Search is not available for this dataset
text
string
meta
dict
open import Agda.Builtin.Bool data D : Set where run-time : D @0 compile-time : D -- This code should be rejected: Both f compile-time and f run-time -- are type-correct run-time terms. f : @0 D → Bool f compile-time = true f run-time = false
{ "alphanum_fraction": 0.6590038314, "avg_line_length": 20.0769230769, "ext": "agda", "hexsha": "b3d4d02f6d2a9c75fe7fe0322d57fbe757c8c5db", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue4638-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue4638-4.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue4638-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 261 }
------------------------------------------------------------------------ -- Solver for commutative ring or semiring equalities ------------------------------------------------------------------------ -- Uses ideas from the Coq ring tactic. See "Proving Equalities in a -- Commutative Ring Done Right in Coq" by Grégoire and Mahboubi. The -- code below is not optimised like theirs, though. open import Algebra open import Algebra.RingSolver.AlmostCommutativeRing module Algebra.RingSolver (coeff : RawRing) -- Coefficient "ring". (r : AlmostCommutativeRing) -- Main "ring". (morphism : coeff -Raw-AlmostCommutative⟶ r) where import Algebra.RingSolver.Lemmas as L; open L coeff r morphism private module C = RawRing coeff open AlmostCommutativeRing r hiding (zero) import Algebra.FunctionProperties as P; open P _≈_ open import Algebra.Morphism open _-RawRing⟶_ morphism renaming (⟦_⟧ to ⟦_⟧') import Algebra.Operations as Ops; open Ops semiring open import Relation.Binary import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.Reflection as Reflection open import Data.Nat using (ℕ; suc; zero) renaming (_+_ to _ℕ-+_) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Vec open import Data.Function hiding (_∶_) infix 9 _↑ :-_ -‿NF_ infixr 9 _:^_ _^-NF_ _:↑_ infix 8 _*x _*x+_ infixl 8 _:*_ _*-NF_ _↑-*-NF_ infixl 7 _:+_ _+-NF_ _:-_ infixl 0 _∶_ ------------------------------------------------------------------------ -- Polynomials data Op : Set where [+] : Op [*] : Op -- The polynomials are indexed over the number of variables. data Polynomial (m : ℕ) : Set where op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m con : (c : C.carrier) → Polynomial m var : (x : Fin m) → Polynomial m _:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m :-_ : (p : Polynomial m) → Polynomial m -- Short-hand notation. _:+_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:+_ = op [+] _:*_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:*_ = op [*] _:-_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n x :- y = x :+ :- y -- Semantics. sem : Op → Op₂ carrier sem [+] = _+_ sem [*] = _*_ ⟦_⟧ : ∀ {n} → Polynomial n → Vec carrier n → carrier ⟦ op o p₁ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ ⟨ sem o ⟩ ⟦ p₂ ⟧ ρ ⟦ con c ⟧ ρ = ⟦ c ⟧' ⟦ var x ⟧ ρ = lookup x ρ ⟦ p :^ n ⟧ ρ = ⟦ p ⟧ ρ ^ n ⟦ :- p ⟧ ρ = - ⟦ p ⟧ ρ private -- Equality. _≛_ : ∀ {n} → Polynomial n → Polynomial n → Set p₁ ≛ p₂ = ∀ {ρ} → ⟦ p₁ ⟧ ρ ≈ ⟦ p₂ ⟧ ρ -- Reindexing. _:↑_ : ∀ {n} → Polynomial n → (m : ℕ) → Polynomial (m ℕ-+ n) op o p₁ p₂ :↑ m = op o (p₁ :↑ m) (p₂ :↑ m) con c :↑ m = con c var x :↑ m = var (Fin.raise m x) (p :^ n) :↑ m = (p :↑ m) :^ n (:- p) :↑ m = :- (p :↑ m) ------------------------------------------------------------------------ -- Normal forms of polynomials private -- The normal forms (Horner forms) are indexed over -- * the number of variables in the polynomial, and -- * an equivalent polynomial. data Normal : (n : ℕ) → Polynomial n → Set where con : (c : C.carrier) → Normal 0 (con c) _↑ : ∀ {n p'} (p : Normal n p') → Normal (suc n) (p' :↑ 1) _*x+_ : ∀ {n p' c'} (p : Normal (suc n) p') (c : Normal n c') → Normal (suc n) (p' :* var zero :+ c' :↑ 1) _∶_ : ∀ {n p₁ p₂} (p : Normal n p₁) (eq : p₁ ≛ p₂) → Normal n p₂ ⟦_⟧-NF : ∀ {n p} → Normal n p → Vec carrier n → carrier ⟦ p ∶ _ ⟧-NF ρ = ⟦ p ⟧-NF ρ ⟦ con c ⟧-NF ρ = ⟦ c ⟧' ⟦ p ↑ ⟧-NF (x ∷ ρ) = ⟦ p ⟧-NF ρ ⟦ p *x+ c ⟧-NF (x ∷ ρ) = (⟦ p ⟧-NF (x ∷ ρ) * x) + ⟦ c ⟧-NF ρ ------------------------------------------------------------------------ -- Normalisation private con-NF : ∀ {n} → (c : C.carrier) → Normal n (con c) con-NF {zero} c = con c con-NF {suc _} c = con-NF c ↑ _+-NF_ : ∀ {n p₁ p₂} → Normal n p₁ → Normal n p₂ → Normal n (p₁ :+ p₂) (p₁ ∶ eq₁) +-NF (p₂ ∶ eq₂) = p₁ +-NF p₂ ∶ eq₁ ⟨ +-pres-≈ ⟩ eq₂ (p₁ ∶ eq) +-NF p₂ = p₁ +-NF p₂ ∶ eq ⟨ +-pres-≈ ⟩ refl p₁ +-NF (p₂ ∶ eq) = p₁ +-NF p₂ ∶ refl ⟨ +-pres-≈ ⟩ eq con c₁ +-NF con c₂ = con (C._+_ c₁ c₂) ∶ +-homo _ _ p₁ ↑ +-NF p₂ ↑ = (p₁ +-NF p₂) ↑ ∶ refl p₁ *x+ c₁ +-NF p₂ ↑ = p₁ *x+ (c₁ +-NF p₂) ∶ sym (+-assoc _ _ _) p₁ *x+ c₁ +-NF p₂ *x+ c₂ = (p₁ +-NF p₂) *x+ (c₁ +-NF c₂) ∶ lemma₁ _ _ _ _ _ p₁ ↑ +-NF p₂ *x+ c₂ = p₂ *x+ (p₁ +-NF c₂) ∶ lemma₂ _ _ _ _*x : ∀ {n p} → Normal (suc n) p → Normal (suc n) (p :* var zero) p *x = p *x+ con-NF C.0# ∶ lemma₀ _ mutual -- The first function is just a variant of _*-NF_ which I used to -- make the termination checker believe that the code is -- terminating. _↑-*-NF_ : ∀ {n p₁ p₂} → Normal n p₁ → Normal (suc n) p₂ → Normal (suc n) (p₁ :↑ 1 :* p₂) p₁ ↑-*-NF (p₂ ∶ eq) = p₁ ↑-*-NF p₂ ∶ refl ⟨ *-pres-≈ ⟩ eq p₁ ↑-*-NF p₂ ↑ = (p₁ *-NF p₂) ↑ ∶ refl p₁ ↑-*-NF (p₂ *x+ c₂) = (p₁ ↑-*-NF p₂) *x+ (p₁ *-NF c₂) ∶ lemma₄ _ _ _ _ _*-NF_ : ∀ {n p₁ p₂} → Normal n p₁ → Normal n p₂ → Normal n (p₁ :* p₂) (p₁ ∶ eq₁) *-NF (p₂ ∶ eq₂) = p₁ *-NF p₂ ∶ eq₁ ⟨ *-pres-≈ ⟩ eq₂ (p₁ ∶ eq) *-NF p₂ = p₁ *-NF p₂ ∶ eq ⟨ *-pres-≈ ⟩ refl p₁ *-NF (p₂ ∶ eq) = p₁ *-NF p₂ ∶ refl ⟨ *-pres-≈ ⟩ eq con c₁ *-NF con c₂ = con (C._*_ c₁ c₂) ∶ *-homo _ _ p₁ ↑ *-NF p₂ ↑ = (p₁ *-NF p₂) ↑ ∶ refl (p₁ *x+ c₁) *-NF p₂ ↑ = (p₁ *-NF p₂ ↑) *x+ (c₁ *-NF p₂) ∶ lemma₃ _ _ _ _ p₁ ↑ *-NF (p₂ *x+ c₂) = (p₁ ↑ *-NF p₂) *x+ (p₁ *-NF c₂) ∶ lemma₄ _ _ _ _ (p₁ *x+ c₁) *-NF (p₂ *x+ c₂) = (p₁ *-NF p₂) *x *x +-NF (p₁ *-NF c₂ ↑ +-NF c₁ ↑-*-NF p₂) *x+ (c₁ *-NF c₂) ∶ lemma₅ _ _ _ _ _ -‿NF_ : ∀ {n p} → Normal n p → Normal n (:- p) -‿NF (p ∶ eq) = -‿NF p ∶ -‿pres-≈ eq -‿NF con c = con (C.-_ c) ∶ -‿homo _ -‿NF (p ↑) = (-‿NF p) ↑ -‿NF (p *x+ c) = -‿NF p *x+ -‿NF c ∶ lemma₆ _ _ _ var-NF : ∀ {n} → (i : Fin n) → Normal n (var i) var-NF zero = con-NF C.1# *x+ con-NF C.0# ∶ lemma₇ _ var-NF (suc i) = var-NF i ↑ _^-NF_ : ∀ {n p} → Normal n p → (i : ℕ) → Normal n (p :^ i) p ^-NF zero = con-NF C.1# ∶ 1-homo p ^-NF suc n = p *-NF p ^-NF n ∶ refl normaliseOp : ∀ (o : Op) {n p₁ p₂} → Normal n p₁ → Normal n p₂ → Normal n (p₁ ⟨ op o ⟩ p₂) normaliseOp [+] = _+-NF_ normaliseOp [*] = _*-NF_ normalise : ∀ {n} (p : Polynomial n) → Normal n p normalise (op o p₁ p₂) = normalise p₁ ⟨ normaliseOp o ⟩ normalise p₂ normalise (con c) = con-NF c normalise (var i) = var-NF i normalise (p :^ n) = normalise p ^-NF n normalise (:- p) = -‿NF normalise p ⟦_⟧↓ : ∀ {n} → Polynomial n → Vec carrier n → carrier ⟦ p ⟧↓ ρ = ⟦ normalise p ⟧-NF ρ ------------------------------------------------------------------------ -- Correctness private sem-pres-≈ : ∀ op → sem op Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ sem-pres-≈ [+] = +-pres-≈ sem-pres-≈ [*] = *-pres-≈ raise-sem : ∀ {n x} (p : Polynomial n) ρ → ⟦ p :↑ 1 ⟧ (x ∷ ρ) ≈ ⟦ p ⟧ ρ raise-sem (op o p₁ p₂) ρ = raise-sem p₁ ρ ⟨ sem-pres-≈ o ⟩ raise-sem p₂ ρ raise-sem (con c) ρ = refl raise-sem (var x) ρ = refl raise-sem (p :^ n) ρ = raise-sem p ρ ⟨ ^-pres-≈ ⟩ PropEq.refl {x = n} raise-sem (:- p) ρ = -‿pres-≈ (raise-sem p ρ) nf-sound : ∀ {n p} (nf : Normal n p) ρ → ⟦ nf ⟧-NF ρ ≈ ⟦ p ⟧ ρ nf-sound (nf ∶ eq) ρ = nf-sound nf ρ ⟨ trans ⟩ eq nf-sound (con c) ρ = refl nf-sound (_↑ {p' = p'} nf) (x ∷ ρ) = nf-sound nf ρ ⟨ trans ⟩ sym (raise-sem p' ρ) nf-sound (_*x+_ {c' = c'} nf₁ nf₂) (x ∷ ρ) = (nf-sound nf₁ (x ∷ ρ) ⟨ *-pres-≈ ⟩ refl) ⟨ +-pres-≈ ⟩ (nf-sound nf₂ ρ ⟨ trans ⟩ sym (raise-sem c' ρ)) -- Completeness can presumably also be proved (i.e. the normal forms -- should be unique, if the casts are ignored). ------------------------------------------------------------------------ -- "Tactics" open Reflection setoid var ⟦_⟧ ⟦_⟧↓ (nf-sound ∘ normalise) public using (prove; solve) renaming (_⊜_ to _:=_) -- For examples of how solve and _:=_ can be used to -- semi-automatically prove ring equalities, see, for instance, -- Data.Digit or Data.Nat.DivMod.
{ "alphanum_fraction": 0.4684956987, "avg_line_length": 36.1428571429, "ext": "agda", "hexsha": "77c962636fbce2daacd519b90de552bedb6c6c6c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/RingSolver.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/RingSolver.agda", "max_line_length": 91, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/RingSolver.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 3416, "size": 8602 }
{-# OPTIONS --without-K #-} module function.overloading {i j}{X : Set i}{Y : Set j} where open import level open import sum open import overloading.core fun-is-fun : Coercion (X → Y) (X → Y) fun-is-fun = coerce-self _ private module fun-methods {k}{Source : Set k} ⦃ c : Coercion Source (X → Y) ⦄ where open Coercion c public using () renaming (coerce to apply) open fun-methods public
{ "alphanum_fraction": 0.6382978723, "avg_line_length": 23.5, "ext": "agda", "hexsha": "4143716d5cbefb0ac3aa85a7fc9bbeda3776ba79", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/overloading.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/function/overloading.agda", "max_line_length": 61, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/overloading.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 124, "size": 423 }
module Base.Isomorphism where open import Relation.Binary.PropositionalEquality using (_≡_) -- The stdlib contains `Function.Inverse`, which seems to have a similar purpose, but is more complicated. infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_
{ "alphanum_fraction": 0.6328125, "avg_line_length": 25.6, "ext": "agda", "hexsha": "ae646cc65749e0a242fa4ad46806e81a175f588c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Isomorphism.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Isomorphism.agda", "max_line_length": 106, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 134, "size": 384 }
{-# OPTIONS --without-K #-} module A where open import Data.Nat open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product infix 4 _≡_ -- propositional equality infixr 10 _◎_ infixr 30 _⟷_ ------------------------------------------------------------------------------ -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) sym : ∀ {ℓ} {A : Set ℓ} {a b : A} → (a ≡ b) → (b ≡ a) sym {a = a} {b = .a} (refl .a) = refl a {-- Just confirming that the following does not typecheck! proof-irrelevance : {A : Set} {x y : A} (p q : x ≡ y) → p ≡ q proof-irrelevance (refl x) (refl .x) = refl (refl x) --} ------------------------------------------------------------------------------ {-- Types are higher groupoids: - 0 is empty - 1 has one element and one path refl - sum type is disjoint union; paths are component wise - product type is cartesian product; paths are pairs of paths --} data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U -- Points ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t t' ⟧ = ⟦ t ⟧ ⊎ ⟦ t' ⟧ ⟦ TIMES t t' ⟧ = ⟦ t ⟧ × ⟦ t' ⟧ BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL TRUE : ⟦ BOOL ⟧ TRUE = inj₁ tt FALSE : ⟦ BOOL ⟧ FALSE = inj₂ tt NOT : ⟦ BOOL ⟧ → ⟦ BOOL ⟧ NOT (inj₁ tt) = FALSE NOT (inj₂ tt) = TRUE CNOT : ⟦ BOOL ⟧ → ⟦ BOOL ⟧ → ⟦ BOOL ⟧ × ⟦ BOOL ⟧ CNOT (inj₁ tt) b = (TRUE , NOT b) CNOT (inj₂ tt) b = (FALSE , b) ------------------------------------------------------------------------------ -- Paths connect points in t₁ and t₂ if there is an isomorphism between the -- types t₁ and t₂. The family ⟷ plays the role of identity types in HoTT data _⟷_ : U → U → Set where unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ id⟷ : {t : U} → t ⟷ t sym⟷ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) cond : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → ((TIMES BOOL t₁) ⟷ (TIMES BOOL t₂)) cond f g = dist ◎ ((id⟷ ⊗ f) ⊕ (id⟷ ⊗ g)) ◎ factor controlled : {t : U} → (t ⟷ t) → ((TIMES BOOL t) ⟷ (TIMES BOOL t)) controlled f = cond f id⟷ cnot : BOOL² ⟷ BOOL² cnot = controlled swap₊ -- Paths: each combinator defines a space of paths between its end points mutual Paths : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ → Set Paths unite₊ (inj₁ ()) Paths unite₊ (inj₂ v) v' = (v ≡ v') Paths uniti₊ v (inj₁ ()) Paths uniti₊ v (inj₂ v') = (v ≡ v') Paths swap₊ (inj₁ v) (inj₁ v') = ⊥ Paths swap₊ (inj₁ v) (inj₂ v') = (v ≡ v') Paths swap₊ (inj₂ v) (inj₁ v') = (v ≡ v') Paths swap₊ (inj₂ v) (inj₂ v') = ⊥ Paths assocl₊ (inj₁ v) (inj₁ (inj₁ v')) = (v ≡ v') Paths assocl₊ (inj₁ v) (inj₁ (inj₂ v')) = ⊥ Paths assocl₊ (inj₁ v) (inj₂ v') = ⊥ Paths assocl₊ (inj₂ (inj₁ v)) (inj₁ (inj₁ v')) = ⊥ Paths assocl₊ (inj₂ (inj₁ v)) (inj₁ (inj₂ v')) = (v ≡ v') Paths assocl₊ (inj₂ (inj₁ v)) (inj₂ v') = ⊥ Paths assocl₊ (inj₂ (inj₂ v)) (inj₁ v') = ⊥ Paths assocl₊ (inj₂ (inj₂ v)) (inj₂ v') = (v ≡ v') Paths assocr₊ (inj₁ (inj₁ v)) (inj₁ v') = (v ≡ v') Paths assocr₊ (inj₁ (inj₁ v)) (inj₂ v') = ⊥ Paths assocr₊ (inj₁ (inj₂ v)) (inj₁ v') = ⊥ Paths assocr₊ (inj₁ (inj₂ v)) (inj₂ (inj₁ v')) = (v ≡ v') Paths assocr₊ (inj₁ (inj₂ v)) (inj₂ (inj₂ v')) = ⊥ Paths assocr₊ (inj₂ v) (inj₁ v') = ⊥ Paths assocr₊ (inj₂ v) (inj₂ (inj₁ v')) = ⊥ Paths assocr₊ (inj₂ v) (inj₂ (inj₂ v')) = (v ≡ v') Paths unite⋆ (tt , v) v' = (v ≡ v') Paths uniti⋆ v (tt , v') = (v ≡ v') Paths swap⋆ (v₁ , v₂) (v₂' , v₁') = (v₁ ≡ v₁') × (v₂ ≡ v₂') Paths assocl⋆ (v₁ , (v₂ , v₃)) ((v₁' , v₂') , v₃') = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths assocr⋆ ((v₁ , v₂) , v₃) (v₁' , (v₂' , v₃')) = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths distz (() , v) Paths factorz () Paths dist (inj₁ v₁ , v₃) (inj₁ (v₁' , v₃')) = (v₁ ≡ v₁') × (v₃ ≡ v₃') Paths dist (inj₁ v₁ , v₃) (inj₂ (v₂' , v₃')) = ⊥ Paths dist (inj₂ v₂ , v₃) (inj₁ (v₁' , v₃')) = ⊥ Paths dist (inj₂ v₂ , v₃) (inj₂ (v₂' , v₃')) = (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths factor (inj₁ (v₁ , v₃)) (inj₁ v₁' , v₃') = (v₁ ≡ v₁') × (v₃ ≡ v₃') Paths factor (inj₁ (v₁ , v₃)) (inj₂ v₂' , v₃') = ⊥ Paths factor (inj₂ (v₂ , v₃)) (inj₁ v₁' , v₃') = ⊥ Paths factor (inj₂ (v₂ , v₃)) (inj₂ v₂' , v₃') = (v₂ ≡ v₂') × (v₃ ≡ v₃') Paths {t} id⟷ v v' = (v ≡ v') Paths (sym⟷ c) v v' = PathsB c v v' Paths (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v v' = Σ[ u ∈ ⟦ t₂ ⟧ ] (Paths c₁ v u × Paths c₂ u v') Paths (c₁ ⊕ c₂) (inj₁ v) (inj₁ v') = Paths c₁ v v' Paths (c₁ ⊕ c₂) (inj₁ v) (inj₂ v') = ⊥ Paths (c₁ ⊕ c₂) (inj₂ v) (inj₁ v') = ⊥ Paths (c₁ ⊕ c₂) (inj₂ v) (inj₂ v') = Paths c₂ v v' Paths (c₁ ⊗ c₂) (v₁ , v₂) (v₁' , v₂') = Paths c₁ v₁ v₁' × Paths c₂ v₂ v₂' PathsB : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₂ ⟧ → ⟦ t₁ ⟧ → Set PathsB unite₊ v (inj₁ ()) PathsB unite₊ v (inj₂ v') = (v ≡ v') PathsB uniti₊ (inj₁ ()) PathsB uniti₊ (inj₂ v) v' = (v ≡ v') PathsB swap₊ (inj₁ v) (inj₁ v') = ⊥ PathsB swap₊ (inj₁ v) (inj₂ v') = (v ≡ v') PathsB swap₊ (inj₂ v) (inj₁ v') = (v ≡ v') PathsB swap₊ (inj₂ v) (inj₂ v') = ⊥ PathsB assocl₊ (inj₁ (inj₁ v)) (inj₁ v') = (v ≡ v') PathsB assocl₊ (inj₁ (inj₁ v)) (inj₂ v') = ⊥ PathsB assocl₊ (inj₁ (inj₂ v)) (inj₁ v') = ⊥ PathsB assocl₊ (inj₁ (inj₂ v)) (inj₂ (inj₁ v')) = (v ≡ v') PathsB assocl₊ (inj₁ (inj₂ v)) (inj₂ (inj₂ v')) = ⊥ PathsB assocl₊ (inj₂ v) (inj₁ v') = ⊥ PathsB assocl₊ (inj₂ v) (inj₂ (inj₁ v')) = ⊥ PathsB assocl₊ (inj₂ v) (inj₂ (inj₂ v')) = (v ≡ v') PathsB assocr₊ (inj₁ v) (inj₁ (inj₁ v')) = (v ≡ v') PathsB assocr₊ (inj₁ v) (inj₁ (inj₂ v')) = ⊥ PathsB assocr₊ (inj₁ v) (inj₂ v') = ⊥ PathsB assocr₊ (inj₂ (inj₁ v)) (inj₁ (inj₁ v')) = ⊥ PathsB assocr₊ (inj₂ (inj₁ v)) (inj₁ (inj₂ v')) = (v ≡ v') PathsB assocr₊ (inj₂ (inj₁ v)) (inj₂ v') = ⊥ PathsB assocr₊ (inj₂ (inj₂ v)) (inj₁ v') = ⊥ PathsB assocr₊ (inj₂ (inj₂ v)) (inj₂ v') = (v ≡ v') PathsB unite⋆ v (tt , v') = (v ≡ v') PathsB uniti⋆ (tt , v) v' = (v ≡ v') PathsB swap⋆ (v₁ , v₂) (v₂' , v₁') = (v₁ ≡ v₁') × (v₂ ≡ v₂') PathsB assocl⋆ ((v₁ , v₂) , v₃) (v₁' , (v₂' , v₃')) = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB assocr⋆ (v₁ , (v₂ , v₃)) ((v₁' , v₂') , v₃') = (v₁ ≡ v₁') × (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB distz () PathsB factorz (() , v) PathsB dist (inj₁ (v₁ , v₃)) (inj₁ v₁' , v₃') = (v₁ ≡ v₁') × (v₃ ≡ v₃') PathsB dist (inj₁ (v₁ , v₃)) (inj₂ v₂' , v₃') = ⊥ PathsB dist (inj₂ (v₂ , v₃)) (inj₁ v₁' , v₃') = ⊥ PathsB dist (inj₂ (v₂ , v₃)) (inj₂ v₂' , v₃') = (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB factor (inj₁ v₁ , v₃) (inj₁ (v₁' , v₃')) = (v₁ ≡ v₁') × (v₃ ≡ v₃') PathsB factor (inj₁ v₁ , v₃) (inj₂ (v₂' , v₃')) = ⊥ PathsB factor (inj₂ v₂ , v₃) (inj₁ (v₁' , v₃')) = ⊥ PathsB factor (inj₂ v₂ , v₃) (inj₂ (v₂' , v₃')) = (v₂ ≡ v₂') × (v₃ ≡ v₃') PathsB {t} id⟷ v v' = (v ≡ v') PathsB (sym⟷ c) v v' = Paths c v v' PathsB (_◎_ {t₁} {t₂} {t₃} c₁ c₂) v v' = Σ[ u ∈ ⟦ t₂ ⟧ ] (PathsB c₂ v u × PathsB c₁ u v') PathsB (c₁ ⊕ c₂) (inj₁ v) (inj₁ v') = PathsB c₁ v v' PathsB (c₁ ⊕ c₂) (inj₁ v) (inj₂ v') = ⊥ PathsB (c₁ ⊕ c₂) (inj₂ v) (inj₁ v') = ⊥ PathsB (c₁ ⊕ c₂) (inj₂ v) (inj₂ v') = PathsB c₂ v v' PathsB (c₁ ⊗ c₂) (v₁ , v₂) (v₁' , v₂') = PathsB c₁ v₁ v₁' × PathsB c₂ v₂ v₂' -- Given a combinator c : t₁ ⟷ t₂ and values v₁ : ⟦ t₁ ⟧ and v₂ : ⟦ t₂ ⟧, -- Paths c v₁ v₂ gives us the space of paths that could connect v₁ and v₂ -- Examples: pathIdtt : Paths id⟷ tt tt pathIdtt = refl tt -- four different ways of relating F to F: pathIdFF : Paths id⟷ FALSE FALSE pathIdFF = refl FALSE pathIdIdFF : Paths (id⟷ ◎ id⟷) FALSE FALSE pathIdIdFF = (FALSE , refl FALSE , refl FALSE) pathNotNotFF : Paths (swap₊ ◎ swap₊) FALSE FALSE pathNotNotFF = TRUE , refl tt , refl tt pathPlusFF : Paths (id⟷ ⊕ id⟷) FALSE FALSE pathPlusFF = refl tt -- are there 2-paths between the above 3 paths??? -- space of paths is empty; cannot produce any path; can -- use pattern matching to confirm that the space is empty pathIdFT : Paths id⟷ FALSE TRUE → ⊤ pathIdFT () -- three different ways of relating (F,F) to (F,F) pathIdFFFF : Paths id⟷ (FALSE , FALSE) (FALSE , FALSE) pathIdFFFF = refl (FALSE , FALSE) pathTimesFFFF : Paths (id⟷ ⊗ id⟷) (FALSE , FALSE) (FALSE , FALSE) pathTimesFFFF = (refl FALSE , refl FALSE) pathTimesPlusFFFF : Paths ((id⟷ ⊕ id⟷) ⊗ (id⟷ ⊕ id⟷)) (FALSE , FALSE) (FALSE , FALSE) pathTimesPlusFFFF = (refl tt , refl tt) pathSwap₊FT : Paths swap₊ FALSE TRUE pathSwap₊FT = refl tt pathSwap₊TF : Paths swap₊ TRUE FALSE pathSwap₊TF = refl tt -- no path pathSwap₊FF : Paths swap₊ FALSE FALSE → ⊤ pathSwap₊FF () -- intuitively the two paths below should not be related by a 2-path because -- pathCnotTF is "essentially" cnot which would map (F,F) to (F,F) but -- pathIdNotTF would map (F,F) to (F,T). pathIdNotFF : Paths (id⟷ ⊗ swap₊) (FALSE , FALSE) (FALSE , TRUE) pathIdNotFF = refl FALSE , refl tt pathIdNotFT : Paths (id⟷ ⊗ swap₊) (FALSE , TRUE) (FALSE , FALSE) pathIdNotFT = refl FALSE , refl tt pathIdNotTF : Paths (id⟷ ⊗ swap₊) (TRUE , FALSE) (TRUE , TRUE) pathIdNotTF = refl TRUE , refl tt pathIdNotTT : Paths (id⟷ ⊗ swap₊) (TRUE , TRUE) (TRUE , FALSE) pathIdNotTT = refl TRUE , refl tt pathIdNotb : {b₁ b₂ : ⟦ BOOL ⟧} → Paths (id⟷ ⊗ swap₊) (b₁ , b₂) (b₁ , NOT b₂) pathIdNotb {b₁} {inj₁ tt} = refl b₁ , refl tt pathIdNotb {b₁} {inj₂ tt} = refl b₁ , refl tt pathCnotbb : {b₁ b₂ : ⟦ BOOL ⟧} → Paths cnot (b₁ , b₂) (CNOT b₁ b₂) pathCnotbb {inj₁ tt} {inj₁ tt} = inj₁ (tt , TRUE) , (refl tt , refl TRUE) , (inj₁ (tt , FALSE) , (refl tt , refl tt) , (refl tt , refl FALSE)) pathCnotbb {inj₁ tt} {inj₂ tt} = inj₁ (tt , FALSE) , (refl tt , refl FALSE) , (inj₁ (tt , TRUE) , (refl tt , refl tt) , (refl tt , refl TRUE)) pathCnotbb {inj₂ tt} {b₂} = inj₂ (tt , b₂) , (refl tt , refl b₂) , (inj₂ (tt , b₂) , (refl tt , refl b₂) , (refl tt , refl b₂)) pathCnotFF : Paths cnot (FALSE , FALSE) (FALSE , FALSE) pathCnotFF = inj₂ (tt , FALSE) , (refl tt , refl FALSE) , (inj₂ (tt , FALSE) , (refl tt , refl FALSE) , (refl tt , refl FALSE)) pathCnotFT : Paths cnot (FALSE , TRUE) (FALSE , TRUE) pathCnotFT = inj₂ (tt , TRUE) , (refl tt , refl TRUE) , (inj₂ (tt , TRUE) , (refl tt , refl TRUE) , (refl tt , refl TRUE)) pathCnotTF : Paths cnot (TRUE , FALSE) (TRUE , TRUE) pathCnotTF = inj₁ (tt , FALSE) , -- first intermediate value -- path using dist from (T,F) to (inj₁ (tt , F)) (refl tt , refl FALSE) , -- path from (inj₁ (tt , F)) to (T,T) (inj₁ (tt , TRUE) , -- next intermediate value (refl tt , refl tt) , (refl tt , refl TRUE)) pathCnotTT : Paths cnot (TRUE , TRUE) (TRUE , FALSE) pathCnotTT = inj₁ (tt , TRUE) , (refl tt , refl TRUE) , (inj₁ (tt , FALSE) , (refl tt , refl tt) , (refl tt , refl FALSE)) pathUnite₊ : {t : U} {v v' : ⟦ t ⟧} → (v ≡ v') → Paths unite₊ (inj₂ v) v' pathUnite₊ p = p -- Higher groupoid structure -- For every path between v₁ and v₂ there is a path between v₂ and v₁ mutual pathInv : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → Paths c v₁ v₂ → Paths (sym⟷ c) v₂ v₁ pathInv {v₁ = inj₁ ()} {v₂ = v} {unite₊} pathInv {v₁ = inj₂ v} {v₂ = v'} {unite₊} p = sym p pathInv {v₁ = v} {v₂ = inj₁ ()} {uniti₊} pathInv {v₁ = v} {v₂ = inj₂ v'} {uniti₊} p = sym p pathInv {v₁ = inj₁ v} {v₂ = inj₁ v'} {swap₊} () pathInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {swap₊} p = sym p pathInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {swap₊} p = sym p pathInv {v₁ = inj₂ v} {v₂ = inj₂ v'} {swap₊} () pathInv {v₁ = inj₁ v} {v₂ = inj₁ (inj₁ v')} {assocl₊} p = sym p pathInv {v₁ = inj₁ v} {v₂ = inj₁ (inj₂ v')} {assocl₊} () pathInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {assocl₊} () pathInv {v₁ = inj₂ (inj₁ v)} {v₂ = inj₁ (inj₁ v')} {assocl₊} () pathInv {v₁ = inj₂ (inj₁ v)} {v₂ = inj₁ (inj₂ v')} {assocl₊} p = sym p pathInv {v₁ = inj₂ (inj₁ v)} {v₂ = inj₂ v'} {assocl₊} () pathInv {v₁ = inj₂ (inj₂ v)} {v₂ = inj₁ v'} {assocl₊} () pathInv {v₁ = inj₂ (inj₂ v)} {v₂ = inj₂ v'} {assocl₊} p = sym p pathInv {v₁ = inj₁ (inj₁ v)} {v₂ = inj₁ v'} {assocr₊} p = sym p pathInv {v₁ = inj₁ (inj₁ v)} {v₂ = inj₂ v'} {assocr₊} () pathInv {v₁ = inj₁ (inj₂ v)} {v₂ = inj₁ v'} {assocr₊} () pathInv {v₁ = inj₁ (inj₂ v)} {v₂ = inj₂ (inj₁ v')} {assocr₊} p = sym p pathInv {v₁ = inj₁ (inj₂ v)} {v₂ = inj₂ (inj₂ v')} {assocr₊} () pathInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {assocr₊} () pathInv {v₁ = inj₂ v} {v₂ = inj₂ (inj₁ v')} {assocr₊} () pathInv {v₁ = inj₂ v} {v₂ = inj₂ (inj₂ v')} {assocr₊} p = sym p pathInv {v₁ = (tt , v)} {v₂ = v'} {unite⋆} p = sym p pathInv {v₁ = v} {v₂ = (tt , v')} {uniti⋆} p = sym p pathInv {v₁ = (u , v)} {v₂ = (v' , u')} {swap⋆} (p₁ , p₂) = (sym p₂ , sym p₁) pathInv {v₁ = (u , (v , w))} {v₂ = ((u' , v') , w')} {assocl⋆} (p₁ , p₂ , p₃) = (sym p₁ , sym p₂ , sym p₃) pathInv {v₁ = ((u , v) , w)} {v₂ = (u' , (v' , w'))} {assocr⋆} (p₁ , p₂ , p₃) = (sym p₁ , sym p₂ , sym p₃) pathInv {v₁ = _} {v₂ = ()} {distz} pathInv {v₁ = ()} {v₂ = _} {factorz} pathInv {v₁ = (inj₁ v₁ , v₃)} {v₂ = inj₁ (v₁' , v₃')} {dist} (p₁ , p₂) = (sym p₁ , sym p₂) pathInv {v₁ = (inj₁ v₁ , v₃)} {v₂ = inj₂ (v₂' , v₃')} {dist} () pathInv {v₁ = (inj₂ v₂ , v₃)} {v₂ = inj₁ (v₁' , v₃')} {dist} () pathInv {v₁ = (inj₂ v₂ , v₃)} {v₂ = inj₂ (v₂' , v₃')} {dist} (p₁ , p₂) = (sym p₁ , sym p₂) pathInv {v₁ = inj₁ (v₁ , v₃)} {v₂ = (inj₁ v₁' , v₃')} {factor} (p₁ , p₂) = (sym p₁ , sym p₂) pathInv {v₁ = inj₁ (v₁ , v₃)} {v₂ = (inj₂ v₂' , v₃')} {factor} () pathInv {v₁ = inj₂ (v₂ , v₃)} {v₂ = (inj₁ v₁' , v₃')} {factor} () pathInv {v₁ = inj₂ (v₂ , v₃)} {v₂ = (inj₂ v₂' , v₃')} {factor} (p₁ , p₂) = (sym p₁ , sym p₂) pathInv {v₁ = v} {v₂ = v'} {id⟷} p = sym p pathInv {v₁ = v} {v₂ = v'} {sym⟷ c} p = pathBInv {v₁ = v'} {v₂ = v} {c} p pathInv {v₁ = v} {v₂ = v'} {c₁ ◎ c₂} (u , (p₁ , p₂)) = (u , (pathInv {c = c₂} p₂ , pathInv {c = c₁} p₁)) pathInv {v₁ = inj₁ v} {v₂ = inj₁ v'} {c₁ ⊕ c₂} p = pathInv {c = c₁} p pathInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {c₁ ⊕ c₂} () pathInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {c₁ ⊕ c₂} () pathInv {v₁ = inj₂ v} {v₂ = inj₂ v'} {c₁ ⊕ c₂} p = pathInv {c = c₂} p pathInv {v₁ = (u , v)} {v₂ = (u' , v')} {c₁ ⊗ c₂} (p₁ , p₂) = (pathInv {c = c₁} p₁ , pathInv {c = c₂} p₂) pathBInv : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → PathsB c v₂ v₁ → PathsB (sym⟷ c) v₁ v₂ pathBInv {v₁ = inj₁ ()} {v₂ = v} {unite₊} pathBInv {v₁ = inj₂ v} {v₂ = v'} {unite₊} p = sym p pathBInv {v₁ = v} {v₂ = inj₁ ()} {uniti₊} pathBInv {v₁ = v} {v₂ = inj₂ v'} {uniti₊} p = sym p pathBInv {v₁ = inj₁ v} {v₂ = inj₁ v'} {swap₊} () pathBInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {swap₊} p = sym p pathBInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {swap₊} p = sym p pathBInv {v₁ = inj₂ v} {v₂ = inj₂ v'} {swap₊} () pathBInv {v₁ = inj₁ v} {v₂ = inj₁ (inj₁ v')} {assocl₊} p = sym p pathBInv {v₁ = inj₂ v} {v₂ = inj₁ (inj₁ v')} {assocl₊} () pathBInv {v₁ = inj₁ v} {v₂ = inj₁ (inj₂ v')} {assocl₊} () pathBInv {v₁ = inj₂ (inj₁ v)} {v₂ = inj₁ (inj₂ v')} {assocl₊} p = sym p pathBInv {v₁ = inj₂ (inj₂ v)} {v₂ = inj₁ (inj₂ v')} {assocl₊} () pathBInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {assocl₊} () pathBInv {v₁ = inj₂ (inj₁ v)} {v₂ = inj₂ v'} {assocl₊} () pathBInv {v₁ = inj₂ (inj₂ v)} {v₂ = inj₂ v'} {assocl₊} p = sym p pathBInv {v₁ = inj₁ (inj₁ v)} {v₂ = inj₁ v'} {assocr₊} p = sym p pathBInv {v₁ = inj₁ (inj₂ v)} {v₂ = inj₁ v'} {assocr₊} () pathBInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {assocr₊} () pathBInv {v₁ = inj₁ (inj₁ v)} {v₂ = inj₂ (inj₁ v')} {assocr₊} () pathBInv {v₁ = inj₁ (inj₂ v)} {v₂ = inj₂ (inj₁ v')} {assocr₊} p = sym p pathBInv {v₁ = inj₂ v} {v₂ = inj₂ (inj₁ v')} {assocr₊} () pathBInv {v₁ = inj₁ v} {v₂ = inj₂ (inj₂ v')} {assocr₊} () pathBInv {v₁ = inj₂ v} {v₂ = inj₂ (inj₂ v')} {assocr₊} p = sym p pathBInv {v₁ = (tt , v)} {v₂ = v'} {unite⋆} p = sym p pathBInv {v₁ = v} {v₂ = (tt , v')} {uniti⋆} p = sym p pathBInv {v₁ = (u , v)} {v₂ = (v' , u')} {swap⋆} (p₁ , p₂) = (sym p₂ , sym p₁) pathBInv {v₁ = (u , (v , w))} {v₂ = ((u' , v') , w')} {assocl⋆} (p₁ , p₂ , p₃) = (sym p₁ , sym p₂ , sym p₃) pathBInv {v₁ = ((u , v) , w)} {v₂ = (u' , (v' , w'))} {assocr⋆} (p₁ , p₂ , p₃) = (sym p₁ , sym p₂ , sym p₃) pathBInv {v₁ = _} {v₂ = ()} {distz} pathBInv {v₁ = ()} {v₂ = _} {factorz} pathBInv {v₁ = (inj₁ v₁ , v₃)} {v₂ = inj₁ (v₁' , v₃')} {dist} (p₁ , p₂) = (sym p₁ , sym p₂) pathBInv {v₁ = (inj₁ v₁ , v₃)} {v₂ = inj₂ (v₂' , v₃')} {dist} () pathBInv {v₁ = (inj₂ v₂ , v₃)} {v₂ = inj₁ (v₁' , v₃')} {dist} () pathBInv {v₁ = (inj₂ v₂ , v₃)} {v₂ = inj₂ (v₂' , v₃')} {dist} (p₁ , p₂) = (sym p₁ , sym p₂) pathBInv {v₁ = inj₁ (v₁ , v₃)} {v₂ = (inj₁ v₁' , v₃')} {factor} (p₁ , p₂) = (sym p₁ , sym p₂) pathBInv {v₁ = inj₁ (v₁ , v₃)} {v₂ = (inj₂ v₂' , v₃')} {factor} () pathBInv {v₁ = inj₂ (v₂ , v₃)} {v₂ = (inj₁ v₁' , v₃')} {factor} () pathBInv {v₁ = inj₂ (v₂ , v₃)} {v₂ = (inj₂ v₂' , v₃')} {factor} (p₁ , p₂) = (sym p₁ , sym p₂) pathBInv {v₁ = v} {v₂ = v'} {id⟷} p = sym p pathBInv {v₁ = v} {v₂ = v'} {sym⟷ c} p = pathInv {v₁ = v'} {v₂ = v} {c} p pathBInv {t₁} {t₂} {v₁} {v₂} {c₁ ◎ c₂} (u , (p₂ , p₁)) = (u , (pathBInv {v₁ = v₁} {v₂ = u} {c = c₁} p₁ , pathBInv {v₁ = u} {v₂ = v₂} {c = c₂} p₂)) pathBInv {v₁ = inj₁ v} {v₂ = inj₁ v'} {c₁ ⊕ c₂} p = pathBInv {c = c₁} p pathBInv {v₁ = inj₁ v} {v₂ = inj₂ v'} {c₁ ⊕ c₂} () pathBInv {v₁ = inj₂ v} {v₂ = inj₁ v'} {c₁ ⊕ c₂} () pathBInv {v₁ = inj₂ v} {v₂ = inj₂ v'} {c₁ ⊕ c₂} p = pathBInv {c = c₂} p pathBInv {v₁ = (u , v)} {v₂ = (u' , v')} {c₁ ⊗ c₂} (p₁ , p₂) = (pathBInv {c = c₁} p₁ , pathBInv {c = c₂} p₂) -- for every paths from v1 to v2 and from v2 to v3, there is a path from v1 -- to v3 that (obviously) goes through v2 pathTrans : {t₁ t₂ t₃ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {v₃ : ⟦ t₃ ⟧} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} → Paths c₁ v₁ v₂ → Paths c₂ v₂ v₃ → Paths (c₁ ◎ c₂) v₁ v₃ pathTrans {v₂ = v₂} p q = (v₂ , p , q) pathBTrans : {t₁ t₂ t₃ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {v₃ : ⟦ t₃ ⟧} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} → PathsB c₁ v₂ v₁ → PathsB c₂ v₃ v₂ → PathsB (c₁ ◎ c₂) v₃ v₁ pathBTrans {v₂ = v₂} p q = (v₂ , q , p) -- we always have a canonical path from v to v pathId : {t : U} {v : ⟦ t ⟧} → Paths id⟷ v v pathId {v = v} = refl v ------------------------------------------------------------------------------ -- Int construction -- this will allow us to represents paths as values and then define 2paths -- between them data DU : Set where diff : U → U → DU pos : DU → U pos (diff t₁ t₂) = t₁ neg : DU → U neg (diff t₁ t₂) = t₂ zeroD : DU zeroD = diff ZERO ZERO oneD : DU oneD = diff ONE ZERO plusD : DU → DU → DU plusD (diff t₁ t₂) (diff t₁' t₂') = diff (PLUS t₁ t₁') (PLUS t₂ t₂') timesD : DU → DU → DU timesD (diff t₁ t₂) (diff t₁' t₂') = diff (PLUS (TIMES t₁ t₁') (TIMES t₂ t₂')) (PLUS (TIMES t₂ t₁') (TIMES t₁ t₂')) dualD : DU → DU dualD (diff t₁ t₂) = diff t₂ t₁ lolliD : DU → DU → DU lolliD (diff t₁ t₂) (diff t₁' t₂') = diff (PLUS t₂ t₁') (PLUS t₁ t₂') _≤=>_ : DU → DU → Set d₁ ≤=> d₂ = PLUS (pos d₁) (neg d₂) ⟷ PLUS (neg d₁) (pos d₂) idD : {d : DU} → d ≤=> d idD = swap₊ --curryD : {d₁ d₂ d₃ : DU} → (plusD d₁ d₂ ≤=> d₃) → (d₁ ≤=> lolliD d₂ d₃) --curryD f = assocl₊ ◎ f ◎ assocr₊ -- take a path and represent it as a value of type lolli and then use -- ≤=> between these values as the definition of 2paths??? ------------------------------------------------------------------------------ -- Can we show: -- p : Paths c v₁ v₂ == pathTrans p (refl v₂) -- Groupoid structure (i.e. laws), for 2Paths. Some of the rest of -- the structure is given above already -- If the following is right, we can come up with syntax (like _[_]⟺[_]_ ) for p₁ [c₁]⟺[c₂] p₂ . We really do -- need to index the ⟺ by the combinators 'explicitly' as Agda can never infer them. data 2P {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧ } : {c₁ c₂ : t₁ ⟷ t₂} → Paths c₁ v₁ v₂ → Paths c₂ v₁ v₂ → Set where id2 : {c : t₁ ⟷ t₂} {p : Paths c v₁ v₂} → 2P {c₁ = c} {c} p p inv2 : {c₁ c₂ : t₁ ⟷ t₂} {p₁ : Paths c₁ v₁ v₂} {p₂ : Paths c₂ v₁ v₂} → 2P {c₁ = c₁} {c₂} p₁ p₂ → 2P {c₁ = c₂} {c₁} p₂ p₁ comp2 : {c₁ c₂ c₃ : t₁ ⟷ t₂} {p₁ : Paths c₁ v₁ v₂} {p₂ : Paths c₂ v₁ v₂} {p₃ : Paths c₃ v₁ v₂} → 2P {c₁ = c₁} {c₂} p₁ p₂ → 2P {c₁ = c₂} {c₃} p₂ p₃ → 2P {c₁ = c₁} {c₃} p₁ p₃ -- should define composition which effectively does as below?? lid : {c : t₁ ⟷ t₂} {p : Paths c v₁ v₂} → 2P {c₁ = id⟷ ◎ c} {c} (pathTrans {c₁ = id⟷} {c} pathId p) p rid : {c : t₁ ⟷ t₂} {p : Paths c v₁ v₂} → 2P {c₁ = c ◎ id⟷} {c} (pathTrans {c₁ = c} {id⟷} p pathId) p -- also need: -- assoc -- linv : {c : t₁ ⟷ t₂} {p : Paths c v₁ v₂} → 2P {c₁ = c} -- linv -- rinv -- and perhaps cong, i.e. ◎-resp-2P mutual 2Paths : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧ } {c₁ c₂ : t₁ ⟷ t₂} {p₁ : Paths c₁ v₁ v₂} {p₂ : Paths c₂ v₁ v₂} → 2P {c₁ = c₁} {c₂} p₁ p₂ → Paths c₁ v₁ v₂ → Paths c₂ v₁ v₂ → Set 2Paths id2 p₁ p₂ = p₁ ≡ p₂ 2Paths (inv2 p) p₁ p₂ = 2PathsB p p₁ p₂ 2Paths {t₁} {t₂} {v₁} {v₂} (comp2 {c₁ = c₁} {c₂} {c₃} {p₁} {p₂} {p₃} p q) α₁ α₂ = Σ[ r ∈ Paths c₂ v₁ v₂ ] (2P {c₁ = c₁} {c₂} α₁ r × 2P {c₁ = c₂} {c₃} r α₂) 2Paths lid (a , refl .a , p₂) p₃ = p₂ ≡ p₃ 2Paths rid (a , p₂ , refl .a) p₃ = p₂ ≡ p₃ 2PathsB : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧ } {c₁ c₂ : t₁ ⟷ t₂} {p₁ : Paths c₁ v₁ v₂} {p₂ : Paths c₂ v₁ v₂} → 2P {c₁ = c₁} {c₂} p₁ p₂ → Paths c₂ v₁ v₂ → Paths c₁ v₁ v₂ → Set 2PathsB id2 p q = q ≡ p 2PathsB (inv2 p) p₁ p₂ = 2PathsB p p₂ p₁ 2PathsB (comp2 p q) p₁ p₂ = {!!} 2PathsB lid p (a , refl .a , p₃) = p ≡ p₃ 2PathsB rid p (a , p₂ , refl .a) = p ≡ p₂ example : 2Paths {t₁ = BOOL} {t₂ = BOOL} {v₁ = FALSE} {v₂ = FALSE} {c₁ = id⟷ ◎ id⟷} {c₂ = id⟷} {p₁ = pathIdIdFF} lid pathIdIdFF pathIdFF example = refl (refl FALSE) {-- 2Paths : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c₁ c₂ : t₁ ⟷ t₂} → Paths c₁ v₁ v₂ → Paths c₂ v₁ v₂ → Set 2Paths p q = {!!} reflR : {t₁ t₂ : U} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} {p : Paths c v₁ v₂} → {q : Paths (c ◎ id⟷) v₁ v₂} → 2Paths {t₁} {t₂} {v₁} {v₂} {c} {c ◎ id⟷} p q reflR {c = unite₊} = {!!} -- p : Paths unite₊ .v₁ .v₂ -- q : Paths (unite₊ ◎ id⟷) .v₁ .v₂ -- 2Paths p q reflR {c = uniti₊} = {!!} reflR {c = swap₊} = {!!} reflR {c = assocl₊} = {!!} reflR {c = assocr₊} = {!!} reflR {c = unite⋆} = {!!} reflR {c = uniti⋆} = {!!} reflR {c = swap⋆} = {!!} reflR {c = assocl⋆} = {!!} reflR {c = assocr⋆} = {!!} reflR {c = distz} = {!!} reflR {c = factorz} = {!!} reflR {c = dist} = {!!} reflR {c = factor} = {!!} reflR {c = id⟷} = {!!} reflR {c = sym⟷ c} = {!!} reflR {c = c₁ ◎ c₂} = {!!} reflR {c = c₁ ⊕ c₂} = {!!} reflR {c = c₁ ⊗ c₂} = {!!} --} {-- -- If we have a path between v₁ and v₁' and a combinator that connects v₁ to -- v₂, then the combinator also connects v₁' to some v₂' such that there is -- path between v₂ and v₂' pathFunctor : {t₁ t₂ : U} {v₁ v₁' : ⟦ t₁ ⟧} {v₂ v₂' : ⟦ t₂ ⟧} {c : t₁ ⟷ t₂} → (v₁ ≡ v₁') → Paths c v₁ v₂ → (v₂ ≡ v₂') → Paths c v₁' v₂' pathFunctor = {!!} All kind of structure to investigate in the HoTT book. Let's push forward with cubical types though... --} ------------------------------------------------------------------------------ -- N dimensional version {- data C : ℕ → Set where ZD : U → C 0 Node : {n : ℕ} → C n → C n → C (suc n) ⟦_⟧N : {n : ℕ} → C n → Set ⟦ ZD t ⟧N = ⟦ t ⟧ ⟦ Node c₁ c₂ ⟧N = ⟦ c₁ ⟧N ⊎ ⟦ c₂ ⟧N liftN : (n : ℕ) → (t : U) → C n liftN 0 t = ZD t liftN (suc n) t = Node (liftN n t) (liftN n ZERO) zeroN : (n : ℕ) → C n zeroN n = liftN n ZERO oneN : (n : ℕ) → C n oneN n = liftN n ONE plus : {n : ℕ} → C n → C n → C n plus (ZD t₁) (ZD t₂) = ZD (PLUS t₁ t₂) plus (Node c₁ c₂) (Node c₁' c₂') = Node (plus c₁ c₁') (plus c₂ c₂') times : {m n : ℕ} → C m → C n → C (m + n) times (ZD t₁) (ZD t₂) = ZD (TIMES t₁ t₂) times (ZD t) (Node c₁ c₂) = Node (times (ZD t) c₁) (times (ZD t) c₂) times (Node c₁ c₂) c = Node (times c₁ c) (times c₂ c) -- N-dimensional paths connect points in c₁ and c₂ if there is an isomorphism -- between the types c₁ and c₂. data _⟺_ : {n : ℕ} → C n → C n → Set where baseC : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ((ZD t₁) ⟺ (ZD t₂)) nodeC : {n : ℕ} {c₁ : C n} {c₂ : C n} {c₃ : C n} {c₄ : C n} → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → ((Node c₁ c₃) ⟺ (Node c₂ c₄)) -- zerolC : {n : ℕ} {c : C n} → ((Node c c) ⟺ (zeroN (suc n))) -- zerorC : {n : ℕ} {c : C n} → ((zeroN (suc n)) ⟺ (Node c c)) NPaths : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → ⟦ c₁ ⟧N → ⟦ c₂ ⟧N → Set NPaths (baseC c) v₁ v₂ = Paths c v₁ v₂ NPaths (nodeC α₁ α₂) (inj₁ v₁) (inj₁ v₂) = NPaths α₁ v₁ v₂ NPaths (nodeC α₁ α₂) (inj₁ v₁) (inj₂ v₂) = ⊥ NPaths (nodeC α₁ α₂) (inj₂ v₁) (inj₁ v₂) = ⊥ NPaths (nodeC α₁ α₂) (inj₂ v₁) (inj₂ v₂) = NPaths α₂ v₁ v₂ --NPaths zerolC v₁ v₂ = {!!} --NPaths zerorC v₁ v₂ = {!!} -} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.500976856, "avg_line_length": 39.1988217968, "ext": "agda", "hexsha": "d462dd917d789e7dede53c69780b58e2ad900404", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/A.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/A.agda", "max_line_length": 180, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/A.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 12910, "size": 26616 }
-- 2015-02-24 Andrea Vezzosi -- Since type constructors are considered injective by the forcing analysis we are able to define the type for the "russel" paradox: open import Common.Product Type = Set₁ data Box : Type -> Set where -- The following type should be rejected, as A is not forced. data Tree' : Set -> Type where sup' : ∀ (A : Type) -> (A → ∃ Tree') → Tree' (Box A) Tree = ∃ Tree' sup : (a : Type) -> (f : a -> Tree) -> Tree sup a f = _ , sup' a f a : Tree -> Type a (._ , sup' a _) = a f : (t : Tree) -> a t -> Tree f (._ , sup' a f) = f -- The rest is the standard paradox open import Common.Equality open import Common.Prelude normal : Tree -> Type normal t = Σ (a t) (λ (y : a t) → (f t y ≡ sup (a t) (f t))) -> ⊥ nt : Type nt = Σ Tree \ (t : Tree) -> normal t p : nt -> Tree p (x , _) = x q : (y : nt) -> normal (p y) q (x , y) = y r : Tree r = sup nt p lemma : normal r lemma ((y1 , y2) , z) = y2 (subst (\ y3 -> Σ _ \ (y : a y3) -> f y3 y ≡ sup (a y3) (f y3)) (sym z) ((y1 , y2) , z)) russel : ⊥ russel = lemma ((r , lemma) , refl)
{ "alphanum_fraction": 0.5602240896, "avg_line_length": 20.5961538462, "ext": "agda", "hexsha": "9638fa762b2e9faa70e45cda9e64b2588954abc6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1441.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1441.agda", "max_line_length": 132, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1441.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 402, "size": 1071 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of These ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.These.Properties where open import Data.These open import Function using (_∘_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) ------------------------------------------------------------------------ -- Equality module _ {a b} {A : Set a} {B : Set b} where this-injective : ∀ {x y : A} → this {B = B} x ≡ this y → x ≡ y this-injective refl = refl that-injective : ∀ {a b : B} → that {A = A} a ≡ that b → a ≡ b that-injective refl = refl these-injectiveˡ : ∀ {x y : A} {a b : B} → these x a ≡ these y b → x ≡ y these-injectiveˡ refl = refl these-injectiveʳ : ∀ {x y : A} {a b : B} → these x a ≡ these y b → a ≡ b these-injectiveʳ refl = refl ≡-dec : Decidable _≡_ → Decidable _≡_ → Decidable {A = These A B} _≡_ ≡-dec dec₁ dec₂ (this x) (this y) with dec₁ x y ... | yes refl = yes refl ... | no x≢y = no (x≢y ∘ this-injective) ≡-dec dec₁ dec₂ (this x) (that y) = no λ() ≡-dec dec₁ dec₂ (this x) (these y b) = no λ() ≡-dec dec₁ dec₂ (that x) (this y) = no λ() ≡-dec dec₁ dec₂ (that x) (that y) with dec₂ x y ... | yes refl = yes refl ... | no x≢y = no (x≢y ∘ that-injective) ≡-dec dec₁ dec₂ (that x) (these y b) = no λ() ≡-dec dec₁ dec₂ (these x a) (this y) = no λ() ≡-dec dec₁ dec₂ (these x a) (that y) = no λ() ≡-dec dec₁ dec₂ (these x a) (these y b) with dec₁ x y | dec₂ a b ... | yes refl | yes refl = yes refl ... | no x≢y | _ = no (x≢y ∘ these-injectiveˡ) ... | yes _ | no a≢b = no (a≢b ∘ these-injectiveʳ)
{ "alphanum_fraction": 0.5064308682, "avg_line_length": 36.5882352941, "ext": "agda", "hexsha": "6891135eceaf6e3f9dc3cdcd7407673eeadba247", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Properties.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 650, "size": 1866 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Smap open import Oscar.Data.Fin open import Oscar.Data.Term open import Oscar.Data.Vec import Oscar.Class.Surjection.⋆ module Oscar.Class.Smap.ExtensionFinExtensionTerm where module _ {𝔭} {𝔓 : Ø 𝔭} where open Term 𝔓 private mutual 𝓼urjectivityExtensionFinExtensionTerm : Smap!.type (Extension Fin) (Extension Term) 𝓼urjectivityExtensionFinExtensionTerm x (i y) = i (x y) 𝓼urjectivityExtensionFinExtensionTerm x leaf = leaf 𝓼urjectivityExtensionFinExtensionTerm x (l fork r) = 𝓼urjectivityExtensionFinExtensionTerm x l fork 𝓼urjectivityExtensionFinExtensionTerm x r 𝓼urjectivityExtensionFinExtensionTerm x (function f ts) = function f $ 𝓼urjectivityExtensionFinExtensionTerms x ts 𝓼urjectivityExtensionFinExtensionTerms : ∀ {N} → Smap!.type (Extension Fin) (Extension $ Terms N) 𝓼urjectivityExtensionFinExtensionTerms x ∅ = ∅ 𝓼urjectivityExtensionFinExtensionTerms x (t , ts) = 𝓼urjectivityExtensionFinExtensionTerm x t , 𝓼urjectivityExtensionFinExtensionTerms x ts instance 𝓢urjectivityExtensionFinExtensionTerm : Smap!.class (Extension Fin) (Extension Term) 𝓢urjectivityExtensionFinExtensionTerm .⋆ _ _ = 𝓼urjectivityExtensionFinExtensionTerm 𝓢urjectivityExtensionFinExtensionTerms : ∀ {N} → Smap!.class (Extension Fin) (Extension $ Terms N) 𝓢urjectivityExtensionFinExtensionTerms .⋆ _ _ = 𝓼urjectivityExtensionFinExtensionTerms
{ "alphanum_fraction": 0.7884486232, "avg_line_length": 40.2432432432, "ext": "agda", "hexsha": "97c5cdc3ad6262b8a8b7898c7b9339b98c35bd36", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Smap/ExtensionFinExtensionTerm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Smap/ExtensionFinExtensionTerm.agda", "max_line_length": 147, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Smap/ExtensionFinExtensionTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 442, "size": 1489 }
{-# OPTIONS --without-K #-} open import Types open import Paths {- Stuff about truncation levels (aka h-levers) that do not require the notion of equivalence or function extensionality -} module HLevel {i} where -- Definition of truncation levels is-contr : Set i → Set i is-contr A = Σ A (λ x → ((y : A) → y ≡ x)) is-truncated : ℕ₋₂ → (Set i → Set i) is-truncated ⟨-2⟩ A = is-contr A is-truncated (S n) A = (x y : A) → is-truncated n (x ≡ y) is-prop = is-truncated ⟨-1⟩ is-set = is-truncated ⟨0⟩ is-gpd = is-truncated ⟨1⟩ -- The original notion of h-level can be defined in the following way. -- We won’t use this definition though. is-hlevel : ℕ → (Set i → Set i) is-hlevel n A = is-truncated (n -2) A where _-2 : ℕ → ℕ₋₂ O -2 = ⟨-2⟩ (S n) -2 = S (n -2) -- The following property is equivalent to being a proposition has-all-paths : Set i → Set i has-all-paths A = (x y : A) → x ≡ y -- Having decidable equality is stronger that being a set has-dec-eq : Set i → Set i has-dec-eq A = (x y : A) → (x ≡ y) ⊔ (x ≢ y) abstract all-paths-is-prop : {A : Set i} → (has-all-paths A → is-prop A) all-paths-is-prop {A} c x y = (c x y , canon-path) where lemma : {x y : A} (p : x ≡ y) → c x y ≡ p ∘ c y y lemma refl = refl canon-path : {x y : A} (p : x ≡ y) → p ≡ c x y canon-path {.y} {y} refl = anti-whisker-right (c y y) (lemma (c y y)) -- Truncation levels are cumulative truncated-is-truncated-S : {A : Set i} (n : ℕ₋₂) → (is-truncated n A → is-truncated (S n) A) truncated-is-truncated-S ⟨-2⟩ q = all-paths-is-prop (λ x y → π₂ q x ∘ ! (π₂ q y)) truncated-is-truncated-S (S n) q = λ x y → truncated-is-truncated-S n (q x y) -- A type with a decidable equality is a set dec-eq-is-set : {A : Set i} → (has-dec-eq A → is-set A) dec-eq-is-set dec x y with dec x y dec-eq-is-set dec x y | inr p⊥ = λ p → abort-nondep (p⊥ p) dec-eq-is-set {A} dec x y | inl q = paths-A-is-prop q where -- The fact that equality is decidable on A gives a canonical path parallel -- to every path [p], depending only on the endpoints get-path : {u v : A} (r : u ≡ v) → u ≡ v get-path {u} {v} r with dec u v get-path r | inl q = q get-path r | inr r⊥ = abort-nondep (r⊥ r) get-path-eq : {u : A} (r : u ≡ u) → get-path r ≡ get-path refl get-path-eq {u} r with dec u u get-path-eq r | inl q = refl get-path-eq r | inr r⊥ = abort-nondep (r⊥ refl) lemma : {u v : A} (r : u ≡ v) → r ∘ get-path refl ≡ get-path r lemma refl = refl paths-A-is-prop : {u v : A} (q : u ≡ v) → is-prop (u ≡ v) paths-A-is-prop {u} {.u} refl = truncated-is-truncated-S ⟨-2⟩ (refl , λ r → anti-whisker-right (get-path refl) (lemma r ∘ get-path-eq r)) module _ {A : Set i} where abstract contr-has-all-paths : is-contr A → has-all-paths A contr-has-all-paths c x y = π₂ c x ∘ ! (π₂ c y) prop-has-all-paths : is-prop A → has-all-paths A prop-has-all-paths c x y = π₁ (c x y) inhab-prop-is-contr : A → is-prop A → is-contr A inhab-prop-is-contr x₀ p = (x₀ , λ y → π₁ (p y x₀)) contr-is-truncated : (n : ℕ₋₂) → (is-contr A → is-truncated n A) contr-is-truncated ⟨-2⟩ p = p contr-is-truncated (S n) p = truncated-is-truncated-S n (contr-is-truncated n p) prop-is-truncated-S : (n : ℕ₋₂) → (is-prop A → is-truncated (S n) A) prop-is-truncated-S ⟨-2⟩ p = p prop-is-truncated-S (S n) p = truncated-is-truncated-S (S n) (prop-is-truncated-S n p) set-is-truncated-SS : (n : ℕ₋₂) → (is-set A → is-truncated (S (S n)) A) set-is-truncated-SS ⟨-2⟩ p = p set-is-truncated-SS (S n) p = truncated-is-truncated-S (S (S n)) (set-is-truncated-SS n p) contr-is-prop : is-contr A → is-prop A contr-is-prop = contr-is-truncated ⟨-1⟩ contr-is-set : is-contr A → is-set A contr-is-set = contr-is-truncated ⟨0⟩ contr-is-gpd : is-contr A → is-gpd A contr-is-gpd = contr-is-truncated ⟨1⟩ prop-is-set : is-prop A → is-set A prop-is-set = prop-is-truncated-S ⟨-1⟩ prop-is-gpd : is-prop A → is-gpd A prop-is-gpd = prop-is-truncated-S ⟨0⟩ set-is-gpd : is-set A → is-gpd A set-is-gpd = set-is-truncated-SS ⟨-1⟩ -- If [A] is n-truncated, then so does [x ≡ y] for [x y : A] ≡-is-truncated : (n : ℕ₋₂) {x y : A} → (is-truncated n A → is-truncated n (x ≡ y)) ≡-is-truncated ⟨-2⟩ p = (contr-has-all-paths p _ _ , unique-path) where unique-path : {u v : A} (q : u ≡ v) → q ≡ contr-has-all-paths p u v unique-path refl = ! (opposite-right-inverse (π₂ p _)) ≡-is-truncated (S n) {x} {y} p = truncated-is-truncated-S n (p x y) -- The type of paths to a fixed point is contractible pathto-is-contr : (x : A) → is-contr (Σ A (λ t → t ≡ x)) pathto-is-contr x = ((x , refl) , pathto-unique-path) where pathto-unique-path : {u : A} (pp : Σ A (λ t → t ≡ u)) → pp ≡ (u , refl) pathto-unique-path (u , refl) = refl -- Specilization module _ where ≡-is-set : {x y : A} → (is-set A → is-set (x ≡ y)) ≡-is-set = ≡-is-truncated ⟨0⟩ ≡-is-prop : {x y : A} → (is-prop A → is-prop (x ≡ y)) ≡-is-prop = ≡-is-truncated ⟨-1⟩ abstract -- Unit is contractible -- I do not need to specify the universe level because in this file [is-contr] -- is not yet universe polymorphic ([i] is a global argument) unit-is-contr : is-contr unit unit-is-contr = (tt , λ y → refl) unit-is-truncated : (n : ℕ₋₂) → is-truncated n unit unit-is-truncated n = contr-is-truncated n unit-is-contr -- [unit-is-truncated#instance] produces unsolved metas unit-is-truncated-S#instance : {n : ℕ₋₂} → is-truncated (S n) unit unit-is-truncated-S#instance = contr-is-truncated _ unit-is-contr unit-is-prop : is-prop unit unit-is-prop = unit-is-truncated ⟨-1⟩ unit-is-set : is-set unit unit-is-set = unit-is-truncated ⟨0⟩ contr-has-section : ∀ {j} {A : Set i} {P : A → Set j} → (is-contr A → (x : A) → (u : P x) → Π A P) contr-has-section (x , p) x₀ y₀ t = transport _ (p x₀ ∘ ! (p t)) y₀ private bool-true≢false-type : bool {i} → Set bool-true≢false-type true = ⊤ bool-true≢false-type false = ⊥ abstract bool-true≢false : true {i} ≢ false bool-true≢false p = transport bool-true≢false-type p tt bool-false≢true : false {i} ≢ true bool-false≢true p = transport bool-true≢false-type (! p) tt bool-has-dec-eq : has-dec-eq bool bool-has-dec-eq true true = inl refl bool-has-dec-eq true false = inr bool-true≢false bool-has-dec-eq false true = inr bool-false≢true bool-has-dec-eq false false = inl refl bool-is-set : is-set bool bool-is-set = dec-eq-is-set bool-has-dec-eq ⊥-is-prop : is-prop ⊥ ⊥-is-prop ()
{ "alphanum_fraction": 0.5849056604, "avg_line_length": 34.2626262626, "ext": "agda", "hexsha": "a9cd5e541ac5892071add6f634dc3bf4548031cc", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/HLevel.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/HLevel.agda", "max_line_length": 80, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/HLevel.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2490, "size": 6784 }
module Haskell.Prim.String where open import Agda.Builtin.Char open import Agda.Builtin.Unit open import Agda.Builtin.FromString import Agda.Builtin.String as Str open import Haskell.Prim open import Haskell.Prim.List open import Haskell.Prim.Foldable -------------------------------------------------- -- String String = List Char instance iIsStringString : IsString String iIsStringString .IsString.Constraint _ = ⊤ iIsStringString .fromString s = Str.primStringToList s private cons : Char → List String → List String cons c [] = (c ∷ []) ∷ [] cons c (s ∷ ss) = (c ∷ s) ∷ ss lines : String → List String lines [] = [] lines ('\n' ∷ s) = [] ∷ lines s lines (c ∷ s) = cons c (lines s) private mutual space : String → List String space [] = [] space (c ∷ s) = if primIsSpace c then space s else cons c (word s) word : String → List String word [] = [] word (c ∷ s) = if primIsSpace c then [] ∷ space s else cons c (word s) words : String → List String words [] = [] words s@(c ∷ s₁) = if primIsSpace c then space s₁ else word s unlines : List String → String unlines = concatMap (_++ "\n") unwords : List String → String unwords [] = "" unwords (w ∷ []) = w unwords (w ∷ ws) = w ++ ' ' ∷ unwords ws
{ "alphanum_fraction": 0.619047619, "avg_line_length": 23.3333333333, "ext": "agda", "hexsha": "01f77489170240d2de25933a835720ecafda295a", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/String.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/String.agda", "max_line_length": 72, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 383, "size": 1260 }
------------------------------------------------------------------------------ -- The McCarthy 91 function: A function with nested recursion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.McCarthy91.McCarthy91 where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- The McCarthy 91 function. postulate f₉₁ : D → D f₉₁-eq : ∀ n → f₉₁ n ≡ (if (gt n 100') then n ∸ 10' else f₉₁ (f₉₁ (n + 11'))) {-# ATP axiom f₉₁-eq #-}
{ "alphanum_fraction": 0.4469135802, "avg_line_length": 35.2173913043, "ext": "agda", "hexsha": "c564596242d842d15369c28dce25537436de0398", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/McCarthy91.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/McCarthy91.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/McCarthy91.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 186, "size": 810 }
-- Sample non-literate Agda program -- ================================ -- -- A remark to test bulleted lists: -- -- * This file serves as example for agda2lagda. -- -- * The content may be non-sensical. -- -- Indeed! module Foo where -- Some data type. data D : Set where c : D -- A function. foo : D → D foo c = c -- basically, the identity {- This part is commented out. {- bar : D → Set bar x = D -- -} -- -} -- A subheading --------------- module Submodule where postulate zeta : D -- That's it. -- Bye.
