Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- A variant of Induction for Set₁ ------------------------------------------------------------------------ -- I want universe polymorphism. module Induction1 where open import Relation.Unary1 -- A RecStruct describes the allowed structure of recursion. The -- examples in Induction.Nat should explain what this is all about. RecStruct : Set → Set₂ RecStruct a = Pred a → Pred a -- A recursor builder constructs an instance of a recursion structure -- for a given input. RecursorBuilder : ∀ {a} → RecStruct a → Set₂ RecursorBuilder {a} Rec = (P : Pred a) → Rec P ⊆′ P → Universal (Rec P) -- A recursor can be used to actually compute/prove something useful. Recursor : ∀ {a} → RecStruct a → Set₂ Recursor {a} Rec = (P : Pred a) → Rec P ⊆′ P → Universal P -- And recursors can be constructed from recursor builders. build : ∀ {a} {Rec : RecStruct a} → RecursorBuilder Rec → Recursor Rec build builder P f x = f x (builder P f x) -- We can repeat the exercise above for subsets of the type we are -- recursing over. SubsetRecursorBuilder : ∀ {a} → Pred a → RecStruct a → Set₂ SubsetRecursorBuilder {a} Q Rec = (P : Pred a) → Rec P ⊆′ P → Q ⊆′ Rec P SubsetRecursor : ∀ {a} → Pred a → RecStruct a → Set₂ SubsetRecursor {a} Q Rec = (P : Pred a) → Rec P ⊆′ P → Q ⊆′ P subsetBuild : ∀ {a} {Q : Pred a} {Rec : RecStruct a} → SubsetRecursorBuilder Q Rec → SubsetRecursor Q Rec subsetBuild builder P f x q = f x (builder P f x q)
{ "alphanum_fraction": 0.6037371134, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "48d443bcf8efa939161ee3bec6a9d27785581b28", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Induction1.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Induction1.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Induction1.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 423, "size": 1552 }
-- Andreas, 2012-03-09 do not solve relevant meta variable by irr. constraint module Issue351a where open import Common.Irrelevance open import Common.Equality data Bool : Set where true false : Bool -- the Boolean b is not(!) constrained by the equation f : (b : Bool) -> squash b ≡ squash true -> Bool f b _ = b test = f _ refl -- meta needs to remain unsolved
{ "alphanum_fraction": 0.7208672087, "avg_line_length": 23.0625, "ext": "agda", "hexsha": "d95576880e8ccb80347c6eee376c3a975dfa895f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue351a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue351a.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue351a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 103, "size": 369 }
-- Andreas, 2018-06-10, issue #2797 -- Analysis and test case by Ulf -- Relevance check was missing for overloaded projections. {-# OPTIONS --irrelevant-projections #-} -- {-# OPTIONS -v tc.proj.amb:30 #-} open import Agda.Builtin.Nat record Dummy : Set₁ where field nat : Set open Dummy record S : Set where field .nat : Nat open S mkS : Nat → S mkS n .nat = n -- The following should not pass, as projection -- .nat is irrelevant for record type S unS : S → Nat unS s = s .nat -- Error NOW, could be better: -- Cannot resolve overloaded projection nat because no matching candidate found -- when checking that the expression s .nat has type Nat viaS : Nat → Nat viaS n = unS (mkS n) idN : Nat → Nat idN zero = zero idN (suc n) = suc n canonicity-fail : Nat canonicity-fail = idN (viaS 17) -- C-c C-n canonicity-fail -- idN .(17)
{ "alphanum_fraction": 0.6827262045, "avg_line_length": 19.3409090909, "ext": "agda", "hexsha": "5b87660017840ee25f290929eecb35e9330f47b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2797.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2797.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2797.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 263, "size": 851 }
module binding-preserve where open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import sn-calculus open import Function using (_∋_ ; _$_ ; _∘_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties using (done; halted ; paused ; value-max) open import Esterel.Context open import Esterel.Context.Properties open import Esterel.Environment open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open done open halted open paused open Context1 open EvaluationContext1 open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; [_] ; _++_) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using (++⁻) renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id) open import Relation.Nullary using (Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; sym ; module ≡-Reasoning ; subst) open ≡-Reasoning using (_≡⟨_⟩_ ; _≡⟨⟩_ ; _∎) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-merge ; set-subtract-notin; set-subtract-[]; set-subtract-split) ++-distribute-subtract : ∀ xs ys zs → set-subtract (xs ++ ys) zs ≡ set-subtract xs zs ++ set-subtract ys zs ++-distribute-subtract [] ys zs = refl ++-distribute-subtract (x ∷ xs) ys zs with any (_≟_ x) zs ... | yes x∈zs = ++-distribute-subtract xs ys zs ... | no x∉zs = cong (x ∷_) (++-distribute-subtract xs ys zs) subtract-⊆¹ : ∀ xs ys → set-subtract xs ys ⊆¹ xs subtract-⊆¹ [] ys = ⊆¹-refl subtract-⊆¹ (x ∷ xs) ys with any (_≟_ x) ys ... | yes x∈ys = λ w w∈xs-ys → ++ʳ [ x ] (subtract-⊆¹ xs ys w w∈xs-ys) ... | no x∉ys = λ { w (here refl) → here refl ; w (there w∈xs-ys) → there (subtract-⊆¹ xs ys w w∈xs-ys) } R-maintain-raise-shared-0 : ∀{xs θ e} → ∀ s e' → (ShrMap.keys (ShrMap.[ s ↦ SharedVar.old ,′ δ {θ} {e} e' ]) ++ xs) ⊆¹ (SharedVar.unwrap s ∷ xs) R-maintain-raise-shared-0 s e' s' s'∈[s]++BV rewrite ShrMap.keys-1map s (SharedVar.old ,′ δ e') = s'∈[s]++BV R-maintain-raise-shared-1 : ∀ ys {θ e} → ∀ s e' → set-subtract ys (ShrMap.keys ShrMap.[ s ↦ SharedVar.old ,′ δ {θ} {e} e' ]) ⊆¹ set-subtract ys (SharedVar.unwrap s ∷ []) R-maintain-raise-shared-1 ys s e' s' s'∈ys-[s] rewrite ShrMap.keys-1map s (SharedVar.old ,′ δ e') = s'∈ys-[s] R-maintain-raise-sig-0 : ∀{xs} → ∀ S → (SigMap.keys (SigMap.[ S ↦ Signal.unknown ]) ++ xs) ⊆¹ (Signal.unwrap S ∷ xs) R-maintain-raise-sig-0 S S' S'∈[S]++BV rewrite SigMap.keys-1map S Signal.unknown = S'∈[S]++BV R-maintain-raise-sig-1 : ∀ ys → ∀ S → set-subtract ys (SigMap.keys SigMap.[ S ↦ Signal.unknown ]) ⊆¹ set-subtract ys (Signal.unwrap S ∷ []) R-maintain-raise-sig-1 ys S S' S'∈ys-[S] rewrite SigMap.keys-1map S Signal.unknown = S'∈ys-[S] R-maintain-lift-1 : ∀ S xs ys {zs} → set-subtract xs ys ⊆¹ zs → set-subtract (S ∷ xs) ys ⊆¹ (S ∷ zs) R-maintain-lift-1 S xs ys xs-ys⊆zs S' S'∈⟨S∷xs⟩-ys with any (_≟_ S) ys R-maintain-lift-1 S xs ys xs-ys⊆zs S' (here refl) | no _ = here refl R-maintain-lift-1 S xs ys xs-ys⊆zs S' (there S'∈xs-ys) | no _ = there (xs-ys⊆zs S' S'∈xs-ys) ... | yes _ = there (xs-ys⊆zs S' S'∈⟨S∷xs⟩-ys) R-maintain-lift-2' : ∀ {zs ws} xs ys → set-subtract xs ys ⊆¹ zs → set-subtract (xs ++ ws) ys ⊆¹ (zs ++ ws) R-maintain-lift-2' {zs} {ws} xs ys xs-ys⊆zs rewrite ++-distribute-subtract xs ws ys = ∪¹-join-⊆¹ (λ u → ++ˡ ∘ xs-ys⊆zs u) (⊆¹-trans (subtract-⊆¹ ws ys) (λ u → ++ʳ zs ∘ ⊆¹-refl u)) R-maintain-lift-6' : ∀ {zs} ws xs ys → set-subtract xs ys ⊆¹ zs → set-subtract (ws ++ xs) ys ⊆¹ (ws ++ zs) R-maintain-lift-6' {zs} ws xs ys xs-ys⊆zs rewrite ++-distribute-subtract ws xs ys = ∪¹-join-⊆¹ (⊆¹-trans (subtract-⊆¹ ws ys) (λ u → ++ˡ ∘ ⊆¹-refl u)) (λ u → ++ʳ ws ∘ xs-ys⊆zs u) R-maintain-lift-2 : ∀ {zs³ ws³} xs³ ys³ → (xs³ - ys³) ⊆ zs³ → ((xs³ ∪ ws³) - ys³) ⊆ (zs³ ∪ ws³) R-maintain-lift-2 xs³ ys³ xs³-ys³⊆zs³ = R-maintain-lift-2' ,′ R-maintain-lift-2' ,′ R-maintain-lift-2' # xs³ # ys³ # xs³-ys³⊆zs³ R-maintain-lift-6 : ∀ {zs³} ws³ xs³ ys³ → (xs³ - ys³) ⊆ zs³ → ((ws³ ∪ xs³) - ys³) ⊆ (ws³ ∪ zs³) R-maintain-lift-6 ws³ xs³ ys³ xs³-ys³⊆zs³ = R-maintain-lift-6' ,′ R-maintain-lift-6' ,′ R-maintain-lift-6' # ws³ # xs³ # ys³ # xs³-ys³⊆zs³ R-maintain-lift-3' : ∀ {ys zs ws} xs → (xs ++ ys) ⊆¹ zs → distinct' zs ws → distinct' ys ws R-maintain-lift-3' xs xs++ys⊆zs zs≠ws x x∈ys x∈ws = zs≠ws x (xs++ys⊆zs x (++ʳ xs x∈ys)) x∈ws R-maintain-lift-3 : ∀ {ys³ zs³ ws³} xs³ → (xs³ ∪ ys³) ⊆ zs³ → distinct zs³ ws³ → distinct ys³ ws³ R-maintain-lift-3 xs³ xs³∪ys³⊆zs³ zs³≠ws³ = R-maintain-lift-3' ,′ R-maintain-lift-3' ,′ R-maintain-lift-3' # xs³ # xs³∪ys³⊆zs³ # zs³≠ws³ R-maintain-lift-4' : ∀ {xs ws us vs zs} ys → set-subtract xs ys ⊆¹ us → distinct' us zs → (ys ++ ws) ⊆¹ vs → distinct' vs zs → distinct' xs zs R-maintain-lift-4' {.a ∷ xs} ys xs-ys⊆us us≠zs ys++ws⊆vs vs≠zs a (here refl) a∈zs with any (_≟_ a) ys ... | yes a∈ys = vs≠zs a (ys++ws⊆vs a (++ˡ a∈ys)) a∈zs ... | no a∉ys = us≠zs a (xs-ys⊆us a (here refl)) a∈zs R-maintain-lift-4' {x ∷ xs} ys xs-ys⊆us us≠zs ys++ws⊆vs vs≠zs a (there a∈xs) a∈zs with any (_≟_ x) ys ... | yes x∈ys = R-maintain-lift-4' ys xs-ys⊆us us≠zs ys++ws⊆vs vs≠zs a a∈xs a∈zs ... | no x∉ys = R-maintain-lift-4' ys (proj₂ (∪¹-unjoin-⊆¹ [ x ] xs-ys⊆us)) us≠zs ys++ws⊆vs vs≠zs a a∈xs a∈zs R-maintain-lift-4 : ∀ {ws³ us³ vs³ xs³ zs³} ys³ → (xs³ - ys³) ⊆ us³ → distinct us³ zs³ → (ys³ ∪ ws³) ⊆ vs³ → distinct vs³ zs³ → distinct xs³ zs³ R-maintain-lift-4 ys³ xs³-ys³⊆us³ us³≠zs³ ys³∪ws³⊆vs³ vs³≠zs³ = R-maintain-lift-4' ,′ R-maintain-lift-4' ,′ R-maintain-lift-4' # ys³ # xs³-ys³⊆us³ # us³≠zs³ # ys³∪ws³⊆vs³ # vs³≠zs³ R-maintain-lift-5 : ∀ xs³ ys³ {zs³ ws³} → (ys³ ∪ zs³) ⊆ ws³ → (ys³ ∪ (xs³ ∪ zs³)) ⊆ (xs³ ∪ ws³) R-maintain-lift-5 xs³ ys³ ys³∪zs³⊆ws³ with ∪-unjoin-⊆ ys³ ys³∪zs³⊆ws³ ... | ys³⊆ws³ , zs³⊆ws³ = ∪-join-⊆ (∪ʳ xs³ ys³⊆ws³) (∪-respect-⊆-right xs³ zs³⊆ws³) R-maintain-lift-0 : ∀{p θ q BVp FVp E A} → CorrectBinding p BVp FVp → p ≐ E ⟦ ρ⟨ θ , A ⟩· q ⟧e → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BVp × FV' ⊆ FVp) × CorrectBinding (ρ⟨ θ , A ⟩· E ⟦ q ⟧e) BV' FV' } R-maintain-lift-0 cbp dehole = _ , (⊆-refl , ⊆-refl) , cbp R-maintain-lift-0 (CBpar {BVq = BVq'} {FVq = FVq'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₁ p'≐E⟦ρθ⟧) with R-maintain-lift-0 cbp' p'≐E⟦ρθ⟧ ... | (BV' , FV') , (BV'⊆BVp' , FV'⊆FVp') , CBρ {θ} {_} {_} {BVp''} {FVp''} cbp'' = _ , (⊆-subst-left (∪-assoc (Dom θ) BVp'' BVq') (∪-respect-⊆-left BV'⊆BVp') ,′ R-maintain-lift-2 FVp'' (Dom θ) FV'⊆FVp') ,′ CBρ (CBpar cbp'' cbq' (R-maintain-lift-3 (Dom θ) BV'⊆BVp' BVp'≠BVq') (R-maintain-lift-4 (Dom θ) FV'⊆FVp' FVp'≠BVq' BV'⊆BVp' BVp'≠BVq') (R-maintain-lift-3 (Dom θ) BV'⊆BVp' BVp'≠FVq') (R-maintain-lift-4' (proj₂ (proj₂ (Dom θ))) (proj₂ (proj₂ FV'⊆FVp')) Xp'≠Xq' (proj₂ (proj₂ BV'⊆BVp')) (proj₂ (proj₂ BVp'≠FVq')))) R-maintain-lift-0 (CBpar {BVp = BVp'} {FVp = FVp'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₂ q'≐E⟦ρθ⟧) with R-maintain-lift-0 cbq' q'≐E⟦ρθ⟧ ... | (BV' , FV') , (BV'⊆BVq' , FV'⊆FVq') , CBρ {θ} {_} {_} {BVq''} {FVq''} cbq'' = _ , (R-maintain-lift-5 BVp' (Dom θ) BV'⊆BVq' ,′ R-maintain-lift-6 FVp' FVq'' (Dom θ) FV'⊆FVq') ,′ CBρ (CBpar cbp' cbq'' (distinct-sym (R-maintain-lift-3 (Dom θ) BV'⊆BVq' (distinct-sym BVp'≠BVq'))) (distinct-sym (R-maintain-lift-3 (Dom θ) BV'⊆BVq' (distinct-sym FVp'≠BVq'))) (distinct-sym (R-maintain-lift-4 (Dom θ) FV'⊆FVq' (distinct-sym BVp'≠FVq') BV'⊆BVq' (distinct-sym BVp'≠BVq'))) (distinct'-sym (R-maintain-lift-4' (proj₂ (proj₂ (Dom θ))) (proj₂ (proj₂ FV'⊆FVq')) (distinct'-sym Xp'≠Xq') (proj₂ (proj₂ BV'⊆BVq')) (distinct'-sym (proj₂ (proj₂ FVp'≠BVq')))))) R-maintain-lift-0 (CBseq cbp' cbq' BV≠FV) (deseq p'≐E⟦ρθ⟧) with R-maintain-lift-0 cbp' p'≐E⟦ρθ⟧ ... | (BV' , FV') , (BV'⊆BVp' , FV'⊆FVp') , CBρ {θ} {_} {_} {BVp''} {FVp''} cbp'' = _ , (∪-join-⊆ (∪ˡ (∪-unjoin-⊆ˡ {Dom θ} BV'⊆BVp')) (∪-respect-⊆-left (∪-unjoin-⊆ʳ (Dom θ) BV'⊆BVp')) ,′ R-maintain-lift-2 FVp'' (Dom θ) FV'⊆FVp') ,′ CBρ (CBseq cbp'' cbq' (⊆-respect-distinct-left (∪-unjoin-⊆ʳ (Dom θ) BV'⊆BVp') BV≠FV)) R-maintain-lift-0 (CBloopˢ cbp' cbq' BVp'≠FVq' BVq'≠FVq') (deloopˢ p'≐E⟦ρθ⟧) with R-maintain-lift-0 cbp' p'≐E⟦ρθ⟧ ... | (BV' , FV') , (BV'⊆BVp' , FV'⊆FVp') , CBρ {θ} {_} {_} {BVp''} {FVp''} cbp'' = _ , (∪-join-⊆ (∪ˡ (∪-unjoin-⊆ˡ {Dom θ} BV'⊆BVp')) (∪-respect-⊆-left (∪-unjoin-⊆ʳ (Dom θ) BV'⊆BVp')) ,′ R-maintain-lift-2 FVp'' (Dom θ) FV'⊆FVp') ,′ CBρ (CBloopˢ cbp'' cbq' (⊆-respect-distinct-left (∪-unjoin-⊆ʳ (Dom θ) BV'⊆BVp') BVp'≠FVq') BVq'≠FVq') R-maintain-lift-0 (CBsusp {S = S} cbp' S∉BV) (desuspend p'≐E⟦ρθ⟧) with R-maintain-lift-0 cbp' p'≐E⟦ρθ⟧ ... | (BV' , FV') , (BV'⊆BVp' , FV'⊆FVp') , CBρ {θ} {_} {_} {BVp''} {FVp''} cbp'' = _ , (BV'⊆BVp' ,′ (R-maintain-lift-1 (Signal.unwrap S) (proj₁ FVp'') (proj₁ (Dom θ)) (proj₁ FV'⊆FVp') ,′ proj₁ (proj₂ FV'⊆FVp') ,′ proj₂ (proj₂ FV'⊆FVp'))) ,′ CBρ (CBsusp cbp'' (λ S' S'∈[S] S'∈BV → S∉BV S' S'∈[S] (proj₁ BV'⊆BVp' S' (++ʳ (proj₁ (Dom θ)) S'∈BV)))) R-maintain-lift-0 (CBtrap cbp') (detrap p'≐E⟦ρθ⟧) with R-maintain-lift-0 cbp' p'≐E⟦ρθ⟧ ... | (BV' , FV') , ⟨BV'⊆BVp'⟩×⟨FV'⊆FVp'⟩ , CBρ cbp'' = _ , ⟨BV'⊆BVp'⟩×⟨FV'⊆FVp'⟩ ,′ CBρ (CBtrap cbp'') R-maintain-raise-var-0 : ∀{xs θ e} → ∀ x e' → (VarMap.keys (VarMap.[ x ↦ δ {θ} {e} e' ]) ++ xs) ⊆¹ (SeqVar.unwrap x ∷ xs) R-maintain-raise-var-0 x e' x' x'∈[x]++BV rewrite VarMap.keys-1map x (δ e') = x'∈[x]++BV R-maintain-raise-var-1 : ∀ ys {θ e} → ∀ x e' → set-subtract ys (VarMap.keys VarMap.[ x ↦ δ {θ} {e} e' ]) ⊆¹ set-subtract ys (SeqVar.unwrap x ∷ []) R-maintain-raise-var-1 ys x e' x' x'∈ys-[x] rewrite VarMap.keys-1map x (δ e') = x'∈ys-[x] R-maintains-binding : ∀{p q BV FV} → CorrectBinding p BV FV → p sn⟶₁ q → Σ (VarList × VarList) λ { (BV' , FV') → CorrectBinding q BV' FV' × BV' ⊆ BV × FV' ⊆ FV} R-maintains-binding (CBpar{BVp = BVp}{FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-right hnothin (dhalted q')) = _ , cbq , ∪ʳ BVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) , ∪ʳ FVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-right (hexit _) (dhalted hnothin)) = _ , CBexit , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-right (hexit _) (dhalted (hexit _))) = _ , CBexit , (((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ())))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding (CBpar{BVp = BVp}{FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-right hnothin (dpaused q')) = _ , cbq , ∪ʳ BVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) , ∪ʳ FVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-right (hexit _) (dpaused q')) = _ , CBexit , (((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ())))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding (CBpar{BVp = BVp}{FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-left (dhalted hnothin) q') = _ , cbq , ∪ʳ BVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) , ∪ʳ FVp ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-left (dhalted (hexit _)) hnothin) = _ , CBexit , (((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ())))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-left (dhalted (hexit _)) (hexit _)) = _ , CBexit , (((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ())))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-left (dpaused p') hnothin) = _ , cbp , ∪ˡ ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)), ∪ˡ ((λ x x₁ → x₁) , (λ x x₁ → x₁) , (λ x x₁ → x₁)) R-maintains-binding (CBpar cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (rpar-done-left (dpaused p') (hexit _)) = _ , CBexit , (((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ())))) , ((λ x → λ ()) , ((λ x → λ ()) , (λ x → λ ()))) R-maintains-binding {(ρ⟨ θ , A ⟩· p)} (CBρ cb) red@(ris-present S∈ θS≡present p≐E⟦presentS⟧) with binding-extract cb p≐E⟦presentS⟧ ... | _ , _ , cbpresent@(CBpresent {S = S} cbp' cbq') with binding-subst cb p≐E⟦presentS⟧ cbpresent (∪ˡ ⊆-refl) (∪ʳ (+S S base) (∪ˡ ⊆-refl)) cbp' ... | _ , (a , b) , cb' = _ , CBρ cb' , ∪-respect-⊆-right (Dom θ) a , ⊆-respect-|̌ (Dom θ) b R-maintains-binding {(ρ⟨ θ , A ⟩· p)} (CBρ cb) red@(ris-absent S∈ θS≡absent p≐E⟦presentS⟧) with binding-extract cb p≐E⟦presentS⟧ ... | _ , _ , cbpresent@(CBpresent {S = S} {BVp = BVp'} {FVp = FVp'} cbp' cbq') with binding-subst cb p≐E⟦presentS⟧ cbpresent (∪ʳ BVp' ⊆-refl) (∪ʳ (+S S base) (∪ʳ FVp' ⊆-refl)) cbq' ... | _ , (a , b) , cb' = _ , CBρ cb' , ∪-respect-⊆-right (Dom θ) a , ⊆-respect-|̌ (Dom θ) b R-maintains-binding {(ρ⟨ θ , A ⟩· p)} (CBρ cb) (remit{S = S} S∈ θS≢absent p≐E⟦emitS⟧) with binding-extract cb p≐E⟦emitS⟧ ... | _ , _ , cbemit with binding-subst cb p≐E⟦emitS⟧ cbemit ⊆-empty-left ⊆-empty-left CBnothing ... | _ , (a , b) , cbp' rewrite cong fst (sig-set-dom-eq S Signal.present θ S∈) = _ , CBρ cbp' , ∪-respect-⊆-right (Dom θ') a , ⊆-respect-|̌ (Dom θ') b where θ' = (set-sig{S} θ S∈ Signal.present) R-maintains-binding {(loop p)} {FV = FV2} (CBloop {BV = BV}{FV = FV} cb BV≠FV) rloop-unroll = _ , (CBloopˢ cb cb BV≠FV BV≠FV) , (sub BV , sub FV) where sub1 : ∀ x → (x ++ x) ⊆¹ x sub1 x z y with ++⁻ x y ... | inj₁ a = a ... | inj₂ a = a sub : ∀ x → (x ∪ x) ⊆ x sub x = sub1 , sub1 , sub1 # x R-maintains-binding (CBseq{BVp = BVp}{FVp = FVp} cbp cbq BV≠FV) rseq-done = _ , cbq , ∪ʳ BVp ⊆-refl , ∪ʳ FVp ⊆-refl R-maintains-binding (CBseq cbp cbq BV≠FV) rseq-exit = _ , CBexit , ⊆-empty-left , ⊆-empty-left R-maintains-binding (CBloopˢ cbp cbq BV≠FV _) rloopˢ-exit = _ , CBexit , ⊆-empty-left , ⊆-empty-left R-maintains-binding (CBsusp cb _) (rsuspend-done _) = _ , cb , ⊆-refl , ((λ x x₁ → there x₁) , (λ x z → z) , (λ x z → z)) R-maintains-binding (CBtrap cb) (rtrap-done hnothin) = _ , CBnothing , ⊆-empty-left , ⊆-empty-left R-maintains-binding (CBtrap cb) (rtrap-done (hexit zero)) = _ , CBnothing , ⊆-empty-left , ⊆-empty-left R-maintains-binding (CBtrap cb) (rtrap-done (hexit (suc n))) = _ , CBexit , ⊆-empty-left , ⊆-empty-left R-maintains-binding (CBsig{S = S}{FV = FV} cb) rraise-signal = _ , CBρ cb , ( (R-maintain-raise-sig-0 S) ,′ ⊆¹-refl ,′ ⊆¹-refl) , ((R-maintain-raise-sig-1 (fst FV) S) ,′ ⊆¹-refl ,′ ⊆¹-refl) R-maintains-binding (CBρ{θ = θ} cb) (rraise-shared {s = s} {e} e' p≐E⟦shared⟧) with binding-extract cb p≐E⟦shared⟧ ... | _ , _ , cbshr@(CBshared {FV = FV} cbp) with binding-subst cb p≐E⟦shared⟧ cbshr (⊆¹-refl ,′ -- S'∈BVp R-maintain-raise-shared-0 s e' ,′ ⊆¹-refl) -- x'∈BVp (∪ʳ (FVₑ e) (⊆¹-refl ,′ -- S'∈FVe+⟨FVp-s⟩ R-maintain-raise-shared-1 (proj₁ (proj₂ FV)) s e' ,′ ⊆¹-refl)) -- x'∈FVe+⟨FVp-s⟩ (CBρ cbp) ... | _ , (a , b) , cbp' = _ , CBρ cbp' , ∪-respect-⊆-right (Dom θ) a , ⊆-respect-|̌ (Dom θ) b R-maintains-binding (CBρ{θ = θ} cb) (rset-shared-value-old{s = s} e' s∈ θs≡old p≐E⟦s⇐e⟧) with binding-extract cb p≐E⟦s⇐e⟧ ... | _ , _ , cbshrset with binding-subst cb p≐E⟦s⇐e⟧ cbshrset ⊆-empty-left ⊆-empty-left CBnothing ... | _ , (a , b) , cb' rewrite cong snd (shr-set-dom-eq s SharedVar.new (δ e') θ s∈) = _ , CBρ cb' , ∪-respect-⊆-right (Dom (set-shr{s = s} θ s∈ SharedVar.new (δ e'))) a , ⊆-respect-|̌ (Dom (set-shr{s = s} θ s∈ SharedVar.new (δ e'))) b R-maintains-binding (CBρ{θ = θ} cb) (rset-shared-value-new{s = s} e' s∈ θs≡new p≐E⟦s⇐e⟧) with binding-extract cb p≐E⟦s⇐e⟧ ... | _ , _ , cbshrset with binding-subst cb p≐E⟦s⇐e⟧ cbshrset ⊆-empty-left ⊆-empty-left CBnothing ... | _ , (a , b) , cb' rewrite cong snd (shr-set-dom-eq s SharedVar.new ((shr-vals{s} θ s∈) + (δ e')) θ s∈) = _ , CBρ cb' , ( ∪-respect-⊆-right (Dom (set-shr{s = s} θ s∈ SharedVar.new _)) a) , ⊆-respect-|̌ (Dom (set-shr{s = s} θ s∈ SharedVar.new _)) b R-maintains-binding (CBρ{θ = θ} cb) (rraise-var {x = x} {e = e} e' p≐E⟦var⟧) with binding-extract cb p≐E⟦var⟧ ... | _ , _ , cbvar@(CBvar {FV = FV} cbp) with binding-subst cb p≐E⟦var⟧ cbvar (⊆¹-refl ,′ ⊆¹-refl ,′ R-maintain-raise-var-0 x e') (∪ʳ (FVₑ e) (⊆¹-refl ,′ ⊆¹-refl ,′ R-maintain-raise-var-1 (proj₂ (proj₂ FV)) x e')) (CBρ cbp) ... | _ , (a , b) , cb' = _ , CBρ cb' , ( ∪-respect-⊆-right (Dom θ) a) , ⊆-respect-|̌ (Dom θ) b R-maintains-binding (CBρ{θ = θ} cb) (rset-var{x = x} x∈ e' p≐E⟦x≔e⟧) with binding-extract cb p≐E⟦x≔e⟧ ... | _ , _ , cbvarset with binding-subst cb p≐E⟦x≔e⟧ cbvarset ⊆-empty-left ⊆-empty-left CBnothing ... | _ , (a , b) , cb' rewrite cong thd (seq-set-dom-eq x (δ e') θ x∈) = _ , CBρ cb' , ∪-respect-⊆-right (Dom (set-var{x} θ x∈ (δ e'))) a , ⊆-respect-|̌ (Dom (set-var{x} θ x∈ (δ e'))) b R-maintains-binding (CBρ{θ = θ} cb) (rif-false x∈ θx≡zero p≐E⟦if⟧) with binding-extract cb p≐E⟦if⟧ ... | _ , _ , cbif@(CBif {x = x} {BVp = BVp} {FVp = FVp} cbp cbq) with binding-subst cb p≐E⟦if⟧ cbif (∪ʳ BVp ⊆-refl) (∪ʳ (+x x base) (∪ʳ FVp ⊆-refl)) cbq ... | _ , (a , b) , cb' = _ , CBρ cb' , ( ∪-respect-⊆-right (Dom θ) a) , ( ⊆-respect-|̌ (Dom θ) b) R-maintains-binding (CBρ{θ = θ} cb) (rif-true x∈ θx≡suc p≐E⟦if⟧) with binding-extract cb p≐E⟦if⟧ ... | _ , _ , cbif@(CBif {x = x} cbp cbq) with binding-subst cb p≐E⟦if⟧ cbif (∪ˡ ⊆-refl) (∪ʳ (+x x base) (∪ˡ ⊆-refl)) cbp ... | _ , (a , b) , cb' = _ , CBρ cb' , ∪-respect-⊆-right (Dom θ) a , ( ⊆-respect-|̌ (Dom θ) b) R-maintains-binding (CBρ{θ = θ} cb) (rabsence{S = S} S∈ θS≡unknown S∉canₛ) rewrite cong fst (sig-set-dom-eq S Signal.absent θ S∈) = _ , CBρ cb , ⊆-refl , ⊆-refl R-maintains-binding (CBρ{θ = θ} cb) (rreadyness{s = s} s∈ θs≡old⊎θs≡new s∉canₛₕ) rewrite cong snd (shr-set-dom-eq s SharedVar.ready (shr-vals{s} θ s∈) θ s∈) = _ , CBρ cb , ⊆-refl , ⊆-refl R-maintains-binding (CBρ{θ = θo}{BV = BVo}{FV = FVo} cb) (rmerge{θ₂ = θi} p≐E⟦ρθ⟧) with R-maintain-lift-0 cb p≐E⟦ρθ⟧ ... | _ , (a , b) , cb'@(CBρ{BV = BVi}{FV = FVi} cbp'') = _ , CBρ cbp'' , bvsub , fvsub where fvsubS : (set-subtract (fst FVi) (fst (Dom (θo ← θi)))) ⊆¹ (set-subtract (fst FVo) (fst (Dom θo))) fvsubS x x∈FVi\Dom⟨θo←θi⟩ with set-subtract-merge{fst FVi}{(fst (Dom (θo ← θi)))}{x} x∈FVi\Dom⟨θo←θi⟩ ... | (x∈FVi , x∉Dom⟨θo←θi⟩) = set-subtract-notin ((fst b) x (set-subtract-notin x∈FVi x∉Dom⟨θi⟩)) x∉Dom⟨θo⟩ where x∉Dom⟨θo⟩ : x ∉ fst (Dom θo) x∉Dom⟨θo⟩ x∈Dom⟨θo⟩ = x∉Dom⟨θo←θi⟩ (sig-←-monoˡ (x ₛ) θo θi x∈Dom⟨θo⟩) x∉Dom⟨θi⟩ : x ∉ fst (Dom θi) x∉Dom⟨θi⟩ x∈Dom⟨θi⟩ = x∉Dom⟨θo←θi⟩ (sig-←-monoʳ (x ₛ) θi θo x∈Dom⟨θi⟩) fvsubs : (set-subtract (snd FVi) (snd (Dom (θo ← θi)))) ⊆¹ (set-subtract (snd FVo) (snd (Dom θo))) fvsubs x x∈FVi\Dom⟨θo←θi⟩ with set-subtract-merge{snd FVi}{(snd (Dom (θo ← θi)))}{x} x∈FVi\Dom⟨θo←θi⟩ ... | (x∈FVi , x∉Dom⟨θo←θi⟩) = set-subtract-notin ((snd b) x (set-subtract-notin x∈FVi x∉Dom⟨θi⟩)) x∉Dom⟨θo⟩ where x∉Dom⟨θo⟩ : x ∉ snd (Dom θo) x∉Dom⟨θo⟩ x∈Dom⟨θo⟩ = x∉Dom⟨θo←θi⟩ (shr-←-monoˡ (x ₛₕ) θo θi x∈Dom⟨θo⟩) x∉Dom⟨θi⟩ : x ∉ snd (Dom θi) x∉Dom⟨θi⟩ x∈Dom⟨θi⟩ = x∉Dom⟨θo←θi⟩ (shr-←-monoʳ (x ₛₕ) θi θo x∈Dom⟨θi⟩) fvsubx : (set-subtract (thd FVi) (thd (Dom (θo ← θi)))) ⊆¹ (set-subtract (thd FVo) (thd (Dom θo))) fvsubx x x∈FVi\Dom⟨θo←θi⟩ with set-subtract-merge{thd FVi}{(thd (Dom (θo ← θi)))}{x} x∈FVi\Dom⟨θo←θi⟩ ... | (x∈FVi , x∉Dom⟨θo←θi⟩) = set-subtract-notin ((thd b) x (set-subtract-notin x∈FVi x∉Dom⟨θi⟩)) x∉Dom⟨θo⟩ where x∉Dom⟨θo⟩ : x ∉ thd (Dom θo) x∉Dom⟨θo⟩ x∈Dom⟨θo⟩ = x∉Dom⟨θo←θi⟩ (seq-←-monoˡ (x ᵥ) θo θi x∈Dom⟨θo⟩) x∉Dom⟨θi⟩ : x ∉ thd (Dom θi) x∉Dom⟨θi⟩ x∈Dom⟨θi⟩ = x∉Dom⟨θo←θi⟩ (seq-←-monoʳ (x ᵥ) θi θo x∈Dom⟨θi⟩) fvsub : (FVi - (Dom (θo ← θi))) ⊆ (FVo - (Dom θo)) fvsub = fvsubS , fvsubs , fvsubx bvsubS : ((fst (Dom (θo ← θi))) ++ (fst BVi)) ⊆¹ ((fst (Dom θo)) ++ (fst BVo)) bvsubS x y with ++⁻ (fst (Dom (θo ← θi))) y ... | inj₂ x∈BVi = ++ʳ (fst $ Dom θo) ((fst a) x (++ʳ (fst $ Dom θi) x∈BVi)) ... | inj₁ x∈⟨θo←θi⟩ with sig-←⁻{θo}{θi} (x ₛ) x∈⟨θo←θi⟩ ... | inj₁ x∈θo = ++ˡ x∈θo ... | inj₂ x∈θi = ++ʳ (fst $ Dom θo) ((fst a) x (++ˡ x∈θi)) bvsubs : ((snd (Dom (θo ← θi))) ++ (snd BVi)) ⊆¹ ((snd (Dom θo)) ++ (snd BVo)) bvsubs x y with ++⁻ (snd (Dom (θo ← θi))) y ... | inj₂ x∈BVi = ++ʳ (snd $ Dom θo) ((snd a) x (++ʳ (snd $ Dom θi) x∈BVi)) ... | inj₁ x∈⟨θo←θi⟩ with shr-←⁻{θo}{θi} (x ₛₕ) x∈⟨θo←θi⟩ ... | inj₁ x∈θo = ++ˡ x∈θo ... | inj₂ x∈θi = ++ʳ (snd $ Dom θo) ((snd a) x (++ˡ x∈θi)) bvsubx : ((thd (Dom (θo ← θi))) ++ (thd BVi)) ⊆¹ ((thd (Dom θo)) ++ (thd BVo)) bvsubx x y with ++⁻ (thd (Dom (θo ← θi))) y ... | inj₂ x∈BVi = ++ʳ (thd $ Dom θo) ((thd a) x (++ʳ (thd $ Dom θi) x∈BVi)) ... | inj₁ x∈⟨θo←θi⟩ with seq-←⁻{θo}{θi} (x ᵥ) x∈⟨θo←θi⟩ ... | inj₁ x∈θo = ++ˡ x∈θo ... | inj₂ x∈θi = ++ʳ (thd $ Dom θo) ((thd a) x (++ˡ x∈θi)) bvsub : ((Dom (θo ← θi)) ∪ BVi) ⊆ ((Dom θo) ∪ BVo) bvsub = bvsubS , bvsubs , bvsubx -- R-maintains-binding : ∀{p q BV FV} → CorrectBinding p BV FV → p sn⟶₁ q → Σ (VarList × VarList) λ { (BV' , FV') → CorrectBinding q BV' FV' } sn⟶-maintains-binding : ∀ {p BV FV q} → CorrectBinding p BV FV → p sn⟶ q → Σ (VarList × VarList) λ {(BVq , FVq) → CorrectBinding q BVq FVq × BVq ⊆ BV × FVq ⊆ FV } sn⟶-maintains-binding CBp (rcontext C dc p₁sn⟶₁q₁) with binding-extractc' CBp dc ... | (BVp₁ , FVp₁) , CBp₁ with R-maintains-binding CBp₁ p₁sn⟶₁q₁ ... | (BVq₁ , FVq₁) , (CBq₁ , BVq₁⊆BVp₁ , FVq₁⊆FVp₁) with binding-substc' CBp dc CBp₁ BVq₁⊆BVp₁ FVq₁⊆FVp₁ CBq₁ ... | (BVq , FVq) , ((BVq⊆BVp , FVq⊆FVp), CBq) = (BVq , FVq) , (CBq , BVq⊆BVp , FVq⊆FVp) sn⟶*-maintains-binding : ∀ {p BV FV q} → CorrectBinding p BV FV → p sn⟶* q → Σ (VarList × VarList) λ {(BVq , FVq) → CorrectBinding q BVq FVq} sn⟶*-maintains-binding cb rrefl = _ , cb sn⟶*-maintains-binding cb (rstep x psn⟶*q) = sn⟶*-maintains-binding (proj₁ (proj₂ (sn⟶-maintains-binding cb x))) psn⟶*q CB-preservation : ∀ p q C → CB (C ⟦ p ⟧c) → p sn⟶₁ q → CB (C ⟦ q ⟧c) CB-preservation p q C CBp psn⟶₁q with sn⟶-maintains-binding{p = C ⟦ p ⟧c}{q = C ⟦ q ⟧c} CBp (rcontext C Crefl psn⟶₁q) ... | (BV , FV) , CBq , _ with BVFVcorrect (C ⟦ q ⟧c) BV FV CBq ... | refl , refl = CBq CB-preservation* : ∀ p q → CB p → p sn⟶* q → CB q CB-preservation* p q CBp psn⟶*q with sn⟶*-maintains-binding CBp psn⟶*q ... | (BV , FV) , CBq with BVFVcorrect q BV FV CBq ... | refl , refl = CBq
{ "alphanum_fraction": 0.5267234388, "avg_line_length": 49.7177419355, "ext": "agda", "hexsha": "0d6ac8b608c08b494f93a3cf718ac265c91719db", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/binding-preserve.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/binding-preserve.agda", "max_line_length": 250, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/binding-preserve.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 12118, "size": 24660 }
module sn-calculus-confluence.rec where open import Data.Nat using (_+_) open import Function using (_∋_ ; _∘_) open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc ) open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import context-properties open import Esterel.Lang.Binding open import Data.Maybe using ( just ) open import Data.List.Any open import Data.List.Any.Properties open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar open import sn-calculus-confluence.helper open import sn-calculus-confluence.recrec ρ-conf-rec : ∀{θ El Er ql qr i oli ori qro qlo FV BV θl θr A Al Ar} → CorrectBinding (ρ⟨ θ , A ⟩· i) FV BV → (ieql : i ≐ El ⟦ ql ⟧e) → (ieqr : i ≐ Er ⟦ qr ⟧e) → El a~ Er → (rl : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θl , Al ⟩· oli)) → (rr : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θr , Ar ⟩· ori)) → (olieq : oli ≐ El ⟦ qlo ⟧e) → (orieq : ori ≐ Er ⟦ qro ⟧e) → (->E-view rl ieql olieq) → (->E-view rr ieqr orieq) → ( Σ[ θo ∈ Env ] Σ[ Ao ∈ Ctrl ] Σ[ si ∈ Term ] Σ[ Elo ∈ EvaluationContext ] Σ[ Ero ∈ EvaluationContext ] Σ[ oorieq ∈ ori ≐ Elo ⟦ ql ⟧e ] Σ[ oolieq ∈ oli ≐ Ero ⟦ qr ⟧e ] Σ[ sireq ∈ (si ≐ Elo ⟦ qlo ⟧e ) ] Σ[ sileq ∈ (si ≐ Ero ⟦ qro ⟧e ) ] Σ[ redl ∈ ((ρ⟨ θl , Al ⟩· oli) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] Σ[ redr ∈ ((ρ⟨ θr , Ar ⟩· ori) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] ((->E-view redl oolieq sileq) × (->E-view redr oorieq sireq))) ρ-conf-rec {p₂} {El = El@.(epar₂ _ ∷ _)} {Er@.(epar₁ _ ∷ _)} {i = .(_ ∥ _)} cb (depar₂ ieqr) (depar₁ ieql) par redl redr olieq orieq viewl viewr with ρ-conf-rec2{El = El}{Er} cb (depar₂ ieqr) (depar₁ ieql) par redl redr olieq orieq viewl viewr refl refl ... | (θo , Ao , whatever , Erl , Ero , thig , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro , _) = θo , Ao , whatever , Erl , Ero , thig , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ρ-conf-rec {p₂} {El = (epar₁ q ∷ El)} {(epar₂ p ∷ Er)} {i = .(_ ∥ _)}{oli = (olp ∥ .q)}{ori = (.p ∥ orq)} cb@(CBρ (CBpar cbl cbr a b c d)) (depar₁ ieql) (depar₂ ieqr) par2 redl redr (depar₁ olieq) (depar₂ orieq) viewl viewr with unwrap-rho redl (depar₁ ieql) (depar₁ olieq) ieql olieq viewl | unwrap-rho redr (depar₂ ieqr) (depar₂ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with wrap-rho redli ieql olieq viewli (epar₂ q) (depar₂ ieql) (depar₂ olieq) | wrap-rho redri ieqr orieq viewri (epar₁ p) (depar₁ ieqr) (depar₁ orieq) ... | (redl2 , viewl2) | (redr2 , viewr2) with ρ-conf-rec2{El = epar₂ q ∷ El}{epar₁ p ∷ Er}{oli = oli2}{ori = ori2} (CBρ (CBpar cbr cbl (distinct-sym a) (distinct-sym c) (distinct-sym b) (distinct'-sym d))) (depar₂ ieql) (depar₁ ieqr) par redl2 redr2 (depar₂ olieq) (depar₁ orieq) viewl2 viewr2 refl refl where oli2 = Term ∋ (q ∥ olp) ori2 = orq ∥ p ... | (θo , Ao , ([email protected][email protected]) , (epar₂ _ ∷ Erl) , (epar₁ _ ∷ Ero) , (depar₂ oorieq) , (depar₁ oolieq) , (depar₂ sireq) , (depar₁ sileq) , rlout , rrout , viewlo , viewro , ((.Erl , .Ero , _ , _) , refl , refl)) with unwrap-rho rlout (depar₁ oolieq) (depar₁ sileq) oolieq sileq viewlo | unwrap-rho rrout (depar₂ oorieq) (depar₂ sireq) oorieq sireq viewro ... | (roli , roliview) | (rori , roriview) with wrap-rho roli oolieq sileq roliview (epar₂ sir) (depar₂ oolieq) (depar₂ sileq) | wrap-rho rori oorieq sireq roriview (epar₁ sil) (depar₁ oorieq) (depar₁ sireq) ... | (rolo , roloview) | (roro , roroview) = θo , Ao , sir ∥ sil , epar₁ orq ∷ Erl , epar₂ olp ∷ Ero , depar₁ oorieq , depar₂ oolieq , depar₁ sireq , depar₂ sileq , rolo , roro , roloview , roroview -- _ , _ , _ , _ , _ , rolo , roro , roloview , roroview -- {! !} ρ-conf-rec {El = epar₁ q ∷ El} {epar₁ .q ∷ Er} {ql} {qr} {.(_ ∥ q)} (CBρ (CBpar cb cb₁ x x₁ x₂ x₃)) (depar₁ ieql) (depar₁ ieqr) (parr a~~) redl redr (depar₁ olieq) (depar₁ orieq) viewl viewr with unwrap-rho redl (depar₁ ieql) (depar₁ olieq) ieql olieq viewl | unwrap-rho redr (depar₁ ieqr) (depar₁ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (epar₁ q) (depar₁ oolieq) (depar₁ sileq) | wrap-rho rrout oorieq sireq viewro (epar₁ q) (depar₁ oorieq) (depar₁ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , si ∥ q , (epar₁ q) ∷ Elo , (epar₁ q) ∷ Ero , depar₁ oorieq , depar₁ oolieq , depar₁ sireq , depar₁ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (epar₂ p ∷ El)} {(epar₂ .p ∷ Er)} {i = .(_ ∥ _)} (CBρ (CBpar cb₁ cb x x₁ x₂ x₃)) (depar₂ ieql) (depar₂ ieqr) (parl a~~) redl redr (depar₂ olieq) (depar₂ orieq) viewl viewr with unwrap-rho redl (depar₂ ieql) (depar₂ olieq) ieql olieq viewl | unwrap-rho redr (depar₂ ieqr) (depar₂ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (epar₂ p) (depar₂ oolieq) (depar₂ sileq) | wrap-rho rrout oorieq sireq viewro (epar₂ p) (depar₂ oorieq) (depar₂ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , p ∥ si , (epar₂ p) ∷ Elo , (epar₂ p) ∷ Ero , depar₂ oorieq , depar₂ oolieq , depar₂ sireq , depar₂ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (eseq q ∷ El)} {(eseq .q ∷ Er)} {i = .(_ >> q)} (CBρ (CBseq cb cb₁ x)) (deseq ieql) (deseq ieqr) (seq a~~) redl redr (deseq olieq) (deseq orieq) viewl viewr with unwrap-rho redl (deseq ieql) (deseq olieq) ieql olieq viewl | unwrap-rho redr (deseq ieqr) (deseq orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (eseq q) (deseq oolieq) (deseq sileq) | wrap-rho rrout oorieq sireq viewro (eseq q) (deseq oorieq) (deseq sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (si >> q) , (eseq q) ∷ Elo , (eseq q) ∷ Ero , deseq oorieq , deseq oolieq , deseq sireq , deseq sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (eloopˢ q ∷ El)} {(eloopˢ .q ∷ Er)} {i = .(loopˢ _ q)} (CBρ (CBloopˢ cb cb₁ x _)) (deloopˢ ieql) (deloopˢ ieqr) (loopˢ a~~) redl redr (deloopˢ olieq) (deloopˢ orieq) viewl viewr with unwrap-rho redl (deloopˢ ieql) (deloopˢ olieq) ieql olieq viewl | unwrap-rho redr (deloopˢ ieqr) (deloopˢ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (eloopˢ q) (deloopˢ oolieq) (deloopˢ sileq) | wrap-rho rrout oorieq sireq viewro (eloopˢ q) (deloopˢ oorieq) (deloopˢ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (loopˢ si q) , (eloopˢ q) ∷ Elo , (eloopˢ q) ∷ Ero , deloopˢ oorieq , deloopˢ oolieq , deloopˢ sireq , deloopˢ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (esuspend S ∷ El)} {(esuspend .S ∷ Er)} {i = .(suspend _ _)} (CBρ (CBsusp cb x)) (desuspend ieql) (desuspend ieqr) (susp a~~) redl redr (desuspend olieq) (desuspend orieq) viewl viewr with unwrap-rho redl (desuspend ieql) (desuspend olieq) ieql olieq viewl | unwrap-rho redr (desuspend ieqr) (desuspend orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (esuspend S) (desuspend oolieq) (desuspend sileq) | wrap-rho rrout oorieq sireq viewro (esuspend S) (desuspend oorieq) (desuspend sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (suspend si S) , (esuspend S) ∷ Elo , (esuspend S) ∷ Ero , desuspend oorieq , desuspend oolieq , desuspend sireq , desuspend sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (etrap ∷ El)} {(etrap ∷ Er)} {i = .(trap _)} (CBρ (CBtrap cb)) (detrap ieql) (detrap ieqr) (trp a~~) redl redr (detrap olieq) (detrap orieq) viewl viewr with unwrap-rho redl (detrap ieql) (detrap olieq) ieql olieq viewl | unwrap-rho redr (detrap ieqr) (detrap orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (etrap) (detrap oolieq) (detrap sileq) | wrap-rho rrout oorieq sireq viewro (etrap) (detrap oorieq) (detrap sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (trap si) , (etrap) ∷ Elo , (etrap) ∷ Ero , detrap oorieq , detrap oolieq , detrap sireq , detrap sileq , rol , ror , rolview , rorview
