Search is not available for this dataset
text
string
meta
dict
-- Andreas, 2012-03-08 module NoNoTerminationCheck where {-# NO_TERMINATION_CHECK #-} f : Set f = f -- the pragma should not extend to the following definition g : Set g = g -- error: non-termination
{ "alphanum_fraction": 0.7073170732, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "5a328ab58e749a72850ccff292b5d82894a53e4f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/NoNoTerminationCheck.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/NoNoTerminationCheck.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/NoNoTerminationCheck.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 59, "size": 205 }
-- {-# OPTIONS -v tc.meta:30 #-} {-# OPTIONS --show-implicit --show-irrelevant #-} module Issue629a where record ∃ {A : Set} (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ uncurry : {A : Set} {B : A → Set} {C : ∃ B → Set} → ((x : A) (y : B x) → C (x , y)) → ((p : ∃ B) → C p) uncurry f (x , y) = f x y foo : {A : Set} {B : A → Set} → ∃ B → ∃ B foo = uncurry λ x y → (x , y)
{ "alphanum_fraction": 0.4633027523, "avg_line_length": 24.2222222222, "ext": "agda", "hexsha": "735195499075960d6d96d835e69baa5d3d10f92f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue629a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue629a.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue629a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 178, "size": 436 }
module Fin where import Nat import Bool open Nat hiding (_==_; _<_) open Bool data FZero : Set where data FSuc (A : Set) : Set where fz : FSuc A fs : A -> FSuc A mutual Fin' : Nat -> Set Fin' zero = FZero Fin' (suc n) = FSuc (Fin n) data Fin (n : Nat) : Set where fin : Fin' n -> Fin n fzero : {n : Nat} -> Fin (suc n) fzero = fin fz fsuc : {n : Nat} -> Fin n -> Fin (suc n) fsuc n = fin (fs n) _==_ : {n : Nat} -> Fin n -> Fin n -> Bool _==_ {zero} (fin ()) (fin ()) _==_ {suc n} (fin fz) (fin fz) = true _==_ {suc n} (fin (fs i)) (fin (fs j)) = i == j _==_ {suc n} (fin fz) (fin (fs j)) = false _==_ {suc n} (fin (fs i)) (fin fz) = false subst : {n : Nat}{i j : Fin n} -> (P : Fin n -> Set) -> IsTrue (i == j) -> P i -> P j subst {zero} {fin ()} {fin ()} P _ _ subst {suc n} {fin fz} {fin fz} P eq pi = pi subst {suc n} {fin (fs i)} {fin (fs j)} P eq pi = subst (\z -> P (fsuc z)) eq pi subst {suc n} {fin fz} {fin (fs j)} P () _ subst {suc n} {fin (fs i)} {fin fz} P () _ _<_ : {n : Nat} -> Fin n -> Fin n -> Bool _<_ {zero} (fin ()) (fin ()) _<_ {suc n} _ (fin fz) = false _<_ {suc n} (fin fz) (fin (fs j)) = true _<_ {suc n} (fin (fs i)) (fin (fs j)) = i < j fromNat : (n : Nat) -> Fin (suc n) fromNat zero = fzero fromNat (suc n) = fsuc (fromNat n) liftSuc : {n : Nat} -> Fin n -> Fin (suc n) liftSuc {zero} (fin ()) liftSuc {suc n} (fin fz) = fin fz liftSuc {suc n} (fin (fs i)) = fsuc (liftSuc i) lift+ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n) lift+ zero i = i lift+ (suc m) i = liftSuc (lift+ m i)
{ "alphanum_fraction": 0.4917127072, "avg_line_length": 25.453125, "ext": "agda", "hexsha": "9b3543414a036d325c1e3d62ad9a644e9c514568", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "benchmark/ac/Fin.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "benchmark/ac/Fin.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "benchmark/ac/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 681, "size": 1629 }
{- Definition of the Klein bottle as a HIT -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.KleinBottle.Base where open import Cubical.Core.Everything data KleinBottle : Type where point : KleinBottle line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 (~ i) ≡ line1 i) line2 line2
{ "alphanum_fraction": 0.6961651917, "avg_line_length": 21.1875, "ext": "agda", "hexsha": "9c27c61447d39a120fabdd13ab2a539d786ceb25", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/KleinBottle/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/KleinBottle/Base.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/KleinBottle/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 107, "size": 339 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- LBFT monad used by implementation, -- and functions to facilitate reasoning about it. module LibraBFT.ImplShared.LBFT where open import Dijkstra.RWS open import Haskell.Modules.RWS public open import Haskell.Modules.RWS.Lens public open import Haskell.Modules.RWS.RustAnyHow open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import Util.Prelude ---------------- -- LBFT Monad -- ---------------- -- Global 'LBFT'; works over the whole state. LBFT : Set → Set₁ LBFT = RWS Unit Output RoundManager act : Output → LBFT Unit act x = tell (x ∷ []) LBFT-run : ∀ {A} → LBFT A → RoundManager → (A × RoundManager × List Output) LBFT-run m = RWS-run m unit LBFT-result : ∀ {A} → LBFT A → RoundManager → A LBFT-result m rm = proj₁ (LBFT-run m rm) LBFT-post : ∀ {A} → LBFT A → RoundManager → RoundManager LBFT-post m rm = proj₁ (proj₂ (LBFT-run m rm)) LBFT-outs : ∀ {A} → LBFT A → RoundManager → List Output LBFT-outs m rm = proj₂ (proj₂ (LBFT-run m rm)) LBFT-Pre = RoundManager → Set LBFT-Post = RWS-Post Output RoundManager LBFT-Post-True : ∀ {A} → LBFT-Post A → LBFT A → RoundManager → Set LBFT-Post-True Post m pre = let (x , post , outs) = LBFT-run m pre in Post x post outs LBFT-weakestPre : ∀ {A} (m : LBFT A) → LBFT-Post A → LBFT-Pre LBFT-weakestPre m Post pre = RWS-weakestPre m Post unit pre LBFT-Contract : ∀ {A} (m : LBFT A) → Set₁ LBFT-Contract{A} m = (Post : RWS-Post Output RoundManager A) → (pre : RoundManager) → LBFT-weakestPre m Post pre → LBFT-Post-True Post m pre LBFT-contract : ∀ {A} (m : LBFT A) → LBFT-Contract m LBFT-contract m Post pre pf = RWS-contract m Post unit pre pf LBFT-⇒ : ∀ {A} {P Q : LBFT-Post A} → ∀ m pre → LBFT-weakestPre m P pre → RWS-Post-⇒ P Q → LBFT-weakestPre m Q pre LBFT-⇒ m pre pf f = RWS-⇒ m unit pre pf f LBFT-⇒-bind : ∀ {A B} (P : LBFT-Post A) (Q : LBFT-Post B) (f : A → LBFT B) → (RWS-Post-⇒ P (RWS-weakestPre-bindPost unit f Q)) → ∀ m st → LBFT-weakestPre m P st → LBFT-weakestPre (m >>= f) Q st LBFT-⇒-bind Post Q f pf m st con = RWS-⇒-bind {P = Post} {Q} {f} m unit st con pf LBFT-⇒-ebind : ∀ {A B C} {P : LBFT-Post (Either C A)} {Q : LBFT-Post (Either C B)} → {f : A → LBFT (Either C B)} → ∀ m st → LBFT-weakestPre m P st → RWS-Post-⇒ P (RWS-weakestPre-ebindPost unit f Q) → LBFT-weakestPre (m ∙?∙ f) Q st LBFT-⇒-ebind {P = Post} {Q} {f} m st con pf = RWS-⇒-ebind m unit st con pf
{ "alphanum_fraction": 0.6535899334, "avg_line_length": 31.7882352941, "ext": "agda", "hexsha": "4c7b1f87c82e2ad173d93c9f9c2172792b282066", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/ImplShared/LBFT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/ImplShared/LBFT.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/ImplShared/LBFT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 987, "size": 2702 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane open import homotopy.EilenbergMacLane1 open import homotopy.SmashFmapConn open import homotopy.IterSuspSmash open import homotopy.EilenbergMacLaneFunctor open import cohomology.CupProduct.OnEM.InLowDegrees open import cohomology.CupProduct.OnEM.InLowDegrees2 open import cohomology.CupProduct.OnEM.InAllDegrees open import cohomology.CupProduct.OnEM.CommutativityInLowDegrees using (⊙×-cp₀₀-comm) open import cohomology.CupProduct.OnEM.CommutativityInLowDegrees2 module cohomology.CupProduct.OnEM.CommutativityInAllDegrees where module _ {i} {j} (G : AbGroup i) (H : AbGroup j) where open EMExplicit private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G private ⊙×-cp₀ₕ'-comm : ∀ (n : ℕ) → ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ◃⊙∘ ⊙×-cp₀ₕ' G H n ◃⊙idf =⊙∘ ⊙×-cpₕ₀' H G n ◃⊙∘ ⊙×-swap ◃⊙idf ⊙×-cp₀ₕ'-comm n = =⊙∘-in $ →-⊙→-uncurry (λ g → ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ⊙∘ ⊙EM-fmap H G⊗H.abgroup (G⊗H.ins-r-hom g) (S n)) =⟨ (ap →-⊙→-uncurry $ λ= $ λ g → ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ⊙∘ ⊙EM-fmap H G⊗H.abgroup (G⊗H.ins-r-hom g) (S n) =⟨ ! (⊙EM-fmap-∘ H G⊗H.abgroup H⊗G.abgroup G⊗H.swap (G⊗H.ins-r-hom g) (S n)) ⟩ ⊙EM-fmap H H⊗G.abgroup (G⊗H.swap ∘ᴳ G⊗H.ins-r-hom g) (S n) =⟨ ap (λ φ → ⊙EM-fmap H H⊗G.abgroup φ (S n)) $ group-hom= {φ = G⊗H.swap ∘ᴳ G⊗H.ins-r-hom g} {ψ = H⊗G.ins-l-hom g} $ λ= $ G⊗H.swap-β g ⟩ ⊙EM-fmap H H⊗G.abgroup (H⊗G.ins-l-hom g) (S n) =∎) ⟩ →-⊙→-uncurry (λ g → ⊙EM-fmap H H⊗G.abgroup (H⊗G.ins-l-hom g) (S n)) =∎ ⊙×-cp₀ₕ-comm : ∀ (n : ℕ) → ⊙transport (⊙EM H⊗G.abgroup) (+-comm O (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ◃⊙∘ ⊙×-cp₀ₕ G H n ◃⊙idf =⊙∘ ⊙×-cpₕ₀ H G n ◃⊙∘ ⊙×-swap ◃⊙idf ⊙×-cp₀ₕ-comm n = ⊙transport (⊙EM H⊗G.abgroup) (+-comm O (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ◃⊙∘ ⊙×-cp₀ₕ G H n ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand (⊙×-cp₀ₕ-seq G H n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm O (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ◃⊙∘ ⊙×-cp₀ₕ' G H n ◃⊙∘ ⊙×-fmap (⊙<– (⊙emloop-equiv G.grp)) (⊙idf (⊙EM H (S n))) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙×-cp₀ₕ'-comm n ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm O (S n)) ◃⊙∘ ⊙×-cpₕ₀' H G n ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-fmap (⊙<– (⊙emloop-equiv G.grp)) (⊙idf (⊙EM H (S n))) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap (⊙transport (⊙EM H⊗G.abgroup)) $ set-path ℕ-level (+-comm O (S n)) (! (+-unit-r (S n))) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (! (+-unit-r (S n))) ◃⊙∘ ⊙×-cpₕ₀' H G n ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-fmap (⊙<– (⊙emloop-equiv G.grp)) (⊙idf (⊙EM H (S n))) ◃⊙idf =⊙∘⟨ 2 & 2 & =⊙∘-in {gs = ⊙×-fmap (⊙idf (⊙EM H (S n))) (⊙<– (⊙emloop-equiv G.grp)) ◃⊙∘ ⊙×-swap ◃⊙idf} $ ! $ ⊙λ= $ ⊙×-swap-natural (⊙<– (⊙emloop-equiv G.grp)) (⊙idf (⊙EM H (S n))) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (! (+-unit-r (S n))) ◃⊙∘ ⊙×-cpₕ₀' H G n ◃⊙∘ ⊙×-fmap (⊙idf (⊙EM H (S n))) (⊙<– (⊙emloop-equiv G.grp)) ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 0 & 3 & ⊙contract ⟩ ⊙×-cpₕ₀ H G n ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ module _ {i} {j} (G : AbGroup i) (H : AbGroup j) where open EMExplicit private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H module H⊗G = TensorProduct H G ⊙∧-cpₕₕ'-comm : ∀ (m n : ℕ) → ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ' G H m n ◃⊙idf =⊙∘ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ' H G n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf ⊙∧-cpₕₕ'-comm m n = ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ' G H m n ◃⊙idf =⊙∘₁⟨ 1 & 1 & ! $ ⊙transport-⊙EM-uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative (S m + S n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S (m + S n))) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) ◃⊙∘ ⊙∧-cpₕₕ' G H m n ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand (⊙∧-cpₕₕ'-seq G H m n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S (m + S n))) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) ◃⊙∘ ⊙cpₕₕ'' G⊗H.abgroup m n ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) (λ K → ⊙cpₕₕ'' K m n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙cpₕₕ'' H⊗G.abgroup m n ◃⊙∘ ⊙transport (λ K → ⊙Susp^ (m + n) (⊙EM K 2)) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘₁⟨ 2 & 1 & p₁ ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙cpₕₕ'' H⊗G.abgroup m n ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙expand (⊙cpₕₕ''-seq H⊗G.abgroup m n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (S m + S n) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S m) n)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm (S m) (S n)) (λ k → ⊙cond-neg H⊗G.abgroup k (odd n)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S m) n)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙transport-∙ (⊙EM H⊗G.abgroup) (! (+-βr (S m) n)) (+-comm (S m) (S n)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S m) n) ∙ +-comm (S m) (S n)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘₁⟨ 1 & 1 & ap (⊙transport (⊙EM H⊗G.abgroup)) $ set-path ℕ-level (! (+-βr (S m) n) ∙ +-comm (S m) (S n)) (ap (λ k → S (S k)) (+-comm m n) ∙ ! (+-βr (S n) m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (ap (λ k → S (S k)) (+-comm m n) ∙ ! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 1 & 1 & ⊙transport-∙ (⊙EM H⊗G.abgroup) (ap (λ k → S (S k)) (+-comm m n)) (! (+-βr (S n) m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (ap (λ k → S (S k)) (+-comm m n)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘₁⟨ 2 & 1 & ⊙transport-⊙coe (⊙EM H⊗G.abgroup) (ap (λ k → S (S k)) (+-comm m n)) ∙ ap ⊙coe (∘-ap (⊙EM H⊗G.abgroup) (λ k → S (S k)) (+-comm m n)) ∙ ! (⊙transport-⊙coe (λ k → ⊙EM H⊗G.abgroup (S (S k))) (+-comm m n)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙transport (λ k → ⊙EM H⊗G.abgroup (S (S k))) (+-comm m n) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap G⊗H.swap))) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ G H) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 4 & 2 & ⊙Susp^-fmap-seq-=⊙∘ (m + n) (⊙∧-cp₁₁-comm G H) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙transport (λ k → ⊙EM H⊗G.abgroup (S (S k))) (+-comm m n) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (m + n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 2 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm m n) (⊙EM2-Susp H⊗G.abgroup) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙transport (λ k → ⊙Susp^ k (⊙EM H⊗G.abgroup 2)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 3 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm m n) (λ k → ⊙Susp^-fmap k (⊙EM-neg H⊗G.abgroup 2)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙transport (λ k → ⊙Susp^ k (⊙EM H⊗G.abgroup 2)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 4 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm m n) (λ k → ⊙Susp^-fmap k (⊙∧-cp₁₁ H G)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙transport (λ k → ⊙Susp^ k (⊙EM₁ H.grp ⊙∧ ⊙EM₁ G.grp)) (+-comm m n) ◃⊙∘ ⊙Susp^-fmap (m + n) (⊙∧-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp)) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ◃⊙idf =⊙∘⟨ 5 & 3 & ⊙Σ^∧Σ^-out-swap (⊙EM₁ G.grp) (⊙EM₁ H.grp) m n ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 4 & 2 & ⊙maybe-Susp^-flip-natural-=⊙∘ (⊙∧-cp₁₁ H G) (n + m) (and (odd n) (odd m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) ◃⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘₁⟨ 3 & 1 & ! p₂ ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙transport (λ K → ⊙Susp^ (n + m) (⊙EM K 2)) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 2 & 2 & ⊙transport-natural-=⊙∘ (inv-path H⊗G.abgroup) (λ K → ⊙EM2-Susp K (n + m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S (S (n + m)))) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙transport-natural-=⊙∘ (inv-path H⊗G.abgroup) (λ K → ⊙transport (⊙EM K) (! (+-βr (S n) m))) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S n + S m)) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙maybe-Susp^-flip (n + m) (and (odd n) (odd m)) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 3 & 2 & ⊙EM2-Susp-⊙maybe-Susp^-flip H⊗G.abgroup (n + m) (and (odd n) (odd m)) h₁ ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S n + S m)) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙Trunc-fmap (⊙maybe-Susp-flip (⊙Susp^ (n + m) (⊙EM₁ H⊗G.grp)) (and (odd n) (odd m))) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘₁⟨ 3 & 1 & ⊙maybe-Susp^-flip-⊙cond-neg H⊗G.abgroup (S n + m) (and (odd n) (odd m)) h₂ ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S n + S m)) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (S (S (n + m))) (and (odd n) (odd m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 2 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (! (+-βr (S n) m)) (λ k → ⊙cond-neg H⊗G.abgroup k (and (odd n) (odd m))) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙transport (λ K → ⊙EM K (S n + S m)) (inv-path H⊗G.abgroup) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd n) (odd m)) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙cond-neg-∘ H⊗G.abgroup (S n + S m) true (and (odd n) (odd m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd n) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (S (n + S m)) (negate (and (odd n) (odd m))) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙cond-neg-∘ H⊗G.abgroup (S n + S m) (odd n) (negate (and (odd n) (odd m))) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (xor (odd n) (negate (and (odd n) (odd m)))) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap (⊙cond-neg H⊗G.abgroup (S n + S m)) (bp (odd n) (odd m)) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (xor (and (negate (odd m)) (negate (odd n))) (odd m)) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 0 & 1 & !