{ "alphanum_fraction": 0.5511363636, "avg_line_length": 13.2, "ext": "agda", "hexsha": "4a6bbdb7e83937510c75ae59b7e601883c14021a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/agda2lagda", "max_forks_repo_path": "test/Foo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/agda2lagda", "max_issues_repo_path": "test/Foo.agda", "max_line_length": 48, "max_stars_count": 11, "max_stars_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/agda2lagda", "max_stars_repo_path": "test/Foo.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-16T07:28:10.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-01T12:10:15.000Z", "num_tokens": 150, "size": 528 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sparse polynomials in a commutative ring, encoded in Horner normal -- form. -- -- Horner normal form encodes a polynomial as a list of coefficients. -- As an example take the polynomial: -- -- 3 + 2x² + 4x⁵ + 2x⁷ -- -- Then expand it out, filling in the missing coefficients: -- -- 3x⁰ + 0x¹ + 2x² + 0x³ + 0x⁴ + 4x⁵ + 0x⁶ + 2x⁷ -- -- And then encode that as a list: -- -- [3, 0, 2, 0, 0, 4, 0, 2] -- -- The representation we use here is optimised from the above. First, -- we remove the zero terms, and add a "gap" index next to every -- coefficient: -- -- [(3,0),(2,1),(4,2),(2,1)] -- -- Which can be thought of as a representation of the expression: -- -- x⁰ * (3 + x * x¹ * (2 + x * x² * (4 + x * x¹ * (2 + x * 0)))) -- -- This is "sparse" Horner normal form. -- -- The second optimisation deals with representing multiple variables -- in a polynomial. The standard trick is to encode a polynomial in n -- variables as a polynomial with coefficients in n-1 variables, -- recursing until you hit 0 which is simply the type of the coefficient -- itself. -- -- We again encode "gaps" here, with the injection index. Since the -- number of variables in a polynomial is contained in its type, -- however, operations on this gap are type-relevant, so it's not -- convenient to simply use ℕ. We use _≤′_ instead. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} open import Tactic.RingSolver.Core.Polynomial.Parameters module Tactic.RingSolver.Core.Polynomial.Base {ℓ₁ ℓ₂} (coeffs : RawCoeff ℓ₁ ℓ₂) where open RawCoeff coeffs open import Data.Bool using (Bool; true; false; T) open import Data.Empty using (⊥) open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.List.Kleene open import Data.Nat.Base as ℕ using (ℕ; suc; zero; _≤′_; compare; ≤′-refl; ≤′-step; _<′_) open import Data.Nat.Properties using (z≤′n; ≤′-trans) open import Data.Nat.Induction open import Data.Product using (_×_; _,_; map₁; curry; uncurry) open import Data.Unit using (⊤; tt) open import Function.Base open import Relation.Nullary using (¬_; Dec; yes; no) open import Algebra.Operations.Ring rawRing ------------------------------------------------------------------------ -- Injection indices. ------------------------------------------------------------------------ -- First, we define comparisons on _≤′_. -- The following is analagous to Ordering and compare from -- Data.Nat.Base. data InjectionOrdering {n : ℕ} : ∀ {i j} (i≤n : i ≤′ n) (j≤n : j ≤′ n) → Set where inj-lt : ∀ {i j-1} (i≤j-1 : i ≤′ j-1) (j≤n : suc j-1 ≤′ n) → InjectionOrdering (≤′-step i≤j-1 ⟨ ≤′-trans ⟩ j≤n) j≤n inj-gt : ∀ {i-1 j} (i≤n : suc i-1 ≤′ n) (j≤i-1 : j ≤′ i-1) → InjectionOrdering i≤n (≤′-step j≤i-1 ⟨ ≤′-trans ⟩ i≤n) inj-eq : ∀ {i} (i≤n : i ≤′ n) → InjectionOrdering i≤n i≤n inj-compare : ∀ {i j n} (x : i ≤′ n) (y : j ≤′ n) → InjectionOrdering x y inj-compare ≤′-refl ≤′-refl = inj-eq ≤′-refl inj-compare ≤′-refl (≤′-step y) = inj-gt ≤′-refl y inj-compare (≤′-step x) ≤′-refl = inj-lt x ≤′-refl inj-compare (≤′-step x) (≤′-step y) = case inj-compare x y of λ { (inj-lt i≤j-1 y) → inj-lt i≤j-1 (≤′-step y) ; (inj-gt x j≤i-1) → inj-gt (≤′-step x) j≤i-1 ; (inj-eq x) → inj-eq (≤′-step x) } -- The "space" above a Fin n is the number of unique "Fin n"s greater -- than or equal to it. space : ∀ {n} → Fin n → ℕ space f = suc (go f) where go : ∀ {n} → Fin n → ℕ go {suc n} Fin.zero = n go (Fin.suc x) = go x space≤′n : ∀ {n} (x : Fin n) → space x ≤′ n space≤′n zero = ≤′-refl space≤′n (suc x) = ≤′-step (space≤′n x) ------------------------------------------------------------------------- -- Definition ------------------------------------------------------------------------- infixl 6 _Δ_ record PowInd {c} (C : Set c) : Set c where constructor _Δ_ field coeff : C pow : ℕ open PowInd public record Poly (n : ℕ) : Set ℓ₁ data FlatPoly : ℕ → Set ℓ₁ Coeff : ℕ → Set ℓ₁ record NonZero (i : ℕ) : Set ℓ₁ Zero : ∀ {n} → Poly n → Set Normalised : ∀ {i} → Coeff i + → Set -- A Polynomial is indexed by the number of variables it contains. infixl 6 _⊐_ record Poly n where inductive constructor _⊐_ field {i} : ℕ flat : FlatPoly i i≤n : i ≤′ n data FlatPoly where Κ : Carrier → FlatPoly zero ⅀ : ∀ {n} (xs : Coeff n +) {xn : Normalised xs} → FlatPoly (suc n) Coeff n = PowInd (NonZero n) -- We disallow zeroes in the coefficient list. This condition alone -- is enough to ensure a unique representation for any polynomial. infixl 6 _≠0 record NonZero i where inductive constructor _≠0 field poly : Poly i .{poly≠0} : ¬ Zero poly -- This predicate is used (in its negation) to ensure that no -- coefficient is zero, preventing any trailing zeroes. Zero (Κ x ⊐ _) = T (isZero x) Zero (⅀ _ ⊐ _) = ⊥ -- This predicate is used to ensure that all polynomials are in -- normal form: if a particular level is constant, then it can -- be collapsed into the level below it. Normalised (_ Δ zero & []) = ⊥ Normalised (_ Δ zero & ∹ _) = ⊤ Normalised (_ Δ suc _ & _) = ⊤ open NonZero public open Poly public ---------------------------------------------------------------------- -- Special operations -- Decision procedure for Zero zero? : ∀ {n} → (p : Poly n) → Dec (Zero p) zero? (⅀ _ ⊐ _) = no id zero? (Κ x ⊐ _) with isZero x ... | true = yes tt ... | false = no id {-# INLINE zero? #-} -- Exponentiate the first variable of a polynomial infixr 8 _⍓*_ _⍓+_ _⍓*_ : ∀ {n} → Coeff n * → ℕ → Coeff n * _⍓+_ : ∀ {n} → Coeff n + → ℕ → Coeff n + [] ⍓* _ = [] (∹ xs) ⍓* i = ∹ xs ⍓+ i coeff (head (xs ⍓+ i)) = coeff (head xs) pow (head (xs ⍓+ i)) = pow (head xs) ℕ.+ i tail (xs ⍓+ i) = tail xs infixr 5 _∷↓_ _∷↓_ : ∀ {n} → PowInd (Poly n) → Coeff n * → Coeff n * x Δ i ∷↓ xs = case zero? x of λ { (yes p) → xs ⍓* suc i ; (no ¬p) → ∹ _≠0 x {¬p} Δ i & xs } {-# INLINE _∷↓_ #-} -- Inject a polynomial into a larger polynomial with more variables _⊐↑_ : ∀ {n m} → Poly n → (suc n ≤′ m) → Poly m (xs ⊐ i≤n) ⊐↑ n≤m = xs ⊐ (≤′-step i≤n ⟨ ≤′-trans ⟩ n≤m) {-# INLINE _⊐↑_ #-} infixr 4 _⊐↓_ _⊐↓_ : ∀ {i n} → Coeff i * → suc i ≤′ n → Poly n [] ⊐↓ i≤n = Κ 0# ⊐ z≤′n (∹ (x ≠0 Δ zero & [] )) ⊐↓ i≤n = x ⊐↑ i≤n (∹ (x Δ zero & ∹ xs)) ⊐↓ i≤n = ⅀ (x Δ zero & ∹ xs) ⊐ i≤n (∹ (x Δ suc j & xs )) ⊐↓ i≤n = ⅀ (x Δ suc j & xs) ⊐ i≤n {-# INLINE _⊐↓_ #-} ---------------------------------------------------------------------- -- Standard operations ---------------------------------------------------------------------- ---------------------------------------------------------------------- -- Folds -- These folds allow us to abstract over the proofs later: we try to avoid -- using ∷↓ and ⊐↓ directly anywhere except here, so if we prove that this fold -- acts the same on a normalised or non-normalised polynomial, we can prove th -- same about any operation which uses it. PolyF : ℕ → Set ℓ₁ PolyF i = Poly i × Coeff i * Fold : ℕ → Set ℓ₁ Fold i = PolyF i → PolyF i para : ∀ {i} → Fold i → Coeff i + → Coeff i * para f (x ≠0 Δ i & []) = case f (x , []) of λ {(y , ys) → y Δ i ∷↓ ys} para f (x ≠0 Δ i & ∹ xs) = case f (x , para f xs) of λ {(y , ys) → y Δ i ∷↓ ys} poly-map : ∀ {i} → (Poly i → Poly i) → Coeff i + → Coeff i * poly-map f = para (map₁ f) {-# INLINE poly-map #-} ---------------------------------------------------------------------- -- Addition -- The reason the following code is so verbose is termination -- checking. For instance, in the third case for ⊞-coeffs, we call a -- helper function. Instead, you could conceivably use a with-block -- (on ℕ.compare p q): -- -- ⊞-coeffs ((x , p) ∷ xs) ((y , q) ∷ ys) with (ℕ.compare p q) -- ... | ℕ.less p k = (x , p) ∷ ⊞-coeffs xs ((y , k) ∷ ys) -- ... | ℕ.equal p = (fst~ x ⊞ fst~ y , p) ∷↓ ⊞-coeffs xs ys -- ... | ℕ.greater q k = (y , q) ∷ ⊞-coeffs ((x , k) ∷ xs) ys -- -- However, because the first and third recursive calls each rewrap -- a list that was already pattern-matched on, the recursive call -- does not strictly decrease the size of its argument. -- -- Interestingly, if --without-K is turned off, we don't need the -- helper function ⊞-coeffs; we could pattern match on _⊞_ directly. -- -- _⊞_ {zero} (lift x) (lift y) = lift (x + y) -- _⊞_ {suc n} [] ys = ys -- _⊞_ {suc n} (x ∷ xs) [] = x ∷ xs -- _⊞_ {suc n} ((x , p) ∷ xs) ((y , q) ∷ ys) = ⊞-zip (ℕ.compare p q) x xs y ys mutual infixl 6 _⊞_ _⊞_ : ∀ {n} → Poly n → Poly n → Poly n (xs ⊐ i≤n) ⊞ (ys ⊐ j≤n) = ⊞-match (inj-compare i≤n j≤n) xs ys ⊞-match : ∀ {i j n} → {i≤n : i ≤′ n} → {j≤n : j ≤′ n} → InjectionOrdering i≤n j≤n → FlatPoly i → FlatPoly j → Poly n ⊞-match (inj-eq i&j≤n) (Κ x) (Κ y) = Κ (x + y) ⊐ i&j≤n ⊞-match (inj-eq i&j≤n) (⅀ (x Δ i & xs)) (⅀ (y Δ j & ys)) = ⊞-zip (compare i j) x xs y ys ⊐↓ i&j≤n ⊞-match (inj-lt i≤j-1 j≤n) xs (⅀ ys) = ⊞-inj i≤j-1 xs ys ⊐↓ j≤n ⊞-match (inj-gt i≤n j≤i-1) (⅀ xs) ys = ⊞-inj j≤i-1 ys xs ⊐↓ i≤n ⊞-inj : ∀ {i k} → (i ≤′ k) → FlatPoly i → Coeff k + → Coeff k * ⊞-inj i≤k xs (y ⊐ j≤k ≠0 Δ zero & ys) = ⊞-match (inj-compare j≤k i≤k) y xs Δ zero ∷↓ ys ⊞-inj i≤k xs (y Δ suc j & ys) = xs ⊐ i≤k Δ zero ∷↓ ∹ y Δ j & ys ⊞-coeffs : ∀ {n} → Coeff n * → Coeff n * → Coeff n * ⊞-coeffs (∹ x Δ i & xs) ys = ⊞-zip-r x i xs ys ⊞-coeffs [] ys = ys ⊞-zip : ∀ {p q n} → ℕ.Ordering p q → NonZero n → Coeff n * → NonZero n → Coeff n * → Coeff n * ⊞-zip (ℕ.less i k) x xs y ys = ∹ x Δ i & ⊞-zip-r y k ys xs ⊞-zip (ℕ.greater j k) x xs y ys = ∹ y Δ j & ⊞-zip-r x k xs ys ⊞-zip (ℕ.equal i ) x xs y ys = (x .poly ⊞ y .poly) Δ i ∷↓ ⊞-coeffs xs ys {-# INLINE ⊞-zip #-} ⊞-zip-r : ∀ {n} → NonZero n → ℕ → Coeff n * → Coeff n * → Coeff n * ⊞-zip-r x i xs [] = ∹ x Δ i & xs ⊞-zip-r x i xs (∹ y Δ j & ys) = ⊞-zip (compare i j) x xs y ys ---------------------------------------------------------------------- -- Negation -- recurse on acc directly -- https://github.com/agda/agda/issues/3190#issuecomment-416900716 ⊟-step : ∀ {n} → Acc _<′_ n → Poly n → Poly n ⊟-step (acc wf) (Κ x ⊐ i≤n) = Κ (- x) ⊐ i≤n ⊟-step (acc wf) (⅀ xs ⊐ i≤n) = poly-map (⊟-step (wf _ i≤n)) xs ⊐↓ i≤n ⊟_ : ∀ {n} → Poly n → Poly n ⊟_ = ⊟-step (<′-wellFounded _) {-# INLINE ⊟_ #-} ---------------------------------------------------------------------- -- Multiplication mutual ⊠-step′ : ∀ {n} → Acc _<′_ n → Poly n → Poly n → Poly n ⊠-step′ a (x ⊐ i≤n) = ⊠-step a x i≤n ⊠-step : ∀ {i n} → Acc _<′_ n → FlatPoly i → i ≤′ n → Poly n → Poly n ⊠-step a (Κ x) _ = ⊠-Κ a x ⊠-step a (⅀ xs) = ⊠-⅀ a xs ⊠-Κ : ∀ {n} → Acc _<′_ n → Carrier → Poly n → Poly n ⊠-Κ (acc _ ) x (Κ y ⊐ i≤n) = Κ (x * y) ⊐ i≤n ⊠-Κ (acc wf) x (⅀ xs ⊐ i≤n) = ⊠-Κ-inj (wf _ i≤n) x xs ⊐↓ i≤n {-# INLINE ⊠-Κ #-} ⊠-⅀ : ∀ {i n} → Acc _<′_ n → Coeff i + → i <′ n → Poly n → Poly n ⊠-⅀ (acc wf) xs i≤n (⅀ ys ⊐ j≤n) = ⊠-match (acc wf) (inj-compare i≤n j≤n) xs ys ⊠-⅀ (acc wf) xs i≤n (Κ y ⊐ _) = ⊠-Κ-inj (wf _ i≤n) y xs ⊐↓ i≤n ⊠-Κ-inj : ∀ {i} → Acc _<′_ i → Carrier → Coeff i + → Coeff i * ⊠-Κ-inj a x xs = poly-map (⊠-Κ a x) (xs) ⊠-⅀-inj : ∀ {i k} → Acc _<′_ k → i <′ k → Coeff i + → Poly k → Poly k ⊠-⅀-inj (acc wf) i≤k x (⅀ y ⊐ j≤k) = ⊠-match (acc wf) (inj-compare i≤k j≤k) x y ⊠-⅀-inj (acc wf) i≤k x (Κ y ⊐ j≤k) = ⊠-Κ-inj (wf _ i≤k) y x ⊐↓ i≤k ⊠-match : ∀ {i j n} → Acc _<′_ n → {i≤n : i <′ n} → {j≤n : j <′ n} → InjectionOrdering i≤n j≤n → Coeff i + → Coeff j + → Poly n ⊠-match (acc wf) (inj-eq i&j≤n) xs ys = ⊠-coeffs (wf _ i&j≤n) xs ys ⊐↓ i&j≤n ⊠-match (acc wf) (inj-lt i≤j-1 j≤n) xs ys = poly-map (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs) (ys) ⊐↓ j≤n ⊠-match (acc wf) (inj-gt i≤n j≤i-1) xs ys = poly-map (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys) (xs) ⊐↓ i≤n ⊠-coeffs : ∀ {n} → Acc _<′_ n → Coeff n + → Coeff n + → Coeff n * ⊠-coeffs a (xs) (y ≠0 Δ j & []) = poly-map (⊠-step′ a y) (xs) ⍓* j ⊠-coeffs a (xs) (y ≠0 Δ j & ∹ ys) = para (⊠-cons a y ys) (xs) ⍓* j {-# INLINE ⊠-coeffs #-} ⊠-cons : ∀ {n} → Acc _<′_ n → Poly n → Coeff n + → Fold n ⊠-cons a y ys (x ⊐ j≤n , xs) = ⊠-step a x j≤n y , ⊞-coeffs (poly-map (⊠-step a x j≤n) ys) xs {-# INLINE ⊠-cons #-} infixl 7 _⊠_ _⊠_ : ∀ {n} → Poly n → Poly n → Poly n _⊠_ = ⊠-step′ (<′-wellFounded _) {-# INLINE _⊠_ #-} ---------------------------------------------------------------------- -- Constants and variables -- The constant polynomial κ : ∀ {n} → Carrier → Poly n κ x = Κ x ⊐ z≤′n {-# INLINE κ #-} -- A variable ι : ∀ {n} → Fin n → Poly n ι i = (κ 1# Δ 1 ∷↓ []) ⊐↓ space≤′n i {-# INLINE ι #-} ---------------------------------------------------------------------- -- Exponentiation -- We try very hard to never do things like multiply by 1 -- unnecessarily. That's what all the weirdness here is for. ⊡-mult : ∀ {n} → ℕ → Poly n → Poly n ⊡-mult zero xs = xs ⊡-mult (suc n) xs = ⊡-mult n xs ⊠ xs _⊡_+1 : ∀ {n} → Poly n → ℕ → Poly n (Κ x ⊐ i≤n) ⊡ i +1 = Κ (x ^ i +1) ⊐ i≤n (⅀ (x Δ j & []) ⊐ i≤n) ⊡ i +1 = x .poly ⊡ i +1 Δ (j ℕ.+ i ℕ.* j) ∷↓ [] ⊐↓ i≤n xs@(⅀ (_ & ∹ _) ⊐ i≤n) ⊡ i +1 = ⊡-mult i xs infixr 8 _⊡_ _⊡_ : ∀ {n} → Poly n → ℕ → Poly n _ ⊡ zero = κ 1# xs ⊡ suc i = xs ⊡ i +1 {-# INLINE _⊡_ #-}
{ "alphanum_fraction": 0.4862591545, "avg_line_length": 32.9140811456, "ext": "agda", "hexsha": "2a54ad97edbeb2bc9b02696b6e38778fc74706bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Base.agda", "max_line_length": 103, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5562, "size": 13791 }
open import Agda.Builtin.Nat f : Nat → Nat f v@n with n ... | zero = zero ... | suc m with m ... | zero = {!!} ... | suc o with o ... | zero = {!!} ... | suc p = {!!}
{ "alphanum_fraction": 0.4207650273, "avg_line_length": 15.25, "ext": "agda", "hexsha": "b30a0a0e523a2c4eab7dc9c926995010d507deb8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2958.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2958.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2958.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 183 }
import Lvl open import Type module Type.Cardinality {ℓₗ : Lvl.Level} where import Type.Functions import Logic.Predicate module _ {ℓₒ₁}{ℓₒ₂} (X : Type{ℓₒ₁}) (Y : Type{ℓₒ₂}) where open Type.Functions{ℓₗ}{ℓₒ₁}{ℓₒ₂} open Logic.Predicate{ℓₗ} _≍_ : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} _≍_ = ∃(Bijective{X}{Y}) _≼_ : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} _≼_ = ∃(Injective{X}{Y}) _≽_ : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} _≽_ = ∃(Surjective{X}{Y})
{ "alphanum_fraction": 0.6224719101, "avg_line_length": 21.1904761905, "ext": "agda", "hexsha": "9e8eaa87385e3416710656fac0feb88b75a0dc2c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Type/Cardinality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Type/Cardinality.agda", "max_line_length": 57, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Type/Cardinality.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 259, "size": 445 }
{-# OPTIONS --without-K #-} module module-layout where f : Set1 f = Set
{ "alphanum_fraction": 0.6351351351, "avg_line_length": 14.8, "ext": "agda", "hexsha": "67ce9d88be2e8c6b86aac5a3f49d9b86ad1a2491", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/module-layout.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/module-layout.agda", "max_line_length": 27, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/module-layout.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 20, "size": 74 }
{-# OPTIONS --without-K #-} module HoTT.Base where open import Agda.Primitive public -- Universe 𝒰 : (i : Level) → Set (lsuc i) 𝒰 i = Set i 𝒰₀ : Set₁ 𝒰₀ = Set₀ module variables where variable i j : Level A B : 𝒰 i P Q : A → 𝒰 i open variables record Lift {i j} (A : 𝒰 j) : 𝒰 (i ⊔ j) where constructor lift field lower : A open Lift public -- Instance search ⟨⟩ : ∀ {i} {A : 𝒰 i} → ⦃ A ⦄ → A ⟨⟩ ⦃ a ⦄ = a -- Dependent functions (Π-types) Π : (A : 𝒰 i) (B : A → 𝒰 j) → 𝒰 (i ⊔ j) Π A B = (x : A) → B x syntax Π A (λ x → Φ) = Π[ x ∶ A ] Φ infixr 6 Π id : {A : 𝒰 i} → A → A id x = x const : A → B → A const x _ = x swap : {C : A → B → 𝒰 i} → ((x : A) (y : B) → C x y) → (y : B) (x : A) → C x y swap f y x = f x y _∘_ : {C : {x : A} → P x → 𝒰 i} → ({x : A} → Π (P x) C) → (g : Π A P) → (x : A) → C (g x) f ∘ g = λ x → f (g x) infixr 30 _∘_ _$_ : Π A P → Π A P _$_ = id infixr 0 _$_ -- Identity data _==_ {A : 𝒰 i} (a : A) : A → 𝒰 i where instance refl : a == a infixr 10 _==_ {-# BUILTIN EQUALITY _==_ #-} =-ind : (C : (x y : A) → x == y → 𝒰 i) → ((x : A) → C x x refl) → {x y : A} → (p : x == y) → C x y p =-ind C c refl = c _ -- Based path induction =-ind' : {a : A} → (C : (x : A) → a == x → 𝒰 i) → C a refl → {x : A} → (p : a == x) → C x p =-ind' C c refl = c -- Lemma 2.1.1 _⁻¹ : {x y : A} → x == y → y == x _⁻¹ refl = refl infix 30 _⁻¹ -- Lemma 2.1.2 _∙_ : {x y z : A} → x == y → y == z → x == z _∙_ refl refl = refl infixl 20 _∙_ -- Lemma 2.2.1 ap : {x y : A} (f : A → B) → x == y → f x == f y ap f refl = refl ap² : {C : 𝒰 i} {x y : A} {z w : B} (f : A → B → C) → x == y → z == w → f x z == f y w ap² _ refl refl = refl -- Lemma 2.3.1 transport : {x y : A} (P : A → 𝒰 j) → x == y → P x → P y transport _ refl = id -- Lemma 2.3.4 apd : {x y : A} (f : (x : A) → P x) (p : x == y) → transport P p (f x) == f y apd f refl = refl -- Empty data 𝟎 {i} : 𝒰 i where 𝟎-rec : {C : 𝒰 i} → 𝟎 {j} → C 𝟎-rec () 𝟎-ind : {C : 𝟎 → 𝒰 i} → (z : 𝟎 {j}) → C z 𝟎-ind () ¬_ : 𝒰 i → 𝒰 i ¬_ {i} A = A → 𝟎 {i} infix 25 ¬_ _≠_ : A → A → 𝒰 _ _≠_ x y = ¬ (x == y) -- Unit record 𝟏 {i} : 𝒰 i where no-eta-equality instance constructor ★ 𝟏-ind : (C : 𝟏 → 𝒰 i) → C ★ → (x : 𝟏 {j}) → C x 𝟏-ind C c ★ = c 𝟏-uniq : (x : 𝟏 {i}) → x == ★ 𝟏-uniq ★ = refl -- Boolean data 𝟐 : 𝒰₀ where 0₂ : 𝟐 1₂ : 𝟐 {-# BUILTIN BOOL 𝟐 #-} {-# BUILTIN FALSE 0₂ #-} {-# BUILTIN TRUE 1₂ #-} 𝟐-rec : {C : 𝒰 i} → C → C → 𝟐 → C 𝟐-rec c₀ c₁ 0₂ = c₀ 𝟐-rec c₀ c₁ 1₂ = c₁ 𝟐-ind : (C : 𝟐 → 𝒰 i) → C 0₂ → C 1₂ → (x : 𝟐) → C x 𝟐-ind C c₀ c₁ 0₂ = c₀ 𝟐-ind C c₀ c₁ 1₂ = c₁ -- Dependent pairs (Σ-types) record Σ (A : 𝒰 i) (B : A → 𝒰 j) : 𝒰 (i ⊔ j) where no-eta-equality constructor _,_ field pr₁ : A pr₂ : B pr₁ infixr 15 _,_ open Σ public syntax Σ A (λ x → Φ) = Σ[ x ∶ A ] Φ infixr 6 Σ Σ-rec : (C : 𝒰 i) → ((x : A) → P x → C) → (Σ A λ x → P x) → C Σ-rec C g (a , b) = g a b Σ-ind : (C : Σ A P → 𝒰 i) → ((a : A) → (b : P a) → C (a , b)) → (p : Σ A P) → C p Σ-ind C g (a , b) = g a b Σ-uniq : (x : Σ A P) → pr₁ x , pr₂ x == x Σ-uniq (a , b) = refl -- Product _×_ : (A : 𝒰 i) (B : 𝒰 j) → 𝒰 (i ⊔ j) A × B = Σ[ _ ∶ A ] B infixr 8 _×_ ×-rec : (C : 𝒰 i) → (A → B → C) → A × B → C ×-rec _ g (a , b) = g a b ×-ind : (C : A × B → 𝒰 i) → ((x : A) (y : B) → C (x , y)) → (x : A × B) → C x ×-ind _ g (a , b) = g a b ×-uniq : (x : A × B) → pr₁ x , pr₂ x == x ×-uniq (a , b) = refl -- Coproduct data _+_ (A : 𝒰 i) (B : 𝒰 j) : 𝒰 (i ⊔ j) where inl : A → A + B inr : B → A + B infixr 8 _+_ +-rec : {C : 𝒰 i} → (A → C) → (B → C) → A + B → C +-rec gₗ gᵣ (inl a) = gₗ a +-rec gₗ gᵣ (inr b) = gᵣ b +-ind : (C : A + B → 𝒰 i) → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A + B) → C x +-ind C g₀ g₁ (inl a) = g₀ a +-ind C g₀ g₁ (inr b) = g₁ b -- Natural numbers data ℕ : 𝒰₀ where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} ℕ-rec : {C : 𝒰 i} → C → (ℕ → C → C) → ℕ → C ℕ-rec c₀ cₛ zero = c₀ ℕ-rec c₀ cₛ (succ n) = cₛ n (ℕ-rec c₀ cₛ n) ℕ-ind : (C : ℕ → 𝒰 i) → C 0 → ((n : ℕ) → C n → C (succ n)) → (n : ℕ) → C n ℕ-ind C c₀ cₛ 0 = c₀ ℕ-ind C c₀ cₛ (succ n) = cₛ n (ℕ-ind C c₀ cₛ n) -- Homotopy _~_ : (f g : Π A P) → 𝒰 _ f ~ g = ∀ x → f x == g x happly : {f g : Π A P} → f == g → f ~ g happly refl _ = refl -- Lemma 2.4.2 reflₕ : {f : Π A P} → f ~ f reflₕ _ = refl _∙ₕ_ : {f g h : Π A P} → f ~ g → g ~ h → f ~ h α ∙ₕ β = λ x → α x ∙ β x infixl 20 _∙ₕ_ _⁻¹ₕ : {f g : Π A P} → f ~ g → g ~ f α ⁻¹ₕ = λ x → α x ⁻¹
{ "alphanum_fraction": 0.4334744818, "avg_line_length": 20.3031674208, "ext": "agda", "hexsha": "e1c7fca4476ccd671039ee18bd459eb041d6913e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Base.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2462, "size": 4487 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.JoinAdj module stash.modalities.Orthogonality where module PathSplit {i} (X : Type i) (x y : X) where to : (x == y) → Σ X (λ z → (x == z) × (z == y)) to p = x , (idp , p) from : Σ X (λ z → (x == z) × (z == y)) → x == y from (z , p , q) = p ∙ q abstract to-from : (b : Σ X (λ z → (x == z) × (z == y))) → to (from b) == b to-from (z , p , q) = pair= p (↓-×-in (↓-cst=idf-in (∙'-unit-l p)) (↓-idf=cst-in idp)) from-to : (p : x == y) → from (to p) == p from-to p = idp path-split : (x == y) ≃ Σ X (λ z → (x == z) × (z == y)) path-split = equiv to from to-from from-to module _ {i} where Δ : (X A : Type i) → X → (A → X) Δ X A = cst -- Δ-ap : {X A : Type i} {x y : X} (φ : A → x == y) (a : A) -- → λ= φ == ap cst (φ a) -- Δ-ap φ a = equiv-is-inj {f = app=} (snd app=-equiv) (λ= φ) (ap cst (φ a)) (λ= (λ a₀ → app=-β φ a₀ ∙ {!lem a₀!})) -- where lem : ∀ a₀ → φ a₀ == app= (ap cst (φ a₀)) a₀ -- lem = {!!} ⟦_⊥_⟧ : (A : Type i) (X : Type i) → Type i ⟦ A ⊥ X ⟧ = is-equiv (Δ X A) ctr : {A X : Type i} → ⟦ A ⊥ X ⟧ → (A → X) → X ctr A⊥X φ = is-equiv.g A⊥X φ ctr-null : {A X : Type i} (A⊥X : ⟦ A ⊥ X ⟧) (φ : A → X) → cst (ctr A⊥X φ) == φ ctr-null A⊥X φ = is-equiv.f-g A⊥X φ ctr-cst : {A X : Type i} (A⊥X : ⟦ A ⊥ X ⟧) → (x : X) → ctr A⊥X (cst x) == x ctr-cst A⊥X x = is-equiv.g-f A⊥X x Unit-orth : (A : Type i) → ⟦ Lift ⊤ ⊥ A ⟧ Unit-orth A = record { g = λ φ → φ (lift unit) ; f-g = λ φ → λ= (λ { (lift unit) → idp }) ; g-f = λ a → idp ; adj = λ a → λ=-η idp } Δ-equiv-is-contr : (A : Type i) → is-equiv (Δ A A) → is-contr A Δ-equiv-is-contr A e = is-equiv.g e (idf A) , (λ a → app= (is-equiv.f-g e (idf A)) a) self-orth-is-contr : (A : Type i) → ⟦ A ⊥ A ⟧ → is-contr A self-orth-is-contr A ω = Δ-equiv-is-contr A ω equiv-preserves-orth-l : {A B X : Type i} → (A ≃ B) → ⟦ A ⊥ X ⟧ → ⟦ B ⊥ X ⟧ equiv-preserves-orth-l {A} {B} {X} (f , f-ise) ω = is-eq (Δ X B) g f-g ω.g-f where module ω = is-equiv ω module f = is-equiv f-ise g : (B → X) → X g φ = ω.g (φ ∘ f) f-g : (φ : B → X) → Δ X B (g φ) == φ f-g φ = λ= λ b → app= (ω.f-g (φ ∘ f)) (f.g b) ∙ ap φ (f.f-g b) equiv-preserves-orth-r : {A X Y : Type i} → (X ≃ Y) → ⟦ A ⊥ X ⟧ → ⟦ A ⊥ Y ⟧ equiv-preserves-orth-r {A} {X} {Y} (f , f-ise) ω = is-eq (Δ Y A) g f-g g-f where module ω = is-equiv ω module f = is-equiv f-ise g : (A → Y) → Y g φ = f (ω.g (f.g ∘ φ)) f-g : (φ : A → Y) → Δ Y A (g φ) == φ f-g φ = λ= λ x → ap f (app= (ω.f-g (f.g ∘ φ)) x) ∙ f.f-g (φ x) g-f : (y : Y) → g (Δ Y A y) == y g-f y = ap f (ω.g-f (f.g y)) ∙ f.f-g y Σ-orth : {A X : Type i} {B : A → Type i} → ⟦ A ⊥ X ⟧ → (B⊥ : (a : A) → ⟦ B a ⊥ X ⟧) → ⟦ Σ A B ⊥ X ⟧ Σ-orth {A} {X} {B} A⊥ B⊥ = is-eq _ from to-from from-to where from : (Σ A B → X) → X from φ = ctr A⊥ (λ a → ctr (B⊥ a) (λ b → φ (a , b))) to-from : (φ : Σ A B → X) → cst (from φ) == φ to-from φ = λ= (λ { (a , b) → app= (ctr-null A⊥ (λ a → ctr (B⊥ a) (λ b → φ (a , b)))) a ∙ app= (ctr-null (B⊥ a) (λ b → φ (a , b))) b }) from-to : (x : X) → from (cst x) == x from-to x = ap (ctr A⊥) (λ= (λ a → ctr-cst (B⊥ a) x)) ∙ ctr-cst A⊥ x -- -- This works if the base is connected, but you'll have to add that -- fib-orth : {A X : Type i} {B : A → Type i} → ⟦ Σ A B ⊥ X ⟧ → (a : A) → ⟦ B a ⊥ X ⟧ -- fib-orth {A} {X} {B} Σ⊥ a = is-eq _ g {!!} {!!} -- where g : (φ : B a → X) → X -- g φ = ctr Σ⊥ {!!} -- -- This looks doomed ... -- base-orth : {A X : Type i} {B : A → Type i} → ⟦ Σ A B ⊥ X ⟧ → ⟦ A ⊥ X ⟧ -- base-orth {A} {X} {B} Σ⊥ = is-eq _ g f-g {!!} -- where g : (φ : A → X) → X -- g φ = ctr Σ⊥ (uncurry (λ a _ → φ a)) -- f-g : (φ : A → X) → cst (g φ) == φ -- f-g φ = λ= (λ a → app= (ctr-null Σ⊥ (uncurry (λ a _ → φ a))) (a , {!!})) ×-orth : {A B X : Type i} → ⟦ A ⊥ X ⟧ → ⟦ B ⊥ X ⟧ → ⟦ A × B ⊥ X ⟧ ×-orth {B = B} A⊥ B⊥ = Σ-orth {B = λ _ → B} A⊥ (λ _ → B⊥) -- Okay, you need to find a simpler way. -- *-orth : {A B X : Type i} → ⟦ B ⊥ X ⟧ → ⟦ A * B ⊥ X ⟧ -- *-orth {A} {B} {X} ω = is-eq (Δ X (A * B)) from to-from from-to -- where from : (A * B → X) → X -- from f = is-equiv.g ω (f ∘ right) -- where test : A → hfiber cst (f ∘ right) -- test = snd (–> (join-adj A B X) f) -- to-from : (f : A * B → X) → Δ X (A * B) (from f) == f -- to-from f = {!!} -- from-to : (x : X) → from (Δ X (A * B) x) == x -- from-to x = {!is-equiv.g-f ω x!} postulate -- Right, this is a special case of the join adjunction ... adj-orth : (A X : Type i) → ⟦ Susp A ⊥ X ⟧ → (x y : X) → ⟦ A ⊥ x == y ⟧ pths-orth : {A X : Type i} {x y : X} → ⟦ A ⊥ X ⟧ → ⟦ A ⊥ x == y ⟧ pths-orth {A} {X} {x} {y} A⊥X = is-eq (Δ (x == y) A) g to-from from-to where g : (A → x == y) → x == y g φ = ! (ctr-cst A⊥X x) ∙ ap (ctr A⊥X) (λ= φ) ∙ ctr-cst A⊥X y to-from : (φ : A → x == y) → Δ (x == y) A (g φ) == φ to-from φ = λ= coh where coh : (a : A) → g φ == φ a coh a = ! (ctr-cst A⊥X x) ∙ ap (ctr A⊥X) (λ= φ) ∙ ctr-cst A⊥X y =⟨ {!!} ⟩ φ a ∎ where puzzle = ap (ctr A⊥X) (λ= φ) =⟨ {!a !} ⟩ ap (ctr A⊥X) (ap cst (φ a)) =⟨ ∘-ap (ctr A⊥X) cst (φ a) ⟩ ap ((ctr A⊥X) ∘ cst) (φ a) ∎ eq : ctr-cst A⊥X x ∙' φ a == ap ((ctr A⊥X) ∘ cst) (φ a) ∙ ctr-cst A⊥X y eq = ↓-app=idf-out (apd (ctr-cst A⊥X) (φ a)) eq₀ : ctr-null A⊥X (cst x) ∙' λ= φ == ap (cst ∘ (ctr A⊥X)) (λ= φ) ∙ ctr-null A⊥X (cst y) eq₀ = ↓-app=idf-out (apd (ctr-null A⊥X) (λ= φ)) adj : ap cst (ctr-cst A⊥X x) == ctr-null A⊥X (cst x) adj = is-equiv.adj A⊥X x adj' : ap (ctr A⊥X) (ctr-null A⊥X (cst x)) == ctr-cst A⊥X (ctr A⊥X (cst x)) adj' = is-equiv.adj' A⊥X (cst x) claim : (λ= φ) == ! (ap cst (ctr-cst A⊥X x)) ∙ ap cst (ap (ctr A⊥X) (λ= φ)) ∙ ap cst (ctr-cst A⊥X y) claim = {!!} then : (λ= φ) == ap cst (! (ctr-cst A⊥X x) ∙ ap (ctr A⊥X) (λ= φ) ∙ ctr-cst A⊥X y) then = {!!} from-to : (p : x == y) → g (cst p) == p from-to p = {!!} -- Weak cellular inequalities module _ {i} where _≻_ : Type i → Type i → Type _ X ≻ A = (Y : Type i) → ⟦ A ⊥ Y ⟧ → ⟦ X ⊥ Y ⟧ equiv-preserves-≻-l : {X Y : Type i} {A : Type i} → X ≃ Y → X ≻ A → Y ≻ A equiv-preserves-≻-l {X} {Y} {A} e ω Z o = equiv-preserves-orth-l e (ω Z o) ≻-trivial : (A : Type i) → (Lift ⊤) ≻ A ≻-trivial A X _ = Unit-orth X ≻-reflexive : (A : Type i) → A ≻ A ≻-reflexive A Y x = x ≻-trans : (A B C : Type i) → A ≻ B → B ≻ C → A ≻ C ≻-trans A B C ω₀ ω₁ Y cy = ω₀ Y (ω₁ Y cy) ≻-⊤-is-contr : (A : Type i) → A ≻ (Lift ⊤) → is-contr A ≻-⊤-is-contr A ω = self-orth-is-contr A (ω A (Unit-orth A)) Σ-≻ : {A X : Type i} {P : X → Type i} → X ≻ A → (P≻A : (x : X) → P x ≻ A) → Σ X P ≻ A Σ-≻ X≻A P≻A Y A⊥Y = Σ-orth (X≻A Y A⊥Y) (λ x → P≻A x Y A⊥Y) -- We jump a universe level, but its certainly convenient ... is-hyper-prop : Type i → Type (lsucc i) is-hyper-prop A = (X Y : Type i) (f : X → Y) → X ≻ A → Y ≻ A → (y : Y) → hfiber f y ≻ A hp-kills-paths : (A : Type i) → is-hyper-prop A → (X : Type i) → X ≻ A → (x y : X) → (x == y) ≻ A hp-kills-paths A hp X X≻A x y = equiv-preserves-≻-l (equiv snd (λ p → (_ , p)) (λ _ → idp) (λ _ → idp)) (hp (Lift ⊤) X (λ _ → x) (≻-trivial A) X≻A y) -- Okay, so in some sense this is much more natural. -- It just says the connected guys have to be closed under -- diagonals. kills-paths-hp : (A : Type i) → (κ : (X : Type i) → X ≻ A → (x y : X) → (x == y) ≻ A) → is-hyper-prop A kills-paths-hp A κ X Y f X≻A Y≻A y = Σ-≻ X≻A (λ x → κ Y Y≻A (f x) y) -- You'll have to think a bit about why this is equivalent -- to *preserving* the path spaces. ×-≻ : {A B X : Type i} → A ≻ X → B ≻ X → A × B ≻ X ×-≻ ω₀ ω₁ Y e = ×-orth (ω₀ Y e) (ω₁ Y e) postulate susp-≻ : (A : Type i) → Susp A ≻ A
{ "alphanum_fraction": 0.3873223801, "avg_line_length": 37.8487394958, "ext": "agda", "hexsha": "a35cdca7dd8c80ad19777ee2f0d8a1d934689f73", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/Orthogonality.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/Orthogonality.agda", "max_line_length": 128, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/Orthogonality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 3954, "size": 9008 }
module sort where open import bool open import eq open import nat open import list open import nondet open import nondet-thms -- non-deterministic insert. --This takes a nondeterministic list because I need to be able to call it with the result of perm -- --implementation in curry: -- ndinsert x [] = [] -- ndinsert x (y:ys) = (x : y : xs) ? (y : insert x ys) ndinsert : {A : Set} -> A -> ND (list A) -> ND (list A) ndinsert x (Val [] ) = Val ( x :: []) ndinsert x (Val (y :: ys)) = (Val ( x :: y :: ys )) ?? ((_::_ y) $* (ndinsert x (Val ys))) ndinsert x (l ?? r) = (ndinsert x l) ?? (ndinsert x r) --non-deterministic permutation --this is identical to the curry code (except for the Val constructor) perm : {A : Set} -> (list A) -> ND (list A) perm [] = Val [] perm (x :: xs) = ndinsert x (perm xs) --insert a value into a sorted list. --this is identical to curry or haskell code. -- --note that the structure here is identical to ndinsert insert : {A : Set} -> (A -> A -> 𝔹) -> A -> list A -> list A insert _ x [] = x :: [] insert _<_ x (y :: ys) = if x < y then (x :: y :: ys) else (y :: insert _<_ x ys) --simple insertion sort --again this is identical to curry or haskell --also, note that the structure is identical to perm sort : {A : Set} -> (A -> A -> 𝔹) -> list A -> list A sort _ [] = [] sort p (x :: xs) = insert p x (sort p xs) -- Proof: if xs ∈ nxs then x::xs ∈ ndinsert x nxs insId : {A : Set} -> (x : A) -> (xs : list A) -> (x :: xs) ∈ (ndinsert x (Val xs)) insId x [] = ndrefl insId x (y :: xs) = left (Val (x :: y :: xs)) ((_::_ y) $* (ndinsert x (Val xs))) ndrefl --If introduction rule for non-deterministic values. --if x and y are both possible values in z then --∀ c. if c then x else y will give us either x or y, so it must be a possible value of z. -- ifIntro : {A : Set} -> (x : A) -> (y : A) -> (z : ND A) -> (p : x ∈ z) -> (q : y ∈ z) -> (c : 𝔹) -> (if c then x else y) ∈ z ifIntro x y z p q tt = p ifIntro x y z p q ff = q --------------------------------------------------------------------------- -- -- this should prove that if xs ∈ nxs then, insert x xs ∈ ndinsert x nxs -- parameters: -- c : a comparison operator that is needed for insert -- x : the value we are inserting into the list -- xs : the list -- nxs : a non-deterministic list, we know that xs is a possible value for nxs -- xs ∈ nxs : the proof that xs is somewhere in nxs -- --retruns: insert c x xs ∈ ndinsert x nxs -- a proof that inserting a value in a list is ok with non-deterministic lists insert=ndinsert : {A : Set} -> (c : A -> A -> 𝔹) -> (x : A) -> (xs : list A) -> (nxs : ND (list A)) -> xs ∈ nxs -> (insert c x xs) ∈ (ndinsert x nxs) --the first two cases are simple, either we are inserting into an empty list, in which case it's trivial --or, the list doesn't match the non-deterministic case. This is an imposible case insert=ndinsert _ x [] (Val []) _ = ndrefl insert=ndinsert _ x [] (Val (_ :: _)) () --the next two cases are just structural recursion on the non-deterministic tree. insert=ndinsert c x ys (l ?? r) (left .l .r p) = left (ndinsert x l) (ndinsert x r) (insert=ndinsert c x ys l p) insert=ndinsert c x ys (l ?? r) (right .l .r p) = right (ndinsert x l) (ndinsert x r) (insert=ndinsert c x ys r p) --The final case is the interesting one. --We reached a leaf in the non-deterministic tree, so we have a deterministic value. --by definition this is equal to the deterministic list (y :: ys) --At this point we have two possible cases. --Either x is smaller then every element in (y :: ys), in which case it's inserted at the front, --or x is larger than y, in which case it's inserted somewhere in ys. --Since both of these cases are covered by ndinsert we can invoke the ifIntro lemma, to say that we don't care which case it is. -- --variables: -- step : one step of insert -- l : the left hand side of insert c x xs (the then branch) -- r : the right hand side of insert c x xs (the else branch) -- nr : a non-deterministic r -- (Val l) : a non-deterministic l (but since ndinsert only has a deterministic value on the left it's not very interesting) -- rec : The recursive call. If x isn't inserted into the front, then we need to find it. -- l∈step : a proof that l is a possible value for step -- r∈step : a proof that r is a possible value for step insert=ndinsert _<_ x (y :: ys) (Val (.y :: .ys)) ndrefl = ifIntro l r step l∈step r∈step (x < y) where step = ndinsert x (Val (y :: ys)) l = ( x :: y :: ys) r = y :: insert _<_ x ys nr = (_::_ y) $* (ndinsert x (Val ys)) rec = ∈-$* (_::_ y) (insert _<_ x ys) (ndinsert x (Val ys)) (insert=ndinsert _<_ x ys (Val ys) ndrefl) r∈step = right (Val l) nr rec l∈step = left (Val l) nr ndrefl --------------------------------------------------------------------------- -- main theorem. Sorting a list preserves permutations --all of the work is really done by insert=ndinsert sortPerm : {A : Set} -> (c : A -> A -> 𝔹) -> (xs : list A) -> sort c xs ∈ perm xs sortPerm _<_ [] = ndrefl sortPerm _<_ (x :: xs) = insert=ndinsert _<_ x (sort _<_ xs) (perm xs) (sortPerm _<_ xs)
{ "alphanum_fraction": 0.5912780819, "avg_line_length": 46.0608695652, "ext": "agda", "hexsha": "41fcbfd5978bffebb18c1a1cb050c2ed9c91718b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "nondet/sort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "nondet/sort.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "nondet/sort.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1623, "size": 5297 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Homomorphisms.Definition open import Groups.Definition open import Groups.Lemmas open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Rings.Subrings.Definition open import Rings.Cosets open import Rings.Isomorphisms.Definition open import Groups.Isomorphisms.Definition module Rings.Ideals.FirstIsomorphismTheorem {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} {R1 : Ring S _+A_ _*A_} {R2 : Ring T _+B_ _*B_} {f : A → B} (hom : RingHom R1 R2 f) where open import Rings.Quotients.Definition R1 R2 hom open import Rings.Homomorphisms.Image hom open import Rings.Homomorphisms.Kernel hom open Setoid T open Equivalence eq open import Groups.FirstIsomorphismTheorem (RingHom.groupHom hom) ringFirstIsomorphismTheorem : RingsIsomorphic (cosetRing R1 ringKernelIsIdeal) (subringIsRing R2 imageGroupSubring) RingsIsomorphic.f ringFirstIsomorphismTheorem = GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem RingHom.preserves1 (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem)) = RingHom.preserves1 hom RingHom.ringHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem)) = RingHom.ringHom hom GroupHom.groupHom (RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem))) = GroupHom.groupHom (RingHom.groupHom hom) GroupHom.wellDefined (RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem))) {x} {y} x=y = transferToRight (Ring.additiveGroup R2) t where t : f x +B Group.inverse (Ring.additiveGroup R2) (f y) ∼ Ring.0R R2 t = transitive (Ring.groupIsAbelian R2) (transitive (Group.+WellDefined (Ring.additiveGroup R2) (symmetric (homRespectsInverse (RingHom.groupHom hom))) reflexive) (transitive (symmetric (GroupHom.groupHom (RingHom.groupHom hom))) x=y)) RingIso.bijective (RingsIsomorphic.iso ringFirstIsomorphismTheorem) = GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem) ringFirstIsomorphismTheorem' : RingsIsomorphic quotientByRingHom (subringIsRing R2 imageGroupSubring) RingsIsomorphic.f ringFirstIsomorphismTheorem' a = f a , (a , reflexive) RingHom.preserves1 (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) = RingHom.preserves1 hom RingHom.ringHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) {r} {s} = RingHom.ringHom hom RingHom.groupHom (RingIso.ringHom (RingsIsomorphic.iso ringFirstIsomorphismTheorem')) = GroupIso.groupHom (GroupsIsomorphic.proof (groupFirstIsomorphismTheorem')) RingIso.bijective (RingsIsomorphic.iso ringFirstIsomorphismTheorem') = GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')
{ "alphanum_fraction": 0.8075213675, "avg_line_length": 66.4772727273, "ext": "agda", "hexsha": "349123ca2825c2d18b3b229dc363b12af3f67e68", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Ideals/FirstIsomorphismTheorem.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Ideals/FirstIsomorphismTheorem.agda", "max_line_length": 265, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Ideals/FirstIsomorphismTheorem.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 885, "size": 2925 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to All ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.All.Properties where open import Axiom.Extensionality.Propositional using (Extensionality) open import Data.Bool.Base using (Bool; T) open import Data.Bool.Properties open import Data.Empty open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.List.Base open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Relation.Binary.Equality.Setoid as ListEq using (_≋_; []; _∷_) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.All as MAll using (just; nothing) open import Data.Nat using (zero; suc; z≤n; s≤s; _<_) open import Data.Product as Prod using (_×_; _,_; uncurry; uncurry′) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; Equivalence) open import Function.Inverse using (_↔_; inverse) open import Function.Surjection using (_↠_; surjection) open import Relation.Binary using (Setoid; _Respects_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Unary using (Decidable; Pred; Universal) renaming (_⊆_ to _⋐_) ------------------------------------------------------------------------ -- Lemmas relating Any, All and negation. module _ {a p} {A : Set a} {P : A → Set p} where ¬Any⇒All¬ : ∀ xs → ¬ Any P xs → All (¬_ ∘ P) xs ¬Any⇒All¬ [] ¬p = [] ¬Any⇒All¬ (x ∷ xs) ¬p = ¬p ∘ here ∷ ¬Any⇒All¬ xs (¬p ∘ there) All¬⇒¬Any : ∀ {xs} → All (¬_ ∘ P) xs → ¬ Any P xs All¬⇒¬Any [] () All¬⇒¬Any (¬p ∷ _) (here p) = ¬p p All¬⇒¬Any (_ ∷ ¬p) (there p) = All¬⇒¬Any ¬p p ¬All⇒Any¬ : Decidable P → ∀ xs → ¬ All P xs → Any (¬_ ∘ P) xs ¬All⇒Any¬ dec [] ¬∀ = ⊥-elim (¬∀ []) ¬All⇒Any¬ dec (x ∷ xs) ¬∀ with dec x ... | yes p = there (¬All⇒Any¬ dec xs (¬∀ ∘ _∷_ p)) ... | no ¬p = here ¬p Any¬→¬All : ∀ {xs} → Any (¬_ ∘ P) xs → ¬ All P xs Any¬→¬All (here ¬p) = ¬p ∘ All.head Any¬→¬All (there ¬p) = Any¬→¬All ¬p ∘ All.tail ¬Any↠All¬ : ∀ {xs} → (¬ Any P xs) ↠ All (¬_ ∘ P) xs ¬Any↠All¬ = surjection (¬Any⇒All¬ _) All¬⇒¬Any to∘from where to∘from : ∀ {xs} (¬p : All (¬_ ∘ P) xs) → ¬Any⇒All¬ xs (All¬⇒¬Any ¬p) ≡ ¬p to∘from [] = P.refl to∘from (¬p ∷ ¬ps) = P.cong₂ _∷_ P.refl (to∘from ¬ps) -- If equality of functions were extensional, then the surjection -- could be strengthened to a bijection. from∘to : Extensionality _ _ → ∀ xs → (¬p : ¬ Any P xs) → All¬⇒¬Any (¬Any⇒All¬ xs ¬p) ≡ ¬p from∘to ext [] ¬p = ext λ () from∘to ext (x ∷ xs) ¬p = ext λ { (here p) → P.refl ; (there p) → P.cong (λ f → f p) $ from∘to ext xs (¬p ∘ there) } Any¬⇔¬All : ∀ {xs} → Decidable P → Any (¬_ ∘ P) xs ⇔ (¬ All P xs) Any¬⇔¬All dec = equivalence Any¬→¬All (¬All⇒Any¬ dec _) where -- If equality of functions were extensional, then the logical -- equivalence could be strengthened to a surjection. to∘from : Extensionality _ _ → ∀ {xs} (¬∀ : ¬ All P xs) → Any¬→¬All (¬All⇒Any¬ dec xs ¬∀) ≡ ¬∀ to∘from ext ¬∀ = ext (⊥-elim ∘ ¬∀) ------------------------------------------------------------------------ -- Properties of operations over `All` ------------------------------------------------------------------------ -- map module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} {f : P ⋐ Q} where map-cong : ∀ {xs} {g : P ⋐ Q} (ps : All P xs) → (∀ {x} → f {x} P.≗ g) → All.map f ps ≡ All.map g ps map-cong [] _ = P.refl map-cong (px ∷ ps) feq = P.cong₂ _∷_ (feq px) (map-cong ps feq) map-id : ∀ {xs} (ps : All P xs) → All.map id ps ≡ ps map-id [] = P.refl map-id (px ∷ ps) = P.cong (px ∷_) (map-id ps) map-compose : ∀ {r} {R : Pred A r} {xs} {g : Q ⋐ R} (ps : All P xs) → All.map g (All.map f ps) ≡ All.map (g ∘ f) ps map-compose [] = P.refl map-compose (px ∷ ps) = P.cong (_ ∷_) (map-compose ps) lookup-map : ∀ {xs x} (ps : All P xs) (i : x ∈ xs) → All.lookup (All.map f ps) i ≡ f (All.lookup ps i) lookup-map (px ∷ pxs) (here P.refl) = P.refl lookup-map (px ∷ pxs) (there i) = lookup-map pxs i ------------------------------------------------------------------------ -- _[_]%=_/updateAt module _ {a p} {A : Set a} {P : Pred A p} where updateAt-updates : ∀ {x xs px} (pxs : All P xs) (i : x ∈ xs) {f : P x → P x} → All.lookup pxs i ≡ px → All.lookup (pxs All.[ i ]%= f) i ≡ f px updateAt-updates [] () updateAt-updates (px ∷ pxs) (here P.refl) P.refl = P.refl updateAt-updates (px ∷ pxs) (there i) = updateAt-updates pxs i updateAt-cong : ∀ {x xs} (pxs : All P xs) (i : x ∈ xs) {f g : P x → P x} → f (All.lookup pxs i) ≡ g (All.lookup pxs i) → (pxs All.[ i ]%= f) ≡ (pxs All.[ i ]%= g) updateAt-cong (px ∷ pxs) (here P.refl) = P.cong (_∷ pxs) updateAt-cong (px ∷ pxs) (there i) f≗g = P.cong (px ∷_) (updateAt-cong pxs i f≗g) updateAt-id : ∀ {x xs} (pxs : All P xs) (i : x ∈ xs) → (pxs All.[ i ]%= id) ≡ pxs updateAt-id (px ∷ pxs) (here P.refl) = P.refl updateAt-id (px ∷ pxs) (there i) = P.cong (px ∷_) (updateAt-id pxs i) updateAt-compose : ∀ {x xs} (pxs : All P xs) (i : x ∈ xs) {f g : P x → P x} → (pxs All.[ i ]%= f All.[ i ]%= g) ≡ pxs All.[ i ]%= (g ∘ f) updateAt-compose (px ∷ pxs) (here P.refl) = P.refl updateAt-compose (px ∷ pxs) (there i) = P.cong (px ∷_) (updateAt-compose pxs i) map-updateAt : ∀ {q x} {Q : Pred A q} {xs} → ∀ {f : P ⋐ Q} {g : P x → P x} {h : Q x → Q x} (pxs : All P xs) (i : x ∈ xs) → f (g (All.lookup pxs i)) ≡ h (f (All.lookup pxs i)) → All.map f (pxs All.[ i ]%= g) ≡ (All.map f pxs) All.[ i ]%= h map-updateAt (px ∷ pxs) (here P.refl) = P.cong (_∷ _) map-updateAt (px ∷ pxs) (there i) feq = P.cong (_ ∷_) (map-updateAt pxs i feq) ------------------------------------------------------------------------ -- Introduction (⁺) and elimination (⁻) rules for list operations ------------------------------------------------------------------------ -- map module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} where map⁺ : ∀ {xs} → All (P ∘ f) xs → All P (map f xs) map⁺ [] = [] map⁺ (p ∷ ps) = p ∷ map⁺ ps map⁻ : ∀ {xs} → All P (map f xs) → All (P ∘ f) xs map⁻ {xs = []} [] = [] map⁻ {xs = _ ∷ _} (p ∷ ps) = p ∷ map⁻ ps -- A variant of All.map. module _ {a b p q} {A : Set a} {B : Set b} {f : A → B} {P : A → Set p} {Q : B → Set q} where gmap : P ⋐ Q ∘ f → All P ⋐ All Q ∘ map f gmap g = map⁺ ∘ All.map g ------------------------------------------------------------------------ -- mapMaybe module _ {a b p} {A : Set a} {B : Set b} (P : B → Set p) {f : A → Maybe B} where mapMaybe⁺ : ∀ {xs} → All (MAll.All P) (map f xs) → All P (mapMaybe f xs) mapMaybe⁺ {[]} [] = [] mapMaybe⁺ {x ∷ xs} (px ∷ pxs) with f x ... | nothing = mapMaybe⁺ pxs ... | just v with px ... | just pv = pv ∷ mapMaybe⁺ pxs ------------------------------------------------------------------------ -- _++_ module _ {a p} {A : Set a} {P : A → Set p} where ++⁺ : ∀ {xs ys} → All P xs → All P ys → All P (xs ++ ys) ++⁺ [] pys = pys ++⁺ (px ∷ pxs) pys = px ∷ ++⁺ pxs pys ++⁻ˡ : ∀ xs {ys} → All P (xs ++ ys) → All P xs ++⁻ˡ [] p = [] ++⁻ˡ (x ∷ xs) (px ∷ pxs) = px ∷ (++⁻ˡ _ pxs) ++⁻ʳ : ∀ xs {ys} → All P (xs ++ ys) → All P ys ++⁻ʳ [] p = p ++⁻ʳ (x ∷ xs) (px ∷ pxs) = ++⁻ʳ xs pxs ++⁻ : ∀ xs {ys} → All P (xs ++ ys) → All P xs × All P ys ++⁻ [] p = [] , p ++⁻ (x ∷ xs) (px ∷ pxs) = Prod.map (px ∷_) id (++⁻ _ pxs) ++↔ : ∀ {xs ys} → (All P xs × All P ys) ↔ All P (xs ++ ys) ++↔ {xs} = inverse (uncurry ++⁺) (++⁻ xs) ++⁻∘++⁺ (++⁺∘++⁻ xs) where ++⁺∘++⁻ : ∀ xs {ys} (p : All P (xs ++ ys)) → uncurry′ ++⁺ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = P.refl ++⁺∘++⁻ (x ∷ xs) (px ∷ pxs) = P.cong (_∷_ px) $ ++⁺∘++⁻ xs pxs ++⁻∘++⁺ : ∀ {xs ys} (p : All P xs × All P ys) → ++⁻ xs (uncurry ++⁺ p) ≡ p ++⁻∘++⁺ ([] , pys) = P.refl ++⁻∘++⁺ (px ∷ pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = P.refl ------------------------------------------------------------------------ -- concat module _ {a p} {A : Set a} {P : A → Set p} where concat⁺ : ∀ {xss} → All (All P) xss → All P (concat xss) concat⁺ [] = [] concat⁺ (pxs ∷ pxss) = ++⁺ pxs (concat⁺ pxss) concat⁻ : ∀ {xss} → All P (concat xss) → All (All P) xss concat⁻ {[]} [] = [] concat⁻ {xs ∷ xss} pxs = ++⁻ˡ xs pxs ∷ concat⁻ (++⁻ʳ xs pxs) ------------------------------------------------------------------------ -- take and drop module _ {a p} {A : Set a} {P : A → Set p} where drop⁺ : ∀ {xs} n → All P xs → All P (drop n xs) drop⁺ zero pxs = pxs drop⁺ (suc n) [] = [] drop⁺ (suc n) (px ∷ pxs) = drop⁺ n pxs take⁺ : ∀ {xs} n → All P xs → All P (take n xs) take⁺ zero pxs = [] take⁺ (suc n) [] = [] take⁺ (suc n) (px ∷ pxs) = px ∷ take⁺ n pxs ------------------------------------------------------------------------ -- applyUpTo module _ {a p} {A : Set a} {P : A → Set p} where applyUpTo⁺₁ : ∀ f n → (∀ {i} → i < n → P (f i)) → All P (applyUpTo f n) applyUpTo⁺₁ f zero Pf = [] applyUpTo⁺₁ f (suc n) Pf = Pf (s≤s z≤n) ∷ applyUpTo⁺₁ (f ∘ suc) n (Pf ∘ s≤s) applyUpTo⁺₂ : ∀ f n → (∀ i → P (f i)) → All P (applyUpTo f n) applyUpTo⁺₂ f n Pf = applyUpTo⁺₁ f n (λ _ → Pf _) applyUpTo⁻ : ∀ f n → All P (applyUpTo f n) → ∀ {i} → i < n → P (f i) applyUpTo⁻ f zero pxs () applyUpTo⁻ f (suc n) (px ∷ _) (s≤s z≤n) = px applyUpTo⁻ f (suc n) (_ ∷ pxs) (s≤s (s≤s i<n)) = applyUpTo⁻ (f ∘ suc) n pxs (s≤s i<n) ------------------------------------------------------------------------ -- tabulate module _ {a p} {A : Set a} {P : A → Set p} where tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ i → P (f i)) → All P (tabulate f) tabulate⁺ {zero} Pf = [] tabulate⁺ {suc n} Pf = Pf fzero ∷ tabulate⁺ (Pf ∘ fsuc) tabulate⁻ : ∀ {n} {f : Fin n → A} → All P (tabulate f) → (∀ i → P (f i)) tabulate⁻ {zero} pf () tabulate⁻ {suc n} (px ∷ _) fzero = px tabulate⁻ {suc n} (_ ∷ pf) (fsuc i) = tabulate⁻ pf i ------------------------------------------------------------------------ -- remove module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where ─⁺ : ∀ {xs} (p : Any P xs) → All Q xs → All Q (xs Any.─ p) ─⁺ (here px) (_ ∷ qs) = qs ─⁺ (there p) (q ∷ qs) = q ∷ ─⁺ p qs ─⁻ : ∀ {xs} (p : Any P xs) → Q (Any.lookup p) → All Q (xs Any.─ p) → All Q xs ─⁻ (here px) q qs = q ∷ qs ─⁻ (there p) q (q′ ∷ qs) = q′ ∷ ─⁻ p q qs ------------------------------------------------------------------------ -- filter module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where all-filter : ∀ xs → All P (filter P? xs) all-filter [] = [] all-filter (x ∷ xs) with P? x ... | yes Px = Px ∷ all-filter xs ... | no _ = all-filter xs filter⁺ : ∀ {q} {Q : A → Set q} {xs} → All Q xs → All Q (filter P? xs) filter⁺ {xs = _} [] = [] filter⁺ {xs = x ∷ _} (Qx ∷ Qxs) with P? x ... | no _ = filter⁺ Qxs ... | yes _ = Qx ∷ filter⁺ Qxs ------------------------------------------------------------------------ -- zipWith module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where zipWith⁺ : ∀ {p} (P : C → Set p) (f : A → B → C) {xs ys} → Pointwise (λ x y → P (f x y)) xs ys → All P (zipWith f xs ys) zipWith⁺ P f [] = [] zipWith⁺ P f (Pfxy ∷ Pfxsys) = Pfxy ∷ zipWith⁺ P f Pfxsys ------------------------------------------------------------------------ -- Operations for constructing lists ------------------------------------------------------------------------ -- singleton module _ {a p} {A : Set a} {P : A → Set p} where singleton⁻ : ∀ {x} → All P [ x ] → P x singleton⁻ (px ∷ []) = px ------------------------------------------------------------------------ -- snoc module _ {a p} {A : Set a} {P : A → Set p} where ∷ʳ⁺ : ∀ {xs x} → All P xs → P x → All P (xs ∷ʳ x) ∷ʳ⁺ pxs px = ++⁺ pxs (px ∷ []) ∷ʳ⁻ : ∀ {xs x} → All P (xs ∷ʳ x) → All P xs × P x ∷ʳ⁻ {xs} pxs = Prod.map₂ singleton⁻ $ ++⁻ xs pxs ------------------------------------------------------------------------ -- fromMaybe fromMaybe⁺ : ∀ {mx} → MAll.All P mx → All P (fromMaybe mx) fromMaybe⁺ (just px) = px ∷ [] fromMaybe⁺ nothing = [] fromMaybe⁻ : ∀ mx → All P (fromMaybe mx) → MAll.All P mx fromMaybe⁻ (just x) (px ∷ []) = just px fromMaybe⁻ nothing p = nothing ------------------------------------------------------------------------ -- replicate replicate⁺ : ∀ n {x} → P x → All P (replicate n x) replicate⁺ zero px = [] replicate⁺ (suc n) px = px ∷ replicate⁺ n px replicate⁻ : ∀ {n x} → All P (replicate (suc n) x) → P x replicate⁻ (px ∷ _) = px module _ {a p} {A : Set a} {P : A → Set p} where ------------------------------------------------------------------------ -- inits inits⁺ : ∀ {xs} → All P xs → All (All P) (inits xs) inits⁺ [] = [] ∷ [] inits⁺ (px ∷ pxs) = [] ∷ gmap (px ∷_) (inits⁺ pxs) inits⁻ : ∀ xs → All (All P) (inits xs) → All P xs inits⁻ [] pxs = [] inits⁻ (x ∷ []) ([] ∷ p[x] ∷ []) = p[x] inits⁻ (x ∷ xs@(_ ∷ _)) ([] ∷ pxs@(p[x] ∷ _)) = singleton⁻ p[x] ∷ inits⁻ xs (All.map (drop⁺ 1) (map⁻ pxs)) ------------------------------------------------------------------------ -- tails tails⁺ : ∀ {xs} → All P xs → All (All P) (tails xs) tails⁺ [] = [] ∷ [] tails⁺ pxxs@(_ ∷ pxs) = pxxs ∷ tails⁺ pxs tails⁻ : ∀ xs → All (All P) (tails xs) → All P xs tails⁻ [] pxs = [] tails⁻ (x ∷ xs) (pxxs ∷ _) = pxxs ------------------------------------------------------------------------ -- all module _ {a} {A : Set a} (p : A → Bool) where all⁺ : ∀ xs → T (all p xs) → All (T ∘ p) xs all⁺ [] _ = [] all⁺ (x ∷ xs) px∷xs with Equivalence.to (T-∧ {p x}) ⟨$⟩ px∷xs ... | (px , pxs) = px ∷ all⁺ xs pxs all⁻ : ∀ {xs} → All (T ∘ p) xs → T (all p xs) all⁻ [] = _ all⁻ (px ∷ pxs) = Equivalence.from T-∧ ⟨$⟩ (px , all⁻ pxs) ------------------------------------------------------------------------ -- All is anti-monotone. anti-mono : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} → xs ⊆ ys → All P ys → All P xs anti-mono xs⊆ys pys = All.tabulate (All.lookup pys ∘ xs⊆ys) all-anti-mono : ∀ {a} {A : Set a} (p : A → Bool) {xs ys} → xs ⊆ ys → T (all p ys) → T (all p xs) all-anti-mono p xs⊆ys = all⁻ p ∘ anti-mono xs⊆ys ∘ all⁺ p _ ------------------------------------------------------------------------ -- Interactions with pointwise equality ------------------------------------------------------------------------ module _ {c ℓ} (S : Setoid c ℓ) where open Setoid S renaming (Carrier to A) open ListEq S respects : ∀ {p} {P : Pred A p} → P Respects _≈_ → (All P) Respects _≋_ respects p≈ [] [] = [] respects p≈ (x≈y ∷ xs≈ys) (px ∷ pxs) = p≈ x≈y px ∷ respects p≈ xs≈ys pxs ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.16 All-all = all⁻ {-# WARNING_ON_USAGE All-all "Warning: All-all was deprecated in v0.16. Please use all⁻ instead." #-} all-All = all⁺ {-# WARNING_ON_USAGE all-All "Warning: all-All was deprecated in v0.16. Please use all⁺ instead." #-} All-map = map⁺ {-# WARNING_ON_USAGE All-map "Warning: All-map was deprecated in v0.16. Please use map⁺ instead." #-} map-All = map⁻ {-# WARNING_ON_USAGE map-All "Warning: map-All was deprecated in v0.16. Please use map⁻ instead." #-} -- Version 1.0 filter⁺₁ = all-filter {-# WARNING_ON_USAGE filter⁺₁ "Warning: filter⁺₁ was deprecated in v1.0. Please use all-filter instead." #-} filter⁺₂ = filter⁺ {-# WARNING_ON_USAGE filter⁺₂ "Warning: filter⁺₂ was deprecated in v1.0. Please use filter⁺ instead." #-}