{ "alphanum_fraction": 0.5855077905, "avg_line_length": 81.9538461538, "ext": "agda", "hexsha": "dcc396fd7702724c7d5dbb61bc3ecf950d6f3ead", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-confluence/rec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-confluence/rec.agda", "max_line_length": 305, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-confluence/rec.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 4113, "size": 10654 }
{-# OPTIONS --without-K #-} module hott.level where open import hott.level.core public open import hott.level.sets public open import hott.level.closure public
{ "alphanum_fraction": 0.7763975155, "avg_line_length": 23, "ext": "agda", "hexsha": "c647d331815e8461829de5b72fe6e4efa45ae869", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/level.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/level.agda", "max_line_length": 37, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/level.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 34, "size": 161 }
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.Equiv-DSHIT-DSFun where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Relation.Nullary open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat renaming (_+_ to _+n_) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Data.Vec open import Cubical.Data.Vec.DepVec open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.DirectSumFun open import Cubical.Algebra.AbGroup.Instances.DirectSumHIT open import Cubical.Algebra.AbGroup.Instances.NProd open import Cubical.Algebra.DirectSum.DirectSumFun.Base open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.DirectSum.DirectSumHIT.Properties open import Cubical.Algebra.DirectSum.DirectSumHIT.PseudoNormalForm private variable ℓ : Level open GroupTheory open AbGroupTheory open AbGroupStr ----------------------------------------------------------------------------- -- Notation module Equiv-Properties (G : ℕ → Type ℓ) (Gstr : (n : ℕ) → AbGroupStr (G n)) where -- the convention is a bit different and had a - -- because otherwise it is unreadable open AbGroupStr (snd (⊕HIT-AbGr ℕ G Gstr)) using () renaming ( 0g to 0⊕HIT ; _+_ to _+⊕HIT_ ; -_ to -⊕HIT_ ; +Assoc to +⊕HIT-Assoc ; +IdR to +⊕HIT-IdR ; +IdL to +⊕HIT-IdL ; +InvR to +⊕HIT-InvR ; +InvL to +⊕HIT-InvL ; +Comm to +⊕HIT-Comm ; is-set to isSet⊕HIT) open AbGroupStr (snd (⊕Fun-AbGr G Gstr)) using () renaming ( 0g to 0⊕Fun ; _+_ to _+⊕Fun_ ; -_ to -⊕Fun_ ; +Assoc to +⊕Fun-Assoc ; +IdR to +⊕Fun-IdR ; +IdL to +⊕Fun-IdL ; +InvR to +⊕Fun-InvR ; +InvL to +⊕Fun-InvL ; +Comm to +⊕Fun-Comm ; is-set to isSet⊕Fun) ----------------------------------------------------------------------------- -- AbGroup on Fun -> produit ? sequence ? open AbGroupStr (snd (NProd-AbGroup G Gstr)) using () renaming ( 0g to 0Fun ; _+_ to _+Fun_ ; -_ to -Fun_ ; +Assoc to +FunAssoc ; +IdR to +FunIdR ; +IdL to +FunIdL ; +InvR to +FunInvR ; +InvL to +FunInvL ; +Comm to +FunComm ; is-set to isSetFun) ----------------------------------------------------------------------------- -- Some simplification for transport open SubstLemma ℕ G Gstr substG : (g : (n : ℕ) → G n) → {k n : ℕ} → (p : k ≡ n) → subst G p (g k) ≡ g n substG g {k} {n} p = J (λ n p → subst G p (g k) ≡ g n) (transportRefl _) p ----------------------------------------------------------------------------- -- Direct Sense -- To facilitate the proof the translation to the function -- and its properties are done in two times --------------------------------------------------------------------------- -- Translation to the function fun-trad : (k : ℕ) → (a : G k) → (n : ℕ) → G n fun-trad k a n with (discreteℕ k n) ... | yes p = subst G p a ... | no ¬p = 0g (Gstr n) fun-trad-eq : (k : ℕ) → (a : G k) → fun-trad k a k ≡ a fun-trad-eq k a with discreteℕ k k ... | yes p = cong (λ X → subst G X a) (isSetℕ _ _ _ _) ∙ transportRefl a ... | no ¬p = ⊥.rec (¬p refl) fun-trad-neq : (k : ℕ) → (a : G k) → (n : ℕ) → (k ≡ n → ⊥) → fun-trad k a n ≡ 0g (Gstr n) fun-trad-neq k a n ¬q with discreteℕ k n ... | yes p = ⊥.rec (¬q p) ... | no ¬p = refl ⊕HIT→Fun : ⊕HIT ℕ G Gstr → (n : ℕ) → G n ⊕HIT→Fun = DS-Rec-Set.f _ _ _ _ isSetFun 0Fun fun-trad _+Fun_ +FunAssoc +FunIdR +FunComm (λ k → funExt (λ n → base0-eq k n)) λ k a b → funExt (λ n → base-add-eq k a b n) where base0-eq : (k : ℕ) → (n : ℕ) → fun-trad k (0g (Gstr k)) n ≡ 0g (Gstr n) base0-eq k n with (discreteℕ k n) ... | yes p = subst0g _ ... | no ¬p = refl base-add-eq : (k : ℕ) → (a b : G k) → (n : ℕ) → PathP (λ _ → G n) (Gstr n ._+_ (fun-trad k a n) (fun-trad k b n)) (fun-trad k ((Gstr k + a) b) n) base-add-eq k a b n with (discreteℕ k n) ... | yes p = subst+ _ _ _ ... | no ¬p = +IdR (Gstr n)_ ⊕HIT→Fun-pres0 : ⊕HIT→Fun 0⊕HIT ≡ 0Fun ⊕HIT→Fun-pres0 = refl ⊕HIT→Fun-pres+ : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→Fun (x +⊕HIT y) ≡ ((⊕HIT→Fun x) +Fun (⊕HIT→Fun y)) ⊕HIT→Fun-pres+ x y = refl --------------------------------------------------------------------------- -- Translation to the properties nfun-trad : (k : ℕ) → (a : G k) → AlmostNull G Gstr (fun-trad k a) nfun-trad k a = k , fix-eq where fix-eq : (n : ℕ) → k < n → fun-trad k a n ≡ 0g (Gstr n) fix-eq n q with (discreteℕ k n) ... | yes p = ⊥.rec (<→≢ q p) ... | no ¬p = refl ⊕HIT→⊕AlmostNull : (x : ⊕HIT ℕ G Gstr) → AlmostNullP G Gstr (⊕HIT→Fun x) ⊕HIT→⊕AlmostNull = DS-Ind-Prop.f _ _ _ _ (λ x → squash₁) ∣ (0 , (λ n q → refl)) ∣₁ (λ r a → ∣ (nfun-trad r a) ∣₁) λ {U} {V} → PT.elim (λ _ → isPropΠ (λ _ → squash₁)) (λ { (k , nu) → PT.elim (λ _ → squash₁) λ { (l , nv) → ∣ ((k +n l) , (λ n q → cong₂ ((Gstr n)._+_) (nu n (<-+k-trans q)) (nv n (<-k+-trans q)) ∙ +IdR (Gstr n) _)) ∣₁} }) --------------------------------------------------------------------------- -- Translation + Morphism ⊕HIT→⊕Fun : ⊕HIT ℕ G Gstr → ⊕Fun G Gstr ⊕HIT→⊕Fun x = (⊕HIT→Fun x) , (⊕HIT→⊕AlmostNull x) ⊕HIT→⊕Fun-pres0 : ⊕HIT→⊕Fun 0⊕HIT ≡ 0⊕Fun ⊕HIT→⊕Fun-pres0 = refl ⊕HIT→⊕Fun-pres+ : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→⊕Fun (x +⊕HIT y) ≡ ((⊕HIT→⊕Fun x) +⊕Fun (⊕HIT→⊕Fun y)) ⊕HIT→⊕Fun-pres+ x y = ΣPathTransport→PathΣ _ _ (refl , (squash₁ _ _)) ----------------------------------------------------------------------------- -- Converse sense ----------------------------------------------------------------------------- -- Prood that ⊕HIT→⊕Fun is injective open DefPNF G Gstr sumFun : {m : ℕ} → depVec G m → (n : ℕ) → G n sumFun {0} ⋆ = 0Fun sumFun {suc m} (a □ dv) = (⊕HIT→Fun (base m a)) +Fun (sumFun dv) SumHIT→SumFun : {m : ℕ} → (dv : depVec G m) → ⊕HIT→Fun (sumHIT dv) ≡ sumFun dv SumHIT→SumFun {0} ⋆ = refl SumHIT→SumFun {suc m} (a □ dv) = cong₂ _+Fun_ refl (SumHIT→SumFun dv) sumFun< : {m : ℕ} → (dv : depVec G m) → (i : ℕ) → (m ≤ i) → sumFun dv i ≡ 0g (Gstr i) sumFun< {0} ⋆ i r = refl sumFun< {suc m} (a □ dv) i r with discreteℕ m i ... | yes p = ⊥.rec (<→≢ r p) ... | no ¬p = +IdL (Gstr i) _ ∙ sumFun< dv i (≤-trans ≤-sucℕ r) sumFunHead : {m : ℕ} → (a b : (G m)) → (dva dvb : depVec G m) → (x : sumFun (a □ dva) ≡ sumFun (b □ dvb)) → a ≡ b sumFunHead {m} a b dva dvb x = a ≡⟨ sym (+IdR (Gstr m) _) ⟩ (Gstr m)._+_ a (0g (Gstr m)) ≡⟨ cong₂ (Gstr m ._+_) (sym (fun-trad-eq m a)) (sym (sumFun< dva m ≤-refl)) ⟩ (Gstr m)._+_ (fun-trad m a m) (sumFun dva m) ≡⟨ funExt⁻ x m ⟩ (Gstr m)._+_ (fun-trad m b m) (sumFun dvb m) ≡⟨ cong₂ (Gstr m ._+_) (fun-trad-eq m b) (sumFun< dvb m ≤-refl) ⟩ (Gstr m)._+_ b (0g (Gstr m)) ≡⟨ +IdR (Gstr m) _ ⟩ b ∎ substSumFun : {m : ℕ} → (dv : depVec G m) → (n : ℕ) → (p : m ≡ n) → subst G p (sumFun dv m) ≡ sumFun dv n substSumFun {m} dv n p = J (λ n p → subst G p (sumFun dv m) ≡ sumFun dv n) (transportRefl _) p sumFunTail : {m : ℕ} → (a b : (G m)) → (dva dvb : depVec G m) → (x : sumFun (a □ dva) ≡ sumFun (b □ dvb)) → (n : ℕ) → sumFun dva n ≡ sumFun dvb n sumFunTail {m} a b dva dvb x n with discreteℕ m n ... | yes p = sumFun dva n ≡⟨ sym (substSumFun dva n p) ⟩ subst G p (sumFun dva m) ≡⟨ cong (subst G p) (sumFun< dva m ≤-refl) ⟩ subst G p (0g (Gstr m)) ≡⟨ subst0g p ⟩ 0g (Gstr n) ≡⟨ sym (subst0g p) ⟩ subst G p (0g (Gstr m)) ≡⟨ sym (cong (subst G p) (sumFun< dvb m ≤-refl)) ⟩ subst G p (sumFun dvb m) ≡⟨ substSumFun dvb n p ⟩ sumFun dvb n ∎ ... | no ¬p = sumFun dva n ≡⟨ sym (+IdL (Gstr n) _) ⟩ (Gstr n)._+_ (0g (Gstr n)) (sumFun dva n) ≡⟨ cong (λ X → (Gstr n)._+_ X (sumFun dva n)) (sym (fun-trad-neq m a n ¬p)) ⟩ Gstr n ._+_ (fun-trad m a n) (sumFun dva n) ≡⟨ funExt⁻ x n ⟩ Gstr n ._+_ (fun-trad m b n) (sumFun dvb n) ≡⟨ cong (λ X → Gstr n ._+_ X (sumFun dvb n)) (fun-trad-neq m b n ¬p) ⟩ (Gstr n)._+_ (0g (Gstr n)) (sumFun dvb n) ≡⟨ +IdL (Gstr n) _ ⟩ sumFun dvb n ∎ injSumFun : {m : ℕ} → (dva dvb : depVec G m) → sumFun dva ≡ sumFun dvb → dva ≡ dvb injSumFun {0} ⋆ ⋆ x = refl injSumFun {suc m} (a □ dva) (b □ dvb) x = depVecPath.decode G (a □ dva) (b □ dvb) ((sumFunHead a b dva dvb x) , (injSumFun dva dvb (funExt (sumFunTail a b dva dvb x)))) injSumHIT : {m : ℕ} → (dva dvb : depVec G m) → ⊕HIT→Fun (sumHIT dva) ≡ ⊕HIT→Fun (sumHIT dvb) → dva ≡ dvb injSumHIT dva dvb r = injSumFun dva dvb (sym (SumHIT→SumFun dva) ∙ r ∙ SumHIT→SumFun dvb) inj-⊕HIT→Fun : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→Fun x ≡ ⊕HIT→Fun y → x ≡ y inj-⊕HIT→Fun x y r = helper (⊕HIT→PNF2 x y) r where helper : PNF2 x y → ⊕HIT→Fun x ≡ ⊕HIT→Fun y → x ≡ y helper = PT.elim (λ _ → isPropΠ (λ _ → isSet⊕HIT _ _)) λ { (m , dva , dvb , p , q) r → p ∙ cong sumHIT (injSumHIT dva dvb (sym (cong ⊕HIT→Fun p) ∙ r ∙ cong ⊕HIT→Fun q)) ∙ sym q} inj-⊕HIT→⊕Fun : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→⊕Fun x ≡ ⊕HIT→⊕Fun y → x ≡ y inj-⊕HIT→⊕Fun x y p = inj-⊕HIT→Fun x y (fst (PathΣ→ΣPathTransport _ _ p)) lemProp : (g : ⊕Fun G Gstr) → isProp (Σ[ x ∈ ⊕HIT ℕ G Gstr ] ⊕HIT→⊕Fun x ≡ g ) lemProp g (x , p) (y , q) = ΣPathTransport→PathΣ _ _ ((inj-⊕HIT→⊕Fun x y (p ∙ sym q)) , isSet⊕Fun _ _ _ _) --------------------------------------------------------------------------- -- General translation for underliyng function Strad : (g : (n : ℕ) → G n) → (i : ℕ) → ⊕HIT ℕ G Gstr Strad g zero = base 0 (g 0) Strad g (suc i) = (base (suc i) (g (suc i))) +⊕HIT (Strad g i) Strad-pres+ : (f g : (n : ℕ) → G n) → (i : ℕ) → Strad (f +Fun g) i ≡ Strad f i +⊕HIT Strad g i Strad-pres+ f g zero = sym (base-add 0 (f 0) (g 0)) Strad-pres+ f g (suc i) = cong₂ _+⊕HIT_ (sym (base-add _ _ _)) (Strad-pres+ f g i) ∙ comm-4 (⊕HIT-AbGr ℕ G Gstr) _ _ _ _ -- Properties in the converse sens Strad-max : (f : (n : ℕ) → G n) → (k : ℕ) → (ng : AlmostNullProof G Gstr f k) → (i : ℕ) → (r : k ≤ i) → Strad f i ≡ Strad f k Strad-max f k ng zero r = sym (cong (Strad f) (≤0→≡0 r)) Strad-max f k ng (suc i) r with ≤-split r ... | inl x = cong₂ _+⊕HIT_ (cong (base (suc i)) (ng (suc i) x) ∙ base-neutral (suc i)) (Strad-max f k ng i (pred-≤-pred x)) ∙ +⊕HIT-IdL _ ... | inr x = cong (Strad f) (sym x) -- if m < n then the translation of sum up to i is 0 Strad-m<n : (g : (n : ℕ) → G n) → (m : ℕ) → (n : ℕ) → (r : m < n) → ⊕HIT→Fun (Strad g m) n ≡ 0g (Gstr n) Strad-m<n g zero n r with discreteℕ 0 n ... | yes p = ⊥.rec (<→≢ r p) ... | no ¬p = refl Strad-m<n g (suc m) n r with discreteℕ (suc m) n ... | yes p = ⊥.rec (<→≢ r p) ... | no ¬p = +IdL (Gstr n) _ ∙ Strad-m<n g m n (<-trans ≤-refl r) {- if n ≤ m, prove ⊕HIT→Fun (∑_{i ∈〚0, m〛} base i (g i)) ≡ g n then n is equal to only one〚0, m〛=> induction on m case 0 : ok case suc m : if n ≡ suc m, then the rest of the sum is 0 by trad-m<n if n ≢ suc m, then it is in the rest of the sum => recursive call -} Strad-n≤m : (g : (n : ℕ) → G n) → (m : ℕ) → (n : ℕ) → (r : n ≤ m) → ⊕HIT→Fun (Strad g m) n ≡ g n Strad-n≤m g zero n r with discreteℕ 0 n ... | yes p = substG g p ... | no ¬p = ⊥.rec (¬p (sym (≤0→≡0 r))) Strad-n≤m g (suc m) n r with discreteℕ (suc m) n ... | yes p = cong₂ ((Gstr n)._+_) (substG g p) (Strad-m<n g m n (0 , p)) ∙ +IdR (Gstr n) _ ... | no ¬p = +IdL (Gstr n) _ ∙ Strad-n≤m g m n (≤-suc-≢ r λ x → ¬p (sym x)) --------------------------------------------------------------------------- -- Translation + Morphsim -- translation ⊕Fun→⊕HIT+ : (g : ⊕Fun G Gstr) → Σ[ x ∈ ⊕HIT ℕ G Gstr ] ⊕HIT→⊕Fun x ≡ g ⊕Fun→⊕HIT+ (g , Ang) = PT.rec (lemProp (g , Ang)) (λ { (k , ng) → Strad g k , ΣPathTransport→PathΣ _ _ ((funExt (trad-section g k ng)) , (squash₁ _ _)) }) Ang where trad-section : (g : (n : ℕ) → G n) → (k : ℕ) → (ng : (n : ℕ) → ( k < n) → g n ≡ 0g (Gstr n)) → (n : ℕ) → ⊕HIT→Fun (Strad g k) n ≡ g n trad-section g k ng n with splitℕ-≤ n k ... | inl x = Strad-n≤m g k n x ... | inr x = Strad-m<n g k n x ∙ sym (ng n x) ⊕Fun→⊕HIT : ⊕Fun G Gstr → ⊕HIT ℕ G Gstr ⊕Fun→⊕HIT g = fst (⊕Fun→⊕HIT+ g) -- morphism ⊕Fun→⊕HIT-pres0 : ⊕Fun→⊕HIT 0⊕Fun ≡ 0⊕HIT ⊕Fun→⊕HIT-pres0 = base-neutral 0 ⊕Fun→⊕HIT-pres+ : (f g : ⊕Fun G Gstr) → ⊕Fun→⊕HIT (f +⊕Fun g) ≡ (⊕Fun→⊕HIT f) +⊕HIT (⊕Fun→⊕HIT g) ⊕Fun→⊕HIT-pres+ (f , Anf) (g , Ang) = PT.elim2 (λ x y → isSet⊕HIT (⊕Fun→⊕HIT ((f , x) +⊕Fun (g , y))) ((⊕Fun→⊕HIT (f , x)) +⊕HIT (⊕Fun→⊕HIT (g , y)))) (λ x y → AN f x g y) Anf Ang where AN : (f : (n : ℕ) → G n) → (x : AlmostNull G Gstr f) → (g : (n : ℕ) → G n) → (y : AlmostNull G Gstr g) → ⊕Fun→⊕HIT ((f , ∣ x ∣₁) +⊕Fun (g , ∣ y ∣₁)) ≡ (⊕Fun→⊕HIT (f , ∣ x ∣₁)) +⊕HIT (⊕Fun→⊕HIT (g , ∣ y ∣₁)) AN f (k , nf) g (l , ng) = Strad-pres+ f g (k +n l) ∙ cong₂ _+⊕HIT_ (Strad-max f k nf (k +n l) (l , (+-comm l k))) (Strad-max g l ng (k +n l) (k , refl)) ----------------------------------------------------------------------------- -- Section e-sect : (g : ⊕Fun G Gstr) → ⊕HIT→⊕Fun (⊕Fun→⊕HIT g) ≡ g e-sect g = snd (⊕Fun→⊕HIT+ g) ----------------------------------------------------------------------------- -- Retraction lemmaSkk : (k : ℕ) → (a : G k) → (i : ℕ) → (r : i < k) → Strad (λ n → fun-trad k a n) i ≡ 0⊕HIT lemmaSkk k a zero r with discreteℕ k 0 ... | yes p = ⊥.rec (<→≢ r (sym p)) ... | no ¬p = base-neutral 0 lemmaSkk k a (suc i) r with discreteℕ k (suc i) ... | yes p = ⊥.rec (<→≢ r (sym p)) ... | no ¬p = cong₂ _+⊕HIT_ (base-neutral (suc i)) (lemmaSkk k a i (<-trans ≤-refl r)) ∙ +⊕HIT-IdR _ lemmakk : (k : ℕ) → (a : G k) → ⊕Fun→⊕HIT (⊕HIT→⊕Fun (base k a)) ≡ base k a lemmakk zero a = cong (base 0) (transportRefl a) lemmakk (suc k) a with (discreteℕ (suc k) (suc k)) | (discreteℕ k k) ... | yes p | yes q = cong₂ _add_ (sym (constSubstCommSlice G (⊕HIT ℕ G Gstr) base (cong suc q) a)) (lemmaSkk (suc k) a k ≤-refl) ∙ +⊕HIT-IdR _ ... | yes p | no ¬q = ⊥.rec (¬q refl) ... | no ¬p | yes q = ⊥.rec (¬p refl) ... | no ¬p | no ¬q = ⊥.rec (¬q refl) e-retr : (x : ⊕HIT ℕ G Gstr) → ⊕Fun→⊕HIT (⊕HIT→⊕Fun x) ≡ x e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕HIT _ _) (base-neutral 0) lemmakk λ {U} {V} ind-U ind-V → cong ⊕Fun→⊕HIT (⊕HIT→⊕Fun-pres+ U V) ∙ ⊕Fun→⊕HIT-pres+ (⊕HIT→⊕Fun U) (⊕HIT→⊕Fun V) ∙ cong₂ _+⊕HIT_ ind-U ind-V module _ (G : ℕ → Type ℓ) (Gstr : (n : ℕ) → AbGroupStr (G n)) where open Iso open Equiv-Properties G Gstr Equiv-DirectSum : AbGroupEquiv (⊕HIT-AbGr ℕ G Gstr) (⊕Fun-AbGr G Gstr) fst Equiv-DirectSum = isoToEquiv is where is : Iso (⊕HIT ℕ G Gstr) (⊕Fun G Gstr) fun is = ⊕HIT→⊕Fun Iso.inv is = ⊕Fun→⊕HIT rightInv is = e-sect leftInv is = e-retr snd Equiv-DirectSum = makeIsGroupHom ⊕HIT→⊕Fun-pres+
{ "alphanum_fraction": 0.4474621038, "avg_line_length": 40.9788235294, "ext": "agda", "hexsha": "64df16dcae562f212806fd2a254507c1902d2c0b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/DirectSum/Equiv-DSHIT-DSFun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/DirectSum/Equiv-DSHIT-DSFun.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/DirectSum/Equiv-DSHIT-DSFun.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6914, "size": 17416 }
-- The empty type; also used as absurd proposition (``Falsity''). {-# OPTIONS --without-K --safe #-} module Tools.Empty where open import Data.Empty public
{ "alphanum_fraction": 0.6981132075, "avg_line_length": 19.875, "ext": "agda", "hexsha": "d93d25ffaf7f6ffbf6c06e2d64e16d80be0125b5", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Tools/Empty.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Tools/Empty.agda", "max_line_length": 65, "max_stars_count": 30, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Tools/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 37, "size": 159 }
module STT where -- simple type theory {- open import Data.Bool open import Relation.Binary.PropositionalEquality open import Data.Nat hiding (_>_) -} open import StdLibStuff open import Syntax -- inference system data ⊢_ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Set where ax-1 : ∀ {n} → {Γ : Ctx n} {x : Var Γ} → (p : lookup-Var Γ x ≡ $o) → ⊢ ((var x p || var x p) => var x p) ax-2 : ∀ {n} → {Γ : Ctx n} {x y : Var Γ} → (px : lookup-Var Γ x ≡ $o) → (py : lookup-Var Γ y ≡ $o) → ⊢ (var x px => (var x px || var y py)) ax-3 : ∀ {n} → {Γ : Ctx n} {x y : Var Γ} → (px : lookup-Var Γ x ≡ $o) → (py : lookup-Var Γ y ≡ $o) → ⊢ ((var x px || var y py) => (var y py || var x px)) ax-4 : ∀ {n} → {Γ : Ctx n} {x y z : Var Γ} → (px : lookup-Var Γ x ≡ $o) → (py : lookup-Var Γ y ≡ $o) → (pz : lookup-Var Γ z ≡ $o) → ⊢ ((var x px => var y py) => ((var z pz || var x px) => (var z pz || var y py))) ax-5 : ∀ {n} → {Γ : Ctx n} {α : Type n} {x y : Var Γ} → (px : lookup-Var Γ x ≡ α > $o) → (py : lookup-Var Γ y ≡ α) → ⊢ (app Π (var x px) => app (var x px) (var y py)) ax-6 : ∀ {n} → {Γ : Ctx n} {α : Type n} {x y : Var Γ} → (px : lookup-Var Γ x ≡ α > $o) → (py : lookup-Var Γ y ≡ $o) → ⊢ ((![ α ] (weak (var y py) || app (weak (var x px)) (var this refl))) => (var y py || app Π (var x px))) ax-10-a : ∀ {n} → {Γ : Ctx n} {x y : Var Γ} → (px : lookup-Var Γ x ≡ $o) → (py : lookup-Var Γ y ≡ $o) → ⊢ ((var x px <=> var y py) => (var x px == var y py)) ax-10-b : ∀ {n} → {Γ : Ctx n} {α β : Type n} {f g : Var Γ} → (pf : lookup-Var Γ f ≡ α > β) → (pg : lookup-Var Γ g ≡ α > β) → ⊢ ((![ α ] (app (weak (var f pf)) (var this refl) == app (weak (var g pg)) (var this refl))) => (var f pf == var g pg)) ax-11 : ∀ {n} → {Γ : Ctx n} {α : Type n} {f : Var Γ} → (pf : lookup-Var Γ f ≡ α > $o) → ⊢ ((?[ α ] (app (weak (var f pf)) (var this refl))) => (app (var f pf) (app i (var f pf)))) -- inf-I in Henkin is α-conversion -- with de Bruijn-indeces we need context extension instead extend-context : ∀ {n} {Γ : Ctx n} (α : Type n) {F : Form Γ $o} → ⊢_ {_} {α ∷ Γ} (weak F) → ⊢ F inf-II : ∀ {n} → (Γ Γ' : Ctx n) {α β : Type n} (F : Form (Γ' ++ Γ) β → Form Γ $o) (G : Form (α ∷ (Γ' ++ Γ)) β) (H : Form (Γ' ++ Γ) α) → ⊢ (F ((^[ α ] G) · H) => F (sub H G)) -- formulated as an inference rule in Henkin, as an axiom (containing expressions) here inf-III : ∀ {n} → (Γ Γ' : Ctx n) {α β : Type n} (F : Form (Γ' ++ Γ) β → Form Γ $o) (G : Form (α ∷ (Γ' ++ Γ)) β) (H : Form (Γ' ++ Γ) α) → ⊢ (F (sub H G) => F ((^[ α ] G) · H)) -- formulated as an inference rule in Henkin, as an axiom (containing expressions) here inf-IV : ∀ {n} → {Γ : Ctx n} {α : Type n} (F : Form Γ (α > $o)) (x : Var Γ) (G : Form Γ α) → occurs x F ≡ false → (p : lookup-Var Γ x ≡ α) → ⊢ (app F (var x p)) → ⊢ (app F G) inf-V : ∀ {n} → {Γ : Ctx n} {F G : Form Γ $o} → ⊢ (F => G) → ⊢ F → ⊢ G inf-VI : ∀ {n} → {Γ : Ctx n} {α : Type n} {F : Form Γ (α > $o)} (x : Var Γ) → occurs x F ≡ false → (p : lookup-Var Γ x ≡ α) → ⊢ (app F (var x p) => app Π F) -- formulated as an inference rule in Henkin, as an axiom (containing expressions) here -- ------------------------- -- Variants of the axioms that are simpler to work with ax-1-s : ∀ {n} → {Γ : Ctx n} {F : Form Γ $o} → ⊢ ((F || F) => F) ax-2-s : ∀ {n} → {Γ : Ctx n} {F G : Form Γ $o} → ⊢ (F => (F || G)) ax-3-s : ∀ {n} → {Γ : Ctx n} {F G : Form Γ $o} → ⊢ ((F || G) => (G || F)) ax-4-s : ∀ {n} → {Γ : Ctx n} {F G H : Form Γ $o} → ⊢ ((F => G) => ((H || F) => (H || G))) ax-5-s : ∀ {n} → {Γ : Ctx n} {α : Type n} (F : Form (α ∷ Γ) $o) (G : Form Γ α) → ⊢ (![ α ] F => sub G F) ax-5-s2 : ∀ {n} → {Γ : Ctx n} {α : Type n} (F : Form Γ (α > $o)) (G : Form Γ α) → ⊢ ((![ α ] (~ (weak F · $ this {refl}))) => (~ (F · G))) ax-5-s3 : ∀ {n} → {Γ : Ctx n} {α : Type n} (F : Form Γ (α > $o)) (G : Form Γ α) → ⊢ ((!'[ α ] F) => (F · G)) ax-6-s : ∀ {n} → {Γ : Ctx n} {α : Type n} {F : Form Γ $o} {G : Form (α ∷ Γ) $o} → ⊢ ((![ α ] (weak F || G)) => (F || (![ α ] G))) ax-10-a-s : ∀ {n} → {Γ : Ctx n} {F G : Form Γ $o} → ⊢ ((F <=> G) => (F == G)) ax-10-b-s : ∀ {n} → {Γ : Ctx n} {α β : Type n} {F G : Form (α ∷ Γ) β} → ⊢ ((![ α ] (F == G)) => (^[ α ] F == ^[ α ] G)) ax-10-b-s2 : ∀ {n} → {Γ : Ctx n} {α β : Type n} {F G : Form Γ (α > β)} → ⊢ ((![ α ] (app (weak F) (var this refl) == app (weak G) (var this refl))) => (F == G)) ax-11-s : ∀ {n} → {Γ : Ctx n} {α : Type n} {F : Form (α ∷ Γ) $o} → ⊢ ((?[ α ] F => sub (ι α F) F)) ax-11-s2 : ∀ {n} → {Γ : Ctx n} {α : Type n} (F : Form Γ (α > $o)) → ⊢ ((?'[ α ] F) => (F · ι' α F)) inf-II-samectx : ∀ {n} → {Γ : Ctx n} {α β : Type n} (F : Form Γ β → Form Γ $o) (G : Form (α ∷ Γ) β) (H : Form Γ α) → ⊢ (F ((^[ α ] G) · H) => F (sub H G)) inf-II-samectx {_} {Γ} = inf-II Γ ε inf-III-samectx : ∀ {n} → {Γ : Ctx n} {α β : Type n} (F : Form Γ β → Form Γ $o) (G : Form (α ∷ Γ) β) (H : Form Γ α) → ⊢ (F (sub H G) => F ((^[ α ] G) · H)) inf-III-samectx {_} {Γ} = inf-III Γ ε inf-VI-s : ∀ {n} → {Γ : Ctx n} {α : Type n} {F : Form (α ∷ Γ) $o} → ⊢ F → ⊢ ![ α ] F -- ------------------------- ax-5-s F G = inf-V (inf-II-samectx (λ z → (![ _ ] F) => z) F G) (subst (λ z → ⊢ ((![ _ ] F) => ((^[ _ ] F) · z))) (sym (sub-weak-p-1' G (^[ _ ] F))) (inf-V (inf-II-samectx (λ z → z) (app Π (var this refl) => app (var this refl) (weak G)) (^[ _ ] F)) (extend-context (_ > $o) (inf-IV _ this _ (occurs-p-2 (lam _ (weak G))) refl (inf-V (inf-III-samectx (λ z → z) (app Π (var this refl) => app (var this refl) (weak-i (_ ∷ ε) _ (weak G))) (var this refl)) (extend-context _ (inf-V (inf-II-samectx (λ z → z) (app Π (var (next (next this)) refl) => app (var (next (next this)) refl) (var this refl)) _) (inf-IV _ this _ refl refl (inf-V (inf-III-samectx (λ z → z) _ _) (ax-5 {_} {_} {_} {next this} {this} refl refl)))))))))) inf-VI-s {_} {Γ} {α} {F} = λ h → extend-context α (inf-V (inf-VI this (occurs-p-2 (lam α F)) refl) (inf-V (inf-III-samectx (λ z → z) (weak-i (α ∷ ε) Γ F) (var this refl)) (subst (λ z → ⊢ z) (sym (sub-sub-weak-weak-p-3 F)) h))) ax-6-s {_} {Γ} {α} {F} {G} = subst (λ z → ⊢ ((![ α ] (weak F || z)) => (F || ![ α ] G))) (sub-sub-weak-weak-p F G) (inf-V (inf-II Γ (α ∷ ε) (λ z → ((![ α ] (weak F || z)) => (F || app Π (lam α G)))) (sub-i (α ∷ (α ∷ ε)) Γ F (weak-i (α ∷ ε) ($o ∷ Γ) (weak-i (α ∷ ε) Γ G))) (var this refl)) (subst (λ z → ⊢ ((![ α ] (weak F || app (sub-i (α ∷ ε) Γ F (weak (weak (lam α G)))) (var this refl))) => (F || app Π z))) (sym (sub-weak-p-1' (lam α G) F)) (inf-V (ax-5-s _ F) (inf-VI-s (inf-V (ax-5-s _ (weak (lam α G))) (inf-VI-s (ax-6 {_} {_} {α} {this} {next this} refl refl))))))) ax-10-b-s {_} {Γ} {α} {β} {F} {G} = subst (λ z → ⊢ ((![ α ] (F == z) => (lam α F == lam α G)))) (sub-sub-weak-weak-p-3 G) ( inf-V (inf-II Γ (α ∷ ε) (λ z → ((![ α ] (F == z)) => (lam α F == lam α G))) (weak-i (α ∷ ε) Γ G) (var this refl)) ( subst (λ z → ⊢ ((![ α ] (z == app (weak (lam α G)) (var this refl))) => (lam α F == lam α G))) (sub-sub-weak-weak-p-2 F G) ( inf-V (inf-II Γ (α ∷ ε) (λ z → (((![ α ] (z == app (weak (lam α G)) (var this refl)) => (lam α F == lam α G))))) (sub-i (α ∷ (α ∷ ε)) Γ (lam α G) (weak-i (α ∷ ε) ((α > β) ∷ Γ) (weak-i (α ∷ ε) Γ F))) (var this refl)) ( subst (λ z → ⊢ (((![ α ] (app (sub-i (α ∷ ε) Γ (lam α G) (weak (weak (lam α F)))) (var this refl) == app (weak (lam α G)) (var this refl)) => (z == lam α G))))) (sym (sub-weak-p-1' (lam α F) (lam α G))) (inf-V (ax-5-s _ (lam α G)) (inf-VI-s (inf-V (ax-5-s _ (weak (lam α F))) (inf-VI-s (ax-10-b {_} {_} {α} {β} {this} {next this} refl refl))))))))) ax-10-b-s2 {_} {Γ} {α} {β} {F} {G} = subst (λ z → (⊢ ((![ α ] (app (weak F) (var this refl) == app (weak G) (var this refl))) => (F == z)))) (sym (sub-weak-p-1' G F)) ( subst (λ z → (⊢ ((![ α ] (app (weak F) (var this refl) == app z (var this refl))) => (F == sub F (weak G))))) (sym (sub-weak-p-1 G F)) ( inf-V (ax-5-s ((![ α ] (app (weak (var this refl)) (var this refl) == app (weak (weak G)) (var this refl))) => (var this refl == weak G)) F) ( inf-VI-s ( inf-V (ax-5-s ((![ α ] (app (weak (var (next this) refl)) (var this refl) == app (weak (var this refl)) (var this refl))) => (var (next this) refl == var this refl)) (weak G)) ( inf-VI-s ( ax-10-b refl refl)))))) ax-11-s {_} {Γ} {α} {F} = subst (λ z → ⊢ ((?[ α ] z) => sub (app i (lam α F)) F)) (sub-sub-weak-weak-p-3 F) ( inf-V (inf-II Γ (α ∷ ε) (λ z → ((?[ α ] z) => sub (app i (lam α F)) F)) (weak-i (α ∷ ε) Γ F) (var this refl)) ( inf-V (inf-II Γ ε (λ z → ((?[ α ] app (weak (lam α F)) (var this refl)) => z)) F (app i (lam α F))) ( inf-V (ax-5-s _ (lam α F)) (inf-VI-s (ax-11 {_} {_} {α} {this} refl))))) ax-1-s {_} {_} {F} = inf-V (ax-5-s ((var this refl || var this refl) => var this refl) F) (inf-VI-s (ax-1 refl)) ax-2-s {_} {_} {F} {G} = subst (λ z → ⊢ (F => (F || z))) (sym (sub-weak-p-1' G F)) (inf-V (ax-5-s (var this refl => (var this refl || weak G)) F) (inf-VI-s (inf-V (ax-5-s (var (next this) refl => (var (next this) refl || var this refl)) (weak G)) (inf-VI-s (ax-2 refl refl))))) ax-3-s {_} {_} {F} {G} = subst (λ z → ⊢ ((F || z) => (z || F))) (sym (sub-weak-p-1' G F)) (inf-V (ax-5-s _ F) (inf-VI-s (inf-V (ax-5-s _ (weak G)) (inf-VI-s (ax-3 {_} {_} {next this} {this} refl refl))))) ax-4-s {_} {_} {F} {G} {H} = subst (λ z → ⊢ ((F => G) => ((z || F) => (z || G)))) (sym (sub-weak-p-1' H F)) (subst (λ z → ⊢ ((F => z) => ((sub F (weak H) || F) => (sub F (weak H) || z)))) (sym (sub-weak-p-1' G F)) (subst (λ z → ⊢ ((F => sub F (weak G)) => ((sub F z || F) => (sub F z || sub F (weak G))))) (sym (sub-weak-p-1' (weak H) (weak G))) (inf-V (ax-5-s _ F) (inf-VI-s (inf-V (ax-5-s _ (weak G)) (inf-VI-s (inf-V (ax-5-s _ (weak (weak H))) (inf-VI-s (ax-4 {_} {_} {next (next this)} {next this} {this} refl refl refl))))))))) ax-10-a-s {_} {_} {F} {G} = subst (λ z → ⊢ ((F <=> z) => (F == z))) (sym (sub-weak-p-1' G F)) (inf-V (ax-5-s _ F) (inf-VI-s (inf-V (ax-5-s _ (weak G)) (inf-VI-s (ax-10-a {_} {_} {next this} {this} refl refl))))) ax-5-s2 = λ F G → subst (λ z → ⊢ ((![ _ ] ~ (weak F · $ this {refl})) => ~ (z · G))) (sym (sub-weak-p-1' F G)) (ax-5-s (~ (weak F · $ this {refl})) G) ax-5-s3 = λ F G → subst (λ z → ⊢ ((!'[ _ ] F) => (F · z))) (sym (sub-weak-p-1' G F)) ( inf-V (ax-5-s ((!'[ _ ] ($ this {refl})) => (($ this {refl}) · weak G)) F) ( inf-VI-s ( inf-V (ax-5-s ((!'[ _ ] ($ (next this) {refl})) => (($ (next this) {refl}) · ($ this {refl}))) (weak G)) ( inf-VI-s ( ax-5 {_} {_} {_} {next this} {this} refl refl))))) ax-11-s2 F = inf-V (ax-5-s ((?'[ _ ] ($ this {refl})) => (($ this {refl}) · ι' _ ($ this {refl}))) F) ( inf-VI-s ( ax-11 refl)) -- ---------------------------------- mutual hn-form : ∀ {n} → {Γ : Ctx n} {β : Type n} (F : Form Γ β → Form Γ $o) (G : Form Γ β) (m : ℕ) → ⊢ F (headNorm m G) → ⊢ F G hn-form F (app G H) m p = hn-form' F G H m (hn-form (λ z → F (headNorm' m z H)) G m p) hn-form F (var _ _) m p = p hn-form F N m p = p hn-form F A m p = p hn-form F Π m p = p hn-form F i m p = p hn-form F (lam _ _) m p = p hn-form' : ∀ {n} → {Γ : Ctx n} {α β : Type n} (F : Form Γ β → Form Γ $o) (G : Form Γ (α > β)) (H : Form Γ α) (m : ℕ) → ⊢ F (headNorm' m G H) → ⊢ F (app G H) hn-form' F (lam α G) H (suc m) p = inf-V (inf-III-samectx F G H) (hn-form F (sub H G) m p) hn-form' F (lam α G) H 0 p = p hn-form' F (var _ _) H zero p = p hn-form' F (var _ _) H (suc _) p = p hn-form' F N H zero p = p hn-form' F N H (suc _) p = p hn-form' F A H zero p = p hn-form' F A H (suc _) p = p hn-form' F Π H zero p = p hn-form' F Π H (suc _) p = p hn-form' F i H zero p = p hn-form' F i H (suc _) p = p hn-form' F (app _ _) H zero p = p hn-form' F (app _ _) H (suc _) p = p
{ "alphanum_fraction": 0.4522677085, "avg_line_length": 46.9083665339, "ext": "agda", "hexsha": "53a00099cbeb312041839f36b0ec6346fd296e55", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z", "max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "frelindb/agsyHOL", "max_forks_repo_path": "soundness/STT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "frelindb/agsyHOL", "max_issues_repo_path": "soundness/STT.agda", "max_line_length": 720, "max_stars_count": 17, "max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "frelindb/agsyHOL", "max_stars_repo_path": "soundness/STT.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z", "num_tokens": 5309, "size": 11774 }
{-# OPTIONS --without-K --safe #-} open import Algebra module Loop.Properties {a ℓ} (L : Loop a ℓ) where open Loop L
{ "alphanum_fraction": 0.6475409836, "avg_line_length": 13.5555555556, "ext": "agda", "hexsha": "bdc56f8fd55fb911268a2b957608569322723f72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Loop/Properties.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Loop/Properties.agda", "max_line_length": 34, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Loop/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 36, "size": 122 }
-- Load me module QuotationMark where open import Agda.Builtin.Char open import Agda.Builtin.List open import Agda.Builtin.String s : List Char s = ")"
{ "alphanum_fraction": 0.7647058824, "avg_line_length": 17, "ext": "agda", "hexsha": "a7e631b40c529df644e09a476970b11f555feb95", "lang": "Agda", "max_forks_count": 22, "max_forks_repo_forks_event_max_datetime": "2022-03-15T11:37:47.000Z", "max_forks_repo_forks_event_min_datetime": "2020-05-29T12:07:13.000Z", "max_forks_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "SNU-2D/agda-mode-vscode", "max_forks_repo_path": "test/tests/Parser/Response/QuotationMark.agda", "max_issues_count": 126, "max_issues_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_issues_repo_issues_event_max_datetime": "2020-12-23T23:00:13.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T05:47:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "SNU-2D/agda-mode-vscode", "max_issues_repo_path": "test/tests/Parser/Response/QuotationMark.agda", "max_line_length": 31, "max_stars_count": 98, "max_stars_repo_head_hexsha": "7628c254e87374a924a781cf15ea3abd715fd2d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "EdNutting/agda-mode-vscode", "max_stars_repo_path": "test/tests/Parser/Response/QuotationMark.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-18T09:35:55.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-29T07:46:51.000Z", "num_tokens": 42, "size": 153 }
-- Andreas, 2017-05-26 -- Expand ellipsis with C-c C-c . RET open import Agda.Builtin.Nat test0 : Nat → Nat test0 x with zero ... | q = {!.!} -- C-c C-c -- Expected result: -- test0 x | q = ? data Fin : Nat → Set where zero : ∀ n → Fin (suc n) suc : ∀{n} → Fin n → Fin (suc n) test1 : ∀{n} → Fin n → Nat test1 (zero _) with Nat ... | q = {!.!} -- C-c C-c -- Expected result: -- test1 (zero _) | q = ? test1 {.(suc n)} (suc {n} i) with Fin zero ... | q = {!.!} -- C-c C-c -- Expected result: -- test1 {.(suc n)} (suc {n} i) | q = ?