⊙∘ $ ⊙cond-neg-∘ H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) (odd m) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙cond-neg H⊗G.abgroup (S n + S m) (odd m) ◃⊙∘ ⊙transport (⊙EM H⊗G.abgroup) (! (+-βr (S n) m)) ◃⊙∘ ⊙EM2-Susp H⊗G.abgroup (n + m) ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙contract ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙cpₕₕ'' H⊗G.abgroup n m ◃⊙∘ ⊙Susp^-fmap (n + m) (⊙∧-cp₁₁ H G) ◃⊙∘ ⊙Σ^∧Σ^-out (⊙EM₁ H.grp) (⊙EM₁ G.grp) n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙contract ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ' H G n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf ∎⊙∘ where p₁ : ⊙transport (λ K → ⊙Susp^ (m + n) (⊙EM K 2)) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) == ⊙Susp^-fmap (m + n) (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 2) p₁ = ⊙transport (λ K → ⊙Susp^ (m + n) (⊙EM K 2)) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) =⟨ ⊙transport-⊙coe (λ K → ⊙Susp^ (m + n) (⊙EM K 2)) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) ⟩ ⊙coe (ap (λ K → ⊙Susp^ (m + n) (⊙EM K 2)) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) =⟨ ap ⊙coe (ap-∘ (⊙Susp^ (m + n)) (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) ⟩ ⊙coe (ap (⊙Susp^ (m + n)) (ap (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative))) =⟨ ! $ ⊙transport-⊙coe (⊙Susp^ (m + n)) (ap (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) ⟩ ⊙transport (⊙Susp^ (m + n)) (ap (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) =⟨ ⊙transport-⊙Susp^ (m + n) (ap (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) ⟩ ⊙Susp^-fmap (m + n) (⊙coe (ap (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative))) =⟨ ap (⊙Susp^-fmap (m + n)) $ ! $ ⊙transport-⊙coe (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative) ⟩ ⊙Susp^-fmap (m + n) (⊙transport (λ K → ⊙EM K 2) (uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative)) =⟨ ap (⊙Susp^-fmap (m + n)) (⊙transport-⊙EM-uaᴬᴳ G⊗H.abgroup H⊗G.abgroup G⊗H.commutative 2) ⟩ ⊙Susp^-fmap (m + n) (⊙Trunc-fmap (⊙Susp^-fmap 1 (⊙EM₁-fmap (–>ᴳ G⊗H.commutative)))) =∎ p₂ : ⊙transport (λ K → ⊙Susp^ (n + m) (⊙EM K 2)) (inv-path H⊗G.abgroup) == ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) p₂ = ⊙transport (λ K → ⊙Susp^ (n + m) (⊙EM K 2)) (inv-path H⊗G.abgroup) =⟨ ⊙transport-⊙coe (λ K → ⊙Susp^ (n + m) (⊙EM K 2)) (inv-path H⊗G.abgroup) ⟩ ⊙coe (ap (λ K → ⊙Susp^ (n + m) (⊙EM K 2)) (inv-path H⊗G.abgroup)) =⟨ ap ⊙coe (ap-∘ (⊙Susp^ (n + m)) (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup)) ⟩ ⊙coe (ap (⊙Susp^ (n + m)) (ap (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup))) =⟨ ! $ ⊙transport-⊙coe (⊙Susp^ (n + m)) (ap (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup)) ⟩ ⊙transport (⊙Susp^ (n + m)) (ap (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup)) =⟨ ⊙transport-⊙Susp^ (n + m) (ap (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup)) ⟩ ⊙Susp^-fmap (n + m) (⊙coe (ap (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup))) =⟨ ap (⊙Susp^-fmap (n + m)) $ ! $ ⊙transport-⊙coe (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup) ⟩ ⊙Susp^-fmap (n + m) (⊙transport (λ K → ⊙EM K 2) (inv-path H⊗G.abgroup)) =⟨ ap (⊙Susp^-fmap (n + m)) $ ⊙transport-⊙EM-uaᴬᴳ H⊗G.abgroup H⊗G.abgroup (inv-iso H⊗G.abgroup) 2 ⟩ ⊙Susp^-fmap (n + m) (⊙EM-neg H⊗G.abgroup 2) =∎ h₁ : n + m == 0 → and (odd n) (odd m) == false h₁ p = ap (λ k → and (odd k) (odd m)) (fst (+-0 n m p)) h₂ : S (n + m) == 0 → and (odd n) (odd m) == inr unit h₂ p = ⊥-elim (ℕ-S≠O (n + m) p) bp : ∀ (b c : Bool) → xor b (negate (and b c)) == xor (and (negate c) (negate b)) c bp true true = idp bp true false = idp bp false true = idp bp false false = idp ⊙∧-cpₕₕ-comm : ∀ (m n : ℕ) → ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ G H m n ◃⊙idf =⊙∘ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ◃⊙idf ⊙∧-cpₕₕ-comm m n = =⊙∘-in $ –>-is-inj ⊙Ext.⊙restr-equiv _ _ $ =⊙∘-out {fs = ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ G H m n ◃⊙∘ ⊙smash-truncate G H m n ◃⊙idf} {gs = ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ◃⊙∘ ⊙smash-truncate G H m n ◃⊙idf} $ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ G H m n ◃⊙∘ ⊙smash-truncate G H m n ◃⊙idf =⊙∘₁⟨ 2 & 2 & SmashCPₕₕ.⊙ext-β G H m n (⊙∧-cpₕₕ' G H m n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙∧-cpₕₕ' G H m n ◃⊙idf =⊙∘⟨ ⊙∧-cpₕₕ'-comm m n ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ' H G n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 1 & 1 & =⊙∘-in {gs = ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙smash-truncate H G n m ◃⊙idf} $ ! $ SmashCPₕₕ.⊙ext-β H G n m (⊙∧-cpₕₕ' H G n m) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙smash-truncate H G n m ◃⊙∘ ⊙∧-swap (⊙Susp^ m (⊙EM₁ G.grp)) (⊙Susp^ n (⊙EM₁ H.grp)) ◃⊙idf =⊙∘⟨ 2 & 2 & =⊙∘-in {gs = ⊙∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ◃⊙∘ ⊙smash-truncate G H m n ◃⊙idf} $ ⊙∧-swap-naturality ([_] {n = ⟨ S m ⟩} {A = Susp^ m (EM₁ G.grp)} , idp) ([_] {n = ⟨ S n ⟩} {A = Susp^ n (EM₁ H.grp)} , idp) ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ◃⊙∘ ⊙smash-truncate G H m n ◃⊙idf ∎⊙∘ where module ⊙Ext = ⊙ConnExtend {Z = ⊙EM H⊗G.abgroup (S n + S m)} {n = ⟨ S n + S m ⟩} (⊙smash-truncate G H m n) (transport (λ l → has-conn-fibers l (smash-truncate G H m n)) (ap ⟨_⟩ (+-comm (S m) (S n))) (smash-truncate-conn G H m n)) (EM-level H⊗G.abgroup (S n + S m)) ⊙×-cpₕₕ-comm : ∀ (m n : ℕ) → ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙×-cpₕₕ G H m n ◃⊙idf =⊙∘ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙×-cpₕₕ H G n m ◃⊙∘ ⊙×-swap ◃⊙idf ⊙×-cpₕₕ-comm m n = ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + S n) ◃⊙∘ ⊙×-cpₕₕ G H m n ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand (⊙×-cpₕₕ-seq G H m n) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + S n)) ◃⊙∘ ⊙∧-cpₕₕ G H m n ◃⊙∘ ×-⊙to-∧ ◃⊙idf =⊙∘⟨ 0 & 3 & ⊙∧-cpₕₕ-comm m n ⟩ ⊙cond-neg H⊗G.abgroup (S n + S m) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ⊙∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ◃⊙∘ ×-⊙to-∧ ◃⊙idf =⊙∘⟨ 2 & 2 & ×-⊙to-∧-swap (⊙EM G (S m)) (⊙EM H (S n)) ⟩ ⊙cond-neg H⊗G.abgroup (S (n + S m)) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙∧-cpₕₕ H G n m ◃⊙∘ ×-⊙to-∧ ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙contract ⟩ ⊙cond-neg H⊗G.abgroup (S (n + S m)) (and (odd (S m)) (odd (S n))) ◃⊙∘ ⊙×-cpₕₕ H G n m ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ ⊙×-cp-comm : ∀ (m n : ℕ) → ⊙transport (⊙EM H⊗G.abgroup) (+-comm m n) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (m + n) ◃⊙∘ ⊙×-cp G H m n ◃⊙idf =⊙∘ ⊙cond-neg H⊗G.abgroup (n + m) (and (odd m) (odd n)) ◃⊙∘ ⊙×-cp H G n m ◃⊙∘ ⊙×-swap ◃⊙idf ⊙×-cp-comm 0 0 = ⊙transport (⊙EM H⊗G.abgroup) (+-comm 0 0) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 0 ◃⊙∘ ⊙×-cp G H 0 0 ◃⊙idf =⊙∘⟨ 0 & 1 & =⊙∘-in {gs = ⊙idf-seq} $ ap (⊙transport (⊙EM H⊗G.abgroup)) (set-path ℕ-level (+-comm 0 0) idp) ⟩ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap 0 ◃⊙∘ ⊙×-cp G H 0 0 ◃⊙idf =⊙∘⟨ ⊙×-cp₀₀-comm G H ⟩ ⊙×-cp H G 0 0 ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 0 & 0 & ⊙contract ⟩ ⊙cond-neg H⊗G.abgroup 0 false ◃⊙∘ ⊙×-cp H G 0 0 ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ ⊙×-cp-comm 0 (S n) = ⊙transport (⊙EM H⊗G.abgroup) (+-comm O (S n)) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S n) ◃⊙∘ ⊙×-cp₀ₕ G H n ◃⊙idf =⊙∘⟨ ⊙×-cp₀ₕ-comm G H n ⟩ ⊙×-cpₕ₀ H G n ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 0 & 0 & ⊙contract ⟩ ⊙cond-neg H⊗G.abgroup (S n + O) false ◃⊙∘ ⊙×-cpₕ₀ H G n ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ ⊙×-cp-comm (S m) 0 = ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) O) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S (m + O)) ◃⊙∘ ⊙×-cpₕ₀ G H m ◃⊙idf =⊙∘⟨ 3 & 0 & =⊙∘-in {gs = ⊙×-swap ◃⊙∘ ⊙×-swap ◃⊙idf} idp ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) O) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + O) ◃⊙∘ ⊙×-cpₕ₀ G H m ◃⊙∘ ⊙×-swap ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 2 & 2 & !⊙∘ (⊙×-cp₀ₕ-comm H G m) ⟩ ⊙transport (⊙EM H⊗G.abgroup) (+-comm (S m) O) ◃⊙∘ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m + O) ◃⊙∘ ⊙transport (⊙EM G⊗H.abgroup) (+-comm O (S m)) ◃⊙∘ ⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm (S m) O) (⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap) ⟩ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m) ◃⊙∘ ⊙transport (⊙EM G⊗H.abgroup) (+-comm (S m) O) ◃⊙∘ ⊙transport (⊙EM G⊗H.abgroup) (+-comm O (S m)) ◃⊙∘ ⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙transport-∙ (⊙EM G⊗H.abgroup) (+-comm 0 (S m)) (+-comm (S m) O) ⟩ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m) ◃⊙∘ ⊙transport (⊙EM G⊗H.abgroup) (+-comm 0 (S m) ∙ +-comm (S m) O) ◃⊙∘ ⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 1 & 1 & =⊙∘-in {gs = ⊙idf-seq} $ ap (⊙transport (⊙EM G⊗H.abgroup)) $ set-path ℕ-level (+-comm 0 (S m) ∙ +-comm (S m) O) idp ⟩ ⊙EM-fmap G⊗H.abgroup H⊗G.abgroup G⊗H.swap (S m) ◃⊙∘ ⊙EM-fmap H⊗G.abgroup G⊗H.abgroup H⊗G.swap (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘₁⟨ 0 & 2 & ! $ ⊙EM-fmap-∘ H⊗G.abgroup G⊗H.abgroup H⊗G.abgroup G⊗H.swap H⊗G.swap (S m) ⟩ ⊙EM-fmap H⊗G.abgroup H⊗G.abgroup (G⊗H.swap ∘ᴳ H⊗G.swap) (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap (λ φ → ⊙EM-fmap H⊗G.abgroup H⊗G.abgroup φ (S m)) H⊗G.swap-swap-idhom ⟩ ⊙EM-fmap H⊗G.abgroup H⊗G.abgroup (idhom H⊗G.grp) (S m) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘⟨ 0 & 1 & =⊙∘-in {gs = ⊙idf-seq} $ ⊙EM-fmap-idhom H⊗G.abgroup (S m) ⟩ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf =⊙∘₁⟨ 0 & 0 & ap (⊙cond-neg H⊗G.abgroup (S m)) (! (and-false-r (odd (S m)))) ⟩ ⊙cond-neg H⊗G.abgroup (S m) (and (odd (S m)) (odd O)) ◃⊙∘ ⊙×-cp₀ₕ H G m ◃⊙∘ ⊙×-swap ◃⊙idf ∎⊙∘ ⊙×-cp-comm (S m) (S n) = ⊙×-cpₕₕ-comm m n
{ "alphanum_fraction": 0.4557677943, "avg_line_length": 48.6384083045, "ext": "agda", "hexsha": "a9453230ffaec90df670bd246bf9fcb9f8a1f4eb", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInAllDegrees.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInAllDegrees.agda", "max_line_length": 109, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/CommutativityInAllDegrees.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 17657, "size": 28113 }
