-equiv})
comp-equiv-comp : (g₁ g₂ : G.El) → comp-equiv (G.comp g₁ g₂)
== (comp-equiv g₂ ∘e comp-equiv g₁)
comp-equiv-comp g₁ g₂ =
pair= (λ= (λ x → ! (G.assoc x g₁ g₂)))
(prop-has-all-paths-↓ {B = is-equiv})
Ω-group : Group (lsucc i)
Ω-group = Ω^S-group 0
⊙[ (0 -Type i) , (G.El , G.El-level) ]
Codes-hom : G →ᴳ Ω-group
Codes-hom = group-hom (nType=-out ∘ ua ∘ comp-equiv) pres-comp where
abstract
pres-comp : ∀ g₁ g₂
→ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂)))
== nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁))
∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂))
pres-comp g₁ g₂ =
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂)))
=⟨ comp-equiv-comp g₁ g₂ |in-ctx nType=-out ∘ ua ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂ ∘e comp-equiv g₁))
=⟨ ua-∘e (comp-equiv g₁) (comp-equiv g₂) |in-ctx nType=-out ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁) ∙ ua (comp-equiv g₂))
=⟨ ! $ nType-∙ {A = G.El , G.El-level} {B = G.El , G.El-level} {C = G.El , G.El-level}
(ua (comp-equiv g₁)) (ua (comp-equiv g₂)) ⟩
nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁))
∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂))
=∎
Codes : EM₁ G → 0 -Type i
Codes = EM₁-rec {G = G} {C = 0 -Type i}
(G.El , G.El-level)
Codes-hom
abstract
↓-Codes-loop : ∀ g g' → g' == G.comp g' g [ fst ∘ Codes ↓ emloop g ]
↓-Codes-loop g g' =
↓-ap-out fst Codes (emloop g) $
↓-ap-out (idf _) fst (ap Codes (emloop g)) $
transport (λ w → g' == G.comp g' g [ idf _ ↓ ap fst w ])
(! (EM₁Rec.emloop-β (G.El , G.El-level) Codes-hom g)) $
transport (λ w → g' == G.comp g' g [ idf _ ↓ w ])
(! (fst=-β (ua $ comp-equiv g) _)) $
↓-idf-ua-in (comp-equiv g) idp
encode : {x : EM₁ G} → embase == x → fst (Codes x)
encode α = transport (fst ∘ Codes) α G.ident
encode-emloop : ∀ g → encode (emloop g) == g
encode-emloop g = to-transp $
transport (λ x → G.ident == x [ fst ∘ Codes ↓ emloop g ])
(G.unit-l g) (↓-Codes-loop g G.ident)
decode : {x : EM₁ G} → fst (Codes x) → embase == x
decode {x} =
EM₁-elim {P = λ x' → fst (Codes x') → embase == x'}
emloop
loop'
(λ _ _ → prop-has-all-paths-↓ {{↓-level ⟨⟩}})
x
where
loop' : (g : G.El)
→ emloop == emloop [ (λ x' → fst (Codes x') → embase == x') ↓ emloop g ]
loop' g = ↓-→-from-transp $ λ= $ λ y →
transport (λ z → embase == z) (emloop g) (emloop y)
=⟨ transp-cst=idf (emloop g) (emloop y) ⟩
emloop y ∙ emloop g
=⟨ ! (emloop-comp y g) ⟩
emloop (G.comp y g)
=⟨ ap emloop (! (to-transp (↓-Codes-loop g y))) ⟩
emloop (transport (λ z → fst (Codes z)) (emloop g) y) =∎
decode-encode : ∀ {x} (α : embase' G == x) → decode (encode α) == α
decode-encode idp = emloop-ident {G = G}
emloop-equiv : G.El ≃ (embase' G == embase)
emloop-equiv = equiv emloop encode decode-encode encode-emloop
Ω¹-EM₁ : Ω^S-group 0 (⊙EM₁ G) ≃ᴳ G
Ω¹-EM₁ = ≃-to-≃ᴳ (emloop-equiv ⁻¹)
(λ l₁ l₂ → <– (ap-equiv emloop-equiv _ _) $
emloop (encode (l₁ ∙ l₂))
=⟨ decode-encode (l₁ ∙ l₂) ⟩
l₁ ∙ l₂
=⟨ ! $ ap2 _∙_ (decode-encode l₁) (decode-encode l₂) ⟩
emloop (encode l₁) ∙ emloop (encode l₂)
=⟨ ! $ emloop-comp (encode l₁) (encode l₂) ⟩
emloop (G.comp (encode l₁) (encode l₂))
=∎)
π₁-EM₁ : πS 0 (⊙EM₁ G) ≃ᴳ G
π₁-EM₁ = Ω¹-EM₁ ∘eᴳ unTrunc-iso (Ω^S-group-structure 0 (⊙EM₁ G))
| {
"alphanum_fraction": 0.492211164,
"avg_line_length": 40.5438596491,
"ext": "agda",
"hexsha": "d16d57eea1074f5d7c33e9193a7427a058f5e55c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EilenbergMacLane1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1748,
"size": 4622
} |
import Level as L
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Empty
open import Data.Nat
open import Data.Nat.Properties
open import RevMachine
module RevNoRepeat {ℓ} (M : RevMachine {ℓ}) where
infix 99 _ᵣₑᵥ
infixr 10 _∷_
infixr 10 _++↦_
open RevMachine.RevMachine M
is-stuck : State → Set _
is-stuck st = ∄[ st' ] (st ↦ st')
is-initial : State → Set _
is-initial st = ∄[ st' ] (st' ↦ st)
data _↦ᵣₑᵥ_ : State → State → Set (L.suc ℓ) where
_ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ st₂ → st₂ ↦ᵣₑᵥ st₁
data _↦*_ : State → State → Set (L.suc ℓ) where
◾ : {st : State} → st ↦* st
_∷_ : {st₁ st₂ st₃ : State} → st₁ ↦ st₂ → st₂ ↦* st₃ → st₁ ↦* st₃
_++↦_ : {st₁ st₂ st₃ : State} → st₁ ↦* st₂ → st₂ ↦* st₃ → st₁ ↦* st₃
◾ ++↦ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ st₂'↦*st₃)
len↦ : ∀ {st st'} → st ↦* st' → ℕ
len↦ ◾ = 0
len↦ (_ ∷ r) = 1 + len↦ r
data _↦ᵣₑᵥ*_ : State → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦ᵣₑᵥ* st
_∷_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃
_++↦ᵣₑᵥ_ : ∀ {st₁ st₂ st₃} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦ᵣₑᵥ* st₃ → st₁ ↦ᵣₑᵥ* st₃
◾ ++↦ᵣₑᵥ st₁↦ᵣₑᵥ*st₂ = st₁↦ᵣₑᵥ*st₂
(st₁↦ᵣₑᵥst₁' ∷ st₁'↦ᵣₑᵥ*st₂) ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃ = st₁↦ᵣₑᵥst₁' ∷ (st₁'↦ᵣₑᵥ*st₂ ++↦ᵣₑᵥ st₂'↦ᵣₑᵥ*st₃)
Rev↦ : ∀ {st₁ st₂} → st₁ ↦* st₂ → st₂ ↦ᵣₑᵥ* st₁
Rev↦ ◾ = ◾
Rev↦ (r ∷ rs) = Rev↦ rs ++↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ ◾)
Rev↦ᵣₑᵥ : ∀ {st₁ st₂} → st₁ ↦ᵣₑᵥ* st₂ → st₂ ↦* st₁
Rev↦ᵣₑᵥ ◾ = ◾
Rev↦ᵣₑᵥ ((r ᵣₑᵥ) ∷ rs) = Rev↦ᵣₑᵥ rs ++↦ (r ∷ ◾)
deterministic* : ∀ {st st₁ st₂} → st ↦* st₁ → st ↦* st₂
→ is-stuck st₁ → is-stuck st₂
→ st₁ ≡ st₂
deterministic* ◾ ◾ stuck₁ stuck₂ = refl
deterministic* ◾ (r ∷ ↦*₂) stuck₁ stuck₂ = ⊥-elim (stuck₁ (_ , r))
deterministic* (r ∷ ↦*₁) ◾ stuck₁ stuck₂ = ⊥-elim (stuck₂ (_ , r))
deterministic* (r₁ ∷ ↦*₁) (r₂ ∷ ↦*₂) stuck₁ stuck₂ with deterministic r₁ r₂
... | refl = deterministic* ↦*₁ ↦*₂ stuck₁ stuck₂
deterministic*' : ∀ {st st₁ st'} → (rs₁ : st ↦* st₁) → (rs : st ↦* st')
→ is-stuck st'
→ Σ[ rs' ∈ st₁ ↦* st' ] (len↦ rs ≡ len↦ rs₁ + len↦ rs')
deterministic*' ◾ rs stuck = rs , refl
deterministic*' (r ∷ rs₁) ◾ stuck = ⊥-elim (stuck (_ , r))
deterministic*' (r ∷ rs₁) (r' ∷ rs) stuck with deterministic r r'
... | refl with deterministic*' rs₁ rs stuck
... | (rs' , eq) = rs' , cong suc eq
deterministicᵣₑᵥ* : ∀ {st st₁ st₂} → st ↦ᵣₑᵥ* st₁ → st ↦ᵣₑᵥ* st₂
→ is-initial st₁ → is-initial st₂
→ st₁ ≡ st₂
deterministicᵣₑᵥ* ◾ ◾ initial₁ initial₂ = refl
deterministicᵣₑᵥ* ◾ (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) initial₁ initial₂ = ⊥-elim (initial₁ (_ , r))
deterministicᵣₑᵥ* (r ᵣₑᵥ ∷ ↦ᵣₑᵥ*₁) ◾ initial₁ initial₂ = ⊥-elim (initial₂ (_ , r))
deterministicᵣₑᵥ* (r₁ ᵣₑᵥ ∷ ↦ᵣₑᵥ*₁) (r₂ ᵣₑᵥ ∷ ↦ᵣₑᵥ*₂) initial₁ initial₂ with deterministicᵣₑᵥ r₁ r₂
... | refl = deterministicᵣₑᵥ* ↦ᵣₑᵥ*₁ ↦ᵣₑᵥ*₂ initial₁ initial₂
data _↦[_]_ : State → ℕ → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦[ 0 ] st
_∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ st₂ → st₂ ↦[ n ] st₃ → st₁ ↦[ suc n ] st₃
_++↦ⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦[ n ] st₂ → st₂ ↦[ m ] st₃ → st₁ ↦[ n + m ] st₃
◾ ++↦ⁿ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ⁿ st₂'↦*st₃)
data _↦ᵣₑᵥ[_]_ : State → ℕ → State → Set (L.suc ℓ) where
◾ : ∀ {st} → st ↦ᵣₑᵥ[ 0 ] st
_∷_ : ∀ {st₁ st₂ st₃ n} → st₁ ↦ᵣₑᵥ st₂ → st₂ ↦ᵣₑᵥ[ n ] st₃ → st₁ ↦ᵣₑᵥ[ suc n ] st₃
_++↦ᵣₑᵥⁿ_ : ∀ {st₁ st₂ st₃ n m} → st₁ ↦ᵣₑᵥ[ n ] st₂ → st₂ ↦ᵣₑᵥ[ m ] st₃ → st₁ ↦ᵣₑᵥ[ n + m ] st₃
◾ ++↦ᵣₑᵥⁿ st₁↦*st₂ = st₁↦*st₂
(st₁↦st₁' ∷ st₁'↦*st₂) ++↦ᵣₑᵥⁿ st₂'↦*st₃ = st₁↦st₁' ∷ (st₁'↦*st₂ ++↦ᵣₑᵥⁿ st₂'↦*st₃)
deterministicⁿ : ∀ {st st₁ st₂ n} → st ↦[ n ] st₁ → st ↦[ n ] st₂
→ st₁ ≡ st₂
deterministicⁿ ◾ ◾ = refl
deterministicⁿ (r₁ ∷ rs₁) (r₂ ∷ rs₂) with deterministic r₁ r₂
... | refl = deterministicⁿ rs₁ rs₂
deterministicᵣₑᵥⁿ : ∀ {st st₁ st₂ n} → st ↦ᵣₑᵥ[ n ] st₁ → st ↦ᵣₑᵥ[ n ] st₂
→ st₁ ≡ st₂
deterministicᵣₑᵥⁿ ◾ ◾ = refl
deterministicᵣₑᵥⁿ (r₁ ᵣₑᵥ ∷ rs₁) (r₂ ᵣₑᵥ ∷ rs₂) with deterministicᵣₑᵥ r₁ r₂
... | refl = deterministicᵣₑᵥⁿ rs₁ rs₂
private
split↦ⁿ : ∀ {st st'' n m} → st ↦ᵣₑᵥ[ n + m ] st''
→ ∃[ st' ] (st ↦ᵣₑᵥ[ n ] st' × st' ↦ᵣₑᵥ[ m ] st'')
split↦ⁿ {n = 0} {m} rs = _ , ◾ , rs
split↦ⁿ {n = suc n} {m} (r ∷ rs) with split↦ⁿ {n = n} {m} rs
... | st' , st↦ⁿst' , st'↦ᵐst'' = st' , (r ∷ st↦ⁿst') , st'↦ᵐst''
diff : ∀ {n m} → n < m → ∃[ k ] (0 < k × n + k ≡ m)
diff {0} {(suc m)} (s≤s z≤n) = suc m , s≤s z≤n , refl
diff {(suc n)} {(suc (suc m))} (s≤s (s≤s n≤m)) with diff {n} {suc m} (s≤s n≤m)
... | k , 0<k , eq = k , 0<k , cong suc eq
Revⁿ : ∀ {st st' n} → st ↦[ n ] st' → st' ↦ᵣₑᵥ[ n ] st
Revⁿ {n = 0} ◾ = ◾
Revⁿ {n = suc n} (r ∷ rs) rewrite +-comm 1 n = Revⁿ rs ++↦ᵣₑᵥⁿ (r ᵣₑᵥ ∷ ◾)
NoRepeat : ∀ {st₀ stₙ stₘ n m}
→ is-initial st₀
→ n < m
→ st₀ ↦[ n ] stₙ
→ st₀ ↦[ m ] stₘ
→ stₙ ≢ stₘ
NoRepeat {stₙ = st} {_} {m} st₀-is-init n<m st₀↦ᵐst st₀↦ᵐ⁺ᵏ⁺¹st refl with diff n<m
... | suc k , 0<k , refl with (Revⁿ st₀↦ᵐst , Revⁿ st₀↦ᵐ⁺ᵏ⁺¹st)
... | st'↦ᵐst₀' , st'↦ᵐ⁺ᵏ⁺¹st₀' with split↦ⁿ {n = m} {suc k} st'↦ᵐ⁺ᵏ⁺¹st₀'
... | st′ , st'↦ᵐst′ , st′↦ᵏ⁺¹st₀' with deterministicᵣₑᵥⁿ st'↦ᵐst₀' st'↦ᵐst′
... | refl with st′↦ᵏ⁺¹st₀'
... | r ᵣₑᵥ ∷ rs = ⊥-elim (st₀-is-init (_ , r))
| {
"alphanum_fraction": 0.5174850516,
"avg_line_length": 40.2846715328,
"ext": "agda",
"hexsha": "433b401bf47f86ccaba69c64dd0df87b177299bf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "RevNoRepeat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "RevNoRepeat.agda",
"max_line_length": 101,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "RevNoRepeat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3339,
"size": 5519
} |
------------------------------------------------------------------------------
-- Distributive laws on a binary operation: Lemma 6
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.Lemma6-ATP where
open import DistributiveLaws.Base
------------------------------------------------------------------------------
postulate
lemma₆ : ∀ u x y z →
(((x · y) · (z · u)) · ((x · y) · (z · u))) ≡ (x · y) · (z · u)
{-# ATP prove lemma₆ #-}
| {
"alphanum_fraction": 0.3427299703,
"avg_line_length": 33.7,
"ext": "agda",
"hexsha": "240d04d1aad6efd93942096b75df24bdb250a81f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/Lemma6-ATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/Lemma6-ATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/Lemma6-ATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 131,
"size": 674
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Setoids.LCCC where
open import Level
open import Data.Product using (Σ; _,_)
open import Function.Equality as Func using (Π; _⟶_)
open import Relation.Binary using (Setoid)
import Relation.Binary.PropositionalEquality as ≡
open import Categories.Category
open import Categories.Category.Slice
open import Categories.Category.Slice.Properties
open import Categories.Category.CartesianClosed
open import Categories.Category.CartesianClosed.Canonical
using (module Equivalence)
renaming (CartesianClosed to Canonical)
open import Categories.Category.CartesianClosed.Locally using (Locally)
open import Categories.Category.Cartesian
open import Categories.Category.Instance.Span
open import Categories.Category.Instance.Setoids
open import Categories.Category.Instance.Properties.Setoids.Complete
open import Categories.Category.Monoidal.Instance.Setoids
open import Categories.Functor
open import Categories.Object.Terminal
open import Categories.Diagram.Pullback
open import Categories.Diagram.Pullback.Limit
import Categories.Object.Product as Prod
open Π using (_⟨$⟩_)
module _ {o ℓ} where
module _ {A X : Setoid o ℓ} where
private
module A = Setoid A
module X = Setoid X
record InverseImage (a : Setoid.Carrier A) (f : X ⟶ A) : Set (o ⊔ ℓ) where
constructor pack
field
x : X.Carrier
fx≈a : f ⟨$⟩ x A.≈ a
inverseImage-transport : ∀ {a a′} {f : X ⟶ A} → a A.≈ a′ → InverseImage a f → InverseImage a′ f
inverseImage-transport eq img = pack x (A.trans fx≈a eq)
where open InverseImage img
module _ {A X Y : Setoid o ℓ} where
private
module A = Setoid A
module X = Setoid X
module Y = Setoid Y
-- the inverse image part of an exponential object the slice category of Setoids
-- it's a morphism from f to g, which in set theory is
-- f⁻¹(a) ⟶ g⁻¹(a)
-- here, we need to take care of some coherence condition.
record InverseImageMap (a : Setoid.Carrier A)
(f : X ⟶ A)
(g : Y ⟶ A) : Set (o ⊔ ℓ) where
field
f⇒g : InverseImage a f → InverseImage a g
cong : ∀ (x x′ : InverseImage a f) →
InverseImage.x x X.≈ InverseImage.x x′ →
InverseImage.x (f⇒g x) Y.≈ InverseImage.x (f⇒g x′)
inverseImageMap-transport : ∀ {a a′} {f : X ⟶ A} {g : Y ⟶ A} → a A.≈ a′ →
InverseImageMap a f g → InverseImageMap a′ f g
inverseImageMap-transport eq h = record
{ f⇒g = λ img → inverseImage-transport eq (f⇒g (inverseImage-transport (A.sym eq) img))
; cong = λ x x′ eq′ → cong (inverseImage-transport (A.sym eq) x) (inverseImage-transport (A.sym eq) x′) eq′
}
where open InverseImageMap h
record SlExp (f : X ⟶ A)
(g : Y ⟶ A) : Set (o ⊔ ℓ) where
field
idx : A.Carrier
map : InverseImageMap idx f g
open InverseImageMap map public
record SlExp≈ {f : X ⟶ A}
{g : Y ⟶ A}
(h i : SlExp f g) : Set (o ⊔ ℓ) where
private
module h = SlExp h
module i = SlExp i
field
idx≈ : h.idx A.≈ i.idx
map≈ : ∀ (img : InverseImage h.idx f) → InverseImage.x (h.f⇒g img) Y.≈ InverseImage.x (i.f⇒g (inverseImage-transport idx≈ img))
-- map≈′ : ∀ (img : InverseImage i.idx f) → InverseImage.x (i.f⇒g img) Y.≈ InverseImage.x (h.f⇒g (inverseImage-transport idx≈ img))
SlExp-Setoid : ∀ {A X Y : Setoid o ℓ}
(f : X ⟶ A) (g : Y ⟶ A) → Setoid (o ⊔ ℓ) (o ⊔ ℓ)
SlExp-Setoid {A} {X} {Y} f g = record
{ Carrier = SlExp f g
; _≈_ = SlExp≈
; isEquivalence = record
{ refl = λ {h} → record
{ idx≈ = A.refl
; map≈ = λ img → SlExp.cong h img (inverseImage-transport A.refl img) X.refl
}
; sym = λ {h i} eq →
let open SlExp≈ eq
in record
{ idx≈ = A.sym idx≈
; map≈ = λ img → Y.trans (SlExp.cong i img (inverseImage-transport idx≈ (inverseImage-transport (A.sym idx≈) img)) X.refl)
(Y.sym (map≈ (inverseImage-transport (A.sym idx≈) img)))
}
; trans = λ {h i j} eq eq′ →
let module eq = SlExp≈ eq
module eq′ = SlExp≈ eq′
in record
{ idx≈ = A.trans eq.idx≈ eq′.idx≈
; map≈ = λ img → Y.trans (eq.map≈ img)
(Y.trans (eq′.map≈ (inverseImage-transport eq.idx≈ img))
(SlExp.cong j (inverseImage-transport eq′.idx≈ (inverseImage-transport eq.idx≈ img))
(inverseImage-transport (A.trans eq.idx≈ eq′.idx≈) img)
X.refl))
}
}
}
where module A = Setoid A
module X = Setoid X
module Y = Setoid Y
module _ {o} where
private
S : Category (suc o) o o
S = Setoids o o
module S = Category S
module _ (A : S.Obj) where
private
Sl = Slice S A
module Sl = Category Sl
open Setoid A
open Prod (Slice S A)
slice-terminal : Terminal Sl
slice-terminal = record
{ ⊤ = sliceobj {Y = A} record
{ _⟨$⟩_ = λ x → x
; cong = λ eq → eq
}
; ⊤-is-terminal = record
{ ! = λ { {sliceobj f} → slicearr {h = f} (Π.cong f) }
; !-unique = λ { {X} (slicearr △) eq →
let module X = SliceObj X
in sym (△ (Setoid.sym X.Y eq)) }
}
}
F₀ : Sl.Obj → Sl.Obj → SpanObj → Setoid o o
F₀ X Y center = A
F₀ X Y left = SliceObj.Y X
F₀ X Y right = SliceObj.Y Y
slice-product : (X Y : Sl.Obj) → Product X Y
slice-product X Y = pullback⇒product S XY-pullback
where module X = SliceObj X
module Y = SliceObj Y
F : Functor (Category.op Span) (Setoids o o)
F = record
{ F₀ = F₀ X Y
; F₁ = λ { span-id → Func.id
; span-arrˡ → X.arr
; span-arrʳ → Y.arr
}
; identity = λ {Z} → S.Equiv.refl {F₀ X Y Z} {F₀ X Y Z} {Func.id}
; homomorphism = λ { {_} {_} {_} {span-id} {span-id} eq → eq
; {_} {_} {_} {span-id} {span-arrˡ} → Π.cong X.arr
; {_} {_} {_} {span-id} {span-arrʳ} → Π.cong Y.arr
; {_} {_} {_} {span-arrˡ} {span-id} → Π.cong X.arr
; {_} {_} {_} {span-arrʳ} {span-id} → Π.cong Y.arr
}
; F-resp-≈ = λ { {_} {_} {span-id} ≡.refl eq → eq
; {_} {_} {span-arrˡ} ≡.refl → Π.cong X.arr
; {_} {_} {span-arrʳ} ≡.refl → Π.cong Y.arr
}
}
XY-pullback : Pullback S X.arr Y.arr
XY-pullback = limit⇒pullback S {F = F} (Setoids-Complete 0ℓ 0ℓ 0ℓ o o F)
module slice-terminal = Terminal slice-terminal
module slice-product X Y = Product (slice-product X Y)
cartesian : Cartesian Sl
cartesian = record
{ terminal = slice-terminal
; products = record
{ product = slice-product _ _
}
}
module cartesian = Cartesian cartesian
_^_ : Sl.Obj → Sl.Obj → Sl.Obj
f ^ g = sliceobj {Y = SlExp-Setoid g.arr f.arr} record
{ _⟨$⟩_ = SlExp.idx
; cong = SlExp≈.idx≈
}
where module f = SliceObj f
module g = SliceObj g
prod = slice-product.A×B
eval : {f g : Sl.Obj} → prod (f ^ g) g Sl.⇒ f
eval {f} {g} = slicearr {h = h} λ { {J₁ , arr₁} {J₂ , arr₂} eq →
let open SlExp (J₁ left)
in trans (InverseImage.fx≈a (f⇒g (pack (J₁ right) _)))
(trans (arr₁ span-arrˡ)
(trans (eq center)
(sym (arr₂ span-arrʳ)))) }
where module f = SliceObj f
module g = SliceObj g
module fY = Setoid f.Y
h : SliceObj.Y (prod (f ^ g) g) S.⇒ f.Y
h = record
{ _⟨$⟩_ = λ { (J , arr) →
let module exp = SlExp (J left)
in InverseImage.x (exp.f⇒g (pack (J right) (trans (arr span-arrʳ) (sym (arr span-arrˡ))))) }
; cong = λ { {J₁ , arr₁} {J₂ , arr₂} eq →
let open SlExp≈ (eq left)
open SlExp (J₂ left)
in fY.trans (map≈ _) (cong _ _ (eq right)) }
}
module _ {f g : Sl.Obj} where
private
module f = SliceObj f
module g = SliceObj g
module fY = Setoid f.Y
module gY = Setoid g.Y
Jpb : ∀ x → InverseImage (f.arr ⟨$⟩ x) g.arr → ∀ j → Setoid.Carrier (F₀ f g j)
Jpb x img center = f.arr ⟨$⟩ x
Jpb x img left = x
Jpb x img right = InverseImage.x img
xypb : ∀ x → InverseImage (f.arr ⟨$⟩ x) g.arr → Setoid.Carrier (SliceObj.Y (prod f g))
xypb x img = Jpb x img
, λ { {center} span-id → refl
; {left} span-id → fY.refl
; {right} span-id → gY.refl
; span-arrˡ → refl
; span-arrʳ → fx≈a }
where open InverseImage img renaming (x to y)
module _ {h : Sl.Obj} (α : prod f g Sl.⇒ h) where
private
module α = Slice⇒ α
module h = SliceObj h
module hY = Setoid h.Y
βmap : fY.Carrier → SlExp g.arr h.arr
βmap x = record
{ idx = f.arr ⟨$⟩ x
; map = record
{ f⇒g = λ img →
let open InverseImage img renaming (x to y)
in pack (α.h ⟨$⟩ xypb x img)
(trans (α.△ {xypb x img} {xypb x img} (Setoid.refl (SliceObj.Y (prod f g)) {xypb x img}))
fx≈a)
; cong = λ img img′ eq →
let module img = InverseImage img
module img′ = InverseImage img′
in Π.cong α.h λ { center → refl
; left → fY.refl
; right → eq }
}
}
βcong : {i j : fY.Carrier} → i fY.≈ j → SlExp≈ (βmap i) (βmap j)
βcong {i} {j} eq = record
{ idx≈ = Π.cong f.arr eq
; map≈ = λ img →
let open InverseImage img
in Π.cong α.h λ { center → Π.cong f.arr eq
; left → eq
; right → gY.refl }
}
β : f.Y S.⇒ SliceObj.Y (h ^ g)
β = record
{ _⟨$⟩_ = βmap
; cong = βcong
}
curry : f Sl.⇒ (h ^ g)
curry = slicearr {h = β} (Π.cong f.arr)
module _ {f g h : Sl.Obj} {α β : prod f g Sl.⇒ h} where
private
module f = SliceObj f
module g = SliceObj g
module gY = Setoid g.Y
curry-resp-≈ : α Sl.≈ β → curry α Sl.≈ curry β
curry-resp-≈ eq eq′ = record
{ idx≈ = Π.cong f.arr eq′
; map≈ = λ img →
let open InverseImage img
in eq λ { center → Π.cong f.arr eq′
; left → eq′
; right → gY.refl }
}
module _ {f g h : Sl.Obj} {α : f Sl.⇒ (g ^ h)} {β : prod f h Sl.⇒ g} where
private
module f = SliceObj f
module g = SliceObj g
module h = SliceObj h
module α = Slice⇒ α
module β = Slice⇒ β
module fY = Setoid f.Y
module gY = Setoid g.Y
module hY = Setoid h.Y
curry-unique : eval Sl.∘ (α cartesian.⁂ Sl.id) Sl.≈ β → α Sl.≈ curry β
curry-unique eq {z} {w} eq′ = record
{ idx≈ = α.△ eq′
; map≈ = λ img →
let open InverseImage img
in gY.trans (InverseImageMap.cong (SlExp.map (α.h ⟨$⟩ z)) img _ hY.refl)
(eq {xypb z (inverseImage-transport (trans (α.△ eq′) (Π.cong f.arr (fY.sym eq′))) img)}
{xypb w (inverseImage-transport (α.△ eq′) img)}
λ { center → Π.cong f.arr eq′
; left → eq′
; right → hY.refl })
}
slice-canonical : Canonical Sl
slice-canonical = record
{ ⊤ = slice-terminal.⊤
; _×_ = slice-product.A×B
; ! = slice-terminal.!
; π₁ = slice-product.π₁ _ _
; π₂ = slice-product.π₂ _ _
; ⟨_,_⟩ = slice-product.⟨_,_⟩ _ _
; !-unique = slice-terminal.!-unique
; π₁-comp = λ {_ _ f _ g} → slice-product.project₁ _ _ {_} {f} {g}
; π₂-comp = λ {_ _ f _ g} → slice-product.project₂ _ _ {_} {f} {g}
; ⟨,⟩-unique = λ {_ _ _ f g h} → slice-product.unique _ _ {_} {h} {f} {g}
; _^_ = _^_
; eval = eval
; curry = curry
; eval-comp = λ { {_} {_} {_} {α} {J , arr₁} eq →
let module α = Slice⇒ α
in Π.cong α.h λ { center → trans (arr₁ span-arrˡ) (eq center)
; left → eq left
; right → eq right } }
; curry-resp-≈ = λ {_ _ _} {α β} → curry-resp-≈ {_} {_} {_} {α} {β}
; curry-unique = λ {_ _ _} {α β} → curry-unique {_} {_} {_} {α} {β}
}
Setoids-sliceCCC : CartesianClosed (Slice S A)
Setoids-sliceCCC = Equivalence.fromCanonical (Slice S A) slice-canonical
Setoids-LCCC : Locally S
Setoids-LCCC = record
{ sliceCCC = Setoids-sliceCCC
}
| {
"alphanum_fraction": 0.4709895211,
"avg_line_length": 37.9173333333,
"ext": "agda",
"hexsha": "0758a223e0a246e3db07293222b787e6d74c0a6e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/LCCC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/LCCC.agda",
"max_line_length": 139,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/LCCC.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 4337,
"size": 14219
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Abstract.Types.EpochConfig
open WithAbsVote
-- This module defines and abstract view if a system, encompassing only a predicate for Records,
-- another for Votes and a proof that, if a Vote is included in a QC in the system, then and
-- equivalent Vote is also in the system. It further defines a notion "Complete", which states that
-- if an honest vote is included in a QC in the system, then there is a RecordChain up to the block
-- that the QC extends, such that all Records in the RecordChain are also in the system. The latter
-- property is used to extend correctness conditions on RecordChains to correctness conditions that
-- require only a short suffix of a RecordChain.
module LibraBFT.Abstract.System
(UID : Set)
(_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁))
(NodeId : Set)
(𝓔 : EpochConfig UID NodeId)
(𝓥 : VoteEvidence UID NodeId 𝓔)
where
open import LibraBFT.Abstract.Types UID NodeId 𝓔
open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥
module All-InSys-props {ℓ}(InSys : Record → Set ℓ) where
All-InSys : ∀ {o r} → RecordChainFrom o r → Set ℓ
All-InSys rc = {r' : Record} → r' ∈RC-simple rc → InSys r'
All-InSys⇒last-InSys : ∀ {r} → {rc : RecordChain r} → All-InSys rc → InSys r
All-InSys⇒last-InSys {rc = empty} a∈s = a∈s here
All-InSys⇒last-InSys {r = r'} {step {r' = .r'} rc ext} a∈s = a∈s here
All-InSys-unstep : ∀ {o r r' rc ext } → All-InSys (step {o} {r} {r'} rc ext) → All-InSys rc
All-InSys-unstep {ext = ext} a∈s r'∈RC = a∈s (there ext r'∈RC)
All-InSys-step : ∀ {r r' }{rc : RecordChain r}
→ All-InSys rc → (ext : r ← r') → InSys r'
→ All-InSys (step rc ext)
All-InSys-step hyp ext r here = r
All-InSys-step hyp ext r (there .ext r∈rc) = hyp r∈rc
-- We say an InSys predicate is /Complete/ when we can construct a record chain
-- from any vote by an honest participant. This essentially says that whenever
-- an honest participant casts a vote, they have checked that the voted-for
-- block is in a RecordChain whose records are all in the system. This notion
-- is used to extend correctness conditions on RecordChains to correctness conditions that
-- require only a short suffix of a RecordChain.
Complete : ∀{ℓ} → (Record → Set ℓ) → Set ℓ
Complete ∈sys = ∀{α q}
→ Meta-Honest-Member α
→ α ∈QC q
→ ∈sys (Q q)
→ ∃[ b ] ( Σ (RecordChain (B b)) All-InSys
× B b ← Q q)
where open All-InSys-props ∈sys
| {
"alphanum_fraction": 0.6559814937,
"avg_line_length": 48.0317460317,
"ext": "agda",
"hexsha": "e11c60df83834ace8a65593e9ab66f2a998dca93",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Abstract/System.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Abstract/System.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Abstract/System.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 927,
"size": 3026
} |
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
module 01-arguments where
data T : Set where
tt : T
data A : Set where
mkA : A
mkA2 : T → A
giveA : ⦃ a : A ⦄ → A
giveA {{a}} = a
test : A → T
test a = tt
test2 : T
test2 = test giveA
id : {A : Set} → A → A
id v = v
test5 : T → T
test5 = id
⋯ : {A : Set} → {{a : A}} → A
⋯ {{a}} = a
--giveA' : {{a : A}} → A
--giveA' = ⋯
| {
"alphanum_fraction": 0.4897959184,
"avg_line_length": 11.8787878788,
"ext": "agda",
"hexsha": "e074e4468e810ce74f5df9cc26b08347bcb61693",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/instance-arguments/01-arguments.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/instance-arguments/01-arguments.agda",
"max_line_length": 53,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/instance-arguments/01-arguments.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 178,
"size": 392
} |
{-# OPTIONS --safe --without-K #-}
module Generics.Desc where
open import Data.String using (String)
open import Generics.Prelude hiding (lookup)
open import Generics.Telescope
private
variable
P : Telescope ⊤
V I : ExTele P
p : ⟦ P ⟧tel tt
ℓ : Level
n : ℕ
data ConDesc (P : Telescope ⊤) (V I : ExTele P) : Setω where
var : (((p , v) : ⟦ P , V ⟧xtel) → ⟦ I ⟧tel p) → ConDesc P V I
π : (ai : String × ArgInfo)
(S : ⟦ P , V ⟧xtel → Set ℓ)
(C : ConDesc P (V ⊢< ai > S) I)
→ ConDesc P V I
_⊗_ : (A B : ConDesc P V I) → ConDesc P V I
data DataDesc P (I : ExTele P) : ℕ → Setω where
[] : DataDesc P I 0
_∷_ : ∀ {n} (C : ConDesc P ε I) (D : DataDesc P I n) → DataDesc P I (suc n)
lookupCon : DataDesc P I n → Fin n → ConDesc P ε I
lookupCon (C ∷ D) (zero ) = C
lookupCon (C ∷ D) (suc k) = lookupCon D k
levelIndArg : ConDesc P V I → Level → Level
levelIndArg (var _) c = c
levelIndArg (π {ℓ} _ _ C) c = ℓ ⊔ levelIndArg C c
levelIndArg (A ⊗ B) c = levelIndArg A c ⊔ levelIndArg B c
⟦_⟧IndArg : (C : ConDesc P V I)
→ (⟦ P , I ⟧xtel → Set ℓ)
→ (⟦ P , V ⟧xtel → Set (levelIndArg C ℓ))
⟦ var f ⟧IndArg X (p , v) = X (p , f (p , v))
⟦ π ai S C ⟧IndArg X (p , v) = Π< ai > (S (p , v)) (λ s → ⟦ C ⟧IndArg X (p , v , s))
⟦ A ⊗ B ⟧IndArg X pv = ⟦ A ⟧IndArg X pv × ⟦ B ⟧IndArg X pv
levelCon : ConDesc P V I → Level → Level
levelCon {I = I} (var _) c = levelOfTel I
levelCon (π {ℓ} _ _ C) c = ℓ ⊔ levelCon C c
levelCon (A ⊗ B) c = levelIndArg A c ⊔ levelCon B c
⟦_⟧Con : (C : ConDesc P V I)
→ (⟦ P , I ⟧xtel → Set ℓ)
→ (⟦ P , V & I ⟧xtel → Set (levelCon C ℓ))
⟦ var f ⟧Con X (p , v , i) = i ≡ f (p , v)
⟦ π (n , ai) S C ⟧Con X (p , v , i) = Σ[ s ∈ < relevance ai > S (p , v) ] ⟦ C ⟧Con X (p , ((v , s) , i))
⟦ A ⊗ B ⟧Con X pvi@(p , v , i) = ⟦ A ⟧IndArg X (p , v) × ⟦ B ⟧Con X pvi
record Σℓω {a} (A : Set a) {ℓB : A → Level} (B : ∀ x → Set (ℓB x)) : Setω where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
⟦_⟧Data : DataDesc P I n → (⟦ P , I ⟧xtel → Set ℓ) → ⟦ P , I ⟧xtel → Setω
⟦_⟧Data {n = n} D X (p , i) = Σℓω (Fin n) (λ k → ⟦ lookupCon D k ⟧Con X (p , tt , i))
| {
"alphanum_fraction": 0.5122838944,
"avg_line_length": 31.4,
"ext": "agda",
"hexsha": "f82251521bb334c867c7d9e160c63d67d0a2a9a9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Desc.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Desc.agda",
"max_line_length": 104,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Desc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 992,
"size": 2198
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Floats: basic types and operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Float.Base where
open import Relation.Binary.Core using (Rel)
import Data.Word.Base as Word
open import Function using (_on_)
open import Agda.Builtin.Equality
------------------------------------------------------------------------
-- Re-export built-ins publically
open import Agda.Builtin.Float public
using (Float)
renaming
-- Relations
( primFloatEquality to _≡ᵇ_
; primFloatLess to _≤ᵇ_
; primFloatNumericalEquality to _≈ᵇ_
; primFloatNumericalLess to _≲ᵇ_
-- Conversions
; primShowFloat to show
; primFloatToWord64 to toWord
; primNatToFloat to fromℕ
-- Operations
; primFloatPlus to _+_
; primFloatMinus to _-_
; primFloatTimes to _*_
; primFloatNegate to -_
; primFloatDiv to _÷_
; primFloatSqrt to sqrt
; primRound to round
; primFloor to ⌊_⌋
; primCeiling to ⌈_⌉
; primExp to e^_
; primLog to log
; primSin to sin
; primCos to cos
; primTan to tan
; primASin to asin
; primACos to acos
; primATan to atan
)
_≈_ : Rel Float _
_≈_ = Word._≈_ on toWord
_<_ : Rel Float _
_<_ = Word._<_ on toWord
| {
"alphanum_fraction": 0.5381968341,
"avg_line_length": 25.9464285714,
"ext": "agda",
"hexsha": "e5dd7c5e037f0b74bb270eab794c9cf10ec9d1a0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Float/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Float/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Float/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 404,
"size": 1453
} |
-- Andreas, 2016-02-04
-- Printing of overapplied operator patterns
-- Expected results see comments.
_fun : (A : Set) → Set
_fun = {!!}
-- C-c C-c RET gives
--
-- A fun = ?
_nofun : (A : Set₁) (B : Set₁) → Set₁
_nofun = {!!}
-- C-c C-c RET gives
--
-- (A nofun) B = ?
module Works where
record Safe : Set₁ where
field <_>safe : Set
open Safe
mixfix : Safe
mixfix = {!!}
-- C-c C-c RET gives
--
-- < mixfix >safe
record Safe : Set₁ where
field <_>safe : Set → Set
open Safe
mixfix : Safe
mixfix = {! !}
-- C-c C-c RET gives
--
-- < mixfix >safe x
_+_ : (A B C : Set) → Set
_+_ = {!!}
-- C-c C-c RET gives
--
-- (A + B) C = ?
-_ : (A B : Set) → Set
-_ = {!!}
-- C-c C-c RET gives
--
-- (- A) B = ?
data D : Set where
_*_ : (x y z : D) → D
splitP : D → D
splitP d = {! d!}
-- C-c C-c [d RET] gives
--
-- splitP ((d * d₁) d₂) = ?
| {
"alphanum_fraction": 0.5063001145,
"avg_line_length": 14.3114754098,
"ext": "agda",
"hexsha": "d4d9c302f5b9e85c8ac7289f568337369140152c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue1792.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue1792.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue1792.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 336,
"size": 873
} |
module bohm-out where
open import lib
open import general-util
open import cedille-types
open import syntax-util
{- Implementation of the Böhm-Out Algorithm -}
private
nfoldr : ℕ → ∀ {ℓ} {X : Set ℓ} → X → (ℕ → X → X) → X
nfoldr zero z s = z
nfoldr (suc n) z s = s n (nfoldr n z s)
nfoldl : ℕ → ∀ {ℓ} {X : Set ℓ} → X → (ℕ → X → X) → X
nfoldl zero z s = z
nfoldl (suc n) z s = nfoldl n (s n z) s
set-nth : ∀ {ℓ} {X : Set ℓ} → ℕ → X → 𝕃 X → 𝕃 X
set-nth n x [] = []
set-nth zero x (x' :: xs) = x :: xs
set-nth (suc n) x (x' :: xs) = x' :: set-nth n x xs
-- Böhm Tree
data BT : Set where
Node : (n i : ℕ) → 𝕃 BT → BT
-- n: number of lambdas currently bound
-- i: head variable
-- 𝕃 BT: list of arguments
-- Path to difference
data path : Set where
hd : path -- Difference in heads
as : path -- Difference in number of arguments
ps : (n : ℕ) → path → path -- Difference in nth subtrees (recursive)
-- η functions
η-expand'' : ℕ → 𝕃 BT → 𝕃 BT
η-expand'' g [] = []
η-expand'' g (Node n i b :: bs) =
Node (suc n) (if i ≥ g then suc i else i) (η-expand'' g b) :: η-expand'' g bs
η-expand' : ℕ → BT → BT
η-expand' g (Node n i b) = Node (suc n) (if i ≥ g then suc i else i) (η-expand'' g b)
η-expand : BT → BT
η-expand t @ (Node n _ _) with η-expand' (suc n) t
...| Node n' i' b' = Node n' i' (b' ++ [ Node n' n' [] ])
bt-n : BT → ℕ
bt-n (Node n i b) = n
η-equate : BT → BT → BT × BT
η-equate t₁ t₂ =
nfoldr (bt-n t₂ ∸ bt-n t₁) t₁ (λ _ → η-expand) ,
nfoldr (bt-n t₁ ∸ bt-n t₂) t₂ (λ _ → η-expand)
-- η-equates all nodes along path to difference
η-equate-path : BT → BT → path → BT × BT
η-equate-path (Node n₁ i₁ b₁) (Node n₂ i₂ b₂) (ps d p) =
let b-b = h d b₁ b₂ in
η-equate (Node n₁ i₁ (fst b-b)) (Node n₂ i₂ (snd b-b))
where
h : ℕ → 𝕃 BT → 𝕃 BT → 𝕃 BT × 𝕃 BT
h zero (b₁ :: bs₁) (b₂ :: bs₂) with η-equate-path b₁ b₂ p
...| b₁' , b₂' = b₁' :: bs₁ , b₂' :: bs₂
h (suc d) (b₁ :: bs₁) (b₂ :: bs₂) with h d bs₁ bs₂
...| bs₁' , bs₂' = b₁ :: bs₁' , b₂ :: bs₂'
h d b₁ b₂ = b₁ , b₂
η-equate-path t₁ t₂ p = η-equate t₁ t₂
-- Rotation functions
rotate : (k : ℕ) → BT
rotate k =
Node (suc k) (suc k) (nfoldl k [] (λ k' → Node (suc k) (suc k') [] ::_))
rotate-BT' : ℕ → 𝕃 BT → 𝕃 BT
rotate-BT' k [] = []
rotate-BT' k (Node n i b :: bs) with i =ℕ k
...| ff = Node n i (rotate-BT' k b) :: rotate-BT' k bs
...| tt = Node (suc n) (suc n) (η-expand'' (suc n) (rotate-BT' k b)) :: rotate-BT' k bs
rotate-BT : ℕ → BT → BT
rotate-BT k (Node n i b) with i =ℕ k
...| ff = Node n i (rotate-BT' k b)
...| tt = Node (suc n) (suc n) (η-expand'' (suc n) (rotate-BT' k b))
-- Returns the greatest number of arguments k ever has at each node it where it is the head
greatest-apps' : ℕ → 𝕃 BT → ℕ
greatest-apps' k [] = zero
greatest-apps' k (Node n k' bs' :: bs) with k =ℕ k'
...| ff = max (greatest-apps' k bs') (greatest-apps' k bs)
...| tt = max (length bs') (max (greatest-apps' k bs') (greatest-apps' k bs))
greatest-apps : ℕ → BT → ℕ
greatest-apps k (Node n i b) with k =ℕ i
...| ff = greatest-apps' k b
...| tt = max (length b) (greatest-apps' k b)
greatest-η' : ℕ → ℕ → 𝕃 BT → 𝕃 BT
greatest-η' k m [] = []
greatest-η' k m (Node n i bs :: bs') with k =ℕ i
...| ff = Node n i (greatest-η' k m bs) :: greatest-η' k m bs'
...| tt = nfoldr (m ∸ length bs) (Node n i (greatest-η' k m bs)) (λ _ → η-expand) :: greatest-η' k m bs'
greatest-η : ℕ → ℕ → BT → BT
greatest-η k m (Node n i b) with k =ℕ i
...| ff = Node n i (greatest-η' k m b)
...| tt = nfoldr (m ∸ length b) (Node n i (greatest-η' k m b)) (λ _ → η-expand)
-- Returns tt if k ever is at the head of a node along the path to the difference
occurs-in-path : ℕ → BT → path → 𝔹
occurs-in-path k (Node n i b) (ps d p) =
k =ℕ i || maybe-else ff (λ t → occurs-in-path k t p) (nth d b)
occurs-in-path k (Node n i b) p = k =ℕ i
adjust-path : ℕ → BT → path → path
adjust-path k (Node n i b) (ps d p) = maybe-else' (nth d b) (ps d p) λ n → ps d (adjust-path k n p)
adjust-path k (Node n i b) as with k =ℕ i
...| tt = hd
...| ff = as
adjust-path k (Node n i b) hd = hd
-- Δ functions
construct-BT : term → maybe BT
construct-BT = h zero empty-trie Node where
h : ℕ → trie ℕ → ((n i : ℕ) → 𝕃 BT → BT) → term → maybe BT
h n vm f (Var _ x) = just (f n (trie-lookup-else zero vm x) [])
h n vm f (App t NotErased t') =
h n vm Node t' ≫=maybe λ t' →
h n vm (λ n i b → f n i (b ++ [ t' ])) t
h n vm f (Lam _ NotErased _ x NoClass t) = h (suc n) (trie-insert vm x (suc n)) f t
h n vm f t = nothing
{-# TERMINATING #-}
construct-path' : BT → BT → maybe (path × BT × BT)
construct-path : BT → BT → maybe (path × BT × BT)
construct-path (Node _ zero _) _ = nothing
construct-path _ (Node _ zero _) = nothing
construct-path t₁ t₂ = uncurry construct-path' (η-equate t₁ t₂)
construct-path' t₁ @ (Node n₁ i₁ b₁) t₂ @ (Node n₂ i₂ b₂) =
if ~ i₁ =ℕ i₂
then just (hd , t₁ , t₂)
else if length b₁ =ℕ length b₂
then maybe-map (λ {(p , b₁ , b₂) → p , Node n₁ i₁ b₁ , Node n₂ i₂ b₂}) (h zero b₁ b₂)
else just (as , t₁ , t₂)
where
h : ℕ → 𝕃 BT → 𝕃 BT → maybe (path × 𝕃 BT × 𝕃 BT)
h n (b₁ :: bs₁) (b₂ :: bs₂) =
maybe-else
(maybe-map (λ {(p , bs₁ , bs₂) → p , b₁ :: bs₁ , b₂ :: bs₂}) (h (suc n) bs₁ bs₂))
(λ {(p , b₁ , b₂) → just (ps n p , b₁ :: bs₁ , b₂ :: bs₂)})
(construct-path b₁ b₂)
h _ _ _ = nothing
{-# TERMINATING #-}
construct-Δ : BT → BT → path → 𝕃 BT
construct-Δ (Node n₁ i₁ b₁) (Node n₂ i₂ b₂) hd =
nfoldl n₁ [] λ m → _::_
(if suc m =ℕ i₁
then Node (2 + length b₁) (1 + length b₁) []
else if suc m =ℕ i₂
then Node (2 + length b₂) (2 + length b₂) []
else Node 1 1 [])
construct-Δ (Node n₁ i₁ b₁) (Node n₂ i₂ b₂) as =
let l₁ = length b₁
l₂ = length b₂
d = l₁ > l₂
lM = if d then l₁ else l₂
lm = if d then l₂ else l₁
l = lM ∸ lm in
nfoldl n₁
(nfoldr l [ Node (2 + l) ((if d then 1 else 2) + l) [] ]
λ l' → _++
[ if suc l' =ℕ l
then Node 2 (if d then 2 else 1) []
else Node 1 1 [] ])
(λ n' → _::_
(if suc n' =ℕ i₁
then Node (suc lM) (suc lM) []
else Node 1 1 []))
construct-Δ t₁ @ (Node n₁ i₁ b₁) t₂ @ (Node n₂ i₂ b₂) (ps d p)
with nth d b₁ ≫=maybe λ b₁ → nth d b₂ ≫=maybe λ b₂ → just (b₁ , b₂)
...| nothing = [] -- Shouldn't happen
...| just (t₁' @ (Node n₁' i₁' b₁') , t₂' @ (Node n₂' i₂' b₂'))
with occurs-in-path i₁ t₁' p || occurs-in-path i₂ t₂' p
...| ff = set-nth (pred i₁) (Node (length b₁) (suc d) []) (construct-Δ t₁' t₂' p)
...| tt with max (greatest-apps i₁ t₁) (greatest-apps i₂ t₂)
...| kₘ with η-equate-path (rotate-BT i₁ (greatest-η i₁ kₘ t₁))
(rotate-BT i₂ (greatest-η i₂ kₘ t₂)) (ps d p)
...| t₁'' , t₂'' = set-nth (pred i₁) (rotate kₘ) (construct-Δ t₁'' t₂'' (ps d $ adjust-path i₁ t₁' p))
reconstruct : BT → term
reconstruct = h zero where
mkvar : ℕ → var
mkvar n = "x" ^ ℕ-to-string n
h : ℕ → BT → term
a : ℕ → term → 𝕃 BT → term
a n t [] = t
a n t (b :: bs) = a n (mapp t (h n b)) bs
h m (Node n i b) = nfoldl (n ∸ m) (a n (mvar (mkvar i)) b) (λ nm → mlam (mkvar (suc (m + nm))))
-- Returns a term f such that f t₁ ≃ λ t. λ f. t and f t₂ ≃ λ t. λ f. f, assuming two things:
-- 1. t₁ ≄ t₂
-- 2. The head of each node along the path to the difference between t₁ and t₂ is bound
-- withing the terms (so λ x. λ y. y y (x y) and λ x. λ y. y y (x x) works, but not
-- λ x. λ y. y y (f y), where f is already declared/defined)
make-contradiction : (t₁ t₂ : term) → maybe term
make-contradiction t₁ t₂ =
construct-BT t₁ ≫=maybe λ t₁ →
construct-BT t₂ ≫=maybe λ t₂ →
construct-path t₁ t₂ ≫=maybe λ {(p , t₁ , t₂) →
just (reconstruct (Node (suc zero) (suc zero)
(map (η-expand' zero) (construct-Δ t₁ t₂ p))))}
-- Returns tt if the two terms are provably not equal
is-contradiction : term → term → 𝔹
is-contradiction t₁ t₂ = isJust (make-contradiction t₁ t₂)
| {
"alphanum_fraction": 0.5289246279,
"avg_line_length": 37.1964285714,
"ext": "agda",
"hexsha": "f883d2eb4a49ccf9274dee89b61dd8fa8a08160f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CarlOlson/cedille",
"max_forks_repo_path": "src/bohm-out.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CarlOlson/cedille",
"max_issues_repo_path": "src/bohm-out.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CarlOlson/cedille",
"max_stars_repo_path": "src/bohm-out.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3406,
"size": 8332
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Data.Fin.Core where
open import Core
open import Data.Nat
import Data.Nat.Core as Nat
data Fin : ℕ → Set where
fzero : {n : ℕ} → Fin (suc n)
fsuc : {n : ℕ} → Fin n → Fin (suc n)
instance
Fin-Number : {n : ℕ} → Number (Fin (suc n))
Fin-Number {n} =
record {
Constraint = λ x → x ℕ,≤.≤ n;
fromNat = f n
}
where
f : ∀ n x {{_ : x ℕ,≤.≤ n}} → Fin (suc n)
f n .0 {{Nat.0≤s}} = fzero
f (suc n) (suc x) {{Nat.s≤s p}} = fsuc (f n x {{p}})
Fin,≡ : ∀ {n} → Equiv (Fin n)
Fin,≡ = PropEq _
fsuc-inj : ∀ {n} {x y : Fin (suc n)} → fsuc x ≡ fsuc y → x ≡ y
fsuc-inj ≡-refl = ≡-refl
fromℕ : ∀ {n} (x : ℕ) → x Nat.≤ n → Fin (suc n)
fromℕ zero p = fzero
fromℕ (suc x) (Nat.s≤s p) = fsuc (fromℕ x p)
toℕ : ∀ {n} → Fin (suc n) → ∃ (λ x → x Nat.≤ n)
toℕ fzero = zero , Nat.0≤s
toℕ {zero} (fsuc ())
toℕ {suc n} (fsuc x) with toℕ x
toℕ {suc n} (fsuc x) | x' , p = suc x' , Nat.s≤s p
embed : ∀ {n} → Fin n → Fin (suc n)
embed fzero = fzero
embed (fsuc x) = fsuc (embed x)
_≤_ : ∀ {n} (x y : Fin (suc n)) → Set _
x ≤ y = fst (toℕ x) Nat.≤ fst (toℕ y)
infix 1 _≤_
_≤?_ : ∀ {n} (x y : Fin (suc n)) → Decision (x ≤ y)
x ≤? y = fst (toℕ x) Nat.≤? fst (toℕ y)
-- Fin,≤ : ∀ {n} → TotalOrder (Fin (suc n))
-- Fin,≤ {n} =
-- record {
-- partialOrder = record {
-- Eq = Fin,≡;
-- _≤_ = _≤_;
-- antisym = antisym;
-- refl' = refl';
-- trans = λ {x} {y} {z} → trans {x} {y} {z}
-- };
-- total = total
-- }
-- where
-- not-s≤0 : ∀ {n} {x : Fin (suc n)} → not (fsuc x ≤ fzero)
-- not-s≤0 ()
-- antisym : ∀ {x y} → x ≤ y → y ≤ x → x ≡ y
-- antisym {fzero} {fzero} p q = ≡-refl
-- antisym {fzero} {fsuc y} p q with not-s≤0 {!!}
-- antisym {fzero} {fsuc y} p q | ()
-- antisym {fsuc x} p q = {!!}
-- refl' : ∀ {x y} → x ≡ y → x ≤ y
-- refl' = {!!}
-- trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z
-- trans = {!!}
-- total : ∀ x y → Either (x ≤ y) (y ≤ x)
-- total = {!!}
| {
"alphanum_fraction": 0.4679732314,
"avg_line_length": 22.2553191489,
"ext": "agda",
"hexsha": "da45c906c26b183b78408a5acf0285dd84d2effe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Data/Fin/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Data/Fin/Core.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Data/Fin/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 966,
"size": 2092
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.FiniteMultiset.CountExtensionality where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Sum
open import Cubical.Relation.Nullary
open import Cubical.HITs.FiniteMultiset.Base
open import Cubical.HITs.FiniteMultiset.Properties as FMS
open import Cubical.Structures.MultiSet
open import Cubical.Relation.Nullary.DecidableEq
private
variable
ℓ : Level
-- We define a partial order on FMSet A and use it to proof
-- a strong induction principle for finite multi-sets.