{ "alphanum_fraction": 0.5081967213, "avg_line_length": 16.6363636364, "ext": "agda", "hexsha": "c4d2a22271931b9f96a7d64fbfca21419e8d8862", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/ExpandEllipsis.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/ExpandEllipsis.agda", "max_line_length": 42, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/ExpandEllipsis.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 218, "size": 549 }
module Lib.Monad where open import Lib.Nat open import Lib.List open import Lib.IO hiding (IO; mapM) open import Lib.Maybe open import Lib.Prelude infixr 40 _>>=_ _>>_ infixl 90 _<*>_ _<$>_ -- Wrapper type, used to ensure that ElM is constructor-headed. record IO (A : Set) : Set where constructor io field unIO : Lib.IO.IO A open IO -- State monad transformer data StateT (S : Set)(M : Set -> Set)(A : Set) : Set where stateT : (S -> M (A × S)) -> StateT S M A runStateT : forall {S M A} -> StateT S M A -> S -> M (A × S) runStateT (stateT f) = f -- Reader monad transformer data ReaderT (E : Set)(M : Set -> Set)(A : Set) : Set where readerT : (E -> M A) -> ReaderT E M A runReaderT : forall {E M A} -> ReaderT E M A -> E -> M A runReaderT (readerT f) = f -- The monad class data Monad : Set1 where maybe : Monad list : Monad io : Monad state : Set -> Monad -> Monad reader : Set -> Monad -> Monad ElM : Monad -> Set -> Set ElM maybe = Maybe ElM list = List ElM io = IO ElM (state S m) = StateT S (ElM m) ElM (reader E m) = ReaderT E (ElM m) return : {m : Monad}{A : Set} -> A -> ElM m A return {maybe} x = just x return {list} x = x :: [] return {io} x = io (returnIO x) return {state _ m} x = stateT \s -> return (x , s) return {reader _ m} x = readerT \_ -> return x _>>=_ : {m : Monad}{A B : Set} -> ElM m A -> (A -> ElM m B) -> ElM m B _>>=_ {maybe} nothing k = nothing _>>=_ {maybe} (just x) k = k x _>>=_ {list} xs k = foldr (\x ys -> k x ++ ys) [] xs _>>=_ {io} (io m) k = io (bindIO m (unIO ∘ k)) _>>=_ {state S m} (stateT f) k = stateT \s -> f s >>= rest where rest : _ × _ -> ElM m _ rest (x , s) = runStateT (k x) s _>>=_ {reader E m} (readerT f) k = readerT \e -> f e >>= \x -> runReaderT (k x) e -- State monad class data StateMonad (S : Set) : Set1 where state : Monad -> StateMonad S reader : Set -> StateMonad S -> StateMonad S ElStM : {S : Set} -> StateMonad S -> Monad ElStM {S} (state m) = state S m ElStM (reader E m) = reader E (ElStM m) ElSt : {S : Set} -> StateMonad S -> Set -> Set ElSt m = ElM (ElStM m) get : {S : Set}{m : StateMonad S} -> ElSt m S get {m = state m} = stateT \s -> return (s , s) get {m = reader E m} = readerT \_ -> get put : {S : Set}{m : StateMonad S} -> S -> ElSt m Unit put {m = state m} s = stateT \_ -> return (unit , s) put {m = reader E m} s = readerT \_ -> put s -- Reader monad class data ReaderMonad (E : Set) : Set1 where reader : Monad -> ReaderMonad E state : Set -> ReaderMonad E -> ReaderMonad E ElRdM : {E : Set} -> ReaderMonad E -> Monad ElRdM {E} (reader m) = reader E m ElRdM (state S m) = state S (ElRdM m) ElRd : {E : Set} -> ReaderMonad E -> Set -> Set ElRd m = ElM (ElRdM m) ask : {E : Set}{m : ReaderMonad E} -> ElRd m E ask {m = reader m } = readerT \e -> return e ask {m = state S m} = stateT \s -> ask >>= \e -> return (e , s) local : {E A : Set}{m : ReaderMonad E} -> (E -> E) -> ElRd m A -> ElRd m A local {m = reader _ } f (readerT m) = readerT \e -> m (f e) local {m = state S _} f (stateT m) = stateT \s -> local f (m s) -- Derived functions -- Monad operations _>>_ : {m : Monad}{A B : Set} -> ElM m A -> ElM m B -> ElM m B m₁ >> m₂ = m₁ >>= \_ -> m₂ _<*>_ : {m : Monad}{A B : Set} -> ElM m (A -> B) -> ElM m A -> ElM m B mf <*> mx = mf >>= \f -> mx >>= \x -> return (f x) _<$>_ : {m : Monad}{A B : Set} -> (A -> B) -> ElM m A -> ElM m B f <$> m = return f <*> m mapM : {m : Monad}{A B : Set} -> (A -> ElM m B) -> List A -> ElM m (List B) mapM f [] = return [] mapM f (x :: xs) = _::_ <$> f x <*> mapM f xs -- State monad operations modify : {S : Set}{m : StateMonad S} -> (S -> S) -> ElSt m Unit modify f = get >>= \s -> put (f s) -- Test -- foo : Nat -> Maybe (Nat × Nat) -- foo s = runReaderT (runStateT m s) s -- where -- m₁ : StateT Nat (ReaderT Nat Maybe) Nat -- m₁ = local suc (ask >>= \s -> put (s + 3) >> get) -- The problem: nested injective function don't seem to work -- as well as one could hope. In this case: -- ElM (ElRd ?0) == ReaderT Nat Maybe -- inverts to -- ElRd ?0 == reader Nat ?1 -- ElM ?1 == Maybe -- it seems that the injectivity of ElRd isn't taken into account(?) -- m : ReaderT Nat Maybe Nat -- m = ask
{ "alphanum_fraction": 0.55, "avg_line_length": 27.8709677419, "ext": "agda", "hexsha": "398127718c1a2e61790cedf3d18efece03d96b46", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/simple-lib/Lib/Monad.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/simple-lib/Lib/Monad.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/simple-lib/Lib/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1607, "size": 4320 }
{-# OPTIONS --sized-types #-} module SizedTypesMergeSort where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} -- sized lists data List (A : Set) : {_ : Size} -> Set where [] : {size : Size} -> List A {size ^} _::_ : {size : Size} -> A -> List A {size} -> List A {size ^} -- CPS split split : {A : Set}{i : Size} -> List A {i} -> {C : Set} -> (List A {i} -> List A {i} -> C) -> C split [] k = k [] [] split (x :: xs) k = split xs (\ l r -> k (x :: r) l) module Sort (A : Set) (compare : A -> A -> {B : Set} -> B -> B -> B) where {- merge is currently rejected by the termination checker it would be nice if it worked see test/succeed/SizedTypesMergeSort.agda -} merge : List A -> List A -> List A merge [] ys = ys merge xs [] = xs merge (x :: xs) (y :: ys) = compare x y (x :: merge xs (y :: ys)) (y :: merge (x :: xs) ys) sort : {i : Size} -> List A {i} -> List A sort [] = [] sort (x :: []) = x :: [] sort (x :: (y :: xs)) = split xs (\ l r -> merge (sort (x :: l)) (sort (y :: r)))
{ "alphanum_fraction": 0.4671654198, "avg_line_length": 26.152173913, "ext": "agda", "hexsha": "34fc866f73b8900a2e1d80e718a797433fc14ed6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/SizedTypesMergeSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/SizedTypesMergeSort.agda", "max_line_length": 74, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/SizedTypesMergeSort.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 393, "size": 1203 }
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Minimal.NaturalDeduction.Tree (𝔏 : Signature) where open Signature(𝔏) open import Data.DependentWidthTree as Tree hiding (height) import Lvl open import Formalization.PredicateLogic.Minimal.NaturalDeduction (𝔏) open import Formalization.PredicateLogic.Syntax(𝔏) open import Functional using (_∘_ ; _∘₂_ ; _∘₃_ ; _∘₄_ ; swap ; _←_) open import Numeral.Finite open import Numeral.Natural.Relation.Order open import Numeral.Natural open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇] ; map ; unmap) renaming (•_ to · ; _≡_ to _≡ₛ_) open import Structure.Relator open import Type.Properties.Inhabited open import Type module _ {vars} ⦃ pos-term : ◊(Term(vars)) ⦄ where private variable ℓ : Lvl.Level private variable Γ Γ₁ Γ₂ : PredSet{ℓ}(Formula(vars)) private variable φ ψ γ φ₁ ψ₁ γ₁ φ₂ ψ₂ γ₂ φ₃ ψ₃ φ₄ ψ₄ φ₅ ψ₅ δ₁ δ₂ : Formula(vars) {- height : Term(_) → (Γ ⊢ φ) → ℕ height t (direct p) = 𝟎 height t [⊤]-intro = 𝟎 height t ([∧]-intro p q) = 𝐒((height t p) ⦗ max ⦘ᵣ (height t q)) height t ([∧]-elimₗ p) = 𝐒(height t p) height t ([∧]-elimᵣ p) = 𝐒(height t p) height t ([∨]-introₗ p) = 𝐒(height t p) height t ([∨]-introᵣ p) = 𝐒(height t p) height t ([∨]-elim p q r) = 𝐒((height t p) ⦗ max ⦘ᵣ (height t q) ⦗ max ⦘ᵣ (height t r)) height t ([⟶]-intro p) = 𝐒(height t p) height t ([⟶]-elim p q) = 𝐒((height t p) ⦗ max ⦘ᵣ (height t q)) height t ([Ɐ]-intro p) = 𝐒(height t (p{t})) height t ([Ɐ]-elim p) = 𝐒(height t p) height t ([∃]-intro p) = 𝐒(height t p) height t ([∃]-elim p q) = 𝐒((height t (p{t})) ⦗ max ⦘ᵣ (height t q)) test : ∀{t : Term(n)}{p q : Γ ⊢ φ} → (height t p ≤ height t ([∧]-intro p q)) test = [≤]-successor max-orderₗ -} tree : (Γ ⊢ φ) → FiniteTreeStructure tree(direct x) = Node 0 \() tree [⊤]-intro = Node 0 \() tree([∧]-intro p q) = Node 2 \{𝟎 → tree p; (𝐒 𝟎) → tree q} tree([∧]-elimₗ p) = Node 1 \{𝟎 → tree p} tree([∧]-elimᵣ p) = Node 1 \{𝟎 → tree p} tree([∨]-introₗ p) = Node 1 \{𝟎 → tree p} tree([∨]-introᵣ p) = Node 1 \{𝟎 → tree p} tree([∨]-elim p q r) = Node 3 \{𝟎 → tree p ; (𝐒 𝟎) → tree q ; (𝐒(𝐒 𝟎)) → tree r} tree([⟶]-intro p) = Node 1 \{𝟎 → tree p} tree([⟶]-elim p q) = Node 2 \{𝟎 → tree p ; (𝐒 𝟎) → tree q} tree([Ɐ]-intro p) = Node 1 \{𝟎 → tree (p{[◊]-existence})} tree([Ɐ]-elim p) = Node 1 \{𝟎 → tree p} tree([∃]-intro p) = Node 1 \{𝟎 → tree p} tree([∃]-elim p q) = Node 2 \{𝟎 → tree (p{[◊]-existence}) ; (𝐒 𝟎) → tree q} height : (Γ ⊢ φ) → ℕ height = Tree.height ∘ tree open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Functional.Dependent open Functional using (_on₂_) open import Numeral.Natural.Induction open import Numeral.Natural.Inductions open import Numeral.Natural.Relation.Order.Proofs open import Structure.Relator.Ordering open import Structure.Relator.Ordering.Proofs open import Type.Dependent -- Ordering of natural deduction proofs on height. _<⊢↑_ : Σ(PredSet{ℓ}(Formula(vars)) ⨯ Formula(vars))(Tuple.uncurry(_⊢_)) → Σ(PredSet(Formula(vars)) ⨯ Formula(vars))(Tuple.uncurry(_⊢_)) → Type _<⊢↑_ = (_<_) on₂ (height Functional.Dependent.∘ Σ.right) instance [<⊢↑]-wellfounded : Strict.Properties.WellFounded(_<⊢↑_ {ℓ}) [<⊢↑]-wellfounded = wellfounded-image-by-trans {f = height Functional.Dependent.∘ Σ.right} -- induction-on-height : ∀{P : ∀{Γ : PredSet{ℓₚ}(Formula(vars))}{φ} → (Γ ⊢ φ) → Type{ℓ}} → (∀{x : Prop(vars)} → P(direct x)) → P([⊤]-intro) → (∀{p₂ : Γ ⊢ φ} → (∀{Γ₁}{φ₁}{p₁ : Γ₁ ⊢ φ₁} → (height p₁ < height p₂) → P(p₁)) → P(p₂)) → (∀{p : (Γ ⊢ φ)} → P(p)) -- induction-on-height {Γ = Γ}{φ = φ} {P = P} dir top step {p} = Strict.Properties.wellfounded-induction(_<⊢↑_) {P = P Functional.Dependent.∘ Σ.right} {!!} {intro (Γ , φ) p} -- substitute0-height : ∀{t} → height(substitute0 t φ) ≡
{ "alphanum_fraction": 0.5866045142, "avg_line_length": 47.3953488372, "ext": "agda", "hexsha": "8afb63950d63d91410ea3a2c6b496d638e989def", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/Tree.agda", "max_line_length": 255, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1739, "size": 4076 }
{-# OPTIONS --without-K --safe #-} module Categories.Diagram.Limit.Ran where open import Level open import Data.Product using (Σ) open import Categories.Category open import Categories.Category.Complete open import Categories.Category.Construction.Cones open import Categories.Category.Construction.Comma open import Categories.Category.Construction.Properties.Comma open import Categories.Diagram.Cone.Properties open import Categories.Diagram.Limit.Properties open import Categories.Functor open import Categories.Functor.Properties open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≊_) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; module ≃; _ⓘˡ_) open import Categories.Kan open import Categories.Diagram.Limit import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D E : Category o ℓ e -- construct a Ran from a limit module _ {o ℓ e o′ ℓ′ e′} {C : Category o′ ℓ′ e′} {D : Category o ℓ e} (F : Functor C D) (X : Functor C E) (Com : Complete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where private module C = Category C module D = Category D module E = Category E module F = Functor F module X = Functor X open Limit open Cone renaming (commute to K-commute) open Cone⇒ renaming (commute to ⇒-commute) open Mor E G : (d : D.Obj) → Functor (d ↙ F) E G d = X ∘F Cod (const! d) F ⊤Gd : ∀ d → Limit (G d) ⊤Gd d = Com (G d) module ⊤Gd d = Limit (⊤Gd d) f↙F : ∀ {Y Z} (f : Y D.⇒ Z) → Functor (Z ↙ F) (Y ↙ F) f↙F = along-natˡ′ F Gf≃ : ∀ {Y Z} (f : Y D.⇒ Z) → G Z ≃ G Y ∘F f↙F f Gf≃ f = record { F⇒G = ntHelper record { η = λ _ → X.F₁ C.id ; commute = λ _ → [ X ]-resp-square id-comm-sym } ; F⇐G = ntHelper record { η = λ _ → X.F₁ C.id ; commute = λ _ → [ X ]-resp-square id-comm-sym } ; iso = λ _ → record { isoˡ = [ X ]-resp-∘ C.identity² ○ X.identity ; isoʳ = [ X ]-resp-∘ C.identity² ○ X.identity } } where open MR C open E.HomReasoning limY⇒limZ∘ : ∀ {Y Z} (f : Y D.⇒ Z) → Cones (G Y ∘F f↙F f) [ F-map-Coneʳ (f↙F f) (limit (Com (G Y))) , limit (Com (G Y ∘F f↙F f)) ] limY⇒limZ∘ {Y} f = F⇒arr Com (f↙F f) (G Y) limZ∘≅limZ : ∀ {Y Z} (f : Y D.⇒ Z) → apex (⊤Gd Z) ≅ apex (Com (G Y ∘F f↙F f)) limZ∘≅limZ {Y} {Z} f = ≃⇒lim≅ (Gf≃ f) (⊤Gd Z) (Com _) limit-is-ran : Ran F X limit-is-ran = record { R = R ; ε = ε ; δ = δ ; δ-unique = λ {M γ} δ′ eq → δ-unique {M} {γ} δ′ eq ; commutes = commutes } where open MR E open E.HomReasoning open D.HomReasoning using () renaming (_○_ to _●_ ; ⟺ to ⟷) R₀ : D.Obj → E.Obj R₀ d = apex (⊤Gd d) R₁ : ∀ {A B} → D [ A , B ] → E [ R₀ A , R₀ B ] R₁ {A} f = _≅_.to (limZ∘≅limZ f) E.∘ arr (limY⇒limZ∘ f) proj-red : ∀ {Y Z} K (f : Y D.⇒ Z) → ⊤Gd.proj Z K E.∘ R₁ f E.≈ ⊤Gd.proj Y (record { f = D.id D.∘ CommaObj.f K D.∘ f }) proj-red {Y} {Z} K f = begin ⊤Gd.proj Z K E.∘ R₁ f ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ (≃.sym (Gf≃ f)) (Com _) (⊤Gd Z))) ⟩ (X.F₁ C.id E.∘ proj (Com _) K) E.∘ arr (limY⇒limZ∘ f) ≈⟨ pullʳ (⇒-commute (limY⇒limZ∘ f)) ⟩ X.F₁ C.id E.∘ ⊤Gd.proj Y _ ≈⟨ elimˡ X.identity ⟩ ⊤Gd.proj Y _ ∎ proj≈ : ∀ {d b} {f g : d D.⇒ F.F₀ b} → f D.≈ g → ⊤Gd.proj d record { f = f } E.≈ ⊤Gd.proj d record { f = g } proj≈ {d} {b} {f} {g} eq = begin ⊤Gd.proj d _ ≈⟨ introˡ X.identity ⟩ X.F₁ C.id E.∘ ⊤Gd.proj d _ ≈⟨ K-commute _ (⊤Gd.limit d) (record { h = C.id ; commute = D.∘-resp-≈ F.identity eq ● MR.id-comm-sym D }) ⟩ ⊤Gd.proj d _ ∎ R : Functor D E R = record { F₀ = R₀ ; F₁ = R₁ ; identity = λ {d} → terminal.⊤-id (⊤Gd d) record { commute = λ {Z} → begin ⊤Gd.proj d Z ∘ R₁ D.id ≈⟨ proj-red Z D.id ⟩ ⊤Gd.proj d record { f = D.id D.∘ CommaObj.f Z D.∘ D.id } ≈⟨ proj≈ (D.identityˡ ● D.identityʳ) ⟩ ⊤Gd.proj d Z ∎ } ; homomorphism = λ {Y Z W} {f g} → terminal.!-unique₂ (⊤Gd W) {let module ⊤GY = Cone _ (⊤Gd.limit Y) module H = Functor (f↙F (g D.∘ f)) in record { apex = record { ψ = λ K → ⊤GY.ψ (H.F₀ K) ; commute = λ h → ⊤GY.commute (H.F₁ h) } }} {record { arr = R₁ (g D.∘ f) ; commute = λ {K} → proj-red K (g D.∘ f) }} {record { arr = R₁ g ∘ R₁ f ; commute = λ {K} → begin ⊤Gd.proj W K ∘ R₁ g ∘ R₁ f ≈⟨ sym-assoc ⟩ (⊤Gd.proj W K ∘ R₁ g) ∘ R₁ f ≈⟨ proj-red K g ⟩∘⟨refl ⟩ ⊤Gd.proj Z record { f = D.id D.∘ CommaObj.f K D.∘ g } ∘ R₁ f ≈⟨ proj-red _ f ⟩ ⊤Gd.proj Y record { f = D.id D.∘ (D.id D.∘ CommaObj.f K D.∘ g) D.∘ f } ≈⟨ proj≈ (D.identityˡ ● (MR.assoc²' D)) ⟩ ⊤Gd.proj Y record { f = D.id D.∘ CommaObj.f K D.∘ g D.∘ f } ∎ }} ; F-resp-≈ = λ {Y Z} {f g} eq → terminal.!-unique₂ (⊤Gd Z) {let module ⊤GY = Cone _ (⊤Gd.limit Y) module H = Functor (f↙F f) in record { apex = record { ψ = λ K → ⊤GY.ψ (H.F₀ K) ; commute = λ h → ⊤GY.commute (H.F₁ h) } }} {record { arr = R₁ f ; commute = F-resp-≈-commute D.Equiv.refl }} {record { arr = R₁ g ; commute = F-resp-≈-commute eq }} } where open E F-resp-≈-commute : ∀ {Y Z} {K : Category.Obj (Z ↙ F)} {f g : Y D.⇒ Z} → f D.≈ g → ⊤Gd.proj Z K ∘ R₁ g ≈ ⊤Gd.proj Y record { f = D.id D.∘ CommaObj.f K D.∘ f } F-resp-≈-commute {Y} {Z} {K} {f} {g} eq = begin ⊤Gd.proj Z K ∘ R₁ g ≈⟨ proj-red K g ⟩ ⊤Gd.proj Y _ ≈⟨ proj≈ (D.∘-resp-≈ʳ (D.∘-resp-≈ʳ (D.Equiv.sym eq))) ⟩ ⊤Gd.proj Y _ ∎ ε : NaturalTransformation (R ∘F F) X ε = ntHelper record { η = λ c → ⊤Gd.proj (F.F₀ c) record { f = D.id } ; commute = λ {Y Z} f → begin ⊤Gd.proj (F.F₀ Z) _ ∘ Functor.F₁ (R ∘F F) f ≈⟨ proj-red _ (F.F₁ f) ⟩ ⊤Gd.proj (F.F₀ Y) _ ≈˘⟨ K-commute _ (⊤Gd.limit (F.F₀ Y)) record { h = f ; commute = ⟷ (D.∘-resp-≈ˡ D.identityˡ ● D.∘-resp-≈ˡ D.identityˡ) } ⟩ X.F₁ f ∘ ⊤Gd.proj (F.F₀ Y) _ ∎ } where open E δ-Cone : ∀ d (M : Functor D E) → NaturalTransformation (M ∘F F) X → Cone (G d) δ-Cone d M γ = record { apex = record { ψ = λ K → γ.η (CommaObj.β K) E.∘ M.F₁ (CommaObj.f K) ; commute = λ {Y Z} f → begin X.F₁ (Comma⇒.h f) E.∘ γ.η (CommaObj.β Y) E.∘ M.F₁ (CommaObj.f Y) ≈˘⟨ pushˡ (γ.commute (Comma⇒.h f)) ⟩ (γ.η (CommaObj.β Z) E.∘ M.F₁ (F.F₁ (Comma⇒.h f))) E.∘ M.F₁ (CommaObj.f Y) ≈⟨ pullʳ ([ M ]-resp-∘ (Comma⇒.commute f ● D.identityʳ)) ⟩ γ.η (CommaObj.β Z) E.∘ M.F₁ (CommaObj.f Z) ∎ } } where module M = Functor M module γ = NaturalTransformation γ δ : (M : Functor D E) → NaturalTransformation (M ∘F F) X → NaturalTransformation M R δ M γ = ntHelper record { η = λ d → ⊤Gd.rep d (δ-Cone d M γ) ; commute = λ {Y Z} f → terminal.!-unique₂ (⊤Gd Z) {record { apex = record { ψ = λ W → δ-Cone.ψ Z W E.∘ M.F₁ f ; commute = λ {W V} g → begin X.F₁ (Comma⇒.h g) E.∘ (γ.η (CommaObj.β W) E.∘ M.F₁ (CommaObj.f W)) E.∘ M.F₁ f ≈⟨ E.sym-assoc ⟩ (X.F₁ (Comma⇒.h g) E.∘ γ.η (CommaObj.β W) E.∘ M.F₁ (CommaObj.f W)) E.∘ M.F₁ f ≈⟨ δ-Cone.commute Z g ⟩∘⟨refl ⟩ (γ.η (CommaObj.β V) E.∘ M.F₁ (CommaObj.f V)) E.∘ M.F₁ f ∎ } }} {record { arr = ⊤Gd.rep Z (δ-Cone Z M γ) E.∘ M.F₁ f ; commute = pullˡ (⇒-commute (⊤Gd.rep-cone Z (δ-Cone Z M γ))) }} {record { arr = R₁ f E.∘ ⊤Gd.rep Y (δ-Cone Y M γ) ; commute = λ {W} → begin ⊤Gd.proj Z W E.∘ R₁ f E.∘ ⊤Gd.rep Y (δ-Cone Y M γ) ≈⟨ pullˡ (proj-red W f) ⟩ ⊤Gd.proj Y (record { f = D.id D.∘ CommaObj.f W D.∘ f }) E.∘ ⊤Gd.rep Y (δ-Cone Y M γ) ≈⟨ ⇒-commute (⊤Gd.rep-cone Y (δ-Cone Y M γ)) ⟩ γ.η (CommaObj.β W) E.∘ M.F₁ (D.id D.∘ CommaObj.f W D.∘ f) ≈˘⟨ refl⟩∘⟨ [ M ]-resp-∘ (⟷ D.identityˡ) ⟩ γ.η (CommaObj.β W) E.∘ M.F₁ (CommaObj.f W) E.∘ M.F₁ f ≈⟨ E.sym-assoc ⟩ (γ.η (CommaObj.β W) E.∘ M.F₁ (CommaObj.f W)) E.∘ M.F₁ f ∎ }} } where module M = Functor M module γ = NaturalTransformation γ module δ-Cone d = Cone _ (δ-Cone d M γ) δ-unique : ∀ {M : Functor D E} {α : NaturalTransformation (M ∘F F) X} (δ′ : NaturalTransformation M R) → α ≊ ε ∘ᵥ δ′ ∘ʳ F → δ′ ≊ δ M α δ-unique {M} {γ} δ′ eq {d} = ⟺ (⊤Gd.terminal.!-unique d record { arr = δ′.η d ; commute = λ {W} → begin ⊤Gd.proj d W E.∘ δ′.η d ≈˘⟨ proj≈ (D.identityˡ ● D.identityˡ) ⟩∘⟨refl ⟩ ⊤Gd.proj d (record { f = D.id D.∘ D.id D.∘ CommaObj.f W }) E.∘ δ′.η d ≈˘⟨ pullˡ (proj-red _ (CommaObj.f W)) ⟩ ⊤Gd.proj (F.F₀ (CommaObj.β W)) _ E.∘ R₁ (CommaObj.f W) E.∘ δ′.η d ≈˘⟨ pullʳ (δ′.commute (CommaObj.f W)) ⟩ (⊤Gd.proj (F.F₀ (CommaObj.β W)) (record { f = D.id}) E.∘ δ′.η (F.F₀ (CommaObj.β W))) E.∘ M.F₁ (CommaObj.f W) ≈˘⟨ eq ⟩∘⟨refl ⟩ γ.η (CommaObj.β W) E.∘ M.F₁ (CommaObj.f W) ∎ }) where module M = Functor M module γ = NaturalTransformation γ module δ′ = NaturalTransformation δ′ commutes : (M : Functor D E) (α : NaturalTransformation (M ∘F F) X) → α ≊ ε ∘ᵥ δ M α ∘ʳ F commutes M γ {c} = ⟺ (⇒-commute (⊤Gd.rep-cone (F.F₀ c) (δ-Cone (F.F₀ c) M γ)) ○ elimʳ M.identity) where module M = Functor M module γ = NaturalTransformation γ
{ "alphanum_fraction": 0.4194994081, "avg_line_length": 45.1374045802, "ext": "agda", "hexsha": "30269f6017297ae889df25be80c559eae0f64fb7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Limit/Ran.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Limit/Ran.agda", "max_line_length": 179, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Limit/Ran.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4377, "size": 11826 }
module regular-language where open import Level renaming ( suc to Suc ; zero to Zero ) open import Data.List open import Data.Nat hiding ( _≟_ ) open import Data.Fin hiding ( _+_ ) open import Data.Empty open import Data.Unit open import Data.Product -- open import Data.Maybe open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import nat open import automaton language : { Σ : Set } → Set language {Σ} = List Σ → Bool language-L : { Σ : Set } → Set language-L {Σ} = List (List Σ) Union : {Σ : Set} → ( A B : language {Σ} ) → language {Σ} Union {Σ} A B x = (A x ) \/ (B x) split : {Σ : Set} → (List Σ → Bool) → ( List Σ → Bool) → List Σ → Bool split x y [] = x [] /\ y [] split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t Concat : {Σ : Set} → ( A B : language {Σ} ) → language {Σ} Concat {Σ} A B = split A B {-# TERMINATING #-} Star : {Σ : Set} → ( A : language {Σ} ) → language {Σ} Star {Σ} A [] = true Star {Σ} A (h ∷ t) = split A ( Star {Σ} A ) (h ∷ t) open import automaton-ex test-AB→split : {Σ : Set} → {A B : List In2 → Bool} → split A B ( i0 ∷ i1 ∷ i0 ∷ [] ) ≡ ( ( A [] /\ B ( i0 ∷ i1 ∷ i0 ∷ [] ) ) \/ ( A ( i0 ∷ [] ) /\ B ( i1 ∷ i0 ∷ [] ) ) \/ ( A ( i0 ∷ i1 ∷ [] ) /\ B ( i0 ∷ [] ) ) \/ ( A ( i0 ∷ i1 ∷ i0 ∷ [] ) /\ B [] ) ) test-AB→split {_} {A} {B} = refl star-nil : {Σ : Set} → ( A : language {Σ} ) → Star A [] ≡ true star-nil A = refl open Automaton open import finiteSet open import finiteSetUtil record RegularLanguage ( Σ : Set ) : Set (Suc Zero) where field states : Set astart : states afin : FiniteSet states automaton : Automaton states Σ contain : List Σ → Bool contain x = accept automaton astart x open RegularLanguage isRegular : {Σ : Set} → (A : language {Σ} ) → ( x : List Σ ) → (r : RegularLanguage Σ ) → Set isRegular A x r = A x ≡ contain r x RegularLanguage-is-language : { Σ : Set } → RegularLanguage Σ → language {Σ} RegularLanguage-is-language {Σ} R = RegularLanguage.contain R RegularLanguage-is-language' : { Σ : Set } → RegularLanguage Σ → List Σ → Bool RegularLanguage-is-language' {Σ} R x = accept (automaton R) (astart R) x where open RegularLanguage -- a language is implemented by an automaton -- postulate -- fin-× : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A × B) {a * b} M-Union : {Σ : Set} → (A B : RegularLanguage Σ ) → RegularLanguage Σ M-Union {Σ} A B = record { states = states A × states B ; astart = ( astart A , astart B ) ; afin = fin-× (afin A) (afin B) ; automaton = record { δ = λ q x → ( δ (automaton A) (proj₁ q) x , δ (automaton B) (proj₂ q) x ) ; aend = λ q → ( aend (automaton A) (proj₁ q) \/ aend (automaton B) (proj₂ q) ) } } closed-in-union : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Union (contain A) (contain B)) x ( M-Union A B ) closed-in-union A B [] = lemma where lemma : aend (automaton A) (astart A) \/ aend (automaton B) (astart B) ≡ aend (automaton A) (astart A) \/ aend (automaton B) (astart B) lemma = refl closed-in-union {Σ} A B ( h ∷ t ) = lemma1 t ((δ (automaton A) (astart A) h)) ((δ (automaton B) (astart B) h)) where lemma1 : (t : List Σ) → (qa : states A ) → (qb : states B ) → accept (automaton A) qa t \/ accept (automaton B) qb t ≡ accept (automaton (M-Union A B)) (qa , qb) t lemma1 [] qa qb = refl lemma1 (h ∷ t ) qa qb = lemma1 t ((δ (automaton A) qa h)) ((δ (automaton B) qb h))
{ "alphanum_fraction": 0.5643970468, "avg_line_length": 34.5, "ext": "agda", "hexsha": "bbc4489606b508fc379f037a3b3771774205986e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/regular-language.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/regular-language.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/regular-language.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1338, "size": 3657 }
{-# OPTIONS --safe #-} module Cubical.HITs.Truncation.FromNegTwo where open import Cubical.HITs.Truncation.FromNegTwo.Base public open import Cubical.HITs.Truncation.FromNegTwo.Properties public
{ "alphanum_fraction": 0.8214285714, "avg_line_length": 32.6666666667, "ext": "agda", "hexsha": "257017b24bd0a015fbdc9b421769673542514a86", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/Truncation/FromNegTwo.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/Truncation/FromNegTwo.agda", "max_line_length": 64, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/Truncation/FromNegTwo.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 51, "size": 196 }
open import Empty module Boolean where data Bool : Set where true : Bool false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} T : Bool → Set T true = ⊤ T false = ⊥ not : Bool → Bool not true = false not false = true and : Bool → Bool → Bool and true true = true and _ _ = false or : Bool → Bool → Bool or false false = false or _ _ = true xor : Bool → Bool → Bool xor false true = true xor true false = true xor _ _ = false infixr 6 _∧_ infixr 5 _∨_ ¬_ : Set → Set ¬ A = A → ⊥ data _∨_ A B : Set where Inl : A → A ∨ B Inr : B → A ∨ B data _∧_ A B : Set where Conj : A → B → A ∧ B _⇔_ : (P : Set) → (Q : Set) → Set a ⇔ b = (a → b) ∧ (b → a) ∧-symmetry : ∀ { A B : Set } → A ∧ B → B ∧ A ∧-symmetry (Conj x y) = Conj y x ∨-symmetry : ∀ { A B : Set } → A ∨ B → B ∨ A ∨-symmetry (Inl x) = Inr x ∨-symmetry (Inr y) = Inl y and_over : { A B C : Set } → A ∧ ( B ∨ C ) → ( A ∧ B ) ∨ ( A ∧ C ) and_over (Conj x (Inl y)) = Inl (Conj x y) and_over (Conj x (Inr y)) = Inr (Conj x y) and_over' : { A B C : Set } → ( A ∧ B ) ∨ ( A ∧ C ) → A ∧ ( B ∨ C ) and_over' (Inl (Conj x y)) = Conj x (Inl y) and_over' (Inr (Conj x y)) = Conj x (Inr y) or_over : { A B C : Set } → A ∨ ( B ∧ C ) → ( A ∨ B ) ∧ ( A ∨ C ) or_over (Inl x) = Conj (Inl x) (Inl x) or_over (Inr (Conj x y)) = Conj (Inr x) (Inr y) or_over' : { A B C : Set } → ( A ∨ B ) ∧ ( A ∨ C ) → A ∨ ( B ∧ C ) or_over' (Conj (Inl x) _) = Inl x or_over' (Conj _ (Inl y)) = Inl y or_over' (Conj (Inr x) (Inr y)) = Inr (Conj x y) or_over_negated : { A B : Set } → ( A ∨ ( ¬ A ∧ B ) ) → ( A ∨ B ) or_over_negated (Inl x) = Inl x or_over_negated (Inr (Conj _ y)) = Inr y private proof₁ : { P Q : Set } → (P ∧ Q) → P proof₁ (Conj p q) = p proof₂ : { P Q : Set } → (P ∧ Q) → Q proof₂ (Conj p q) = q deMorgan₁ : { A B : Set } → ¬ A ∧ ¬ B → ¬ (A ∨ B) deMorgan₁ (Conj ¬x ¬y) (Inl x) = ¬x x deMorgan₁ (Conj ¬x ¬y) (Inr y) = ¬y y -- above is clearer if you re-write the type annotation as: --deMorgan₁ : { A B : Set } → (A → ⊥) ∧ (B → ⊥) → (A ∨ B) → ⊥ deMorgan₂ : { A B : Set } → ¬ (A ∨ B) → ¬ A ∧ ¬ B deMorgan₂ z = Conj (λ x → z (Inl x)) (λ y → z (Inr y)) deMorgan₃ : { A B : Set } → ¬ A ∨ ¬ B → ¬ (A ∧ B) deMorgan₃ (Inl ¬x) (Conj x _) = ¬x x deMorgan₃ (Inr ¬y) (Conj _ y) = ¬y y -- NOT provable. -- deMorgan₄ : { A B : Set } → ¬ (A ∧ B) → ¬ A ∨ ¬ B
{ "alphanum_fraction": 0.4746101559, "avg_line_length": 25.01, "ext": "agda", "hexsha": "707d01c977f7c2c10301cf683b895f577a6c891b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "cantsin/agda-experiments", "max_forks_repo_path": "Boolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "cantsin/agda-experiments", "max_issues_repo_path": "Boolean.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "cantsin/agda-experiments", "max_stars_repo_path": "Boolean.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1132, "size": 2501 }
-- Andreas, 2016-12-30, issues #555 and #1886, reported by nad -- Hidden parameters can be omitted in the repetition -- of the parameter list. record R {a} (A : Set a) : Set a record R A where constructor c field f : A testR : ∀{a}{A : Set a}(x : A) → R A testR x = c x data D {a} (A : Set a) : Set a data D A where c : A → D A testD : ∀{a}{A : Set a}(x : A) → D A testD x = c x -- Now, c is overloaded, should still work. testR' : ∀{a}{A : Set a}(x : A) → R A testR' x = c x
{ "alphanum_fraction": 0.5795918367, "avg_line_length": 18.8461538462, "ext": "agda", "hexsha": "372824fc0dfa715cd1833e5e29970ad92f580457", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 490 }
{-# OPTIONS --no-print-pattern-synonyms #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Fin : Nat → Set where fzero : ∀ {n} → Fin (suc n) fsuc : ∀ {n} → Fin n → Fin (suc n) pattern #1 = fsuc fzero prf : (i : Fin 2) → i ≡ #1 prf i = refl -- should say i != fsuc fzero
{ "alphanum_fraction": 0.6079734219, "avg_line_length": 21.5, "ext": "agda", "hexsha": "53d3351b8427c3201bbf6e45cb52765aee67d27e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2902.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2902.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2902.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 301 }
module Numeral.Sign where import Lvl open import Type -- The set of plus or minus sign data +|− : Type{Lvl.𝟎} where ➕ : (+|−) ➖ : (+|−) −|+ = +|− elim₂ : ∀{ℓ}{P : (+|−) → Type{ℓ}} → P(➖) → P(➕) → ((s : (+|−)) → P(s)) elim₂ neg pos ➖ = neg elim₂ neg pos ➕ = pos -- The set of signs: plus, minus and neutral data +|0|− : Type{Lvl.𝟎} where ➕ : (+|0|−) 𝟎 : (+|0|−) ➖ : (+|0|−) −|0|+ = +|0|− elim₃ : ∀{ℓ}{P : (+|0|−) → Type{ℓ}} → P(➖) → P(𝟎) → P(➕) → ((s : (+|0|−)) → P(s)) elim₃ neg zero pos ➖ = neg elim₃ neg zero pos 𝟎 = zero elim₃ neg zero pos ➕ = pos zeroable : (+|−) → (+|0|−) zeroable (➕) = (➕) zeroable (➖) = (➖)
{ "alphanum_fraction": 0.4507042254, "avg_line_length": 19.3636363636, "ext": "agda", "hexsha": "692b0f532ce889d7bd6637e98e0c6f1044556c93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Sign.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Sign.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Sign.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 327, "size": 639 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.SafetyRules.SafetyRules as SafetyRules import LibraBFT.Impl.Consensus.TestUtils.MockStorage as MockStorage open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude module LibraBFT.Impl.Consensus.MetricsSafetyRules where module performInitialize (self : SafetyRules) (obmPersistentLivenessStorage : PersistentLivenessStorage) where step₀ : EitherD ErrLog SafetyRules step₁ : EpochChangeProof → EitherD ErrLog SafetyRules step₀ = do let consensusState = SafetyRules.consensusState self srWaypoint = consensusState ^∙ csWaypoint proofs ← MockStorage.retrieveEpochChangeProofED (srWaypoint ^∙ wVersion) obmPersistentLivenessStorage step₁ proofs step₁ proofs = SafetyRules.initialize-ed-abs self proofs abstract performInitialize-ed-abs = performInitialize.step₀ performInitialize-abs : SafetyRules → PersistentLivenessStorage → Either ErrLog SafetyRules performInitialize-abs sr storage = toEither $ performInitialize-ed-abs sr storage performInitialize-abs-≡ : (sr : SafetyRules) (storage : PersistentLivenessStorage) → performInitialize-abs sr storage ≡ EitherD-run (performInitialize-ed-abs sr storage) performInitialize-abs-≡ sr storage = refl
{ "alphanum_fraction": 0.7669263032, "avg_line_length": 41.725, "ext": "agda", "hexsha": "d6022c9a3b52b26e8c5d078aea2b24cb4d0604ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/MetricsSafetyRules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/MetricsSafetyRules.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/MetricsSafetyRules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 402, "size": 1669 }
-- Andreas, 2011-10-04, transcription of Dan Doel's post on the Agda list {-# OPTIONS --experimental-irrelevance #-} module IrrelevantMatchRefl where import Common.Level open import Common.Equality hiding (subst) -- irrelevant subst should be rejected, because it suggests -- that the equality proof is irrelevant also for reduction subst : ∀ {i j}{A : Set i}(P : A → Set j){a b : A} → .(a ≡ b) → P a → P b subst P refl x = x postulate D : Set lie : (D → D) ≡ D -- the following two substs may not reduce! ... abs : (D → D) → D abs f = subst (λ T → T) lie f app : D → D → D app d = subst (λ T → T) (sym lie) d ω : D ω = abs (λ d → app d d) -- ... otherwise Ω loops Ω : D Ω = app ω ω -- ... and this would be a real fixed-point combinator Y : (D → D) → D Y f = app δ δ where δ = abs (λ x → f (app x x)) K : D → D K x = abs (λ y → x) K∞ : D K∞ = Y K mayloop : K∞ ≡ abs (λ y → K∞) mayloop = refl -- gives error D != D → D
{ "alphanum_fraction": 0.5948827292, "avg_line_length": 20.8444444444, "ext": "agda", "hexsha": "f37ed6e5ac5a8fd2a5b236d3b61d156d15bdb8f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/IrrelevantMatchRefl.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/IrrelevantMatchRefl.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/IrrelevantMatchRefl.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 342, "size": 938 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.JoinFunc -- Associativity of the join (work in progress) module homotopy.JoinAssoc3 where import homotopy.JoinAssoc as Assoc module JoinAssoc3 {i} (A : Type i) (B : Type i) (C : Type i) where module A31 = Assoc A B C postulate -- from : ((A * B) * C) → (A * (B * C)) -- to : (A * (B * C)) → ((A * B) * C) to-from : (z : (A * (B * C))) → (A31.to (A31.from z)) == z from = A31.from to = A31.to idc : C → C idc c = c ida : A → A ida a = a -- import homotopy.JoinComm as JoinComm -- open JoinComm -- from' : ((A * B) * C) → (A * (B * C)) -- from' z = {! swap $ swap ** ida [ to $ swap $ swap ** idc [ z ] ] !} module _ {i} {A : Type i} {B : Type i} {C : Type i} where import homotopy.JoinComm as JoinComm open JoinComm module JA31 = JoinAssoc3 A B C module JA32 = JoinAssoc3 C B A module JA33 = JoinAssoc3 B A C idc : C → C idc c = c ida : A → A ida a = a -- need A * (B * C) from-to : (z : ((A * B) * C)) -> (JA31.from (JA31.to z)) == z from-to z with JA31.to z -- idc ** swap [ {! swap $ swap ** idc [ z ]!} ] --JA32.to $ swap $ swap ** idc [ z ] ] ... | p = {!JA31.to-from p!} -- JA31.from-to p
{ "alphanum_fraction": 0.5269509252, "avg_line_length": 24.3725490196, "ext": "agda", "hexsha": "d20c9012d4ebe6a30fd08eecd43cab36cfa36d99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_forks_repo_path": "homotopy/JoinAssoc3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_issues_repo_path": "homotopy/JoinAssoc3.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/JoinAssoc3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 485, "size": 1243 }
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Unit.NonEta open import Data.Empty open import Data.Fin using (Fin; fromℕ≤) renaming (zero to fz; suc to fs) import Data.Fin.Properties renaming (_≟_ to _≟Fin_) open import Data.Sum open import Data.Product open import Data.Product.Properties open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_) open import Data.Nat.Properties open import Data.List renaming (map to List-map) open import Data.List.Properties using (∷-injective; length-++) open import Data.List.Relation.Binary.Pointwise using (decidable-≡) open import Data.List.Relation.Unary.All as List-All open import Data.List.Relation.Unary.Any renaming (map to Any-map) open import Data.List.Relation.Unary.Any.Properties renaming (gmap to Any-gmap) open import Data.Bool hiding (_≤_ ; _<_) open import Data.Maybe renaming (map to Maybe-map) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Relation.Binary.Core open import Relation.Nullary -- This module contains various useful lemmas module AAOSL.Lemmas where ----------------------------- -- Properties about functions postulate -- valid assumption, functional extensionality fun-ext : ∀{a b}{A : Set a}{B : Set b} → {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g ------------------------------ -- Properties about inequality ≢-pi : ∀{a}{A : Set a}{m n : A}(p q : m ≢ n) → p ≡ q ≢-pi p q = fun-ext {f = p} {q} (λ x → ⊥-elim (p x)) suc-≢ : ∀ {m n} → (suc m ≢ suc n) → m ≢ n suc-≢ sm≢sn m≡n = sm≢sn (cong suc m≡n) *-cong-≢ : ∀ p {m n} → 0 < p → m ≢ n → p * m ≢ p * n *-cong-≢ (suc p) 0<p m≢n p*m≡p*n = m≢n (*-cancelˡ-≡ p p*m≡p*n) ⊥-1≡m*2 : ∀ m → 1 ≢ m * 2 ⊥-1≡m*2 zero = λ x → <⇒≢ (s≤s z≤n) (sym x) ⊥-1≡m*2 (suc m) = λ x → <⇒≢ (s≤s z≤n) (suc-injective x) ∸-≢ : ∀{m} n → 1 ≤ n → n ≤ suc m → suc m ∸ n ≢ suc m ∸-≢ {m} (suc n) 1≤n (s≤s n≤sm) rewrite sym (+-identityʳ (suc m)) | sym (n∸n≡0 n) | sym (+-∸-assoc m {n} {n} ≤-refl) | +-∸-comm {m} n {n} n≤sm = m≢1+m+n (m ∸ n) 1≢a+b : ∀{a b} → 1 ≤ a → 1 ≤ b → 1 ≢ a + b 1≢a+b (s≤s {n = a} 1≤a) (s≤s {n = b} 1≤b) abs rewrite +-comm a (suc b) = 1+n≢0 (sym (suc-injective abs)) 0≢a*b-magic : ∀{a b} → 0 < a → 0 < b → 0 ≢ a * b 0≢a*b-magic {a} {b} 0<a 0<b hip with m*n≡0⇒m≡0∨n≡0 a (sym hip) ... | inj₁ x = <⇒≢ 0<a (sym x) ... | inj₂ y = <⇒≢ 0<b (sym y) ----------------------------------- -- Injectivty of ℕ ranged functions *2-injective : ∀ n m → n * 2 ≡ m * 2 → m ≡ n *2-injective zero zero x = refl *2-injective (suc n) (suc m) x = cong suc (*2-injective n m (suc-injective (suc-injective x))) 2^-injective : ∀ {n m : ℕ} → 2 ^ n ≡ 2 ^ m → n ≡ m 2^-injective {n} {zero} 2^n≡2^0 with (m^n≡1⇒n≡0∨m≡1 2 n 2^n≡2^0) ...| inj₁ m≡0 = m≡0 2^-injective {zero} {suc m} 2^0≡2^sm with (m^n≡1⇒n≡0∨m≡1 2 (suc m) (sym 2^0≡2^sm)) ...| inj₁ sm≡0 = sym sm≡0 2^-injective {suc n} {suc m} 2^n≡2^m = cong suc (2^-injective (*-cancelˡ-≡ {2 ^ n} {2 ^ m} 1 2^n≡2^m)) +-inj : ∀ {m n p : ℕ} → m + n ≡ m + p → n ≡ p +-inj {0} {n} {p} prf = prf +-inj {suc m} {n} {p} prf = +-inj (suc-injective prf) ∸-inj : ∀{m} o n → o ≤ m → n ≤ m → m ∸ o ≡ m ∸ n → o ≡ n ∸-inj {m} o n o≤m n≤m m∸o≡m∸n = begin o ≡⟨ sym (m∸[m∸n]≡n o≤m) ⟩ m ∸ (m ∸ o) ≡⟨ cong (m ∸_) m∸o≡m∸n ⟩ m ∸ (m ∸ n) ≡⟨ m∸[m∸n]≡n n≤m ⟩ n ∎ ------------------------------- -- Properties about _≤_ and _<_ <-≤-trans : ∀{m n o} → m < n → n ≤ o → m < o <-≤-trans p q = ≤-trans p q ≤-<-trans : ∀{m n o} → m ≤ n → n < o → m < o ≤-<-trans p q = ≤-trans (s≤s p) q ≤-unstep2 : ∀{m n} → suc m ≤ suc n → m ≤ n ≤-unstep2 (s≤s p) = p ≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n ≤-unstep (s≤s p) = ≤-step p 0<-suc : ∀{m} → 0 < m → ∃[ n ] (m ≡ suc n) 0<-suc (s≤s p) = _ , refl 1≤0-⊥ : 1 ≤ 0 → ⊥ 1≤0-⊥ () ------------------------------- -- Properties of Multiplication a*2-lemma : ∀ a → (a + (a + zero)) ≡ a * 2 a*2-lemma a rewrite *-comm a 2 = refl *2< : ∀ (m n : ℕ) → m * 2 < n * 2 → m < n *2< 0 0 () *2< 0 (suc n) _ = s≤s z≤n *2< (suc m) (suc n) (s≤s (s≤s x)) = s≤s (*2< m n x) a*b*2-lemma : ∀ a b → a * b * 2 ≡ (a + (a + zero)) * b a*b*2-lemma a b rewrite *-comm (a * b) 2 | *-assoc 2 a b = refl +-*-suc' : ∀ m n → m * suc n ≡ m + n * m +-*-suc' m n with *-suc m n ...| xx rewrite *-comm n m = xx ---------------------------------- -- Properties of divisibility by 2 1+n=m*2⇒m<1+n : ∀ m n → 1 + n ≡ m * 2 → m < 1 + n 1+n=m*2⇒m<1+n (suc zero) (suc n) eq = s≤s (s≤s z≤n) 1+n=m*2⇒m<1+n (suc (suc m)) (suc (suc n)) eq = s≤s (<-trans ih (n<1+n (1 + n))) where eq' : 1 + n ≡ (1 + m) * 2 eq' = +-cancelˡ-≡ 2 eq ih : (1 + m) < 1 + n ih = 1+n=m*2⇒m<1+n (1 + m) n eq' ------------------------------- -- Properties of exponentiation 1≤2^n : ∀ n → 1 ≤ (2 ^ n) 1≤2^n 0 = s≤s z≤n 1≤2^n (suc n) = ≤-trans (1≤2^n n) (m≤m+n (2 ^ n) ((2 ^ n) + zero)) 1<2^sucn : ∀ n → 1 < (2 ^ suc n) 1<2^sucn n = ≤∧≢⇒< (1≤2^n (suc n)) (subst (λ P → 1 ≢ (2 ^ n) + P) (+-comm 0 (2 ^ n)) (1≢a+b (1≤2^n n) (1≤2^n n))) pow*d>1 : ∀ k d → 0 < k → 0 < d → 1 < 2 ^ k * d pow*d>1 (suc k) d 0<k 0<d = *-mono-≤ (1<2^sucn k) 0<d 2^ld-2l : ∀ l₀ l₁ d → l₁ ≤ l₀ → (2 ^ l₀) * d ∸ 2 ^ l₁ ≡ 2 ^ l₁ * (2 ^ (l₀ ∸ l₁) * d ∸ 1) 2^ld-2l l₀ l₁ d x rewrite *-distribˡ-∸ (2 ^ l₁) (2 ^ (l₀ ∸ l₁) * d) 1 | sym (*-assoc (2 ^ l₁) (2 ^ (l₀ ∸ l₁)) d) | sym (^-distribˡ-+-* 2 l₁ (l₀ ∸ l₁)) | sym (+-∸-assoc l₁ {l₀} {l₁} x) | m+n∸m≡n l₁ l₀ | *-identityʳ (2 ^ l₁) = refl ------------------------------------- -- Monotonicity of ℕ ranged functions 2^-mono : ∀{m n} → m < n → 2 ^ m < 2 ^ n 2^-mono {zero} {suc zero} x = s≤s (s≤s z≤n) 2^-mono {zero} {suc (suc n)} x = +-mono-<-≤ (2^-mono {zero} {suc n} (s≤s z≤n)) (m≤n+m zero (2 * 2 ^ n)) 2^-mono {suc m} {suc n} (s≤s x) = +-mono-< (2^-mono x) (+-mono-<-≤ (2^-mono x) z≤n) log-mono : ∀ (l n : ℕ) → 2 ^ l < 2 ^ n → l < n log-mono l 0 x = ⊥-elim (<⇒≱ x (1≤2^n l)) log-mono 0 (suc n) x = s≤s z≤n log-mono (suc l) (suc n) x rewrite a*2-lemma (2 ^ l) | a*2-lemma (2 ^ n) = s≤s ((log-mono l n (*2< (2 ^ l) (2 ^ n) x))) ^-mono : ∀ (l n : ℕ) → l ≤ n → 2 ^ l ≤ 2 ^ n ^-mono zero n _ = 1≤2^n n ^-mono (suc l) zero () ^-mono (suc l) (suc n) (s≤s xx) rewrite +-identityʳ (2 ^ l) | +-identityʳ (2 ^ n) = +-mono-≤ (^-mono l n xx) (^-mono l n xx) 2^kd-mono : ∀{m n d} → m ≤ n → 0 < d → 2 ^ m ≤ 2 ^ n * d 2^kd-mono {m} {n} {d} m≤n 0<d = ≤-trans (^-mono m n m≤n) (m≤m*n (2 ^ n) 0<d) 1≤m*n⇒0<n : ∀{m n} → 1 ≤ m * n → 0 < n 1≤m*n⇒0<n {m} {n} 1≤m*n rewrite *-comm m n = 1≤n*m⇒0<n n m 1≤m*n where 1≤n*m⇒0<n : ∀ m n → 1 ≤ m * n → 0 < m 1≤n*m⇒0<n (suc m) n 1≤m*n = s≤s z≤n n+p≡m+q∧n<m⇒q<p : ∀ {n p m q} → n < m → n + p ≡ m + q → q < p n+p≡m+q∧n<m⇒q<p {n} {p} {m} {q} n<m n+p≡m+q = +-cancelˡ-< n (subst ((n + q) <_) (sym n+p≡m+q) (+-monoˡ-< q n<m)) ------------------- -- Misc. Properties ss≰1 : ∀{n} → suc (suc n) ≰ 1 ss≰1 (s≤s ()) ∸-split : ∀{a b c} → c < b → b < a → a ∸ c ≡ (a ∸ b) + (b ∸ c) ∸-split {a} {b} {c} c<b b<a rewrite sym (+-∸-comm {a} (b ∸ c) {b} (<⇒≤ b<a)) | sym (+-∸-assoc a {b} {c} (<⇒≤ c<b)) | +-∸-comm {a} b {c} (<⇒≤ (<-trans c<b b<a)) | m+n∸n≡m (a ∸ c) b = refl 0<m-n : ∀{m n} → n < m → 0 < m ∸ n 0<m-n {n = zero} (s≤s x) = s≤s x 0<m-n {n = suc n} (s≤s x) = 0<m-n x 2^k-is-suc : ∀ n → ∃ (λ r → 2 ^ n ≡ suc r) 2^k-is-suc zero = 0 , refl 2^k-is-suc (suc n) with 2^k-is-suc n ...| fst , snd rewrite snd | +-identityʳ fst | +-comm fst (suc fst) = (suc (fst + fst)) , refl ------------------------- -- Properties about lists ∷≡[]-⊥ : ∀{a}{A : Set a}{x : A}{xs : List A} → _≡_ {a} {List A} (x ∷ xs) [] → ⊥ ∷≡[]-⊥ () All-pi : ∀{a}{A : Set a}{P : A → Set} → (∀ {x}(p₁ p₂ : P x) → p₁ ≡ p₂) → {xs : List A} → (a₁ a₂ : All P xs) → a₁ ≡ a₂ All-pi P-pi [] [] = refl All-pi P-pi (a ∷ as) (b ∷ bs) = cong₂ _∷_ (P-pi a b) (All-pi P-pi as bs) _∈_ : {A : Set} → A → List A → Set x ∈ xs = Any (_≡_ x) xs witness : {A : Set}{P : A → Set}{x : A}{xs : List A} → x ∈ xs → All P xs → P x witness {x = x} {xs = []} () witness {P = P } {x = x} {xh ∷ xt} (here px) all = subst P (sym px) (List-All.head all) witness {x = x} {xh ∷ xt} (there x∈xt) all = witness x∈xt (List-All.tail all) List-map-≡ : {A B : Set} → (f g : A → B) → (xs : List A) → (∀ x → x ∈ xs → f x ≡ g x) → List-map f xs ≡ List-map g xs List-map-≡ f g [] prf = refl List-map-≡ f g (x ∷ xs) prf = cong₂ _∷_ (prf x (here refl)) (List-map-≡ f g xs (λ x₁ prf' → prf x₁ (there prf'))) List-map-≡-All : {A B : Set} → (f g : A → B) → (xs : List A) → All (λ x → f x ≡ g x) xs → List-map f xs ≡ List-map g xs List-map-≡-All f g xs hyp = List-map-≡ f g xs (λ x x∈xs → witness x∈xs hyp) nats : (n : ℕ) → List (Fin n) nats 0 = [] nats (suc n) = fz ∷ List-map fs (nats n) nats-correct : ∀{m}(x : Fin m) → x ∈ nats m nats-correct {suc m} fz = here refl nats-correct {suc m} (fs x) = there (Any-gmap (cong fs) (nats-correct x)) nats-length : ∀{m} → 0 < m → 1 ≤ length (nats m) nats-length (s≤s prf) = s≤s z≤n ++-inj : ∀{a}{A : Set a}{m n o p : List A} → length m ≡ length n → m ++ o ≡ n ++ p → m ≡ n × o ≡ p ++-inj {m = []} {x ∷ n} () hip ++-inj {m = x ∷ m} {[]} () hip ++-inj {m = []} {[]} lhip hip = refl , hip ++-inj {m = m ∷ ms} {n ∷ ns} lhip hip with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip)) ...| (mn , op) rewrite proj₁ (∷-injective hip) = cong (n ∷_) mn , op ++-abs : ∀{a}{A : Set a}{n : List A}(m : List A) → 1 ≤ length m → [] ≡ m ++ n → ⊥ ++-abs [] () ++-abs (x ∷ m) imp () ++-injₕ : ∀{a}{A : Set a}{m o p : List A} → m ++ o ≡ m ++ p → o ≡ p ++-injₕ {m = m} {o} {p} r = proj₂ (++-inj {m = m} {m} {o} {p} refl r)