-- Σ type (also used as existential) and -- cartesian product (also used as conjunction). {-# OPTIONS --safe #-} import Tools.PropositionalEquality as PE module Tools.Product where infixr 4 _,_ infixr 2 _×_ -- Dependent pair type (aka dependent sum, Σ type). record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public -- Existential quantification. ∃ : {A : Set} → (A → Set) → Set ∃ = Σ _ ∃₂ : {A : Set} {B : A → Set} (C : (x : A) → B x → Set) → Set ∃₂ C = ∃ λ a → ∃ λ b → C a b -- Cartesian product. _×_ : (A B : Set) → Set A × B = Σ A (λ x → B) ×-eq : ∀ {A B : Set} {x x' : A} {y y' : B} → x PE.≡ x' × y PE.≡ y' → (x , y) PE.≡ ( x' , y' ) ×-eq ( PE.refl , PE.refl ) = PE.refl
{ "alphanum_fraction": 0.541005291, "avg_line_length": 19.3846153846, "ext": "agda", "hexsha": "fa7a96baecee2cb2b8f60909597419dfaf09d26d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Tools/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Tools/Product.agda", "max_line_length": 93, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Tools/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 301, "size": 756 }
{-# OPTIONS --without-K #-} module 3to2 where open import Type using (★; ★₁) open import Function.NP using (id; const; _∘_; Π) open import Data.Nat.NP open import Data.Bool.NP renaming (Bool to 𝟚; true to 1b; false to 0b; toℕ to 𝟚▹ℕ) open import Data.Product open import Data.Maybe.NP open import Relation.Binary.PropositionalEquality open import Search.Type renaming (Search₀ to Explore₀; SearchInd to ExploreInd) open import Search.Searchable open import Search.Searchable.Product renaming (_×-search-ind_ to _×-explore-ind_) open import Search.Searchable.Sum renaming (searchBit-ind to explore𝟚-ind) record _→⁇_ (A B : ★) : ★ where constructor ⟨_∥_⟩ field run : A → B valid? : A → 𝟚 to→? : A →? B to→? x = if valid? x then just (run x) else nothing data 𝟛 : ★ where 0t 1t 2t : 𝟛 explore𝟛 : Explore₀ 𝟛 explore𝟛 _∙_ f = f 0t ∙ (f 1t ∙ f 2t) explore𝟛-ind : ∀ {ℓ} → ExploreInd ℓ explore𝟛 explore𝟛-ind _ _∙_ f = f 0t ∙ (f 1t ∙ f 2t) module |𝟛| = Searchable₀ explore𝟛-ind module |𝟛×𝟚| = Searchable₀ (explore𝟛-ind ×-explore-ind explore𝟚-ind) 𝟛▹𝟚 : 𝟛 → 𝟚 𝟛▹𝟚 0t = 0b 𝟛▹𝟚 1t = 1b 𝟛▹𝟚 2t = 0b 𝟛▹𝟚-valid? : 𝟛 → 𝟚 𝟛▹𝟚-valid? 0t = 1b 𝟛▹𝟚-valid? 1t = 1b 𝟛▹𝟚-valid? 2t = 0b 𝟛▹𝟚⁇ : 𝟛 →⁇ 𝟚 𝟛▹𝟚⁇ = ⟨ 𝟛▹𝟚 ∥ 𝟛▹𝟚-valid? ⟩ 𝟛▹𝟚? : 𝟛 →? 𝟚 𝟛▹𝟚? 0t = just 0b 𝟛▹𝟚? 1t = just 1b 𝟛▹𝟚? 2t = nothing -- here success? implies validity success? : Maybe 𝟚 → 𝟚 success? (just x) = x success? nothing = 0b valid? : Maybe 𝟚 → 𝟚 valid? (just _) = 1b valid? nothing = 0b invalid? : Maybe 𝟚 → 𝟚 invalid? = not ∘ valid? record Fraction : ★ where constructor _/_ field numerator denominator : ℕ open Fraction public _≡Frac_ : (x y : Fraction) → ★ _≡Frac_ x y = numerator x * denominator y ≡ numerator y * denominator x {- Pr[A|B] = Pr[A∧B] / Pr[B] = #(A∧B) / #B -} module FromCount {R : ★} (#_ : (R → 𝟚) → ℕ) where module Using→? where module _ (f : R →? 𝟚) where Pr[success|valid] = # (success? ∘ f) / # (valid? ∘ f) module _ (f g : R →? 𝟚) where _≈_ = Pr[success|valid] f ≡Frac Pr[success|valid] g module Using→⁇ where module _ (f⁇ : R →⁇ 𝟚) where {- Pr[A|B] = Pr[A∧B] / Pr[B] = #(A∧B) / #B -} module f = _→⁇_ f⁇ Pr[success|valid] = # f.run / # f.valid? module _ (f g : R →⁇ 𝟚) where _≈_ = Pr[success|valid] f ≡Frac Pr[success|valid] g open FromCount |𝟛×𝟚|.count module Test? where open Using→? ⅁₀ : 𝟛 × 𝟚 →? 𝟚 ⅁₀ = 𝟛▹𝟚? ∘ proj₁ ⅁₁ : 𝟛 × 𝟚 →? 𝟚 ⅁₁ = just ∘ proj₂ ⅁₀≈⅁₁ : ⅁₀ ≈ ⅁₁ ⅁₀≈⅁₁ = refl module Test⁇ where open Using→⁇ ⅁₀ : 𝟛 × 𝟚 → 𝟚 ⅁₀ = 𝟛▹𝟚 ∘ proj₁ ⅁₀-valid? : 𝟛 × 𝟚 → 𝟚 ⅁₀-valid? = 𝟛▹𝟚-valid? ∘ proj₁ ⅁₁ : 𝟛 × 𝟚 → 𝟚 ⅁₁ = proj₂ ⅁₁-valid? : 𝟛 × 𝟚 → 𝟚 ⅁₁-valid? _ = 1b ⅁₀≈⅁₁ : ⟨ ⅁₀ ∥ ⅁₀-valid? ⟩ ≈ ⟨ ⅁₁ ∥ ⅁₁-valid? ⟩ ⅁₀≈⅁₁ = refl -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.5705173636, "avg_line_length": 20.598540146, "ext": "agda", "hexsha": "e9d4e307ba57cb5e7953bb8b39c675d8e35b1264", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/3to2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/3to2.agda", "max_line_length": 82, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/3to2.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1492, "size": 2822 }
open import Relation.Binary.Core module BBHeap.Insert.Properties {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Insert _≤_ tot≤ trans≤ open import BBHeap.Subtyping.Properties _≤_ trans≤ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import Order.Total _≤_ tot≤ lemma-insert∼ : {b : Bound}{x : A}(b≤x : LeB b (val x))(h : BBHeap b) → (x ∷ flatten h) ∼ (flatten (insert b≤x h)) lemma-insert∼ b≤x leaf = refl∼ lemma-insert∼ {x = x} b≤x (left {x = y} {l = l} {r = r} b≤y l⋘r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) l) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) r = ∼x /head /head (lemma++∼r (lemma-insert∼ (lexy refl≤) l)) ... | inj₂ lᵢ⋗r rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) l) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) r = ∼x /head /head (lemma++∼r (lemma-insert∼ (lexy refl≤) l)) lemma-insert∼ {x = x} b≤x (left {x = y} {l = l} {r = r} b≤y l⋘r) | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = ∼x (/tail /head) /head (lemma++∼r (lemma-insert∼ (lexy y≤x) l)) ... | inj₂ lᵢ⋗r = ∼x (/tail /head) /head (lemma++∼r (lemma-insert∼ (lexy y≤x) l)) lemma-insert∼ {x = x} b≤x (right {x = y} {l = l} {r = r} b≤y l⋙r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) r) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) l = ∼x /head /head (trans∼ (∼x /head (lemma++/ {xs = flatten l}) refl∼) (lemma++∼l {xs = flatten l} (lemma-insert∼ (lexy refl≤) r))) ... | inj₂ l≃rᵢ rewrite lemma-subtyping≡ {val y} {val x} (lexy x≤y) (insert {val y} {y} (lexy refl≤) r) | lemma-subtyping≡ {val y} {val x} (lexy x≤y) l = ∼x /head /head (trans∼ (∼x /head (lemma++/ {xs = flatten l}) refl∼) (lemma++∼l {xs = flatten l} (lemma-insert∼ (lexy refl≤) r))) lemma-insert∼ {x = x} b≤x (right {x = y} {l = l} {r = r} b≤y l⋙r) | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = ∼x (/tail /head) /head (trans∼ (∼x /head (lemma++/ {xs = flatten l}) refl∼) (lemma++∼l {xs = flatten l} (lemma-insert∼ (lexy y≤x) r))) ... | inj₂ l≃rᵢ = ∼x (/tail /head) /head (trans∼ (∼x /head (lemma++/ {xs = flatten l}) refl∼) (lemma++∼l {xs = flatten l} (lemma-insert∼ (lexy y≤x) r)))
{ "alphanum_fraction": 0.5399523971, "avg_line_length": 54.462962963, "ext": "agda", "hexsha": "6f4f064c21f8c6cd317f8a92b0a25cff33a54b89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Insert/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Insert/Properties.agda", "max_line_length": 152, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Insert/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 1256, "size": 2941 }
{-# OPTIONS --without-K #-} module NTypes.Empty where open import NTypes open import Types 0-isSet : isSet ⊥ 0-isSet x = 0-elim x
{ "alphanum_fraction": 0.696969697, "avg_line_length": 14.6666666667, "ext": "agda", "hexsha": "e0b315f157d9500e04077851799665c1d950c35d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Empty.agda", "max_line_length": 27, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 41, "size": 132 }
module Lang.Instance where import Lvl open import Type private variable ℓ : Lvl.Level private variable T X Y Z : Type{ℓ} -- Infers/resolves/(searches for) an instance/proof of the specified type/statement resolve : (T : Type{ℓ}) → ⦃ _ : T ⦄ → T resolve (_) ⦃ x ⦄ = x -- Infers/resolves/(searches for) an instance/proof of an inferred type/statement infer : ⦃ _ : T ⦄ → T infer ⦃ x ⦄ = x inst-fn : (X → Y) → (⦃ inst : X ⦄ → Y) inst-fn P ⦃ x ⦄ = P(x) inst-fn₂ : (X → Y → Z) → (⦃ inst₁ : X ⦄ → ⦃ inst₂ : Y ⦄ → Z) inst-fn₂ P ⦃ x ⦄ ⦃ y ⦄ = P(x)(y) inst-fnᵢ : ({_ : X} → Y → Z) → ({_ : X} → ⦃ _ : Y ⦄ → Z) inst-fnᵢ P {x} ⦃ y ⦄ = P{x}(y) impl-to-expl : ({ _ : X} → Y) → (X → Y) impl-to-expl f(x) = f{x} expl-to-impl : (X → Y) → ({ _ : X} → Y) expl-to-impl f{x} = f(x)
{ "alphanum_fraction": 0.5335051546, "avg_line_length": 25.0322580645, "ext": "agda", "hexsha": "41e6912b0c4054e9580615d48fd887dd9f411b0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lang/Instance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lang/Instance.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lang/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 358, "size": 776 }