-- Finally, we use this stronger elimination principle to show
-- that any two FMSets can be identified, if they have the same count for every a : A
module _{A : Type ℓ} (discA : Discrete A) where
_≼_ : FMSet A → FMSet A → Type ℓ
xs ≼ ys = ∀ a → FMScount discA a xs ≤ FMScount discA a ys
≼-refl : ∀ xs → xs ≼ xs
≼-refl xs a = ≤-refl
≼-trans : ∀ xs ys zs → xs ≼ ys → ys ≼ zs → xs ≼ zs
≼-trans xs ys zs xs≼ys ys≼zs a = ≤-trans (xs≼ys a) (ys≼zs a)
≼[]→≡[] : ∀ xs → xs ≼ [] → xs ≡ []
≼[]→≡[] xs xs≼[] = FMScount-0-lemma discA xs λ a → ≤0→≡0 (xs≼[] a)
≼-remove1 : ∀ a xs → remove1 discA a xs ≼ xs
≼-remove1 a xs b with discA a b
... | yes a≡b = subst (λ n → n ≤ FMScount discA b xs) (sym path) (≤-predℕ)
where
path : FMScount discA b (remove1 discA a xs) ≡ predℕ (FMScount discA b xs)
path = cong (λ c → FMScount discA b (remove1 discA c xs)) a≡b ∙ remove1-predℕ-lemma discA b xs
... | no a≢b = subst (λ n → n ≤ FMScount discA b xs)
(sym (FMScount-remove1-≢-lemma discA xs λ b≡a → a≢b (sym b≡a))) ≤-refl
≼-remove1-lemma : ∀ x xs ys → ys ≼ (x ∷ xs) → (remove1 discA x ys) ≼ xs
≼-remove1-lemma x xs ys ys≼x∷xs a with discA a x
... | yes a≡x = ≤-trans (≤-trans (0 , p₁) (predℕ-≤-predℕ (ys≼x∷xs a)))
(0 , cong predℕ (FMScount-≡-lemma discA xs a≡x))
where
p₁ : FMScount discA a (remove1 discA x ys) ≡ predℕ (FMScount discA a ys)
p₁ = subst (λ b → FMScount discA a (remove1 discA b ys) ≡ predℕ (FMScount discA a ys)) a≡x (remove1-predℕ-lemma discA a ys)
... | no a≢x = ≤-trans (≤-trans (0 , FMScount-remove1-≢-lemma discA ys a≢x) (ys≼x∷xs a))
(0 , FMScount-≢-lemma discA xs a≢x)
≼-Dichotomy : ∀ x xs ys → ys ≼ (x ∷ xs) → (ys ≼ xs) ⊎ (ys ≡ x ∷ (remove1 discA x ys))
≼-Dichotomy x xs ys ys≼x∷xs with (FMScount discA x ys) ≟ suc (FMScount discA x xs)
... | lt <suc = inl ys≼xs
where
ys≼xs : ys ≼ xs
ys≼xs a with discA a x
... | yes a≡x = pred-≤-pred (subst (λ b → (FMScount discA b ys) < suc (FMScount discA b xs)) (sym a≡x) <suc)
... | no a≢x = ≤-trans (ys≼x∷xs a) (subst (λ n → FMScount discA a (x ∷ xs) ≤ n) (FMScount-≢-lemma discA xs a≢x) ≤-refl)
... | eq ≡suc = inr (remove1-suc-lemma discA x (FMScount discA x xs) ys ≡suc)
... | gt >suc = ⊥.rec (¬m<m strict-ineq)
where
strict-ineq : suc (FMScount discA x xs) < suc (FMScount discA x xs)
strict-ineq = <≤-trans (<≤-trans >suc (ys≼x∷xs x)) (0 , FMScount-≡-lemma-refl discA xs)
-- proving a strong elimination principle for finite multisets
module ≼-ElimProp {ℓ'} {B : FMSet A → Type ℓ'}
(BisProp : ∀ {xs} → isProp (B xs)) (b₀ : B [])
(B-≼-hyp : ∀ x xs → (∀ ys → ys ≼ xs → B ys) → B (x ∷ xs)) where
C : FMSet A → Type (ℓ-max ℓ ℓ')
C xs = ∀ ys → ys ≼ xs → B ys
g : ∀ xs → C xs
g = ElimProp.f (isPropΠ2 (λ _ _ → BisProp)) c₀ θ
where
c₀ : C []
c₀ ys ys≼[] = subst B (sym (≼[]→≡[] ys ys≼[])) b₀
θ : ∀ x {xs} → C xs → C (x ∷ xs)
θ x {xs} hyp ys ys≼x∷xs with ≼-Dichotomy x xs ys ys≼x∷xs
... | inl ys≼xs = hyp ys ys≼xs
... | inr ys≡x∷zs = subst B (sym ys≡x∷zs) (B-≼-hyp x zs χ)
where
zs = remove1 discA x ys
χ : ∀ vs → vs ≼ zs → B vs
χ vs vs≼zs = hyp vs (≼-trans vs zs xs vs≼zs (≼-remove1-lemma x xs ys ys≼x∷xs))
f : ∀ xs → B xs
f = C→B g
where
C→B : (∀ xs → C xs) → (∀ xs → B xs)
C→B C-hyp xs = C-hyp xs xs (≼-refl xs)
≼-ElimPropBin : ∀ {ℓ'} {B : FMSet A → FMSet A → Type ℓ'}
→ (∀ {xs} {ys} → isProp (B xs ys))
→ (B [] [])
→ (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys)
→ (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B xs (x ∷ ys))
-------------------------------------------------------------------------------
→ (∀ xs ys → B xs ys)
≼-ElimPropBin {B = B} BisProp b₀₀ left-hyp right-hyp = ≼-ElimProp.f (isPropΠ (λ _ → BisProp)) θ χ
where
θ : ∀ ys → B [] ys
θ = ≼-ElimProp.f BisProp b₀₀ h₁
where
h₁ : ∀ x ys → (∀ ws → ws ≼ ys → B [] ws) → B [] (x ∷ ys)
h₁ x ys mini-h = right-hyp x [] ys h₂
where
h₂ : ∀ vs ws → vs ≼ [] → ws ≼ ys → B vs ws
h₂ vs ws vs≼[] ws≼ys = subst (λ zs → B zs ws) (sym (≼[]→≡[] vs vs≼[])) (mini-h ws ws≼ys)
χ : ∀ x xs → (∀ zs → zs ≼ xs → (∀ ys → B zs ys)) → ∀ ys → B (x ∷ xs) ys
χ x xs h ys = left-hyp x xs ys λ vs ws vs≼xs _ → h vs vs≼xs ws
≼-ElimPropBinSym : ∀ {ℓ'} {B : FMSet A → FMSet A → Type ℓ'}
→ (∀ {xs} {ys} → isProp (B xs ys))
→ (∀ {xs} {ys} → B xs ys → B ys xs)
→ (B [] [])
→ (∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys)
----------------------------------------------------------------------------
→ (∀ xs ys → B xs ys)
≼-ElimPropBinSym {B = B} BisProp BisSym b₀₀ left-hyp = ≼-ElimPropBin BisProp b₀₀ left-hyp right-hyp
where
right-hyp : ∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B xs (x ∷ ys)
right-hyp x xs ys h₁ = BisSym (left-hyp x ys xs (λ vs ws vs≼ys ws≼xs → BisSym (h₁ ws vs ws≼xs vs≼ys)))
-- The main result
module FMScountExt where
B : FMSet A → FMSet A → Type ℓ
B xs ys = (∀ a → FMScount discA a xs ≡ FMScount discA a ys) → xs ≡ ys
BisProp : ∀ {xs} {ys} → isProp (B xs ys)
BisProp = isPropΠ λ _ → trunc _ _
BisSym : ∀ {xs} {ys} → B xs ys → B ys xs
BisSym {xs} {ys} b h = sym (b (λ a → sym (h a)))
b₀₀ : B [] []
b₀₀ _ = refl
left-hyp : ∀ x xs ys → (∀ vs ws → vs ≼ xs → ws ≼ ys → B vs ws) → B (x ∷ xs) ys
left-hyp x xs ys hyp h₁ = (λ i → x ∷ (hyp-path i)) ∙ sym path
where
eq₁ : FMScount discA x ys ≡ suc (FMScount discA x xs)
eq₁ = sym (h₁ x) ∙ FMScount-≡-lemma-refl discA xs
path : ys ≡ x ∷ (remove1 discA x ys)
path = remove1-suc-lemma discA x (FMScount discA x xs) ys eq₁
hyp-path : xs ≡ remove1 discA x ys
hyp-path = hyp xs (remove1 discA x ys) (≼-refl xs) (≼-remove1 x ys) θ
where
θ : ∀ a → FMScount discA a xs ≡ FMScount discA a (remove1 discA x ys)
θ a with discA a x
... | yes a≡x = subst (λ b → FMScount discA b xs ≡ FMScount discA b (remove1 discA x ys)) (sym a≡x) eq₂
where
eq₂ : FMScount discA x xs ≡ FMScount discA x (remove1 discA x ys)
eq₂ = FMScount discA x xs ≡⟨ cong predℕ (sym (FMScount-≡-lemma-refl discA xs)) ⟩
predℕ (FMScount discA x (x ∷ xs)) ≡⟨ cong predℕ (h₁ x) ⟩
predℕ (FMScount discA x ys) ≡⟨ sym (remove1-predℕ-lemma discA x ys) ⟩
FMScount discA x (remove1 discA x ys) ∎
... | no a≢x =
FMScount discA a xs ≡⟨ sym (FMScount-≢-lemma discA xs a≢x) ⟩
FMScount discA a (x ∷ xs) ≡⟨ h₁ a ⟩
FMScount discA a ys ≡⟨ cong (FMScount discA a) path ⟩
FMScount discA a (x ∷ (remove1 discA x ys)) ≡⟨ FMScount-≢-lemma discA (remove1 discA x ys) a≢x ⟩
FMScount discA a (remove1 discA x ys) ∎
Thm : ∀ xs ys → (∀ a → FMScount discA a xs ≡ FMScount discA a ys) → xs ≡ ys
Thm = ≼-ElimPropBinSym BisProp BisSym b₀₀ left-hyp
| {
"alphanum_fraction": 0.5098540146,
"avg_line_length": 42.8125,
"ext": "agda",
"hexsha": "298d64711ed604760b2432dc45e60487d1b4978b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/FiniteMultiset/CountExtensionality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/FiniteMultiset/CountExtensionality.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/FiniteMultiset/CountExtensionality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3225,
"size": 8220
} |
module SameName where
data Stuff : Set where
mkStuff : Stuff
stuffFunc : Stuff -> (Stuff : Set) -> Stuff
stuffFunc = {! !}
| {
"alphanum_fraction": 0.6461538462,
"avg_line_length": 14.4444444444,
"ext": "agda",
"hexsha": "4c6cc431e54a0b92ba3a2d8a9903428691a9fe9e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/SameName.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/SameName.agda",
"max_line_length": 43,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/SameName.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 37,
"size": 130
} |
{-# OPTIONS --without-K #-}
module FunExt where
open import Base
module _ {i j} {A : Type i} {B : A → Type j} where
happly : (f g : (x : A) → B x) → (f == g) → ((x : A) → f x == g x)
happly f g = ind== D d where
D : (f g : (x : A) → B x) → f == g → Type _
D f g _ = (x : A) → f x == g x
d : (f : (x : A) → B x) → D f f idp
d f = λ x → idp
postulate
fun-ext : (f g : (x : A) → B x) → is-equiv (happly f g)
| {
"alphanum_fraction": 0.4328018223,
"avg_line_length": 23.1052631579,
"ext": "agda",
"hexsha": "b67749fef5c5c69039ff382d5e2385c2aa72a659",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "aerskine/hott-ex",
"max_forks_repo_path": "FunExt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "aerskine/hott-ex",
"max_issues_repo_path": "FunExt.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "aerskine/hott-ex",
"max_stars_repo_path": "FunExt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 188,
"size": 439
} |
{-# OPTIONS --rewriting --without-K #-}
--
-- Prelude.agda - Some base definitions
--
module Prelude where
open import Agda.Primitive public
record ⊤ : Set where
constructor tt
{-# BUILTIN UNIT ⊤ #-}
record Σ {i j} (A : Set i) (B : A → Set j) : Set (i ⊔ j) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
_×_ : ∀ {i j} (A : Set i) (B : Set j) → Set (i ⊔ j)
A × B = Σ A (λ a → B)
id : ∀ {i} {A : Set i} → A → A
id x = x
uncurry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Set k} →
(φ : (a : A) → (b : B a) → C) →
Σ A B → C
uncurry φ (a , b) = φ a b
curry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Set k} →
(ψ : Σ A B → C) →
(a : A) → (b : B a) → C
curry ψ a b = ψ (a , b)
{- Equality -}
infix 30 _==_
data _==_ {i} {A : Set i} (a : A) : A → Set i where
idp : a == a
{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REWRITE _==_ #-}
infixl 20 _>>_
_>>_ : ∀ {i} {A : Set i} {a b c : A} → a == b → b == c → a == c
idp >> idp = idp
_^ : ∀ {i} {A : Set i} {a b : A} → a == b → b == a
_^ idp = idp
coe : ∀ {a} {A B : Set a} → A == B → A → B
coe idp x = x
coe^ : ∀ {a} {A B : Set a} (p : A == B) {a : A} {b : B} → a == (coe (p ^) b) → (coe p a) == b
coe^ idp q = q
coe= : ∀ {a} {A B : Set a} (p : A == B) {a b : A} → a == b → coe p a == coe p b
coe= p idp = idp
ap : ∀ {i j} {A : Set i} {C : Set j} {M N : A} (f : A → C) → M == N → (f M) == (f N)
ap f idp = idp
ap² : ∀ {i j k} {A : Set i} {B : Set k} {C : Set j} {a a' : A} {b b' : B} (f : A → B → C) → a == a' → b == b' → (f a b) == (f a' b')
ap² f idp idp = idp
ap³ : ∀ {i j k l} {A : Set i} {B : Set k} {C : Set j} {D : Set l} {a a' : A} {b b' : B} {c c' : C} (f : A → B → C → D) → a == a' → b == b' → c == c' → (f a b c) == (f a' b' c')
ap³ f idp idp idp = idp
ap⁴ : ∀ {i j k l m} {A : Set i} {B : Set k} {C : Set j} {D : Set l} {E : Set m} {a a' : A} {b b' : B} {c c' : C} {d d' : D} (f : A → B → C → D → E) → a == a' → b == b' → c == c' → d == d' → (f a b c d) == (f a' b' c' d')
ap⁴ f idp idp idp idp = idp
ap⁵ : ∀ {i j k l m n} {A : Set i} {B : Set k} {C : Set j} {D : Set l} {E : Set m} {F : Set n} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} (f : A → B → C → D → E → F) → a == a' → b == b' → c == c' → d == d' → e == e' → (f a b c d e) == (f a' b' c' d' e')
ap⁵ f idp idp idp idp idp = idp
ap⁶ : ∀ {i j k l m n o} {A : Set i} {B : Set k} {C : Set j} {D : Set l} {E : Set m} {F : Set n} {G : Set o} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} {f f' : F} (α : A → B → C → D → E → F → G) → a == a' → b == b' → c == c' → d == d' → e == e' → f == f' → (α a b c d e f) == (α a' b' c' d' e' f')
ap⁶ f idp idp idp idp idp idp = idp
ap⁷ : ∀ {i j k l m n o p} {A : Set i} {B : Set k} {C : Set j} {D : Set l} {E : Set m} {F : Set n} {G : Set o} {H : Set p} {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} {f f' : F} {g g' : G} (α : A → B → C → D → E → F → G → H) → a == a' → b == b' → c == c' → d == d' → e == e' → f == f' → g == g' → (α a b c d e f g) == (α a' b' c' d' e' f' g')
ap⁷ f idp idp idp idp idp idp idp = idp
transport : ∀ {i j} {A : Set i} {B : A → Set j} {a a' : A} (pₐ : a == a') → B a → B a'
transport pₐ b = coe (ap _ pₐ) b
transport₂ : ∀ {i j k} {A : Set i} {B : Set j} {C : A → B → Set k} {a a' : A} {b b' : B} (pₐ : a == a') (q : b == b') → C a b → C a' b'
transport₂ pₐ q c = coe (ap² _ pₐ q) c
hfiber : ∀ {i} {A B : Set i} (f : A → B) (b : B) → Set i
hfiber {A = A} f b = Σ A (λ a → f a == b)
PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {a₀ a₁ : A} (p : a₀ == a₁) (b₉ : B a₀) (b₁ : B a₁) → Set j
PathOver B idp b₀ b₁ = b₀ == b₁
infix 30 PathOver
syntax PathOver B p u v =
u == v [ B ↓ p ]
×= : ∀{i j} {A : Set i} {B : Set j} {a a' : A} {b b' : B} → a == a' → b == b' → (a , b) == (a' , b')
×= idp idp = idp
Σ= : ∀ {i j} {A : Set i} {B : A → Set j} {a a' : A} {b : B a} {b' : B a'} → (pₐ : a == a') → transport pₐ b == b' → (a , b) == (a' , b')
Σ= idp idp = idp
,= : ∀ {i j} {A : Set i} {B : Set j} {a a' : A} {b b' : B} → a == a' → b == b' → (a , b) == (a' , b')
,= idp idp = idp
Σ-r : ∀ {i j k} {A : Set i} {B : A → Set j} (C : Σ A B → Set k) → A → Set (j ⊔ k)
Σ-r {A = A} {B = B} C a = Σ (B a) (λ b → C (a , b))
Σ-in : ∀ {i j k} {A : Set i} {B : A → Set j} (C : (a : A) → B a → Set k) → A → Set (j ⊔ k)
Σ-in {A = A} {B = B} C a = Σ (B a) (λ b → C a b)
=, : ∀ {i j} {A : Set i} {B : Set j} {a a' : A} {b b' : B} → (a , b) == (a' , b') → (a == a') × (b == b')
=, idp = idp , idp
fst-is-inj : ∀ {i j} {A : Set i} {B : A → Set j} {x y : Σ A B} → x == y → fst x == fst y
fst-is-inj idp = idp
{- False and negation -}
data ⊥ {i} : Set i where
⊥-elim : ∀ {i j} {A : Set i} → ⊥ {j} → A
⊥-elim ()
¬_ : ∀ {i} → Set i → Set i
¬ A = A → ⊥ {lzero}
_≠_ : ∀{i} {A : Set i} (a b : A) → Set i
a ≠ b = ¬ (a == b)
data _+_ {i j} (A : Set i) (B : Set j) : Set (i ⊔ j) where
inl : A → A + B
inr : B → A + B
inl= : ∀ {i j} {A : Set i} {B : Set j} {a b : A} → a == b → _==_ {i ⊔ j} {A + B} (inl a) (inl b)
inl= idp = idp
inr= : ∀ {i j} {A : Set i} {B : Set j} {a b : B} → a == b → _==_ {i ⊔ j} {A + B} (inr a) (inr b)
inr= idp = idp
{- Booleans -}
data Bool : Set where
true : Bool
false : Bool
{- Decidability -}
dec : ∀ {i} → Set i → Set i
dec A = A + (¬ A)
eqdec : ∀ {i} → Set i → Set i
eqdec A = ∀ (a b : A) → dec (a == b)
{- Natural numbers -}
data ℕ : Set where
O : ℕ
S : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
S= : ∀{n m} → n == m → S n == S m
S= idp = idp
pred : ℕ → ℕ
pred O = O
pred (S n) = n
S-is-inj : ∀ n m → (S n == S m) → n == m
S-is-inj n m p = ap pred p
S-≠ : ∀ {n m : ℕ} (p : n ≠ m) → S n ≠ S m
S-≠ {n} {m} n≠m p = n≠m (S-is-inj n m p)
private
S≠O-type : ℕ → Set
S≠O-type O = ⊥
S≠O-type (S n) = ⊤
S≠O : (n : ℕ) → S n ≠ O
S≠O n p = coe (ap S≠O-type p) tt
O≠S : (n : ℕ) → (O ≠ S n)
O≠S n p = S≠O n (p ^)
n≠Sn : (n : ℕ) → (n ≠ S n)
n≠Sn O ()
n≠Sn (S n) n=Sn = n≠Sn n (S-is-inj _ _ n=Sn)
Sn≠n : (n : ℕ) → (S n ≠ n)
Sn≠n O ()
Sn≠n (S n) Sn=n = Sn≠n n (S-is-inj _ _ Sn=n)
eqdecℕ : eqdec ℕ
eqdecℕ O O = inl idp
eqdecℕ O (S b) = inr (O≠S b)
eqdecℕ (S a) O = inr (S≠O a)
eqdecℕ (S a) (S b) with (eqdecℕ a b)
... | inl idp = inl idp
... | inr a≠b = inr (S-≠ a≠b)
{- Order on ℕ -}
data _≤_ : ℕ → ℕ → Set where
0≤ : ∀ n → O ≤ n
S≤ : ∀ {n m} → n ≤ m → S n ≤ S m
n≤n : ∀ (n : ℕ) → n ≤ n
n≤n O = 0≤ O
n≤n (S n) = S≤ (n≤n n)
≤-antisymetry : ∀ {n m} → n ≤ m → m ≤ n → n == m
≤-antisymetry (0≤ _) (0≤ _) = idp
≤-antisymetry (S≤ n≤m) (S≤ m≤n) = ap S (≤-antisymetry n≤m m≤n)
n≤Sn : ∀ (n : ℕ) → n ≤ S n
n≤Sn O = 0≤ _
n≤Sn (S n) = S≤ (n≤Sn _)
S≤S : ∀ {n m} → S n ≤ S m → n ≤ m
S≤S (S≤ n≤m) = n≤m
Sn≰n : ∀ (n : ℕ) → ¬ (S n ≤ n)
Sn≰n .(S _) (S≤ Sn≤n) = Sn≰n _ Sn≤n
Sn≰n-t : ∀ {n m} → n == m → ¬ (S n ≤ m)
Sn≰n-t idp Sn≤n = Sn≰n _ Sn≤n
Sn≰0 : ∀ (n : ℕ) → ¬ (S n ≤ O)
Sn≰0 n ()
n≤m→n≤Sm : ∀ {n m : ℕ} → n ≤ m → n ≤ S m
n≤m→n≤Sm (0≤ n) = 0≤ (S n)
n≤m→n≤Sm (S≤ n≤m) = S≤ (n≤m→n≤Sm n≤m)
Sn≤m→n≤m : ∀ {n m : ℕ} → S n ≤ m → n ≤ m
Sn≤m→n≤m (S≤ n≤m) = n≤m→n≤Sm n≤m
dec-≤ : ∀ n m → dec (n ≤ m)
dec-≤ O m = inl (0≤ m)
dec-≤ (S n) O = inr λ ()
dec-≤ (S n) (S m) with (dec-≤ n m)
... | inl n≤m = inl (S≤ n≤m)
... | inr n≰m = inr λ {(S≤ n≤m) → n≰m n≤m}
≤S : ∀ (n m : ℕ) → n ≤ S m → (n ≤ m) + (n == S m)
≤S .0 m (0≤ .(S m)) = inl (0≤ _)
≤S .1 O (S≤ (0≤ .0)) = inr idp
≤S .(S _) (S m) (S≤ n≤Sm) with ≤S _ _ n≤Sm
... | inl n≤m = inl (S≤ n≤m)
... | inr n=Sm = inr (ap S n=Sm)
≤-= : ∀ {n m k} → n ≤ m → m == k → n ≤ k
≤-= n≤m idp = n≤m
=-≤ : ∀ {n m k} → n == m → m ≤ k → n ≤ k
=-≤ idp m≤k = m≤k
=-≤-= : ∀ {n m k l} → n == m → m ≤ k → k == l → n ≤ l
=-≤-= idp m≤k idp = m≤k
≤T : ∀ {n m k} → n ≤ m → m ≤ k → n ≤ k
≤T (0≤ _) _ = 0≤ _
≤T (S≤ n≤m) (S≤ m≤k) = S≤ (≤T n≤m m≤k)
{- Strict order on ℕ -}
_<_ : ℕ → ℕ → Set
n < m = S n ≤ m
≤×≠→< : ∀ {n m} → n ≤ m → n ≠ m → n < m
≤×≠→< {.0} {.0} (0≤ O) n≠m = ⊥-elim (n≠m idp)
≤×≠→< {.0} {.(S m)} (0≤ (S m)) n≠m = S≤ (0≤ _)
≤×≠→< (S≤ n≤m) Sn≠Sm = S≤ (≤×≠→< n≤m λ n=m → Sn≠Sm (ap S n=m))
≰ : ∀ {n m } → ¬ (n ≤ m) → m < n
≰ {O} {m} n≰m = ⊥-elim (n≰m (0≤ _))
≰ {S n} {O} n≰m = S≤ (0≤ _)
≰ {S n} {S m} n≰m = S≤ (≰ λ n≤m → n≰m (S≤ n≤m))
ℕ-trichotomy : ∀ n m → ((n < m) + (m < n)) + (n == m)
ℕ-trichotomy n m with dec-≤ n m
... | inr n≰m = inl (inr (≰ n≰m))
... | inl n≤m with eqdecℕ n m
... | inl n=m = inr n=m
... | inr n≠m = inl (inl (≤×≠→< n≤m n≠m))
{- Minimum and maximum -}
max : ℕ → ℕ → ℕ
max n m with dec-≤ n m
... | inl _ = m
... | inr _ = n
n≤max : ∀ n m → n ≤ max n m
n≤max n m with dec-≤ n m
... | inl n≤m = n≤m
... | inr m≤n = n≤n _
m≤max : ∀ n m → m ≤ max n m
m≤max n m with dec-≤ n m
... | inl n≤m = n≤n _
... | inr n≰m = Sn≤m→n≤m (≰ n≰m)
up-max : ∀ {n m k} → n ≤ k → m ≤ k → max n m ≤ k
up-max {n} {m} {k} n≤k m≤k with dec-≤ n m
... | inl n≤m = m≤k
... | inr n≰m = n≤k
up-maxS : ∀ {n m k} → S n ≤ k → S m ≤ k → S (max n m) ≤ k
up-maxS {n} {m} {k} n≤k m≤k with dec-≤ n m
... | inl n≤m = m≤k
... | inr n≰m = n≤k
simplify-max-l : ∀ {n m} → m ≤ n → max n m == n
simplify-max-l {n} {m} m≤n with dec-≤ n m
... | inl n≤m = ≤-antisymetry m≤n n≤m
... | inr _ = idp
simplify-max-r : ∀ {n m} → n ≤ m → max n m == m
simplify-max-r {n} {m} n≤m with dec-≤ n m
... | inl _ = idp
... | inr n≰m = ⊥-elim (n≰m n≤m)
min : ℕ → ℕ → ℕ
min n m with dec-≤ n m
... | inl _ = n
... | inr _ = m
min≤m : ∀ n m → min n m ≤ m
min≤m n m with dec-≤ n m
... | inl n≤m = n≤m
... | inr n≰m = n≤n _
simplify-min-l : ∀ {n m} → n ≤ m → min n m == n
simplify-min-l {n} {m} n≤m with dec-≤ n m
... | inl _ = idp
... | inr n≰m = ⊥-elim (n≰m n≤m)
simplify-min-r : ∀ {n m} → m ≤ n → min n m == m
simplify-min-r {n} {m} n≤m with dec-≤ n m
... | inl m≤n = ≤-antisymetry m≤n n≤m
... | inr _ = idp
min<l : ∀ {n m} → min n m < n → m ≤ n
min<l {n} {m} min<n with dec-≤ n m
... | inl _ = ⊥-elim (Sn≰n _ min<n)
... | inr _ = Sn≤m→n≤m min<n
greater-than-min-r : ∀ {n m k} → k < n → min n m ≤ k → m ≤ k
greater-than-min-r {n} {m} {k} k<n min≤k with dec-≤ n m
... | inl _ = ⊥-elim (Sn≰n _ (≤T (S≤ min≤k) k<n))
... | inr _ = min≤k
{- Conditional branchings -}
ifdec_>_then_else_ : ∀ {i j} {A : Set i} (B : Set j) → (dec B) → A → A → A
ifdec b > inl x then A else B = A
ifdec b > inr x then A else B = B
iftrue : ∀ {i j}{A : Set i} {B : Set j} → (H : dec B) → (a : A) {a' : A} → B → (ifdec B > H then a else a') == a
iftrue (inl _) a b = idp
iftrue (inr ¬B) a b = ⊥-elim (¬B b)
iffalse : ∀ {i j}{A : Set i} {B : Set j} → (H : dec B) → {a : A} (a' : A) → ¬ B → (ifdec B > H then a else a') == a'
iffalse (inl b) a' ¬B = ⊥-elim (¬B b)
iffalse (inr ¬B) a' b = idp
if_≡_then_else_ : ∀ {i} {A : Set i} → ℕ → ℕ → A → A → A
if v ≡ w then A else B = ifdec (v == w) > (eqdecℕ v w) then A else B
if= : ∀ {i} {A : Set i} {n m : ℕ} (p : n == m) (a : A) {a' : A} → (if n ≡ m then a else a') == a
if= p a = iftrue (eqdecℕ _ _) a p
if≠ : ∀ {i} {A : Set i} {n m : ℕ} (p : n ≠ m) {a : A} (a' : A) → (if n ≡ m then a else a') == a'
if≠ p a' = iffalse (eqdecℕ _ _) a' p
simplify-if : ∀ {i} {A : Set i} {n} {a b : A} → 0 < n → (if n ≡ 0 then a else b) == b
simplify-if {n = n} {b = b} 0<n with eqdecℕ n 0
... | inl idp = ⊥-elim (Sn≰0 _ 0<n)
... | inr _ = idp
-- logical equivalence
_↔_ : ∀{i j} (A : Set i) (B : Set j) → Set (i ⊔ j)
A ↔ B = (A → B) × (B → A)
{- Lists -}
data list {i} : Set i → Set (lsuc i) where
nil : ∀{A} → list A
_::_ : ∀ {A} → list A → (a : A) → list A
::= : ∀ {i} {A : Set i} {l l' : list A} {a a' : A} → l == l' → a == a' → (l :: a) == (l' :: a')
::= idp idp = idp
=:: : ∀ {i} {A : Set i} {a b : A} {l k} → (l :: a) == (k :: b) → (l == k) × (a == b)
=:: idp = idp , idp
cons≠nil : ∀ {i} {A : Set i} {l : list A} {a : A} → (l :: a) ≠ nil
cons≠nil ()
length : ∀ {i} {A : Set i} → list A → ℕ
length nil = 0
length (l :: _) = S (length l)
_++_ : ∀ {i} {A : Set i} → list A → list A → list A
l ++ nil = l
l ++ (l' :: a) = (l ++ l') :: a
_∈-list_ : ∀ {i} {A : Set i} → A → list A → Set i
x ∈-list nil = ⊥
x ∈-list (l :: a) = (x ∈-list l) + (x == a)
dec-∈-list : ∀ {i} {A : Set i} → eqdec A → ∀ (a : A) (l : list A) → dec (a ∈-list l)
dec-∈-list eqdecA a nil = inr λ{()}
dec-∈-list eqdecA a (l :: b) with eqdecA a b
... | inl idp = inl (inr idp)
... | inr a≠b with dec-∈-list eqdecA a l
... | inl a∈l = inl (inl a∈l)
... | inr a∉l = inr λ{(inl a∈l) → a∉l a∈l; (inr a=b) → a≠b a=b}
{- Univalence and known consequences -}
record is-equiv {i j} {A : Set i} {B : Set j} (f : A → B) : Set (i ⊔ j)
where
field
g : B → A
f-g : (b : B) → f (g b) == b
g-f : (a : A) → g (f a) == a
adj : (a : A) → ap f (g-f a) == f-g (f a)
_≃_ : ∀ {i j} → (A : Set i) (B : Set j) → Set (i ⊔ j)
A ≃ B = Σ (A → B) λ f → is-equiv f
postulate
univalence : ∀ {i} {A B : Set i} → (A == B) ≃ (A ≃ B)
funext : ∀ {i} {A B : Set i} (f g : A → B) → (∀ x → f x == g x) → f == g
funext-dep : ∀ {i} {A : Set i} {B : A → Set i} (f g : ∀ a → B a) → (∀ a → f a == g a) → f == g
{- Definition of the first H-levels -}
is-contr : ∀ {i} → Set i → Set i
is-contr A = Σ A (λ x → ((y : A) → x == y))
is-prop : ∀ {i} → Set i → Set i
is-prop A = ∀ (x y : A) → is-contr (x == y)
is-set : ∀{i} → Set i → Set i
is-set A = ∀ (x y : A) → is-prop (x == y)
has-all-paths : ∀ {i} → Set i → Set i
has-all-paths A = ∀ (a b : A) → a == b
{- Known properties of H-levels -}
postulate
has-all-paths-idp : ∀ {i} (A : Set i) (pathsA : has-all-paths A) (a : A) → pathsA a a == idp
has-all-paths-is-prop : ∀ {i} → {A : Set i} → has-all-paths A → is-prop A
is-prop-has-all-paths : ∀ {i} → {A : Set i} → is-prop A → has-all-paths A
eqdec-is-set : ∀ {i} {A : Set i} → eqdec A → is-set A
is-setℕ : is-set ℕ
is-setℕ = eqdec-is-set eqdecℕ
| {
"alphanum_fraction": 0.3875963609,
"avg_line_length": 30.5063559322,
"ext": "agda",
"hexsha": "97882d114f2f0deb7027520c5604071f1cd1e21a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "Prelude.agda",
"max_line_length": 355,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7546,
"size": 14399
} |
------------------------------------------------------------------------
-- Pullbacks
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is partly based on code written by Guillame Brunerie in
-- a fork of the Coq HoTT library
-- (https://github.com/guillaumebrunerie/HoTT/), and partly based on
-- the Wikipedia page about pullbacks
-- (https://en.wikipedia.org/wiki/Pullback_(category_theory)).
open import Equality
module Pullback {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection eq as Bijection using (_↔_)
open import Equivalence eq as Eq using (_≃_; Is-equivalence)
open import Function-universe eq as F hiding (_∘_)
open import H-level.Closure eq
private
variable
a a₁ a₂ b b₁ b₂ l m r : Level
A A₁ A₂ B : Type a
C : A
k : Kind
-- Cospans.
record Cospan l r m : Type (lsuc (l ⊔ r ⊔ m)) where
field
{Left} : Type l
{Right} : Type r
{Middle} : Type m
left : Left → Middle
right : Right → Middle
-- Cones over cospans. The "corner opposite to" the Middle type is a
-- parameter, not a field, so a more accurate name might be something
-- like Cone-over-cospan-with-given-opposite-corner.
record Cone (A : Type a) (C : Cospan l r m) :
Type (a ⊔ l ⊔ r ⊔ m) where
field
left : A → Cospan.Left C
right : A → Cospan.Right C
commutes : ∀ x → Cospan.left C (left x) ≡ Cospan.right C (right x)
-- The type of cones can also be written using Σ-types.
Cone↔Σ :
Cone A C
↔
∃ λ ((f , g) : (A → Cospan.Left C) × (A → Cospan.Right C)) →
∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x)
Cone↔Σ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → (Cone.left f , Cone.right f) , Cone.commutes f
; from = λ ((l , r) , c) →
record { left = l; right = r; commutes = c }
}
; right-inverse-of = refl
}
; left-inverse-of = refl
}
-- Equality between cones is isomorphic to certain kinds of triples.
Cone-≡-↔-Σ :
{C : Cospan l m r} {c d : Cone A C} →
c ≡ d
↔
(∃ λ (p : Cone.left c ≡ Cone.left d) →
∃ λ (q : Cone.right c ≡ Cone.right d) →
subst
(λ (f , g) →
∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x))
(cong₂ _,_ p q)
(Cone.commutes c) ≡
Cone.commutes d)
Cone-≡-↔-Σ {C = C} {c = c} {d = d} =
c ≡ d ↔⟨ inverse $ Eq.≃-≡ (Eq.↔⇒≃ Cone↔Σ) ⟩
((Cone.left c , Cone.right c) , Cone.commutes c) ≡
((Cone.left d , Cone.right d) , Cone.commutes d) ↝⟨ inverse $ Bijection.Σ-≡,≡↔≡ ⟩
(∃ λ (p : (Cone.left c , Cone.right c) ≡
(Cone.left d , Cone.right d)) →
subst
(λ (f , g) →
∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x))
p
(Cone.commutes c) ≡
Cone.commutes d) ↝⟨ (Σ-cong-contra ≡×≡↔≡ λ _ → F.id) ⟩
(∃ λ (p : Cone.left c ≡ Cone.left d ×
Cone.right c ≡ Cone.right d) →
subst
(λ (f , g) →
∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x))
(uncurry (cong₂ _,_) p)
(Cone.commutes c) ≡
Cone.commutes d) ↝⟨ inverse Σ-assoc ⟩□
(∃ λ (p : Cone.left c ≡ Cone.left d) →
∃ λ (q : Cone.right c ≡ Cone.right d) →
subst
(λ (f , g) →
∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x))
(cong₂ _,_ p q)
(Cone.commutes c) ≡
Cone.commutes d) □
-- A composition operation for cones.
composition : Cone B C → (A → B) → Cone A C
composition c f .Cone.left = c .Cone.left ∘ f
composition c f .Cone.right = c .Cone.right ∘ f
composition c f .Cone.commutes = c .Cone.commutes ∘ f
-- The pullback for a given cospan.
Pullback : Cospan l r m → Type (l ⊔ r ⊔ m)
Pullback C = ∃ λ x → ∃ λ y → Cospan.left C x ≡ Cospan.right C y
-- The cone with the pullback as the "opposite corner".
pullback-cone : Cone (Pullback C) C
pullback-cone .Cone.left = proj₁
pullback-cone .Cone.right = proj₁ ∘ proj₂
pullback-cone .Cone.commutes = proj₂ ∘ proj₂
-- The property of being a homotopy pullback.
Is-homotopy-pullback :
{A : Type a} {C : Cospan l r m} →
Cone A C → ∀ b → Type (a ⊔ lsuc b ⊔ l ⊔ r ⊔ m)
Is-homotopy-pullback c b =
(B : Type b) → Is-equivalence (composition {A = B} c)
-- The pullback is a homotopy pullback for pullback-cone.
is-homotopy-pullback : Is-homotopy-pullback (pullback-cone {C = C}) b
is-homotopy-pullback {C = C} B =
_≃_.is-equivalence (
(B → Pullback C) ↔⟨⟩
(B → ∃ λ x → ∃ λ y → Cospan.left C x ≡ Cospan.right C y) ↔⟨ ΠΣ-comm ⟩
(∃ λ f → ∀ x → ∃ λ y → Cospan.left C (f x) ≡ Cospan.right C y) ↔⟨ (∃-cong λ _ → ΠΣ-comm) ⟩
(∃ λ f → ∃ λ g → ∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x)) ↔⟨ Σ-assoc ⟩
(∃ λ (f , g) → ∀ x → Cospan.left C (f x) ≡ Cospan.right C (g x)) ↔⟨ inverse Cone↔Σ ⟩□
Cone B C □)
-- A universal property for pullbacks.
universal-property : (A → Pullback C) ≃ Cone A C
universal-property = Eq.⟨ _ , is-homotopy-pullback _ ⟩
-- A variant of the universal property.
universal-property′ :
{C : Cospan l r m}
(c : Cone A C) →
Contractible
(∃ λ (f : A → Pullback C) → composition pullback-cone f ≡ c)
universal-property′ {A = A} {C = C} c = _⇔_.from contractible⇔↔⊤ (
(∃ λ (f : A → Pullback C) → composition pullback-cone f ≡ c) ↝⟨ (Σ-cong universal-property λ _ → F.id) ⟩
(∃ λ (d : Cone A C) → d ≡ c) ↝⟨ _⇔_.to contractible⇔↔⊤ (singleton-contractible _) ⟩□
⊤ □)
-- A preservation lemma for Cone.
Cone-cong :
{A₁ : Type a₁} {A₂ : Type a₂} {C : Cospan l r m} →
Extensionality? k (a₁ ⊔ a₂) (l ⊔ r ⊔ m) →
A₁ ≃ A₂ →
Cone A₁ C ↝[ k ] Cone A₂ C
Cone-cong {A₁ = A₁} {A₂ = A₂} {C = C} ext A₁≃A₂ =
Cone A₁ C ↔⟨ inverse universal-property ⟩
(A₁ → Pullback C) ↝⟨ →-cong₁ ext A₁≃A₂ ⟩
(A₂ → Pullback C) ↔⟨ universal-property ⟩□
Cone A₂ C □
private
-- A special case of Cone-cong that does not require extensionality.
Cone-↑⊤↔Cone-↑⊤ : Cone (↑ a₁ ⊤) C ↔ Cone (↑ a₂ ⊤) C
Cone-↑⊤↔Cone-↑⊤ {C = C} =
Cone (↑ _ ⊤) C ↔⟨ inverse universal-property ⟩
(↑ _ ⊤ → Pullback C) ↝⟨ Π-left-identity-↑ ⟩
Pullback C ↝⟨ inverse Π-left-identity-↑ ⟩
(↑ _ ⊤ → Pullback C) ↔⟨ universal-property ⟩□
Cone (↑ _ ⊤) C □
-- The "opposite corners" of homotopy pullbacks for a fixed cospan are
-- equivalent.
homotopy-pullbacks-equivalent :
(c₁ : Cone A₁ C) (c₂ : Cone A₂ C) →
Is-homotopy-pullback c₁ b₁ →
Is-homotopy-pullback c₂ b₂ →
A₁ ≃ A₂
homotopy-pullbacks-equivalent {A₁ = A₁} {C = C} {A₂ = A₂} _ _ p₁ p₂ =
A₁ ↔⟨ inverse Π-left-identity-↑ ⟩
(↑ _ ⊤ → A₁) ↝⟨ Eq.⟨ _ , p₁ (↑ _ ⊤) ⟩ ⟩
Cone (↑ _ ⊤) C ↔⟨ Cone-↑⊤↔Cone-↑⊤ ⟩
Cone (↑ _ ⊤) C ↝⟨ inverse Eq.⟨ _ , p₂ (↑ _ ⊤) ⟩ ⟩
(↑ _ ⊤ → A₂) ↔⟨ Π-left-identity-↑ ⟩□
A₂ □
| {
"alphanum_fraction": 0.5180345719,
"avg_line_length": 33.8571428571,
"ext": "agda",
"hexsha": "a3ca2c77b53a05fb83c890acd2d2622af1f79f9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Pullback.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Pullback.agda",
"max_line_length": 119,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Pullback.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2700,
"size": 7347
} |
open import Oscar.Class.Congruity
open import Oscar.Data.Proposequality
module Oscar.Class.Congruity.Proposextensequality where
instance
𝓒̇ongruityProposextensequality : ∀ {a b} → 𝓒̇ongruity a b Proposextensequality
𝓒̇ongruity.ċongruity 𝓒̇ongruityProposextensequality _ f≡̇g x rewrite f≡̇g x = ∅
| {
"alphanum_fraction": 0.7967213115,
"avg_line_length": 27.7272727273,
"ext": "agda",
"hexsha": "2883f69bf9260a2355d2653c2d410259026abbbe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposextensequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposextensequality.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposextensequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 119,
"size": 305
} |
-- Andreas, 2017-01-01, issue #2377
-- Warn about useless `public` in `open` statements.
-- {-# OPTIONS -v scope.decl:70 #-}
-- Warning #1
open import Agda.Builtin.Nat public
import Agda.Builtin.Bool as B
-- Warning #2
open B public
module _ where
open import Agda.Builtin.Equality public -- no warning
-- Warning #3
test-let : Set₁
test-let = let open B public in Set
-- Warning #4
test-letm : Set₁
test-letm = let open module C = B public in Set
| {
"alphanum_fraction": 0.6951754386,
"avg_line_length": 18.24,
"ext": "agda",
"hexsha": "f98ced2033a84cfc3c44ae04bc0bed66ea0260c0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2377.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2377.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2377.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 142,
"size": 456
} |
-- Minimal implicational logic, de Bruijn approach, final encoding
module Bf.ArrMp where
open import Lib using (List; _,_; LMem; lzero; lsuc)
-- Types
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
-- Context and truth judgement
Cx : Set
Cx = List Ty
isTrue : Ty -> Cx -> Set
isTrue a tc = LMem a tc
-- Terms
TmRepr : Set1
TmRepr = Cx -> Ty -> Set
module ArrMp where
record Tm (tr : TmRepr) : Set1 where
infixl 1 _$_
infixr 0 lam=>_
field
var : forall {tc a} -> isTrue a tc -> tr tc a
lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b)
_$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b
v0 : forall {tc a} -> tr (tc , a) a
v0 = var lzero
v1 : forall {tc a b} -> tr (tc , a , b) a
v1 = var (lsuc lzero)
v2 : forall {tc a b c} -> tr (tc , a , b , c) a
v2 = var (lsuc (lsuc lzero))
open Tm {{...}} public
Thm : Ty -> Set1
Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a
open ArrMp public
-- Example theorems
aI : forall {a} -> Thm (a => a)
aI =
lam=> v0
aK : forall {a b} -> Thm (a => b => a)
aK =
lam=>
lam=> v1
aS : forall {a b c} -> Thm ((a => b => c) => (a => b) => a => c)
aS =
lam=>
lam=>
lam=> v2 $ v0 $ (v1 $ v0)
tSKK : forall {a} -> Thm (a => a)
tSKK {a = a} =
aS {b = a => a} $ aK $ aK
| {
"alphanum_fraction": 0.4996342356,
"avg_line_length": 18.472972973,
"ext": "agda",
"hexsha": "5356301331aa523980e0be87ef0ded463f398ff1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Bf/ArrMp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Bf/ArrMp.agda",
"max_line_length": 70,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Bf/ArrMp.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 552,
"size": 1367
} |
{-# OPTIONS --universe-polymorphism --allow-unsolved-metas #-}
module Issue209 where
postulate
Level : Set
zero : Level
suc : Level → Level
_⊔_ : Level -> Level -> Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set where
refl : x ≡ x
data _≅_ {a} {A : Set a} (x : A) : ∀ {b} {B : Set b} → B → Set where
refl : x ≅ x
subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y} → x ≡ y → P x → P y
subst P refl p = p
lemma : ∀ {A} (P : A → Set) {x y} (eq : x ≡ y) z →
subst P eq z ≅ z
lemma P refl z = refl
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/Telescope.hs:51
-- The problematic call to reorderTel is
-- reorderTel tel3
-- in Agda.TypeChecking.Rules.LHS.Instantiate. | {
"alphanum_fraction": 0.5871766029,
"avg_line_length": 26.1470588235,
"ext": "agda",
"hexsha": "bff931cd27d9941f9b80f3673dec9534c5aa50bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue209.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue209.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue209.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 320,
"size": 889
} |
-- Andreas, 2016-02-11, bug reported by sanzhiyan
module Issue610-module where
import Common.Level
open import Common.Equality
data ⊥ : Set where
record ⊤ : Set where
data A : Set₁ where
set : .Set → A
module M .(x : Set) where
.out : Set
out = x
.ack : A → Set
ack (set x) = M.out x
hah : set ⊤ ≡ set ⊥
hah = refl
-- SHOULD FAIL
.moo' : ⊥
moo' = subst (λ x → x) (cong ack hah) _
-- SHOULD FAIL
.moo : ⊥
moo with cong ack hah
moo | q = subst (λ x → x) q _
baa : .⊥ → ⊥
baa ()
yoink : ⊥
yoink = baa moo
| {
"alphanum_fraction": 0.6,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "12e684f3fff7f439754eb17c8abe02355c5b65d7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue610-module.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue610-module.agda",
"max_line_length": 49,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue610-module.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 208,
"size": 520
} |
module _ where
open import Agda.Builtin.String
_&_ = primStringAppend
record Show (A : Set) : Set where
field
show : A → String
open Show {{...}} public
data Bin : Set where
[] : Bin
0:_ : Bin → Bin
1:_ : Bin → Bin
five : Bin
five = 1: 0: 1: []
instance
ShowBin : Show Bin
show {{ShowBin}} [] = ""
show {{ShowBin}} (0: b) = "0" & show b
show {{ShowBin}} (1: b) = "1" & show b
hole : Bin → Bin
hole x = {!!}
| {
"alphanum_fraction": 0.5560640732,
"avg_line_length": 14.5666666667,
"ext": "agda",
"hexsha": "42a8232194ca933e004893adf5d1f9e174d5c79c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/ComputeUsingShowInstance.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/ComputeUsingShowInstance.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/ComputeUsingShowInstance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 161,
"size": 437
} |
{-# OPTIONS --cubical --safe #-}
module Data.List.Sort where
open import Data.List.Sort.InsertionSort using (insert-sort; sort-sorts; sort-perm; perm-invar)
open import Data.List.Sort.MergeSort using (merge-sort; merge≡insert-sort)
| {
"alphanum_fraction": 0.7531914894,
"avg_line_length": 29.375,
"ext": "agda",
"hexsha": "67abc23734adeff3c2d1163f2f905750752198df",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Sort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Sort.agda",
"max_line_length": 95,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Sort.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 58,
"size": 235
} |
------------------------------------------------------------------------
-- Queue instances for the queues in Queue.Quotiented
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
open import Prelude
import Queue
module Queue.Quotiented.Instances
{e⁺}
(eq : ∀ {a p} → P.Equality-with-paths a p e⁺)
(open P.Derived-definitions-and-properties eq)
{Q : ∀ {ℓ} → Type ℓ → Type ℓ}
⦃ is-queue :
∀ {ℓ} → Queue.Is-queue equality-with-J Q (λ _ → ↑ _ ⊤) ℓ ⦄
⦃ is-queue-with-map :
∀ {ℓ₁ ℓ₂} → Queue.Is-queue-with-map equality-with-J Q ℓ₁ ℓ₂ ⦄
where
open Queue equality-with-J
open import Queue.Quotiented eq as Q using (Queue)
open import Bijection equality-with-J using (_↔_)
open import H-level.Closure equality-with-J
open import List equality-with-J as L hiding (map)
open import Maybe equality-with-J
open import Monad equality-with-J hiding (map)
private
variable
a ℓ ℓ₁ ℓ₂ : Level
A : Type a
xs : List A
instance
-- Instances.