{ "alphanum_fraction": 0.4347218339, "avg_line_length": 32.5181818182, "ext": "agda", "hexsha": "a78666ca60470ec1f08cf1bc6bf57ef602da8325", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/aaosl-agda", "max_forks_repo_path": "AAOSL/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/aaosl-agda", "max_issues_repo_path": "AAOSL/Lemmas.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/aaosl-agda", "max_stars_repo_path": "AAOSL/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5029, "size": 10731 }
module Algebra.Module.Morphism.Module where open import Assume using (assume) open import Algebra.Core using (Op₁; Op₂) open import Algebra.Bundles using (CommutativeRing) open import Algebra.Module.Bundles using (Module) open import Algebra.Module.Structures using (IsModule) open import Algebra.Module.Normed using (IsNormedModule; NormedModule) open import Relation.Binary.Core using (Rel) open import Data.Product using (Σ-syntax; ∃-syntax; _×_; _,_; proj₁) open import Algebra.Module.Morphism.Structures using (IsModuleHomomorphism; IsModuleMonomorphism; IsModuleIsomorphism) open import Level using (_⊔_; suc) private module toModule {a} (A : Set a) {r ℓr} {CR : CommutativeRing r ℓr} {mb ℓmb} (MB : Module CR mb ℓmb) where private module CR = CommutativeRing CR module MB = Module MB Carrierᴹ : Set _ Carrierᴹ = A → MB.Carrierᴹ _≈ᴹ_ : Rel Carrierᴹ _ f ≈ᴹ g = ∀ a → f a MB.≈ᴹ g a _+ᴹ_ : Op₂ Carrierᴹ f +ᴹ g = λ a → f a MB.+ᴹ g a _*ₗ_ : CR.Carrier → Carrierᴹ → Carrierᴹ s *ₗ f = λ a → s MB.*ₗ f a _*ᵣ_ : Carrierᴹ → CR.Carrier → Carrierᴹ f *ᵣ s = λ a → f a MB.*ᵣ s 0ᴹ : Carrierᴹ 0ᴹ _ = MB.0ᴹ -ᴹ_ : Op₁ Carrierᴹ -ᴹ_ f = λ a → MB.-ᴹ f a isModule : IsModule CR _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_ isModule = assume →-module : ∀ {a} (A : Set a) {r ℓr} {CR : CommutativeRing r ℓr} {mb ℓmb} (MB : Module CR mb ℓmb) → Module CR (a ⊔ mb) (a ⊔ ℓmb) →-module A MB = record { toModule A MB } →-module' : ∀ {r ℓr} {CR : CommutativeRing r ℓr} {ma ℓma} (MA : Module CR ma ℓma) {mb ℓmb} (MB : Module CR mb ℓmb) → Module CR (ma ⊔ mb) (ma ⊔ ℓmb) →-module' MA MB = →-module (Carrierᴹ MA) MB where open Module module _ {r ℓr} {CR : CommutativeRing r ℓr} {ma ℓma} (MA : Module CR ma ℓma) {mb ℓmb} (MB : Module CR mb ℓmb) where private module MA = Module MA module MB = Module MB _⊸_ : Set _ _⊸_ = ∃[ f ] IsModuleHomomorphism MA MB f ⊸-module : Module CR (r ⊔ ma ⊔ ℓma ⊔ mb ⊔ ℓmb) (ma ⊔ ℓmb) ⊸-module = record { Carrierᴹ = _⊸_ ; _≈ᴹ_ = λ f g → ∀ x → proj₁ f x MB.≈ᴹ proj₁ g x ; _+ᴹ_ = λ f g → (λ x → proj₁ f x MB.+ᴹ proj₁ g x) , assume ; _*ₗ_ = λ s f → (λ x → s MB.*ₗ proj₁ f x) , assume ; _*ᵣ_ = λ f s → (λ x → proj₁ f x MB.*ᵣ s) , assume ; 0ᴹ = (λ x → MB.0ᴹ) , assume ; -ᴹ_ = λ f → (λ x → MB.-ᴹ proj₁ f x) , assume ; isModule = assume } module _ {r ℓr} {CR : CommutativeRing r ℓr} (open CommutativeRing CR using () renaming (Carrier to S)) {rel} {_≤_ : Rel S rel} {ma ℓma} (MA : NormedModule CR _≤_ ma ℓma) {mb ℓmb} (MB : NormedModule CR _≤_ mb ℓmb) where private module MB = NormedModule MB module MA = NormedModule MA ⊸-normed : NormedModule CR _≤_ _ _ ⊸-normed = record { M = ⊸-module MA.M MB.M ; ∥_∥ = λ f → MB.∥ proj₁ f MA.0ᴹ ∥ ; isNormedModule = assume }
{ "alphanum_fraction": 0.5924914676, "avg_line_length": 25.4782608696, "ext": "agda", "hexsha": "3a20d06351d8a0d44584e7e48de0f8daff8f1dc3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Algebra/Module/Morphism/Module.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Algebra/Module/Morphism/Module.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Algebra/Module/Morphism/Module.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1244, "size": 2930 }
{-# OPTIONS --without-K --safe #-} module Categories.Category where open import Level -- The main definitions are in: open import Categories.Category.Core public private variable o ℓ e : Level -- Convenience functions for working over mupliple categories at once: -- C [ x , y ] (for x y objects of C) - Hom_C(x , y) -- C [ f ≈ g ] (for f g arrows of C) - that f and g are equivalent arrows -- C [ f ∘ g ] (for f g composables arrows of C) - composition in C infix 10 _[_,_] _[_≈_] _[_∘_] _[_,_] : (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ _[_,_] = Category._⇒_ _[_≈_] : (C : Category o ℓ e) → ∀ {X Y} (f g : C [ X , Y ]) → Set e _[_≈_] = Category._≈_ _[_∘_] : (C : Category o ℓ e) → ∀ {X Y Z} (f : C [ Y , Z ]) → (g : C [ X , Y ]) → C [ X , Z ] _[_∘_] = Category._∘_ module Definitions (𝓒 : Category o ℓ e) where open Category 𝓒 CommutativeSquare : {A B C D : Obj} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _ CommutativeSquare f g h i = h ∘ f ≈ i ∘ g -- Combinators for commutative diagram -- The idea is to use the combinators to write commutations in a more readable way. -- It starts with [_⇒_]⟨_≈_⟩, and within the third and fourth places, use _⇒⟨_⟩_ to -- connect morphisms with the intermediate object specified. module Commutation (𝓒 : Category o ℓ e) where open Category 𝓒 infix 1 [_⇒_]⟨_≈_⟩ [_⇒_]⟨_≈_⟩ : ∀ (A B : Obj) → A ⇒ B → A ⇒ B → Set _ [ A ⇒ B ]⟨ f ≈ g ⟩ = f ≈ g infixl 2 connect connect : ∀ {A C : Obj} (B : Obj) → A ⇒ B → B ⇒ C → A ⇒ C connect B f g = g ∘ f syntax connect B f g = f ⇒⟨ B ⟩ g
{ "alphanum_fraction": 0.58375, "avg_line_length": 32, "ext": "agda", "hexsha": "92e00cc437d773a30b5afbb3a08dbb6b0cd9cdeb", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category.agda", "max_line_length": 95, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 617, "size": 1600 }
{-# OPTIONS -v treeless.opt:20 #-} open import Agda.Builtin.Nat open import Common.IO using (return) open import Agda.Builtin.Unit data List {a} (A : Set a) : Set a where [] : List A _∷_ : A → List A → List A data Vec {a} (A : Set a) : ..(_ : Nat) → Set a where [] : Vec A 0 _∷_ : ∀ ..{n} → A → Vec A n → Vec A (suc n) -- We can't handle smashing this yet. Different backends might compile -- datatypes differently so we can't guarantee representational -- compatibility. Possible solution: handle datatype compilation in -- treeless as well and be explicit about which datatypes compile to the -- same representation. vecToList : ∀ {a} {A : Set a} ..{n} → Vec A n → List A vecToList [] = [] vecToList (x ∷ xs) = x ∷ vecToList xs data Fin : ..(_ : Nat) → Set where zero : ∀ ..{n} → Fin (suc n) suc : ∀ ..{n} → Fin n → Fin (suc n) -- These should all compile to identity functions: wk : ∀ ..{n} → Fin n → Fin (suc n) wk zero = zero wk (suc i) = suc (wk i) wkN : ∀ ..{n m} → Fin n → Fin (n + m) wkN zero = zero wkN (suc i) = suc (wkN i) wkN′ : ∀ m ..{n} → Fin n → Fin (m + n) wkN′ zero i = i wkN′ (suc m) i = wk (wkN′ m i) vecPlusZero : ∀ {a} {A : Set a} ..{n} → Vec A n → Vec A (n + 0) vecPlusZero [] = [] vecPlusZero (x ∷ xs) = x ∷ vecPlusZero xs main = return tt
{ "alphanum_fraction": 0.5895465027, "avg_line_length": 27.6808510638, "ext": "agda", "hexsha": "c9b37b0fbad391de0dda525acaa992a332cb6103", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/IdentitySmashing.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/IdentitySmashing.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/IdentitySmashing.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 470, "size": 1301 }
module Pr where data FF : Set where magic : {X : Set} -> FF -> X magic () record TT : Set where data Id {S : Set}(s : S) : S -> Set where refl : Id s s data Pr : Set1 where tt : Pr ff : Pr _/\_ : Pr -> Pr -> Pr all : (S : Set) -> (S -> Pr) -> Pr _eq_ : {S : Set} -> S -> S -> Pr record Sig (S : Set)(T : S -> Set) : Set where field fst : S snd : T fst open module Sig' {S : Set}{T : S -> Set} = Sig {S}{T} public _,_ : {S : Set}{T : S -> Set}(s : S) -> T s -> Sig S T s , t = record {fst = s ; snd = t} [|_|] : Pr -> Set [| tt |] = TT [| ff |] = FF [| P /\ Q |] = Sig [| P |] \_ -> [| Q |] [| all S P |] = (x : S) -> [| P x |] [| a eq b |] = Id a b _=>_ : Pr -> Pr -> Pr P => Q = all [| P |] \_ -> Q ∼ : Pr -> Pr ∼ P = P => ff data Decision (P : Pr) : Set where yes : [| P |] -> Decision P no : [| ∼ P |] -> Decision P data Bool : Set where true : Bool false : Bool So : Bool -> Pr So true = tt So false = ff not : Bool -> Bool not true = false not false = true so : (b : Bool) -> Decision (So b) so true = yes _ so false = no magic potahto : (b : Bool) -> [| So (not b) => ∼ (So b) |] potahto true () _ potahto false _ () PEx : (P : Pr) -> ([| P |] -> Pr) -> Pr PEx P Q = P /\ all [| P |] Q Pow : Set -> Set1 Pow X = X -> Pr _==>_ : {X : Set} -> Pow X -> Pow X -> Pr _==>_ {X} P Q = all X \x -> P x => Q x Decidable : {X : Set}(P : Pow X) -> Set Decidable {X} P = (x : X) -> Decision (P x) data _:-_ (S : Set)(P : Pow S) : Set where [_/_] : (s : S) -> [| P s |] -> S :- P wit : {S : Set}{P : S -> Pr} -> S :- P -> S wit [ s / p ] = s cert : {S : Set}{P : S -> Pr}(sp : S :- P) -> [| P (wit sp) |] cert [ s / p ] = p _??_ : {S : Set}{P : S -> Pr} (sp : S :- P){M : Set} -> ((s : S)(p : [| P s |]) -> M) -> M sp ?? m = m (wit sp) (cert sp)
{ "alphanum_fraction": 0.4288070368, "avg_line_length": 19.5591397849, "ext": "agda", "hexsha": "77eeaee48e09ea7c85ec7e0ee35e95aa46c8aa35", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "benchmark/Syntacticosmos/Pr.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "benchmark/Syntacticosmos/Pr.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "benchmark/Syntacticosmos/Pr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 762, "size": 1819 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.InfNat where open import Cubical.Data.InfNat.Base public open import Cubical.Data.InfNat.Properties public
{ "alphanum_fraction": 0.7704081633, "avg_line_length": 32.6666666667, "ext": "agda", "hexsha": "c77c0dcbe4670b9346625325a91776d68e98b90a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/InfNat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/InfNat.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/InfNat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 47, "size": 196 }
{-# OPTIONS --sized-types #-} module Lang.Size where -- Some stuff about sizes that seems to : -- • Types: -- • SizeU : TYPE -- • Size : TYPE -- • <ˢⁱᶻᵉ_ : Size → TYPE -- • 𝐒ˢⁱᶻᵉ : Size → Size -- • ∞ˢⁱᶻᵉ : Size -- • _⊔ˢⁱᶻᵉ_ : Size → Size → Size -- • Subtyping : ∀s₁∀s₂. (s₁: <ˢⁱᶻᵉ s₂) → (s₁: Size) -- • Almost irreflexivity: ∀(s: Size). (s ≠ ∞ˢⁱᶻᵉ) → ¬(s: <ˢⁱᶻᵉ s) -- • Transitivity : ∀s₁∀s₂∀s₃. (s₁: <ˢⁱᶻᵉ s₂) → (s₂: <ˢⁱᶻᵉ s₃) → (s₁: <ˢⁱᶻᵉ s₃) -- • Successor : ∀(s: Size). s: <ˢⁱᶻᵉ 𝐒ˢⁱᶻᵉ(s) -- • Maximum : ∀(s: Size). s: <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ -- • Successor of maximum: 𝐒ˢⁱᶻᵉ(∞ˢⁱᶻᵉ) = ∞ˢⁱᶻᵉ -- • Max function left : ∀(s₁: Size)∀(s₂: Size)∀(s₃: Size). ((s₁: <ˢⁱᶻᵉ s₃) ∧ (s₂: <ˢⁱᶻᵉ s₃)) → (((s₁ ⊔ˢⁱᶻᵉ s₂)): <ˢⁱᶻᵉ s₃) -- • Max function right : ∀(s₁: Size)∀(s₂: Size)∀(s₃: Size). ((s₁: <ˢⁱᶻᵉ s₂) ∨ (s₁: <ˢⁱᶻᵉ s₃)) → (s₁: <ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) -- • Max of maximum left : ∀(s: Size). s ⊔ˢⁱᶻᵉ ∞ˢⁱᶻᵉ = ∞ˢⁱᶻᵉ -- • Max of maximum right: ∀(s: Size). ∞ˢⁱᶻᵉ ⊔ˢⁱᶻᵉ s = ∞ˢⁱᶻᵉ -- TODO: What is SizeU? See https://github.com/agda/agda/blob/cabe234d3c784e20646636ad082cc1e04ddf007b/src/full/Agda/TypeChecking/Rules/Builtin.hs#L294 , https://github.com/agda/agda/blob/1eec63b1c5566b252c0a4a815ce1df99a772c475/src/full/Agda/TypeChecking/Primitive/Base.hs#L134 {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT <ˢⁱᶻᵉ_ #-} {-# BUILTIN SIZESUC 𝐒ˢⁱᶻᵉ #-} {-# BUILTIN SIZEINF ∞ˢⁱᶻᵉ #-} {-# BUILTIN SIZEMAX _⊔ˢⁱᶻᵉ_ #-} {- private module Test where open import Relator.Equals types-SizeU : TYPE types-SizeU = SizeU types-Size : TYPE types-Size = Size types-<ˢⁱᶻᵉ : Size → TYPE types-<ˢⁱᶻᵉ = <ˢⁱᶻᵉ_ types-𝐒ˢⁱᶻᵉ : Size → Size types-𝐒ˢⁱᶻᵉ = 𝐒ˢⁱᶻᵉ types-∞ˢⁱᶻᵉ : Size types-∞ˢⁱᶻᵉ = ∞ˢⁱᶻᵉ types-_⊔ˢⁱᶻᵉ_ : Size → Size → Size types-_⊔ˢⁱᶻᵉ_ = _⊔ˢⁱᶻᵉ_ subtyping : ∀{s₂ : Size}{s₁ : <ˢⁱᶻᵉ s₂} → Size subtyping {s₁ = s₁} = s₁ reflexivity-of-maximum : <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ reflexivity-of-maximum = ∞ˢⁱᶻᵉ transitivity : ∀{s₃ : Size}{s₂ : <ˢⁱᶻᵉ s₃}{s₁ : <ˢⁱᶻᵉ s₂} → (<ˢⁱᶻᵉ s₃) transitivity {s₁ = s₁} = s₁ maximum : ∀{s : Size} → <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ maximum{s} = s successor-of-maximum : 𝐒ˢⁱᶻᵉ ∞ˢⁱᶻᵉ ≡ ∞ˢⁱᶻᵉ successor-of-maximum = [≡]-intro max-of-maximumₗ : ∀{s : Size} → (∞ˢⁱᶻᵉ ⊔ˢⁱᶻᵉ s ≡ ∞ˢⁱᶻᵉ) max-of-maximumₗ = [≡]-intro max-of-maximumᵣ : ∀{s : Size} → (s ⊔ˢⁱᶻᵉ ∞ˢⁱᶻᵉ ≡ ∞ˢⁱᶻᵉ) max-of-maximumᵣ = [≡]-intro max-function-left : ∀{s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₃}{s₂ : <ˢⁱᶻᵉ s₃} → (<ˢⁱᶻᵉ s₃) max-function-left {s₁ = s₁}{s₂ = s₂} = s₁ ⊔ˢⁱᶻᵉ s₂ max-function-rightₗ : ∀{s₂ s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₂} → (<ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) max-function-rightₗ {s₁ = s₁} = s₁ max-function-rightᵣ : ∀{s₂ s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₃} → (<ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) max-function-rightᵣ {s₁ = s₁} = s₁ -- TODO: Is this supposed to not work? This is: ∀(sₗ₁ : Size)∀(sₗ₂ : Size)∀(sᵣ : Size) → (sₗ₁ <ˢⁱᶻᵉ sₗ₂) → ((sₗ₁ ⊔ˢⁱᶻᵉ sᵣ) <ˢⁱᶻᵉ (sₗ₂ ⊔ˢⁱᶻᵉ sᵣ)) max-should-work? : ∀{sₗ₂ sᵣ : Size}{sₗ₁ : <ˢⁱᶻᵉ sₗ₂} → (<ˢⁱᶻᵉ (sₗ₂ ⊔ˢⁱᶻᵉ sᵣ)) max-should-work? {sᵣ = sᵣ}{sₗ₁ = sₗ₁} = sₗ₁ ⊔ˢⁱᶻᵉ sᵣ -}
{ "alphanum_fraction": 0.5711104041, "avg_line_length": 35.3146067416, "ext": "agda", "hexsha": "294007603f07b216ddbc52a483c5464d7e58d3f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lang/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lang/Size.agda", "max_line_length": 278, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lang/Size.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2115, "size": 3143 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Variables and contexts -- -- This module defines the syntax of contexts and subcontexts, -- together with variables and properties of these notions. -- -- This module is parametric in the syntax of types, so it -- can be reused for different calculi. ------------------------------------------------------------------------ module Base.Syntax.Context (Type : Set) where open import Relation.Binary open import Relation.Binary.PropositionalEquality -- Typing Contexts -- =============== import Data.List as List open import Base.Data.ContextList public Context : Set Context = List.List Type -- Variables -- ========= -- -- Here it is clear that we are using de Bruijn indices, -- encoded as natural numbers, more or less. data Var : Context → Type → Set where this : ∀ {Γ τ} → Var (τ • Γ) τ that : ∀ {Γ σ τ} → (x : Var Γ τ) → Var (σ • Γ) τ -- Weakening -- ========= -- -- We define weakening based on subcontext relationship. -- Subcontexts -- ----------- -- -- Useful as a reified weakening operation, -- and for making theorems strong enough to prove by induction. -- -- The contents of this module are currently exported at the end -- of this file. -- This handling of contexts is recommended by [this -- email](https://lists.chalmers.se/pipermail/agda/2011/003423.html) and -- attributed to Conor McBride. -- -- The associated thread discusses a few alternatives solutions, including one -- where beta-reduction can handle associativity of ++. module Subcontexts where infix 4 _≼_ data _≼_ : (Γ₁ Γ₂ : Context) → Set where ∅ : ∅ ≼ ∅ keep_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → τ • Γ₁ ≼ τ • Γ₂ drop_•_ : ∀ {Γ₁ Γ₂} → (τ : Type) → Γ₁ ≼ Γ₂ → Γ₁ ≼ τ • Γ₂ -- Properties ∅≼Γ : ∀ {Γ} → ∅ ≼ Γ ∅≼Γ {∅} = ∅ ∅≼Γ {τ • Γ} = drop τ • ∅≼Γ ≼-refl : Reflexive _≼_ ≼-refl {∅} = ∅ ≼-refl {τ • Γ} = keep τ • ≼-refl ≼-reflexive : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → Γ₁ ≼ Γ₂ ≼-reflexive refl = ≼-refl ≼-trans : Transitive _≼_ ≼-trans ≼₁ ∅ = ≼₁ ≼-trans (keep .τ • ≼₁) (keep τ • ≼₂) = keep τ • ≼-trans ≼₁ ≼₂ ≼-trans (drop .τ • ≼₁) (keep τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-trans ≼₁ (drop τ • ≼₂) = drop τ • ≼-trans ≼₁ ≼₂ ≼-isPreorder : IsPreorder _≡_ _≼_ ≼-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≼-reflexive ; trans = ≼-trans } ≼-preorder : Preorder _ _ _ ≼-preorder = record { Carrier = Context ; _≈_ = _≡_ ; _∼_ = _≼_ ; isPreorder = ≼-isPreorder } module ≼-Reasoning where open import Relation.Binary.PreorderReasoning ≼-preorder public renaming ( _≈⟨_⟩_ to _≡⟨_⟩_ ; _∼⟨_⟩_ to _≼⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ ) -- Lift a variable to a super context weaken-var : ∀ {Γ₁ Γ₂ τ} → Γ₁ ≼ Γ₂ → Var Γ₁ τ → Var Γ₂ τ weaken-var (keep τ • ≼₁) this = this weaken-var (keep τ • ≼₁) (that x) = that (weaken-var ≼₁ x) weaken-var (drop τ • ≼₁) x = that (weaken-var ≼₁ x) -- Currently, we export the subcontext relation. open Subcontexts public
{ "alphanum_fraction": 0.5684143223, "avg_line_length": 25.024, "ext": "agda", "hexsha": "1d2ae4d857f10898eec54863e616755066cf35c7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Syntax/Context.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Syntax/Context.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Syntax/Context.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1106, "size": 3128 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Sublist.Propositional directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Sublist.Propositional where open import Data.List.Relation.Binary.Sublist.Propositional public {-# WARNING_ON_IMPORT "Data.List.Relation.Sublist.Propositional was deprecated in v1.0. Use Data.List.Relation.Binary.Sublist.Propositional instead." #-}
{ "alphanum_fraction": 0.5892255892, "avg_line_length": 33, "ext": "agda", "hexsha": "b40993aee7106990a1c773fe94eb4e412d5c26e0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Sublist/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Sublist/Propositional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Sublist/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 108, "size": 594 }
-- Andreas, 2012-01-10 -- {-# OPTIONS -v tc.constr.findInScope:50 #-} module InstanceGuessesMeta where data Bool : Set where true false : Bool postulate D : Bool -> Set E : Bool -> Set d : {x : Bool} -> D x f : {x : Bool}{{ dx : D x }} -> E x b : E true b = f -- should succeed -- Agda is now allowed to solve hidden x in type of d by unification, -- when searching for inhabitant of D x
{ "alphanum_fraction": 0.6243781095, "avg_line_length": 22.3333333333, "ext": "agda", "hexsha": "1364f4dc17f66f6b1b999973ab5a4ac8542a6567", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/InstanceGuessesMeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/InstanceGuessesMeta.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/InstanceGuessesMeta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 133, "size": 402 }
-- Andreas, 2011-04-14 -- {-# OPTIONS -v tc.cover:20 -v tc.lhs.unify:20 #-} module Issue291a where open import Common.Coinduction open import Common.Equality data RUnit : Set where runit : ∞ RUnit -> RUnit j : (u : ∞ RUnit) -> ♭ u ≡ runit u -> Set j u () -- needs to fail (reports a Bad split!)
{ "alphanum_fraction": 0.6466666667, "avg_line_length": 21.4285714286, "ext": "agda", "hexsha": "d95105a6e5ed96aa34440638a500b391bfd61bb5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue291a.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue291a.agda", "max_line_length": 52, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue291a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 104, "size": 300 }
module SystemF.Syntax where open import SystemF.Syntax.Type public open import SystemF.Syntax.Term public open import SystemF.Syntax.Context public
{ "alphanum_fraction": 0.8456375839, "avg_line_length": 24.8333333333, "ext": "agda", "hexsha": "724ecb45f11de7dda713941f353a9895f4db1dd4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/Syntax.agda", "max_line_length": 41, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 30, "size": 149 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Filler where open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level A : Type ℓ cube-cong : {a b : A} {p p' q q' : a ≡ b} (P : p ≡ p') (Q : q ≡ q') → (p ≡ q) ≡ (p' ≡ q') cube-cong {p = p} {p' = p'} {q = q} {q' = q'} P Q = p ≡ q ≡⟨ cong (_≡ q) P ⟩ p' ≡ q ≡⟨ cong (p' ≡_) Q ⟩ p' ≡ q' ∎
{ "alphanum_fraction": 0.4409090909, "avg_line_length": 20, "ext": "agda", "hexsha": "21a83e919d73c7655e9bfd8785757e842a6c5cda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Foundations/Filler.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Foundations/Filler.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Foundations/Filler.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 196, "size": 440 }
{-# OPTIONS --syntactic-equality=2 --allow-unsolved-metas #-} -- Limited testing suggests that --syntactic-equality=2 is a little -- faster than --syntactic-equality=0 and --syntactic-equality=1 for -- this file. -- The option --allow-unsolved-metas and the open goal at the end of -- the file ensure that time is not wasted on serialising things. open import Agda.Builtin.Equality data D : Set where c : D data Delay-D : Set where now : D → Delay-D later : Delay-D → Delay-D -- The result of f x is 5000 applications of later to now x. f : D → Delay-D f x = later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( later (later (later (later (later (later (later (later (later (later ( now x )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )))))))))))))))))))))))))))))) mutual α : D α = _ _ : f α ≡ f c _ = refl _ : Set _ = {!!}
{ "alphanum_fraction": 0.6002029786, "avg_line_length": 69.8006589786, "ext": "agda", "hexsha": "cff417cd2be9aaf1a9c28c193a3c26fe2851b24d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5801.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5801.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5801.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 12065, "size": 42369 }
open import Nat open import Prelude open import List open import statics-core -- erasure of cursor in the types and expressions is defined in the paper, -- and in the core file, as a function on zexpressions. because of the -- particular encoding of all the judgments as datatypes and the agda -- semantics for pattern matching, it is sometimes also convenient to have -- a judgemental form of erasure. -- -- this file describes the obvious encoding of the view this function as a -- jugement relating input and output as a datatype, and argues that this -- encoding is correct by showing a isomorphism with the function. we also -- show that as a correlary, the judgement is well moded at (∀, ∃!), which -- is unsurprising if the jugement is written correctly. -- -- taken together, these proofs allow us to move between the judgemental -- form of erasure and the function form when it's convenient. -- -- while we do not have it, the argument given here is sufficiently strong -- to produce an equality between these things in a system with the -- univalence axiom, as described in the homotopy type theory book and the -- associated work done in agda. module judgemental-erase where --cursor erasure for types, as written in the paper _◆t : ztyp → htyp ▹ t ◃ ◆t = t (t1 ==>₁ t2) ◆t = (t1 ◆t) ==> t2 (t1 ==>₂ t2) ◆t = t1 ==> (t2 ◆t) (t1 ⊕₁ t2) ◆t = (t1 ◆t) ⊕ t2 (t1 ⊕₂ t2) ◆t = t1 ⊕ (t2 ◆t) (t1 ⊠₁ t2) ◆t = (t1 ◆t) ⊠ t2 (t1 ⊠₂ t2) ◆t = t1 ⊠ (t2 ◆t) --cursor erasure for expressions, as written in the paper _◆e : zexp → hexp ▹ x ◃ ◆e = x (e ·:₁ t) ◆e = (e ◆e) ·: t (e ·:₂ t) ◆e = e ·: (t ◆t) ·λ x e ◆e = ·λ x (e ◆e) (·λ x ·[ t ]₁ e) ◆e = ·λ x ·[ t ◆t ] e (·λ x ·[ t ]₂ e) ◆e = ·λ x ·[ t ] (e ◆e) (e1 ∘₁ e2) ◆e = (e1 ◆e) ∘ e2 (e1 ∘₂ e2) ◆e = e1 ∘ (e2 ◆e) (e1 ·+₁ e2) ◆e = (e1 ◆e) ·+ e2 (e1 ·+₂ e2) ◆e = e1 ·+ (e2 ◆e) ⦇⌜ e ⌟⦈[ u ] ◆e = ⦇⌜ e ◆e ⌟⦈[ u ] (inl e) ◆e = inl (e ◆e) (inr e) ◆e = inr (e ◆e) (case₁ e x e1 y e2) ◆e = case (e ◆e) x e1 y e2 (case₂ e x e1 y e2) ◆e = case e x (e1 ◆e) y e2 (case₃ e x e1 y e2) ◆e = case e x e1 y (e2 ◆e) ⟨ e1 , e2 ⟩₁ ◆e = ⟨ e1 ◆e , e2 ⟩ ⟨ e1 , e2 ⟩₂ ◆e = ⟨ e1 , e2 ◆e ⟩ fst e ◆e = fst (e ◆e) snd e ◆e = snd (e ◆e) -- this pair of theorems moves from the judgmental form to the function form erase-t◆ : {t : ztyp} {tr : htyp} → (erase-t t tr) → (t ◆t == tr) erase-t◆ ETTop = refl erase-t◆ (ETArrL p) = ap1 (λ x → x ==> _) (erase-t◆ p) erase-t◆ (ETArrR p) = ap1 (λ x → _ ==> x) (erase-t◆ p) erase-t◆ (ETPlusL p) = ap1 (λ x → x ⊕ _) (erase-t◆ p) erase-t◆ (ETPlusR p) = ap1 (λ x → _ ⊕ x) (erase-t◆ p) erase-t◆ (ETProdL p) = ap1 (λ x → x ⊠ _) (erase-t◆ p) erase-t◆ (ETProdR p) = ap1 (λ x → _ ⊠ x) (erase-t◆ p) erase-e◆ : {e : zexp} {er : hexp} → (erase-e e er) → (e ◆e == er) erase-e◆ EETop = refl erase-e◆ (EEPlusL p) = ap1 (λ x → x ·+ _) (erase-e◆ p) erase-e◆ (EEPlusR p) = ap1 (λ x → _ ·+ x) (erase-e◆ p) erase-e◆ (EEAscL p) = ap1 (λ x → x ·: _) (erase-e◆ p) erase-e◆ (EEAscR p) = ap1 (λ x → _ ·: x) (erase-t◆ p) erase-e◆ (EELam p) = ap1 (λ x → ·λ _ x) (erase-e◆ p) erase-e◆ (EEHalfLamL p) = ap1 (λ x → ·λ _ ·[ x ] _) (erase-t◆ p) erase-e◆ (EEHalfLamR p) = ap1 (λ x → ·λ _ ·[ _ ] x) (erase-e◆ p) erase-e◆ (EEApL p) = ap1 (λ x → x ∘ _) (erase-e◆ p) erase-e◆ (EEApR p) = ap1 (λ x → _ ∘ x) (erase-e◆ p) erase-e◆ (EEInl p) = ap1 inl (erase-e◆ p) erase-e◆ (EEInr p) = ap1 inr (erase-e◆ p) erase-e◆ (EECase1 p) = ap1 (λ x → case x _ _ _ _) (erase-e◆ p) erase-e◆ (EECase2 p) = ap1 (λ x → case _ _ x _ _) (erase-e◆ p) erase-e◆ (EECase3 p) = ap1 (λ x → case _ _ _ _ x) (erase-e◆ p) erase-e◆ (EEPairL p) = ap1 (λ x → ⟨ x , _ ⟩ ) (erase-e◆ p) erase-e◆ (EEPairR p) = ap1 (λ x → ⟨ _ , x ⟩ ) (erase-e◆ p) erase-e◆ (EEFst p) = ap1 fst (erase-e◆ p) erase-e◆ (EESnd p) = ap1 snd (erase-e◆ p) erase-e◆ (EENEHole p) = ap1 (λ x → ⦇⌜ x ⌟⦈[ _ ]) (erase-e◆ p) -- this pair of theorems moves back from judgmental form to the function form ◆erase-t : (t : ztyp) (tr : htyp) → (t ◆t == tr) → (erase-t t tr) ◆erase-t ▹ x ◃ .x refl = ETTop ◆erase-t (t ==>₁ x) (.(t ◆t) ==> .x) refl with ◆erase-t t (t ◆t) refl ... | ih = ETArrL ih ◆erase-t (x ==>₂ t) (.x ==> .(t ◆t)) refl with ◆erase-t t (t ◆t) refl ... | ih = ETArrR ih ◆erase-t (t1 ⊕₁ t2) (.(t1 ◆t) ⊕ .t2) refl = ETPlusL (◆erase-t t1 (t1 ◆t) refl) ◆erase-t (t1 ⊕₂ t2) (.t1 ⊕ .(t2 ◆t)) refl = ETPlusR (◆erase-t t2 (t2 ◆t) refl) ◆erase-t (t1 ⊠₁ t2) (.(t1 ◆t) ⊠ .t2) refl = ETProdL (◆erase-t t1 (t1 ◆t) refl) ◆erase-t (t1 ⊠₂ t2) (.t1 ⊠ .(t2 ◆t)) refl = ETProdR (◆erase-t t2 (t2 ◆t) refl) ◆erase-e : (e : zexp) (er : hexp) → (e ◆e == er) → (erase-e e er) ◆erase-e ▹ x ◃ .x refl = EETop ◆erase-e (e ·:₁ x) .((e ◆e) ·: x) refl with ◆erase-e e (e ◆e) refl ... | ih = EEAscL ih ◆erase-e (x ·:₂ x₁) .(x ·: (x₁ ◆t)) refl = EEAscR (◆erase-t x₁ (x₁ ◆t) refl) ◆erase-e (·λ x e) .(·λ x (e ◆e)) refl = EELam (◆erase-e e (e ◆e) refl) ◆erase-e (·λ x ·[ x₁ ]₁ x₂) _ refl = EEHalfLamL (◆erase-t x₁ (x₁ ◆t) refl) ◆erase-e (·λ x ·[ x₁ ]₂ e) _ refl = EEHalfLamR (◆erase-e e (e ◆e) refl) ◆erase-e (e ∘₁ x) .((e ◆e) ∘ x) refl = EEApL (◆erase-e e (e ◆e) refl) ◆erase-e (x ∘₂ e) .(x ∘ (e ◆e)) refl = EEApR (◆erase-e e (e ◆e) refl) ◆erase-e (e ·+₁ x) .((e ◆e) ·+ x) refl = EEPlusL (◆erase-e e (e ◆e) refl) ◆erase-e (x ·+₂ e) .(x ·+ (e ◆e)) refl = EEPlusR (◆erase-e e (e ◆e) refl) ◆erase-e ⦇⌜ e ⌟⦈[ u ] .(⦇⌜ e ◆e ⌟⦈[ u ]) refl = EENEHole (◆erase-e e (e ◆e) refl) ◆erase-e (inl e) _ refl = EEInl (◆erase-e e (e ◆e) refl) ◆erase-e (inr e) _ refl = EEInr (◆erase-e e (e ◆e) refl) ◆erase-e (case₁ e _ _ _ _) _ refl = EECase1 (◆erase-e e (e ◆e) refl) ◆erase-e (case₂ _ _ e _ _) _ refl = EECase2 (◆erase-e e (e ◆e) refl) ◆erase-e (case₃ _ _ _ _ e) _ refl = EECase3 (◆erase-e e (e ◆e) refl) ◆erase-e ⟨ e , x ⟩₁ .(⟨ (e ◆e) , x ⟩) refl = EEPairL (◆erase-e e (e ◆e) refl) ◆erase-e ⟨ x , e ⟩₂ .(⟨ x , (e ◆e) ⟩) refl = EEPairR (◆erase-e e (e ◆e) refl) ◆erase-e (fst e) _ refl = EEFst (◆erase-e e (e ◆e) refl) ◆erase-e (snd e) _ refl = EESnd (◆erase-e e (e ◆e) refl) -- jugemental erasure for both types and terms only has one proof for -- relating the a term to its non-judgemental erasure t-contr : (t : ztyp) → (x y : erase-t t (t ◆t)) → x == y t-contr ▹ x ◃ ETTop ETTop = refl t-contr (t ==>₁ x) (ETArrL y) (ETArrL z) = ap1 ETArrL (t-contr t y z) t-contr (x ==>₂ t) (ETArrR y) (ETArrR z) = ap1 ETArrR (t-contr t y z) t-contr (x ⊕₁ x₁) (ETPlusL y) (ETPlusL z) = ap1 ETPlusL (t-contr x y z) t-contr (x₁ ⊕₂ x) (ETPlusR y) (ETPlusR z) = ap1 ETPlusR (t-contr x y z) t-contr (x ⊠₁ x₁) (ETProdL y) (ETProdL z) = ap1 ETProdL (t-contr x y z) t-contr (x₁ ⊠₂ x) (ETProdR y) (ETProdR z) = ap1 ETProdR (t-contr x y z) e-contr : (e : zexp) → (x y : erase-e e (e ◆e)) → x == y e-contr ▹ x ◃ EETop EETop = refl e-contr (e ·:₁ x) (EEAscL x₁) (EEAscL y) = ap1 EEAscL (e-contr e x₁ y) e-contr (x₁ ·:₂ x) (EEAscR x₂) (EEAscR x₃) = ap1 EEAscR (t-contr x x₂ x₃) e-contr (·λ x e) (EELam x₁) (EELam y) = ap1 EELam (e-contr e x₁ y) e-contr (·λ x ·[ x₁ ]₁ x₂) (EEHalfLamL x₃) (EEHalfLamL x₄) = ap1 EEHalfLamL (t-contr x₁ x₃ x₄) e-contr (·λ x ·[ x₁ ]₂ x₂) (EEHalfLamR y) (EEHalfLamR z) = ap1 EEHalfLamR (e-contr x₂ y z) e-contr (e ∘₁ x) (EEApL x₁) (EEApL y) = ap1 EEApL (e-contr e x₁ y) e-contr (x ∘₂ e) (EEApR x₁) (EEApR y) = ap1 EEApR (e-contr e x₁ y) e-contr (e ·+₁ x) (EEPlusL x₁) (EEPlusL y) = ap1 EEPlusL (e-contr e x₁ y) e-contr (x ·+₂ e) (EEPlusR x₁) (EEPlusR y) = ap1 EEPlusR (e-contr e x₁ y) e-contr ⦇⌜ e ⌟⦈[ u ] (EENEHole x) (EENEHole y) = ap1 EENEHole (e-contr e x y) e-contr (inl x) (EEInl y) (EEInl z) = ap1 EEInl (e-contr x y z) e-contr (inr x) (EEInr y) (EEInr z) = ap1 EEInr (e-contr x y z) e-contr (case₁ x x₁ x₂ x₃ x₄) (EECase1 y) (EECase1 z) = ap1 EECase1 (e-contr x y z) e-contr (case₂ x₁ x₂ x x₃ x₄) (EECase2 y) (EECase2 z) = ap1 EECase2 (e-contr x y z) e-contr (case₃ x₁ x₂ x₃ x₄ x) (EECase3 y) (EECase3 z) = ap1 EECase3 (e-contr x y z) e-contr ⟨ e , x ⟩₁ (EEPairL x₁) (EEPairL y) = ap1 EEPairL (e-contr e x₁ y) e-contr ⟨ x , e ⟩₂ (EEPairR x₁) (EEPairR y) = ap1 EEPairR (e-contr e x₁ y) e-contr (fst x) (EEFst y) (EEFst z) = ap1 EEFst (e-contr x y z) e-contr (snd x) (EESnd y) (EESnd z) = ap1 EESnd (e-contr x y z) -- taken together, these four theorems demonstrate that both round-trips -- of the above functions are stable up to == erase-trt1 : (t : ztyp) (tr : htyp) → (x : t ◆t == tr) → (erase-t◆ (◆erase-t t tr x)) == x erase-trt1 ▹ x ◃ .x refl = refl erase-trt1 (t ==>₁ x) (.(t ◆t) ==> .x) refl with erase-t◆ (◆erase-t t (t ◆t) refl) erase-trt1 (t ==>₁ x) (.(t ◆t) ==> .x) refl | refl = refl erase-trt1 (x ==>₂ t) (.x ==> .(t ◆t)) refl with erase-t◆ (◆erase-t t (t ◆t) refl) erase-trt1 (x ==>₂ t) (.x ==> .(t ◆t)) refl | refl = refl erase-trt1 (x ⊕₁ x₁) .((x ◆t) ⊕ x₁) refl with erase-t◆ (◆erase-t x (x ◆t) refl) erase-trt1 (x ⊕₁ x₁) .((x ◆t) ⊕ x₁) refl | refl = refl erase-trt1 (x ⊕₂ x₁) .(x ⊕ (x₁ ◆t)) refl with erase-t◆ (◆erase-t x₁ (x₁ ◆t) refl) erase-trt1 (x ⊕₂ x₁) .(x ⊕ (x₁ ◆t)) refl | refl = refl erase-trt1 (x ⊠₁ x₁) .((x ◆t) ⊠ x₁) refl with erase-t◆ (◆erase-t x (x ◆t) refl) erase-trt1 (x ⊠₁ x₁) .((x ◆t) ⊠ x₁) refl | refl = refl erase-trt1 (x ⊠₂ x₁) .(x ⊠ (x₁ ◆t)) refl with erase-t◆ (◆erase-t x₁ (x₁ ◆t) refl) erase-trt1 (x ⊠₂ x₁) .(x ⊠ (x₁ ◆t)) refl | refl = refl erase-trt2 : (t : ztyp) (tr : htyp) → (x : erase-t t tr) → ◆erase-t t tr (erase-t◆ x) == x erase-trt2 .(▹ tr ◃) tr ETTop = refl erase-trt2 _ _ (ETArrL ETTop) = refl erase-trt2 (t1 ==>₁ t2) _ (ETArrL x) with erase-t◆ x erase-trt2 (t1 ==>₁ t2) _ (ETArrL x) | refl = ap1 ETArrL (t-contr _ (◆erase-t t1 (t1 ◆t) refl) x) erase-trt2 (t1 ==>₂ t2) _ (ETArrR x) with erase-t◆ x erase-trt2 (t1 ==>₂ t2) _ (ETArrR x) | refl = ap1 ETArrR (t-contr _ (◆erase-t t2 (t2 ◆t) refl) x) erase-trt2 (t1 ⊕₁ t2) _ (ETPlusL x) with erase-t◆ x erase-trt2 (t1 ⊕₁ t2) _ (ETPlusL x) | refl = ap1 ETPlusL (t-contr _ (◆erase-t t1 (t1 ◆t) refl) x) erase-trt2 (t1 ⊕₂ t2) _ (ETPlusR x) with erase-t◆ x erase-trt2 (t1 ⊕₂ t2) _ (ETPlusR x) | refl = ap1 ETPlusR (t-contr _ (◆erase-t t2 (t2 ◆t) refl) x) erase-trt2 (t1 ⊠₁ t2) _ (ETProdL x) with erase-t◆ x erase-trt2 (t1 ⊠₁ t2) _ (ETProdL x) | refl = ap1 ETProdL (t-contr _ (◆erase-t t1 (t1 ◆t) refl) x) erase-trt2 (t1 ⊠₂ t2) _ (ETProdR x) with erase-t◆ x erase-trt2 (t1 ⊠₂ t2) _ (ETProdR x) | refl = ap1 ETProdR (t-contr _ (◆erase-t t2 (t2 ◆t) refl) x) erase-ert1 : (e : zexp) (er : hexp) → (x : e ◆e == er) → (erase-e◆ (◆erase-e e er x)) == x erase-ert1 ▹ x ◃ .x refl = refl erase-ert1 (e ·:₁ x) .((e ◆e) ·: x) refl with erase-e◆ (◆erase-e e (e ◆e) refl) erase-ert1 (e ·:₁ x) .((e ◆e) ·: x) refl | refl = refl erase-ert1 (x ·:₂ t) .(x ·: (t ◆t)) refl = ap1 (λ a → ap1 (_·:_ x) a) (erase-trt1 t _ refl) erase-ert1 (·λ x e) .(·λ x (e ◆e)) refl = ap1 (λ a → ap1 (·λ x) a) (erase-ert1 e _ refl) erase-ert1 (·λ x ·[ t ]₁ e) .((·λ x ·[ t ]₁ e) ◆e) refl = ap1 (λ a → ap1 (λ b → ·λ x ·[ b ] e) a) (erase-trt1 t _ refl) erase-ert1 (·λ x ·[ t ]₂ e) .((·λ x ·[ t ]₂ e) ◆e) refl = ap1 (λ a → ap1 (λ b → ·λ x ·[ t ] b) a) (erase-ert1 e _ refl) erase-ert1 (e ∘₁ x) .((e ◆e) ∘ x) refl = ap1 (λ a → ap1 (λ x₁ → x₁ ∘ x) a) (erase-ert1 e _ refl) erase-ert1 (x ∘₂ e) .(x ∘ (e ◆e)) refl = ap1 (λ a → ap1 (_∘_ x) a) (erase-ert1 e _ refl) erase-ert1 (e ·+₁ x) .((e ◆e) ·+ x) refl = ap1 (λ a → ap1 (λ x₁ → x₁ ·+ x) a) (erase-ert1 e _ refl) erase-ert1 (x ·+₂ e) .(x ·+ (e ◆e)) refl = ap1 (λ a → ap1 (_·+_ x) a) (erase-ert1 e _ refl) erase-ert1 ⦇⌜ e ⌟⦈[ u ] .(⦇⌜ e ◆e ⌟⦈[ u ]) refl = ap1 (λ a → ap1 ⦇⌜_⌟⦈[ u ] a) (erase-ert1 e _ refl) erase-ert1 (inl x) .(inl (x ◆e)) refl = ap1 (λ a → ap1 inl a) (erase-ert1 x _ refl) erase-ert1 (inr x) .(inr (x ◆e)) refl = ap1 (λ a → ap1 inr a) (erase-ert1 x _ refl) erase-ert1 (case₁ x x₁ x₂ x₃ x₄) .(case (x ◆e) x₁ x₂ x₃ x₄) refl = ap1 (ap1 (λ a → case a x₁ x₂ x₃ x₄)) (erase-ert1 x _ refl) erase-ert1 (case₂ x x₁ x₂ x₃ x₄) .(case x x₁ (x₂ ◆e) x₃ x₄) refl = ap1 (ap1 (λ a → case x x₁ a x₃ x₄)) (erase-ert1 x₂ _ refl) erase-ert1 (case₃ x x₁ x₂ x₃ x₄) .(case x x₁ x₂ x₃ (x₄ ◆e)) refl = ap1 (ap1 (λ a → case x x₁ x₂ x₃ a)) (erase-ert1 x₄ _ refl) erase-ert1 ⟨ e , x ⟩₁ .(⟨ (e ◆e) , x ⟩) refl = ap1 (λ a → ap1 (λ x₁ → ⟨ x₁ , x ⟩) a) (erase-ert1 e _ refl) erase-ert1 ⟨ x , e ⟩₂ .(⟨ x , (e ◆e) ⟩) refl = ap1 (λ a → ap1 (⟨_,_⟩ x) a) (erase-ert1 e _ refl) erase-ert1 (fst x) .(fst (x ◆e)) refl = ap1 (λ a → ap1 fst a) (erase-ert1 x _ refl) erase-ert1 (snd x) .(snd (x ◆e)) refl = ap1 (λ a → ap1 snd a) (erase-ert1 x _ refl) erase-ert2 : (e : zexp) (er : hexp) → (b : erase-e e er) → ◆erase-e e er (erase-e◆ b) == b erase-ert2 .(▹ er ◃) er EETop = refl erase-ert2 (e ·:₁ x) _ (EEAscL b) with erase-e◆ b erase-ert2 (e ·:₁ x) _ (EEAscL b) | refl = ap1 EEAscL (e-contr _ (◆erase-e e (e ◆e) refl) b) erase-ert2 (e ·:₂ x) _ (EEAscR b) with erase-t◆ b erase-ert2 (e ·:₂ x) .(e ·: (x ◆t)) (EEAscR b) | refl = ap1 EEAscR (t-contr _ (◆erase-t x (x ◆t) refl) b) erase-ert2 (·λ x e) _ (EELam b) with erase-e◆ b erase-ert2 (·λ x e) .(·λ x (e ◆e)) (EELam b) | refl = ap1 EELam (e-contr _ (◆erase-e e (e ◆e) refl) b) erase-ert2 (·λ x ·[ t ]₁ e) _ (EEHalfLamL b) with erase-t◆ b erase-ert2 (·λ x ·[ t ]₁ e) .(·λ x ·[ t ◆t ] e) (EEHalfLamL b) | refl = ap1 EEHalfLamL (t-contr _ (◆erase-t t (t ◆t) refl) b) erase-ert2 (·λ x ·[ t ]₂ e) _ (EEHalfLamR b) with erase-e◆ b erase-ert2 (·λ x ·[ t ]₂ e) .(·λ x ·[ t ] (e ◆e)) (EEHalfLamR b) | refl = ap1 EEHalfLamR (e-contr _ (◆erase-e e (e ◆e) refl) b) erase-ert2 (e ∘₁ x) _ (EEApL b) with erase-e◆ b erase-ert2 (e ∘₁ x) .((e ◆e) ∘ x) (EEApL b) | refl = ap1 EEApL (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 (e1 ∘₂ e) _ (EEApR b) with erase-e◆ b erase-ert2 (e1 ∘₂ e) .(e1 ∘ (e ◆e)) (EEApR b) | refl = ap1 EEApR (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 (e ·+₁ x) _ (EEPlusL b) with erase-e◆ b erase-ert2 (e ·+₁ x) .((e ◆e) ·+ x) (EEPlusL b) | refl = ap1 EEPlusL (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 (e1 ·+₂ e) _ (EEPlusR b) with erase-e◆ b erase-ert2 (e1 ·+₂ e) .(e1 ·+ (e ◆e)) (EEPlusR b) | refl = ap1 EEPlusR (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 ⦇⌜ e ⌟⦈[ u ] _ (EENEHole b) with erase-e◆ b erase-ert2 ⦇⌜ e ⌟⦈[ u ] .(⦇⌜ e ◆e ⌟⦈[ u ]) (EENEHole b) | refl = ap1 EENEHole (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 (inl x) _ (EEInl z) with erase-e◆ z erase-ert2 (inl x) .(inl (x ◆e)) (EEInl z) | refl = ap1 EEInl (e-contr x _ z) erase-ert2 (inr x) _ (EEInr z) with erase-e◆ z erase-ert2 (inr x) .(inr (x ◆e)) (EEInr z) | refl = ap1 EEInr (e-contr x _ z) erase-ert2 (case₁ x x₁ x₂ x₃ x₄) _ (EECase1 z) with erase-e◆ z erase-ert2 (case₁ x x₁ x₂ x₃ x₄) .(case (x ◆e) x₁ x₂ x₃ x₄) (EECase1 z) | refl = ap1 EECase1 (e-contr x _ z) erase-ert2 (case₂ e x₁ x₂ x₃ x₄) _ (EECase2 z) with erase-e◆ z erase-ert2 (case₂ e x₁ x₂ x₃ x₄) .(case e x₁ (x₂ ◆e) x₃ x₄) (EECase2 z) | refl = ap1 EECase2 (e-contr x₂ _ z) erase-ert2 (case₃ e x₁ x₂ x₃ x₄) _ (EECase3 z) with erase-e◆ z erase-ert2 (case₃ e x₁ x₂ x₃ x₄) .(case e x₁ x₂ x₃ (x₄ ◆e)) (EECase3 z) | refl = ap1 EECase3 (e-contr x₄ _ z) erase-ert2 ⟨ e , x ⟩₁ _ (EEPairL b) with erase-e◆ b erase-ert2 ⟨ e , x ⟩₁ .(⟨ (e ◆e) , x ⟩) (EEPairL b) | refl = ap1 EEPairL (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 ⟨ e1 , e ⟩₂ _ (EEPairR b) with erase-e◆ b erase-ert2 ⟨ e1 , e ⟩₂ .(⟨ e1 , (e ◆e) ⟩) (EEPairR b) | refl = ap1 EEPairR (e-contr e (◆erase-e e (e ◆e) refl) b) erase-ert2 (fst x) _ (EEFst z) with erase-e◆ z erase-ert2 (fst x) .(fst (x ◆e)) (EEFst z) | refl = ap1 EEFst (e-contr x _ z) erase-ert2 (snd x) _ (EESnd z) with erase-e◆ z erase-ert2 (snd x) .(snd (x ◆e)) (EESnd z) | refl = ap1 EESnd (e-contr x _ z) -- since both round trips are stable, these functions demonstrate -- isomorphisms between the jugemental and non-judgemental definitions of -- erasure erase-e-iso : (e : zexp) (er : hexp) → (e ◆e == er) ≃ (erase-e e er) erase-e-iso e er = (◆erase-e e er) , (erase-e◆ , erase-ert1 e er , erase-ert2 e er) erase-t-iso : (t : ztyp) (tr : htyp) → (t ◆t == tr) ≃ (erase-t t tr) erase-t-iso t tr = (◆erase-t t tr) , (erase-t◆ , erase-trt1 t tr , erase-trt2 t tr) -- this isomorphism supplies the argument that the judgement has mode (∀, -- !∃), where uniqueness comes from erase-e◆. erase-e-mode : (e : zexp) → Σ[ er ∈ hexp ] (erase-e e er) erase-e-mode e = (e ◆e) , (◆erase-e e (e ◆e) refl) -- some translations and lemmas to move between the different -- forms. these are not needed to show that this is an ok encoding pair, -- but they are helpful when actually using it. -- even more specifically, the relation relates an expression to its -- functional erasure. rel◆t : (t : ztyp) → (erase-t t (t ◆t)) rel◆t t = ◆erase-t t (t ◆t) refl rel◆ : (e : zexp) → (erase-e e (e ◆e)) rel◆ e = ◆erase-e e (e ◆e) refl lem-erase-synth : ∀{e e' Γ t} → erase-e e e' → Γ ⊢ e' => t → Γ ⊢ (e ◆e) => t lem-erase-synth er wt = tr (λ x → _ ⊢ x => _) (! (erase-e◆ er)) wt lem-erase-ana : ∀{e e' Γ t} → erase-e e e' → Γ ⊢ e' <= t → Γ ⊢ (e ◆e) <= t lem-erase-ana er wt = tr (λ x → _ ⊢ x <= _) (! (erase-e◆ er)) wt lem-synth-erase : ∀{Γ e t e' } → Γ ⊢ e ◆e => t → erase-e e e' → Γ ⊢ e' => t lem-synth-erase d1 d2 with erase-e◆ d2 ... | refl = d1 eraset-det : ∀{t t' t''} → erase-t t t' → erase-t t t'' → t' == t'' eraset-det e1 e2 with erase-t◆ e1 ... | refl = erase-t◆ e2 erasee-det : ∀{e e' e''} → erase-e e e' → erase-e e e'' → e' == e'' erasee-det e1 e2 with erase-e◆ e1 ... | refl = erase-e◆ e2 erase-in-hole : ∀ {e e' u} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈[ u ] ⦇⌜ e' ⌟⦈[ u ] erase-in-hole (EENEHole er) = EENEHole (erase-in-hole er) erase-in-hole x = EENEHole x eq-er-trans : ∀{e e◆ e'} → (e ◆e) == (e' ◆e) → erase-e e e◆ → erase-e e' e◆ eq-er-trans {e} {e◆} {e'} eq er = tr (λ f → erase-e e' f) (erasee-det (◆erase-e e (e' ◆e) eq) er) (rel◆ e') eq-ert-trans : ∀{t t' t1 t2} → (t ◆t) == (t' ◆t) → erase-t t t1 → erase-t t' t2 → t1 == t2 eq-ert-trans eq er1 er2 = ! (erase-t◆ er1) · (eq · (erase-t◆ er2))