{ "alphanum_fraction": 0.439957492, "avg_line_length": 35.8855932203, "ext": "agda", "hexsha": "9e65c5b3ef01814f6a09e71155913c18033b1c7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All/Properties.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/All/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6280, "size": 16938 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Least Common Multiple for integers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.LCM where open import Data.Integer.Base open import Data.Integer.Divisibility open import Data.Integer.GCD open import Data.Nat.Base using (ℕ) import Data.Nat.LCM as ℕ open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Definition ------------------------------------------------------------------------ lcm : ℤ → ℤ → ℤ lcm i j = + ℕ.lcm ∣ i ∣ ∣ j ∣ ------------------------------------------------------------------------ -- Properties ------------------------------------------------------------------------ i∣lcm[i,j] : ∀ i j → i ∣ lcm i j i∣lcm[i,j] i j = ℕ.m∣lcm[m,n] ∣ i ∣ ∣ j ∣ j∣lcm[i,j] : ∀ i j → j ∣ lcm i j j∣lcm[i,j] i j = ℕ.n∣lcm[m,n] ∣ i ∣ ∣ j ∣ lcm-least : ∀ {i j c} → i ∣ c → j ∣ c → lcm i j ∣ c lcm-least c∣i c∣j = ℕ.lcm-least c∣i c∣j lcm[0,i]≡0 : ∀ i → lcm 0ℤ i ≡ 0ℤ lcm[0,i]≡0 i = cong (+_) (ℕ.lcm[0,n]≡0 ∣ i ∣) lcm[i,0]≡0 : ∀ i → lcm i 0ℤ ≡ 0ℤ lcm[i,0]≡0 i = cong (+_) (ℕ.lcm[n,0]≡0 ∣ i ∣) lcm-comm : ∀ i j → lcm i j ≡ lcm j i lcm-comm i j = cong (+_) (ℕ.lcm-comm ∣ i ∣ ∣ j ∣)
{ "alphanum_fraction": 0.3892171344, "avg_line_length": 29.4347826087, "ext": "agda", "hexsha": "8e8101132aeeccb2a0a9a03f82c7a5e6eb372cd5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Integer/LCM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Integer/LCM.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Integer/LCM.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 447, "size": 1354 }
module SortedBinaryTree where infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} open import Sec4 postulate A : Set -- XXX: E.g., Nat or Bool some base type -- XXX: Postulates for ≤ postulate _≤_ : A → A → Prop postulate antisym-≤ : (a b : A) → (a ≤ b) → (b ≤ a) → (a ≡ b) postulate tot-≤ : (a b : A) → (a ≤ b) ∨ (b ≤ a) postulate refl-≤ : (a : A) → (a ≤ a) postulate trans-≤ : (a b c : A) → (a ≤ b) → (b ≤ a) → (a ≤ c) -- XXX: Postulates for ≥ postulate _≥_ : A → A → Prop postulate antisym-≥ : (a b : A) → (a ≥ b) → (b ≥ a) → (a ≡ b) postulate tot-≥ : (a b : A) → (a ≥ b) ∨ (b ≥ a) postulate refl-≥ : (a : A) → (a ≥ a) postulate trans-≥ : (a b c : A) → (a ≥ b) → (b ≥ a) → (a ≥ c) -- XXX: Definition of a binary tree. data SortedBinaryTree (A : Set) : Set where Leaf : SortedBinaryTree A Node : (a : A) → (l : SortedBinaryTree A) → (r : SortedBinaryTree A) → SortedBinaryTree A all-leq : (a : A) → (t : SortedBinaryTree A) → Prop all-leq a₁ Leaf = ⊤ all-leq a₁ (Node a₂ l r) = (a₂ ≤ a₁) ∧ ((all-leq a₁ l) ∧ (all-leq a₁ r)) all-geq : (a : A) → (t : SortedBinaryTree A) → Prop all-geq a₁ Leaf = ⊤ all-geq a₁ (Node a₂ l r) = (a₂ ≥ a₁) ∧ ((all-geq a₁ l) ∧ (all-geq a₁ r)) -- XXX: What is a sorted tree. A BTree is sorted, if all elements in the -- left substree are ≥ root and all elements in the right subtree are ≤ -- root. ordered : SortedBinaryTree A → Prop ordered Leaf = ⊤ ordered (Node a l r) = ((all-leq a l) ∧ (all-geq a r)) ∧ ((ordered l) ∧ (ordered r)) -- XXX: Insert function for SortedBinaryTree insert : (a : A) → SortedBinaryTree A → SortedBinaryTree A insert x Leaf = Node x Leaf Leaf insert x (Node a t t₁) with (tot-≤ x a) insert x (Node a t t₁) | ora x₁ = insert x t insert x (Node a t t₁) | orb x₁ = insert x t₁ -- XXX: Prove that the tree obtained after insertion is sorted insert-sorted : (a : A) → (t : SortedBinaryTree A) → (p : ordered t) → ordered (insert a t) insert-sorted a Leaf _ = and (and ⋆ ⋆) (and ⋆ ⋆) insert-sorted a (Node a₁ t t₁) (and (and x x1) (and x2 x3)) with (tot-≤ a a₁) insert-sorted a (Node a₁ t t₁) (and (and p1 p2) (and p3 p4)) | ora w = insert-sorted a t p3 insert-sorted a (Node a₁ t t₁) (and (and p1 p2) (and p3 p4)) | orb w = insert-sorted a t₁ p4 -- XXX: Proof carrying code insert' : (a : A) → (t : SortedBinaryTree A) → (p : ordered t) → Exists (SortedBinaryTree A) (λ t' → ordered t') insert' a t p = [ insert a t , insert-sorted a t p ] -- XXX: Write Proof that delete works. -- XXX: Write a version with record and setoid carrying the ≤, etc
{ "alphanum_fraction": 0.5594681998, "avg_line_length": 37.1066666667, "ext": "agda", "hexsha": "32a286eb5cf94a3e1806aaed1f0d332b145f782f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "SortedBinaryTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "SortedBinaryTree.agda", "max_line_length": 94, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "SortedBinaryTree.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 1066, "size": 2783 }
module Pi where open import Agda.Builtin.Equality using (_≡_; refl) f : {A : Set} → {x y : A} → (z w : A) → x ≡ z → z ≡ x f _ _ refl = refl
{ "alphanum_fraction": 0.5031847134, "avg_line_length": 10.4666666667, "ext": "agda", "hexsha": "fc36dacbfe39f51cb0de88d1538000ab6b286419", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/expression/Pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/expression/Pi.agda", "max_line_length": 33, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/expression/Pi.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 69, "size": 157 }
module Prelude.Bool.Properties where open import Prelude.Equality open import Prelude.Bool open import Prelude.Decidable open import Prelude.Empty open import Prelude.Variables de-morg-neg-conj : (a b : Bool) → not (a && b) ≡ (not a || not b) de-morg-neg-conj true true = refl de-morg-neg-conj false true = refl de-morg-neg-conj true false = refl de-morg-neg-conj false false = refl de-morg-neg-disj : (a b : Bool) → not (a || b) ≡ (not a && not b) de-morg-neg-disj true true = refl de-morg-neg-disj false true = refl de-morg-neg-disj true false = refl de-morg-neg-disj false false = refl x||true : (x : Bool) → (x || true) ≡ true x||true true = refl x||true false = refl x&&false : (x : Bool) → (x && false) ≡ false x&&false true = refl x&&false false = refl IsTrue⇒≡ : IsTrue x → x ≡ true IsTrue⇒≡ true = refl IsFalse⇒≡ : IsFalse x → x ≡ false IsFalse⇒≡ false = refl not[x]≡false⇒x≡true : not x ≡ false → x ≡ true not[x]≡false⇒x≡true {true} _ = refl not[x]≡false⇒x≡true {false} () not[x]≡true⇒x≡false : not x ≡ true → x ≡ false not[x]≡true⇒x≡false {true} () not[x]≡true⇒x≡false {false} _ = refl -- Properties of ==? -- module _ {a} {A : Set a} {{EqA : Eq A}} where ==?-reflexive : (x : A) → (x ==? x) ≡ true ==?-reflexive x with x == x ...| yes refl = refl ...| no notEq = ⊥-elim (notEq refl) ≡⇒==? : {x y : A} → (x ≡ y) → (x ==? y) ≡ true ≡⇒==? {x = x} {y = y} refl with x == y ...| yes refl = refl ...| no a≢b = ⊥-elim (a≢b refl) ≢⇒==? : {x y : A} → x ≢ y → (x ==? y) ≡ false ≢⇒==? {x = x} {y = y} x≢y with x == y ...| yes x≡y = ⊥-elim (x≢y x≡y) ...| no _ = refl ==?⇒≡ : {x y : A} → (x ==? y) ≡ true → x ≡ y ==?⇒≡ {x = x} {y = y} ==?≡true with x == y ...| yes x≡y = x≡y ...| no x≢y with (≢⇒==? x≢y) | ==?≡true ...| _ | () ==?≡false⇒≢ : {a b : A} → (a ==? b) ≡ false → a ≢ b ==?≡false⇒≢ {a = a} {b = b} ==?≡false with a == b ...| no ¬eq = ¬eq ...| yes eq with ≡⇒==? | ==?≡false ...| _ | ()
{ "alphanum_fraction": 0.5239307536, "avg_line_length": 26.1866666667, "ext": "agda", "hexsha": "f07548471bc03c37ac65fa70164f84978029dd53", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/Bool/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/Bool/Properties.agda", "max_line_length": 65, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 911, "size": 1964 }
module Integer where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Relation.Binary.PropositionalEquality data ℤ₃ : Set where ℤ₊ : ℕ → ℤ₃ ℤ₀ : ℤ₃ ℤ₋ : ℕ → ℤ₃ ℤ₊-injective : ∀ {m n} → ℤ₊ m ≡ ℤ₊ n → m ≡ n ℤ₊-injective refl = refl ℤ₋-injective : ∀ {m n} → ℤ₋ m ≡ ℤ₋ n → m ≡ n ℤ₋-injective refl = refl data ℕ² : Set where _─_ : ℕ → ℕ → ℕ² ℕ²-≡₊ : ∀ {a₊ a₋ b₊ b₋} → (a₊ ─ a₋) ≡ (b₊ ─ b₋) → a₊ ≡ b₊ ℕ²-≡₊ refl = refl ℕ²-≡₋ : ∀ {a₊ a₋ b₊ b₋} → (a₊ ─ a₋) ≡ (b₊ ─ b₋) → a₋ ≡ b₋ ℕ²-≡₋ refl = refl toℕ² : ℤ₃ → ℕ² toℕ² (ℤ₊ n) = suc n ─ zero toℕ² ℤ₀ = zero ─ zero toℕ² (ℤ₋ n) = zero ─ suc n toℤ₃ : ℕ² → ℤ₃ toℤ₃ (zero ─ zero) = ℤ₀ toℤ₃ (zero ─ suc n₋) = ℤ₋ n₋ toℤ₃ (suc n₊ ─ zero) = ℤ₊ n₊ toℤ₃ (suc n₊ ─ suc n₋) = toℤ₃ (n₊ ─ n₋) data Dec (A : Set) : Set where yes : A → Dec A no : (A → ⊥) → Dec A ℕ≡? : (m n : ℕ) → Dec (m ≡ n) ℕ≡? zero zero = yes refl ℕ≡? zero (suc n) = no (λ ()) ℕ≡? (suc m) zero = no (λ ()) ℕ≡? (suc m) (suc n) with ℕ≡? m n ... | yes m≡n = yes (cong suc m≡n) ... | no ¬m≡n = no λ sm≡sn → ¬m≡n (suc-injective sm≡sn) ℤ₃≡? : (a b : ℤ₃) → Dec (a ≡ b) ℤ₃≡? (ℤ₊ m) (ℤ₊ n) with ℕ≡? m n ... | yes m≡n = yes (cong ℤ₊ m≡n) ... | no ¬m≡n = no λ ℤ₊m≡ℤ₊n → ¬m≡n (ℤ₊-injective ℤ₊m≡ℤ₊n) ℤ₃≡? (ℤ₊ _) ℤ₀ = no (λ ()) ℤ₃≡? (ℤ₊ _) (ℤ₋ _) = no (λ ()) ℤ₃≡? ℤ₀ (ℤ₊ _) = no (λ ()) ℤ₃≡? ℤ₀ ℤ₀ = yes refl ℤ₃≡? ℤ₀ (ℤ₋ _) = no (λ ()) ℤ₃≡? (ℤ₋ _) (ℤ₊ _) = no (λ ()) ℤ₃≡? (ℤ₋ _) ℤ₀ = no (λ ()) ℤ₃≡? (ℤ₋ m) (ℤ₋ n) with ℕ≡? m n ... | yes m≡n = yes (cong ℤ₋ m≡n) ... | no ¬m≡n = no λ ℤ₋m≡ℤ₋n → ¬m≡n (ℤ₋-injective ℤ₋m≡ℤ₋n) ℕ²≡? : (a b : ℕ²) → Dec (a ≡ b) ℕ²≡? (a₊ ─ a₋) (b₊ ─ b₋) with ℕ≡? a₊ b₊ ℕ²≡? (a₊ ─ a₋) (b₊ ─ b₋) | yes refl with ℕ≡? a₋ b₋ ℕ²≡? (a₊ ─ a₋) (b₊ ─ b₋) | yes refl | yes refl = yes refl ℕ²≡? (a₊ ─ a₋) (b₊ ─ b₋) | yes refl | no ¬a₋≡b₋ = no (λ a≡b → ¬a₋≡b₋ (ℕ²-≡₋ a≡b)) ℕ²≡? (a₊ ─ a₋) (b₊ ─ b₋) | no ¬a₊≡b₊ = no λ a≡b → ¬a₊≡b₊ (ℕ²-≡₊ a≡b) _≃_ : ℕ² → ℕ² → Set (a₊ ─ a₋) ≃ (b₊ ─ b₋) = a₊ + b₋ ≡ a₋ + b₊ ≃? : (a b : ℕ²) → Dec (a ≃ b) ≃? (a₊ ─ a₋) (b₊ ─ b₋) = ℕ≡? (a₊ + b₋) (a₋ + b₊) _+₂_ : ℕ² → ℕ² → ℕ² (a₊ ─ a₋) +₂ (b₊ ─ b₋) = (a₊ + b₊) ─ (a₋ + b₋) {- ≃-cong : {A : Set} {a b : ℕ²} (f : ℕ² → ℕ²) → a ≃ b → f a ≃ f b ≃-cong f a≃b = {!!} -} drop-neg : ℕ² → ℕ² drop-neg (a₊ ─ _) = (a₊ ─ zero) 3-5≃2-4 : (3 ─ 5) ≃ (2 ─ 4) 3-5≃2-4 = refl _+₃_ : ℤ₃ → ℤ₃ → ℤ₃ a +₃ b = toℤ₃ (toℕ² a +₂ toℕ² b)
{ "alphanum_fraction": 0.429787234, "avg_line_length": 23.9795918367, "ext": "agda", "hexsha": "1ae06100f2389d3b0d94f5d54df0f804372a73b3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-28T12:49:47.000Z", "max_forks_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iblech/agda-quotients", "max_forks_repo_path": "src/Integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iblech/agda-quotients", "max_issues_repo_path": "src/Integer.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b51e83acf193a556a61d44a4585a6467a383fa3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iblech/agda-quotients", "max_stars_repo_path": "src/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-29T13:10:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-29T13:10:27.000Z", "num_tokens": 1654, "size": 2350 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Properties where open import Level open import Data.Product using (Σ; _,_; -,_; proj₂; uncurry) open import Function using (_$_) open import Categories.Adjoint using (_⊣_; Adjoint; Hom-NI′⇒Adjoint) open import Categories.Adjoint.RAPL public open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Product using (_⁂_; _⁂ⁿⁱ_) open import Categories.Category.Construction.Comma using (CommaObj; Comma⇒; _↙_) open import Categories.Functor renaming (id to idF) open import Categories.Functor.Hom open import Categories.Functor.Construction.Constant open import Categories.Functor.Construction.LiftSetoids open import Categories.Functor.Properties open import Categories.Functor.Continuous open import Categories.Functor.Cocontinuous open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation open import Categories.NaturalTransformation.Properties open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; _ⓘₕ_; _ⓘˡ_; module ≃) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties open import Categories.Monad open import Categories.Monad.Duality open import Categories.Comonad open import Categories.Morphism.Universal open import Categories.Yoneda import Categories.Yoneda.Properties as YP import Categories.Diagram.Colimit as Col import Categories.Diagram.Duality as Duality import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D E J : Category o ℓ e -- if the left adjoint functor is a partial application of bifunctor, then it uniquely -- determines a bifunctor compatible with the right adjoint functor. module _ {C : Category o ℓ e} (L : Bifunctor C E D) {R : ∀ (X : Category.Obj E) → Functor D C} (LR : ∀ (X : Category.Obj E) → appʳ L X ⊣ R X) where private module C = Category C module D = Category D module E = Category E module L = Functor L module R X = Functor (R X) module LR X = Adjoint (LR X) open C F′ : ∀ {A X B Y} f g → R.F₀ A X ⇒ R.F₀ B Y F′ {A} {X} {B} {Y} f g = LR.Ladjunct B (LR.counit.η A Y D.∘ L.F₁ (R.F₁ A g , f)) -- R.F₁ B (LR.counit.η A Y) ∘ R.F₁ B (L.F₁ (R.F₁ A g , f)) ∘ LR.unit.η B (R.F₀ A X) commute′ : ∀ {A B X} (f : A E.⇒ B) → LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) D.≈ LR.counit.η B X D.∘ L.F₁ (C.id , f) commute′ {A} {B} {X} f = begin LR.counit.η A X D.∘ L.F₁ (F′ f D.id , E.id) ≈⟨ LR.RLadjunct≈id A ⟩ LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f) ≈⟨ refl ⟩∘⟨ L.F-resp-≈ (R.identity B , E.Equiv.refl) ⟩ LR.counit.η B X D.∘ L.F₁ (C.id , f) ∎ where open D.HomReasoning open HomReasoning decompose₁ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ R.F₁ A g ∘ F′ f D.id decompose₁ {A} {B} {X} {Y} {f} {g} = begin F′ f g ≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₁) ⟩∘⟨refl ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B g , E.id) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.F-resp-≈ A (pullˡ (LR.counit.commute B g)) ⟩∘⟨refl ⟩ R.F₁ A ((g D.∘ LR.counit.η B X) D.∘ L.F₁ (C.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ R.F-resp-≈ A (pushʳ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩ R.F₁ A (g D.∘ LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.homomorphism A ⟩∘⟨refl ⟩ (R.F₁ A g ∘ R.F₁ A (LR.counit.η B X D.∘ L.F₁ (R.F₁ B D.id , f))) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ assoc ⟩ R.F₁ A g ∘ F′ f D.id ∎ where open MR D decompose₂ : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → F′ f g ≈ F′ f D.id ∘ R.F₁ B g decompose₂ {A} {B} {X} {Y} {f} {g} = begin F′ f g ≈⟨ R.F-resp-≈ A (D.∘-resp-≈ʳ [ L ]-decompose₂) ⟩∘⟨refl ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ R.F-resp-≈ A (pushˡ (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity B , E.Equiv.refl)))) ⟩∘⟨refl ⟩ R.F₁ A ((LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) D.∘ L.F₁ (R.F₁ B g , E.id)) ∘ LR.unit.η A (R.F₀ B X) ≈⟨ R.homomorphism A ⟩∘⟨refl ⟩ (R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ R.F₁ A (L.F₁ (R.F₁ B g , E.id))) ∘ LR.unit.η A (R.F₀ B X) ≈˘⟨ MR.pushʳ C (LR.unit.commute A (R.F₁ B g)) ⟩ R.F₁ A (LR.counit.η B Y D.∘ L.F₁ (R.F₁ B D.id , f)) ∘ LR.unit.η A (R.F₀ B Y) ∘ R.F₁ B g ≈˘⟨ assoc ⟩ F′ f D.id ∘ R.F₁ B g ∎ where open MR D swap : ∀ {A B X Y} {f : A E.⇒ B} {g : X D.⇒ Y} → R.F₁ A g ∘ F′ f D.id ≈ F′ f D.id ∘ R.F₁ B g swap = trans (⟺ decompose₁) decompose₂ commute″ : ∀ {X Y Z A} {f : Y E.⇒ Z} {g : X E.⇒ Y} → F′ (f E.∘ g) (D.id {A}) ≈ F′ g D.id ∘ F′ f D.id commute″ {X} {Y} {Z} {A} {f} {g} = begin F′ (f E.∘ g) D.id ≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Z , E.Equiv.refl))) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f E.∘ g)) ∘ LR.unit.η X (R.F₀ Z A) ≈⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (Functor.homomorphism (appˡ L (R.F₀ Z A)))) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Z A D.∘ L.F₁ (C.id , f) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ R.F-resp-≈ X (MR.pushˡ D (commute′ f)) ⟩∘⟨refl ⟩ R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (F′ f D.id , E.id)) D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ R.F-resp-≈ X (MR.pushʳ D [ L ]-commute) ⟩∘⟨refl ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ R.F-resp-≈ X D.assoc ⟩∘⟨refl ⟩ R.F₁ X ((LR.counit.η Y A D.∘ L.F₁ (C.id , g)) D.∘ L.F₁ (F′ f D.id , E.id)) ∘ LR.unit.η X (R.F₀ Z A) ≈⟨ R.homomorphism X ⟩∘⟨refl ⟩ (R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ R.F₁ X (L.F₁ (F′ f D.id , E.id))) ∘ LR.unit.η X (R.F₀ Z A) ≈˘⟨ MR.pushʳ C (LR.unit.commute X (F′ f D.id)) ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (C.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id ≈˘⟨ R.F-resp-≈ X (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity Y , E.Equiv.refl))) ⟩∘⟨ refl ⟩∘⟨ refl ⟩ R.F₁ X (LR.counit.η Y A D.∘ L.F₁ (R.F₁ Y D.id , g)) ∘ LR.unit.η X (R.F₀ Y A) ∘ F′ f D.id ≈˘⟨ assoc ⟩ F′ g D.id ∘ F′ f D.id ∎ induced-bifunctorʳ : Bifunctor E.op D C induced-bifunctorʳ = record { F₀ = uncurry R.F₀ ; F₁ = uncurry F′ ; identity = λ where {e , d} → let open MR D in begin F′ E.id D.id ≈⟨ R.F-resp-≈ e (D.∘-resp-≈ʳ (L.F-resp-≈ (R.identity e , E.Equiv.refl))) ⟩∘⟨ refl ⟩ R.F₁ e (LR.counit.η e d D.∘ L.F₁ (C.id , E.id)) ∘ LR.unit.η e (R.F₀ e d) ≈⟨ R.F-resp-≈ e (elimʳ L.identity) ⟩∘⟨ refl ⟩ R.F₁ e (LR.counit.η e d) ∘ LR.unit.η e (R.F₀ e d) ≈⟨ LR.zag e ⟩ C.id ∎ ; homomorphism = λ where {A , X} {B , Y} {W , Z} {f , h} {g , i} → let open MR C in begin F′ (f E.∘ g) (i D.∘ h) ≈⟨ decompose₁ ⟩ R.F₁ W (i D.∘ h) ∘ F′ (f E.∘ g) D.id ≈˘⟨ center⁻¹ (⟺ (R.homomorphism W)) (⟺ commute″) ⟩ R.F₁ W i ∘ (R.F₁ W h ∘ F′ g D.id) ∘ F′ f D.id ≈˘⟨ center (⟺ swap) ⟩ (R.F₁ W i ∘ F′ g D.id) ∘ R.F₁ B h ∘ F′ f D.id ≈˘⟨ decompose₁ ⟩∘⟨ decompose₁ ⟩ F′ g i ∘ F′ f h ∎ ; F-resp-≈ = λ where {A , X} {B , Y} (eq , eq′) → ∘-resp-≈ˡ (R.F-resp-≈ B (D.∘-resp-≈ʳ (L.F-resp-≈ (R.F-resp-≈ A eq′ , eq)))) } -- LAPC: left adjoint preserves colimits. module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) (F : Functor J C) where private module F = Functor F open Col lapc : Colimit F → Colimit (L ∘F F) lapc col = Duality.coLimit⇒Colimit D (rapl (Adjoint.op L⊣R) F.op (Duality.Colimit⇒coLimit C col)) -- adjoint functors induce monads and comonads module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where private module C = Category C module D = Category D module L = Functor L module R = Functor R open Adjoint L⊣R rapl′ : ∀ {o ℓ e} → Continuous o ℓ e R rapl′ lim = rapl L⊣R _ lim , Mor.≅.refl C lapc′ : ∀ {o ℓ e} → Cocontinuous o ℓ e L lapc′ col = lapc L⊣R _ col , Mor.≅.refl D adjoint⇒monad : Monad C adjoint⇒monad = record { F = R ∘F L ; η = unit ; μ = record { η = μ′.η ; commute = μ′.commute ; sym-commute = μ′.sym-commute } ; assoc = [ R ]-resp-square (counit.commute _) ; sym-assoc = [ R ]-resp-square (counit.sym-commute _) ; identityˡ = λ {X} → begin μ′.η X ∘ R.F₁ (L.F₁ (unit.η X)) ≈⟨ [ R ]-resp-∘ zig ⟩ R.F₁ D.id ≈⟨ R.identity ⟩ C.id ∎ ; identityʳ = zag } where open C open HomReasoning μ′ : NaturalTransformation (R ∘F (L ∘F R) ∘F L) (R ∘F Categories.Functor.id ∘F L) μ′ = R ∘ˡ counit ∘ʳ L module μ′ = NaturalTransformation μ′ module _ {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where open Adjoint L⊣R adjoint⇒comonad : Comonad D adjoint⇒comonad = coMonad⇒Comonad D (adjoint⇒monad op) -- adjoint functors are the same as universal morphisms module _ {R : Functor D C} where private module C = Category C module D = Category D module R = Functor R adjoint⇒universalMorphisms : ∀ {L : Functor C D} → L ⊣ R → ∀ (X : C.Obj) → UniversalMorphism X R adjoint⇒universalMorphisms {L} L⊣R X = record { initial = record { ⊥ = record { f = unit.η X } ; ! = let open C.HomReasoning in record { commute = LRadjunct≈id ○ ⟺ C.identityʳ } ; !-unique = λ {A} g → let open D.HomReasoning in -, (begin Radjunct (f A) ≈⟨ Radjunct-resp-≈ (C.Equiv.sym (C.Equiv.trans (commute g) (C.identityʳ {f = f A}))) ⟩ Radjunct (Ladjunct (h g)) ≈⟨ RLadjunct≈id ⟩ h g ∎) } } where module L = Functor L open Adjoint L⊣R open Comma⇒ open CommaObj universalMophisms⇒adjoint : (∀ (X : C.Obj) → UniversalMorphism X R) → Σ (Functor C D) (λ L → L ⊣ R) universalMophisms⇒adjoint umors = L , record { unit = ntHelper record { η = λ c → f (umors.⊥ c) ; commute = λ i → let open C.HomReasoning in ⟺ (commute (⊥X⇒⊥Y i) ○ C.identityʳ ) } ; counit = ntHelper record { η = ε ; commute = λ {X Y} i → let open C.HomReasoning open MR C in proj₂ $ umors.!-unique₂ (R.F₀ X) {record { f = R.F₁ i }} (record { h = ε Y D.∘ L₁ (R.F₁ i) ; commute = begin R.F₁ (ε Y D.∘ L₁ (R.F₁ i)) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ (ε Y) C.∘ R.F₁ (L₁ (R.F₁ i))) C.∘ f (⊥Rd X) ≈⟨ pullʳ (commute (⊥X⇒⊥Y (R.F₁ i)) ○ C.identityʳ) ⟩ R.F₁ (ε Y) C.∘ f (⊥Rd Y) C.∘ R.F₁ i ≈⟨ cancelˡ (commute (⊥Rd⇒id Y) ○ C.identityˡ) ⟩ R.F₁ i ≈˘⟨ C.identityʳ ⟩ R.F₁ i C.∘ C.id ∎ }) (record { h = i D.∘ ε X ; commute = begin R.F₁ (i D.∘ ε X) C.∘ f (⊥Rd X) ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ i C.∘ R.F₁ (ε X)) C.∘ f (⊥Rd X) ≈⟨ cancelʳ (commute (⊥Rd⇒id X) ○ C.identityˡ) ⟩ R.F₁ i ≈˘⟨ C.identityʳ ⟩ R.F₁ i C.∘ C.id ∎ }) } ; zig = λ {c} → let open C.HomReasoning open MR C α = f (umors.⊥ c) in proj₂ $ umors.!-unique₂ c {record { f = α }} (record { h = ε (L₀ c) D.∘ L₁ α ; commute = begin R.F₁ (ε (L₀ c) D.∘ L₁ α) C.∘ α ≈⟨ R.homomorphism ⟩∘⟨refl ⟩ (R.F₁ (ε (L₀ c)) C.∘ R.F₁ (L₁ α)) C.∘ α ≈⟨ pullʳ (commute (⊥X⇒⊥Y α) ○ C.identityʳ) ⟩ R.F₁ (ε (L₀ c)) C.∘ f (⊥Rd (L₀ c)) C.∘ α ≈⟨ cancelˡ (commute (⊥Rd⇒id (L₀ c)) ○ C.identityˡ) ⟩ α ≈˘⟨ C.identityʳ ⟩ α C.∘ C.id ∎ }) (record { h = D.id ; commute = C.∘-resp-≈ˡ R.identity ○ id-comm-sym }) ; zag = λ {d} → C.Equiv.trans (commute (⊥Rd⇒id d)) C.identityˡ } where module umors X = UniversalMorphism (umors X) open CommaObj open Comma⇒ commaObj∘g : ∀ {X Y} → X C.⇒ Y → CommaObj (const! X) R commaObj∘g {X} {Y} g = record { f = f (umors.⊥ Y) C.∘ g } ⊥X⇒⊥Y : ∀ {X Y} (g : X C.⇒ Y) → (X ↙ R) [ umors.⊥ X , commaObj∘g g ] ⊥X⇒⊥Y {X} {Y} g = umors.! X {commaObj∘g g} L₀ : ∀ X → D.Obj L₀ X = β (umors.⊥ X) L₁ : ∀ {X Y} → X C.⇒ Y → β (umors.⊥ X) D.⇒ β (umors.⊥ Y) L₁ {X} {Y} g = h (⊥X⇒⊥Y g) L : Functor C D L = record { F₀ = L₀ ; F₁ = L₁ ; identity = λ {X} → proj₂ $ umors.!-unique X $ record { commute = elimˡ R.identity ○ ⟺ C.identityʳ ○ ⟺ C.identityʳ } ; homomorphism = λ {X Y Z} {i j} → proj₂ $ umors.!-unique₂ X (umors.! X) $ record { commute = begin R.F₁ (h (umors.! Y) D.∘ h (umors.! X)) C.∘ f (umors.⊥ X) ≈⟨ (C.∘-resp-≈ˡ R.homomorphism) ○ C.assoc ⟩ R.F₁ (h (umors.! Y)) C.∘ R.F₁ (h (umors.! X)) C.∘ f (umors.⊥ X) ≈⟨ (C.∘-resp-≈ʳ (commute (⊥X⇒⊥Y i) ○ C.identityʳ)) ○ C.sym-assoc ⟩ (R.F₁ (h (umors.! Y)) C.∘ f (umors.⊥ Y)) C.∘ i ≈⟨ pushˡ (commute (⊥X⇒⊥Y j) ○ C.identityʳ) ⟩ f (umors.⊥ Z) C.∘ j C.∘ i ≈˘⟨ C.identityʳ ⟩ (f (umors.⊥ Z) C.∘ j C.∘ i) C.∘ C.id ∎ } ; F-resp-≈ = λ {X} eq → proj₂ $ umors.!-unique₂ X (umors.! X) $ record { commute = commute (umors.! X) ○ C.∘-resp-≈ˡ (C.∘-resp-≈ʳ (⟺ eq)) } } where open C.HomReasoning open MR C module L = Functor L ⊥Rd : (d : D.Obj) → CommaObj (const! (R.F₀ d)) R ⊥Rd d = umors.⊥ (R.F₀ d) ⊥Rd⇒id : (d : D.Obj) → (R.F₀ d ↙ R) [ ⊥Rd d , record { f = C.id } ] ⊥Rd⇒id d = umors.! (R.F₀ d) {record { f = C.id }} ε : ∀ d → L₀ (R.F₀ d) D.⇒ d ε d = h (⊥Rd⇒id d) -- adjoint functors of a functor are isomorphic module _ (L : Functor C D) where open YP C R≃R′ : ∀ {R R′} → L ⊣ R → L ⊣ R′ → R ≃ R′ R≃R′ {R} {R′} L⊣R L⊣R′ = yoneda-NI R R′ (unlift-≃ Hom[-,R-]≃Hom[-,R′-]) where module ⊣₁ = Adjoint L⊣R module ⊣₂ = Adjoint L⊣R′ Hom[-,R-]≃Hom[-,R′-] : ⊣₁.Hom[-,R-]′ ≃ ⊣₂.Hom[-,R-]′ Hom[-,R-]≃Hom[-,R′-] = ≃.trans (≃.sym ⊣₁.Hom-NI) ⊣₂.Hom-NI module _ {R : Functor D C} where L≃L′ : ∀ {L L′} → L ⊣ R → L′ ⊣ R → L ≃ L′ L≃L′ L⊣R L′⊣R = NaturalIsomorphism.op L′≃Lᵒᵖ where module ⊣₁ = Adjoint L⊣R module ⊣₂ = Adjoint L′⊣R L′≃Lᵒᵖ = R≃R′ (Functor.op R) ⊣₂.op ⊣₁.op -- adjoint functors are preserved by natural isomorphisms module _ {L L′ : Functor C D} {R R′ : Functor D C} where private module C = Category C module D = Category D module L = Functor L module L′ = Functor L′ module R = Functor R module R′ = Functor R′ ⊣×≃⇒⊣ : L ⊣ R → L ≃ L′ → R ≃ R′ → L′ ⊣ R′ ⊣×≃⇒⊣ L⊣R L≃L′ R≃R′ = Hom-NI′⇒Adjoint (≃.trans (LiftSetoids _ _ ⓘˡ Hom[L′-,-]≃Hom[L-,-]) (≃.trans Hom-NI (LiftSetoids _ _ ⓘˡ Hom[-,R-]≃Hom[-,R′-]))) where open Adjoint L⊣R Hom[L′-,-]≃Hom[L-,-] : Hom[ D ][-,-] ∘F (L′.op ⁂ idF) ≃ Hom[ D ][-,-] ∘F (L.op ⁂ idF) Hom[L′-,-]≃Hom[L-,-] = Hom[ D ][-,-] ⓘˡ (NaturalIsomorphism.op L≃L′ ⁂ⁿⁱ ≃.refl) Hom[-,R-]≃Hom[-,R′-] : Hom[ C ][-,-] ∘F (idF ⁂ R) ≃ Hom[ C ][-,-] ∘F (idF ⁂ R′) Hom[-,R-]≃Hom[-,R′-] = Hom[ C ][-,-] ⓘˡ (≃.refl ⁂ⁿⁱ R≃R′)
{ "alphanum_fraction": 0.4800982801, "avg_line_length": 42.7296587927, "ext": "agda", "hexsha": "57107e0b353ff3c3c6fbb6cb999b59565bef3198", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Adjoint/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Adjoint/Properties.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Adjoint/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7214, "size": 16280 }
------------------------------------------------------------------------ -- An example ------------------------------------------------------------------------ module RecursiveDescent.Hybrid.Mixfix.Example where open import Data.Vec using ([]; _∷_; [_]) open import Data.List renaming ([_] to L[_]) open import Data.Product using (∃₂; ,_) open import Data.Nat using (zero; suc) open import Data.Fin using (#_) open import Data.String open import Data.Function using (_∘_) open import Relation.Binary.PropositionalEquality open import RecursiveDescent.Hybrid.Mixfix.Expr open import RecursiveDescent.Hybrid.Mixfix.Fixity import RecursiveDescent.Hybrid.Mixfix as Mixfix ------------------------------------------------------------------------ -- Operators atom : Operator closed 0 atom = operator ("•" ∷ []) • : Expr • = ⟪ atom ∙ [] ⟫ parens : Operator closed 1 parens = operator ("(" ∷ ")" ∷ []) ⟦_⟧ : Expr -> Expr ⟦ e ⟧ = ⟪ parens ∙ [ e ] ⟫ plus : Operator (infx left) 0 plus = operator ("+" ∷ []) _+_ : Expr -> Expr -> Expr e₁ + e₂ = e₁ ⟨ plus ∙ [] ⟩ e₂ minus : Operator (infx left) 0 minus = operator ("-" ∷ []) _-_ : Expr -> Expr -> Expr e₁ - e₂ = e₁ ⟨ minus ∙ [] ⟩ e₂ times : Operator (infx left) 0 times = operator ("*" ∷ []) _*_ : Expr -> Expr -> Expr e₁ * e₂ = e₁ ⟨ times ∙ [] ⟩ e₂ comma : Operator (infx left) 0 comma = operator ("," ∷ []) _,_ : Expr -> Expr -> Expr e₁ , e₂ = e₁ ⟨ comma ∙ [] ⟩ e₂ wellTyped : Operator postfx 1 wellTyped = operator ("⊢" ∷ "∶" ∷ []) _⊢_∶ : Expr -> Expr -> Expr e₁ ⊢ e₂ ∶ = e₁ ⟨ wellTyped ∙ [ e₂ ] ⟫ ------------------------------------------------------------------------ -- Precedence graph prec : List (∃₂ Operator) -> PrecedenceGraph -> PrecedenceTree prec ops = precedence (\fix -> gfilter (hasFixity fix) ops) g : PrecedenceGraph g = wt ∷ c ∷ pm ∷ t ∷ ap ∷ [] where ap = prec ((, , atom) ∷ (, , parens) ∷ []) [] t = prec ((, , times) ∷ []) (ap ∷ []) pm = prec ((, , plus) ∷ (, , minus) ∷ []) (t ∷ ap ∷ []) c = prec ((, , comma) ∷ []) (pm ∷ t ∷ ap ∷ []) wt = prec ((, , wellTyped) ∷ []) (c ∷ ap ∷ []) ------------------------------------------------------------------------ -- Some tests test : String -> List Expr test s = Mixfix.parseExpr g (map (fromList ∘ L[_]) (toList s)) -- Using an unoptimised type checker to run an inefficient parser can -- take ages… The following examples have been converted into -- postulates since I have not had the patience to wait long enough to -- see whether the left- and right-hand sides actually match. postulate ex₁ : test "•⊢•" ≡ [] ex₂ : test "(•,•)⊢∶" ≡ [] ex₃ : test "•⊢•∶" ≡ L[ • ⊢ • ∶ ] ex₄ : test "•,•+•*•⊢(•⊢•∶)∶" ≡ L[ (• , (• + (• * •))) ⊢ ⟦ • ⊢ • ∶ ⟧ ∶ ]
{ "alphanum_fraction": 0.493989071, "avg_line_length": 28.2989690722, "ext": "agda", "hexsha": "b0578fff43f7cf5376c4f6d3fa17f864938910da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Example.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Example.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Mixfix/Example.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 871, "size": 2745 }
-- Minimal propositional logic, PHOAS approach, initial encoding module Pi.Mp where -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set1 Cx = Ty -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc a -- Terms module Mp where infixl 1 _$_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> (isTrue a tc -> Tm tc c) -> (isTrue b tc -> Tm tc c) -> Tm tc c lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b) lam'' f = lam' \x -> f (var x) case'' : forall {tc a b c} -> Tm tc (a || b) -> (Tm tc a -> Tm tc c) -> (Tm tc b -> Tm tc c) -> Tm tc c case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y)) syntax lam'' (\a -> b) = lam a => b syntax pair' x y = [ x , y ] syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2 Thm : Ty -> Set1 Thm a = forall {tc} -> Tm tc a open Mp public -- Example theorems c1 : forall {a b} -> Thm (a && b <=> b && a) c1 = [ lam xy => [ snd xy , fst xy ] , lam yx => [ snd yx , fst yx ] ] c2 : forall {a b} -> Thm (a || b <=> b || a) c2 = [ lam xy => case xy of x => right x or y => left y , lam yx => case yx of y => right y or x => left x ] i1 : forall {a} -> Thm (a && a <=> a) i1 = [ lam xx => fst xx , lam x => [ x , x ] ] i2 : forall {a} -> Thm (a || a <=> a) i2 = [ lam xx => case xx of x => x or x => x , lam x => left x ] l3 : forall {a} -> Thm ((a => a) <=> TRUE) l3 = [ lam _ => lam nt => nt , lam _ => lam x => x ] l1 : forall {a b c} -> Thm (a && (b && c) <=> (a && b) && c) l1 = [ lam xyz => (let yz = snd xyz in [ [ fst xyz , fst yz ] , snd yz ]) , lam xyz => (let xy = fst xyz in [ fst xy , [ snd xy , snd xyz ] ]) ] l2 : forall {a} -> Thm (a && TRUE <=> a) l2 = [ lam xt => fst xt , lam x => [ x , lam nt => nt ] ] l4 : forall {a b c} -> Thm (a && (b || c) <=> (a && b) || (a && c)) l4 = [ lam xyz => (let x = fst xyz in case snd xyz of y => left [ x , y ] or z => right [ x , z ]) , lam xyxz => case xyxz of xy => [ fst xy , left (snd xy) ] or xz => [ fst xz , right (snd xz) ] ] l6 : forall {a b c} -> Thm (a || (b && c) <=> (a || b) && (a || c)) l6 = [ lam xyz => case xyz of x => [ left x , left x ] or yz => [ right (fst yz) , right (snd yz) ] , lam xyxz => case fst xyxz of x => left x or y => case snd xyxz of x => left x or z => right [ y , z ] ] l7 : forall {a} -> Thm (a || TRUE <=> TRUE) l7 = [ lam _ => lam nt => nt , lam t => right t ] l9 : forall {a b c} -> Thm (a || (b || c) <=> (a || b) || c) l9 = [ lam xyz => case xyz of x => left (left x) or yz => case yz of y => left (right y) or z => right z , lam xyz => case xyz of xy => case xy of x => left x or y => right (left y) or z => right (right z) ] l11 : forall {a b c} -> Thm ((a => (b && c)) <=> (a => b) && (a => c)) l11 = [ lam xyz => [ lam x => fst (xyz $ x) , lam x => snd (xyz $ x) ] , lam xyxz => lam x => [ fst xyxz $ x , snd xyxz $ x ] ] l12 : forall {a} -> Thm ((a => TRUE) <=> TRUE) l12 = [ lam _ => lam nt => nt , lam t => lam _ => t ] l13 : forall {a b c} -> Thm ((a => (b => c)) <=> ((a && b) => c)) l13 = [ lam xyz => lam xy => xyz $ fst xy $ snd xy , lam xyz => lam x => lam y => xyz $ [ x , y ] ] l16 : forall {a b c} -> Thm (((a && b) => c) <=> (a => (b => c))) l16 = [ lam xyz => lam x => lam y => xyz $ [ x , y ] , lam xyz => lam xy => xyz $ fst xy $ snd xy ] l17 : forall {a} -> Thm ((TRUE => a) <=> a) l17 = [ lam tx => tx $ (lam nt => nt) , lam x => lam _ => x ] l19 : forall {a b c} -> Thm (((a || b) => c) <=> (a => c) && (b => c)) l19 = [ lam xyz => [ lam x => xyz $ left x , lam y => xyz $ right y ] , lam xzyz => lam xy => case xy of x => fst xzyz $ x or y => snd xzyz $ y ]
{ "alphanum_fraction": 0.3950156986, "avg_line_length": 22.2532751092, "ext": "agda", "hexsha": "deb5b0d3a4374b08ec2ba5e823afa724c136b448", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Pi/Mp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Pi/Mp.agda", "max_line_length": 111, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Pi/Mp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 1930, "size": 5096 }
module Data.Num.Maximum where open import Data.Num.Core open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) ------------------------------------------------------------------------ Maximum : ∀ {b d o} → (xs : Numeral b d o) → Set Maximum {b} {d} {o} xs = (ys : Numeral b d o) → ⟦ xs ⟧ ≥ ⟦ ys ⟧ -- Maximum-unique : ∀ {b d o} -- → (max xs : Numeral b d o) -- → Maximum max -- → Maximum xs -- → ⟦ max ⟧ ≡ ⟦ xs ⟧ -- Maximum-unique max xs max-max xs-max = IsPartialOrder.antisym isPartialOrder -- (xs-max max) -- (max-max xs) Maximum-NullBase-Greatest : ∀ {d} {o} → (xs : Numeral 0 (suc d) o) → Greatest (lsd xs) → Maximum xs Maximum-NullBase-Greatest {_} {o} (x ∙) greatest (y ∙) = greatest-of-all o x y greatest Maximum-NullBase-Greatest {_} {o} (x ∙) greatest (y ∷ ys) = start Fin.toℕ y + o + ⟦ ys ⟧ * 0 ≈⟨ toℕ-NullBase y ys ⟩ Fin.toℕ y + o ≤⟨ greatest-of-all o x y greatest ⟩ Fin.toℕ x + o □ Maximum-NullBase-Greatest {_} {o} (x ∷ xs) greatest (y ∙) = start Fin.toℕ y + o ≤⟨ greatest-of-all o x y greatest ⟩ Fin.toℕ x + o ≈⟨ sym (toℕ-NullBase x xs) ⟩ Fin.toℕ x + o + ⟦ xs ⟧ * 0 □ Maximum-NullBase-Greatest {_} {o} (x ∷ xs) greatest (y ∷ ys) = start ⟦ y ∷ ys ⟧ ≈⟨ toℕ-NullBase y ys ⟩ Fin.toℕ y + o ≤⟨ greatest-of-all o x y greatest ⟩ Fin.toℕ x + o ≈⟨ sym (toℕ-NullBase x xs) ⟩ ⟦ x ∷ xs ⟧ □ Maximum⇒Greatest-LSD : ∀ {b} {d} {o} → (xs : Numeral b d o) → Maximum xs → Greatest (lsd xs) Maximum⇒Greatest-LSD xs max with Greatest? (lsd xs) Maximum⇒Greatest-LSD xs max | yes greatest = greatest Maximum⇒Greatest-LSD {b} {zero} xs max | no ¬greatest = NoDigits-explode xs Maximum⇒Greatest-LSD {b} {suc d} {o} (x ∙) max | no ¬greatest = contradiction p ¬p where ys : Numeral b (suc d) o ys = greatest-digit d ∙ p : Digit-toℕ x o ≥ ⟦ ys ⟧ p = max ys ¬p : Digit-toℕ x o ≱ ⟦ ys ⟧ ¬p = <⇒≱ $ start suc (Digit-toℕ x o) ≤⟨ +n-mono o (≤-pred (≤∧≢⇒< (bounded x) ¬greatest)) ⟩ d + o ≈⟨ sym (greatest-digit-toℕ (Fin.fromℕ d) (greatest-digit-is-the-Greatest d)) ⟩ Digit-toℕ (greatest-digit d) o ≈⟨ refl ⟩ ⟦ ys ⟧ □ Maximum⇒Greatest-LSD {b} {suc d} {o} (x ∷ xs) max | no ¬greatest = contradiction p ¬p where ys : Numeral b (suc d) o ys = greatest-digit d ∷ xs p : ⟦ x ∷ xs ⟧ ≥ ⟦ ys ⟧ p = max ys ¬p : ⟦ x ∷ xs ⟧ ≱ ⟦ ys ⟧ ¬p = <⇒≱ $ +n-mono (⟦ xs ⟧ * b) $ start suc (Digit-toℕ x o) ≤⟨ +n-mono o (≤-pred (≤∧≢⇒< (bounded x) ¬greatest)) ⟩ d + o ≈⟨ sym (greatest-digit-toℕ (Fin.fromℕ d) (greatest-digit-is-the-Greatest d)) ⟩ (Digit-toℕ (greatest-digit d) o) □ Maximum-NullBase : ∀ {d} {o} → (xs : Numeral 0 (suc d) o) → Dec (Maximum xs) Maximum-NullBase xs with Greatest? (lsd xs) Maximum-NullBase xs | yes greatest = yes (Maximum-NullBase-Greatest xs greatest) Maximum-NullBase xs | no ¬greatest = no (contraposition (Maximum⇒Greatest-LSD xs) ¬greatest) Maximum-AllZeros : ∀ {b} → (xs : Numeral b 1 0) → Maximum xs Maximum-AllZeros xs ys = reflexive $ begin ⟦ ys ⟧ ≡⟨ toℕ-AllZeros ys ⟩ zero ≡⟨ sym (toℕ-AllZeros xs) ⟩ ⟦ xs ⟧ ∎ Maximum-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → ¬ (Maximum xs) Maximum-Proper {b} {d} {o} xs proper claim = contradiction p ¬p where p : ⟦ xs ⟧ ≥ ⟦ greatest-digit d ∷ xs ⟧ p = claim (greatest-digit d ∷ xs) ¬p : ⟦ xs ⟧ ≱ ⟦ greatest-digit d ∷ xs ⟧ ¬p = <⇒≱ $ start suc ⟦ xs ⟧ ≈⟨ cong suc (sym (*-right-identity ⟦ xs ⟧)) ⟩ suc (⟦ xs ⟧ * 1) ≤⟨ s≤s (n*-mono ⟦ xs ⟧ (s≤s z≤n)) ⟩ suc (⟦ xs ⟧ * suc b) ≤⟨ +n-mono (⟦ xs ⟧ * suc b) (≤-pred proper) ⟩ d + o + ⟦ xs ⟧ * suc b ≈⟨ cong (λ w → w + ⟦ xs ⟧ * suc b) (sym (greatest-digit-toℕ (Fin.fromℕ d) (greatest-digit-is-the-Greatest d))) ⟩ ⟦ greatest-digit d ∷ xs ⟧ □ Maximum? : ∀ {b d o} → (xs : Numeral b d o) → Dec (Maximum xs) Maximum? {b} {d} {o} xs with numView b d o Maximum? xs | NullBase d o = Maximum-NullBase xs Maximum? xs | NoDigits b o = no (NoDigits-explode xs) Maximum? xs | AllZeros b = yes (Maximum-AllZeros xs) Maximum? xs | Proper b d o proper = no (Maximum-Proper xs proper)
{ "alphanum_fraction": 0.5227696902, "avg_line_length": 31.3333333333, "ext": "agda", "hexsha": "cff6b7a1e32265fbf9ff2690fc1687ceb607952b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Maximum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Maximum.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Maximum.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 1974, "size": 5358 }
module Esterel.Lang.CanFunction where open import utility hiding (module ListSet) open import Esterel.Lang open import Esterel.Environment as Env using (Env ; _←_ ; Θ ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) renaming (_≟ₛₜ_ to _≟ₛₜₛ_) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) renaming (_≟ₛₜ_ to _≟ₛₜₛₕ_) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Function using (_∘_) open import Relation.Nullary using (yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.List using (List ; [] ; _∷_ ; [_] ; _++_ ; map ; concatMap ; filter) open import Data.List.Any using (Any ; any) open import Data.Product using (_×_ ; _,_ ; _,′_ ; proj₁ ; proj₂) import Data.Nat as Nat open Nat using (ℕ ; zero ; suc) module SigSet = utility.ListSet Nat._≟_ module ShrSet = utility.ListSet Nat._≟_ module CodeSet = utility.ListSet Code._≟_ -- hide this when importing CanFunction to avoid ambiguity from sn-calculus.agda [S]-env : (S : Signal) → Env [S]-env S = Θ SigMap.[ S ↦ Signal.unknown ] ShrMap.empty VarMap.empty -- The speculative environment used in Canₛ rule and for existing signals in Canθ [S]-env-absent : (S : Signal) → Env [S]-env-absent S = Θ SigMap.[ S ↦ Signal.absent ] ShrMap.empty VarMap.empty -- Helper environment for existing signals in Canθ [S]-env-present : (S : Signal) → Env [S]-env-present S = Θ SigMap.[ S ↦ Signal.present ] ShrMap.empty VarMap.empty Can : Term → Env → SigSet.ST × CodeSet.ST × ShrSet.ST Canₛ : Term → Env → SigSet.ST Canₖ : Term → Env → CodeSet.ST Canₛₕ : Term → Env → ShrSet.ST Canₛ p θ with Can p θ ... | Ss , _ , _ = Ss Canₖ p θ with Can p θ ... | _ , ks , _ = ks Canₛₕ p θ with Can p θ ... | _ , _ , ss = ss Canθ : SigMap.Map Signal.Status → ℕ → Term → Env → SigSet.ST × CodeSet.ST × ShrSet.ST Canθₛ : SigMap.Map Signal.Status → ℕ → Term → Env → SigSet.ST Canθₖ : SigMap.Map Signal.Status → ℕ → Term → Env → CodeSet.ST Canθₛₕ : SigMap.Map Signal.Status → ℕ → Term → Env → ShrSet.ST Canθₛ sigs S p θ = proj₁ (Canθ sigs S p θ) Canθₖ sigs S p θ = proj₁ (proj₂ (Canθ sigs S p θ)) Canθₛₕ sigs S p θ = proj₂ (proj₂ (Canθ sigs S p θ)) Canθ [] S p θ = Can p θ Canθ (nothing ∷ sig') S p θ = Canθ sig' (suc S) p θ Canθ (just Signal.present ∷ sig') S p θ = Canθ sig' (suc S) p (θ ← [S]-env-present (S ₛ)) Canθ (just Signal.absent ∷ sig') S p θ = Canθ sig' (suc S) p (θ ← [S]-env-absent (S ₛ)) Canθ (just Signal.unknown ∷ sig') S p θ with any (Nat._≟_ S) (Canθₛ sig' (suc S) p (θ ← [S]-env (S ₛ))) ... | yes S∈can-p-θ←[S] = Canθ sig' (suc S) p (θ ← [S]-env (S ₛ)) ... | no S∉can-p-θ←[S] = Canθ sig' (suc S) p (θ ← [S]-env-absent (S ₛ)) Can nothin θ = [] ,′ [ Code.nothin ] ,′ [] Can pause θ = [] ,′ [ Code.pause ] ,′ [] Can (signl S p) θ = SigSet.set-remove (Canθₛ (Env.sig ([S]-env S)) 0 p θ) (Signal.unwrap S) ,′ Canθₖ (Env.sig ([S]-env S)) 0 p θ ,′ Canθₛₕ (Env.sig ([S]-env S)) 0 p θ Can (present S ∣⇒ p ∣⇒ q) θ with (Env.Sig∈ S θ) ... | yes S∈ = if ⌊ Signal.present Signal.≟ₛₜ (Env.sig-stats{S} θ S∈) ⌋ then Can p θ else if ⌊ Signal.absent Signal.≟ₛₜ Env.sig-stats{S} θ S∈ ⌋ then Can q θ else Canₛ p θ ++ Canₛ q θ ,′ Canₖ p θ ++ Canₖ q θ ,′ Canₛₕ p θ ++ Canₛₕ q θ ... | no S∉ = Canₛ p θ ++ Canₛ q θ ,′ Canₖ p θ ++ Canₖ q θ ,′ Canₛₕ p θ ++ Canₛₕ q θ Can (emit S) θ = [ (Signal.unwrap S) ] ,′ [ Code.nothin ] ,′ [] Can (p ∥ q) θ = Canₛ p θ ++ Canₛ q θ ,′ concatMap (λ k → map (Code._⊔_ k) (Canₖ q θ)) (Canₖ p θ) ,′ Canₛₕ p θ ++ Canₛₕ q θ Can (loop p) θ = Can p θ Can (loopˢ p q) θ = Can p θ Can (p >> q) θ with any (Code._≟_ Code.nothin) (Canₖ p θ) ... | no nothin∉ = Can p θ ... | yes nothin∈ = Canₛ p θ ++ Canₛ q θ ,′ (CodeSet.set-remove (Canₖ p θ) Code.nothin) ++ Canₖ q θ ,′ Canₛₕ p θ ++ Canₛₕ q θ Can (suspend p S) θ = Can p θ Can (trap p) θ = Canₛ p θ ,′ map Code.↓* (Canₖ p θ) ,′ Canₛₕ p θ Can (exit n) θ = [] ,′ [ Code.exit n ] ,′ [] Can (shared s ≔ e in: p) θ = Canₛ p θ ,′ Canₖ p θ ,′ ShrSet.set-remove (Canₛₕ p θ) (SharedVar.unwrap s) Can (s ⇐ e) θ = [] ,′ [ Code.nothin ] ,′ [ (SharedVar.unwrap s) ] Can (var x ≔ e in: p) θ = Can p θ Can (x ≔ e) θ = [] ,′ [ Code.nothin ] ,′ [] Can (if x ∣⇒ p ∣⇒ q) θ = Canₛ p θ ++ Canₛ q θ ,′ Canₖ p θ ++ Canₖ q θ ,′ Canₛₕ p θ ++ Canₛₕ q θ Can (ρ⟨ (Θ sig' shr' var') , A ⟩· p) θ = SigSet.set-subtract (Canθₛ sig' 0 p θ) (SigMap.keys sig') ,′ Canθₖ sig' 0 p θ ,′ ShrSet.set-subtract (Canθₛₕ sig' 0 p θ) (ShrMap.keys shr')
{ "alphanum_fraction": 0.6090255591, "avg_line_length": 34.5379310345, "ext": "agda", "hexsha": "7af64f5ba2982ec8c047ba2f4f91e4db6efd9557", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/CanFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/CanFunction.agda", "max_line_length": 89, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/CanFunction.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 2104, "size": 5008 }
{- Groupoid quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidQuotients.Properties where open import Cubical.HITs.GroupoidQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥; ∣_∣; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) -- Type quotients private variable ℓA ℓR ℓ : Level A : Type ℓA R : A → A → Type ℓR -- B : A // Rt → Type ℓ -- C : A // Rt → A // Rt → Type ℓ elimEq// : (Rt : BinaryRelation.isTrans R) {B : A // Rt → Type ℓ} (Bprop : (x : A // Rt) → isProp (B x)) {x y : A // Rt} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq// Rt {B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isProp (B x)) → ((a : A) → B [ a ]) → (x : A // Rt) → B x elimProp Rt Bprop f [ x ] = f x elimProp Rt Bprop f (eq// {a} {b} r i) = elimEq// Rt Bprop (eq// r) (f a) (f b) i elimProp Rt Bprop f (comp// {a} {b} {c} r s i j) = isSet→isSetDep (λ x → isProp→isSet (Bprop x)) (eq// r) (eq// (Rt a b c r s)) (λ j → [ a ]) (eq// s) (comp// r s) (λ i → elimEq// Rt Bprop (eq// r) (f a) (f b) i) (λ i → elimEq// Rt Bprop (eq// (Rt a b c r s)) (f a) (f c) i) (λ j → f a ) (λ j → elimEq// Rt Bprop (eq// s) (f b) (f c) j) i j elimProp Rt Bprop f (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (isProp→isSet (Bprop x))) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elimProp Rt Bprop f elimProp2 : (Rt : BinaryRelation.isTrans R) → {C : A // Rt → A // Rt → Type ℓ} → ((x y : A // Rt) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) → (x y : A // Rt) → C x y elimProp2 Rt Cprop f = elimProp Rt (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp Rt (λ y → Cprop [ x ] y) (f x)) []surjective : (Rt : BinaryRelation.isTrans R) → (x : A // Rt ) → ∃[ a ∈ A ] [ a ] ≡ x []surjective Rt = elimProp Rt (λ x → squash) (λ a → ∣ a , refl ∣) elimSet : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isSet (B x)) → (f : (a : A) → B [ a ]) → ({a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b)) → (x : A // Rt) → B x elimSet Rt Bset f feq [ a ] = f a elimSet Rt Bset f feq (eq// r i) = feq r i elimSet Rt Bset f feq (comp// {a} {b} {c} r s i j) = isSet→isSetDep Bset (eq// r) (eq// (Rt a b c r s)) (λ j → [ a ]) (eq// s) (comp// r s) (feq r) (feq (Rt a b c r s)) refl (feq s) i j elimSet Rt Bset f feq (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (Bset x)) _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elimSet Rt Bset f feq elim : (Rt : BinaryRelation.isTrans R) → {B : A // Rt → Type ℓ} → ((x : A // Rt) → isGroupoid (B x)) → (f : (a : A) → B [ a ]) → (feq : {a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b)) → ({a b c : A} (r : R a b) (s : R b c) → SquareP (λ i j → B (comp// r s i j)) (feq r) (feq (Rt a b c r s)) (λ j → f a) (feq s)) → (x : A // Rt) → B x elim Rt Bgpd f feq fcomp [ a ] = f a elim Rt Bgpd f feq fcomp (eq// r i) = feq r i elim Rt Bgpd f feq fcomp (comp// r s i j) = fcomp r s i j elim Rt Bgpd f feq fcomp (squash// x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 Bgpd _ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k where g = elim Rt Bgpd f feq fcomp rec : (Rt : BinaryRelation.isTrans R) → {B : Type ℓ} → isGroupoid B → (f : A → B) → (feq : {a b : A} (r : R a b) → f a ≡ f b) → ({a b c : A} (r : R a b) (s : R b c) → Square (feq r) (feq (Rt a b c r s)) refl (feq s)) → (x : A // Rt) → B rec Rt Bgpd = elim Rt (λ _ → Bgpd) module BinarySetRelation {ℓA ℓR : Level} {A : Type ℓA} (R : Rel A A ℓR) where open BinaryRelation R isSetValued : Type (ℓ-max ℓA ℓR) isSetValued = (a b : A) → isSet (R a b)
{ "alphanum_fraction": 0.5150105708, "avg_line_length": 34.5255474453, "ext": "agda", "hexsha": "591b1e66b2f511ff75e7dd9a687de04c5b9b00f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1951, "size": 4730 }
-- Andreas, 2016-10-09, re issue #2223 module Issue2223.Setoids where open import Common.Level record Setoid c ℓ : Set (lsuc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : (x y : Carrier) → Set ℓ _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y
{ "alphanum_fraction": 0.5087719298, "avg_line_length": 21.375, "ext": "agda", "hexsha": "b8e161601923fd100ede055a31d09ddba1aa81f0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2223/Setoids.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2223/Setoids.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2223/Setoids.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 145, "size": 342 }
{-# OPTIONS --safe #-} module Cubical.Foundations.Pointed.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma private variable ℓ ℓ' ℓA ℓB ℓC ℓD : Level -- the default pointed Π-type: A is pointed, and B has a base point in the chosen fiber Π∙ : (A : Pointed ℓ) (B : typ A → Type ℓ') (ptB : B (pt A)) → Type (ℓ-max ℓ ℓ') Π∙ A B ptB = Σ[ f ∈ ((a : typ A) → B a) ] f (pt A) ≡ ptB -- the unpointed Π-type becomes a pointed type if the fibers are all pointed Πᵘ∙ : (A : Type ℓ) (B : A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Πᵘ∙ A B .fst = ∀ a → typ (B a) Πᵘ∙ A B .snd a = pt (B a) -- if the base and all fibers are pointed, we have the pointed pointed Π-type Πᵖ∙ : (A : Pointed ℓ) (B : typ A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Πᵖ∙ A B .fst = Π∙ A (typ ∘ B) (pt (B (pt A))) Πᵖ∙ A B .snd .fst a = pt (B a) Πᵖ∙ A B .snd .snd = refl -- the default pointed Σ-type is just the Σ-type, but as a pointed type Σ∙ : (A : Pointed ℓ) (B : typ A → Type ℓ') (ptB : B (pt A)) → Pointed (ℓ-max ℓ ℓ') Σ∙ A B ptB .fst = Σ[ a ∈ typ A ] B a Σ∙ A B ptB .snd .fst = pt A Σ∙ A B ptB .snd .snd = ptB -- version if B is a family of pointed types Σᵖ∙ : (A : Pointed ℓ) (B : typ A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Σᵖ∙ A B = Σ∙ A (typ ∘ B) (pt (B (pt A))) _×∙_ : (A∙ : Pointed ℓ) (B∙ : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') (A∙ ×∙ B∙) .fst = (typ A∙) × (typ B∙) (A∙ ×∙ B∙) .snd .fst = pt A∙ (A∙ ×∙ B∙) .snd .snd = pt B∙ -- composition of pointed maps _∘∙_ : {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} (g : B →∙ C) (f : A →∙ B) → (A →∙ C) ((g , g∙) ∘∙ (f , f∙)) .fst x = g (f x) ((g , g∙) ∘∙ (f , f∙)) .snd = (cong g f∙) ∙ g∙ -- post composition post∘∙ : ∀ {ℓX ℓ ℓ'} (X : Pointed ℓX) {A : Pointed ℓ} {B : Pointed ℓ'} → (A →∙ B) → ((X →∙ A ∙) →∙ (X →∙ B ∙)) post∘∙ X f .fst g = f ∘∙ g post∘∙ X f .snd = ΣPathP ( (funExt λ _ → f .snd) , (sym (lUnit (f .snd)) ◁ λ i j → f .snd (i ∨ j))) -- pointed identity id∙ : (A : Pointed ℓA) → (A →∙ A) id∙ A .fst x = x id∙ A .snd = refl -- constant pointed map const∙ : (A : Pointed ℓA) (B : Pointed ℓB) → (A →∙ B) const∙ _ B .fst _ = B .snd const∙ _ B .snd = refl -- left identity law for pointed maps ∘∙-idˡ : {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → f ∘∙ id∙ A ≡ f ∘∙-idˡ f = ΣPathP ( refl , (lUnit (f .snd)) ⁻¹ ) -- right identity law for pointed maps ∘∙-idʳ : {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → id∙ B ∘∙ f ≡ f ∘∙-idʳ f = ΣPathP ( refl , (rUnit (f .snd)) ⁻¹ ) -- associativity for composition of pointed maps ∘∙-assoc : {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} {D : Pointed ℓD} (h : C →∙ D) (g : B →∙ C) (f : A →∙ B) → (h ∘∙ g) ∘∙ f ≡ h ∘∙ (g ∘∙ f) ∘∙-assoc (h , h∙) (g , g∙) (f , f∙) = ΣPathP (refl , q) where q : (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡ cong h (cong g f∙ ∙ g∙) ∙ h∙ q = ( (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡⟨ refl ⟩ (cong h (cong g f∙)) ∙ (cong h g∙ ∙ h∙) ≡⟨ assoc (cong h (cong g f∙)) (cong h g∙) h∙ ⟩ (cong h (cong g f∙) ∙ cong h g∙) ∙ h∙ ≡⟨ cong (λ p → p ∙ h∙) ((cong-∙ h (cong g f∙) g∙) ⁻¹) ⟩ (cong h (cong g f∙ ∙ g∙) ∙ h∙) ∎ ) module _ {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) where isInIm∙ : (x : typ B) → Type (ℓ-max ℓ ℓ') isInIm∙ x = Σ[ z ∈ typ A ] fst f z ≡ x isInKer∙ : (x : fst A) → Type ℓ' isInKer∙ x = fst f x ≡ snd B pre∘∙equiv : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B C : Pointed ℓ'} → (B ≃∙ C) → Iso (A →∙ B) (A →∙ C) pre∘∙equiv {A = A} {B = B} {C = C} eq = main where module _ {ℓ ℓ' : Level} (A : Pointed ℓ) (B C : Pointed ℓ') (eq : (B ≃∙ C)) where to : (A →∙ B) → (A →∙ C) to = ≃∙map eq ∘∙_ from : (A →∙ C) → (A →∙ B) from = ≃∙map (invEquiv∙ eq) ∘∙_ lem : {ℓ : Level} {B : Pointed ℓ} → ≃∙map (invEquiv∙ {A = B} ((idEquiv (fst B)) , refl)) ≡ id∙ B lem = ΣPathP (refl , (sym (lUnit _))) J-lem : {ℓ ℓ' : Level} {A : Pointed ℓ} {B C : Pointed ℓ'} → (eq : (B ≃∙ C)) → retract (to A B C eq) (from _ _ _ eq) × section (to A B C eq) (from _ _ _ eq) J-lem {A = A} {B = B} {C = C} = Equiv∙J (λ B eq → retract (to A B C eq) (from _ _ _ eq) × section (to A B C eq) (from _ _ _ eq)) ((λ f → ((λ i → (lem i ∘∙ (id∙ C ∘∙ f))) ∙ λ i → ∘∙-idʳ (∘∙-idʳ f i) i)) , λ f → ((λ i → (id∙ C ∘∙ (lem i ∘∙ f))) ∙ λ i → ∘∙-idʳ (∘∙-idʳ f i) i)) main : Iso (A →∙ B) (A →∙ C) Iso.fun main = to A B C eq Iso.inv main = from A B C eq Iso.rightInv main = J-lem eq .snd Iso.leftInv main = J-lem eq .fst post∘∙equiv : ∀ {ℓ ℓC} {A B : Pointed ℓ} {C : Pointed ℓC} → (A ≃∙ B) → Iso (A →∙ C) (B →∙ C) post∘∙equiv {A = A} {B = B} {C = C} eq = main where module _ {ℓ ℓC : Level} (A B : Pointed ℓ) (C : Pointed ℓC) (eq : (A ≃∙ B)) where to : (A →∙ C) → (B →∙ C) to = _∘∙ ≃∙map (invEquiv∙ eq) from : (B →∙ C) → (A →∙ C) from = _∘∙ ≃∙map eq lem : {ℓ : Level} {B : Pointed ℓ} → ≃∙map (invEquiv∙ {A = B} ((idEquiv (fst B)) , refl)) ≡ id∙ B lem = ΣPathP (refl , (sym (lUnit _))) J-lem : {ℓ ℓC : Level} {A B : Pointed ℓ} {C : Pointed ℓC} → (eq : (A ≃∙ B)) → retract (to A B C eq) (from _ _ _ eq) × section (to A B C eq) (from _ _ _ eq) J-lem {B = B} {C = C} = Equiv∙J (λ A eq → retract (to A B C eq) (from _ _ _ eq) × section (to A B C eq) (from _ _ _ eq)) ((λ f → ((λ i → (f ∘∙ lem i) ∘∙ id∙ B) ∙ λ i → ∘∙-idˡ (∘∙-idˡ f i) i)) , λ f → (λ i → (f ∘∙ id∙ B) ∘∙ lem i) ∙ λ i → ∘∙-idˡ (∘∙-idˡ f i) i) main : Iso (A →∙ C) (B →∙ C) Iso.fun main = to A B C eq Iso.inv main = from A B C eq Iso.rightInv main = J-lem eq .snd Iso.leftInv main = J-lem eq .fst