Queue-is-queue : Is-queue (Queue Q) Is-set ℓ
Queue-is-queue .Is-queue.to-List = Q.to-List
Queue-is-queue .Is-queue.from-List = Q.from-List
Queue-is-queue .Is-queue.to-List-from-List = Q.to-List-from-List
Queue-is-queue .Is-queue.enqueue = Q.enqueue
Queue-is-queue .Is-queue.to-List-enqueue = Q.to-List-enqueue
Queue-is-queue .Is-queue.dequeue = Q.dequeue
Queue-is-queue .Is-queue.to-List-dequeue = Q.to-List-dequeue
Queue-is-queue .Is-queue.dequeue⁻¹ = Q.dequeue⁻¹
Queue-is-queue .Is-queue.to-List-dequeue⁻¹ = Q.to-List-dequeue⁻¹
Queue-is-queue-with-map : Is-queue-with-map (Queue Q) ℓ₁ ℓ₂
Queue-is-queue-with-map .Is-queue-with-map.map = Q.map
Queue-is-queue-with-map .Is-queue-with-map.to-List-map = Q.to-List-map
Queue-is-queue-with-unique-representations :
Is-queue-with-unique-representations (Queue Q) ℓ
Queue-is-queue-with-unique-representations
.Is-queue-with-unique-representations.from-List-to-List =
Q.from-List-to-List _
------------------------------------------------------------------------
-- Some examples
private
⌊_⌋ = to-List (λ {_ _} → ℕ-set)
dequeue′ = dequeue (λ {_ _} → ℕ-set)
empty′ = empty ⦂ Queue Q ℕ
example₁ : map suc (enqueue 3 empty) ≡ enqueue 4 empty′
example₁ = _↔_.to ≡-for-lists↔≡ (
⌊ map suc (enqueue 3 empty) ⌋ ≡⟨ to-List-map ⟩
L.map suc ⌊ enqueue 3 empty ⌋ ≡⟨ cong (L.map suc) $ to-List-foldl-enqueue-empty (_ ∷ []) ⟩
L.map suc (3 ∷ []) ≡⟨⟩
4 ∷ [] ≡⟨ sym $ to-List-foldl-enqueue-empty (_ ∷ []) ⟩∎
⌊ enqueue 4 empty ⌋ ∎)
example₂ :
dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) ≡
just (10 , enqueue 6 empty)
example₂ =
dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) ≡⟨ cong dequeue′ lemma ⟩
dequeue′ (cons 10 (enqueue 6 empty)) ≡⟨ _↔_.right-inverse-of (Queue↔Maybe[×Queue] _) _ ⟩∎
just (10 , enqueue 6 empty) ∎
where
lemma = _↔_.to ≡-for-lists↔≡ (
⌊ map (_* 2) (enqueue 3 (enqueue 5 empty)) ⌋ ≡⟨ to-List-map ⟩
L.map (_* 2) ⌊ enqueue 3 (enqueue 5 empty) ⌋ ≡⟨ cong (L.map (_* 2)) $ to-List-foldl-enqueue-empty (_ ∷ _ ∷ []) ⟩
L.map (_* 2) (5 ∷ 3 ∷ []) ≡⟨⟩
10 ∷ 6 ∷ [] ≡⟨ cong (10 ∷_) $ sym $ to-List-foldl-enqueue-empty (_ ∷ []) ⟩
10 ∷ ⌊ enqueue 6 empty ⌋ ≡⟨ sym $ to-List-cons ⟩∎
⌊ cons 10 (enqueue 6 empty) ⌋ ∎)
example₃ :
(do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty)))
return (enqueue (3 * x) q)) ≡
just (enqueue 30 (enqueue 6 empty))
example₃ =
(do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty)))
return (enqueue (3 * x) q)) ≡⟨ cong (_>>= λ _ → return (enqueue _ _)) example₂ ⟩
(do x , q ← just (10 , enqueue 6 empty)
return (enqueue (3 * x) (q ⦂ Queue Q ℕ))) ≡⟨⟩
just (enqueue 30 (enqueue 6 empty)) ∎
example₄ :
(do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty)))
let q = enqueue (3 * x) q
return ⌊ q ⌋) ≡
just (6 ∷ 30 ∷ [])
example₄ =
(do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty)))
let q = enqueue (3 * x) q
return ⌊ q ⌋) ≡⟨ cong (_>>= λ _ → return ⌊ enqueue _ _ ⌋) example₂ ⟩
(do x , q ← just (10 , enqueue 6 empty)
let q = enqueue (3 * x) (q ⦂ Queue Q ℕ)
return ⌊ q ⌋) ≡⟨⟩
just ⌊ enqueue 30 (enqueue 6 empty) ⌋ ≡⟨ cong just $ to-List-foldl-enqueue-empty (_ ∷ _ ∷ []) ⟩∎
just (6 ∷ 30 ∷ []) ∎
example₅ :
∀ {xs} →
dequeue′ (from-List (1 ∷ 2 ∷ 3 ∷ xs)) ≡
just (1 , from-List (2 ∷ 3 ∷ xs))
example₅ {xs = xs} =
dequeue′ (from-List (1 ∷ 2 ∷ 3 ∷ xs)) ≡⟨ cong dequeue′ lemma ⟩
dequeue′ (cons 1 (from-List (2 ∷ 3 ∷ xs))) ≡⟨ _↔_.right-inverse-of (Queue↔Maybe[×Queue] _) _ ⟩∎
just (1 , from-List (2 ∷ 3 ∷ xs)) ∎
where
lemma = _↔_.to ≡-for-lists↔≡ (
⌊ from-List (1 ∷ 2 ∷ 3 ∷ xs) ⌋ ≡⟨ _↔_.right-inverse-of (Queue↔List _) _ ⟩
1 ∷ 2 ∷ 3 ∷ xs ≡⟨ cong (1 ∷_) $ sym $ _↔_.right-inverse-of (Queue↔List _) _ ⟩
1 ∷ ⌊ from-List (2 ∷ 3 ∷ xs) ⌋ ≡⟨ sym to-List-cons ⟩∎
⌊ cons 1 (from-List (2 ∷ 3 ∷ xs)) ⌋ ∎)
example₆ :
foldr enqueue empty′ (3 ∷ 2 ∷ 1 ∷ []) ≡
from-List (1 ∷ 2 ∷ 3 ∷ [])
example₆ = sym $ from-List≡foldl-enqueue-empty (λ {_ _} → ℕ-set)
| {
"alphanum_fraction": 0.5024088094,
"avg_line_length": 39.8082191781,
"ext": "agda",
"hexsha": "771e8388d5ebb55a00ce469a0847bca91e647b9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Queue/Quotiented/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Queue/Quotiented/Instances.agda",
"max_line_length": 127,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Queue/Quotiented/Instances.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2075,
"size": 5812
} |
postulate
__ : Set
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 7,
"ext": "agda",
"hexsha": "b79485f782f515789789a1da8a0fda1f8469ff04",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Consecutive-underscores.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Consecutive-underscores.agda",
"max_line_length": 10,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Consecutive-underscores.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 21
} |
{-# OPTIONS --cubical #-}
module Multidimensional.Data.NNat.Properties where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Prod
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Multidimensional.Data.Extra.Nat
open import Multidimensional.Data.Dir
open import Multidimensional.Data.DirNum
open import Multidimensional.Data.NNat.Base
-- N→ℕsucN : (r : ℕ) (x : N r) → N→ℕ r (sucN x) ≡ suc (N→ℕ r x)
-- N→ℕsucN zero (bn tt) = refl
-- N→ℕsucN zero (xr tt x) =
-- suc (N→ℕ zero (sucN x))
-- ≡⟨ cong suc (N→ℕsucN zero x) ⟩
-- suc (suc (N→ℕ zero x))
-- ∎
-- N→ℕsucN (suc r) (bn (↓ , d)) = refl
-- N→ℕsucN (suc r) (bn (↑ , d)) with max? d
-- ... | no d≠max =
-- doubleℕ (DirNum→ℕ (next d))
-- ≡⟨ cong doubleℕ (next≡suc r d d≠max) ⟩
-- doubleℕ (suc (DirNum→ℕ d))
-- ∎
-- ... | yes d≡max = -- this can probably be shortened by not reducing down to zero
-- sucn (doubleℕ (DirNum→ℕ (zero-n r)))
-- (doublesℕ r (suc (suc (doubleℕ (doubleℕ (DirNum→ℕ (zero-n r)))))))
-- ≡⟨ cong (λ x → sucn (doubleℕ x) (doublesℕ r (suc (suc (doubleℕ (doubleℕ x)))))) (zero-n→0 {r}) ⟩
-- sucn (doubleℕ zero) (doublesℕ r (suc (suc (doubleℕ (doubleℕ zero)))))
-- ≡⟨ refl ⟩
-- doublesℕ (suc r) (suc zero) -- 2^(r+1)
-- ≡⟨ sym (doubleDoubles r 1) ⟩
-- doubleℕ (doublesℕ r (suc zero)) --2*2^r
-- ≡⟨ sym (sucPred (doubleℕ (doublesℕ r (suc zero))) (doubleDoublesOne≠0 r)) ⟩
-- suc (predℕ (doubleℕ (doublesℕ r (suc zero))))
-- ≡⟨ cong suc (sym (sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) (predDoubleDoublesOne≠0 r))) ⟩
-- suc (suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero))))))
-- ≡⟨ cong (λ x → suc (suc x)) (sym (doublePred (doublesℕ r (suc zero)))) ⟩
-- suc (suc (doubleℕ (predℕ (doublesℕ r (suc zero)))))
-- ≡⟨ cong (λ x → suc (suc (doubleℕ x))) (sym (maxr≡pred2ʳ r d d≡max)) ⟩
-- suc (suc (doubleℕ (DirNum→ℕ d))) -- 2*(2^r - 1) + 2 = 2^(r+1) - 2 + 2 = 2^(r+1)
-- ∎
-- N→ℕsucN (suc r) (xr (↓ , d) x) = refl
-- N→ℕsucN (suc r) (xr (↑ , d) x) with max? d
-- ... | no d≠max =
-- sucn (doubleℕ (DirNum→ℕ (next d)))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))
-- ≡⟨ cong (λ y → sucn (doubleℕ y) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) (next≡suc r d d≠max) ⟩
-- sucn (doubleℕ (suc (DirNum→ℕ d)))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))
-- ≡⟨ refl ⟩
-- suc
-- (suc
-- (iter (doubleℕ (DirNum→ℕ d)) suc
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ∎
-- ... | yes d≡max =
-- sucn (doubleℕ (DirNum→ℕ (zero-n r)))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))
-- ≡⟨ cong (λ z → sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))) (zero-n≡0 {r}) ⟩
-- sucn (doubleℕ zero)
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))
-- ≡⟨ refl ⟩
-- doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))
-- ≡⟨ cong (λ x → doublesℕ r (doubleℕ x)) (N→ℕsucN (suc r) x) ⟩
-- doublesℕ r (doubleℕ (suc (N→ℕ (suc r) x)))
-- ≡⟨ refl ⟩
-- doublesℕ r (suc (suc (doubleℕ (N→ℕ (suc r) x)))) -- 2^r * (2x + 2) = 2^(r+1)x + 2^(r+1)
-- ≡⟨ doublesSucSuc r (doubleℕ (N→ℕ (suc r) x)) ⟩
-- sucn (doublesℕ (suc r) 1) -- _ + 2^(r+1)
-- (doublesℕ (suc r) (N→ℕ (suc r) x)) -- 2^(r+1)x + 2^(r+1)
-- ≡⟨ H r (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩
-- suc
-- (suc
-- (sucn (doubleℕ (predℕ (doublesℕ r 1))) -- _ + 2(2^r - 1) + 2
-- (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ≡⟨ refl ⟩
-- suc
-- (suc
-- (sucn (doubleℕ (predℕ (doublesℕ r 1)))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (max→ℕ r)) ⟩
-- suc
-- (suc
-- (sucn (doubleℕ (DirNum→ℕ (max-n r)))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ (DirNum→ℕ z)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (d≡max)) ⟩
-- suc
-- (suc
-- (sucn (doubleℕ (DirNum→ℕ d))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) -- (2^r*2x + (2*(2^r - 1))) + 2 = 2^(r+1)x + 2^(r+1)
-- ∎
-- where
-- H : (n m : ℕ) → sucn (doublesℕ (suc n) 1) m ≡ suc (suc (sucn (doubleℕ (predℕ (doublesℕ n 1))) m))
-- H zero m = refl
-- H (suc n) m =
-- sucn (doublesℕ n 4) m
-- ≡⟨ cong (λ z → sucn z m) (doublesSucSuc n 2) ⟩
-- sucn (sucn (doublesℕ (suc n) 1) (doublesℕ n 2)) m
-- ≡⟨ refl ⟩
-- sucn (sucn (doublesℕ n 2) (doublesℕ n 2)) m
-- ≡⟨ {!!} ⟩
-- sucn (doubleℕ (doublesℕ n 2)) m
-- ≡⟨ {!!} ⟩ {!!}
-- ℕ→Nsuc : (r : ℕ) (n : ℕ) → ℕ→N r (suc n) ≡ sucN (ℕ→N r n)
-- ℕ→Nsuc r n = {!!}
-- ℕ→Nsucn : (r : ℕ) (n m : ℕ) → ℕ→N r (sucn n m) ≡ sucnN n (ℕ→N r m)
-- ℕ→Nsucn r n m = {!!}
-- NℕNlemma : (r : ℕ) (d : DirNum r) → ℕ→N r (DirNum→ℕ d) ≡ bn d
-- NℕNlemma zero tt = refl
-- NℕNlemma (suc r) (↓ , ds) =
-- ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))
-- ≡⟨ {!!} ⟩ {!!}
-- NℕNlemma (suc r) (↑ , ds) = {!!}
-- N→ℕ→N : (r : ℕ) → (x : N r) → ℕ→N r (N→ℕ r x) ≡ x
-- N→ℕ→N zero (bn tt) = refl
-- N→ℕ→N zero (xr tt x) = cong (xr tt) (N→ℕ→N zero x)
-- N→ℕ→N (suc r) (bn (↓ , ds)) =
-- ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))
-- ≡⟨ cong (λ x → ℕ→N (suc r) x) (double-lemma ds) ⟩
-- ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds))
-- ≡⟨ NℕNlemma (suc r) (↓ , ds) ⟩
-- bn (↓ , ds)
-- ∎
-- N→ℕ→N (suc r) (bn (↑ , ds)) =
-- sucN (ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)))
-- ≡⟨ cong (λ x → sucN (ℕ→N (suc r) x)) (double-lemma ds) ⟩
-- sucN (ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds)))
-- ≡⟨ cong sucN (NℕNlemma (suc r) (↓ , ds)) ⟩
-- sucN (bn (↓ , ds))
-- ≡⟨ refl ⟩
-- bn (↑ , ds)
-- ∎
-- N→ℕ→N (suc r) (xr (↓ , ds) x) =
-- ℕ→N (suc r)
-- (sucn (doubleℕ (DirNum→ℕ ds))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))
-- ≡⟨ cong (λ z → ℕ→N (suc r) (sucn z (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) (double-lemma ds) ⟩
-- ℕ→N (suc r)
-- (sucn (DirNum→ℕ {suc r} (↓ , ds))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))
-- ≡⟨ refl ⟩
-- ℕ→N (suc r)
-- (sucn (DirNum→ℕ {suc r} (↓ , ds))
-- (doublesℕ (suc r) (N→ℕ (suc r) x)))
-- ≡⟨ ℕ→Nsucn (suc r) (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩
-- sucnN (DirNum→ℕ {suc r} (↓ , ds))
-- (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))
-- ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) z) (H (suc r) (suc r) (N→ℕ (suc r) x)) ⟩
-- sucnN (DirNum→ℕ {suc r} (↓ , ds))
-- (doublesN (suc r) (suc r) (ℕ→N (suc r) (N→ℕ (suc r) x)))
-- ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) z)) (N→ℕ→N (suc r) x) ⟩
-- sucnN (DirNum→ℕ {suc r} (↓ , ds))
-- (doublesN (suc r) (suc r) x)
-- ≡⟨ G (suc r) (↓ , ds) x snotz ⟩
-- xr (↓ , ds) x ∎
-- where
-- H : (r m n : ℕ) → ℕ→N r (doublesℕ m n) ≡ doublesN r m (ℕ→N r n)
-- H r m n = {!!}
-- G : (r : ℕ) (d : DirNum r) (x : N r) → ¬ (r ≡ 0) → sucnN (DirNum→ℕ {r} d) (doublesN r r x) ≡ xr d x
-- G zero d x 0≠0 = ⊥-elim (0≠0 refl)
-- G (suc r) d (bn x) r≠0 = {!!}
-- G (suc r) d (xr x x₁) r≠0 = {!!}
-- N→ℕ→N (suc r) (xr (↑ , ds) x) with max? ds
-- ... | no ds≠max =
-- sucN
-- (ℕ→N (suc r)
-- (sucn (doubleℕ (DirNum→ℕ ds))
-- (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ≡⟨ sym (ℕ→Nsuc (suc r)
-- (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ⟩
-- ℕ→N (suc r)
-- (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
-- ≡⟨ refl ⟩
-- ℕ→N (suc r)
-- (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ≡⟨ cong (λ z → ℕ→N (suc r) z)
-- (sym (sucnsuc (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ⟩
-- ℕ→N (suc r)
-- (sucn (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ≡⟨ ℕ→Nsucn (suc r) (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩
-- sucnN (doubleℕ (DirNum→ℕ ds)) (ℕ→N (suc r) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ≡⟨ cong (λ z → sucnN (doubleℕ (DirNum→ℕ ds)) z)
-- (ℕ→Nsuc (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))
-- ⟩
-- -- (2^(r+1)*x + 1) + 2*ds
-- -- = 2*(2^r*x + ds) + 1
-- -- = 2*(
-- sucnN (doubleℕ (DirNum→ℕ ds)) (sucN (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))))
-- ≡⟨ {!!} ⟩ {!!}
-- ... | yes ds≡max = {!!}
-- ℕ→N→ℕ : (r : ℕ) → (n : ℕ) → N→ℕ r (ℕ→N r n) ≡ n
-- ℕ→N→ℕ zero zero = refl
-- ℕ→N→ℕ (suc r) zero =
-- doubleℕ (DirNum→ℕ (zero-n r))
-- ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩
-- doubleℕ zero
-- ≡⟨ refl ⟩
-- zero
-- ∎
-- ℕ→N→ℕ zero (suc n) = cong suc (ℕ→N→ℕ zero n)
-- ℕ→N→ℕ (suc r) (suc n) =
-- N→ℕ (suc r) (sucN (ℕ→N (suc r) n))
-- ≡⟨ N→ℕsucN (suc r) (ℕ→N (suc r) n) ⟩
-- suc (N→ℕ (suc r) (ℕ→N (suc r) n))
-- ≡⟨ cong suc (ℕ→N→ℕ (suc r) n) ⟩
-- suc n
-- ∎
-- N≃ℕ : (r : ℕ) → N r ≃ ℕ
-- N≃ℕ r = isoToEquiv (iso (N→ℕ r) (ℕ→N r) (ℕ→N→ℕ r) (N→ℕ→N r))
-- N≡ℕ : (r : ℕ) → N r ≡ ℕ
-- N≡ℕ r = ua (N≃ℕ r)
| {
"alphanum_fraction": 0.4475773616,
"avg_line_length": 41.9829059829,
"ext": "agda",
"hexsha": "dcf41a7e31422eb16415bbf9054dd3e418092921",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_forks_repo_path": "Multidimensional/Data/NNat/Properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_issues_repo_path": "Multidimensional/Data/NNat/Properties.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_stars_repo_path": "Multidimensional/Data/NNat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4802,
"size": 9824
} |
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; _≟_)
open import Data.Nat using (ℕ)
open import Data.Vec using (lookup; _[_]≔_)
open import Data.Vec.Properties using (lookup∘update; lookup∘update′; []≔-commutes; []≔-idempotent; []≔-lookup)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Binary.PropositionalEquality using (sym; trans; _≡_; refl; cong; _≢_; module ≡-Reasoning)
open import Data.Product using (∃-syntax; _,_; proj₁; proj₂; _×_)
open ≡-Reasoning
open import Common
open import Global
open import Local
open import Projection
soundness :
∀ { n : ℕ } { act : Action n } { c g g′ }
-> g ↔ c
-> g - act →g g′
-> ∃[ c′ ] c - act →c c′ × g′ ↔ c′
soundness
{n = n}
{act = act@(action .p .q p≢q .l)}
{c = c}
{g = g@(msgSingle p q p≢q-gt l g′)}
{g′ = .g′}
assoc
→g-prefix
= c′ , (→c-comm c p≢q refl refl refl lpReduce lqReduce , g′↔c′)
where
config-without-prefix = config-gt-remove-prefix g c assoc refl
c′ = proj₁ config-without-prefix
g′↔c′ : g′ ↔ c′
g′↔c′ = proj₂ (proj₂ config-without-prefix)
lpReduce : (p , lookup c p) - act →l (p , project g′ p)
lpReduce rewrite _↔_.isProj assoc p
= →l-send p (proj-prefix-send p q g′ p≢q-gt) p≢q
lqReduce : (q , lookup c q) - act →l (q , project g′ q)
lqReduce rewrite _↔_.isProj assoc q
= →l-recv q (proj-prefix-recv p q g′ p≢q-gt) p≢q
soundness
{n = n}
{act = act@(.action p q p≢q l)}
{c = c}
{g = g@(msgSingle r s r≢s l′ gSub)}
{g′ = g′@(.msgSingle r s r≢s l′ gSub′)}
assoc
(→g-cont gReduce p≢r q≢r p≢s q≢s)
= c′ , cReduce , assoc′
where
config-without-prefix = config-gt-remove-prefix g c assoc refl
cSub = proj₁ config-without-prefix
gSub↔cSub : gSub ↔ cSub
gSub↔cSub = proj₂ (proj₂ config-without-prefix)
soundness-gSub : ∃[ cSub′ ] cSub - act →c cSub′ × gSub′ ↔ cSub′
soundness-gSub = soundness gSub↔cSub gReduce
c′ : Configuration n
c′ with soundness-gSub
... | cSub′ , _ , _ = (cSub′ [ r ]≔ lr′) [ s ]≔ ls′
where
lr′ : Local n
lr′ with soundness-gSub
... | cSub′ , _ , _ = sendSingle s l′ (lookup cSub′ r)
ls′ : Local n
ls′ with soundness-gSub
... | cSub′ , _ , _ = recvSingle r l′ (lookup cSub′ s)
isProj-g′ : ∀(t : Fin n) -> lookup c′ t ≡ project g′ t
isProj-g′ t with soundness-gSub
... | cSub′ , _ , gSub′↔cSub′
with r ≟ t | s ≟ t
... | yes r≡t | no _
rewrite sym r≡t
rewrite lookup∘update′ r≢s (cSub′ [ r ]≔ sendSingle s l′ (lookup cSub′ r)) (recvSingle r l′ (lookup cSub′ s))
rewrite lookup∘update r cSub′ (sendSingle s l′ (lookup cSub′ r))
rewrite _↔_.isProj gSub′↔cSub′ r = refl
... | no _ | yes s≡t
rewrite sym s≡t
rewrite lookup∘update s (cSub′ [ r ]≔ sendSingle s l′ (lookup cSub′ r)) (recvSingle r l′ (lookup cSub′ s))
rewrite _↔_.isProj gSub′↔cSub′ s = refl
... | no r≢t | no s≢t
rewrite lookup∘update′ (¬≡-flip s≢t) (cSub′ [ r ]≔ sendSingle s l′ (lookup cSub′ r)) (recvSingle r l′ (lookup cSub′ s))
rewrite lookup∘update′ (¬≡-flip r≢t) cSub′ (sendSingle s l′ (lookup cSub′ r))
rewrite _↔_.isProj gSub′↔cSub′ t = refl
... | yes refl | yes refl = ⊥-elim (r≢s refl)
assoc′ : g′ ↔ c′
assoc′ = record { isProj = isProj-g′ }
cReduce : c - act →c c′
cReduce with soundness-gSub
... | cSub′ , →c-comm {lp = lp} {lp′ = lp′} {lq = lq} {lq′ = lq′} .cSub .p≢q refl refl refl lpReduce lqReduce , gSub′↔cSub′
= →c-comm c p≢q lp≡c[p] lq≡c[q] c→c′ lpReduce lqReduce
where
lr′ = sendSingle s l′ (lookup cSub′ r)
ls′ = recvSingle r l′ (lookup cSub′ s)
lp≡c[p] : lp ≡ lookup c p
lp≡c[p]
rewrite lookup∘update′ p≢s (c [ r ]≔ project gSub r) (project gSub s)
rewrite lookup∘update′ p≢r c (project gSub r) = refl
lq≡c[q] : lq ≡ lookup c q
lq≡c[q]
rewrite lookup∘update′ q≢s (c [ r ]≔ project gSub r) (project gSub s)
rewrite lookup∘update′ q≢r c (project gSub r) = refl
lr′≡c[r] : lr′ ≡ lookup c r
lr′≡c[r]
rewrite lookup∘update′ (¬≡-flip q≢r) (cSub [ p ]≔ lp′) lq′
rewrite lookup∘update′ (¬≡-flip p≢r) cSub lp′
rewrite _↔_.isProj assoc r
rewrite proj-prefix-send {l = l′} r s gSub r≢s
rewrite lookup∘update′ r≢s (c [ r ]≔ project gSub r) (project gSub s)
rewrite lookup∘update r c (project gSub r)
= refl
ls′≡c[s] : ls′ ≡ lookup c s
ls′≡c[s]
rewrite lookup∘update′ (¬≡-flip q≢s) (cSub [ p ]≔ lp′) lq′
rewrite lookup∘update′ (¬≡-flip p≢s) cSub lp′
rewrite _↔_.isProj assoc s
rewrite proj-prefix-recv {l = l′} r s gSub r≢s
rewrite lookup∘update s (c [ r ]≔ project gSub r) (project gSub s)
= refl
c→c′ : (cSub′ [ r ]≔ lr′) [ s ]≔ ls′ ≡ (c [ p ]≔ lp′) [ q ]≔ lq′
c→c′
rewrite []≔-commutes ((((c [ r ]≔ project gSub r) [ s ]≔ project gSub s) [ p ]≔ lp′) [ q ]≔ lq′) r s {lr′} {ls′} r≢s
rewrite []≔-commutes (((c [ r ]≔ project gSub r) [ s ]≔ project gSub s) [ p ]≔ lp′) q s {lq′} {ls′} q≢s
rewrite []≔-commutes ((c [ r ]≔ project gSub r) [ s ]≔ project gSub s) p s {lp′} {ls′} p≢s
rewrite []≔-idempotent (c [ r ]≔ project gSub r) s {project gSub s} {ls′}
rewrite []≔-commutes (((c [ r ]≔ project gSub r) [ s ]≔ ls′) [ p ]≔ lp′) q r {lq′} {lr′} q≢r
rewrite []≔-commutes ((c [ r ]≔ project gSub r) [ s ]≔ ls′) p r {lp′} {lr′} p≢r
rewrite []≔-commutes (c [ r ]≔ project gSub r) s r {ls′} {lr′} (¬≡-flip r≢s)
rewrite []≔-idempotent c r {project gSub r} {lr′}
rewrite lr′≡c[r]
rewrite ls′≡c[s]
rewrite []≔-lookup c r
rewrite []≔-lookup c s
= refl
| {
"alphanum_fraction": 0.5396501953,
"avg_line_length": 43.947761194,
"ext": "agda",
"hexsha": "88b6dd92ce66171c270a3f269aef3f3da2ffdc34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fangyi-zhou/mpst-in-agda",
"max_forks_repo_path": "Soundness.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fangyi-zhou/mpst-in-agda",
"max_issues_repo_path": "Soundness.agda",
"max_line_length": 129,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fangyi-zhou/mpst-in-agda",
"max_stars_repo_path": "Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z",
"num_tokens": 2356,
"size": 5889
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed AVL trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL.Indexed
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where
open import Level using (_⊔_)
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Product hiding (map)
open import Data.Maybe hiding (map)
open import Data.DifferenceList using (DiffList; []; _∷_; _++_)
open import Function as F hiding (const)
open import Relation.Unary
open import Relation.Binary using (_Respects_; Tri; tri<; tri≈; tri>)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
------------------------------------------------------------------------
-- Re-export core definitions publicly
open import Data.AVL.Key strictTotalOrder public
open import Data.AVL.Value Eq.setoid public
open import Data.AVL.Height public
------------------------------------------------------------------------
-- Definitions of the tree
K&_ : ∀ {v} (V : Value v) → Set (a ⊔ v)
K& V = Σ Key (Value.family V)
-- The trees have three parameters/indices: a lower bound on the
-- keys, an upper bound, and a height.
--
-- (The bal argument is the balance factor.)
data Tree {v} (V : Value v) (l u : Key⁺) : ℕ → Set (a ⊔ v ⊔ ℓ₂) where
leaf : (l<u : l <⁺ u) → Tree V l u 0
node : ∀ {hˡ hʳ h}
(k : K& V)
(lk : Tree V l [ proj₁ k ] hˡ)
(ku : Tree V [ proj₁ k ] u hʳ)
(bal : hˡ ∼ hʳ ⊔ h) →
Tree V l u (suc h)
module _ {v} {V : Value v} where
private
Val = Value.family V
V≈ = Value.respects V
leaf-injective : ∀ {l u} {p q : l <⁺ u} → (Tree V l u 0 ∋ leaf p) ≡ leaf q → p ≡ q
leaf-injective refl = refl
node-injective-key :
∀ {hˡ₁ hˡ₂ hʳ₁ hʳ₂ h l u k₁ k₂}
{lk₁ : Tree V l [ proj₁ k₁ ] hˡ₁} {lk₂ : Tree V l [ proj₁ k₂ ] hˡ₂}
{ku₁ : Tree V [ proj₁ k₁ ] u hʳ₁} {ku₂ : Tree V [ proj₁ k₂ ] u hʳ₂}
{bal₁ : hˡ₁ ∼ hʳ₁ ⊔ h} {bal₂ : hˡ₂ ∼ hʳ₂ ⊔ h} →
node k₁ lk₁ ku₁ bal₁ ≡ node k₂ lk₂ ku₂ bal₂ → k₁ ≡ k₂
node-injective-key refl = refl
-- See also node-injectiveˡ, node-injectiveʳ, and node-injective-bal
-- in Data.AVL.Indexed.WithK.
-- Cast operations. Logarithmic in the size of the tree, if we don't
-- count the time needed to construct the new proofs in the leaf
-- cases. (The same kind of caveat applies to other operations
-- below.)
--
-- Perhaps it would be worthwhile changing the data structure so
-- that the casts could be implemented in constant time (excluding
-- proof manipulation). However, note that this would not change the
-- worst-case time complexity of the operations below (up to Θ).
castˡ : ∀ {l m u h} → l <⁺ m → Tree V m u h → Tree V l u h
castˡ {l} l<m (leaf m<u) = leaf (trans⁺ l l<m m<u)
castˡ l<m (node k mk ku bal) = node k (castˡ l<m mk) ku bal
castʳ : ∀ {l m u h} → Tree V l m h → m <⁺ u → Tree V l u h
castʳ {l} (leaf l<m) m<u = leaf (trans⁺ l l<m m<u)
castʳ (node k lk km bal) m<u = node k lk (castʳ km m<u) bal
-- Various constant-time functions which construct trees out of
-- smaller pieces, sometimes using rotation.
joinˡ⁺ : ∀ {l u hˡ hʳ h} →
(k : K& V) →
(∃ λ i → Tree V l [ proj₁ k ] (i ⊕ hˡ)) →
Tree V [ proj₁ k ] u hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ (1 + h))
joinˡ⁺ k₆ (1# , node k₂ t₁
(node k₄ t₃ t₅ bal)
∼+) t₇ ∼- = (0# , node k₄
(node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
∼0)
joinˡ⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- = (0# , node k₂ t₁ (node k₄ t₃ t₅ ∼0) ∼0)
joinˡ⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- = (1# , node k₂ t₁ (node k₄ t₃ t₅ ∼-) ∼+)
joinˡ⁺ k₂ (1# , t₁) t₃ ∼0 = (1# , node k₂ t₁ t₃ ∼-)
joinˡ⁺ k₂ (1# , t₁) t₃ ∼+ = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁺ k₂ (0# , t₁) t₃ bal = (0# , node k₂ t₁ t₃ bal)
joinˡ⁺ k₂ (## , t₁) t₃ bal
joinʳ⁺ : ∀ {l u hˡ hʳ h} →
(k : K& V) →
Tree V l [ proj₁ k ] hˡ →
(∃ λ i → Tree V [ proj₁ k ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ (1 + h))
joinʳ⁺ k₂ t₁ (1# , node k₆
(node k₄ t₃ t₅ bal)
t₇ ∼-) ∼+ = (0# , node k₄
(node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
∼0)
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ = (0# , node k₄ (node k₂ t₁ t₃ ∼0) t₅ ∼0)
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ = (1# , node k₄ (node k₂ t₁ t₃ ∼+) t₅ ∼-)
joinʳ⁺ k₂ t₁ (1# , t₃) ∼0 = (1# , node k₂ t₁ t₃ ∼+)
joinʳ⁺ k₂ t₁ (1# , t₃) ∼- = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁺ k₂ t₁ (0# , t₃) bal = (0# , node k₂ t₁ t₃ bal)
joinʳ⁺ k₂ t₁ (## , t₃) bal
joinˡ⁻ : ∀ {l u} hˡ {hʳ h} →
(k : K& V) →
(∃ λ i → Tree V l [ proj₁ k ] pred[ i ⊕ hˡ ]) →
Tree V [ proj₁ k ] u hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
joinˡ⁻ zero k₂ (0# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ zero k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼+ = joinʳ⁺ k₂ t₁ (1# , t₃) ∼+
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼0 = (1# , node k₂ t₁ t₃ ∼+)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼- = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁻ (suc _) k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ n k₂ (## , t₁) t₃ bal
joinʳ⁻ : ∀ {l u hˡ} hʳ {h} →
(k : K& V) →
Tree V l [ proj₁ k ] hˡ →
(∃ λ i → Tree V [ proj₁ k ] u pred[ i ⊕ hʳ ]) →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
joinʳ⁻ zero k₂ t₁ (0# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ zero k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼- = joinˡ⁺ k₂ (1# , t₁) t₃ ∼-
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼0 = (1# , node k₂ t₁ t₃ ∼-)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼+ = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁻ (suc _) k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ n k₂ t₁ (## , t₃) bal
-- Extracts the smallest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.
headTail : ∀ {l u h} → Tree V l u (1 + h) →
∃ λ (k : K& V) → l <⁺ [ proj₁ k ] ×
∃ λ i → Tree V [ proj₁ k ] u (i ⊕ h)
headTail (node k₁ (leaf l<k₁) t₂ ∼+) = (k₁ , l<k₁ , 0# , t₂)
headTail (node k₁ (leaf l<k₁) t₂ ∼0) = (k₁ , l<k₁ , 0# , t₂)
headTail (node {hˡ = suc _} k₃ t₁₂ t₄ bal) with headTail t₁₂
... | (k₁ , l<k₁ , t₂) = (k₁ , l<k₁ , joinˡ⁻ _ k₃ t₂ t₄ bal)
-- Extracts the largest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.
initLast : ∀ {l u h} → Tree V l u (1 + h) →
∃ λ (k : K& V) → [ proj₁ k ] <⁺ u ×
∃ λ i → Tree V l [ proj₁ k ] (i ⊕ h)
initLast (node k₂ t₁ (leaf k₂<u) ∼-) = (k₂ , k₂<u , (0# , t₁))
initLast (node k₂ t₁ (leaf k₂<u) ∼0) = (k₂ , k₂<u , (0# , t₁))
initLast (node {hʳ = suc _} k₂ t₁ t₃₄ bal) with initLast t₃₄
... | (k₄ , k₄<u , t₃) = (k₄ , k₄<u , joinʳ⁻ _ k₂ t₁ t₃ bal)
-- Another joining function. Logarithmic in the size of either of
-- the input trees (which need to have almost equal heights).
join : ∀ {l m u hˡ hʳ h} →
Tree V l m hˡ → Tree V m u hʳ → (bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree V l u (i ⊕ h)
join t₁ (leaf m<u) ∼0 = (0# , castʳ t₁ m<u)
join t₁ (leaf m<u) ∼- = (0# , castʳ t₁ m<u)
join {hʳ = suc _} t₁ t₂₃ bal with headTail t₂₃
... | (k₂ , m<k₂ , t₃) = joinʳ⁻ _ k₂ (castʳ t₁ m<k₂) t₃ bal
-- An empty tree.
empty : ∀ {l u} → l <⁺ u → Tree V l u 0
empty = leaf
-- A singleton tree.
singleton : ∀ {l u} (k : Key) → Val k → l < k < u → Tree V l u 1
singleton k v (l<k , k<u) = node (k , v) (leaf l<k) (leaf k<u) ∼0
-- Inserts a key into the tree, using a function to combine any
-- existing value with the new value. Logarithmic in the size of the
-- tree (assuming constant-time comparisons and a constant-time
-- combining function).
insertWith : ∀ {l u h} (k : Key) → (Maybe (Val k) → Val k) → -- Maybe old → result.
Tree V l u h → l < k < u →
∃ λ i → Tree V l u (i ⊕ h)
insertWith k f (leaf l<u) l<k<u = (1# , singleton k (f nothing) l<k<u)
insertWith k f (node (k′ , v′) lp pu bal) (l<k , k<u) with compare k k′
... | tri< k<k′ _ _ = joinˡ⁺ (k′ , v′) (insertWith k f lp (l<k , [ k<k′ ]ᴿ)) pu bal
... | tri> _ _ k′<k = joinʳ⁺ (k′ , v′) lp (insertWith k f pu ([ k′<k ]ᴿ , k<u)) bal
... | tri≈ _ k≈k′ _ = (0# , node (k′ , V≈ k≈k′ (f (just (V≈ (Eq.sym k≈k′) v′)))) lp pu bal)
-- Inserts a key into the tree. If the key already exists, then it
-- is replaced. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).
insert : ∀ {l u h} → (k : Key) → Val k → Tree V l u h → l < k < u →
∃ λ i → Tree V l u (i ⊕ h)
insert k v = insertWith k (F.const v)
-- Deletes the key/value pair containing the given key, if any.
-- Logarithmic in the size of the tree (assuming constant-time
-- comparisons).
delete : ∀ {l u h} (k : Key) → Tree V l u h → l < k < u →
∃ λ i → Tree V l u pred[ i ⊕ h ]
delete k (leaf l<u) l<k<u = (0# , leaf l<u)
delete k (node p@(k′ , v) lp pu bal) (l<k , k<u) with compare k′ k
... | tri< k′<k _ _ = joinʳ⁻ _ p lp (delete k pu ([ k′<k ]ᴿ , k<u)) bal
... | tri> _ _ k′>k = joinˡ⁻ _ p (delete k lp (l<k , [ k′>k ]ᴿ)) pu bal
... | tri≈ _ k′≡k _ = join lp pu bal
-- Looks up a key. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).
lookup : ∀ {l u h} (k : Key) → Tree V l u h → l < k < u → Maybe (Val k)
lookup k (leaf _) l<k<u = nothing
lookup k (node (k′ , v) lk′ k′u _) (l<k , k<u) with compare k′ k
... | tri< k′<k _ _ = lookup k k′u ([ k′<k ]ᴿ , k<u)
... | tri> _ _ k′>k = lookup k lk′ (l<k , [ k′>k ]ᴿ)
... | tri≈ _ k′≡k _ = just (V≈ k′≡k v)
-- Converts the tree to an ordered list. Linear in the size of the
-- tree.
toDiffList : ∀ {l u h} → Tree V l u h → DiffList (K& V)
toDiffList (leaf _) = []
toDiffList (node k l r _) = toDiffList l ++ k ∷ toDiffList r
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
-- Maps a function over all values in the tree.
map : ∀[ Val ⇒ Wal ] → ∀ {l u h} → Tree V l u h → Tree W l u h
map f (leaf l<u) = leaf l<u
map f (node (k , v) l r bal) = node (k , f v) (map f l) (map f r) bal
| {
"alphanum_fraction": 0.4912706983,
"avg_line_length": 41.9320754717,
"ext": "agda",
"hexsha": "e5d75409b7baa08ba11f5eebc724d5ab9a1054b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4528,
"size": 11112
} |
module Function.Domains where
import Lvl
open import Structure.Setoid
open import Type
private variable ℓₒ₁ ℓₒ₂ ℓₑ₁ ℓₑ₂ : Lvl.Level
module _ {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where
-- The partial domain of a function
-- Note: This is the same as the domain because all functions are total (or at least supposed to be)
⊷ : (X → Y) → Type{ℓₒ₁}
⊷ _ = X
module _ {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where
-- ∃(Unapply f(y)) is also called "the fiber of the element y under the map f".
-- Unapply(f) is similar to the inverse image or the preimage of f when their argument is a singleton set.
Fiber : ⦃ equiv-Y : Equiv{ℓₑ₂}(Y) ⦄ → (X → Y) → Y → X → Type
Fiber f(y) x = (f(x) ≡ y)
| {
"alphanum_fraction": 0.6541786744,
"avg_line_length": 34.7,
"ext": "agda",
"hexsha": "e0d1be0c095054e80d49d58e25df2173a765491c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/Domains.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/Domains.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/Domains.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 260,
"size": 694
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by preorders
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Properties.Preorder
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open import Function
open import Data.Product as Prod
open Relation.Binary.Preorder P
------------------------------------------------------------------------
-- For every preorder there is an induced equivalence
InducedEquivalence : Setoid _ _
InducedEquivalence = record
{ _≈_ = λ x y → x ∼ y × y ∼ x
; isEquivalence = record
{ refl = (refl , refl)
; sym = swap
; trans = Prod.zip trans (flip trans)
}
}
| {
"alphanum_fraction": 0.4827586207,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "716300e30c5b2ef926c563d1f0d8953e81a5a784",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Preorder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Preorder.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Preorder.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 165,
"size": 783
} |
{-# OPTIONS --without-K #-}
module algebra.semigroup where
open import algebra.semigroup.core public
open import algebra.semigroup.morphism public
| {
"alphanum_fraction": 0.7919463087,
"avg_line_length": 24.8333333333,
"ext": "agda",
"hexsha": "c2a7cc2bb77d0d5f5d4408b20f0859b5a42d9993",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/semigroup.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/semigroup.agda",
"max_line_length": 45,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 30,
"size": 149
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Proofs.Unary where
open import Relation.Binary.PropositionalEquality
open import Data.Binary.Operations.Unary
open import Data.Binary.Definitions
open import Data.Binary.Operations.Semantics
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Relation.Binary.PropositionalEquality.FasterReasoning
import Data.Nat.Properties as ℕ
open import Function
inc⁺⁺-homo : ∀ xs → ⟦ inc⁺⁺ xs ⇓⟧⁺ ≡ suc ⟦ xs ⇓⟧⁺
inc⁺⁺-homo 1ᵇ = refl
inc⁺⁺-homo (O ∷ xs) = refl
inc⁺⁺-homo (I ∷ xs) =
begin
2* ⟦ inc⁺⁺ xs ⇓⟧⁺
≡⟨ cong 2* (inc⁺⁺-homo xs) ⟩
2* (suc ⟦ xs ⇓⟧⁺)
≡⟨⟩
(suc ⟦ xs ⇓⟧⁺) ℕ.+ suc ⟦ xs ⇓⟧⁺
≡⟨ ℕ.+-suc (suc ⟦ xs ⇓⟧⁺) ⟦ xs ⇓⟧⁺ ⟩
suc (suc (2* ⟦ xs ⇓⟧⁺))
∎
inc-homo : ∀ x → ⟦ inc x ⇓⟧ ≡ suc ⟦ x ⇓⟧
inc-homo 0ᵇ = refl
inc-homo (0< xs) = inc⁺⁺-homo xs
open import Data.Product
⟦x⇓⟧⁺≡suc : ∀ x → ∃[ n ] (⟦ x ⇓⟧⁺ ≡ suc n)
⟦x⇓⟧⁺≡suc 1ᵇ = 0 , refl
⟦x⇓⟧⁺≡suc (I ∷ x) = 2* ⟦ x ⇓⟧⁺ , refl
⟦x⇓⟧⁺≡suc (O ∷ x) with ⟦x⇓⟧⁺≡suc x
⟦x⇓⟧⁺≡suc (O ∷ x) | fst , snd = suc (2* fst) , (cong 2* snd ⟨ trans ⟩ (ℕ.+-suc (suc fst) _))
⟦x⇓⟧⁺≢0 : ∀ x → ⟦ x ⇓⟧⁺ ≢ 0
⟦x⇓⟧⁺≢0 x x≡0 with ⟦x⇓⟧⁺≡suc x
⟦x⇓⟧⁺≢0 x x≡0 | _ , prf with sym x≡0 ⟨ trans ⟩ prf
⟦x⇓⟧⁺≢0 x x≡0 | _ , prf | ()
open import Data.Empty
inc-dec⁺⁺ : ∀ x xs → inc⁺⁺ (dec⁺⁺ x xs) ≡ x ∷ xs
inc-dec⁺⁺ I xs = refl
inc-dec⁺⁺ O 1ᵇ = refl
inc-dec⁺⁺ O (x ∷ xs) = cong (O ∷_) (inc-dec⁺⁺ x xs)
inc-dec : ∀ xs → inc⁺ (dec⁺ xs) ≡ xs
inc-dec 1ᵇ = refl
inc-dec (x ∷ xs) = inc-dec⁺⁺ x xs
data IncView : 𝔹 → ℕ → Set where
Izero : IncView 0ᵇ 0
Isuc : ∀ {n xs ys} → inc xs ≡ ys → IncView xs n → IncView ys (suc n)
inc-view : ∀ xs → IncView xs ⟦ xs ⇓⟧
inc-view xs = go _ xs refl
where
go : ∀ n xs → ⟦ xs ⇓⟧ ≡ n → IncView xs n
go .0 0ᵇ refl = Izero
go zero (0< xs) eq = ⊥-elim (⟦x⇓⟧⁺≢0 xs eq)
go (suc n) (0< xs) eq =
Isuc
(cong 0<_ (inc-dec xs))
(go n (dec⁺ xs)
(ℕ.suc-injective (sym (inc-homo (dec⁺ xs)) ⟨ trans ⟩ cong ⟦_⇓⟧⁺ (inc-dec xs) ⟨ trans ⟩ eq)))
| {
"alphanum_fraction": 0.5381909548,
"avg_line_length": 28.0281690141,
"ext": "agda",
"hexsha": "6cd1482169e295c9c84b3ccfc7d9a4d44aa4cdfc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Proofs/Unary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Proofs/Unary.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Proofs/Unary.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 1106,
"size": 1990
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.BlockStorage.BlockTree as BlockTree
import LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock as ExecutedBlock
import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote
import LibraBFT.Impl.Consensus.PersistentLivenessStorage as PersistentLivenessStorage
import LibraBFT.Impl.Consensus.StateComputerByteString as SCBS
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Crypto
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.ByteString
open import Util.Hash
open import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String as String using (String)
module LibraBFT.Impl.Consensus.BlockStorage.BlockStore where
------------------------------------------------------------------------------
build
: RootInfo → RootMetadata
→ List Block → List QuorumCert → Maybe TimeoutCertificate
→ StateComputer → PersistentLivenessStorage → Usize
→ Either ErrLog BlockStore
executeAndInsertBlockE : BlockStore → Block → Either ErrLog (BlockStore × ExecutedBlock)
executeBlockE
: BlockStore → Block
→ Either ErrLog ExecutedBlock
executeBlockE₀
: BlockStore → Block
→ EitherD ErrLog ExecutedBlock
getBlock : HashValue → BlockStore → Maybe ExecutedBlock
insertSingleQuorumCertE
: BlockStore → QuorumCert
→ Either ErrLog (BlockStore × List InfoLog)
pathFromRoot
: HashValue → BlockStore
→ Either ErrLog (List ExecutedBlock)
pathFromRootM
: HashValue
→ LBFT (Either ErrLog (List ExecutedBlock))
------------------------------------------------------------------------------
new
: PersistentLivenessStorage → RecoveryData → StateComputer → Usize
→ Either ErrLog BlockStore
new storage initialData stateComputer maxPrunedBlocksInMem =
build (initialData ^∙ rdRoot)
(initialData ^∙ rdRootMetadata)
(initialData ^∙ rdBlocks)
(initialData ^∙ rdQuorumCerts)
(initialData ^∙ rdHighestTimeoutCertificate)
stateComputer
storage
maxPrunedBlocksInMem
abstract
-- TODO: convert new to EitherD
new-ed-abs : PersistentLivenessStorage → RecoveryData → StateComputer → Usize
→ EitherD ErrLog BlockStore
new-ed-abs storage initialData stateComputer maxPrunedBlocksInMem = fromEither $
new storage initialData stateComputer maxPrunedBlocksInMem
new-e-abs : PersistentLivenessStorage → RecoveryData → StateComputer → Usize
→ Either ErrLog BlockStore
new-e-abs = new
new-e-abs-≡ : new-e-abs ≡ new
new-e-abs-≡ = refl
build root _rootRootMetadata blocks quorumCerts highestTimeoutCert
stateComputer storage maxPrunedBlocksInMem = do
let (RootInfo∙new rootBlock rootQc rootLi) = root
{- LBFT-OBM-DIFF : OBM does not implement RootMetadata
assert_eq!(
root_qc.certified_block().version(),
root_metadata.version())
assert_eq!(
root_qc.certified_block().executed_state_id(),
root_metadata.accu_hash)
-}
executedRootBlock = ExecutedBlock∙new
rootBlock
(StateComputeResult∙new (stateComputer ^∙ scObmVersion) nothing)
tree ← BlockTree.new executedRootBlock rootQc rootLi maxPrunedBlocksInMem highestTimeoutCert
bs1 ← (foldM) (λ bs b → fst <$> executeAndInsertBlockE bs b)
(BlockStore∙new tree stateComputer storage)
blocks
(foldM) go bs1 quorumCerts
where
go : BlockStore → QuorumCert
→ Either ErrLog BlockStore
go bs qc = case insertSingleQuorumCertE bs qc of λ where
(Left e) → Left e
(Right (bs' , _info)) → Right bs'
------------------------------------------------------------------------------
commitM
: LedgerInfoWithSignatures
→ LBFT (Either ErrLog Unit)
commitM finalityProof = do
bs ← use lBlockStore
maybeSD (bs ^∙ bsRoot) (bail fakeErr) $ λ bsr → do
let blockIdToCommit = finalityProof ^∙ liwsLedgerInfo ∙ liConsensusBlockId
case getBlock blockIdToCommit bs of λ where
nothing →
bail (ErrCBlockNotFound blockIdToCommit)
(just blockToCommit) →
ifD‖ blockToCommit ^∙ ebRound ≤?ℕ bsr ^∙ ebRound ≔
bail fakeErr -- "commit block round lower than root"
‖ otherwise≔ (pathFromRootM blockIdToCommit >>= λ where
(Left e) → bail e
(Right r) → continue blockToCommit r)
where
continue : ExecutedBlock → List ExecutedBlock → LBFT (Either ErrLog Unit)
continue blockToCommit blocksToCommit = do
-- NOTE: Haskell tells the "StateComputer" to commit 'blocksToCommit'.
-- TODO-1: The StateComputer might indicate an epoch change.
-- NO NEED FOR PRUNING: pruneTreeM blockToCommit
--
-- THIS IS WHERE COMMIT IS COMPLETED.
-- To connect to the proof's correctness condition, it will be necessary to
-- send a CommitMsg, which will carry evidence of the CommitRule
-- needed to invoke correctness conditions like ConcCommitsDoNotConflict*.
-- The details of this connection yet have not been settled yet.
-- TODO-1: Once the details are determined, then make the connection.
ok unit
------------------------------------------------------------------------------
rebuildM : RootInfo → RootMetadata → List Block → List QuorumCert → LBFT (Either ErrLog Unit)
rebuildM root rootMetadata blocks quorumCerts = do
-- logEE lEC (here []) $ do
self0 ← use lBlockStore
case build
root rootMetadata blocks quorumCerts
(self0 ^∙ bsHighestTimeoutCert)
(self0 ^∙ bsStateComputer)
(self0 ^∙ bsStorage)
(self0 ^∙ bsInner ∙ btMaxPrunedBlocksInMem) of λ where
(Left e) → bail e
(Right (BlockStore∙new inner _ _)) → do
toRemove ← BlockTree.getAllBlockIdM
PersistentLivenessStorage.pruneTreeM toRemove ∙?∙ λ _ → do
lRoundManager ∙ rmBlockStore ∙ bsInner ∙= inner
self1 ← use lBlockStore
maybeS (self1 ^∙ bsRoot) (bail fakeErr {-bsRootErrL here-}) $ λ bsr → do
ifD self1 ^∙ bsHighestCommitCert ∙ qcCommitInfo ∙ biRound >? bsr ^∙ ebRound
then
(commitM (self1 ^∙ bsHighestCommitCert ∙ qcLedgerInfo) ∙^∙
withErrCtx (here' ("commitM failed" ∷ [])) ∙?∙ λ _ →
ok unit)
else ok unit
where
here' : List String.String → List String.String
here' t =
"BlockStore" ∷ "rebuildM" ∷ t
-- lsRI root : lsRMD rootMetadata : lsBs blocks : lsQCs quorumCerts : t
------------------------------------------------------------------------------
executeAndInsertBlockM : Block → LBFT (Either ErrLog ExecutedBlock)
executeAndInsertBlockM b = do
bs ← use lBlockStore
case⊎D executeAndInsertBlockE bs b of λ where
(Left e) → bail e
(Right (bs' , eb)) → do
lBlockStore ∙= bs'
ok eb
module executeAndInsertBlockE (bs0 : BlockStore) (block : Block) where
VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL
VariantFor EL = EL ErrLog (BlockStore × ExecutedBlock)
continue step₁ : VariantFor EitherD
continue = step₁
step₂ : ExecutedBlock → VariantFor EitherD
step₃ : ExecutedBlock → VariantFor EitherD
step₄ : ExecutedBlock → VariantFor EitherD
step₀ =
-- NOTE: if the hash is already in our blockstore, then HASH-COLLISION
-- because we have already confirmed the new block is for the expected round
-- and if there is already a block for that round then our expected round
-- should be higher.
maybeSD (getBlock (block ^∙ bId) bs0) continue (pure ∘ (bs0 ,_))
here' : List String.String → List String.String
here' t = "BlockStore" ∷ "executeAndInsertBlockE" {-∷ lsB block-} ∷ t
step₁ =
maybeSD (bs0 ^∙ bsRoot) (LeftD fakeErr) λ bsr →
let btRound = bsr ^∙ ebRound in
ifD btRound ≥?ℕ block ^∙ bRound
then LeftD fakeErr -- block with old round
else step₂ bsr
step₂ _ = do
eb ← case⊎D executeBlockE bs0 block of λ where
(Right res) → RightD res
-- OBM-LBFT-DIFF : This is never thrown in OBM.