{ "alphanum_fraction": 0.5419292293, "avg_line_length": 51.7186629526, "ext": "agda", "hexsha": "cc6b9d99caa7b5b945657f9e3cec165aa5cb3a6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "judgemental-erase.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "judgemental-erase.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "judgemental-erase.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9151, "size": 18567 }
{-# OPTIONS --rewriting #-} module Issue2792 where open import Issue2792.Safe
{ "alphanum_fraction": 0.7375, "avg_line_length": 13.3333333333, "ext": "agda", "hexsha": "a72156b85cc484816fd87eb0af2f52052ecf03e1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2792.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2792.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2792.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 80 }
------------------------------------------------------------------------ -- Equivalences with erased "proofs" ------------------------------------------------------------------------ -- This module contains some basic definitions with few dependencies. -- See Equivalence.Erased for more definitions. The definitions below -- are reexported from Equivalence.Erased. {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Erased.Basics {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_) open import Equivalence eq as Eq using (_≃_; Is-equivalence) import Equivalence.Half-adjoint eq as HA open import Erased.Basics open import Preimage eq as Preimage using (_⁻¹_) private variable a b c d ℓ : Level A B C : Type a p x y : A P Q : A → Type p f g : (x : A) → P x ------------------------------------------------------------------------ -- Is-equivalenceᴱ -- Is-equivalence with erased proofs. Is-equivalenceᴱ : {A : Type a} {B : Type b} → @0 (A → B) → Type (a ⊔ b) Is-equivalenceᴱ {A = A} {B = B} f = ∃ λ (f⁻¹ : B → A) → Erased (HA.Proofs f f⁻¹) ------------------------------------------------------------------------ -- Some conversion lemmas -- Conversions between Is-equivalence and Is-equivalenceᴱ. Is-equivalence→Is-equivalenceᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Is-equivalence f → Is-equivalenceᴱ f Is-equivalence→Is-equivalenceᴱ = Σ-map P.id [_]→ @0 Is-equivalenceᴱ→Is-equivalence : Is-equivalenceᴱ f → Is-equivalence f Is-equivalenceᴱ→Is-equivalence = Σ-map P.id erased -- See also Equivalence.Erased.Is-equivalence≃Is-equivalenceᴱ. ------------------------------------------------------------------------ -- _≃ᴱ_ private module Dummy where -- Equivalences with erased proofs. infix 4 _≃ᴱ_ record _≃ᴱ_ (A : Type a) (B : Type b) : Type (a ⊔ b) where constructor ⟨_,_⟩ field to : A → B is-equivalence : Is-equivalenceᴱ to open Dummy public using (_≃ᴱ_; ⟨_,_⟩) hiding (module _≃ᴱ_) -- A variant of the constructor of _≃ᴱ_ with erased type arguments. ⟨_,_⟩₀ : {@0 A : Type a} {@0 B : Type b} (to : A → B) → Is-equivalenceᴱ to → A ≃ᴱ B ⟨ to , eq ⟩₀ = ⟨ to , eq ⟩ -- Note that the type arguments A and B are erased. This is not the -- case for the record module Dummy._≃ᴱ_. module _≃ᴱ_ {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ᴱ B) where -- The "left-to-right" direction of the equivalence. to : A → B to = let ⟨ to , _ ⟩ = A≃B in to -- The function to is an equivalence. is-equivalence : Is-equivalenceᴱ to is-equivalence = let ⟨ _ , eq ⟩ = A≃B in eq -- The "right-to-left" direction of the equivalence. from : B → A from = let from , _ = is-equivalence in from -- The underlying logical equivalence. logical-equivalence : A ⇔ B logical-equivalence = record { to = to ; from = from } -- In an erased context one can construct a corresponding -- equivalence. @0 equivalence : A ≃ B equivalence = Eq.⟨ to , Is-equivalenceᴱ→Is-equivalence is-equivalence ⟩ -- In an erased context the function from is a right inverse of to. @0 right-inverse-of : ∀ y → to (from y) ≡ y right-inverse-of = _≃_.right-inverse-of equivalence -- In an erased context the function from is a left inverse of to. @0 left-inverse-of : ∀ x → from (to x) ≡ x left-inverse-of = _≃_.left-inverse-of equivalence -- Two coherence properties. @0 left-right-lemma : ∀ x → cong to (left-inverse-of x) ≡ right-inverse-of (to x) left-right-lemma = _≃_.left-right-lemma equivalence @0 right-left-lemma : ∀ x → cong from (right-inverse-of x) ≡ left-inverse-of (from x) right-left-lemma = _≃_.right-left-lemma equivalence private variable A≃B : A ≃ᴱ B ------------------------------------------------------------------------ -- More conversion lemmas -- Equivalences are equivalent to pairs. ≃ᴱ-as-Σ : (A ≃ᴱ B) ≃ (∃ λ (f : A → B) → Is-equivalenceᴱ f) ≃ᴱ-as-Σ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = λ { ⟨ f , is ⟩ → f , is } ; from = uncurry ⟨_,_⟩ } ; right-inverse-of = refl } ; left-inverse-of = refl }) -- Conversions between _≃_ and _≃ᴱ_. ≃→≃ᴱ : {@0 A : Type a} {@0 B : Type b} → A ≃ B → A ≃ᴱ B ≃→≃ᴱ Eq.⟨ f , is-equiv ⟩ = ⟨ f , Is-equivalence→Is-equivalenceᴱ is-equiv ⟩ @0 ≃ᴱ→≃ : A ≃ᴱ B → A ≃ B ≃ᴱ→≃ = _≃ᴱ_.equivalence -- Data corresponding to the erased proofs of an equivalence with -- erased proofs. record Erased-proofs {A : Type a} {B : Type b} (to : A → B) (from : B → A) : Type (a ⊔ b) where field proofs : HA.Proofs to from -- Extracts "erased proofs" from a regular equivalence. [proofs] : {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ B) → Erased-proofs (_≃_.to A≃B) (_≃_.from A≃B) [proofs] A≃B .Erased-proofs.proofs = let record { is-equivalence = is-equivalence } = A≃B in proj₂₀ is-equivalence -- Converts two functions and some erased proofs to an equivalence -- with erased proofs. -- -- Note that Agda can in many cases infer "to" and "from" from the -- first explicit argument, see (for instance) ↔→≃ᴱ below. [≃]→≃ᴱ : {@0 A : Type a} {@0 B : Type b} {to : A → B} {from : B → A} → @0 Erased-proofs to from → A ≃ᴱ B [≃]→≃ᴱ {to = to} {from = from} ep = ⟨ to , (from , [ ep .Erased-proofs.proofs ]) ⟩ -- A function with a quasi-inverse with erased proofs can be turned -- into an equivalence with erased proofs. ↔→≃ᴱ : {@0 A : Type a} {@0 B : Type b} (f : A → B) (g : B → A) → @0 (∀ x → f (g x) ≡ x) → @0 (∀ x → g (f x) ≡ x) → A ≃ᴱ B ↔→≃ᴱ {A = A} {B = B} f g f∘g g∘f = [≃]→≃ᴱ ([proofs] A≃B′) where @0 A≃B′ : A ≃ B A≃B′ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = f ; from = g } ; right-inverse-of = f∘g } ; left-inverse-of = g∘f }) -- A variant of ↔→≃ᴱ. ⇔→≃ᴱ : {@0 A : Type a} {@0 B : Type b} → @0 Is-proposition A → @0 Is-proposition B → (A → B) → (B → A) → A ≃ᴱ B ⇔→≃ᴱ A-prop B-prop to from = [≃]→≃ᴱ ([proofs] (Eq.⇔→≃ A-prop B-prop to from)) ------------------------------------------------------------------------ -- Equivalences with erased proofs form an equivalence relation -- Identity. id : {@0 A : Type a} → A ≃ᴱ A id = [≃]→≃ᴱ ([proofs] Eq.id) -- Inverse. inverse : {@0 A : Type a} {@0 B : Type b} → A ≃ᴱ B → B ≃ᴱ A inverse A≃B = [≃]→≃ᴱ ([proofs] (Eq.inverse (≃ᴱ→≃ A≃B))) -- Composition. infixr 9 _∘_ _∘_ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} → B ≃ᴱ C → A ≃ᴱ B → A ≃ᴱ C f ∘ g = [≃]→≃ᴱ ([proofs] (≃ᴱ→≃ f Eq.∘ ≃ᴱ→≃ g)) ------------------------------------------------------------------------ -- A preservation lemma -- Is-equivalenceᴱ f is logically equivalent to Is-equivalenceᴱ g if f -- and g are pointwise equal. -- -- See also Equivalence.Erased.[]-cong₂-⊔.Is-equivalenceᴱ-cong. Is-equivalenceᴱ-cong-⇔ : {@0 A : Type a} {@0 B : Type b} {@0 f g : A → B} → @0 (∀ x → f x ≡ g x) → Is-equivalenceᴱ f ⇔ Is-equivalenceᴱ g Is-equivalenceᴱ-cong-⇔ {f = f} {g = g} f≡g = record { to = to f≡g; from = to (sym ⊚ f≡g) } where to : {@0 A : Type a} {@0 B : Type b} {@0 f g : A → B} → @0 (∀ x → f x ≡ g x) → Is-equivalenceᴱ f → Is-equivalenceᴱ g to f≡g f-eq@(f⁻¹ , _) = ( f⁻¹ , [ erased $ proj₂ $ Is-equivalence→Is-equivalenceᴱ $ Eq.respects-extensional-equality f≡g $ Is-equivalenceᴱ→Is-equivalence f-eq ] ) ---------------------------------------------------------------------- -- The left-to-right and right-to-left components of an equivalence -- with erased proofs can be replaced with extensionally equal -- functions -- The forward direction of an equivalence with erased proofs can be -- replaced by an extensionally equal function. with-other-function : {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ᴱ B) (f : A → B) → @0 (∀ x → _≃ᴱ_.to A≃B x ≡ f x) → A ≃ᴱ B with-other-function ⟨ g , is-equivalence ⟩ f g≡f = ⟨ f , (let record { to = to } = Is-equivalenceᴱ-cong-⇔ g≡f in to is-equivalence) ⟩₀ _ : _≃ᴱ_.to (with-other-function A≃B f p) ≡ f _ = refl _ _ : _≃ᴱ_.from (with-other-function A≃B f p) ≡ _≃ᴱ_.from A≃B _ = refl _ -- The same applies to the other direction. with-other-inverse : {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ᴱ B) (g : B → A) → @0 (∀ x → _≃ᴱ_.from A≃B x ≡ g x) → A ≃ᴱ B with-other-inverse A≃B g ≡g = inverse $ with-other-function (inverse A≃B) g ≡g _ : _≃ᴱ_.from (with-other-inverse A≃B g p) ≡ g _ = refl _ _ : _≃ᴱ_.to (with-other-inverse A≃B f p) ≡ _≃ᴱ_.to A≃B _ = refl _
{ "alphanum_fraction": 0.549510585, "avg_line_length": 27.0338461538, "ext": "agda", "hexsha": "49069ac78b28b1a1da6ff4543eea737d122333d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equivalence/Erased/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equivalence/Erased/Basics.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equivalence/Erased/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3222, "size": 8786 }
-- 2012-03-08 Andreas module NoTerminationCheck4 where data Bool : Set where true false : Bool {-# NON_TERMINATING #-} private f : Bool -> Bool f true = f true f false = f false -- error: must place pragma before f
{ "alphanum_fraction": 0.6814159292, "avg_line_length": 16.1428571429, "ext": "agda", "hexsha": "d7a4080c8fe337ede6cdaa38507bf1983e415d0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/NoTerminationCheck4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/NoTerminationCheck4.agda", "max_line_length": 36, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/NoTerminationCheck4.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 67, "size": 226 }
------------------------------------------------------------------------------ -- First-order logic (without equality) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module is re-exported by the "base" modules whose theories are -- defined on first-order logic (without equality). -- The logical connectives are hard-coded in our translation, i.e. the -- symbols ⊥, ⊤, ¬, ∧, ∨, → and ↔ must be used. -- -- N.B. For the implication we use the Agda function type. -- -- N.B For the universal quantifier we use the Agda (dependent) -- function type. module Common.FOL.FOL where infixr 4 _,_ infix 3 ¬_ infixr 2 _∧_ infix 2 ∃ infixr 1 _∨_ infixr 0 _↔_ ---------------------------------------------------------------------------- -- The universe of discourse/universal domain. postulate D : Set ------------------------------------------------------------------------------ -- The conjunction data type. -- It is not necessary to add the data constructor _,_ as an -- axiom because the ATPs implement it. data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B -- It is not strictly necessary define the projections ∧-proj₁ and -- ∧-proj₂ because the ATPs implement them. For the same reason, it is -- not necessary to add them as (general/local) hints. ∧-proj₁ : ∀ {A B} → A ∧ B → A ∧-proj₁ (a , _) = a ∧-proj₂ : ∀ {A B} → A ∧ B → B ∧-proj₂ (_ , b) = b ----------------------------------------------------------------------------- -- The disjunction data type. -- It is not necessary to add the data constructors inj₁ and inj₂ as -- axioms because the ATPs implement them. data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B -- It is not strictly necessary define the eliminator `case` because -- the ATPs implement it. For the same reason, it is not necessary to -- add it as a (general/local) hint. case : ∀ {A B} → {C : Set} → (A → C) → (B → C) → A ∨ B → C case f g (inj₁ a) = f a case f g (inj₂ b) = g b ------------------------------------------------------------------------------ -- The empty type. data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () ------------------------------------------------------------------------------ -- The unit type. -- N.B. The name of this type is "\top", not T. data ⊤ : Set where tt : ⊤ ------------------------------------------------------------------------------ -- Negation. -- The underscore allows to write for example '¬ ¬ A' instead of '¬ (¬ A)'. -- We do not add a definition because: i) the definition of negation -- is not a FOL-definition and ii) the translation of the neagation is -- hard-coded in Apia. ¬_ : Set → Set ¬ A = A → ⊥ ------------------------------------------------------------------------------ -- Biconditional. -- We do not add a definition because: i) the definition of the -- biconditional is not a FOL-definition, ii) the translation of the -- biconditional is hard-coded in Apia. _↔_ : Set → Set → Set A ↔ B = (A → B) ∧ (B → A) ------------------------------------------------------------------------------ -- The existential quantifier type on D. data ∃ (A : D → Set) : Set where _,_ : (t : D) → A t → ∃ A -- Sugar syntax for the existential quantifier. syntax ∃ (λ x → e) = ∃[ x ] e -- 2012-03-05: We avoid to use the existential elimination or the -- existential projections because we use pattern matching (and the -- Agda's with constructor). -- The existential elimination. -- -- NB. We do not use the usual type theory elimination with two -- projections because we are working in first-order logic where we do -- not need extract a witness from an existence proof. -- ∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B -- ∃-elim (_ , Ax) h = h Ax -- The existential proyections. -- ∃-proj₁ : ∀ {A} → ∃ A → D -- ∃-proj₁ (x , _) = x -- ∃-proj₂ : ∀ {A} → (h : ∃ A) → A (∃-proj₁ h) -- ∃-proj₂ (_ , Ax) = Ax ------------------------------------------------------------------------------ -- Properties →-trans : {A B C : Set} → (A → B) → (B → C) → A → C →-trans f g a = g (f a)
{ "alphanum_fraction": 0.492798111, "avg_line_length": 31.6044776119, "ext": "agda", "hexsha": "2883f938b3b6cfd4a3d2e2d0ca131082616a2230", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Common/FOL/FOL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Common/FOL/FOL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Common/FOL/FOL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1129, "size": 4235 }
-- Andreas, 2014-06-12 This feature has been addressed by issue 907 {-# OPTIONS --copatterns #-} module CopatternsToRHS where import Common.Level open import Common.Equality open import Common.Prelude using (Bool; true; false) record R (A : Set) : Set where constructor mkR field fst : A → A snd : Bool open R someR : {A : Set} → R A fst someR x = x snd someR = true -- This already behaves like: someR' : {A : Set} → R A fst someR' = λ x → x snd someR' = true -- We translate it to: someR″ : {A : Set} → R A someR″ = mkR (λ x → x) true data C {A : Set} : R A → Set where c : ∀ f b → C (mkR f b) works : {A : Set} → C {A} someR″ → Set₁ works (c .(λ x → x) .true) = Set test : {A : Set} → C {A} someR → Set₁ test (c .(λ x → x) .true) = Set
{ "alphanum_fraction": 0.5997392438, "avg_line_length": 18.7073170732, "ext": "agda", "hexsha": "ace4c320e825b18ed9a10a8e621f30425ea7e37f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CopatternsToRHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CopatternsToRHS.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CopatternsToRHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 285, "size": 767 }
------------------------------------------------------------------------ -- A tactic aimed at making equational reasoning proofs more readable -- in modules that are parametrised by an implementation of equality ------------------------------------------------------------------------ -- The tactic uses the first instance of Equality-with-J that it finds -- in the context. {-# OPTIONS --without-K --safe #-} open import Equality open import Prelude module Tactic.By.Parametrised {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import List eq open import Monad eq open import Tactic.By eq as TB open import TC-monad eq as TC open TB public using (⟨_⟩) ------------------------------------------------------------------------ -- The ⟨by⟩ tactic private -- Finds the first instance of "∀ Δ → Equality-with-J something" in -- the context (if any; Δ must not contain "visible" arguments), -- starting from the "outside", and returns a term standing for this -- instance. find-Equality-with-J : TC Term find-Equality-with-J = do c ← getContext n ← search (reverse c) return (var (length c ∸ suc n) []) where search : List (Arg TC.Type) → TC ℕ search [] = typeError (strErr err ∷ []) where err = "⟨by⟩: No instance of Equality-with-J found in the context." search (a@(arg _ t) ∷ args) = do if ok t then return 0 else suc ⟨$⟩ search args where ok : Term → Bool ok (def f _) = if eq-Name f (quote Equality-with-J) then true else false ok (pi (arg (arg-info visible _) _) _) = false ok (pi _ (abs _ b)) = ok b ok _ = false open ⟨By⟩ (λ where (def (quote Reflexive-relation._≡_) (arg _ a ∷ _ ∷ arg _ A ∷ arg _ x ∷ arg _ y ∷ [])) → return $ just (a , A , x , y) _ → return nothing) find-Equality-with-J (λ eq p → def (quote sym) (varg eq ∷ varg p ∷ [])) (λ eq lhs rhs f p → def (quote cong) (varg eq ∷ replicate 4 (harg unknown) ++ harg lhs ∷ harg rhs ∷ varg f ∷ varg p ∷ [])) false public
{ "alphanum_fraction": 0.5186666667, "avg_line_length": 30.4054054054, "ext": "agda", "hexsha": "6f53a40e2428202a41831fb77caa35889e5adb8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Tactic/By/Parametrised.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Tactic/By/Parametrised.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Tactic/By/Parametrised.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 584, "size": 2250 }
-- Andreas, 2016-12-28, issue #2360 reported by m0davis -- Ambigous projection in with-clause triggered internal error postulate A : Set a : A module M (X : Set) where record R : Set where field f : X -- Opening two instantiations of M creates and ambiguous projection open M A using (module R) open M A test : R R.f test with a R.f test | _ = a -- WAS: triggered __IMPOSSIBLE__ -- should succeed
{ "alphanum_fraction": 0.6980676329, "avg_line_length": 18.8181818182, "ext": "agda", "hexsha": "e9ffcd3c784a658cd797d9bed49e523531cbfdad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2360.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2360.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2360.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 126, "size": 414 }
{-# OPTIONS --safe #-} module Ferros.Prelude where open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Data.Bool hiding (_≤_) ℕ-sub : (x y : ℕ) → (y ≤ x) → ℕ ℕ-sub x .zero z≤n = x ℕ-sub ._ ._ (s≤s p) = ℕ-sub _ _ p invert-ℕ-sub : ∀ x y → (p : y ≤ x) → (ℕ-sub x y p) + y ≡ x invert-ℕ-sub x .zero z≤n = +-identityʳ x invert-ℕ-sub (suc x) (suc y) (s≤s p) = begin (ℕ-sub (suc x) (suc y) (s≤s p)) + suc y ≡⟨ +-suc (ℕ-sub (suc x) (suc y) (s≤s p)) y ⟩ suc ((ℕ-sub (suc x) (suc y) (s≤s p)) + y) ≡⟨ cong suc (invert-ℕ-sub x y p) ⟩ suc x ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5786963434, "avg_line_length": 29.9523809524, "ext": "agda", "hexsha": "931c81371fb1b76092050b0803b6df919f9fbd74", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "auxoncorp/ferros-spec", "max_forks_repo_path": "Ferros/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "auxoncorp/ferros-spec", "max_issues_repo_path": "Ferros/Prelude.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "auxoncorp/ferros-spec", "max_stars_repo_path": "Ferros/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-27T23:18:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-11T01:06:56.000Z", "num_tokens": 289, "size": 629 }
{-# OPTIONS --without-K --safe #-} module TypeTheory.Nat.Instance where -- agda-stdlib open import Level renaming (zero to lzero; suc to lsuc) open import Data.Nat using (ℕ; zero; suc) open import Relation.Binary.PropositionalEquality using (refl) -- agda-misc import TypeTheory.Nat.Operations as NatOperations ℕ-ind : ∀ {l} (P : ℕ → Set l) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n ℕ-ind P P-base P-step zero = P-base ℕ-ind P P-base P-step (suc n) = P-step n (ℕ-ind P P-base P-step n) open NatOperations ℕ zero suc ℕ-ind (λ _ _ _ → refl) (λ _ _ _ _ → refl) public
{ "alphanum_fraction": 0.6432160804, "avg_line_length": 31.4210526316, "ext": "agda", "hexsha": "bb4175478e9da0edcb435782be87a29c772d69f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/Nat/Instance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/Nat/Instance.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/Nat/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 192, "size": 597 }
{-# OPTIONS --warning=error #-} module UselessPrivateImport2 where private open import Common.Issue481ParametrizedModule Set
{ "alphanum_fraction": 0.7984496124, "avg_line_length": 18.4285714286, "ext": "agda", "hexsha": "95fa3dd30e44cad7df4ea969a702f0124faeff58", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UselessPrivateImport2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/UselessPrivateImport2.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/UselessPrivateImport2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 129 }
module Numeral.Integer.Relation where
{ "alphanum_fraction": 0.8684210526, "avg_line_length": 19, "ext": "agda", "hexsha": "e0a5498630f3a703e323b896a9cf59e9f0753b55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer/Relation.agda", "max_line_length": 37, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer/Relation.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8, "size": 38 }
module OpenPublicPlusTypeError where module X where postulate D : Set open X public postulate x : D typeIncorrect : Set typeIncorrect = Set1
{ "alphanum_fraction": 0.7702702703, "avg_line_length": 11.3846153846, "ext": "agda", "hexsha": "776aa30c5e52447a35ebd69e559609bfea899dbc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/OpenPublicPlusTypeError.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/OpenPublicPlusTypeError.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/OpenPublicPlusTypeError.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 148 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.TypeEqvTo where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Prod hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Foundations.Pointed open import Cubical.Structures.Pointed private variable ℓ ℓ' ℓ'' : Level TypeEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') TypeEqvTo ℓ X = TypeWithStr ℓ (λ Y → ∥ Y ≃ X ∥) PointedEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') PointedEqvTo ℓ X = TypeWithStr ℓ (λ Y → Y × ∥ Y ≃ X ∥) module _ (X : Type ℓ') where PointedEqvTo-structure : Type ℓ → Type (ℓ-max ℓ ℓ') PointedEqvTo-structure = add-to-structure pointed-structure (λ Y _ → ∥ Y ≃ X ∥) PointedEqvTo-iso : StrIso PointedEqvTo-structure ℓ'' PointedEqvTo-iso = add-to-iso pointed-structure pointed-iso (λ Y _ → ∥ Y ≃ X ∥) PointedEqvTo-is-SNS : SNS {ℓ} PointedEqvTo-structure PointedEqvTo-iso PointedEqvTo-is-SNS = add-axioms-SNS pointed-structure pointed-iso (λ Y _ → ∥ Y ≃ X ∥) (λ _ _ → squash) pointed-is-SNS PointedEqvTo-SIP : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvTo-iso ] B ≃ (A ≡ B) PointedEqvTo-SIP = SIP PointedEqvTo-structure PointedEqvTo-iso PointedEqvTo-is-SNS PointedEqvTo-sip : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvTo-iso ] B → (A ≡ B) PointedEqvTo-sip A B = equivFun (PointedEqvTo-SIP A B)
{ "alphanum_fraction": 0.6616161616, "avg_line_length": 37.7142857143, "ext": "agda", "hexsha": "292100f630b8f2baf01bdc3b27639d67f81ee656", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Structures/TypeEqvTo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Structures/TypeEqvTo.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Structures/TypeEqvTo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 601, "size": 1584 }
module trie-core where open import bool open import char open import list open import maybe open import product open import string open import unit open import eq open import nat cal : Set → Set cal A = 𝕃 (char × A) empty-cal : ∀{A : Set} → cal A empty-cal = [] cal-lookup : ∀ {A : Set} → cal A → char → maybe A cal-lookup [] _ = nothing cal-lookup ((c , a) :: l) c' with c =char c' ... | tt = just a ... | ff = cal-lookup l c' cal-insert : ∀ {A : Set} → cal A → char → A → cal A cal-insert [] c a = (c , a) :: [] cal-insert ((c' , a') :: l) c a with c =char c' ... | tt = (c , a) :: l ... | ff = (c' , a') :: (cal-insert l c a) cal-remove : ∀ {A : Set} → cal A → char → cal A cal-remove [] _ = [] cal-remove ((c , a) :: l) c' with c =char c' ... | tt = cal-remove l c' ... | ff = (c , a) :: cal-remove l c' cal-add : ∀{A : Set} → cal A → char → A → cal A cal-add l c a = (c , a) :: l test-cal-insert = cal-insert (('a' , 1) :: ('b' , 2) :: []) 'b' 20 data trie (A : Set) : Set where Node : maybe A → cal (trie A) → trie A empty-trie : ∀{A : Set} → trie A empty-trie = (Node nothing empty-cal) trie-lookup-h : ∀{A : Set} → trie A → 𝕃 char → maybe A trie-lookup-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-lookup-h (Node odata ts) (c :: cs) | nothing = nothing trie-lookup-h (Node odata ts) (c :: cs) | just t = trie-lookup-h t cs trie-lookup-h (Node odata ts) [] = odata trie-insert-h : ∀{A : Set} → trie A → 𝕃 char → A → trie A trie-insert-h (Node odata ts) [] x = (Node (just x) ts) trie-insert-h (Node odata ts) (c :: cs) x with cal-lookup ts c trie-insert-h (Node odata ts) (c :: cs) x | just t = (Node odata (cal-insert ts c (trie-insert-h t cs x))) trie-insert-h (Node odata ts) (c :: cs) x | nothing = (Node odata (cal-add ts c (trie-insert-h empty-trie cs x))) trie-remove-h : ∀{A : Set} → trie A → 𝕃 char → trie A trie-remove-h (Node odata ts) (c :: cs) with cal-lookup ts c trie-remove-h (Node odata ts) (c :: cs) | nothing = Node odata ts trie-remove-h (Node odata ts) (c :: cs) | just t = Node odata (cal-insert ts c (trie-remove-h t cs)) trie-remove-h (Node odata ts) [] = Node nothing ts
{ "alphanum_fraction": 0.5836849508, "avg_line_length": 31.8358208955, "ext": "agda", "hexsha": "59c773e59d53e8387590990f56436a0b544f63b1", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "trie-core.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "trie-core.agda", "max_line_length": 100, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "trie-core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 761, "size": 2133 }
postulate F : Set → Set → Set syntax F X Y = X ! Y test : Set → Set → Set test X = _! X
{ "alphanum_fraction": 0.5434782609, "avg_line_length": 11.5, "ext": "agda", "hexsha": "3a44998253f56bf10540a2f557a89d0c0f1da7fe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Sections-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Sections-4.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Sections-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 36, "size": 92 }
open import Everything module Test.Test4 {𝔵} {𝔛 : Ø 𝔵} {𝔞} {𝔒₁ : 𝔛 → Ø 𝔞} {𝔟} {𝔒₂ : 𝔛 → Ø 𝔟} {ℓ : Ł} ⦃ _ : Transitivity.class (Arrow 𝔒₁ 𝔒₂) ⦄ -- ⦃ _ : [𝓢urjectivity] (Arrow 𝔒₁ 𝔒₂) (Extension $ ArrowṖroperty ℓ 𝔒₁ 𝔒₂) ⦄ where test[∙] : ∀ {x y} → ArrowṖroperty ℓ 𝔒₁ 𝔒₂ x → Arrow 𝔒₁ 𝔒₂ x y → ArrowṖroperty ℓ 𝔒₁ 𝔒₂ y test[∙] P f .π₀ g = (f ◃ P) .π₀ g
{ "alphanum_fraction": 0.5501355014, "avg_line_length": 26.3571428571, "ext": "agda", "hexsha": "33227dc11a532be4369943df5cbb1a7e060b3b87", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Test4.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Test4.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Test4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 235, "size": 369 }
module parser where open import lib open import cedille-types {-# FOREIGN GHC import qualified CedilleParser #-} data Either (A : Set)(B : Set) : Set where Left : A → Either A B Right : B → Either A B {-# COMPILE GHC Either = data Either (Left | Right) #-} postulate parseStart : string → Either (Either string string) start parseTerm : string → Either string term parseType : string → Either string type parseKind : string → Either string kind parseLiftingType : string → Either string liftingType parseDefTermOrType : string → Either string defTermOrType {-# COMPILE GHC parseStart = CedilleParser.parseTxt #-} {-# COMPILE GHC parseTerm = CedilleParser.parseTerm #-} {-# COMPILE GHC parseType = CedilleParser.parseType #-} {-# COMPILE GHC parseKind = CedilleParser.parseKind #-} {-# COMPILE GHC parseLiftingType = CedilleParser.parseLiftingType #-} {-# COMPILE GHC parseDefTermOrType = CedilleParser.parseDefTermOrType #-}
{ "alphanum_fraction": 0.7367864693, "avg_line_length": 36.3846153846, "ext": "agda", "hexsha": "4818522c7211fe5d5f44a0054a7eaf30a136dc0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/parser.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/parser.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/parser.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 236, "size": 946 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Span open import lib.types.Paths import lib.types.Generic1HIT as Generic1HIT module lib.types.Pushout where module _ {i j k} where postulate -- HIT Pushout : (d : Span {i} {j} {k}) → Type (lmax (lmax i j) k) module _ {d : Span} where postulate -- HIT left : Span.A d → Pushout d right : Span.B d → Pushout d glue : (c : Span.C d) → left (Span.f d c) == right (Span.g d c) module PushoutElim {d : Span} {l} {P : Pushout d → Type l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where postulate -- HIT f : Π (Pushout d) P left-β : ∀ a → f (left a) ↦ left* a right-β : ∀ b → f (right b) ↦ right* b {-# REWRITE left-β #-} {-# REWRITE right-β #-} postulate -- HIT glue-β : (c : Span.C d) → apd f (glue c) == glue* c Pushout-elim = PushoutElim.f module PushoutRec {i j k} {d : Span {i} {j} {k}} {l} {D : Type l} (left* : Span.A d → D) (right* : Span.B d → D) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c)) where private module M = PushoutElim left* right* (λ c → ↓-cst-in (glue* c)) f : Pushout d → D f = M.f glue-β : (c : Span.C d) → ap f (glue c) == glue* c glue-β c = apd=cst-in {f = f} (M.glue-β c) Pushout-rec = PushoutRec.f Pushout-rec-η : ∀ {i j k} {d : Span {i} {j} {k}} {l} {D : Type l} (f : Pushout d → D) → Pushout-rec (f ∘ left) (f ∘ right) (ap f ∘ glue) ∼ f Pushout-rec-η f = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-='-in' $ ! $ PushoutRec.glue-β (f ∘ left) (f ∘ right) (ap f ∘ glue) c) module PushoutGeneric {i j k} {d : Span {i} {j} {k}} where open Span d renaming (f to g; g to h) open Generic1HIT (Coprod A B) C (inl ∘ g) (inr ∘ h) public module _ where module To = PushoutRec (cc ∘ inl) (cc ∘ inr) pp to : Pushout d → T to = To.f from-cc : Coprod A B → Pushout d from-cc (inl a) = left a from-cc (inr b) = right b module From = Rec from-cc glue from : T → Pushout d from = From.f abstract to-from : (x : T) → to (from x) == x to-from = elim to-from-cc to-from-pp where to-from-cc : (x : Coprod A B) → to (from (cc x)) == cc x to-from-cc (inl a) = idp to-from-cc (inr b) = idp to-from-pp : (c : C) → idp == idp [ (λ z → to (from z) == z) ↓ pp c ] to-from-pp c = ↓-∘=idf-in' to from (ap to (ap from (pp c)) =⟨ From.pp-β c |in-ctx ap to ⟩ ap to (glue c) =⟨ To.glue-β c ⟩ pp c =∎) from-to : (x : Pushout d) → from (to x) == x from-to = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in' from to (ap from (ap to (glue c)) =⟨ To.glue-β c |in-ctx ap from ⟩ ap from (pp c) =⟨ From.pp-β c ⟩ glue c =∎)) generic-pushout : Pushout d ≃ T generic-pushout = equiv to from to-from from-to _⊔^[_]_/_ : ∀ {i j k} (A : Type i) (C : Type k) (B : Type j) (fg : (C → A) × (C → B)) → Type (lmax (lmax i j) k) A ⊔^[ C ] B / (f , g) = Pushout (span A B C f g) ⊙Pushout : ∀ {i j k} (d : ⊙Span {i} {j} {k}) → Ptd _ ⊙Pushout d = ⊙[ Pushout (⊙Span-to-Span d) , left (pt (⊙Span.X d)) ] module _ {i j k} (d : ⊙Span {i} {j} {k}) where open ⊙Span d ⊙left : X ⊙→ ⊙Pushout d ⊙left = (left , idp) ⊙right : Y ⊙→ ⊙Pushout d ⊙right = (right , ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⊙glue : (⊙left ⊙∘ f) == (⊙right ⊙∘ g) ⊙glue = pair= (λ= glue) (↓-app=cst-in $ ap left (snd f) ∙ idp =⟨ ∙-unit-r _ ⟩ ap left (snd f) =⟨ lemma (glue (pt Z)) (ap right (snd g)) (ap left (snd f)) ⟩ glue (pt Z) ∙ ap right (snd g) ∙ ! (ap right (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =⟨ !-ap right (snd g) |in-ctx (λ w → glue (pt Z) ∙ ap right (snd g) ∙ w ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⟩ glue (pt Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =⟨ ! (app=-β glue (pt Z)) |in-ctx (λ w → w ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⟩ app= (λ= glue) (pt Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =∎) where lemma : ∀ {i} {A : Type i} {x y z w : A} (p : x == y) (q : y == z) (r : x == w) → r == p ∙ q ∙ ! q ∙ ! p ∙' r lemma idp idp idp = idp ⊙pushout-J : ∀ {i j k l} (P : ⊙Span → Type l) → ({A : Type i} {B : Type j} (Z : Ptd k) (f : de⊙ Z → A) (g : de⊙ Z → B) → P (⊙span ⊙[ A , f (pt Z) ] ⊙[ B , g (pt Z) ] Z (f , idp) (g , idp))) → ((ps : ⊙Span) → P ps) ⊙pushout-J P t (⊙span ⊙[ _ , ._ ] ⊙[ _ , ._ ] Z (f , idp) (g , idp)) = t Z f g
{ "alphanum_fraction": 0.4783214002, "avg_line_length": 31.8227848101, "ext": "agda", "hexsha": "13d563b0813f0de7325af21af9c2fb894d6c28bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Pushout.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Pushout.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Pushout.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2120, "size": 5028 }
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual -- blocks -- Skipping an old-style mutual block: Somewhere within a `mutual` -- block before a data definition. mutual data Cheat : Set where cheat : Oops → Cheat {-# NO_POSITIVITY_CHECK #-} data Oops : Set where oops : (Cheat → Cheat) → Oops
{ "alphanum_fraction": 0.7015384615, "avg_line_length": 25, "ext": "agda", "hexsha": "46e5e3ab88bb2787ae3c92f605eac611b6b5aeec", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1614b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1614b.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1614b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 325 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.CommRingEvalHom where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool.Base open import Cubical.Algebra.RingSolver.RawAlgebra open import Cubical.Algebra.RingSolver.CommRingHornerForms open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ : Level module HomomorphismProperties (R : CommRing {ℓ}) where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open Theory (CommRing→Ring R) open IteratedHornerOperations νR EvalHom+0 : (n : ℕ) (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (0ₕ +ₕ P) xs ≡ eval n P xs EvalHom+0 ℕ.zero (const x) [] = cong (scalar R) (+Ridℤ x) EvalHom+0 (ℕ.suc n) P xs = refl Eval0H : (n : ℕ) (xs : Vec ⟨ νR ⟩ n) → eval {A = νR} n 0ₕ xs ≡ 0r Eval0H .ℕ.zero [] = refl Eval0H .(ℕ.suc _) (x ∷ xs) = refl combineCasesEval : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec ⟨ νR ⟩ n) → eval (ℕ.suc n) (P ·X+ Q) (x ∷ xs) ≡ (eval (ℕ.suc n) P (x ∷ xs)) · x + eval n Q xs combineCasesEval {n = n} 0H Q x xs = eval n Q xs ≡⟨ sym (+Lid _) ⟩ 0r + eval n Q xs ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + eval n Q xs ⟩ 0r · x + eval n Q xs ∎ combineCasesEval {n = n} (P ·X+ P₁) Q x xs = refl Eval1ₕ : (n : ℕ) (xs : Vec ⟨ νR ⟩ n) → eval {A = νR} n 1ₕ xs ≡ 1r Eval1ₕ .ℕ.zero [] = refl Eval1ₕ (ℕ.suc n) (x ∷ xs) = eval (ℕ.suc n) 1ₕ (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) (0H ·X+ 1ₕ) (x ∷ xs) ≡⟨ combineCasesEval 0H 1ₕ x xs ⟩ eval {A = νR} (ℕ.suc n) 0H (x ∷ xs) · x + eval n 1ₕ xs ≡⟨ cong (λ u → u · x + eval n 1ₕ xs) (Eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n 1ₕ xs ≡⟨ cong (λ u → 0r · x + u) (Eval1ₕ _ xs) ⟩ 0r · x + 1r ≡⟨ cong (λ u → u + 1r) (0LeftAnnihilates _) ⟩ 0r + 1r ≡⟨ +Lid _ ⟩ 1r ∎ -EvalDist : (n : ℕ) (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (-ₕ P) xs ≡ - eval n P xs -EvalDist .ℕ.zero (const x) [] = -DistScalar R x -EvalDist n 0H xs = eval n (-ₕ 0H) xs ≡⟨ Eval0H n xs ⟩ 0r ≡⟨ sym 0Selfinverse ⟩ - 0r ≡⟨ cong -_ (sym (Eval0H n xs)) ⟩ - eval n 0H xs ∎ -EvalDist .(ℕ.suc _) (P ·X+ Q) (x ∷ xs) = eval (ℕ.suc _) (-ₕ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc _) ((-ₕ P) ·X+ (-ₕ Q)) (x ∷ xs) ≡⟨ combineCasesEval (-ₕ P) (-ₕ Q) x xs ⟩ (eval (ℕ.suc _) (-ₕ P) (x ∷ xs)) · x + eval _ (-ₕ Q) xs ≡⟨ cong (λ u → u · x + eval _ (-ₕ Q) xs) (-EvalDist _ P _) ⟩ (- eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ (-ₕ Q) xs ≡⟨ cong (λ u → (- eval (ℕ.suc _) P (x ∷ xs)) · x + u) (-EvalDist _ Q _) ⟩ (- eval (ℕ.suc _) P (x ∷ xs)) · x + - eval _ Q xs ≡[ i ]⟨ -DistL· (eval (ℕ.suc _) P (x ∷ xs)) x i + - eval _ Q xs ⟩ - ((eval (ℕ.suc _) P (x ∷ xs)) · x) + (- eval _ Q xs) ≡⟨ -Dist _ _ ⟩ - ((eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ Q xs) ≡[ i ]⟨ - combineCasesEval P Q x xs (~ i) ⟩ - eval (ℕ.suc _) (P ·X+ Q) (x ∷ xs) ∎ combineCases+ : (n : ℕ) (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (ℕ.suc n) ((P ·X+ r) +ₕ (Q ·X+ s)) xs ≡ eval (ℕ.suc n) ((P +ₕ Q) ·X+ (r +ₕ s)) xs combineCases+ ℕ.zero P Q r s xs with (P +ₕ Q) | (r +ₕ s) ... | (_ ·X+ _) | const (pos (ℕ.suc _)) = refl ... | (_ ·X+ _) | const (negsuc _) = refl ... | (_ ·X+ _) | const (pos ℕ.zero) = refl ... | 0H | const (pos (ℕ.suc _)) = refl ... | 0H | const (negsuc _) = refl combineCases+ ℕ.zero P Q r s (x ∷ []) | 0H | const (pos ℕ.zero) = refl combineCases+ (ℕ.suc n) P Q r s (x ∷ xs) with (P +ₕ Q) | (r +ₕ s) ... | (_ ·X+ _) | (_ ·X+ _) = refl ... | (_ ·X+ _) | 0H = refl ... | 0H | (_ ·X+ _) = refl ... | 0H | 0H = sym (Eval0H (ℕ.suc n) xs) +Homeval : (n : ℕ) (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (P +ₕ Q) xs ≡ (eval n P xs) + (eval n Q xs) +Homeval .ℕ.zero (const x) (const y) [] = +HomScalar R x y +Homeval n 0H Q xs = eval n (0H +ₕ Q) xs ≡⟨ refl ⟩ eval n Q xs ≡⟨ sym (+Lid _) ⟩ 0r + eval n Q xs ≡⟨ cong (λ u → u + eval n Q xs) (sym (Eval0H n xs)) ⟩ eval n 0H xs + eval n Q xs ∎ +Homeval .(ℕ.suc _) (P ·X+ Q) 0H xs = eval (ℕ.suc _) ((P ·X+ Q) +ₕ 0H) xs ≡⟨ refl ⟩ eval (ℕ.suc _) (P ·X+ Q) xs ≡⟨ sym (+Rid _) ⟩ eval (ℕ.suc _) (P ·X+ Q) xs + 0r ≡⟨ cong (λ u → eval (ℕ.suc _) (P ·X+ Q) xs + u) (sym (Eval0H _ xs)) ⟩ eval (ℕ.suc _) (P ·X+ Q) xs + eval (ℕ.suc _) 0H xs ∎ +Homeval .(ℕ.suc _) (P ·X+ Q) (S ·X+ T) (x ∷ xs) = eval (ℕ.suc _) ((P ·X+ Q) +ₕ (S ·X+ T)) (x ∷ xs) ≡⟨ combineCases+ _ P S Q T (x ∷ xs) ⟩ eval (ℕ.suc _) ((P +ₕ S) ·X+ (Q +ₕ T)) (x ∷ xs) ≡⟨ combineCasesEval (P +ₕ S) (Q +ₕ T) x xs ⟩ (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + eval _ (Q +ₕ T) xs ≡⟨ cong (λ u → (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + u) (+Homeval _ Q T xs) ⟩ (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ cong (λ u → u · x + (eval _ Q xs + eval _ T xs)) (+Homeval (ℕ.suc _) P S (x ∷ xs)) ⟩ (eval (ℕ.suc _) P (x ∷ xs) + eval (ℕ.suc _) S (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ cong (λ u → u + (eval _ Q xs + eval _ T xs)) (·Ldist+ _ _ _) ⟩ (eval (ℕ.suc _) P (x ∷ xs)) · x + (eval (ℕ.suc _) S (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ +ShufflePairs _ _ _ _ ⟩ ((eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ Q xs) + ((eval (ℕ.suc _) S (x ∷ xs)) · x + eval _ T xs) ≡[ i ]⟨ combineCasesEval P Q x xs (~ i) + combineCasesEval S T x xs (~ i) ⟩ eval (ℕ.suc _) (P ·X+ Q) (x ∷ xs) + eval (ℕ.suc _) (S ·X+ T) (x ∷ xs) ∎ ⋆Homeval : (n : ℕ) (r : IteratedHornerForms νR n) (P : IteratedHornerForms νR (ℕ.suc n)) (x : ⟨ νR ⟩) (xs : Vec ⟨ νR ⟩ n) → eval (ℕ.suc n) (r ⋆ P) (x ∷ xs) ≡ eval n r xs · eval (ℕ.suc n) P (x ∷ xs) ⋆0LeftAnnihilates : (n : ℕ) (P : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (ℕ.suc n) (0ₕ ⋆ P) xs ≡ 0r ⋆0LeftAnnihilates n 0H xs = Eval0H (ℕ.suc n) xs ⋆0LeftAnnihilates ℕ.zero (P ·X+ Q) (x ∷ xs) = refl ⋆0LeftAnnihilates (ℕ.suc n) (P ·X+ Q) (x ∷ xs) = refl ·0LeftAnnihilates : (n : ℕ) (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (0ₕ ·ₕ P) xs ≡ 0r ·0LeftAnnihilates .ℕ.zero (const x) xs = eval ℕ.zero (const _) xs ≡⟨ Eval0H _ xs ⟩ 0r ∎ ·0LeftAnnihilates .(ℕ.suc _) 0H xs = Eval0H _ xs ·0LeftAnnihilates .(ℕ.suc _) (P ·X+ P₁) xs = Eval0H _ xs ·Homeval : (n : ℕ) (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (P ·ₕ Q) xs ≡ (eval n P xs) · (eval n Q xs) combineCases⋆ : (n : ℕ) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → (r : IteratedHornerForms νR n) → (P : IteratedHornerForms νR (ℕ.suc n)) → (Q : IteratedHornerForms νR n) → eval (ℕ.suc n) (r ⋆ (P ·X+ Q)) xs ≡ eval (ℕ.suc n) ((r ⋆ P) ·X+ (r ·ₕ Q)) xs combineCases⋆ .ℕ.zero (x ∷ []) (const (pos ℕ.zero)) P Q = eval _ (const (pos ℕ.zero) ⋆ (P ·X+ Q)) (x ∷ []) ≡⟨ refl ⟩ eval _ 0ₕ (x ∷ []) ≡⟨ refl ⟩ 0r ≡⟨ sym (+Rid _) ⟩ 0r + 0r ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + 0r ⟩ 0r · x + 0r ≡[ i ]⟨ ⋆0LeftAnnihilates _ P (x ∷ []) (~ i) · x + ·0LeftAnnihilates _ Q [] (~ i) ⟩ eval _ (const (pos ℕ.zero) ⋆ P) (x ∷ []) · x + eval _ (const (pos ℕ.zero) ·ₕ Q) [] ≡⟨ sym (combineCasesEval (const (pos ℕ.zero) ⋆ P) (const (pos ℕ.zero) ·ₕ Q) x []) ⟩ eval _ ((const (pos ℕ.zero) ⋆ P) ·X+ (const (pos ℕ.zero) ·ₕ Q)) (x ∷ []) ∎ combineCases⋆ .ℕ.zero (x ∷ []) (const (pos (ℕ.suc n))) P Q = refl combineCases⋆ .ℕ.zero (x ∷ []) (const (negsuc n)) P Q = refl combineCases⋆ .(ℕ.suc _) (x ∷ xs) 0H P Q = eval _ (0H ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval _ 0ₕ (x ∷ []) ≡⟨ refl ⟩ 0r ≡⟨ sym (+Rid _) ⟩ 0r + 0r ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + 0r ⟩ 0r · x + 0r ≡[ i ]⟨ ⋆0LeftAnnihilates _ P (x ∷ xs) (~ i) · x + ·0LeftAnnihilates _ Q xs (~ i) ⟩ eval _ (0H ⋆ P) (x ∷ xs) · x + eval _ (0H ·ₕ Q) xs ≡⟨ sym (combineCasesEval (0H ⋆ P) (0H ·ₕ Q) x xs) ⟩ eval _ ((0H ⋆ P) ·X+ (0H ·ₕ Q)) (x ∷ xs) ∎ combineCases⋆ .(ℕ.suc _) (x ∷ xs) (r ·X+ r₁) P Q = refl ⋆Homeval n r 0H x xs = eval (ℕ.suc n) (r ⋆ 0H) (x ∷ xs) ≡⟨ refl ⟩ 0r ≡⟨ sym (0RightAnnihilates _) ⟩ eval n r xs · 0r ≡⟨ refl ⟩ eval n r xs · eval {A = νR} (ℕ.suc n) 0H (x ∷ xs) ∎ ⋆Homeval n r (P ·X+ Q) x xs = eval (ℕ.suc n) (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ combineCases⋆ n (x ∷ xs) r P Q ⟩ eval (ℕ.suc n) ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) ≡⟨ combineCasesEval (r ⋆ P) (r ·ₕ Q) x xs ⟩ (eval (ℕ.suc n) (r ⋆ P) (x ∷ xs)) · x + eval n (r ·ₕ Q) xs ≡⟨ cong (λ u → u · x + eval n (r ·ₕ Q) xs) (⋆Homeval n r P x xs) ⟩ (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + eval n (r ·ₕ Q) xs ≡⟨ cong (λ u → (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + u) (·Homeval n r Q xs) ⟩ (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + eval n r xs · eval n Q xs ≡⟨ cong (λ u → u + eval n r xs · eval n Q xs) (sym (·Assoc _ _ _)) ⟩ eval n r xs · (eval (ℕ.suc n) P (x ∷ xs) · x) + eval n r xs · eval n Q xs ≡⟨ sym (·Rdist+ _ _ _) ⟩ eval n r xs · ((eval (ℕ.suc n) P (x ∷ xs) · x) + eval n Q xs) ≡[ i ]⟨ eval n r xs · combineCasesEval P Q x xs (~ i) ⟩ eval n r xs · eval (ℕ.suc n) (P ·X+ Q) (x ∷ xs) ∎ combineCases : (n : ℕ) (Q : IteratedHornerForms νR n) (P S : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (ℕ.suc n) ((P ·X+ Q) ·ₕ S) xs ≡ eval (ℕ.suc n) (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) xs combineCases n Q P S (x ∷ xs) with (P ·ₕ S) ... | 0H = eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+Lid _) ⟩ 0r + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval _ (Q ⋆ S) (x ∷ xs)) lemma ⟩ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+Homeval (ℕ.suc n) (0H ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs)) ⟩ eval (ℕ.suc n) ((0H ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ∎ where lemma : 0r ≡ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) lemma = 0r ≡⟨ sym (+Rid _) ⟩ 0r + 0r ≡⟨ cong (λ u → u + 0r) (sym (0LeftAnnihilates _)) ⟩ 0r · x + 0r ≡⟨ cong (λ u → 0r · x + u) (sym (Eval0H _ xs)) ⟩ 0r · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs) (sym (Eval0H _ (x ∷ xs))) ⟩ eval {A = νR} (ℕ.suc n) 0H (x ∷ xs) · x + eval n 0ₕ xs ≡[ i ]⟨ combineCasesEval 0H 0ₕ x xs (~ i) ⟩ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) ∎ ... | (_ ·X+ _) = refl ·Homeval .ℕ.zero (const x) (const y) [] = ·HomScalar R x y ·Homeval (ℕ.suc n) 0H Q xs = eval (ℕ.suc n) (0H ·ₕ Q) xs ≡⟨ Eval0H _ xs ⟩ 0r ≡⟨ sym (0LeftAnnihilates _) ⟩ 0r · eval (ℕ.suc n) Q xs ≡⟨ cong (λ u → u · eval _ Q xs) (sym (Eval0H _ xs)) ⟩ eval (ℕ.suc n) 0H xs · eval (ℕ.suc n) Q xs ∎ ·Homeval (ℕ.suc n) (P ·X+ Q) S (x ∷ xs) = eval (ℕ.suc n) ((P ·X+ Q) ·ₕ S) (x ∷ xs) ≡⟨ combineCases n Q P S (x ∷ xs) ⟩ eval (ℕ.suc n) (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ≡⟨ +Homeval (ℕ.suc n) ((P ·ₕ S) ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs) ⟩ eval (ℕ.suc n) ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs)) (combineCasesEval (P ·ₕ S) 0ₕ x xs) ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + eval n 0ₕ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs)) ((eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + eval n 0ₕ xs) ≡⟨ cong (λ u → eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + u) (Eval0H _ xs) ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + 0r) ≡⟨ +Rid _ ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x) ≡⟨ cong (λ u → u · x) (·Homeval (ℕ.suc n) P S (x ∷ xs)) ⟩ ((eval (ℕ.suc n) P (x ∷ xs) · eval (ℕ.suc n) S (x ∷ xs)) · x) ≡⟨ sym (·Assoc _ _ _) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · (eval (ℕ.suc n) S (x ∷ xs) · x)) ≡⟨ cong (λ u → eval (ℕ.suc n) P (x ∷ xs) · u) (·-comm _ _) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · (x · eval (ℕ.suc n) S (x ∷ xs))) ≡⟨ ·Assoc _ _ _ ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) ∎) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + u) (⋆Homeval n Q S x xs) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + eval n Q xs · eval (ℕ.suc n) S (x ∷ xs) ≡⟨ sym (·Ldist+ _ _ _) ⟩ ((eval (ℕ.suc n) P (x ∷ xs) · x) + eval n Q xs) · eval (ℕ.suc n) S (x ∷ xs) ≡⟨ cong (λ u → u · eval (ℕ.suc n) S (x ∷ xs)) (sym (combineCasesEval P Q x xs)) ⟩ eval (ℕ.suc n) (P ·X+ Q) (x ∷ xs) · eval (ℕ.suc n) S (x ∷ xs) ∎