{-# OPTIONS --sized-types --guardedness --cubical #-} -- Note: This module is not meant to be imported. module All where -- import All import Automaton.Deterministic.Accessible import Automaton.Deterministic.Finite -- import Automaton.Deterministic.FormalLanguage import Automaton.Deterministic.Oper import Automaton.Deterministic -- import Automaton.NonDeterministic -- import Automaton.Pushdown -- import Automaton.TuringMachine import Data.Any import Data.BinaryTree.Heap import Data.BinaryTree.Properties import Data.BinaryTree import Data.Boolean.Equiv.Path import Data.Boolean.Functions import Data.Boolean.NaryOperators import Data.Boolean.Numeral import Data.Boolean.Operators import Data.Boolean.Proofs import Data.Boolean.Stmt.Proofs import Data.Boolean.Stmt import Data.Boolean import Data.DependentWidthTree import Data.DynamicTree import Data.Either.Equiv.Id import Data.Either.Equiv import Data.Either.Multi import Data.Either.Proofs import Data.Either.Setoid import Data.Either import Data.FixedTree.Properties import Data.FixedTree import Data.IndexedList import Data.Iterator import Data.List.Categorical import Data.List.Combinatorics.Proofs import Data.List.Combinatorics import Data.List.Decidable import Data.List.Equiv.Id import Data.List.Equiv import Data.List.Functions.Multi import Data.List.Functions.Positional import Data.List.Functions import Data.List.FunctionsProven import Data.List.Iterable import Data.List.Proofs.Length import Data.List.Proofs import Data.List.Relation.Membership.Proofs import Data.List.Relation.Membership import Data.List.Relation.Pairwise.Proofs import Data.List.Relation.Pairwise import Data.List.Relation.Permutation import Data.List.Relation.Quantification.Proofs import Data.List.Relation.Quantification import Data.List.Relation.Sublist.Proofs import Data.List.Relation.Sublist import Data.List.Relation import Data.List.Setoid import Data.List.Size import Data.List.SizeOrdering import Data.List.Sorting.Functions import Data.List.Sorting.HeapSort import Data.List.Sorting.InsertionSort import Data.List.Sorting.MergeSort import Data.List.Sorting.Proofs import Data.List.Sorting.QuickSort import Data.List.Sorting.SelectionSort import Data.List.Sorting import Data.List import Data.ListNonEmpty import Data.ListSized.Functions import Data.ListSized.Proofs import Data.ListSized import Data.Option.Categorical import Data.Option.Equiv.Id import Data.Option.Equiv.Path import Data.Option.Equiv import Data.Option.Functions import Data.Option.Iterable import Data.Option.Proofs import Data.Option.Setoid import Data.Option import Data.Proofs import Data.Tuple.Category import Data.Tuple.Equiv.Id import Data.Tuple.Equiv import Data.Tuple.Equivalence import Data.Tuple.Function import Data.Tuple.List import Data.Tuple.Proofs import Data.Tuple.Raise import Data.Tuple.RaiseTypeᵣ.Functions import Data.Tuple.RaiseTypeᵣ import Data.Tuple.Raiseᵣ.Functions import Data.Tuple.Raiseᵣ.Iterable import Data.Tuple.Raiseᵣ.Proofs import Data.Tuple.Raiseᵣ import Data.Tuple.Raiseₗ import Data.Tuple import Data import FFI.IO import FFI.MachineWord import Float -- import FormalLanguage.ContextFreeGrammar -- import FormalLanguage.Equals -- import FormalLanguage.Proofs -- import FormalLanguage.RegularExpression -- import FormalLanguage import Formalization.ClassicalPredicateLogic.Semantics import Formalization.ClassicalPredicateLogic.Syntax.Substitution import Formalization.ClassicalPredicateLogic.Syntax import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Consistency import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs -- import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Tree import Formalization.ClassicalPropositionalLogic.NaturalDeduction import Formalization.ClassicalPropositionalLogic.Place import Formalization.ClassicalPropositionalLogic.Semantics.Proofs import Formalization.ClassicalPropositionalLogic.Semantics -- import Formalization.ClassicalPropositionalLogic.SequentCalculus import Formalization.ClassicalPropositionalLogic.Syntax.Proofs import Formalization.ClassicalPropositionalLogic.Syntax import Formalization.ClassicalPropositionalLogic.TruthTable -- import Formalization.ClassicalPropositionalLogic -- import Formalization.FunctionalML import Formalization.ImperativePL import Formalization.LambdaCalculus.Semantics.CallByName import Formalization.LambdaCalculus.Semantics.CallByValue import Formalization.LambdaCalculus.Semantics.Reduction import Formalization.LambdaCalculus.Semantics import Formalization.LambdaCalculus.SyntaxTransformation import Formalization.LambdaCalculus.Terms.Combinators import Formalization.LambdaCalculus import Formalization.Monoid import Formalization.Polynomial import Formalization.PredicateLogic.Classical.NaturalDeduction -- import Formalization.PredicateLogic.Classical.Semantics.Homomorphism import Formalization.PredicateLogic.Classical.Semantics.Satisfaction import Formalization.PredicateLogic.Classical.Semantics import Formalization.PredicateLogic.Classical.SequentCalculus import Formalization.PredicateLogic.Constructive.NaturalDeduction -- import Formalization.PredicateLogic.Constructive.SequentCalculus -- import Formalization.PredicateLogic.Minimal.NaturalDeduction.NegativeTranslations import Formalization.PredicateLogic.Minimal.NaturalDeduction.Tree import Formalization.PredicateLogic.Minimal.NaturalDeduction -- import Formalization.PredicateLogic.Minimal.SequentCalculus import Formalization.PredicateLogic.Signature import Formalization.PredicateLogic.Syntax.NegativeTranslations import Formalization.PredicateLogic.Syntax.Substitution import Formalization.PredicateLogic.Syntax.Tree import Formalization.PredicateLogic.Syntax import Formalization.PrimitiveRecursion -- import Formalization.PureTypeSystem import Formalization.RecursiveFunction import Formalization.SKICombinatorCalculus import Formalization.SimplyTypedLambdaCalculus import Function.Axioms import Function.DomainRaise import Function.Domains.Functions import Function.Domains.Id import Function.Domains.Proofs import Function.Domains import Function.Equals.Multi import Function.Equals.Proofs import Function.Equals import Function.Inverse import Function.Inverseᵣ import Function.Inverseₗ import Function.Iteration.Order import Function.Iteration.Proofs import Function.Iteration import Function.Multi.Functions import Function.Multi import Function.Multi₌.Functions import Function.Multi₌ import Function.Names import Function.PointwiseStructure import Function.Proofs import Function import Functional.Combinations import Functional.Dependent import Functional -- import Geometry.Axioms -- import Geometry.HilbertAxioms import Graph.Category import Graph.Oper import Graph.Properties.Proofs import Graph.Properties import Graph.Walk.Functions.Proofs import Graph.Walk.Functions import Graph.Walk.Proofs import Graph.Walk.Properties import Graph.Walk import Graph import Iterator import Js import Lang.Function import Lang.Inspect import Lang.Instance import Lang.Irrelevance import Lang.Reflection import Lang.Size import Lang.Vars.Structure.Operator import Logic.Classical.DoubleNegated import Logic.Classical import Logic.DiagonalMethod import Logic.IntroInstances import Logic.Names import Logic.Predicate.Equiv import Logic.Predicate.Multi import Logic.Predicate.Theorems import Logic.Predicate import Logic.Propositional.Equiv import Logic.Propositional.Proofs.Structures import Logic.Propositional.Theorems import Logic.Propositional.Xor import Logic.Propositional import Logic.WeaklyClassical import Logic import Lvl.Decidable import Lvl.Functions import Lvl.MultiFunctions.Proofs import Lvl.MultiFunctions import Lvl.Proofs import Lvl import Main import Numeral.CoordinateVector.Proofs import Numeral.CoordinateVector import Numeral.Finite.Bound import Numeral.Finite.Category import Numeral.Finite.Conversions import Numeral.Finite.Equiv import Numeral.Finite.Functions import Numeral.Finite.LinearSearch import Numeral.Finite.Oper.Comparisons.Proofs import Numeral.Finite.Oper.Comparisons import Numeral.Finite.Oper import Numeral.Finite.Proofs import Numeral.Finite.Relation.Order import Numeral.Finite.Sequence import Numeral.Finite import Numeral.FixedPositional import Numeral.Integer.Function import Numeral.Integer.Oper import Numeral.Integer.Proofs import Numeral.Integer.Relation.Divisibility.Proofs import Numeral.Integer.Relation.Divisibility import Numeral.Integer.Relation.Order -- import Numeral.Integer.Relation import Numeral.Integer.Sign import Numeral.Integer -- import Numeral.Matrix.OverField import Numeral.Matrix.Proofs -- import Numeral.Matrix.Relations import Numeral.Matrix import Numeral.Natural.Combinatorics.Proofs import Numeral.Natural.Combinatorics import Numeral.Natural.Coprime.Proofs import Numeral.Natural.Coprime import Numeral.Natural.Decidable import Numeral.Natural.Equiv.Path import Numeral.Natural.Function.Coprimalize import Numeral.Natural.Function.FlooredLogarithm import Numeral.Natural.Function.GreatestCommonDivisor.Extended import Numeral.Natural.Function.GreatestCommonDivisor.Proofs import Numeral.Natural.Function.GreatestCommonDivisor import Numeral.Natural.Function.Proofs import Numeral.Natural.Function import Numeral.Natural.Induction import Numeral.Natural.Inductions import Numeral.Natural.LinearSearch -- import Numeral.Natural.LinearSearchDecidable import Numeral.Natural.Oper.Comparisons.Proofs import Numeral.Natural.Oper.Comparisons import Numeral.Natural.Oper.DivMod.Proofs import Numeral.Natural.Oper.Divisibility import Numeral.Natural.Oper.FlooredDivision.Proofs.DivisibilityWithRemainder import Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse import Numeral.Natural.Oper.FlooredDivision.Proofs import Numeral.Natural.Oper.FlooredDivision import Numeral.Natural.Oper.Modulo.Proofs.Algorithm import Numeral.Natural.Oper.Modulo.Proofs.DivisibilityWithRemainder import Numeral.Natural.Oper.Modulo.Proofs.Elim import Numeral.Natural.Oper.Modulo.Proofs import Numeral.Natural.Oper.Modulo -- import