-- It is thrown by StateComputer in Rust (but not in OBM).
(Left (ErrECCBlockNotFound parentBlockId)) → do
eitherSD (pathFromRoot parentBlockId bs0) LeftD λ blocksToReexecute →
-- OBM-LBFT-DIFF : OBM StateComputer does NOT have state.
-- If it ever does have state then the following 'forM' will
-- need to change to some sort of 'fold' because 'executeBlockE'
-- would change the state, so the state passed to 'executeBlockE'
-- would no longer be 'bs0'.
case⊎D (forM) blocksToReexecute (executeBlockE bs0 ∘ (_^∙ ebBlock)) of λ where
(Left e) → LeftD e
(Right _) → executeBlockE₀ bs0 block
(Left err) → LeftD err
step₃ eb
step₃ eb = do
bs1 ← withErrCtxD'
(here' [])
-- TODO-1 : use inspect qualified so Agda List singleton can be in scope.
(PersistentLivenessStorage.saveTreeE bs0 (eb ^∙ ebBlock ∷ []) [])
step₄ eb
step₄ eb = do
(bt' , eb') ← BlockTree.insertBlockE eb (bs0 ^∙ bsInner)
pure ((bs0 & bsInner ∙~ bt') , eb')
E : VariantFor Either
E = toEither step₀
D : VariantFor EitherD
D = fromEither E
executeAndInsertBlockE = executeAndInsertBlockE.E
module executeBlockE (bs : BlockStore) (block : Block) where
step₀ = do
case SCBS.compute (bs ^∙ bsStateComputer) block (block ^∙ bParentId) of λ where
(Left e) → Left fakeErr -- (here' e)
(Right stateComputeResult) →
pure (ExecutedBlock∙new block stateComputeResult)
where
here' : List String → List String
here' t = "BlockStore" ∷ "executeBlockE" {-∷ lsB block-} ∷ t
abstract
executeBlockE = executeBlockE.step₀
executeBlockE₀ bs block = fromEither $ executeBlockE bs block
executeBlockE≡ : ∀ {bs block r} → executeBlockE bs block ≡ r → executeBlockE₀ bs block ≡ fromEither r
executeBlockE≡ refl = refl
------------------------------------------------------------------------------
insertSingleQuorumCertM
: QuorumCert
→ LBFT (Either ErrLog Unit)
insertSingleQuorumCertM qc = do
bs ← use lBlockStore
case insertSingleQuorumCertE bs qc of λ where
(Left e) → bail e
(Right (bs' , info)) → do
forM_ info logInfo
lBlockStore ∙= bs'
ok unit
insertSingleQuorumCertE bs qc =
maybeS (getBlock (qc ^∙ qcCertifiedBlock ∙ biId) bs)
(Left (ErrCBlockNotFound
-- (here ["insert QC without having the block in store first"])
(qc ^∙ qcCertifiedBlock ∙ biId)))
(λ executedBlock →
if ExecutedBlock.blockInfo executedBlock /= qc ^∙ qcCertifiedBlock
then Left fakeErr
-- (ErrL (here [ "QC for block has different BlockInfo than EB"
-- , "QC certified BI", show (qc ^∙ qcCertifiedBlock)
-- , "EB BI", show (ExecutedBlock.blockInfo executedBlock)
-- , "EB", show executedBlock ]))
else (do
bs' ← withErrCtx' (here' [])
(PersistentLivenessStorage.saveTreeE bs [] (qc ∷ []))
(bt , output) ← BlockTree.insertQuorumCertE qc (bs' ^∙ bsInner)
pure ((bs' & bsInner ∙~ bt) , output)))
where
here' : List String.String → List String.String
here' t = "BlockStore" ∷ "insertSingleQuorumCertE" ∷ t
------------------------------------------------------------------------------
insertTimeoutCertificateM : TimeoutCertificate → LBFT (Either ErrLog Unit)
insertTimeoutCertificateM tc = do
curTcRound ← maybe {-(Round-} 0 {-)-} (_^∙ tcRound) <$> use (lBlockStore ∙ bsHighestTimeoutCert)
ifD tc ^∙ tcRound ≤?ℕ curTcRound
then ok unit
else
PersistentLivenessStorage.saveHighestTimeoutCertM tc ∙^∙ withErrCtx ("" ∷ []) ∙?∙ λ _ → do
BlockTree.replaceTimeoutCertM tc
ok unit
------------------------------------------------------------------------------
blockExists : HashValue → BlockStore → Bool
blockExists hv bs = Map.kvm-member hv (bs ^∙ bsInner ∙ btIdToBlock)
getBlock hv bs = btGetBlock hv (bs ^∙ bsInner)
getQuorumCertForBlock : HashValue → BlockStore → Maybe QuorumCert
getQuorumCertForBlock hv bs = Map.lookup hv (bs ^∙ bsInner ∙ btIdToQuorumCert)
pathFromRootM hv = pathFromRoot hv <$> use lBlockStore
pathFromRoot hv bs = BlockTree.pathFromRoot hv (bs ^∙ bsInner)
------------------------------------------------------------------------------
syncInfoM : LBFT SyncInfo
syncInfoM =
SyncInfo∙new <$> use (lBlockStore ∙ bsHighestQuorumCert)
<*> use (lBlockStore ∙ bsHighestCommitCert)
<*> use (lBlockStore ∙ bsHighestTimeoutCert)
abstract
syncInfoM-abs = syncInfoM
syncInfoM-abs-≡ : syncInfoM-abs ≡ syncInfoM
syncInfoM-abs-≡ = refl
| {
"alphanum_fraction": 0.620990186,
"avg_line_length": 39.5768115942,
"ext": "agda",
"hexsha": "ba35db4bb11d9a8d6a8644caa0bdeffa7902df59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockStore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockStore.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/BlockStore.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3641,
"size": 13654
} |
module Data.Num.Standard where
open import Data.Nat using (ℕ; suc; zero; _≤?_)
open import Data.Fin using (Fin; fromℕ; #_)
open import Level using () renaming (suc to lsuc)
-- renaming (zero to Fzero; suc to Fsuc; toℕ to F→N; fromℕ≤ to N→F)
open import Relation.Nullary.Decidable
infixr 2 [_]_
-- invariant: base ≥ 1
data Num : ℕ → Set where
∙ : ∀ {b} → Num (suc b)
[_]_ : ∀ {b} → (n : ℕ) → {in-bound : True (n ≤? b)} → Num (suc b) → Num (suc b)
null : Num 2
null = [ 0 ] ∙
eins : Num 2
eins = [ 1 ] ∙
zwei : Num 3
zwei = [ 1 ] [ 2 ] ∙
carry : ∀ {b} → Num b → Num b
carry {zero} ()
carry {suc b} ∙ = [ {! !} ] ∙
carry {suc b} ([ n ] xs) = {! !}
_+_ : ∀ {b} → Num b → Num b → Num b
∙ + ys = ys
xs + ∙ = xs
([ x ] xs) + ([ y ] ys) = {! !}
| {
"alphanum_fraction": 0.5183246073,
"avg_line_length": 21.8285714286,
"ext": "agda",
"hexsha": "78d5883c91ae4f16ceff266b06da8354491829ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Num/Sandbox/Standard.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Num/Sandbox/Standard.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Num/Sandbox/Standard.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 325,
"size": 764
} |
open import Prelude
open import Nat
open import core
open import contexts
open import lemmas-disjointness
module lemmas-freshness where
-- if x is fresh in an hexp, it's fresh in its expansion
mutual
fresh-elab-synth1 : ∀{x e τ d Γ Δ} →
x # Γ →
freshh x e →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
fresh x d
fresh-elab-synth1 _ FRHConst ESConst = FConst
fresh-elab-synth1 apt (FRHAsc frsh) (ESAsc x₁) = FCast (fresh-elab-ana1 apt frsh x₁)
fresh-elab-synth1 _ (FRHVar x₂) (ESVar x₃) = FVar x₂
fresh-elab-synth1 {Γ = Γ} apt (FRHLam2 x₂ frsh) (ESLam x₃ exp) = FLam x₂ (fresh-elab-synth1 (apart-extend1 Γ x₂ apt) frsh exp)
fresh-elab-synth1 apt FRHEHole ESEHole = FHole (EFId apt)
fresh-elab-synth1 apt (FRHNEHole frsh) (ESNEHole x₁ exp) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh exp)
fresh-elab-synth1 apt (FRHAp frsh frsh₁) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) =
FAp (FCast (fresh-elab-ana1 apt frsh x₅))
(FCast (fresh-elab-ana1 apt frsh₁ x₆))
fresh-elab-ana1 : ∀{ x e τ d τ' Γ Δ} →
x # Γ →
freshh x e →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
fresh x d
fresh-elab-ana1 {Γ = Γ} apt (FRHLam1 x₁ frsh) (EALam x₂ x₃ exp) = FLam x₁ (fresh-elab-ana1 (apart-extend1 Γ x₁ apt) frsh exp )
fresh-elab-ana1 apt frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth1 apt frsh x₃
fresh-elab-ana1 apt FRHEHole EAEHole = FHole (EFId apt)
fresh-elab-ana1 apt (FRHNEHole frsh) (EANEHole x₁ x₂) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh x₂)
-- if x is fresh in the expansion of an hexp, it's fresh in that hexp
mutual
fresh-elab-synth2 : ∀{x e τ d Γ Δ} →
fresh x d →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
freshh x e
fresh-elab-synth2 FConst ESConst = FRHConst
fresh-elab-synth2 (FVar x₂) (ESVar x₃) = FRHVar x₂
fresh-elab-synth2 (FLam x₂ frsh) (ESLam x₃ exp) = FRHLam2 x₂ (fresh-elab-synth2 frsh exp)
fresh-elab-synth2 (FHole x₁) ESEHole = FRHEHole
fresh-elab-synth2 (FNEHole x₁ frsh) (ESNEHole x₂ exp) = FRHNEHole (fresh-elab-synth2 frsh exp)
fresh-elab-synth2 (FAp (FCast frsh) (FCast frsh₁)) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) =
FRHAp (fresh-elab-ana2 frsh x₅)
(fresh-elab-ana2 frsh₁ x₆)
fresh-elab-synth2 (FCast frsh) (ESAsc x₁) = FRHAsc (fresh-elab-ana2 frsh x₁)
fresh-elab-ana2 : ∀{ x e τ d τ' Γ Δ} →
fresh x d →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
freshh x e
fresh-elab-ana2 (FLam x₁ frsh) (EALam x₂ x₃ exp) = FRHLam1 x₁ (fresh-elab-ana2 frsh exp)
fresh-elab-ana2 frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth2 frsh x₃
fresh-elab-ana2 (FHole x₁) EAEHole = FRHEHole
fresh-elab-ana2 (FNEHole x₁ frsh) (EANEHole x₂ x₃) = FRHNEHole (fresh-elab-synth2 frsh x₃)
| {
"alphanum_fraction": 0.5713815789,
"avg_line_length": 51.5254237288,
"ext": "agda",
"hexsha": "a237c7f460be642fbc7a598b43d643dc0376a57f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "lemmas-freshness.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "lemmas-freshness.agda",
"max_line_length": 131,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "lemmas-freshness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1165,
"size": 3040
} |
infix -3.14 _+_
postulate
_+_ : Set → Set → Set
| {
"alphanum_fraction": 0.5882352941,
"avg_line_length": 10.2,
"ext": "agda",
"hexsha": "063e88b955cf19b29101d024475a8e7bc2a7dd70",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3991FractionalPrecedence.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3991FractionalPrecedence.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3991FractionalPrecedence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 51
} |
-- Andreas, 2017-07-25, issue #2649, reported by gallais
-- Serialization killed range needed for error message.
-- {-# OPTIONS -v scope.clash:60 #-}
module Issue2649 where
open import Issue2649-1
open import Issue2649-2
id : (A : Set) → A → A
id A x = M.foo
where
module M = MyModule A x
-- Expected:
-- Duplicate definition of module M. Previous definition of module M
-- at .../Issue2649-2.agda:5,13-14
| {
"alphanum_fraction": 0.6939759036,
"avg_line_length": 21.8421052632,
"ext": "agda",
"hexsha": "f7e0b4e59f64abfdee112e03f5f0b19bdf26140a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/customised/Issue2649.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/customised/Issue2649.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/customised/Issue2649.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 415
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Unsigned divisibility
------------------------------------------------------------------------
-- For signed divisibility see `Data.Integer.Divisibility.Signed`
{-# OPTIONS --without-K --safe #-}
module Data.Integer.Divisibility where
open import Function
open import Data.Integer
open import Data.Integer.Properties
import Data.Nat as ℕ
import Data.Nat.Properties as ℕᵖ
import Data.Nat.Divisibility as ℕᵈ
import Data.Nat.Coprimality as ℕᶜ
open import Level
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Divisibility
infix 4 _∣_
_∣_ : Rel ℤ 0ℓ
_∣_ = ℕᵈ._∣_ on ∣_∣
open ℕᵈ public using (divides)
------------------------------------------------------------------------
-- Properties of divisibility
*-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_
*-monoʳ-∣ k {i} {j} i∣j = begin
∣ k * i ∣ ≡⟨ abs-*-commute k i ⟩
∣ k ∣ ℕ.* ∣ i ∣ ∣⟨ ℕᵈ.*-cong ∣ k ∣ i∣j ⟩
∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ sym (abs-*-commute k j) ⟩
∣ k * j ∣ ∎
where open ℕᵈ.∣-Reasoning
*-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_
*-monoˡ-∣ k {i} {j}
rewrite *-comm i k
| *-comm j k
= *-monoʳ-∣ k
*-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j
*-cancelˡ-∣ k {i} {j} k≢0 k*i∣k*j = ℕᵈ./-cong (ℕ.pred ∣ k ∣) $ begin
let ∣k∣-is-suc = ℕᵖ.m≢0⇒suc[pred[m]]≡m (k≢0 ∘ ∣n∣≡0⇒n≡0) in
ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ i ∣ ≡⟨ cong (ℕ._* ∣ i ∣) (∣k∣-is-suc) ⟩
∣ k ∣ ℕ.* ∣ i ∣ ≡⟨ sym (abs-*-commute k i) ⟩
∣ k * i ∣ ∣⟨ k*i∣k*j ⟩
∣ k * j ∣ ≡⟨ abs-*-commute k j ⟩
∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ cong (ℕ._* ∣ j ∣) (sym ∣k∣-is-suc) ⟩
ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ j ∣ ∎
where open ℕᵈ.∣-Reasoning
*-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j
*-cancelʳ-∣ k {i} {j} ≢0 = *-cancelˡ-∣ k ≢0 ∘
subst₂ _∣_ (*-comm i k) (*-comm j k)
| {
"alphanum_fraction": 0.4453280318,
"avg_line_length": 31.4375,
"ext": "agda",
"hexsha": "fb67676470b975d43a67986969d3261961c4361a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 858,
"size": 2012
} |
-- Binary products
{-# OPTIONS --safe #-}
module Cubical.Categories.Limits.BinProduct where
open import Cubical.Categories.Category.Base
open import Cubical.Data.Sigma.Base
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.HITs.PropositionalTruncation.Base
private
variable
ℓ ℓ' : Level
module _ (C : Category ℓ ℓ') where
open Category C
module _ {x y x×y : ob}
(π₁ : Hom[ x×y , x ])
(π₂ : Hom[ x×y , y ]) where
isBinProduct : Type (ℓ-max ℓ ℓ')
isBinProduct = ∀ {z : ob} (f₁ : Hom[ z , x ]) (f₂ : Hom[ z , y ]) →
∃![ f ∈ Hom[ z , x×y ] ] (f ⋆ π₁ ≡ f₁) × (f ⋆ π₂ ≡ f₂)
isPropIsBinProduct : isProp (isBinProduct)
isPropIsBinProduct = isPropImplicitΠ (λ _ → isPropΠ2 (λ _ _ → isPropIsContr))
record BinProduct (x y : ob) : Type (ℓ-max ℓ ℓ') where
field
binProdOb : ob
binProdPr₁ : Hom[ binProdOb , x ]
binProdPr₂ : Hom[ binProdOb , y ]
univProp : isBinProduct binProdPr₁ binProdPr₂
BinProducts : Type (ℓ-max ℓ ℓ')
BinProducts = (x y : ob) → BinProduct x y
hasBinProducts : Type (ℓ-max ℓ ℓ')
hasBinProducts = ∥ BinProducts ∥₁
| {
"alphanum_fraction": 0.6332767402,
"avg_line_length": 26.7727272727,
"ext": "agda",
"hexsha": "b76f8b5d89b07aeefabfa65f3e1eb854e0a25787",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/Limits/BinProduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/Limits/BinProduct.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/Limits/BinProduct.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 413,
"size": 1178
} |
module _ where
open import Agda.Builtin.Cubical.Glue hiding (primGlue)
primitive
primGlue : _
| {
"alphanum_fraction": 0.7755102041,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "a1f9004cfcbb9c8e569aadf52935f6f0fc870dda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "caryoscelus/agda",
"max_forks_repo_path": "test/Fail/Issue2788b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "caryoscelus/agda",
"max_issues_repo_path": "test/Fail/Issue2788b.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "caryoscelus/agda",
"max_stars_repo_path": "test/Fail/Issue2788b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 30,
"size": 98
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Printing Strings During Evaluation
------------------------------------------------------------------------
{-# OPTIONS --without-K --rewriting #-}
-- see README.Debug.Trace for a use-case
module Debug.Trace where
open import Agda.Builtin.String
open import Agda.Builtin.Equality
-- Postulating the `trace` function and explaining how to compile it
postulate
trace : ∀ {a} {A : Set a} → String → A → A
{-# FOREIGN GHC import qualified Debug.Trace as Debug #-}
{-# FOREIGN GHC import qualified Data.Text as Text #-}
{-# COMPILE GHC trace = const (const (Debug.trace . Text.unpack)) #-}
-- Because expressions involving postulates get stuck during evaluation,
-- we also postulate an equality characterising `trace`'s behaviour. By
-- declaring it as a rewrite rule we internalise that evaluation rule.
postulate
trace-eq : ∀ {a} {A : Set a} (a : A) str → trace str a ≡ a
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE trace-eq #-}
-- Specialised version of `trace` returning the traced message.
traceId : String → String
traceId str = trace str str
| {
"alphanum_fraction": 0.6197424893,
"avg_line_length": 29.8717948718,
"ext": "agda",
"hexsha": "d1c18552d98ed4f91d8bcb14983165a76b6ca8f7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Debug/Trace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Debug/Trace.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Debug/Trace.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 254,
"size": 1165
} |
------------------------------------------------------------------------------
-- Common stuff used by the gcd example
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Partial.Definitions where
open import FOTC.Base
open import FOTC.Data.Nat.Divisibility.NotBy0
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Common divisor.
CD : D → D → D → Set
CD m n cd = cd ∣ m ∧ cd ∣ n
{-# ATP definition CD #-}
-- Divisible for any common divisor.
Divisible : D → D → D → Set
Divisible m n gcd = ∀ cd → N cd → CD m n cd → cd ∣ gcd
{-# ATP definition Divisible #-}
-- Greatest that any common divisor.
GACD : D → D → D → Set
GACD m n gcd = ∀ cd → N cd → CD m n cd → cd ≤ gcd
{-# ATP definition GACD #-}
-- Greatest common divisor specification
gcdSpec : D → D → D → Set
gcdSpec m n gcd = CD m n gcd ∧ GACD m n gcd
{-# ATP definition gcdSpec #-}
x≢0≢y : D → D → Set
x≢0≢y m n = ¬ (m ≡ zero ∧ n ≡ zero)
{-# ATP definition x≢0≢y #-}
| {
"alphanum_fraction": 0.4972155927,
"avg_line_length": 30.6585365854,
"ext": "agda",
"hexsha": "bf777eabc4beb1dd02627605bc13601b4bfecf2b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/Definitions.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/Definitions.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 322,
"size": 1257
} |
-- Andreas, 2013-10-21 reported by Christian Sattler
{-# OPTIONS --allow-unsolved-metas #-}
module Issue922 where
import Common.Level
f : Set → Set → Set
f x _ = x -- Note: second argument is unused
module _ (_ : f ? ?) where
g = f
-- Here an instance search for the unused argument (2nd ?)
-- is triggered.
-- Problem WAS: instance search was started in wrong context.
| {
"alphanum_fraction": 0.6806282723,
"avg_line_length": 23.875,
"ext": "agda",
"hexsha": "baf05ada96b85c0870edb941251d9b83f66c6016",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue922.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue922.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue922.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 382
} |
-- Andreas, 2018-10-27, issue #3323, reported by Guillaume Brunerie
--
-- Mismatches between original and repeated parameter list
-- should not lead to internal errors.
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
data T .(b : Bool) : Set
data T b where -- Omission of relevance info allowed
c : Bool → T b
test : ∀{b b'} → T b ≡ T b'
test = refl
-- Should succeed.
record R (@0 b : Bool) : Set
record R b where
field foo : Bool
-- Should succeed.
| {
"alphanum_fraction": 0.6882845188,
"avg_line_length": 20.7826086957,
"ext": "agda",
"hexsha": "78423fec9683b9dea0e78d1dea92cac90b46c370",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3323.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3323.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3323.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 478
} |
{-# OPTIONS --rewriting #-}
{- Lower can be a record if using type-in-type or allowing large eliminations:
{-# OPTIONS --type-in-type #-}
record Lower (A : Set₁) : Set where
constructor lower
field raise : A
open Lower
-}
postulate
_≡_ : ∀ {A : Set₁} → A → A → Set
Lower : (A : Set₁) → Set
lower : ∀ {A} → A → Lower A
raise : ∀ {A} → Lower A → A
beta : ∀ {A} {a : A} → raise (lower a) ≡ a
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE beta #-}
data ⊥ : Set where
℘ : ∀ {ℓ} → Set ℓ → Set _
℘ {ℓ} S = S → Set
U : Set
U = Lower (∀ (X : Set) → (℘ (℘ X) → X) → ℘ (℘ X))
τ : ℘ (℘ U) → U
τ t = lower (λ X f p → t (λ x → p (f (raise x X f))))
σ : U → ℘ (℘ U)
σ s = raise s U τ
Δ : ℘ U
Δ y = Lower (∀ p → σ y p → p (τ (σ y))) → ⊥
Ω : U
Ω = τ (λ p → (∀ x → σ x p → p x))
R : ∀ p → (∀ x → σ x p → p x) → p Ω
R _ 𝟙 = 𝟙 Ω (λ x → 𝟙 (τ (σ x)))
M : ∀ x → σ x Δ → Δ x
M _ 𝟚 𝟛 =
let 𝟛 = raise 𝟛
in 𝟛 Δ 𝟚 (lower (λ p → 𝟛 (λ y → p (τ (σ y)))))
L : (∀ p → (∀ x → σ x p → p x) → p Ω) → ⊥
L 𝟘 = 𝟘 Δ M (lower (λ p → 𝟘 (λ y → p (τ (σ y)))))
false : ⊥
false = L R | {
"alphanum_fraction": 0.4464285714,
"avg_line_length": 20.0754716981,
"ext": "agda",
"hexsha": "8a6efa0404648455d98e938d34d6bf89a8277e72",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ionathanch/ionathanch.github.io",
"max_forks_repo_path": "_assets/agda/GirardLower.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ionathanch/ionathanch.github.io",
"max_issues_repo_path": "_assets/agda/GirardLower.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ionathanch/ionathanch.github.io",
"max_stars_repo_path": "_assets/agda/GirardLower.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 519,
"size": 1064
} |
module bstd.bash where
| {
"alphanum_fraction": 0.8260869565,
"avg_line_length": 11.5,
"ext": "agda",
"hexsha": "36f51438b9fb0465105b3715bf0aadb841a967fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bstd",
"max_forks_repo_path": "src/bstd/bash.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bstd",
"max_issues_repo_path": "src/bstd/bash.agda",
"max_line_length": 22,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bstd",
"max_stars_repo_path": "src/bstd/bash.agda",
"max_stars_repo_stars_event_max_datetime": "2019-06-29T10:40:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-29T10:40:15.000Z",
"num_tokens": 7,
"size": 23
} |
module Cats.Category.Constructions.Product where
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_ ; refl)
open import Data.Bool using (Bool ; true ; false ; not; if_then_else_)
open import Relation.Binary.Core using (IsEquivalence)
open import Level
open import Cats.Category.Base
open import Cats.Category.Constructions.Terminal as Terminal using (HasTerminal)
open import Cats.Functor using (Functor)
open import Cats.Util.Conv
open import Cats.Util.Logic.Constructive
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Constructions.Unique as Unique
Bool-elim : ∀ {a} {A : Bool → Set a} → A true → A false → (i : Bool) → A i
Bool-elim x y true = x
Bool-elim x y false = y
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
open Iso.Build Cat
open Unique.Build Cat
open Terminal.Build Cat
IsProduct : ∀ {li} {I : Set li} (O : I → Obj) P → (∀ i → P ⇒ O i)
→ Set (lo ⊔ la ⊔ l≈ ⊔ li)
IsProduct O P proj
= ∀ {X} (x : ∀ i → X ⇒ O i) → ∃![ u ] (∀ i → x i ≈ proj i ∘ u)
-- TODO The types of the equalities in IsBinaryProducts are backwards, since
-- we want the RHS to be simpler than the LHS. So, projl ∘ u ≈ xl instead
-- of xl ≈ projl ∘ u.
IsBinaryProduct : ∀ {A B} P → (P ⇒ A) → (P ⇒ B) → Set (lo ⊔ la ⊔ l≈)
IsBinaryProduct {A} {B} P projl projr
= ∀ {X} (xl : X ⇒ A) (xr : X ⇒ B)
→ ∃![ u ] (xl ≈ projl ∘ u ∧ xr ≈ projr ∘ u)
-- BinProduct→id-unique : ∀ {A B P} → {projl : P ⇒ A} → {projr : P ⇒ B}
-- → (y : IsBinaryProduct P projl projr)
-- → id ≈ (Unique.Build.∃!′.arr y)
-- BinProduct→id-unique = ?
-- ≈.trans (≈.sym (unique ((≈.sym id-r) , (≈.sym id-r)) )) {!arr!}
IsBinaryProduct→IsProduct : ∀ {A B P} {pl : P ⇒ A} {pr : P ⇒ B}
→ IsBinaryProduct P pl pr
→ IsProduct (Bool-elim A B) P (Bool-elim pl pr)
IsBinaryProduct→IsProduct isBinProd x = record
{ arr = f ⃗
; prop = Bool-elim (∧-eliml (∃!′.prop f)) (∧-elimr (∃!′.prop f))
; unique = λ eq → ∃!′.unique f (eq true , eq false)
}
where
f = isBinProd (x true) (x false)
record Product {li} {I : Set li} (O : I → Obj) : Set (lo ⊔ la ⊔ l≈ ⊔ li) where
field
prod : Obj
proj : ∀ i → prod ⇒ O i
isProduct : IsProduct O prod proj
open Product using (proj ; isProduct ; prod)
instance
HasObj-Product : ∀ {li} {I : Set li} {O : I → Obj}
→ HasObj (Product O) lo la l≈
HasObj-Product = record { Cat = Cat ; _ᴼ = Product.prod }
BinaryProduct : Obj → Obj → Set (lo ⊔ la ⊔ l≈)
BinaryProduct A B = Product (Bool-elim A B)
mkBinaryProduct : ∀ {A B P} (pl : P ⇒ A) (pr : P ⇒ B)
→ IsBinaryProduct P pl pr
→ BinaryProduct A B
mkBinaryProduct {P = P} pl pr isBinProd = record
{ isProduct = IsBinaryProduct→IsProduct isBinProd }
nullaryProduct-Terminal : (P : Product {I = ⊥} (λ())) → IsTerminal (P ᴼ)
nullaryProduct-Terminal P X with isProduct P {X = X} λ()
... | ∃!-intro arr _ unique = ∃!-intro arr _ (λ _ → unique λ())
module _ {li} {I : Set li} {O : I → Obj} (P : Product O) where
factorizer : ∀ {X} → (∀ i → X ⇒ O i) → X ⇒ P ᴼ
factorizer proj = isProduct P proj ⃗
factorizer-proj : ∀ {X} {x : ∀ i → X ⇒ O i} {i}
→ proj P i ∘ factorizer x ≈ x i
factorizer-proj {x = x} {i} = ≈.sym (∃!′.prop (isProduct P x) i)
factorizer-resp : ∀ {X} {x y : ∀ i → X ⇒ O i}
→ (∀ i → x i ≈ y i)
→ factorizer x ≈ factorizer y
factorizer-resp {x = x} {y} eq
= ∃!′.unique (isProduct P x)
(λ i → ≈.trans (eq i) (≈.sym factorizer-proj))
factorizer-∘ : ∀ {X} {x : ∀ i → X ⇒ O i} {Z} {f : Z ⇒ X}
→ factorizer x ∘ f ≈ factorizer (λ i → x i ∘ f)
factorizer-∘ {x = x} {f = f} = ≈.sym (
∃!′.unique (isProduct P (λ i → x i ∘ f))
(λ i → ≈.sym (≈.trans unassoc (∘-resp-l factorizer-proj)))
)
module _ {li} {I : Set li}
{O : I → Obj} (P : Product O)
{O′ : I → Obj} (P′ : Product O′)
where
times : (∀ i → O i ⇒ O′ i) → P ᴼ ⇒ P′ ᴼ
times x = factorizer P′ (λ i → x i ∘ proj P i)
times-proj : ∀ {x : ∀ i → O i ⇒ O′ i} {i}
→ proj P′ i ∘ times x ≈ x i ∘ proj P i
times-proj = factorizer-proj P′
times-resp : {x y : ∀ i → O i ⇒ O′ i}
→ (∀ i → x i ≈ y i)
→ times x ≈ times y
times-resp {x} {y} eq = factorizer-resp P′ (λ i → ∘-resp-l (eq i))
times-∘ : ∀ {li} {I : Set li}
→ {O O′ O″ : I → Obj}
→ (P : Product O) (P′ : Product O′) (P″ : Product O″)
→ {x : ∀ i → O i ⇒ O′ i} {y : ∀ i → O′ i ⇒ O″ i}
→ times P′ P″ y ∘ times P P′ x ≈ times P P″ (λ i → y i ∘ x i)
times-∘ P P′ P″ {x} {y} =
begin
times P′ P″ y ∘ times P P′ x
≈⟨ factorizer-∘ P″ ⟩
factorizer P″ (λ i → (y i ∘ proj P′ i) ∘ times P P′ x)
≈⟨ factorizer-resp P″ (λ i → assoc) ⟩
factorizer P″ (λ i → y i ∘ proj P′ i ∘ times P P′ x)
≈⟨ factorizer-resp P″ (λ i → ∘-resp-r (times-proj P P′)) ⟩
factorizer P″ (λ i → y i ∘ x i ∘ proj P i)
≈⟨ factorizer-resp P″ (λ i → unassoc) ⟩
times P P″ (λ i → y i ∘ x i)
∎
tim-fac : ∀ {li} {X} {I : Set li}
→ {O O′ : I → Obj}
→ (P : Product O) (P′ : Product O′)
→ {x : ∀ i → X ⇒ O i} {y : ∀ i → O i ⇒ O′ i}
→ times P P′ y ∘ factorizer P x ≈ factorizer P′ (λ i → y i ∘ x i)
tim-fac P P′ {x} {y} =
begin
times P P′ y ∘ factorizer P x
≈⟨ factorizer-∘ P′ ⟩
factorizer P′ (λ i → (y i ∘ proj P i) ∘ factorizer P x)
≈⟨ factorizer-resp P′ (λ i → assoc) ⟩
factorizer P′ (λ i → y i ∘ proj P i ∘ factorizer P x)
≈⟨ factorizer-resp P′ (λ i → (∘-resp-r (factorizer-proj P))) ⟩
factorizer P′ (λ i → y i ∘ x i)
∎
proj-cancel : ∀ {li} {I : Set li} {O : I → Obj} {P proj}
→ IsProduct O P proj
→ ∀ {X} {f g : X ⇒ P}
→ (∀ i → proj i ∘ f ≈ proj i ∘ g)
→ f ≈ g
proj-cancel {proj = proj} prod {f = f} {g} eq with prod (λ i → proj i ∘ g)
... | ∃!-intro u _ u-uniq
= begin
f
≈⟨ ≈.sym (u-uniq (λ i → ≈.sym (eq i))) ⟩
u
≈⟨ u-uniq (λ i → ≈.refl) ⟩
g
∎
record HasProducts {lo la l≈} li (C : Category lo la l≈)
: Set (suc li ⊔ lo ⊔ la ⊔ l≈ )
where
private open module Bld = Build C using (Product)
open Category C
field
Π′ : {I : Set li} (O : I → Obj) → Product O
module _ {I : Set li} where
Π : ∀ (O : I → Obj) → Obj
Π O = Π′ O ᴼ
syntax Π (λ i → O) = Π[ i ] O
proj : ∀ {O : I → Obj} i → Π O ⇒ O i
proj {O} = Bld.Product.proj (Π′ O)
factorizer : ∀ {O : I → Obj} {X} → (∀ i → X ⇒ O i) → X ⇒ Π O
factorizer {O} = Bld.factorizer (Π′ O)
times : ∀ {O O′ : I → Obj} → (∀ i → O i ⇒ O′ i) → Π O ⇒ Π O′
times {O} {O′} = Bld.times (Π′ O) (Π′ O′)
factorizer-proj : ∀ {O : I → Obj} {X} {x : ∀ i → X ⇒ O i} {i}
→ proj i ∘ factorizer x ≈ x i
factorizer-proj {O} = Bld.factorizer-proj (Π′ O)
factorizer-resp : ∀ {O : I → Obj} {X} {x y : ∀ i → X ⇒ O i}
→ (∀ i → x i ≈ y i)
→ factorizer x ≈ factorizer y
factorizer-resp {O} = Bld.factorizer-resp (Π′ O)
factorizer-∘ : ∀ {O : I → Obj} {X} {x : ∀ i → X ⇒ O i} {Z} {f : Z ⇒ X}
→ factorizer x ∘ f ≈ factorizer (λ i → x i ∘ f)
factorizer-∘ {O} = Bld.factorizer-∘ (Π′ O)
times-proj : ∀ {O O′ : I → Obj} {x : ∀ i → O i ⇒ O′ i} {i}
→ proj i ∘ times x ≈ x i ∘ proj i
times-proj {O} {O′} = Bld.times-proj (Π′ O) (Π′ O′)
times-resp : ∀ {O O′ : I → Obj} {x y : ∀ i → O i ⇒ O′ i}
→ (∀ i → x i ≈ y i)
→ times x ≈ times y
times-resp {O} {O′} = Bld.times-resp (Π′ O) (Π′ O′)
times-∘ : ∀ {O O′ O″ : I → Obj} {x : ∀ i → O i ⇒ O′ i} {y : ∀ i → O′ i ⇒ O″ i}
→ times y ∘ times x ≈ times (λ i → y i ∘ x i)
times-∘ {O} {O′} {O″} = Bld.times-∘ (Π′ O) (Π′ O′) (Π′ O″)
HasProducts→HasTerminal : ∀ {lo la l≈} {C : Category lo la l≈}
→ HasProducts zero C
→ HasTerminal C
HasProducts→HasTerminal {C = C} record { Π′ = Π }
= let P = Π {I = ⊥} λ() in
record
{ One = P ᴼ
; isTerminal = Build.nullaryProduct-Terminal C P
}
record HasBinaryProducts {lo la l≈} (C : Category lo la l≈)
: Set (lo ⊔ la ⊔ l≈)
where
private open module Bld = Build C using (BinaryProduct ; Product)
open Category C
open ≈-Reasoning
infixr 2 _×_ _×′_ ⟨_×_⟩ ⟨_,_⟩
field
_×′_ : ∀ A B → BinaryProduct A B
_×_ : Obj → Obj → Obj
A × B = (A ×′ B) ᴼ
projl : ∀ {A B} → A × B ⇒ A
projl {A} {B} = Product.proj (A ×′ B) true
projr : ∀ {A B} → A × B ⇒ B
projr {A} {B} = Product.proj (A ×′ B) false
⟨_,_⟩ : ∀ {A B Z} → Z ⇒ A → Z ⇒ B → Z ⇒ A × B
⟨_,_⟩ {A} {B} f g
= Bld.factorizer (A ×′ B) (Bool-elim f g)
⟨_×_⟩ : ∀ {A B A′ B′} → A ⇒ A′ → B ⇒ B′ → A × B ⇒ A′ × B′
⟨_×_⟩ {A} {B} {A′} {B′} f g
= Bld.times (A ×′ B) (A′ ×′ B′) (Bool-elim f g)
first : ∀ {A A′ B} → A ⇒ A′ → A × B ⇒ A′ × B
first f = ⟨ f × id ⟩
second : ∀ {A B B′} → B ⇒ B′ → A × B ⇒ A × B′
second f = ⟨ id × f ⟩
swap : ∀ {A B} → A × B ⇒ B × A
swap = ⟨ projr , projl ⟩
⟨,⟩-resp : ∀ {A B Z} {f f′ : Z ⇒ A} {g g′ : Z ⇒ B}
→ f ≈ f′
→ g ≈ g′
→ ⟨ f , g ⟩ ≈ ⟨ f′ , g′ ⟩
⟨,⟩-resp {A} {B} f≈f′ g≈g′
= Bld.factorizer-resp (A ×′ B) (Bool-elim f≈f′ g≈g′)
⟨,⟩-projl : ∀ {A B Z} {f : Z ⇒ A} {g : Z ⇒ B} → projl ∘ ⟨ f , g ⟩ ≈ f
⟨,⟩-projl {A} {B} = Bld.factorizer-proj (A ×′ B)
⟨,⟩-projr : ∀ {A B Z} {f : Z ⇒ A} {g : Z ⇒ B} → projr ∘ ⟨ f , g ⟩ ≈ g
⟨,⟩-projr {A} {B} = Bld.factorizer-proj (A ×′ B)
data Singleton {a} {A : Set a} (x : A) : Set a where
_with≡_ : (y : A) → x ≡ y → Singleton x
inspect : ∀ {a} {A : Set a} (x : A) → Singleton x
inspect x = x with≡ refl
⟨projr,projl⟩-id : {A B : Obj} → ⟨ projl , projr ⟩ ≈ id {A × B}
⟨projr,projl⟩-id {A} {B} with inspect (A ×′ B)
... | record { prod = .(Product.prod (A ×′ B)) ; proj = proj ; isProduct = isProduct } with≡ refl with (isProduct proj)
... | Unique.Build.∃!-intro arr prop unique = ≈.trans (≈.sym (unique (Bool-elim (≈.sym ⟨,⟩-projl) (≈.sym ⟨,⟩-projr))) ) (unique λ i → ≈.sym id-r)
--... | p (record { prod = prod' ; proj = proj ; isProduct = isProduct }) with (isProduct proj)
-- ... | Unique.Build.∃!-intro arr prop unique = ≈.trans (≈.sym (unique (Bool-elim {!⟨,⟩-projl {A} {B} {f = projl} {g = projr}!} {!!})) ) (unique λ i → ≈.sym id-r)
⟨,⟩-∘ : ∀ {A B Y Z} {f : Y ⇒ Z} {g : Z ⇒ A} {h : Z ⇒ B}
→ ⟨ g , h ⟩ ∘ f ≈ ⟨ g ∘ f , h ∘ f ⟩
⟨,⟩-∘ {A} {B} {Y} {Z} {f} {g} {h}
= begin
⟨ g , h ⟩ ∘ f
≈⟨ Bld.factorizer-∘ (A ×′ B) ⟩
Bld.factorizer (A ×′ B)
(λ i → Bool-elim {A = λ i → Z ⇒ Bool-elim A B i} g h i ∘ f)
≈⟨ Bld.factorizer-resp (A ×′ B) (Bool-elim ≈.refl ≈.refl) ⟩
⟨ g ∘ f , h ∘ f ⟩
∎
⟨×⟩-resp : ∀ {A A′ B B′} {f f′ : A ⇒ A′} {g g′ : B ⇒ B′}
→ f ≈ f′
→ g ≈ g′
→ ⟨ f × g ⟩ ≈ ⟨ f′ × g′ ⟩
⟨×⟩-resp {A} {A′} {B} {B′} f≈f′ g≈g′
= Bld.times-resp (A ×′ B) (A′ ×′ B′) (Bool-elim f≈f′ g≈g′)
⟨×⟩-projl : ∀ {A A′ B B′} {f : A ⇒ A′} {g : B ⇒ B′}
→ projl ∘ ⟨ f × g ⟩ ≈ f ∘ projl
⟨×⟩-projl {A} {A′} {B} {B′} = Bld.times-proj (A ×′ B) (A′ ×′ B′)
⟨×⟩-projr : ∀ {A A′ B B′} {f : A ⇒ A′} {g : B ⇒ B′}
→ projr ∘ ⟨ f × g ⟩ ≈ g ∘ projr
⟨×⟩-projr {A} {A′} {B} {B′} = Bld.times-proj (A ×′ B) (A′ ×′ B′)
⟨×⟩-∘ : ∀ {A A′ A″ B B′ B″}
→ {f : A′ ⇒ A″} {f′ : A ⇒ A′} {g : B′ ⇒ B″} {g′ : B ⇒ B′}
→ ⟨ f × g ⟩ ∘ ⟨ f′ × g′ ⟩ ≈ ⟨ f ∘ f′ × g ∘ g′ ⟩
⟨×⟩-∘ {A} {A′} {A″} {B} {B′} {B″} {f} {f′} {g} {g′}
= begin
⟨ f × g ⟩ ∘ ⟨ f′ × g′ ⟩
≈⟨ Bld.times-∘ (A ×′ B) (A′ ×′ B′) (A″ ×′ B″) ⟩
Bld.times (A ×′ B) (A″ ×′ B″)
(λ i →
Bool-elim {A = λ i → Bool-elim A′ B′ i ⇒ Bool-elim A″ B″ i} f g i ∘
Bool-elim {A = λ i → Bool-elim A B i ⇒ Bool-elim A′ B′ i} f′ g′ i)
≈⟨ Bld.times-resp (A ×′ B) (A″ ×′ B″) (Bool-elim ≈.refl ≈.refl) ⟩
⟨ f ∘ f′ × g ∘ g′ ⟩
∎
⟨×⟩-∘-⟨,⟩ : ∀ {X A A′ B B′}
→ {u : X ⇒ A}{v : X ⇒ A′}{f : A ⇒ B}{g : A′ ⇒ B′}
→ ⟨ f × g ⟩ ∘ ⟨ u , v ⟩ ≈ ⟨ f ∘ u , g ∘ v ⟩
⟨×⟩-∘-⟨,⟩ {X} {A} {A′} {B} {B′} {u} {v} {f} {g}
= begin
⟨ f × g ⟩ ∘ ⟨ u , v ⟩
≈⟨ Bld.tim-fac (A ×′ A′) (B ×′ B′) ⟩
Bld.factorizer (B ×′ B′) ( λ i →
Bool-elim {A = λ i → Bool-elim A A′ i ⇒ Bool-elim B B′ i} f g i ∘
Bool-elim {A = λ i → X ⇒ Bool-elim A A′ i} u v i)
-- {A = λ i → X ⇒ Bool-elim B B′ i} (f ∘ u) (g ∘ v) i)
≈⟨ Bld.factorizer-resp (B ×′ B′) (Bool-elim ≈.refl ≈.refl) ⟩
⟨ f ∘ u , g ∘ v ⟩
∎
-- The following is conceptually trivial, but we have to dig quite deep to
-- avoid level-related nonsense.
HasProducts→HasBinaryProducts : ∀ {lp lo la l≈} {C : Category lo la l≈}
→ HasProducts lp C
→ HasBinaryProducts C
HasProducts→HasBinaryProducts {lp} {C = C} record { Π′ = Π }
= record { _×′_ = _×_ }
where
open Category C
open Unique.Build C
open Build C
open Product using (proj ; isProduct)
open ∃!′ using (arr ; prop ; unique)
_×_ : ∀ A B → Build.BinaryProduct C A B
A × B = record
{ prod = prod′
; proj = proj′
; isProduct = isProduct′
}
where
O : Lift lp Bool → _
O (lift true) = A
O (lift false) = B
prod′ = Π O ᴼ
proj′ = Bool-elim (proj (Π O) (lift true)) (proj (Π O) (lift false))
isProduct′ : IsProduct (Bool-elim A B) prod′ proj′
isProduct′ {X} x = record
{ arr = arr′ ⃗
; prop = Bool-elim (prop arr′ (lift true)) (prop arr′ (lift false))
; unique = λ eq → unique arr′
(λ { (lift true) → eq true ; (lift false) → eq false})
}
where
arr′ = isProduct (Π O)
λ { (lift true) → x true ; (lift false) → x false}
record HasFiniteProducts {lo la l≈} (Cat : Category lo la l≈)
: Set (lo ⊔ la ⊔ l≈)
where
field
{{hasTerminal}} : HasTerminal Cat
{{hasBinaryProducts}} : HasBinaryProducts Cat
open HasTerminal hasTerminal public
open HasBinaryProducts hasBinaryProducts public
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈}
{D : Category lo′ la′ l≈′}
where
open Category C
open Build using (IsProduct ; IsBinaryProduct)
open Functor
PreservesBinaryProducts : (F : Functor C D) → Set _
PreservesBinaryProducts F
= ∀ {A B A×B} {projl : A×B ⇒ A} {projr : A×B ⇒ B}
→ IsBinaryProduct C A×B projl projr
→ IsBinaryProduct D (fobj F A×B) (fmap F projl) (fmap F projr)
PreservesProducts : ∀ {i} (I : Set i) (F : Functor C D) → Set _
PreservesProducts I F
= ∀ {O : I → Obj} {P} {proj : ∀ i → P ⇒ O i}
→ IsProduct C O P proj
→ IsProduct D (λ i → fobj F (O i)) (fobj F P) (λ i → fmap F (proj i))
| {
"alphanum_fraction": 0.4747570194,
"avg_line_length": 30.2985685072,
"ext": "agda",
"hexsha": "7299679a440a2855d0591f80335a70cb0573fd6e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Product.agda",
"max_line_length": 166,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6312,
"size": 14816
} |
{-# OPTIONS --without-K --safe #-}
module Experiment.Applicative where
open import Function.Base
open import Relation.Binary.PropositionalEquality
record Functor (F : Set → Set) : Set₁ where
field
fmap : ∀ {A B} → (A → B) → F A → F B
field
fmap-id : ∀ {A} (x : F A) → fmap id x ≡ x
fmap-∘ : ∀ {A B C} (f : B → C) (g : A → B) (x : F A) →
fmap f (fmap g x) ≡ fmap (f ∘′ g) x
fmap-cong : ∀ {A B} {f g : A → B} {x : F A} →
(∀ v → f v ≡ g v) → fmap f x ≡ fmap g x
record Applicative (F : Set → Set) : Set₁ where
infixl 5 _<*>_
field
pure : ∀ {A} → A → F A
_<*>_ : ∀ {A B} → F (A → B) → F A → F B
field
identity : ∀ {A} (v : F A) → pure id <*> v ≡ v
composition : ∀ {A B C} (u : F (A → C)) (v : F (B → A)) (w : F B) →
pure _∘′_ <*> u <*> v <*> w ≡ u <*> (v <*> w)
homomorphism : ∀ {A B} (f : A → B) (x : A) → pure f <*> pure x ≡ pure (f x)
interchange : ∀ {A B} (u : F (A → B)) (y : A) →
u <*> pure y ≡ pure (_$ y) <*> u
-- <*>-cong : (∀ x → ff <*> pure x ≡ fg <*> pure x) → ff <*> fx ≡ fg <*> fx
homomorphism₂ : ∀ {A B C} (f : A → B → C) (x : A) (y : B) →
pure f <*> pure x <*> pure y ≡ pure (f x y)
homomorphism₂ f x y = begin
pure f <*> pure x <*> pure y ≡⟨ cong (_<*> pure y) $ homomorphism f x ⟩
pure (f x) <*> pure y ≡⟨ homomorphism (f x) y ⟩
pure (f x y) ∎
where open ≡-Reasoning
functor : Functor F
functor = record
{ fmap = λ f fx → pure f <*> fx
; fmap-id = identity
; fmap-∘ = λ f g x → begin
pure f <*> (pure g <*> x)
≡⟨ sym $ composition (pure f) (pure g) x ⟩
pure _∘′_ <*> pure f <*> pure g <*> x
≡⟨ cong (λ v → v <*> x) $ homomorphism₂ _∘′_ f g ⟩
pure (f ∘′ g) <*> x
∎
; fmap-cong = λ {A} {B} {f = f} {g = g} {x = x} f≡g → {! !}
}
where open ≡-Reasoning
liftA2 : ∀ {A B C} → (A → B → C) → F A → F B → F C
liftA2 f fx fy = pure f <*> fx <*> fy
{-
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
-}
record ApplicativeViaZip (F : Set → Set) : Set₁ where
field
pair : F A → F B → F (A × B)
pair fx fy = ?
record Monad (F : Set → Set) : Set₁ where
infixl 5 _>>=_
field
return : ∀ {A} → A → F A
_>>=_ : ∀ {A B} → F A → (A → F B) → F B
field
identityˡ : ∀ {A B} (a : A) (k : A → F B) → return a >>= k ≡ k a
identityʳ : ∀ {A} (m : F A) → m >>= return ≡ m
assoc : ∀ {A B C} (m : F A) (k : A → F B) (h : B → F C) →
m >>= (λ x → k x >>= h) ≡ (m >>= k) >>= h
join : ∀ {A} → F (F A) → F A
join x = x >>= id
-- pure f <*> x ≡ pure g <*> x
m >>= k = join (fmap k m)
(∀ x → k x ≡ l x)
join (fmap k m)
join (fmap l m
liftM1 : ∀ {A B} → (A → B) → F A → F B
liftM1 f mx = mx >>= (λ x → return (f x))
functor : Functor F
functor = record
{ fmap = liftM1
; fmap-id = λ fx → identityʳ fx
; fmap-∘ = λ f g x → begin
liftM1 f (liftM1 g x) ≡⟨ refl ⟩
liftM1 g x >>= (λ y → return (f y)) ≡⟨ refl ⟩
(x >>= (λ y → return (g y))) >>= (λ y → return (f y))
≡⟨ sym $ assoc x (λ y → return (g y)) (λ y → return (f y)) ⟩
x >>= (λ y → return (g y) >>= (return ∘ f) )
≡⟨ cong (λ v → x >>= v) $ {! !} ⟩
x >>= (λ y → return (f (g y))) ≡⟨ refl ⟩
liftM1 (f ∘′ g) x ∎
}
where open ≡-Reasoning
applicative : Applicative F
applicative = record
{ pure = return
; _<*>_ = λ fab fa → fab >>= λ ab → fa >>= λ a → return (ab a)
; identity = λ v → begin
return id >>= (λ ab → v >>= λ a → return (ab a)) ≡⟨ identityˡ id _ ⟩
v >>= return ≡⟨ identityʳ v ⟩
v ∎
; composition = λ u v w → begin
return _∘′_ >>= (λ f → u >>= (return ∘ f)) >>= (λ f → v >>= (return ∘ f))
>>= (λ f → w >>= (return ∘ f)) ≡⟨ {! !} ⟩
u >>= (λ f → v >>= (λ g → w >>= (return ∘ g)) >>= (return ∘ f))
∎
; homomorphism = {! !}
; interchange = {! !}
}
where open ≡-Reasoning
{-
return _∘′_ >>= (λ f → u >>= (λ a → return (f a))) >>=
(λ f → v >>= (λ a → return (f a)))
>>= (λ f → w >>= (λ a → return (f a)))
≡
u >>=
(λ f →
v >>= (λ g → w >>= (λ a → return (g a))) >>=
(λ a → return (f a)))
-}
-- Traversable
| {
"alphanum_fraction": 0.4191919192,
"avg_line_length": 33.2519083969,
"ext": "agda",
"hexsha": "e96db527584c1bc9a34671e6aa8cd00d3964741b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/ApplicativeOld.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/ApplicativeOld.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/ApplicativeOld.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1786,
"size": 4356
} |
{-# OPTIONS --prop #-}
open import Agda.Builtin.Equality
postulate
A : Set
P : Prop
p : P
f : P → A
mutual
X : A
X = _
test₁ : (x : P) → X ≡ f x
test₁ x = refl
test₂ : X ≡ f p
test₂ = refl
| {
"alphanum_fraction": 0.5140186916,
"avg_line_length": 10.7,
"ext": "agda",
"hexsha": "97e6ee6e42921326aac921bf6670e60b8d692f8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4152.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4152.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4152.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 90,
"size": 214
} |
-- Andreas, 2016-12-15, issue #2341
-- `with` needs to abstract also in sort of target type.