{ "alphanum_fraction": 0.4326977803, "avg_line_length": 50.0213523132, "ext": "agda", "hexsha": "821cf9c745ca9d5b9a7d952264ae3b0f3e7b7bb2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/CommRingEvalHom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/CommRingEvalHom.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/CommRingEvalHom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6615, "size": 14056 }
module Structure.Operator.Algebra where open import Lang.Instance open import Logic.Predicate import Lvl open import Structure.Function.Domain open import Structure.Operator.Field open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Operator.Ring open import Structure.Operator.Ring.Homomorphism open import Structure.Operator.Vector open import Structure.Operator.Vector.LinearMap open import Structure.Setoid open import Type module _ {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ _ : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ _ : Equiv{ℓₛₑ}(S) ⦄ (_+ᵥ_ : V → V → V) (_⋅ᵥ_ : V → V → V) (_⋅ₛᵥ_ : S → V → V) (_+ₛ_ : S → S → S) (_⋅ₛ_ : S → S → S) where record Algebra : Type{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ} where constructor intro field ⦃ vectorSpace ⦄ : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦃ [⋅ᵥ]-bilinearity ⦄ : BilinearOperator vectorSpace (_⋅ᵥ_) open VectorSpace(vectorSpace) renaming (ring to ringₛ) public ringᵥ : ⦃ Associativity(_⋅ᵥ_) ⦄ → ⦃ ∃(Identity(_⋅ᵥ_)) ⦄ → Ring(_+ᵥ_)(_⋅ᵥ_) Rng.[+]-commutative-group (Ring.rng ringᵥ) = vectorCommutativeGroup Rng.[⋅]-binary-operator (Ring.rng ringᵥ) = BilinearMap.binaryOperator [⋅ᵥ]-bilinearity Rng.[⋅]-associativity (Ring.rng ringᵥ) = infer Rng.[⋅][+]-distributivityₗ (Ring.rng ringᵥ) = BilinearOperator.[+ᵥ]-distributivityₗ vectorSpace (_⋅ᵥ_) [⋅ᵥ]-bilinearity Rng.[⋅][+]-distributivityᵣ (Ring.rng ringᵥ) = BilinearOperator.[+ᵥ]-distributivityᵣ vectorSpace (_⋅ᵥ_) [⋅ᵥ]-bilinearity Unity.[⋅]-identity-existence (Ring.unity ringᵥ) = infer -- TODO: I found some conflicting definitions for a star algebra from different sources. What is a reasonable definition? record ⋆-algebra (_⋆ᵥ : V → V) (_⋆ₛ : S → S) : Type{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ} where constructor intro field ⦃ algebra ⦄ : Algebra open Algebra(algebra) public field ⦃ [⋅ᵥ]-commutativity ⦄ : Commutativity(_⋅ᵥ_) ⦃ [⋅ᵥ]-associativity ⦄ : Associativity(_⋅ᵥ_) ⦃ [⋅ᵥ]-identity ⦄ : ∃(Identity(_⋅ᵥ_)) ⦃ [⋆ₛ]-involution ⦄ : Involution(_⋆ᵥ) ⦃ [⋆ᵥ]-involution ⦄ : Involution(_⋆ᵥ) [⋆ᵥ]-distribute-over-[⋅ₛᵥ]-to-[⋆ₛ] : ∀{s}{v} → ((s ⋅ₛᵥ v)⋆ᵥ ≡ (s ⋆ₛ) ⋅ₛᵥ (v ⋆ᵥ)) ⦃ [⋆ₛ]-antihomomorphism ⦄ : Antihomomorphism ringₛ ringₛ (_⋆ₛ) ⦃ [⋆ᵥ]-antihomomorphism ⦄ : Antihomomorphism ringᵥ ringᵥ (_⋆ᵥ)
{ "alphanum_fraction": 0.6221602232, "avg_line_length": 41.131147541, "ext": "agda", "hexsha": "c4fa0a01c9fbbaf680104bbea367fc0b5db7b2dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Algebra.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1154, "size": 2509 }
module STLC.Kovacs.Normalisation where open import STLC.Kovacs.NormalForm public -------------------------------------------------------------------------------- -- (Tyᴺ) infix 3 _⊩_ _⊩_ : 𝒞 → 𝒯 → Set Γ ⊩ ⎵ = Γ ⊢ⁿᶠ ⎵ Γ ⊩ A ⇒ B = ∀ {Γ′} → (η : Γ′ ⊇ Γ) (a : Γ′ ⊩ A) → Γ′ ⊩ B -- (Conᴺ ; ∙ ; _,_) infix 3 _⊩⋆_ data _⊩⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ⊩⋆ ∅ _,_ : ∀ {Γ Ξ A} → (ρ : Γ ⊩⋆ Ξ) (a : Γ ⊩ A) → Γ ⊩⋆ Ξ , A -------------------------------------------------------------------------------- -- (Tyᴺₑ) acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ⊩ A → Γ′ ⊩ A acc {⎵} η M = renⁿᶠ η M acc {A ⇒ B} η f = λ η′ a → f (η ○ η′) a -- (Conᴺₑ) -- NOTE: _⬖_ = acc⋆ _⬖_ : ∀ {Γ Γ′ Ξ} → Γ ⊩⋆ Ξ → Γ′ ⊇ Γ → Γ′ ⊩⋆ Ξ ∅ ⬖ η = ∅ (ρ , a) ⬖ η = ρ ⬖ η , acc η a -------------------------------------------------------------------------------- -- (∈ᴺ) getᵥ : ∀ {Γ Ξ A} → Γ ⊩⋆ Ξ → Ξ ∋ A → Γ ⊩ A getᵥ (ρ , a) zero = a getᵥ (ρ , a) (suc i) = getᵥ ρ i -- (Tmᴺ) eval : ∀ {Γ Ξ A} → Γ ⊩⋆ Ξ → Ξ ⊢ A → Γ ⊩ A eval ρ (𝓋 i) = getᵥ ρ i eval ρ (ƛ M) = λ η a → eval (ρ ⬖ η , a) M eval ρ (M ∙ N) = eval ρ M idₑ (eval ρ N) mutual -- (qᴺ) reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A reify {⎵} M = M reify {A ⇒ B} f = ƛ (reify (f (wkₑ idₑ) (reflect 0))) -- (uᴺ) reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A reflect {⎵} M = ne M reflect {A ⇒ B} M = λ η a → reflect (renⁿᵉ η M ∙ reify a) -- (uᶜᴺ) idᵥ : ∀ {Γ} → Γ ⊩⋆ Γ idᵥ {∅} = ∅ idᵥ {Γ , A} = idᵥ ⬖ wkₑ idₑ , reflect 0 -- (nf) nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ⁿᶠ A nf M = reify (eval idᵥ M) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3098086124, "avg_line_length": 20.3902439024, "ext": "agda", "hexsha": "bb2e0446bd7f9996657b07db63d61d2078d82cfc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC/Kovacs/Normalisation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC/Kovacs/Normalisation.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC/Kovacs/Normalisation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 875, "size": 1672 }
open import Oscar.Prelude open import Oscar.Data.Decidable open import Oscar.Data.Proposequality module Oscar.Class.IsDecidable where record IsDecidable {𝔬} (𝔒 : Ø 𝔬) : Ø 𝔬 where infix 4 _≟_ field _≟_ : (x y : 𝔒) → Decidable (x ≡ y) open IsDecidable ⦃ … ⦄ public
{ "alphanum_fraction": 0.7018181818, "avg_line_length": 19.6428571429, "ext": "agda", "hexsha": "16694fb172c2f18c7bb4725d9501dfc3c1362df4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable.agda", "max_line_length": 44, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 103, "size": 275 }
module Syntax where {- open import Data.Nat hiding (_>_) open import Data.Fin open import Data.Product open import Data.Bool open import Relation.Binary.PropositionalEquality -} open import StdLibStuff erase-subst : (X : Set) → (Y : X → Set) → (F : {x : X} → Y x) → (x₁ x₂ : X) → (eq : x₁ ≡ x₂) → (P : Y x₂ → Set) → P F → P (subst Y eq F) erase-subst X Y F .x₂ x₂ refl P h = h -- type, ctx data Type (n : ℕ) : Set where $o : Type n $i : Fin n → Type n _>_ : Type n → Type n → Type n data Ctx (n : ℕ) : Set where ε : Ctx n _∷_ : Type n → Ctx n → Ctx n data Var : {n : ℕ} → Ctx n → Set where this : ∀ {n t} → {Γ : Ctx n} → Var (t ∷ Γ) next : ∀ {n t} → {Γ : Ctx n} → Var Γ → Var (t ∷ Γ) lookup-Var : ∀ {n} → (Γ : Ctx n) → Var Γ → Type n lookup-Var ε () lookup-Var (t ∷ _) this = t lookup-Var (_ ∷ Γ) (next x) = lookup-Var Γ x _++_ : ∀ {n} → Ctx n → Ctx n → Ctx n ε ++ Γ = Γ (t ∷ Γ₁) ++ Γ₂ = t ∷ (Γ₁ ++ Γ₂) _r++_ : ∀ {n} → Ctx n → Ctx n → Ctx n ε r++ Γ = Γ (t ∷ Γ₁) r++ Γ₂ = Γ₁ r++ (t ∷ Γ₂) -- stt formula data Form : {n : ℕ} → Ctx n → Type n → Set where var : ∀ {n} → {Γ : Ctx n} {t : Type n} → (x : Var Γ) → lookup-Var Γ x ≡ t → Form Γ t N : ∀ {n} → {Γ : Ctx n} → Form Γ ($o > $o) A : ∀ {n} → {Γ : Ctx n} → Form Γ ($o > ($o > $o)) Π : ∀ {n α} → {Γ : Ctx n} → Form Γ ((α > $o) > $o) i : ∀ {n α} → {Γ : Ctx n} → Form Γ ((α > $o) > α) app : ∀ {n α β} → {Γ : Ctx n} → Form Γ (α > β) → Form Γ α → Form Γ β lam : ∀ {n β} → {Γ : Ctx n} → (α : _) → Form (α ∷ Γ) β → Form Γ (α > β) -- abbreviations (TPTP-like notation) ~ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Form Γ $o ~ F = app N F _||_ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Form Γ $o → Form Γ $o F || G = app (app A F) G _&_ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Form Γ $o → Form Γ $o F & G = ~ ((~ F) || (~ G)) _=>_ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Form Γ $o → Form Γ $o F => G = (~ F) || G ![_]_ : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form (α ∷ Γ) $o → Form Γ $o ![ α ] F = app Π (lam α F) ?[_]_ : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form (α ∷ Γ) $o → Form Γ $o ?[ α ] F = ~ (![ α ] ~ F) ι : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form (α ∷ Γ) $o → Form Γ α ι α F = app i (lam α F) Q : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form Γ (α > (α > $o)) Q α = lam α (lam α (![ α > $o ] (app (var this refl) (var (next (next this)) refl) => app (var this refl) (var (next this) refl)))) _==_ : ∀ {n} → {Γ : Ctx n} → {α : Type n} → Form Γ α → Form Γ α → Form Γ $o F == G = app (app (Q _) F) G _<=>_ : ∀ {n} → {Γ : Ctx n} → Form Γ $o → Form Γ $o → Form Γ $o F <=> G = (F => G) & (G => F) $true : ∀ {n} → {Γ : Ctx n} → Form Γ $o $true = ![ $o ] (var this refl => var this refl) $false : ∀ {n} → {Γ : Ctx n} → Form Γ $o $false = ![ $o ] var this refl ^[_]_ : ∀ {n Γ t₂} → (t₁ : Type n) → Form (t₁ ∷ Γ) t₂ → Form Γ (t₁ > t₂) ^[ tp ] t = lam tp t _·_ : ∀ {n} → {Γ : Ctx n} → ∀ {t₁ t₂} → Form Γ (t₁ > t₂) → Form Γ t₁ → Form Γ t₂ t₁ · t₂ = app t₁ t₂ $ : ∀ {n Γ} → {t : Type n} (v : Var Γ) → {eq : lookup-Var Γ v ≡ t} → Form Γ t $ v {p} = var v p -- occurs in eq-Var : ∀ {n} {Γ : Ctx n} → Var Γ → Var Γ → Bool eq-Var this this = true eq-Var this (next y) = false eq-Var (next x) this = false eq-Var (next x) (next y) = eq-Var x y occurs : ∀ {n Γ} → {t : Type n} → Var Γ → Form Γ t → Bool occurs x (var x' p) = eq-Var x x' occurs x N = false occurs x A = false occurs x Π = false occurs x i = false occurs x (app f₁ f₂) = occurs x f₁ ∨ occurs x f₂ occurs x (lam α f) = occurs (next x) f -- weakening and substitution weak-var : ∀ {n} → {β : Type n} (Γ₁ Γ₂ : Ctx n) → (x : Var (Γ₁ ++ Γ₂)) → Var (Γ₁ ++ (β ∷ Γ₂)) weak-var ε Γ₂ x = next x weak-var (t ∷ Γ₁) Γ₂ this = this weak-var (t ∷ Γ₁) Γ₂ (next x) = next (weak-var Γ₁ Γ₂ x) weak-var-p : ∀ {n} → {β : Type n} (Γ₁ Γ₂ : Ctx n) → (x : Var (Γ₁ ++ Γ₂)) → lookup-Var (Γ₁ ++ (β ∷ Γ₂)) (weak-var Γ₁ Γ₂ x) ≡ lookup-Var (Γ₁ ++ Γ₂) x weak-var-p ε Γ₂ x = refl weak-var-p (t ∷ Γ₁) Γ₂ this = refl weak-var-p (t ∷ Γ₁) Γ₂ (next x) = weak-var-p Γ₁ Γ₂ x weak-i : ∀ {n} → {α β : Type n} (Γ₁ Γ₂ : Ctx n) → Form (Γ₁ ++ Γ₂) α → Form (Γ₁ ++ (β ∷ Γ₂)) α weak-i Γ₁ Γ₂ (var x p) = var (weak-var Γ₁ Γ₂ x) (trans (weak-var-p Γ₁ Γ₂ x) p) weak-i Γ₁ Γ₂ N = N weak-i Γ₁ Γ₂ A = A weak-i Γ₁ Γ₂ Π = Π weak-i Γ₁ Γ₂ i = i weak-i Γ₁ Γ₂ (app f₁ f₂) = app (weak-i Γ₁ Γ₂ f₁) (weak-i Γ₁ Γ₂ f₂) weak-i Γ₁ Γ₂ (lam α f) = lam α (weak-i (α ∷ Γ₁) Γ₂ f) weak : ∀ {n} → {Γ : Ctx n} {α β : Type n} → Form Γ α → Form (β ∷ Γ) α weak {_} {Γ} = weak-i ε Γ sub-var : ∀ {n} → {α β : Type n} (Γ₁ Γ₂ : Ctx n) → Form Γ₂ α → (x : Var (Γ₁ ++ (α ∷ Γ₂))) → lookup-Var (Γ₁ ++ (α ∷ Γ₂)) x ≡ β → Form (Γ₁ ++ Γ₂) β sub-var ε Γ₂ g this p = subst (Form Γ₂) p g sub-var ε Γ₂ g (next x) p = var x p sub-var (t ∷ Γ₁) Γ₂ g this p = var this p sub-var (t ∷ Γ₁) Γ₂ g (next x) p = weak (sub-var Γ₁ Γ₂ g x p) sub-i : ∀ {n} → {α β : Type n} (Γ₁ Γ₂ : Ctx n) → Form Γ₂ α → Form (Γ₁ ++ (α ∷ Γ₂)) β → Form (Γ₁ ++ Γ₂) β sub-i Γ₁ Γ₂ g (var x p) = sub-var Γ₁ Γ₂ g x p sub-i Γ₁ Γ₂ g N = N sub-i Γ₁ Γ₂ g A = A sub-i Γ₁ Γ₂ g Π = Π sub-i Γ₁ Γ₂ g i = i sub-i Γ₁ Γ₂ g (app f₁ f₂) = app (sub-i Γ₁ Γ₂ g f₁) (sub-i Γ₁ Γ₂ g f₂) sub-i Γ₁ Γ₂ g (lam α f) = lam α (sub-i (α ∷ Γ₁) Γ₂ g f) sub : ∀ {n} → {Γ : Ctx n} {α β : Type n} → Form Γ α → Form (α ∷ Γ) β → Form Γ β sub {_} {Γ} = sub-i ε Γ -- properties about weak and sub sub-weak-var-p-23-this-2 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (G : Form (v ∷ Γ) u) → (Γ'' : Ctx n) (h₁ : β ∷ Γ'' ≡ β ∷ (Γ' ++ (u ∷ (v ∷ Γ)))) (p'' : lookup-Var ((β ∷ Γ') ++ (u ∷ (v ∷ Γ))) (subst Var h₁ this) ≡ lookup-Var (β ∷ (Γ' ++ (v ∷ Γ))) this) → var this refl ≡ sub-var (β ∷ Γ') (v ∷ Γ) G (subst Var h₁ this) p'' sub-weak-var-p-23-this-2 {n} {u} {v} {β} {Γ} Γ' G .(Γ' ++ (u ∷ (v ∷ Γ))) refl refl = refl sub-weak-var-p-23-this-1 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (G : Form (v ∷ Γ) u) → (h₁ : β ∷ ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) ≡ β ∷ (Γ' ++ (u ∷ (v ∷ Γ)))) (Γ'' : Ctx n) (h₂ : β ∷ Γ'' ≡ β ∷ ((Γ' ++ (u ∷ ε)) ++ Γ)) (p'' : lookup-Var (β ∷ (Γ' ++ (u ∷ (v ∷ Γ)))) (subst Var h₁ (weak-var (β ∷ (Γ' ++ (u ∷ ε))) Γ (subst Var h₂ this))) ≡ β) → var this refl ≡ sub-var (β ∷ Γ') (v ∷ Γ) G (subst Var h₁ (weak-var (β ∷ (Γ' ++ (u ∷ ε))) Γ (subst Var h₂ this))) p'' sub-weak-var-p-23-this-1 {n} {u} {v} {β} {Γ} Γ' G h₁ .((Γ' ++ (u ∷ ε)) ++ Γ) refl p'' = sub-weak-var-p-23-this-2 Γ' G ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) h₁ p'' mutual sub-weak-var-p-23-next-2 : ∀ {n} → {u v β t : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form (v ∷ Γ) u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) (Γ'' : Ctx n) (h₁₁ : t ∷ Γ'' ≡ t ∷ (Γ' ++ (u ∷ (v ∷ Γ)))) (h₁₂ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ'') (h₂ : Γ' ++ (u ∷ Γ) ≡ (Γ' ++ (u ∷ ε)) ++ Γ) (p'' : lookup-Var ((t ∷ Γ') ++ (u ∷ (v ∷ Γ))) (subst Var h₁₁ (next (subst Var h₁₂ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))))) ≡ β) → var (next (weak-var Γ' Γ x)) p ≡ sub-var (t ∷ Γ') (v ∷ Γ) G (subst Var h₁₁ (next (subst Var h₁₂ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))))) p'' sub-weak-var-p-23-next-2 {n} {u} {v} {β} {t} {Γ} Γ' x G p .(Γ' ++ (u ∷ (v ∷ Γ))) refl h₁₂ h₂ p'' = subst (λ z → var (next {_} {t} (weak-var Γ' Γ x)) p ≡ weak-i ε (Γ' ++ (v ∷ Γ)) z) {-{var (weak-var Γ' Γ x) p} {sub-var Γ' (v ∷ Γ) G (subst Var h₁₂ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))) p''}-} (sub-weak-var-p-23 {n} {u} {v} {β} {Γ} Γ' x G p h₁₂ h₂ p'') refl sub-weak-var-p-23-next-1 : ∀ {n} → {u v β t : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form (v ∷ Γ) u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) (h₁ : t ∷ ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) ≡ t ∷ (Γ' ++ (u ∷ (v ∷ Γ)))) (Γ'' : Ctx n) (h₂₁ : t ∷ Γ'' ≡ t ∷ ((Γ' ++ (u ∷ ε)) ++ Γ)) (h₂₂ : Γ' ++ (u ∷ Γ) ≡ Γ'') (p'' : lookup-Var ((t ∷ Γ') ++ (u ∷ (v ∷ Γ))) (subst Var h₁ (weak-var (t ∷ (Γ' ++ (u ∷ ε))) Γ (subst Var h₂₁ (next (subst Var h₂₂ (weak-var Γ' Γ x)))))) ≡ β) → var (next (weak-var Γ' Γ x)) p ≡ sub-var (t ∷ Γ') (v ∷ Γ) G (subst Var h₁ (weak-var (t ∷ (Γ' ++ (u ∷ ε))) Γ (subst Var h₂₁ (next (subst Var h₂₂ (weak-var Γ' Γ x)))))) p'' sub-weak-var-p-23-next-1 {n} {u} {v} {β} {t} {Γ} Γ' x G p h₁ .((Γ' ++ (u ∷ ε)) ++ Γ) refl h₂₂ p'' = sub-weak-var-p-23-next-2 Γ' x G p ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) h₁ refl h₂₂ p'' sub-weak-var-p-23 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form (v ∷ Γ) u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) → (h₁ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (h₂ : Γ' ++ (u ∷ Γ) ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → (p'' : lookup-Var (Γ' ++ (u ∷ (v ∷ Γ))) (subst Var h₁ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))) ≡ β) → var (weak-var Γ' Γ x) p ≡ sub-var Γ' (v ∷ Γ) G (subst Var h₁ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))) p'' sub-weak-var-p-23 ε x G refl refl refl refl = refl sub-weak-var-p-23 {n} {u} {v} {β} {Γ} (.β ∷ Γ') this G refl h₁ h₂ p'' = sub-weak-var-p-23-this-1 Γ' G h₁ (Γ' ++ (u ∷ Γ)) h₂ p'' sub-weak-var-p-23 {n} {u} {v} {β} {Γ} (t ∷ Γ') (next x) G p h₁ h₂ p'' = sub-weak-var-p-23-next-1 Γ' x G p h₁ (Γ' ++ (u ∷ Γ)) h₂ refl p'' sub-weak-p-23-var-2 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form (v ∷ Γ) u) → (p : lookup-Var (Γ' ++ Γ) x ≡ β) → (Γ'' : Ctx n) → (h₁₁ : Γ'' ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (h₁₂ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ'') → (h₂ : Γ' ++ (u ∷ Γ) ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → (p'' : lookup-Var Γ'' (subst Var h₁₂ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))) ≡ β) → var (weak-var Γ' Γ x) (trans (weak-var-p Γ' Γ x) p) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z β) h₁₁ (var (subst Var h₁₂ (weak-var (Γ' ++ (u ∷ ε)) Γ (subst Var h₂ (weak-var Γ' Γ x)))) p'')) sub-weak-p-23-var-2 {n} {u} {v} {β} {Γ} Γ' x G p .(Γ' ++ (u ∷ (v ∷ Γ))) refl h₁₂ h₂ p'' = sub-weak-var-p-23 Γ' x G (trans (weak-var-p Γ' Γ x) p) h₁₂ h₂ p'' sub-weak-p-23-var-1 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form (v ∷ Γ) u) → (p : lookup-Var (Γ' ++ Γ) x ≡ β) → (h₁ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (Γ'' : Ctx n) → (h₂₁ : Γ'' ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → (h₂₂ : Γ' ++ (u ∷ Γ) ≡ Γ'') → (p' : lookup-Var Γ'' (subst Var h₂₂ (weak-var Γ' Γ x)) ≡ β) → var (weak-var Γ' Γ x) (trans (weak-var-p Γ' Γ x) p) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z β) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z β) h₂₁ (var (subst Var h₂₂ (weak-var Γ' Γ x)) p')))) sub-weak-p-23-var-1 {n} {u} {v} {β} {Γ} Γ' x G p h₁ .((Γ' ++ (u ∷ ε)) ++ Γ) refl h₂₂ p' = sub-weak-p-23-var-2 Γ' x G p ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) h₁ refl h₂₂ (trans (weak-var-p (Γ' ++ (u ∷ ε)) Γ (subst Var h₂₂ (weak-var Γ' Γ x))) p') mutual sub-weak-p-23-app-2 : ∀ {n} → {t u v w : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f₁ : Form (Γ' ++ Γ) (w > t)) (f₂ : Form (Γ' ++ Γ) w) (G : Form (v ∷ Γ) u) → (Γ'' : Ctx n) → (h₁₁ : Γ'' ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (h₁₂ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ'') → (h₂ : Γ' ++ (u ∷ Γ) ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → app (weak-i Γ' Γ f₁) (weak-i Γ' Γ f₂) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z t) h₁₁ (app (subst (λ z → Form z (w > t)) h₁₂ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z (w > t)) h₂ (weak-i Γ' Γ f₁)))) (subst (λ z → Form z w) h₁₂ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z w) h₂ (weak-i Γ' Γ f₂)))))) sub-weak-p-23-app-2 {n} {t} {u} {v} {w} {Γ} Γ' f₁ f₂ G .(Γ' ++ (u ∷ (v ∷ Γ))) refl h₁₂ h₂ = trans (cong (λ z → app z (weak-i Γ' Γ f₂)) ( sub-weak-p-23-i Γ' f₁ G h₁₂ h₂ )) (cong (λ z → app (sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z (w > t)) h₁₂ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z (w > t)) h₂ (weak-i Γ' Γ f₁))))) z) ( sub-weak-p-23-i Γ' f₂ G h₁₂ h₂ )) sub-weak-p-23-app-1 : ∀ {n} → {t u v w : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f₁ : Form (Γ' ++ Γ) (w > t)) (f₂ : Form (Γ' ++ Γ) w) (G : Form (v ∷ Γ) u) → (h₁ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (Γ'' : Ctx n) → (h₂₁ : Γ'' ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → (h₂₂ : Γ' ++ (u ∷ Γ) ≡ Γ'') → app (weak-i Γ' Γ f₁) (weak-i Γ' Γ f₂) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z t) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z t) h₂₁ (app (subst (λ z → Form z (w > t)) h₂₂ (weak-i Γ' Γ f₁)) (subst (λ z → Form z w) h₂₂ (weak-i Γ' Γ f₂)))))) sub-weak-p-23-app-1 {n} {t} {u} {v} {w} {Γ} Γ' f₁ f₂ G h₁ .((Γ' ++ (u ∷ ε)) ++ Γ) refl h₂₂ = sub-weak-p-23-app-2 Γ' f₁ f₂ G ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) h₁ refl h₂₂ sub-weak-p-23-lam-2 : ∀ {n} → {u v α β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f : Form ((α ∷ Γ') ++ Γ) β) (G : Form (v ∷ Γ) u) → (Γ'' : Ctx n) → (h₁₁ : Γ'' ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (h₁₂ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ'') → (h₂ : α ∷ (Γ' ++ (u ∷ Γ)) ≡ α ∷ ((Γ' ++ (u ∷ ε)) ++ Γ)) → lam α (weak-i (α ∷ Γ') Γ f) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z (α > β)) h₁₁ (lam α (subst (λ z → Form z β) (cong (_∷_ α) h₁₂) (weak-i (α ∷ (Γ' ++ (u ∷ ε))) Γ (subst (λ z → Form z β) h₂ (weak-i (α ∷ Γ') Γ f)))))) sub-weak-p-23-lam-2 {n} {u} {v} {α} {β} {Γ} Γ' f G .(Γ' ++ (u ∷ (v ∷ Γ))) refl h₁₂ h₂ = cong (lam α) ( sub-weak-p-23-i (α ∷ Γ') f G (cong (_∷_ α) h₁₂) h₂) sub-weak-p-23-lam-1 : ∀ {n} → {u v α β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f : Form ((α ∷ Γ') ++ Γ) β) (G : Form (v ∷ Γ) u) → (h₁ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (Γ'' : Ctx n) → (h₂₁ : Γ'' ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → (h₂₂ : Γ' ++ (u ∷ Γ) ≡ Γ'') → lam α (weak-i (α ∷ Γ') Γ f) ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z (α > β)) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z (α > β)) h₂₁ (lam α (subst (λ z → Form z β) (cong (λ z → α ∷ z) h₂₂) (weak-i (α ∷ Γ') Γ f)))))) sub-weak-p-23-lam-1 {n} {u} {v} {α} {β} {Γ} Γ' f G h₁ .((Γ' ++ (u ∷ ε)) ++ Γ) refl h₂₂ = sub-weak-p-23-lam-2 Γ' f G ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) h₁ refl (cong (_∷_ α) h₂₂) sub-weak-p-23-i : ∀ {n} → {t u v : Type n} {Γ : Ctx n} (Γ' : Ctx n) (F : Form (Γ' ++ Γ) t) (G : Form (v ∷ Γ) u) → (h₁ : (Γ' ++ (u ∷ ε)) ++ (v ∷ Γ) ≡ Γ' ++ (u ∷ (v ∷ Γ))) → (h₂ : Γ' ++ (u ∷ Γ) ≡ (Γ' ++ (u ∷ ε)) ++ Γ) → weak-i Γ' Γ F ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z t) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ (subst (λ z → Form z t) h₂ (weak-i Γ' Γ F)))) -- sub-weak-p-23-i {_} {.(lookup-Var (Γ' ++ Γ) x)} {u} {v} {Γ} Γ' (var x) G h₁ h₂ = {!!} sub-weak-p-23-i {_} {β} {u} {v} {Γ} Γ' (var x p) G h₁ h₂ = sub-weak-p-23-var-1 Γ' x G p h₁ (Γ' ++ (u ∷ Γ)) h₂ refl (trans (weak-var-p Γ' Γ x) p) sub-weak-p-23-i {_} {.($o > $o)} {u} {v} {Γ} Γ' N G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > $o)) N (Γ' ++ (u ∷ Γ)) ((Γ' ++ (u ∷ ε)) ++ Γ) h₂ (λ z → N ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z ($o > $o)) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ z))) (erase-subst (Ctx _) (λ z → Form z ($o > $o)) N ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) (Γ' ++ (u ∷ (v ∷ Γ))) h₁ (λ z → N ≡ sub-i Γ' (v ∷ Γ) G z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-23-i {_} {.($o > ($o > $o))} {u} {v} {Γ} Γ' A G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A (Γ' ++ (u ∷ Γ)) ((Γ' ++ (u ∷ ε)) ++ Γ) h₂ (λ z → A ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z ($o > ($o > $o))) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ z))) (erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) (Γ' ++ (u ∷ (v ∷ Γ))) h₁ (λ z → A ≡ sub-i Γ' (v ∷ Γ) G z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-23-i {_} {((t > $o) > $o)} {u} {v} {Γ} Γ' Π G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((t > $o) > $o)) Π (Γ' ++ (u ∷ Γ)) ((Γ' ++ (u ∷ ε)) ++ Γ) h₂ (λ z → Π ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z ((t > $o) > $o)) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ z))) (erase-subst (Ctx _) (λ z → Form z ((t > $o) > $o)) Π ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) (Γ' ++ (u ∷ (v ∷ Γ))) h₁ (λ z → Π ≡ sub-i Γ' (v ∷ Γ) G z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-23-i {_} {((t > $o) > .t)} {u} {v} {Γ} Γ' i G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((t > $o) > t)) i (Γ' ++ (u ∷ Γ)) ((Γ' ++ (u ∷ ε)) ++ Γ) h₂ (λ z → i ≡ sub-i Γ' (v ∷ Γ) G (subst (λ z → Form z ((t > $o) > t)) h₁ (weak-i (Γ' ++ (u ∷ ε)) Γ z))) (erase-subst (Ctx _) (λ z → Form z ((t > $o) > t)) i ((Γ' ++ (u ∷ ε)) ++ (v ∷ Γ)) (Γ' ++ (u ∷ (v ∷ Γ))) h₁ (λ z → i ≡ sub-i Γ' (v ∷ Γ) G z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-23-i {_} {t} {u} {v} {Γ} Γ' (app f₁ f₂) G h₁ h₂ = sub-weak-p-23-app-1 Γ' f₁ f₂ G h₁ (Γ' ++ (u ∷ Γ)) h₂ refl sub-weak-p-23-i {_} {α > β} {u} {v} {Γ} Γ' (lam .α f) G h₁ h₂ = sub-weak-p-23-lam-1 Γ' f G h₁ (Γ' ++ (u ∷ Γ)) h₂ refl sub-weak-var-p-1-this-2 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (G : Form Γ u) → (Γ'' : Ctx n) (h₁ : β ∷ Γ'' ≡ β ∷ (Γ' ++ (v ∷ Γ))) (p' : β ≡ β) → var this refl ≡ subst (λ z → Form z β) h₁ (var this p') sub-weak-var-p-1-this-2 {n} {u} {v} {β} {Γ} Γ' G ._ refl refl = refl sub-weak-var-p-1-this-1 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (G : Form Γ u) → (h₁ : β ∷ ((Γ' ++ (v ∷ ε)) ++ Γ) ≡ β ∷ (Γ' ++ (v ∷ Γ))) (Γ'' : Ctx n) (h₂ : β ∷ Γ'' ≡ β ∷ ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ))) (p' : lookup-Var ((β ∷ (Γ' ++ (v ∷ ε))) ++ (u ∷ Γ)) (subst Var h₂ this) ≡ β) → var this refl ≡ subst (λ z → Form z β) h₁ (sub-var (β ∷ (Γ' ++ (v ∷ ε))) Γ G (subst Var h₂ this) p') sub-weak-var-p-1-this-1 {n} {u} {v} {β} {Γ} Γ' G h₁ ._ refl p' = sub-weak-var-p-1-this-2 Γ' G _ h₁ p' mutual sub-weak-var-p-1-next-2 : ∀ {n} → {u v β t : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form Γ u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) (Γ'' : Ctx n) (h₁₁ : t ∷ Γ'' ≡ t ∷ (Γ' ++ (v ∷ Γ))) (h₁₂ : ((Γ' ++ (v ∷ ε)) ++ Γ) ≡ Γ'') (h₂ : (Γ' ++ (v ∷ (u ∷ Γ))) ≡ ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ))) (p' : lookup-Var ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) (subst Var h₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) ≡ β) → var (next (weak-var Γ' Γ x)) p ≡ subst (λ z → Form z β) h₁₁ (weak-i ε Γ'' (subst (λ z → Form z β) h₁₂ (sub-var (Γ' ++ (v ∷ ε)) Γ G (subst Var h₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) p'))) sub-weak-var-p-1-next-2 {n} {u} {v} {β} {t} {Γ} Γ' x G p ._ refl h₁₂ h₂ p' = subst (λ z → var (next {_} {t} (weak-var Γ' Γ x)) p ≡ weak-i ε (Γ' ++ (v ∷ Γ)) z) (sub-weak-var-p-1 Γ' x G p h₁₂ h₂ p') refl sub-weak-var-p-1-next-1 : ∀ {n} → {u v β t : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form Γ u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) (h₁ : t ∷ ((Γ' ++ (v ∷ ε)) ++ Γ) ≡ t ∷ (Γ' ++ (v ∷ Γ))) (Γ'' : Ctx n) (h₂₁ : t ∷ Γ'' ≡ t ∷ ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ))) (h₂₂ : (Γ' ++ (v ∷ (u ∷ Γ))) ≡ Γ'') (p' : lookup-Var (t ∷ ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ))) (subst Var h₂₁ (next (subst Var h₂₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))))) ≡ β) → var (next (weak-var Γ' Γ x)) p ≡ subst (λ z → Form z β) h₁ (sub-var (t ∷ (Γ' ++ (v ∷ ε))) Γ G (subst Var h₂₁ (next (subst Var h₂₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))))) p') sub-weak-var-p-1-next-1 {n} {u} {v} {β} {t} {Γ} Γ' x G p h₁ ._ refl h₂₂ p' = sub-weak-var-p-1-next-2 Γ' x G p _ h₁ refl h₂₂ p' sub-weak-var-p-1 : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form Γ u) → (p : lookup-Var (Γ' ++ (v ∷ Γ)) (weak-var Γ' Γ x) ≡ β) → (h₁ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ' ++ (v ∷ Γ)) → (h₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → (p' : lookup-Var ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) (subst Var h₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) ≡ β) → var (weak-var Γ' Γ x) p ≡ subst (λ z → Form z β) h₁ (sub-var (Γ' ++ (v ∷ ε)) Γ G (subst Var h₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) p') sub-weak-var-p-1 ε x G refl refl refl refl = refl sub-weak-var-p-1 {n} {u} {v} {β} {Γ} (.β ∷ Γ') this G refl h₁ h₂ p' = sub-weak-var-p-1-this-1 Γ' G h₁ _ h₂ p' sub-weak-var-p-1 {n} {u} {v} {β} {Γ} (t ∷ Γ') (next x) G p h₁ h₂ p' = sub-weak-var-p-1-next-1 Γ' x G p h₁ _ h₂ refl p' sub-weak-p-1-var : ∀ {n} → {u v β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form Γ u) → (p : lookup-Var (Γ' ++ Γ) x ≡ β) (h₁ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ' ++ (v ∷ Γ)) (Γ'' : Ctx n) (h₂₁ : Γ'' ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) (h₂₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ Γ'') (p' : lookup-Var Γ'' (subst Var h₂₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) ≡ β) → var (weak-var Γ' Γ x) (trans (weak-var-p Γ' Γ x) p) ≡ subst (λ z → Form z β) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z β) h₂₁ (var (subst Var h₂₂ (weak-var Γ' (u ∷ Γ) (weak-var Γ' Γ x))) p'))) sub-weak-p-1-var {n} {u} {v} {β} {Γ} Γ' x G p h₁ ._ refl h₂₂ p' = sub-weak-var-p-1 Γ' x G (trans (weak-var-p Γ' Γ x) p) h₁ h₂₂ p' mutual sub-weak-p-1-app-2 : ∀ {n} → {t u v w : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f₁ : Form (Γ' ++ Γ) (w > t)) (f₂ : Form (Γ' ++ Γ) w) (G : Form Γ u) → (Γ'' : Ctx n) → (h₁₁ : Γ'' ≡ Γ' ++ (v ∷ Γ)) → (h₁₂ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ'') → (h₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → app (weak-i Γ' Γ f₁) (weak-i Γ' Γ f₂) ≡ subst (λ z → Form z t) h₁₁ (app (subst (λ z → Form z (w > t)) h₁₂ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z (w > t)) h₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ f₁))))) (subst (λ z → Form z w) h₁₂ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z w) h₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ f₂)))))) sub-weak-p-1-app-2 {n} {t} {u} {v} {w} {Γ} Γ' f₁ f₂ G .(Γ' ++ (v ∷ Γ)) refl h₁₂ h₂ = trans (cong (λ z → app z (weak-i Γ' Γ f₂)) ( sub-weak-p-1-i Γ' f₁ G h₁₂ h₂ )) (cong (λ z → app (subst (λ z → Form z (w > t)) h₁₂ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z (w > t)) h₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ f₁))))) z) ( sub-weak-p-1-i Γ' f₂ G h₁₂ h₂ )) sub-weak-p-1-app-1 : ∀ {n} → {t u v w : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f₁ : Form (Γ' ++ Γ) (w > t)) (f₂ : Form (Γ' ++ Γ) w) (G : Form Γ u) → (h₁ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ' ++ (v ∷ Γ)) → (Γ'' : Ctx n) → (h₂₁ : Γ'' ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → (h₂₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ Γ'') → app (weak-i Γ' Γ f₁) (weak-i Γ' Γ f₂) ≡ subst (λ z → Form z t) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z t) h₂₁ (app (subst (λ z → Form z (w > t)) h₂₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ f₁))) (subst (λ z → Form z w) h₂₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ f₂)))))) sub-weak-p-1-app-1 {n} {t} {u} {v} {w} {Γ} Γ' f₁ f₂ G h₁ .((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) refl h₂₂ = sub-weak-p-1-app-2 Γ' f₁ f₂ G ((Γ' ++ (v ∷ ε)) ++ Γ) h₁ refl h₂₂ sub-weak-p-1-lam-2 : ∀ {n} → {u v α β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f : Form ((α ∷ Γ') ++ Γ) β) (G : Form Γ u) → (Γ'' : Ctx n) → (h₁₁ : Γ'' ≡ Γ' ++ (v ∷ Γ)) → (h₁₂ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ'') → (h₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → lam α (weak-i (α ∷ Γ') Γ f) ≡ subst (λ z → Form z (α > β)) h₁₁ (lam α (subst (λ z → Form z β) (cong (_∷_ α) h₁₂) (sub-i (α ∷ (Γ' ++ (v ∷ ε))) Γ G (subst (λ z → Form z β) (cong (_∷_ α) h₂) (weak-i (α ∷ Γ') (u ∷ Γ) (weak-i (α ∷ Γ') Γ f)))))) sub-weak-p-1-lam-2 {n} {u} {v} {α} {β} {Γ} Γ' f G .(Γ' ++ (v ∷ Γ)) refl h₁₂ h₂ = cong (lam α) ( sub-weak-p-1-i (α ∷ Γ') f G (cong (_∷_ α) h₁₂) (cong (_∷_ α) h₂)) sub-weak-p-1-lam-1 : ∀ {n} → {u v α β : Type n} {Γ : Ctx n} (Γ' : Ctx n) (f : Form ((α ∷ Γ') ++ Γ) β) (G : Form Γ u) → (h₁ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ' ++ (v ∷ Γ)) → (Γ'' : Ctx n) → (h₂₁ : Γ'' ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → (h₂₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ Γ'') → lam α (weak-i (α ∷ Γ') Γ f) ≡ subst (λ z → Form z (α > β)) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z (α > β)) h₂₁ (lam α (subst (λ z → Form z β) (cong (λ z → α ∷ z) h₂₂) (weak-i (α ∷ Γ') (u ∷ Γ) (weak-i (α ∷ Γ') Γ f)))))) sub-weak-p-1-lam-1 {n} {u} {v} {α} {β} {Γ} Γ' f G h₁ .((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) refl h₂₂ = sub-weak-p-1-lam-2 Γ' f G ((Γ' ++ (v ∷ ε)) ++ Γ) h₁ refl h₂₂ sub-weak-p-1-i : ∀ {n} → {t u v : Type n} {Γ : Ctx n} (Γ' : Ctx n) (F : Form (Γ' ++ Γ) t) (G : Form Γ u) → (h₁ : (Γ' ++ (v ∷ ε)) ++ Γ ≡ Γ' ++ (v ∷ Γ)) → (h₂ : Γ' ++ (v ∷ (u ∷ Γ)) ≡ (Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) → weak-i Γ' Γ F ≡ subst (λ z → Form z t) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G (subst (λ z → Form z t) h₂ (weak-i Γ' (u ∷ Γ) (weak-i Γ' Γ F)))) sub-weak-p-1-i {_} {β} {u} {v} {Γ} Γ' (var x p) G h₁ h₂ = sub-weak-p-1-var Γ' x G p h₁ _ h₂ refl (trans (weak-var-p Γ' (u ∷ Γ) (weak-var Γ' Γ x)) (trans (weak-var-p Γ' Γ x) p)) sub-weak-p-1-i {_} {$o > $o} {u} {v} {Γ} Γ' N G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > $o)) N (Γ' ++ (v ∷ (u ∷ Γ))) ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) h₂ (λ z → N ≡ subst (λ z → Form z ($o > $o)) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G z)) (erase-subst (Ctx _) (λ z → Form z ($o > $o)) N ((Γ' ++ (v ∷ ε)) ++ Γ) (Γ' ++ (v ∷ Γ)) h₁ (λ z → N ≡ z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-1-i {_} {$o > ($o > $o)} {u} {v} {Γ} Γ' A G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A (Γ' ++ (v ∷ (u ∷ Γ))) ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) h₂ (λ z → A ≡ subst (λ z → Form z ($o > ($o > $o))) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G z)) (erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A ((Γ' ++ (v ∷ ε)) ++ Γ) (Γ' ++ (v ∷ Γ)) h₁ (λ z → A ≡ z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-1-i {_} {(t > $o) > $o} {u} {v} {Γ} Γ' Π G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((t > $o) > $o)) Π (Γ' ++ (v ∷ (u ∷ Γ))) ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) h₂ (λ z → Π ≡ subst (λ z → Form z ((t > $o) > $o)) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G z)) (erase-subst (Ctx _) (λ z → Form z ((t > $o) > $o)) Π ((Γ' ++ (v ∷ ε)) ++ Γ) (Γ' ++ (v ∷ Γ)) h₁ (λ z → Π ≡ z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-1-i {_} {(t > $o) > .t} {u} {v} {Γ} Γ' i G h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((t > $o) > t)) i (Γ' ++ (v ∷ (u ∷ Γ))) ((Γ' ++ (v ∷ ε)) ++ (u ∷ Γ)) h₂ (λ z → i ≡ subst (λ z → Form z ((t > $o) > t)) h₁ (sub-i (Γ' ++ (v ∷ ε)) Γ G z)) (erase-subst (Ctx _) (λ z → Form z ((t > $o) > t)) i ((Γ' ++ (v ∷ ε)) ++ Γ) (Γ' ++ (v ∷ Γ)) h₁ (λ z → i ≡ z) refl) -- rewrite h₂ | h₁ = refl sub-weak-p-1-i {_} {t} {u} {v} {Γ} Γ' (app f₁ f₂) G h₁ h₂ = sub-weak-p-1-app-1 Γ' f₁ f₂ G h₁ (Γ' ++ (v ∷ (u ∷ Γ))) h₂ refl sub-weak-p-1-i {_} {α > β} {u} {v} {Γ} Γ' (lam .α f) G h₁ h₂ = sub-weak-p-1-lam-1 Γ' f G h₁ (Γ' ++ (v ∷ (u ∷ Γ))) h₂ refl sub-weak-p-1'-var : ∀ {n} → {t u : Type n} {Γ : Ctx n} (Γ' : Ctx n) (x : Var (Γ' ++ Γ)) (G : Form Γ u) (p : lookup-Var (Γ' ++ Γ) x ≡ t) → var x p ≡ sub-var Γ' Γ G (weak-var Γ' Γ x) (trans (weak-var-p Γ' Γ x) p) sub-weak-p-1'-var ε x G p = refl sub-weak-p-1'-var (v ∷ Γ') this G p = refl sub-weak-p-1'-var {_} {_} {_} {Γ} (v ∷ Γ') (next x) G p = subst (λ z → var (next {_} {v} x) p ≡ weak-i ε (Γ' ++ Γ) z) (sub-weak-p-1'-var Γ' x G p) refl sub-weak-p-1'-i : ∀ {n} → {t u : Type n} {Γ : Ctx n} (Γ' : Ctx n) (F : Form (Γ' ++ Γ) t) (G : Form Γ u) → F ≡ sub-i Γ' Γ G (weak-i Γ' Γ F) sub-weak-p-1'-i Γ' (var x p) G = sub-weak-p-1'-var Γ' x G p sub-weak-p-1'-i Γ' N G = refl sub-weak-p-1'-i Γ' A G = refl sub-weak-p-1'-i Γ' Π G = refl sub-weak-p-1'-i Γ' i G = refl sub-weak-p-1'-i {_} {_} {_} {Γ} Γ' (app f₁ f₂) G = trans (cong (λ z → app z f₂) (sub-weak-p-1'-i Γ' f₁ G)) ((cong (λ z → app (sub-i Γ' Γ G (weak-i Γ' Γ f₁)) z) (sub-weak-p-1'-i Γ' f₂ G))) sub-weak-p-1'-i Γ' (lam α f) G = cong (lam α) (sub-weak-p-1'-i (α ∷ Γ') f G) sub-weak-p-1 : ∀ {n} → {t u v : Type n} {Γ : Ctx n} (F : Form Γ t) (G : Form Γ u) → weak-i ε Γ F ≡ sub-i (v ∷ ε) Γ G (weak-i ε (u ∷ Γ) (weak-i ε Γ F)) sub-weak-p-1 F G = sub-weak-p-1-i ε F G refl refl sub-weak-p-23 : ∀ {n} → {t u v : Type n} {Γ : Ctx n} (F : Form Γ t) (G : Form (v ∷ Γ) u) → weak-i ε Γ F ≡ sub-i ε (v ∷ Γ) G (weak-i (u ∷ ε) Γ (weak-i ε Γ F)) sub-weak-p-23 F G = sub-weak-p-23-i ε F G refl refl sub-weak-p-1' : ∀ {n} → {t u : Type n} {Γ : Ctx n} (F : Form Γ t) (G : Form Γ u) → F ≡ sub G (weak F) sub-weak-p-1' F G = sub-weak-p-1'-i ε F G -- -------------------------- weak-var-irr-proof-2 : ∀ {n} {Γ : Ctx n} (t : Type n) (x : Var Γ) (p₁ : lookup-Var Γ x ≡ t) (p₂ : lookup-Var Γ x ≡ t) → var x p₁ ≡ var x p₂ weak-var-irr-proof-2 {n} {Γ} .