{ "alphanum_fraction": 0.4806895409, "avg_line_length": 35.6982248521, "ext": "agda", "hexsha": "4ef2da95d5cfca353fc44224e0030602a9f39c6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2986, "size": 6033 }
-- Andreas, 2013-09-17 module DoNotEtaContractFunIntoRecord where record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B postulate A : Set B : Set P : (B → A × B) → Set goal : (x : A) → P (λ y → x , y) goal x = {!!} -- Goal should be displayed as -- P (λ y → x , y) -- rather than as -- P (_,_ x)
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 15.5, "ext": "agda", "hexsha": "2496c012a08e24bcac4998928c862d5223ff05f9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/DoNotEtaContractFunIntoRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/DoNotEtaContractFunIntoRecord.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/DoNotEtaContractFunIntoRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 341 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote module LibraBFT.Concrete.Obligations.PreferredRound (𝓔 : EpochConfig) (𝓥 : VoteEvidence 𝓔) where open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Concrete.Intermediate 𝓔 𝓥 --------------------- -- * PreferredRound * -- --------------------- module _ {ℓ}(𝓢 : IntermediateSystemState ℓ) where open IntermediateSystemState 𝓢 -- The PreferredRound rule is a little more involved to be expressed in terms -- of /HasBeenSent/: it needs two additional pieces which are introduced -- next. -- Cand-3-chain v carries the information for estabilishing -- that v.proposed will be part of a 3-chain if a QC containing v is formed. -- The difficulty is that we can't easily access the "grandparent" of a vote. -- Instead, we must explicitly state that it exists. -- -- candidate 3-chain -- +------------------------------------------------------+ -- | | -- | 2-chain | -- +----------------------------------+ -- ⋯ <- v.grandparent <- q₁ <- v.parent <- q <- v.proposed <- v -- ̭ -- | -- The 'qc' defined below is an -- abstract view of q, above. record voteExtends (v : Vote) : Set where constructor mkVE field veBlock : Block veId : vBlockUID v ≡ bId veBlock veRounds≡ : vRound v ≡ bRound veBlock open voteExtends record Cand-3-chain-vote (v : Vote) : Set where field votesForB : voteExtends v qc : QC qc←b : Q qc ← B (veBlock votesForB) rc : RecordChain (Q qc) n : ℕ is-2chain : 𝕂-chain Contig (2 + n) rc open Cand-3-chain-vote public -- Returns the round of the head of the candidate 3-chain. In the diagram -- explaining Cand-3-chain-vote, this would be v.grandparent.round. Cand-3-chain-head-round : ∀{v} → Cand-3-chain-vote v → Round Cand-3-chain-head-round c3cand = getRound (kchainBlock (suc zero) (is-2chain c3cand)) -- The preferred round rule states a fact about the /previous round/ -- of a vote; that is, the round of the parent of the block -- being voted for; the implementation will have to -- show it can construct this parent. data VoteParentData-BlockExt : Record → Set where vpParent≡I : VoteParentData-BlockExt I vpParent≡Q : ∀{b q} → B b ← Q q → VoteParentData-BlockExt (Q q) -- TODO-2: it may be cleaner to specify this as a RC 2 vpParent vpQC, -- and we should consider it once we address the issue in -- Abstract.RecordChain (below the definition of transp-𝕂-chain) record VoteParentData (v : Vote) : Set where field vpExt : voteExtends v vpParent : Record vpExt' : vpParent ← B (veBlock vpExt) vpMaybeBlock : VoteParentData-BlockExt vpParent open VoteParentData public -- The setup for PreferredRoundRule is like thta for VotesOnce. -- Given two votes by an honest author α: Type : Set ℓ Type = ∀{α v v'} → Meta-Honest-Member α → vMember v ≡ α → HasBeenSent v → vMember v' ≡ α → HasBeenSent v' -- If v is a vote on a candidate 3-chain, that is, is a vote on a block -- that extends a 2-chain, → (c2 : Cand-3-chain-vote v) -- and the round of v is lower than that of v', → vRound v < vRound v' ------------------------------ -- then α obeyed the preferred round rule: → Σ (VoteParentData v') (λ vp → Cand-3-chain-head-round c2 ≤ round (vpParent vp)) private make-cand-3-chain : ∀{n α q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) → Cand-3-chain-vote (∈QC-Vote q v) make-cand-3-chain {q = q} (s-chain {suc (suc n)} {rc = rc} {b = b} ext₀@(Q←B h0 refl) _ ext₁@(B←Q h1 refl) c2) v with c2 ...| (s-chain {q = q₀} _ _ _ (s-chain _ _ _ c)) = record { votesForB = mkVE b (All-lookup (qVotes-C2 q) (Any-lookup-correct v)) (trans (All-lookup (qVotes-C3 q) (Any-lookup-correct v)) h1) ; qc = q₀ ; qc←b = ext₀ ; rc = rc ; n = n ; is-2chain = c2 } -- It is important that the make-cand-3-chain lemma doesn't change the head of -- the 3-chain/cand-2-chain. make-cand-3-chain-lemma : ∀{n α q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) → NonInjective-≡ bId ⊎ kchainBlock (suc zero) (is-2chain (make-cand-3-chain c3 v)) ≡ kchainBlock (suc (suc zero)) c3 make-cand-3-chain-lemma {q = q} c3@(s-chain {suc (suc n)} {rc = rc} {b = b} ext₀@(Q←B h0 refl) _ ext₁@(B←Q h1 refl) c2) v with (veBlock (Cand-3-chain-vote.votesForB (make-cand-3-chain c3 v))) ≟Block b ...| no neq = inj₁ ((veBlock (Cand-3-chain-vote.votesForB (make-cand-3-chain c3 v)) , b) , neq , trans (sym (veId (votesForB (make-cand-3-chain c3 v)))) (All-lookup (qVotes-C2 q) (∈QC-Vote-correct q v))) ...| yes b≡ with c2 ...| (s-chain {q = q₀} _ _ _ (s-chain _ _ _ c)) rewrite b≡ = inj₂ refl vdParent-prevRound-lemma : ∀{α q}(rc : RecordChain (Q q))(va : α ∈QC q) → (vp : VoteParentData (∈QC-Vote q va)) → NonInjective-≡ bId ⊎ (round (vpParent vp) ≡ prevRound rc) vdParent-prevRound-lemma {q = q} (step {r = B b} (step rc y) x@(B←Q refl refl)) va vp with b ≟Block (veBlock (vpExt vp)) ...| no imp = inj₁ ( (b , veBlock (vpExt vp)) , (imp , id-B∨Q-inj (cong id-B∨Q (trans (sym (All-lookup (qVotes-C2 q) (∈QC-Vote-correct q va))) (veId (vpExt vp)))))) ...| yes refl with ←-inj y (vpExt' vp) ...| bSameId' with y | vpExt' vp ...| I←B y0 y1 | I←B e0 e1 = inj₂ refl ...| Q←B y0 refl | Q←B e0 refl with vpMaybeBlock vp ...| vpParent≡Q {b = bP} bP←qP with rc ...| step {r = B b'} rc' b←q with b' ≟Block bP ...| no imp = inj₁ ((b' , bP) , imp , id-B∨Q-inj (lemmaS1-2 (eq-Q refl) b←q bP←qP)) ...| yes refl with bP←qP | b←q ...| B←Q refl refl | B←Q refl refl = inj₂ refl -- Finally, we can prove the preferred round rule from the global version; proof : Type → PreferredRoundRule InSys proof glob-inv α hα {q} {q'} q∈sys q'∈sys c3 va rc' va' hyp with ∈QC⇒HasBeenSent q∈sys hα va | ∈QC⇒HasBeenSent q'∈sys hα va' ...| sent-cv | sent-cv' with make-cand-3-chain c3 va | inspect (make-cand-3-chain c3) va ...| cand | [ R ] with glob-inv hα (sym (∈QC-Member q va )) sent-cv (sym (∈QC-Member q' va')) sent-cv' cand hyp ...| va'Par , res with vdParent-prevRound-lemma rc' va' va'Par ...| inj₁ hb = inj₁ hb ...| inj₂ final with make-cand-3-chain-lemma c3 va ...| inj₁ hb = inj₁ hb ...| inj₂ xx = inj₂ (subst₂ _≤_ (cong bRound (trans (cong (kchainBlock (suc zero) ∘ is-2chain) (sym R)) xx)) final res)
{ "alphanum_fraction": 0.5490522541, "avg_line_length": 41.0947368421, "ext": "agda", "hexsha": "01f223afc441fe061f051e80c67443968b4bca30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Obligations/PreferredRound.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Obligations/PreferredRound.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Obligations/PreferredRound.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2474, "size": 7808 }
{- An adaptation of Edwin Brady and Kevin Hammond's paper Scrapping your inefficient engine ... -} {-# OPTIONS --type-in-type #-} module tests.Cat where open import Prelude.Bool open import Prelude.Bot open import Prelude.IO open import Prelude.Fin open import Prelude.Eq open import Prelude.Nat open import Prelude.Product open import Prelude.String open import Prelude.Unit open import Prelude.Vec record Top : Set where constructor tt data Ty : Set where TyUnit : Ty TyBool : Ty TyLift : Set -> Ty TyHandle : Nat -> Ty interpTy : Ty -> Set interpTy TyUnit = Unit interpTy TyBool = Bool interpTy (TyLift A) = A interpTy (TyHandle n) = Fin n data Purpose : Set where Reading : Purpose Writing : Purpose getMode : Purpose -> String getMode Reading = "r" getMode Writing = "w" data FileState : Set where Open : Purpose -> FileState Closed : FileState postulate EpicFile : Set static[_] : {A : Set} → A → A static[ x ] = x {-# STATIC static[_] #-} FileVec : Nat -> Set FileVec n = Vec FileState n data FileHandle : FileState -> Set where OpenFile : ∀{p} -> EpicFile -> FileHandle (Open p) ClosedFile : FileHandle Closed data Env : ∀{n} -> FileVec n -> Set where Empty : Env [] Extend : {n : Nat}{T : FileState}{G : FileVec n} -> (res : FileHandle T) -> Env G -> Env (T :: G) addEnd : ∀{n T}{G : FileVec n} -> Env G -> FileHandle T -> Env (snoc G T) addEnd Empty fh = Extend fh Empty addEnd (Extend x xs) fh = Extend x (addEnd xs fh) updateEnv : ∀{n T}{G : FileVec n} -> Env G -> (i : Fin n) -> (fh : FileHandle T) -> Env (G [ i ]= T) updateEnv (Extend x xs) fz e = Extend e xs updateEnv (Extend x xs) (fs n) e = Extend x (updateEnv xs n e) updateEnv Empty () e bound : ∀{n : Nat} -> Fin (S n) bound {Z} = fz bound {S n} = fs (bound {n}) _==P_ : Purpose -> Purpose -> Set Reading ==P Reading = Top Reading ==P Writing = Bot Writing ==P Reading = Bot Writing ==P Writing = Top OpenH : ∀{n} -> Fin n -> Purpose -> FileVec n -> Set OpenH fz p (Open p' :: as) = p ==P p' OpenH fz p (Closed :: as) = Bot OpenH (fs i) p ( a :: as) = OpenH i p as getFile : ∀{n}{i : Fin n}{p : Purpose}{ts : FileVec n}{ope : OpenH i p ts} -> Env ts -> EpicFile getFile {Z} {()} env getFile {S y} {fz} (Extend (OpenFile y') y0) = y' getFile {S y} {fz} {ope = ()} (Extend ClosedFile y') getFile {S y} {fs y'} {ope = ope} (Extend res y0) = getFile {y} {y'} {ope = ope} y0 getPurpose : {n : Nat} -> Fin n -> FileVec n -> Purpose getPurpose f ts with ts ! f ... | Open p = p ... | Closed = Reading -- Should not happen right? FilePath : Set FilePath = String data File : ∀{n n'} -> FileVec n -> FileVec n' -> Ty -> Set where ACTION : ∀{a l}{ts : FileVec l} -> IO (interpTy a) -> File ts ts a RETURN : ∀{a l}{ts : FileVec l} -> interpTy a -> File ts ts a WHILE : ∀{l}{ts : FileVec l} -> File ts ts TyBool -> File ts ts TyUnit -> File ts ts TyUnit IF : ∀{a l}{ts : FileVec l} -> Bool -> File ts ts a -> File ts ts a -> File ts ts a BIND : ∀{a b l l' l''}{ts : FileVec l}{ts' : FileVec l'}{ts'' : FileVec l''} -> File ts ts' a -> (interpTy a -> File ts' ts'' b) -> File ts ts'' b OPEN : ∀{l}{ts : FileVec l} -> (p : Purpose) -> (fd : FilePath) -> File ts (snoc ts (Open p)) (TyHandle (S l)) CLOSE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i (getPurpose i ts) ts} -> File ts (ts [ i ]= Closed) TyUnit GETLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i Reading ts} -> File ts ts (TyLift String) EOF : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> {p : OpenH i Reading ts} -> File ts ts TyBool PUTLINE : ∀ {l}{ts : FileVec l} -> (i : Fin l) -> (str : String) -> {p : OpenH i Writing ts} -> File ts ts TyUnit postulate while : IO Bool -> IO Unit -> IO Unit fopen : FilePath -> String -> IO EpicFile fclose : EpicFile -> IO Unit fread : EpicFile -> IO String feof : EpicFile -> IO Bool fwrite : EpicFile -> String -> IO Unit {-# COMPILED_EPIC while (add : Any, body : Any, u : Unit) -> Any = %while (add(u), body(u)) #-} {-# COMPILED_EPIC fopen (fp : Any, mode : Any, u : Unit) -> Ptr = foreign Ptr "fopen" (mkString(fp) : String, mkString(mode) : String) #-} {-# COMPILED_EPIC fclose (file : Ptr, u : Unit) -> Unit = foreign Int "fclose" (file : Ptr); unit #-} {-# COMPILED_EPIC fread (file : Ptr, u : Unit) -> Any = frString(foreign String "freadStrChunk" (file : Ptr)) #-} {-# COMPILED_EPIC feof (file : Ptr, u : Unit) -> Bool = foreign Int "feof" (file : Ptr) #-} {-# COMPILED_EPIC fwrite (file : Ptr, str : Any, u : Unit) -> Unit = foreign Unit "fputs" (mkString(str) : String, file : Ptr) #-} fmap : {A B : Set} -> (A -> B) -> IO A -> IO B fmap f io = x <- io , return (f x) data MIO (A : Set) : Set where Return : A -> MIO A ABind : {B : Set} -> IO B -> (B -> MIO A) -> MIO A -- While : MIO Bool -> MIO Unit -> MIO Unit MBind : {A B : Set} -> MIO A -> (A -> MIO B) -> MIO B MBind (Return x) f = f x MBind (ABind io k) f = ABind io (λ x -> MBind (k x) f) -- MBind (While b u) f = mmap : {A B : Set} -> (A -> B) -> MIO A -> MIO B mmap f mio = MBind mio (λ x -> Return (f x)) runMIO : {A : Set} -> MIO A -> IO A runMIO (Return x) = return x runMIO (ABind io f) = x <- io , runMIO (f x) interp : ∀{n n' T}{ts : FileVec n}{ts' : FileVec n'} -> Env ts -> File ts ts' T -> MIO (Env ts' × interpTy T) interp env (ACTION io) = ABind io (λ x -> Return (env , x)) interp env (RETURN val) = Return (env , val) interp env (WHILE add body) = ABind (while (runMIO (mmap snd (interp env add))) (runMIO (mmap snd (interp env body)))) (λ _ -> Return (env , unit)) interp env (IF b t f) = if b then interp env t else interp env f interp env (BIND code k) = MBind (interp env code) (λ v -> interp (fst v) (k (snd v))) interp env (OPEN p fpath) = ABind (fopen fpath (getMode p)) (λ fh -> Return (addEnd env (OpenFile fh), bound)) interp env (CLOSE i {p = p}) = ABind (fclose (getFile {_} {i} {ope = p} env)) (\ _ -> Return (updateEnv env i ClosedFile , unit)) interp env (GETLINE i {p = p}) = ABind (fread (getFile {_} {i} {ope = p} env)) (λ x -> Return (env , x)) interp env (EOF i {p = p}) = ABind (feof (getFile {_} {i} {ope = p} env)) (\ e -> Return (env , e)) interp env (PUTLINE i str {p = p}) = ABind (fwrite (getFile {i = i} {ope = p} env) str) (λ _ -> ABind (fwrite (getFile {i = i} {ope = p} env) "\n") (λ x -> Return (env , unit))) allClosed : (n : Nat) -> FileVec n allClosed Z = [] allClosed (S n) = Closed :: allClosed n syntax BIND e (\ x -> f) = x := e % f infixl 0 BIND _%%_ : ∀{a b l l' l''}{ts : FileVec l}{ts' : FileVec l'}{ts'' : FileVec l''} -> File ts ts' a -> File ts' ts'' b -> File ts ts'' b m %% k = BIND m (λ _ -> k) infixr 0 _%%_ {- cat : File [] (Closed :: []) TyUnit cat = ( fz := OPEN Reading "tests/Cat.out" % WHILE (b := EOF fz % RETURN (not b)) ( str := GETLINE fz % ACTION (putStrLn str) ) %% CLOSE fz ) cont : Fin 1 -> File (Open Reading :: []) (Closed :: []) TyUnit cont (fs ()) cont fz = BIND (WHILE (BIND (EOF fz) (\b -> RETURN (not b))) (BIND (GETLINE fz) (\str -> ACTION (putStrLn str)) ) ) (λ x → CLOSE fz) cat : File [] (Closed :: []) TyUnit cat = BIND (OPEN Reading "hej") cont -} cont : Fin 1 -> File (Open Reading :: []) (Closed :: []) TyUnit cont (fs ()) cont fz = WHILE ( b := EOF fz % RETURN (not b)) ( str := GETLINE fz % ACTION (putStr str) ) %% CLOSE fz cat : File [] (Closed :: []) TyUnit cat = BIND (OPEN Reading "tests/Cat.out") cont copy : File [] (Closed :: Closed :: []) TyUnit copy = BIND (OPEN Reading "copy/input") (λ _ → BIND (OPEN Writing "copy/output") (λ _ → BIND (WHILE (BIND (EOF fz) (λ b → RETURN (not b))) (BIND (GETLINE fz) (λ str → PUTLINE (fs fz) str))) (λ _ → BIND (CLOSE fz) (λ _ → CLOSE (fs fz))))) runProg : {n : Nat} -> File [] (allClosed n) TyUnit -> IO Unit runProg p = runMIO (mmap snd (interp Empty p)) {-# STATIC runProg #-} main : IO Unit main = runProg cat -- static[ runProg cat ] -- main = runProg cat
{ "alphanum_fraction": 0.5626889131, "avg_line_length": 33.084, "ext": "agda", "hexsha": "64177b8ecb7bc25eb0dcbe46928347572cf1c308", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/epic/tests/Cat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/epic/tests/Cat.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/epic/tests/Cat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2815, "size": 8271 }
{-# OPTIONS --cubical --postfix-projections --safe #-} open import Relation.Binary open import Prelude module Data.List.Sort.MergeSort {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open TotalOrder totalOrder hiding (refl) open import Data.List.Sort.InsertionSort totalOrder using (insert; insert-sort) open import Data.List open import Data.List.Properties open import TreeFold open import Algebra open import Relation.Nullary.Decidable.Properties using (from-reflects) open import Path.Reasoning mergeˡ : E → (List E → List E) → List E → List E mergeˡ x xs [] = x ∷ xs [] mergeˡ x xs (y ∷ ys) = if x ≤ᵇ y then x ∷ xs (y ∷ ys) else y ∷ mergeˡ x xs ys _⋎_ : List E → List E → List E _⋎_ = foldr mergeˡ id merge-idʳ : ∀ xs → xs ⋎ [] ≡ xs merge-idʳ [] = refl merge-idʳ (x ∷ xs) = cong (x ∷_) (merge-idʳ xs) merge-assoc : Associative _⋎_ merge-assoc [] ys zs = refl merge-assoc (x ∷ xs) [] zs = cong (λ xs′ → mergeˡ x (xs′ ⋎_) zs) (merge-idʳ xs) merge-assoc (x ∷ xs) (y ∷ ys) [] = merge-idʳ ((x ∷ xs) ⋎ (y ∷ ys)) ; cong ((x ∷ xs) ⋎_) (sym (merge-idʳ (y ∷ ys))) merge-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) with merge-assoc xs (y ∷ ys) (z ∷ zs) | merge-assoc (x ∷ xs) ys (z ∷ zs) | merge-assoc (x ∷ xs) (y ∷ ys) zs | x ≤? y in x≤?y | y ≤? z in y≤?z ... | _ | _ | r | no x≰y | no y≰z rewrite y≤?z rewrite x≤?y = cong (z ∷_) r ; cong (bool′ _ _) (sym (from-reflects false (x ≤? z) (<⇒≱ (<-trans (≰⇒> y≰z) (≰⇒> x≰y))))) ... | _ | r | _ | no x≰y | yes y≤z rewrite y≤?z rewrite x≤?y = cong (y ∷_) r ... | r | _ | _ | yes x≤y | yes y≤z rewrite y≤?z rewrite x≤?y = cong (bool′ _ _) (from-reflects true (x ≤? z) (≤-trans x≤y y≤z)) ; cong (x ∷_) r merge-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) | rx≤z | _ | rx≰z | yes x≤y | no y≰z with x ≤? z ... | no x≰z rewrite x≤?y = cong (z ∷_) rx≰z ... | yes x≤z rewrite y≤?z = cong (x ∷_) rx≤z merge-sort : List E → List E merge-sort = treeFold _⋎_ [] ∘ map (_∷ []) merge-insert : ∀ x xs → (x ∷ []) ⋎ xs ≡ insert x xs merge-insert x [] = refl merge-insert x (y ∷ xs) with x ≤ᵇ y ... | false = cong (y ∷_) (merge-insert x xs) ... | true = refl merge≡insert-sort : ∀ xs → merge-sort xs ≡ insert-sort xs merge≡insert-sort xs = merge-sort xs ≡⟨⟩ treeFold _⋎_ [] (map (_∷ []) xs) ≡⟨ treeFoldHom _⋎_ [] merge-assoc (map (_∷ []) xs) ⟩ foldr _⋎_ [] (map (_∷ []) xs) ≡⟨ map-fusion _⋎_ [] (_∷ []) xs ⟩ foldr (λ x → (x ∷ []) ⋎_) [] xs ≡⟨ cong (λ f → foldr f [] xs) (funExt (funExt ∘ merge-insert)) ⟩ foldr insert [] xs ≡⟨⟩ insert-sort xs ∎
{ "alphanum_fraction": 0.5523368096, "avg_line_length": 35.4657534247, "ext": "agda", "hexsha": "72224df5a16fae5d741cc18d8bc2e7e27f335a5d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Sort/MergeSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Sort/MergeSort.agda", "max_line_length": 114, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Sort/MergeSort.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1110, "size": 2589 }
import Structure.Logic.Classical.NaturalDeduction module Structure.Logic.Classical.NaturalDeduction.Proofs {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ where open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic) open import Functional hiding (Domain) -- TODO: Move the ones which are constructive [↔]-with-[∧]ₗ : ∀{a₁ a₂ b} → Proof(a₁ ⟷ a₂) → Proof((a₁ ∧ b) ⟷ (a₂ ∧ b)) [↔]-with-[∧]ₗ (proof) = ([↔].intro (a₂b ↦ [∧].intro (([↔].elimₗ proof) ([∧].elimₗ a₂b)) ([∧].elimᵣ a₂b)) (a₁b ↦ [∧].intro (([↔].elimᵣ proof) ([∧].elimₗ a₁b)) ([∧].elimᵣ a₁b)) ) [↔]-with-[∧]ᵣ : ∀{a b₁ b₂} → Proof(b₁ ⟷ b₂) → Proof((a ∧ b₁) ⟷ (a ∧ b₂)) [↔]-with-[∧]ᵣ (proof) = ([↔].intro (ab₂ ↦ [∧].intro ([∧].elimₗ ab₂) (([↔].elimₗ proof) ([∧].elimᵣ ab₂))) (ab₁ ↦ [∧].intro ([∧].elimₗ ab₁) (([↔].elimᵣ proof) ([∧].elimᵣ ab₁))) ) [↔]-with-[∧] : ∀{a₁ a₂ b₁ b₂} → Proof(a₁ ⟷ a₂) → Proof(b₁ ⟷ b₂) → Proof((a₁ ∧ b₁) ⟷ (a₂ ∧ b₂)) [↔]-with-[∧] (a₁a₂) (b₁b₂) = ([↔].intro (a₂b₂ ↦ [∧].intro (([↔].elimₗ a₁a₂) ([∧].elimₗ a₂b₂)) (([↔].elimₗ b₁b₂) ([∧].elimᵣ a₂b₂))) (a₁b₁ ↦ [∧].intro (([↔].elimᵣ a₁a₂) ([∧].elimₗ a₁b₁)) (([↔].elimᵣ b₁b₂) ([∧].elimᵣ a₁b₁))) ) [↔]-with-[∨]ₗ : ∀{a₁ a₂ b} → Proof(a₁ ⟷ a₂) → Proof((a₁ ∨ b) ⟷ (a₂ ∨ b)) [↔]-with-[∨]ₗ (proof) = ([↔].intro ([∨].elim([∨].introₗ ∘ ([↔].elimₗ proof)) [∨].introᵣ) ([∨].elim([∨].introₗ ∘ ([↔].elimᵣ proof)) [∨].introᵣ) ) [↔]-with-[∨]ᵣ : ∀{a b₁ b₂} → Proof(b₁ ⟷ b₂) → Proof((a ∨ b₁) ⟷ (a ∨ b₂)) [↔]-with-[∨]ᵣ (proof) = ([↔].intro ([∨].elim [∨].introₗ ([∨].introᵣ ∘ ([↔].elimₗ proof))) ([∨].elim [∨].introₗ ([∨].introᵣ ∘ ([↔].elimᵣ proof))) ) [↔]-with-[∨] : ∀{a₁ a₂ b₁ b₂} → Proof(a₁ ⟷ a₂) → Proof(b₁ ⟷ b₂) → Proof((a₁ ∨ b₁) ⟷ (a₂ ∨ b₂)) [↔]-with-[∨] (a₁a₂) (b₁b₂) = ([↔].intro ([∨].elim ([∨].introₗ ∘ ([↔].elimₗ a₁a₂)) ([∨].introᵣ ∘ ([↔].elimₗ b₁b₂))) ([∨].elim ([∨].introₗ ∘ ([↔].elimᵣ a₁a₂)) ([∨].introᵣ ∘ ([↔].elimᵣ b₁b₂))) ) [↔]-with-[∀] : ∀{f g} → (∀{x} → Proof(f(x) ⟷ g(x))) → Proof((∀ₗ f) ⟷ (∀ₗ g)) [↔]-with-[∀] (proof) = ([↔].intro (allg ↦ [∀].intro(\{x} → [↔].elimₗ (proof{x}) ([∀].elim(allg){x}))) (allf ↦ [∀].intro(\{x} → [↔].elimᵣ (proof{x}) ([∀].elim(allf){x}))) ) [↔]-with-[∃] : ∀{f g} → (∀{x} → Proof(f(x) ⟷ g(x))) → Proof((∃ₗ f) ⟷ (∃ₗ g)) [↔]-with-[∃] (proof) = ([↔].intro ([∃].elim(\{x} → gx ↦ [∃].intro{_}{x}([↔].elimₗ (proof{x}) (gx)))) ([∃].elim(\{x} → fx ↦ [∃].intro{_}{x}([↔].elimᵣ (proof{x}) (fx)))) ) -- [→]-with-[∀] : ∀{p f g} → (∀{x} → Proof(f(x) ⟶ g(x))) → Proof((∀ₗ f) ⟶ (∀ₗ g)) -- [→]-with-[∀] (proof) = -- [→]-with-[∀] : ∀{p f g} → (∀{x} → Proof(f(x) ⟶ g(x))) → Proof(∀ₗ(x ↦ p(x) ⟶ f(x))) → Proof(∀ₗ(x ↦ p(x) ⟶ g(x))) -- [→]-with-[∀] (proof) = [∨][∧]-distributivityₗ : ∀{a b c} → Proof((a ∨ (b ∧ c)) ⟷ (a ∨ b)∧(a ∨ c)) [∨][∧]-distributivityₗ = ([↔].intro (a∨b∧a∨c ↦ ([∨].elim (a ↦ [∨].introₗ a) (b ↦ ([∨].elim (a ↦ [∨].introₗ a) (c ↦ [∨].introᵣ([∧].intro b c)) ([∧].elimᵣ a∨b∧a∨c) ) ) ([∧].elimₗ a∨b∧a∨c) ) ) (a∨b∧c ↦ ([∨].elim (a ↦ [∧].intro([∨].introₗ a)([∨].introₗ a)) (b∧c ↦ [∧].intro([∨].introᵣ([∧].elimₗ b∧c))([∨].introᵣ([∧].elimᵣ b∧c))) (a∨b∧c) ) ) ) [∨][∧]-distributivityᵣ : ∀{a b c} → Proof(((a ∧ b) ∨ c) ⟷ (a ∨ c)∧(b ∨ c)) [∨][∧]-distributivityᵣ = ([↔].intro (a∨c∧b∨c ↦ ([∨].elim (a ↦ ([∨].elim (b ↦ [∨].introₗ([∧].intro a b)) (c ↦ [∨].introᵣ c) ([∧].elimᵣ a∨c∧b∨c) ) ) (c ↦ [∨].introᵣ c) ([∧].elimₗ a∨c∧b∨c) ) ) (a∧b∨c ↦ ([∨].elim (a∧b ↦ [∧].intro([∨].introₗ([∧].elimₗ a∧b))([∨].introₗ([∧].elimᵣ a∧b))) (c ↦ [∧].intro([∨].introᵣ c)([∨].introᵣ c)) (a∧b∨c) ) ) ) [∧][∨]-distributivityₗ : ∀{a b c} → Proof((a ∧ (b ∨ c)) ⟷ (a ∧ b)∨(a ∧ c)) [∧][∨]-distributivityₗ = ([↔].intro (a∧b∨a∧c ↦ ([∨].elim (a∧b ↦ [∧].intro([∧].elimₗ a∧b)([∨].introₗ([∧].elimᵣ a∧b))) (a∧c ↦ [∧].intro([∧].elimₗ a∧c)([∨].introᵣ([∧].elimᵣ a∧c))) (a∧b∨a∧c) ) ) (a∧b∨c ↦ ([∨].elim (b ↦ [∨].introₗ([∧].intro([∧].elimₗ a∧b∨c)(b))) (c ↦ [∨].introᵣ([∧].intro([∧].elimₗ a∧b∨c)(c))) ([∧].elimᵣ a∧b∨c) ) ) ) [∧][∨]-distributivityᵣ : ∀{a b c} → Proof(((a ∨ b) ∧ c) ⟷ (a ∧ c)∨(b ∧ c)) [∧][∨]-distributivityᵣ = ([↔].intro (a∧c∨b∧c ↦ ([∨].elim (a∧c ↦ [∧].intro([∨].introₗ([∧].elimₗ a∧c))([∧].elimᵣ a∧c)) (b∧c ↦ [∧].intro([∨].introᵣ([∧].elimₗ b∧c))([∧].elimᵣ b∧c)) (a∧c∨b∧c) ) ) (a∨b∧c ↦ ([∨].elim (a ↦ [∨].introₗ([∧].intro(a)([∧].elimᵣ a∨b∧c))) (b ↦ [∨].introᵣ([∧].intro(b)([∧].elimᵣ a∨b∧c))) ([∧].elimₗ a∨b∧c) ) ) ) postulate [≡]-substitute-this-is-almost-trivial : ∀{φ : Domain → Formula}{a b} → Proof(((a ≡ b) ∧ φ(a)) ⟷ φ(b)) postulate [→][∧]-distributivityₗ : ∀{X Y Z} → Proof((X ⟶ (Y ∧ Z)) ⟷ ((X ⟶ Y) ∧ (X ⟶ Z))) postulate [∀]-unrelatedₗ-[→] : ∀{P : Domain → Formula}{Q : Formula} → Proof(∀ₗ(x ↦ (P(x) ⟶ Q)) ⟷ (∃ₗ(x ↦ P(x)) ⟶ Q)) postulate [∀]-unrelatedᵣ-[→] : ∀{P : Formula}{Q : Domain → Formula} → Proof(∀ₗ(x ↦ (P ⟶ Q(x))) ⟷ (P ⟶ ∀ₗ(x ↦ Q(x)))) postulate [∃]-unrelatedₗ-[→] : ∀{P : Domain → Formula}{Q : Formula} → Proof(∃ₗ(x ↦ (P(x) ⟶ Q)) ⟷ (∀ₗ(x ↦ P(x)) ⟶ Q)) postulate [∃]-unrelatedᵣ-[→] : ∀{P : Formula}{Q : Domain → Formula} → Proof(∃ₗ(x ↦ (P ⟶ Q(x))) ⟷ (P ⟶ ∃ₗ(x ↦ Q(x)))) -- TODO: Is equivalence unprovable? I think so Unique-unrelatedᵣ-[→]ᵣ : ∀{P : Formula}{Q : Domain → Formula} → Proof(Unique(x ↦ (P ⟶ Q(x))) ⟶ (P ⟶ Unique(x ↦ Q(x)))) Unique-unrelatedᵣ-[→]ᵣ {P}{Q} = [→].intro(uniquepq ↦ [→].intro(p ↦ [∀].intro(\{x} → [∀].intro(\{y} → [→].intro(qxqy ↦ ([→].elim ([∀].elim([∀].elim uniquepq{x}){y}) (([↔].elimᵣ [→][∧]-distributivityₗ) ([→].intro(p ↦ qxqy))) ) ))))) -- Proving these equivalent: -- ∀ₗ(x ↦ ∀ₗ(y ↦ (P ⟶ Q(x)) ∧ (P ⟶ Q(y)) ⟶ (x ≡ y)) -- P ⟶ ∀ₗ(x ↦ ∀ₗ(y ↦ Q(x) ∧ Q(y) ⟶ (x ≡ y)) -- test : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ (P ⟶ Q(x)) ∧ (P ⟶ Q(y)) ⟶ (x ≡ y))) ⟷ ∀ₗ(x ↦ ∀ₗ(y ↦ (P ⟶ Q(x) ∧ Q(y)) ⟶ (x ≡ y)))) -- test = ([↔]-with-[∀] ([↔]-with-[∀] ([→][∧]-distributivityₗ))) -- TODO: Is left provable? Above left seems unprovable [∃!]-unrelatedᵣ-[→]ᵣ : ∀{P : Formula}{Q : Domain → Formula} → Proof(∃ₗ!(x ↦ (P ⟶ Q(x))) ⟶ (P ⟶ ∃ₗ!(x ↦ Q(x)))) [∃!]-unrelatedᵣ-[→]ᵣ {P}{Q} = ([→].intro(proof ↦ ([↔].elimₗ [→][∧]-distributivityₗ) ([∧].intro (([↔].elimᵣ [∃]-unrelatedᵣ-[→]) ([∧].elimₗ proof)) (([→].elim Unique-unrelatedᵣ-[→]ᵣ) ([∧].elimᵣ proof)) ) )) -- TODO: I think this is similar to the skolemization process of going from ∀∃ to ∃function∀ [∃]-fn-witness : ∀{P : Domain → Domain → Formula} → ⦃ _ : Proof(∀ₗ(x ↦ ∃ₗ(y ↦ P(x)(y)))) ⦄ → Domain → Domain [∃]-fn-witness{P} ⦃ proof ⦄ (x) = [∃]-witness ⦃ [∀].elim(proof){x} ⦄ [∃]-fn-proof : ∀{P : Domain → Domain → Formula} → ⦃ p : Proof(∀ₗ(x ↦ ∃ₗ(y ↦ P(x)(y)))) ⦄ → Proof(∀ₗ(x ↦ P(x)([∃]-fn-witness{P} ⦃ p ⦄ (x)))) [∃]-fn-proof{P} ⦃ proof ⦄ = ([∀].intro(\{x} → [∃]-proof {P(x)} ⦃ [∀].elim proof{x} ⦄ )) [∃!]-fn-witness : ∀{P : Domain → Domain → Formula} → ⦃ _ : Proof(∀ₗ(x ↦ ∃ₗ!(y ↦ P(x)(y)))) ⦄ → Domain → Domain [∃!]-fn-witness{P} ⦃ proof ⦄ (x) = [∃!]-witness ⦃ [∀].elim(proof){x} ⦄ {- [∃!]-fn-proof : ∀{P : Domain → Domain → Formula} → ⦃ p : Proof(∀ₗ(x ↦ ∃ₗ!(y ↦ P(x)(y)))) ⦄ → Proof(∀ₗ(x ↦ P(x)([∃!]-fn-witness{P} ⦃ p ⦄ (x)))) [∃!]-fn-proof{P} ⦃ proof ⦄ = ([∀].intro(\{x} → [∃!]-proof {P(x)} ⦃ [∀].elim proof{x} ⦄ )) -} [∃!]-fn-proof : ∀{P : Domain → Domain → Formula} → ⦃ p : Proof(∀ₗ(x ↦ ∃ₗ!(y ↦ P(x)(y)))) ⦄ → ∀{x} → Proof(P(x)([∃!]-fn-witness{P} ⦃ p ⦄ (x))) [∃!]-fn-proof{P} ⦃ proof ⦄ {x} = [∃!]-proof {P(x)} ⦃ [∀].elim proof{x} ⦄ postulate [∃!]-fn-unique : ∀{P : Domain → Domain → Formula} → ⦃ p : Proof(∀ₗ(x ↦ ∃ₗ!(y ↦ P(x)(y)))) ⦄ → ∀{x} → Proof(∀ₗ(y ↦ P(x)(y) ⟶ (y ≡ [∃!]-fn-witness{P} ⦃ p ⦄ (x))))
{ "alphanum_fraction": 0.4217240525, "avg_line_length": 35.4122807018, "ext": "agda", "hexsha": "20aad6ce089d86b2754c8dc1a1d1b0ae6f7c5160", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Classical/NaturalDeduction/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Classical/NaturalDeduction/Proofs.agda", "max_line_length": 170, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Classical/NaturalDeduction/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4460, "size": 8074 }
{-# OPTIONS --without-K #-} -- Note that this is properly named, but it does depend on our version of -- Equiv and TypeEquiv for a number of things. module Data.SumProd.Properties where open import Data.Empty using (⊥) open import Data.Unit using (⊤) open import Data.Sum using (_⊎_; inj₁; inj₂) renaming (map to map⊎) open import Data.Product using (_×_; _,_) renaming (map to map×) import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Function using (id; _∘_) open import Equiv using (_∼_; sym∼) open import TypeEquiv using (unite₊; uniti₊; swap₊; assocl₊; assocr₊; unite⋆; uniti⋆; unite⋆′; uniti⋆′; swap⋆; assocl⋆; assocr⋆; distz; distzr; factorz; factorzr; dist; factor; distl; factorl) infixr 1 _⊎→_ infixr 4 _×→_ _⊎→_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (A → C) → (B → D) → (A ⊎ B → C ⊎ D) _⊎→_ = map⊎ _×→_ : ∀ {a b p q} {A : Set a} {B : Set b} {P : Set p} {Q : Set q} → (A → B) → (P → Q) → (A × P) → (B × Q) f ×→ g = λ { (x , y) → (f x , g y) } ------------------------------------------------------------------------------ -- Note that all these lemmas are "simple" in the sense that they -- are all about map⊎ rather than [_,_] distl-coh : {A B C D E F : Set} → {f : A → D} {g : B → E} {h : C → F} → distl ∘ (f ×→ (g ⊎→ h)) ∼ ((f ×→ g) ⊎→ (f ×→ h)) ∘ distl distl-coh (a , inj₁ x) = P.refl distl-coh (a , inj₂ y) = P.refl factorl-coh : {A B C D E F : Set} → {f : A → D} {g : B → E} {h : C → F} → (f ×→ (g ⊎→ h)) ∘ factorl ∼ factorl ∘ ((f ×→ g) ⊎→ (f ×→ h)) factorl-coh (inj₁ (a , b)) = P.refl factorl-coh (inj₂ (a , c)) = P.refl dist-coh : {A B C D E F : Set} → {f : A → D} {g : B → E} {h : C → F} → dist ∘ ((f ⊎→ g) ×→ h) ∼ ((f ×→ h) ⊎→ (g ×→ h)) ∘ dist dist-coh (inj₁ x , c) = P.refl dist-coh (inj₂ y , c) = P.refl factor-coh : {A B C D E F : Set} → {f : A → D} {g : B → E} {h : C → F} → ((f ⊎→ g) ×→ h) ∘ factor ∼ factor ∘ ((f ×→ h) ⊎→ (g ×→ h)) factor-coh (inj₁ x) = P.refl factor-coh (inj₂ y) = P.refl -- note how this is true without relying on ⊥ as input distzr-coh : {A B : Set} → {f : A → B} → {g : ⊥ → ⊥} → distzr ∘ (f ×→ g) ∼ g ∘ distzr distzr-coh _ = P.refl -- but this is only true because of ⊥ factorzr-coh : {A B : Set} → {f : B → A} → {g : ⊥ → ⊥} → (f ×→ g) ∘ factorzr ∼ factorzr ∘ g factorzr-coh () -- note how this is true without relying on ⊥ as input distz-coh : {A B : Set} → {f : A → B} → {g : ⊥ → ⊥} → distz ∘ (g ×→ f) ∼ g ∘ distz distz-coh _ = P.refl -- but this is only true because of ⊥ factorz-coh : {A B : Set} → {f : B → A} → {g : ⊥ → ⊥} → (g ×→ f) ∘ factorz ∼ factorz ∘ g factorz-coh () --------------------------------------------------------------- -- various coherence lemmas -- These will be named for the action they perform on the -- underlying type, rather than for the program they -- represent. A×[B⊎C]→[A×C]⊎[A×B] : {A B C : Set} → distl ∘ (id {A = A} ×→ swap₊ {B} {C}) ∼ swap₊ ∘ distl A×[B⊎C]→[A×C]⊎[A×B] (x , inj₁ y) = P.refl A×[B⊎C]→[A×C]⊎[A×B] (x , inj₂ y) = P.refl [A×C]⊎[A×B]→A×[B⊎C] : {A B C : Set} → (id ×→ swap₊) ∘ factorl ∼ factorl ∘ swap₊ {A × C} {A × B} [A×C]⊎[A×B]→A×[B⊎C] (inj₁ x) = P.refl [A×C]⊎[A×B]→A×[B⊎C] (inj₂ y) = P.refl [A⊎B]×C→[C×A]⊎[C×B] : {A B C : Set} → (swap⋆ ⊎→ swap⋆) ∘ dist ∼ distl ∘ swap⋆ {A ⊎ B} {C} [A⊎B]×C→[C×A]⊎[C×B] (inj₁ x , z) = P.refl [A⊎B]×C→[C×A]⊎[C×B] (inj₂ y , z) = P.refl [C×A]⊎[C×B]→[A⊎B]×C : {A B C : Set} → factor ∘ (swap⋆ {C} {A} ⊎→ swap⋆ {C} {B}) ∼ swap⋆ ∘ factorl [C×A]⊎[C×B]→[A⊎B]×C (inj₁ x) = P.refl [C×A]⊎[C×B]→[A⊎B]×C (inj₂ y) = P.refl -- × binds tighter than ⊎ (in the name) [A⊎B⊎C]×D→[A×D⊎B×D]⊎C×D : {A B C D : Set} → (dist ⊎→ id) ∘ dist ∘ (assocl₊ {A} {B} {C} ×→ id {A = D}) ∼ assocl₊ ∘ (id ⊎→ dist) ∘ dist [A⊎B⊎C]×D→[A×D⊎B×D]⊎C×D (inj₁ x , d) = P.refl [A⊎B⊎C]×D→[A×D⊎B×D]⊎C×D (inj₂ (inj₁ x) , d) = P.refl [A⊎B⊎C]×D→[A×D⊎B×D]⊎C×D (inj₂ (inj₂ y) , d) = P.refl [A×D⊎B×D]⊎C×D→[A⊎B⊎C]×D : {A B C D : Set} → (assocr₊ ×→ id) ∘ factor ∘ (factor {A} {B} {D} ⊎→ id {A = C × D}) ∼ factor ∘ (id ⊎→ factor) ∘ assocr₊ [A×D⊎B×D]⊎C×D→[A⊎B⊎C]×D (inj₁ (inj₁ x)) = P.refl [A×D⊎B×D]⊎C×D→[A⊎B⊎C]×D (inj₁ (inj₂ y)) = P.refl [A×D⊎B×D]⊎C×D→[A⊎B⊎C]×D (inj₂ y) = P.refl A×B×[C⊎D]→[A×B]×C⊎[A×B]×D : {A B C D : Set} → distl ∘ assocl⋆ {A} {B} {C ⊎ D} ∼ (assocl⋆ ⊎→ assocl⋆) ∘ distl ∘ (id ×→ distl) A×B×[C⊎D]→[A×B]×C⊎[A×B]×D (a , b , inj₁ x) = P.refl A×B×[C⊎D]→[A×B]×C⊎[A×B]×D (a , b , inj₂ y) = P.refl [A×B]×C⊎[A×B]×D→A×B×[C⊎D] : {A B C D : Set} → assocr⋆ ∘ factorl {A × B} {C} {D} ∼ (id ×→ factorl) ∘ factorl ∘ (assocr⋆ ⊎→ assocr⋆) [A×B]×C⊎[A×B]×D→A×B×[C⊎D] (inj₁ x) = P.refl [A×B]×C⊎[A×B]×D→A×B×[C⊎D] (inj₂ y) = P.refl -- in theory, this actually says that all ⊥ are equal! -- the annotations can be inferred, but this makes it -- clearer still 0×0→0 : distz {⊥} ∼ distzr {⊥} 0×0→0 (() , ()) 0→0×0 : factorz {⊥} ∼ factorzr {⊥} 0→0×0 () 0×[A⊎B]→0 : {A B : Set} → distz ∼ unite₊ ∘ (distz ⊎→ distz) ∘ distl {⊥} {A} {B} 0×[A⊎B]→0 (() , inj₁ _) 0×[A⊎B]→0 (_ , inj₂ _) = P.refl 0→0×[A⊎B] : {A B : Set} → factorz ∼ factorl {B = A} {B} ∘ (factorz ⊎→ factorz) ∘ uniti₊ 0→0×[A⊎B] () 0×1→0 : unite⋆′ {⊥} ∼ distz {⊤} 0×1→0 _ = P.refl 0→0×1 : uniti⋆′ {⊥} ∼ factorz {⊤} 0→0×1 () A×0→0 : {A : Set} → distzr {A} ∼ distz ∘ swap⋆ A×0→0 _ = P.refl 0→A×0 : {A : Set} → factorzr {A} ∼ swap⋆ ∘ factorz 0→A×0 () 0×A×B→0 : {A B : Set} → distz ∼ distz ∘ (distz ×→ id) ∘ assocl⋆ {⊥} {A} {B} 0×A×B→0 _ = P.refl 0→0×A×B : {A B : Set} → factorz ∼ assocr⋆ {B = A} {B} ∘ (factorz ×→ id) ∘ factorz 0→0×A×B () A×0×B→0 : {A B : Set} → distzr ∘ (id ×→ distz) ∼ distz ∘ (distzr ×→ id) ∘ assocl⋆ {A} {⊥} {B} A×0×B→0 _ = P.refl 0→A×0×B : {A B : Set} → (id ×→ factorz {B}) ∘ factorzr {A} ∼ assocr⋆ ∘ (factorzr ×→ id) ∘ factorz 0→A×0×B () A×[0+B]→A×B : {A B : Set} → (id {A = A} ×→ unite₊ {B}) ∼ unite₊ ∘ (distzr ⊎→ id) ∘ distl A×[0+B]→A×B (_ , inj₁ ()) A×[0+B]→A×B (_ , inj₂ _) = P.refl A×B→A×[0+B] : {A B : Set} → (id ×→ uniti₊) ∼ factorl ∘ (factorzr ⊎→ id) ∘ uniti₊ {A × B} A×B→A×[0+B] (_ , _) = P.refl 1×[A⊎B]→A⊎B : {A B : Set} → unite⋆ ∼ (unite⋆ ⊎→ unite⋆) ∘ distl {⊤} {A} {B} 1×[A⊎B]→A⊎B (tt , inj₁ x) = P.refl 1×[A⊎B]→A⊎B (tt , inj₂ y) = P.refl A⊎B→1×[A⊎B] : {A B : Set} → uniti⋆ ∼ factorl ∘ (uniti⋆ {A} ⊎→ uniti⋆ {B}) A⊎B→1×[A⊎B] (inj₁ x) = P.refl A⊎B→1×[A⊎B] (inj₂ y) = P.refl [A⊎B]×[C⊎D]→[[A×C⊎B×C]⊎A×D]⊎B×D : {A B C D : Set} → assocl₊ ∘ (dist ⊎→ dist) ∘ distl ∼ (assocl₊ ⊎→ id) ∘ ((id ⊎→ swap₊) ⊎→ id) ∘ (assocr₊ ⊎→ id) ∘ assocl₊ ∘ (distl ⊎→ distl) ∘ dist {A} {B} {C ⊎ D} [A⊎B]×[C⊎D]→[[A×C⊎B×C]⊎A×D]⊎B×D (inj₁ x , inj₁ x₁) = P.refl [A⊎B]×[C⊎D]→[[A×C⊎B×C]⊎A×D]⊎B×D (inj₁ x , inj₂ y) = P.refl [A⊎B]×[C⊎D]→[[A×C⊎B×C]⊎A×D]⊎B×D (inj₂ y , inj₁ x) = P.refl [A⊎B]×[C⊎D]→[[A×C⊎B×C]⊎A×D]⊎B×D (inj₂ y , inj₂ y₁) = P.refl [[A×C⊎B×C]⊎A×D]⊎B×D→[A⊎B]×[C⊎D] : {A B C D : Set} → factorl ∘ (factor ⊎→ factor) ∘ assocr₊ ∼ factor ∘ (factorl ⊎→ factorl) ∘ assocr₊ ∘(assocl₊ ⊎→ id) ∘ ((id ⊎→ swap₊) ⊎→ id) ∘ (assocr₊ {A × C} ⊎→ id {A = B × D}) [[A×C⊎B×C]⊎A×D]⊎B×D→[A⊎B]×[C⊎D] (inj₁ (inj₁ (inj₁ (a , c)))) = P.refl [[A×C⊎B×C]⊎A×D]⊎B×D→[A⊎B]×[C⊎D] (inj₁ (inj₁ (inj₂ (b , c)))) = P.refl [[A×C⊎B×C]⊎A×D]⊎B×D→[A⊎B]×[C⊎D] (inj₁ (inj₂ (a , d))) = P.refl [[A×C⊎B×C]⊎A×D]⊎B×D→[A⊎B]×[C⊎D] (inj₂ (b , d)) = P.refl ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4546536224, "avg_line_length": 34.5388127854, "ext": "agda", "hexsha": "e2168899a27a5d3c29c358b35e1660486e87a93e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Data/SumProd/Properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Data/SumProd/Properties.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Data/SumProd/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4375, "size": 7564 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Object.Product {o ℓ e} (C : Category o ℓ e) where open Category C open Equiv open import Function using (flip) open import Level open import Function using (flip) open import Categories.Support.PropositionalEquality open import Categories.Square open GlueSquares C -- Borrowed from Dan Doel's definition of products record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where infix 10 ⟨_,_⟩ field A×B : Obj π₁ : A×B ⇒ A π₂ : A×B ⇒ B ⟨_,_⟩ : ∀ {C} → (C ⇒ A) → (C ⇒ B) → (C ⇒ A×B) .commute₁ : ∀ {C} {f : C ⇒ A} {g : C ⇒ B} → π₁ ∘ ⟨ f , g ⟩ ≡ f .commute₂ : ∀ {C} {f : C ⇒ A} {g : C ⇒ B} → π₂ ∘ ⟨ f , g ⟩ ≡ g .universal : ∀ {C} {f : C ⇒ A} {g : C ⇒ B} {i : C ⇒ A×B} → π₁ ∘ i ≡ f → π₂ ∘ i ≡ g → ⟨ f , g ⟩ ≡ i .g-η : ∀ {C} {f : C ⇒ A×B} → ⟨ π₁ ∘ f , π₂ ∘ f ⟩ ≡ f g-η = universal refl refl .η : ⟨ π₁ , π₂ ⟩ ≡ id η = universal identityʳ identityʳ .⟨⟩-cong₂ : ∀ {C} → {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≡ f′ → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g′ ⟩ ⟨⟩-cong₂ f≡f′ g≡g′ = universal (trans commute₁ (sym f≡f′)) (trans commute₂ (sym g≡g′)) .⟨⟩∘ : ∀ {C D} {f : C ⇒ A} {g : C ⇒ B} {q : D ⇒ C} → ⟨ f , g ⟩ ∘ q ≡ ⟨ f ∘ q , g ∘ q ⟩ ⟨⟩∘ = sym (universal (pullˡ commute₁) (pullˡ commute₂)) import Categories.Morphisms open Categories.Morphisms C private module Lemmas {A B : Obj} where open Product {A} {B} renaming (⟨_,_⟩ to _⟨_,_⟩) repack : (p₁ p₂ : Product A B) → A×B p₁ ⇒ A×B p₂ repack p₁ p₂ = p₂ ⟨ π₁ p₁ , π₂ p₁ ⟩ .repack∘ : (p₁ p₂ p₃ : Product A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≡ repack p₁ p₃ repack∘ p₁ p₂ p₃ = sym (universal p₃ (glueTrianglesʳ (commute₁ p₃) (commute₁ p₂)) (glueTrianglesʳ (commute₂ p₃) (commute₂ p₂))) .repack≡id : (p : Product A B) → repack p p ≡ id repack≡id p = η p .repack-cancel : (p₁ p₂ : Product A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≡ id repack-cancel p₁ p₂ = trans (repack∘ p₂ p₁ p₂) (repack≡id p₂) up-to-iso : ∀ {A B} → (p₁ p₂ : Product A B) → Product.A×B p₁ ≅ Product.A×B p₂ up-to-iso p₁ p₂ = record { f = repack p₁ p₂ ; g = repack p₂ p₁ ; iso = record { isoˡ = repack-cancel p₂ p₁ ; isoʳ = repack-cancel p₁ p₂ } } where open Lemmas transport-by-iso : ∀ {A B} → (p : Product A B) → ∀ {X} → Product.A×B p ≅ X → Product A B transport-by-iso p {X} p≅X = record { A×B = X ; π₁ = p.π₁ ∘ g ; π₂ = p.π₂ ∘ g ; ⟨_,_⟩ = λ h₁ h₂ → f ∘ p ⟨ h₁ , h₂ ⟩ ; commute₁ = trans (cancelInner isoˡ) p.commute₁ ; commute₂ = trans (cancelInner isoˡ) p.commute₂ ; universal = λ {_ l r i} pfˡ pfʳ → let open HomReasoning in begin f ∘ p ⟨ l , r ⟩ ↑⟨ ∘-resp-≡ʳ (p.⟨⟩-cong₂ pfˡ pfʳ) ⟩ f ∘ p ⟨ (p.π₁ ∘ g) ∘ i , (p.π₂ ∘ g) ∘ i ⟩ ↓⟨ ∘-resp-≡ʳ (p.universal (sym assoc) (sym assoc)) ⟩ f ∘ (g ∘ i) ↓⟨ cancelLeft isoʳ ⟩ i ∎ } where module p = Product p open Product using () renaming (⟨_,_⟩ to _⟨_,_⟩) open _≅_ p≅X Reversible : ∀ {A B} → (p : Product A B) → Product B A Reversible p = record { A×B = p.A×B ; π₁ = p.π₂ ; π₂ = p.π₁ ; ⟨_,_⟩ = flip p.⟨_,_⟩ ; commute₁ = p.commute₂ ; commute₂ = p.commute₁ ; universal = flip p.universal } where module p = Product p Commutative : ∀ {A B} (p₁ : Product A B) (p₂ : Product B A) → Product.A×B p₁ ≅ Product.A×B p₂ Commutative p₁ p₂ = up-to-iso p₁ (Reversible p₂) Associable : ∀ {X Y Z} (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) → Product (Product.A×B p₁) Z Associable p₁ p₂ p₃ = record { A×B = A×B p₃ ; π₁ = p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ; π₂ = π₂ p₂ ∘ π₂ p₃ ; ⟨_,_⟩ = λ f g → p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ; commute₁ = λ {_ f g} → let open HomReasoning in begin p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ↓⟨ ⟨⟩∘ p₁ ⟩ p₁ ⟨ π₁ p₃ ∘ p₃ ⟨ π₁ p₁ ∘ f , _ ⟩ , (π₁ p₂ ∘ π₂ p₃) ∘ p₃ ⟨ _ , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ⟩ ↓⟨ ⟨⟩-cong₂ p₁ (commute₁ p₃) (glueTrianglesˡ (commute₁ p₂) (commute₂ p₃)) ⟩ p₁ ⟨ π₁ p₁ ∘ f , π₂ p₁ ∘ f ⟩ ↓⟨ g-η p₁ ⟩ f ∎ ; commute₂ = λ {_ f g} → glueTrianglesˡ (commute₂ p₂) (commute₂ p₃) ; universal = λ {D l r i} pfˡ pfʳ → let open HomReasoning in begin p₃ ⟨ π₁ p₁ ∘ l , p₂ ⟨ π₂ p₁ ∘ l , r ⟩ ⟩ ↑⟨ ⟨⟩-cong₂ p₃ (∘-resp-≡ʳ pfˡ) (⟨⟩-cong₂ p₂ (∘-resp-≡ʳ pfˡ) pfʳ) ⟩ p₃ ⟨ π₁ p₁ ∘ (p₁ ⟨ π₁ p₃ , _ ⟩ ∘ i) , p₂ ⟨ π₂ p₁ ∘ (p₁ ⟨ _ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i) , (π₂ p₂ ∘ π₂ p₃) ∘ i ⟩ ⟩ ↓⟨ ⟨⟩-cong₂ p₃ (pullˡ (commute₁ p₁)) (⟨⟩-cong₂ p₂ (pullˡ (commute₂ p₁)) refl) ⟩ p₃ ⟨ π₁ p₃ ∘ i , p₂ ⟨ (π₁ p₂ ∘ π₂ p₃) ∘ i , (π₂ p₂ ∘ π₂ p₃) ∘ i ⟩ ⟩ ↓⟨ ⟨⟩-cong₂ p₃ refl (universal p₂ (sym assoc) (sym assoc)) ⟩ p₃ ⟨ π₁ p₃ ∘ i , π₂ p₃ ∘ i ⟩ ↓⟨ g-η p₃ ⟩ i ∎ } where open Product renaming (⟨_,_⟩ to _⟨_,_⟩) Associative : ∀ {X Y Z} (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) (p₄ : Product (Product.A×B p₁) Z) → (Product.A×B p₃) ≅ (Product.A×B p₄) Associative p₁ p₂ p₃ p₄ = up-to-iso (Associable p₁ p₂ p₃) p₄ open Lemmas public Mobile : ∀ {A₁ B₁ A₂ B₂} (p : Product A₁ B₁) → A₁ ≅ A₂ → B₁ ≅ B₂ → Product A₂ B₂ Mobile p A₁≅A₂ B₁≅B₂ = record { A×B = p.A×B ; π₁ = f A₁≅A₂ ∘ p.π₁ ; π₂ = f B₁≅B₂ ∘ p.π₂ ; ⟨_,_⟩ = λ h k → p ⟨ g A₁≅A₂ ∘ h , g B₁≅B₂ ∘ k ⟩ ; commute₁ = let open HomReasoning in begin (f A₁≅A₂ ∘ p.π₁) ∘ p ⟨ g A₁≅A₂ ∘ _ , g B₁≅B₂ ∘ _ ⟩ ↓⟨ pullʳ p.commute₁ ⟩ f A₁≅A₂ ∘ (g A₁≅A₂ ∘ _) ↓⟨ cancelLeft (isoʳ A₁≅A₂) ⟩ _ ∎ ; commute₂ = let open HomReasoning in begin (f B₁≅B₂ ∘ p.π₂) ∘ p ⟨ g A₁≅A₂ ∘ _ , g B₁≅B₂ ∘ _ ⟩ ↓⟨ pullʳ p.commute₂ ⟩ f B₁≅B₂ ∘ (g B₁≅B₂ ∘ _) ↓⟨ cancelLeft (isoʳ B₁≅B₂) ⟩ _ ∎ ; universal = λ pfˡ pfʳ → p.universal (switch-fgˡ A₁≅A₂ (trans (sym assoc) pfˡ)) (switch-fgˡ B₁≅B₂ (trans (sym assoc) pfʳ)) } where module p = Product p open Product renaming (⟨_,_⟩ to _⟨_,_⟩) open _≅_
{ "alphanum_fraction": 0.5185432676, "avg_line_length": 32.7103825137, "ext": "agda", "hexsha": "e778beb7c92a5edeb304f784fdb6e06e947c4e8a", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Product.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Product.agda", "max_line_length": 167, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2973, "size": 5986 }
module Issue280 where data PreModel (C : Set) (M : C → Set) : Set → Set where model : (c : C) → PreModel C M (M c) reflect : (C : Set)(M : C → Set) → PreModel C M C → C reflect .(M c) M (model c) = c
{ "alphanum_fraction": 0.5582524272, "avg_line_length": 20.6, "ext": "agda", "hexsha": "54c9e5a09664ea704f0721a17ab0b592caa50b77", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue280.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue280.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue280.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 206 }
module Div where data True : Set where trivial : True data False : Set where data Nat : Set where zero : Nat suc : Nat -> Nat NonZero : Nat -> Set NonZero zero = False NonZero (suc _) = True divHelp : Nat -> Nat -> Nat -> Nat divHelp zero zero c = suc zero divHelp zero (suc y) c = zero divHelp (suc x) zero c = suc (divHelp x c c) divHelp (suc x) (suc y) c = divHelp x y c div : (x y : Nat) -> NonZero y -> Nat div x zero () div zero (suc y) _ = zero div (suc x) (suc y) _ = divHelp (suc x) (suc y) y n1 = suc zero n2 = suc n1 n3 = suc n2 n4 = suc n3 n5 = suc n4 n6 = suc n5 n7 = suc n6 n8 = suc n7 n9 = suc n8 n10 = suc n9 n11 = suc n10 n12 = suc n11
{ "alphanum_fraction": 0.5928057554, "avg_line_length": 16.9512195122, "ext": "agda", "hexsha": "bfe89d433c05b71adb417752b14eb8052bbdd009", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Div.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Div.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Div.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 287, "size": 695 }
{-# OPTIONS -v treeless.opt.final:20 -v 0 #-} module Word where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Word renaming (primWord64ToNat to toNat) open import Agda.Builtin.Equality open import Agda.Builtin.Unit open import Agda.Builtin.IO open import Agda.Builtin.FromNat open import Agda.Builtin.String open import Agda.Builtin.Strict instance NumWord : Number Word64 Number.Constraint NumWord _ = ⊤ fromNat {{NumWord}} n = primWord64FromNat n NumNat : Number Nat Number.Constraint NumNat _ = ⊤ fromNat {{NumNat}} n = n natOp : (Nat → Nat → Nat) → Word64 → Word64 → Word64 natOp f a b = fromNat (f (toNat a) (toNat b)) {-# INLINE natOp #-} _^_ : Nat → Nat → Nat a ^ zero = 1 a ^ suc n = a * a ^ n 2⁶⁴ : Nat 2⁶⁴ = 2 ^ 64 {-# STATIC 2⁶⁴ #-} addWord : Word64 → Word64 → Word64 addWord = natOp _+_ subWord : Word64 → Word64 → Word64 subWord = natOp λ a b → a + 2⁶⁴ - b mulWord : Word64 → Word64 → Word64 mulWord = natOp _*_ {-# INLINE addWord #-} {-# INLINE subWord #-} {-# INLINE mulWord #-} -- div/mod data ⊥ : Set where NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc _) = ⊤ div : (a b : Nat) {{nz : NonZero b}} → Nat div a 0 {{}} div a (suc b) = div-helper 0 b a b mod : (a b : Nat) {{nz : NonZero b}} → Nat mod a 0 {{}} mod a (suc b) = mod-helper 0 b a b {-# INLINE div #-} {-# INLINE mod #-} NonZeroWord : Word64 → Set NonZeroWord a = NonZero (toNat a) divWord : (a b : Word64) {{nz : NonZeroWord b}} → Word64 divWord a b = fromNat (div (toNat a) (toNat b)) modWord : (a b : Word64) {{nz : NonZeroWord b}} → Word64 modWord a b = fromNat (mod (toNat a) (toNat b)) {-# INLINE divWord #-} {-# INLINE modWord #-} -- Comparison -- eqWord : Word64 → Word64 → Bool eqWord a b = toNat a == toNat b ltWord : Word64 → Word64 → Bool ltWord a b = toNat a < toNat b {-# INLINE eqWord #-} {-# INLINE ltWord #-} postulate showWord : Word64 → String putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# COMPILE GHC showWord = Data.Text.pack . show #-} {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} {-# COMPILE JS showWord = function(x) { return x.toString(); } #-} {-# COMPILE JS putStrLn = function (x) { return function(cb) { process.stdout.write(x + "\n"); cb(0); }; } #-} 2^63 : Word64 2^63 = addWord 1 (divWord (subWord 0 1) 2) test : Word64 test = addWord (addWord 2^63 100) (addWord 2^63 1) prf : test ≡ 101 prf = refl prf' : eqWord test 101 ≡ true prf' = refl main : IO ⊤ main = putStrLn (showWord test) -- Some checks for treeless optimisations ltDouble : Word64 → Word64 → Bool ltDouble x y = ltWord (mulWord 2 x) y lt4x : Word64 → Word64 → Bool lt4x x y = primForce (mulWord 2 x) ltDouble y
{ "alphanum_fraction": 0.6424131627, "avg_line_length": 22.0564516129, "ext": "agda", "hexsha": "d4b9a7a604d26c2b790a685268faafc6a57a3091", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Word.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Word.agda", "max_line_length": 110, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Word.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 930, "size": 2735 }
{-# OPTIONS --cubical --safe #-} module Data.Sigma.Base where open import Agda.Builtin.Sigma using (Σ; _,_; fst; snd) public open import Level open import Path ∃ : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃ {A = A} = Σ A infixr 4.5 ∃-syntax ∃-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃-syntax = ∃ syntax ∃-syntax (λ x → e) = ∃[ x ] e infixr 4.5 Σ⦂-syntax Σ⦂-syntax : (A : Type a) (B : A → Type b) → Type (a ℓ⊔ b) Σ⦂-syntax = Σ syntax Σ⦂-syntax t (λ x → e) = Σ[ x ⦂ t ] e infixr 4.5 _×_ _×_ : (A : Type a) → (B : Type b) → Type (a ℓ⊔ b) A × B = Σ A λ _ → B curry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) uncurry : ∀ {A : Type a} {B : A → Type b} {C : Σ A B → Type c} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y map-Σ : ∀ {p q} {P : A → Set p} {Q : B → Set q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map-Σ f g (x , y) = (f x , g y) map₁ : (A → B) → A × C → B × C map₁ f = map-Σ f (λ x → x) map₁-Σ : ∀ {A : Set a} {B : Set b} {C : B → Set b} → (f : A → B) → Σ A (λ x → C (f x)) → Σ B C map₁-Σ f (x , y) = f x , y map₂ : ∀ {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f = map-Σ (λ x → x) f ∃! : ∀ {a b} {A : Type a} → (A → Type b) → Type (a ℓ⊔ b) ∃! B = ∃ λ x → B x × (∀ {y} → B y → x ≡ y) infixr 4.5 ∃!-syntax ∃!-syntax : ∀ {a b} {A : Type a} (B : A → Type b) → Type (a ℓ⊔ b) ∃!-syntax = ∃! syntax ∃!-syntax (λ x → e) = ∃![ x ] e
{ "alphanum_fraction": 0.4110169492, "avg_line_length": 25.8125, "ext": "agda", "hexsha": "7880ae83bb636896f827c01e5f1801a011568b9d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Sigma/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Sigma/Base.agda", "max_line_length": 65, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Sigma/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 848, "size": 1652 }
{-# OPTIONS --safe --without-K #-} module Data.Unit.UniversePolymorphic where open import Level record ⊤ {ℓ} : Type ℓ where instance constructor tt
{ "alphanum_fraction": 0.7284768212, "avg_line_length": 18.875, "ext": "agda", "hexsha": "d47373f73ec22a944cac73aa691be784bf5d3ded", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Unit/UniversePolymorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Unit/UniversePolymorphic.agda", "max_line_length": 51, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Unit/UniversePolymorphic.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 38, "size": 151 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Polyn-nPoly where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.UnivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly1-1Poly open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X] open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X] open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr) private variable ℓ : Level ----------------------------------------------------------------------------- -- Definition Equiv-Polyn-nPoly : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nUnivariatePoly A' n) Equiv-Polyn-nPoly A' zero = CRE-Poly0-A A' Equiv-Polyn-nPoly A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n) ∘-ecr (lift-equiv-poly _ _ (Equiv-Polyn-nPoly A' n) 1 ∘-ecr CRE-Poly1-Poly: (nUnivariatePoly A' n))
{ "alphanum_fraction": 0.7091412742, "avg_line_length": 40.1111111111, "ext": "agda", "hexsha": "d9b39329fcc39afe713650ab478281e3eeaa8794", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Polyn-nPoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Polyn-nPoly.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Polyn-nPoly.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 428, "size": 1444 }