-- {-# OPTIONS -v tc.with:100 #-}
open import Agda.Primitive
data _≡_ {a}{A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
postulate
equalLevel : (x y : Level) → x ≡ y
id : ∀ {a} {A : Set a} → A → A
id x = x
Works : ∀ β α → Set α → Set β
Works β α with equalLevel α β
Works β .β | refl = id
Coerce : ∀ β α → Set α → Set β
Coerce β α rewrite equalLevel α β = id
-- Should succeed
{-
Set α →{1+β⊔α} Set β
added with function .Issue2341.rewrite-42 of type
(β α w : Level) → w ≡ β → Set w → Set β
(β α : Level) → (w : Level) →{1+β⊔α} w ≡ β →{1+β⊔α} Set w →{1+β⊔α} Set β
raw with func. type = El {_getSort = Inf, unEl =
Pi ru(El {_getSort = Type (Max []), unEl = Def Agda.Primitive.Level []}) (Abs "\946" El {_getSort = Inf, unEl =
Pi ru(El {_getSort = Type (Max []), unEl = Def Agda.Primitive.Level []}) (Abs "\945"
El {_getSort = Type (Max [Plus 1 (UnreducedLevel (Var 0 [])),Plus 1 (UnreducedLevel (Var 1 []))]), unEl =
Pi ru(El {_getSort = Type (Max []), unEl = Def Agda.Primitive.Level []}) (Abs "w"
El {_getSort = Type (Max [Plus 1 (UnreducedLevel (Var 1 [])),Plus 1 (UnreducedLevel (Var 2 []))]), unEl =
Pi ru(El {_getSort = Type (Max []), unEl = Def Issue2341._≡_ [Apply ru{Level (Max [])},Apply ru{Def Agda.Primitive.Level []},Apply ru(Var 0 []),Apply ru(Var 2 [])]}) (NoAbs "w"
El {_getSort = Type (Max [Plus 1 (UnreducedLevel (Var 1 [])),Plus 1 (UnreducedLevel (Var 2 []))]), unEl =
Pi ru(El {_getSort = Type (Max [Plus 1 (UnreducedLevel (Var 0 []))]), unEl = Sort (Type (Max [Plus 0 (UnreducedLevel (Var 0 []))]))}) (NoAbs "_"
El {_getSort = Type (Max [Plus 1 (UnreducedLevel (Var 2 []))]), unEl =
Sort (Type (Max [Plus 0 (UnreducedLevel (Var 2 []))]))})})})})})}
-}
| {
"alphanum_fraction": 0.5938697318,
"avg_line_length": 38.8723404255,
"ext": "agda",
"hexsha": "0177f340255da9d603919f60ffc4f98c6b60f97c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2341.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2341.agda",
"max_line_length": 176,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2341.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 714,
"size": 1827
} |
module Thesis.SIRelBigStep.DSyntax where
open import Thesis.SIRelBigStep.Syntax public
-- data DType : Set where
-- _⇒_ : (σ τ : DType) → DType
-- int : DType
DType = Type
import Base.Syntax.Context
module DC = Base.Syntax.Context DType
Δτ : Type → DType
Δτ (σ ⇒ τ) = σ ⇒ Δτ σ ⇒ Δτ τ
Δτ (pair τ1 τ2) = pair (Δτ τ1) (Δτ τ2)
Δτ nat = nat
ΔΔ : Context → DC.Context
ΔΔ ∅ = ∅
ΔΔ (τ • Γ) = Δτ τ • ΔΔ Γ
--ΔΔ Γ = Γ
-- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces
-- a result of type (Δt τ).
data DTerm (Δ : Context) (τ : DType) : Set
data DSVal (Δ : Context) : (τ : DType) → Set where
dvar : ∀ {τ} →
(x : Var Δ τ) →
DSVal Δ τ
dabs : ∀ {σ τ}
(dt : DTerm (σ • Δ) τ) →
DSVal Δ (σ ⇒ τ)
dcons : ∀ {τ1 τ2}
(dsv1 : DSVal Δ τ1)
(dsv2 : DSVal Δ τ2) →
DSVal Δ (pair τ1 τ2)
dconst : ∀ {τ} → (dc : Const (Δτ τ)) → DSVal Δ τ
data DTerm (Δ : Context) (τ : DType) where
dval :
DSVal Δ τ →
DTerm Δ τ
dprimapp : ∀ {σ}
(p : Primitive (σ ⇒ τ)) →
(sv : SVal Δ σ) →
(dsv : DSVal Δ σ) →
DTerm Δ τ
dapp : ∀ {σ}
(dvs : DSVal Δ (σ ⇒ τ)) →
(vt : SVal Δ σ) →
(dvt : DSVal Δ σ) →
DTerm Δ τ
dlett : ∀ {σ}
(s : Term Δ σ) →
(ds : DTerm Δ σ) →
(dt : DTerm (σ • Δ) τ) →
DTerm Δ τ
| {
"alphanum_fraction": 0.53046875,
"avg_line_length": 22.0689655172,
"ext": "agda",
"hexsha": "f0b6325974f967db3334f80a8ea8e9542ab09252",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/DSyntax.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/DSyntax.agda",
"max_line_length": 77,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/DSyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 573,
"size": 1280
} |
module AbsurdPatternRequiresNoRHS where
data False : Set where
record True : Set where
f : False -> True
f () = _
| {
"alphanum_fraction": 0.7,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "f23f0a4e3e26a82cc0a25cb215333adcf2e1f281",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/AbsurdPatternRequiresNoRHS.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/AbsurdPatternRequiresNoRHS.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/AbsurdPatternRequiresNoRHS.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 34,
"size": 120
} |
-- Andreas, 2015-07-13 Better parse errors for illegal type signatures
(A B) : Set1
A B = Set
| {
"alphanum_fraction": 0.6979166667,
"avg_line_length": 19.2,
"ext": "agda",
"hexsha": "5fb69dbe0d6760b10d01c50786ea0b62dd62bf90",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1609f.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1609f.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1609f.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 31,
"size": 96
} |
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +)
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOpEval; evalBinOp; binOp₁; binOp₂)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; TypeMismatch; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂)
open import Luau.RuntimeType using (function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val; number)
open import Properties.Remember using (remember; _,_)
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : ∀ H′ B′ → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → StepResultᴮ H B
return : ∀ V {B′} → (B ≡ (return (val V) ∙ B′)) → StepResultᴮ H B
done : (B ≡ done) → StepResultᴮ H B
error : (RuntimeErrorᴮ H B) → StepResultᴮ H B
data StepResultᴱ H M where
step : ∀ H′ M′ → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → StepResultᴱ H M
value : ∀ V → (M ≡ val V) → StepResultᴱ H M
error : (RuntimeErrorᴱ H M) → StepResultᴱ H M
stepᴱ : ∀ {a} H M → StepResultᴱ {a} H M
stepᴮ : ∀ {a} H B → StepResultᴮ {a} H B
stepᴱ H nil = value nil refl
stepᴱ H (var x) = error (UnboundVariable x)
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (number x) = value (number x) refl
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H′ M′ D = step H′ (M′ $ N) (app₁ D)
stepᴱ H (_ $ N) | value V refl with stepᴱ H N
stepᴱ H (_ $ N) | value V refl | step H′ N′ s = step H′ (val V $ N′) (app₂ s)
stepᴱ H (_ $ _) | value nil refl | value W refl = error (app₁ (TypeMismatch function nil λ()))
stepᴱ H (_ $ _) | value (number n) refl | value W refl = error (app₁ (TypeMismatch function (number n) λ()))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (nothing , p) = error (app₁ (SEGV a p))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (just(function F is B end) , p) = step H (block fun F is B [ W / name (arg F) ]ᴮ end) (beta p)
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H′ B′ D = step H′ (block b is B′ end) (block D)
stepᴱ H (block b is (return _ ∙ B′) end) | return V refl = step H (val V) return
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is B end) | error E = error (block b E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H′ p = step H′ (addr a) (function p)
stepᴱ H (binexp x op y) with stepᴱ H x
stepᴱ H (binexp x op y) | value x′ refl with stepᴱ H y
stepᴱ H (binexp x op y) | value (number x′) refl | value (number y′) refl = step H (number (evalBinOp x′ op y′)) binOpEval
stepᴱ H (binexp x op y) | value (number x′) refl | step H′ y′ s = step H′ (binexp (number x′) op y′) (binOp₂ s)
stepᴱ H (binexp x op y) | value (number x′) refl | error E = error (bin₂ E)
stepᴱ H (binexp x op y) | value nil refl | _ = error (bin₁ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | _ | value nil refl = error (bin₂ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | value (addr a) refl | _ = error (bin₁ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | _ | value (addr a) refl = error (bin₂ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | step H′ x′ s = step H′ (binexp x′ op y) (binOp₁ s)
stepᴱ H (binexp x op y) | error E = error (bin₁ E)
stepᴮ H (function F is C end ∙ B) with alloc H (function F is C end)
stepᴮ H (function F is C end ∙ B) | ok a H′ p = step H′ (B [ addr a / fun F ]ᴮ) (function p)
stepᴮ H (local x ← M ∙ B) with stepᴱ H M
stepᴮ H (local x ← M ∙ B) | step H′ M′ D = step H′ (local x ← M′ ∙ B) (local D)
stepᴮ H (local x ← _ ∙ B) | value V refl = step H (B [ V / name x ]ᴮ) subst
stepᴮ H (local x ← M ∙ B) | error E = error (local x E)
stepᴮ H (return M ∙ B) with stepᴱ H M
stepᴮ H (return M ∙ B) | step H′ M′ D = step H′ (return M′ ∙ B) (return D)
stepᴮ H (return _ ∙ B) | value V refl = return V refl
stepᴮ H (return M ∙ B) | error E = error (return E)
stepᴮ H done = done refl
| {
"alphanum_fraction": 0.6419726265,
"avg_line_length": 59.7792207792,
"ext": "agda",
"hexsha": "2a0978ff63c5f366c67679a81da55e5241504d16",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Properties/Step.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Properties/Step.agda",
"max_line_length": 159,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Properties/Step.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1838,
"size": 4603
} |
------------------------------------------------------------------------
-- Higher lenses
------------------------------------------------------------------------
{-# OPTIONS --cubical #-}
import Equality.Path as P
module Lens.Non-dependent.Higher
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as Bij using (_↔_)
import Bool equality-with-J as Bool
open import Circle eq as Circle using (𝕊¹)
open import Coherently-constant eq as C using (Coherently-constant)
open import Equality.Decidable-UIP equality-with-J
open import Equality.Decision-procedures equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
import Equivalence.Half-adjoint equality-with-J as HA
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as Trunc
hiding (Coherently-constant)
import Nat equality-with-J as Nat
open import Preimage equality-with-J as Preimage using (_⁻¹_)
open import Quotient eq
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq as Non-dependent
hiding (no-first-projection-lens; no-singleton-projection-lens)
import Lens.Non-dependent.Traditional eq as Traditional
private
variable
a b c ℓ p r : Level
A A₁ A₂ B B₁ B₂ : Type a
P : A → Type p
------------------------------------------------------------------------
-- Higher lenses
-- Higher lenses.
--
-- A little history: The "lenses" in Lens.Non-dependent.Bijection are
-- not very well-behaved. I had previously considered some other
-- variants, when Andrea Vezzosi suggested that I should look at Paolo
-- Capriotti's higher lenses, and that I could perhaps use R → ∥ B ∥.
-- This worked out nicely.
--
-- For performance reasons η-equality is turned off for this record
-- type. One can match on the constructor to block evaluation.
record Lens (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where
constructor ⟨_,_,_⟩
pattern
no-eta-equality
field
-- Remainder type.
R : Type (a ⊔ b)
-- Equivalence.
equiv : A ≃ (R × B)
-- The proof of (mere) inhabitance.
inhabited : R → ∥ B ∥
-- Remainder.
remainder : A → R
remainder a = proj₁ (_≃_.to equiv a)
-- Getter.
get : A → B
get a = proj₂ (_≃_.to equiv a)
-- Setter.
set : A → B → A
set a b = _≃_.from equiv (remainder a , b)
-- A combination of get and set.
modify : (B → B) → A → A
modify f x = set x (f (get x))
-- The setter leaves the remainder unchanged.
remainder-set : ∀ a b → remainder (set a b) ≡ remainder a
remainder-set a b =
proj₁ (_≃_.to equiv (_≃_.from equiv (remainder a , b))) ≡⟨ cong proj₁ (_≃_.right-inverse-of equiv (remainder a , b)) ⟩∎
remainder a ∎
-- Lens laws.
get-set : ∀ a b → get (set a b) ≡ b
get-set a b =
proj₂ (_≃_.to equiv (_≃_.from equiv (remainder a , b))) ≡⟨ cong proj₂ (_≃_.right-inverse-of equiv (remainder a , b)) ⟩∎
proj₂ (remainder a , b) ∎
set-get : ∀ a → set a (get a) ≡ a
set-get a =
_≃_.from equiv (_≃_.to equiv a) ≡⟨ _≃_.left-inverse-of equiv a ⟩∎
a ∎
set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂
set-set a b₁ b₂ =
_≃_.from equiv (remainder (set a b₁) , b₂) ≡⟨ cong (λ r → _≃_.from equiv (r , b₂)) (remainder-set a b₁) ⟩∎
_≃_.from equiv (remainder a , b₂) ∎
-- The remainder function is surjective.
remainder-surjective : Surjective remainder
remainder-surjective r =
∥∥-map (λ b → _≃_.from equiv (r , b)
, (remainder (_≃_.from equiv (r , b)) ≡⟨⟩
proj₁ (_≃_.to equiv (_≃_.from equiv (r , b))) ≡⟨ cong proj₁ (_≃_.right-inverse-of equiv (r , b)) ⟩∎
r ∎))
(inhabited r)
-- Traditional lens.
traditional-lens : Traditional.Lens A B
traditional-lens = record
{ get = get
; set = set
; get-set = get-set
; set-get = set-get
; set-set = set-set
}
-- The following two coherence laws, which do not necessarily hold
-- for traditional lenses (see
-- Traditional.getter-equivalence-but-not-coherent), hold
-- unconditionally for higher lenses.
get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a)
get-set-get a =
cong get (set-get a) ≡⟨⟩
cong (proj₂ ∘ _≃_.to equiv) (_≃_.left-inverse-of equiv a) ≡⟨ sym $ cong-∘ _ _ (_≃_.left-inverse-of equiv _) ⟩
cong proj₂ (cong (_≃_.to equiv) (_≃_.left-inverse-of equiv a)) ≡⟨ cong (cong proj₂) $ _≃_.left-right-lemma equiv _ ⟩
cong proj₂ (_≃_.right-inverse-of equiv (_≃_.to equiv a)) ≡⟨⟩
get-set a (get a) ∎
get-set-set :
∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂))
get-set-set a b₁ b₂ =
cong get (set-set a b₁ b₂) ≡⟨⟩
cong get (cong (λ r → _≃_.from equiv (r , b₂)) (remainder-set a b₁)) ≡⟨ elim₁
(λ {r} eq →
cong get (cong (λ r → _≃_.from equiv (r , b₂)) eq) ≡
trans (cong proj₂ (_≃_.right-inverse-of equiv (r , b₂)))
(sym (get-set a b₂)))
(
cong get (cong (λ r → _≃_.from equiv (r , b₂))
(refl (remainder a))) ≡⟨ trans (cong (cong get) $ cong-refl _) $
cong-refl _ ⟩
refl (get (set a b₂)) ≡⟨ sym $ trans-symʳ _ ⟩
trans (get-set a b₂) (sym (get-set a b₂)) ≡⟨⟩
trans (cong proj₂
(_≃_.right-inverse-of equiv (remainder a , b₂)))
(sym (get-set a b₂)) ∎)
(remainder-set a b₁) ⟩
trans (cong proj₂
(_≃_.right-inverse-of equiv (remainder (set a b₁) , b₂)))
(sym (get-set a b₂)) ≡⟨⟩
trans (get-set (set a b₁) b₂) (sym (get-set a b₂)) ∎
-- A somewhat coherent lens.
coherent-lens : Traditional.Coherent-lens A B
coherent-lens = record
{ lens = traditional-lens
; get-set-get = get-set-get
; get-set-set = get-set-set
}
instance
-- Higher lenses have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
------------------------------------------------------------------------
-- Simple definitions related to lenses
-- An η-law for lenses.
η :
(l : Lens A B) →
⟨ Lens.R l , Lens.equiv l , Lens.inhabited l ⟩ ≡ l
η ⟨ _ , _ , _ ⟩ = refl _
-- Lens can be expressed as a nested Σ-type.
Lens-as-Σ :
{A : Type a} {B : Type b} →
Lens A B ≃
∃ λ (R : Type (a ⊔ b)) →
(A ≃ (R × B)) ×
(R → ∥ B ∥)
Lens-as-Σ = Eq.↔→≃
(λ l → R l , equiv l , inhabited l)
(λ (R , equiv , inhabited) → record
{ R = R
; equiv = equiv
; inhabited = inhabited
})
refl
η
where
open Lens
-- An equality rearrangement lemma.
left-inverse-of-Lens-as-Σ :
(l : Lens A B) →
_≃_.left-inverse-of Lens-as-Σ l ≡ η l
left-inverse-of-Lens-as-Σ l@(⟨ _ , _ , _ ⟩) =
_≃_.left-inverse-of Lens-as-Σ l ≡⟨⟩
_≃_.left-inverse-of Lens-as-Σ
(_≃_.from Lens-as-Σ (_≃_.to Lens-as-Σ l)) ≡⟨ sym $ _≃_.right-left-lemma Lens-as-Σ _ ⟩
cong (_≃_.from Lens-as-Σ)
(_≃_.right-inverse-of Lens-as-Σ (_≃_.to Lens-as-Σ l)) ≡⟨⟩
cong (_≃_.from Lens-as-Σ) (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
-- Isomorphisms can be converted into lenses.
isomorphism-to-lens :
{A : Type a} {B : Type b} {R : Type (a ⊔ b)} →
A ↔ R × B → Lens A B
isomorphism-to-lens {A = A} {B = B} {R = R} iso = record
{ R = R × ∥ B ∥
; equiv = A ↔⟨ iso ⟩
R × B ↔⟨ F.id ×-cong inverse ∥∥×↔ ⟩
R × ∥ B ∥ × B ↔⟨ ×-assoc ⟩□
(R × ∥ B ∥) × B □
; inhabited = proj₂
}
-- Converts equivalences to lenses.
≃→lens :
{A : Type a} {B : Type b} →
A ≃ B → Lens A B
≃→lens {a = a} {A = A} {B = B} A≃B = record
{ R = ∥ ↑ a B ∥
; equiv = A ↝⟨ A≃B ⟩
B ↝⟨ inverse ∥∥×≃ ⟩
∥ B ∥ × B ↔⟨ ∥∥-cong (inverse Bij.↑↔) ×-cong F.id ⟩□
∥ ↑ a B ∥ × B □
; inhabited = ∥∥-map lower
}
-- Converts equivalences between types with the same universe level to
-- lenses.
≃→lens′ :
{A B : Type a} →
A ≃ B → Lens A B
≃→lens′ {a = a} {A = A} {B = B} A≃B = record
{ R = ∥ B ∥
; equiv = A ↝⟨ A≃B ⟩
B ↝⟨ inverse ∥∥×≃ ⟩□
∥ B ∥ × B □
; inhabited = id
}
------------------------------------------------------------------------
-- An example
-- A lens from a type in a smaller universe to a type in a (possibly)
-- larger universe.
↑-lens : Lens A (↑ ℓ A)
↑-lens = ≃→lens (Eq.↔⇒≃ $ inverse Bij.↑↔)
------------------------------------------------------------------------
-- Some results related to the remainder type
-- The inhabited field is equivalent to stating that the remainder
-- function is surjective.
inhabited≃remainder-surjective :
{A : Type a} {B : Type b} {R : Type (a ⊔ b)}
(equiv : A ≃ (R × B)) →
let remainder : A → R
remainder a = proj₁ (_≃_.to equiv a)
in
(R → ∥ B ∥) ≃ Surjective remainder
inhabited≃remainder-surjective eq =
∀-cong ext λ r → ∥∥-cong-⇔ (record
{ to = λ b → _≃_.from eq (r , b)
, (proj₁ (_≃_.to eq (_≃_.from eq (r , b))) ≡⟨ cong proj₁ $ _≃_.right-inverse-of eq _ ⟩∎
r ∎)
; from = proj₂ ∘ _≃_.to eq ∘ proj₁
})
-- The remainder type of a lens l : Lens A B is, for every b : B,
-- equivalent to the preimage of the getter with respect to b.
--
-- This result was pointed out to me by Andrea Vezzosi.
remainder≃get⁻¹ :
(l : Lens A B) (b : B) → Lens.R l ≃ Lens.get l ⁻¹ b
remainder≃get⁻¹ l b = Eq.↔→≃
(λ r → _≃_.from equiv (r , b)
, (get (_≃_.from equiv (r , b)) ≡⟨⟩
proj₂ (_≃_.to equiv (_≃_.from equiv (r , b))) ≡⟨ cong proj₂ $ _≃_.right-inverse-of equiv _ ⟩∎
b ∎))
(λ (a , _) → remainder a)
(λ (a , get-a≡b) →
let lemma =
cong get
(trans (cong (set a) (sym get-a≡b))
(_≃_.left-inverse-of equiv _)) ≡⟨ cong-trans _ _ (_≃_.left-inverse-of equiv _) ⟩
trans (cong get (cong (set a) (sym get-a≡b)))
(cong get (_≃_.left-inverse-of equiv _)) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym get-a≡b))
(sym $ cong-∘ _ _ (_≃_.left-inverse-of equiv _)) ⟩
trans (cong (get ∘ set a) (sym get-a≡b))
(cong proj₂ (cong (_≃_.to equiv)
(_≃_.left-inverse-of equiv _))) ≡⟨ cong₂ (λ p q → trans p (cong proj₂ q))
(cong-sym _ get-a≡b)
(_≃_.left-right-lemma equiv _) ⟩
trans (sym (cong (get ∘ set a) get-a≡b))
(cong proj₂ (_≃_.right-inverse-of equiv _)) ≡⟨ sym $ sym-sym _ ⟩
sym (sym (trans (sym (cong (get ∘ set a) get-a≡b))
(cong proj₂ (_≃_.right-inverse-of equiv _)))) ≡⟨ cong sym $
sym-trans _ (cong proj₂ (_≃_.right-inverse-of equiv _)) ⟩
sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(sym (sym (cong (get ∘ set a) get-a≡b)))) ≡⟨ cong (λ eq → sym (trans (sym (cong proj₂
(_≃_.right-inverse-of equiv _)))
eq)) $
sym-sym (cong (get ∘ set a) get-a≡b) ⟩∎
sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong (get ∘ set a) get-a≡b)) ∎
in
Σ-≡,≡→≡
(_≃_.from equiv (remainder a , b) ≡⟨⟩
set a b ≡⟨ cong (set a) (sym get-a≡b) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎)
(subst (λ a → get a ≡ b)
(trans (cong (set a) (sym get-a≡b)) (set-get a))
(cong proj₂ $ _≃_.right-inverse-of equiv (remainder a , b)) ≡⟨⟩
subst (λ a → get a ≡ b)
(trans (cong (set a) (sym get-a≡b))
(_≃_.left-inverse-of equiv _))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ subst-∘ _ _ (trans _ (_≃_.left-inverse-of equiv _)) ⟩
subst (_≡ b)
(cong get
(trans (cong (set a) (sym get-a≡b))
(_≃_.left-inverse-of equiv _)))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (λ eq → subst (_≡ b) eq
(cong proj₂ $ _≃_.right-inverse-of equiv _))
lemma ⟩
subst (_≡ b)
(sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong (get ∘ set a) get-a≡b)))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ subst-trans (trans _ (cong (get ∘ set a) get-a≡b)) ⟩
trans
(trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong (get ∘ set a) get-a≡b))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ elim¹
(λ eq → trans
(trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong (get ∘ set a) eq))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡
eq)
(
trans
(trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong (get ∘ set a) (refl _)))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (λ eq → trans (trans (sym (cong proj₂
(_≃_.right-inverse-of equiv _)))
eq)
(cong proj₂ $ _≃_.right-inverse-of equiv _)) $
cong-refl _ ⟩
trans
(trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(refl _))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩
trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))
(cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ trans-symˡ (cong proj₂ (_≃_.right-inverse-of equiv _)) ⟩∎
refl _ ∎)
get-a≡b ⟩∎
get-a≡b ∎))
(λ r →
remainder (_≃_.from equiv (r , b)) ≡⟨⟩
proj₁ (_≃_.to equiv (_≃_.from equiv (r , b))) ≡⟨ cong proj₁ $ _≃_.right-inverse-of equiv _ ⟩∎
r ∎)
where
open Lens l
-- A corollary: Lens.get l ⁻¹_ is constant (up to equivalence).
--
-- Paolo Capriotti discusses this kind of property
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
get⁻¹-constant :
(l : Lens A B) (b₁ b₂ : B) → Lens.get l ⁻¹ b₁ ≃ Lens.get l ⁻¹ b₂
get⁻¹-constant l b₁ b₂ =
Lens.get l ⁻¹ b₁ ↝⟨ inverse $ remainder≃get⁻¹ l b₁ ⟩
Lens.R l ↝⟨ remainder≃get⁻¹ l b₂ ⟩□
Lens.get l ⁻¹ b₂ □
-- The two directions of get⁻¹-constant.
get⁻¹-const :
(l : Lens A B) (b₁ b₂ : B) →
Lens.get l ⁻¹ b₁ → Lens.get l ⁻¹ b₂
get⁻¹-const l b₁ b₂ = _≃_.to (get⁻¹-constant l b₁ b₂)
get⁻¹-const⁻¹ :
(l : Lens A B) (b₁ b₂ : B) →
Lens.get l ⁻¹ b₂ → Lens.get l ⁻¹ b₁
get⁻¹-const⁻¹ l b₁ b₂ = _≃_.from (get⁻¹-constant l b₁ b₂)
-- The set function can be expressed using get⁻¹-const and get.
--
-- Paolo Capriotti defines set in a similar way
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
set-in-terms-of-get⁻¹-const :
(l : Lens A B) →
Lens.set l ≡
λ a b → proj₁ (get⁻¹-const l (Lens.get l a) b (a , refl _))
set-in-terms-of-get⁻¹-const l = refl _
-- The remainder function can be expressed using remainder≃get⁻¹ and
-- get.
remainder-in-terms-of-remainder≃get⁻¹ :
(l : Lens A B) →
Lens.remainder l ≡
λ a → _≃_.from (remainder≃get⁻¹ l (Lens.get l a)) (a , refl _)
remainder-in-terms-of-remainder≃get⁻¹ l = refl _
-- The functions get⁻¹-const and get⁻¹-const⁻¹ satisfy some coherence
-- properties.
--
-- The first and third properties are discussed by Paolo Capriotti
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
get⁻¹-const-∘ :
(l : Lens A B) (b₁ b₂ b₃ : B) (p : Lens.get l ⁻¹ b₁) →
get⁻¹-const l b₂ b₃ (get⁻¹-const l b₁ b₂ p) ≡
get⁻¹-const l b₁ b₃ p
get⁻¹-const-∘ l _ b₂ b₃ p =
from (r₂ , b₃) , cong proj₂ (right-inverse-of (r₂ , b₃)) ≡⟨ cong (λ r → from (r , b₃) , cong proj₂ (right-inverse-of (r , b₃))) $
cong proj₁ $ right-inverse-of _ ⟩∎
from (r₁ , b₃) , cong proj₂ (right-inverse-of (r₁ , b₃)) ∎
where
open Lens l
open _≃_ equiv
r₁ r₂ : R
r₁ = proj₁ (to (proj₁ p))
r₂ = proj₁ (to (from (r₁ , b₂)))
get⁻¹-const-inverse :
(l : Lens A B) (b₁ b₂ : B) (p : Lens.get l ⁻¹ b₁) →
get⁻¹-const l b₁ b₂ p ≡ get⁻¹-const⁻¹ l b₂ b₁ p
get⁻¹-const-inverse _ _ _ _ = refl _
get⁻¹-const-id :
(l : Lens A B) (b : B) (p : Lens.get l ⁻¹ b) →
get⁻¹-const l b b p ≡ p
get⁻¹-const-id l b p =
get⁻¹-const l b b p ≡⟨ sym $ get⁻¹-const-∘ l b _ _ p ⟩
get⁻¹-const l b b (get⁻¹-const l b b p) ≡⟨⟩
get⁻¹-const⁻¹ l b b (get⁻¹-const l b b p) ≡⟨ _≃_.left-inverse-of (get⁻¹-constant l b b) _ ⟩∎
p ∎
-- Another kind of coherence property does not hold for get⁻¹-const.
--
-- This kind of property came up in a discussion with Andrea Vezzosi.
get⁻¹-const-not-coherent :
¬ ({A B : Type} (l : Lens A B) (b₁ b₂ : B)
(f : ∀ b → Lens.get l ⁻¹ b) →
get⁻¹-const l b₁ b₂ (f b₁) ≡ f b₂)
get⁻¹-const-not-coherent =
({A B : Type} (l : Lens A B) (b₁ b₂ : B) (f : ∀ b → Lens.get l ⁻¹ b) →
get⁻¹-const l b₁ b₂ (f b₁) ≡ f b₂) ↝⟨ (λ hyp → hyp l true false f) ⟩
get⁻¹-const l true false (f true) ≡ f false ↝⟨ cong (proj₁ ∘ proj₁) ⟩
true ≡ false ↝⟨ Bool.true≢false ⟩□
⊥ □
where
l : Lens (Bool × Bool) Bool
l = record
{ R = Bool
; equiv = F.id
; inhabited = ∣_∣
}
f : ∀ b → Lens.get l ⁻¹ b
f b = (b , b) , refl _
-- If B is inhabited whenever it is merely inhabited, then the
-- remainder type of a lens of type Lens A B can be expressed in terms
-- of preimages of the lens's getter.
remainder≃∃get⁻¹ :
(l : Lens A B) (∥B∥→B : ∥ B ∥ → B) →
Lens.R l ≃ ∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b)
remainder≃∃get⁻¹ {B = B} l ∥B∥→B =
R ↔⟨ (inverse $ drop-⊤-left-× λ r → _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible truncation-is-proposition (inhabited r)) ⟩
∥ B ∥ × R ↝⟨ (∃-cong λ _ → remainder≃get⁻¹ l _) ⟩□
(∃ λ (b : ∥ B ∥) → get ⁻¹ (∥B∥→B b)) □
where
open Lens l
------------------------------------------------------------------------
-- Equality characterisations for lenses
-- An equality characterisation lemma.
equality-characterisation₀ :
let open Lens in
{l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
l₁ ≡ l₂
↔
∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂
equality-characterisation₀ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} ⊠ =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens-as-Σ ⟩
l₁′ ≡ l₂′ ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B) × (R → ∥ B ∥)) p (proj₂ l₁′) ≡
proj₂ l₂′) ↝⟨ (∃-cong λ _ → inverse $
ignore-propositional-component
(Π-closure ext 1 λ _ →
truncation-is-proposition)) ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
proj₁ (subst (λ R → A ≃ (R × B) × (R → ∥ B ∥))
p
(proj₂ l₁′)) ≡
equiv l₂) ↔⟨ (∃-cong λ _ → ≡⇒≃ $ cong (λ (eq , _) → eq ≡ _) $
push-subst-, _ _) ⟩□
(∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) □
where
open Lens
l₁′ = _≃_.to Lens-as-Σ l₁
l₂′ = _≃_.to Lens-as-Σ l₂
-- A "computation" rule.
from-equality-characterisation₀ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B}
(b : Block "equality-characterisation") →
{p : R l₁ ≡ R l₂}
{q : subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂} →
_↔_.from (equality-characterisation₀ {l₁ = l₁} {l₂ = l₂} b) (p , q) ≡
trans (sym (η l₁))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))))
(η l₂))
from-equality-characterisation₀ ⊠ {p = p} {q = q} =
trans (sym (_≃_.left-inverse-of Lens-as-Σ _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(_↔_.to (ignore-propositional-component
(Π-closure ext 1 λ _ →
truncation-is-proposition))
(_≃_.from (≡⇒≃ (cong (λ (eq , _) → eq ≡ _)
(push-subst-, _ _)))
q))))
(_≃_.left-inverse-of Lens-as-Σ _)) ≡⟨ cong (λ eq →
trans (sym (_≃_.left-inverse-of Lens-as-Σ _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(_↔_.to (ignore-propositional-component
(Π-closure ext 1 λ _ →
truncation-is-proposition))
(_≃_.to eq q))))
(_≃_.left-inverse-of Lens-as-Σ _))) $
trans (sym $ ≡⇒≃-sym ext _) $
cong ≡⇒≃ $ sym $ cong-sym _ _ ⟩
trans (sym (_≃_.left-inverse-of Lens-as-Σ _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(_↔_.to (ignore-propositional-component
(Π-closure ext 1 λ _ →
truncation-is-proposition))
(≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q))))
(_≃_.left-inverse-of Lens-as-Σ _)) ≡⟨⟩
trans (sym (_≃_.left-inverse-of Lens-as-Σ _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))))
(_≃_.left-inverse-of Lens-as-Σ _)) ≡⟨ cong₂ (λ eq₁ eq₂ →
trans (sym eq₁)
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))))
eq₂))
(left-inverse-of-Lens-as-Σ _)
(left-inverse-of-Lens-as-Σ _) ⟩
trans (sym (η _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ p
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))))
(η _)) ∎
-- A variant of the computation rule above.
cong-set-from-equality-characterisation₀ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B}
(b : Block "equality-characterisation") →
{p : R l₁ ≡ R l₂}
{q : subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂} →
cong set (_↔_.from (equality-characterisation₀ {l₁ = l₁} {l₂ = l₂} b)
(p , q)) ≡
cong (λ (_ , equiv) a b → _≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(Σ-≡,≡→≡ p q)
cong-set-from-equality-characterisation₀
{B = B} {l₁ = l₁@(⟨ _ , _ , _ ⟩)} {l₂ = l₂@(⟨ _ , _ , _ ⟩)}
b {p = p} {q = q} =
elim₁
(λ {R₁} p → ∀ equiv₁ inhabited₁ q →
cong set
(_↔_.from (equality-characterisation₀
{l₁ = ⟨ R₁ , equiv₁ , inhabited₁ ⟩}
{l₂ = l₂} b)
(p , q)) ≡
cong (λ (_ , equiv) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(Σ-≡,≡→≡ p q))
(λ equiv₁ inhabited₁ q →
cong set
(_↔_.from (equality-characterisation₀ b) (refl _ , q)) ≡⟨ cong (cong set) $
from-equality-characterisation₀ b ⟩
cong set
(trans (sym (refl _))
(trans (cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ (refl _)
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))))
(refl _))) ≡⟨ trans
(cong₂ (λ eq₁ eq₂ → cong set (trans eq₁ eq₂))
sym-refl
(trans-reflʳ _)) $
cong (cong set) $ trans-reflˡ _ ⟩
cong set
(cong (_≃_.from Lens-as-Σ)
(Σ-≡,≡→≡ (refl _)
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition)))))) ≡⟨ cong-∘ _ _ _ ⟩
cong (λ (_ , equiv , _) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(Σ-≡,≡→≡ (refl _)
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))) ≡⟨ cong (cong _) $
Σ-≡,≡→≡-reflˡ _ ⟩
cong (λ (_ , equiv , _) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(cong (_ ,_)
(trans (sym $ subst-refl _ _)
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition)))))) ≡⟨ cong-∘ _ _ _ ⟩
cong (λ (equiv , _) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(trans (sym $ subst-refl _ _)
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition))))) ≡⟨ trans (sym $ cong-∘ _ _ _) $
cong (cong _) $ cong-trans _ _ _ ⟩
cong (λ equiv a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(trans (cong proj₁ (sym $ subst-refl _ _))
(cong proj₁
(Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)
(proj₁ (+⇒≡ (Π-closure ext 1 λ _ →
truncation-is-proposition)))))) ≡⟨ cong (λ eq → cong _ (trans (cong proj₁ (sym $ subst-refl _ _)) eq)) $
proj₁-Σ-≡,≡→≡ (≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ (λ R → R → ∥ B ∥))))
q) _ ⟩
cong (λ equiv a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(trans (cong proj₁ (sym $ subst-refl _ _))
(≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q)) ≡⟨ cong (cong _) $
elim¹
(λ q →
trans (cong proj₁ (sym $ subst-refl _ _))
(≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
q) ≡
trans (sym $ subst-refl _ _) q)
(
trans (cong proj₁ $ sym $ subst-refl _ _)
(≡⇒→ (cong (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _)))
(refl _)) ≡⟨ cong (trans _) $ sym $
subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
trans (cong proj₁ $ sym $ subst-refl _ _)
(subst (λ (eq , _) → eq ≡ _)
(sym (push-subst-, _ _))
(refl _)) ≡⟨ cong (trans _) $
subst-∘ _ _ _ ⟩
trans (cong proj₁ $ sym $ subst-refl _ _)
(subst (_≡ _)
(cong proj₁ $ sym $ push-subst-, _ _)
(refl _)) ≡⟨ cong (trans _) $
trans subst-trans-sym $
trans (trans-reflʳ _) $
trans (sym (cong-sym _ _)) $
cong (cong _) $ sym-sym _ ⟩
trans (cong proj₁ $ sym $ subst-refl _ _)
(cong proj₁ $ push-subst-, {y≡z = refl _} _ _) ≡⟨ cong₂ trans
(cong-sym _ _)
(proj₁-push-subst-,-refl _ _) ⟩
trans (sym $ cong proj₁ $ subst-refl _ _)
(trans (cong proj₁ (subst-refl _ _))
(sym $ subst-refl _ _)) ≡⟨ trans-sym-[trans] _ _ ⟩
sym (subst-refl _ _) ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (sym $ subst-refl _ _) (refl _) ∎)
q ⟩
cong (λ equiv a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(trans (sym $ subst-refl _ _) q) ≡⟨ sym $ cong-∘ _ _ _ ⟩
cong (λ (_ , equiv) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(cong (_ ,_) (trans (sym $ subst-refl _ _) q)) ≡⟨ cong (cong _) $ sym $
Σ-≡,≡→≡-reflˡ _ ⟩∎
cong (λ (_ , equiv) a b →
_≃_.from equiv (proj₁ (_≃_.to equiv a) , b))
(Σ-≡,≡→≡ (refl _) q) ∎)
_ _ _ _
where
open Lens
-- An equality characterisation lemma.
equality-characterisation₀₁ :
let open Lens in
{l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
(l₁ ≡ l₂)
≃
∃ λ (p : R l₁ ≡ R l₂) →
∀ a → (subst id p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a
equality-characterisation₀₁ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} ⊠ =
l₁ ≡ l₂ ↔⟨ equality-characterisation₀ ⊠ ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) ↝⟨ (∃-cong λ _ → inverse $ ≃-to-≡≃≡ ext ext) ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
∀ a → _≃_.to (subst (λ R → A ≃ (R × B)) p (equiv l₁)) a ≡
_≃_.to (equiv l₂) a) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ →
≡⇒≃ $ cong (_≡ _) $
trans (cong (_$ _) $ Eq.to-subst) $
trans (sym $ push-subst-application _ _) $
trans (push-subst-, _ _) $
cong (subst id _ _ ,_) $ subst-const _) ⟩□
(∃ λ (p : R l₁ ≡ R l₂) →
∀ a → (subst id p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) □
where
open Lens
private
-- An equality characterisation lemma with a "computation" rule.
equality-characterisation₁′ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B}
(bl : Block "equality-characterisation₀") →
Block "equality-characterisation₁" →
(univ : Univalence (a ⊔ b)) →
∃ λ (eq : l₁ ≡ l₂
↔
∃ λ (p : R l₁ ≃ R l₂) →
∀ a → (_≃_.to p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) →
(p : R l₁ ≃ R l₂)
(q : ∀ a → (_≃_.to p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) →
_↔_.from eq (p , q) ≡
_↔_.from (equality-characterisation₀ bl)
( ≃⇒≡ univ p
, Eq.lift-equality ext
(trans
(≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(trans
(cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B))
eq (equiv l₁)))
(≃⇒≡-id univ))
(cong _≃_.to $ subst-refl _ _))
p)
(⟨ext⟩ q))
)
equality-characterisation₁′ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂}
b ⊠ univ =
(l₁ ≡ l₂ ↝⟨ equality-characterisation₀ b ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) ↝⟨ inverse $ Σ-cong (inverse $ ≡≃≃ univ) (λ _ → F.id) ⟩
(∃ λ (p : R l₁ ≃ R l₂) →
subst (λ R → A ≃ (R × B)) (≃⇒≡ univ p) (equiv l₁) ≡ equiv l₂) ↔⟨ (∃-cong λ _ → inverse $ ≃-to-≡≃≡ ext bad-ext) ⟩
(∃ λ (p : R l₁ ≃ R l₂) →
∀ a →
_≃_.to (subst (λ R → A ≃ (R × B)) (≃⇒≡ univ p) (equiv l₁)) a ≡
_≃_.to (equiv l₂) a) ↔⟨ (∃-cong λ p → ∀-cong ext λ a → inverse $ ≡⇒≃ $
cong (_≡ _) $ sym $ cong (_$ a) $
≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B)) (≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ Eq.id) (equiv l₁)) ≡⟨ cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B)) eq (equiv l₁))) $
≃⇒≡-id univ ⟩
_≃_.to (subst (λ R → A ≃ (R × B)) (refl _) (equiv l₁)) ≡⟨ cong _≃_.to $ subst-refl _ _ ⟩∎
_≃_.to (equiv l₁) ∎)
p) ⟩□
(∃ λ (p : R l₁ ≃ R l₂) →
∀ a → (_≃_.to p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) □)
, λ p q →
_↔_.from (equality-characterisation₀ b)
( ≃⇒≡ univ p
, Eq.lift-equality ext
(⟨ext⟩ λ a →
≡⇒→ (cong (_≡ _) $ sym $ cong (_$ a) $
≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(trans
(cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B))
eq (equiv l₁)))
(≃⇒≡-id univ))
(cong _≃_.to $ subst-refl _ _))
p)
(q a))
) ≡⟨ (cong (λ eq → _↔_.from (equality-characterisation₀ b)
(≃⇒≡ univ p , Eq.lift-equality ext (⟨ext⟩ eq))) $
⟨ext⟩ λ a →
trans (sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _) $
subst-trans _) ⟩
_↔_.from (equality-characterisation₀ b)
( ≃⇒≡ univ p
, Eq.lift-equality ext
(⟨ext⟩ λ a →
trans
(cong (_$ a) $
≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(trans
(cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B))
eq (equiv l₁)))
(≃⇒≡-id univ))
(cong _≃_.to $ subst-refl _ _))
p)
(q a))
) ≡⟨ cong (λ eq → _↔_.from (equality-characterisation₀ b)
(≃⇒≡ univ p , Eq.lift-equality ext eq)) $
trans (ext-trans _ _) $
cong (flip trans _) $
_≃_.right-inverse-of (Eq.extensionality-isomorphism bad-ext) _ ⟩
_↔_.from (equality-characterisation₀ b)
( ≃⇒≡ univ p
, Eq.lift-equality ext
(trans
(≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(trans
(cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B))
eq (equiv l₁)))
(≃⇒≡-id univ))
(cong _≃_.to $ subst-refl _ _))
p)
(⟨ext⟩ q))
) ∎
where
open Lens
-- An equality characterisation lemma.
equality-characterisation₁ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (p : R l₁ ≃ R l₂) →
∀ a → (_≃_.to p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a
equality-characterisation₁ b univ =
proj₁ (equality-characterisation₁′ b b univ)
-- A "computation" rule.
from-equality-characterisation₁ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B}
(bl : Block "equality-characterisation") →
(univ : Univalence (a ⊔ b))
(p : R l₁ ≃ R l₂)
(q : ∀ a → (_≃_.to p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) →
_↔_.from (equality-characterisation₁ {l₁ = l₁} {l₂ = l₂} bl univ)
(p , q) ≡
_↔_.from (equality-characterisation₀ bl)
( ≃⇒≡ univ p
, Eq.lift-equality ext
(trans
(≃-elim¹ univ
(λ {R} p →
_≃_.to (subst (λ R → A ≃ (R × B))
(≃⇒≡ univ p) (equiv l₁)) ≡
(λ a → _≃_.to p (remainder l₁ a) , get l₁ a))
(trans
(cong (λ eq → _≃_.to (subst (λ R → A ≃ (R × B))
eq (equiv l₁)))
(≃⇒≡-id univ))
(cong _≃_.to $ subst-refl _ _))
p)
(⟨ext⟩ q))
)
from-equality-characterisation₁ b univ _ _ =
proj₂ (equality-characterisation₁′ b b univ) _ _
-- An equality characterisation lemma.
equality-characterisation₀₂ :
let open Lens in
{l₁ l₂ : Lens A B} →
Block "equality-characterisation" →
(l₁ ≡ l₂)
≃
∃ λ (p : R l₁ ≡ R l₂) →
(∀ a → subst id p (remainder l₁ a) ≡ remainder l₂ a) ×
(∀ a → get l₁ a ≡ get l₂ a)
equality-characterisation₀₂ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} ⊠ =
l₁ ≡ l₂ ↝⟨ equality-characterisation₀₁ ⊠ ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
∀ a → (subst id p (remainder l₁ a) , get l₁ a) ≡
_≃_.to (equiv l₂) a) ↔⟨⟩
(∃ λ (p : R l₁ ≡ R l₂) →
∀ a → (subst id p (remainder l₁ a) , get l₁ a) ≡
(remainder l₂ a , get l₂ a)) ↔⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse ≡×≡↔≡) ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
∀ a → subst id p (remainder l₁ a) ≡ remainder l₂ a ×
get l₁ a ≡ get l₂ a) ↔⟨ (∃-cong λ _ → ΠΣ-comm) ⟩□
(∃ λ (p : R l₁ ≡ R l₂) →
(∀ a → subst id p (remainder l₁ a) ≡ remainder l₂ a) ×
(∀ a → get l₁ a ≡ get l₂ a)) □
where
open Lens
private
-- An equality characterisation lemma with a "computation" rule.
equality-characterisation₂′ :
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
let open Lens in
(bl : Block "equality-characterisation₁") →
Block "equality-characterisation₂" →
(univ : Univalence (a ⊔ b)) →
∃ λ (eq : l₁ ≡ l₂
↔
∃ λ (r : R l₁ ≃ R l₂) →
(∀ x → _≃_.to r (remainder l₁ x) ≡ remainder l₂ x)
×
(∀ x → get l₁ x ≡ get l₂ x)) →
(r₁ : R l₁ ≃ R l₂)
(r₂ : ∀ x → _≃_.to r₁ (remainder l₁ x) ≡ remainder l₂ x)
(g : ∀ x → get l₁ x ≡ get l₂ x) →
_↔_.from eq (r₁ , r₂ , g) ≡
_↔_.from (equality-characterisation₁ bl univ)
(r₁ , λ a → cong₂ _,_ (r₂ a) (g a))
equality-characterisation₂′ {l₁ = l₁} {l₂ = l₂} bl ⊠ univ =
(l₁ ≡ l₂ ↝⟨ equality-characterisation₁ bl univ ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡
_≃_.to (equiv l₂) x) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse ≡×≡↔≡) ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x
×
get l₁ x ≡ get l₂ x) ↝⟨ (∃-cong λ _ → ΠΣ-comm) ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
(∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x)
×
(∀ x → get l₁ x ≡ get l₂ x)) □)
, λ _ _ _ → refl _
where
open Lens
-- An equality characterisation lemma.
equality-characterisation₂ :
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
let open Lens in
Block "equality-characterisation" →
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
(∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x)
×
(∀ x → get l₁ x ≡ get l₂ x)
equality-characterisation₂ bl univ =
proj₁ (equality-characterisation₂′ bl bl univ)
-- A "computation" rule.
from-equality-characterisation₂ :
let open Lens in
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B}
(bl : Block "equality-characterisation") →
(univ : Univalence (a ⊔ b))
(r₁ : R l₁ ≃ R l₂)
(r₂ : ∀ x → _≃_.to r₁ (remainder l₁ x) ≡ remainder l₂ x)
(g : ∀ x → get l₁ x ≡ get l₂ x) →
_↔_.from (equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} bl univ)
(r₁ , r₂ , g) ≡
_↔_.from (equality-characterisation₁ bl univ)
(r₁ , λ a → cong₂ _,_ (r₂ a) (g a))
from-equality-characterisation₂ bl univ =
proj₂ (equality-characterisation₂′ bl bl univ)
-- An equality characterisation lemma.
equality-characterisation₃ :
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
let open Lens in
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
∀ p → _≃_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡
_≃_.from (equiv l₂) p
equality-characterisation₃ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} univ =
l₁ ≡ l₂ ↝⟨ equality-characterisation₀ ⊠ ⟩
(∃ λ (p : R l₁ ≡ R l₂) →
subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) ↝⟨ inverse $ Σ-cong (inverse $ ≡≃≃ univ) (λ _ → F.id) ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
subst (λ R → A ≃ (R × B)) (≃⇒≡ univ eq) (equiv l₁) ≡ equiv l₂) ↔⟨ (∃-cong λ _ → inverse $ ≡⇒≃ $ cong (_≡ _) $
transport-theorem
(λ R → A ≃ (R × B))
(λ X≃Y → (X≃Y ×-cong F.id) F.∘_)
(λ _ → Eq.lift-equality ext (refl _))
univ _ _) ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
(eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂) ↝⟨ (∃-cong λ _ → inverse $ ≃-from-≡↔≡ ext) ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
∀ p → _≃_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡
_≃_.from (equiv l₂) p) □
where
open Lens
-- An equality characterisation lemma for lenses for which the view
-- type is inhabited.
equality-characterisation₄ :
{A : Type a} {B : Type b} {l₁ l₂ : Lens A B} →
let open Lens in
Block "equality-characterisation" →
Univalence (a ⊔ b) →
(b : B) →
(l₁ ≡ l₂)
≃
(∃ λ (eq : get l₁ ⁻¹ b ≃ get l₂ ⁻¹ b) →
(∀ a → _≃_.to eq (set l₁ a b , get-set l₁ a b) ≡
(set l₂ a b , get-set l₂ a b))
×
(∀ a → get l₁ a ≡ get l₂ a))
equality-characterisation₄ {l₁ = l₁} {l₂ = l₂} bl univ b =
l₁ ≡ l₂ ↔⟨ equality-characterisation₂ bl univ ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
(∀ a → _≃_.to eq (remainder l₁ a) ≡ remainder l₂ a)
×
(∀ a → get l₁ a ≡ get l₂ a)) ↝⟨ inverse $
Σ-cong
(inverse $
Eq.≃-preserves ext (remainder≃get⁻¹ l₁ b) (remainder≃get⁻¹ l₂ b))
(λ _ → F.id) ⟩
(∃ λ (eq : get l₁ ⁻¹ b ≃ get l₂ ⁻¹ b) →
(∀ a → remainder l₂
(proj₁ (_≃_.to eq (set l₁ a b , get-set l₁ a b))) ≡
remainder l₂ a)
×
(∀ a → get l₁ a ≡ get l₂ a)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → ∀-cong ext λ a →
≡⇒≃ $ cong (remainder l₂ _ ≡_) $ sym $
remainder-set l₂ _ _) ⟩
(∃ λ (eq : get l₁ ⁻¹ b ≃ get l₂ ⁻¹ b) →
(∀ a → remainder l₂
(proj₁ (_≃_.to eq (set l₁ a b , get-set l₁ a b))) ≡
remainder l₂ (set l₂ a b))
×
(∀ a → get l₁ a ≡ get l₂ a)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → ∀-cong ext λ a →
Eq.≃-≡ (inverse $ remainder≃get⁻¹ l₂ b)) ⟩□
(∃ λ (eq : get l₁ ⁻¹ b ≃ get l₂ ⁻¹ b) →
(∀ a → _≃_.to eq (set l₁ a b , get-set l₁ a b) ≡
(set l₂ a b , get-set l₂ a b))
×
(∀ a → get l₁ a ≡ get l₂ a)) □
where
open Lens
------------------------------------------------------------------------
-- More lens equalities
-- If the forward direction of an equivalence is Lens.get l, then the
-- setter of l can be expressed using the other direction of the
-- equivalence.
from≡set :
∀ (l : Lens A B) is-equiv →
let open Lens
A≃B = Eq.⟨ get l , is-equiv ⟩
in
∀ a b → _≃_.from A≃B b ≡ set l a b
from≡set l is-equiv a b =
_≃_.to-from Eq.⟨ get , is-equiv ⟩ (
get (set a b) ≡⟨ get-set _ _ ⟩∎
b ∎)
where
open Lens l
-- If two lenses have equal setters, then they also have equal
-- getters.
getters-equal-if-setters-equal :
let open Lens in
(l₁ l₂ : Lens A B) →
set l₁ ≡ set l₂ →
get l₁ ≡ get l₂
getters-equal-if-setters-equal l₁ l₂ setters-equal = ⟨ext⟩ λ a →
get l₁ a ≡⟨ cong (get l₁) $ sym $ set-get l₂ _ ⟩
get l₁ (set l₂ a (get l₂ a)) ≡⟨ cong (λ f → get l₁ (f a (get l₂ a))) $ sym setters-equal ⟩
get l₁ (set l₁ a (get l₂ a)) ≡⟨ get-set l₁ _ _ ⟩∎
get l₂ a ∎
where
open Lens
-- Two lenses of type Lens A B are equal if B is inhabited and the
-- lenses' setters are equal (assuming univalence).