(lookup-Var Γ x) x refl refl = refl weak-var-irr-proof : ∀ {n} {Γ : Ctx n} (t : Type n) (x₁ x₂ : Var Γ) (p₁ : lookup-Var Γ x₁ ≡ t) (p₂ : lookup-Var Γ x₂ ≡ t) → x₁ ≡ x₂ → var x₁ p₁ ≡ var x₂ p₂ weak-var-irr-proof {n} {Γ} t .x₂ x₂ p₁ p₂ refl = weak-var-irr-proof-2 t x₂ p₁ p₂ -- rewrite h = weak-var-irr-proof-2 t x₂ p₁ p₂ -- -------------------------- weak-weak-var-p-1-this : ∀ {n} Γ₁ Γ₂ → (t u v w : Type n) (Γ'₁ Γ'₂ : Ctx n) → (h₁ : w ∷ Γ'₁ ≡ w ∷ ((Γ₂ ++ (t ∷ ε)) ++ Γ₁)) (h₂ : w ∷ Γ'₂ ≡ w ∷ ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁))) → weak-var (w ∷ (Γ₂ ++ (t ∷ ε))) Γ₁ (subst Var h₁ this) ≡ subst Var h₂ this weak-weak-var-p-1-this Γ₁ Γ₂ t u v w ._ ._ refl refl = refl mutual weak-weak-var-p-1-next : ∀ {n} Γ₁ Γ₂ → (t u v w : Type n) (x : Var (Γ₂ ++ Γ₁)) (Γ'₁ Γ'₂ : Ctx n) → (h₁₁ : w ∷ Γ'₁ ≡ w ∷ ((Γ₂ ++ (t ∷ ε)) ++ Γ₁)) (h₁₂ : Γ₂ ++ (t ∷ Γ₁) ≡ Γ'₁) (h₂₁ : w ∷ Γ'₂ ≡ w ∷ ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁))) (h₂₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ Γ'₂) → weak-var (w ∷ (Γ₂ ++ (t ∷ ε))) Γ₁ (subst Var h₁₁ (next (subst Var h₁₂ (weak-var Γ₂ Γ₁ x)))) ≡ subst Var h₂₁ (next (subst Var h₂₂ (weak-var Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x)))) weak-weak-var-p-1-next Γ₁ Γ₂ t u v w x ._ ._ refl h₁₂ refl h₂₂ = cong next (weak-weak-var-p-1 Γ₁ Γ₂ t u v x h₁₂ h₂₂) weak-weak-var-p-1 : ∀ {n} Γ₁ Γ₂ → (t u v : Type n) (x : Var (Γ₂ ++ Γ₁)) (h₁ : Γ₂ ++ (t ∷ Γ₁) ≡ (Γ₂ ++ (t ∷ ε)) ++ Γ₁) (h₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ (Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) → weak-var (Γ₂ ++ (t ∷ ε)) Γ₁ (subst Var h₁ (weak-var Γ₂ Γ₁ x)) ≡ subst Var h₂ (weak-var Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x)) weak-weak-var-p-1 Γ₂ ε t u v x refl refl = refl weak-weak-var-p-1 Γ₁ (w ∷ Γ₂) t u v this h₁ h₂ = weak-weak-var-p-1-this Γ₁ Γ₂ t u v w _ _ h₁ h₂ weak-weak-var-p-1 Γ₁ (w ∷ Γ₂) t u v (next x) h₁ h₂ = weak-weak-var-p-1-next Γ₁ Γ₂ t u v w x _ _ h₁ refl h₂ refl weak-weak-p-1-var : ∀ {n} Γ₁ Γ₂ → (t u v : Type n) (x : Var (Γ₂ ++ Γ₁)) (Γ'₁ Γ'₂ : Ctx n) → (h₁₁ : Γ'₁ ≡ (Γ₂ ++ (t ∷ ε)) ++ Γ₁) → (h₁₂ : Γ₂ ++ (t ∷ Γ₁) ≡ Γ'₁) → (h₂₁ : Γ'₂ ≡ (Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) → (h₂₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ Γ'₂) → (p₁ : lookup-Var Γ'₁ (subst Var h₁₂ (weak-var Γ₂ Γ₁ x)) ≡ v) (p₂ : lookup-Var Γ'₂ (subst Var h₂₂ (weak-var Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x))) ≡ v) → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z v) h₁₁ (var (subst Var h₁₂ (weak-var Γ₂ Γ₁ x)) p₁)) ≡ subst (λ z → Form z v) h₂₁ (var (subst Var h₂₂ (weak-var Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x))) p₂) weak-weak-p-1-var Γ₁ Γ₂ t u v x .((Γ₂ ++ (t ∷ ε)) ++ Γ₁) .((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) refl h₁₂ refl h₂₂ p₁ p₂ = weak-var-irr-proof _ (weak-var (Γ₂ ++ (t ∷ ε)) Γ₁ (subst Var h₁₂ (weak-var Γ₂ Γ₁ x))) (subst Var h₂₂ (weak-var Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x))) (trans (weak-var-p (Γ₂ ++ (t ∷ ε)) Γ₁ (subst Var h₁₂ (weak-var Γ₂ Γ₁ x))) p₁) p₂ (weak-weak-var-p-1 Γ₁ Γ₂ t u v x h₁₂ h₂₂) mutual weak-weak-p-1-app : ∀ {n} Γ₁ Γ₂ → (t u v α : Type n) (f₁ : Form (Γ₂ ++ Γ₁) (α > v)) (f₂ : Form (Γ₂ ++ Γ₁) α) (Γ'₁ Γ'₂ : Ctx n) → (h₁₁ : Γ'₁ ≡ (Γ₂ ++ (t ∷ ε)) ++ Γ₁) → (h₁₂ : Γ₂ ++ (t ∷ Γ₁) ≡ Γ'₁) → (h₂₁ : Γ'₂ ≡ (Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) → (h₂₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ Γ'₂) → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z v) h₁₁ (app (subst (λ z → Form z (α > v)) h₁₂ (weak-i Γ₂ Γ₁ f₁)) (subst (λ z → Form z α) h₁₂ (weak-i Γ₂ Γ₁ f₂)))) ≡ subst (λ z → Form z v) h₂₁ (app (subst (λ z → Form z (α > v)) h₂₂ (weak-i Γ₂ (u ∷ Γ₁) (weak-i Γ₂ Γ₁ f₁))) (subst (λ z → Form z α) h₂₂ (weak-i Γ₂ (u ∷ Γ₁) (weak-i Γ₂ Γ₁ f₂)))) weak-weak-p-1-app Γ₁ Γ₂ t u v α f₁ f₂ ._ ._ refl h₁₂ refl h₂₂ = trans (cong (λ z → app z (weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z α) h₁₂ (weak-i Γ₂ Γ₁ f₂)))) (weak-weak-p-1-i Γ₁ Γ₂ t u (α > v) f₁ h₁₂ h₂₂)) (cong (app (subst (λ z → Form z (α > v)) h₂₂ (weak-i Γ₂ (u ∷ Γ₁) (weak-i Γ₂ Γ₁ f₁)))) (weak-weak-p-1-i Γ₁ Γ₂ t u α f₂ h₁₂ h₂₂)) weak-weak-p-1-lam : ∀ {n} Γ₁ Γ₂ → (t u α β : Type n) (X : Form (α ∷ (Γ₂ ++ Γ₁)) β) (Γ'₁ Γ'₂ : Ctx n) → (h₁₁ : Γ'₁ ≡ (Γ₂ ++ (t ∷ ε)) ++ Γ₁) → (h₁₂ : Γ₂ ++ (t ∷ Γ₁) ≡ Γ'₁) → (h₂₁ : Γ'₂ ≡ (Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) → (h₂₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ Γ'₂) → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z (α > β)) h₁₁ (lam α (subst (λ z → Form z β) (cong (_∷_ α) h₁₂) (weak-i (α ∷ Γ₂) Γ₁ X)))) ≡ subst (λ z → Form z (α > β)) h₂₁ (lam α (subst (λ z → Form z β) (cong (_∷_ α) h₂₂) (weak-i (α ∷ Γ₂) (u ∷ Γ₁) (weak-i (α ∷ Γ₂) Γ₁ X)))) weak-weak-p-1-lam Γ₁ Γ₂ t u α β X .((Γ₂ ++ (t ∷ ε)) ++ Γ₁) .((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) refl h₁₂ refl h₂₂ = cong (lam α) (weak-weak-p-1-i Γ₁ (α ∷ Γ₂) t u β X (cong (_∷_ α) h₁₂) (cong (_∷_ α) h₂₂)) weak-weak-p-1-i : ∀ {n} Γ₁ Γ₂ → (t u v : Type n) (X : Form (Γ₂ ++ Γ₁) v) → (h₁ : Γ₂ ++ (t ∷ Γ₁) ≡ (Γ₂ ++ (t ∷ ε)) ++ Γ₁) → (h₂ : Γ₂ ++ (t ∷ (u ∷ Γ₁)) ≡ (Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) → weak-i {n} {v} {u} (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z v) h₁ (weak-i {n} {v} {t} Γ₂ Γ₁ X)) ≡ subst (λ z → Form z v) h₂ (weak-i {n} {v} {t} Γ₂ (u ∷ Γ₁) (weak-i {n} {v} {u} Γ₂ Γ₁ X)) weak-weak-p-1-i Γ₁ Γ₂ t u v (var x p) h₁ h₂ = weak-weak-p-1-var Γ₁ Γ₂ t u v x _ _ h₁ refl h₂ refl (trans (weak-var-p Γ₂ Γ₁ x) p) (trans (weak-var-p Γ₂ (u ∷ Γ₁) (weak-var Γ₂ Γ₁ x)) (trans (weak-var-p Γ₂ Γ₁ x) p)) weak-weak-p-1-i Γ₁ Γ₂ t u .($o > $o) N h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > $o)) N (Γ₂ ++ (t ∷ (u ∷ Γ₁))) ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) h₂ (λ z → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z ($o > $o)) h₁ N) ≡ z) (erase-subst (Ctx _) (λ z → Form z ($o > $o)) N (Γ₂ ++ (t ∷ Γ₁)) ((Γ₂ ++ (t ∷ ε)) ++ Γ₁) h₁ (λ z → weak-i {_} {_} {u} (Γ₂ ++ (t ∷ ε)) Γ₁ z ≡ N) refl) -- rewrite h₂ | h₁ = refl weak-weak-p-1-i Γ₁ Γ₂ t u .($o > ($o > $o)) A h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A (Γ₂ ++ (t ∷ (u ∷ Γ₁))) ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) h₂ (λ z → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z ($o > ($o > $o))) h₁ A) ≡ z) (erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A (Γ₂ ++ (t ∷ Γ₁)) ((Γ₂ ++ (t ∷ ε)) ++ Γ₁) h₁ (λ z → weak-i {_} {_} {u} (Γ₂ ++ (t ∷ ε)) Γ₁ z ≡ A) refl) -- rewrite h₂ | h₁ = refl weak-weak-p-1-i Γ₁ Γ₂ t u .((α > $o) > $o) (Π {._} {α}) h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((α > $o) > $o)) Π (Γ₂ ++ (t ∷ (u ∷ Γ₁))) ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) h₂ (λ z → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z ((α > $o) > $o)) h₁ Π) ≡ z) (erase-subst (Ctx _) (λ z → Form z ((α > $o) > $o)) Π (Γ₂ ++ (t ∷ Γ₁)) ((Γ₂ ++ (t ∷ ε)) ++ Γ₁) h₁ (λ z → weak-i {_} {_} {u} (Γ₂ ++ (t ∷ ε)) Γ₁ z ≡ Π) refl) -- rewrite h₂ | h₁ = refl weak-weak-p-1-i Γ₁ Γ₂ t u .((α > $o) > α) (i {._} {α}) h₁ h₂ = erase-subst (Ctx _) (λ z → Form z ((α > $o) > α)) i (Γ₂ ++ (t ∷ (u ∷ Γ₁))) ((Γ₂ ++ (t ∷ ε)) ++ (u ∷ Γ₁)) h₂ (λ z → weak-i (Γ₂ ++ (t ∷ ε)) Γ₁ (subst (λ z → Form z ((α > $o) > α)) h₁ i) ≡ z) (erase-subst (Ctx _) (λ z → Form z ((α > $o) > α)) i (Γ₂ ++ (t ∷ Γ₁)) ((Γ₂ ++ (t ∷ ε)) ++ Γ₁) h₁ (λ z → weak-i {_} {_} {u} (Γ₂ ++ (t ∷ ε)) Γ₁ z ≡ i) refl) -- rewrite h₂ | h₁ = refl weak-weak-p-1-i Γ₁ Γ₂ t u v (app f₁ f₂) h₁ h₂ = weak-weak-p-1-app Γ₁ Γ₂ t u v _ f₁ f₂ _ _ h₁ refl h₂ refl weak-weak-p-1-i Γ₁ Γ₂ t u .(α > β) (lam {._} {β} α f) h₁ h₂ = weak-weak-p-1-lam Γ₁ Γ₂ t u α β f _ _ h₁ refl h₂ refl weak-weak-p-1 : ∀ {n} Γ → (t u v : Type n) (X : Form Γ v) → weak-i {n} {v} {u} (t ∷ ε) Γ (weak-i {n} {v} {t} ε Γ X) ≡ weak-i {n} {v} {t} ε (u ∷ Γ) (weak-i {n} {v} {u} ε Γ X) weak-weak-p-1 Γ t u v X = weak-weak-p-1-i Γ ε t u v X refl refl -- ----------------------- thevar : ∀ {n Γ} → (Γ' : Ctx n) (α : Type n) → Var (Γ' ++ (α ∷ Γ)) thevar ε α = this thevar (β ∷ Γ') α = next (thevar Γ' α) occurs-p-2-i-var : ∀ {n} {Γ : Ctx n} {α β : Type n} (Γ' : Ctx n) (v : Var (Γ' ++ Γ)) (p : lookup-Var (Γ' ++ Γ) v ≡ β) → eq-Var (thevar Γ' α) (weak-var Γ' Γ v) ≡ false occurs-p-2-i-var ε v p = refl occurs-p-2-i-var (γ ∷ Γ') this p = refl occurs-p-2-i-var (γ ∷ Γ') (next v) p = occurs-p-2-i-var Γ' v p occurs-p-2-i : ∀ {n} {Γ : Ctx n} {α β : Type n} (Γ' : Ctx n) (F : Form (Γ' ++ Γ) β) → occurs {n} {Γ' ++ (α ∷ Γ)} (thevar Γ' α) (weak-i Γ' Γ F) ≡ false occurs-p-2-i Γ' (var v p) = occurs-p-2-i-var Γ' v p occurs-p-2-i Γ' N = refl occurs-p-2-i Γ' A = refl occurs-p-2-i Γ' Π = refl occurs-p-2-i Γ' i = refl occurs-p-2-i {n} {Γ} {α} {β} Γ' (app f₁ f₂) = subst (λ z → z ∨ occurs (thevar Γ' α) (weak-i Γ' Γ f₂) ≡ false) (sym (occurs-p-2-i {n} {Γ} {α} {_ > β} Γ' f₁)) (occurs-p-2-i {n} {Γ} {α} Γ' f₂) -- rewrite occurs-p-2-i {n} {Γ} {α} {_ > β} Γ' f₁ | occurs-p-2-i {n} {Γ} {α} Γ' f₂ = refl occurs-p-2-i Γ' (lam γ f) = occurs-p-2-i (γ ∷ Γ') f occurs-p-2 : ∀ {n} {Γ : Ctx n} {α β : Type n} (F : Form Γ β) → occurs {n} {α ∷ Γ} this (weak F) ≡ false occurs-p-2 F = occurs-p-2-i ε F -- ----------------------- sub-sub-weak-weak-p-3-i-var-2-this : ∀ {n} → {Γ Γ' : Ctx n} {α β γ : Type n} → (Γ1 Γ2 : Ctx n) → (eq1 : γ ∷ Γ1 ≡ γ ∷ (Γ' ++ (α ∷ (α ∷ Γ)))) → (eq2 : γ ∷ Γ2 ≡ γ ∷ (Γ' ++ (α ∷ Γ))) → (p1 : lookup-Var (γ ∷ (Γ' ++ (α ∷ (α ∷ Γ)))) (subst Var eq1 this) ≡ β) → (p2 : lookup-Var (γ ∷ (Γ' ++ (α ∷ Γ))) (subst Var eq2 this) ≡ β) → sub-var (γ ∷ Γ') (α ∷ Γ) (var this refl) (subst Var eq1 this) p1 ≡ var (subst Var eq2 this) p2 sub-sub-weak-weak-p-3-i-var-2-this {n} {Γ} {Γ'} {α} .(Γ' ++ (α ∷ (α ∷ Γ))) .(Γ' ++ (α ∷ Γ)) refl refl refl refl = refl mutual sub-sub-weak-weak-p-3-i-var-2-next : ∀ {n} → {Γ Γ' : Ctx n} {α β γ : Type n} (x : Var ((Γ' ++ (α ∷ ε)) ++ Γ)) → (Γ1 Γ2 : Ctx n) → (eq1 : γ ∷ Γ1 ≡ γ ∷ (Γ' ++ (α ∷ (α ∷ Γ)))) → (eq12 : (Γ' ++ (α ∷ ε)) ++ (α ∷ Γ) ≡ Γ1) → (eq2 : γ ∷ Γ2 ≡ γ ∷ (Γ' ++ (α ∷ Γ))) → (eq22 : (Γ' ++ (α ∷ ε)) ++ Γ ≡ Γ2) → (p1 : lookup-Var ((γ ∷ Γ') ++ (lookup-Var (α ∷ Γ) this ∷ (α ∷ Γ))) (subst Var eq1 (next (subst Var eq12 (weak-var (Γ' ++ (α ∷ ε)) Γ x)))) ≡ β) → (p2 : lookup-Var (γ ∷ (Γ' ++ (α ∷ Γ))) (subst Var eq2 (next (subst Var eq22 x))) ≡ β) → sub-var (γ ∷ Γ') (α ∷ Γ) (var this refl) (subst Var eq1 (next (subst Var eq12 (weak-var (Γ' ++ (α ∷ ε)) Γ x)))) p1 ≡ var (subst Var eq2 (next (subst Var eq22 x))) p2 sub-sub-weak-weak-p-3-i-var-2-next {n} {Γ} {Γ'} {α} x .(Γ' ++ (α ∷ (α ∷ Γ))) .(Γ' ++ (α ∷ Γ)) refl eq12 refl eq22 p1 p2 = cong (weak-i ε (Γ' ++ (α ∷ Γ))) (sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {Γ'} {α} x eq12 eq22 p1 p2) sub-sub-weak-weak-p-3-i-var-2 : ∀ {n} → {Γ Γ' : Ctx n} {α β : Type n} (x : Var ((Γ' ++ (α ∷ ε)) ++ Γ)) → (eq1 : (Γ' ++ (α ∷ ε)) ++ (α ∷ Γ) ≡ Γ' ++ (α ∷ (α ∷ Γ))) → (eq2 : (Γ' ++ (α ∷ ε)) ++ Γ ≡ Γ' ++ (α ∷ Γ)) → (p1 : lookup-Var (Γ' ++ (α ∷ (α ∷ Γ))) (subst Var eq1 (weak-var (Γ' ++ (α ∷ ε)) Γ x)) ≡ β) → (p2 : lookup-Var (Γ' ++ (α ∷ Γ)) (subst Var eq2 x) ≡ β) → sub-var Γ' (α ∷ Γ) (var this refl) (subst Var eq1 (weak-var (Γ' ++ (α ∷ ε)) Γ x)) p1 ≡ var (subst Var eq2 x) p2 sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {ε} this refl refl refl refl = refl sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {ε} (next x) refl refl refl refl = refl sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {γ ∷ Γ'} this eq1 eq2 p1 p2 = sub-sub-weak-weak-p-3-i-var-2-this {n} {Γ} {Γ'} {_} {_} {γ} ((Γ' ++ (_ ∷ ε)) ++ (_ ∷ Γ)) ((Γ' ++ (_ ∷ ε)) ++ Γ) eq1 eq2 p1 p2 sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {γ ∷ Γ'} (next x) eq1 eq2 p1 p2 = sub-sub-weak-weak-p-3-i-var-2-next {n} {Γ} {Γ'} {_} {_} {γ} x ((Γ' ++ (_ ∷ ε)) ++ (_ ∷ Γ)) ((Γ' ++ (_ ∷ ε)) ++ Γ) eq1 refl eq2 refl p1 p2 sub-sub-weak-weak-p-3-i-var : ∀ {n} → {Γ Γ' : Ctx n} {α β : Type n} (x : Var ((Γ' ++ (α ∷ ε)) ++ Γ)) → (Γ1 Γ2 : Ctx n) → (eq11 : Γ1 ≡ Γ' ++ (α ∷ (α ∷ Γ))) → (eq12 : (Γ' ++ (α ∷ ε)) ++ (α ∷ Γ) ≡ Γ1) → (eq21 : Γ2 ≡ Γ' ++ (α ∷ Γ)) → (eq22 : (Γ' ++ (α ∷ ε)) ++ Γ ≡ Γ2) → (p1 : lookup-Var Γ1 (subst Var eq12 (weak-var (Γ' ++ (α ∷ ε)) Γ x)) ≡ β) → (p2 : lookup-Var Γ2 (subst Var eq22 x) ≡ β) → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z β) eq11 (var (subst Var eq12 (weak-var (Γ' ++ (α ∷ ε)) Γ x)) p1)) ≡ subst (λ z → Form z β) eq21 (var (subst Var eq22 x) p2) sub-sub-weak-weak-p-3-i-var {n} {Γ} {Γ'} {α} x .(Γ' ++ (α ∷ (α ∷ Γ))) .(Γ' ++ (α ∷ Γ)) refl eq12 refl eq22 p1 p2 = sub-sub-weak-weak-p-3-i-var-2 {n} {Γ} {Γ'} {α} x eq12 eq22 p1 p2 mutual sub-sub-weak-weak-p-3-i-app : ∀ {n} → {Γ Γ' : Ctx n} {α β γ : Type n} (f₁ : Form ((Γ' ++ (α ∷ ε)) ++ Γ) (γ > β)) → (f₂ : Form ((Γ' ++ (α ∷ ε)) ++ Γ) γ) → (Γ1 Γ2 : Ctx n) → (eq1 : Γ1 ≡ Γ' ++ (α ∷ (α ∷ Γ))) → (eq12 : (Γ' ++ (α ∷ ε)) ++ (α ∷ Γ) ≡ Γ1) → (eq2 : Γ2 ≡ Γ' ++ (α ∷ Γ)) → (eq22 : (Γ' ++ (α ∷ ε)) ++ Γ ≡ Γ2) → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z β) eq1 (app (subst (λ z → Form z (γ > β)) eq12 (weak-i (Γ' ++ (α ∷ ε)) Γ f₁)) (subst (λ z → Form z γ) eq12 (weak-i (Γ' ++ (α ∷ ε)) Γ f₂)))) ≡ subst (λ z → Form z β) eq2 (app (subst (λ z → Form z (γ > β)) eq22 f₁) (subst (λ z → Form z γ) eq22 f₂)) sub-sub-weak-weak-p-3-i-app {n} {Γ} {Γ'} {α} {β} {γ} f₁ f₂ .(Γ' ++ (α ∷ (α ∷ Γ))) .(Γ' ++ (α ∷ Γ)) refl eq12 refl eq22 = trans (cong (λ z → app z (sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z γ) eq12 (weak-i (Γ' ++ (α ∷ ε)) Γ f₂)))) (sub-sub-weak-weak-p-3-i {n} {Γ} {Γ'} {α} {γ > β} f₁ eq12 eq22)) (cong (app (subst (λ z → Form z (γ > β)) eq22 f₁)) (sub-sub-weak-weak-p-3-i {n} {Γ} {Γ'} {α} {γ} f₂ eq12 eq22)) sub-sub-weak-weak-p-3-i-lam : ∀ {n} → {Γ Γ' : Ctx n} {α β γ : Type n} (f : Form (γ ∷ ((Γ' ++ (α ∷ ε)) ++ Γ)) β) (Γ1 Γ2 : Ctx n) (eq1 : Γ1 ≡ Γ' ++ (α ∷ (α ∷ Γ))) (eq12 : γ ∷ ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) ≡ γ ∷ Γ1) (eq2 : Γ2 ≡ Γ' ++ (α ∷ Γ)) (eq22 : γ ∷ ((Γ' ++ (α ∷ ε)) ++ Γ) ≡ γ ∷ Γ2) → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z (γ > β)) eq1 (lam γ (subst (λ z → Form z β) eq12 (weak-i (γ ∷ (Γ' ++ (α ∷ ε))) Γ f)))) ≡ subst (λ z → Form z (γ > β)) eq2 (lam γ (subst (λ z → Form z β) eq22 f)) sub-sub-weak-weak-p-3-i-lam {n} {Γ} {Γ'} {α} {β} {γ} f .(Γ' ++ (α ∷ (α ∷ Γ))) .(Γ' ++ (α ∷ Γ)) refl eq12 refl eq22 = cong (lam γ) (sub-sub-weak-weak-p-3-i {n} {Γ} {γ ∷ Γ'} {α} {β} f eq12 eq22) sub-sub-weak-weak-p-3-i : ∀ {n} → {Γ Γ' : Ctx n} {α β : Type n} (G : Form ((Γ' ++ (α ∷ ε)) ++ Γ) β) → (eq1 : (Γ' ++ (α ∷ ε)) ++ (α ∷ Γ) ≡ Γ' ++ (α ∷ (α ∷ Γ))) → (eq2 : (Γ' ++ (α ∷ ε)) ++ Γ ≡ Γ' ++ (α ∷ Γ)) → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z β) eq1 (weak-i (Γ' ++ (α ∷ ε)) Γ G)) ≡ subst (λ z → Form z β) eq2 G sub-sub-weak-weak-p-3-i {n} {Γ} {Γ'} {α} {β} (var x p) eq1 eq2 = sub-sub-weak-weak-p-3-i-var {n} {Γ} {Γ'} {α} {β} x ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) ((Γ' ++ (α ∷ ε)) ++ Γ) eq1 refl eq2 refl (trans (weak-var-p (Γ' ++ (α ∷ ε)) Γ x) p) p sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} {$o > $o} N eq1 eq2 = erase-subst (Ctx _) (λ z → Form z ($o > $o)) N ((Γ' ++ (α ∷ ε)) ++ Γ) (Γ' ++ (α ∷ Γ)) eq2 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z ($o > $o)) eq1 N) ≡ z) (erase-subst (Ctx _) (λ z → Form z ($o > $o)) N ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) (Γ' ++ (α ∷ (α ∷ Γ))) eq1 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) z ≡ N) refl) -- rewrite eq2 | eq1 = refl sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} {$o > ($o > $o)} A eq1 eq2 = erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A ((Γ' ++ (α ∷ ε)) ++ Γ) (Γ' ++ (α ∷ Γ)) eq2 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z ($o > ($o > $o))) eq1 A) ≡ z) (erase-subst (Ctx _) (λ z → Form z ($o > ($o > $o))) A ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) (Γ' ++ (α ∷ (α ∷ Γ))) eq1 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) z ≡ A) refl) -- rewrite eq2 | eq1 = refl sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} {(β > $o) > $o} Π eq1 eq2 = erase-subst (Ctx _) (λ z → Form z ((β > $o) > $o)) Π ((Γ' ++ (α ∷ ε)) ++ Γ) (Γ' ++ (α ∷ Γ)) eq2 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z ((β > $o) > $o)) eq1 Π) ≡ z) (erase-subst (Ctx _) (λ z → Form z ((β > $o) > $o)) Π ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) (Γ' ++ (α ∷ (α ∷ Γ))) eq1 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) z ≡ Π) refl) -- rewrite eq2 | eq1 = refl sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} {(β > $o) > .β} i eq1 eq2 = erase-subst (Ctx _) (λ z → Form z ((β > $o) > β)) i ((Γ' ++ (α ∷ ε)) ++ Γ) (Γ' ++ (α ∷ Γ)) eq2 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) (subst (λ z → Form z ((β > $o) > β)) eq1 i) ≡ z) (erase-subst (Ctx _) (λ z → Form z ((β > $o) > β)) i ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) (Γ' ++ (α ∷ (α ∷ Γ))) eq1 (λ z → sub-i Γ' (α ∷ Γ) (var this refl) z ≡ i) refl) -- rewrite eq2 | eq1 = refl sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} (app f₁ f₂) eq1 eq2 = sub-sub-weak-weak-p-3-i-app {_} {Γ} {Γ'} {α} f₁ f₂ ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) ((Γ' ++ (α ∷ ε)) ++ Γ) eq1 refl eq2 refl sub-sub-weak-weak-p-3-i {_} {Γ} {Γ'} {α} (lam γ f) eq1 eq2 = sub-sub-weak-weak-p-3-i-lam {_} {Γ} {Γ'} {α} f ((Γ' ++ (α ∷ ε)) ++ (α ∷ Γ)) ((Γ' ++ (α ∷ ε)) ++ Γ) eq1 refl eq2 refl sub-sub-weak-weak-p-3 : ∀ {n} → {Γ : Ctx n} {α β : Type n} (G : Form (α ∷ Γ) β) → sub (var this refl) (weak-i (α ∷ ε) Γ G) ≡ G sub-sub-weak-weak-p-3 G = sub-sub-weak-weak-p-3-i {_} {_} {ε} G refl refl sub-sub-weak-weak-p : ∀ {n} → {Γ : Ctx n} {α β : Type n} (F : Form Γ β) (G : Form (α ∷ Γ) β) → sub (var this refl) (sub-i (α ∷ (α ∷ ε)) Γ F (weak-i (α ∷ ε) (β ∷ Γ) (weak-i (α ∷ ε) Γ G))) ≡ G sub-sub-weak-weak-p {_} {Γ} {α} {β} F G = subst (λ z → sub (var this refl) z ≡ G) (sub-weak-p-1-i (α ∷ ε) G F refl refl) (sub-sub-weak-weak-p-3 G) sub-sub-weak-weak-p-2 : ∀ {n} → {Γ : Ctx n} {α β : Type n} (F G : Form (α ∷ Γ) β) → sub (var this refl) (sub-i (α ∷ (α ∷ ε)) Γ (lam α G) (weak-i (α ∷ ε) ((α > β) ∷ Γ) (weak-i (α ∷ ε) Γ F))) ≡ F sub-sub-weak-weak-p-2 {_} {Γ} {α} {β} F G = subst (λ z → sub (var this refl) z ≡ F) (sub-weak-p-1-i (α ∷ ε) F (lam α G) refl refl) (sub-sub-weak-weak-p-3 F) -- ---------------- mutual headNorm : {n : ℕ} {Γ : Ctx n} {α : Type n} → ℕ → Form Γ α → Form Γ α -- headNorm m (app (app (lam α (lam _ (app Π (lam (_ > $o) (app (app A (app N (app (var this _) (var (next (next this)) _)))) (app (var this _) (var (next this) _))))))) F) G) = ? headNorm m (app F G) = headNorm' m (headNorm m F) G headNorm _ F = F headNorm' : {n : ℕ} {Γ : Ctx n} {α β : Type n} → ℕ → Form Γ (α > β) → Form Γ α → Form Γ β headNorm' (suc m) (lam _ F) G = headNorm m (sub G F) headNorm' 0 (lam _ F) G = app (lam _ F) G headNorm' _ F G = app F G -- ---------------- !'[_]_ : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form Γ (α > $o) → Form Γ $o !'[ α ] F = app Π F ?'[_]_ : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form Γ (α > $o) → Form Γ $o ?'[ α ] F = ?[ α ] (weak F · $ this {refl}) ι' : ∀ {n} → {Γ : Ctx n} → (α : Type n) → Form Γ (α > $o) → Form Γ α ι' α F = app i F
{ "alphanum_fraction": 0.4393167647, "avg_line_length": 63.9719101124, "ext": "agda", "hexsha": "881546ba40c54f53e6928e0b78e7f72bcbcf5955", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z", "max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "frelindb/agsyHOL", "max_forks_repo_path": "soundness/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "frelindb/agsyHOL", "max_issues_repo_path": "soundness/Syntax.agda", "max_line_length": 450, "max_stars_count": 17, "max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "frelindb/agsyHOL", "max_stars_repo_path": "soundness/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z", "num_tokens": 24001, "size": 45548 }
-- Andreas, 2018-06-03, issue #3102 -- Regression: slow reduce with lots of module parameters and an import. -- {-# OPTIONS -v tc.cc:30 -v tc.cover.top:30 --profile=internal #-} open import Agda.Builtin.Bool module _ (A B C D E F G H I J K L M O P Q R S T U V W X Y Z A₁ B₁ C₁ D₁ E₁ F₁ G₁ H₁ I₁ J₁ K₁ L₁ M₁ O₁ P₁ Q₁ R₁ S₁ T₁ U₁ V₁ W₁ X₁ Y₁ Z₁ A₂ B₂ C₂ D₂ E₂ F₂ G₂ H₂ I₂ J₂ K₂ L₂ M₂ O₂ P₂ Q₂ R₂ S₂ T₂ U₂ V₂ W₂ X₂ Y₂ Z₂ A₃ B₃ C₃ D₃ E₃ F₃ G₃ H₃ I₃ J₃ K₃ L₃ M₃ O₃ P₃ Q₃ R₃ S₃ T₃ U₃ V₃ W₃ X₃ Y₃ Z₃ A₄ B₄ C₄ D₄ E₄ F₄ G₄ H₄ I₄ J₄ K₄ L₄ M₄ O₄ P₄ Q₄ R₄ S₄ T₄ U₄ V₄ W₄ X₄ Y₄ Z₄ : Set) where test : Bool → Bool test true = false test false = false -- Should succeed instantaneously.
{ "alphanum_fraction": 0.625, "avg_line_length": 36.4, "ext": "agda", "hexsha": "c9d0c63bb8914d8b62fa1f3db7ccd61a237e5758", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue3102.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue3102.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue3102.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:24:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:24:48.000Z", "num_tokens": 376, "size": 728 }
module AmbiguousTopLevelModuleName where import Imports.Ambiguous
{ "alphanum_fraction": 0.8955223881, "avg_line_length": 16.75, "ext": "agda", "hexsha": "c1a8d10b67a15b50e223a3e7598f5d87b903dab5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/AmbiguousTopLevelModuleName.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AmbiguousTopLevelModuleName.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AmbiguousTopLevelModuleName.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 14, "size": 67 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusProvider as ConsensusProvider open import LibraBFT.Impl.Properties.Util import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.PKCS open import Util.Prelude hiding (_++_) module LibraBFT.Impl.Consensus.Properties.ConsensusProvider where open InitProofDefs module startConsensusSpec (nodeConfig : NodeConfig) (now : Instant) (payload : OnChainConfigPayload) (liws : LedgerInfoWithSignatures) (sk : SK) (needFetch : ObmNeedFetch) (propGen : ProposalGenerator) (stateComp : StateComputer) where -- TODO-2: Requires refinement postulate contract' : EitherD-weakestPre (ConsensusProvider.startConsensus-ed-abs nodeConfig now payload liws sk needFetch propGen stateComp) (InitContract nothing)
{ "alphanum_fraction": 0.7190082645, "avg_line_length": 38.3658536585, "ext": "agda", "hexsha": "b71777d0b5f884abe775911c4581937b71f7b637", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Properties/ConsensusProvider.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Properties/ConsensusProvider.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Properties/ConsensusProvider.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 392, "size": 1573 }
-- Andreas, 2012-07-26, reported by Nisse module Issue678 where module Unit where data Unit : Set where unit : Unit El : Unit → Set El unit = Unit data IsUnit : Unit → Set where isUnit : IsUnit unit test : (u : Unit)(x : El u)(p : IsUnit u) → Set test .unit unit isUnit = Unit -- this requires the coverage checker to skip the first split opportunity, x, -- and move on to the second, p module NisseOriginalTestCase where record Box (A : Set) : Set where constructor [_] field unbox : A data U : Set where box : U → U El : U → Set El (box a) = Box (El a) data Q : ∀ a → El a → El a → Set where q₁ : ∀ {a x} → Q (box a) [ x ] [ x ] q₂ : ∀ {a} {x y : El a} → Q a x y data P : ∀ a → El a → El a → Set where p : ∀ {a x y z} → P a x y → P a y z → P a x z foo : ∀ {a xs ys} → P a xs ys → Q a xs ys foo (p p₁ p₂) with foo p₁ | foo p₂ foo (p p₁ p₂) | q₁ | _ = q₂ foo (p p₁ p₂) | q₂ | _ = q₂ -- Error was: -- Cannot split on argument of non-datatype El @1 -- when checking the definition of with-33
{ "alphanum_fraction": 0.5704948646, "avg_line_length": 22.7872340426, "ext": "agda", "hexsha": "e35accca457f4dc94e3de259342d999b0c63963d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue678.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue678.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue678.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 391, "size": 1071 }
{-# OPTIONS --safe --warning=error --without-K #-} module Naturals where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+N_ : ℕ → ℕ → ℕ zero +N b = b succ a +N b = succ (a +N b)
{ "alphanum_fraction": 0.5603864734, "avg_line_length": 14.7857142857, "ext": "agda", "hexsha": "1b4bde6a241f8f98f571c54e921ebf12a8ccd178", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/CubicalTutorial", "max_forks_repo_path": "Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/CubicalTutorial", "max_issues_repo_path": "Naturals.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/CubicalTutorial", "max_stars_repo_path": "Naturals.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-16T23:14:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-26T17:02:42.000Z", "num_tokens": 73, "size": 207 }
module Cats.Category.Base where open import Level open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves_⟶_ ; _Preserves₂_⟶_⟶_ ; Setoid) open import Relation.Binary.EqReasoning as EqReasoning import Cats.Util.SetoidReasoning as SetoidR record Category lo la l≈ : Set (suc (lo ⊔ la ⊔ l≈)) where infixr 9 _∘_ infix 4 _≈_ infixr -1 _⇒_ field Obj : Set lo _⇒_ : Obj → Obj → Set la _≈_ : ∀ {A B} → Rel (A ⇒ B) l≈ id : {O : Obj} → O ⇒ O _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp : ∀ {A B C} → (_∘_ {A} {B} {C}) Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ id-r : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f id-l : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f assoc : ∀ {A B C D} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) Hom : (A B : Obj) → Setoid la l≈ Hom A B = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } module ≈ {A B} = IsEquivalence (equiv {A} {B}) module ≈-Reasoning {A B} where open EqReasoning (Hom A B) public triangle = SetoidR.triangle (Hom A B) unassoc : ∀ {A B C D} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → f ∘ (g ∘ h) ≈ (f ∘ g) ∘ h unassoc = ≈.sym assoc ∘-resp-r : ∀ {A B C} {f : B ⇒ C} → (_∘_ {A} f) Preserves _≈_ ⟶ _≈_ ∘-resp-r eq = ∘-resp ≈.refl eq ∘-resp-l : ∀ {A B C} {g : A ⇒ B} → (λ f → _∘_ {C = C} f g) Preserves _≈_ ⟶ _≈_ ∘-resp-l eq = ∘-resp eq ≈.refl
{ "alphanum_fraction": 0.4901158828, "avg_line_length": 25.2931034483, "ext": "agda", "hexsha": "4eaace3e68c9258d5a49116998fdead0449eb4fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Base.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 686, "size": 1467 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Set a b : A f : (A → A) → A g : A → A rewf₁ : f (λ x → g x) ≡ a rewf₂ : f (λ x → a) ≡ b rewg : (x : A) → g x ≡ a {-# REWRITE rewf₁ rewf₂ rewg #-}
{ "alphanum_fraction": 0.5629139073, "avg_line_length": 16.7777777778, "ext": "agda", "hexsha": "e08a58e643ac6e4278238051214dc1180e31dfce", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3816.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3816.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3816.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 302 }
-- 2011-04-12 AIM XIII fixed this issue by freezing metas after declaration (Andreas & Ulf) module Issue399 where open import Common.Prelude data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A -- now in Common.Prelude -- _++_ : {A : Set} → List A → List A → List A -- [] ++ ys = ys -- (x ∷ xs) ++ ys = x ∷ (xs ++ ys) record MyMonadPlus m : Set₁ where field mzero : {a : Set} → m a → List a mplus : {a : Set} → m a → m a → List a -- this produces an unsolved meta variable, because it is not clear which -- level m has. m could be in Set -> Set or in Set -> Set1 -- if you uncomment the rest of the files, you get unsolved metas here {- Old error, without freezing: --Emacs error: and the 10th line is the above line --/home/j/dev/apps/haskell/agda/learn/bug-in-record.agda:10,36-39 --Set != Set₁ --when checking that the expression m a has type Set₁ -} mymaybemzero : {a : Set} → Maybe a → List a mymaybemzero nothing = [] mymaybemzero (just x) = x ∷ [] mymaybemplus : {a : Set} → Maybe a → Maybe a → List a mymaybemplus x y = (mymaybemzero x) ++ (mymaybemzero y) -- the following def gives a type error because of unsolved metas in MyMonadPlus -- if you uncomment it, you see m in MyMonadPlus yellow mymaybeMonadPlus : MyMonadPlus Maybe mymaybeMonadPlus = record { mzero = mymaybemzero ; mplus = mymaybemplus }
{ "alphanum_fraction": 0.6568557071, "avg_line_length": 32.3953488372, "ext": "agda", "hexsha": "67db62d4183a074b09c639cc89c2a9f778ae255a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue399.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue399.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue399.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 451, "size": 1393 }
{-# OPTIONS --show-implicit #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Unit postulate A B C D : Set F : (A → A) → (A → A → A) → A a : A data Tree : Set where leaf : Tree node : (f : (x : A) → Tree) → Tree tree1 : Nat → Tree tree1 zero = leaf tree1 (suc n) = node (λ x → tree1 n) tree2 : Nat → Tree tree2 zero = leaf tree2 (suc n) = node (λ x → tree2 n) -- In Agda 2.6.0.1, this takes >50 sec and >5GB to typecheck. test : tree1 5000 ≡ tree2 5000 test = refl
{ "alphanum_fraction": 0.6195028681, "avg_line_length": 19.3703703704, "ext": "agda", "hexsha": "cdcf326fe906c0c081553b3e19067da4529b873c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4044.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4044.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4044.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 201, "size": 523 }
module FlatDomInequality where postulate A : Set g : A → A g x = x -- this is fine h : (@♭ x : A) → A h = g -- this should fail, although the error message should be improved. q : A → A q = h
{ "alphanum_fraction": 0.605, "avg_line_length": 11.1111111111, "ext": "agda", "hexsha": "cff0f0d83dd35a9616b0d9205eb18d374338a67c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Soares/agda", "max_forks_repo_path": "test/Fail/FlatDomInequality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Soares/agda", "max_issues_repo_path": "test/Fail/FlatDomInequality.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Soares/agda", "max_stars_repo_path": "test/Fail/FlatDomInequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 70, "size": 200 }
{-# OPTIONS --prop --rewriting #-} module Examples.Sorting where import Examples.Sorting.Sequential import Examples.Sorting.Parallel
{ "alphanum_fraction": 0.7851851852, "avg_line_length": 19.2857142857, "ext": "agda", "hexsha": "f63143a761563b3f38c21371eb4641ad120cbbcf", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting.agda", "max_line_length": 34, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 27, "size": 135 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Automatic solvers for equations over integers ------------------------------------------------------------------------ -- See README.Integer for examples of how to use this solver {-# OPTIONS --without-K --safe #-} module Data.Integer.Tactic.RingSolver where open import Agda.Builtin.Reflection open import Data.Maybe.Base using (just; nothing) open import Data.Integer.Base open import Data.Integer.Properties open import Level using (0ℓ) open import Data.Unit using (⊤) open import Relation.Binary.PropositionalEquality import Tactic.RingSolver as Solver import Tactic.RingSolver.Core.AlmostCommutativeRing as ACR ------------------------------------------------------------------------ -- A module for automatically solving propositional equivalences -- containing _+_ and _*_ ring : ACR.AlmostCommutativeRing 0ℓ 0ℓ ring = ACR.fromCommutativeRing +-*-commutativeRing λ { +0 → just refl; _ → nothing } macro solve-∀ : Term → TC ⊤ solve-∀ = Solver.solve-∀-macro (quote ring) macro solve : Term → Term → TC ⊤ solve n = Solver.solve-macro n (quote ring)
{ "alphanum_fraction": 0.6144067797, "avg_line_length": 30.2564102564, "ext": "agda", "hexsha": "ea4a00403f515fabedaf83dd8837cbffd09b032b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Integer/Tactic/RingSolver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Integer/Tactic/RingSolver.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Integer/Tactic/RingSolver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 263, "size": 1180 }
open import Relation.Binary open import Level module GGT.Setoid {a ℓ} (S : Setoid a ℓ) (l : Level) where open import Level open Setoid S open import Data.Product open import Relation.Unary open import Relation.Binary.Construct.On renaming (isEquivalence to isEq) open import Function subSetoid : (Pred Carrier l) → Setoid (a ⊔ l) ℓ subSetoid P = record { Carrier = Σ Carrier P ; _≈_ = (_≈_ on proj₁) ; isEquivalence = isEq proj₁ isEquivalence }
{ "alphanum_fraction": 0.6958333333, "avg_line_length": 21.8181818182, "ext": "agda", "hexsha": "b205c9651a378cab0c0cad41e04911e7406c9149", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/Setoid.agda", "max_line_length": 73, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 144, "size": 480 }
open import SOAS.Metatheory.Syntax -- Metatheory of a second-order syntax module SOAS.Metatheory {T : Set} (Syn : Syntax {T}) where open import SOAS.Families.Core {T} open import SOAS.Abstract.ExpStrength open Syntax Syn open CompatStrengths ⅀:CS public renaming (CoalgStr to ⅀:Str ; ExpStr to ⅀:ExpStr) open import SOAS.Metatheory.Algebra ⅀F public open import SOAS.Metatheory.Monoid ⅀F ⅀:Str public module Theory (𝔛 : Familyₛ) where open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 public open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Traversal ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Renaming ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Coalgebraic ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Substitution ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public
{ "alphanum_fraction": 0.7337962963, "avg_line_length": 34.56, "ext": "agda", "hexsha": "bf4136d47bd825de8998f1c07db4462f279b7234", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Metatheory.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Metatheory.agda", "max_line_length": 82, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Metatheory.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 353, "size": 864 }
{-# OPTIONS --universe-polymorphism #-} open import Level module Categories.Terminal {o ℓ e : Level} where open import Categories.Category open import Categories.Functor open import Categories.Categories import Categories.Object.Terminal as Terminal open Terminal (Categories o ℓ e) record Unit {x : _} : Set x where constructor unit OneC : Category o ℓ e OneC = record { Obj = Unit ; _⇒_ = λ _ _ → Unit ; _≡_ = λ _ _ → Unit ; _∘_ = λ _ _ → unit ; id = unit ; assoc = unit ; identityˡ = unit ; identityʳ = unit ; equiv = record { refl = unit ; sym = λ _ → unit ; trans = λ _ _ → unit } ; ∘-resp-≡ = λ _ _ → unit } -- I can probably use Discrete here once we get universe cumulativity in Agda One : Terminal One = record { ⊤ = OneC ; ! = record { F₀ = λ _ → unit ; F₁ = λ _ → unit ; identity = unit ; homomorphism = unit ; F-resp-≡ = λ _ → unit } ; !-unique = λ _ _ → Heterogeneous.≡⇒∼ unit }
{ "alphanum_fraction": 0.6047227926, "avg_line_length": 20.2916666667, "ext": "agda", "hexsha": "bb4a0d776f37d4a6fc0d5829bfcbf6306f06f673", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Terminal.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Terminal.agda", "max_line_length": 77, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 332, "size": 974 }
-- Andreas, 2013-11-23 -- Make sure sized types work with extended lambda {-# OPTIONS --copatterns --sized-types #-} -- {-# OPTIONS -v tc.def:100 -v tc.size:100 -v tc.meta.assign:20 #-} module SizedTypesExtendedLambda where open import Common.Size data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A mutual data Delay (A : Set) (i : Size) : Set where fail : Delay A i now : A → Delay A i later : ∞Delay A i → Delay A i record ∞Delay (A : Set) (i : Size) : Set where coinductive constructor delay field force : {j : Size< i} → Delay A j open ∞Delay postulate A : Set something : ∀ {C : Set} → (Maybe A → C) → C mutual test : {i : Size} → Delay A i test = something λ { nothing -> fail ; (just a) -> later (∞test a) } ∞test : {i : Size} (a : A) → ∞Delay A i force (∞test a) {j = _} = test -- force (∞test a) = test -- still fails, unfortunately
{ "alphanum_fraction": 0.5693581781, "avg_line_length": 21.4666666667, "ext": "agda", "hexsha": "cf4b4fe00c514d6d47daa5bcfdf3a9a91797864c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/SizedTypesExtendedLambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/SizedTypesExtendedLambda.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/SizedTypesExtendedLambda.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 321, "size": 966 }
module Numeral.Natural.Oper.FlooredDivision where import Lvl open import Data open import Data.Boolean.Stmt open import Logic.Propositional.Theorems open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Comparisons.Proofs open import Numeral.Natural.Relation.Order open import Relator.Equals infixl 10100 _⌊/⌋_ -- Inductive definition of an algorithm for division. -- `[ d , b ] a' div b'` should be interpreted as following: -- `d` is the result of the algorithm that is being incremented as it runs. -- `b` is the predecessor of the original denominator. This is constant throughout the whole process. -- `a'` is the numerator. This is decremented as it runs. -- `b'` is the predecessor of the temporary denominator. This is decremented as it runs. -- By decrementing both `a'` and `b'`, and incrementing `d` when 'b`' reaches 0, it counts how many times `b` "fits into" `a`. -- Note: See Numeral.Natural.Oper.Modulo for a similiar algorithm used to determine the modulo. [_,_]_div_ : ℕ → ℕ → ℕ → ℕ → ℕ [ d , _ ] 𝟎 div _ = d [ d , b ] 𝐒(a') div 𝟎 = [ 𝐒(d) , b ] a' div b [ d , b ] 𝐒(a') div 𝐒(b') = [ d , b ] a' div b' {-# BUILTIN NATDIVSUCAUX [_,_]_div_ #-} -- Floored division operation. _⌊/⌋_ : ℕ → (m : ℕ) → .⦃ _ : IsTrue(positive?(m)) ⦄ → ℕ a ⌊/⌋ 𝐒(m) = [ 𝟎 , m ] a div m _⌊/⌋₀_ : ℕ → ℕ → ℕ _ ⌊/⌋₀ 𝟎 = 𝟎 a ⌊/⌋₀ 𝐒(m) = a ⌊/⌋ 𝐒(m) {-# INLINE _⌊/⌋₀_ #-}
{ "alphanum_fraction": 0.6592643997, "avg_line_length": 38.9459459459, "ext": "agda", "hexsha": "520841b7d5d06549b07ff7c2f5b25b4be908a75d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/FlooredDivision.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/FlooredDivision.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/FlooredDivision.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 532, "size": 1441 }
module Typed.LTLC where open import Prelude open import Function open import Level open import Category.Monad open import Relation.Unary.PredicateTransformer using (PT; Pt) open import Relation.Ternary.Separation.Construct.Unit open import Relation.Ternary.Separation.Allstar open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad.Reader open import Relation.Ternary.Separation.Monad.Delay data Ty : Set where unit : Ty _⊸_ : (a b : Ty) → Ty open import Relation.Ternary.Separation.Construct.List Ty Ctx = List Ty CtxT = List Ty → List Ty infixr 20 _◂_ _◂_ : Ty → CtxT → CtxT (x ◂ f) Γ = x ∷ f Γ variable a b : Ty variable ℓv : Level variable τ : Set ℓv variable Γ Γ₁ Γ₂ Γ₃ : List τ data Exp : Ty → Ctx → Set where -- a base type tt : ε[ Exp unit ] letunit : ∀[ Exp unit ✴ Exp a ⇒ Exp a ] -- the λ-calculus lam : ∀[ (a ◂ id ⊢ Exp b) ⇒ Exp (a ⊸ b) ] ap : ∀[ Exp (a ⊸ b) ✴ Exp a ⇒ Exp b ] var : ∀[ Just a ⇒ Exp a ] module _ {{m : MonoidalSep 0ℓ}} where open MonoidalSep m using (Carrier) CPred : Set₁ CPred = Carrier → Set mutual Env : Ctx → CPred Env = Allstar Val data Val : Ty → CPred where tt : ε[ Val unit ] clos : Exp b (a ∷ Γ) → ∀[ Env Γ ⇒ Val (a ⊸ b) ] module _ {i : Size} where open ReaderTransformer id-morph Val (Delay i) public open Monads.Monad reader-monad public M : Size → (Γ₁ Γ₂ : Ctx) → CPred → CPred M i = Reader {i} open Monads using (str; _&_; typed-str) mutual eval : ∀ {i} → Exp a Γ → ε[ M i Γ ε (Val a) ] eval tt = do return tt eval (letunit (e₁ ×⟨ Γ≺ ⟩ e₂)) = do tt ← frame Γ≺ (►eval e₁) ►eval e₂ eval (lam e) = do env ← ask return (clos e env) eval (ap (f ×⟨ Γ≺ ⟩ e)) = do clos body env ← frame Γ≺ (►eval f) v ×⟨ σ ⟩ env ← ►eval e & env empty ← append (v :⟨ σ ⟩: env) ►eval body eval (var refl) = do lookup ►eval : ∀ {i} → Exp a Γ → ε[ M i Γ ε (Val a) ] app (►eval e) E σ = later (λ where .force → app (eval e) E σ)
{ "alphanum_fraction": 0.5975666823, "avg_line_length": 23.2282608696, "ext": "agda", "hexsha": "856b088810e6804c4bf5b9cc2430a79521dbdfbf", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Typed/LTLC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Typed/LTLC.agda", "max_line_length": 65, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Typed/LTLC.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 759, "size": 2137 }
-- Andreas, 2022-06-10, issue #5922, reported by j-towns. -- Lack of normalization of data projections against data constructors -- breaks termination checker applied to extended lambda gone through -- forcing translation and reflection. -- The workaround was to turn off the forcing translation: -- {-# OPTIONS --no-forcing #-} -- {-# OPTIONS -v term:20 #-} open import Agda.Builtin.Nat open import Agda.Builtin.Reflection open import Agda.Builtin.Unit data Fin : Nat → Set where fz : (b : Nat) → Fin (suc b) fs : (b : Nat) → Fin b → Fin (suc b) apply : {A B C : Set} (input : A) (f : A → B) (cont : B → C) → C apply input f cont = cont (f input) macro id-macro : (b : Nat) → (Fin b → Nat) → Term → TC ⊤ id-macro b f hole = bindTC (quoteTC f) λ f-term → unify hole f-term test : (b : Nat) → Fin b → Nat test b = id-macro b λ where (fz _) → zero (fs a x) → apply x (test a) suc -- Should termination check. -- WAS: -- Termination checking failed for the following functions: -- test -- Problematic calls: -- λ { (fz .(Agda.Builtin.Nat.suc-0 _)) → zero -- ; (fs .(Agda.Builtin.Nat.suc-0 _) x) -- → apply x -- (test (Agda.Builtin.Nat.suc-0 (suc (Agda.Builtin.Nat.suc-0 b)))) -- suc -- } -- test (Agda.Builtin.Nat.suc-0 (suc b)) -- -- This shows data projection Agda.Builtin.Nat.suc-0 applied to data constructor -- suc, which should be normalized away.