------------------------------------------------------------------------ -- Weakening for the NBE values ------------------------------------------------------------------------ import Axiom.Extensionality.Propositional as E import Level open import Data.Universe -- The code makes use of the assumption that propositional equality of -- functions is extensional. module README.DependentlyTyped.NBE.Weakening (Uni₀ : Universe Level.zero Level.zero) (ext : E.Extensionality Level.zero Level.zero) where open import Data.Product renaming (curry to c) open import deBruijn.Substitution.Data open import Function.Base hiding (_∋_) import README.DependentlyTyped.NBE.Value as Value open Value Uni₀ renaming ([_] to [̌_]) import README.DependentlyTyped.NormalForm as NF open NF Uni₀ renaming ([_] to [_]n) import README.DependentlyTyped.NormalForm.Substitution as NFS open NFS Uni₀ import README.DependentlyTyped.Term as Term; open Term Uni₀ import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning mutual -- Weakening. w̌k[_] : ∀ {Γ} σ τ → V̌alue Γ τ → V̌alue (Γ ▻ σ) (τ /̂ ŵk) w̌k[ _ ] (⋆ , τ) t = t /⊢n Renaming.wk w̌k[ _ ] (el , τ) [ t ]el = [ t /⊢n Renaming.wk ]el w̌k[ σ ] (π _ _ , τ) f = (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) , w̌k-π-well-behaved τ f w̌k : ∀ {Γ σ} τ → V̌alue Γ τ → V̌alue (Γ ▻ σ) (τ /̂ ŵk) w̌k τ v = w̌k[ _ ] τ v abstract -- The Π case of weakening is well-behaved. w̌k-π-well-behaved : ∀ {Γ σ sp₁ sp₂} τ (f : V̌alue Γ (π sp₁ sp₂ , τ)) → W̌ell-behaved sp₁ sp₂ (τ /̂I ŵk) (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) w̌k-π-well-behaved {σ = σ} τ f Γ₊ v = let lemma = begin [ ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π /̂Val ŵk₊ Γ₊ ] ≡⟨ /̂Val-cong (P.sym $ w̌eaken-corresponds-π τ f) P.refl ⟩ [ ⟦̌_⟧ {σ = τ} f /̂Val ŵk[ σ ] /̂Val ŵk₊ Γ₊ ] ≡⟨ P.refl ⟩ [ ⟦̌ τ ∣ proj₁ f ⟧-π /̂Val ŵk₊ (σ ◅ Γ₊) ] ∎ in begin [ (⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π /̂Val ŵk₊ Γ₊ ) ˢ ⟦̌ v ⟧ ] ≡⟨ ˢ-cong lemma P.refl ⟩ [ (⟦̌ τ ∣ proj₁ f ⟧-π /̂Val ŵk₊ (σ ◅ Γ₊)) ˢ ⟦̌ v ⟧ ] ≡⟨ proj₂ f (σ ◅ Γ₊) v ⟩ [ ⟦̌ proj₁ f (σ ◅ Γ₊) v ⟧ ] ∎ -- The Π case of weakening weakens. w̌eaken-corresponds-π : ∀ {Γ σ sp₁ sp₂} τ (f : V̌alue Γ (π sp₁ sp₂ , τ)) → ⟦̌_⟧ {σ = τ} f /̂Val ŵk[ σ ] ≅-Value ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π w̌eaken-corresponds-π {σ = σ} τ f = let f̌ = ⟦̌_⟧ {σ = τ} f in begin [ f̌ /̂Val ŵk[ σ ] ] ≡⟨ P.refl ⟩ [ c ((f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε)) ˢ lookup zero) ] ≡⟨ curry-cong $ ˢ-cong (P.refl {x = [ f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε) ]}) (P.sym $ ňeutral-to-normal-identity _ _) ⟩ [ c ((f̌ /̂Val ŵk₊ (σ ◅ fst τ /̂ ŵk ◅ ε)) ˢ ⟦ žero _ _ ⟧n) ] ≡⟨ curry-cong $ proj₂ f (σ ◅ fst τ /̂ ŵk ◅ ε) _ ⟩ [ c ⟦̌ proj₁ f (σ ◅ fst τ /̂ ŵk ◅ ε) (řeflect _ (var zero)) ⟧ ] ≡⟨ P.sym $ unfold-⟦̌∣⟧-π (τ /̂I ŵk) (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟩ [ ⟦̌ τ /̂I ŵk ∣ (λ Γ₊ → proj₁ f (σ ◅ Γ₊)) ⟧-π ] ∎ -- Weakening. w̌eaken : ∀ {Γ} {σ : Type Γ} → [ V̌al ⟶ V̌al ] ŵk[ σ ] w̌eaken = record { function = w̌k ; corresponds = corr } where abstract -- Weakening weakens. corr : ∀ {Γ σ} τ (v : V̌alue Γ τ) → ⟦̌ v ⟧ /̂Val ŵk[ σ ] ≅-Value ⟦̌ w̌k[ σ ] τ v ⟧ corr (⋆ , τ) t = t /⊢n-lemma Renaming.wk corr (el , τ) [ t ]el = t /⊢n-lemma Renaming.wk corr (π sp₁ sp₂ , τ) f = w̌eaken-corresponds-π τ f -- Variables can be turned into values. v̌ar : [ Var ⟶⁼ V̌al ] v̌ar = record { function = λ _ x → řeflect _ (var x) ; corresponds = λ _ x → P.sym $ ňeutral-to-normal-identity _ (var x) } -- Values can be turned into terms. -- -- This definition uses the assumption that propositional equality of -- functions is extensional. I don't know how much work is required to -- avoid this assumption, or if it is even possible to do so. V̌al↦Tm : V̌al ↦ Tm V̌al↦Tm = record { trans = record { function = λ _ v → ⌊ řeify _ v ⌋ ; corresponds = λ _ _ → P.refl } ; simple = record { weaken = w̌eaken ; var = v̌ar ; weaken-var = w̌eaken-v̌ar _ } } where open Renaming hiding (var) abstract w̌eaken-v̌ar : ∀ {Γ σ} τ (x : Γ ∋ τ) → w̌k[ σ ] τ (v̌ar ⊙ x) ≅-V̌alue v̌ar ⊙ suc[ σ ] x w̌eaken-v̌ar (⋆ , τ) x = begin [̌ var (x /∋ wk) ] ≡⟨ ≅-⊢n-⇒-≅-Value-⋆ $ var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk x ⟩ [̌ var (suc x) ] ∎ w̌eaken-v̌ar (el , τ) x = begin [̌ [ var (x /∋ wk) ]el ] ≡⟨ ≅-⊢n-⇒-≅-Value-el $ var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk x ⟩ [̌ [ var (suc x) ]el ] ∎ w̌eaken-v̌ar {σ = σ} (π _ _ , τ) x = ,-cong ext λ Γ₊ v → begin [̌ řeflect _ ((var x /⊢n wk₊ (σ ◅ Γ₊)) · řeify _ v) ] ≡⟨ řeflect-cong $ ·n-cong (var-n-cong $ ≅-⊢-⇒-≅-∋ $ /∋-wk₊-◅ x Γ₊) (P.refl {x = [ řeify _ v ]n}) ⟩ [̌ řeflect _ ((var (suc x) /⊢n wk₊ Γ₊) · řeify _ v) ] ∎ module V̌al-subst = _↦_ V̌al↦Tm
{ "alphanum_fraction": 0.4486545854, "avg_line_length": 38.2027972028, "ext": "agda", "hexsha": "4d46e5f5ca856fb3e0792e1fb92a1f63bf57f377", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/NBE/Weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/NBE/Weakening.agda", "max_line_length": 137, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/NBE/Weakening.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 2448, "size": 5463 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Grothendieck where -- The construction of a 1-Category from a (contravariant) -- pseudofunctor into Cats (as a bicategory) open import Level open import Data.Product using (Σ; _,_) open import Function using (_$_) open import Relation.Binary using (IsEquivalence) open import Categories.Category open import Categories.Bicategory using (Bicategory) open import Categories.Bicategory.Instance.Cats open import Categories.Bicategory.Construction.1-Category open import Categories.Functor renaming (id to idF) open import Categories.Morphism using (Iso) open import Categories.Pseudofunctor open import Categories.NaturalTransformation hiding (id) private variable o ℓ e o′ ℓ′ e′ : Level module _ {C : Category o ℓ e} {b} (P : Pseudofunctor (1-Category b (Category.op C)) (Cats o′ ℓ′ e′)) where open Pseudofunctor P renaming (P₁ to PF; assoc to P-assoc) open Functor using () renaming (F₀ to _$₀_; F₁ to _$₁_) open NaturalTransformation private infix 4 _≈_ _⇒_ infixr 9 _∘_ module B = Bicategory (1-Category b (Category.op C)) module C = Category C module _ {x y} where open Functor (PF {x} {y}) public renaming (F₀ to P₁; F₁ to P₂; F-resp-≈ to P-resp-≈) open Functor module _ {x y : C.Obj} where open Category (P₀ x) open HomReasoning -- A helper lemma. P-resp-Iso : ∀ {f g : C [ x , y ]} (eq : C [ f ≈ g ]) {a} → Iso (P₀ x) (η (P₂ eq) a) (η (P₂ $ C.Equiv.sym eq) a) P-resp-Iso eq {a} = record { isoˡ = begin η (P₂ $ C.Equiv.sym eq) a ∘ η (P₂ eq) a ≈˘⟨ homomorphism PF ⟩ η (P₂ $ C.Equiv.trans eq (C.Equiv.sym eq)) a ≈⟨ P-resp-≈ _ ⟩ η (P₂ C.Equiv.refl) a ≈⟨ identity PF ⟩ id ∎ ; isoʳ = begin η (P₂ eq) a ∘ η (P₂ $ C.Equiv.sym eq) a ≈˘⟨ homomorphism PF ⟩ η (P₂ $ C.Equiv.trans (C.Equiv.sym eq) eq) a ≈⟨ P-resp-≈ _ ⟩ η (P₂ C.Equiv.refl) a ≈⟨ identity PF ⟩ id ∎ } -- Objects and morphism Obj : Set (o ⊔ o′) Obj = Σ C.Obj (λ x → Category.Obj $ P₀ x) _⇒_ : Obj → Obj → Set (ℓ ⊔ ℓ′) (x₁ , a₁) ⇒ (x₂ , a₂) = Σ (x₁ C.⇒ x₂) λ f → P₀ x₁ [ a₁ , P₁ f $₀ a₂ ] -- Pairwise equivalence -- -- The second components of equal morphisms don't live in the same -- homset because their domains don't agree 'on the nose'. Hence -- the second components are equal only up to coherent iso. This -- substantially complicates the proofs of associativity, the unit -- laws and functionality of composition. _≈_ : ∀ {A B} (f₁ f₂ : A ⇒ B) → Set (e ⊔ e′) _≈_ {x₁ , a₁} {x₂ , a₂} (f₁ , g₁) (f₂ , g₂) = Σ (f₁ C.≈ f₂) λ eq → η (P₂ $ eq) a₂ D.∘ g₁ D.≈ g₂ where module D = Category (P₀ x₁) -- Identity and composition id : ∀ {A} → A ⇒ A id {_ , a} = C.id , η (unitˡ.η _) a _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C _∘_ {x₁ , a₁} {_ , a₂} {_ , a₃} (f₁ , g₁) (f₂ , g₂) = f₁ C.∘ f₂ , (η (Hom.η (f₂ , f₁)) a₃ D.∘ P₁ f₂ $₁ g₁) D.∘ g₂ where module D = Category (P₀ x₁) -- Associativity and unit laws. -- -- Because the second component of equality only holds up to -- coherent iso, we need to invoke the coherence conditions -- associated with the pseudofunctor P to establish associativity. -- -- Once we realize this, the proofs are not particularly hard, but -- long and tedious (especially that of associativity), mostly -- because they involve re-arranging lots of parentheses via -- manual application of the underlying associativity laws. assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) assoc {x₁ , _} {x₂ , _} {x₃ , a₃} {_ , a₄} {f₁ , g₁} {f₂ , g₂} {f₃ , g₃} = C.assoc , (begin η (P₂ C.assoc) a₄ ∙ (η (Hom.η (f₁ , f₃ C.∘ f₂)) a₄ ∙ P₁ f₁ $₁ ((η (Hom.η (f₂ , f₃)) a₄ E.∘ P₁ f₂ $₁ g₃) E.∘ g₂)) ∙ g₁ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ F-resp-≈ (P₁ f₁) E.assoc ⟩ η (P₂ C.assoc) a₄ ∙ (η (Hom.η (f₁ , f₃ C.∘ f₂)) a₄ ∙ P₁ f₁ $₁ (η (Hom.η (f₂ , f₃)) a₄ E.∘ P₁ f₂ $₁ g₃ E.∘ g₂)) ∙ g₁ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ homomorphism (P₁ f₁) ⟩ η (P₂ C.assoc) a₄ ∙ (η (Hom.η (f₁ , f₃ C.∘ f₂)) a₄ ∙ P₁ f₁ $₁ η (Hom.η (f₂ , f₃)) a₄ ∙ P₁ f₁ $₁ (P₁ f₂ $₁ g₃ E.∘ g₂)) ∙ g₁ ≈˘⟨ D.assoc then D.Equiv.sym $ ∘-resp-≈ʳ D.assoc then ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ D.assoc ⟩ (η (P₂ C.assoc) a₄ ∙ η (Hom.η (f₁ , f₃ C.∘ f₂)) a₄ ∙ P₁ f₁ $₁ η (Hom.η (f₂ , f₃)) a₄) ∙ P₁ f₁ $₁ (P₁ f₂ $₁ g₃ E.∘ g₂) ∙ g₁ ≈˘⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ ∘-resp-≈ʳ (D.identityʳ then D.identityʳ) ⟩ (η (P₂ C.assoc) a₄ ∙ η (Hom.η (f₁ , f₃ C.∘ f₂)) a₄ ∙ (P₁ f₁ $₁ η (Hom.η (f₂ , f₃)) a₄ ∙ D.id) ∙ D.id) ∙ P₁ f₁ $₁ ((P₁ f₂ $₁ g₃) E.∘ g₂) ∙ g₁ ≈˘⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ P-assoc ⟩ (η (P₂ C.assoc) a₄ ∙ η (P₂ C.sym-assoc) a₄ ∙ η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id ∙ η (Hom.η (f₁ , f₂)) (P₁ f₃ $₀ a₄)) ∙ P₁ f₁ $₁ ((P₁ f₂ $₁ g₃) E.∘ g₂) ∙ g₁ ≈˘⟨ ∘-resp-≈ˡ D.assoc ⟩ ((η (P₂ C.assoc) a₄ ∙ η (P₂ C.sym-assoc) a₄) ∙ η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id ∙ η (Hom.η (f₁ , f₂)) (P₁ f₃ $₀ a₄)) ∙ P₁ f₁ $₁ ((P₁ f₂ $₁ g₃) E.∘ g₂) ∙ g₁ ≈⟨ ∘-resp-≈ˡ $ ∘-resp-≈ˡ $ (sym (homomorphism PF) then P-resp-≈ _ then identity PF) ⟩ (D.id ∙ η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id ∙ η (Hom.η (f₁ , f₂)) (P₁ f₃ $₀ a₄)) ∙ P₁ f₁ $₁ ((P₁ f₂ $₁ g₃) E.∘ g₂) ∙ g₁ ≈⟨ ∘-resp-≈ D.identityˡ (∘-resp-≈ˡ $ homomorphism (P₁ f₁) ) ⟩ (η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id ∙ η (Hom.η (f₁ , f₂)) (P₁ f₃ $₀ a₄)) ∙ (P₁ f₁ $₁ (P₁ f₂ $₁ g₃) ∙ P₁ f₁ $₁ g₂) ∙ g₁ ≈⟨ ∘-resp-≈ (D.Equiv.sym D.assoc) D.assoc then D.assoc then ∘-resp-≈ʳ (D.Equiv.sym D.assoc) ⟩ (η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id) ∙ (η (Hom.η (f₁ , f₂)) (P₁ f₃ $₀ a₄) ∙ P₁ f₁ $₁ (P₁ f₂ $₁ g₃)) ∙ P₁ f₁ $₁ g₂ ∙ g₁ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ (commute (Hom.η (f₁ , f₂)) g₃) ⟩ (η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ P₁ (f₂ C.∘ f₁) $₁ F.id) ∙ (P₁ (f₂ C.∘ f₁) $₁ g₃ ∙ η (Hom.η (f₁ , f₂)) a₃) ∙ P₁ f₁ $₁ g₂ ∙ g₁ ≈⟨ ∘-resp-≈ˡ (∘-resp-≈ʳ (identity (P₁ (f₂ C.∘ f₁))) then D.identityʳ) ⟩ η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ (P₁ (f₂ C.∘ f₁) $₁ g₃ ∙ η (Hom.η (f₁ , f₂)) a₃) ∙ P₁ f₁ $₁ g₂ ∙ g₁ ≈⟨ ∘-resp-≈ʳ D.assoc then D.Equiv.sym D.assoc then ∘-resp-≈ʳ (D.Equiv.sym D.assoc) ⟩ (η (Hom.η (f₂ C.∘ f₁ , f₃)) a₄ ∙ (P₁ (f₂ C.∘ f₁) $₁ g₃)) ∙ (η (Hom.η (f₁ , f₂)) a₃ ∙ (P₁ f₁ $₁ g₂)) ∙ g₁ ∎) where module D = Category (P₀ x₁) module E = Category (P₀ x₂) module F = Category (P₀ x₃) open D renaming (_∘_ to _∙_) infixl -5 _then_ _then_ = Equiv.trans open HomReasoning identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityˡ {x₁ , _} {_ , a₂} {f , g} = C.identityˡ , (begin η (P₂ C.identityˡ) a₂ ∙ ((η (Hom.η (f , C.id)) a₂ ∙ P₁ f $₁ η (unitˡ.η _) a₂) ∙ g) ≈˘⟨ D.assoc ⟩ (η (P₂ C.identityˡ) a₂ ∙ (η (Hom.η (f , C.id)) a₂ ∙ P₁ f $₁ η (unitˡ.η _) a₂)) ∙ g ≈˘⟨ ∘-resp-≈ˡ (∘-resp-≈ʳ (∘-resp-≈ʳ D.identityʳ)) ⟩ (η (P₂ C.identityˡ) a₂ ∙ (η (Hom.η (f , C.id)) a₂ ∙ (P₁ f $₁ η (unitˡ.η _) a₂ ∙ D.id))) ∙ g ≈⟨ ∘-resp-≈ˡ unitaryʳ ⟩ D.id ∙ g ≈⟨ D.identityˡ ⟩ g ∎) where module D = Category (P₀ x₁) open D renaming (_∘_ to _∙_) open HomReasoning identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f identityʳ {x₁ , a₁} {_ , a₂} {f , g} = C.identityʳ , (begin η (P₂ C.identityʳ) a₂ ∙ ((η (Hom.η (C.id , f)) a₂ ∙ P₁ C.id $₁ g) ∙ η (unitˡ.η _) a₁) ≈⟨ ∘-resp-≈ʳ D.assoc ⟩ η (P₂ C.identityʳ) a₂ ∙ (η (Hom.η (C.id , f)) a₂ ∙ (P₁ C.id $₁ g ∙ η (unitˡ.η _) a₁)) ≈˘⟨ ∘-resp-≈ʳ $ ∘-resp-≈ʳ $ commute (unitˡ.η _) g ⟩ η (P₂ C.identityʳ) a₂ ∙ (η (Hom.η (C.id , f)) a₂ ∙ (η (unitˡ.η _) (P₁ f $₀ a₂) ∙ g)) ≈˘⟨ ∘-resp-≈ʳ D.assoc ⟩ η (P₂ C.identityʳ) a₂ ∙ ((η (Hom.η (C.id , f)) a₂ ∙ η (unitˡ.η _) (P₁ f $₀ a₂)) ∙ g) ≈˘⟨ D.assoc ⟩ (η (P₂ C.identityʳ) a₂ ∙ (η (Hom.η (C.id , f)) a₂ ∙ η (unitˡ.η _) (P₁ f $₀ a₂))) ∙ g ≈˘⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ ∘-resp-≈ʳ D.identityˡ ⟩ (η (P₂ C.identityʳ) a₂ ∙ (η (Hom.η (C.id , f)) a₂ ∙ (D.id ∙ η (unitˡ.η _) (P₁ f $₀ a₂)))) ∙ g ≈˘⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ identity (P₁ C.id) ⟩ (η (P₂ C.identityʳ) a₂ ∙ (η (Hom.η (C.id , f)) a₂ ∙ ((P₁ C.id $₁ D.id) ∙ η (unitˡ.η _) (P₁ f $₀ a₂)))) ∙ g ≈⟨ ∘-resp-≈ˡ unitaryˡ ⟩ D.id ∙ g ≈⟨ D.identityˡ ⟩ g ∎) where module D = Category (P₀ x₁) open D renaming (_∘_ to _∙_) open HomReasoning -- Pair-wise equality is an equivalence refl : ∀ {A B} {f : A ⇒ B} → f ≈ f refl {x , _} = C.Equiv.refl , D.Equiv.trans (D.∘-resp-≈ˡ (identity PF)) D.identityˡ where module D = Category (P₀ x) sym : ∀ {A B} {f g : A ⇒ B} → f ≈ g → g ≈ f sym {x₁ , _} {_ , a₂} {_ , g₁} {_ , g₂} (f₁≈f₂ , g₁≈g₂) = C.Equiv.sym f₁≈f₂ , (begin η (P₂ $ C.Equiv.sym f₁≈f₂) a₂ ∙ g₂ ≈˘⟨ ∘-resp-≈ʳ g₁≈g₂ ⟩ η (P₂ $ C.Equiv.sym f₁≈f₂) a₂ ∙ η (P₂ f₁≈f₂) a₂ ∙ g₁ ≈˘⟨ D.assoc ⟩ (η (P₂ $ C.Equiv.sym f₁≈f₂) a₂ ∙ η (P₂ f₁≈f₂) a₂) ∙ g₁ ≈⟨ ∘-resp-≈ˡ $ Iso.isoˡ $ P-resp-Iso f₁≈f₂ ⟩ D.id ∙ g₁ ≈⟨ D.identityˡ ⟩ g₁ ∎) where module D = Category (P₀ x₁) open D renaming (_∘_ to _∙_) open HomReasoning trans : ∀ {A B} {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h trans {x₁ , _} {_ , a₂} {_ , g₁} {_ , g₂} {_ , g₃} (f₁≈f₂ , g₁≈g₂) (f₂≈f₃ , g₂≈g₃) = C.Equiv.trans f₁≈f₂ f₂≈f₃ , (begin η (P₂ $ C.Equiv.trans f₁≈f₂ f₂≈f₃) a₂ ∙ g₁ ≈⟨ ∘-resp-≈ˡ $ homomorphism PF ⟩ (η (P₂ f₂≈f₃) a₂ ∙ η (P₂ f₁≈f₂) a₂) ∙ g₁ ≈⟨ D.assoc ⟩ η (P₂ f₂≈f₃) a₂ ∙ η (P₂ f₁≈f₂) a₂ ∙ g₁ ≈⟨ ∘-resp-≈ʳ g₁≈g₂ ⟩ η (F₁ PF f₂≈f₃) a₂ ∙ g₂ ≈⟨ g₂≈g₃ ⟩ g₃ ∎) where module D = Category (P₀ x₁) open D renaming (_∘_ to _∙_) open HomReasoning ≈-equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ≈-equiv = record { refl = refl ; sym = sym ; trans = trans } -- Functionality of composition -- -- The key here is to use naturality of P-homomorphism to relate -- functionality of composition (∘) in C to functoriality of -- composition (⊚) in (P₀ x₁). ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i ∘-resp-≈ {x₁ , _} {x₂ , a₂} {_ , a₃} {f₁ , g₁} {f₂ , g₂} {f₃ , g₃} {f₄ , g₄} (f₁≈f₂ , g₁≈g₂) (f₃≈f₄ , g₃≈g₄) = C.∘-resp-≈ f₁≈f₂ f₃≈f₄ , (begin η (P₂ $ C.∘-resp-≈ f₁≈f₂ f₃≈f₄) a₃ ∙ (η (Hom.η (f₃ , f₁)) a₃ ∙ P₁ f₃ $₁ g₁) ∙ g₃ ≈⟨ ∘-resp-≈ʳ D.assoc then D.Equiv.sym D.assoc ⟩ (η (P₂ $ C.∘-resp-≈ f₁≈f₂ f₃≈f₄) a₃ ∙ η (Hom.η (f₃ , f₁)) a₃) ∙ P₁ f₃ $₁ g₁ ∙ g₃ ≈˘⟨ ∘-resp-≈ˡ $ Hom.commute (f₃≈f₄ , f₁≈f₂) ⟩ (η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ (η (P₂ f₁≈f₂) a₃) ∙ η (P₂ f₃≈f₄) (P₁ f₁ $₀ a₃)) ∙ P₁ f₃ $₁ g₁ ∙ g₃ ≈⟨ D.assoc then ∘-resp-≈ʳ D.assoc then ∘-resp-≈ʳ $ ∘-resp-≈ʳ $ Equiv.sym D.assoc ⟩ η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ (η (P₂ f₁≈f₂) a₃) ∙ (η (P₂ f₃≈f₄) (P₁ f₁ $₀ a₃) ∙ P₁ f₃ $₁ g₁) ∙ g₃ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ʳ $ ∘-resp-≈ˡ (commute (P₂ f₃≈f₄) g₁) ⟩ η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ (η (P₂ f₁≈f₂) a₃) ∙ (P₁ f₄ $₁ g₁ ∙ η (P₂ f₃≈f₄) a₂) ∙ g₃ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ʳ D.assoc then Equiv.sym $ ∘-resp-≈ʳ $ D.assoc then Equiv.sym $ D.assoc ⟩ (η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ (η (P₂ f₁≈f₂) a₃) ∙ P₁ f₄ $₁ g₁) ∙ η (P₂ f₃≈f₄) a₂ ∙ g₃ ≈˘⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ homomorphism (P₁ f₄) ⟩ (η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ (η (P₂ f₁≈f₂) a₃ E.∘ g₁)) ∙ η (P₂ f₃≈f₄) a₂ ∙ g₃ ≈⟨ D.∘-resp-≈ (∘-resp-≈ʳ (F-resp-≈ (P₁ f₄) g₁≈g₂)) g₃≈g₄ ⟩ (η (Hom.η (f₄ , f₂)) a₃ ∙ P₁ f₄ $₁ g₂) ∙ g₄ ∎) where module D = Category (P₀ x₁) module E = Category (P₀ x₂) open D renaming (_∘_ to _∙_) infixl -5 _then_ _then_ = Equiv.trans open HomReasoning Grothendieck : Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Grothendieck = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = assoc ; sym-assoc = sym assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identityˡ ; equiv = ≈-equiv ; ∘-resp-≈ = ∘-resp-≈ }
{ "alphanum_fraction": 0.4467180633, "avg_line_length": 38.0246575342, "ext": "agda", "hexsha": "72f734bea66eaddf49ca70318cee33c3f4b7c2fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Construction/Grothendieck.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Construction/Grothendieck.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Construction/Grothendieck.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6735, "size": 13879 }
------------------------------------------------------------------------ -- Embeddings ------------------------------------------------------------------------ -- Partially following the HoTT book. {-# OPTIONS --without-K --safe #-} open import Equality module Embedding {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id) renaming (_∘_ to _⊚_) open import Bijection eq using (_↔_) open Derived-definitions-and-properties eq open import Equivalence eq as Eq hiding (id; _∘_) import Equivalence.Half-adjoint eq as HA open import Excluded-middle eq open import H-level eq open import H-level.Closure eq open import Injection eq as Injection using (Injective; _↣_) open import Preimage eq using (_⁻¹_) open import Surjection eq using (_↠_) private variable a b t : Level A B C : Type a f x y : A ------------------------------------------------------------------------ -- Embeddings -- The property of being an embedding. Is-embedding : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Is-embedding f = ∀ x y → Is-equivalence (cong {x = x} {y = y} f) -- Is-embedding is propositional (assuming extensionality). Is-embedding-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Is-embedding f) Is-embedding-propositional {b = b} ext = Π-closure (lower-extensionality b lzero ext) 1 λ _ → Π-closure (lower-extensionality b lzero ext) 1 λ _ → Eq.propositional ext _ -- Embeddings. record Embedding (From : Type f) (To : Type t) : Type (f ⊔ t) where field to : From → To is-embedding : Is-embedding to equivalence : (x ≡ y) ≃ (to x ≡ to y) equivalence = ⟨ _ , is-embedding _ _ ⟩ -- The type family above could have been defined using Σ. Embedding-as-Σ : Embedding A B ↔ ∃ λ (f : A → B) → Is-embedding f Embedding-as-Σ = record { surjection = record { logical-equivalence = record { to = λ emb → Embedding.to emb , Embedding.is-embedding emb ; from = λ { (f , is) → record { to = f; is-embedding = is } } } ; right-inverse-of = refl } ; left-inverse-of = refl } -- Equivalences are embeddings. Is-equivalence→Is-embedding : Is-equivalence f → Is-embedding f Is-equivalence→Is-embedding is-equiv _ _ = _≃_.is-equivalence (Eq.inverse (Eq.≃-≡ Eq.⟨ _ , is-equiv ⟩)) -- Equivalences can be converted to embeddings. ≃→Embedding : A ≃ B → Embedding A B ≃→Embedding A≃B = record { to = _≃_.to A≃B ; is-embedding = Is-equivalence→Is-embedding (_≃_.is-equivalence A≃B) } ------------------------------------------------------------------------ -- Preorder -- Embedding is a preorder. id : Embedding A A id {A = A} = record { to = P.id ; is-embedding = λ x y → Eq.respects-extensional-equality cong-id HA.id-equivalence } infixr 9 _∘_ _∘_ : Embedding B C → Embedding A B → Embedding A C f ∘ g = record { to = to f ⊚ to g ; is-embedding = λ _ _ → Eq.respects-extensional-equality (cong-∘ (to f) (to g)) (HA.composition-equivalence (is-embedding f _ _) (is-embedding g _ _)) } where open Embedding ------------------------------------------------------------------------ -- Preimages -- If f is an embedding, then f ⁻¹ y is propositional. -- -- This result is taken (perhaps with some changes) from the proof of -- Theorem 4.6.3 in the HoTT book (first edition). embedding→⁻¹-propositional : Is-embedding f → ∀ y → Is-proposition (f ⁻¹ y) embedding→⁻¹-propositional {f = f} is-emb y (x₁ , eq₁) (x₂ , eq₂) = let equiv : (x₁ ≡ x₂) ≃ (f x₁ ≡ f x₂) equiv = ⟨ _ , is-emb _ _ ⟩ x₁≡x₂ : x₁ ≡ x₂ x₁≡x₂ = _≃_.from equiv (f x₁ ≡⟨ eq₁ ⟩ y ≡⟨ sym eq₂ ⟩∎ f x₂ ∎) in Σ-≡,≡→≡ x₁≡x₂ (subst (λ z → f z ≡ y) x₁≡x₂ eq₁ ≡⟨ subst-∘ (_≡ y) f x₁≡x₂ ⟩ subst (_≡ y) (cong f x₁≡x₂) eq₁ ≡⟨ cong (λ eq → subst (_≡ y) eq eq₁) $ sym $ sym-sym (cong f x₁≡x₂) ⟩ subst (_≡ y) (sym $ sym $ cong f x₁≡x₂) eq₁ ≡⟨ subst-trans (sym $ cong f x₁≡x₂) ⟩ trans (sym $ cong f x₁≡x₂) eq₁ ≡⟨ cong (λ eq → trans (sym eq) eq₁) $ _≃_.right-inverse-of equiv _ ⟩ trans (sym $ trans eq₁ (sym eq₂)) eq₁ ≡⟨ cong (flip trans eq₁) $ sym-trans eq₁ (sym eq₂) ⟩ trans (trans (sym (sym eq₂)) (sym eq₁)) eq₁ ≡⟨ trans-[trans-sym]- _ eq₁ ⟩ sym (sym eq₂) ≡⟨ sym-sym _ ⟩∎ eq₂ ∎) ------------------------------------------------------------------------ -- Injections -- Functions that are embeddings are injective. injective : Is-embedding f → Injective f injective is-emb = _≃_.from ⟨ _ , is-emb _ _ ⟩ -- Embeddings are injections. injection : Embedding A B → A ↣ B injection f = record { to = Embedding.to f ; injective = injective (Embedding.is-embedding f) } private -- If the domain of f is a set, then Injective f is propositional -- (assuming extensionality). Injective-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set A → Is-proposition (Injective f) Injective-propositional {a = a} {b = b} ext A-set = implicit-Π-closure (lower-extensionality b lzero ext) 1 λ _ → implicit-Π-closure (lower-extensionality b lzero ext) 1 λ _ → Π-closure (lower-extensionality a b ext) 1 λ _ → A-set -- For functions between sets the property of being injective is -- logically equivalent to the property of being an embedding. Injective⇔Is-embedding : Is-set A → Is-set B → (f : A → B) → Injective f ⇔ Is-embedding f Injective⇔Is-embedding A-set B-set f = record { to = λ cong-f⁻¹ _ _ → _≃_.is-equivalence $ _↠_.from (≃↠⇔ A-set B-set) (record { from = cong-f⁻¹ }) ; from = injective } -- For functions between sets the property of being injective is -- equivalent to the property of being an embedding (assuming -- extensionality). Injective≃Is-embedding : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set A → Is-set B → (f : A → B) → Injective f ≃ Is-embedding f Injective≃Is-embedding ext A-set B-set f = _↔_.to (⇔↔≃ ext (Injective-propositional ext A-set) (Is-embedding-propositional ext)) (Injective⇔Is-embedding A-set B-set f) -- If A and B are sets, then the type of injections from A to B is -- isomorphic to the type of embeddings from A to B (assuming -- extensionality). ↣↔Embedding : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-set A → Is-set B → (A ↣ B) ↔ Embedding A B ↣↔Embedding {A = A} {B = B} ext A-set B-set = record { surjection = record { logical-equivalence = record { to = λ f → record { to = _↣_.to f ; is-embedding = _≃_.to (Injective≃Is-embedding ext A-set B-set _) (_↣_.injective f) } ; from = injection } ; right-inverse-of = λ f → cong (uncurry λ to (emb : Is-embedding to) → record { to = to; is-embedding = emb }) (Σ-≡,≡→≡ (refl _) (Is-embedding-propositional ext _ _)) } ; left-inverse-of = λ f → cong (uncurry λ to (inj : Injective to) → record { to = to; injective = inj }) (Σ-≡,≡→≡ (refl _) (Injective-propositional ext A-set _ _)) } ------------------------------------------------------------------------ -- Surjections -- If excluded middle holds, then an embedding from an inhabited type -- can be turned into a (split) surjection in the other direction. Embedding→↠ : {A : Type a} {B : Type b} → Excluded-middle (a ⊔ b) → A → Embedding A B → B ↠ A Embedding→↠ {A = A} {B = B} em a A↣B = record { logical-equivalence = record { to = from ; from = to } ; right-inverse-of = from-to } where open Embedding A↣B prop : ∀ b → Is-proposition (to ⁻¹ b) prop = embedding→⁻¹-propositional is-embedding from : B → A from b = case em (prop b) of λ where (yes (a , _)) → a (no _) → a from-to : ∀ a → from (to a) ≡ a from-to a with em (prop (to a)) ... | (yes (a′ , to-a′≡to-a)) = injective is-embedding to-a′≡to-a ... | (no hyp) = ⊥-elim (hyp (a , refl _))
{ "alphanum_fraction": 0.5435572752, "avg_line_length": 30.2446808511, "ext": "agda", "hexsha": "d8c2e1c7e6f829f5d52b039d81897eeeb7c0b952", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Embedding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Embedding.agda", "max_line_length": 119, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Embedding.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2767, "size": 8529 }
open import Relation.Binary.Core module Heapsort.Impl1 {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ hiding (flatten) open import BBHeap.Heapify _≤_ tot≤ trans≤ open import BHeap _≤_ hiding (flatten) open import BHeap.Order _≤_ open import BHeap.Order.Properties _≤_ open import BHeap.Properties _≤_ open import Bound.Lower A open import Data.List open import OList _≤_ flatten : {b : Bound}(h : BHeap b) → Acc h → OList b flatten lf _ = onil flatten (nd {x = x} b≤x l r) (acc rs) = :< b≤x (flatten (merge tot≤ l r) (rs (merge tot≤ l r) (lemma-merge≤′ tot≤ b≤x l r))) heapsort : List A → OList bot heapsort xs = flatten (relax (heapify xs)) (≺-wf (relax (heapify xs)))
{ "alphanum_fraction": 0.6309823678, "avg_line_length": 33.0833333333, "ext": "agda", "hexsha": "2121a7ac94ccdc939dfcc25b39b1bef22223745c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Heapsort/Impl1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Heapsort/Impl1.agda", "max_line_length": 124, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Heapsort/Impl1.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 280, "size": 794 }
module jarsec where open import Algebra open import Data.Bool open import Data.Char -- open import Data.Empty -- open import Data.Fin open import Data.List open import Data.Maybe hiding (map) open import Data.Nat open import Data.Nat.Base open import Data.Nat.Show -- open import Data.Integer open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.String hiding (length) open import Function -- open import Data.Sum -- open import Data.Unit -- open import Data.Vec open import Category.Functor open import Relation.Binary open import Data.Char.Base open import Agda.Builtin.Char open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) record Parser (A : Set) : Set where constructor mk-parser field parse : List Char → (List (A × (List Char))) open Parser public item : Parser Char item = mk-parser λ where [] → [] (c ∷ cs) → (c , cs) ∷ [] bind : ∀ { A B : Set } → Parser A → (A → Parser B) → Parser B bind {A} p f = mk-parser $ λ cs → let rs : List (A × List Char) rs = parse p cs in concatMap (λ x → parse (f (proj₁ x)) (proj₂ x)) rs -- in concatMap (λ where (x , cs′) → parse (f x) cs′) rs _>>=_ : ∀ { A B : Set } → Parser A → (A → Parser B) → Parser B p >>= f = bind p f _>>_ : ∀ { A B : Set } → Parser A → Parser B → Parser B pA >> pB = pA >>= λ _ → pB unit : ∀ { A : Set } → A → Parser A unit a = mk-parser (λ str → ( a , str ) ∷ []) unit* : ∀ { A : Set } → List A → Parser A unit* xs = mk-parser (λ str → foldl (λ sum x → (x , str) ∷ sum) [] xs) fmap : ∀ { A B : Set } → (A → B) → Parser A → Parser B fmap f p = do a ← p unit (f a) _<$>_ : ∀ { A B : Set } → (A → B) → Parser A → Parser B f <$> p = fmap f p _<*>_ : ∀ {A B : Set } → Parser A → Parser B → Parser ( A × B ) aP <*> bP = do a ← aP b ← bP unit (a , b) combine : { A : Set } → Parser A → Parser A → Parser A combine p q = mk-parser (λ cs → (parse p cs) Data.List.++ (parse q cs)) failure : { A : Set } → Parser A failure = mk-parser (λ cs → []) option : { A : Set } → Parser A → Parser A → Parser A option p q = mk-parser $ λ where cs → case (parse p cs) of λ where [] → parse q cs result → result {-# TERMINATING #-} mutual many* : { A : Set } → Parser A → Parser (List A) many* v = option (many+ v) (unit []) many+ : { A : Set } → Parser A → Parser (List A) many+ v = fmap (λ { (a , list) → a ∷ list }) (v <*> (many* v)) satisfy : (Char -> Bool) -> Parser Char satisfy f = do c ← item case (f c) of λ where true → unit c false → failure oneOf : List Char → Parser Char oneOf options = satisfy (flip elem options) where elem : Char → List Char → Bool elem a [] = false elem a (x ∷ xs) = case primCharEquality a x of λ where true → true false → elem a xs module _ { A : Set } where {-# TERMINATING #-} chainl1 : Parser A → Parser (A → A → A) → Parser A chainl1 p op = do a ← p rest a where rest : A → Parser A rest a = option (do f ← op b ← p rest (f a b)) (unit a) chainl : { A : Set } → Parser A → Parser (A → A → A) → A → Parser A chainl p op a = option (chainl1 p op) (unit a) char : Char → Parser Char char c = satisfy (primCharEquality c) digit : Parser Char digit = satisfy isDigit -- TODO: Remove ∣_-_∣ : ℕ → ℕ → ℕ ∣ zero - y ∣ = y ∣ x - zero ∣ = x ∣ suc x - suc y ∣ = ∣ x - y ∣ natural : Parser ℕ natural = natFromList <$> ((map primCharToNat) <$> (many+ digit)) where natFromList : List ℕ → ℕ natFromList [] = zero natFromList (n ∷ ns) = let len = length ns in (∣ n - 48 ∣ + (10 * len)) + (natFromList ns) string : String → Parser String string str = primStringFromList <$> (string-chars (primStringToList str)) where string-chars : List Char → Parser (List Char) string-chars [] = unit [] string-chars (c ∷ cs) = do char c string-chars cs unit (c ∷ cs) spaces : Parser String spaces = fmap primStringFromList (many* (oneOf (primStringToList " \n\r"))) token : { A : Set } → Parser A → Parser A token p = do a ← p spaces unit a reserved : String → Parser String reserved str = token (string str) parens : { A : Set } → Parser A → Parser A parens m = do (reserved "(") n ← m (reserved ")") unit n -------------------------------------------------------------------------------- data Expr : Set where Invalid : Expr -- Var : Char → Expr Lit : ℕ → Expr Add : Expr → Expr → Expr Mul : Expr → Expr → Expr -- Add Sub : Expr → Expr → Expr -- Mul Div : Expr → Expr → Expr eval : Expr → ℕ eval Invalid = 0 eval (Lit n) = n eval (Add a b) = eval a + eval b eval (Mul a b) = eval a * eval b eval′ : Maybe Expr → ℕ eval′ (just x) = eval x eval′ nothing = 0 module _ where {-# TERMINATING #-} expr : Parser Expr {-# TERMINATING #-} term : Parser Expr {-# TERMINATING #-} factor : Parser Expr infixOp : {A : Set} → String → (A → A → A) → Parser (A → A → A) mulop : Parser (Expr → Expr → Expr) addop : Parser (Expr → Expr → Expr) number : Parser Expr expr = chainl1 term addop term = chainl1 factor mulop factor = option number (parens expr) infixOp x f = reserved x >> unit f mulop = infixOp "*" Mul addop = infixOp "+" Add number = do n ← natural unit (Lit n) runParser : { A : Set } → Parser A → String → Maybe A runParser p str = case (parse p (primStringToList str)) of λ where [] → nothing (res ∷ xs) → just (proj₁ res) run : String → Maybe Expr run = runParser expr do-everything : String → ℕ do-everything str = eval′ $ run str partial-parse : { A : Set } → Parser A → String → Maybe (List (A × List Char)) partial-parse p str with parse p (primStringToList str) partial-parse p str | [] = nothing partial-parse p str | xs = just xs run-parser : { A : Set } → Parser A → List Char → Maybe (List (A × List Char)) run-parser p str = case (parse p str) of λ where [] → nothing xs → just xs
{ "alphanum_fraction": 0.584924793, "avg_line_length": 24.0528455285, "ext": "agda", "hexsha": "57d959e14d340c6f13d386a9fa0d342be559e4a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jaywunder/jarsec-verified", "max_forks_repo_path": "src/jarsec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jaywunder/jarsec-verified", "max_issues_repo_path": "src/jarsec.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "40cca331810f1d3f7dc099614ddca4fa96bd695c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jaywunder/jarsec-verified", "max_stars_repo_path": "src/jarsec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1931, "size": 5917 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Identity module HoTT.Identity.Pi where open variables private variable f g h : Π A P module _ {f g : Π A P} where -- Axiom 2.9.3 - function extensionality postulate happly-isequiv : isequiv (happly {f = f} {g}) module _ where open qinv (isequiv→qinv happly-isequiv) renaming (g to happly⁻¹) abstract funext : f ~ g → f == g funext = happly⁻¹ =Π-η : funext ∘ happly ~ id =Π-η = η =Π-β : happly ∘ funext ~ id =Π-β = ε =Π-equiv : f == g ≃ f ~ g =Π-equiv = happly , happly-isequiv funext-∙ₕ : (α : f ~ g) (β : g ~ h) → funext (α ∙ₕ β) == funext α ∙ funext β funext-∙ₕ α β = ap funext (funext λ x → (happly (=Π-β α) x ⋆ happly (=Π-β β) x) ⁻¹) ∙ p where p : funext (happly (funext α) ∙ₕ happly (funext β)) == funext α ∙ funext β p rewrite funext α rewrite funext β = =Π-η refl funext-ap : {P : A → 𝒰 i} {Q : A → 𝒰 j} {g h : Π A P} (f : {a : A} → P a → Q a) (α : g ~ h) → funext (ap f ∘ α) == ap (f ∘_) (funext α) funext-ap f α = ap (λ α → funext (ap f ∘ α)) (=Π-β α) ⁻¹ ∙ p where p : funext (ap f ∘ happly (funext α)) == ap (f ∘_) (funext α) p rewrite funext α = =Π-η refl
{ "alphanum_fraction": 0.5571428571, "avg_line_length": 30, "ext": "agda", "hexsha": "1512fc1f51f91bb639eab7d8e235215244cf3306", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Identity/Pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Identity/Pi.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Identity/Pi.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 546, "size": 1260 }
open import MJ.Types import MJ.Classtable.Core as Core module MJ.Syntax.Untyped {c}(Ct : Core.Classtable c) where open import Prelude open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Maybe.All as MayAll open import Data.Vec as Vec hiding (_∈_) open import Data.Star open import Data.List.Most open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Data.String import Data.Vec.All as Vec∀ open Core c open Classtable Ct open import MJ.Classtable.Membership Ct open import MJ.LexicalScope Ct NativeBinOp = ℕ → ℕ → ℕ data Expr (n : ℕ) : Set where new : Cid c → List (Expr n) → Expr n unit : Expr n null : Expr n num : ℕ → Expr n iop : NativeBinOp → (l r : Expr n) → Expr n call : Expr n → String → List (Expr n) → Expr n var : Fin n → Expr n get : Expr n → String → Expr n mutual data Stmt (i : ℕ) : ℕ → Set where loc : Ty c → Stmt i (suc i) asgn : Fin i → Expr i → Stmt i i set : Expr i → String → Expr i → Stmt i i do : Expr i → Stmt i i ret : Expr i → Stmt i i raise : Stmt i i try_catch_ : ∀ {o o'} → Stmt i o → Stmt i o' → Stmt i i while_do_ : ∀ {o} → Expr i → Stmt i o → Stmt i i block : ∀ {o} → Stmts i o → Stmt i i Stmts : ℕ → ℕ → Set Stmts = Star Stmt data Body (i : ℕ) : Set where body : ∀ {o} → Stmts i o → Expr o → Body i -- let n be the number of formal method arguments data Method (n : ℕ) : Set where super⟨_⟩then_ : List (Expr (suc n)) → Body (suc (suc n)) → Method n body : Body (suc n) → Method n -- let n be the number of formal constructor arguments data Constructor (n : ℕ) : Set where super_then_ : List (Expr (suc n)) → Body (suc n) → Constructor n body : Body (suc n) → Constructor n record Implementation (cid : _): Set where constructor implementation open Class (Σ cid) public field construct : Constructor (length constr) mbodies : All (λ{ (name , (as , b)) → Method (length as) }) (decls METHOD) Classes = ∀ cid → Implementation cid Prog : Set Prog = Classes × (Body 0)
{ "alphanum_fraction": 0.6199261993, "avg_line_length": 29.2972972973, "ext": "agda", "hexsha": "ea5d100408f56ef4916d650441524e32105fe23f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Syntax/Untyped.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Syntax/Untyped.agda", "max_line_length": 80, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Syntax/Untyped.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 684, "size": 2168 }
module DefinitionalEquality where data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : {A : Set}(P : A -> Set){x y : A} -> x == y -> P y -> P x subst {A} P refl p = p data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- This formulation of the associativity law guarantees that for closed n, but -- possibly open m and p the law holds definitionally. assoc : (n : Nat) -> (\m p -> n + (m + p)) == (\m p -> (n + m) + p) assoc zero = refl assoc (suc n) = subst (\ ∙ -> f ∙ == f (\m p -> ((n + m) + p))) (assoc n) refl where f = \(g : Nat -> Nat -> Nat)(m p : Nat) -> suc (g m p)
{ "alphanum_fraction": 0.4985632184, "avg_line_length": 25.7777777778, "ext": "agda", "hexsha": "cfcda0f5af4dfae040993f0898a7125413d728c5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/DefinitionalEquality.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/DefinitionalEquality.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/DefinitionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 249, "size": 696 }
-- Agda program using the Iowa Agda library open import bool module PROOF-odddoublecoin (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import nat open import list open import maybe --------------------------------------------------------------------------- -- Translated Curry operations: add : ℕ → ℕ → ℕ add zero x = x add (suc y) z = suc (add y z) -- Forward declaration: odd : ℕ → 𝔹 even : ℕ → 𝔹 even zero = tt even (suc x) = odd x coin : Choice → ℕ → ℕ coin c1 x = if choose c1 then x else suc x double : ℕ → ℕ double x = add x x odd zero = ff odd (suc x) = even x --------------------------------------------------------------------------- add-suc : ∀ (x y : ℕ) → add x (suc y) ≡ suc (add x y) add-suc zero y = refl add-suc (suc x) y rewrite add-suc x y = refl -- auxiliary property for x+x instead of double: odd-add-x-x : ∀ (x : ℕ) → odd (add x x) ≡ ff odd-add-x-x zero = refl odd-add-x-x (suc x) rewrite add-suc x x | odd-add-x-x x = refl odddoublecoin : (c1 : Choice) → (x : ℕ) → (odd (double (coin c1 x))) ≡ ff odddoublecoin c1 x rewrite odd-add-x-x (coin c1 x) = refl ---------------------------------------------------------------------------
{ "alphanum_fraction": 0.5167731629, "avg_line_length": 22.7636363636, "ext": "agda", "hexsha": "5a1419701d7f0deb38a51f8558a08401de1b83ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phlummox/curry-tools", "max_forks_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-odddoublecoin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phlummox/curry-tools", "max_issues_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-odddoublecoin.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phlummox/curry-tools", "max_stars_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-odddoublecoin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 373, "size": 1252 }
{-# OPTIONS -v treeless:20 #-} module _ where open import Common.Prelude f : List Nat → List Nat → Nat f _ [] = 0 f [] (y ∷ ys) = y f (x ∷ xs) _ = x main : IO Unit main = printNat (f [] []) ,, printNat (f (1 ∷ []) []) ,, printNat (f [] (2 ∷ [])) ,, printNat (f (3 ∷ []) (4 ∷ []))
{ "alphanum_fraction": 0.4330218069, "avg_line_length": 20.0625, "ext": "agda", "hexsha": "f125b6ab438578337a234a56adc79f93de89b1ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/CompileCatchAll.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/CompileCatchAll.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/CompileCatchAll.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 321 }
module Cats.Category.Product.Binary where open import Level using (_⊔_) open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Relation.Binary.Product.Pointwise using (×-isEquivalence ; Pointwise) open import Cats.Category.Base open import Cats.Util.Logic.Constructive using (_∧_ ; _,_) module Build {lo la l≈ lo′ la′ l≈′} (C : Category lo la l≈) (D : Category lo′ la′ l≈′) where infixr 9 _∘_ infixr 4 _≈_ private module C = Category C module D = Category D Obj : Set (lo ⊔ lo′) Obj = C.Obj ∧ D.Obj _⇒_ : Obj → Obj → Set (la ⊔ la′) (A , A′) ⇒ (B , B′) = (A C.⇒ B) ∧ (A′ D.⇒ B′) _≈_ : ∀ {A B} → Rel (A ⇒ B) (l≈ ⊔ l≈′) _≈_ = Pointwise C._≈_ D._≈_ id : {A : Obj} → A ⇒ A id = C.id , D.id _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C (f , f′) ∘ (g , g′) = f C.∘ g , f′ D.∘ g′ equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) equiv = ×-isEquivalence C.equiv D.equiv ∘-resp : ∀ {A B C} → _∘_ {A} {B} {C} Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ∘-resp (eq₁ , eq₁′) (eq₂ , eq₂′) = C.∘-resp eq₁ eq₂ , D.∘-resp eq₁′ eq₂′ id-r : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f id-r = C.id-r , D.id-r id-l : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f id-l = C.id-l , D.id-l assoc : ∀ {A B C D} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) assoc = C.assoc , D.assoc _×_ : Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′) _×_ = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = ∘-resp ; id-r = id-r ; id-l = id-l ; assoc = assoc } open Build public using (_×_)
{ "alphanum_fraction": 0.4812348668, "avg_line_length": 20.1463414634, "ext": "agda", "hexsha": "af2bedf7cb8e5449678973207e7e5e791cd4f0ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Product/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Product/Binary.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Product/Binary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 763, "size": 1652 }
module Substitution where open import Library open import Terms -- VarTm n specifies whether the substitution produces variables or terms. -- The index is used to impose an order on the constructors -- and so pass termination checking in lift/subst. data VarTm : ℕ → Set where `Var : VarTm 0 `Tm : VarTm 1 max01 : ℕ → ℕ → ℕ max01 0 m = m max01 n m = n _∙VT_ : ∀ {m n} → VarTm m → VarTm n → VarTm (max01 m n) `Var ∙VT vt = vt `Tm ∙VT vt = `Tm VT : ∀ {m} → VarTm m → Cxt → Ty → Set VT `Var Γ a = Var Γ a VT `Tm Γ a = Tm Γ a vt2tm : ∀ {Γ a m} vt → VT {m} vt Γ a → Tm Γ a vt2tm `Var x = var x vt2tm `Tm t = t RenSub : ∀ {m} → VarTm m → Cxt → Cxt → Set RenSub vt Γ Δ = ∀ {a} → Var Γ a → VT vt Δ a mutual -- Lifiting a substitution lifts : ∀ {m vt Γ Δ a} → RenSub {m} vt Γ Δ → RenSub vt (a ∷ Γ) (a ∷ Δ) lifts {vt = `Var} σ (zero) = zero lifts {vt = `Var} σ (suc x) = suc (σ x) lifts {vt = `Tm} σ (zero) = var (zero) lifts {vt = `Tm} σ (suc x) = subst {vt = `Var} suc (σ x) -- Performing a substitution subst : ∀ {m vt Γ Δ τ} → RenSub {m} vt Γ Δ → Tm Γ τ → Tm Δ τ subst σ (abs t) = abs (subst (lifts σ) t) subst σ (app t u) = app (subst σ t) (subst σ u) subst σ (var x) = vt2tm _ (σ x) -- Performing substitution, inductive specification data IndSubst {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) : ∀ {τ} → Tm Γ τ → Tm Δ τ → Set where var : ∀{a t} (x : Var Γ a) → vt2tm _ (σ x) ≡ t → IndSubst σ (var x) t abs : ∀{a b} {t : Tm (a ∷ Γ) b} {t'} → IndSubst (lifts σ) t t' → IndSubst σ (abs t) (abs t') app : ∀{a b} {t : Tm Γ (a →̂ b)} {u t' u'} → IndSubst σ t t' → IndSubst σ u u' → IndSubst σ (app t u) (app t' u') -- Performing renaming, inductive specification data IndRen {Γ Δ} (σ : RenSub `Var Γ Δ) : ∀ {τ} → Tm Γ τ → Tm Δ τ → Set where var : ∀{a y} (x : Var Γ a) → (σ x) ≡ y → IndRen σ (var x) (var y) abs : ∀{a b} {t : Tm (a ∷ Γ) b} {t'} → IndRen (lifts σ) t t' → IndRen σ (abs t) (abs t') app : ∀{a b} {t : Tm Γ (a →̂ b)} {u t' u'} → IndRen σ t t' → IndRen σ u u' → IndRen σ (app t u) (app t' u') -- Logical equivalence between inductive and algorithmic substitution IndS→prop : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → IndSubst σ t t' → subst σ t ≡ t' IndS→prop σ (var x ≡.refl) = ≡.refl IndS→prop σ (abs t) = ≡.cong abs (IndS→prop (lifts σ) t) IndS→prop σ (app t t₁) = ≡.cong₂ app (IndS→prop σ t) (IndS→prop σ t₁) prop→IndS' : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} (t : Tm Γ τ) → IndSubst σ t (subst σ t) prop→IndS' σ (var x) = var x ≡.refl prop→IndS' σ (abs t) = abs (prop→IndS' (lifts σ) t) prop→IndS' σ (app t u) = app (prop→IndS' σ t) (prop→IndS' σ u) prop→IndS : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → subst σ t ≡ t' → IndSubst σ t t' prop→IndS _ ≡.refl = prop→IndS' _ _ -- Logical equivalence between inductive and algorithmic renaming Ind→prop : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → IndRen σ t t' → subst σ t ≡ t' Ind→prop σ (var x ≡.refl) = ≡.refl Ind→prop σ (abs t) = ≡.cong abs (Ind→prop (lifts σ) t) Ind→prop σ (app t t₁) = ≡.cong₂ app (Ind→prop σ t) (Ind→prop σ t₁) prop→Ind' : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} (t : Tm Γ τ) → IndRen σ t (subst σ t) prop→Ind' σ (var x) = var x ≡.refl prop→Ind' σ (abs t) = abs (prop→Ind' (lifts σ) t) prop→Ind' σ (app t u) = app (prop→Ind' σ t) (prop→Ind' σ u) prop→Ind : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → subst σ t ≡ t' → IndRen σ t t' prop→Ind _ ≡.refl = prop→Ind' _ _ -- Identity substitution ids : ∀ {i vt Γ} → RenSub {i} vt Γ Γ ids {vt = `Var} x = x ids {vt = `Tm } x = var x -- substitution composition _•s_ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → RenSub (vt1 ∙VT vt2) Γ₀ Γ₂ _•s_ τ {vt1 = `Var} σ x = τ (σ x) _•s_ τ {vt1 = `Tm } σ x = subst τ (σ x) -- Term substitution Subst : Cxt → Cxt → Set Subst Γ Δ = ∀ {a : Ty} → Var Γ a → Tm Δ a -- Extending a substitution _∷s_ : ∀ {Γ Δ a} → Tm Γ a → Subst Δ Γ → Subst (a ∷ Δ) Γ (t ∷s σ) (zero) = t (t ∷s σ) (suc x) = σ x -- Substitution for 0th variable sgs : ∀ {Γ a} → Tm Γ a → Subst (a ∷ Γ) Γ sgs t = t ∷s ids -- Substituting for the 0th variable [u/0]t subst0 : ∀ {Γ a b} → Tm Γ a → Tm (a ∷ Γ) b → Tm Γ b subst0 u = subst (sgs u) -- Renamings Ren : (Γ Δ : Cxt) → Set Ren = RenSub `Var _≤_ : (Γ Δ : Cxt) → Set _≤_ Γ Δ = RenSub `Var Δ Γ rename : ∀ {Γ Δ : Cxt} {a : Ty} (η : Γ ≤ Δ) (x : Tm Δ a) → Tm Γ a rename = subst -- Weakening renaming weak : ∀{Γ a} → (a ∷ Γ) ≤ Γ weak = suc -- Weakening substitution weaks : ∀{n}{vt : VarTm n}{a Γ Δ} (σ : RenSub vt Γ Δ) → RenSub vt (Γ) (a ∷ Δ) weaks {vt = `Var} σ x = suc (σ x) weaks {vt = `Tm} σ x = rename suc (σ x) -- Properties _≡s_ : ∀ {Γ Δ} {m n vt1 vt2} → (f : RenSub {m} vt1 Γ Δ)(g : RenSub {n} vt2 Γ Δ) → Set f ≡s g = (∀ {a} x → vt2tm _ (f {a} x) ≡ vt2tm _ (g x)) mutual subst-ext : ∀ {Γ Δ} {m n vt1 vt2} {f : RenSub {m} vt1 Γ Δ}{g : RenSub {n} vt2 Γ Δ} → f ≡s g → ∀ {a} (t : Tm Γ a) → subst f t ≡ subst g t subst-ext f≐g (var v) = (f≐g v) subst-ext {f = f} {g = g} f≐g (abs t) = ≡.cong abs (subst-ext (lifts-ext {f = f} {g = g} f≐g) t) subst-ext f≐g (app t t₁) = ≡.cong₂ app (subst-ext f≐g t) (subst-ext f≐g t₁) lifts-ext : ∀ {Γ Δ b} {m n vt1 vt2} {f : RenSub {m} vt1 Γ Δ}{g : RenSub {n} vt2 Γ Δ} → f ≡s g → lifts {a = b} f ≡s lifts g lifts-ext {vt1 = `Var} {`Var} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Var} {`Var} {f} {g} f≐g (suc x) with f x | g x | f≐g x lifts-ext {Γ} {Δ} {b} {._} {._} {`Var} {`Var} f≐g (suc x) | z | .z | ≡.refl = ≡.refl lifts-ext {vt1 = `Var} {`Tm} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Var} {`Tm} f≐g (suc x) rewrite ≡.sym (f≐g x) = ≡.refl lifts-ext {vt1 = `Tm} {`Var} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Tm} {`Var} f≐g (suc x) rewrite (f≐g x) = ≡.refl lifts-ext {vt1 = `Tm} {`Tm} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Tm} {`Tm} f≐g (suc x) = ≡.cong (subst suc) (f≐g x) mutual subst-∙ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → ∀ {a} (t : Tm Γ₀ a) → subst (τ •s σ) t ≡ subst τ (subst σ t) subst-∙ τ {vt1 = `Var} σ (var x) = ≡.refl subst-∙ τ {vt1 = `Tm} σ (var x) = ≡.refl subst-∙ τ σ (abs t) = ≡.cong abs (≡.trans (subst-ext (lifts-∙ τ σ) t) (subst-∙ (lifts τ) (lifts σ) t)) subst-∙ τ σ (app t t₁) = ≡.cong₂ app (subst-∙ τ σ t) (subst-∙ τ σ t₁) lifts-∙ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → ∀ {a} → lifts {a = a} (τ •s σ) ≡s (lifts τ •s lifts σ) lifts-∙ {vt2 = `Var} τ {vt1 = `Var} σ (zero) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Var} σ (zero) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Var} σ (suc x) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Var} σ (suc x) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Tm} σ (zero) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Tm} σ (zero) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Tm} σ (suc x) = ≡.trans (≡.sym (subst-∙ suc τ (σ x))) (subst-∙ (lifts τ) suc (σ x)) lifts-∙ {vt2 = `Tm} τ {vt1 = `Tm} σ (suc x) = ≡.trans (≡.sym (subst-∙ suc τ (σ x))) (subst-∙ (lifts τ) suc (σ x)) mutual subst-id : ∀ {m vt Γ a} → (t : Tm Γ a) → subst (ids {m} {vt}) t ≡ t subst-id {vt = `Var} (var v) = ≡.refl subst-id {vt = `Tm} (var v) = ≡.refl subst-id {m} {vt} {Γ} (abs t) = ≡.cong abs (≡.trans (subst-ext {n = m} {vt2 = vt} (lifts-id {m} {vt}) t) (subst-id t)) subst-id (app t t₁) = ≡.cong₂ app (subst-id t) (subst-id t₁) lifts-id : ∀ {m vt Γ b} → lifts {a = b} (ids {m} {vt} {Γ = Γ}) ≡s ids {m} {vt} {Γ = b ∷ Γ} lifts-id {vt = `Var} (zero) = ≡.refl lifts-id {vt = `Var} (suc x) = ≡.refl lifts-id {vt = `Tm} (zero) = ≡.refl lifts-id {vt = `Tm} (suc x) = ≡.refl sgs-lifts : ∀ {m vt Γ Δ a} {σ : RenSub {m} vt Γ Δ} {u : Tm Γ a} → (sgs (subst σ u) •s lifts σ) ≡s (σ •s sgs u) sgs-lifts {vt = `Var} = (λ { (zero) → ≡.refl ; (suc x) → ≡.refl }) sgs-lifts {vt = `Tm} {σ = σ} {u} = (λ { (zero) → ≡.refl ; (suc x) → ≡.sym (≡.trans (≡.sym (subst-id (σ x))) (subst-∙ (sgs (subst σ u)) {vt1 = `Var} suc (σ x))) }) sgs-lifts-term : ∀ {m vt Γ Δ a b} {σ : RenSub {m} vt Γ Δ} {u : Tm Γ a}{t : Tm (a ∷ Γ) b} → subst (sgs (subst σ u)) (subst (lifts σ) t) ≡ subst σ (subst (sgs u) t) sgs-lifts-term {σ = σ} {u} {t} = (≡.trans (≡.sym (subst-∙ (sgs (subst σ u)) (lifts σ) t)) (≡.trans (subst-ext sgs-lifts t) (subst-∙ σ (sgs u) t))) renId : ∀ {Γ a}{t : Tm Γ a} → rename id t ≡ t renId = subst-id _ contract : ∀ {a Γ} → RenSub `Var (a ∷ a ∷ Γ) (a ∷ Γ) contract (zero) = zero contract (suc x) = x contract-sgs : ∀ {a Γ} → contract {a} {Γ} ≡s sgs (var zero) contract-sgs (zero) = ≡.refl contract-sgs (suc x) = ≡.refl sgs-weak₀ : ∀ {Γ a} {u : Tm Γ a} {b} (x : Var Γ b) → sgs u (suc x) ≡ var x sgs-weak₀ x = ≡.refl sgs-weak₁ : ∀ {Γ a} {u : Tm Γ a} → (sgs u ∘ suc) ≡s (ids {vt = `Tm}) sgs-weak₁ x = ≡.refl sgs-weak : ∀ {Γ a} {u : Tm Γ a} → (sgs u •s weak) ≡s (ids {vt = `Tm}) sgs-weak x = ≡.refl cons-to-sgs : ∀ {Γ Δ a} (u : Tm Δ a) (σ : Subst Γ Δ) → (u ∷s σ) ≡s (sgs u •s lifts σ) cons-to-sgs u σ (zero) = ≡.refl cons-to-sgs u σ (suc x) = begin σ x ≡⟨ ≡.sym (subst-id (σ x)) ⟩ subst (ids {vt = `Tm}) (σ x) ≡⟨ subst-ext (λ _ → ≡.refl) (σ x) ⟩ subst (sgs u •s weak) (σ x) ≡⟨ subst-∙ (sgs u) weak (σ x) ⟩ subst (sgs u) (subst suc (σ x)) ∎ where open ≡-Reasoning -- -}
{ "alphanum_fraction": 0.5004088307, "avg_line_length": 35.9705882353, "ext": "agda", "hexsha": "23c9c39b1cd5c8db96f094433826bba9b88879fc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/Substitution.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/Substitution.agda", "max_line_length": 138, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 4681, "size": 9784 }
-- Andreas, 2014-09-23, later changed by someone else -- Issue 1194, reported by marco.vax91, 2014-06-13 module _ where module A where data D₁ : Set where b : D₁ c : D₁ → D₁ infix 19 c syntax c x = ! x module B where data D₂ : Set where _+_ : D₂ → D₂ → D₂ c : A.D₁ → D₂ infix 10 _+_ infix 20 c syntax c x = ! x open A open B test : D₂ test = ! b + ! b
{ "alphanum_fraction": 0.5772151899, "avg_line_length": 12.34375, "ext": "agda", "hexsha": "fa94f1e4024c9db940bf46232ff517469b2db1ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1194d.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1194d.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1194d.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 160, "size": 395 }
-- Andreas, 2017-11-01, issue #2831 -- The following pragma should trigger a warning, since the mutual block -- does not contain anything the pragma could apply to. {-# NO_POSITIVITY_CHECK #-} mutual postulate A : Set -- EXPECTED WARNING: -- No positivity checking pragmas can only precede a data/record -- definition or a mutual block (that contains a data/record -- definition).