--
-- Some results below are more general than this one, but this proof,
-- which uses remainder≃get⁻¹, is rather easy.
lenses-with-inhabited-codomains-equal-if-setters-equal :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
B →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-with-inhabited-codomains-equal-if-setters-equal
{B = B} univ l₁ l₂ b setters-equal =
_↔_.from (equality-characterisation₂ ⊠ univ)
( R≃R
, (λ a →
remainder l₂ (set l₁ a b) ≡⟨ cong (λ f → remainder l₂ (f a b)) setters-equal ⟩
remainder l₂ (set l₂ a b) ≡⟨ remainder-set l₂ _ _ ⟩∎
remainder l₂ a ∎)
, getters-equal
)
where
open Lens
getters-equal =
ext⁻¹ $ getters-equal-if-setters-equal l₁ l₂ setters-equal
R≃R : R l₁ ≃ R l₂
R≃R =
R l₁ ↝⟨ remainder≃get⁻¹ l₁ b ⟩
get l₁ ⁻¹ b ↔⟨ Preimage.respects-extensional-equality getters-equal ⟩
get l₂ ⁻¹ b ↝⟨ inverse $ remainder≃get⁻¹ l₂ b ⟩□
R l₂ □
-- A generalisation of lenses-equal-if-setters-equal (which is defined
-- below).
lenses-equal-if-setters-equal′ :
let open Lens in
{A : Type a} {B : Type b}
(univ : Univalence (a ⊔ b))
(l₁ l₂ : Lens A B)
(f : R l₁ → R l₂) →
(B → ∀ r →
∃ λ b′ → remainder l₂ (_≃_.from (equiv l₁) (r , b′)) ≡ f r) →
(∀ a → f (remainder l₁ a) ≡ remainder l₂ a) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal′
{A = A} {B = B} univ l₁ l₂
f ∃≡f f-remainder≡remainder setters-equal =
_↔_.from (equality-characterisation₂ ⊠ univ)
( R≃R
, f-remainder≡remainder
, ext⁻¹ (getters-equal-if-setters-equal l₁ l₂ setters-equal)
)
where
open Lens
open _≃_
BR≃BR =
B × R l₁ ↔⟨ ×-comm ⟩
R l₁ × B ↝⟨ inverse (equiv l₁) ⟩
A ↝⟨ equiv l₂ ⟩
R l₂ × B ↔⟨ ×-comm ⟩□
B × R l₂ □
to-BR≃BR :
∀ b b′ r →
to BR≃BR (b , r) ≡ (b , remainder l₂ (from (equiv l₁) (r , b′)))
to-BR≃BR b b′ r =
swap (to (equiv l₂) (from (equiv l₁) (swap (b , r)))) ≡⟨ cong swap lemma ⟩
swap (swap (b , remainder l₂ (from (equiv l₁) (r , b′)))) ≡⟨⟩
b , remainder l₂ (from (equiv l₁) (r , b′)) ∎
where
lemma =
to (equiv l₂) (from (equiv l₁) (swap (b , r))) ≡⟨⟩
to (equiv l₂) (from (equiv l₁) (r , b)) ≡⟨ cong (λ r → to (equiv l₂) (from (equiv l₁) (proj₁ r , b))) $ sym $
right-inverse-of (equiv l₁) _ ⟩
to (equiv l₂) (from (equiv l₁)
(proj₁ (to (equiv l₁) (from (equiv l₁) (r , b′))) , b)) ≡⟨⟩
to (equiv l₂) (set l₁ (from (equiv l₁) (r , b′)) b) ≡⟨ cong (to (equiv l₂)) $ ext⁻¹ (ext⁻¹ setters-equal _) _ ⟩
to (equiv l₂) (set l₂ (from (equiv l₁) (r , b′)) b) ≡⟨⟩
to (equiv l₂) (from (equiv l₂)
(remainder l₂ (from (equiv l₁) (r , b′)) , b)) ≡⟨ right-inverse-of (equiv l₂) _ ⟩
remainder l₂ (from (equiv l₁) (r , b′)) , b ≡⟨⟩
swap (b , remainder l₂ (from (equiv l₁) (r , b′))) ∎
id-f≃ : Eq.Is-equivalence (Σ-map id f)
id-f≃ = Eq.respects-extensional-equality
(λ (b , r) →
let b′ , ≡fr = ∃≡f b r in
to BR≃BR (b , r) ≡⟨ to-BR≃BR _ _ _ ⟩
b , remainder l₂ (from (equiv l₁) (r , b′)) ≡⟨ cong (b ,_) ≡fr ⟩
b , f r ≡⟨⟩
Σ-map id f (b , r) ∎)
(is-equivalence BR≃BR)
f≃ : Eq.Is-equivalence f
f≃ =
HA.[inhabited→Is-equivalence]→Is-equivalence λ r →
Trunc.rec
(Eq.propositional ext _)
(Eq.drop-Σ-map-id _ id-f≃)
(inhabited l₂ r)
R≃R : R l₁ ≃ R l₂
R≃R = Eq.⟨ f , f≃ ⟩
-- If the codomain of a lens is inhabited when it is merely inhabited
-- and the remainder type is inhabited, then this lens is equal to
-- another lens if their setters are equal (assuming univalence).
lenses-equal-if-setters-equal :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
(Lens.R l₁ → ∥ B ∥ → B) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal {B = B} univ l₁ l₂ inh′ setters-equal =
lenses-equal-if-setters-equal′
univ l₁ l₂ f
(λ _ r →
inh r
, (remainder l₂ (_≃_.from (equiv l₁) (r , inh r)) ≡⟨⟩
f r ∎))
(λ a →
f (remainder l₁ a) ≡⟨⟩
remainder l₂ (set l₁ a (inh (remainder l₁ a))) ≡⟨ cong (remainder l₂) $ ext⁻¹ (ext⁻¹ setters-equal _) _ ⟩
remainder l₂ (set l₂ a (inh (remainder l₁ a))) ≡⟨ remainder-set l₂ _ _ ⟩∎
remainder l₂ a ∎)
setters-equal
where
open Lens
inh : Lens.R l₁ → B
inh r = inh′ r (inhabited l₁ r)
f : R l₁ → R l₂
f r = remainder l₂ (_≃_.from (equiv l₁) (r , inh r))
-- If a lens has a propositional remainder type, then this lens is
-- equal to another lens if their setters are equal (assuming
-- univalence).
lenses-equal-if-setters-equal-and-remainder-propositional :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
Is-proposition (Lens.R l₂) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal-and-remainder-propositional
univ l₁ l₂ R₂-prop =
lenses-equal-if-setters-equal′
univ l₁ l₂ f
(λ b r →
b
, (remainder l₂ (_≃_.from (equiv l₁) (r , b)) ≡⟨ R₂-prop _ _ ⟩∎
f r ∎))
(λ a →
f (remainder l₁ a) ≡⟨ R₂-prop _ _ ⟩∎
remainder l₂ a ∎)
where
open Lens
f : R l₁ → R l₂
f r =
Trunc.rec R₂-prop
(λ b → remainder l₂ (_≃_.from (equiv l₁) (r , b)))
(inhabited l₁ r)
-- A generalisation of the previous result: If a lens has a remainder
-- type that is a set, then this lens is equal to another lens if
-- their setters are equal (assuming univalence).
--
-- This result is due to Andrea Vezzosi.
lenses-equal-if-setters-equal-and-remainder-set :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
Is-set (Lens.R l₂) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal-and-remainder-set
{B = B} univ l₁ l₂ R₂-set setters-equal =
lenses-equal-if-setters-equal′
univ l₁ l₂ f
(λ b r →
b
, (remainder l₂ (_≃_.from (equiv l₁) (r , b)) ≡⟨ cong (f₂ r) $ truncation-is-proposition ∣ _ ∣ (inhabited l₁ r) ⟩∎
f r ∎))
(λ a →
f (remainder l₁ a) ≡⟨⟩
f₂ (remainder l₁ a) (inhabited l₁ (remainder l₁ a)) ≡⟨ cong (f₂ (remainder l₁ a)) $
truncation-is-proposition (inhabited l₁ (remainder l₁ a)) ∣ _ ∣ ⟩
f₁ (remainder l₁ a) (get l₁ a) ≡⟨ sym $ f₁-remainder _ _ ⟩∎
remainder l₂ a ∎)
setters-equal
where
open Lens
f₁ : R l₁ → B → R l₂
f₁ r b = remainder l₂ (_≃_.from (equiv l₁) (r , b))
f₁-remainder : ∀ a b → remainder l₂ a ≡ f₁ (remainder l₁ a) b
f₁-remainder a b =
remainder l₂ a ≡⟨ sym $ remainder-set l₂ a b ⟩
remainder l₂ (set l₂ a b) ≡⟨ cong (λ f → remainder l₂ (f a b)) $ sym setters-equal ⟩∎
remainder l₂ (set l₁ a b) ∎
f₂ : R l₁ → ∥ B ∥ → R l₂
f₂ r =
_↔_.to (constant-function↔∥inhabited∥⇒inhabited R₂-set)
( f₁ r
, λ b₁ b₂ →
let a = _≃_.from (equiv l₁) (r , b₁) in
remainder l₂ a ≡⟨ f₁-remainder _ _ ⟩
f₁ (remainder l₁ a) b₂ ≡⟨⟩
remainder l₂ (_≃_.from (equiv l₁) (remainder l₁ a , b₂)) ≡⟨ cong (λ p → f₁ (proj₁ p) b₂) $ _≃_.right-inverse-of (equiv l₁) _ ⟩∎
remainder l₂ (_≃_.from (equiv l₁) (r , b₂)) ∎
)
f : R l₁ → R l₂
f r = f₂ r (inhabited l₁ r)
-- If lenses from A × C to C (where the universe of A is at least as
-- large as the universe of C) with equal setters are equal, then
-- weakly constant functions from C to equivalences between A and B
-- (where B lives in the same universe as A) are coherently constant.
--
-- This result is due to Andrea Vezzosi.
lenses-equal-if-setters-equal→constant→coherently-constant :
∀ ℓ {A B : Type (c ⊔ ℓ)} {C : Type c} →
((l₁ l₂ : Lens (A × C) C) → Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂) →
(A≃B : C → A ≃ B) →
Constant A≃B →
Coherently-constant A≃B
lenses-equal-if-setters-equal→constant→coherently-constant
_ {A = A} {B = B} {C = C} lenses-equal-if-setters-equal A≃B c =
A≃B′ , A≃B≡
where
open Lens
module _ (∥c∥ : ∥ C ∥) where
l₁ l₂ : Lens (A × C) C
l₁ = record
{ R = A
; equiv = F.id
; inhabited = λ _ → ∥c∥
}
l₂ = record
{ R = B
; equiv = A × C ↔⟨ ×-comm ⟩
C × A ↝⟨ ∃-cong A≃B ⟩
C × B ↔⟨ ×-comm ⟩□
B × C □
; inhabited = λ _ → ∥c∥
}
setters-equal : ∀ p c → set l₁ p c ≡ set l₂ p c
setters-equal (a , c₁) c₂ =
cong (_, c₂) $ sym $
(_≃_.from (A≃B c₂) (_≃_.to (A≃B c₁) a) ≡⟨ cong (λ eq → _≃_.from (A≃B c₂) (_≃_.to eq a)) $ c c₁ c₂ ⟩
_≃_.from (A≃B c₂) (_≃_.to (A≃B c₂) a) ≡⟨ _≃_.left-inverse-of (A≃B c₂) a ⟩∎
a ∎)
l₁≡l₂ : l₁ ≡ l₂
l₁≡l₂ =
lenses-equal-if-setters-equal l₁ l₂
(⟨ext⟩ λ p → ⟨ext⟩ λ c → setters-equal p c)
l₁≡l₂′ = _≃_.to (equality-characterisation₀₂ ⊠) l₁≡l₂
A≃B′ : A ≃ B
A≃B′ = ≡⇒≃ $ proj₁ l₁≡l₂′
A≃B≡ : A≃B ≡ A≃B′ ∘ ∣_∣
A≃B≡ = ⟨ext⟩ λ c → Eq.lift-equality ext $ ⟨ext⟩ λ a →
_≃_.to (A≃B c) a ≡⟨⟩
remainder (l₂ ∣ c ∣) (a , c) ≡⟨ sym $ proj₁ (proj₂ (l₁≡l₂′ ∣ c ∣)) _ ⟩
subst id (proj₁ (l₁≡l₂′ ∣ c ∣)) (remainder (l₁ ∣ c ∣) (a , c)) ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩
≡⇒→ (proj₁ (l₁≡l₂′ ∣ c ∣)) (remainder (l₁ ∣ c ∣) (a , c)) ≡⟨⟩
_≃_.to (A≃B′ ∣ c ∣) a ∎
-- It is not the case that, for all types A and B in Type a and all
-- lenses l₁ and l₂ from A to B, that l₁ is equal to l₂ if the lenses
-- have equal setters (assuming univalence).
¬-lenses-equal-if-setters-equal :
Univalence lzero →
¬ ((A B : Type a) (l₁ l₂ : Lens A B) →
Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂)
¬-lenses-equal-if-setters-equal {a = a} univ =
((A B : Type a) (l₁ l₂ : Lens A B) →
Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂) ↝⟨ (λ hyp A B _ f c →
lenses-equal-if-setters-equal→constant→coherently-constant
lzero (hyp (B × A) A) f c) ⟩
((A B : Type a) → ∥ A ∥ → (f : A → B ≃ B) →
Constant f → Coherently-constant f) ↝⟨ C.¬-Constant→Coherently-constant univ ⟩□
⊥ □
-- The functions ≃→lens and ≃→lens′ are pointwise equal (when
-- applicable, assuming univalence).
≃→lens≡≃→lens′ :
{A B : Type a} →
Univalence a →
(A≃B : A ≃ B) → ≃→lens A≃B ≡ ≃→lens′ A≃B
≃→lens≡≃→lens′ {B = B} univ A≃B =
_↔_.from (equality-characterisation₂ ⊠ univ)
( (∥ ↑ _ B ∥ ↔⟨ ∥∥-cong Bij.↑↔ ⟩□
∥ B ∥ □)
, (λ _ → refl _)
, (λ _ → refl _)
)
-- If the getter of a lens is an equivalence, then the lens formed
-- using the equivalence (using ≃→lens) is equal to the lens (assuming
-- univalence).
get-equivalence→≡≃→lens :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(l : Lens A B) →
(eq : Is-equivalence (Lens.get l)) →
l ≡ ≃→lens Eq.⟨ Lens.get l , eq ⟩
get-equivalence→≡≃→lens {A = A} {B = B} univ l eq =
lenses-equal-if-setters-equal-and-remainder-propositional
univ l (≃→lens Eq.⟨ Lens.get l , eq ⟩)
truncation-is-proposition
(⟨ext⟩ λ a → ⟨ext⟩ λ b →
set l a b ≡⟨ sym $ from≡set l eq a b ⟩
_≃_.from A≃B b ≡⟨⟩
set (≃→lens A≃B) a b ∎)
where
open Lens
A≃B : A ≃ B
A≃B = Eq.⟨ _ , eq ⟩
-- A variant of get-equivalence→≡≃→lens.
get-equivalence→≡≃→lens′ :
{A B : Type a} →
Univalence a →
(l : Lens A B) →
(eq : Is-equivalence (Lens.get l)) →
l ≡ ≃→lens′ Eq.⟨ Lens.get l , eq ⟩
get-equivalence→≡≃→lens′ {A = A} {B = B} univ l eq =
l ≡⟨ get-equivalence→≡≃→lens univ _ _ ⟩
≃→lens A≃B ≡⟨ ≃→lens≡≃→lens′ univ _ ⟩∎
≃→lens′ A≃B ∎
where
A≃B = Eq.⟨ Lens.get l , eq ⟩
------------------------------------------------------------------------
-- Some equivalences
-- "The getter is an equivalence" is equivalent to "the remainder type
-- is equivalent to the propositional truncation of the codomain".
get-equivalence≃inhabited-equivalence :
(l : Lens A B) →
Is-equivalence (Lens.get l) ≃ Is-equivalence (Lens.inhabited l)
get-equivalence≃inhabited-equivalence {A = A} {B = B} l =
Is-equivalence (get l) ↝⟨ Eq.⇔→≃
(Eq.propositional ext _)
(Eq.propositional ext _)
(flip (Eq.Two-out-of-three.g∘f-f (Eq.two-out-of-three _ _))
(_≃_.is-equivalence (equiv l)))
(Eq.Two-out-of-three.f-g (Eq.two-out-of-three _ _)
(_≃_.is-equivalence (equiv l))) ⟩
Is-equivalence (proj₂ ⦂ (R l × B → B)) ↝⟨ inverse $ equivalence-to-∥∥≃proj₂-equivalence _ ⟩□
Is-equivalence (inhabited l) □
where
open Lens
-- "The getter is an equivalence" is equivalent to "the remainder type
-- is equivalent to the propositional truncation of the codomain".
get-equivalence≃remainder≃∥codomain∥ :
(l : Lens A B) →
Is-equivalence (Lens.get l) ≃ (Lens.R l ≃ ∥ B ∥)
get-equivalence≃remainder≃∥codomain∥ {A = A} {B = B} l =
Is-equivalence (get l) ↝⟨ get-equivalence≃inhabited-equivalence l ⟩
Is-equivalence (inhabited l) ↔⟨ inverse $
drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Π-closure ext 1 λ _ →
truncation-is-proposition)
(inhabited l) ⟩
(∃ λ (inh : R l → ∥ B ∥) → Is-equivalence inh) ↔⟨ inverse Eq.≃-as-Σ ⟩□
R l ≃ ∥ B ∥ □
where
open Lens
------------------------------------------------------------------------
-- Some lens isomorphisms
-- A generalised variant of Lens preserves bijections.
Lens-cong′ :
A₁ ↔ A₂ → B₁ ↔ B₂ →
(∃ λ (R : Type r) → A₁ ≃ (R × B₁) × (R → ∥ B₁ ∥)) ↔
(∃ λ (R : Type r) → A₂ ≃ (R × B₂) × (R → ∥ B₂ ∥))
Lens-cong′ A₁↔A₂ B₁↔B₂ =
∃-cong λ _ →
Eq.≃-preserves-bijections ext A₁↔A₂ (F.id ×-cong B₁↔B₂)
×-cong
→-cong ext F.id (∥∥-cong B₁↔B₂)
-- Lens preserves level-preserving bijections.
Lens-cong :
{A₁ A₂ : Type a} {B₁ B₂ : Type b} →
A₁ ↔ A₂ → B₁ ↔ B₂ →
Lens A₁ B₁ ↔ Lens A₂ B₂
Lens-cong {A₁ = A₁} {A₂ = A₂} {B₁ = B₁} {B₂ = B₂} A₁↔A₂ B₁↔B₂ =
Lens A₁ B₁ ↔⟨ Lens-as-Σ ⟩
(∃ λ R → A₁ ≃ (R × B₁) × (R → ∥ B₁ ∥)) ↝⟨ Lens-cong′ A₁↔A₂ B₁↔B₂ ⟩
(∃ λ R → A₂ ≃ (R × B₂) × (R → ∥ B₂ ∥)) ↔⟨ inverse Lens-as-Σ ⟩□
Lens A₂ B₂ □
-- If B is a proposition, then Lens A B is isomorphic to A → B
-- (assuming univalence).
lens-to-proposition↔get :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-proposition B →
Lens A B ↔ (A → B)
lens-to-proposition↔get {b = b} {A = A} {B = B} univ B-prop =
Lens A B ↔⟨ Lens-as-Σ ⟩
(∃ λ R → A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ →
∥∥↔ B-prop) ⟩
(∃ λ R → A ≃ (R × B) × (R → B)) ↝⟨ (∃-cong λ _ →
×-cong₁ λ R→B →
Eq.≃-preserves-bijections ext F.id $
drop-⊤-right λ r →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible B-prop (R→B r)) ⟩
(∃ λ R → A ≃ R × (R → B)) ↔⟨ (∃-cong λ _ →
∃-cong λ A≃R →
→-cong {k = equivalence} ext (inverse A≃R) F.id) ⟩
(∃ λ R → A ≃ R × (A → B)) ↝⟨ Σ-assoc ⟩
(∃ λ R → A ≃ R) × (A → B) ↝⟨ (drop-⊤-left-× λ _ → other-singleton-with-≃-↔-⊤ {b = b} ext univ) ⟩□
(A → B) □
_ :
{A : Type a} {B : Type b}
(univ : Univalence (a ⊔ b))
(prop : Is-proposition B)
(l : Lens A B) →
_↔_.to (lens-to-proposition↔get univ prop) l ≡
Trunc.rec prop id ∘ Lens.inhabited l ∘ Lens.remainder l
_ = λ _ _ _ → refl _
-- A variant of the previous result.
lens-to-proposition≃get :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-proposition B →
Lens A B ≃ (A → B)
lens-to-proposition≃get {b = b} {A = A} {B = B} univ prop = Eq.↔→≃
get
from
refl
(λ l →
let lemma =
↑ b A ↔⟨ Bij.↑↔ ⟩
A ↝⟨ equiv l ⟩
R l × B ↔⟨ (drop-⊤-right λ r → _⇔_.to contractible⇔↔⊤ $
Trunc.rec
(Contractible-propositional ext)
(propositional⇒inhabited⇒contractible prop)
(inhabited l r)) ⟩□
R l □
in
_↔_.from (equality-characterisation₁ ⊠ univ)
(lemma , λ _ → refl _))
where
open Lens
from = λ get → record
{ R = ↑ b A
; equiv = A ↔⟨ inverse Bij.↑↔ ⟩
↑ b A ↔⟨ (inverse $ drop-⊤-right {k = bijection} λ (lift a) →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible prop (get a)) ⟩□
↑ b A × B □
; inhabited = ∣_∣ ∘ get ∘ lower
}
_ :
{A : Type a} {B : Type b}
(univ : Univalence (a ⊔ b))
(prop : Is-proposition B)
(l : Lens A B) →
_≃_.to (lens-to-proposition≃get univ prop) l ≡ Lens.get l
_ = λ _ _ _ → refl _
-- If B is contractible, then Lens A B is isomorphic to ⊤ (assuming
-- univalence).
lens-to-contractible↔⊤ :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Contractible B →
Lens A B ↔ ⊤
lens-to-contractible↔⊤ {A = A} {B} univ cB =
Lens A B ↝⟨ lens-to-proposition↔get univ (mono₁ 0 cB) ⟩
(A → B) ↝⟨ →-cong ext F.id $ _⇔_.to contractible⇔↔⊤ cB ⟩
(A → ⊤) ↝⟨ →-right-zero ⟩□
⊤ □
-- Lens A ⊥ is isomorphic to ¬ A (assuming univalence).
lens-to-⊥↔¬ :
{A : Type a} →
Univalence (a ⊔ b) →
Lens A (⊥ {ℓ = b}) ↔ ¬ A
lens-to-⊥↔¬ {A = A} univ =
Lens A ⊥ ↝⟨ lens-to-proposition↔get univ ⊥-propositional ⟩
(A → ⊥) ↝⟨ inverse $ ¬↔→⊥ ext ⟩□
¬ A □
-- If A is contractible, then Lens A B is isomorphic to Contractible B
-- (assuming univalence).
lens-from-contractible↔codomain-contractible :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Contractible A →
Lens A B ↔ Contractible B
lens-from-contractible↔codomain-contractible {A = A} {B} univ cA =
Lens A B ↔⟨ Lens-as-Σ ⟩
(∃ λ R → A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ →
Eq.≃-preserves-bijections ext (_⇔_.to contractible⇔↔⊤ cA) F.id
×-cong
F.id) ⟩
(∃ λ R → ⊤ ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → Eq.inverse-isomorphism ext ×-cong F.id) ⟩
(∃ λ R → (R × B) ≃ ⊤ × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → inverse (contractible↔≃⊤ ext) ×-cong F.id) ⟩
(∃ λ R → Contractible (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → Contractible-commutes-with-× ext ×-cong F.id) ⟩
(∃ λ R → (Contractible R × Contractible B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → inverse ×-assoc) ⟩
(∃ λ R → Contractible R × Contractible B × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → ∃-cong λ cR →
F.id
×-cong
→-cong ext (_⇔_.to contractible⇔↔⊤ cR) F.id) ⟩
(∃ λ R → Contractible R × Contractible B × (⊤ → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → F.id ×-cong F.id ×-cong Π-left-identity) ⟩
(∃ λ R → Contractible R × Contractible B × ∥ B ∥) ↝⟨ ∃-cong (λ _ → ×-comm) ⟩
(∃ λ R → (Contractible B × ∥ B ∥) × Contractible R) ↝⟨ ∃-comm ⟩
(Contractible B × ∥ B ∥) × (∃ λ R → Contractible R) ↝⟨ drop-⊤-right (λ _ → ∃Contractible↔⊤ ext univ) ⟩
Contractible B × ∥ B ∥ ↝⟨ drop-⊤-right (λ cB → inhabited⇒∥∥↔⊤ ∣ proj₁ cB ∣) ⟩□
Contractible B □
-- Lens ⊥ B is isomorphic to the unit type (assuming univalence).
lens-from-⊥↔⊤ :
{B : Type b} →
Univalence (a ⊔ b) →
Lens (⊥ {ℓ = a}) B ↔ ⊤
lens-from-⊥↔⊤ {B = B} univ =
_⇔_.to contractible⇔↔⊤ $
isomorphism-to-lens
(⊥ ↝⟨ inverse ×-left-zero ⟩□
⊥ × B □) ,
λ l → _↔_.from (equality-characterisation₁ ⊠ univ)
( (⊥ × ∥ B ∥ ↔⟨ ×-left-zero ⟩
⊥₀ ↔⟨ lemma l ⟩□
R l □)
, λ x → ⊥-elim x
)
where
open Lens
lemma : (l : Lens ⊥ B) → ⊥₀ ↔ R l
lemma l = record
{ surjection = record
{ logical-equivalence = record
{ to = ⊥-elim
; from = whatever
}
; right-inverse-of = whatever
}
; left-inverse-of = λ x → ⊥-elim x
}
where
whatever : ∀ {ℓ} {Whatever : R l → Type ℓ} → (r : R l) → Whatever r
whatever r = ⊥-elim {ℓ = lzero} $ Trunc.rec
⊥-propositional
(λ b → ⊥-elim (_≃_.from (equiv l) (r , b)))
(inhabited l r)
-- There is an equivalence between A ≃ B and
-- ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l) (assuming
-- univalence).
--
-- See also ≃≃≊ below.
≃-≃-Σ-Lens-Is-equivalence-get :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
(A ≃ B) ≃ (∃ λ (l : Lens A B) → Is-equivalence (Lens.get l))
≃-≃-Σ-Lens-Is-equivalence-get {a = a} {A = A} {B = B} univ =
A ≃ B ↝⟨ Eq.≃-preserves ext F.id (inverse ∥∥×≃) ⟩
A ≃ (∥ B ∥ × B) ↝⟨ inverse $
Eq.↔⇒≃ Σ-left-identity F.∘
Σ-cong (singleton-with-≃-↔-⊤ {a = a} ext univ)
(λ (C , C≃∥B∥) → Eq.≃-preserves ext F.id (×-cong₁ λ _ → C≃∥B∥)) ⟩
(∃ λ ((R , _) : ∃ λ R → R ≃ ∥ B ∥) → A ≃ (R × B)) ↔⟨ inverse $
(Σ-cong (∃-cong λ _ → inverse Eq.≃-as-Σ) λ _ → F.id) F.∘
Σ-assoc F.∘
(∃-cong λ _ → inverse (Σ-assoc F.∘ ×-comm)) F.∘
inverse Σ-assoc F.∘
Σ-cong Lens-as-Σ (λ _ → F.id) ⟩
(∃ λ (l : Lens A B) → Is-equivalence (inhabited l)) ↝⟨ inverse $ ∃-cong get-equivalence≃inhabited-equivalence ⟩□
(∃ λ (l : Lens A B) → Is-equivalence (get l)) □
where
open Lens
-- The right-to-left direction of ≃-≃-Σ-Lens-Is-equivalence-get
-- returns the lens's getter (and some proof).
to-from-≃-≃-Σ-Lens-Is-equivalence-get≡get :
{A : Type a} {B : Type b} →
(univ : Univalence (a ⊔ b))
(p@(l , _) : ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l)) →
_≃_.to (_≃_.from (≃-≃-Σ-Lens-Is-equivalence-get univ) p) ≡
Lens.get l
to-from-≃-≃-Σ-Lens-Is-equivalence-get≡get _ _ = refl _
------------------------------------------------------------------------
-- Results relating different kinds of lenses
-- In general there is no split surjection from Lens A B to
-- Traditional.Lens A B (assuming univalence).
¬Lens↠Traditional-lens :
Univalence lzero →
¬ (Lens 𝕊¹ ⊤ ↠ Traditional.Lens 𝕊¹ ⊤)
¬Lens↠Traditional-lens univ =
Lens 𝕊¹ ⊤ ↠ Traditional.Lens 𝕊¹ ⊤ ↝⟨ flip H-level.respects-surjection 1 ⟩
(Is-proposition (Lens 𝕊¹ ⊤) → Is-proposition (Traditional.Lens 𝕊¹ ⊤)) ↝⟨ _$ mono₁ 0 (_⇔_.from contractible⇔↔⊤ $
lens-to-contractible↔⊤ univ ⊤-contractible) ⟩
Is-proposition (Traditional.Lens 𝕊¹ ⊤) ↝⟨ Traditional.¬-lens-to-⊤-propositional univ ⟩□
⊥ □
-- Some lemmas used in Lens↠Traditional-lens and Lens↔Traditional-lens
-- below.
private
module Lens↔Traditional-lens
{A : Type a} {B : Type b}
(A-set : Is-set A)
where
from : Block "conversion" → Traditional.Lens A B → Lens A B
from ⊠ l = isomorphism-to-lens
(A ↔⟨ Traditional.≃Σ∥set⁻¹∥× A-set l ⟩□
(∃ λ (f : B → A) → ∥ set ⁻¹ f ∥) × B □)
where
open Traditional.Lens l
to∘from : ∀ bc l → Lens.traditional-lens (from bc l) ≡ l
to∘from ⊠ l = Traditional.equal-laws→≡
(λ a _ → B-set a _ _)
(λ _ → A-set _ _)
(λ _ _ _ → A-set _ _)
where
open Traditional.Lens l
B-set : A → Is-set B
B-set a =
Traditional.h-level-respects-lens-from-inhabited 2 l a A-set
from∘to :
Univalence (a ⊔ b) →
∀ bc l → from bc (Lens.traditional-lens l) ≡ l
from∘to univ ⊠ l′ =
_↔_.from (equality-characterisation₁ ⊠ univ)
( ((∃ λ (f : B → A) → ∥ set ⁻¹ f ∥) × ∥ B ∥ ↝⟨ (×-cong₁ lemma₃) ⟩
(∥ B ∥ → R) × ∥ B ∥ ↝⟨ lemma₂ ⟩□
R □)
, λ p →
( proj₁ (_≃_.to l (_≃_.from l (_≃_.to l p)))
, proj₂ (_≃_.to l p)
) ≡⟨ cong (_, proj₂ (_≃_.to l p)) $ cong proj₁ $
_≃_.right-inverse-of l _ ⟩∎
_≃_.to l p ∎
)
where
open Lens l′ renaming (equiv to l)
B-set : A → Is-set B
B-set a =
Traditional.h-level-respects-lens-from-inhabited
2
(Lens.traditional-lens l′)
a
A-set
R-set : Is-set R
R-set =
[inhabited⇒+]⇒+ 1 λ r →
Trunc.rec
(H-level-propositional ext 2)
(λ b → proj₁-closure (const b) 2 $
H-level.respects-surjection
(_≃_.surjection l) 2 A-set)
(inhabited r)
lemma₁ :
∥ B ∥ →
(f : B → A) →
∥ set ⁻¹ f ∥ ≃ (∀ b b′ → set (f b) b′ ≡ f b′)
lemma₁ ∥b∥ f = Eq.⇔→≃
truncation-is-proposition
prop
(Trunc.rec prop λ (a , set-a≡f) b b′ →
set (f b) b′ ≡⟨ cong (λ f → set (f b) b′) $ sym set-a≡f ⟩
set (set a b) b′ ≡⟨ set-set _ _ _ ⟩
set a b′ ≡⟨ cong (_$ b′) set-a≡f ⟩∎
f b′ ∎)
(λ hyp →
flip ∥∥-map ∥b∥ λ b →
f b , ⟨ext⟩ (hyp b))
where
prop =
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
lemma₂ : ((∥ B ∥ → R) × ∥ B ∥) ≃ R
lemma₂ = Eq.↔→≃
(λ (f , ∥b∥) → f ∥b∥)
(λ r → (λ _ → r) , inhabited r)
refl
(λ (f , ∥b∥) → cong₂ _,_
(⟨ext⟩ λ ∥b∥′ →
f ∥b∥ ≡⟨ cong f (truncation-is-proposition _ _) ⟩∎
f ∥b∥′ ∎)
(truncation-is-proposition _ _))
lemma₃ = λ ∥b∥ →
(∃ λ (f : B → A) → ∥ set ⁻¹ f ∥) ↝⟨ ∃-cong (lemma₁ ∥b∥) ⟩
(∃ λ (f : B → A) → ∀ b b′ → set (f b) b′ ≡ f b′) ↝⟨ (Σ-cong (→-cong ext F.id l) λ f →
∀-cong ext λ b → ∀-cong ext λ b′ →
≡⇒↝ _ $ cong (_≃_.from l (proj₁ (_≃_.to l (f b)) , b′) ≡_) $ sym $
_≃_.left-inverse-of l _) ⟩
(∃ λ (f : B → R × B) →
∀ b b′ → _≃_.from l (proj₁ (f b) , b′) ≡ _≃_.from l (f b′)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
Eq.≃-≡ (inverse l)) ⟩
(∃ λ (f : B → R × B) → ∀ b b′ → (proj₁ (f b) , b′) ≡ f b′) ↔⟨ (Σ-cong ΠΣ-comm λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
inverse $ ≡×≡↔≡) ⟩
(∃ λ ((f , g) : (B → R) × (B → B)) →
∀ b b′ → f b ≡ f b′ × b′ ≡ g b′) ↔⟨ (Σ-assoc F.∘
(∃-cong λ _ →
∃-comm F.∘
∃-cong λ _ →
ΠΣ-comm F.∘
∀-cong ext λ _ →
ΠΣ-comm) F.∘
inverse Σ-assoc) ⟩
((∃ λ (f : B → R) → Constant f) ×
(∃ λ (g : B → B) → B → ∀ b → b ≡ g b)) ↔⟨ (∃-cong $ uncurry λ f _ → ∃-cong λ _ → inverse $
→-intro ext (λ b → B-set (_≃_.from l (f b , b)))) ⟩
((∃ λ (f : B → R) → Constant f) ×
(∃ λ (g : B → B) → ∀ b → b ≡ g b)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
Eq.extensionality-isomorphism ext) ⟩
((∃ λ (f : B → R) → Constant f) × (∃ λ (g : B → B) → id ≡ g)) ↔⟨ (drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∃ λ (f : B → R) → Constant f) ↝⟨ constant-function≃∥inhabited∥⇒inhabited R-set ⟩□
(∥ B ∥ → R) □
iso :
Block "conversion" →
Univalence (a ⊔ b) →
Lens A B ↔ Traditional.Lens A B
iso bc univ = record
{ surjection = record
{ logical-equivalence = record { from = from bc }
; right-inverse-of = to∘from bc
}
; left-inverse-of = from∘to univ bc
}
-- If the domain A is a set, then there is a split surjection from
-- Lens A B to Traditional.Lens A B.
Lens↠Traditional-lens :
Block "conversion" →
Is-set A →
Lens A B ↠ Traditional.Lens A B
Lens↠Traditional-lens {A = A} {B = B} bc A-set = record
{ logical-equivalence = record
{ to = Lens.traditional-lens
; from = Lens↔Traditional-lens.from A-set bc
}
; right-inverse-of = Lens↔Traditional-lens.to∘from A-set bc
}
-- The split surjection above preserves getters and setters.
Lens↠Traditional-lens-preserves-getters-and-setters :
{A : Type a}
(b : Block "conversion")
(s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_↠_.logical-equivalence (Lens↠Traditional-lens b s))
Lens↠Traditional-lens-preserves-getters-and-setters ⊠ _ =
(λ _ → refl _ , refl _) , (λ _ → refl _ , refl _)
-- If the domain A is a set, then Traditional.Lens A B and Lens A B
-- are isomorphic (assuming univalence).
Lens↔Traditional-lens :
{A : Type a} {B : Type b} →
Block "conversion" →
Univalence (a ⊔ b) →
Is-set A →
Lens A B ↔ Traditional.Lens A B
Lens↔Traditional-lens bc univ A-set =
Lens↔Traditional-lens.iso A-set bc univ
-- The isomorphism preserves getters and setters.
Lens↔Traditional-lens-preserves-getters-and-setters :
{A : Type a} {B : Type b}
(bc : Block "conversion")
(univ : Univalence (a ⊔ b))
(s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_↔_.logical-equivalence (Lens↔Traditional-lens bc univ s))
Lens↔Traditional-lens-preserves-getters-and-setters bc _ =
Lens↠Traditional-lens-preserves-getters-and-setters bc
-- If the codomain B is an inhabited set, then Lens A B and
-- Traditional.Lens A B are logically equivalent.
--
-- This definition is inspired by the statement of Corollary 13 from
-- "Algebras and Update Strategies" by Johnson, Rosebrugh and Wood.
--
-- See also Lens.Non-dependent.Equivalent-preimages.coherent↠higher.
Lens⇔Traditional-lens :
Is-set B →
B →
Lens A B ⇔ Traditional.Lens A B
Lens⇔Traditional-lens {B = B} {A = A} B-set b₀ = record
{ to = Lens.traditional-lens
; from = from
}
where
from : Traditional.Lens A B → Lens A B
from l = isomorphism-to-lens
(A ↔⟨ Traditional.≃get⁻¹× B-set b₀ l ⟩□
(∃ λ (a : A) → get a ≡ b₀) × B □)
where
open Traditional.Lens l
-- The logical equivalence preserves getters and setters.
Lens⇔Traditional-lens-preserves-getters-and-setters :
{B : Type b}
(s : Is-set B)
(b₀ : B) →
Preserves-getters-and-setters-⇔ A B (Lens⇔Traditional-lens s b₀)
Lens⇔Traditional-lens-preserves-getters-and-setters _ b₀ =
(λ _ → refl _ , refl _)
, (λ l → refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
set l (set l a b₀) b ≡⟨ set-set l _ _ _ ⟩∎
set l a b ∎)
where
open Traditional.Lens
------------------------------------------------------------------------
-- Some results related to h-levels
-- If the domain of a lens is inhabited and has h-level n, then the
-- codomain also has h-level n.
h-level-respects-lens-from-inhabited :
∀ n → Lens A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited n =
Traditional.h-level-respects-lens-from-inhabited n ∘
Lens.traditional-lens
-- This is not necessarily true for arbitrary domains (assuming
-- univalence).
¬-h-level-respects-lens :
Univalence lzero →
¬ (∀ n → Lens ⊥₀ Bool → H-level n ⊥₀ → H-level n Bool)
¬-h-level-respects-lens univ resp =
$⟨ ⊥-propositional ⟩
Is-proposition ⊥ ↝⟨ resp 1 (_↔_.from (lens-from-⊥↔⊤ univ) _) ⟩
Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□
⊥ □
-- In fact, there is a lens with a proposition as its domain and a
-- non-set as its codomain (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.¬-𝕊¹-set.)
lens-from-proposition-to-non-set :
Univalence (# 0) →
∃ λ (A : Type a) → ∃ λ (B : Type b) →
Lens A B × Is-proposition A × ¬ Is-set B
lens-from-proposition-to-non-set {b = b} _ =
⊥
, ↑ b 𝕊¹
, record
{ R = ⊥
; equiv = ⊥ ↔⟨ inverse ×-left-zero ⟩□
⊥ × ↑ _ 𝕊¹ □
; inhabited = ⊥-elim
}
, ⊥-propositional
, Circle.¬-𝕊¹-set ∘
H-level.respects-surjection (_↔_.surjection Bij.↑↔) 2
-- Lenses with contractible domains have contractible codomains.
contractible-to-contractible :
Lens A B → Contractible A → Contractible B
contractible-to-contractible l c =
h-level-respects-lens-from-inhabited _ l (proj₁ c) c
-- If the domain type of a lens has h-level n, then the remainder type
-- also has h-level n.
remainder-has-same-h-level-as-domain :
(l : Lens A B) → ∀ n → H-level n A → H-level n (Lens.R l)
remainder-has-same-h-level-as-domain {A = A} {B = B} l n =
H-level n A ↝⟨ H-level.respects-surjection (_≃_.surjection equiv) n ⟩
H-level n (R × B) ↝⟨ H-level-×₁ inhabited n ⟩□
H-level n R □
where
open Lens l
-- If the getter function is an equivalence, then the remainder type
-- is propositional.
get-equivalence→remainder-propositional :
(l : Lens A B) →
Is-equivalence (Lens.get l) →
Is-proposition (Lens.R l)
get-equivalence→remainder-propositional {B = B} l =
Is-equivalence (get l) ↔⟨ get-equivalence≃remainder≃∥codomain∥ l ⟩
R l ≃ ∥ B ∥ ↝⟨ ≃∥∥→Is-proposition ⟩□
Is-proposition (R l) □
where
open Lens
-- If the getter function is pointwise equal to the identity
-- function, then the remainder type is propositional.
get≡id→remainder-propositional :
(l : Lens A A) →
(∀ a → Lens.get l a ≡ a) →
Is-proposition (Lens.R l)
get≡id→remainder-propositional l =
(∀ a → Lens.get l a ≡ a) ↝⟨ (λ hyp → Eq.respects-extensional-equality (sym ∘ hyp) (_≃_.is-equivalence F.id)) ⟩
Is-equivalence (Lens.get l) ↝⟨ get-equivalence→remainder-propositional l ⟩□
Is-proposition (Lens.R l) □
-- It is not necessarily the case that contractibility of A implies
-- contractibility of Lens A B (assuming univalence).
¬-Contractible-closed-domain :
∀ {a b} →
Univalence (a ⊔ b) →
¬ ({A : Type a} {B : Type b} →
Contractible A → Contractible (Lens A B))
¬-Contractible-closed-domain univ closure =
$⟨ ↑⊤-contractible ⟩
Contractible (↑ _ ⊤) ↝⟨ closure ⟩
Contractible (Lens (↑ _ ⊤) ⊥) ↝⟨ H-level.respects-surjection
(_↔_.surjection $ lens-from-contractible↔codomain-contractible univ ↑⊤-contractible)
0 ⟩
Contractible (Contractible ⊥) ↝⟨ proj₁ ⟩
Contractible ⊥ ↝⟨ proj₁ ⟩
⊥ ↝⟨ ⊥-elim ⟩□
⊥₀ □
where
↑⊤-contractible = ↑-closure 0 ⊤-contractible
-- Contractible is closed under Lens A (assuming univalence).
Contractible-closed-codomain :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Contractible B → Contractible (Lens A B)
Contractible-closed-codomain {A = A} {B} univ cB =
$⟨ lens-to-contractible↔⊤ univ cB ⟩
Lens A B ↔ ⊤ ↝⟨ _⇔_.from contractible⇔↔⊤ ⟩□
Contractible (Lens A B) □
-- If B is a proposition, then Lens A B is also a proposition
-- (assuming univalence).
Is-proposition-closed-codomain :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-proposition B → Is-proposition (Lens A B)
Is-proposition-closed-codomain {A = A} {B} univ B-prop =
$⟨ Π-closure ext 1 (λ _ → B-prop) ⟩
Is-proposition (A → B) ↝⟨ H-level.respects-surjection
(_↔_.surjection $ inverse $ lens-to-proposition↔get univ B-prop)
1 ⟩□
Is-proposition (Lens A B) □
private
-- If A has h-level 1 + n and equivalence between certain remainder
-- types has h-level n, then Lens A B has h-level 1 + n (assuming
-- univalence).
domain-1+-remainder-equivalence-0+⇒lens-1+ :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
∀ n →
H-level (1 + n) A →
((l₁ l₂ : Lens A B) →
H-level n (Lens.R l₁ ≃ Lens.R l₂)) →
H-level (1 + n) (Lens A B)
domain-1+-remainder-equivalence-0+⇒lens-1+
{A = A} univ n hA hR = ≡↔+ _ _ λ l₁ l₂ → $⟨ Σ-closure n (hR l₁ l₂) (λ _ →
Π-closure ext n λ _ →
+⇒≡ hA) ⟩
H-level n (∃ λ (eq : R l₁ ≃ R l₂) → ∀ p → _≡_ {A = A} _ _) ↝⟨ H-level.respects-surjection
(_↔_.surjection $ inverse $ equality-characterisation₃ univ)
n ⟩□
H-level n (l₁ ≡ l₂) □
where
open Lens
-- If A is a proposition, then Lens A B is also a proposition
-- (assuming univalence).
Is-proposition-closed-domain :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-proposition A → Is-proposition (Lens A B)
Is-proposition-closed-domain {b = b} {A = A} {B = B} univ A-prop =
$⟨ R₁≃R₂ ⟩
(∀ l₁ l₂ → R l₁ ≃ R l₂) ↝⟨ (λ hyp l₁ l₂ → propositional⇒inhabited⇒contractible
(Eq.left-closure ext 0 (R-prop l₁))
(hyp l₁ l₂)) ⟩
(∀ l₁ l₂ → Contractible (R l₁ ≃ R l₂)) ↝⟨ domain-1+-remainder-equivalence-0+⇒lens-1+ univ 0 A-prop ⟩□
Is-proposition (Lens A B) □
where
open Lens
R-prop : (l : Lens A B) → Is-proposition (R l)
R-prop l =
remainder-has-same-h-level-as-domain l 1 A-prop
remainder⁻¹ : (l : Lens A B) → R l → A
remainder⁻¹ l r = Trunc.rec
A-prop
(λ b → _≃_.from (equiv l) (r , b))
(inhabited l r)
R-to-R : (l₁ l₂ : Lens A B) → R l₁ → R l₂
R-to-R l₁ l₂ = remainder l₂ ∘ remainder⁻¹ l₁
involutive : (l : Lens A B) {f : R l → R l} → ∀ r → f r ≡ r
involutive l _ = R-prop l _ _
R₁≃R₂ : (l₁ l₂ : Lens A B) → R l₁ ≃ R l₂
R₁≃R₂ l₁ l₂ = Eq.↔⇒≃ $
Bij.bijection-from-involutive-family
R-to-R (λ l _ → involutive l) l₁ l₂
-- An alternative proof.
Is-proposition-closed-domain′ :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-proposition A → Is-proposition (Lens A B)
Is-proposition-closed-domain′ {A = A} {B} univ A-prop =
$⟨ Traditional.lens-preserves-h-level-of-domain 0 A-prop ⟩
Is-proposition (Traditional.Lens A B) ↝⟨ H-level.respects-surjection
(_↔_.surjection $ inverse $ Lens↔Traditional-lens ⊠ univ (mono₁ 1 A-prop))
1 ⟩□
Is-proposition (Lens A B) □
-- If A is a set, then Lens A B is also a set (assuming univalence).
--
-- TODO: Can one prove that the corresponding result does not hold for
-- codomains? Are there types A and B such that B is a set, but
-- Lens A B is not?
Is-set-closed-domain :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
Is-set A → Is-set (Lens A B)
Is-set-closed-domain {A = A} {B} univ A-set =
$⟨ (λ {_ _} → Traditional.lens-preserves-h-level-of-domain 1 A-set) ⟩
Is-set (Traditional.Lens A B) ↝⟨ H-level.respects-surjection
(_↔_.surjection $ inverse $ Lens↔Traditional-lens ⊠ univ A-set)
2 ⟩□
Is-set (Lens A B) □
-- If A has h-level n, then Lens A B has h-level 1 + n (assuming
-- univalence).
--
-- See also
-- Lens.Non-dependent.Higher.Coinductive.Small.lens-preserves-h-level-of-domain.
domain-0+⇒lens-1+ :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
∀ n → H-level n A → H-level (1 + n) (Lens A B)
domain-0+⇒lens-1+ {A = A} {B} univ n hA =
$⟨ (λ l₁ l₂ → Eq.h-level-closure ext n (hR l₁) (hR l₂)) ⟩
((l₁ l₂ : Lens A B) → H-level n (R l₁ ≃ R l₂)) ↝⟨ domain-1+-remainder-equivalence-0+⇒lens-1+ univ n (mono₁ n hA) ⟩□
H-level (1 + n) (Lens A B) □
where
open Lens
hR : ∀ l → H-level n (R l)
hR l = remainder-has-same-h-level-as-domain l n hA
-- An alternative proof.
domain-0+⇒lens-1+′ :
{A : Type a} {B : Type b} →
Univalence (a ⊔ b) →
∀ n → H-level n A → H-level (1 + n) (Lens A B)
domain-0+⇒lens-1+′ {A = A} {B} univ n hA =
$⟨ Σ-closure (1 + n)
(∃-H-level-H-level-1+ ext univ n)
(λ _ → ×-closure (1 + n)
(Eq.left-closure ext n (mono₁ n hA))
(Π-closure ext (1 + n) λ _ →
mono (Nat.suc≤suc (Nat.zero≤ n)) $
truncation-is-proposition)) ⟩
H-level (1 + n)
(∃ λ (p : ∃ (H-level n)) →
A ≃ (proj₁ p × B) × (proj₁ p → ∥ B ∥)) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse iso) (1 + n) ⟩□
H-level (1 + n) (Lens A B) □
where
open Lens
iso =
Lens A B ↝⟨ inverse $ drop-⊤-right (λ l →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(H-level-propositional ext n)
(remainder-has-same-h-level-as-domain l n hA)) ⟩
(∃ λ (l : Lens A B) → H-level n (R l)) ↝⟨ inverse Σ-assoc F.∘ Σ-cong Lens-as-Σ (λ _ → F.id) ⟩
(∃ λ R → (A ≃ (R × B) × (R → ∥ B ∥)) × H-level n R) ↝⟨ (∃-cong λ _ → ×-comm) ⟩
(∃ λ R → H-level n R × A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ Σ-assoc ⟩□
(∃ λ (p : ∃ (H-level n)) →
A ≃ (proj₁ p × B) × (proj₁ p → ∥ B ∥)) □
------------------------------------------------------------------------
-- Some existence results
-- There is, in general, no lens for the first projection from a
-- Σ-type.
no-first-projection-lens :
¬ Lens (∃ λ (b : Bool) → b ≡ true) Bool
no-first-projection-lens =
Non-dependent.no-first-projection-lens
Lens contractible-to-contractible
-- A variant of the previous result: If A is merely inhabited, and one
-- can "project" out a boolean from a value of type A, but this
-- boolean is necessarily true, then there is no lens corresponding to
-- this projection.
no-singleton-projection-lens :
∥ A ∥ →
(bool : A → Bool) →
(∀ x → bool x ≡ true) →
¬ ∃ λ (l : Lens A Bool) →
∀ x → Lens.get l x ≡ bool x
no-singleton-projection-lens =
Non-dependent.no-singleton-projection-lens _ _ Lens.get-set
------------------------------------------------------------------------
-- Equal lenses can be "observably different"
-- An example based on one presented in "Shattered lens" by Oleg
-- Grenrus.
--
-- Grenrus states that there are two lenses with equal getters and
-- setters that are "observably different".