Numeral.Natural.Oper.Proofs.Elemantary -- import Numeral.Natural.Oper.Proofs.Iteration import Numeral.Natural.Oper.Proofs.Multiplication import Numeral.Natural.Oper.Proofs.Order import Numeral.Natural.Oper.Proofs.Rewrite -- import Numeral.Natural.Oper.Proofs.Structure import Numeral.Natural.Oper.Proofs import Numeral.Natural.Oper.Summation.Proofs import Numeral.Natural.Oper.Summation.Range.Proofs import Numeral.Natural.Oper.Summation.Range import Numeral.Natural.Oper.Summation import Numeral.Natural.Oper import Numeral.Natural.Prime.Proofs.Product import Numeral.Natural.Prime.Proofs.Representation import Numeral.Natural.Prime.Proofs import Numeral.Natural.Prime import Numeral.Natural.Proofs import Numeral.Natural.Relation.Divisibility.Proofs.Modulo import Numeral.Natural.Relation.Divisibility.Proofs.Product import Numeral.Natural.Relation.Divisibility.Proofs import Numeral.Natural.Relation.Divisibility import Numeral.Natural.Relation.DivisibilityWithRemainder.Proofs import Numeral.Natural.Relation.DivisibilityWithRemainder import Numeral.Natural.Relation.ModuloCongruence import Numeral.Natural.Relation.Order.Category import Numeral.Natural.Relation.Order.Classical import Numeral.Natural.Relation.Order.Decidable import Numeral.Natural.Relation.Order.Existence.Proofs import Numeral.Natural.Relation.Order.Existence import Numeral.Natural.Relation.Order.Proofs import Numeral.Natural.Relation.Order import Numeral.Natural.Relation.Proofs import Numeral.Natural.Relation.Properties import Numeral.Natural.Relation import Numeral.Natural.Sequence.Proofs import Numeral.Natural.Sequence import Numeral.Natural.TotalOper import Numeral.Natural.UnclosedOper import Numeral.Natural import Numeral.Ordinal import Numeral.PositiveInteger.Oper.Proofs import Numeral.PositiveInteger.Oper import Numeral.PositiveInteger -- import Numeral.Rational.AlterAdd -- import Numeral.Rational.SternBrocot import Numeral.Sign.Oper.Proofs import Numeral.Sign.Oper import Numeral.Sign.Oper0 import Numeral.Sign.Proofs import Numeral.Sign import Operator.Equals import ReductionSystem import Relator.Category import Relator.Congruence.Proofs import Relator.Congruence import Relator.Converse import Relator.Equals.Category import Relator.Equals.Proofs.Equiv import Relator.Equals.Proofs.Equivalence import Relator.Equals.Proofs import Relator.Equals import Relator.Ordering.Proofs import Relator.Ordering import Relator.ReflexiveTransitiveClosure import Relator.Sets import Sets.BoolSet -- import Sets.ExtensionalPredicateSet.SetLike import Sets.ExtensionalPredicateSet import Sets.ImageSet.Oper -- import Sets.ImageSet.SetLike import Sets.ImageSet import Sets.IterativeSet.Oper.Proofs import Sets.IterativeSet.Oper import Sets.IterativeSet.Relator.Proofs import Sets.IterativeSet.Relator import Sets.IterativeSet import Sets.IterativeUSet import Sets.PredicateSet.Listable import Sets.PredicateSet import Sized.Data.List import Stream.Iterable import Stream import String -- import Structure.Categorical.Multi import Structure.Categorical.Names import Structure.Categorical.Proofs import Structure.Categorical.Properties import Structure.Category.Action import Structure.Category.Categories import Structure.Category.Category import Structure.Category.CoMonad import Structure.Category.Dual -- import Structure.Category.Equiv import Structure.Category.Functor.Category import Structure.Category.Functor.Contravariant import Structure.Category.Functor.Equiv import Structure.Category.Functor.Functors.Proofs import Structure.Category.Functor.Functors import Structure.Category.Functor.Proofs import Structure.Category.Functor import Structure.Category.Monad.Category import Structure.Category.Monad.ExtensionSystem import Structure.Category.Monad import Structure.Category.Monoid -- import Structure.Category.Monoidal import Structure.Category.Morphism.IdTransport import Structure.Category.Morphism.Transport import Structure.Category.NaturalTransformation.Equiv import Structure.Category.NaturalTransformation.NaturalTransformations import Structure.Category.NaturalTransformation import Structure.Category.Proofs import Structure.Category import Structure.Container.IndexedIterable import Structure.Container.Iterable -- import Structure.Container.SetLike.Proofs -- import Structure.Container.SetLike import Structure.Function.Domain.Proofs import Structure.Function.Domain import Structure.Function.Linear -- import Structure.Function.Metric import Structure.Function.Multi import Structure.Function.Names import Structure.Function.Ordering import Structure.Function.Proofs import Structure.Function import Structure.Groupoid.Functor import Structure.Groupoid.Groupoids import Structure.Groupoid import Structure.Logic.Constructive.BoundedPredicate import Structure.Logic.Constructive.Predicate import Structure.Logic.Constructive.Proofs import Structure.Logic.Constructive.Propositional import Structure.Logic -- import Structure.Numeral.Integer.Proofs import Structure.Numeral.Integer import Structure.Numeral.Natural import Structure.Operator.Algebra import Structure.Operator.Field.VectorSpace import Structure.Operator.Field import Structure.Operator.Functions import Structure.Operator.Group.Proofs import Structure.Operator.Group import Structure.Operator.IntegralDomain -- import Structure.Operator.Iteration import Structure.Operator.Lattice import Structure.Operator.Monoid.Category import Structure.Operator.Monoid.Homomorphism import Structure.Operator.Monoid.Invertible.Proofs import Structure.Operator.Monoid.Invertible import Structure.Operator.Monoid.Monoids.Coset import Structure.Operator.Monoid.Monoids.Function import Structure.Operator.Monoid.Proofs import Structure.Operator.Monoid.Submonoid import Structure.Operator.Monoid import Structure.Operator.Names import Structure.Operator.Proofs.Util import Structure.Operator.Proofs import Structure.Operator.Properties import Structure.Operator.Ring.Characteristic import Structure.Operator.Ring.Homomorphism import Structure.Operator.Ring.Proofs import Structure.Operator.Ring.Rings import Structure.Operator.Ring import Structure.Operator.SetAlgebra import Structure.Operator.Vector.Eigen -- import Structure.Operator.Vector.Equiv import Structure.Operator.Vector.FiniteDimensional.LinearMaps.ChangeOfBasis -- import Structure.Operator.Vector.FiniteDimensional.Proofs import Structure.Operator.Vector.FiniteDimensional import Structure.Operator.Vector.InfiniteDimensional -- import Structure.Operator.Vector.LinearCombination.Proofs import Structure.Operator.Vector.LinearCombination -- import Structure.Operator.Vector.LinearMap.Category -- import Structure.Operator.Vector.LinearMap.Equiv import Structure.Operator.Vector.LinearMap import Structure.Operator.Vector.LinearMaps import Structure.Operator.Vector.Proofs -- import Structure.Operator.Vector.Subspace.Proofs -- import Structure.Operator.Vector.Subspace -- import Structure.Operator.Vector.Subspaces.DirectSum -- import Structure.Operator.Vector.Subspaces.Image -- import Structure.Operator.Vector.Subspaces.Kernel -- import Structure.Operator.Vector.Subspaces.Span import Structure.Operator.Vector import Structure.Operator import Structure.OrderedField.AbsoluteValue import Structure.OrderedField import Structure.Real.Abs -- import Structure.Real.Continuity -- import Structure.Real.Derivative -- import Structure.Real.Limit import Structure.Real import Structure.Relator.Apartness.Proofs import Structure.Relator.Apartness import Structure.Relator.Equivalence.Proofs import Structure.Relator.Equivalence import Structure.Relator.Function.Multi import Structure.Relator.Function.Proofs import Structure.Relator.Function import Structure.Relator.Names import Structure.Relator.Ordering.Lattice import Structure.Relator.Ordering.Proofs import Structure.Relator.Ordering import Structure.Relator.Proofs import Structure.Relator.Properties.Proofs import Structure.Relator.Properties import Structure.Relator import Structure.Semicategory import Structure.Setoid.Category.HomFunctor import Structure.Setoid.Category import Structure.Setoid.Names import Structure.Setoid.Proofs import Structure.Setoid.Size.Proofs import Structure.Setoid.Size import Structure.Setoid.Uniqueness.Proofs import Structure.Setoid.Uniqueness import Structure.Setoid import Structure.Sets.Names import Structure.Sets.Operator import Structure.Sets.Quantifiers.Proofs import Structure.Sets.Quantifiers import Structure.Sets.Relator import Structure.Sets.Relators import Structure.Sets.ZFC.Classical import Structure.Sets.ZFC.Inductive import Structure.Sets.ZFC.Oper import Structure.Sets.ZFC import Structure.Sets import Structure.Signature -- import Structure.Topology.Proofs -- import Structure.Topology.Properties import Structure.Topology import Structure.Type.Identity.Proofs.Eliminator -- import Structure.Type.Identity.Proofs.Multi import Structure.Type.Identity.Proofs import Structure.Type.Identity import Structure.Type.Quotient import Syntax.Do import Syntax.Function import Syntax.Idiom import Syntax.Implication.Dependent import Syntax.Implication import Syntax.List import