{ "alphanum_fraction": 0.7358974359, "avg_line_length": 26, "ext": "agda", "hexsha": "4926ec8dfd3b846fcfa610eb111abf256e5f3c02", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2831.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2831.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2831.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 97, "size": 390 }
open import Agda.Builtin.Unit module Imports.Issue5583 (_ : ⊤) where it : ∀ {A : Set} → ⦃ A ⦄ → A it ⦃ x ⦄ = x data X : Set where instance x : X
{ "alphanum_fraction": 0.582781457, "avg_line_length": 13.7272727273, "ext": "agda", "hexsha": "d06648168e36676e7375c834c1b4f73173d52c0d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Imports/Issue5583.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Imports/Issue5583.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Imports/Issue5583.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 151 }
module Issue1760d where -- Skipping a new-style mutual block: Anywhere before the declaration or -- the definition of a data/record in the block (case: record). {-# NO_POSITIVITY_CHECK #-} record U₁ : Set data D₁ : Set record U₁ where field ap : U₁ → U₁ data D₁ where lam : (D₁ → D₁) → D₁ -- Skipping a new-style mutual block: Anywhere before the declaration or -- the definition of a data/record in the block (case: data). record U₂ : Set data D₂ : Set record U₂ where field ap : U₂ → U₂ {-# NO_POSITIVITY_CHECK #-} data D₂ where lam : (D₂ → D₂) → D₂
{ "alphanum_fraction": 0.6894736842, "avg_line_length": 21.9230769231, "ext": "agda", "hexsha": "279b93ebca5c789613aef98ff6336381fc0ade5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1760d.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1760d.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1760d.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 570 }
module IPC.Metatheory.Gentzen-BasicTarski where open import IPC.Syntax.Gentzen public open import IPC.Semantics.BasicTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ a → eval t (γ , a) eval (app t u) γ = eval t γ $ eval u γ eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ eval (boom t) γ = elim𝟘 (eval t γ) eval (inl t) γ = ι₁ (eval t γ) eval (inr t) γ = ι₂ (eval t γ) eval (case t u v) γ = elim⊎ (eval t γ) (λ a → eval u (γ , a)) (λ b → eval v (γ , b)) -- Correctness of evaluation with respect to conversion. -- FIXME: How to show this? postulate oops₁ : ∀ {{_ : Model}} {A B Γ} {t : Γ , A ⊢ B} {u : Γ ⊢ A} → eval ([ top ≔ u ] t) ≡ (λ γ → eval t (γ , eval u γ)) oops₂ : ∀ {{_ : Model}} {A B Γ} {t : Γ ⊢ A ▻ B} → eval t ≡ (λ γ a → eval (mono⊢ (weak⊆ {A = A}) t) (γ , a) a) oops₃ : ∀ {{_ : Model}} {A B C Γ} {t : Γ ⊢ A} {u : Γ , A ⊢ C} {v : Γ , B ⊢ C} → eval ([ top ≔ t ] u) ≡ (λ γ → eval u (γ , eval t γ)) oops₄ : ∀ {{_ : Model}} {A B C Γ} {t : Γ ⊢ B} {u : Γ , A ⊢ C} {v : Γ , B ⊢ C} → eval ([ top ≔ t ] v) ≡ (λ γ → eval v (γ , eval t γ)) oops₅ : ∀ {{_ : Model}} {A B Γ} {t : Γ ⊢ A ∨ B} → eval t ≡ (λ γ → elim⊎ (eval t γ) (λ a → ι₁ a) (λ b → ι₂ b)) eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (conglam⋙ {A} {B} p) = cong (⟦λ⟧ {A} {B}) (eval✓ p) eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ (congboom⋙ {C} p) = cong (⟦elim𝟘⟧ {C}) (eval✓ p) eval✓ (conginl⋙ {A} {B} p) = cong (⟦ι₁⟧ {A} {B}) (eval✓ p) eval✓ (conginr⋙ {A} {B} p) = cong (⟦ι₂⟧ {A} {B}) (eval✓ p) eval✓ (congcase⋙ {A} {B} {C} p q r) = cong³ (⟦elim⊎⟧ {A} {B} {C}) (eval✓ p) (eval✓ q) (eval✓ r) eval✓ (beta▻⋙ {A} {B} {t} {u}) = sym (oops₁ {A} {B} {_} {t} {u}) eval✓ (eta▻⋙ {A} {B} {t}) = oops₂ {A} {B} {_} {t} eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl eval✓ (beta∨₁⋙ {A} {B} {C} {t} {u} {v}) = sym (oops₃ {A} {B} {C} {_} {t} {u} {v}) eval✓ (beta∨₂⋙ {A} {B} {C} {t} {u} {v}) = sym (oops₄ {A} {B} {C} {_} {t} {u} {v}) eval✓ (eta∨⋙ {A} {B} {t}) = oops₅ {A} {B} {_} {t}
{ "alphanum_fraction": 0.4091367148, "avg_line_length": 48.0161290323, "ext": "agda", "hexsha": "acc84a0c2d82ea9a01a4c0e8309205b6d55d738f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Metatheory/Gentzen-BasicTarski.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Metatheory/Gentzen-BasicTarski.agda", "max_line_length": 99, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Metatheory/Gentzen-BasicTarski.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1383, "size": 2977 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Correctness proofs for container combinators ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Combinator.Properties where open import Axiom.Extensionality.Propositional using (Extensionality) open import Data.Container.Core open import Data.Container.Combinator open import Data.Container.Relation.Unary.Any open import Data.Empty using (⊥-elim) open import Data.Product as Prod using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry) open import Data.Sum as S using (inj₁; inj₂; [_,_]′; [_,_]) open import Function as F using (_∘′_) open import Function.Inverse as Inv using (_↔_; inverse; module Inverse) open import Level using (_⊔_; lower) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) -- I have proved some of the correctness statements under the -- assumption of functional extensionality. I could have reformulated -- the statements using suitable setoids, but I could not be bothered. module Identity where correct : ∀ {s p x} {X : Set x} → ⟦ id {s} {p} ⟧ X ↔ F.id X correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ id ⟧ X → F.id X to xs = proj₂ xs _ from : F.id X → ⟦ id ⟧ X from x = (_ , λ _ → x) module Constant (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where correct : ∀ {x p y} (X : Set x) {Y : Set y} → ⟦ const {x} {p ⊔ y} X ⟧ Y ↔ F.const X Y correct {x} {y} X {Y} = inverse proj₁ from from∘to λ _ → P.refl where from : X → ⟦ const X ⟧ Y from = < F.id , F.const (⊥-elim ∘′ lower) > from∘to : (x : ⟦ const X ⟧ Y) → from (proj₁ x) ≡ x from∘to xs = P.cong (proj₁ xs ,_) (ext (λ x → ⊥-elim (lower x))) module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where correct : ∀ {x} {X : Set x} → ⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ F.∘ ⟦ C₂ ⟧) X correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ C₁ ∘ C₂ ⟧ X → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) to ((s , f) , g) = (s , < f , curry (g ∘′ any) >) from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₁ ∘ C₂ ⟧ X from (s , f) = ((s , proj₁ F.∘ f) , uncurry (proj₂ F.∘ f) ∘′ ◇.proof) module Product (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where correct : ∀ {x} {X : Set x} → ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X) correct {X = X} = inverse to from from∘to (λ _ → P.refl) where to : ⟦ C₁ × C₂ ⟧ X → ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X to ((s₁ , s₂) , f) = ((s₁ , f F.∘ inj₁) , (s₂ , f F.∘ inj₂)) from : ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X → ⟦ C₁ × C₂ ⟧ X from ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′) from∘to : from F.∘ to ≗ F.id from∘to (s , f) = P.cong (s ,_) (ext [ (λ _ → P.refl) , (λ _ → P.refl) ]) module IndexedProduct {i s p} {I : Set i} (Cᵢ : I → Container s p) where correct : ∀ {x} {X : Set x} → ⟦ Π I Cᵢ ⟧ X ↔ (∀ i → ⟦ Cᵢ i ⟧ X) correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ Π I Cᵢ ⟧ X → ∀ i → ⟦ Cᵢ i ⟧ X to (s , f) = λ i → (s i , λ p → f (i , p)) from : (∀ i → ⟦ Cᵢ i ⟧ X) → ⟦ Π I Cᵢ ⟧ X from f = (proj₁ F.∘ f , uncurry (proj₂ F.∘ f)) module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where correct : ∀ {x} {X : Set x} → ⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X) correct {X = X} = inverse to from from∘to to∘from where to : ⟦ C₁ ⊎ C₂ ⟧ X → ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X to (inj₁ s₁ , f) = inj₁ (s₁ , f) to (inj₂ s₂ , f) = inj₂ (s₂ , f) from : ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X → ⟦ C₁ ⊎ C₂ ⟧ X from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]′ from∘to : from F.∘ to ≗ F.id from∘to (inj₁ s₁ , f) = P.refl from∘to (inj₂ s₂ , f) = P.refl to∘from : to F.∘ from ≗ F.id to∘from = [ (λ _ → P.refl) , (λ _ → P.refl) ] module IndexedSum {i s p} {I : Set i} (C : I → Container s p) where correct : ∀ {x} {X : Set x} → ⟦ Σ I C ⟧ X ↔ (∃ λ i → ⟦ C i ⟧ X) correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ Σ I C ⟧ X → ∃ λ i → ⟦ C i ⟧ X to ((i , s) , f) = (i , (s , f)) from : (∃ λ i → ⟦ C i ⟧ X) → ⟦ Σ I C ⟧ X from (i , (s , f)) = ((i , s) , f) module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where correct : ∀ {x} {X : Set x} → ⟦ const[ I ]⟶ C ⟧ X ↔ (I → ⟦ C ⟧ X) correct = IndexedProduct.correct (F.const C)
{ "alphanum_fraction": 0.5104003579, "avg_line_length": 36.6475409836, "ext": "agda", "hexsha": "cb2433fa7c841a6b38923c33ba9d084c19017495", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1897, "size": 4471 }
-- Occurs there are several ways to parse a left-hand side. module AmbiguousParseForLHS where data X : Set where if_then_else_ : X -> X -> X -> X if_then_ : X -> X -> X x : X bad : X -> X bad (if x then if x then x else x) = x bad _ = if x then x
{ "alphanum_fraction": 0.5315614618, "avg_line_length": 25.0833333333, "ext": "agda", "hexsha": "83544af5c095058bc168eb7f523445d628992789", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/AmbiguousParseForLHS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/AmbiguousParseForLHS.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/AmbiguousParseForLHS.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 91, "size": 301 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Truncation module lib.Function2 where is-surj : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → Type (lmax i j) is-surj {A = A} f = ∀ b → Trunc -1 (hfiber f b) module _ {i j k} {A : Type i} {B : Type j} {C : Type k} {f : A → B} {g : B → C} where abstract ∘-is-surj : is-surj g → is-surj f → is-surj (g ∘ f) ∘-is-surj g-is-surj f-is-surj c = Trunc-rec Trunc-level (λ{(b , gb=c) → Trunc-rec Trunc-level (λ{(a , fa=b) → [ a , ap g fa=b ∙ gb=c ]}) (f-is-surj b)}) (g-is-surj c) module _ {i j} {A : Type i} {B : Type j} {f : A → B} where abstract equiv-is-surj : is-equiv f → is-surj f equiv-is-surj f-is-equiv b = [ g b , f-g b ] where open is-equiv f-is-equiv
{ "alphanum_fraction": 0.5211608222, "avg_line_length": 29.5357142857, "ext": "agda", "hexsha": "a8cadfba582df1cfc5e7dcc7c08a0ce076d37a96", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/Function2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/Function2.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/Function2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 315, "size": 827 }
-- Not using any Floats so shouldn't need ieee754 installed. -- .flags file contains -- -c --ghc-flag="-hide-package ieee754" module _ where open import Agda.Builtin.IO open import Agda.Builtin.Unit postulate return : {A : Set} → A → IO A {-# COMPILE GHC return = \ _ -> return #-} main : IO ⊤ main = return _
{ "alphanum_fraction": 0.665625, "avg_line_length": 18.8235294118, "ext": "agda", "hexsha": "600549fa21a6e692141f91821bfe4820757ab5b5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3619.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3619.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3619.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 320 }
module Impure.STLCRef.Eval where open import Prelude open import Data.Product open import Data.List open import Data.List.Reverse open import Data.Nat open import Data.Fin hiding (_<_) open import Extensions.List as L open import Impure.STLCRef.Syntax open import Impure.STLCRef.Welltyped _!!_ : ∀ {n i} → (μ : Store n) → i < length μ → ∃ (Val {n}) _!!_ {i = i} [] () _!!_ {i = zero} (x ∷ μ) (s≤s p) = x _!!_ {i = suc i} (x ∷ μ) (s≤s p) = μ !! p Config : (n : ℕ) → Set Config n = Exp n × Store n infixl 1 _≻_ data _≻_ : ∀ {n} → Config n → Config n → Set where --------------------------------------- -- Reduction rules --------------------------------------- -- β AppAbs : ∀ {n} {A x} {e : Exp (suc n)} {μ : Store n} → --------------------------------- (ƛ A e) · x , μ ≻ e / (sub x) , μ -- new RefVal : ∀ {n e} {μ : Store n} → (v : Val e) → -------------------------------------------- (ref e , μ) ≻ (loc (length μ) , μ ∷ʳ (, v)) -- load DerefLoc : ∀ {n i} {μ : Store n} → (p : i < length μ) → --------------------------------------------------- (! (loc i) , μ) ≻ (proj₁ (μ !! p) , μ) -- store Assign : ∀ {i n e} {μ : Store n} → (p : i < length μ) → (v : Val e) → ---------------------------------------------- loc i ≔ e , μ ≻ unit , (μ L.[ fromℕ≤ p ]≔ (, v)) --------------------------------------- -- contextual closure --------------------------------------- Ref : ∀ {n e'} {e : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (ref e) , μ ≻ (ref e') , μ' Appₗ : ∀ {n f' e} {f : Exp n} {μ μ'} → (f , μ) ≻ (f' , μ') → --------------------------------------- (f · e) , μ ≻ (f' · e) , μ' Appᵣ : ∀ {n e' e} {f : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (f · e) , μ ≻ (f · e') , μ' Deref : ∀ {n} {e : Exp n} {e'} {μ μ'} → e , μ ≻ e' , μ' → --------------------------------------- ! e , μ ≻ ! e' , μ' Assign₁ : ∀ {n} {e₁ : Exp n} {e₁' e₂} {μ μ'} → e₁ , μ ≻ e₁' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁' ≔ e₂ , μ' Assign₂ : ∀ {n} {e₁ : Exp n} {e₂' e₂} {μ μ'} → e₂ , μ ≻ e₂' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁ ≔ e₂' , μ' ------------------------------------------------ -- Reflexive-transitive closure of step relation ------------------------------------------------ open import Data.Star infixl 1 _≻*_ _≻*_ : ∀ {n} → Config n → Config n → Set c ≻* c' = Star _≻_ c c'
{ "alphanum_fraction": 0.3002535313, "avg_line_length": 28.4639175258, "ext": "agda", "hexsha": "df3bb1cd5118a062009d37a02c874f119fdd5ae2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Impure/STLCRef/Eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Impure/STLCRef/Eval.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Impure/STLCRef/Eval.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 907, "size": 2761 }
module STLC.Kovacs.NormalForm where open import STLC.Kovacs.Embedding public open import Category -------------------------------------------------------------------------------- mutual -- (Nfₑ) renⁿᶠ : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → Γ ⊢ⁿᶠ A → Γ′ ⊢ⁿᶠ A renⁿᶠ η (ƛ M) = ƛ (renⁿᶠ (liftₑ η) M) renⁿᶠ η (ne M) = ne (renⁿᵉ η M) -- (Neₑ) renⁿᵉ : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → Γ ⊢ⁿᵉ A → Γ′ ⊢ⁿᵉ A renⁿᵉ η (𝓋 i) = 𝓋 (getₑ η i) renⁿᵉ η (M ∙ N) = renⁿᵉ η M ∙ renⁿᶠ η N mutual -- (Nf-idₑ) idrenⁿᶠ : ∀ {Γ A} → (M : Γ ⊢ⁿᶠ A) → renⁿᶠ idₑ M ≡ M idrenⁿᶠ (ƛ M) = ƛ & idrenⁿᶠ M idrenⁿᶠ (ne M) = ne & idrenⁿᵉ M -- (Ne-idₑ) idrenⁿᵉ : ∀ {Γ A} → (M : Γ ⊢ⁿᵉ A) → renⁿᵉ idₑ M ≡ M idrenⁿᵉ (𝓋 i) = 𝓋 & idgetₑ i idrenⁿᵉ (M ∙ N) = _∙_ & idrenⁿᵉ M ⊗ idrenⁿᶠ N mutual -- (Nf-∘ₑ) renⁿᶠ○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᶠ A) → renⁿᶠ (η₂ ○ η₁) M ≡ (renⁿᶠ η₁ ∘ renⁿᶠ η₂) M renⁿᶠ○ η₁ η₂ (ƛ M) = ƛ & renⁿᶠ○ (liftₑ η₁) (liftₑ η₂) M renⁿᶠ○ η₁ η₂ (ne M) = ne & renⁿᵉ○ η₁ η₂ M -- (Ne-∘ₑ) renⁿᵉ○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᵉ A) → renⁿᵉ (η₂ ○ η₁) M ≡ (renⁿᵉ η₁ ∘ renⁿᵉ η₂) M renⁿᵉ○ η₁ η₂ (𝓋 i) = 𝓋 & get○ η₁ η₂ i renⁿᵉ○ η₁ η₂ (M ∙ N) = _∙_ & renⁿᵉ○ η₁ η₂ M ⊗ renⁿᶠ○ η₁ η₂ N -------------------------------------------------------------------------------- mutual -- (⌜_⌝Nf) embⁿᶠ : ∀ {Γ A} → Γ ⊢ⁿᶠ A → Γ ⊢ A embⁿᶠ (ƛ M) = ƛ (embⁿᶠ M) embⁿᶠ (ne M) = embⁿᵉ M -- (⌜_⌝Ne) embⁿᵉ : ∀ {Γ A} → Γ ⊢ⁿᵉ A → Γ ⊢ A embⁿᵉ (𝓋 i) = 𝓋 i embⁿᵉ (M ∙ N) = embⁿᵉ M ∙ embⁿᶠ N mutual -- (⌜⌝Nf-nat) natembⁿᶠ : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᶠ A) → (embⁿᶠ ∘ renⁿᶠ η) M ≡ (ren η ∘ embⁿᶠ) M natembⁿᶠ η (ƛ M) = ƛ & natembⁿᶠ (liftₑ η) M natembⁿᶠ η (ne M) = natembⁿᵉ η M -- (⌜⌝Ne-nat) natembⁿᵉ : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ⁿᵉ A) → (embⁿᵉ ∘ renⁿᵉ η) M ≡ (ren η ∘ embⁿᵉ) M natembⁿᵉ η (𝓋 i) = refl natembⁿᵉ η (M ∙ N) = _∙_ & natembⁿᵉ η M ⊗ natembⁿᶠ η N -------------------------------------------------------------------------------- renⁿᶠPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘 renⁿᶠPsh A = record { Fₓ = _⊢ⁿᶠ A ; F = renⁿᶠ ; idF = fext! idrenⁿᶠ ; F⋄ = λ η₁ η₂ → fext! (renⁿᶠ○ η₂ η₁) } renⁿᵉPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘 renⁿᵉPsh A = record { Fₓ = _⊢ⁿᵉ A ; F = renⁿᵉ ; idF = fext! idrenⁿᵉ ; F⋄ = λ η₁ η₂ → fext! (renⁿᵉ○ η₂ η₁) } embⁿᶠNT : ∀ {A} → NaturalTransformation (renⁿᶠPsh A) (renPsh A) embⁿᶠNT = record { N = embⁿᶠ ; natN = λ η → fext! (λ M → natembⁿᶠ η M) } embⁿᵉNT : ∀ {A} → NaturalTransformation (renⁿᵉPsh A) (renPsh A) embⁿᵉNT = record { N = embⁿᵉ ; natN = λ η → fext! (λ M → natembⁿᵉ η M) } --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.40243079, "avg_line_length": 24.6833333333, "ext": "agda", "hexsha": "f5a87f87f081dfcfd00bfdaaf8b0c8adf6723862", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC/Kovacs/NormalForm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC/Kovacs/NormalForm.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC/Kovacs/NormalForm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1819, "size": 2962 }
------------------------------------------------------------------------------ -- Properties related with the group commutator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.Commutator.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import GroupTheory.Base open import GroupTheory.Commutator open import GroupTheory.PropertiesI ------------------------------------------------------------------------------ -- Kurosh (1960), p. 99. commutatorInverse : ∀ a b → [ a , b ] · [ b , a ] ≡ ε commutatorInverse a b = a ⁻¹ · b ⁻¹ · a · b · (b ⁻¹ · a ⁻¹ · b · a) ≡⟨ assoc (a ⁻¹ · b ⁻¹ · a) b (b ⁻¹ · a ⁻¹ · b · a) ⟩ a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · a ⁻¹ · b · a)) ≡⟨ ·-rightCong (·-rightCong (assoc (b ⁻¹ · a ⁻¹) b a)) ⟩ a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · a ⁻¹ · (b · a))) ≡⟨ ·-rightCong (·-rightCong (assoc (b ⁻¹) (a ⁻¹) (b · a))) ⟩ a ⁻¹ · b ⁻¹ · a · (b · (b ⁻¹ · (a ⁻¹ · (b · a)))) ≡⟨ ·-rightCong (sym (assoc b (b ⁻¹) (a ⁻¹ · (b · a)))) ⟩ a ⁻¹ · b ⁻¹ · a · (b · b ⁻¹ · (a ⁻¹ · (b · a))) ≡⟨ ·-rightCong (·-leftCong (rightInverse b)) ⟩ a ⁻¹ · b ⁻¹ · a · (ε · (a ⁻¹ · (b · a))) ≡⟨ ·-rightCong (leftIdentity (a ⁻¹ · (b · a))) ⟩ a ⁻¹ · b ⁻¹ · a · (a ⁻¹ · (b · a)) ≡⟨ assoc (a ⁻¹ · b ⁻¹) a (a ⁻¹ · (b · a)) ⟩ a ⁻¹ · b ⁻¹ · (a · (a ⁻¹ · (b · a))) ≡⟨ ·-rightCong (sym (assoc a (a ⁻¹) (b · a))) ⟩ a ⁻¹ · b ⁻¹ · (a · a ⁻¹ · (b · a)) ≡⟨ ·-rightCong (·-leftCong (rightInverse a)) ⟩ a ⁻¹ · b ⁻¹ · (ε · (b · a)) ≡⟨ ·-rightCong (leftIdentity (b · a)) ⟩ a ⁻¹ · b ⁻¹ · (b · a) ≡⟨ assoc (a ⁻¹) (b ⁻¹) (b · a) ⟩ a ⁻¹ · (b ⁻¹ · (b · a)) ≡⟨ ·-rightCong (sym (assoc (b ⁻¹) b a)) ⟩ a ⁻¹ · ((b ⁻¹ · b) · a) ≡⟨ ·-rightCong (·-leftCong (leftInverse b)) ⟩ a ⁻¹ · (ε · a) ≡⟨ ·-rightCong (leftIdentity a) ⟩ a ⁻¹ · a ≡⟨ leftInverse a ⟩ ε ∎ ------------------------------------------------------------------------------ -- References -- -- Kurosh, A. G. (1960). The Theory of Groups. 2nd -- ed. Vol. 1. Translated and edited by K. A. Hirsch. Chelsea -- Publising Company.
{ "alphanum_fraction": 0.4028082492, "avg_line_length": 37.9833333333, "ext": "agda", "hexsha": "1eed7cc852e1713825e7f435059dc43890f2547c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/Commutator/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/Commutator/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/Commutator/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 935, "size": 2279 }
module BTA9 where ---------------------------------------------- -- Preliminaries: Imports and List-utilities ---------------------------------------------- open import Data.Nat hiding (_<_;_⊔_;_*_;equal) open import Data.Bool hiding (_∧_;_∨_) open import Function using (_∘_) open import Data.List open import Data.Nat.Properties open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import Lib --------------------------------------- -- Start of the development: --------------------------------------- -- Intro/Objective: ------------------- -- The following development defines a (verified) specializer/partial -- evaluator for a simply typed lambda calculus embedded in Agda using -- deBruijn indices. -- The residual language. ------------------------- -- The residual language is a standard simply typed λ-calculus. The -- types are integers,functions,pairs,and sums. data Type : Set where Int : Type Fun : Type → Type → Type --pair type on the residual type level _•_ : Type → Type → Type --sum type on the residual type level _⊎_ : Type → Type → Type Ctx = List Type -- The type Exp describes the typed residual expressions. Variables -- are represented by deBruijn indices that form references into the -- typing context. The constructors and typing constraints are -- standard. -- TODO: citations for ``as usual'' and ``standard'' -- what? data Exp (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ Int EAdd : Exp Γ Int → Exp Γ Int -> Exp Γ Int ELam : ∀ {τ τ'} → Exp (τ ∷ Γ) τ' → Exp Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp Γ (Fun τ τ') → Exp Γ τ → Exp Γ τ' _,_ : ∀ {τ τ'} → Exp Γ τ → Exp Γ τ' → Exp Γ (τ • τ') Tl : ∀ {τ τ'} → Exp Γ τ → Exp Γ (τ ⊎ τ') Tr : ∀ {τ τ'} → Exp Γ τ' → Exp Γ (τ ⊎ τ') EFst : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ ESnd : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ' ECase : ∀ {τ τ' τ''} → Exp Γ (τ ⊎ τ') → Exp (τ ∷ Γ) τ'' → Exp (τ' ∷ Γ) τ'' → Exp Γ τ'' -- The standard functional semantics of the residual expressions. -- TODO: citations for ``as usual'' and ``standard'' -- what? module Exp-Eval where -- interpretation of Exp types EImp : Type → Set EImp Int = ℕ EImp (Fun ty ty₁) = EImp ty → EImp ty₁ EImp (ty • ty₁) = EImp ty * EImp ty₁ EImp (ty ⊎ ty₁) = EImp ty ⨄ EImp ty₁ -- Environments containing values for free variables. An environment -- is indexed by a typing context that provides the types for the -- contained values. data Env : Ctx → Set where [] : Env [] _∷_ : ∀ {τ Γ} → EImp τ → Env Γ → Env (τ ∷ Γ) -- Lookup a value in the environment, given a reference into the -- associated typing context. lookupE : ∀ { τ Γ } → τ ∈ Γ → Env Γ → EImp τ lookupE hd (x ∷ env) = x lookupE (tl v) (x ∷ env) = lookupE v env -- Evaluation of residual terms, given a suitably typed environment. ev : ∀ {τ Γ} → Exp Γ τ → Env Γ → EImp τ ev (EVar x) env = lookupE x env ev (EInt x) env = x ev (EAdd e e₁) env = ev e env + ev e₁ env ev (ELam e) env = λ x → ev e (x ∷ env) ev (EApp e e₁) env = ev e env (ev e₁ env) ev (e , e₁) env = ev e env , (ev e₁ env) ev (Tl e) env = tl (ev e env) ev (Tr e) env = tr (ev e env) ev (EFst e) env = fst (ev e env) ev (ESnd e) env = snd (ev e env) ev (ECase e e₁ e₂) env with ev e env ev (ECase e e₁ e₂) env | tl c = (λ x → ev e₁ (x ∷ env)) c ev (ECase e e₁ e₂) env | tr c = (λ x → ev e₂ (x ∷ env)) c -- The binding-time-annotated language. --------------------------------------- -- The type of a term determines the term's binding time. The type -- constructors with an A-prefix denote statically bound integers and -- functions. Terms with dynamic binding time have a `D' type. The `D' -- type constructor simply wraps up a residual type. data AType : Set where AInt : AType AFun : AType → AType → AType D : Type → AType --pair type on the annotated type level _•_ : AType → AType → AType --sum type on the annotated type level _⊎_ : AType → AType → AType ACtx = List AType -- The mapping from annotated types to residual types is straightforward. typeof : AType → Type typeof AInt = Int typeof (AFun α₁ α₂) = Fun (typeof α₁) (typeof α₂) typeof (D x) = x typeof (α₁ • α₂) = typeof α₁ • typeof α₂ typeof (α₁ ⊎ α₂) = typeof α₁ ⊎ typeof α₂ -- The typed annotated terms: The binding times of variables is -- determined by the corresponding type-binding in the context. In the -- other cases, the A- and D-prefixes on term constructors inidicate -- the corresponding binding times for the resulting terms. ------------------------------------------------------------------------------------------------ -- Now the typed annotated terms are extended to inculde dynamic terms whose subterms are static ------------------------------------------------------------------------------------------------ --------------- --Some examples --------------- --a. first-order static value in a dynamic environment -- DAdd (DInt 1) (AAdd (AInt 2) (AInt 3)) where AAdd (AInt 2) (AInt 3) : AExp [] AInt -- DAdd (DInt 1) (AApp (ALam (Var hd)) (AInt 5)) where AApp (ALam (Var hd)) (AInt 5) : AExp [] AInt --b. higher-order static value in a dynamic environment -- DApp (ALam (Var hd)) (DInt 5) where ALam (Var hd) : AExp [] (AFun (D Int) (D Int)) -- DApp (ALam (ALam (AInt 0))) (DInt 5) where ALam (ALam (AInt 0)) : AExp [] (AFun (AFun (D Int) (D Int)) AInt) -- DApp (ALam (ALam (DInt 0))) (DInt 5) where ALam (ALam (DInt 0)) : AExp [] (AFun (AFun AInt (D Int)) (D Int)) --Clearly these terms are not well-typed and we need to modify [AExp] such that they have the right types which are --compatible with the dynamic environment,or we can "lift" their static types to dynamic types so that they can be --used as dynamic sub-terms to be filled in the right dynamic environment. This,however,brings new difficulty when --we try to partially evaluate term who contains "lifted" subterms. ---------------- --new difficulty ---------------- --Consider the evaluation of the following term --DAdd (DInt 1) (Lift (AAdd (AInt 2) (AInt 3))) : AExp [] AInt --the expected type after evaluation is, --EAdd (EInt 1) ? : Exp [] Int where ? : Exp [] Int --and one good candidate for "?" as, --EInt (pe (AAdd (AInt 2) (AInt 3)) []) : Exp [] Int --where we wrap up the partial evaluation of the static subterm so --that it fits with the rest of evaluation. --However,we can not always "wrap up" a evaluated higher-order static --value so that it has the required residual type, --ALam (Var hd) : AExp [] (AFun AInt AInt) --the required type of its lifted term as, --? : Exp [] (Fun Int Int) --which can not be constructed from [λ Γ↝Γ' x → x : []↝Γ' → ℕ → ℕ] --for the input of the static function is evaluated to be a natural --number which can not be matched with the type of the input of the --required residual term. It is then clear that we need to impose --restriction upon terms to be lifted. ------------------------- --restriction for lifting ------------------------- ------------------------------------------------------------- -- The interpretation of annotated types. Imp : Ctx → AType → Set Imp Γ (AInt) = ℕ Imp Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp Γ' α₁ → Imp Γ' α₂) Imp Γ (D σ) = Exp Γ σ Imp Γ (α₁ • α₂) = (Imp Γ α₁) * (Imp Γ α₂) Imp Γ (α₁ ⊎ α₂) = (Imp Γ α₁) ⨄ (Imp Γ α₂) elevate-var : ∀ {Γ Γ'} {τ : Type} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp Γ τ → Exp Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (e , e₁) = ((elevate Γ↝Γ'↝Γ'' e) , (elevate Γ↝Γ'↝Γ'' e₁)) elevate Γ↝Γ'↝Γ'' (Tl e) = Tl (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (Tr e) = Tr (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (EFst e) = EFst (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ESnd e) = ESnd (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ECase c e₁ e₂) = ECase (elevate Γ↝Γ'↝Γ'' c) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e ------------------------------------------------------------- -- --case 1. a first-order static value in a dynamic environment -- lift1 : AExp [] AInt -- lift1 = (AInt 0) -- e1 : Imp [] AInt -- e1 = 0 -- lifted1 : Exp [] (typeof AInt) -- lifted1 = EInt e1 -- --case 2. higher-order static function in a dynamic environment -- --a. a function whose input argument is of static integer -- --lift2 : AExp [] (AFun AInt AInt) -- --lift2 = ALam (Var hd) -- --e2 : Imp [] (AFun AInt AInt) -- --e2 = λ Γ↝Γ' x → x -- --lifted2 : Exp [] (typeof (AFun AInt AInt)) -- --lifted2 = ELam {!!} -- --Note that as explained above it is impossible to construct the right term using [e2] -- --to fill in the above hole! -- --b. a function whose input argument is of dynamic integer -- --b.1. when return type is of dynamic integer -- lift3 : AExp [] (AFun (D Int) (D Int)) -- lift3 = ALam (Var hd) -- e3 : Imp [] (AFun (D Int) (D Int)) -- e3 = λ Γ↝Γ' x → x -- liftede3 : Exp [] (typeof (AFun (D Int) (D Int))) -- liftede3 = ELam (e3 (↝-extend ↝-refl) (EVar hd)) -- --b.2. when return type is of static integer -- lift4 : AExp [] (AFun (D Int) AInt) -- lift4 = ALam (AInt 0) -- e4 : Imp [] (AFun (D Int) AInt) -- e4 = λ Γ↝Γ' x → 0 -- liftede4 : Exp [] (typeof (AFun (D Int) AInt)) -- liftede4 = ELam ( EInt {Int ∷ []} (e4 (↝-extend ↝-refl) (EVar hd))) -- --c. a function whose input argument is of static function type -- --c.1. static function type returns a static integer -- --lift5 : AExp [] (AFun (AFun AInt AInt) AInt) -- --lift5 = ALam (AApp (Var hd) (AInt 0)) -- --e5 : Imp [] (AFun (AFun AInt AInt) AInt) -- --e5 = λ Γ↝Γ' x → x ↝-refl 0 -- --liftede5 : Exp [] (typeof ( AFun (AFun AInt AInt) AInt)) -- --liftede5 = ELam (EInt (e5 (↝-extend {τ = Fun Int Int} ↝-refl) (λ Γ↝Γ' e' → {!!}))) -- --Note that again it is impossible to construct the right residual term -- --c.2. static function type returns a dynamic integer -- --c.2.1. the input of the function type is of static integer -- lift6 : AExp [] (AFun (AFun AInt (D Int)) (D Int)) -- lift6 = ALam (AApp (Var hd) (AInt 0)) -- e6 : Imp [] (AFun (AFun AInt (D Int)) (D Int)) -- e6 = λ Γ↝Γ' x → x ↝-refl 0 -- liftede6 : Exp [] (typeof ( AFun (AFun AInt (D Int)) (D Int))) -- liftede6 = ELam ((e6 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) (EInt e')))) -- --c.2.1. the input of the function type is of dynamic integer -- lift7 : AExp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- lift7 = ALam (AApp (Var hd) (DInt 0)) -- e7 : Imp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- e7 = λ Γ↝Γ' x → x ↝-refl (EInt 0) -- liftede7 : Exp [] (typeof ( AFun (AFun (D Int) (D Int)) (D Int))) -- liftede7 = ELam ((e7 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) e'))) -- --c.3. the output of the function type is of higher-order static value -- --c.3.1 the return value has one static integer as input -- -- lift8 : AExp [] (AFun (D Int) (AFun AInt (D Int))) -- -- lift8 = ALam (ALam (Var (tl hd))) -- -- e8 : Imp [] (AFun (D Int) (AFun AInt (D Int))) -- -- e8 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- -- liftede8 : Exp [] (typeof ( AFun (D Int) (AFun AInt (D Int)))) -- -- liftede8 = ELam (ELam (e8 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl {!!})) -- --c.3.2 the return value has one dynamic integer as input -- lift9 : AExp [] (AFun (D Int) (AFun (D Int) (D Int))) -- lift9 = ALam (ALam (Var (tl hd))) -- e9 : Imp [] (AFun (D Int) (AFun (D Int) (D Int))) -- e9 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- liftede9 : Exp [] (typeof ( AFun (D Int) (AFun (D Int) (D Int)))) -- liftede9 = ELam (ELam (e9 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl (EVar hd))) -- --d. static pairs and sums in dynamic environment -- --d.1. identity function with static sum as its input -- lift10 : AExp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- lift10 = ALam (Var hd) -- e10 : Imp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- e10 = λ Γ↝Γ' x → x -- liftede10 : Exp [] (typeof (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int)))) -- liftede10 = ELam {!e10!} -- --d.1. identity function with static sum as its input -- lift11 : AExp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- lift11 = ALam (Var hd) -- e11 : Imp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- e11 = λ Γ↝Γ' x → x -- liftede11 : Exp [] (typeof (AFun ((D Int) • (D Int)) ((D Int) • (D Int)))) -- liftede11 = ELam (fst (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd))) , -- snd (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd)))) --Note that the above two examples in section "d" clearly shows that --"static functions with inputs of static sum type are not liftable -- while with inputs of static pair type are liftable ". --------------------------- --summary on liftable terms --------------------------- --a. Regarding static first-order static value (static integer) in dynamic environment -- All terms of static integer type are liftable --b. Regarding static higher-order static value in dynamic environment --b.1. given that output value is liftable -- • when input is of first-order dynamic type,liftable -- • when input is of higher-order static type and output -- of that input is of dynamic type,liftable --b.2. given that input value is liftable -- • when output is of first-order type,liftable -- • when output is of higher-order type and inputs -- of that type are of dynamic type,liftable ------------------------------------------- --specification of the liftable restriction ------------------------------------------- mutual data Liftable : AType → Set where D : ∀ τ → Liftable (D τ) AInt : Liftable AInt _⊎_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ ⊎ α₂) _•_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable α₂ → Liftable (AFun α₁ α₂) data Liftable⁻ : AType → Set where D : ∀ τ → Liftable⁻ (D τ) _•_ : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable⁻ α₂ → Liftable⁻ (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable α₁ → Liftable⁻ α₂ → Liftable⁻ (AFun α₁ α₂) ---------------------------------------- --[AExp] with liftable terms ---------------------------------------- data AExp (Δ : ACtx) : AType → Set where Var : ∀ {α} → α ∈ Δ → AExp Δ α AInt : ℕ → AExp Δ AInt AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt ALam : ∀ {α₁ α₂} → AExp (α₁ ∷ Δ) α₂ → AExp Δ (AFun α₁ α₂) AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ DInt : ℕ → AExp Δ (D Int) DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int) DLam : ∀ {σ₁ σ₂} → AExp ((D σ₁) ∷ Δ) (D σ₂) → AExp Δ (D (Fun σ₁ σ₂)) DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁) -- Static pairs and sums _,_ : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ α₂ → AExp Δ (α₁ • α₂) Tl : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ (α₁ ⊎ α₂) Tr : ∀ {α₁ α₂} → AExp Δ α₂ → AExp Δ (α₁ ⊎ α₂) Fst : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₁ Snd : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₂ Case : ∀ {α₁ α₂ α₃} → AExp Δ (α₁ ⊎ α₂) → AExp (α₁ ∷ Δ) α₃ → AExp (α₂ ∷ Δ) α₃ → AExp Δ α₃ -- Dynamic pairs and sums _ḋ_ : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D σ₂) → AExp Δ (D (σ₁ • σ₂)) DTl : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D (σ₁ ⊎ σ₂)) DTr : ∀ {σ₁ σ₂} → AExp Δ (D σ₂) → AExp Δ (D (σ₁ ⊎ σ₂)) DFst : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₁) DSnd : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₂) DCase : ∀ {σ₁ σ₂ σ₃} → AExp Δ (D (σ₁ ⊎ σ₂)) → AExp ((D σ₁) ∷ Δ) (D σ₃) → AExp ((D σ₂) ∷ Δ) (D σ₃) → AExp Δ (D σ₃) -- Liftable static terms ↑ : ∀ {α} → Liftable α → AExp Δ α → AExp Δ (D (typeof α)) -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. lift : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp Γ α → Imp Γ' α lift AInt p v = v lift (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'') lift (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v lift (α₁ • α₂) Γ↝Γ' (v₁ , v₂) = (lift α₁ Γ↝Γ' v₁) , (lift α₂ Γ↝Γ' v₂) lift (α₁ ⊎ α₂) Γ↝Γ' (tl v) = tl (lift α₁ Γ↝Γ' v) lift (α₁ ⊎ α₂) Γ↝Γ' (tr v) = tr (lift α₂ Γ↝Γ' v) module SimpleAEnv where -- A little weaker, but much simpler data AEnv (Γ : Ctx) : ACtx → Set where [] : AEnv Γ [] --cons : ∀ {Δ} (α : AType) → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) cons : ∀ {Δ} {α : AType} → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α lookup [] () --lookup {α} (cons .α x aenv) hd = x --lookup {α} (cons .y x aenv) (tl {.α} {y} id) = lookup aenv id lookup {α} (cons x aenv) hd = x lookup {α} (cons x aenv) (tl {.α} {y} id) = lookup aenv id liftEnv : ∀ {Γ Γ' Δ} → Γ ↝ Γ' → AEnv Γ Δ → AEnv Γ' Δ liftEnv Γ↝Γ' [] = [] --liftEnv Γ↝Γ' (cons α x env) = cons α (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) liftEnv Γ↝Γ' (cons {α = α} x env) = cons {α = α} (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) --consD σ env = (cons (D σ) (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) consD σ env = (cons {α = D σ} (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) ---------------------------------------------- -- Helper for the evaluation of liftable terms ---------------------------------------------- mutual lift' : ∀ {Γ α} → Liftable α → Imp Γ α → (Exp Γ (typeof α)) lift' (D τ) v = v lift' AInt v = EInt v lift' (ty ⊎ ty₁) (tl a) = Tl (lift' ty a) lift' (ty ⊎ ty₁) (tr b) = Tr (lift' ty₁ b) lift' (ty • ty₁) (ffst , ssnd) = lift' ty ffst , lift' ty₁ ssnd lift' {Γ} (AFun {α₁} ty₁ ty₂) v = ELam ((λ x → lift' ty₂ (v (↝-extend {τ = typeof α₁} ↝-refl) x)) (embed ty₁ (EVar {Γ = typeof α₁ ∷ Γ} hd))) embed : ∀ {Γ α} → Liftable⁻ α → Exp Γ (typeof α) → (Imp Γ α) embed (D τ) e = e -- embed (ty ⊎ ty₁) e = {! (ECase e (EVar hd) ?)!} -- embed (ty ⊎ ty₁) (EVar x) = {!!} -- embed (ty ⊎ ty₁) (EApp e e₁) = {!!} -- embed (ty ⊎ ty₁) (Tl e) = tl (embed ty e) -- embed (ty ⊎ ty₁) (Tr e) = tr (embed ty₁ e) -- embed (ty ⊎ ty₁) (EFst e) = {!!} -- embed (ty ⊎ ty₁) (ESnd e) = {!!} -- embed (ty ⊎ ty₁) (ECase e e₁ e₂) = {!!} embed (ty • ty₁) e = embed ty (EFst e) , embed ty₁ (ESnd e) embed {Γ} (AFun {α} ty₁ ty₂) e = λ Γ↝Γ' v₁ → embed ty₂ (EApp (liftE Γ↝Γ' e) (lift' ty₁ v₁)) -------------------- -- Partial Evaluator -------------------- pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α pe (Var x) env = lookup env x pe (AInt x) env = x pe (AAdd e e₁) env = pe e env + pe e₁ env pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons {α = α} y (liftEnv Γ↝Γ' env)) pe (AApp e e₁) env = pe e env ↝-refl (pe e₁ env) pe (DInt x) env = EInt x pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) pe (DLam {σ} e) env = ELam (pe e (consD σ env)) pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) pe {Γ = Γ} (e , e₁) env = pe {Γ = Γ} e env , pe {Γ = Γ} e₁ env pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tl e) env = tl (pe {α = α₁} {Γ = Γ} e env) pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tr e) env = tr (pe {α = α₂} {Γ = Γ} e env) pe {Γ = Γ} (Fst e) env = fst (pe {Γ = Γ} e env) pe {Γ = Γ} (Snd e) env = snd (pe {Γ = Γ} e env) pe {Γ = Γ} (Case e e₁ e₂) env with pe {Γ = Γ} e env pe {Γ = Γ} (Case {α₁ = α} e e₁ e₂) env | tl y = (λ Γ↝Γ' → λ y → pe e₁ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe {Γ = Γ} (Case {α₂ = α} e e₁ e₂) env | tr y = (λ Γ↝Γ' → λ y → pe e₂ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe (e ḋ e₁) env = pe e env , pe e₁ env pe (DTl e) env = Tl (pe e env) pe (DTr e) env = Tr (pe e env) pe (DFst e) env = EFst (pe e env) pe (DSnd e) env = ESnd (pe e env) pe (DCase {σ₁} {σ₂} e e₁ e₂) env = ECase (pe e env) (pe e₁ (consD σ₁ env)) (pe e₂ (consD σ₂ env)) pe (↑ x e) env = lift' x (pe e env) -- Correctness proof module Correctness where open SimpleAEnv open Exp-Eval -- TODO: rename occurences of stripα to typeof stripα = typeof stripΔ : ACtx → Ctx stripΔ = map stripα strip-lookup : ∀ { α Δ} → α ∈ Δ → stripα α ∈ stripΔ Δ strip-lookup hd = hd strip-lookup (tl x) = tl (strip-lookup x) strip : ∀ {α Δ} → AExp Δ α → Exp (stripΔ Δ) (stripα α) strip (Var x) = EVar (strip-lookup x) strip (AInt x) = EInt x strip (AAdd e e₁) = EAdd (strip e) (strip e₁) strip (ALam e) = ELam (strip e) strip (AApp e e₁) = EApp (strip e) (strip e₁) strip (DInt x) = EInt x strip (DAdd e e₁) = EAdd (strip e) (strip e₁) strip (DLam e) = ELam (strip e) strip (DApp e e₁) = EApp (strip e) (strip e₁) strip (e , e₁) = strip e , strip e₁ strip (Tl e) = Tl (strip e) strip (Tr e) = Tr (strip e) strip (Fst e) = EFst (strip e) strip (Snd e) = ESnd (strip e) strip (Case e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (e ḋ e₁) = strip e , strip e₁ strip (DTl e) = Tl (strip e) strip (DTr e) = Tr (strip e) strip (DFst e) = EFst (strip e) strip (DSnd e) = ESnd (strip e) strip (DCase e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (↑ x e) = strip e --liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ --liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e stripLift : ∀ {α Δ Γ} → stripΔ Δ ↝ Γ → AExp Δ α → Exp Γ (stripα α) stripLift Δ↝Γ = liftE Δ↝Γ ∘ strip -- -------------------------------- -- --"lift-strip" equivalence lemma -- -------------------------------- -- ↑≡↓ : ∀ x e env env' aenv → Equiv-Env env' aenv env → ev (lift' x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- We want to show that pe preserves the semantics of the -- program. Roughly, Exp-Eval.ev-ing a stripped program is -- equivalent to first pe-ing a program and then Exp-Eval.ev-ing the -- result. But as the pe-result of a static function ``can do more'' -- than the (ev ∘ strip)ped function we need somthing more refined. module Equiv where open import Relation.Binary.PropositionalEquality -- Extending a value environment according to an extension of a -- type environment data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where refl : ∀ env → ↝-refl ⊢ env ↝ env extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → ↝-extend {Γ = Γ} {Γ' = Γ'} {τ = τ} Γ↝Γ' ⊢ env ↝ (v ∷ env') env↝trans : ∀ {Γ Γ' Γ''} {Γ↝Γ' : Γ ↝ Γ'} {Γ'↝Γ'' : Γ' ↝ Γ''} {env env' env''} → Γ↝Γ' ⊢ env ↝ env' → Γ'↝Γ'' ⊢ env' ↝ env'' → let Γ↝Γ'' = ↝-trans Γ↝Γ' Γ'↝Γ'' in Γ↝Γ'' ⊢ env ↝ env'' env↝trans {Γ} {.Γ''} {Γ''} {Γ↝Γ'} {.↝-refl} {env} {.env''} {env''} env↝env' (refl .env'') = env↝env' env↝trans env↝env' (extend v env'↝env'') = extend v (env↝trans env↝env' env'↝env'') -- Equivalent Imp Γ α and EImp τ values (where τ = stripα α). As -- (v : Imp Γ α) is not necessarily closed, equivalence is defined for -- the closure (Env Γ, ImpΓ α) Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set Equiv {AInt} env av v = av ≡ v Equiv {AFun α₁ α₂} {Γ} env av v = ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → Equiv {α₁} {Γ'} env' av' v' → Equiv {α₂} env' (av Γ↝Γ' av') (v v') Equiv {D x} env av v = ev av env ≡ v Equiv {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) = (Equiv {α} env ffst ffst₁) ∧ (Equiv {α₁} env ssnd ssnd₁) Equiv {α ⊎ α₁} env (tl a) (tl a₁) = Equiv {α} env a a₁ -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tl a) (tr b) = ⊥ -- Interesting case! Equiv {α ⊎ α₁} env (tr b) (tl a) = ⊥ -- Interesting case! -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tr b) (tr b₁) = Equiv {α₁} env b b₁ -- Equiv {AInt} env av v = av ≡ v -- Equiv {AFun α₁ α₂} {Γ} env av v = -- extensional equality, given -- an extended context -- ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → -- {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → -- Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') -- Equiv {D x} {Γ} env av v = ev av env ≡ v -- actually we mean extensional equality -- TODO: Define a proper equivalence for EImps -- Equivalence of AEnv and Env environments. They need to provide -- Equivalent bindings for a context Δ/stripΔ Δ. Again, the -- equivalence is defined for a closure (Env Γ', AEnv Γ' Δ). data Equiv-Env {Γ' : _} (env' : Env Γ') : ∀ {Δ} → let Γ = stripΔ Δ in AEnv Γ' Δ → Env Γ → Set where [] : Equiv-Env env' [] [] cons : ∀ {α Δ} → let τ = stripα α Γ = stripΔ Δ in {env : Env Γ} → {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (va : Imp (Γ') α) → (v : EImp τ) → Equiv {α} {Γ'} env' va v → --Equiv-Env env' (cons α va (aenv)) (v ∷ env) Equiv-Env env' (cons {α = α} va (aenv)) (v ∷ env) -------------------------------- --"lift-strip" equivalence lemma -------------------------------- -- ↑≡↓ : ∀ {Γ' Δ α} x e env env' aenv → Equiv-Env {Γ'} env' {Δ} aenv env → ev (lift' {Γ = Γ'} {α = α} x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- Now for the proof... module Proof where open Equiv open import Relation.Binary.PropositionalEquality -- Extensional equality as an axiom to prove the Equivalence of -- function values. We could (should?) define it locally for -- Equiv. postulate ext : ∀ {τ₁ τ₂} {f g : EImp τ₁ → EImp τ₂} → (∀ x → f x ≡ g x) → f ≡ g -- Ternary helper relation for environment extensions, analogous to _↝_↝_ for contexts data _⊢_↝_↝_⊣ : ∀ { Γ Γ' Γ''} → Γ ↝ Γ' ↝ Γ'' → Env Γ → Env Γ' → Env Γ'' → Set where refl : ∀ {Γ Γ''} {Γ↝Γ'' : Γ ↝ Γ''} { env env'' } → Γ↝Γ'' ⊢ env ↝ env'' → ↝↝-base Γ↝Γ'' ⊢ env ↝ [] ↝ env'' ⊣ extend : ∀ {Γ Γ' Γ'' τ} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} { env env' env'' } → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (v : EImp τ) → ↝↝-extend {Γ = Γ} {Γ' = Γ'} {Γ'' = Γ''} {τ = τ} Γ↝Γ'↝Γ'' ⊢ (v ∷ env) ↝ (v ∷ env') ↝ (v ∷ env'') ⊣ -- the following lemmas are strong versions of the shifting -- functions, proving that consistent variable renaming preserves -- equivalence (and not just typing). lookup-elevate-≡ : ∀ {τ Γ Γ'} {Γ↝Γ' : Γ ↝ Γ'} {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var Γ↝Γ' x) env' lookup-elevate-≡ {τ} {.Γ'} {Γ'} {.↝-refl} {.env'} {env'} (refl .env') x = refl lookup-elevate-≡ (extend v env↝env') x = lookup-elevate-≡ env↝env' x lookup-elevate2-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var2 Γ↝Γ'↝Γ'' x) env'' lookup-elevate2-≡ (refl Γ↝Γ') x = lookup-elevate-≡ Γ↝Γ' x lookup-elevate2-≡ (extend env↝env'↝env'' v) hd = refl lookup-elevate2-≡ (extend env↝env'↝env'' _) (tl x) rewrite lookup-elevate2-≡ env↝env'↝env'' x = refl lem-elevate-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (e : Exp Γ τ) → ev e env ≡ ev (elevate Γ↝Γ'↝Γ'' e) env'' lem-elevate-≡ env↝env' (EVar x) = lookup-elevate2-≡ env↝env' x lem-elevate-≡ env↝env' (EInt x) = refl lem-elevate-≡ env↝env' (EAdd e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ _+_ IA1 IA2 lem-elevate-≡ {Fun τ₁ τ₂} {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ELam e) = ext {τ₁} {τ₂} lem-elevate-≡-body where lem-elevate-≡-body : ∀ x → ev e (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e lem-elevate-≡ env↝env' (EApp e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ f₁ x → f₁ x) IA1 IA2 lem-elevate-≡ env↝env' (e , e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ x y → x , y) IA1 IA2 lem-elevate-≡ env↝env' (Tl e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tl x) IA lem-elevate-≡ env↝env' (Tr e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tr x) IA lem-elevate-≡ env↝env' (EFst e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → fst x) IA lem-elevate-≡ env↝env' (ESnd e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → snd x) IA lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ECase e e₁ e₂) with ev e env | ev (elevate Γ↝Γ'↝Γ'' e) env'' | lem-elevate-≡ env↝env' e ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₁ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₁ ... | tl c | tr c' | () ... | tr c | tl c' | () ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₂ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₂ lem-lift-refl-id : ∀ {α Γ} → let τ = stripα α in (env : Env Γ) → (v : EImp τ) (va : Imp Γ α) → Equiv {α} {Γ} env va v → Equiv {α} {Γ} env (lift α ↝-refl va) v lem-lift-refl-id {AInt} env v va eq = eq lem-lift-refl-id {AFun α α₁} {Γ} env v va eq = body where body : ∀ {Γ'} {env' : Env Γ'} {Γ↝Γ' : Γ ↝ Γ'} → Γ↝Γ' ⊢ env ↝ env' → {av' : Imp Γ' α} {v' : EImp (stripα α)} → Equiv {α} {Γ'} env' av' v' → Equiv {α₁} {Γ'} env' (va (↝-trans ↝-refl Γ↝Γ') av') (v v') body {Γ↝Γ' = Γ↝Γ'} env↝env' eq' rewrite sym (lem-↝-refl-id Γ↝Γ') = eq env↝env' eq' lem-lift-refl-id {D x} env v va eq rewrite sym eq = sym (lem-elevate-≡ (refl (refl env)) va) lem-lift-refl-id {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) = ∧-intro (lem-lift-refl-id {α} env ffst ffst₁ x) (lem-lift-refl-id {α₁} env ssnd ssnd₁ x₁) lem-lift-refl-id {α ⊎ α₁} env (tl a) (tl a₁) eq = lem-lift-refl-id {α} env a a₁ eq lem-lift-refl-id {α ⊎ α₁} env (tl a) (tr b) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tl a) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tr b₁) eq = lem-lift-refl-id {α₁} env b b₁ eq -- lifting an Imp does not affect equivalence lem-lift-equiv : ∀ {α Γ Γ'} → let τ = stripα α in {Γ↝Γ' : Γ ↝ Γ'} → (va : Imp Γ α) (v : EImp τ) → {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → Equiv {α} {Γ} env va v → Equiv {α} {Γ'} env' (lift α Γ↝Γ' va) v lem-lift-equiv {α} va v {.env'} {env'} (refl .env') eq = lem-lift-refl-id {α} env' v va eq lem-lift-equiv {AInt} va v (extend v₁ env↝env') eq = eq lem-lift-equiv {AFun α α₁} va v (extend v₁ env↝env') eq = λ v₁env₁↝env' eq₁ → eq (env↝trans (extend v₁ env↝env') v₁env₁↝env') eq₁ lem-lift-equiv {D x} va v (extend v₁ env↝env') eq rewrite sym eq = sym (lem-elevate-≡ (refl (extend v₁ env↝env')) va) lem-lift-equiv {α • α₁} (ffst , ssnd) (ffst₁ , ssnd₁) (extend v₁ env↝env') (∧-intro x x₁) = ∧-intro (lem-lift-equiv {α} ffst ffst₁ (extend v₁ env↝env') x) (lem-lift-equiv {α₁} ssnd ssnd₁ (extend v₁ env↝env') x₁) lem-lift-equiv {α ⊎ α₁} (tl a) (tl a₁) (extend v₁ env↝env') eq = lem-lift-equiv {α} a a₁ (extend v₁ env↝env') eq lem-lift-equiv {α ⊎ α₁} (tl a) (tr b) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tl a) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tr b₁) (extend v₁ env↝env') eq = lem-lift-equiv {α₁} b b₁ (extend v₁ env↝env') eq lem-equiv-lookup : ∀ {α Δ Γ'} → let Γ = stripΔ Δ in { aenv : AEnv Γ' Δ } {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → ∀ (x : α ∈ Δ) → Equiv {α} env' (lookup aenv x) (lookupE (strip-lookup x) env) lem-equiv-lookup env' [] () lem-equiv-lookup env' (cons enveq va v eq) hd = eq lem-equiv-lookup env' (cons enveq va v eq) (tl x) = lem-equiv-lookup env' enveq x lem-equiv-env-lift-extend : ∀ {σ Γ' Δ} (env' : Env Γ') → let Γ = stripΔ Δ in {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (x : EImp σ) → Equiv-Env {σ ∷ Γ'} (x ∷ env') (liftEnv (↝-extend ↝-refl) aenv) env lem-equiv-env-lift-extend _ [] x = [] lem-equiv-env-lift-extend env' (cons {α} eqenv va v x) x₁ = cons (lem-equiv-env-lift-extend env' eqenv x₁) (lift α (↝-extend ↝-refl) va) v (lem-lift-equiv {α} va v (extend x₁ (refl env')) x) lem-equiv-env-lift-lift : ∀ {Γ' Γ'' Δ} → let Γ = stripΔ Δ in {Γ↝Γ' : Γ' ↝ Γ''} {env' : Env Γ'} {env'' : Env Γ''} (env'↝env'' : Γ↝Γ' ⊢ env' ↝ env'') → {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → Equiv-Env env'' (liftEnv Γ↝Γ' aenv) env lem-equiv-env-lift-lift env'↝env'' [] = [] lem-equiv-env-lift-lift {Γ↝Γ' = Γ↝Γ'} env'↝env'' (cons {α} eqenv va v x) with lem-equiv-env-lift-lift env'↝env'' eqenv ... | IA = cons IA (lift α Γ↝Γ' va) v (lem-lift-equiv {α} va v env'↝env'' x) -------------------------------- --"lift-correct" equivalence lemma -------------------------------- open import Data.Product mutual lift-correct : ∀ {Γ α} (lft : Liftable α) (env : Env Γ) (av : Imp Γ α) (v : EImp (typeof α)) → Equiv {α} {Γ} env av v → (Equiv {D (typeof α)} {Γ} env (lift' lft av) v) lift-correct (D τ) env av v eq = eq lift-correct AInt env av v eq = eq lift-correct (lft ⊎ lft₁) env (tl a) (tl a₁) eq with lift-correct lft env a a₁ ... | IA rewrite IA eq = refl lift-correct (lft ⊎ lft₁) env (tr b) (tl a) () lift-correct (lft ⊎ lft₁) env (tl a) (tr b) () lift-correct (lft ⊎ lft₁) env (tr b) (tr b₁) eq with lift-correct lft₁ env b b₁ ... | IA rewrite IA eq = refl lift-correct (lft • lft₁) env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) rewrite lift-correct lft env ffst ffst₁ x | lift-correct lft₁ env ssnd ssnd₁ x₁ = refl lift-correct {Γ} {AFun x lft} (AFun y y') env av v eq = ext {typeof x} {typeof lft} (λ x₁ → lift-correct y' (x₁ ∷ env) (av (↝-extend ↝-refl) (embed y (EVar hd))) (v x₁) (eq (extend x₁ (refl env)) (embed-correct {typeof x ∷ Γ} {x} y (x₁ ∷ env) (EVar hd) x₁ refl))) embed-correct : ∀ {Γ α} (lft : Liftable⁻ α) (env : Env Γ) → (e : Exp Γ (typeof α)) → (v : EImp (typeof α)) → ev e env ≡ v → Equiv {α} {Γ} env (embed lft e) v embed-correct (D τ) env e v eq rewrite eq = refl embed-correct (lft • lft₁) env e (fstv , sndv) eq = ∧-intro (embed-correct lft env (EFst e) fstv (subst (λ x → ffst x ≡ fstv) (sym eq) refl)) (embed-correct lft₁ env (ESnd e) sndv (subst (λ x → ssnd x ≡ sndv) (sym eq) refl)) embed-correct {α = AFun α₁ α₂} (AFun x lft) env e v eq = f where f : ∀ {Γ' env' Γ↝Γ'} (x₁ : Γ↝Γ' ⊢ env ↝ env') {x₂ : Imp Γ' α₁} {x₃ : EImp (typeof α₁)} (x₄ : Equiv {α₁} {Γ'} env' x₂ x₃) → Equiv {α₂} {Γ'} env' (embed lft (EApp (elevate (↝↝-base Γ↝Γ') e) (lift' x x₂))) (v x₃) f {Γ'} {env'} {Γext} envext {av'} {v'} eq' = embed-correct lft env' (EApp (elevate (↝↝-base Γext) e) (lift' x av')) (v v') g where g : ev (elevate (↝↝-base Γext) e) env' (ev (lift' x av') env') ≡ v v' g rewrite lift-correct x env' av' v' eq' | sym (cong (λ f → f v') (lem-elevate-≡ (refl envext) e)) | (cong (λ f → f v') eq) = refl --g = {!!} --------------------------------------- --Correctness proof with liftable terms --------------------------------------- -- When we partially evaluate somthing under an environment , it -- will give equivalent results to a ``complete'' evaluation under -- an equivalent environment pe-correct : ∀ { α Δ Γ' } → (e : AExp Δ α) → let Γ = stripΔ Δ in {aenv : AEnv Γ' Δ} → {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → Equiv {α} {Γ'} env' (pe e aenv) (ev (strip e) env) pe-correct (Var x) env' eqenv = lem-equiv-lookup env' eqenv x pe-correct (AInt x) env' eqenv = refl pe-correct (AAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct (ALam e) env' eqenv = λ {_} {env''} env'↝env'' {av'} {v'} eq → let eqenv' : _ eqenv' = lem-equiv-env-lift-lift env'↝env'' eqenv eqenv'' : _ eqenv'' = cons eqenv' av' v' eq in pe-correct e env'' eqenv'' pe-correct (AApp e e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IAe | IAf = IAe (refl env') IAf pe-correct (DInt x) env' eqenv = refl pe-correct (DAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct {α = D (Fun σ₁ σ₂)} (DLam e) env' eqenv = ext {σ₁} {σ₂} (λ x → let eqenv₁ : _ eqenv₁ = lem-equiv-env-lift-extend env' eqenv x eqenv₂ : _ eqenv₂ = cons eqenv₁ (EVar hd) x refl in pe-correct e (x ∷ env') eqenv₂) pe-correct (DApp e e₁) env' eqenv with pe-correct e₁ env' eqenv | pe-correct e env' eqenv ... | IA' | IA = cong₂ (λ f x → f x) IA IA' pe-correct (e , e₁) env' eqenv = ∧-intro (pe-correct e env' eqenv) (pe-correct e₁ env' eqenv) pe-correct (Tl e) env' eqenv = pe-correct e env' eqenv pe-correct (Tr e) env' eqenv = pe-correct e env' eqenv pe-correct (Fst (e , e₁)) env' eqenv = pe-correct e env' eqenv pe-correct (Fst e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = A pe-correct (Snd (e , e₁)) env' eqenv = pe-correct e₁ env' eqenv pe-correct (Snd e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = B pe-correct {α} (Case e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | L = pe-correct e₁ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' L) ... | tr c | tr c' | R = pe-correct e₂ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' R) ... | tr c | tl c' | () ... | tl c | tr c' | () pe-correct (e ḋ e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IA | IA' rewrite IA | IA' = refl pe-correct (DTl e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DTr e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DFst e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DSnd e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DCase e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with ev (pe e aenv) env' | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = pe-correct e₁ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = pe-correct e₂ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tl c | tr c' | () ... | tr c | tl c' | () pe-correct (↑ x e) {aenv = aenv} {env = env} env' eqenv with pe-correct e env' eqenv ... | IA = lift-correct x env' (pe e aenv) (ev (strip e) env) IA
{ "alphanum_fraction": 0.5151922498, "avg_line_length": 44.7582987552, "ext": "agda", "hexsha": "cce1042f90b39cc0b6971e529648af428946e361", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "luminousfennell/polybta", "max_forks_repo_path": "BTA9.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "luminousfennell/polybta", "max_issues_repo_path": "BTA9.agda", "max_line_length": 159, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "luminousfennell/polybta", "max_stars_repo_path": "BTA9.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z", "num_tokens": 16952, "size": 43147 }
{-# OPTIONS --without-K --exact-split #-} module subgroups where import 15-groups open 15-groups public {- Subsets of groups -} subset-Group : (l : Level) {l1 : Level} (G : Group l1) → UU ((lsuc l) ⊔ l1) subset-Group l G = type-Group G → UU-Prop l is-set-subset-Group : (l : Level) {l1 : Level} (G : Group l1) → is-set (subset-Group l G) is-set-subset-Group l G = is-set-function-type (is-set-UU-Prop l) {- Defining subgroups -} contains-unit-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → UU l2 contains-unit-subset-Group G P = type-Prop (P (unit-Group G)) is-prop-contains-unit-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → is-prop (contains-unit-subset-Group G P) is-prop-contains-unit-subset-Group G P = is-prop-type-Prop (P (unit-Group G)) closed-under-mul-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → UU (l1 ⊔ l2) closed-under-mul-subset-Group G P = (x y : type-Group G) → type-Prop (P x) → type-Prop (P y) → type-Prop (P (mul-Group G x y)) is-prop-closed-under-mul-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → is-prop (closed-under-mul-subset-Group G P) is-prop-closed-under-mul-subset-Group G P = is-prop-Π (λ x → is-prop-Π (λ y → is-prop-function-type ( is-prop-function-type ( is-prop-type-Prop (P (mul-Group G x y)))))) closed-under-inv-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → UU (l1 ⊔ l2) closed-under-inv-subset-Group G P = (x : type-Group G) → type-Prop (P x) → type-Prop (P (inv-Group G x)) is-prop-closed-under-inv-subset-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → is-prop (closed-under-inv-subset-Group G P) is-prop-closed-under-inv-subset-Group G P = is-prop-Π ( λ x → is-prop-function-type (is-prop-type-Prop (P (inv-Group G x)))) is-subgroup-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → UU (l1 ⊔ l2) is-subgroup-Group G P = ( contains-unit-subset-Group G P) × ( ( closed-under-mul-subset-Group G P) × ( closed-under-inv-subset-Group G P)) is-prop-is-subgroup-Group : {l1 l2 : Level} (G : Group l1) (P : subset-Group l2 G) → is-prop (is-subgroup-Group G P) is-prop-is-subgroup-Group G P = is-prop-prod ( is-prop-contains-unit-subset-Group G P) ( is-prop-prod ( is-prop-closed-under-mul-subset-Group G P) ( is-prop-closed-under-inv-subset-Group G P)) {- Introducing the type of all subgroups of a group G -} Subgroup : (l : Level) {l1 : Level} (G : Group l1) → UU ((lsuc l) ⊔ l1) Subgroup l G = Σ (type-Group G → UU-Prop l) (is-subgroup-Group G) subset-Subgroup : {l1 l2 : Level} (G : Group l1) → ( Subgroup l2 G) → ( subset-Group l2 G) subset-Subgroup G = pr1 is-emb-subset-Subgroup : {l1 l2 : Level} (G : Group l1) → is-emb (subset-Subgroup {l2 = l2} G) is-emb-subset-Subgroup G = is-emb-pr1-is-subtype (is-prop-is-subgroup-Group G) type-subset-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → (type-Group G → UU l2) type-subset-Subgroup G P x = type-Prop (subset-Subgroup G P x) is-prop-type-subset-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → (x : type-Group G) → is-prop (type-subset-Subgroup G P x) is-prop-type-subset-Subgroup G P x = is-prop-type-Prop (subset-Subgroup G P x) is-subgroup-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → is-subgroup-Group G (subset-Subgroup G P) is-subgroup-Subgroup G = pr2 contains-unit-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → contains-unit-subset-Group G (subset-Subgroup G P) contains-unit-Subgroup G P = pr1 (is-subgroup-Subgroup G P) closed-under-mul-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → closed-under-mul-subset-Group G (subset-Subgroup G P) closed-under-mul-Subgroup G P = pr1 (pr2 (is-subgroup-Subgroup G P)) closed-under-inv-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → closed-under-inv-subset-Group G (subset-Subgroup G P) closed-under-inv-Subgroup G P = pr2 (pr2 (is-subgroup-Subgroup G P)) {- Given a subgroup, we construct a group -} type-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → UU (l1 ⊔ l2) type-group-Subgroup G P = Σ (type-Group G) (type-subset-Subgroup G P) incl-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → type-group-Subgroup G P → type-Group G incl-group-Subgroup G P = pr1 is-emb-incl-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → is-emb (incl-group-Subgroup G P) is-emb-incl-group-Subgroup G P = is-emb-pr1-is-subtype (is-prop-type-subset-Subgroup G P) eq-subgroup-eq-group : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → {x y : type-group-Subgroup G P} → Id (incl-group-Subgroup G P x) (incl-group-Subgroup G P y) → Id x y eq-subgroup-eq-group G P {x} {y} = inv-is-equiv (is-emb-incl-group-Subgroup G P x y) set-group-Subgroup : {l1 l2 : Level} (G : Group l1) → Subgroup l2 G → UU-Set (l1 ⊔ l2) set-group-Subgroup G P = pair ( type-group-Subgroup G P) ( λ x y → is-prop-is-equiv ( Id (pr1 x) (pr1 y)) ( ap (incl-group-Subgroup G P)) ( is-emb-incl-group-Subgroup G P x y) ( is-set-type-Group G (pr1 x) (pr1 y))) unit-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → type-group-Subgroup G P unit-group-Subgroup G P = pair ( unit-Group G) ( contains-unit-Subgroup G P) mul-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x y : type-group-Subgroup G P) → type-group-Subgroup G P mul-group-Subgroup G P x y = pair ( mul-Group G (pr1 x) (pr1 y)) ( closed-under-mul-Subgroup G P (pr1 x) (pr1 y) (pr2 x) (pr2 y)) inv-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → type-group-Subgroup G P → type-group-Subgroup G P inv-group-Subgroup G P x = pair (inv-Group G (pr1 x)) (closed-under-inv-Subgroup G P (pr1 x) (pr2 x)) is-associative-mul-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x y z : type-group-Subgroup G P) → Id (mul-group-Subgroup G P (mul-group-Subgroup G P x y) z) (mul-group-Subgroup G P x (mul-group-Subgroup G P y z)) is-associative-mul-group-Subgroup G P x y z = eq-subgroup-eq-group G P (is-associative-mul-Group G (pr1 x) (pr1 y) (pr1 z)) left-unit-law-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x : type-group-Subgroup G P) → Id (mul-group-Subgroup G P (unit-group-Subgroup G P) x) x left-unit-law-group-Subgroup G P x = eq-subgroup-eq-group G P (left-unit-law-Group G (pr1 x)) right-unit-law-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x : type-group-Subgroup G P) → Id (mul-group-Subgroup G P x (unit-group-Subgroup G P)) x right-unit-law-group-Subgroup G P x = eq-subgroup-eq-group G P (right-unit-law-Group G (pr1 x)) left-inverse-law-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x : type-group-Subgroup G P) → Id ( mul-group-Subgroup G P (inv-group-Subgroup G P x) x) ( unit-group-Subgroup G P) left-inverse-law-group-Subgroup G P x = eq-subgroup-eq-group G P (left-inverse-law-Group G (pr1 x)) right-inverse-law-group-Subgroup : {l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → ( x : type-group-Subgroup G P) → Id ( mul-group-Subgroup G P x (inv-group-Subgroup G P x)) ( unit-group-Subgroup G P) right-inverse-law-group-Subgroup G P x = eq-subgroup-eq-group G P (right-inverse-law-Group G (pr1 x)) group-Subgroup : {l1 l2 : Level} (G : Group l1) → Subgroup l2 G → Group (l1 ⊔ l2) group-Subgroup G P = pair ( pair ( set-group-Subgroup G P) ( pair ( mul-group-Subgroup G P) ( is-associative-mul-group-Subgroup G P))) ( pair ( pair ( unit-group-Subgroup G P) ( pair ( left-unit-law-group-Subgroup G P) ( right-unit-law-group-Subgroup G P))) ( pair ( inv-group-Subgroup G P) ( pair ( left-inverse-law-group-Subgroup G P) ( right-inverse-law-group-Subgroup G P)))) {- We show that the inclusion from group-Subgroup G P → G is a group homomorphism -} preserves-mul-incl-group-Subgroup : { l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → preserves-mul-Group (group-Subgroup G P) G (incl-group-Subgroup G P) preserves-mul-incl-group-Subgroup G P (pair x p) (pair y q) = refl hom-group-Subgroup : { l1 l2 : Level} (G : Group l1) (P : Subgroup l2 G) → hom-Group (group-Subgroup G P) G hom-group-Subgroup G P = pair (incl-group-Subgroup G P) (preserves-mul-incl-group-Subgroup G P) {- We define another type of subgroups of G as the type of group inclusions -} emb-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) emb-Group G H = Σ (hom-Group G H) (λ f → is-emb (map-hom-Group G H f)) emb-Group-Slice : (l : Level) {l1 : Level} (G : Group l1) → UU ((lsuc l) ⊔ l1) emb-Group-Slice l G = Σ ( Group l) ( λ H → emb-Group H G) emb-group-slice-Subgroup : { l1 l2 : Level} (G : Group l1) → Subgroup l2 G → emb-Group-Slice (l1 ⊔ l2) G emb-group-slice-Subgroup G P = pair ( group-Subgroup G P) ( pair ( hom-group-Subgroup G P) ( is-emb-incl-group-Subgroup G P))