-- A lemma used to construct the two lenses of the example.
grenrus-example : (Bool → Bool ↔ Bool) → Lens (Bool × Bool) Bool
grenrus-example eq = record
{ R = Bool
; inhabited = ∣_∣
; equiv = Bool × Bool ↔⟨ ×-cong₁ eq ⟩□
Bool × Bool □
}
-- The two lenses.
grenrus-example₁ = grenrus-example (if_then F.id else Bool.swap)
grenrus-example₂ = grenrus-example (if_then Bool.swap else F.id)
-- The two lenses have equal setters.
set-grenrus-example₁≡set-grenrus-example₂ :
Lens.set grenrus-example₁ ≡ Lens.set grenrus-example₂
set-grenrus-example₁≡set-grenrus-example₂ = ⟨ext⟩ (⟨ext⟩ ∘ lemma)
where
lemma : ∀ _ _ → _
lemma (true , true) true = refl _
lemma (true , true) false = refl _
lemma (true , false) true = refl _
lemma (true , false) false = refl _
lemma (false , true) true = refl _
lemma (false , true) false = refl _
lemma (false , false) true = refl _
lemma (false , false) false = refl _
-- Thus the lenses are equal (assuming univalence).
grenrus-example₁≡grenrus-example₂ :
Univalence lzero →
grenrus-example₁ ≡ grenrus-example₂
grenrus-example₁≡grenrus-example₂ univ =
lenses-with-inhabited-codomains-equal-if-setters-equal
univ _ _ true
set-grenrus-example₁≡set-grenrus-example₂
-- However, in a certain sense the lenses are "observably different".
grenrus-example₁-true :
Lens.remainder grenrus-example₁ (true , true) ≡ true
grenrus-example₁-true = refl _
grenrus-example₂-false :
Lens.remainder grenrus-example₂ (true , true) ≡ false
grenrus-example₂-false = refl _
| {
"alphanum_fraction": 0.4186222269,
"avg_line_length": 41.2676667983,
"ext": "agda",
"hexsha": "0a22c3763d41c30fe371d708b55b7c04184dcd22",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher.agda",
"max_line_length": 148,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 33717,
"size": 104531
} |
open import Prelude
open import Nat
open import contexts
open import dom-eq
open import dynamics-core
open import lemmas-disjointness
open import statics-core
module disjointness where
-- if a hole name is new in a term, then the resultant context is
-- disjoint from any singleton context with that hole name
mutual
elab-new-disjoint-synth : ∀ {e u τ d Δ Γ Γ' τ'} →
hole-name-new e u →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
Δ ## (■ (u , Γ' , τ'))
elab-new-disjoint-synth HNNum ESNum = empty-disj _
elab-new-disjoint-synth (HNPlus hn hn₁) (ESPlus apt x x₁ x₂) = disjoint-parts (elab-new-disjoint-ana hn x₁) (elab-new-disjoint-ana hn₁ x₂)
elab-new-disjoint-synth (HNAsc hn) (ESAsc x) = elab-new-disjoint-ana hn x
elab-new-disjoint-synth HNVar (ESVar x₁) = empty-disj (■ (_ , _ , _))
elab-new-disjoint-synth (HNLam2 hn) (ESLam x₁ exp) = elab-new-disjoint-synth hn exp
elab-new-disjoint-synth (HNHole x) ESEHole = disjoint-singles x
elab-new-disjoint-synth (HNNEHole x hn) (ESNEHole x₁ exp) = disjoint-parts (disjoint-singles x) (elab-new-disjoint-synth hn exp)
elab-new-disjoint-synth (HNAp hn hn₁) (ESAp x x₁ x₂ x₃ x₄ x₅) =
disjoint-parts (elab-new-disjoint-ana hn x₄)
(elab-new-disjoint-ana hn₁ x₅)
elab-new-disjoint-synth (HNPair hn hn₁) (ESPair x x₁ exp exp₁) = disjoint-parts (elab-new-disjoint-synth hn exp) (elab-new-disjoint-synth hn₁ exp₁)
elab-new-disjoint-synth (HNLam1 hn) ()
elab-new-disjoint-synth (HNInl hn) ()
elab-new-disjoint-synth (HNInr hn) ()
elab-new-disjoint-synth (HNCase hn hn₁ hn₂) ()
elab-new-disjoint-synth (HNFst hn) (ESFst x x₁ x₂) = elab-new-disjoint-ana hn x₂
elab-new-disjoint-synth (HNSnd hn) (ESSnd x x₁ x₂) = elab-new-disjoint-ana hn x₂
elab-new-disjoint-ana : ∀{e u τ d Δ Γ Γ' τ' τ2} →
hole-name-new e u →
Γ ⊢ e ⇐ τ ~> d :: τ2 ⊣ Δ →
Δ ## (■ (u , Γ' , τ'))
elab-new-disjoint-ana hn (EASubsume x x₁ x₂ x₃) = elab-new-disjoint-synth hn x₂
elab-new-disjoint-ana (HNLam1 hn) (EALam x₁ x₂ ex) = elab-new-disjoint-ana hn ex
elab-new-disjoint-ana (HNHole x) EAEHole = disjoint-singles x
elab-new-disjoint-ana (HNNEHole x hn) (EANEHole x₁ x₂) = disjoint-parts (disjoint-singles x) (elab-new-disjoint-synth hn x₂)
elab-new-disjoint-ana (HNInl hn) (EAInl x x₁) = elab-new-disjoint-ana hn x₁
elab-new-disjoint-ana (HNInr hn) (EAInr x x₁) = elab-new-disjoint-ana hn x₁
elab-new-disjoint-ana (HNCase hn hn₁ hn₂) (EACase x x₁ x₂ x₃ x₄ x₅ _ _ x₆ x₇ x₈ x₉) = disjoint-parts (elab-new-disjoint-synth hn x₆) (disjoint-parts (elab-new-disjoint-ana hn₁ x₈) (elab-new-disjoint-ana hn₂ x₉))
-- dual of the above: if elaborating a term produces a context that's
-- disjoint with a singleton context, it must be that the index is a new
-- hole name in the original term
mutual
elab-disjoint-new-synth : ∀{e τ d Δ u Γ Γ' τ'} →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
Δ ## (■ (u , Γ' , τ')) →
hole-name-new e u
elab-disjoint-new-synth ESNum disj = HNNum
elab-disjoint-new-synth (ESPlus {Δ1 = Δ1} apt x x₁ x₂) disj
with elab-disjoint-new-ana x₁ (disjoint-union1 disj) | elab-disjoint-new-ana x₂ (disjoint-union2 {Γ1 = Δ1} disj)
... | ih1 | ih2 = HNPlus ih1 ih2
elab-disjoint-new-synth (ESVar x₁) disj = HNVar
elab-disjoint-new-synth (ESLam x₁ ex) disj = HNLam2 (elab-disjoint-new-synth ex disj)
elab-disjoint-new-synth (ESAp {Δ1 = Δ1} x x₁ x₂ x₃ x₄ x₅) disj
with elab-disjoint-new-ana x₄ (disjoint-union1 disj) | elab-disjoint-new-ana x₅ (disjoint-union2 {Γ1 = Δ1} disj)
... | ih1 | ih2 = HNAp ih1 ih2
elab-disjoint-new-synth {Γ = Γ} ESEHole disj = HNHole (singles-notequal disj)
elab-disjoint-new-synth {Γ = Γ} (ESNEHole {u = u} {Δ = Δ} x ex) disj = HNNEHole (singles-notequal (disjoint-union1 {Γ2 = Δ} disj)) (elab-disjoint-new-synth ex (disjoint-union2 {Γ1 = ■ (u , Γ , ⦇-⦈)} {Γ2 = Δ} disj))
elab-disjoint-new-synth (ESAsc x) disj = HNAsc (elab-disjoint-new-ana x disj)
elab-disjoint-new-synth (ESPair {Δ1 = Δ1} {Δ2 = Δ2} x x₁ x₂ x₃) disj = HNPair (elab-disjoint-new-synth x₂ (disjoint-union1 {Γ1 = Δ1} {Γ2 = Δ2} disj)) (elab-disjoint-new-synth x₃ (disjoint-union2 {Γ1 = Δ1} {Γ2 = Δ2} disj))
elab-disjoint-new-synth (ESFst x x₁ x₂) disj = HNFst (elab-disjoint-new-ana x₂ disj)
elab-disjoint-new-synth (ESSnd x x₁ x₂) disj = HNSnd (elab-disjoint-new-ana x₂ disj)
elab-disjoint-new-ana : ∀{e τ d Δ u Γ Γ' τ2 τ'} →
Γ ⊢ e ⇐ τ ~> d :: τ2 ⊣ Δ →
Δ ## (■ (u , Γ' , τ')) →
hole-name-new e u
elab-disjoint-new-ana (EALam x₁ x₂ ex) disj = HNLam1 (elab-disjoint-new-ana ex disj)
elab-disjoint-new-ana (EASubsume x x₁ x₂ x₃) disj = elab-disjoint-new-synth x₂ disj
elab-disjoint-new-ana EAEHole disj = HNHole (singles-notequal disj)
elab-disjoint-new-ana {Γ = Γ} (EANEHole {u = u} {τ = τ} {Δ = Δ} x x₁) disj = HNNEHole (singles-notequal (disjoint-union1 {Γ2 = Δ} disj)) (elab-disjoint-new-synth x₁ (disjoint-union2 {Γ1 = ■ (u , Γ , τ)} {Γ2 = Δ} disj))
elab-disjoint-new-ana (EAInl x x₁) disj = HNInl (elab-disjoint-new-ana x₁ disj)
elab-disjoint-new-ana (EAInr x x₁) disj = HNInr (elab-disjoint-new-ana x₁ disj)
elab-disjoint-new-ana {Γ = Γ} (EACase {Δ = Δ} {Δ1 = Δ1} {Δ2 = Δ2} x x₁ x₂ x₃ x₄ x₅ _ _ x₆ x₇ x₈ x₉) disj = HNCase (elab-disjoint-new-synth x₆ (disjoint-union1 disj)) (elab-disjoint-new-ana x₈ (disjoint-union1 {Γ2 = Δ2} (disjoint-union2 {Γ1 = Δ} disj))) (elab-disjoint-new-ana x₉ (disjoint-union2 {Γ1 = Δ1} (disjoint-union2 {Γ1 = Δ} disj)))
-- collect up the hole names of a term as the indices of a trivial context
data holes : (e : hexp) (H : ⊤ ctx) → Set where
HNum : ∀{n} → holes (N n) ∅
HPlus : ∀{e1 e2 H1 H2} → holes e1 H1 → holes e2 H2 → holes (e1 ·+ e2) (H1 ∪ H2)
HAsc : ∀{e τ H} → holes e H → holes (e ·: τ) H
HVar : ∀{x} → holes (X x) ∅
HLam1 : ∀{x e H} → holes e H → holes (·λ x e) H
HLam2 : ∀{x e τ H} → holes e H → holes (·λ x ·[ τ ] e) H
HAp : ∀{e1 e2 H1 H2} → holes e1 H1 → holes e2 H2 → holes (e1 ∘ e2) (H1 ∪ H2)
HInl : ∀{e H} → holes e H → holes (inl e) H
HInr : ∀{e H} → holes e H → holes (inr e) H
HCase : ∀{e x e1 y e2 H H1 H2} → holes e H → holes e1 H1 → holes e2 H2 → holes (case e x e1 y e2) (H ∪ (H1 ∪ H2))
HPair : ∀{e1 e2 H1 H2} → holes e1 H1 → holes e2 H2 → holes ⟨ e1 , e2 ⟩ (H1 ∪ H2)
HFst : ∀{e H} → holes e H → holes (fst e) H
HSnd : ∀{e H} → holes e H → holes (snd e) H
HEHole : ∀{u} → holes (⦇-⦈[ u ]) (■ (u , <>))
HNEHole : ∀{e u H} → holes e H → holes (⦇⌜ e ⌟⦈[ u ]) (H ,, (u , <>))
-- the above judgement has mode (∀,∃). this doesn't prove uniqueness; any
-- context that extends the one computed here will be indistinguishable
-- but we'll treat this one as canonical
find-holes : (e : hexp) → Σ[ H ∈ ⊤ ctx ](holes e H)
find-holes (N n) = ∅ , HNum
find-holes (e1 ·+ e2) with find-holes e1 | find-holes e2
... | (h1 , d1) | (h2 , d2) = (h1 ∪ h2 ) , (HPlus d1 d2)
find-holes (e ·: x) with find-holes e
... | (h , d) = h , (HAsc d)
find-holes (X x) = ∅ , HVar
find-holes (·λ x e) with find-holes e
... | (h , d) = h , HLam1 d
find-holes (·λ x ·[ x₁ ] e) with find-holes e
... | (h , d) = h , HLam2 d
find-holes (e1 ∘ e2) with find-holes e1 | find-holes e2
... | (h1 , d1) | (h2 , d2) = (h1 ∪ h2 ) , (HAp d1 d2)
find-holes ⦇-⦈[ x ] = (■ (x , <>)) , HEHole
find-holes ⦇⌜ e ⌟⦈[ x ] with find-holes e
... | (h , d) = h ,, (x , <>) , HNEHole d
find-holes (inl e) with find-holes e
... | (h , d) = h , HInl d
find-holes (inr e) with find-holes e
... | (h , d) = h , HInr d
find-holes (case e x e₁ x₁ e₂) with find-holes e | find-holes e₁ | find-holes e₂
... | (h , d) | (h1 , d1) | (h2 , d2) = (h ∪ (h1 ∪ h2)) , HCase d d1 d2
find-holes ⟨ e , e₁ ⟩ with find-holes e | find-holes e₁
... | (h , d) | (h1 , d1) = h ∪ h1 , HPair d d1
find-holes (fst e) with find-holes e
... | (h , d) = h , HFst d
find-holes (snd e) with find-holes e
... | (h , d) = h , HSnd d
-- if a hole name is new then it's apart from the collection of hole
-- names
lem-apart-new : ∀{e H u} → holes e H → hole-name-new e u → u # H
lem-apart-new HNum x = refl
lem-apart-new (HPlus {H1 = H1} {H2 = H2} h h₁) (HNPlus hn hn₁) = apart-parts H1 H2 _ (lem-apart-new h hn) (lem-apart-new h₁ hn₁)
lem-apart-new (HAsc h) (HNAsc hn) = lem-apart-new h hn
lem-apart-new HVar HNVar = refl
lem-apart-new (HLam1 h) (HNLam1 hn) = lem-apart-new h hn
lem-apart-new (HLam2 h) (HNLam2 hn) = lem-apart-new h hn
lem-apart-new (HAp {H1 = H1} {H2 = H2} h h₁) (HNAp hn hn₁) = apart-parts H1 H2 _ (lem-apart-new h hn) (lem-apart-new h₁ hn₁)
lem-apart-new HEHole (HNHole x) = apart-singleton (flip x)
lem-apart-new (HNEHole {u = u'} {H = H} h) (HNNEHole {u = u} x hn) = apart-parts (■ (u' , <>)) H u (apart-singleton (flip x)) (lem-apart-new h hn)
lem-apart-new (HInl h) (HNInl hn) = lem-apart-new h hn
lem-apart-new (HInr h) (HNInr hn) = lem-apart-new h hn
lem-apart-new (HCase {H = H} {H1 = H1} {H2 = H2} h h₁ h₂) (HNCase {u = u'} hn hn₁ hn₂) = apart-parts H (H1 ∪ H2) u' (lem-apart-new h hn) (apart-parts H1 H2 u' (lem-apart-new h₁ hn₁) (lem-apart-new h₂ hn₂))
lem-apart-new (HPair {H1 = H1} {H2 = H2} h h₁) (HNPair {u = u} hn hn₁) = apart-parts H1 H2 u (lem-apart-new h hn) (lem-apart-new h₁ hn₁)
lem-apart-new (HFst h) (HNFst hn) = lem-apart-new h hn
lem-apart-new (HSnd h) (HNSnd hn) = lem-apart-new h hn
-- if the holes of two expressions are disjoint, so are their collections
-- of hole names
holes-disjoint-disjoint : ∀{e1 e2 H1 H2} →
holes e1 H1 →
holes e2 H2 →
holes-disjoint e1 e2 →
H1 ## H2
holes-disjoint-disjoint HNum he2 HDNum = empty-disj _
holes-disjoint-disjoint (HPlus he1 he2) he3 (HDPlus hd hd₁) = disjoint-parts (holes-disjoint-disjoint he1 he3 hd) (holes-disjoint-disjoint he2 he3 hd₁)
holes-disjoint-disjoint (HAsc he1) he2 (HDAsc hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint HVar he2 HDVar = empty-disj _
holes-disjoint-disjoint (HLam1 he1) he2 (HDLam1 hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint (HLam2 he1) he2 (HDLam2 hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint (HAp he1 he2) he3 (HDAp hd hd₁) = disjoint-parts (holes-disjoint-disjoint he1 he3 hd) (holes-disjoint-disjoint he2 he3 hd₁)
holes-disjoint-disjoint HEHole he2 (HDHole x) = lem-apart-sing-disj (lem-apart-new he2 x)
holes-disjoint-disjoint (HNEHole he1) he2 (HDNEHole x hd) = disjoint-parts (lem-apart-sing-disj (lem-apart-new he2 x)) (holes-disjoint-disjoint he1 he2 hd)
holes-disjoint-disjoint (HInl he1) he2 (HDInl hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint (HInr he1) he2 (HDInr hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint (HCase he1 he3 he4) he2 (HDCase hd hd₁ hd₂) = disjoint-parts (holes-disjoint-disjoint he1 he2 hd) (disjoint-parts (holes-disjoint-disjoint he3 he2 hd₁) (holes-disjoint-disjoint he4 he2 hd₂))
holes-disjoint-disjoint (HPair he1 he3) he2 (HDPair hd hd₁) = disjoint-parts (holes-disjoint-disjoint he1 he2 hd) (holes-disjoint-disjoint he3 he2 hd₁)
holes-disjoint-disjoint (HFst he1) he2 (HDFst hd) = holes-disjoint-disjoint he1 he2 hd
holes-disjoint-disjoint (HSnd he1) he2 (HDSnd hd) = holes-disjoint-disjoint he1 he2 hd
-- the holes of an expression have the same domain as the context
-- produced during expansion; that is, we don't add anything we don't
-- find in the term during expansion.
mutual
holes-delta-ana : ∀{Γ H e τ d τ' Δ} →
holes e H →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
dom-eq Δ H
holes-delta-ana (HLam1 h) (EALam x₁ x₂ exp) = holes-delta-ana h exp
holes-delta-ana h (EASubsume x x₁ x₂ x₃) = holes-delta-synth h x₂
holes-delta-ana (HEHole {u = u}) EAEHole = dom-single u
holes-delta-ana (HNEHole {u = u} h) (EANEHole x x₁) = dom-union (lem-apart-sing-disj (lem-apart-new h (elab-disjoint-new-synth x₁ x))) (dom-single u) (holes-delta-synth h x₁)
holes-delta-ana (HInl h) (EAInl x x₁) = holes-delta-ana h x₁
holes-delta-ana (HInr h) (EAInr x x₁) = holes-delta-ana h x₁
holes-delta-ana (HCase h h₁ h₂) (EACase {Δ = Δ} x x₁ x₂ x₃ x₄ x₅ _ _ x₆ x₇ x₈ x₉) = dom-union (##-comm (disjoint-parts (##-comm (holes-disjoint-disjoint h h₁ x)) (##-comm (holes-disjoint-disjoint h h₂ x₁)))) (holes-delta-synth h x₆) (dom-union (holes-disjoint-disjoint h₁ h₂ x₂) (holes-delta-ana h₁ x₈) (holes-delta-ana h₂ x₉))
holes-delta-synth : ∀{Γ H e τ d Δ} →
holes e H →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
dom-eq Δ H
holes-delta-synth HNum ESNum = dom-∅
holes-delta-synth (HPlus h h₁) (ESPlus x apt x₁ x₂) = dom-union (holes-disjoint-disjoint h h₁ x) (holes-delta-ana h x₁) (holes-delta-ana h₁ x₂)
holes-delta-synth (HAsc h) (ESAsc x) = holes-delta-ana h x
holes-delta-synth HVar (ESVar x₁) = dom-∅
holes-delta-synth (HLam2 h) (ESLam x₁ exp) = holes-delta-synth h exp
holes-delta-synth (HAp h h₁) (ESAp x x₁ x₂ x₃ x₄ x₅) = dom-union (holes-disjoint-disjoint h h₁ x) (holes-delta-ana h x₄) (holes-delta-ana h₁ x₅)
holes-delta-synth (HEHole {u = u}) ESEHole = dom-single u
holes-delta-synth (HNEHole {u = u} h) (ESNEHole x exp) = dom-union (lem-apart-sing-disj (lem-apart-new h (elab-disjoint-new-synth exp x))) (dom-single u) (holes-delta-synth h exp)
holes-delta-synth (HPair h h₁) (ESPair x x₁ exp exp₁) = dom-union (holes-disjoint-disjoint h h₁ x) (holes-delta-synth h exp) (holes-delta-synth h₁ exp₁)
holes-delta-synth (HLam1 hn) ()
holes-delta-synth (HInl hn) ()
holes-delta-synth (HInr hn) ()
holes-delta-synth (HCase hn hn₁ hn₂) ()
holes-delta-synth (HFst hn) (ESFst x x₁ x₂) = holes-delta-ana hn x₂
holes-delta-synth (HSnd hn) (ESSnd x x₁ x₂) = holes-delta-ana hn x₂
-- this is one of the main results of this file:
--
-- if you elaborate two hole-disjoint expressions analytically, the Δs
-- produced are disjoint.
--
-- the proof technique here is explcitly *not* structurally inductive on the
-- expansion judgement, because that approach relies on weakening of
-- expansion, which is false because of the substitution contexts. giving
-- expansion weakning would take away unicity, so we avoid the whole
-- question.
elab-ana-disjoint : ∀{e1 e2 τ1 τ2 e1' e2' τ1' τ2' Γ1 Γ2 Δ1 Δ2} →
holes-disjoint e1 e2 →
Γ1 ⊢ e1 ⇐ τ1 ~> e1' :: τ1' ⊣ Δ1 →
Γ2 ⊢ e2 ⇐ τ2 ~> e2' :: τ2' ⊣ Δ2 →
Δ1 ## Δ2
elab-ana-disjoint {e1} {e2} hd ana1 ana2
with find-holes e1 | find-holes e2
... | (_ , he1) | (_ , he2) = dom-eq-disj (holes-disjoint-disjoint he1 he2 hd)
(holes-delta-ana he1 ana1)
(holes-delta-ana he2 ana2)
elab-synth-disjoint : ∀{e1 e2 τ1 τ2 e1' e2' Γ1 Γ2 Δ1 Δ2} →
holes-disjoint e1 e2 →
Γ1 ⊢ e1 ⇒ τ1 ~> e1' ⊣ Δ1 →
Γ2 ⊢ e2 ⇒ τ2 ~> e2' ⊣ Δ2 →
Δ1 ## Δ2
elab-synth-disjoint {e1} {e2} hd synth1 synth2
with find-holes e1 | find-holes e2
... | (_ , he1) | (_ , he2) = dom-eq-disj (holes-disjoint-disjoint he1 he2 hd)
(holes-delta-synth he1 synth1)
(holes-delta-synth he2 synth2)
elab-synth-ana-disjoint : ∀{e1 e2 τ1 τ2 e1' e2' τ2' Γ1 Γ2 Δ1 Δ2} →
holes-disjoint e1 e2 →
Γ1 ⊢ e1 ⇒ τ1 ~> e1' ⊣ Δ1 →
Γ2 ⊢ e2 ⇐ τ2 ~> e2' :: τ2' ⊣ Δ2 →
Δ1 ## Δ2
elab-synth-ana-disjoint {e1} {e2} hd synth ana
with find-holes e1 | find-holes e2
... | (_ , he1) | (_ , he2) = dom-eq-disj (holes-disjoint-disjoint he1 he2 hd)
(holes-delta-synth he1 synth)
(holes-delta-ana he2 ana)
| {
"alphanum_fraction": 0.593156813,
"avg_line_length": 65.6428571429,
"ext": "agda",
"hexsha": "9fd259770335cf5f56d19042044eb2d04e113e8a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "disjointness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "disjointness.agda",
"max_line_length": 343,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "disjointness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6372,
"size": 16542
} |
open import Data.Product using ( _×_ ; _,_ )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import FRP.LTL.Time.Interval using ( _⊑_ ; _~_ ; _⌢_∵_ )
open import FRP.LTL.ISet.Core using ( ISet ; [_] ; _,_ ; M⟦_⟧ ; splitM⟦_⟧ ; subsumM⟦_⟧ )
module FRP.LTL.ISet.Sum where
_∨_ : ISet → ISet → ISet
A ∨ B = [ (λ i → M⟦ A ⟧ i ⊎ M⟦ B ⟧ i) , split , subsum ] where
split : ∀ i j i~j →
(M⟦ A ⟧ (i ⌢ j ∵ i~j) ⊎ M⟦ B ⟧ (i ⌢ j ∵ i~j)) →
((M⟦ A ⟧ i ⊎ M⟦ B ⟧ i) × (M⟦ A ⟧ j ⊎ M⟦ B ⟧ j))
split i j i~j (inj₁ σ) with splitM⟦ A ⟧ i j i~j σ
split i j i~j (inj₁ σ) | (σ₁ , σ₂) = (inj₁ σ₁ , inj₁ σ₂)
split i j i~j (inj₂ τ) with splitM⟦ B ⟧ i j i~j τ
split i j i~j (inj₂ τ) | (τ₁ , τ₂) = (inj₂ τ₁ , inj₂ τ₂)
subsum : ∀ i j → (i ⊑ j) → (M⟦ A ⟧ j ⊎ M⟦ B ⟧ j) → (M⟦ A ⟧ i ⊎ M⟦ B ⟧ i)
subsum i j i⊑j (inj₁ σ) = inj₁ (subsumM⟦ A ⟧ i j i⊑j σ)
subsum i j i⊑j (inj₂ τ) = inj₂ (subsumM⟦ B ⟧ i j i⊑j τ)
| {
"alphanum_fraction": 0.5005464481,
"avg_line_length": 41.5909090909,
"ext": "agda",
"hexsha": "c9414ed3322f14f0e243996ae633d79bfb1a5751",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/ISet/Sum.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/ISet/Sum.agda",
"max_line_length": 88,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/ISet/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 507,
"size": 915
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-empty AVL trees, where equality for keys is propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; IsStrictTotalOrder; StrictTotalOrder)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst)
module Data.AVL.NonEmpty.Propositional
{k r} {Key : Set k} {_<_ : Rel Key r}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where
open import Level
private strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder}
open import Data.AVL.Value (StrictTotalOrder.Eq.setoid strictTotalOrder)
import Data.AVL.NonEmpty strictTotalOrder as AVL⁺
Tree⁺ : ∀ {v} (V : Key → Set v) → Set (k ⊔ v ⊔ r)
Tree⁺ V = AVL⁺.Tree⁺ λ where
.Value.family → V
.Value.respects refl t → t
open AVL⁺ hiding (Tree⁺) public
| {
"alphanum_fraction": 0.6168898043,
"avg_line_length": 34.6785714286,
"ext": "agda",
"hexsha": "175ee682e0de3ea9e3d5a4fe69566398bc81503c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty/Propositional.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 242,
"size": 971
} |
module Vec where
import Nat
import Fin
open Nat hiding (_==_; _<_)
open Fin
data Nil : Set where
vnil : Nil
data Cons (A As : Set) : Set where
vcons : A -> As -> Cons A As
mutual
Vec' : Nat -> Set -> Set
Vec' zero A = Nil
Vec' (suc n) A = Cons A (Vec n A)
data Vec (n : Nat)(A : Set) : Set where
vec : Vec' n A -> Vec n A
ε : {A : Set} -> Vec zero A
ε = vec vnil
_∷_ : {A : Set}{n : Nat} -> A -> Vec n A -> Vec (suc n) A
x ∷ xs = vec (vcons x xs)
_!_ : {n : Nat}{A : Set} -> Vec n A -> Fin n -> A
_!_ {zero} _ (fin ())
_!_ {suc n} (vec (vcons x xs)) (fin fz) = x
_!_ {suc n} (vec (vcons x xs)) (fin (fs i)) = xs ! i
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec n A -> Vec n B
map {zero} f (vec vnil) = ε
map {suc n} f (vec (vcons x xs)) = f x ∷ map f xs
fzeroToN-1 : (n : Nat) -> Vec n (Fin n)
fzeroToN-1 zero = ε
fzeroToN-1 (suc n) = fzero ∷ map fsuc (fzeroToN-1 n)
| {
"alphanum_fraction": 0.5064239829,
"avg_line_length": 21.7209302326,
"ext": "agda",
"hexsha": "d1a5817102e8910886514a654a000e1e24c11f0e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "benchmark/ac/Vec.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "benchmark/ac/Vec.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "benchmark/ac/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 395,
"size": 934
} |
-- Andreas, 2015-11-09, issue 1710 reported by vejkse
-- {-# OPTIONS -v tc.with:20 #-}
record wrap (A : Set) : Set where
field
out : A
open wrap public
record MapsFrom (A : Set) : Set₁ where
field
cod : Set
map : A → cod
open MapsFrom public
wrapped : (A : Set) → MapsFrom A
cod (wrapped A) = wrap A
out (map (wrapped A) a) with a
... | _ = a
| {
"alphanum_fraction": 0.6132596685,
"avg_line_length": 19.0526315789,
"ext": "agda",
"hexsha": "8230d02e9afe7360710f1384ed1fbc5d5d679f7a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1710.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1710.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1710.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 362
} |
module Text.Lex where
open import Prelude
record TokenDFA {s} (A : Set) (Tok : Set) : Set (lsuc s) where
field
State : Set s
initial : State
accept : State → Maybe Tok
consume : A → State → Maybe State
instance
FunctorTokenDFA : ∀ {s} {A : Set} → Functor (TokenDFA {s = s} A)
TokenDFA.State (fmap {{FunctorTokenDFA}} f dfa) = TokenDFA.State dfa
TokenDFA.initial (fmap {{FunctorTokenDFA}} f dfa) = TokenDFA.initial dfa
TokenDFA.accept (fmap {{FunctorTokenDFA}} f dfa) s = f <$> TokenDFA.accept dfa s
TokenDFA.consume (fmap {{FunctorTokenDFA}} f dfa) = TokenDFA.consume dfa
keywordToken : {A : Set} {{EqA : Eq A}} → List A → TokenDFA A ⊤
TokenDFA.State (keywordToken {A = A} kw) = List A
TokenDFA.initial (keywordToken kw) = kw
TokenDFA.accept (keywordToken kw) [] = just _
TokenDFA.accept (keywordToken kw) (_ ∷ _) = nothing
TokenDFA.consume (keywordToken kw) _ [] = nothing
TokenDFA.consume (keywordToken kw) y (x ∷ xs) = ifYes (x == y) then just xs else nothing
matchToken : ∀ {A : Set} (p : A → Bool) → TokenDFA A (List (Σ A (IsTrue ∘ p)))
TokenDFA.State (matchToken {A = A} p) = List (Σ A (IsTrue ∘ p))
TokenDFA.initial (matchToken _) = []
TokenDFA.accept (matchToken _) xs = just (reverse xs)
TokenDFA.consume (matchToken p) x xs = if′ p x then just ((x , it) ∷ xs) else nothing
natToken : TokenDFA Char Nat
natToken = pNat <$> matchToken isDigit
where pNat = foldl (λ { n (d , _) → 10 * n + (charToNat d - charToNat '0') }) 0
identToken : ∀ {A : Set} → (A → Bool) → (A → Bool) → TokenDFA A (List A)
TokenDFA.State (identToken {A = A} _ _) = Maybe (List A)
TokenDFA.initial (identToken _ _) = nothing
TokenDFA.accept (identToken _ _) = fmap reverse
TokenDFA.consume (identToken first _) x nothing = if first x then just (just [ x ]) else nothing
TokenDFA.consume (identToken _ then) x (just xs) = if then x then just (just (x ∷ xs)) else nothing
module _ {s : Level} {A Tok : Set} where
private
DFA = TokenDFA {s = s} A Tok
open TokenDFA
init : DFA → Σ DFA State
init d = d , initial d
feed : A → Σ DFA State → Either DFA (Σ DFA State)
feed x (d , s) = maybe (left d) (right ∘ _,_ d) (consume d x s)
accepts : List (Σ DFA State) → List Tok
accepts = concatMap (λ { (d , s) → maybe [] [_] (accept d s) })
tokenize-loop : List DFA → List (Σ DFA State) → List A → List Tok
tokenize-loop idle active [] =
case accepts active of λ where
[] → [] -- not quite right if there are active DFAs
(t ∷ _) → [ t ]
tokenize-loop idle [] (x ∷ xs) =
flip uncurry (partitionMap (feed x) (map init idle)) λ where
idle₁ [] → []
idle₁ active₁ → tokenize-loop idle₁ active₁ xs
tokenize-loop idle active (x ∷ xs) =
flip uncurry (partitionMap (feed x) active) λ where
idle₁ [] →
case accepts active of λ where
[] → []
(t ∷ _) →
flip uncurry (partitionMap (feed x) (map init (idle ++ idle₁))) λ where
_ [] → t ∷ []
idle₂ active₂ → t List.∷ tokenize-loop idle₂ active₂ xs
idle₁ active₁ → tokenize-loop (idle ++ idle₁) active₁ xs
tokenize : List (TokenDFA {s = s} A Tok) → List A → List Tok
tokenize dfas xs = tokenize-loop dfas [] xs
| {
"alphanum_fraction": 0.6038300419,
"avg_line_length": 41.775,
"ext": "agda",
"hexsha": "0266e1640b9c8848f6e875e49d9c5f305d6a5ef5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Text/Lex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Text/Lex.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Text/Lex.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1085,
"size": 3342
} |
module Common.Equality where
open import Common.Level
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
subst : ∀ {a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y
subst P refl t = t
cong : ∀ {a b}{A : Set a}{B : Set b}(f : A → B){x y : A} → x ≡ y → f x ≡ f y
cong f refl = refl
sym : ∀ {a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
| {
"alphanum_fraction": 0.4896810507,
"avg_line_length": 22.2083333333,
"ext": "agda",
"hexsha": "fe2ea1289ad755f54cc5f244699a4943c9a27c74",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/Common/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/Common/Equality.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/Common/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 235,
"size": 533
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Data.Int.Core where
open import Agda.Builtin.Int public
renaming (Int to ℤ)
using (pos; negsuc)
open import Agda.Builtin.TrustMe
open import Classes
open import Core
open import Data.Nat.Core
renaming (module Props to ℕP)
using (ℕ; ℕ-Number; ℕ-Plus; ℕ-Times; suc; zero)
_-ℕ_ : ℕ → ℕ → ℤ
x -ℕ zero = pos x
zero -ℕ suc y = negsuc y
suc x -ℕ suc y = x -ℕ y
infixl 6 _-ℕ_
instance
ℤ-Negative : Negative ℤ
ℤ-Negative =
record {
Constraint = λ _ → ⊤;
fromNeg = λ x → zero -ℕ x
}
ℤ-Number : Number ℤ
ℤ-Number =
record {
Constraint = λ _ → ⊤;
fromNat = λ x → pos x
}
ℤ,≡ : Equiv ℤ
ℤ,≡ = PropEq ℤ
instance
ℤ-Plus : Plus ℤ
ℤ-Plus = record { _+_ = _+ℤ_ }
where
_+ℤ_ : ℤ → ℤ → ℤ
pos x +ℤ pos y = pos (x + y)
pos x +ℤ negsuc y = x -ℕ suc y
negsuc x +ℤ pos y = y -ℕ suc x
negsuc x +ℤ negsuc y = negsuc (suc (x + y))
ℤ-Times : Times ℤ
ℤ-Times = record { _*_ = _*ℤ_ }
where
_*ℤ_ : ℤ → ℤ → ℤ
pos x *ℤ pos y = pos (x * y)
pos zero *ℤ negsuc y = 0
pos (suc x) *ℤ negsuc y = negsuc (y + x * suc y)
negsuc x *ℤ pos zero = 0
negsuc x *ℤ pos (suc y) = negsuc (y + x * suc y)
negsuc x *ℤ negsuc y = pos (suc x * suc y)
neg : ℤ → ℤ
neg = _*_ -1
_-_ : ℤ → ℤ → ℤ
x - y = x + neg y
infixl 6 _-_
module Props where
open module MyEquiv {A : Set} = Equiv (PropEq A)
private
_!+!_ = cong2 (the (ℤ → ℤ → ℤ) _+_)
_!-ℕ!_ = cong2 _-ℕ_
_!*!_ = cong2 (the (ℤ → ℤ → ℤ) _*_)
R = λ {A} (x : A) → refl {x = x}
infixl 6 _!+!_ _!-ℕ!_
infixl 7 _!*!_
sub-neg-zero : ∀ x → x -ℕ zero ≈ pos x
sub-neg-zero _ = refl
+-left-id : ∀ x → 0 + x ≈ x
+-left-id (pos n) = refl
+-left-id (negsuc n) = refl
+-right-id : ∀ x → x + 0 ≈ x
+-right-id (pos x) = cong pos (ℕP.+-right-id x)
+-right-id (negsuc x) = refl
+-comm : ∀ x y → x + y ≈ y + x
+-comm (pos x) (pos y) = cong pos (ℕP.+-comm x y)
+-comm (pos x) (negsuc y) = refl
+-comm (negsuc x) (pos y) = refl
+-comm (negsuc x) (negsuc y) = cong negsuc (cong suc (ℕP.+-comm x y))
sub-sum-right : ∀ x y z → x -ℕ suc (y + z) ≈ negsuc y + (x -ℕ z)
sub-sum-right x zero zero = refl
sub-sum-right zero zero (suc z) = refl
sub-sum-right (suc x) zero (suc z) = sub-sum-right x zero z
sub-sum-right x (suc y) zero = R x !-ℕ! cong suc (cong suc (ℕP.+-right-id y))
sub-sum-right zero (suc y) (suc z) = cong negsuc (cong suc (ℕP.+-suc-assoc y z))
sub-sum-right (suc x) (suc y) (suc z) =
begin
x -ℕ suc (y + suc z) ≈[ R x !-ℕ! cong suc (ℕP.+-suc-assoc y z) ]
x -ℕ suc (suc y + z) ≈[ sub-sum-right x (suc y) z ]
negsuc (suc y) + (x -ℕ z)
qed
sub-sum-left : ∀ x y z → (x + y) -ℕ z ≈ pos x + (y -ℕ z)
sub-sum-left zero y z = sym (+-left-id (y -ℕ z))
sub-sum-left (suc x) y zero = refl
sub-sum-left (suc x) zero (suc z) = ℕP.+-right-id x !-ℕ! R z
sub-sum-left (suc x) (suc y) (suc z) =
begin
(x + suc y) -ℕ z ≈[ ℕP.+-suc-assoc x y !-ℕ! R z ]
suc (x + y) -ℕ z ≈[ sub-sum-left (suc x) y z ]
pos (suc x) + (y -ℕ z)
qed
+-assoc : ∀ x y z → (x + y) + z ≈ x + (y + z)
+-assoc (pos x) (pos y) (pos z) = cong pos (ℕP.+-assoc x _ _)
+-assoc (pos x) (pos y) (negsuc z) = sub-sum-left x y (suc z)
+-assoc (pos x) (negsuc y) (pos z) =
begin
(x -ℕ suc y) + pos z ≈[ +-comm (x -ℕ suc y) (pos z) ]
pos z + (x -ℕ suc y) ≈[ sym (sub-sum-left z x (suc y)) ]
(z + x) -ℕ suc y ≈[ ℕP.+-comm z x !-ℕ! R (suc y) ]
(x + z) -ℕ suc y ≈[ sub-sum-left x z (suc y) ]
pos x + (z -ℕ suc y)
qed
+-assoc (pos x) (negsuc y) (negsuc z) =
begin
x -ℕ suc y + negsuc z ≈[ +-comm (x -ℕ suc y) (negsuc z) ]
negsuc z + (x -ℕ suc y) ≈[ sym (sub-sum-right x z (suc y)) ]
x -ℕ (suc z + suc y) ≈[ R x !-ℕ! ℕP.+-comm (suc z) (suc y) ]
x -ℕ (suc y + suc z) ≈[ R x !-ℕ! cong suc (ℕP.+-suc-assoc y z) ]
x -ℕ suc (suc (y + z))
qed
+-assoc (negsuc x) (pos y) (pos z) =
begin
(y -ℕ suc x) + pos z ≈[ +-comm (y -ℕ suc x) (pos z) ]
pos z + (y -ℕ suc x) ≈[ sym (sub-sum-left z y (suc x)) ]
(z + y) -ℕ suc x ≈[ ℕP.+-comm z y !-ℕ! R (suc x) ]
(y + z) -ℕ suc x
qed
+-assoc (negsuc x) (pos y) (negsuc z) =
begin
y -ℕ suc x + negsuc z ≈[ +-comm (y -ℕ suc x) (negsuc z) ]
negsuc z + (y -ℕ suc x) ≈[ sym (sub-sum-right y z (suc x)) ]
y -ℕ (suc z + suc x) ≈[ R y !-ℕ! ℕP.+-comm (suc z) (suc x) ]
y -ℕ (suc x + suc z) ≈[ sub-sum-right y x (suc z) ]
negsuc x + (y -ℕ suc z)
qed
+-assoc (negsuc x) (negsuc y) (pos zero) = refl
+-assoc (negsuc x) (negsuc y) (pos (suc z)) = sub-sum-right z x y
+-assoc (negsuc x) (negsuc y) (negsuc z) =
cong negsuc $ cong suc $
begin
suc ((x + y) + z) ≈[ cong suc (ℕP.+-assoc x y z) ]
suc (x + (y + z)) ≈[ sym (ℕP.+-suc-assoc x (y + z)) ]
x + (suc (y + z))
qed
*-left-id : ∀ x → 1 * x ≈ x
*-left-id (pos x) = cong pos (ℕP.+-right-id x)
*-left-id (negsuc x) = cong negsuc (ℕP.+-right-id x)
*-right-id : ∀ x → x * 1 ≈ x
*-right-id (pos x) = cong pos (ℕP.*-right-id x)
*-right-id (negsuc x) =
cong negsuc (trans (ℕP.*-comm x 1) (ℕP.+-right-id x))
*-assoc : ∀ x y z → (x * y) * z ≈ x * (y * z)
*-assoc (pos x) (pos y) (pos z) = cong pos (ℕP.*-assoc x y z)
*-assoc (pos zero) (pos zero) (negsuc z) = refl
*-assoc (pos zero) (pos (suc y)) (negsuc z) = refl
*-assoc (pos (suc x)) (pos zero) (negsuc z) =
begin
pos (x * 0) * negsuc z ≈[ cong pos (ℕP.*-right-zero x) !*! R (negsuc z) ]
pos 0 * negsuc z ≈[ cong pos (sym (ℕP.*-right-zero x)) ]
pos (x * 0)
qed
*-assoc (pos (suc x)) (pos (suc y)) (negsuc z) =
cong negsuc $ ℕP.suc-inj $
ℕP.*-assoc (suc x) (suc y) (suc z)
*-assoc (pos zero) (negsuc y) (pos zero) = refl
*-assoc (pos zero) (negsuc y) (pos (suc z)) = refl
*-assoc (pos (suc x)) (negsuc y) (pos zero) = cong pos (sym (ℕP.*-right-zero x))
*-assoc (pos (suc x)) (negsuc y) (pos (suc z)) =
cong negsuc $ ℕP.suc-inj $
ℕP.*-assoc (suc x) (suc y) (suc z)
*-assoc (pos zero) (negsuc y) (negsuc z) = refl
*-assoc (pos (suc x)) (negsuc y) (negsuc z) = cong pos (ℕP.*-assoc (suc x) (suc y) (suc z))
*-assoc (negsuc x) (pos zero) (pos z) = refl
*-assoc (negsuc x) (pos (suc y)) (pos zero) = R (negsuc x) !*! cong pos (sym (ℕP.*-right-zero y))
*-assoc (negsuc x) (pos (suc y)) (pos (suc z)) =
cong negsuc $ ℕP.suc-inj $
ℕP.*-assoc (suc x) (suc y) (suc z)
*-assoc (negsuc x) (pos zero) (negsuc z) = refl
*-assoc (negsuc x) (pos (suc y)) (negsuc z) = cong pos (ℕP.*-assoc (suc x) (suc y) (suc z))
*-assoc (negsuc x) (negsuc y) (pos zero) = cong pos (ℕP.*-right-zero (y + x * suc y))
*-assoc (negsuc x) (negsuc y) (pos (suc z)) = cong pos (ℕP.*-assoc (suc x) (suc y) (suc z))
*-assoc (negsuc x) (negsuc y) (negsuc z) =
cong negsuc $ ℕP.suc-inj $
ℕP.*-assoc (suc x) (suc y) (suc z)
*-comm : ∀ x y → x * y ≈ y * x
*-comm (pos x) (pos y) = cong pos (ℕP.*-comm x y)
*-comm (pos zero) (negsuc y) = refl
*-comm (pos (suc x)) (negsuc y) = cong negsuc (ℕP.suc-inj (ℕP.*-comm (suc x) (suc y)))
*-comm (negsuc x) (pos zero) = refl
*-comm (negsuc x) (pos (suc y)) = cong negsuc (ℕP.suc-inj (ℕP.*-comm (suc x) (suc y)))
*-comm (negsuc x) (negsuc y) = cong pos (ℕP.*-comm (suc x) (suc y))
*-left-zero : ∀ x → 0 * x ≈ 0
*-left-zero (pos x) = refl
*-left-zero (negsuc x) = refl
neg-invol : ∀ x → neg (neg x) ≈ x
neg-invol x =
begin
-1 * (-1 * x) ≈[ sym (*-assoc -1 -1 x) ]
1 * x ≈[ *-left-id x ]
x
qed
*-right-zero : ∀ x → x * 0 ≈ 0
*-right-zero x = trans (*-comm x 0) (*-left-zero x)
*-suc-dist : ∀ x y → pos (suc x) * y ≈ y + pos x * y
*-suc-dist x (pos y) = refl
*-suc-dist zero (negsuc y) = cong negsuc (ℕP.+-right-id y)
*-suc-dist (suc x) (negsuc y) = sub-sum-right 0 y (suc (y + x * suc y))
*-+-left-dist-ℕ : ∀ x a b → pos x * (a + b) ≈ pos x * a + pos x * b
*-+-left-dist-ℕ zero a b =
begin
0 * (a + b) ≈[ *-left-zero (a + b) ]
0 ≈[ sym (*-left-zero a) !+! sym (*-left-zero b) ]
0 * a + 0 * b
qed
*-+-left-dist-ℕ (suc x) a b =
begin
pos (suc x) * (a + b) ≈[ *-suc-dist x (a + b) ]
(a + b) + pos x * (a + b) ≈[ R (a + b) !+! *-+-left-dist-ℕ x a b ]
(a + b) + (pos x * a + pos x * b) ≈[ +-assoc a b (pos x * a + pos x * b) ]
a + (b + (pos x * a + pos x * b)) ≈[ R a !+! sym (+-assoc b (pos x * a) (pos x * b)) ]
a + ((b + pos x * a) + pos x * b) ≈[ R a !+! (+-comm b (pos x * a) !+! R (pos x * b)) ]
a + ((pos x * a + b) + pos x * b) ≈[ R a !+! +-assoc (pos x * a) b (pos x * b) ]
a + (pos x * a + (b + pos x * b)) ≈[ sym (+-assoc a (pos x * a) (b + pos x * b)) ]
(a + pos x * a) + (b + pos x * b) ≈[ sym (*-suc-dist x a) !+! sym (*-suc-dist x b) ]
pos (suc x) * a + pos (suc x) * b
qed
*-+-left-dist : ∀ x a b → x * (a + b) ≈ x * a + x * b
*-+-left-dist (pos x) a b = *-+-left-dist-ℕ x a b
*-+-left-dist (negsuc x) a b =
begin
negsuc x * (a + b) ≈[ sym (neg-invol (negsuc x)) !*! R (a + b) ]
-1 * (pos (suc (x + zero))) * (a + b) ≈[ cong neg (cong pos (ℕP.+-right-id (suc x))) !*! R (a + b) ]
-1 * (pos (suc x)) * (a + b) ≈[ *-assoc -1 (pos (suc x)) (a + b) ]
-1 * (pos (suc x) * (a + b)) ≈[ R -1 !*! *-+-left-dist-ℕ (suc x) a b ]
-1 * (pos (suc x) * a + pos (suc x) * b) ≈[ -1-left-dist (pos (suc x) * a) (pos (suc x) * b) ]
-1 * (pos (suc x) * a) + -1 * (pos (suc x) * b) ≈[ sym (*-assoc -1 (pos (suc x)) a) !+! sym (*-assoc -1 (pos (suc x)) b) ]
-1 * pos (suc x) * a + -1 * pos (suc x) * b ≈[ R -1 !*! cong pos (cong suc (sym (ℕP.+-right-id x))) !*! R a !+!
R -1 !*! cong pos (cong suc (sym (ℕP.+-right-id x))) !*! R b ]
-1 * pos (suc (x + 0)) * a + -1 * pos (suc (x + 0)) * b ≈[ neg-invol (negsuc x) !*! R a !+! neg-invol (negsuc x) !*! R b ]
negsuc x * a + negsuc x * b
qed
where
-- TODO
-1-left-dist : ∀ x y → neg (x + y) ≈ neg x + neg y
-1-left-dist _ _ = primTrustMe
*-+-right-dist : ∀ a b x → (a + b) * x ≈ a * x + b * x
*-+-right-dist a b x =
begin
(a + b) * x ≈[ *-comm (a + b) x ]
x * (a + b) ≈[ *-+-left-dist x a b ]
x * a + x * b ≈[ (*-comm x a) !+! (*-comm x b) ]
a * x + b * x
qed
+-left-inv : ∀ x → neg x + x ≈ 0
+-left-inv x =
begin
-1 * x + x ≈[ R (-1 * x) !+! sym (*-left-id x) ]
-1 * x + 1 * x ≈[ sym (*-+-right-dist -1 1 x) ]
0 * x ≈[ *-left-zero x ]
0
qed
+-right-inv : ∀ x → x + neg x ≈ 0
+-right-inv x =
begin
x + neg x ≈[ sym (neg-invol x) !+! R (neg x) ]
neg (neg x) + neg x ≈[ +-left-inv (neg x) ]
0
qed
neg-flip : ∀ x y → neg (x - y) ≈ y - x
neg-flip x y =
begin
neg (x - y) ≈[ *-+-left-dist -1 x (neg y) ]
neg x + neg (neg y) ≈[ R (neg x) !+! neg-invol y ]
neg x + y ≈[ +-comm (neg x) y ]
y - x
qed
| {
"alphanum_fraction": 0.4656145301,
"avg_line_length": 35.3333333333,
"ext": "agda",
"hexsha": "25be0137f01712278f6fbcf94644763c7d242d0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Data/Int/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Data/Int/Core.agda",
"max_line_length": 129,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Data/Int/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 5213,
"size": 11342
} |
{-# OPTIONS --without-K --safe #-}
module Data.Bool where
open import Data.Bool.Base public
open import Data.Bool.Truth public
| {
"alphanum_fraction": 0.7364341085,
"avg_line_length": 18.4285714286,
"ext": "agda",
"hexsha": "265478806916cdaa407c20b6d9d8aa9ef1daa0d0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bool.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 28,
"size": 129
} |
module WellTypedTermsNBEModel where
open import Library
open import Naturals
open import WellTypedTerms
open import RMonads.REM
open import FunctorCat
open import Categories.Sets
open NatT
open Σ
-- normal forms
mutual
data Nf (Γ : Con) : Ty → Set where
lam : ∀{σ τ} → Nf (Γ < σ) τ → Nf Γ (σ ⇒ τ)
ne : Ne Γ ι → Nf Γ ι
data Ne (Γ : Con) : Ty → Set where
var : ∀{σ} → Var Γ σ → Ne Γ σ
app : ∀{σ τ} → Ne Γ (σ ⇒ τ) → Nf Γ σ → Ne Γ τ
mutual
renNf : ∀{Γ Δ} → Ren Δ Γ → ∀{σ} → Nf Δ σ → Nf Γ σ
renNf ρ (lam n) = lam (renNf (wk ρ) n)
renNf ρ (ne n) = ne (renNe ρ n)
renNe : ∀{Γ Δ} → Ren Δ Γ → ∀{σ} → Ne Δ σ → Ne Γ σ
renNe ρ (var x) = var (ρ x)
renNe ρ (app n n') = app (renNe ρ n) (renNf ρ n')
mutual
renNfid : ∀{Γ} σ (v : Nf Γ σ) → renNf id v ≅ v
renNfid ι (ne x) = cong ne (renNeid ι x)
renNfid (σ ⇒ τ) (lam v) = cong lam $
proof
renNf (wk id) v
≅⟨ cong (λ (ρ : Ren _ _) → renNf ρ v)
(iext λ _ → ext wkid) ⟩
renNf id v
≅⟨ renNfid τ v ⟩
v
∎
renNeid : ∀{Γ} σ (v : Ne Γ σ) → renNe id v ≅ v
renNeid σ (var x) = refl
renNeid τ (app {σ} v x) = cong₂ app (renNeid (σ ⇒ τ) v) (renNfid σ x)
mutual
renNecomp : ∀{Δ Γ B}(ρ : Ren Δ Γ)(ρ' : Ren Γ B) σ (v : Ne Δ σ) →
renNe (ρ' ∘ ρ) v ≅ renNe ρ' (renNe ρ v)
renNecomp ρ ρ' σ (var x) = refl
renNecomp ρ ρ' τ (app {σ} v x) = cong₂
Ne.app
(renNecomp ρ ρ' (σ ⇒ τ) v)
(renNfcomp ρ ρ' σ x)
renNfcomp : ∀{Δ Γ B}(ρ : Ren Δ Γ)(ρ' : Ren Γ B) σ (v : Nf Δ σ) →
renNf (ρ' ∘ ρ) v ≅ renNf ρ' (renNf ρ v)
renNfcomp ρ ρ' (σ ⇒ τ) (lam v) = cong Nf.lam $
proof
renNf (wk (ρ' ∘ ρ)) v
≅⟨ cong (λ (ρ : Ren _ _) → renNf ρ v)
(iext λ _ → ext (wkcomp ρ' ρ)) ⟩
renNf (wk ρ' ∘ wk ρ) v
≅⟨ renNfcomp (wk ρ) (wk ρ') τ v ⟩
renNf (wk ρ') (renNf (wk ρ) v)
∎
renNfcomp ρ ρ' ι (ne x) = cong ne (renNecomp ρ ρ' ι x)
mutual
Val : Con → Ty → Set
Val Γ ι = Ne Γ ι
Val Γ (σ ⇒ τ) = ∀{B} → Ren Γ B → Val B σ → Val B τ
-- (λ f → ∀{B B'}(ρ : Ren Γ B)(ρ' : Ren B B')(a : Val B σ) → renV ρ' (f ρ a) ≅ f (ρ' ∘ ρ) (renV ρ' a))
renV : ∀{Γ Δ} → Ren Δ Γ → ∀{σ} → Val Δ σ → Val Γ σ
renV ρ {ι} n = renNe ρ n
renV {Γ}{Δ} ρ {σ ⇒ τ} f = λ ρ' → f (ρ' ∘ ρ)
{-
Ren Γ B → Val B σ → Val B τ
| |
\/ \/
Ren Γ B' → Val B' σ → Val B' τ
-}
-- interpretation of contexts
Env : Con → Con → Set
Env Γ Δ = ∀{σ} → Var Γ σ → Val Δ σ
_<<_ : ∀{Γ Δ σ} → Env Γ Δ → Val Δ σ → Env (Γ < σ) Δ
(γ << v) vz = v
(γ << v) (vs x) = γ x
eval : ∀{Γ Δ σ} → Env Δ Γ → Tm Δ σ → Val Γ σ
eval γ (var i) = γ i
eval γ (lam t) = λ ρ v → eval ((renV ρ ∘ γ) << v) t
eval γ (app t u) = eval γ t id (eval γ u)
lem : ∀{B Γ Δ σ}(ρ : Ren Γ B)(γ : Env Δ Γ)(t : Tm Δ σ) →
renV ρ (eval γ t) ≅ eval (renV ρ ∘ γ) t
lem = {!!}
renVid : ∀{Γ} σ (v : Val Γ σ) → renV id v ≅ v
renVid ι v = renNeid ι v
renVid (σ ⇒ τ) v = refl
renVcomp : ∀{Δ Γ B}(ρ : Ren Δ Γ)(ρ' : Ren Γ B) σ (v : Val Δ σ) →
renV (ρ' ∘ ρ) v ≅ renV ρ' (renV ρ v)
renVcomp ρ ρ' ι v = renNecomp ρ ρ' ι v
renVcomp ρ ρ' (σ ⇒ τ) v = refl
renV<< : ∀{B' B Γ}(α : Ren B B')(β : Env Γ B){σ}(v : Val B σ) →
∀{ρ}(y : Var (Γ < σ) ρ) →
((renV α ∘ β) << renV α v) y ≅ (renV α ∘ (β << v)) y
renV<< α β v vz = refl
renV<< α β v (vs y) = refl
substeval : ∀{σ τ}(p : σ ≅ τ){Γ B : Con}{γ : Env Γ B}(t : Tm Γ σ) →
(subst (Val B) p ∘ eval γ) t ≅ (eval γ ∘ subst (Tm Γ) p) t
substeval refl t = refl
wk<< : ∀{B Γ Δ}(α : Ren Γ Δ)(β : Env Δ B){σ}(v : Val B σ) →
∀{ρ}(y : Var (Γ < σ) ρ) →
((β ∘ α) << v) y ≅ (β << v) (wk α y)
wk<< α β v vz = refl
wk<< α β v (vs y) = refl
<<eq : ∀{Γ Δ σ}{β β' : Env Γ Δ} → (λ{σ} → β {σ}) ≅ (λ{σ} → β' {σ}) →
(v : Val Δ σ) → (λ {σ} → (β << v) {σ}) ≅ (λ {σ} → (β' << v) {σ})
<<eq refl v = refl
reneval : ∀{B Γ Δ σ}(α : Ren Γ Δ)(β : Env Δ B)(t : Tm Γ σ) →
eval (β ∘ α) t
≅
(eval β ∘ ren α) t
reneval α β (var x) = refl
reneval α β (app t u) =
cong₂ (λ f x → f id x) (reneval α β t) (reneval α β u)
reneval {B} α β (lam t) = iext λ B' → ext λ (ρ : Ren B B') → ext λ v →
proof
eval ((renV ρ ∘ β ∘ α) << v) t
≅⟨ cong (λ (γ : Env _ B') → eval γ t)
(iext λ _ → ext (wk<< α (renV ρ ∘ β) v)) ⟩
eval (((renV ρ ∘ β) << v) ∘ wk α) t
≅⟨ reneval (wk α) ((renV ρ ∘ β) << v) t ⟩
eval ((renV ρ ∘ β) << v) (ren (wk α) t)
∎
lifteval : ∀{B Γ Δ σ τ}(α : Sub Γ Δ)(β : Env Δ B)
(v : Val B σ)(y : Var (Γ < σ) τ) →
((eval β ∘ α) << v) y ≅ (eval (β << v) ∘ lift α) y
lifteval α β v vz = refl
lifteval α β v (vs x) = reneval vs (β << v) (α x)
subeval : ∀{B Γ Δ σ}(α : Sub Γ Δ)(β : Env Δ B)(t : Tm Γ σ) →
eval (eval β ∘ α) t ≅ (eval β ∘ sub α) t
subeval α β (var x) = refl
subeval α β (app t u) = cong₂ (λ f x → f id x) (subeval α β t) (subeval α β u)
subeval {B} α β (lam t) = iext λ B' → ext λ (ρ : Ren B B') → ext λ v →
proof
eval ((renV ρ ∘ eval β ∘ α) << v) t
≅⟨ cong (λ (γ : Env _ B') → eval (γ << v) t)
(iext λ _ → ext λ x → lem ρ β (α x)) ⟩
eval ((eval (renV ρ ∘ β) ∘ α) << v) t
≅⟨ cong (λ (γ : Env _ B') → eval γ t)
(iext λ _ → ext λ x → lifteval α (renV ρ ∘ β) v x) ⟩
eval (eval ((renV ρ ∘ β) << v) ∘ lift α) t
≅⟨ subeval (lift α) ((renV ρ ∘ β) << v) t ⟩
eval ((λ {σ} x → renV ρ (β x)) << v) (sub (lift α) t)
∎
modelRAlg : Con → RAlg TmRMonad
modelRAlg Γ = record {
acar = Val Γ;
astr = λ γ → eval γ;
alaw1 = refl;
alaw2 = λ {B} {Δ} {α} {γ} → iext (λ σ → ext (subeval α γ))}
| {
"alphanum_fraction": 0.4536707056,
"avg_line_length": 29.3821989529,
"ext": "agda",
"hexsha": "d71155f073db8415132da83793ffc8ae024e714d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "WellTypedTermsNBEModel.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "WellTypedTermsNBEModel.agda",
"max_line_length": 107,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "WellTypedTermsNBEModel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 2747,
"size": 5612
} |
------------------------------------------------------------------------
-- Regular expressions
------------------------------------------------------------------------
open import Setoids
module RegExps (S : Setoid) where
infix 8 _⋆
infixl 7 _⊙_
infixl 6 _∣_
infix 1 _∈‿⟦_⟧
open import Prelude
private open module S' = Setoid S
------------------------------------------------------------------------
-- Regular expressions
data RegExp : Set where
∅ : RegExp -- Matches nothing.