Syntax.Number import Syntax.Transitivity import Syntax.Type import TestProp import Type.Category.ExtensionalFunctionsCategory.HomFunctor import Type.Category.ExtensionalFunctionsCategory -- import Type.Category.IntensionalFunctionsCategory.HomFunctor import Type.Category.IntensionalFunctionsCategory.LvlUpFunctor import Type.Category.IntensionalFunctionsCategory import Type.Category import Type.Cubical.Equiv import Type.Cubical.HTrunc₁ import Type.Cubical.InductiveInterval import Type.Cubical.InductivePath import Type.Cubical.Logic import Type.Cubical.Path.Category import Type.Cubical.Path.Equality import Type.Cubical.Path.Proofs import Type.Cubical.Path import Type.Cubical.Quotient import Type.Cubical.SubtypeSet import Type.Cubical.Univalence import Type.Cubical import Type.Dependent.Functions import Type.Dependent import Type.Equiv import Type.Identity.Heterogenous import Type.Identity.Proofs import Type.Identity import Type.Isomorphism import Type.Proofs import Type.Properties.Decidable.Proofs import Type.Properties.Decidable import Type.Properties.Empty.Proofs import Type.Properties.Empty -- import Type.Properties.Homotopy.Proofs import Type.Properties.Homotopy import Type.Properties.Inhabited import Type.Properties.MereProposition import Type.Properties.Singleton.Proofs import Type.Properties.Singleton import Type.Singleton.Proofs import Type.Singleton import Type.Size.Countable import Type.Size.Finite import Type.Size.Proofs import Type.Size import Type.WellOrdering import Type
{ "alphanum_fraction": 0.8725209717, "avg_line_length": 35.4347079038, "ext": "agda", "hexsha": "6e75687652fb514e602752ac2ed91a29dc2c3d9b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "All.agda", "max_line_length": 84, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "All.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4589, "size": 20623 }
------------------------------------------------------------------------ -- The Agda standard library -- -- String Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.String.Literals where open import Agda.Builtin.FromString open import Data.Unit open import Agda.Builtin.String isString : IsString String isString = record { Constraint = λ _ → ⊤ ; fromString = λ s → s }
{ "alphanum_fraction": 0.4814814815, "avg_line_length": 22.95, "ext": "agda", "hexsha": "42d1c5af72d849b2919d570d8379528ea5840c30", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Literals.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 88, "size": 459 }
module Logic.Predicate.Equiv where import Lvl open import Logic open import Logic.Predicate open import Structure.Setoid open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Type private variable ℓ ℓₑ : Lvl.Level private variable Obj : Type{ℓ} private variable Pred : Obj → Stmt{ℓ} module _ ⦃ _ : Equiv{ℓₑ}(Obj) ⦄ where _≡∃_ : ∃{Obj = Obj}(Pred) → ∃{Obj = Obj}(Pred) → Stmt [∃]-intro x ≡∃ [∃]-intro y = x ≡ y instance [≡∃]-reflexivity : Reflexivity(_≡∃_ {Pred = Pred}) Reflexivity.proof [≡∃]-reflexivity = reflexivity(_≡_) instance [≡∃]-symmetry : Symmetry(_≡∃_ {Pred = Pred}) Symmetry.proof [≡∃]-symmetry = symmetry(_≡_) instance [≡∃]-transitivity : Transitivity(_≡∃_ {Pred = Pred}) Transitivity.proof [≡∃]-transitivity = transitivity(_≡_) instance [≡∃]-equivalence : Equivalence(_≡∃_ {Pred = Pred}) [≡∃]-equivalence = intro instance [≡∃]-equiv : Equiv{ℓₑ}(∃{Obj = Obj} Pred) [≡∃]-equiv = intro(_≡∃_) ⦃ [≡∃]-equivalence ⦄
{ "alphanum_fraction": 0.6472868217, "avg_line_length": 27.1578947368, "ext": "agda", "hexsha": "5b9ea78ed7996225f4d8b6c4aa99236e312d0289", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Predicate/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Predicate/Equiv.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Predicate/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 394, "size": 1032 }
-- Andreas, 2016-01-08 allow --type-in-type with universe polymorphism {-# OPTIONS --type-in-type #-} -- {-# OPTIONS --v tc:30 #-} -- {-# OPTIONS --v tc.conv.level:60 #-} open import Common.Level open import Common.Equality Type : Set Type = Set data E α β : Set β where e : Set α → E α β data D {α} (A : Set α) : Set where d : A → D A -- Make sure we do not get unsolved level metas id : ∀{a}{A : Set a} → A → A id x = x test = id Set data Unit : Set where unit : Unit test1 = id unit data UnitP {α} : Set α where unitP : UnitP test2 = id unitP -- All levels are equal -- (need not be for --type-in-type, but this is how it is implemented): level0≡1 : lzero ≡ lsuc lzero level0≡1 = refl levelTrivial : ∀{a b : Level} → a ≡ b levelTrivial = refl
{ "alphanum_fraction": 0.6233766234, "avg_line_length": 17.1111111111, "ext": "agda", "hexsha": "655bd02a9345f9c05ea1c2d9cc0317f2390f9634", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1764.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1764.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1764.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 262, "size": 770 }
-- Andreas, 2014-02-17, reported by pumpkingod {-# OPTIONS --allow-unsolved-metas #-} data Bool : Set where true false : Bool -- Equality infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} subst : ∀ {a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y subst P refl t = t cong : ∀ {a b}{A : Set a}{B : Set b}(f : A → B){x y : A} → x ≡ y → f x ≡ f y cong f refl = refl sym : ∀ {a}{A : Set a}{x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl infix 3 _∎ infixr 2 _≡⟨_⟩_ infix 1 begin_ data _IsRelatedTo_ (x y : Bool) : Set where relTo : (x≡y : x ≡ y) → x IsRelatedTo y begin_ : ∀ {x y} → x IsRelatedTo y → x ≡ y begin relTo x≡y = x≡y _≡⟨_⟩_ : ∀ x {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ x≡y ⟩ relTo y≡z = relTo (trans x≡y y≡z) _∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo refl -- Test proof : true ≡ true proof = begin {!!} ≡⟨ {!!} ⟩ {!!} -- If you do C-c C-s, it will fill in the first and last boxes, but it will also fill this one in with an underscore! ≡⟨ {!!} ⟩ {!!} ∎ -- C-c C-s should only solve for ?0 and ?4, not for ?2. -- Constraints are -- ?0 := true -- ?2 := _y_38 -- ?4 := true -- Metas are -- -- ?0 : Bool -- ?1 : true ≡ _y_38 -- ?2 : Bool -- ?3 : _y_38 ≡ true -- ?4 : Bool -- _y_38 : Bool [ at /home/abel/tmp/Agda2/test/bugs/Issue1060.agda:23,5-24,12 ]
{ "alphanum_fraction": 0.5284661755, "avg_line_length": 19.9066666667, "ext": "agda", "hexsha": "b6507a8ae5626566baf8d78a12fad03aeac0996b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/interaction/Issue1060.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/interaction/Issue1060.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue1060.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 659, "size": 1493 }
{-# OPTIONS --no-auto-inline #-} -- Basic things needed by other primitive modules. module Haskell.Prim where open import Agda.Primitive open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Unit public open import Agda.Builtin.List open import Agda.Builtin.String open import Agda.Builtin.Equality open import Agda.Builtin.FromNat public open import Agda.Builtin.FromNeg public open import Agda.Builtin.FromString public variable ℓ : Level a b c d e : Set f m s t : Set → Set -------------------------------------------------- -- Functions id : a → a id x = x infixr 9 _∘_ _∘_ : (b → c) → (a → b) → a → c (f ∘ g) x = f (g x) flip : (a → b → c) → b → a → c flip f x y = f y x const : a → b → a const x _ = x infixr 0 _$_ _$_ : (a → b) → a → b f $ x = f x -------------------------------------------------- -- Language constructs infix -1 case_of_ case_of_ : a → (a → b) → b case x of f = f x infix -2 if_then_else_ if_then_else_ : {a : Set ℓ} → Bool → a → a → a if false then x else y = y if true then x else y = x -------------------------------------------------- -- Agda strings instance iIsStringAgdaString : IsString String iIsStringAgdaString .IsString.Constraint _ = ⊤ iIsStringAgdaString .fromString s = s -------------------------------------------------- -- Numbers instance iNumberNat : Number Nat iNumberNat .Number.Constraint _ = ⊤ iNumberNat .fromNat n = n -------------------------------------------------- -- Lists lengthNat : List a → Nat lengthNat [] = 0 lengthNat (_ ∷ xs) = 1 + lengthNat xs -------------------------------------------------- -- Proof things data ⊥ : Set where -- Use to bundle up constraints data All {a b} {A : Set a} (B : A → Set b) : List A → Set (a ⊔ b) where instance allNil : All B [] allCons : ∀ {x xs} ⦃ i : B x ⦄ ⦃ is : All B xs ⦄ → All B (x ∷ xs) data IsTrue : Bool → Set where instance itsTrue : IsTrue true data IsFalse : Bool → Set where instance itsFalse : IsFalse false data NonEmpty {a : Set} : List a → Set where instance itsNonEmpty : ∀ {x xs} → NonEmpty (x ∷ xs) data TypeError (err : String) : Set where it : ∀ {ℓ} {a : Set ℓ} → ⦃ a ⦄ → a it ⦃ x ⦄ = x
{ "alphanum_fraction": 0.5478651685, "avg_line_length": 20.7943925234, "ext": "agda", "hexsha": "498fe77f1a64555cd95df78ee1bff89e305d642f", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim.agda", "max_line_length": 71, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 693, "size": 2225 }