{ "alphanum_fraction": 0.630330234, "avg_line_length": 34.6555555556, "ext": "agda", "hexsha": "c2829afba0aa33c11656e41274886fb686fb16dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/subgroups.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/subgroups.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/subgroups.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3463, "size": 9357 }
module Basic.AST where import Data.Bool as Bool using (not) open import Data.Bool hiding (not; if_then_else_) open import Data.Fin using (Fin; suc; zero; #_) open import Data.Nat open import Data.Vec open import Relation.Nullary open import Relation.Nullary.Decidable open import Utils.Decidable {- This module covers the first chapter of the book. We omitted a couple of proofs that are present in the chapter. In particular, determinism and totality of the evaluation of expressions is a trivial consequence of Agda's totality, so there's no need to bother with it here. Also, the notion of "composionality" as mentioned in book corresponds simply to structural recursion in Agda. Also, we skipped the proofs about the evaluation of expression with substitutions (exercise 1.14) and contexts with substitutions (exercise 1.13), since we make no use of these in other proofs. -} -- Our type universe (it's not a large one). data Ty : Set where bool nat : Ty {- Interpretation of types into Agda sets. Note that we use natural numbers instead of integers, since naturals are much simpler to handle in formal contexts (also, there's not enough Agda library support for integers). -} ⟦_⟧ᵗ : Ty → Set ⟦ nat ⟧ᵗ = ℕ ⟦ bool ⟧ᵗ = Bool {- This is a point where we make a departure from the book. The book defines states as: State = String → ℕ This is supposed to be a total funuction, and the book doesn't concern itself with scope errors or shadowing, but we certainly have to do so in Agda. So we opt for de Bruijn indices as variables and a finite vector as State. These are as simple to handle as it can get, and we also get alpha equality of programs for free. On the flip side, we have much less readable programs. -} State : ℕ → Set State = Vec ℕ {- In the book there's a mutual definition of boolean and numeric expressions. We instead have a single universe-indexed type family. It's more convenient, and it's also equivalent to the mutual definition (it's a standard Agda/Haskell trick to encode multiple types data as a single indexed type). -} data Exp (n : ℕ) : Ty → Set where lit : ℕ → Exp n nat add mul sub : Exp n nat → Exp n nat → Exp n nat var : Fin n → Exp n nat tt ff : Exp n bool eq lte lt : Exp n nat → Exp n nat → Exp n bool and : Exp n bool → Exp n bool → Exp n bool not : Exp n bool → Exp n bool {- Statements are parameterized by the size of the State they operate on. Since the vanilla "While" language has no declarations or other features that might change the size of the state, we are fine with this. It also allows us to use finite numbers as de Bruijn indices. -} infixr 5 _:=_ infixr 4 _,_ data St (n : ℕ) : Set where _:=_ : Fin n → Exp n nat → St n skip : St n _,_ : St n → St n → St n if_then_else_ : Exp n bool → St n → St n → St n while_do_ : Exp n bool → St n → St n {- The semantics of expressions follows the book exactly. -} ⟦_⟧ᵉ : ∀ {n t} → Exp n t → State n → ⟦ t ⟧ᵗ ⟦ lit x ⟧ᵉ s = x ⟦ add a b ⟧ᵉ s = ⟦ a ⟧ᵉ s + ⟦ b ⟧ᵉ s ⟦ mul a b ⟧ᵉ s = ⟦ a ⟧ᵉ s * ⟦ b ⟧ᵉ s ⟦ sub a b ⟧ᵉ s = ⟦ a ⟧ᵉ s ∸ ⟦ b ⟧ᵉ s ⟦ var x ⟧ᵉ s = lookup x s ⟦ tt ⟧ᵉ s = true ⟦ ff ⟧ᵉ s = false ⟦ eq a b ⟧ᵉ s = ⌊ ⟦ a ⟧ᵉ s ≡⁇ ⟦ b ⟧ᵉ s ⌋ ⟦ lte a b ⟧ᵉ s = ⌊ ⟦ a ⟧ᵉ s ≤⁇ ⟦ b ⟧ᵉ s ⌋ ⟦ lt a b ⟧ᵉ s = ⌊ ⟦ a ⟧ᵉ s <⁇ ⟦ b ⟧ᵉ s ⌋ ⟦ and a b ⟧ᵉ s = ⟦ a ⟧ᵉ s ∧ ⟦ b ⟧ᵉ s ⟦ not e ⟧ᵉ s = Bool.not (⟦ e ⟧ᵉ s)
{ "alphanum_fraction": 0.6633778294, "avg_line_length": 30.7678571429, "ext": "agda", "hexsha": "357a325a3fb2526ef8e03ee6ca7e2ff23384ce40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Basic/AST.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Basic/AST.agda", "max_line_length": 88, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Basic/AST.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 1173, "size": 3446 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Compose where -- Composition of Adjoints open import Level open import Data.Product using (_,_; _×_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality using (Π; _⟶_) import Function.Inverse as FI open import Relation.Binary using (Rel; IsEquivalence; Setoid) -- be explicit in imports to 'see' where the information comes from open import Categories.Adjoint using (Adjoint; _⊣_) open import Categories.Category.Core using (Category) open import Categories.Category.Product using (Product; _⁂_) open import Categories.Category.Instance.Setoids open import Categories.Morphism open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.Functor.Hom using (Hom[_][-,-]) open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ₕ_; _∘ᵥ_; _∘ˡ_; _∘ʳ_) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; unitorˡ; unitorʳ; associator; _≃_) import Categories.Morphism.Reasoning as MR private variable o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level C D E : Category o ℓ e -- Adjoints compose; we can't be sloppy, so associators and unitors must be inserted. -- Use single letters in pairs, so L & M on the left, and R & S on the right _∘⊣_ : {L : Functor C D} {R : Functor D C} {M : Functor D E} {S : Functor E D} → L ⊣ R → M ⊣ S → (M ∘F L) ⊣ (R ∘F S) _∘⊣_ {C = C} {D = D} {E = E} {L = L} {R} {M} {S} LR MS = record { unit = ((F⇐G (associator _ S R) ∘ᵥ R ∘ˡ (F⇒G (associator L M S))) ∘ᵥ (R ∘ˡ (MSη′ ∘ʳ L)) ∘ᵥ (R ∘ˡ (F⇐G unitorˡ))) ∘ᵥ LRη′ ; counit = MSε′ ∘ᵥ (((F⇒G (unitorʳ {F = M}) ∘ʳ S) ∘ᵥ ((M ∘ˡ LRε′) ∘ʳ S)) ∘ᵥ (F⇒G (associator R L M) ∘ʳ S) ) ∘ᵥ F⇐G (associator S R (M ∘F L) ) ; zig = λ {A} → zig′ {A} ; zag = λ {B} → zag′ {B} } where open NaturalIsomorphism using (F⇒G; F⇐G) module LR = Adjoint LR using (zig; zag) renaming (unit to LRη′; counit to LRε′) module MS = Adjoint MS using (zig; zag) renaming (unit to MSη′; counit to MSε′) module LRη = NaturalTransformation (Adjoint.unit LR) using () renaming (η to ηLR) module MSη = NaturalTransformation (Adjoint.unit MS) using (commute) renaming (η to ηMS) module LRε = NaturalTransformation (Adjoint.counit LR) using (commute) renaming (η to εLR) module MSε = NaturalTransformation (Adjoint.counit MS) using () renaming (η to εMS) module C = Category C using (Obj; id; _∘_; _≈_; sym-assoc; ∘-resp-≈ˡ; ∘-resp-≈; ∘-resp-≈ʳ; identityˡ; identityʳ; module HomReasoning) module D = Category D using (id; _∘_; ∘-resp-≈ˡ; sym-assoc; ∘-resp-≈ʳ; identityˡ; module HomReasoning; assoc) module E = Category E using (Obj; id; _∘_; _≈_; identityˡ; ∘-resp-≈ʳ; module HomReasoning; assoc; sym-assoc; identityʳ) module L = Functor L using (homomorphism; F-resp-≈) renaming (F₀ to L₀; F₁ to L₁) module M = Functor M using (F-resp-≈; identity; homomorphism) renaming (F₀ to M₀; F₁ to M₁) module R = Functor R using (F-resp-≈; identity; homomorphism) renaming (F₀ to R₀; F₁ to R₁) module S = Functor S using (F-resp-≈; homomorphism) renaming (F₀ to S₀; F₁ to S₁) open LR; open MS; open LRη; open LRε; open MSε; open MSη; open L; open M; open R; open S zig′ : {A : C.Obj} → (εMS (M₀ (L₀ A)) E.∘ ((E.id E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))))) E.∘ E.id) E.∘ E.id) E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A)) E.≈ E.id -- use "inverted" format here, where rules are out-dented zig′ {A} = begin (εMS (M₀ (L₀ A)) E.∘ ((E.id E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))))) E.∘ E.id) E.∘ E.id) E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A)) ≈⟨ ( refl⟩∘⟨ (E.identityʳ ○ E.identityʳ ○ E.identityˡ)) ⟩∘⟨refl ⟩ -- get rid of those pesky E.id (εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))))) E.∘ M₁ (L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A)) ≈⟨ E.assoc ○ E.∘-resp-≈ʳ (⟺ M.homomorphism) ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ A)) C.∘ R₁ D.id) C.∘ ηLR A)) -- below: get rid of lots of pesky id. Nasty bit of nested equational reasoning, but nothing deep ≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ʳ (L.F-resp-≈ (C.∘-resp-≈ˡ (C.∘-resp-≈ C.identityˡ (C.∘-resp-≈ʳ R.identity) C.HomReasoning.○ let _⊚_ = C.HomReasoning._○_ in C.∘-resp-≈ R.identity C.identityʳ ⊚ C.identityˡ)))) ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ ((R₁ (ηMS (L₀ A))) C.∘ ηLR A)) ≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ʳ L.homomorphism) ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ (εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (R₁ (ηMS (L₀ A))) D.∘ L₁ (ηLR A)) ≈⟨ refl⟩∘⟨ M.F-resp-≈ D.sym-assoc ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ ((εLR (S₀ (M₀ (L₀ A))) D.∘ L₁ (R₁ (ηMS (L₀ A)))) D.∘ L₁ (ηLR A)) ≈⟨ refl⟩∘⟨ M.F-resp-≈ (D.∘-resp-≈ˡ (LRε.commute _)) ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ ( (_ D.∘ εLR _) D.∘ L₁ (ηLR A)) ≈⟨ refl⟩∘⟨ M.homomorphism ⟩ εMS (M₀ (L₀ A)) E.∘ M₁ (_ D.∘ εLR _) E.∘ M₁ (L₁ (ηLR A)) ≈⟨ refl⟩∘⟨ ( M.homomorphism ⟩∘⟨refl ) ⟩ εMS (M₀ (L₀ A)) E.∘ (M₁ (ηMS (L₀ A)) E.∘ M₁ (εLR _)) E.∘ M₁ (L₁ (ηLR A)) ≈⟨ E.∘-resp-≈ʳ E.assoc ○ E.sym-assoc ⟩ (εMS (M₀ (L₀ A)) E.∘ M₁ (ηMS (L₀ A))) E.∘ (M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A))) ≈⟨ MS.zig ⟩∘⟨refl ⟩ E.id E.∘ (M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A))) ≈⟨ E.identityˡ ⟩ M₁ (εLR _) E.∘ M₁ (L₁ (ηLR A)) ≈˘⟨ M.homomorphism ⟩ M₁ (εLR _ D.∘ L₁ (ηLR A)) ≈⟨ M.F-resp-≈ LR.zig ○ M.identity ⟩ E.id ∎ where open E.HomReasoning zag′ : {B : E.Obj} → R₁ (S₁ (εMS B E.∘ ((E.id E.∘ M₁ (εLR (S₀ B))) E.∘ E.id) E.∘ E.id)) C.∘ ((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ R₁ D.id) C.∘ ηLR (R₀ (S₀ B)) C.≈ C.id zag′ {B} = let _⊚_ = E.HomReasoning._○_ in begin R₁ (S₁ (εMS B E.∘ ((E.id E.∘ M₁ (εLR (S₀ B))) E.∘ E.id) E.∘ E.id)) C.∘ ((C.id C.∘ R₁ D.id) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ R₁ D.id) C.∘ ηLR (R₀ (S₀ B)) -- get rid of all those id ≈⟨ R.F-resp-≈ (S.F-resp-≈ (E.∘-resp-≈ʳ (E.identityʳ ⊚ (E.identityʳ ⊚ E.identityˡ)))) ⟩∘⟨ C.∘-resp-≈ˡ (C.∘-resp-≈ C.identityˡ (C.∘-resp-≈ʳ R.identity) ○ C.∘-resp-≈ R.identity C.identityʳ ○ C.identityˡ) ⟩ R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B)))) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ C.sym-assoc ⟩ (R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B)))) C.∘ R₁ (ηMS (L₀ (R₀ (S₀ B))))) C.∘ ηLR (R₀ (S₀ B)) ≈˘⟨ R.homomorphism ⟩∘⟨refl ⟩ R₁ (S₁ (εMS B E.∘ M₁ (εLR (S₀ B))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ R.F-resp-≈ (D.∘-resp-≈ˡ S.homomorphism) ⟩∘⟨refl ⟩ R₁ ((S₁ (εMS B) D.∘ (S₁ (M₁ (εLR (S₀ B))))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ R.F-resp-≈ D.assoc ⟩∘⟨refl ⟩ R₁ (S₁ (εMS B) D.∘ S₁ (M₁ (εLR (S₀ B))) D.∘ ηMS (L₀ (R₀ (S₀ B)))) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ R.F-resp-≈ (D.∘-resp-≈ʳ (D.HomReasoning.⟺ (MSη.commute (εLR (S₀ B))))) ⟩∘⟨refl ⟩ R₁ (S₁ (εMS B) D.∘ ηMS (S₀ B) D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ R.F-resp-≈ D.sym-assoc ⟩∘⟨refl ⟩ R₁ ((S₁ (εMS B) D.∘ ηMS (S₀ B)) D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ R.F-resp-≈ (D.∘-resp-≈ˡ MS.zag) ⟩∘⟨refl ⟩ R₁ (D.id D.∘ εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ C.∘-resp-≈ˡ (R.F-resp-≈ D.identityˡ) ⟩ R₁ (εLR (S₀ B)) C.∘ ηLR (R₀ (S₀ B)) ≈⟨ LR.zag ⟩ C.id ∎ where open C.HomReasoning
{ "alphanum_fraction": 0.5451838426, "avg_line_length": 55.1714285714, "ext": "agda", "hexsha": "a67069171ba86a539070aefaa3b2edf7c066faa5", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Compose.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Compose.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Compose.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 3748, "size": 7724 }
module #6 where open import Level open import Data.Bool open import Relation.Binary.PropositionalEquality {- Exercise 1.6. Show that if we define A × B :≡ ∏(x:2) rec2(U, A, B, x), then we can give a definition of indA×B for which the definitional equalities stated in §1.5 hold propositionally (i.e. using equality types). (This requires the function extensionality axiom, which is introduced in §2.9.) -} rec₂ : ∀{c}{C : Set c} → C → C → Bool → C rec₂ c₀ c₁ true = c₁ rec₂ c₀ c₁ false = c₀ ind₂ : ∀{c}(C : Bool → Set c) → C false → C true → (x : Bool) → C x ind₂ C c₀ c₁ true = c₁ ind₂ C c₀ c₁ false = c₀ _×_ : ∀ {i} → Set i → Set i → Set i A × B = (b : Bool) → if b then A else B module ProductTwo {a}{A B : Set a} where _,_ : A → B → A × B _,_ x y true = x _,_ x y false = y proj₁ : A × B → A proj₁ x = x true proj₂ : A × B → B proj₂ x = x false postulate extensionality : ∀ {a b} {A : Set a} {B : A → Set b} (f g : (a : A) → B a) → (∀ x → f x ≡ g x) → f ≡ g indₓ₂ : ∀{c}{C : A × B -> Set c} → (f : (x : A)(y : B) → C (x , y)) → (x : A × B) → C (proj₁ x , proj₂ x) indₓ₂ f x = f (proj₁ x) (proj₂ x) indₓ₂-β : ∀{c}{C : A × B -> Set c} → (f : (x : A)(y : B) → C (x , y)) → (x : A × B) → indₓ₂ {C = C} f x ≡ f (proj₁ x) (proj₂ x) indₓ₂-β f x = refl
{ "alphanum_fraction": 0.5472136223, "avg_line_length": 28.7111111111, "ext": "agda", "hexsha": "b72a8d0874fdb73cce0fdb715f55eaa80b9ebfbb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#6.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#6.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#6.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 549, "size": 1292 }
{-# OPTIONS --without-K #-} module sets.finite.infinite where open import sum open import equality.core open import function.isomorphism.core open import function.isomorphism.utils open import sets.nat open import sets.empty open import sets.unit open import sets.fin.core open import sets.fin.properties open import sets.fin.universe open import sets.finite.core ℕ-not-finite : ¬ (IsFinite ℕ) ℕ-not-finite (n , fℕ) = suc-fixpoint (sym (Fin-inj iso-suc)) where iso-suc : Fin n ≅ Fin (suc n) iso-suc = sym≅ fℕ ·≅ isoℕ ·≅ ⊎-ap-iso refl≅ fℕ ·≅ sym≅ fin-struct-iso
{ "alphanum_fraction": 0.6897689769, "avg_line_length": 25.25, "ext": "agda", "hexsha": "b2db6e2bff37df8b515ba0dc4e808273e1ef3aa9", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/finite/infinite.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/finite/infinite.agda", "max_line_length": 60, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/finite/infinite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 187, "size": 606 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Algebra` or `Algebra.Core` -- instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.FunctionProperties.Core where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties.Core was deprecated in v1.2. Use Algebra.Core instead." #-} open import Algebra.Core public
{ "alphanum_fraction": 0.5175257732, "avg_line_length": 26.9444444444, "ext": "agda", "hexsha": "9ae7efc60b537b5a0d1dbc69b526a529300d9dfa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 82, "size": 485 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.RecoveryData as RecoveryData import LibraBFT.Impl.Consensus.TestUtils.MockSharedStorage as MockSharedStorage open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Storage.DiemDB.LedgerStore.LedgerStore as LedgerStore import LibraBFT.Impl.Types.LedgerInfo as LedgerInfo open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All import Util.KVMap as Map open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.TestUtils.MockStorage where ------------------------------------------------------------------------------ postulate -- TODO-2: sortOn sortOn : (Block → Round) → List Block → List Block ------------------------------------------------------------------------------ start : MockStorage → Either ErrLog RecoveryData ------------------------------------------------------------------------------ newWithLedgerInfo : MockSharedStorage → LedgerInfo → Either ErrLog MockStorage newWithLedgerInfo sharedStorage ledgerInfo = do li ← if ledgerInfo ^∙ liEndsEpoch then pure ledgerInfo else LedgerInfo.mockGenesis (just (sharedStorage ^∙ mssValidatorSet)) let lis = LedgerInfoWithSignatures∙new li Map.empty pure $ MockStorage∙new (sharedStorage & mssLis %~ Map.insert (lis ^∙ liwsLedgerInfo ∙ liVersion) lis) li (DiemDB∙new LedgerStore.new) getLedgerRecoveryData : MockStorage → LedgerRecoveryData getLedgerRecoveryData self = LedgerRecoveryData∙new (self ^∙ msStorageLedger) tryStart : MockStorage → Either ErrLog RecoveryData tryStart self = withErrCtx' (here' []) $ RecoveryData.new (self ^∙ msSharedStorage ∙ mssLastVote) (getLedgerRecoveryData self) (sortOn (_^∙ bRound) (Map.elems (self ^∙ msSharedStorage ∙ mssBlock))) RootMetadata∙new (Map.elems (self ^∙ msSharedStorage ∙ mssQc)) (self ^∙ msSharedStorage ∙ mssHighestTimeoutCertificate) where here' : List String → List String here' t = "MockStorage" ∷ "tryStart" ∷ t startForTesting : ValidatorSet → Maybe LedgerInfoWithSignatures → Either ErrLog (RecoveryData × PersistentLivenessStorage) startForTesting validatorSet obmMLIWS = do (sharedStorage , genesisLi) ← case obmMLIWS of λ where nothing → do g ← LedgerInfo.mockGenesis (just validatorSet) pure (MockSharedStorage.new validatorSet , g) (just liws) → pure (MockSharedStorage.newObmWithLIWS validatorSet liws , liws ^∙ liwsLedgerInfo) storage ← newWithLedgerInfo sharedStorage genesisLi ss ← withErrCtx' (here' []) (start storage) pure (ss , storage) where here' : List String → List String here' t = "MockStorage" ∷ "startForTesting" ∷ t abstract startForTesting-ed-abs : ValidatorSet → Maybe LedgerInfoWithSignatures → EitherD ErrLog (RecoveryData × PersistentLivenessStorage) startForTesting-ed-abs vs mliws = fromEither $ startForTesting vs mliws ------------------------------------------------------------------------------ saveTreeE : List Block → List QuorumCert → MockStorage → Either ErrLog MockStorage saveTreeM : List Block → List QuorumCert → MockStorage → LBFT (Either ErrLog MockStorage) saveTreeM bs qcs db = do logInfo fakeInfo -- [ "MockStorage", "saveTreeM", show (length bs), show (length qcs) ] pure (saveTreeE bs qcs db) saveTreeE bs qcs db = pure (db & msSharedStorage ∙ mssBlock %~ insertBs & msSharedStorage ∙ mssQc %~ insertQCs) where insertBs : Map.KVMap HashValue Block → Map.KVMap HashValue Block insertBs m = foldl' (λ acc b → Map.insert (b ^∙ bId) b acc) m bs insertQCs : Map.KVMap HashValue QuorumCert → Map.KVMap HashValue QuorumCert insertQCs m = foldl' (λ acc qc → Map.insert (qc ^∙ qcCertifiedBlock ∙ biId) qc acc) m qcs pruneTreeM : List HashValue → MockStorage → LBFT (Either ErrLog MockStorage) pruneTreeM ids db = do logInfo fakeInfo -- ["MockStorage", "pruneTreeM", show (fmap lsHV ids)] ok (db & msSharedStorage ∙ mssBlock %~ deleteBs & msSharedStorage ∙ mssQc %~ deleteQCs) -- TODO : verifyConsistency where deleteBs : Map.KVMap HashValue Block → Map.KVMap HashValue Block deleteBs m = foldl' (flip Map.delete) m ids deleteQCs : Map.KVMap HashValue QuorumCert → Map.KVMap HashValue QuorumCert deleteQCs m = foldl' (flip Map.delete) m ids saveStateM : Vote → MockStorage → LBFT (Either ErrLog MockStorage) saveStateM v db = do logInfo fakeInfo -- ["MockStorage", "saveStateM", lsV v] ok (db & msSharedStorage ∙ mssLastVote ?~ v) start = tryStart saveHighestTimeoutCertificateM : TimeoutCertificate → MockStorage → LBFT (Either ErrLog MockStorage) saveHighestTimeoutCertificateM tc db = do logInfo fakeInfo -- ["MockStorage", "saveHighestTimeoutCertificateM", lsTC tc] ok (db & msSharedStorage ∙ mssHighestTimeoutCertificate ?~ tc) retrieveEpochChangeProofED : Version → MockStorage → EitherD ErrLog EpochChangeProof retrieveEpochChangeProofED v db = case Map.lookup v (db ^∙ msSharedStorage ∙ mssLis) of λ where nothing → LeftD fakeErr -- ["MockStorage", "retrieveEpochChangeProofE", "not found", show v]) (just lis) → pure (EpochChangeProof∙new (lis ∷ []) false) abstract retrieveEpochChangeProofED-abs = retrieveEpochChangeProofED retrieveEpochChangeProofED-abs-≡ : retrieveEpochChangeProofED-abs ≡ retrieveEpochChangeProofED retrieveEpochChangeProofED-abs-≡ = refl
{ "alphanum_fraction": 0.6675496689, "avg_line_length": 40, "ext": "agda", "hexsha": "5f039d18842573eaa7e211c21bb36d78a15234ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/TestUtils/MockStorage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/TestUtils/MockStorage.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/TestUtils/MockStorage.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1633, "size": 6040 }
{-# OPTIONS --safe #-} module Generics.Constructions.Injective where open import Generics.Prelude hiding (lookup; pi; curry; icong) open import Generics.Telescope open import Generics.Desc open import Generics.All open import Generics.HasDesc open import Relation.Binary.PropositionalEquality.Properties PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → Set j PathOver B refl u v = u ≡ v module _ {P I ℓ} {A : Indexed P I ℓ} (H : HasDesc {P} {I} {ℓ} A) {p} where open HasDesc H private variable V : ExTele P i i₁ i₂ : ⟦ I ⟧tel p v v₁ v₂ : ⟦ V ⟧tel p c ℓ′ : Level countArgs : ConDesc P V I → ℕ countArgs (var _) = zero countArgs (π _ _ C) = suc (countArgs C) countArgs (_ ⊗ B) = suc (countArgs B) -- | Compute level of projection levelProj : (C : ConDesc P V I) (m : Fin (countArgs C)) → Level levelProj (π {ℓ′} ai S C) zero = ℓ′ levelProj (π ai S C) (suc m) = levelProj C m levelProj (A ⊗ B) zero = levelIndArg A ℓ levelProj (A ⊗ B) (suc m) = levelProj B m -- TODO (for Lucas of tomorrow): -- ⟦ v₁ ≡ v₂ ⟧ -- private -- proj₂-id : ∀ {a} {A : Set a} {ℓB : A → Level} {B : ∀ x → Set (ℓB x)} -- {k : A} {x y : B k} -- → _≡ω_ {A = Σℓω A B} (k , x) (k , y) -- → x ≡ y -- proj₂-id refl = refl -- unconstrr : ∀ {k i} {x : ⟦ _ ⟧Con A′ (p , tt , i)} -- {y : ⟦ _ ⟧Con A′ (p , tt , i)} -- → constr (k , x) ≡ constr (k , y) -- → x ≡ y -- unconstrr p = proj₂-id (constr-injective p) -- unconstr : ∀ {i₁ i₂} (ieq : i₁ ≡ i₂) {k} -- {x₁ : ⟦ lookupCon D k ⟧Con A′ (p , tt , i₁)} -- {x₂ : ⟦ lookupCon D k ⟧Con A′ (p , tt , i₂)} -- → subst (A′ ∘ (p ,_)) ieq (constr (k , x₁)) ≡ constr (k , x₂) -- → subst (λ i → ⟦ lookupCon D k ⟧Con A′ (p , tt , i)) ieq x₁ ≡ x₂ -- unconstr refl p = proj₂-id (constr-injective p) ------------------------------- -- Types of injectivity proofs levelInjective : (C : ConDesc P V I) → Level → Level levelInjective (var x) c = levelOfTel I ⊔ ℓ ⊔ c levelInjective (π {ℓ′} ai S C) c = ℓ′ ⊔ levelInjective C c levelInjective (A ⊗ B) c = levelIndArg A ℓ ⊔ levelInjective B c mutual InjectiveCon : (C : ConDesc P V I) (m : Fin (countArgs C)) (mk₁ : ∀ {i₁} → ⟦ C ⟧Con A′ (p , v₁ , i₁) → A′ (p , i₁)) (mk₂ : ∀ {i₂} → ⟦ C ⟧Con A′ (p , v₂ , i₂) → A′ (p , i₂)) → Set (levelInjective C (levelProj C m)) InjectiveCon {V} {v₁} {v₂} (π {ℓ′} (n , ai) S C) (suc m) mk₁ mk₂ = {s₁ : < relevance ai > S (_ , v₁)} {s₂ : < relevance ai > S (_ , v₂)} → InjectiveCon C m (λ x → mk₁ (s₁ , x)) (λ x → mk₂ (s₂ , x)) InjectiveCon {V} {v₁} {v₂} (A ⊗ B) (suc m) mk₁ mk₂ = {f₁ : ⟦ A ⟧IndArg A′ (_ , v₁)} {f₂ : ⟦ A ⟧IndArg A′ (_ , v₂)} → InjectiveCon B m (λ x → mk₁ (f₁ , x)) (λ x → mk₂ (f₂ , x)) InjectiveCon (A ⊗ B) zero mk₁ mk₂ = {!!} InjectiveCon (π ai S C) zero mk₁ mk₂ = {!!} InjectiveConLift : ∀ {V V′ : ExTele P} (C : ConDesc P V′ I) {c} {v₁ v₂ : ⟦ V ⟧tel p} {v′₁ v′₂ : ⟦ V′ ⟧tel p} {X : ⟦ P , V ⟧xtel → Set c} (mk₁ : ∀ {i₁} → ⟦ C ⟧Con A′ (p , v′₁ , i₁) → A′ (p , i₁)) (mk₂ : ∀ {i₂} → ⟦ C ⟧Con A′ (p , v′₂ , i₂) → A′ (p , i₂)) (x₁ : X (p , v₁)) (x₂ : X (p , v₂)) (v≡v : v₁ ≡ v₂) → Set (levelInjective C c) InjectiveConLift (var f) {v′₁ = v′₁} {v′₂} {X} mk₁ mk₂ x₁ x₂ v≡v = (ieq : f (p , v′₁) ≡ f (p , v′₂)) (ceq : subst (A′ ∘ (p ,_)) ieq (mk₁ refl) ≡ mk₂ refl) → subst (X ∘ (p ,_)) v≡v x₁ ≡ x₂ InjectiveConLift (π (n , ai) S C) {X = X} mk₁ mk₂ x₁ x₂ v≡v = {s₁ : < relevance ai > S (p , _)} {s₂ : < relevance ai > S (p , _)} → InjectiveConLift C {X = X} (λ x → mk₁ (s₁ , x)) (λ x → mk₂ (s₂ , x)) x₁ x₂ v≡v InjectiveConLift (A ⊗ B) {v′₁ = v′₁} {v′₂} {X} mk₁ mk₂ x₁ x₂ v≡v = {f₁ : ⟦ A ⟧IndArg A′ (_ , v′₁)} {f₂ : ⟦ A ⟧IndArg A′ (_ , v′₂)} → InjectiveConLift B {X = X} (λ x → mk₁ (f₁ , x)) (λ x → mk₂ (f₂ , x)) x₁ x₂ v≡v -- first, we gather all arguments for left and right A′ values -- InjectiveCon C′ m mk (π (n , ai) S C) mk₁ mk₂ -- = {s₁ : < relevance ai > S _} -- {s₂ : < relevance ai > S _} -- → InjectiveCon C′ m mk C (λ x → mk₁ (s₁ , x)) λ x → mk₂ (s₂ , x) -- InjectiveCon C′ m mk (A ⊗ B) mk₁ mk₂ -- = {f₁ : ⟦ A ⟧IndArg A′ _} -- {f₂ : ⟦ A ⟧IndArg A′ _} -- → InjectiveCon C′ m mk B (λ x → mk₁ (f₁ , x)) λ x → mk₂ (f₂ , x) -- -- we now have all arguments to prouce two values of A′ -- -- for the same kth constructor -- -- it's time to find the type of the proof -- -- base case: projecting on first arg, no lifting necessary -- InjectiveCon {V} {v₁} {v₂} (π ai S C) zero mk (var f) mk₁ mk₂ -- = (ieq : f (p , v₁) ≡ f (p , v₂)) -- → subst (A′ ∘ (p ,_)) ieq (mk (mk₁ refl)) ≡ mk (mk₂ refl) -- → proj₁ (mk₁ refl) ≡ proj₁ (mk₂ refl) -- InjectiveCon {V} {v₁} {v₂} (A ⊗ B) zero mk (var f) mk₁ mk₂ -- = (ieq : f (p , v₁) ≡ f (p , v₂)) -- → subst (A′ ∘ (p ,_)) ieq (mk (mk₁ refl)) ≡ mk (mk₂ refl) -- → proj₁ (mk₁ refl) ≡ proj₁ (mk₂ refl) -- otherwise, we have to lift a few things -- InjectiveCon {V} {v₁} {v₂} (π ai S C) (suc m) mk (var f) mk₁ mk₂ -- = (ieq : f (p , v₁) ≡ f (p , v₂)) -- → subst (A′ ∘ (p ,_)) ieq (mk (mk₁ refl)) ≡ mk (mk₂ refl) -- → InjectiveConLift C m {!!} {!!} {!!} {!!} -- InjectiveCon {V} {v₁} {v₂} (A ⊗ B) (suc m) mk (var f) mk₁ mk₂ -- = (ieq : f (p , v₁) ≡ f (p , v₂)) -- → subst (A′ ∘ (p ,_)) ieq (mk (mk₁ refl)) ≡ mk (mk₂ refl) -- → {!!} -- Injective : ∀ k (let C = lookupCon D k) (m : Fin (countArgs C)) -- → Set (levelInjective C (levelProj C m)) -- Injective k m = InjectiveCon _ m (λ x → constr (k , x)) _ id id {- deriveInjective : ∀ k m → Injective k m deriveInjective k m = injCon (lookupCon D k) m (lookupCon D k) where injCon : (C′ : ConDesc P ε I) (m : Fin (countArgs C′)) {mk : ∀ {i} → ⟦ C′ ⟧Con A′ (p , tt , i) → A′ (p , i)} (C : ConDesc P V I) {mk₁ : ∀ {i₁} → ⟦ C ⟧Con A′ (p , v₁ , i₁) → ⟦ C′ ⟧Con A′ (p , tt , i₁)} {mk₂ : ∀ {i₂} → ⟦ C ⟧Con A′ (p , v₂ , i₂) → ⟦ C′ ⟧Con A′ (p , tt , i₂)} → InjectiveCon C′ m mk C mk₁ mk₂ -- we proceed until the end of the constructor injCon C′ m (π ai S C) = injCon C′ m C injCon C′ m (A ⊗ B) = injCon C′ m B -- at the end, base case when projecting on fist arg injCon (π ai S C) zero (var x) ieq xeq = {!!} injCon (A ⊗ B) zero (var x) ieq xeq = {!!} -- else, LIFT injCon (π ai S C′) (suc m) (var x) = {!!} injCon (C′ ⊗ C′₁) (suc m) (var x) = {!!} {- deriveInjective′ : ∀ k m (ieq : i₁ ≡ i₂) {x₁ : ⟦ _ ⟧Con A′ (p , tt , i₁)} {x₂ : ⟦ _ ⟧Con A′ (p , tt , i₂)} → subst (λ i → ⟦ _ ⟧Con A′ (p , tt , i)) ieq x₁ ≡ x₂ → {!!} deriveInjective′ = {!!} -} -}
{ "alphanum_fraction": 0.4604663999, "avg_line_length": 35.6995073892, "ext": "agda", "hexsha": "2b2df96123ac5e23ee297578042aeb50dd2ebd34", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Constructions/Injective.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Constructions/Injective.agda", "max_line_length": 86, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Constructions/Injective.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 3076, "size": 7247 }
{-# OPTIONS --cubical --safe #-} module Data.Nat.Properties where open import Data.Nat.Base open import Agda.Builtin.Nat using () renaming (_<_ to _<ᴮ_; _==_ to _≡ᴮ_) public open import Prelude open import Cubical.Data.Nat using (caseNat; znots; snotz; injSuc) public pred : ℕ → ℕ pred (suc n) = n pred zero = zero correct-== : ∀ n m → Reflects (n ≡ m) (n ≡ᴮ m) correct-== zero zero = ofʸ refl correct-== zero (suc m) = ofⁿ znots correct-== (suc n) zero = ofⁿ snotz correct-== (suc n) (suc m) = map-reflects (cong suc) (λ contra prf → contra (cong pred prf)) (correct-== n m) discreteℕ : Discrete ℕ discreteℕ n m .does = n ≡ᴮ m discreteℕ n m .why = correct-== n m isSetℕ : isSet ℕ isSetℕ = Discrete→isSet discreteℕ +-suc : ∀ x y → x + suc y ≡ suc (x + y) +-suc zero y = refl +-suc (suc x) y = cong suc (+-suc x y) +-idʳ : ∀ x → x + 0 ≡ x +-idʳ zero = refl +-idʳ (suc x) = cong suc (+-idʳ x) +-comm : ∀ x y → x + y ≡ y + x +-comm x zero = +-idʳ x +-comm x (suc y) = +-suc x y ; cong suc (+-comm x y) infix 4 _<_ _<_ : ℕ → ℕ → Type₀ n < m = T (n <ᴮ m) _≤ᴮ_ : ℕ → ℕ → Bool zero ≤ᴮ m = true suc n ≤ᴮ m = n <ᴮ m +-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) +-assoc zero y z = refl +-assoc (suc x) y z = cong suc (+-assoc x y z)
{ "alphanum_fraction": 0.5802568218, "avg_line_length": 24.431372549, "ext": "agda", "hexsha": "7f61556094a708876f70063ca78569b19c6ee2a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Nat/Properties.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 551, "size": 1246 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB import LibraBFT.Yasm.System as LYS -- This module provides a single import for all Yasm modules module LibraBFT.Yasm.Yasm (ℓ-PeerState : Level) (ℓ-VSFP : Level) (parms : LYB.SystemParameters ℓ-PeerState) (ValidSenderForPK : LYS.ValidSenderForPK-type ℓ-PeerState ℓ-VSFP parms) (ValidSenderForPK-stable : LYS.ValidSenderForPK-stable-type ℓ-PeerState ℓ-VSFP parms ValidSenderForPK) where open LYB.SystemParameters parms open import LibraBFT.Yasm.Base public open import LibraBFT.Yasm.System ℓ-PeerState ℓ-VSFP parms public open import LibraBFT.Yasm.Properties ℓ-PeerState ℓ-VSFP parms ValidSenderForPK ValidSenderForPK-stable public open import Util.FunctionOverride PeerId _≟PeerId_ public
{ "alphanum_fraction": 0.6700468019, "avg_line_length": 49.3076923077, "ext": "agda", "hexsha": "dc5fe645668fab5976352aab372cdf553e27d977", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/Yasm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 333, "size": 1282 }
-- {-# OPTIONS -v tc.constr.findInScope:50 #-} module 06-listEquality where infixr 5 _∷_ data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A data Bool : Set where true : Bool false : Bool id : {A : Set} → A → A id v = v or : Bool → Bool → Bool or true _ = true or _ true = true or false false = false and : Bool → Bool → Bool and false _ = false and _ false = false and true true = false not : Bool → Bool not true = false not false = true record Eq (A : Set) : Set where field eq : A → A → Bool listEq : {A : Set} → Eq A → Eq (List A) listEq {A} eqA = record { eq = eq' } where eq' : List A → List A → Bool eq' [] [] = true eq' (a ∷ as) (b ∷ bs) = and (Eq.eq eqA a b) (eq' as bs) eq' _ _ = false primEqBool : Bool → Bool → Bool primEqBool true = id primEqBool false = not eqBool : Eq Bool eqBool = record { eq = primEqBool } open Eq {{...}} test = eq (true ∷ false ∷ true ∷ []) (true ∷ false ∷ []) where listBoolEq = listEq eqBool
{ "alphanum_fraction": 0.5869346734, "avg_line_length": 19.1346153846, "ext": "agda", "hexsha": "15133c8c8bc723cddcc02192889170309b28540e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/instance-arguments/06-listEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/instance-arguments/06-listEquality.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/instance-arguments/06-listEquality.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 364, "size": 995 }
-- Proof: insertion sort computes a permutation of the input list module sortnat where open import bool open import eq open import nat open import list open import nondet open import nondet-thms -- non-deterministic insert. --This takes a nondeterministic list because I need to be able to call it with the result of perm -- --implementation in curry: -- ndinsert x [] = [] -- ndinsert x (y:ys) = (x : y : xs) ? (y : insert x ys) ndinsert : {A : Set} → A → 𝕃 A → ND (𝕃 A) ndinsert x [] = Val ( x :: []) ndinsert x (y :: ys) = (Val ( x :: y :: ys )) ?? ((_::_ y) $* (ndinsert x ys)) --non-deterministic permutation --this is identical to the curry code (except for the Val constructor) perm : {A : Set} → (𝕃 A) → ND (𝕃 A) perm [] = Val [] perm (x :: xs) = (ndinsert x) *$* (perm xs) --insert a value into a sorted list. --this is identical to curry or haskell code. -- --note that the structure here is identical to ndinsert insert : ℕ → 𝕃 ℕ → 𝕃 ℕ insert x [] = x :: [] insert x (y :: ys) = if x < y then (x :: y :: ys) else (y :: insert x ys) --simple insertion sort --again this is identical to curry or haskell --also, note that the structure is identical to perm sort : 𝕃 ℕ → 𝕃 ℕ sort [] = [] sort (x :: xs) = insert x (sort xs) --If introduction rule for non-deterministic values. --if x and y are both possible values in z then --∀ c. if c then x else y will give us either x or y, so it must be a possible value of z. -- ifIntro : {A : Set} → (x : A) → (y : A) → (nx : ND A) → x ∈ nx → y ∈ nx → (c : 𝔹) → (if c then x else y) ∈ nx ifIntro x y nx p q tt = p ifIntro x y nx p q ff = q --------------------------------------------------------------------------- -- -- this should prove that if xs ∈ nxs then, insert x xs ∈ ndinsert x nxs -- parameters: -- x : the value we are inserting into the list -- xs : the list -- --returns: insert x xs ∈ ndinsert x xs -- a proof that inserting a value in a list is ok with non-deterministic lists insert=ndinsert : (y : ℕ) → (xs : 𝕃 ℕ) → (insert y xs) ∈ (ndinsert y xs) -- the first case is simple: inserting into an empty list is trivial insert=ndinsert y [] = ndrefl --The recursive case is the interesting one. --The list to insert an element has the form (x :: xs) --At this point we have two possible cases. --Either y is smaller then every element in (x :: xs), in which case it's inserted at the front, --or y is larger than x, in which case it's inserted somewhere in xs. --Since both of these cases are covered by ndinsert we can invoke the ifIntro lemma, to say that we don't care which case it is. -- --variables: -- step : one step of insert -- l : the left hand side of insert y xs (the then branch) -- r : the right hand side of insert y xs (the else branch) -- nr : a non-deterministic r -- (Val l) : a non-deterministic l (but since ndinsert only has a deterministic value on the left it's not very interesting) -- rec : The recursive call. If y isn't inserted into the front, then we need to find it. -- l∈step : a proof that l is a possible value for step -- r∈step : a proof that r is a possible value for step insert=ndinsert y (x :: xs) = ifIntro l r step l∈step r∈step (y < x) where step = ndinsert y (x :: xs) l = (y :: x :: xs) r = x :: insert y xs nl = Val l nr = (_::_ x) $* (ndinsert y xs) rec = ∈-$* (_::_ x) (insert y xs) (ndinsert y xs) (insert=ndinsert y xs) l∈step = left nl nr ndrefl r∈step = right nl nr rec --------------------------------------------------------------------------- -- Main theorem: Sorting a list preserves permutations -- all of the work is really done by insert=ndinsert sortPerm : (xs : 𝕃 ℕ) → sort xs ∈ perm xs sortPerm [] = ndrefl sortPerm (x :: xs) = ∈-*$* (sort xs) (perm xs) (insert x) (ndinsert x) (sortPerm xs) (insert=ndinsert x (sort xs))
{ "alphanum_fraction": 0.590310559, "avg_line_length": 37.9716981132, "ext": "agda", "hexsha": "62b03996e17f229450ca10342193ff51213ffd1d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "nondet/sortnat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "nondet/sortnat.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "nondet/sortnat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1159, "size": 4025 }
open import Common.Prelude hiding (tt) open import Common.Reflection open import Common.Equality tt : ⊤ tt = record{} NoConf : Nat → Nat → Set NoConf zero zero = ⊤ NoConf zero (suc n) = ⊥ NoConf (suc m) zero = ⊥ NoConf (suc m) (suc n) = m ≡ n pattern `Nat = def (quote Nat) [] infixr 0 Π syntax Π x a b = [ x ∈ a ]→ b Π : String → Type → Type → Type Π x a b = pi (vArg a) (abs x b) -- noConf : (m n : ℕ) → m ≡ n → NoConfusion-ℕ m n -- noConf zero .zero refl = tt -- noConf (suc m) .(suc m) refl = refl noConf : FunDef noConf = funDef ([ "A" ∈ `Nat ]→ [ "B" ∈ `Nat ]→ [ "C" ∈ def (quote _≡_) (vArg (var 1 []) ∷ vArg (var 0 []) ∷ []) ]→ def (quote NoConf) (vArg (var 2 []) ∷ vArg (var 1 []) ∷ [])) ( clause (vArg (con (quote zero) []) ∷ vArg dot ∷ vArg (con (quote refl) []) ∷ []) (def (quote tt) []) ∷ clause (vArg (con (quote suc) (vArg (var "m") ∷ [])) ∷ vArg dot ∷ vArg (con (quote refl) []) ∷ []) (def (quote refl) []) ∷ []) unquoteDecl test = define (vArg test) noConf
{ "alphanum_fraction": 0.5417895772, "avg_line_length": 26.7631578947, "ext": "agda", "hexsha": "3527ed5c4b7ff032d5a92936ca2b8f59060c4f24", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1228b.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1228b.agda", "max_line_length": 102, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1228b.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 409, "size": 1017 }
module z where ------------------------------------------------------------------------------ -- inductive data types and function that are defined by pattern matching data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) data List {ℓ} (A : Set ℓ) : Set ℓ where [] : List A _::_ : (x : A) (xs : List A) → List A _#_ : {A : Set} → List A → List A → List A [] # ys = ys (x :: xs) # ys = x :: (xs # ys) sum : List ℕ → List ℕ → List ℕ sum [] ys = ys sum (x :: xs) [] = x :: xs sum (x :: xs) (y :: ys) = (x + y) :: sum xs ys -- inductively defined predicates -- P over S is a data type S -> Set data _reverseOf_ {A : Set} : List A → List A → Set where rev-Λ : [] reverseOf [] rev-t : {x : A} {xs ys : List A} → xs reverseOf ys → (x :: xs) reverseOf (ys # (x :: [])) data _⊆_ {A : Set} : List A → List A → Set where sub-Λ : [] ⊆ [] sub-right : {n : A} {ys xs : List A} → ys ⊆ xs → ys ⊆ (n :: xs) sub-ind : {n : A} {ys xs : List A} → ys ⊆ xs → (n :: ys) ⊆ (n :: xs) ------------------------------------------------------------------------------ -- coinductive records and copattern matching -- inductive pair record Pair (A B : Set) : Set where constructor _,_ field fst : A snd : B -- coinductive infinite list (e.g., "stream") record Stream (A : Set) : Set where coinductive field hd : A tl : Stream A open Stream -- functions cannot be defined inductively (by pattern matching). -- use copattern matching [APTS13] -- - specify how the result of the function will be observed zeros : Stream ℕ hd zeros = zero tl zeros = zeros natsFrom : ℕ → Stream ℕ hd (natsFrom n) = n tl (natsFrom n) = natsFrom (suc n) sumS : Stream ℕ → Stream ℕ → Stream ℕ hd (sumS a b) = hd a + hd b tl (sumS a b) = sumS (tl a) (tl b) ------------------------------------------------------------------------------ -- possibly infinite streams --open import Codata.Thunk open import Size open import Relation.Unary {- A thunk is a coinductive record with only one field, the suspended computation. Takes a function from Size to Set (e.g., Colist A). Accessing forces the computation and implicitly decreases the size. 'Size < i' represents all the sizes smaller than i. -} record Thunk {ℓ} (F : Size → Set ℓ) (i : Size) : Set ℓ where coinductive field force : {j : Size< i} → F j open Thunk public -- 'Size' represents an approximation level. -- - Can be ∞. -- - Can help termination checker by tracking depth of data structures. -- 'Thunk' simulates laziness data Colist {a} (A : Set a) (i : Size) : Set a where [] : Colist A i _::_ : A → Thunk (Colist A) i → Colist A i {- Alternative Colist impl: follows pattern used for coinductive types. To represent a structure which can be either finite or infinite, use a coinductive record with a field representing the whole observation which can be made on the structure. This field is typically a variant type, since the observation can take different shapes, e.g., if colist is non-empty then observe the pair consisting of head and tail, otherwise nothing. -} open import Data.Maybe open import Data.Product record MyColist (A : Set) : Set where constructor CoL_ coinductive field list : Maybe (A × MyColist A) -- Either of these two approaches can be used for possibly infinite structures. data StreamT {ℓ} (A : Set ℓ) (i : Size) : Set ℓ where _::_ : A → Thunk (StreamT A) i → StreamT A i record MyStream_bis (A : Set) : Set where coinductive field stream : A × (MyStream_bis A) ------------------------------------------------------------------------------ -- equality properties -- stdlib equality and properties data _≡_ {a} {A : Set a} (x : A) : A → Set a where instance refl : x ≡ x -- Each property is a function that takes proofs as input and returns a new proof. sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y → P x → P y subst P refl px = px ------------------------------------------------------------------------------ -- Chapter 2 - Inductive reasoning data _memberOf_ {A : Set} : A → List A → Set where mem-h : {x : A} → {xs : List A} → x memberOf (x :: xs) mem-t : {x y : A} → {xs : List A} → x memberOf xs → x memberOf(y :: xs)
{ "alphanum_fraction": 0.5442983402, "avg_line_length": 29.5477707006, "ext": "agda", "hexsha": "02856f45b85997380ba005bb928eda87a62a27a6", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2020-02-luca-ciccone-flexible-coinduction-in-agda/z.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2020-02-luca-ciccone-flexible-coinduction-in-agda/z.agda", "max_line_length": 98, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2020-02-luca-ciccone-flexible-coinduction-in-agda/z.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1395, "size": 4639 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Converting reflection machinery to strings ------------------------------------------------------------------------ -- Note that Reflection.termErr can also be used directly in tactic -- error messages. {-# OPTIONS --without-K --safe #-} module Reflection.Show where import Data.Char as Char import Data.Float as Float open import Data.List hiding (_++_; intersperse) import Data.Nat as ℕ import Data.Nat.Show as ℕ open import Data.String as String import Data.Word as Word open import Relation.Nullary using (yes; no) open import Function.Base using (_∘′_) open import Reflection.Abstraction hiding (map) open import Reflection.Argument hiding (map) open import Reflection.Argument.Relevance open import Reflection.Argument.Visibility open import Reflection.Argument.Information open import Reflection.Definition open import Reflection.Literal open import Reflection.Pattern open import Reflection.Term ------------------------------------------------------------------------ -- Re-export primitive show functions open import Agda.Builtin.Reflection public using () renaming ( primShowMeta to showMeta ; primShowQName to showName ) ------------------------------------------------------------------------ -- Non-primitive show functions showRelevance : Relevance → String showRelevance relevant = "relevant" showRelevance irrelevant = "irrelevant" showRel : Relevance → String showRel relevant = "" showRel irrelevant = "." showVisibility : Visibility → String showVisibility visible = "visible" showVisibility hidden = "hidden" showVisibility instance′ = "instance" showLiteral : Literal → String showLiteral (nat x) = ℕ.show x showLiteral (word64 x) = ℕ.show (Word.toℕ x) showLiteral (float x) = Float.show x showLiteral (char x) = Char.show x showLiteral (string x) = String.show x showLiteral (name x) = showName x showLiteral (meta x) = showMeta x mutual showPatterns : List (Arg Pattern) → String showPatterns [] = "" showPatterns (a ∷ ps) = showArg a <+> showPatterns ps where showArg : Arg Pattern → String showArg (arg (arg-info visible r) p) = showRel r ++ showPattern p showArg (arg (arg-info hidden r) p) = braces (showRel r ++ showPattern p) showArg (arg (arg-info instance′ r) p) = braces (braces (showRel r ++ showPattern p)) showPattern : Pattern → String showPattern (con c []) = showName c showPattern (con c ps) = parens (showName c <+> showPatterns ps) showPattern dot = "._" showPattern (var s) = s showPattern (lit l) = showLiteral l showPattern (proj f) = showName f showPattern absurd = "()" private -- add appropriate parens depending on the given visibility visibilityParen : Visibility → String → String visibilityParen visible s = parensIfSpace s visibilityParen hidden s = braces s visibilityParen instance′ s = braces (braces s) mutual showTerms : List (Arg Term) → String showTerms [] = "" showTerms (arg i t ∷ ts) = visibilityParen (visibility i) (showTerm t) <+> showTerms ts showTerm : Term → String showTerm (var x args) = "var" <+> ℕ.show x <+> showTerms args showTerm (con c args) = showName c <+> showTerms args showTerm (def f args) = showName f <+> showTerms args showTerm (lam v (abs s x)) = "λ" <+> visibilityParen v s <+> "→" <+> showTerm x showTerm (pat-lam cs args) = "λ {" <+> showClauses cs <+> "}" <+> showTerms args showTerm (Π[ x ∶ arg i a ] b) = "Π (" ++ visibilityParen (visibility i) x <+> ":" <+> parensIfSpace (showTerm a) ++ ")" <+> parensIfSpace (showTerm b) showTerm (sort s) = showSort s showTerm (lit l) = showLiteral l showTerm (meta x args) = showMeta x <+> showTerms args showTerm unknown = "unknown" showSort : Sort → String showSort (set t) = "Set" <+> parensIfSpace (showTerm t) showSort (lit n) = "Set" ++ ℕ.show n -- no space to disambiguate from set t showSort unknown = "unknown" showClause : Clause → String showClause (clause ps t) = showPatterns ps <+> "→" <+> showTerm t showClause (absurd-clause ps) = showPatterns ps showClauses : List Clause → String showClauses [] = "" showClauses (c ∷ cs) = showClause c <+> ";" <+> showClauses cs showDefinition : Definition → String showDefinition (function cs) = "function" <+> braces (showClauses cs) showDefinition (data-type pars cs) = "datatype" <+> ℕ.show pars <+> braces (intersperse ", " (map showName cs)) showDefinition (record′ c fs) = "record" <+> showName c <+> braces (intersperse ", " (map (showName ∘′ unArg) fs)) showDefinition (constructor′ d) = "constructor" <+> showName d showDefinition axiom = "axiom" showDefinition primitive′ = "primitive"
{ "alphanum_fraction": 0.6357911842, "avg_line_length": 35.6739130435, "ext": "agda", "hexsha": "b5103cb01f3b76bfcc719bbaa7d339a35dfe24a0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Reflection/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Reflection/Show.agda", "max_line_length": 89, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Reflection/Show.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1278, "size": 4923 }
{-# OPTIONS --copatterns #-} module CoinductiveUnitRecord where import Common.Level open import Common.Equality record Unit : Set where coinductive constructor delay field force : Unit open Unit good : Unit force good = good bad : Unit bad = delay bad -- should not termination check ... bad' : Unit bad' = delay bad' -- ... because this loops: -- loop : bad ≡ bad' -- loop = refl
{ "alphanum_fraction": 0.692893401, "avg_line_length": 14.5925925926, "ext": "agda", "hexsha": "e41295fd50381f83224f3ef7502fff109f4d4482", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/CoinductiveUnitRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/CoinductiveUnitRecord.agda", "max_line_length": 35, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/CoinductiveUnitRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 103, "size": 394 }
{-# OPTIONS --cubical --safe #-} module Data.Nat.Fold where open import Prelude open import Data.Nat foldr-ℕ : (A → A) → A → ℕ → A foldr-ℕ f b zero = b foldr-ℕ f b (suc n) = f (foldr-ℕ f b n) foldr-ℕ-universal : ∀ (h : ℕ → A) f x → (h zero ≡ x) → (∀ n → h (suc n) ≡ f (h n)) → ∀ n → h n ≡ foldr-ℕ f x n foldr-ℕ-universal h f x base step zero = base foldr-ℕ-universal h f x base step (suc n) = step n ; cong f (foldr-ℕ-universal h f x base step n) foldl-ℕ-go : (A → A) → ℕ → A → A foldl-ℕ-go f zero x = x foldl-ℕ-go f (suc n) x = foldl-ℕ-go f n $! f x foldl-ℕ : (A → A) → A → ℕ → A foldl-ℕ f x n = foldl-ℕ-go f n $! x {-# INLINE foldl-ℕ #-} f-comm : ∀ (f : A → A) x n → f (foldr-ℕ f x n) ≡ foldr-ℕ f (f x) n f-comm f x zero i = f x f-comm f x (suc n) i = f (f-comm f x n i) foldl-ℕ-foldr : ∀ f (x : A) n → foldr-ℕ f x n ≡ foldl-ℕ f x n foldl-ℕ-foldr f x zero = sym ($!-≡ (foldl-ℕ-go f zero) x) foldl-ℕ-foldr f x (suc n) = f-comm f x n ; foldl-ℕ-foldr f (f x) n ; sym ($!-≡ (foldl-ℕ-go f (suc n)) x) foldl-ℕ-universal : ∀ (h : ℕ → A) f x → (h zero ≡ x) → (∀ n → h (suc n) ≡ f (h n)) → ∀ n → h n ≡ foldl-ℕ f x n foldl-ℕ-universal h f x base step n = foldr-ℕ-universal h f x base step n ; foldl-ℕ-foldr f x n
{ "alphanum_fraction": 0.5011219147, "avg_line_length": 33.425, "ext": "agda", "hexsha": "edde67850a43deb1c4add526c1da26cc96d6055c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Nat/Fold.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Nat/Fold.agda", "max_line_length": 104, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Nat/Fold.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 613, "size": 1337 }
{-# OPTIONS --prop --without-K --rewriting #-} module Calf.Prelude where open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite public Ω = Prop □ = Set postulate funext : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (a : A) → B a} → (∀ x → f x ≡ g x) → f ≡ g funext/Ω : {A : Prop} {B : □} {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g
{ "alphanum_fraction": 0.5418994413, "avg_line_length": 25.5714285714, "ext": "agda", "hexsha": "4da4acc0d914449b06258226971051f3f4959e9a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Prelude.agda", "max_line_length": 96, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 151, "size": 358 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.FromZeroed where open import Data.Binary.Definition open import Prelude inc-z : 𝔹 → 𝔹 inc-z 0ᵇ = 2ᵇ 0ᵇ inc-z (1ᵇ xs) = 2ᵇ xs inc-z (2ᵇ xs) = 1ᵇ inc-z xs toZ : 𝔹 → 𝔹 toZ 0ᵇ = 0ᵇ toZ (1ᵇ xs) = 2ᵇ toZ xs toZ (2ᵇ xs) = 1ᵇ inc-z (toZ xs) ones : ℕ → 𝔹 → 𝔹 ones zero xs = xs ones (suc n) xs = 1ᵇ ones n xs fromZ₁ : ℕ → 𝔹 → 𝔹 fromZ₁ n 0ᵇ = 0ᵇ fromZ₁ n (1ᵇ xs) = fromZ₁ (suc n) xs fromZ₁ n (2ᵇ xs) = 2ᵇ ones n (fromZ₁ 0 xs) fromZ : 𝔹 → 𝔹 fromZ 0ᵇ = 0ᵇ fromZ (1ᵇ xs) = fromZ₁ zero xs fromZ (2ᵇ xs) = 1ᵇ fromZ xs import Data.Binary.Conversion.Fast as Fast open import Data.List using (List; _⋯_; map) round-trip : ℕ → Type round-trip n = map (fromZ ∘ toZ) nums ≡ nums where nums : List 𝔹 nums = map Fast.⟦_⇑⟧ (0 ⋯ n) _ : round-trip 300 _ = refl
{ "alphanum_fraction": 0.6214549938, "avg_line_length": 18.4318181818, "ext": "agda", "hexsha": "6ba10405d9107074755c49ff409dc5f5c10328dd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/FromZeroed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/FromZeroed.agda", "max_line_length": 44, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/FromZeroed.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 432, "size": 811 }
open import bool open import bool-thms2 open import eq open import product open import product-thms open import bool-relations module minmax {A : Set} (_≤A_ : A → A → 𝔹) (≤A-trans : transitive _≤A_) (≤A-total : total _≤A_) where ≤A-refl : reflexive _≤A_ ≤A-refl = total-reflexive _≤A_ ≤A-total min : A → A → A min = λ x y → if x ≤A y then x else y max : A → A → A max = λ x y → if x ≤A y then y else x min-≤1 : ∀{x y : A} → min x y ≤A x ≡ tt min-≤1{x}{y} with keep (x ≤A y) min-≤1{x}{y} | tt , p rewrite p = ≤A-refl min-≤1{x}{y} | ff , p rewrite p = ≤A-total p min-≤2 : ∀{x y : A} → min x y ≤A y ≡ tt min-≤2{x}{y} with keep (x ≤A y) min-≤2{x}{y} | tt , p rewrite p = p min-≤2{x}{y} | ff , p rewrite p = ≤A-refl max-≤1 : ∀{x y : A} → x ≤A max x y ≡ tt max-≤1{x}{y} with keep (x ≤A y) max-≤1{x}{y} | tt , p rewrite p = p max-≤1{x}{y} | ff , p rewrite p = ≤A-refl max-≤2 : ∀{x y : A} → y ≤A max x y ≡ tt max-≤2{x}{y} with keep (x ≤A y) max-≤2{x}{y} | tt , p rewrite p = ≤A-refl max-≤2{x}{y} | ff , p rewrite p = ≤A-total p min1-mono : ∀{x x' y : A} → x ≤A x' ≡ tt → min x y ≤A min x' y ≡ tt min1-mono{x}{x'}{y} p with keep (x ≤A y) | keep (x' ≤A y) min1-mono p | tt , q | tt , q' rewrite q | q' = p min1-mono p | tt , q | ff , q' rewrite q | q' = q min1-mono p | ff , q | tt , q' rewrite q | q' | ≤A-trans p q' with q min1-mono p | ff , q | tt , q' | () min1-mono p | ff , q | ff , q' rewrite q | q' = ≤A-refl min2-mono : ∀{x y y' : A} → y ≤A y' ≡ tt → min x y ≤A min x y' ≡ tt min2-mono{x}{y}{y'} p with keep (x ≤A y) | keep (x ≤A y') min2-mono p | tt , q | tt , q' rewrite q | q' = ≤A-refl min2-mono p | tt , q | ff , q' rewrite q | q' | ≤A-trans q p with q' min2-mono p | tt , q | ff , q' | () min2-mono p | ff , q | tt , q' rewrite q | q' = ≤A-total q min2-mono p | ff , q | ff , q' rewrite q | q' = p max2-mono : ∀{x y y' : A} → y ≤A y' ≡ tt → max x y ≤A max x y' ≡ tt max2-mono{x}{y}{y'} p with keep (x ≤A y) | keep (x ≤A y') max2-mono p | tt , q | tt , q' rewrite q | q' = p max2-mono p | tt , q | ff , q' rewrite q | q' = ≤A-trans p (≤A-total q') max2-mono p | ff , q | tt , q' rewrite q | q' = q' max2-mono p | ff , q | ff , q' rewrite q | q' = ≤A-refl
{ "alphanum_fraction": 0.5147526101, "avg_line_length": 34.9682539683, "ext": "agda", "hexsha": "2cd095a321239a6dffcac595a2e0b23aff53f341", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "minmax.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "minmax.agda", "max_line_length": 72, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "minmax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 1014, "size": 2203 }
module 020-equivalence where -- We need False to represent logical contradiction. open import 010-false-true -- Next, we need to be able to work with equalities. Equalities are -- defined between objects of the same type. Two objects are equal if -- we have a proof of their equality. In Agda, we can represent this -- by means of a function which takes two instances of some type M, -- and maps this to a proof of equality. -- To be a reasonable model for equality, we demand that this function -- has the properties of an equivalence relation: (i) we must have a -- proof that every object r in M equals itself, (ii) given a proof -- that r == s, we must be able to prove that s == r, and (iii) given -- proofs of r == s and s == t, we must be able to prove that r == t. -- A convenient way to store all these properties, goes by means of a -- record, which is in essence a local parametrised module, where the -- parameters and fields correspond to postulates (theorems that can -- be stated without proof), and declarations are theorems derived -- from parameters and fields. A good question is, what should be a -- parameter, and what should be a field? Fields can be considered as -- named parameters, so probably anything that would otherwise not be -- obvious without name should go into a field. -- Here we declare the type and equality function (which maps pairs of -- elements to proofs) as parameters, and the equivalence axioms as -- fields. The parameter M is optional because it can be derived -- unambiguously from the type signature of the equality function. record Equivalence {M : Set} (_==_ : M -> M -> Set) : Set1 where {- axioms -} field refl : ∀ {r} -> (r == r) symm : ∀ {r s} -> (r == s) -> (s == r) trans : ∀ {r s t} -> (r == s) -> (s == t) -> (r == t) -- We have a proof of inequality if we can prove contradiction from -- equality, and this is precisely how we define the inequality -- relation. _!=_ : M -> M -> Set m != n = (m == n) -> False -- Prove transitivity chains. -- (TODO: Use a type dependent function for these chains.) trans3 : ∀ {r s t u} -> (r == s) -> (s == t) -> (t == u) -> (r == u) trans3 p1 p2 p3 = trans (trans p1 p2) p3 trans4 : ∀ {r s t u v} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (r == v) trans4 p1 p2 p3 p4 = trans (trans3 p1 p2 p3) p4 trans5 : ∀ {r s t u v w} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w) -> (r == w) trans5 p1 p2 p3 p4 p5 = trans (trans4 p1 p2 p3 p4) p5 trans6 : ∀ {r s t u v w x} -> (r == s) -> (s == t) -> (t == u) -> (u == v) -> (v == w) -> (w == x) -> (r == x) trans6 p1 p2 p3 p4 p5 p6 = trans (trans5 p1 p2 p3 p4 p5) p6 -- Now we construct a trivial model of equivalence: two instances of a -- type are equivalent if they reduce to the same normal form. (Note -- that Agda reduces expressions to normal form for us.) data _≡_ {A : Set} : A -> A -> Set where refl : ∀ {r} -> r ≡ r thm-≡-is-equivalence : {A : Set} -> Equivalence {A} _≡_ thm-≡-is-equivalence = record { refl = refl; symm = symm; trans = trans } where symm : ∀ {r s} -> r ≡ s -> s ≡ r symm refl = refl trans : ∀ {r s t} -> r ≡ s -> s ≡ t -> r ≡ t trans refl refl = refl
{ "alphanum_fraction": 0.6078252957, "avg_line_length": 38.3372093023, "ext": "agda", "hexsha": "599546155a068df99375d53ad7ae899c6d4f697f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "020-equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "020-equivalence.agda", "max_line_length": 70, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "020-equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 1038, "size": 3297 }
import Issue2447.M Rejected : Set Rejected = Set