ε : RegExp -- Matches the empty string.
• : RegExp -- Matches any single character.
sym : carrier -> RegExp -- Matches the given character.
_⋆ : RegExp -> RegExp -- Kleene star.
_∣_ : RegExp -> RegExp -> RegExp -- Choice.
_⊙_ : RegExp -> RegExp -> RegExp -- Sequencing.
------------------------------------------------------------------------
-- Size of a regular expression
size : RegExp -> ℕ
size (re ⋆) = 1 + size re
size (re₁ ∣ re₂) = 1 + size re₁ + size re₂
size (re₁ ⊙ re₂) = 1 + size re₁ + size re₂
size _ = 1
------------------------------------------------------------------------
-- Semantics of regular expressions
-- The type xs ∈‿⟦ re ⟧ is inhabited iff xs matches the regular
-- expression re.
data _∈‿⟦_⟧ : [ carrier ] -> RegExp -> Set where
matches-ε : [] ∈‿⟦ ε ⟧
matches-• : forall {x} -> x ∷ [] ∈‿⟦ • ⟧
matches-sym : forall {x y} -> x ≈ y -> x ∷ [] ∈‿⟦ sym y ⟧
matches-⋆ : forall {xs re}
-> xs ∈‿⟦ ε ∣ re ⊙ re ⋆ ⟧ -> xs ∈‿⟦ re ⋆ ⟧
matches-∣ˡ : forall {xs re₁ re₂}
-> xs ∈‿⟦ re₁ ⟧ -> xs ∈‿⟦ re₁ ∣ re₂ ⟧
matches-∣ʳ : forall {xs re₁ re₂}
-> xs ∈‿⟦ re₂ ⟧ -> xs ∈‿⟦ re₁ ∣ re₂ ⟧
matches-⊙ : forall {xs₁ xs₂ re₁ re₂}
-> xs₁ ∈‿⟦ re₁ ⟧ -> xs₂ ∈‿⟦ re₂ ⟧
-> xs₁ ++ xs₂ ∈‿⟦ re₁ ⊙ re₂ ⟧
------------------------------------------------------------------------
-- Is the regular expression bypassable?
bypassable : (re : RegExp) -> Maybe ([] ∈‿⟦ re ⟧)
bypassable ∅ = nothing
bypassable ε = just matches-ε
bypassable • = nothing
bypassable (sym _) = nothing
bypassable (re ⋆) = just (matches-⋆ (matches-∣ˡ matches-ε))
bypassable (re₁ ∣ re₂) with bypassable re₁ | bypassable re₂
bypassable (re₁ ∣ re₂) | just m | _ = just (matches-∣ˡ m)
bypassable (re₁ ∣ re₂) | nothing | just m = just (matches-∣ʳ m)
bypassable (re₁ ∣ re₂) | nothing | nothing = nothing
bypassable (re₁ ⊙ re₂) with bypassable re₁ | bypassable re₂
bypassable (re₁ ⊙ re₂) | just m₁ | just m₂ = just (matches-⊙ m₁ m₂)
bypassable (re₁ ⊙ re₂) | _ | _ = nothing
| {
"alphanum_fraction": 0.4553207267,
"avg_line_length": 36.4459459459,
"ext": "agda",
"hexsha": "b172a677c92a1c1d046935e926cf5c676c32a64f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/RegExps.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/RegExps.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/RegExps.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 867,
"size": 2697
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- List membership and some related definitions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.List.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where
open import Function using (_∘_; id; flip)
open import Data.Fin using (Fin; zero; suc)
open import Data.List.Base as List using (List; []; _∷_; length; lookup)
open import Data.List.Relation.Unary.Any
using (Any; index; map; here; there)
open import Data.Product as Prod using (∃; _×_; _,_)
open import Relation.Unary using (Pred)
open import Relation.Nullary using (¬_)
open Setoid S renaming (Carrier to A)
open Data.List.Relation.Unary.Any using (_∷=_; _─_) public
------------------------------------------------------------------------
-- Definitions
infix 4 _∈_ _∉_
_∈_ : A → List A → Set _
x ∈ xs = Any (x ≈_) xs
_∉_ : A → List A → Set _
x ∉ xs = ¬ x ∈ xs
------------------------------------------------------------------------
-- Operations
mapWith∈ : ∀ {b} {B : Set b}
(xs : List A) → (∀ {x} → x ∈ xs → B) → List B
mapWith∈ [] f = []
mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there)
------------------------------------------------------------------------
-- Finding and losing witnesses
module _ {p} {P : Pred A p} where
find : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x
find (here px) = (_ , here refl , px)
find (there pxs) = Prod.map id (Prod.map there id) (find pxs)
lose : P Respects _≈_ → ∀ {x xs} → x ∈ xs → P x → Any P xs
lose resp x∈xs px = map (flip resp px) x∈xs
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.16
map-with-∈ = mapWith∈
{-# WARNING_ON_USAGE map-with-∈
"Warning: map-with-∈ was deprecated in v0.16.
Please use mapWith∈ instead."
#-}
| {
"alphanum_fraction": 0.4780952381,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "b61250e559f141f8ac15c6b21cee5f7289fedee3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Setoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 547,
"size": 2100
} |
{-# OPTIONS --without-K --safe #-}
module Mult3 where
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
data Mult3 : ℕ → Set where
0-mult : Mult3 0
SSS-mult : ∀ n → Mult3 n → Mult3 (suc (suc (suc n)))
data Mult3' : ℕ → Set where
30-mult : Mult3' 30
21-mult : Mult3' 21
sum-mult : ∀ n m → Mult3' n → Mult3' m → Mult3' (n + m)
diff-mult : ∀ l n m → Mult3' n → Mult3' m → l + n ≡ m → Mult3' l
silly3 : Mult3' 3
silly3 = diff-mult 3 9 12 (diff-mult 9 21 30 21-mult 30-mult refl) (diff-mult 12 9 21 (diff-mult 9 21 30 21-mult 30-mult refl) 21-mult refl) refl
lemma-plus : ∀ {n m : ℕ} → Mult3 n → Mult3 m → Mult3 (n + m)
lemma-plus 0-mult m = m
lemma-plus {m = m₁} (SSS-mult n n₁) m = SSS-mult (n + m₁) (lemma-plus n₁ m)
lemma-minus : ∀ {l n : ℕ} → Mult3 n → Mult3 (n + l) → Mult3 l
lemma-minus {l} {.0} 0-mult m₁ = m₁
lemma-minus {l} {.(suc (suc (suc n)))} (SSS-mult n n₁) (SSS-mult .(n + l) m₁) = lemma-minus n₁ m₁
lemma-silly : ∀ {m n : ℕ} → Mult3 m → m ≡ n → Mult3 n
lemma-silly m eq rewrite eq = m
mult-imp-mult' : ∀ {n : ℕ} → Mult3 n → Mult3' n
mult-imp-mult' 0-mult = diff-mult zero 30 30 30-mult 30-mult refl
mult-imp-mult' (SSS-mult n M) = sum-mult 3 n silly3 (mult-imp-mult' M)
mult'-imp-mult : ∀ {n : ℕ} → Mult3' n → Mult3 n
mult'-imp-mult 30-mult = SSS-mult 27
(SSS-mult 24
(SSS-mult 21
(SSS-mult 18
(SSS-mult 15
(SSS-mult 12
(SSS-mult 9 (SSS-mult 6 (SSS-mult 3 (SSS-mult zero 0-mult)))))))))
mult'-imp-mult 21-mult = SSS-mult 18
(SSS-mult 15
(SSS-mult 12
(SSS-mult 9 (SSS-mult 6 (SSS-mult 3 (SSS-mult zero 0-mult))))))
mult'-imp-mult (sum-mult n m M M₁) = lemma-plus (mult'-imp-mult M) (mult'-imp-mult M₁)
mult'-imp-mult (diff-mult l n m M M₁ x) rewrite +-comm l n = lemma-minus {l} {n} (mult'-imp-mult M) (lemma-silly {m} {n + l} (mult'-imp-mult M₁) (sym x))
| {
"alphanum_fraction": 0.5432921028,
"avg_line_length": 42.04,
"ext": "agda",
"hexsha": "5059f9abced38d46ff8dea01f0c4a9e8d89fd4d9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Mult3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Mult3.agda",
"max_line_length": 153,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Mult3.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 763,
"size": 2102
} |
module plfa.part1.Negation where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc; _<_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_)
open import plfa.part1.Isomorphism using (_≃_; extensionality)
¬_ : Set → Set
¬ A = A → ⊥
¬-elim : ∀ {A : Set}
→ ¬ A
→ A
---
→ ⊥
¬-elim ¬x x = ¬x x
infix 3 ¬_
¬¬-intro : ∀ {A : Set}
→ A
-----
→ ¬ ¬ A
¬¬-intro x = λ{¬x → ¬x x}
¬¬¬-elim : ∀ {A : Set}
→ ¬ ¬ ¬ A
-------
→ ¬ A
¬¬¬-elim ¬¬¬x = λ x → ¬¬¬x (¬¬-intro x)
contraposition : ∀ {A B : Set}
→ (A → B)
-----------
→ (¬ B → ¬ A)
contraposition f ¬y x = ¬y (f x)
_≢_ : ∀ {A : Set} → A → A → Set
x ≢ y = ¬ (x ≡ y)
_ : 1 ≢ 2
_ = λ()
peano : ∀ {m : ℕ} → zero ≢ suc m
peano = λ()
id : ⊥ → ⊥
id x = x
id′ : ⊥ → ⊥
id′ ()
assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′
assimilation ¬x ¬x′ = extensionality (λ x → ⊥-elim (¬x x))
assimilation' : ∀ {A : Set} {¬x ¬x′ : ¬ A} → ¬x ≡ ¬x′
assimilation' {A} {¬x} {¬x′} = assimilation ¬x ¬x′
<-irreflexive : ∀ {n : ℕ} → ¬ (n < n)
<-irreflexive (Data.Nat.s≤s x) = <-irreflexive x
⊎-dual-× : ∀ {A B : Set} → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B)
⊎-dual-× = record {
to = λ {x → (λ z → x (inj₁ z)) , λ x₁ → x (inj₂ x₁) };
from = λ { (fst , snd) (inj₁ x) → fst x ;
(fst , snd) (inj₂ y) → snd y} ;
from∘to = λ {¬x → assimilation'} ;
to∘from = λ { (fst , snd) → refl} }
| {
"alphanum_fraction": 0.4457142857,
"avg_line_length": 22.1830985915,
"ext": "agda",
"hexsha": "11f5d783179f1fd080a93d90e86bfec476ead14c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sym-cereal/proofs",
"max_forks_repo_path": "plfa/part1/Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sym-cereal/proofs",
"max_issues_repo_path": "plfa/part1/Negation.agda",
"max_line_length": 72,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UnsoundWitch/proofs",
"max_stars_repo_path": "plfa/part1/Negation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z",
"num_tokens": 682,
"size": 1575
} |
-- Andreas 2012-07-07
module Issue674 where
record unit : Set where
constructor tt
module A ⦃ t : unit ⦄ (i : unit) where
id : unit → unit
id x = x
open A {{t = _}} tt
module N = A {{ tt }} tt
open N
open A {{tt}} tt
module M = A tt
open M
open A tt
-- the last statement caused a panic when inserting the instance meta
-- because due to open it found candidates in scope that were not
-- in the signature yet
| {
"alphanum_fraction": 0.6650943396,
"avg_line_length": 16.3076923077,
"ext": "agda",
"hexsha": "65a596da56c23e65e982d64c725acd5c4b82ba0d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue674.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue674.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue674.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 130,
"size": 424
} |
{-# OPTIONS --cubical --safe #-}
module Chord where
open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_)
open import Data.Fin using (Fin; toℕ) renaming (zero to fz; suc to fs)
open import Data.List using (List; map; []; _∷_; _++_; zip)
open import Data.Nat using (ℕ)
open import Data.Product using (_×_)
open import Data.String using (String) renaming (_++_ to _++s_)
open import Function using (_∘_)
open import AssocList
open import BitVec
open import Pitch
open import Util using (_+N_)
data Root : Type where
root : Fin s12 → Root
showRoot : Root → String
showRoot (root fz) = "I"
showRoot (root (fs fz)) = "♭II"
showRoot (root (fs (fs fz))) = "II"
showRoot (root (fs (fs (fs fz)))) = "♭III"
showRoot (root (fs (fs (fs (fs fz))))) = "III"
showRoot (root (fs (fs (fs (fs (fs fz)))))) = "IV"
showRoot (root (fs (fs (fs (fs (fs (fs fz))))))) = "♭V"
showRoot (root (fs (fs (fs (fs (fs (fs (fs fz)))))))) = "V"
showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))) = "♭VI"
showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))) = "VI"
showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz))))))))))) = "♭VII"
showRoot (root (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs (fs fz)))))))))))) = "VII"
data Quality : Type where
maj : Quality
min : Quality
dom7 : Quality
maj7 : Quality
showQuality : Quality → String
showQuality maj = "maj"
showQuality min = "min"
showQuality dom7 = "⁷"
showQuality maj7 = "maj⁷"
RootQuality : Type
RootQuality = Root × Quality
showRootQuality : RootQuality → String
showRootQuality (r , q) = showRoot r ++s showQuality q
Notes : Type
Notes = BitVec s12
ChordList : Type
ChordList = AList Notes RootQuality
-- The list should not include the root.
makeChord : Root → List ℕ → Notes
makeChord (root n) [] = BitVec.insert n empty
makeChord (root n) (x ∷ xs) = BitVec.insert (n +N x) (makeChord (root n) xs)
-- The list should not include the root.
qualityNotes : Quality → List ℕ
qualityNotes maj = 4 ∷ 7 ∷ []
qualityNotes min = 3 ∷ 7 ∷ []
qualityNotes dom7 = 4 ∷ 7 ∷ 10 ∷ []
qualityNotes maj7 = 4 ∷ 7 ∷ 11 ∷ []
makeChordQuality : RootQuality → Notes
makeChordQuality (r , q) = makeChord r (qualityNotes q)
---------
--addMajor
aa = show (makeChordQuality (root fz , maj))
{-
allPairs : {A : Type} → List A → List (A × A)
allPairs [] = []
allPairs (x ∷ xs) = map (x ,_) xs ++ allPairs xs
aa = allPairs (c 5 ∷ e 5 ∷ g 5 ∷ [])
bb = zip aa (map (toℕ ∘ unIntervalClass ∘ pitchPairToIntervalClass) aa)
-}
| {
"alphanum_fraction": 0.5455486542,
"avg_line_length": 31.8461538462,
"ext": "agda",
"hexsha": "358ae8a0dca140f6549f0959916a4d674ad9cd10",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/Chord.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/Chord.agda",
"max_line_length": 87,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/Chord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 904,
"size": 2898
} |
module Base.Change.Equivalence.Realizers where
open import Relation.Binary.PropositionalEquality
open import Base.Change.Algebra
open import Level
open import Data.Unit
open import Data.Product
open import Function
open import Postulate.Extensionality
open import Base.Change.Equivalence
-- Here we give lemmas about realizers for function changes. Using these lemmas,
-- you can simply write a "realizer" for a derivative for f (that is, the
-- computational part of the derivative, without any embedded proof), show
-- separately that it's change-equivalent to the nil change for f and get a
-- proper function change; this code proves the needed validity lemmas.
--
-- Given a type of codes for types, such lemmas should be provable by induction
-- on those types; something similar is done in the proof of erasure, though
-- details are quite different.
--
-- For now, we do something close to unrolling the induction manually for
-- functions of arity 1, 2 and 3 since those are actually used in the codebase.
-- I didn't actually write the induction though, and I'm not sure how to do it.
--
-- So there are two attempts which might give ideas; one is
-- equiv-raw-change-to-change-binary and equiv-raw-change-to-change-ternary, the
-- other is equiv-raw-change-to-change-binary′ and
-- equiv-raw-change-to-change-ternary′.
module _
{a} {A : Set a} {{CA : ChangeAlgebra A}}
{b} {B : Set b} {{CB : ChangeAlgebra B}}
(f : A → B)
where
private
Set′ = Set (a ⊔ b)
equiv₁ : ∀ (df′ : Δ f) (df-realizer : RawChange f) → Set′
equiv₁ df′ df-realizer = apply df′ ≡ df-realizer
equiv-raw-change-to-change-ResType :
∀ (df-realizer : RawChange f) → Set′
equiv-raw-change-to-change-ResType df-realizer =
Σ[ df′ ∈ Δ f ] equiv₁ df′ df-realizer
equiv-hp :
∀ (df : Δ f) (df-realizer : RawChange f) → Set′
equiv-hp df df-realizer = (∀ a da → apply df a da ≙₍ f a ₎ df-realizer a da)
-- This is sort of the "base case" of the proof mentioned above.
equiv-raw-change-to-change :
∀ (df : Δ f) (df-realizer : RawChange f) →
equiv-hp df df-realizer →
equiv-raw-change-to-change-ResType df-realizer
equiv-raw-change-to-change df df-realizer ≙df = record { apply = df-realizer ; correct = df-realizer-correct} , refl
where
df-realizer-correct : ∀ a da → f (a ⊞ da) ⊞ df-realizer (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ df-realizer a da
df-realizer-correct a da
rewrite sym (proof (≙df a da))
| sym (proof (≙df (a ⊞ da) (nil (a ⊞ da))))
= correct df a da
equiv-raw-deriv-to-deriv :
∀ (df-realizer : RawChange f) →
equiv-hp (nil f) df-realizer →
IsDerivative f df-realizer
equiv-raw-deriv-to-deriv df-realizer ≙df with equiv-raw-change-to-change (nil f) df-realizer ≙df
equiv-raw-deriv-to-deriv .(FunctionChanges.apply nil-f) ≙df | nil-f , refl =
equiv-nil-is-derivative nil-f (delta-ext ≙df)
module _
{a} {A : Set a} {{CA : ChangeAlgebra A}}
{b} {B : Set b} {{CB : ChangeAlgebra B}}
{c} {C : Set c} {{CC : ChangeAlgebra C}}
(f : A → B → C) where
private
Set′ = Set (a ⊔ b ⊔ c)
-- This is, sort of, an instance of the inductive step in the proof mentioned above.
RawChangeBinary :
Set′
RawChangeBinary = ∀ a (da : Δ a) → RawChange (f a)
equiv-hp-binary : ∀ (df : Δ f) (df-realizer : RawChangeBinary) → Set′
equiv-hp-binary df df-realizer =
∀ a da → equiv-hp (f a) (apply df a da) (df-realizer a da)
equiv₂ : ∀ (df′ : Δ f) (df-realizer : RawChangeBinary) → Set′
equiv₂ df′ df-realizer = ∀ a da → equiv₁ (f a) (apply df′ a da) (df-realizer a da)
equiv-raw-change-to-change-binary-ResType :
∀ (df-realizer : RawChangeBinary) → Set′
equiv-raw-change-to-change-binary-ResType df-realizer =
Σ[ df′ ∈ Δ f ] equiv₂ df′ df-realizer
equiv-raw-change-to-change-binary equiv-raw-change-to-change-binary′ :
∀ (df : Δ f) (df-realizer : RawChangeBinary) →
equiv-hp-binary df df-realizer →
equiv-raw-change-to-change-binary-ResType df-realizer
equiv-raw-change-to-change-binary df df-realizer ≙df = proj₁ (equiv-raw-change-to-change f df df₁′ ≙df₁′) , λ a da → refl
where
module _ (a : A) (da : Δ a) where
f₁ = f a
df₁ : Δ f₁
df₁ = apply df a da
df-realizer₁ = df-realizer a da
≙df₁ = ≙df a da
df-realizer₁-correct : ∀ b db → f₁ (b ⊞ db) ⊞ df-realizer₁ (b ⊞ db) (nil (b ⊞ db)) ≡ f₁ b ⊞ df-realizer₁ b db
df-realizer₁-correct b db
rewrite sym (proof (≙df₁ b db))
| sym (proof (≙df₁ (b ⊞ db) (nil (b ⊞ db))))
= correct df₁ b db
df₁′ : Δ f₁
df₁′ = record { apply = df-realizer₁ ; correct = df-realizer₁-correct }
≙df₁′ : df₁ ≙₍ f₁ ₎ df₁′
≙df₁′ = delta-ext ≙df₁
equiv-raw-change-to-change-binary′ df df-realizer ≙df = record { apply = df₁′ ; correct = λ a da → ext (df-realizer-correct a da) } , λ a da → refl
where
module _ (a : A) (da : Δ a) where
f₁ = f a
df₁ : Δ f₁
df₁ = apply df a da
df-realizer₁ = df-realizer a da
≙df₁ = ≙df a da
df₁′ = proj₁ (equiv-raw-change-to-change f₁ df₁ df-realizer₁ ≙df₁)
df-realizer-correct : ∀ b → f (a ⊞ da) b ⊞ df-realizer (a ⊞ da) (nil (a ⊞ da)) b (nil b) ≡ f a b ⊞ df-realizer a da b (nil b)
df-realizer-correct b
rewrite sym (proof (≙df a da b (nil b)))
| sym (proof (≙df (a ⊞ da) (nil (a ⊞ da)) b (nil b)))
= cong (λ □ → □ b) (correct df a da)
equiv-raw-deriv-to-deriv-binary :
∀ (df-realizer : RawChangeBinary) →
(≙df : equiv-hp-binary (nil f) df-realizer) →
IsDerivative f (apply (proj₁ (equiv-raw-change-to-change-binary (nil f) df-realizer ≙df)))
equiv-raw-deriv-to-deriv-binary df-realizer ≙df a da with equiv-raw-change-to-change-binary (nil f) df-realizer ≙df
... | nil-f , nil-f≡df with sym (nil-f≡df a da)
... | df-a-da≡nil-f-a-da rewrite df-a-da≡nil-f-a-da = equiv-nil-is-derivative nil-f (delta-ext {df = nil f} {dg = nil-f} (λ a da → doe (ext (lemma a da)))) a da
where
lemma : ∀ a da b → (f a ⊞ apply (nil f) a da) b ≡ (f a ⊞ apply nil-f a da) b
lemma a da b rewrite nil-f≡df a da = proof (≙df a da b (nil b))
module _
{a} {A : Set a} {{CA : ChangeAlgebra A}}
{b} {B : Set b} {{CB : ChangeAlgebra B}}
{c} {C : Set c} {{CC : ChangeAlgebra C}}
{d} {D : Set d} {{CD : ChangeAlgebra D}}
(f : A → B → C → D)
where
private
Set′ = Set (a ⊔ b ⊔ c ⊔ d)
-- This is an adapted copy of the above "inductive step".
RawChangeTernary : Set′
RawChangeTernary = ∀ a (da : Δ a) → RawChangeBinary (f a)
equiv-hp-ternary : ∀ (df : Δ f) (df-realizer : RawChangeTernary) → Set′
equiv-hp-ternary df df-realizer =
∀ a da → equiv-hp-binary (f a) (apply df a da) (df-realizer a da)
equiv₃ : ∀ (df′ : Δ f) (df-realizer : RawChangeTernary) → Set′
equiv₃ df′ df-realizer = ∀ a da → equiv₂ (f a) (apply df′ a da) (df-realizer a da)
equiv-raw-change-to-change-ternary-ResType :
∀ (df-realizer : RawChangeTernary) → Set′
equiv-raw-change-to-change-ternary-ResType df-realizer =
Σ[ df′ ∈ Δ f ] equiv₃ df′ df-realizer
equiv-raw-change-to-change-ternary equiv-raw-change-to-change-ternary′ :
∀ (df : Δ f) (df-realizer : RawChangeTernary) →
equiv-hp-ternary df df-realizer →
equiv-raw-change-to-change-ternary-ResType df-realizer
equiv-raw-change-to-change-ternary df df-realizer ≙df =
proj₁ (equiv-raw-change-to-change-binary f df df₁′ ≙df₁′) , λ a da b db → refl
where
module _ (a : A) (da : Δ a) (b : B) (db : Δ b) where
f₁ = f a b
df₁ : Δ f₁
df₁ = apply (apply df a da) b db
df-realizer₁ = df-realizer a da b db
≙df₁ = ≙df a da b db
df-realizer₁-correct : ∀ c dc → f₁ (c ⊞ dc) ⊞ df-realizer₁ (c ⊞ dc) (nil (c ⊞ dc)) ≡ f₁ c ⊞ df-realizer₁ c dc
df-realizer₁-correct c dc
rewrite sym (proof (≙df₁ c dc))
| sym (proof (≙df₁ (c ⊞ dc) (nil (c ⊞ dc))))
= correct df₁ c dc
df₁′ : Δ f₁
df₁′ = record { apply = df-realizer₁ ; correct = df-realizer₁-correct }
≙df₁′ : df₁ ≙₍ f₁ ₎ df₁′
≙df₁′ = delta-ext ≙df₁
equiv-raw-change-to-change-ternary′ df df-realizer ≙df = record { apply = df₁′ ; correct = λ a da → ext (λ b → ext (df-realizer-correct a da b)) } , λ a da b db → refl
where
module _ (a : A) (da : Δ a) where
f₁ = f a
df₁ : Δ f₁
df₁ = apply df a da
df-realizer₁ = df-realizer a da
≙df₁ = ≙df a da
df₁′ = proj₁ (equiv-raw-change-to-change-binary f₁ df₁ df-realizer₁ ≙df₁)
df-realizer-correct : ∀ b c → f (a ⊞ da) b c ⊞ df-realizer (a ⊞ da) (nil (a ⊞ da)) b (nil b) c (nil c) ≡ f a b c ⊞ df-realizer a da b (nil b) c (nil c)
df-realizer-correct b c
rewrite sym (proof (≙df a da b (nil b) c (nil c)))
| sym (proof (≙df (a ⊞ da) (nil (a ⊞ da)) b (nil b) c (nil c)))
= cong (λ □ → □ b c) (correct df a da)
| {
"alphanum_fraction": 0.6061315496,
"avg_line_length": 42.7142857143,
"ext": "agda",
"hexsha": "ed604b5fb595b9d3c5a71b3a96b9492e5f765315",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Base/Change/Equivalence/Realizers.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Base/Change/Equivalence/Realizers.agda",
"max_line_length": 169,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Base/Change/Equivalence/Realizers.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 3099,
"size": 8970
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.Int
open import Agda.Builtin.Equality
fromNeg : Nat → Int
fromNeg zero = pos 0
fromNeg (suc x) = negsuc x
{-# BUILTIN FROMNEG fromNeg #-}
-- A negative number
neg : Int
neg = -20
-- Matching against negative numbers
lit : Int → Nat
lit -20 = 0 -- Error thrown here
lit _ = 1
-- Testing reduction rules
test0 : lit -20 ≡ 0
test0 = refl
test1 : lit -2 ≡ 1
test1 = refl
-- Error WAS: Internal error in expandLitPattern
-- Error NOW: Type mismatch when checking that the pattern -20 has type Int
-- Ideally, this would succeed.
| {
"alphanum_fraction": 0.6974789916,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "ee17833a26bc5af4bc5f9f492b62a851540025ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2365.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2365.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2365.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 180,
"size": 595
} |
module Tactic.Reflection.Equality where
open import Prelude
open import Builtin.Reflection
open import Builtin.Float
instance
EqVisibility : Eq Visibility
_==_ {{EqVisibility}} visible visible = yes refl
_==_ {{EqVisibility}} visible hidden = no (λ ())
_==_ {{EqVisibility}} visible instance′ = no (λ ())
_==_ {{EqVisibility}} hidden visible = no (λ ())
_==_ {{EqVisibility}} hidden hidden = yes refl
_==_ {{EqVisibility}} hidden instance′ = no (λ ())
_==_ {{EqVisibility}} instance′ visible = no (λ ())
_==_ {{EqVisibility}} instance′ hidden = no (λ ())
_==_ {{EqVisibility}} instance′ instance′ = yes refl
EqRelevance : Eq Relevance
_==_ {{EqRelevance}} relevant relevant = yes refl
_==_ {{EqRelevance}} relevant irrelevant = no (λ ())
_==_ {{EqRelevance}} irrelevant relevant = no (λ ())
_==_ {{EqRelevance}} irrelevant irrelevant = yes refl
EqArgInfo : Eq ArgInfo
_==_ {{EqArgInfo}} (arg-info v r) (arg-info v₁ r₁) =
decEq₂ arg-info-inj₁ arg-info-inj₂ (v == v₁) (r == r₁)
EqArg : ∀ {A} {{EqA : Eq A}} → Eq (Arg A)
_==_ {{EqArg}} (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (x == x₁)
EqLiteral : Eq Literal
_==_ {{EqLiteral}} = eqLit
where
eqLit : (x y : Literal) → Dec (x ≡ y)
eqLit (nat x) (nat y) = decEq₁ nat-inj (x == y)
eqLit (word64 x) (word64 y) = decEq₁ word64-inj (x == y)
eqLit (float x) (float y) = decEq₁ float-inj (x == y)
eqLit (char x) (char y) = decEq₁ char-inj (x == y)
eqLit (string x) (string y) = decEq₁ string-inj (x == y)
eqLit (name x) (name y) = decEq₁ name-inj (x == y)
eqLit (meta x) (meta y) = decEq₁ meta-inj (x == y)
eqLit (nat _) (float _) = no λ()
eqLit (nat _) (word64 _) = no λ()
eqLit (nat _) (char _) = no λ()
eqLit (nat _) (string _) = no λ()
eqLit (nat _) (name _) = no λ()
eqLit (nat _) (meta _) = no λ()
eqLit (word64 _) (nat _) = no λ()
eqLit (word64 _) (float _) = no λ()
eqLit (word64 _) (char _) = no λ()
eqLit (word64 _) (string _) = no λ()
eqLit (word64 _) (name _) = no λ()
eqLit (word64 _) (meta _) = no λ()
eqLit (float _) (nat _) = no λ()
eqLit (float _) (word64 _) = no λ()
eqLit (float _) (char _) = no λ()
eqLit (float _) (string _) = no λ()
eqLit (float _) (name _) = no λ()
eqLit (float _) (meta _) = no λ()
eqLit (char _) (nat _) = no λ()
eqLit (char _) (word64 _) = no λ()
eqLit (char _) (float _) = no λ()
eqLit (char _) (string _) = no λ()
eqLit (char _) (name _) = no λ()
eqLit (char _) (meta _) = no λ()
eqLit (string _) (nat _) = no λ()
eqLit (string _) (word64 _) = no λ()
eqLit (string _) (float _) = no λ()
eqLit (string _) (char _) = no λ()
eqLit (string _) (name _) = no λ()
eqLit (string _) (meta _) = no λ()
eqLit (name _) (nat _) = no λ()
eqLit (name _) (word64 _) = no λ()
eqLit (name _) (float _) = no λ()
eqLit (name _) (char _) = no λ()
eqLit (name _) (string _) = no λ()
eqLit (name _) (meta _) = no λ()
eqLit (meta _) (nat _) = no λ()
eqLit (meta _) (word64 _) = no λ()
eqLit (meta _) (float _) = no λ()
eqLit (meta _) (char _) = no λ()
eqLit (meta _) (string _) = no λ()
eqLit (meta _) (name _) = no λ()
private
eqSort : (x y : Sort) → Dec (x ≡ y)
eqTerm : (x y : Term) → Dec (x ≡ y)
eqPat : (x y : Pattern) → Dec (x ≡ y)
eqClause : (x y : Clause) → Dec (x ≡ y)
eqArgTerm : (x y : Arg Term) → Dec (x ≡ y)
eqArgTerm (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (eqTerm x x₁)
eqArgPat : (x y : Arg Pattern) → Dec (x ≡ y)
eqArgPat (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (eqPat x x₁)
eqAbsTerm : (x y : Abs Term) → Dec (x ≡ y)
eqAbsTerm (abs s x) (abs s₁ x₁) = decEq₂ abs-inj₁ abs-inj₂ (s == s₁) (eqTerm x x₁)
eqPats : (x y : List (Arg Pattern)) → Dec (x ≡ y)
eqPats [] [] = yes refl
eqPats [] (x ∷ xs) = no λ ()
eqPats (x ∷ xs) [] = no λ ()
eqPats (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqArgPat x y) (eqPats xs ys)
eqArgs : (x y : List (Arg Term)) → Dec (x ≡ y)
eqArgs [] [] = yes refl
eqArgs [] (x ∷ xs) = no λ ()
eqArgs (x ∷ xs) [] = no λ ()
eqArgs (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqArgTerm x y) (eqArgs xs ys)
eqClauses : (x y : List Clause) → Dec (x ≡ y)
eqClauses [] [] = yes refl
eqClauses [] (x ∷ xs) = no λ ()
eqClauses (x ∷ xs) [] = no λ ()
eqClauses (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqClause x y) (eqClauses xs ys)
eqTerm (var x args) (var x₁ args₁) = decEq₂ var-inj₁ var-inj₂ (x == x₁) (eqArgs args args₁)
eqTerm (con c args) (con c₁ args₁) = decEq₂ con-inj₁ con-inj₂ (c == c₁) (eqArgs args args₁)
eqTerm (def f args) (def f₁ args₁) = decEq₂ def-inj₁ def-inj₂ (f == f₁) (eqArgs args args₁)
eqTerm (meta x args) (meta x₁ args₁) = decEq₂ meta-inj₁ meta-inj₂ (x == x₁) (eqArgs args args₁)
eqTerm (lam v x) (lam v₁ y) = decEq₂ lam-inj₁ lam-inj₂ (v == v₁) (eqAbsTerm x y)
eqTerm (pi t₁ t₂) (pi t₃ t₄) = decEq₂ pi-inj₁ pi-inj₂ (eqArgTerm t₁ t₃) (eqAbsTerm t₂ t₄)
eqTerm (agda-sort x) (agda-sort x₁) = decEq₁ sort-inj (eqSort x x₁)
eqTerm (lit l) (lit l₁) = decEq₁ lit-inj (l == l₁)
eqTerm (pat-lam c args) (pat-lam c₁ args₁) = decEq₂ pat-lam-inj₁ pat-lam-inj₂ (eqClauses c c₁) (eqArgs args args₁)
eqTerm unknown unknown = yes refl
eqTerm (var x args) (con c args₁) = no λ ()
eqTerm (var x args) (def f args₁) = no λ ()
eqTerm (var x args) (lam v y) = no λ ()
eqTerm (var x args) (pi t₁ t₂) = no λ ()
eqTerm (var x args) (agda-sort x₁) = no λ ()
eqTerm (var x args) (lit x₁) = no λ ()
eqTerm (var x args) unknown = no λ ()
eqTerm (con c args) (var x args₁) = no λ ()
eqTerm (con c args) (def f args₁) = no λ ()
eqTerm (con c args) (lam v y) = no λ ()
eqTerm (con c args) (pi t₁ t₂) = no λ ()
eqTerm (con c args) (agda-sort x) = no λ ()
eqTerm (con c args) (lit x) = no λ ()
eqTerm (con c args) unknown = no λ ()
eqTerm (def f args) (var x args₁) = no λ ()
eqTerm (def f args) (con c args₁) = no λ ()
eqTerm (def f args) (lam v y) = no λ ()
eqTerm (def f args) (pi t₁ t₂) = no λ ()
eqTerm (def f args) (agda-sort x) = no λ ()
eqTerm (def f args) (lit x) = no λ ()
eqTerm (def f args) unknown = no λ ()
eqTerm (lam v x) (var x₁ args) = no λ ()
eqTerm (lam v x) (con c args) = no λ ()
eqTerm (lam v x) (def f args) = no λ ()
eqTerm (lam v x) (pi t₁ t₂) = no λ ()
eqTerm (lam v x) (agda-sort x₁) = no λ ()
eqTerm (lam v x) (lit x₁) = no λ ()
eqTerm (lam v x) unknown = no λ ()
eqTerm (pi t₁ t₂) (var x args) = no λ ()
eqTerm (pi t₁ t₂) (con c args) = no λ ()
eqTerm (pi t₁ t₂) (def f args) = no λ ()
eqTerm (pi t₁ t₂) (lam v y) = no λ ()
eqTerm (pi t₁ t₂) (agda-sort x) = no λ ()
eqTerm (pi t₁ t₂) (lit x) = no λ ()
eqTerm (pi t₁ t₂) unknown = no λ ()
eqTerm (agda-sort x) (var x₁ args) = no λ ()
eqTerm (agda-sort x) (con c args) = no λ ()
eqTerm (agda-sort x) (def f args) = no λ ()
eqTerm (agda-sort x) (lam v y) = no λ ()
eqTerm (agda-sort x) (pi t₁ t₂) = no λ ()
eqTerm (agda-sort x) (lit x₁) = no λ ()
eqTerm (agda-sort x) unknown = no λ ()
eqTerm (lit x) (var x₁ args) = no λ ()
eqTerm (lit x) (con c args) = no λ ()
eqTerm (lit x) (def f args) = no λ ()
eqTerm (lit x) (lam v y) = no λ ()
eqTerm (lit x) (pi t₁ t₂) = no λ ()
eqTerm (lit x) (agda-sort x₁) = no λ ()
eqTerm (lit x) unknown = no λ ()
eqTerm unknown (var x args) = no λ ()
eqTerm unknown (con c args) = no λ ()
eqTerm unknown (def f args) = no λ ()
eqTerm unknown (lam v y) = no λ ()
eqTerm unknown (pi t₁ t₂) = no λ ()
eqTerm unknown (agda-sort x) = no λ ()
eqTerm unknown (lit x) = no λ ()
eqTerm (var _ _) (meta _ _) = no λ ()
eqTerm (con _ _) (meta _ _) = no λ ()
eqTerm (def _ _) (meta _ _) = no λ ()
eqTerm (lam _ _) (meta _ _) = no λ ()
eqTerm (pi _ _) (meta _ _) = no λ ()
eqTerm (agda-sort _) (meta _ _) = no λ ()
eqTerm (lit _) (meta _ _) = no λ ()
eqTerm unknown (meta _ _) = no λ ()
eqTerm (meta _ _) (var _ _) = no λ ()
eqTerm (meta _ _) (con _ _) = no λ ()
eqTerm (meta _ _) (def _ _) = no λ ()
eqTerm (meta _ _) (lam _ _) = no λ ()
eqTerm (meta _ _) (pi _ _) = no λ ()
eqTerm (meta _ _) (agda-sort _) = no λ ()
eqTerm (meta _ _) (lit _) = no λ ()
eqTerm (meta _ _) unknown = no λ ()
eqTerm (var _ _) (pat-lam _ _) = no λ ()
eqTerm (con _ _) (pat-lam _ _) = no λ ()
eqTerm (def _ _) (pat-lam _ _) = no λ ()
eqTerm (lam _ _) (pat-lam _ _) = no λ ()
eqTerm (pi _ _) (pat-lam _ _) = no λ ()
eqTerm (meta _ _) (pat-lam _ _) = no λ ()
eqTerm (agda-sort _) (pat-lam _ _) = no λ ()
eqTerm (lit _) (pat-lam _ _) = no λ ()
eqTerm unknown (pat-lam _ _) = no λ ()
eqTerm (pat-lam _ _) (var _ _) = no λ ()
eqTerm (pat-lam _ _) (con _ _) = no λ ()
eqTerm (pat-lam _ _) (def _ _) = no λ ()
eqTerm (pat-lam _ _) (lam _ _) = no λ ()
eqTerm (pat-lam _ _) (pi _ _) = no λ ()
eqTerm (pat-lam _ _) (meta _ _) = no λ ()
eqTerm (pat-lam _ _) (agda-sort _) = no λ ()
eqTerm (pat-lam _ _) (lit _) = no λ ()
eqTerm (pat-lam _ _) unknown = no λ ()
eqSort (set t) (set t₁) = decEq₁ set-inj (eqTerm t t₁)
eqSort (lit n) (lit n₁) = decEq₁ slit-inj (n == n₁)
eqSort unknown unknown = yes refl
eqSort (set t) (lit n) = no λ ()
eqSort (set t) unknown = no λ ()
eqSort (lit n) (set t) = no λ ()
eqSort (lit n) unknown = no λ ()
eqSort unknown (set t) = no λ ()
eqSort unknown (lit n) = no λ ()
eqPat (con c ps) (con c₁ ps₁) = decEq₂ pcon-inj₁ pcon-inj₂ (c == c₁) (eqPats ps ps₁)
eqPat dot dot = yes refl
eqPat (var s) (var s₁) = decEq₁ pvar-inj (s == s₁)
eqPat (lit l) (lit l₁) = decEq₁ plit-inj (l == l₁)
eqPat (proj f) (proj f₁) = decEq₁ proj-inj (f == f₁)
eqPat absurd absurd = yes refl
eqPat (con _ _) dot = no λ ()
eqPat (con _ _) (var _) = no λ ()
eqPat (con _ _) (lit _) = no λ ()
eqPat (con _ _) (proj _) = no λ ()
eqPat (con _ _) absurd = no λ ()
eqPat dot (con _ _) = no λ ()
eqPat dot (var _) = no λ ()
eqPat dot (lit _) = no λ ()
eqPat dot (proj _) = no λ ()
eqPat dot absurd = no λ ()
eqPat (var _) (con _ _) = no λ ()
eqPat (var _) dot = no λ ()
eqPat (var _) (lit _) = no λ ()
eqPat (var _) (proj _) = no λ ()
eqPat (var _) absurd = no λ ()
eqPat (lit _) (con _ _) = no λ ()
eqPat (lit _) dot = no λ ()
eqPat (lit _) (var _) = no λ ()
eqPat (lit _) (proj _) = no λ ()
eqPat (lit _) absurd = no λ ()
eqPat (proj _) (con _ _) = no λ ()
eqPat (proj _) dot = no λ ()
eqPat (proj _) (var _) = no λ ()
eqPat (proj _) (lit _) = no λ ()
eqPat (proj _) absurd = no λ ()
eqPat absurd (con _ _) = no λ ()
eqPat absurd dot = no λ ()
eqPat absurd (var _) = no λ ()
eqPat absurd (lit _) = no λ ()
eqPat absurd (proj _) = no λ ()
eqClause (clause ps t) (clause ps₁ t₁) = decEq₂ clause-inj₁ clause-inj₂ (eqPats ps ps₁) (eqTerm t t₁)
eqClause (absurd-clause ps) (absurd-clause ps₁) = decEq₁ absurd-clause-inj (eqPats ps ps₁)
eqClause (clause _ _) (absurd-clause _) = no λ ()
eqClause (absurd-clause _) (clause _ _) = no λ ()
instance
EqTerm : Eq Term
_==_ {{EqTerm}} = eqTerm
EqSort : Eq Sort
_==_ {{EqSort}} = eqSort
EqClause : Eq Clause
_==_ {{EqClause}} = eqClause
EqPattern : Eq Pattern
_==_ {{EqPattern}} = eqPat
| {
"alphanum_fraction": 0.5402867873,
"avg_line_length": 39.7152542373,
"ext": "agda",
"hexsha": "1c98ffbd2fed23ade13879e2f3951fd1fb6ba635",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Equality.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4490,
"size": 11716
} |
module Natural where
open import Agda.Builtin.Equality
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- seven = suc (suc (suc (suc (suc (suc (suc zero))))))
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
infixl 6 _+_
zero + b = b
(suc a) + b = suc (a + b)
{-# BUILTIN NATPLUS _+_ #-}
+-id : ∀ (a : ℕ) → a + zero ≡ zero + a
+-id zero = refl
+-id (suc a) rewrite +-id a = refl
+-comm : ∀ (a b : ℕ) → a + b ≡ b + a
+-comm zero b rewrite +-id b = refl
+-comm (suc a) zero rewrite +-id (suc a) = refl
+-comm (suc a) (suc b)
rewrite +-comm a (suc b)
| +-comm b (suc a)
| +-comm a b = refl
+-asso : ∀ (a b c : ℕ) → a + b + c ≡ a + (b + c)
+-asso zero b c = refl
+-asso (suc a) zero c
rewrite +-id (suc a)
| +-id a = refl
+-asso (suc a) (suc b) zero
rewrite +-id (suc a + suc b)
| +-id b = refl
+-asso (suc a) (suc b) (suc c)
rewrite (+-comm a (suc b))
| +-comm (b + a) (suc c)
| +-comm b a
| +-comm c (a + b)
| +-comm b (suc c)
| +-comm a (suc (suc (c + b)))
| +-comm c b
| +-comm (b + c) a
| +-asso a b c = refl
+-rear : ∀ (a b c d : ℕ) → a + b + (c + d) ≡ a + (b + c) + d
+-rear zero b c d rewrite +-asso b c d = refl
+-rear (suc a) b c d
rewrite (+-asso (suc a) b (c + d))
| +-asso a (b + c) d
| +-asso b c d = refl
+-swap : ∀ (a b c : ℕ) → a + (b + c) ≡ b + (a + c)
+-swap a b c
rewrite (+-comm a (b + c))
| +-comm b (a + c)
| +-asso a c b
| +-comm c b
| +-comm a (b + c) = refl
_*_ : ℕ → ℕ → ℕ
infixl 7 _*_
zero * b = zero
suc a * b = b + a * b
{-# BUILTIN NATTIMES _*_ #-}
*-id : ∀ (a : ℕ) → a * (suc zero) ≡ (suc zero) * a
*-id zero = refl
*-id (suc a)
rewrite +-comm (suc zero) a
| *-id a = refl
*-z : ∀ (a : ℕ) → a * zero ≡ zero * a
*-z zero = refl
*-z (suc a) rewrite *-z a = refl
*-comm : ∀ (a b : ℕ) → a * b ≡ b * a
*-comm zero b rewrite *-z b = refl
*-comm (suc a) zero rewrite *-z a = refl
*-comm (suc a) (suc b)
rewrite (*-comm a (suc b))
| (*-comm b (suc a))
| (*-comm a b )
| (+-comm b (a + b * a))
| (+-comm a (b + b * a))
| (+-comm a (b * a))
| (+-comm b (b * a))
| (+-asso (b * a) a b)
| (+-asso (b * a) b a)
| (+-comm a b) = refl
*-+-dist-r : ∀ (a b c : ℕ) → (a + b) * c ≡ a * c + b * c
*-+-dist-r zero b c = refl
*-+-dist-r (suc a) zero c
rewrite (+-comm (suc a) zero)
| +-comm a zero
| +-asso c (a * c) zero
| +-comm (a * c) zero = refl
*-+-dist-r (suc a) (suc b) c
rewrite (+-comm a (suc b))
| +-rear c (a * c) c (b * c)
| +-comm (a * c) c
| +-asso c (c + a * c) (b * c)
| +-asso c (a * c) (b * c)
| +-comm (a * c) (b * c)
| *-+-dist-r b a c = refl
*-+-dist-l : ∀ (a b c : ℕ) → a * (b + c) ≡ a * b + a * c
*-+-dist-l a zero c rewrite (*-z a) = refl
*-+-dist-l a (suc b) zero
rewrite (+-comm (suc b) zero)
| *-z a
| +-comm (a * suc b) zero = refl
*-+-dist-l a (suc b) (suc c)
rewrite (+-comm b (suc c))
| *-comm a (suc (suc (c + b)))
| *-comm a (suc b)
| *-comm a (suc c)
| +-rear a (b * a) a (c * a)
| +-comm (b * a) a
| +-asso a (a + b * a) (c * a)
| +-asso a (b * a) (c * a)
| +-comm (b * a) (c * a)
| *-comm (c + b) a
| *-comm c a
| *-comm b a
| *-+-dist-l a c b = refl
*-asso : ∀ (a b c : ℕ) → a * b * c ≡ a * (b * c)
*-asso zero b c = refl
*-asso (suc a) zero c rewrite (*-asso a zero c) = refl
*-asso (suc a) (suc b) c
rewrite (*-+-dist-r (suc b) (a * suc b) c)
| *-asso a (suc b) c = refl
_^_ : ℕ → ℕ → ℕ
m ^ zero = suc zero
m ^ (suc n) = m * (m ^ n)
^-dist-+-*-l : ∀ (a b c : ℕ) → a ^ (b + c) ≡ (a ^ b) * (a ^ c)
^-dist-+-*-l a zero c
rewrite (+-comm zero (a ^ c))
| +-asso (a ^ c) zero zero = refl
^-dist-+-*-l a (suc b) c
rewrite *-asso a (a ^ b) (a ^ c)
| ^-dist-+-*-l a b c = refl
^-dist-*-r : ∀ (a b c : ℕ) → (a * b) ^ c ≡ (a ^ c) * (b ^ c)
^-dist-*-r a b zero rewrite (+-comm (suc zero) zero) = refl
^-dist-*-r a b (suc c)
rewrite (*-asso a (a ^ c) (b * (b ^ c)))
| *-comm (a ^ c) (b * (b ^ c))
| *-asso b (b ^ c) (a ^ c)
| *-comm (b ^ c) (a ^ c)
| *-asso a b ((a * b) ^ c)
| ^-dist-*-r a b c = refl
^-asso-* : ∀ (a b c : ℕ) → (a ^ b) ^ c ≡ a ^ (b * c)
^-asso-* a b zero rewrite (*-comm b zero) = refl
^-asso-* a b (suc c)
rewrite (*-comm b (suc c))
| ^-dist-+-*-l a b (c * b)
| *-comm c b
| ^-asso-* a b c = refl
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (n O) = n I
inc (n I) = (inc n) O
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
from : Bin → ℕ
from ⟨⟩ = zero
from (n O) = 2 * (from n)
from (n I) = suc (2 * (from n))
thm₁ : ∀ (b : Bin) → from (inc b) ≡ suc (from b)
thm₁ ⟨⟩ = refl
thm₁ (a O) = refl
thm₁ (a I)
rewrite thm₁ a
| +-comm (suc (from a)) zero
| +-comm (from a) zero
| +-comm (from a) (suc (from a)) = refl
-- thm₂ : ∀ (b : Bin) → to (from b) = b
-- 这是错误的,因为 Bin 中的 (⟨⟩ O) 和 (⟨⟩)
-- 都和 自然数 的 0 对应
-- from 并非单射
thm₃ : ∀ (n : ℕ) → from (to n) ≡ n
thm₃ zero = refl
thm₃ (suc n)
rewrite thm₁ (to (suc n))
| thm₁ (to n)
| thm₃ n = refl | {
"alphanum_fraction": 0.431804878,
"avg_line_length": 24.4047619048,
"ext": "agda",
"hexsha": "2356b644c5eb0850b67836a08224f03bf39b0819",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kands-code/agda-exercise",
"max_forks_repo_path": "Natural.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kands-code/agda-exercise",
"max_issues_repo_path": "Natural.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b3c9c4f678feac75af6f30d0dd941ab58b9f40dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kands-code/agda-exercise",
"max_stars_repo_path": "Natural.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2299,
"size": 5125
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.