{ "alphanum_fraction": 0.625, "avg_line_length": 29.2244897959, "ext": "agda", "hexsha": "536fded26e16224942efaa7802c0eba2a8b2c9ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5922.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5922.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5922.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 452, "size": 1432 }
module _ where module M where private module _ (A : Set) where Id : Set Id = A foo : Set → Set foo A = Id A open M bar : Set → Set bar A = Id A -- Id should not be in scope
{ "alphanum_fraction": 0.56, "avg_line_length": 11.7647058824, "ext": "agda", "hexsha": "a0411b80076e2ce010c94392acf3e0a3c74143b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2199.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2199.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2199.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 200 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.Encode open import LibraBFT.Base.ByteString -- This module defines Hash functions, and related properties module LibraBFT.Hash where ------------------------------------------------- -- Hash function postulates -- -- We are now assuming that our 'auth' function is collision -- resistant. We might be able to carry the full proof in agda, -- but that can take place on another module. Hash : Set Hash = Σ ByteString (λ bs → length bs ≡ 4) hashLen-pi : ∀ {bs : ByteString} {n : ℕ } → (p1 p2 : length bs ≡ n) → p1 ≡ p2 hashLen-pi {[]} {.0} refl refl = refl hashLen-pi {h ∷ t} {.(suc (length t))} refl refl = refl sameBS⇒sameHash : ∀ {h1 h2 : Hash} → proj₁ h1 ≡ proj₁ h2 → h1 ≡ h2 sameBS⇒sameHash { h1a , h1b } { h2a , h2b } refl rewrite hashLen-pi {h2a} h1b h2b = refl _≟Hash_ : (h₁ h₂ : Hash) → Dec (h₁ ≡ h₂) (l , pl) ≟Hash (m , pm) with List-≡-dec (Vec-≡-dec _≟Bool_) l m ...| yes refl = yes (cong (_,_ l) (≡-pi pl pm)) ...| no abs = no (abs ∘ ,-injectiveˡ) encodeH : Hash → ByteString encodeH (bs , _) = bs encodeH-inj : ∀ i j → encodeH i ≡ encodeH j → i ≡ j encodeH-inj (i , pi) (j , pj) refl = cong (_,_ i) (≡-pi pi pj) encodeH-len : ∀{h} → length (encodeH h) ≡ 4 encodeH-len { bs , p } = p encodeH-len-lemma : ∀ i j → length (encodeH i) ≡ length (encodeH j) encodeH-len-lemma i j = trans (encodeH-len {i}) (sym (encodeH-len {j})) -- Which means that we can make a helper function that combines -- the necessary injections into one big injection ++b-2-inj : (h₁ h₂ : Hash){l₁ l₂ : Hash} → encodeH h₁ ++ encodeH l₁ ≡ encodeH h₂ ++ encodeH l₂ → h₁ ≡ h₂ × l₁ ≡ l₂ ++b-2-inj h₁ h₂ {l₁} {l₂} hip with ++-inj {m = encodeH h₁} {n = encodeH h₂} (encodeH-len-lemma h₁ h₂) hip ...| hh , ll = encodeH-inj h₁ h₂ hh , encodeH-inj l₁ l₂ ll Collision : {A B : Set}(f : A → B)(a₁ a₂ : A) → Set Collision f a₁ a₂ = a₁ ≢ a₂ × f a₁ ≡ f a₂ instance enc-Hash : Encoder Hash enc-Hash = record { encode = encodeH ; encode-inj = encodeH-inj _ _ } module WithCryptoHash -- A Hash function maps a bytestring into a hash. (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where -- We define the concatenation of hashes like one would expect hash-concat : List Hash → Hash hash-concat l = hash (bs-concat (List-map encodeH l)) -- And voila, it is either injective ot we broke the hash function! hash-concat-inj : ∀{l₁ l₂} → hash-concat l₁ ≡ hash-concat l₂ → NonInjective-≡ hash ⊎ l₁ ≡ l₂ hash-concat-inj {l₁} {l₂} hyp with hash-cr hyp ...| inj₁ col = inj₁ ((_ , _) , col) ...| inj₂ same with bs-concat-inj (List-map encodeH l₁) (List-map encodeH l₂) same ...| res = inj₂ (map-inj encodeH (encodeH-inj _ _) res) where map-inj : ∀{a b}{A : Set a}{B : Set b}(f : A → B) → (f-injective : ∀{a₁ a₂} → f a₁ ≡ f a₂ → a₁ ≡ a₂) → ∀{xs ys} → List-map f xs ≡ List-map f ys → xs ≡ ys map-inj f finj {[]} {[]} hyp = refl map-inj f finj {x ∷ xs} {y ∷ ys} hyp = cong₂ _∷_ (finj (proj₁ (∷-injective hyp))) (map-inj f finj (proj₂ (∷-injective hyp)))
{ "alphanum_fraction": 0.5989167617, "avg_line_length": 37.3191489362, "ext": "agda", "hexsha": "9dfe29100c08f29ab4dd5076657003ffd6664220", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Hash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Hash.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Hash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1254, "size": 3508 }
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-} module Cubical.Codata.M.AsLimit.stream where open import Cubical.Data.Unit open import Cubical.Foundations.Prelude open import Cubical.Codata.M.AsLimit.M open import Cubical.Codata.M.AsLimit.helper open import Cubical.Codata.M.AsLimit.Container -------------------------------------- -- Stream definitions using M.AsLimit -- -------------------------------------- stream-S : ∀ A -> Container ℓ-zero stream-S A = (A , (λ _ → Unit)) stream : ∀ (A : Type₀) -> Type₀ stream A = M (stream-S A) cons : ∀ {A} -> A -> stream A -> stream A cons x xs = in-fun (x , λ { tt -> xs } ) hd : ∀ {A} -> stream A -> A hd {A} S = out-fun S .fst tl : ∀ {A} -> stream A -> stream A tl {A} S = out-fun S .snd tt
{ "alphanum_fraction": 0.5816993464, "avg_line_length": 24.6774193548, "ext": "agda", "hexsha": "b7677f7cc31e5b2a2690104ca775b033b2dd0933", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Codata/M/AsLimit/stream.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Codata/M/AsLimit/stream.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Codata/M/AsLimit/stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 220, "size": 765 }
module Sized.SimpleCell where open import Data.Product open import Data.String.Base open import SizedIO.Object open import SizedIO.IOObject open import SizedIO.ConsoleObject open import SizedIO.Base open import SizedIO.Console hiding (main) open import NativeIO open import Size data CellMethod A : Set where get : CellMethod A put : A → CellMethod A CellResult : ∀{A} → CellMethod A → Set CellResult {A} get = A CellResult (put _) = Unit -- cellJ is the interface of the object of a simple cell cellJ : (A : Set) → Interface Method (cellJ A) = CellMethod A Result (cellJ A) m = CellResult m cell : {A : Set} → A → Object (cellJ A) objectMethod (cell a) get = a , (cell a) objectMethod (cell a) (put a') = _ , (cell a') -- cellC is the type of consoleObjects with interface (cellJ String) CellC : (i : Size) → Set CellC i = ConsoleObject i (cellJ String) -- cellO is a program for a simple cell which -- when get is called writes "getting s" for the string s of the object -- and when putting s writes "putting s" for the string -- cellP is constructor for the consoleObject for interface (cellJ String) cellP : ∀{i} (s : String) → CellC i force (method (cellP s) get) = exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , cellP s) force (method (cellP s) (put x)) = exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ → return (_ , (cellP x)) -- Program is another program program : String → IOConsole ∞ Unit program arg = let c₀ = cellP "Start" in method c₀ get >>= λ{ (s , c₁) → exec1 (putStrLn s) >> method c₁ (put arg) >>= λ{ (_ , c₂) → method c₂ get >>= λ{ (s' , c₃) → exec1 (putStrLn s') }}} main : NativeIO Unit main = translateIOConsole (program "hello")
{ "alphanum_fraction": 0.6582423894, "avg_line_length": 26.7846153846, "ext": "agda", "hexsha": "5a457c0b1014ae8cc14aefd5927f3f0fddccddd3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/Sized/SimpleCell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/Sized/SimpleCell.agda", "max_line_length": 74, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/Sized/SimpleCell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 536, "size": 1741 }
module functions where open import level open import eq {- Note that the Agda standard library has an interesting generalization of the following basic composition operator, with more dependent typing. -} _∘_ : ∀{ℓ ℓ' ℓ''}{A : Set ℓ}{B : Set ℓ'}{C : Set ℓ''} → (B → C) → (A → B) → (A → C) f ∘ g = λ x → f (g x) ∘-assoc : ∀{ℓ ℓ' ℓ'' ℓ'''}{A : Set ℓ}{B : Set ℓ'}{C : Set ℓ''}{D : Set ℓ'''} (f : C → D)(g : B → C)(h : A → B) → (f ∘ g) ∘ h ≡ f ∘ (g ∘ h) ∘-assoc f g h = refl id : ∀{ℓ}{A : Set ℓ} → A → A id = λ x → x ∘-id : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(f : A → B) → f ∘ id ≡ f ∘-id f = refl id-∘ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(f : A → B) → id ∘ f ≡ f id-∘ f = refl extensionality : {ℓ₁ ℓ₂ : Level} → Set (lsuc ℓ₁ ⊔ lsuc ℓ₂) extensionality {ℓ₁}{ℓ₂} = ∀{A : Set ℓ₁}{B : Set ℓ₂}{f g : A → B} → (∀{a : A} → f a ≡ g a) → f ≡ g record Iso {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where constructor isIso field l-inv : A → B r-inv : B → A l-cancel : r-inv ∘ l-inv ≡ id r-cancel : l-inv ∘ r-inv ≡ id
{ "alphanum_fraction": 0.4909781576, "avg_line_length": 29.25, "ext": "agda", "hexsha": "a89b389e21976bbc9da520156279740b511ed1e2", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "functions.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "functions.agda", "max_line_length": 97, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 509, "size": 1053 }
module Issue4835.ModB where data B : Set where b : B -> B
{ "alphanum_fraction": 0.6557377049, "avg_line_length": 12.2, "ext": "agda", "hexsha": "aef28e9ada311a2a928383b24ab71988d81af567", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/interaction/Issue4835/ModB.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4835/ModB.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4835/ModB.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 61 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions.Definition open import Groups.Definition open import Sets.EquivalenceRelations open import Groups.Isomorphisms.Definition open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas module Groups.Isomorphisms.Lemmas where groupIsosCompose : {m n o r s t : _} {A : Set m} {S : Setoid {m} {r} A} {_+A_ : A → A → A} {B : Set n} {T : Setoid {n} {s} B} {_+B_ : B → B → B} {C : Set o} {U : Setoid {o} {t} C} {_+C_ : C → C → C} {G : Group S _+A_} {H : Group T _+B_} {I : Group U _+C_} {f : A → B} {g : B → C} (fHom : GroupIso G H f) (gHom : GroupIso H I g) → GroupIso G I (g ∘ f) GroupIso.groupHom (groupIsosCompose fHom gHom) = groupHomsCompose (GroupIso.groupHom fHom) (GroupIso.groupHom gHom) GroupIso.bij (groupIsosCompose {A = A} {S = S} {T = T} {C = C} {U = U} {f = f} {g = g} fHom gHom) = record { inj = record { injective = λ pr → (SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij fHom))) (SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij gHom)) pr) ; wellDefined = +WellDefined } ; surj = record { surjective = surj ; wellDefined = +WellDefined } } where open Setoid S renaming (_∼_ to _∼A_) open Setoid U renaming (_∼_ to _∼C_) +WellDefined : {x y : A} → (x ∼A y) → (g (f x) ∼C g (f y)) +WellDefined = GroupHom.wellDefined (groupHomsCompose (GroupIso.groupHom fHom) (GroupIso.groupHom gHom)) surj : {x : C} → Sg A (λ a → (g (f a) ∼C x)) surj {x} with SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij gHom)) {x} surj {x} | a , prA with SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij fHom)) {a} ... | b , prB = b , transitive (GroupHom.wellDefined (GroupIso.groupHom gHom) prB) prA where open Equivalence (Setoid.eq U) --groupIsoInvertible : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d}} {_+A_ : A → A → A} {_+B_ : B → B → B} {G : Group S _+A_} {H : Group T _+B_} {f : A → B} → (iso : GroupIso G H f) → GroupIso H G (Invertible.inverse (bijectionImpliesInvertible (GroupIso.bijective iso))) --GroupHom.groupHom (GroupIso.groupHom (groupIsoInvertible {G = G} {H} {f} iso)) {x} {y} = {!!} -- where -- open Group G renaming (_·_ to _+G_) -- open Group H renaming (_·_ to _+H_) --GroupHom.wellDefined (GroupIso.groupHom (groupIsoInvertible {G = G} {H} {f} iso)) {x} {y} x∼y = {!GroupHom.wellDefined x∼y!} --GroupIso.bijective (groupIsoInvertible {G = G} {H} {f} iso) = invertibleImpliesBijection (inverseIsInvertible (bijectionImpliesInvertible (GroupIso.bijective iso)))
{ "alphanum_fraction": 0.657687991, "avg_line_length": 74.25, "ext": "agda", "hexsha": "e7e0197c1e81dd6215ca855a74e907611844cd85", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Isomorphisms/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Isomorphisms/Lemmas.agda", "max_line_length": 385, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Isomorphisms/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 997, "size": 2673 }
{-# OPTIONS --sized-types #-} module SNat.Log where open import Size open import SNat open import SNat.Order open import SNat.Order.Properties open import SNat.Properties open import SNat.Sum lemma-≅-log : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → log₂ m ≅ log₂ n lemma-≅-log z≅z = z≅z lemma-≅-log (s≅s z≅z) = z≅z lemma-≅-log (s≅s (s≅s m≅n)) = s≅s (lemma-≅-log (s≅s (lemma-≅-/2 m≅n))) mutual lemma-logn≤′logsn : {ι : Size}(n : SNat {ι}) → log₂ n ≤′ log₂ (succ n) lemma-logn≤′logsn zero = ≤′-eq z≅z lemma-logn≤′logsn (succ zero) = ≤′-step (≤′-eq z≅z) lemma-logn≤′logsn (succ (succ n)) = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-n/2≤′sn/2 n))) lemma-≤′-log : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → log₂ m ≤′ log₂ n lemma-≤′-log (≤′-eq m≅n) = ≤′-eq (lemma-≅-log m≅n) lemma-≤′-log (≤′-step {n = n} m≤′n) = trans≤′ (lemma-≤′-log m≤′n) (lemma-logn≤′logsn n) lemma-1+logn≤′log2n : (n : SNat) → succ (log₂ (succ n)) ≤′ log₂ (succ n + succ n) lemma-1+logn≤′log2n zero = refl≤′ lemma-1+logn≤′log2n (succ n) rewrite +-assoc-succ (succ (succ n)) (succ n) | +-assoc-succ n (succ n) | +-assoc-succ n n = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-n+1≤′2n+2/2 n))) lemma-log2n≤′1+logn : (n : SNat) → log₂ (n + n) ≤′ succ (log₂ n) lemma-log2n≤′1+logn zero = ≤′-step refl≤′ lemma-log2n≤′1+logn (succ n) rewrite +-assoc-succ (succ n) n = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-2n/2≤′n n)))
{ "alphanum_fraction": 0.5791316527, "avg_line_length": 42, "ext": "agda", "hexsha": "c79852e0eba60947d23ab066a4a6e9dabc58cee9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SNat/Log.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SNat/Log.agda", "max_line_length": 182, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SNat/Log.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 714, "size": 1428 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Span open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.Unit open import lib.types.Pointed -- Cofiber is defined as a particular case of pushout module lib.types.Cofiber where module _ {i j} {A : Type i} {B : Type j} (f : A → B) where cofiber-span : Span cofiber-span = span Unit B A (λ _ → tt) f Cofiber : Type (lmax i j) Cofiber = Pushout cofiber-span cfbase' : Cofiber cfbase' = left tt cfcod' : B → Cofiber cfcod' b = right b cfglue' : (a : A) → cfbase' == cfcod' (f a) cfglue' a = glue a module _ {i j} {A : Type i} {B : Type j} {f : A → B} where cfbase : Cofiber f cfbase = cfbase' f cfcod : B → Cofiber f cfcod = cfcod' f cfglue : (a : A) → cfbase == cfcod (f a) cfglue = cfglue' f module CofiberElim {k} {P : Cofiber f → Type k} (b : P cfbase) (c : (y : B) → P (cfcod y)) (p : (x : A) → b == c (f x) [ P ↓ cfglue x ]) = PushoutElim (λ _ → b) c p open CofiberElim public using () renaming (f to Cofiber-elim) module CofiberRec {k} {C : Type k} (b : C) (c : B → C) (p : (x : A) → b == c (f x)) = PushoutRec {d = cofiber-span f} (λ _ → b) c p module CofiberRecType {k} (b : Type k) (c : B → Type k) (p : (x : A) → b ≃ c (f x)) = PushoutRecType {d = cofiber-span f} (λ _ → b) c p module _ {i j} {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙→ Y)) where ⊙cof-span : ⊙Span ⊙cof-span = ⊙span ⊙Unit Y X ((λ _ → tt) , idp) F ⊙Cof : Ptd (lmax i j) ⊙Cof = ⊙Pushout ⊙cof-span ⊙cfcod' : fst (Y ⊙→ ⊙Cof) ⊙cfcod' = cfcod , ap cfcod (! (snd F)) ∙ ! (cfglue (snd X)) ⊙cfglue' : ⊙cst == ⊙cfcod' ⊙∘ F ⊙cfglue' = ⊙λ= cfglue (lemma cfcod (cfglue (snd X)) (snd F)) where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} {z : B} (p : z == f x) (q : x == y) → idp == p ∙ ap f q ∙ ap f (! q) ∙ ! p lemma f idp idp = idp module _ {i j} {X : Ptd i} {Y : Ptd j} {F : fst (X ⊙→ Y)} where ⊙cfcod : fst (Y ⊙→ ⊙Cof F) ⊙cfcod = ⊙cfcod' F ⊙cfglue : ⊙cst == ⊙cfcod ⊙∘ F ⊙cfglue = ⊙cfglue' F
{ "alphanum_fraction": 0.5385700847, "avg_line_length": 25.6144578313, "ext": "agda", "hexsha": "26f1ba0a04721426da48a594479a23e2d092499d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Cofiber.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Cofiber.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Cofiber.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 956, "size": 2126 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.QuotientRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Logic using (_∈_) open import Cubical.HITs.SetQuotients.Base open import Cubical.HITs.SetQuotients.Properties open import Cubical.Algebra.Ring open import Cubical.Algebra.Ideal private variable ℓ : Level module _ (R' : Ring {ℓ}) (I : ⟨ R' ⟩ → hProp ℓ) (I-isIdeal : isIdeal R' I) where open Ring R' renaming (Carrier to R) open isIdeal I-isIdeal open Theory R' R/I : Type ℓ R/I = R / (λ x y → x - y ∈ I) private homogeneity : ∀ (x a b : R) → (a - b ∈ I) → (x + a) - (x + b) ∈ I homogeneity x a b p = subst (λ u → u ∈ I) (translatedDifference x a b) p isSetR/I : isSet R/I isSetR/I = squash/ [_]/I : (a : R) → R/I [ a ]/I = [ a ] lemma : (x y a : R) → x - y ∈ I → [ x + a ]/I ≡ [ y + a ]/I lemma x y a x-y∈I = eq/ (x + a) (y + a) (subst (λ u → u ∈ I) calculate x-y∈I) where calculate : x - y ≡ (x + a) - (y + a) calculate = x - y ≡⟨ translatedDifference a x y ⟩ ((a + x) - (a + y)) ≡⟨ cong (λ u → u - (a + y)) (+-comm _ _) ⟩ ((x + a) - (a + y)) ≡⟨ cong (λ u → (x + a) - u) (+-comm _ _) ⟩ ((x + a) - (y + a)) ∎ pre-+/I : R → R/I → R/I pre-+/I x = elim (λ _ → squash/) (λ y → [ x + y ]) λ y y' diffrenceInIdeal → eq/ (x + y) (x + y') (homogeneity x y y' diffrenceInIdeal) pre-+/I-DescendsToQuotient : (x y : R) → (x - y ∈ I) → pre-+/I x ≡ pre-+/I y pre-+/I-DescendsToQuotient x y x-y∈I i r = pointwise-equal r i where pointwise-equal : ∀ (u : R/I) → pre-+/I x u ≡ pre-+/I y u pointwise-equal = elimProp (λ u → isSetR/I (pre-+/I x u) (pre-+/I y u)) (λ a → lemma x y a x-y∈I) _+/I_ : R/I → R/I → R/I x +/I y = (elim R/I→R/I-isSet pre-+/I pre-+/I-DescendsToQuotient x) y where R/I→R/I-isSet : R/I → isSet (R/I → R/I) R/I→R/I-isSet _ = isSetΠ (λ _ → squash/) +/I-comm : (x y : R/I) → x +/I y ≡ y +/I x +/I-comm = elimProp2 (λ _ _ → squash/ _ _) eq where eq : (x y : R) → [ x ] +/I [ y ] ≡ [ y ] +/I [ x ] eq x y i = [ +-comm x y i ] +/I-assoc : (x y z : R/I) → x +/I (y +/I z) ≡ (x +/I y) +/I z +/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] +/I ([ y ] +/I [ z ]) ≡ ([ x ] +/I [ y ]) +/I [ z ] eq x y z i = [ +-assoc x y z i ] 0/I : R/I 0/I = [ 0r ] 1/I : R/I 1/I = [ 1r ] -/I : R/I → R/I -/I = elim (λ _ → squash/) (λ x' → [ - x' ]) eq where eq : (x y : R) → (x - y ∈ I) → [ - x ] ≡ [ - y ] eq x y x-y∈I = eq/ (- x) (- y) (subst (λ u → u ∈ I) eq' (isIdeal.-closed I-isIdeal x-y∈I)) where eq' = - (x + (- y)) ≡⟨ sym (-isDistributive _ _) ⟩ (- x) - (- y) ∎ +/I-rinv : (x : R/I) → x +/I (-/I x) ≡ 0/I +/I-rinv = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I (-/I [ x ]) ≡ 0/I eq x i = [ +-rinv x i ] +/I-rid : (x : R/I) → x +/I 0/I ≡ x +/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I 0/I ≡ [ x ] eq x i = [ +-rid x i ] _·/I_ : R/I → R/I → R/I _·/I_ = elim (λ _ → isSetΠ (λ _ → squash/)) (λ x → left· x) eq' where eq : (x y y' : R) → (y - y' ∈ I) → [ x · y ] ≡ [ x · y' ] eq x y y' y-y'∈I = eq/ _ _ (subst (λ u → u ∈ I) (x · (y - y') ≡⟨ ·-rdist-+ _ _ _ ⟩ ((x · y) + x · (- y')) ≡⟨ cong (λ u → (x · y) + u) (-commutesWithRight-· x y') ⟩ (x · y) - (x · y') ∎) (isIdeal.·-closedLeft I-isIdeal x y-y'∈I)) left· : (x : R) → R/I → R/I left· x = elim (λ y → squash/) (λ y → [ x · y ]) (eq x) eq' : (x x' : R) → (x - x' ∈ I) → left· x ≡ left· x' eq' x x' x-x'∈I i y = elimProp (λ y → squash/ (left· x y) (left· x' y)) (λ y → eq′ y) y i where eq′ : (y : R) → left· x [ y ] ≡ left· x' [ y ] eq′ y = eq/ (x · y) (x' · y) (subst (λ u → u ∈ I) ((x - x') · y ≡⟨ ·-ldist-+ x (- x') y ⟩ x · y + (- x') · y ≡⟨ cong (λ u → x · y + u) (-commutesWithLeft-· x' y) ⟩ x · y - x' · y ∎) (isIdeal.·-closedRight I-isIdeal y x-x'∈I)) -- more or less copy paste from '+/I' - this is preliminary anyway ·/I-assoc : (x y z : R/I) → x ·/I (y ·/I z) ≡ (x ·/I y) ·/I z ·/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] ·/I [ z ]) ≡ ([ x ] ·/I [ y ]) ·/I [ z ] eq x y z i = [ ·-assoc x y z i ] ·/I-lid : (x : R/I) → 1/I ·/I x ≡ x ·/I-lid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → 1/I ·/I [ x ] ≡ [ x ] eq x i = [ ·-lid x i ] ·/I-rid : (x : R/I) → x ·/I 1/I ≡ x ·/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] ·/I 1/I ≡ [ x ] eq x i = [ ·-rid x i ] /I-ldist : (x y z : R/I) → (x +/I y) ·/I z ≡ (x ·/I z) +/I (y ·/I z) /I-ldist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → ([ x ] +/I [ y ]) ·/I [ z ] ≡ ([ x ] ·/I [ z ]) +/I ([ y ] ·/I [ z ]) eq x y z i = [ ·-ldist-+ x y z i ] /I-rdist : (x y z : R/I) → x ·/I (y +/I z) ≡ (x ·/I y) +/I (x ·/I z) /I-rdist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] +/I [ z ]) ≡ ([ x ] ·/I [ y ]) +/I ([ x ] ·/I [ z ]) eq x y z i = [ ·-rdist-+ x y z i ] asRing : Ring {ℓ} asRing = makeRing 0/I 1/I _+/I_ _·/I_ -/I isSetR/I +/I-assoc +/I-rid +/I-rinv +/I-comm ·/I-assoc ·/I-rid ·/I-lid /I-rdist /I-ldist
{ "alphanum_fraction": 0.3489417222, "avg_line_length": 38.9717514124, "ext": "agda", "hexsha": "73c5354b72ec6a52a9364a1dc0e03ee8657397cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/QuotientRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/QuotientRing.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/QuotientRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2597, "size": 6898 }
module Issue168b where data Nat : Set where zero : Nat suc : Nat → Nat module Membership (A : Set) where id : Nat → Nat id zero = zero id (suc xs) = suc (id xs)
{ "alphanum_fraction": 0.6, "avg_line_length": 15, "ext": "agda", "hexsha": "8ea1f80b235354b0c13e05c0c3b8b3fdf9fb4d78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/Issue168b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/Issue168b.agda", "max_line_length": 33, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue168b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 61, "size": 180 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.PKCS import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Consensus.RoundManager.Properties open import LibraBFT.Impl.Handle open import LibraBFT.Impl.Handle.Properties open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Types open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) open WithSPS impl-sps-avp open Structural impl-sps-avp open import LibraBFT.Impl.Properties.VotesOnce -- This module proves the two "VotesOnce" proof obligations for our fake handler. Unlike the -- LibraBFT.Impl.Properties.VotesOnce, which is based on unwind, this proof is done -- inductively on the ReachableSystemState. module LibraBFT.Impl.Properties.VotesOnceDirect where newVoteEpoch≡⇒Round≡ : ∀ {st : SystemState}{pid s' outs v m pk} → ReachableSystemState st → StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs) → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → Meta-Honest-PK pk → ¬ (∈GenInfo (ver-signature sig)) → ¬ MsgWithSig∈ pk (ver-signature sig) (msgPool st) → v ^∙ vEpoch ≡ (₋rmEC s') ^∙ rmEpoch → v ^∙ vRound ≡ (₋rmEC s') ^∙ rmLastVotedRound newVoteEpoch≡⇒Round≡ r step@(step-msg {_ , P pm} _ pinit) v⊂m (here refl) sig pkH ¬gen vnew ep≡ with v⊂m ...| vote∈vm = refl ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld = let qc∈rm = VoteMsgQCsFromRoundManager r step pkH v⊂m (here refl) qc∈m in ⊥-elim (vnew (qcVotesSentB4 r pinit qc∈rm vs∈qc ¬gen)) open PeerCanSignForPK peerCanSignSameS : ∀ {pid v pk s s'} → PeerCanSignForPK s v pid pk → s' ≡ s → PeerCanSignForPK s' v pid pk peerCanSignSameS pcs refl = pcs peerCanSignEp≡ : ∀ {pid v v' pk s'} → PeerCanSignForPK s' v pid pk → v ^∙ vEpoch ≡ v' ^∙ vEpoch → PeerCanSignForPK s' v' pid pk peerCanSignEp≡ (mkPCS4PK 𝓔₁ 𝓔id≡₁ 𝓔inSys₁ mbr₁ nid≡₁ pk≡₁) refl = (mkPCS4PK 𝓔₁ 𝓔id≡₁ 𝓔inSys₁ mbr₁ nid≡₁ pk≡₁) MsgWithSig⇒ValidSenderInitialised : ∀ {st v pk} → ReachableSystemState st → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → ∃[ pid ] ( initialised st pid ≡ initd × PeerCanSignForPK st v pid pk ) MsgWithSig⇒ValidSenderInitialised {st} {v} (step-s r step@(step-peer (step-honest {pid} stP))) pkH sig ¬gen msv with msgSameSig msv ...| refl with newMsg⊎msgSentB4 r stP pkH (msgSigned msv) ¬gen (msg⊆ msv) (msg∈pool msv) ...| inj₁ (m∈outs , pcsN , newV) with stP ...| step-msg _ initP with PerState.sameSig⇒sameVoteDataNoCol st (step-s r step) (msgSigned msv) sig (msgSameSig msv) ...| refl = pid , peersRemainInitialized step initP , peerCanSignEp≡ pcsN refl MsgWithSig⇒ValidSenderInitialised {st} {v} (step-s r step@(step-peer (step-honest stP))) pkH sig ¬gen msv | refl | inj₂ msb4 with MsgWithSig⇒ValidSenderInitialised {v = v} r pkH sig ¬gen msb4 ...| pid , initP , pcsPre = pid , peersRemainInitialized step initP , PeerCanSignForPK-stable r step pcsPre MsgWithSig⇒ValidSenderInitialised {st} {v} (step-s r step@(step-peer cheat@(step-cheat x))) pkH sig ¬gen msv with msgSameSig msv ...| refl with ¬cheatForgeNew cheat refl unit pkH msv ¬gen ...| msb4 with MsgWithSig⇒ValidSenderInitialised {v = v} r pkH sig ¬gen msb4 ...| pid , initP , pcsPre = pid , peersRemainInitialized step initP , PeerCanSignForPK-stable r step pcsPre peerCanSign-Msb4 : ∀ {pid v pk}{pre post : SystemState} → ReachableSystemState pre → Step pre post → PeerCanSignForPK post v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → PeerCanSignForPK pre v pid pk peerCanSign-Msb4 r step (mkPCS4PK 𝓔₁ 𝓔id≡₁ (inGenInfo refl) mbr₁ nid≡₁ pk≡₁) pkH sig msv = mkPCS4PK 𝓔₁ 𝓔id≡₁ (inGenInfo refl) mbr₁ nid≡₁ pk≡₁ peerCanSignPK-Inj : ∀ {pid pid' pk v v'}{st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → PeerCanSignForPK st v' pid' pk → PeerCanSignForPK st v pid pk → v ^∙ vEpoch ≡ v' ^∙ vEpoch → pid ≡ pid' peerCanSignPK-Inj {pid} {pid'} r pkH pcs' pcs eid≡ with availEpochsConsistent r pcs' pcs ...| refl with NodeId-PK-OK-injective (𝓔 pcs) (PCS4PK⇒NodeId-PK-OK pcs) (PCS4PK⇒NodeId-PK-OK pcs') ...| refl = refl msg∈pool⇒initd : ∀ {pid pk v}{st : SystemState} → ReachableSystemState st → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → initialised st pid ≡ initd msg∈pool⇒initd {pid'} {st = st} step@(step-s r (step-peer {pid} (step-honest stPeer))) pcs pkH sig ¬gen msv with msgSameSig msv ...| refl with newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv) ¬gen (msg⊆ msv) (msg∈pool msv) ...| inj₁ (m∈outs , pcsN , newV) with sameSig⇒sameVoteData (msgSigned msv) sig (msgSameSig msv) ...| inj₁ hb = ⊥-elim (PerState.meta-sha256-cr st step hb) ...| inj₂ refl with stPeer ...| step-msg _ initP with pid ≟ pid' ...| yes refl = refl ...| no pid≢ = ⊥-elim (pid≢ (peerCanSignPK-Inj step pkH pcs pcsN refl)) msg∈pool⇒initd {pid'} (step-s r step@(step-peer {pid} (step-honest stPeer))) pcs pkH sig ¬gen msv | refl | inj₂ msb4 with pid ≟ pid' ...| yes refl = refl ...| no pid≢ = let pcsmsb4 = peerCanSign-Msb4 r step pcs pkH sig msb4 in msg∈pool⇒initd r pcsmsb4 pkH sig ¬gen msb4 msg∈pool⇒initd {pid'} (step-s r step@(step-peer {pid} cheat@(step-cheat c))) pcs pkH sig ¬gen msv with msgSameSig msv ...| refl with ¬cheatForgeNew cheat refl unit pkH msv ¬gen ...| msb4 = let pcsmsb4 = peerCanSign-Msb4 r step pcs pkH sig msb4 initPre = msg∈pool⇒initd r pcsmsb4 pkH sig ¬gen msb4 in peersRemainInitialized (step-peer cheat) initPre noEpochChange : ∀ {pid s' outs v pk}{st : SystemState} → ReachableSystemState st → (stP : StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs)) → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ ∈GenInfo (ver-signature sig) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → (₋rmEC s') ^∙ rmEpoch ≡ (v ^∙ vEpoch) → (₋rmEC (peerStates st pid)) ^∙ rmEpoch ≡ (v ^∙ vEpoch) noEpochChange r (step-init uni) pcs pkH sig ∉gen msv eid≡ = ⊥-elim (uninitd≢initd (trans (sym uni) (msg∈pool⇒initd r pcs pkH sig ∉gen msv))) noEpochChange r sm@(step-msg _ ini) pcs pkH sig ∉gen msv eid≡ rewrite noEpochIdChangeYet r refl sm ini = eid≡ oldVoteRound≤lvr : ∀ {pid pk v}{pre : SystemState} → (r : ReachableSystemState pre) → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈GenInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → PeerCanSignForPK pre v pid pk → (₋rmEC (peerStates pre pid)) ^∙ rmEpoch ≡ (v ^∙ vEpoch) → v ^∙ vRound ≤ (₋rmEC (peerStates pre pid)) ^∙ rmLastVotedRound oldVoteRound≤lvr {pid'} (step-s r step@(step-peer {pid = pid} cheat@(step-cheat c))) pkH sig ¬gen msv vspk eid≡ with ¬cheatForgeNew cheat refl unit pkH msv (¬subst ¬gen (msgSameSig msv)) ...| msb4 rewrite cheatStepDNMPeerStates₁ {pid = pid} {pid' = pid'} cheat unit = let pcsmsb4 = peerCanSign-Msb4 r step vspk pkH sig msb4 in oldVoteRound≤lvr r pkH sig ¬gen msb4 pcsmsb4 eid≡ oldVoteRound≤lvr {pid'} step@(step-s r stP@(step-peer {pid} (step-honest stPeer))) pkH sig ¬gen msv vspk eid≡ with msgSameSig msv ...| refl with newMsg⊎msgSentB4 r stPeer pkH (msgSigned msv) ¬gen (msg⊆ msv) (msg∈pool msv) ...| inj₂ msb4 rewrite msgSameSig msv with peerCanSign-Msb4 r stP vspk pkH sig msb4 ...| pcsmsb4 with pid ≟ pid' ...| no pid≢ = oldVoteRound≤lvr r pkH sig ¬gen msb4 pcsmsb4 eid≡ ...| yes refl = let initP = msg∈pool⇒initd r pcsmsb4 pkH sig ¬gen msb4 ep≡ = noEpochChange r stPeer pcsmsb4 pkH sig ¬gen msb4 eid≡ lvr≤ = lastVoteRound-mono r refl stPeer initP (trans ep≡ (sym eid≡)) in ≤-trans (oldVoteRound≤lvr r pkH sig ¬gen msb4 pcsmsb4 ep≡) lvr≤ oldVoteRound≤lvr {pid = pid'} {pre = pre} step@(step-s r (step-peer {pid} (step-honest stPeer))) pkH sig ¬gen msv vspk eid≡ | refl | inj₁ (m∈outs , vspkN , newV) with sameSig⇒sameVoteData (msgSigned msv) sig (msgSameSig msv) ...| inj₁ hb = ⊥-elim (PerState.meta-sha256-cr pre step hb) ...| inj₂ refl with pid ≟ pid' ...| yes refl = ≡⇒≤ (newVoteEpoch≡⇒Round≡ r stPeer (msg⊆ msv) m∈outs (msgSigned msv) pkH ¬gen newV (sym eid≡)) ...| no pid≢ = ⊥-elim (pid≢ (peerCanSignPK-Inj step pkH vspk vspkN refl)) votesOnce₁ : VO.ImplObligation₁ votesOnce₁ {pid' = pid'} r stMsg@(step-msg {_ , P m} m∈pool psI) {v' = v'} {m' = m'} pkH v⊂m (here refl) sv ¬gen ¬msb vspkv v'⊂m' m'∈pool sv' ¬gen' eid≡ r≡ with v⊂m ...| vote∈vm = let m'mwsb = mkMsgWithSig∈ m' v' v'⊂m' pid' m'∈pool sv' refl vspkv' = peerCanSignEp≡ {v' = v'} vspkv eid≡ step = step-peer (step-honest stMsg) vspre' = peerCanSign-Msb4 r step vspkv' pkH sv' m'mwsb rv'<rv = oldVoteRound≤lvr r pkH sv' ¬gen' m'mwsb vspre' eid≡ in ⊥-elim (<⇒≢ (s≤s rv'<rv) (sym r≡)) ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld = let qc∈rm = VoteMsgQCsFromRoundManager r stMsg pkH v⊂m (here refl) qc∈m in ⊥-elim (¬msb (qcVotesSentB4 r psI qc∈rm vs∈qc ¬gen)) votesOnce₂ : VO.ImplObligation₂ votesOnce₂ {pk = pk} {st} r stMsg@(step-msg {_ , P m} m∈pool psI) pkH v⊂m m∈outs sig ¬gen vnew vpk v'⊂m' m'∈outs sig' ¬gen' v'new vpk' es≡ rnds≡ with m∈outs | m'∈outs ...| here refl | here refl with v⊂m | v'⊂m' ...| vote∈vm | vote∈vm = refl ...| vote∈vm | vote∈qc vs∈qc' v≈rbld' (inV qc∈m') rewrite cong ₋vSignature v≈rbld' = let qc∈rm' = VoteMsgQCsFromRoundManager r stMsg pkH v'⊂m' (here refl) qc∈m' in ⊥-elim (v'new (qcVotesSentB4 r psI qc∈rm' vs∈qc' ¬gen')) ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) | _ rewrite cong ₋vSignature v≈rbld = let qc∈rm = VoteMsgQCsFromRoundManager r stMsg pkH v⊂m (here refl) qc∈m in ⊥-elim (vnew (qcVotesSentB4 r psI qc∈rm vs∈qc ¬gen))
{ "alphanum_fraction": 0.5788492707, "avg_line_length": 49.5582329317, "ext": "agda", "hexsha": "666b37c79a0c72751f6ad9db8fa6620372c60a77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Properties/VotesOnceDirect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Properties/VotesOnceDirect.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Properties/VotesOnceDirect.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4290, "size": 12340 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Core where open import Level open import Function using (flip) open import Relation.Binary hiding (_⇒_) import Relation.Binary.PropositionalEquality as ≡ import Relation.Binary.Reasoning.Setoid as SetoidR -- Basic definition of a |Category| with a Hom setoid. -- Also comes with some reasoning combinators (see HomReasoning) record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) -- We add a symmetric proof of associativity so that the opposite category of the -- opposite category is definitionally equal to the original category. See how -- `op` is implemented. sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f -- We add a proof of "neutral" identity proof, in order to ensure the opposite of -- constant functor is definitionally equal to itself. identity² : ∀ {A} → id ∘ id {A} ≈ id {A} equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B}) open Equiv dom : ∀ {A B} → (A ⇒ B) → Obj dom {A} _ = A cod : ∀ {A B} → (A ⇒ B) → Obj cod {B = B} _ = B ∘-resp-≈ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≈ h → f ∘ g ≈ h ∘ g ∘-resp-≈ˡ pf = ∘-resp-≈ pf refl ∘-resp-≈ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≈ h → g ∘ f ≈ g ∘ h ∘-resp-≈ʳ pf = ∘-resp-≈ refl pf hom-setoid : ∀ {A B} → Setoid _ _ hom-setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } -- Reasoning combinators. _≈⟨_⟩_ and _≈˘⟨_⟩_ from SetoidR. -- Also some useful combinators for doing reasoning on _∘_ chains module HomReasoning {A B : Obj} where open SetoidR (hom-setoid {A} {B}) public open Equiv {A = A} {B = B} public infixr 4 _⟩∘⟨_ refl⟩∘⟨_ infixl 5 _⟩∘⟨refl _⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _⟩∘⟨_ = ∘-resp-≈ refl⟩∘⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} → g ≈ i → f ∘ g ≈ f ∘ i refl⟩∘⟨_ = Equiv.refl ⟩∘⟨_ _⟩∘⟨refl : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} → f ≈ h → f ∘ g ≈ h ∘ g _⟩∘⟨refl = _⟩∘⟨ Equiv.refl -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {f g : A ⇒ B} → f ≈ g → g ≈ f ⟺ = Equiv.sym _○_ : {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h _○_ = Equiv.trans -- for reasoning in the Strict cases ≡⇒≈ : {f g : A ⇒ B} → f ≡.≡ g → f ≈ g ≡⇒≈ ≡.refl = Equiv.refl subst₂≈ : {C D : Obj} {f g : A ⇒ B} → f ≈ g → (eq₁ : A ≡.≡ C) (eq₂ : B ≡.≡ D) → ≡.subst₂ (_⇒_) eq₁ eq₂ f ≈ ≡.subst₂ (_⇒_) eq₁ eq₂ g subst₂≈ f≈g ≡.refl ≡.refl = f≈g -- Combinators for commutative diagram -- The idea is to use the combinators to write commutations in a more readable way. -- It starts with [_⇒_]⟨_≈_⟩, and within the third and fourth places, use _⇒⟨_⟩_ to -- connect morphisms with the intermediate object specified. module Commutation where infix 1 [_⇒_]⟨_≈_⟩ [_⇒_]⟨_≈_⟩ : ∀ (A B : Obj) → A ⇒ B → A ⇒ B → Set _ [ A ⇒ B ]⟨ f ≈ g ⟩ = f ≈ g infixl 2 connect connect : ∀ {A C : Obj} (B : Obj) → A ⇒ B → B ⇒ C → A ⇒ C connect B f g = g ∘ f syntax connect B f g = f ⇒⟨ B ⟩ g op : Category o ℓ e op = record { Obj = Obj ; _⇒_ = flip _⇒_ ; _≈_ = _≈_ ; _∘_ = flip _∘_ ; id = id ; assoc = sym-assoc ; sym-assoc = assoc ; identityˡ = identityʳ ; identityʳ = identityˡ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = flip ∘-resp-≈ } -- Q: Should this really be defined here? CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _ CommutativeSquare f g h i = h ∘ f ≈ i ∘ g -- Since we add extra proofs in the definition of `Category` (i.e. `sym-assoc` and -- `identity²`), we might still want to construct a `Category` in its originally -- easier manner. Thus, this redundant definition is here to ease the construction. record CategoryHelper (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i categoryHelper : ∀ {o ℓ e} → CategoryHelper o ℓ e → Category o ℓ e categoryHelper C = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = assoc ; sym-assoc = sym assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identityˡ ; equiv = equiv ; ∘-resp-≈ = ∘-resp-≈ } where open CategoryHelper C module _ {A B} where open IsEquivalence (equiv {A} {B}) public
{ "alphanum_fraction": 0.4986469421, "avg_line_length": 32.4152046784, "ext": "agda", "hexsha": "a0db2e6a25850c8eab204567f0e94b71ccdc8fc1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Core.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2440, "size": 5543 }
-- Andreas, 2018-04-10, issue #3662. -- Regression in the termination checker introduced together -- with collecting function calls also in the type signatures -- (fix of #1556). record T : Set₂ where field Carr : Set₁ op : Carr → Carr test : T T.Carr test = Set T.op test c = Aux where postulate Aux : Set -- Aux : (c : T.Carr test) → Set -- ^^^^^^^^^^^ -- Since c as a module parameter to the where-module is parameter of Aux, -- it contains a recursive call if we also mine type signatures for calls -- (#1556). -- -- We get then -- -- test .op c --> test .Carr -- -- which is not a decreasing call. -- However, the call does not compose with itself, thus, with -- Hyvernat-termination it would not give a false termination alarm. -- Should termination check.
{ "alphanum_fraction": 0.6522277228, "avg_line_length": 23.7647058824, "ext": "agda", "hexsha": "6f2f294e7161ca9f098da2b7507bc0b4c1792864", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3662.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3662.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3662.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 221, "size": 808 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality ------------------------------------------------------------------------ module Relation.Binary.PropositionalEquality where open import Function open import Function.Equality using (Π; _⟶_; ≡-setoid) open import Data.Product open import Data.Unit.Core open import Level open import Relation.Binary import Relation.Binary.Indexed as I open import Relation.Binary.Consequences open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_) -- Some of the definitions can be found in the following modules: open import Relation.Binary.Core public using (_≡_; refl; _≢_) open import Relation.Binary.PropositionalEquality.Core public ------------------------------------------------------------------------ -- Some properties subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl proof-irrelevance : ∀ {a} {A : Set a} {x y : A} (p q : x ≡ y) → p ≡ q proof-irrelevance refl refl = refl setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : ∀ {a} {A : Set a} → Decidable (_≡_ {A = A}) → DecSetoid _ _ decSetoid dec = record { _≈_ = _≡_ ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ _≡_ isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } preorder : ∀ {a} → Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = _≡_ ; isPreorder = isPreorder } ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : ∀ {a b} (A : Set a) (B : Set b) → Setoid _ _ A →-setoid B = ≡-setoid A (Setoid.indexedSetoid (setoid B)) _≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _ _≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B) :→-to-Π : ∀ {a b₁ b₂} {A : Set a} {B : I.Setoid _ b₁ b₂} → ((x : A) → I.Setoid.Carrier B x) → Π (setoid A) B :→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ } where open I.Setoid B using (_≈_) cong′ : ∀ {x y} → x ≡ y → f x ≈ f y cong′ refl = I.Setoid.refl B →-to-⟶ : ∀ {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} → (A → Setoid.Carrier B) → setoid A ⟶ B →-to-⟶ = :→-to-Π ------------------------------------------------------------------------ -- The old inspect idiom -- The old inspect idiom has been deprecated, and may be removed in -- the future. Use inspect on steroids instead. module Deprecated-inspect where -- The inspect idiom can be used when you want to pattern match on -- the result r of some expression e, and you also need to -- "remember" that r ≡ e. -- The inspect idiom has a problem: sometimes you can only pattern -- match on the p part of p with-≡ eq if you also pattern match on -- the eq part, and then you no longer have access to the equality. -- Inspect on steroids solves this problem. data Inspect {a} {A : Set a} (x : A) : Set a where _with-≡_ : (y : A) (eq : x ≡ y) → Inspect x inspect : ∀ {a} {A : Set a} (x : A) → Inspect x inspect x = x with-≡ refl -- Example usage: -- f x y with inspect (g x) -- f x y | c z with-≡ eq = ... ------------------------------------------------------------------------ -- Inspect on steroids -- Inspect on steroids can be used when you want to pattern match on -- the result r of some expression e, and you also need to "remember" -- that r ≡ e. data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where [_] : (eq : reveal x ≡ y) → Reveal x is y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x) inspect f x = [ refl ] -- Example usage: -- f x y with g x | inspect g x -- f x y | c z | [ eq ] = ... ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning import Relation.Binary.EqReasoning as EqR -- Relation.Binary.EqReasoning is more convenient to use with _≡_ if -- the combinators take the type argument (a) as a hidden argument, -- instead of being locked to a fixed type at module instantiation -- time. module ≡-Reasoning where module _ {a} {A : Set a} where open EqR (setoid A) public hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _≡⟨_⟩_) infixr 2 _≅⟨_⟩_ _≅⟨_⟩_ : ∀ {a} {A : Set a} (x : A) {y z : A} → x ≅ y → y IsRelatedTo z → x IsRelatedTo z _ ≅⟨ x≅y ⟩ y≡z = _ ≡⟨ H.≅-to-≡ x≅y ⟩ y≡z ------------------------------------------------------------------------ -- Functional extensionality -- If _≡_ were extensional, then the following statement could be -- proved. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- If extensionality holds for a given universe level, then it also -- holds for lower ones. extensionality-for-lower-levels : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ extensionality-for-lower-levels a₂ b₂ ext f≡g = cong (λ h → lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ∀-extensionality ext B .B B₁≡B₂ | refl = refl
{ "alphanum_fraction": 0.5310311126, "avg_line_length": 30.695, "ext": "agda", "hexsha": "9db5feef519f3a89014877b9c28701a7816c415d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2129, "size": 6139 }
{-# OPTIONS --without-K #-} open import Type open import Type.Identities open import Level.NP open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Data.One open import Data.Fin open import Function.NP open import Data.Product open import HoTT open import Relation.Binary.PropositionalEquality.NP using (refl; _≡_; !_) import Explore.Monad module Explore.One where module _ {ℓ} where open Explore.Monad {₀} ℓ 𝟙ᵉ : Explore ℓ 𝟙 𝟙ᵉ = return _ {- or 𝟙ᵉ _ f = f _ -} 𝟙ⁱ : ∀ {p} → ExploreInd p 𝟙ᵉ 𝟙ⁱ = return-ind _ {- or 𝟙ⁱ _ _ Pf = Pf _ -} module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟙 → 𝟙 → ★₀} {r : R _ _} where ⟦𝟙ᵉ⟧ : ⟦Explore⟧ {ℓ₁} {ℓ₂} ℓᵣ R 𝟙ᵉ 𝟙ᵉ ⟦𝟙ᵉ⟧ _ _ _∙ᵣ_ fᵣ = fᵣ r module 𝟙ⁱ = FromExploreInd 𝟙ⁱ open 𝟙ⁱ public using () renaming (sum to 𝟙ˢ ;product to 𝟙ᵖ ;reify to 𝟙ʳ ;unfocus to 𝟙ᵘ ) open Adequacy _≡_ module _ {{_ : UA}} where Σᵉ𝟙-ok : ∀ {ℓ} → Adequate-Σ {ℓ} (Σᵉ 𝟙ᵉ) Σᵉ𝟙-ok _ = ! Σ𝟙-snd Πᵉ𝟙-ok : ∀ {ℓ} → Adequate-Π {ℓ} (Πᵉ 𝟙ᵉ) Πᵉ𝟙-ok _ = ! Π𝟙-uniq _ 𝟙ˢ-ok : Adequate-sum 𝟙ˢ 𝟙ˢ-ok _ = ! 𝟙×-snd 𝟙ᵖ-ok : Adequate-product 𝟙ᵖ 𝟙ᵖ-ok _ = ! Π𝟙-uniq _ adequate-sum𝟙 = 𝟙ˢ-ok adequate-product𝟙 = 𝟙ᵖ-ok module _ {ℓ} where 𝟙ˡ : Lookup {ℓ} 𝟙ᵉ 𝟙ˡ = const 𝟙ᶠ : Focus {ℓ} 𝟙ᵉ 𝟙ᶠ = proj₂ explore𝟙 = 𝟙ᵉ explore𝟙-ind = 𝟙ⁱ lookup𝟙 = 𝟙ˡ reify𝟙 = 𝟙ʳ focus𝟙 = 𝟙ᶠ unfocus𝟙 = 𝟙ᵘ sum𝟙 = 𝟙ˢ product𝟙 = 𝟙ᵖ
{ "alphanum_fraction": 0.5673076923, "avg_line_length": 19.746835443, "ext": "agda", "hexsha": "adeb8680a09774c9acdd5609415caae51c95fa21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/One.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/One.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/One.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 851, "size": 1560 }
module MissingDefinition where open import Agda.Builtin.Equality Q : Set data U : Set S : Set S = U T : S → Set T _ = U V : Set W : V → Set private X : Set module AB where data A : Set B : (a b : A) → a ≡ b mutual U₂ : Set data T₂ : U₂ → Set V₂ : (u₂ : U₂) → T₂ u₂ → Set data W₂ (u₂ : U₂) (t₂ : T₂ u₂) : V₂ u₂ t₂ → Set
{ "alphanum_fraction": 0.5539358601, "avg_line_length": 11.064516129, "ext": "agda", "hexsha": "cb937946de8b8b80721fcfb693e9cc60ee69bbbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/MissingDefinition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/MissingDefinition.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/MissingDefinition.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 152, "size": 343 }