{ "alphanum_fraction": 0.76, "avg_line_length": 10, "ext": "agda", "hexsha": "0e16450e67f2e95dd13bb1a98f0f43dc5016ddd3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2447.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2447.agda", "max_line_length": 18, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2447.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 14, "size": 50 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some Vec-related properties that depend on the K rule or make use -- of heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Vec.Properties.WithK where open import Data.Nat open import Data.Nat.Properties using (+-assoc) open import Data.Vec open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl) ------------------------------------------------------------------------ -- _[_]=_ module _ {a} {A : Set a} where []=-irrelevant : ∀ {n} {xs : Vec A n} {i x} → (p q : xs [ i ]= x) → p ≡ q []=-irrelevant here here = refl []=-irrelevant (there xs[i]=x) (there xs[i]=x') = P.cong there ([]=-irrelevant xs[i]=x xs[i]=x') ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} where ++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) → (xs ++ ys) ++ zs ≅ xs ++ (ys ++ zs) ++-assoc [] ys zs = refl ++-assoc {suc m} (x ∷ xs) ys zs = H.icong (Vec A) (+-assoc m _ _) (x ∷_) (++-assoc xs ys zs) ------------------------------------------------------------------------ -- foldr foldr-cong : ∀ {a b} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} {d} {C : ℕ → Set b} {g : ∀ {n} → A → C n → C (suc n)} {e} → (∀ {n x} {y : B n} {z : C n} → y ≅ z → f x y ≅ g x z) → d ≅ e → ∀ {n} (xs : Vec A n) → foldr B f d xs ≅ foldr C g e xs foldr-cong _ d≅e [] = d≅e foldr-cong f≅g d≅e (x ∷ xs) = f≅g (foldr-cong f≅g d≅e xs) ------------------------------------------------------------------------ -- foldl foldl-cong : ∀ {a b} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → B n → A → B (suc n)} {d} {C : ℕ → Set b} {g : ∀ {n} → C n → A → C (suc n)} {e} → (∀ {n x} {y : B n} {z : C n} → y ≅ z → f y x ≅ g z x) → d ≅ e → ∀ {n} (xs : Vec A n) → foldl B f d xs ≅ foldl C g e xs foldl-cong _ d≅e [] = d≅e foldl-cong f≅g d≅e (x ∷ xs) = foldl-cong f≅g (f≅g d≅e) xs ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 []=-irrelevance = []=-irrelevant {-# WARNING_ON_USAGE []=-irrelevance "Warning: []=-irrelevance was deprecated in v1.0. Please use []=-irrelevant instead." #-}
{ "alphanum_fraction": 0.3901911287, "avg_line_length": 36.012987013, "ext": "agda", "hexsha": "030ceb02f4681d84f9ba89efda2309b36fdf0359", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 853, "size": 2773 }
{-# OPTIONS --without-K --exact-split #-} module 17-number-theory where import 16-sets open 16-sets public -- Section 10.1 Decidability. {- Recall that a proposition P is decidable if P + (¬ P) holds. -} classical-Prop : (l : Level) → UU (lsuc l) classical-Prop l = Σ (UU-Prop l) (λ P → is-decidable (pr1 P)) is-decidable-leq-ℕ : (m n : ℕ) → is-decidable (leq-ℕ m n) is-decidable-leq-ℕ zero-ℕ zero-ℕ = inl star is-decidable-leq-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-leq-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-leq-ℕ m n is-decidable-le-ℕ : (m n : ℕ) → is-decidable (le-ℕ m n) is-decidable-le-ℕ zero-ℕ zero-ℕ = inr id is-decidable-le-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-le-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-le-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-le-ℕ m n {- We show that if A is a proposition, then so is is-decidable A. -} is-prop-is-decidable : {l : Level} {A : UU l} → is-prop A → is-prop (is-decidable A) is-prop-is-decidable is-prop-A = is-prop-coprod intro-dn is-prop-A is-prop-neg {- Not every type is decidable. -} case-elim : {l1 l2 : Level} {A : UU l1} {B : UU l2} → ¬ B → coprod A B → A case-elim nb (inl a) = a case-elim nb (inr b) = ex-falso (nb b) simplify-not-all-2-element-types-decidable : {l : Level} → ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → is-decidable X) → ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → X) simplify-not-all-2-element-types-decidable d X p = case-elim ( map-universal-property-trunc-Prop ( dn-Prop' X) ( λ e → intro-dn (map-equiv e true)) ( p)) ( d X p) {- not-all-2-element-types-decidable : {l : Level} → ¬ ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → is-decidable X) not-all-2-element-types-decidable d = {!simplify-not-all-2-element-types-decidable d (raise _ bool) ?!} not-all-types-decidable : {l : Level} → ¬ ((X : UU l) → is-decidable X) not-all-types-decidable d = not-all-2-element-types-decidable (λ X p → d X) -} {- Types with decidable equality are closed under coproducts. -} has-decidable-equality-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality A → has-decidable-equality B → has-decidable-equality (coprod A B) has-decidable-equality-coprod dec-A dec-B (inl x) (inl y) = functor-coprod ( ap inl) ( λ f p → f (inv-is-equiv (is-emb-inl _ _ x y) p)) ( dec-A x y) has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inl x) (inr y) = inr ( λ p → inv-is-equiv ( is-equiv-map-raise _ empty) ( Eq-coprod-eq A B (inl x) (inr y) p)) has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inr x) (inl y) = inr ( λ p → inv-is-equiv ( is-equiv-map-raise _ empty) ( Eq-coprod-eq A B (inr x) (inl y) p)) has-decidable-equality-coprod dec-A dec-B (inr x) (inr y) = functor-coprod ( ap inr) ( λ f p → f (inv-is-equiv (is-emb-inr _ _ x y) p)) ( dec-B x y) {- Decidable equality of Fin n. -} has-decidable-equality-empty : has-decidable-equality empty has-decidable-equality-empty () has-decidable-equality-unit : has-decidable-equality unit has-decidable-equality-unit star star = inl refl has-decidable-equality-Fin : (n : ℕ) → has-decidable-equality (Fin n) has-decidable-equality-Fin zero-ℕ = has-decidable-equality-empty has-decidable-equality-Fin (succ-ℕ n) = has-decidable-equality-coprod ( has-decidable-equality-Fin n) ( has-decidable-equality-unit) decidable-Eq-Fin : (n : ℕ) (i j : Fin n) → classical-Prop lzero decidable-Eq-Fin n i j = pair ( pair (Id i j) (is-set-Fin n i j)) ( has-decidable-equality-Fin n i j) {- Decidable equality of ℤ. -} has-decidable-equality-ℤ : has-decidable-equality ℤ has-decidable-equality-ℤ = has-decidable-equality-coprod has-decidable-equality-ℕ ( has-decidable-equality-coprod has-decidable-equality-unit has-decidable-equality-ℕ) {- Next, we show that types with decidable equality are sets. To see this, we will construct a fiberwise equivalence with the binary relation R that is defined by R x y := unit if (x = y), and empty otherwise. In order to define this relation, we first define a type family over ((x = y) + ¬(x = y)) that returns unit on the left and empty on the right. -} splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → is-decidable (Id x y) → UU lzero splitting-decidable-equality A x y (inl p) = unit splitting-decidable-equality A x y (inr f) = empty is-prop-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → (t : is-decidable (Id x y)) → is-prop (splitting-decidable-equality A x y t) is-prop-splitting-decidable-equality A x y (inl p) = is-prop-unit is-prop-splitting-decidable-equality A x y (inr f) = is-prop-empty reflexive-splitting-decidable-equality : {l : Level} (A : UU l) (x : A) → (t : is-decidable (Id x x)) → splitting-decidable-equality A x x t reflexive-splitting-decidable-equality A x (inl p) = star reflexive-splitting-decidable-equality A x (inr f) = ind-empty {P = λ t → splitting-decidable-equality A x x (inr f)} (f refl) eq-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → (t : is-decidable (Id x y)) → splitting-decidable-equality A x y t → Id x y eq-splitting-decidable-equality A x y (inl p) t = p eq-splitting-decidable-equality A x y (inr f) t = ind-empty {P = λ s → Id x y} t is-set-has-decidable-equality : {l : Level} (A : UU l) → has-decidable-equality A → is-set A is-set-has-decidable-equality A d = is-set-prop-in-id ( λ x y → splitting-decidable-equality A x y (d x y)) ( λ x y → is-prop-splitting-decidable-equality A x y (d x y)) ( λ x → reflexive-splitting-decidable-equality A x (d x x)) ( λ x y → eq-splitting-decidable-equality A x y (d x y)) {- Closure of decidable types under retracts and equivalences. -} is-decidable-retract-of : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → is-decidable B → is-decidable A is-decidable-retract-of (pair i (pair r H)) (inl b) = inl (r b) is-decidable-retract-of (pair i (pair r H)) (inr f) = inr (f ∘ i) is-decidable-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (is-equiv-f : is-equiv f) → is-decidable B → is-decidable A is-decidable-is-equiv {f = f} (pair (pair g G) (pair h H)) = is-decidable-retract-of (pair f (pair h H)) is-decidable-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-decidable B → is-decidable A is-decidable-equiv e = is-decidable-is-equiv (is-equiv-map-equiv e) is-decidable-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-decidable A → is-decidable B is-decidable-equiv' e = is-decidable-equiv (inv-equiv e) has-decidable-equality-retract-of : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → has-decidable-equality B → has-decidable-equality A has-decidable-equality-retract-of (pair i (pair r H)) d x y = is-decidable-retract-of ( Id-retract-of-Id (pair i (pair r H)) x y) ( d (i x) (i y)) {- The well-ordering principle. -} is-minimal-element-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) (p : P n) → UU l is-minimal-element-ℕ P n p = (m : ℕ) → P m → (leq-ℕ n m) minimal-element-ℕ : {l : Level} (P : ℕ → UU l) → UU l minimal-element-ℕ P = Σ ℕ (λ n → Σ (P n) (is-minimal-element-ℕ P n)) is-minimal-element-succ-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) (m : ℕ) (pm : P (succ-ℕ m)) (is-min-m : is-minimal-element-ℕ (λ x → P (succ-ℕ x)) m pm) → ¬ (P zero-ℕ) → is-minimal-element-ℕ P (succ-ℕ m) pm is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0 zero-ℕ p0 = ind-empty (neg-p0 p0) is-minimal-element-succ-ℕ P d zero-ℕ pm is-min-m neg-p0 (succ-ℕ n) psuccn = leq-zero-ℕ n is-minimal-element-succ-ℕ P d (succ-ℕ m) pm is-min-m neg-p0 (succ-ℕ n) psuccn = is-minimal-element-succ-ℕ (λ x → P (succ-ℕ x)) (λ x → d (succ-ℕ x)) m pm ( λ m → is-min-m (succ-ℕ m)) ( is-min-m zero-ℕ) ( n) ( psuccn) well-ordering-principle-succ-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) (n : ℕ) (p : P (succ-ℕ n)) → is-decidable (P zero-ℕ) → minimal-element-ℕ (λ m → P (succ-ℕ m)) → minimal-element-ℕ P well-ordering-principle-succ-ℕ P d n p (inl p0) _ = pair zero-ℕ (pair p0 (λ m q → leq-zero-ℕ m)) well-ordering-principle-succ-ℕ P d n p (inr neg-p0) (pair m (pair pm is-min-m)) = pair ( succ-ℕ m) ( pair pm ( is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0)) well-ordering-principle-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) → Σ ℕ P → minimal-element-ℕ P well-ordering-principle-ℕ P d (pair zero-ℕ p) = pair zero-ℕ (pair p (λ m q → leq-zero-ℕ m)) well-ordering-principle-ℕ P d (pair (succ-ℕ n) p) = well-ordering-principle-succ-ℕ P d n p (d zero-ℕ) ( well-ordering-principle-ℕ ( λ m → P (succ-ℕ m)) ( λ m → d (succ-ℕ m)) ( pair n p)) -- Exercise 6.7 -- We prove that the induction principle for ℕ implies strong induction. -- We first prove some lemmas about inequality. is-prop-leq-ℕ : (m n : ℕ) → is-prop (leq-ℕ m n) is-prop-leq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-leq-ℕ zero-ℕ (succ-ℕ n) = is-prop-unit is-prop-leq-ℕ (succ-ℕ m) zero-ℕ = is-prop-empty is-prop-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-prop-leq-ℕ m n neg-succ-leq-ℕ : (n : ℕ) → ¬ (leq-ℕ (succ-ℕ n) n) neg-succ-leq-ℕ zero-ℕ = id neg-succ-leq-ℕ (succ-ℕ n) = neg-succ-leq-ℕ n leq-eq-left-ℕ : {m m' : ℕ} → Id m m' → (n : ℕ) → leq-ℕ m n → leq-ℕ m' n leq-eq-left-ℕ refl n = id leq-eq-right-ℕ : (m : ℕ) {n n' : ℕ} → Id n n' → leq-ℕ m n → leq-ℕ m n' leq-eq-right-ℕ m refl = id -- Now we begin with the proof of the theorem fam-strong-ind-ℕ : { l : Level} → (ℕ → UU l) → ℕ → UU l fam-strong-ind-ℕ P n = (m : ℕ) → (leq-ℕ m n) → P m -- We first take care of the zero case, with appropriate computation rule. zero-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → P zero-ℕ → fam-strong-ind-ℕ P zero-ℕ zero-strong-ind-ℕ P p0 zero-ℕ t = p0 zero-strong-ind-ℕ P p0 (succ-ℕ m) () eq-zero-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) (t : leq-ℕ zero-ℕ zero-ℕ) → Id (zero-strong-ind-ℕ P p0 zero-ℕ t) p0 eq-zero-strong-ind-ℕ P p0 t = refl -- Next, we take care of the successor case, with appropriate computation rule. {- In the successor case, we need to define a map fam-strong-ind-ℕ P k → fam-strong-ind-ℕ P (succ-ℕ k). The dependent function in the codomain is defined by case analysis, where the cases are that either m ≤ k or m = k+1. -} -- We use the following definition to get a map (m≤k+1) → coprod (m≤k) (m=k+1). cases-leq-succ-ℕ : {m n : ℕ} → leq-ℕ m (succ-ℕ n) → coprod (leq-ℕ m n) (Id m (succ-ℕ n)) cases-leq-succ-ℕ {zero-ℕ} {n} star = inl star cases-leq-succ-ℕ {succ-ℕ m} {zero-ℕ} p = inr (ap succ-ℕ (anti-symmetric-leq-ℕ m zero-ℕ p star)) cases-leq-succ-ℕ {succ-ℕ m} {succ-ℕ n} p = functor-coprod id (ap succ-ℕ) (cases-leq-succ-ℕ p) cases-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-strong-ind-ℕ P n) → P (succ-ℕ n)) → ( n : ℕ) (H : fam-strong-ind-ℕ P n) → ( m : ℕ) ( c : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) → P m cases-succ-strong-ind-ℕ P pS n H m (inl q) = H m q cases-succ-strong-ind-ℕ P pS n H .(succ-ℕ n) (inr refl) = pS n H succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k)) succ-strong-ind-ℕ P pS k H m p = cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) -- We use a similar case analysis to obtain the computation rule. {- exclusive-coprod-leq-eq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → ¬ (Id m (succ-ℕ n)) exclusive-coprod-leq-eq-succ-ℕ zero-ℕ zero-ℕ star = {!Eq-eq-ℕ!} exclusive-coprod-leq-eq-succ-ℕ zero-ℕ (succ-ℕ n) p = {!!} exclusive-coprod-leq-eq-succ-ℕ (succ-ℕ m) (succ-ℕ n) p = {!!} is-prop'-coprod-leq-eq-succ : (m n : ℕ) → is-prop' (coprod (leq-ℕ m n) (Id m (succ-ℕ n))) is-prop'-coprod-leq-eq-succ m n = is-prop'-exclusive-coprod ( exclusive-coprod-leq-eq-succ-ℕ m n) ( is-prop'-is-prop (is-prop-leq-ℕ m n)) ( is-prop'-is-prop (is-set-ℕ m (succ-ℕ n))) tr-eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) ( n : ℕ) (H : fam-strong-ind-ℕ P n) ( m : ℕ) (p : leq-ℕ m (succ-ℕ n)) ( x : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) (y : P m) → Id (succ-strong-ind-ℕ P pS n H m p) y → Id (cases-succ-strong-ind-ℕ P pS n H m x) y tr-eq-succ-strong-ind-ℕ P pS n H m p x y = tr ( λ t → Id (cases-succ-strong-ind-ℕ P pS n H m t) y) ( is-prop'-coprod-leq-eq-succ m n (cases-leq-succ-ℕ p) x) -} cases-htpy-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) (m : ℕ) ( c : coprod (leq-ℕ m k) (Id m (succ-ℕ k))) → ( q : leq-ℕ m k) → Id ( cases-succ-strong-ind-ℕ P pS k H m c) ( H m q) cases-htpy-succ-strong-ind-ℕ P pS k H m (inl p) q = ap (H m) (is-prop'-is-prop (is-prop-leq-ℕ m k) p q) cases-htpy-succ-strong-ind-ℕ P pS k H m (inr α) q = ex-falso ( neg-succ-leq-ℕ k (leq-eq-left-ℕ α k q)) htpy-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) (m : ℕ) ( p : leq-ℕ m (succ-ℕ k)) → ( q : leq-ℕ m k) → Id ( succ-strong-ind-ℕ P pS k H m p) ( H m q) htpy-succ-strong-ind-ℕ P pS k H m p q = cases-htpy-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) q cases-eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) ( c : coprod (leq-ℕ (succ-ℕ k) k) (Id (succ-ℕ k) (succ-ℕ k))) → Id ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k) c)) ( pS k H) cases-eq-succ-strong-ind-ℕ P pS k H (inl p) = ex-falso (neg-succ-leq-ℕ k p) cases-eq-succ-strong-ind-ℕ P pS k H (inr α) = ap ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k)) ∘ inr) ( is-prop'-is-prop (is-set-ℕ (succ-ℕ k) (succ-ℕ k)) α refl) eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) ( p : leq-ℕ (succ-ℕ k) (succ-ℕ k)) → Id ( (succ-strong-ind-ℕ P pS k H (succ-ℕ k) p)) ( pS k H) eq-succ-strong-ind-ℕ P pS k H p = cases-eq-succ-strong-ind-ℕ P pS k H (cases-leq-succ-ℕ p) {- Now that we have the base case and inductive step covered, we can proceed by induction. -} induction-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( fam-strong-ind-ℕ P zero-ℕ) → ( (k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))) → ( n : ℕ) → fam-strong-ind-ℕ P n induction-strong-ind-ℕ P q0 qS zero-ℕ = q0 induction-strong-ind-ℕ P q0 qS (succ-ℕ n) = qS n (induction-strong-ind-ℕ P q0 qS n) computation-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( q0 : fam-strong-ind-ℕ P zero-ℕ) → ( qS : (k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))) → ( n : ℕ) → Id ( induction-strong-ind-ℕ P q0 qS (succ-ℕ n)) ( qS n (induction-strong-ind-ℕ P q0 qS n)) computation-succ-strong-ind-ℕ P q0 qS n = refl {- However, to obtain the conclusion we need to make one more small step. -} conclusion-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( ( n : ℕ) → fam-strong-ind-ℕ P n) → (n : ℕ) → P n conclusion-strong-ind-ℕ P f n = f n n (reflexive-leq-ℕ n) {- We are finally ready to put things together and define strong-ind-ℕ. -} strong-ind-ℕ : { l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → P n strong-ind-ℕ P p0 pS = conclusion-strong-ind-ℕ P ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS)) {- The computation rule for the base case holds by definition. -} comp-zero-strong-ind-ℕ : { l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → Id (strong-ind-ℕ P p0 pS zero-ℕ) p0 comp-zero-strong-ind-ℕ P p0 pS = refl {- For the computation rule of the inductive step, we use our hard work. -} cases-leq-succ-reflexive-leq-ℕ : {n : ℕ} → Id (cases-leq-succ-ℕ {succ-ℕ n} {n} (reflexive-leq-ℕ n)) (inr refl) cases-leq-succ-reflexive-leq-ℕ {zero-ℕ} = refl cases-leq-succ-reflexive-leq-ℕ {succ-ℕ n} = ap (functor-coprod id (ap succ-ℕ)) cases-leq-succ-reflexive-leq-ℕ cases-eq-comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( α : ( m : ℕ) (p : leq-ℕ m n) → Id ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) ( strong-ind-ℕ P p0 pS m)) → ( m : ℕ) (p : leq-ℕ m (succ-ℕ n)) → ( q : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) → Id ( succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p) ( strong-ind-ℕ P p0 pS m) cases-eq-comp-succ-strong-ind-ℕ P p0 pS n α m p (inl x) = ( htpy-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p x) ∙ ( α m x) cases-eq-comp-succ-strong-ind-ℕ P p0 pS n α .(succ-ℕ n) p (inr refl) = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) ( p)) ∙ ( inv ( ap ( cases-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( λ k H m p₁ → cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p₁)) n) ( succ-ℕ n)) cases-leq-succ-reflexive-leq-ℕ)) eq-comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( m : ℕ) (p : leq-ℕ m n) → Id ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) ( strong-ind-ℕ P p0 pS m) eq-comp-succ-strong-ind-ℕ P p0 pS zero-ℕ zero-ℕ star = refl eq-comp-succ-strong-ind-ℕ P p0 pS zero-ℕ (succ-ℕ m) () eq-comp-succ-strong-ind-ℕ P p0 pS (succ-ℕ n) m p = cases-eq-comp-succ-strong-ind-ℕ P p0 pS n ( eq-comp-succ-strong-ind-ℕ P p0 pS n) m p ( cases-leq-succ-ℕ p) comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → Id (strong-ind-ℕ P p0 pS (succ-ℕ n)) (pS n (λ m p → strong-ind-ℕ P p0 pS m)) comp-succ-strong-ind-ℕ P p0 pS n = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) ( n)) ( reflexive-leq-ℕ n)) ∙ ( ap ( pS n) ( eq-htpy ( λ m → eq-htpy ( λ p → eq-comp-succ-strong-ind-ℕ P p0 pS n m p)))) total-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → Σ ( (n : ℕ) → P n) ( λ h → ( Id (h zero-ℕ) p0) × ( (n : ℕ) → Id (h (succ-ℕ n)) (pS n (λ m p → h m)))) total-strong-ind-ℕ P p0 pS = pair ( strong-ind-ℕ P p0 pS) ( pair ( comp-zero-strong-ind-ℕ P p0 pS) ( comp-succ-strong-ind-ℕ P p0 pS)) -- The Euclidean algorithm subtract-ℕ : ℕ → ℕ → ℕ subtract-ℕ zero-ℕ zero-ℕ = zero-ℕ subtract-ℕ zero-ℕ (succ-ℕ b) = zero-ℕ subtract-ℕ (succ-ℕ a) zero-ℕ = succ-ℕ a subtract-ℕ (succ-ℕ a) (succ-ℕ b) = subtract-ℕ a b leq-subtract-ℕ : (a b : ℕ) → leq-ℕ (subtract-ℕ a b) a leq-subtract-ℕ zero-ℕ zero-ℕ = star leq-subtract-ℕ zero-ℕ (succ-ℕ b) = star leq-subtract-ℕ (succ-ℕ a) zero-ℕ = reflexive-leq-ℕ a leq-subtract-ℕ (succ-ℕ a) (succ-ℕ b) = transitive-leq-ℕ (subtract-ℕ a b) a (succ-ℕ a) ( leq-subtract-ℕ a b) ( succ-leq-ℕ a) decide-order-ℕ : (a b : ℕ) → coprod (leq-ℕ b a) (le-ℕ a b) decide-order-ℕ zero-ℕ zero-ℕ = inl star decide-order-ℕ zero-ℕ (succ-ℕ b) = inr star decide-order-ℕ (succ-ℕ a) zero-ℕ = inl star decide-order-ℕ (succ-ℕ a) (succ-ℕ b) = decide-order-ℕ a b cases-gcd-euclid : ( a b : ℕ) ( F : (x : ℕ) (p : leq-ℕ x a) → ℕ → ℕ) ( G : (y : ℕ) (q : leq-ℕ y b) → ℕ) → ( coprod (leq-ℕ b a) (le-ℕ a b)) → ℕ cases-gcd-euclid a b F G (inl t) = F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b) cases-gcd-euclid a b F G (inr t) = G (subtract-ℕ b a) (leq-subtract-ℕ b a) succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) → ℕ → ℕ succ-gcd-euclid a F = strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ b G → ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → G (subtract-ℕ b a) (leq-subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-zero-succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) → Id (succ-gcd-euclid a F zero-ℕ) (succ-ℕ a) comp-zero-succ-gcd-euclid a F = comp-zero-strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ b G → ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → G (subtract-ℕ b a) (leq-subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-succ-succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) (b : ℕ) → Id (succ-gcd-euclid a F (succ-ℕ b)) ( ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → succ-gcd-euclid a F (subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-succ-succ-gcd-euclid a F b = comp-succ-strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ k z → ind-coprod (λ _ → ℕ) (λ x → F (subtract-ℕ a k) (leq-subtract-ℕ a k) (succ-ℕ k)) (λ y → z (subtract-ℕ k a) (leq-subtract-ℕ k a)) (decide-order-ℕ a k)) ( b) gcd-euclid : ℕ → ℕ → ℕ gcd-euclid = strong-ind-ℕ ( λ x → ℕ → ℕ) ( id) ( succ-gcd-euclid) comp-succ-gcd-euclid : (a : ℕ) → Id (gcd-euclid (succ-ℕ a)) (succ-gcd-euclid a (λ x p → gcd-euclid x)) comp-succ-gcd-euclid = comp-succ-strong-ind-ℕ (λ x → ℕ → ℕ) id succ-gcd-euclid -- Properties of the greatest common divisor left-zero-law-gcd-euclid : (gcd-euclid zero-ℕ) ~ id left-zero-law-gcd-euclid = htpy-eq (comp-zero-strong-ind-ℕ (λ x → ℕ → ℕ) id succ-gcd-euclid) right-zero-law-gcd-euclid : (a : ℕ) → Id (gcd-euclid a zero-ℕ) a right-zero-law-gcd-euclid zero-ℕ = refl right-zero-law-gcd-euclid (succ-ℕ a) = ( ap ( λ t → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid a ( induction-strong-ind-ℕ ( λ x → ℕ → ℕ) ( zero-strong-ind-ℕ (λ x → ℕ → ℕ) (λ a₁ → a₁)) ( λ k H m p → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid k H m (cases-leq-succ-ℕ p)) ( a)) ( succ-ℕ a) t zero-ℕ) cases-leq-succ-reflexive-leq-ℕ) ∙ ( comp-zero-succ-gcd-euclid a (λ x _ z → z)) is-prop-le-ℕ : (a b : ℕ) → is-prop (le-ℕ a b) is-prop-le-ℕ zero-ℕ zero-ℕ = is-prop-empty is-prop-le-ℕ zero-ℕ (succ-ℕ b) = is-prop-unit is-prop-le-ℕ (succ-ℕ a) zero-ℕ = is-prop-empty is-prop-le-ℕ (succ-ℕ a) (succ-ℕ b) = is-prop-le-ℕ a b is-prop'-le-ℕ : (a b : ℕ) → is-prop' (le-ℕ a b) is-prop'-le-ℕ a b = is-prop'-is-prop (is-prop-le-ℕ a b) {- left-lesser-law-gcd-euclid : (a b : ℕ) → (le-ℕ a b) → Id (gcd-euclid a b) (gcd-euclid a (subtract-ℕ b a)) left-lesser-law-gcd-euclid zero-ℕ (succ-ℕ b) H = refl left-lesser-law-gcd-euclid (succ-ℕ a) (succ-ℕ b) H = ( htpy-eq (comp-succ-gcd-euclid a) (succ-ℕ b)) ∙ {!!} -} {- ( (comp-succ-succ-gcd-euclid a (λ x t → gcd-euclid x) b) ∙ ( ( {!!} ∙ apd (λ t → (ind-coprod (λ x → ℕ) (λ t → gcd-euclid (subtract-ℕ a b) (succ-ℕ b)) (λ t → succ-gcd-euclid a (λ x t₁ → gcd-euclid x) (subtract-ℕ b a)) t)) (ap inr (is-prop'-le-ℕ a b {!!} {!!}))) ∙ {!!} {- ( inv (ap (λ t → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid a (induction-strong-ind-ℕ (λ x → ℕ → ℕ) (zero-strong-ind-ℕ (λ x → ℕ → ℕ) (λ a₁ → a₁)) (λ k H₁ m p → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid k H₁ m (cases-leq-succ-ℕ p)) a) (succ-ℕ a) t (subtract-ℕ (succ-ℕ b) (succ-ℕ a))) cases-leq-succ-reflexive-leq-ℕ))-})) -} -- We show that induction on ℕ implies ordinal induction. fam-ordinal-ind-ℕ : { l : Level} → (ℕ → UU l) → ℕ → UU l fam-ordinal-ind-ℕ P n = (m : ℕ) → (le-ℕ m n) → P m le-zero-ℕ : (m : ℕ) → (le-ℕ m zero-ℕ) → empty le-zero-ℕ zero-ℕ () le-zero-ℕ (succ-ℕ m) () zero-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → fam-ordinal-ind-ℕ P zero-ℕ zero-ordinal-ind-ℕ P m t = ind-empty (le-zero-ℕ m t) le-one-ℕ : (n : ℕ) → le-ℕ (succ-ℕ n) one-ℕ → empty le-one-ℕ zero-ℕ () le-one-ℕ (succ-ℕ n) () transitive-le-ℕ' : (k l m : ℕ) → (le-ℕ k l) → (le-ℕ l (succ-ℕ m)) → le-ℕ k m transitive-le-ℕ' zero-ℕ zero-ℕ m () s transitive-le-ℕ' (succ-ℕ k) zero-ℕ m () s transitive-le-ℕ' zero-ℕ (succ-ℕ l) zero-ℕ star s = ind-empty (le-one-ℕ l s) transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) zero-ℕ t s = ind-empty (le-one-ℕ l s) transitive-le-ℕ' zero-ℕ (succ-ℕ l) (succ-ℕ m) star s = star transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) (succ-ℕ m) t s = transitive-le-ℕ' k l m t s succ-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) → ( k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k) succ-ordinal-ind-ℕ P f k g m t = f m (λ m' t' → g m' (transitive-le-ℕ' m' m k t' t)) induction-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( qS : (k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k)) ( n : ℕ) → fam-ordinal-ind-ℕ P n induction-ordinal-ind-ℕ P qS zero-ℕ = zero-ordinal-ind-ℕ P induction-ordinal-ind-ℕ P qS (succ-ℕ n) = qS n (induction-ordinal-ind-ℕ P qS n) conclusion-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → (( n : ℕ) → fam-ordinal-ind-ℕ P n) → (n : ℕ) → P n conclusion-ordinal-ind-ℕ P f n = f (succ-ℕ n) n (succ-le-ℕ n) ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) → ( n : ℕ) → P n ordinal-ind-ℕ P f = conclusion-ordinal-ind-ℕ P ( induction-ordinal-ind-ℕ P (succ-ordinal-ind-ℕ P f)) {- The Pigeon hole principle. -} {- First we write a function that counts the number of elements in a decidable subset of a finite set. -} count-Fin-succ-ℕ : {l : Level} (n : ℕ) (P : Fin (succ-ℕ n) → classical-Prop l) → ℕ → is-decidable (pr1 (pr1 (P (inr star)))) → ℕ count-Fin-succ-ℕ n P m (inl x) = succ-ℕ m count-Fin-succ-ℕ n P m (inr x) = m count-Fin : {l : Level} (n : ℕ) (P : Fin n → classical-Prop l) → ℕ count-Fin zero-ℕ P = zero-ℕ count-Fin (succ-ℕ n) P = count-Fin-succ-ℕ n P ( count-Fin n (P ∘ inl)) ( pr2 (P (inr star))) {- Next we prove the pigeonhole principle. -} max-Fin : (n : ℕ) → Fin (succ-ℕ n) max-Fin n = inr star contraction-Fin-one-ℕ : (t : Fin one-ℕ) → Id (inr star) t contraction-Fin-one-ℕ (inr star) = refl is-contr-Fin-one-ℕ : is-contr (Fin one-ℕ) is-contr-Fin-one-ℕ = pair (inr star) contraction-Fin-one-ℕ skip : (n : ℕ) → Fin (succ-ℕ n) → Fin n → Fin (succ-ℕ n) skip (succ-ℕ n) (inl i) (inl j) = inl (skip n i j) skip (succ-ℕ n) (inl i) (inr star) = inr star skip (succ-ℕ n) (inr star) j = inl j repeat : (n : ℕ) → Fin n → Fin (succ-ℕ n) → Fin n repeat (succ-ℕ n) (inl i) (inl j) = inl (repeat n i j) repeat (succ-ℕ n) (inl j) (inr star) = inr star repeat (succ-ℕ n) (inr star) (inl j) = j repeat (succ-ℕ n) (inr star) (inr star) = inr star repeat-repeat : (n : ℕ) (i j : Fin n) → ((repeat n i) ∘ (repeat (succ-ℕ n) (skip n (inl i) j))) ~ ((repeat n j) ∘ (repeat (succ-ℕ n) (skip n (inl j) i))) repeat-repeat zero-ℕ () j k repeat-repeat (succ-ℕ n) (inl i) (inl j) (inl k) = ap inl (repeat-repeat n i j k) repeat-repeat (succ-ℕ n) (inl i) (inl j) (inr star) = refl repeat-repeat (succ-ℕ n) (inl i) (inr star) (inr star) = refl repeat-repeat (succ-ℕ n) (inr star) (inl j) (inr star) = refl repeat-repeat (succ-ℕ n) (inr star) (inr star) (inl k) = refl repeat-repeat (succ-ℕ n) (inr star) (inr star) (inr star) = refl repeat-repeat (succ-ℕ zero-ℕ) (inl ()) (inr star) (inl k) repeat-repeat (succ-ℕ (succ-ℕ n)) (inl i) (inr star) (inl k) = refl repeat-repeat (succ-ℕ zero-ℕ) (inr star) (inl ()) (inl k) repeat-repeat (succ-ℕ (succ-ℕ n)) (inr star) (inl j) (inl k) = refl {- skip-repeat : (n : ℕ) (i : Fin n) → ((skip n (inl i)) ∘ (repeat n i)) ~ id skip-repeat (succ-ℕ n) (inl x) (inl y) = ap inl (skip-repeat n x y) skip-repeat (succ-ℕ n) (inl x) (inr star) = refl skip-repeat (succ-ℕ n) (inr star) (inl (inl x)) = ap inl {!ap (skip n) ?!} skip-repeat (succ-ℕ n) (inr star) (inl (inr star)) = {!!} skip-repeat (succ-ℕ n) (inr star) (inr star) = {!!} -} map-lift-Fin : (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) (i : Fin (succ-ℕ n)) (H : fib f i → empty) → Fin m → Fin n map-lift-Fin m n f (inl i) H = (repeat n i) ∘ (f ∘ inl) map-lift-Fin m (succ-ℕ n) f (inr star) H = ( repeat (succ-ℕ n) (max-Fin n)) ∘ ( f ∘ inl) map-lift-Fin zero-ℕ zero-ℕ f (inr star) H = ind-empty map-lift-Fin (succ-ℕ m) zero-ℕ f (inr star) H = ex-falso ( H (pair (inr star) (inv (contraction-Fin-one-ℕ (f (inr star)))))) {- is-lift-lift-Fin : (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) (i : Fin (succ-ℕ n)) (H : fib f i → empty) → (f ∘ inl) ~ ((skip n i) ∘ (map-lift-Fin m n f i H)) is-lift-lift-Fin m n f (inl i) H x = {!!} is-lift-lift-Fin m n f (inr i) H x = {!!} -} -- The greatest common divisor {- First we show that mul-ℕ n is an embedding whenever n > 0. In order to do this, we have to show that add-ℕ n is injective. -} {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-injective-add-ℕ' : (n : ℕ) → is-injective is-set-ℕ is-set-ℕ (add-ℕ n) is-injective-add-ℕ' n k l p = is-injective-add-ℕ' n k l (((commutative-add-ℕ n k) ∙ ?) ∙ (commutative-add-ℕ l n)) is-emb-add-ℕ : (n : ℕ) → is-emb (add-ℕ n) is-emb-add-ℕ n = is-emb-is-injective is-set-ℕ is-set-ℕ (add-ℕ n) (is-injective-add-ℕ n) equiv-fib-add-fib-add-ℕ' : (m n : ℕ) → fib (add-ℕ' m) n ≃ fib (add-ℕ m) n equiv-fib-add-fib-add-ℕ' m n = equiv-tot (λ k → equiv-concat (commutative-add-ℕ m k) n) leq-fib-add-ℕ' : (m n : ℕ) → fib (add-ℕ' m) n → (leq-ℕ m n) leq-fib-add-ℕ' zero-ℕ n (pair k p) = leq-zero-ℕ n leq-fib-add-ℕ' (succ-ℕ m) (succ-ℕ n) (pair k p) = leq-fib-add-ℕ' m n (pair k (is-injective-succ-ℕ (add-ℕ k m) n p)) leq-fib-add-ℕ : (m n : ℕ) → fib (add-ℕ m) n → (leq-ℕ m n) leq-fib-add-ℕ m .m (pair zero-ℕ refl) = reflexive-leq-ℕ m leq-fib-add-ℕ m .(add-ℕ m (succ-ℕ k)) (pair (succ-ℕ k) refl) = transitive-leq-ℕ m (add-ℕ m k) (succ-ℕ (add-ℕ m k)) ( leq-fib-add-ℕ m (add-ℕ m k) (pair k refl)) ( succ-leq-ℕ (add-ℕ m k)) -} {- fib-add-leq-ℕ : (m n : ℕ) → (leq-ℕ m n) → fib (add-ℕ m) n fib-add-leq-ℕ zero-ℕ zero-ℕ star = pair zero-ℕ refl fib-add-leq-ℕ zero-ℕ (succ-ℕ n) star = {!!} fib-add-leq-ℕ (succ-ℕ m) (succ-ℕ n) p = {!!} {- fib-add-leq-ℕ zero-ℕ zero-ℕ H = pair zero-ℕ refl fib-add-leq-ℕ zero-ℕ (succ-ℕ n) H = pair (succ-ℕ n) refl fib-add-leq-ℕ (succ-ℕ m) (succ-ℕ n) H = pair ( pr1 (fib-add-leq-ℕ m n H)) ( ap succ-ℕ (pr2 (fib-add-leq-ℕ m n H))) -} is-equiv-leq-fib-add-ℕ : (m n : ℕ) → is-equiv (leq-fib-add-ℕ m n) is-equiv-leq-fib-add-ℕ m n = is-equiv-is-prop ( is-prop-map-is-emb _ (is-emb-add-ℕ m) n) ( is-prop-leq-ℕ m n) ( fib-add-leq-ℕ m n) is-equiv-fib-add-leq-ℕ : (m n : ℕ) → is-equiv (fib-add-leq-ℕ m n) is-equiv-fib-add-leq-ℕ m n = is-equiv-is-prop ( is-prop-leq-ℕ m n) ( is-prop-map-is-emb _ (is-emb-add-ℕ m) n) ( leq-fib-add-ℕ m n) -} is-emb-mul-ℕ : (n : ℕ) → is-emb (mul-ℕ' (succ-ℕ n)) is-emb-mul-ℕ n = is-emb-is-injective is-set-ℕ is-set-ℕ ( mul-ℕ' (succ-ℕ n)) ( is-injective-mul-ℕ n) {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-emb-mul-ℕ' : (n : ℕ) → (le-ℕ zero-ℕ n) → is-emb (λ m → mul-ℕ m n) is-emb-mul-ℕ' n t = is-emb-htpy' ( mul-ℕ n) ( λ m → mul-ℕ m n) ( commutative-mul-ℕ n) ( is-emb-mul-ℕ n) -} {- We conclude that the division relation is a property. -} {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-prop-div-ℕ : (m n : ℕ) → (le-ℕ zero-ℕ m) → is-prop (div-ℕ m n) is-prop-div-ℕ (succ-ℕ m) n star = is-prop-map-is-emb ( λ z → mul-ℕ z (succ-ℕ m)) ( is-emb-mul-ℕ' (succ-ℕ m) star) n -} {- We now construct the division with remainder. -} le-mul-ℕ : (d n k : ℕ) → UU lzero le-mul-ℕ d n k = le-ℕ n (mul-ℕ k d) is-decidable-le-mul-ℕ : (d n k : ℕ) → is-decidable (le-mul-ℕ d n k) is-decidable-le-mul-ℕ d n k = is-decidable-le-ℕ n (mul-ℕ k d) order-preserving-succ-ℕ : (n n' : ℕ) → (leq-ℕ n n') → (leq-ℕ (succ-ℕ n) (succ-ℕ n')) order-preserving-succ-ℕ n n' H = H {- order-preserving-add-ℕ : (m n m' n' : ℕ) → (leq-ℕ m m') → (leq-ℕ n n') → (leq-ℕ (add-ℕ m n) (add-ℕ m' n')) order-preserving-add-ℕ = {!!} -} {- order-preserving-add-ℕ zero-ℕ zero-ℕ m' n' Hm Hn = star order-preserving-add-ℕ zero-ℕ (succ-ℕ n) zero-ℕ (succ-ℕ n') Hm Hn = Hn order-preserving-add-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ m') (succ-ℕ n') Hm Hn = leq-eq-right-ℕ n ( inv (right-successor-law-add-ℕ m' n')) ( order-preserving-add-ℕ zero-ℕ n (succ-ℕ m') n' Hm Hn) order-preserving-add-ℕ (succ-ℕ m) n (succ-ℕ m') n' Hm Hn = order-preserving-add-ℕ m n m' n' Hm Hn -} le-eq-right-ℕ : (m : ℕ) {n n' : ℕ} → Id n n' → le-ℕ m n' → le-ℕ m n le-eq-right-ℕ m refl = id {- le-add-ℕ : (m n : ℕ) → (leq-ℕ one-ℕ n) → le-ℕ m (add-ℕ m n) le-add-ℕ = {!!} {- le-add-ℕ zero-ℕ (succ-ℕ n) star = star le-add-ℕ (succ-ℕ m) (succ-ℕ n) star = le-add-ℕ m (succ-ℕ n) star -} le-mul-self-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → (leq-ℕ one-ℕ n) → le-mul-ℕ d n n le-mul-self-ℕ (succ-ℕ d) (succ-ℕ n) star star = le-eq-right-ℕ ( succ-ℕ n) ( right-successor-law-mul-ℕ (succ-ℕ n) d) ( le-add-ℕ (succ-ℕ n) (mul-ℕ (succ-ℕ n) d) {!leq-eq-right-ℕ !}) -} {- leq-multiple-ℕ : (n m : ℕ) → (leq-ℕ one-ℕ m) → leq-ℕ n (mul-ℕ n m) leq-multiple-ℕ n (succ-ℕ m) H = leq-eq-right-ℕ n ( inv (right-successor-law-mul-ℕ n m)) ( leq-fib-add-ℕ n (add-ℕ n (mul-ℕ n m)) (pair (mul-ℕ n m) refl)) least-factor-least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → minimal-element-ℕ (λ k → leq-ℕ n (mul-ℕ k d)) least-factor-least-larger-multiple-ℕ d n H = well-ordering-principle-ℕ ( λ k → leq-ℕ n (mul-ℕ k d)) ( λ k → is-decidable-leq-ℕ n (mul-ℕ k d)) ( pair n (leq-multiple-ℕ n d H)) factor-least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ factor-least-larger-multiple-ℕ d n H = pr1 (least-factor-least-larger-multiple-ℕ d n H) least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ least-larger-multiple-ℕ d n H = mul-ℕ (factor-least-larger-multiple-ℕ d n H) d leq-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) → leq-ℕ n (least-larger-multiple-ℕ d n H) leq-least-larger-multiple-ℕ d n H = pr1 (pr2 (least-factor-least-larger-multiple-ℕ d n H)) is-minimal-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) (k : ℕ) (K : leq-ℕ n (mul-ℕ k d)) → leq-ℕ (factor-least-larger-multiple-ℕ d n H) k is-minimal-least-larger-multiple-ℕ d n H = pr2 (pr2 (least-factor-least-larger-multiple-ℕ d n H)) -} {- is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) → is-decidable (Id (least-larger-multiple-ℕ d n H) n) → is-decidable (div-ℕ d n) is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inl p) = inl (pair (factor-least-larger-multiple-ℕ d n H) p) is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inr f) = inr (λ x → {!!}) is-decidable-div-ℕ' : (d n : ℕ) → (leq-ℕ one-ℕ d) → is-decidable (div-ℕ d n) is-decidable-div-ℕ' d n H = {!!} is-decidable-div-ℕ : (d n : ℕ) → is-decidable (div-ℕ d n) is-decidable-div-ℕ zero-ℕ zero-ℕ = inl (pair zero-ℕ refl) is-decidable-div-ℕ zero-ℕ (succ-ℕ n) = inr ( λ p → Eq-ℕ-eq {-zero-ℕ (succ-ℕ n)-} ((inv (right-zero-law-mul-ℕ (pr1 p))) ∙ (pr2 p))) is-decidable-div-ℕ (succ-ℕ d) n = is-decidable-div-ℕ' (succ-ℕ d) n (leq-zero-ℕ d) -} -- Operations on decidable bounded subsets of ℕ iterated-operation-ℕ : (strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ iterated-operation-ℕ zero-ℕ μ e = e iterated-operation-ℕ (succ-ℕ b) μ e = μ (iterated-operation-ℕ b μ e) b iterated-sum-ℕ : (summand : ℕ → ℕ) (b : ℕ) → ℕ iterated-sum-ℕ f zero-ℕ = zero-ℕ iterated-sum-ℕ f (succ-ℕ b) = add-ℕ (iterated-sum-ℕ f b) (f (succ-ℕ b)) ranged-sum-ℕ : (summand : ℕ → ℕ) (l u : ℕ) → ℕ ranged-sum-ℕ f zero-ℕ u = iterated-sum-ℕ f u ranged-sum-ℕ f (succ-ℕ l) zero-ℕ = zero-ℕ ranged-sum-ℕ f (succ-ℕ l) (succ-ℕ u) = ranged-sum-ℕ (f ∘ succ-ℕ) l u succ-iterated-operation-fam-ℕ : { l : Level} ( P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( predecessor-strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) → is-decidable (P predecessor-strict-upper-bound) → ℕ → ℕ succ-iterated-operation-fam-ℕ P is-decidable-P b μ (inl p) m = μ m b succ-iterated-operation-fam-ℕ P is-decidable-P b μ (inr f) m = m iterated-operation-fam-ℕ : { l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ iterated-operation-fam-ℕ P d zero-ℕ μ e = e iterated-operation-fam-ℕ P d (succ-ℕ b) μ e = succ-iterated-operation-fam-ℕ P d b μ (d b) ( iterated-operation-fam-ℕ P d b μ e) Sum-fam-ℕ : { l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( upper-bound : ℕ) ( summand : ℕ → ℕ) → ℕ Sum-fam-ℕ P d b f = iterated-operation-fam-ℕ P d (succ-ℕ b) (λ x y → add-ℕ x (f y)) zero-ℕ {- iterated-operation-fam-ℕ P is-decidable-P zero-ℕ is-bounded-P μ base-value = base-value iterated-operation-fam-ℕ P is-decidable-P (succ-ℕ b) is-bounded-P μ base-value = succ-iterated-operation-ℕ P is-decidable-P b is-bounded-P μ ( is-decidable-P b) ( iterated-operation-ℕ ( introduce-bound-on-fam-ℕ b P) ( is-decidable-introduce-bound-on-fam-ℕ b P is-decidable-P) ( b) ( is-bounded-introduce-bound-on-fam-ℕ b P) ( μ) ( base-value)) product-decidable-bounded-fam-ℕ : { l : Level} (P : ℕ → UU l) → ( is-decidable-P : (n : ℕ) → is-decidable (P n)) ( b : ℕ) ( is-bounded-P : is-bounded-fam-ℕ b P) → ℕ product-decidable-bounded-fam-ℕ P is-decidable-P b is-bounded-P = iterated-operation-ℕ P is-decidable-P b is-bounded-P mul-ℕ one-ℕ twenty-four-ℕ : ℕ twenty-four-ℕ = product-decidable-bounded-fam-ℕ ( λ x → le-ℕ x five-ℕ) ( λ x → is-decidable-le-ℕ x five-ℕ) ( five-ℕ) ( λ x → id) -} {- test-zero-twenty-four-ℕ : Id twenty-four-ℕ zero-ℕ test-zero-twenty-four-ℕ = refl test-twenty-four-ℕ : Id twenty-four-ℕ (factorial four-ℕ) test-twenty-four-ℕ = refl -} -- Exercises -- Exercise 10.? abstract has-decidable-equality-𝟚 : has-decidable-equality bool has-decidable-equality-𝟚 true true = inl refl has-decidable-equality-𝟚 true false = inr (Eq-𝟚-eq true false) has-decidable-equality-𝟚 false true = inr (Eq-𝟚-eq false true) has-decidable-equality-𝟚 false false = inl refl -- Exercise 10.? abstract has-decidable-equality-prod' : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (x x' : A) (y y' : B) → is-decidable (Id x x') → is-decidable (Id y y') → is-decidable (Id (pair x y) (pair x' y')) has-decidable-equality-prod' x x' y y' (inl p) (inl q) = inl (eq-pair-triv (pair p q)) has-decidable-equality-prod' x x' y y' (inl p) (inr g) = inr (λ h → g (ap pr2 h)) has-decidable-equality-prod' x x' y y' (inr f) (inl q) = inr (λ h → f (ap pr1 h)) has-decidable-equality-prod' x x' y y' (inr f) (inr g) = inr (λ h → f (ap pr1 h)) abstract has-decidable-equality-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality A → has-decidable-equality B → has-decidable-equality (A × B) has-decidable-equality-prod dec-A dec-B (pair x y) (pair x' y') = has-decidable-equality-prod' x x' y y' (dec-A x x') (dec-B y y') {- bounds-fam-ℕ : {l : Level} (P : ℕ → UU l) → UU l bounds-fam-ℕ P = Σ ℕ (λ n → is-bounded-fam-ℕ n P) is-minimal-ℕ : {l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l is-minimal-ℕ P (pair n p) = (t : Σ ℕ P) → leq-ℕ n (pr1 t) fam-succ-ℕ : {l : Level} → (ℕ → UU l) → (ℕ → UU l) fam-succ-ℕ P n = P (succ-ℕ n) is-decidable-fam-succ-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → ((n : ℕ) → is-decidable (P (succ-ℕ n))) is-decidable-fam-succ-ℕ P d n = d (succ-ℕ n) min-is-bounded-not-zero-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → Σ ℕ (λ n → is-bounded-fam-ℕ n P) → ¬ (P zero-ℕ) → Σ (Σ ℕ (fam-succ-ℕ P)) (is-minimal-ℕ (fam-succ-ℕ P)) → Σ (Σ ℕ P) (is-minimal-ℕ P) min-is-bounded-not-zero-ℕ P d b np0 t = {!!} min-is-bounded-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → Σ ℕ (λ n → is-bounded-fam-ℕ n P) → Σ ℕ P → Σ (Σ ℕ P) (is-minimal-ℕ P) min-is-bounded-ℕ P d (pair zero-ℕ b) t = pair ( pair ( zero-ℕ) ( tr P (eq-zero-leq-zero-ℕ (pr1 t) (b (pr1 t) (pr2 t))) (pr2 t))) ( λ p → leq-zero-ℕ (pr1 p)) min-is-bounded-ℕ P d (pair (succ-ℕ n) b) t = ind-coprod ( λ (t : is-decidable (P zero-ℕ)) → Σ (Σ ℕ P) (is-minimal-ℕ P)) ( λ p0 → pair (pair zero-ℕ p0) (λ p → leq-zero-ℕ (pr1 p))) ( λ y → min-is-bounded-not-zero-ℕ P d (pair (succ-ℕ n) b) y ( min-is-bounded-ℕ ( fam-succ-ℕ P) ( is-decidable-fam-succ-ℕ P d) {!!} {!!})) ( d zero-ℕ) {- We show that every non-empty decidable subset of ℕ has a least element. -} least-ℕ : {l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l least-ℕ P (pair n p) = (m : ℕ) → P m → leq-ℕ n m least-element-non-empty-decidable-subset-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) → Σ ℕ P → Σ (Σ ℕ P) (least-ℕ P) least-element-non-empty-decidable-subset-ℕ P d (pair zero-ℕ p) = pair (pair zero-ℕ p) {!!} least-element-non-empty-decidable-subset-ℕ P d (pair (succ-ℕ n) p) = {!!} -} {- zero-Fin : (n : ℕ) → Fin (succ-ℕ n) zero-Fin zero-ℕ = inr star zero-Fin (succ-ℕ n) = inl (zero-Fin n) succ-Fin : (n : ℕ) → Fin n → Fin n succ-Fin (succ-ℕ n) (inr star) = zero-Fin n succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inl x)) = inl (succ-Fin (succ-ℕ n) (inl x)) succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inr star)) = inr star iterated-succ-Fin : (k : ℕ) → (n : ℕ) → Fin n → Fin n iterated-succ-Fin zero-ℕ n = id iterated-succ-Fin (succ-ℕ k) n = (succ-Fin n) ∘ (iterated-succ-Fin k n) quotient-ℕ-Fin : (n : ℕ) → Fin (succ-ℕ n) quotient-ℕ-Fin n = iterated-succ-Fin n (succ-ℕ n) (zero-Fin n) pred-Fin : (n : ℕ) → Fin n → Fin n pred-Fin (succ-ℕ zero-ℕ) (inr star) = inr star pred-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!} pred-Fin (succ-ℕ (succ-ℕ n)) (inr star) = inl (inr star) add-Fin : (n : ℕ) → Fin n → Fin n → Fin n add-Fin (succ-ℕ n) (inl x) j = {!!} add-Fin (succ-ℕ n) (inr x) j = {!!} idempotent-succ-Fin : (n : ℕ) (i : Fin n) → Id (iterated-succ-Fin n n i) i idempotent-succ-Fin (succ-ℕ zero-ℕ) (inr star) = refl idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!} idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inr x) = {!!} -} in-nat-ℤ : ℕ → ℤ in-nat-ℤ zero-ℕ = zero-ℤ in-nat-ℤ (succ-ℕ n) = in-pos n div-ℤ : (k l : ℤ) → UU lzero div-ℤ k l = Σ ℤ (λ x → Id (mul-ℤ x k) l) -- _≡_mod_ : -- (k l : ℤ) (n : ℕ) → UU lzero -- k ≡ l mod n = div-ℤ (in-nat-ℤ n) (add-ℤ k (neg-ℤ l)) -- From before is-even-ℕ : ℕ → UU lzero is-even-ℕ n = div-ℕ two-ℕ n is-prime : ℕ → UU lzero is-prime n = (one-ℕ < n) × ((m : ℕ) → (one-ℕ < m) → (div-ℕ m n) → Id m n) {- The Goldbach conjecture asserts that every even number above 2 is the sum of two primes. -} Goldbach-conjecture : UU lzero Goldbach-conjecture = ( n : ℕ) → (two-ℕ < n) → (is-even-ℕ n) → Σ ℕ (λ p → (is-prime p) × (Σ ℕ (λ q → (is-prime q) × Id (add-ℕ p q) n))) is-twin-prime : ℕ → UU lzero is-twin-prime n = (is-prime n) × (is-prime (succ-ℕ (succ-ℕ n))) {- The twin prime conjecture asserts that there are infinitely many twin primes. We assert that there are infinitely twin primes by asserting that for every n : ℕ there is a twin prime that is larger than n. -} Twin-prime-conjecture : UU lzero Twin-prime-conjecture = (n : ℕ) → Σ ℕ (λ p → (is-twin-prime p) × (leq-ℕ n p)) -- Exercise unit-classical-Prop : classical-Prop lzero unit-classical-Prop = pair unit-Prop (inl star) raise-unit-classical-Prop : (l : Level) → classical-Prop l raise-unit-classical-Prop l = pair ( pair ( raise l unit) ( is-prop-is-equiv' unit ( map-raise) ( is-equiv-map-raise l unit) ( is-prop-unit))) ( inl (map-raise star)) bool-classical-Prop : (l : Level) → classical-Prop l → bool bool-classical-Prop l (pair P (inl x)) = true bool-classical-Prop l (pair P (inr x)) = false {- classical-Prop-bool : (l : Level) → bool → classical-Prop l classical-Prop-bool l true = raise-unit-classical-Prop l classical-Prop-bool l false = {!!} -}
{ "alphanum_fraction": 0.5802455481, "avg_line_length": 32.996350365, "ext": "agda", "hexsha": "56f0f95458252dab632ea1aa54b5acb5a79a928e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/17-number-theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/17-number-theory.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/17-number-theory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 20000, "size": 45205 }
-- Check that the termination checker can handle recursive -- calls on subterms which aren't simply variables. module SubtermTermination where data N : Set where zero : N suc : N → N f : N → N f (suc zero) = f zero f _ = zero data One? : N → Set where one : One? (suc zero) other : ∀ {n} → One? n -- Should work for dot patterns as well f′ : (n : N) → One? n → N f′ (suc .zero) one = f′ zero other f′ _ _ = zero f″ : (n : N) → One? n → N f″ ._ one = f″ zero other f″ _ _ = zero data D : Set where c₁ : D c₂ : D → D c₃ : D → D → D g : D → D g (c₃ (c₂ x) y) = g (c₂ x) g _ = c₁ {- Andreas, 2011-07-07 subterm is not complete does not work with postulates or definitions postulate i : {A : Set} → A → A data NAT : N → Set where Zero : NAT zero Suc : ∀ n → NAT (i n) → NAT (suc (i n)) h : (n : N) -> NAT n -> Set h .zero Zero = N h .(suc (i n)) (Suc n m) = h (i n) (i m) -}
{ "alphanum_fraction": 0.5479009688, "avg_line_length": 19.3541666667, "ext": "agda", "hexsha": "3f164b5bfb32e52dbc254cd987d768299444c441", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/SubtermTermination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/SubtermTermination.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/SubtermTermination.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 367, "size": 929 }
------------------------------------------------------------------------------ -- The paradoxical combinator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- See (Barendregt 2004, corollary 6.1.3). module FOT.LTC-PCF.Y where open import LTC-PCF.Base hiding ( fix ; fix-eq ) ------------------------------------------------------------------------------ -- This is the fixed-point combinator used by (Dybjer 1985). Y : D Y = lam (λ f → lam (λ x → f · (x · x)) · lam (λ x → f · (x · x))) -- We define a higher-order Y. Y₁ : (D → D) → D Y₁ f = Y · lam f ------------------------------------------------------------------------------ -- References -- -- Barendregt, Henk (2004). The Lambda Calculus. Its Syntax and -- Semantics. 2nd ed. Vol. 103. Studies in Logic and the Foundations -- of Mathematics. 6th impression. Elsevier. -- -- Dybjer, Peter (1985). Program Verification in a Logical Theory of -- Constructions. In: Functional Programming Languages and Computer -- Architecture. Ed. by Jouannaud, -- Jean-Pierre. Vol. 201. LNCS. Appears in revised form as Programming -- Methodology Group Report 26, University of Gothenburg and Chalmers -- University of Technology, June 1986. Springer, pp. 334–349 (cit. on -- p. 26).
{ "alphanum_fraction": 0.5087108014, "avg_line_length": 36.7948717949, "ext": "agda", "hexsha": "4e8ecf4dfde645764d739d342414e8decb64e4ef", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/LTC-PCF/Y.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/LTC-PCF/Y.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/LTC-PCF/Y.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 342, "size": 1435 }
{-# OPTIONS --cubical --safe #-} module Data.Vec.Inductive where open import Prelude open import Data.List using (List; _∷_; []; length) private variable n m : ℕ infixr 5 _∷_ data Vec (A : Type a) : ℕ → Type a where [] : Vec A 0 _∷_ : A → Vec A n → Vec A (suc n) foldr : ∀ {p} (P : ℕ → Type p) → (∀ {n} → A → P n → P (suc n)) → P zero → Vec A n → P n foldr P f b [] = b foldr P f b (x ∷ xs) = f x (foldr P f b xs) foldl : ∀ {p} (P : ℕ → Type p) → (∀ {n} → A → P n → P (suc n)) → P zero → Vec A n → P n foldl P f b [] = b foldl P f b (x ∷ xs) = foldl (P ∘ suc) f (f x b) xs foldr′ : (A → B → B) → B → Vec A n → B foldr′ f = foldr (const _) (λ x xs → f x xs) foldl′ : (A → B → B) → B → Vec A n → B foldl′ f = foldl (const _) (λ x xs → f x xs) vecFromList : (xs : List A) → Vec A (length xs) vecFromList [] = [] vecFromList (x ∷ xs) = x ∷ vecFromList xs vecToList : Vec A n → List A vecToList [] = [] vecToList (x ∷ xs) = x ∷ vecToList xs
{ "alphanum_fraction": 0.4970472441, "avg_line_length": 23.0909090909, "ext": "agda", "hexsha": "775d57e4848f4e1f838acc14adbb46e1430957e3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Vec/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Vec/Inductive.agda", "max_line_length": 51, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Vec/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 417, "size": 1016 }
{- Finitely presented algebras. An R-algebra A is finitely presented, if there merely is an exact sequence of R-modules: (f₁,⋯,fₘ) → R[X₁,⋯,Xₙ] → A → 0 (where f₁,⋯,fₘ ∈ R[X₁,⋯,Xₙ]) -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.FPAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Powerset open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Data.FinData open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Data.Empty open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal using (inclOfFGIdeal) open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra renaming (inducedHom to freeInducedHom) open import Cubical.Algebra.CommAlgebra.QuotientAlgebra renaming (inducedHom to quotientInducedHom) open import Cubical.Algebra.CommAlgebra.Ideal open import Cubical.Algebra.CommAlgebra.FGIdeal open import Cubical.Algebra.CommAlgebra.Instances.Initial open import Cubical.Algebra.CommAlgebra.Instances.Unit renaming (UnitCommAlgebra to TerminalCAlg) open import Cubical.Algebra.CommAlgebra.Kernel open import Cubical.Algebra.Algebra.Properties open import Cubical.Algebra.Algebra private variable ℓ : Level module _ {R : CommRing ℓ} where open Construction using (var) Polynomials : (n : ℕ) → CommAlgebra R ℓ Polynomials n = R [ Fin n ] evPoly : {n : ℕ} (A : CommAlgebra R ℓ) → ⟨ Polynomials n ⟩ → FinVec ⟨ A ⟩ n → ⟨ A ⟩ evPoly A P values = fst (freeInducedHom A values) P evPolyPoly : {n : ℕ} (P : ⟨ Polynomials n ⟩) → evPoly (Polynomials n) P var ≡ P evPolyPoly {n = n} P = cong (λ u → fst u P) (inducedHomVar R (Fin n)) evPolyHomomorphic : {n : ℕ} (A B : CommAlgebra R ℓ) (f : CommAlgebraHom A B) → (P : ⟨ Polynomials n ⟩) → (values : FinVec ⟨ A ⟩ n) → (fst f) (evPoly A P values) ≡ evPoly B P (fst f ∘ values) evPolyHomomorphic A B f P values = (fst f) (evPoly A P values) ≡⟨ refl ⟩ (fst f) (fst (freeInducedHom A values) P) ≡⟨ refl ⟩ fst (f ∘a freeInducedHom A values) P ≡⟨ cong (λ u → fst u P) (natIndHomR f values) ⟩ fst (freeInducedHom B (fst f ∘ values)) P ≡⟨ refl ⟩ evPoly B P (fst f ∘ values) ∎ where open AlgebraHoms module _ {m : ℕ} (n : ℕ) (relation : FinVec ⟨ Polynomials n ⟩ m) where open CommAlgebraStr using (0a) open Cubical.Algebra.Algebra.Properties.AlgebraHoms relationsIdeal = generatedIdeal (Polynomials n) relation abstract {- The following definitions are abstract because of type checking speed problems - complete unfolding of FPAlgebra is triggered otherwise. This also means, the where blocks contain more type declarations than usual. -} FPAlgebra : CommAlgebra R ℓ FPAlgebra = Polynomials n / relationsIdeal modRelations : CommAlgebraHom (Polynomials n) (Polynomials n / relationsIdeal) modRelations = quotientHom (Polynomials n) relationsIdeal generator : (i : Fin n) → ⟨ FPAlgebra ⟩ generator = fst modRelations ∘ var relationsHold : (i : Fin m) → evPoly FPAlgebra (relation i) generator ≡ 0a (snd FPAlgebra) relationsHold i = evPoly FPAlgebra (relation i) generator ≡⟨ sym (evPolyHomomorphic (Polynomials n) FPAlgebra modRelations (relation i) var) ⟩ fst modRelations (evPoly (Polynomials n) (relation i) var) ≡⟨ cong (λ u → fst modRelations u) (evPolyPoly (relation i)) ⟩ fst modRelations (relation i) ≡⟨ isZeroFromIdeal {R = R} {A = (Polynomials n)} {I = relationsIdeal} (relation i) (incInIdeal (Polynomials n) relation i ) ⟩ 0a (snd FPAlgebra) ∎ inducedHom : (A : CommAlgebra R ℓ) (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) → CommAlgebraHom FPAlgebra A inducedHom A values relationsHold = quotientInducedHom (Polynomials n) relationsIdeal A freeHom isInKernel where freeHom : CommAlgebraHom (Polynomials n) A freeHom = freeInducedHom A values isInKernel : fst (generatedIdeal (Polynomials n) relation) ⊆ fst (kernel (Polynomials n) A freeHom) isInKernel = inclOfFGIdeal (CommAlgebra→CommRing (Polynomials n)) relation (kernel (Polynomials n) A freeHom) relationsHold inducedHomOnGenerators : (A : CommAlgebra R ℓ) (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) (i : Fin n) → fst (inducedHom A values relationsHold) (generator i) ≡ values i inducedHomOnGenerators _ _ _ _ = refl unique : {A : CommAlgebra R ℓ} (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) (f : CommAlgebraHom FPAlgebra A) → ((i : Fin n) → fst f (generator i) ≡ values i) → inducedHom A values relationsHold ≡ f unique {A = A} values relationsHold f hasCorrectValues = injectivePrecomp (Polynomials n) relationsIdeal A (inducedHom A values relationsHold) f (sym ( f' ≡⟨ sym (inv f') ⟩ freeInducedHom A (evaluateAt A f') ≡⟨ cong (freeInducedHom A) (funExt hasCorrectValues) ⟩ freeInducedHom A values ≡⟨ cong (freeInducedHom A) refl ⟩ freeInducedHom A (evaluateAt A iHom') ≡⟨ inv iHom' ⟩ iHom' ∎)) where {- Poly n | \ modRelations f' ↓ ↘ FPAlgebra ─f→ A -} f' iHom' : CommAlgebraHom (Polynomials n) A f' = compAlgebraHom modRelations f iHom' = compAlgebraHom modRelations (inducedHom A values relationsHold) inv : retract (Iso.fun (homMapIso {I = Fin n} A)) (Iso.inv (homMapIso A)) inv = Iso.leftInv (homMapIso {R = R} {I = Fin n} A) universal : (A : CommAlgebra R ℓ) (values : FinVec ⟨ A ⟩ n) (relationsHold : (i : Fin m) → evPoly A (relation i) values ≡ 0a (snd A)) → isContr (Σ[ f ∈ CommAlgebraHom FPAlgebra A ] ((i : Fin n) → fst f (generator i) ≡ values i)) universal A values relationsHold = ( (inducedHom A values relationsHold) , (inducedHomOnGenerators A values relationsHold) ) , λ {(f , mapsValues) → Σ≡Prop (λ _ → isPropΠ (λ _ → isSetCommAlgebra A _ _)) (unique values relationsHold f mapsValues)} {- ∀ A : Comm-R-Algebra, ∀ J : Finitely-generated-Ideal, Hom(R[I]/J,A) is isomorphic to the Set of roots of the generators of J -} zeroLocus : (A : CommAlgebra R ℓ) → Type ℓ zeroLocus A = Σ[ v ∈ FinVec ⟨ A ⟩ n ] ((i : Fin m) → evPoly A (relation i) v ≡ 0a (snd A)) inducedHomFP : (A : CommAlgebra R ℓ) → zeroLocus A → CommAlgebraHom FPAlgebra A inducedHomFP A d = inducedHom A (fst d) (snd d) evaluateAtFP : {A : CommAlgebra R ℓ} → CommAlgebraHom FPAlgebra A → zeroLocus A evaluateAtFP {A} f = value , λ i → evPoly A (relation i) value ≡⟨ step1 (relation i) ⟩ fst compHom (evPoly (Polynomials n) (relation i) var) ≡⟨ refl ⟩ (fst f) ((fst modRelations) (evPoly (Polynomials n) (relation i) var)) ≡⟨ cong (fst f) (evPolyHomomorphic (Polynomials n) FPAlgebra modRelations (relation i) var) ⟩ (fst f) (evPoly FPAlgebra (relation i) generator) ≡⟨ cong (fst f) (relationsHold i) ⟩ (fst f) (0a (snd FPAlgebra)) ≡⟨ IsAlgebraHom.pres0 (snd f) ⟩ 0a (snd A) ∎ where compHom : CommAlgebraHom (Polynomials n) A compHom = CommAlgebraHoms.compCommAlgebraHom (Polynomials n) FPAlgebra A modRelations f value : FinVec ⟨ A ⟩ n value = (Iso.fun (homMapIso A)) compHom step1 : (x : ⟨ Polynomials n ⟩) → evPoly A x value ≡ fst compHom (evPoly (Polynomials n) x var) step1 x = sym (evPolyHomomorphic (Polynomials n) A compHom x var) FPHomIso : {A : CommAlgebra R ℓ} → Iso (CommAlgebraHom FPAlgebra A) (zeroLocus A) Iso.fun FPHomIso = evaluateAtFP Iso.inv FPHomIso = inducedHomFP _ Iso.rightInv (FPHomIso {A}) = λ b → Σ≡Prop (λ x → isPropΠ (λ i → isSetCommAlgebra A (evPoly A (relation i) x) (0a (snd A)))) refl Iso.leftInv (FPHomIso {A}) = λ a → Σ≡Prop (λ f → isPropIsCommAlgebraHom {ℓ} {R} {ℓ} {ℓ} {FPAlgebra} {A} f) λ i → fst (unique {A} (fst (evaluateAtFP {A} a)) (snd (evaluateAtFP a)) a (λ j → refl) i) homMapPathFP : (A : CommAlgebra R ℓ)→ CommAlgebraHom FPAlgebra A ≡ zeroLocus A homMapPathFP A = isoToPath (FPHomIso {A}) isSetZeroLocus : (A : CommAlgebra R ℓ) → isSet (zeroLocus A) isSetZeroLocus A = J (λ y _ → isSet y) (isSetAlgebraHom (CommAlgebra→Algebra FPAlgebra) (CommAlgebra→Algebra A)) (homMapPathFP A) record FinitePresentation (A : CommAlgebra R ℓ) : Type ℓ where field n : ℕ m : ℕ relations : FinVec ⟨ Polynomials n ⟩ m equiv : CommAlgebraEquiv (FPAlgebra n relations) A isFPAlgebra : (A : CommAlgebra R ℓ) → Type _ isFPAlgebra A = ∥ FinitePresentation A ∥₁ isFPAlgebraIsProp : {A : CommAlgebra R ℓ} → isProp (isFPAlgebra A) isFPAlgebraIsProp = isPropPropTrunc module Instances (R : CommRing ℓ) where open FinitePresentation {- Every (multivariate) polynomial algebra is finitely presented -} module _ (n : ℕ) where private A : CommAlgebra R ℓ A = Polynomials n emptyGen : FinVec (fst A) 0 emptyGen = λ () B : CommAlgebra R ℓ B = FPAlgebra n emptyGen polynomialAlgFP : FinitePresentation A FinitePresentation.n polynomialAlgFP = n m polynomialAlgFP = 0 relations polynomialAlgFP = emptyGen equiv polynomialAlgFP = -- Idea: A and B enjoy the same universal property. toAAsEquiv , snd toA where toA : CommAlgebraHom B A toA = inducedHom n emptyGen A Construction.var (λ ()) fromA : CommAlgebraHom A B fromA = freeInducedHom B (generator _ _) open AlgebraHoms inverse1 : fromA ∘a toA ≡ idAlgebraHom _ inverse1 = fromA ∘a toA ≡⟨ sym (unique _ _ _ _ _ (λ i → cong (fst fromA) ( fst toA (generator n emptyGen i) ≡⟨ inducedHomOnGenerators _ _ _ _ _ _ ⟩ Construction.var i ∎))) ⟩ inducedHom n emptyGen B (generator _ _) (relationsHold _ _) ≡⟨ unique _ _ _ _ _ (λ i → refl) ⟩ idAlgebraHom _ ∎ inverse2 : toA ∘a fromA ≡ idAlgebraHom _ inverse2 = isoFunInjective (homMapIso A) _ _ ( evaluateAt A (toA ∘a fromA) ≡⟨ sym (naturalEvR {A = B} {B = A} toA fromA) ⟩ fst toA ∘ evaluateAt B fromA ≡⟨ refl ⟩ fst toA ∘ generator _ _ ≡⟨ funExt (inducedHomOnGenerators _ _ _ _ _)⟩ Construction.var ∎) toAAsEquiv : ⟨ B ⟩ ≃ ⟨ A ⟩ toAAsEquiv = isoToEquiv (iso (fst toA) (fst fromA) (λ a i → fst (inverse2 i) a) (λ b i → fst (inverse1 i) b)) {- The initial R-algebra is finitely presented -} private R[⊥] : CommAlgebra R ℓ R[⊥] = Polynomials 0 emptyGen : FinVec (fst R[⊥]) 0 emptyGen = λ () R[⊥]/⟨0⟩ : CommAlgebra R ℓ R[⊥]/⟨0⟩ = FPAlgebra 0 emptyGen R[⊥]/⟨0⟩IsInitial : (B : CommAlgebra R ℓ) → isContr (CommAlgebraHom R[⊥]/⟨0⟩ B) R[⊥]/⟨0⟩IsInitial B = iHom , uniqueness where iHom : CommAlgebraHom R[⊥]/⟨0⟩ B iHom = inducedHom 0 emptyGen B (λ ()) (λ ()) uniqueness : (f : CommAlgebraHom R[⊥]/⟨0⟩ B) → iHom ≡ f uniqueness f = unique 0 emptyGen {A = B} (λ ()) (λ ()) f (λ ()) initialCAlgFP : FinitePresentation (initialCAlg R) n initialCAlgFP = 0 m initialCAlgFP = 0 relations initialCAlgFP = emptyGen equiv initialCAlgFP = equivByInitiality R R[⊥]/⟨0⟩ R[⊥]/⟨0⟩IsInitial {- The terminal R-algebra is finitely presented -} private unitGen : FinVec (fst R[⊥]) 1 unitGen zero = 1a where open CommAlgebraStr (snd R[⊥]) R[⊥]/⟨1⟩ : CommAlgebra R ℓ R[⊥]/⟨1⟩ = FPAlgebra 0 unitGen terminalCAlgFP : FinitePresentation (TerminalCAlg R) n terminalCAlgFP = 0 m terminalCAlgFP = 1 relations terminalCAlgFP = unitGen equiv terminalCAlgFP = equivFrom1≡0 R R[⊥]/⟨1⟩ (sym (⋆-lid 1a) ∙ relationsHold 0 unitGen zero) where open CommAlgebraStr (snd R[⊥]/⟨1⟩) {- Quotients of the base ring by principal ideals are finitely presented. -} module _ (x : ⟨ R ⟩) where ⟨x⟩ : IdealsIn (initialCAlg R) ⟨x⟩ = generatedIdeal (initialCAlg R) (replicateFinVec 1 x) R/⟨x⟩ = (initialCAlg R) / ⟨x⟩ open CommAlgebraStr ⦃...⦄ private relation : FinVec ⟨ Polynomials {R = R} 0 ⟩ 1 relation = replicateFinVec 1 (Construction.const x) B = FPAlgebra 0 relation π = quotientHom (initialCAlg R) ⟨x⟩ instance _ = snd R/⟨x⟩ _ = snd (initialCAlg R) _ = snd B πx≡0 : π $a x ≡ 0a πx≡0 = isZeroFromIdeal {A = initialCAlg R} {I = ⟨x⟩} x (incInIdeal (initialCAlg R) (replicateFinVec 1 x) zero) R/⟨x⟩FP : FinitePresentation R/⟨x⟩ n R/⟨x⟩FP = 0 m R/⟨x⟩FP = 1 relations R/⟨x⟩FP = relation equiv R/⟨x⟩FP = (isoToEquiv (iso (fst toA) (fst fromA) (λ a i → toFrom i $a a) λ a i → fromTo i $a a)) , (snd toA) where toA : CommAlgebraHom B R/⟨x⟩ toA = inducedHom 0 relation R/⟨x⟩ (λ ()) relation-holds where vals : FinVec ⟨ R/⟨x⟩ ⟩ 0 vals () vals' : FinVec ⟨ initialCAlg R ⟩ 0 vals' () relation-holds = λ zero → evPoly R/⟨x⟩ (relation zero) (λ ()) ≡⟨ sym (evPolyHomomorphic (initialCAlg R) R/⟨x⟩ π (Construction.const x) vals') ⟩ π $a (evPoly (initialCAlg R) (Construction.const x) vals') ≡⟨ cong (π $a_) (·Rid x) ⟩ π $a x ≡⟨ πx≡0 ⟩ 0a ∎ {- R ─→ R/⟨x⟩ id↓ ↓ ∃! R ─→ R[⊥]/⟨const x⟩ -} fromA : CommAlgebraHom R/⟨x⟩ B fromA = quotientInducedHom (initialCAlg R) ⟨x⟩ B (initialMap R B) (inclOfFGIdeal (CommAlgebra→CommRing (initialCAlg R)) (replicateFinVec 1 x) (kernel (initialCAlg R) B (initialMap R B)) λ {Fin.zero → relationsHold 0 relation Fin.zero}) open AlgebraHoms fromTo : fromA ∘a toA ≡ idCAlgHom B fromTo = cong fst (isContr→isProp (universal 0 relation B (λ ()) (relationsHold 0 relation)) (fromA ∘a toA , (λ ())) (idCAlgHom B , (λ ()))) toFrom : toA ∘a fromA ≡ idCAlgHom R/⟨x⟩ toFrom = injectivePrecomp (initialCAlg R) ⟨x⟩ R/⟨x⟩ (toA ∘a fromA) (idCAlgHom R/⟨x⟩) (isContr→isProp (initialityContr R R/⟨x⟩) _ _)
{ "alphanum_fraction": 0.530116339, "avg_line_length": 39.2112359551, "ext": "agda", "hexsha": "70c4c995307b49715c40bd23baf3a07ad482f353", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "gmagaf/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "gmagaf/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gmagaf/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FPAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5185, "size": 17449 }