------------------------------------------------------------------------ -- A labelled transition system for the delay monad ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Labelled-transition-system.Delay-monad {a} (A : Type a) where open import Delay-monad hiding (steps) open import Equality.Propositional open import Prelude.Size open import Labelled-transition-system ------------------------------------------------------------------------ -- Transitions infix 4 _[_]⟶_ data _[_]⟶_ : Delay A ∞ → Maybe A → Delay A ∞ → Type a where now : ∀ {x} → now x [ just x ]⟶ now x later : ∀ {x} → later x [ nothing ]⟶ force x delay-monad : LTS a delay-monad = record { Proc = Delay A ∞ ; Label = Maybe A ; _[_]⟶_ = _[_]⟶_ ; is-silent = if_then true else false } open LTS delay-monad public hiding (_[_]⟶_) ------------------------------------------------------------------------ -- Some simple lemmas -- If now x can make a sequence of silent transitions to y, then y -- is equal to now x. now[nothing]⟶ : ∀ {x y} → now x [ nothing ]⟶ y → y ≡ now x now[nothing]⟶ () now⇒ : ∀ {x y} → now x ⇒ y → y ≡ now x now⇒ done = refl now⇒ (step () now _) now[nothing]⇒ : ∀ {x y} → now x [ nothing ]⇒ y → y ≡ now x now[nothing]⇒ (steps nx⇒x′ x′⟶x″ x″⇒y) rewrite now⇒ nx⇒x′ | now[nothing]⟶ x′⟶x″ = now⇒ x″⇒y now[nothing]⇒̂ : ∀ {x y} → now x [ nothing ]⇒̂ y → y ≡ now x now[nothing]⇒̂ (silent _ tr) = now⇒ tr now[nothing]⇒̂ (non-silent ¬s _) = ⊥-elim (¬s _) now[nothing]⟶̂ : ∀ {x y} → now x [ nothing ]⟶̂ y → y ≡ now x now[nothing]⟶̂ (done _) = refl now[nothing]⟶̂ (step tr) = now[nothing]⟶ tr -- If now x can make a just y-transition, then x is equal to y. now[just]⟶ : ∀ {x y z} → now x [ just y ]⟶ z → x ≡ y now[just]⟶ now = refl now[just]⇒ : ∀ {x y z} → now x [ just y ]⇒ z → x ≡ y now[just]⇒ (steps tr₁ tr₂ _) = now[just]⟶ (subst (_[ _ ]⟶ _) (now⇒ tr₁) tr₂) now[just]⇒̂ : ∀ {x y z} → now x [ just y ]⇒̂ z → x ≡ y now[just]⇒̂ (silent () _) now[just]⇒̂ (non-silent _ tr) = now[just]⇒ tr now[just]⟶̂ : ∀ {x y z} → now x [ just y ]⟶̂ z → x ≡ y now[just]⟶̂ (done ()) now[just]⟶̂ (step tr) = now[just]⟶ tr -- The computation never can only transition to itself. never⟶never : ∀ {μ x} → never [ μ ]⟶ x → x ≡ never never⟶never later = refl never⇒never : ∀ {x} → never ⇒ x → x ≡ never never⇒never done = refl never⇒never (step _ later ne⇒) = never⇒never ne⇒ never[]⇒never : ∀ {μ x} → never [ μ ]⇒ x → x ≡ never never[]⇒never (steps ne⇒x x⟶y y⇒z) rewrite never⇒never ne⇒x | never⟶never x⟶y = never⇒never y⇒z never⇒̂never : ∀ {μ x} → never [ μ ]⇒̂ x → x ≡ never never⇒̂never (silent _ ne⇒) = never⇒never ne⇒ never⇒̂never (non-silent _ ne⇒) = never[]⇒never ne⇒ never⟶̂never : ∀ {μ x} → never [ μ ]⟶̂ x → x ≡ never never⟶̂never (done _) = refl never⟶̂never (step ne⟶) = never⟶never ne⟶ -- If never can make a μ-transition, then μ is silent. never⟶→silent : ∀ {μ x} → never [ μ ]⟶ x → Silent μ never⟶→silent later = _ never[]⇒→silent : ∀ {μ x} → never [ μ ]⇒ x → Silent μ never[]⇒→silent (steps ne⇒x x⟶ _) with never⇒never ne⇒x never[]⇒→silent (steps ne⇒ne ne⟶ _) | refl = never⟶→silent ne⟶ never⇒̂→silent : ∀ {μ x} → never [ μ ]⇒̂ x → Silent μ never⇒̂→silent (silent s _) = s never⇒̂→silent (non-silent _ ne⇒) = never[]⇒→silent ne⇒ never⟶̂→silent : ∀ {μ x} → never [ μ ]⟶̂ x → Silent μ never⟶̂→silent (done s) = s never⟶̂→silent (step ne⟶) = never⟶→silent ne⟶ -- If x can make a non-silent transition, with label just y, to z, -- then z is equal to now y. [just]⟶ : ∀ {x y z} → x [ just y ]⟶ z → z ≡ now y [just]⟶ now = refl [just]⇒ : ∀ {x y z} → x [ just y ]⇒ z → z ≡ now y [just]⇒ (steps _ now ny⇒z) = now⇒ ny⇒z [just]⇒̂ : ∀ {x y z} → x [ just y ]⇒̂ z → z ≡ now y [just]⇒̂ (silent () _) [just]⇒̂ (non-silent _ x⇒z) = [just]⇒ x⇒z [just]⟶̂ : ∀ {x y z} → x [ just y ]⟶̂ z → z ≡ now y [just]⟶̂ (done ()) [just]⟶̂ (step x⟶z) = [just]⟶ x⟶z -- In some cases x is also equal to now y. [just]⟶→≡now : ∀ {x y z} → x [ just y ]⟶ z → x ≡ now y [just]⟶→≡now now = refl [just]⟶̂→≡now : ∀ {x y z} → x [ just y ]⟶̂ z → x ≡ now y [just]⟶̂→≡now (done ()) [just]⟶̂→≡now (step x⟶z) = [just]⟶→≡now x⟶z -- If force x can make a weak μ-transition (_[_]⇒_ or _[_]⇒̂_) to y, -- then later x can also make a weak μ-transition (of the same kind) -- to y. later[]⇒ : ∀ {μ x y} → force x [ μ ]⇒ y → later x [ μ ]⇒ y later[]⇒ = ⇒[]⇒-transitive (⟶→⇒ _ later) later⇒̂ : ∀ {μ x y} → force x [ μ ]⇒̂ y → later x [ μ ]⇒̂ y later⇒̂ = ⇒⇒̂-transitive (⟶→⇒ _ later) -- The process x can make a silent transition to drop-later x. ⇒drop-later : ∀ {x} → x ⇒ drop-later x ⇒drop-later {now x} = done ⇒drop-later {later x} = step _ later done -- If x can make a transition to y, then drop-later x can in some -- cases make a transition of the same kind to drop-later y. drop-later-cong⟶ : ∀ {x μ y} → ¬ Silent μ → x [ μ ]⟶ y → drop-later x [ μ ]⟶ drop-later y drop-later-cong⟶ _ now = now drop-later-cong⟶ ¬s later = ⊥-elim (¬s _) drop-later-cong⇒ : ∀ {x y} → x ⇒ y → drop-later x ⇒ drop-later y drop-later-cong⇒ done = done drop-later-cong⇒ (step () now _) drop-later-cong⇒ (step _ later x⇒y) = ⇒-transitive ⇒drop-later (drop-later-cong⇒ x⇒y) drop-later-cong[]⇒ : ∀ {x μ y} → ¬ Silent μ → x [ μ ]⇒ y → drop-later x [ μ ]⇒ drop-later y drop-later-cong[]⇒ ¬s (steps x⇒y y⟶z z⇒u) = steps (drop-later-cong⇒ x⇒y) (drop-later-cong⟶ ¬s y⟶z) (drop-later-cong⇒ z⇒u) drop-later-cong⇒̂ : ∀ {x μ y} → x [ μ ]⇒̂ y → drop-later x [ μ ]⇒̂ drop-later y drop-later-cong⇒̂ (silent s x⇒y) = silent s (drop-later-cong⇒ x⇒y) drop-later-cong⇒̂ (non-silent ¬s x⇒y) = non-silent ¬s (drop-later-cong[]⇒ ¬s x⇒y) drop-later-cong⟶̂ : ∀ {x μ y} → ¬ Silent μ → x [ μ ]⟶̂ y → drop-later x [ μ ]⟶̂ drop-later y drop-later-cong⟶̂ _ (done s) = done s drop-later-cong⟶̂ ¬s (step x⟶y) = step (drop-later-cong⟶ ¬s x⟶y) -- If later x can make a transition to later y, then force x can -- make a transition (of the same kind) to force y. drop-later⟶ : ∀ {μ x y} → later x [ μ ]⟶ later y → force x [ μ ]⟶ force y drop-later⟶ lx⟶ly = helper lx⟶ly refl refl where helper : ∀ {μ x x′ y y′} → later x [ μ ]⟶ y′ → y′ ≡ later y → x′ ≡ force x → x′ [ μ ]⟶ force y helper {x = x} {x′} {y} later x≡ly x′≡x = subst (_[ _ ]⟶ _) ly≡x′ later where ly≡x′ = later y ≡⟨ sym x≡ly ⟩ force x ≡⟨ sym x′≡x ⟩∎ x′ ∎ drop-later⇒ : ∀ {x y} → later x ⇒ later y → force x ⇒ force y drop-later⇒ = drop-later-cong⇒ drop-later[]⇒ : ∀ {μ x y} → later x [ μ ]⇒ later y → force x [ μ ]⇒ force y drop-later[]⇒ (steps lx⇒ly later y⇒lz) = ⇒[]⇒-transitive (⇒-transitive (drop-later⇒ lx⇒ly) y⇒lz) (⟶→[]⇒ later) drop-later[]⇒ (steps _ now ny⇒lz) with now⇒ ny⇒lz ... | () drop-later⇒̂ : ∀ {μ x y} → later x [ μ ]⇒̂ later y → force x [ μ ]⇒̂ force y drop-later⇒̂ = drop-later-cong⇒̂ drop-later⟶̂ : ∀ {μ x y} → later x [ μ ]⟶̂ later y → force x [ μ ]⟶̂ force y drop-later⟶̂ (done s) = done s drop-later⟶̂ (step lx⟶ly) = step (drop-later⟶ lx⟶ly) -- If x makes silent transitions to both y and z, then one of y and -- z makes silent transitions to the other. ⇒×⇒→… : ∀ {x y z} → x ⇒ y → x ⇒ z → y ⇒ z ⊎ z ⇒ y ⇒×⇒→… done x⇒z = inj₁ x⇒z ⇒×⇒→… x⇒y done = inj₂ x⇒y ⇒×⇒→… (step _ later x⇒y) (step _ later x⇒z) = ⇒×⇒→… x⇒y x⇒z ⇒×⇒→… (step () now _) -- If x makes silent transitions to y and a non-silent weak -- μ-transition (of one kind) to z, then y makes a weak μ-transition -- to z. ⇒×⇒[]→… : ∀ {x y z μ} → ¬ Silent μ → x ⇒ y → x [ μ ]⇒ z → y [ μ ]⇒ z ⇒×⇒[]→… _ x⇒y (steps x⇒x′ x′⟶x″ x″⇒z) with ⇒×⇒→… x⇒y x⇒x′ ⇒×⇒[]→… _ _ (steps _ x′⟶x″ x″⇒z) | inj₁ y⇒x′ = steps y⇒x′ x′⟶x″ x″⇒z ⇒×⇒[]→… _ _ (steps _ now n⇒z) | inj₂ done = steps done now n⇒z ⇒×⇒[]→… _ _ _ | inj₂ (step () now _) ⇒×⇒[]→… ¬s _ (steps _ later _) | _ = ⊥-elim (¬s _) -- If x makes silent transitions to y and a weak μ-transition (of -- one kind) to z, then either y makes a weak μ-transition to z, or -- μ is silent and z makes silent transitions to y. ⇒×⇒̂→… : ∀ {x y z μ} → x ⇒ y → x [ μ ]⇒̂ z → y [ μ ]⇒̂ z ⊎ Silent μ × z ⇒ y ⇒×⇒̂→… x⇒y (silent s x⇒z) = ⊎-map (silent s) (s ,_) (⇒×⇒→… x⇒y x⇒z) ⇒×⇒̂→… x⇒y (non-silent ¬s x⇒z) = inj₁ (non-silent ¬s (⇒×⇒[]→… ¬s x⇒y x⇒z))
{ "alphanum_fraction": 0.5195733708, "avg_line_length": 32.1962264151, "ext": "agda", "hexsha": "4889121a36b177789e5def9448241823e3c2e31f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Labelled-transition-system/Delay-monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Labelled-transition-system/Delay-monad.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Labelled-transition-system/Delay-monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3952, "size": 8532 }
-------------------------------------------------------------------------------- -- This file contains functions to turn the tree of parse results into the agda -- data structures they represent. -------------------------------------------------------------------------------- {-# OPTIONS --type-in-type #-} module Parse.TreeConvert where import Data.Sum open import Class.Map open import Class.Monad.Except open import Data.SimpleMap open import Data.String using (fromList; toList; fromChar; uncons) open import Data.Tree open import Data.Tree.Instance open import Data.Word using (fromℕ) open import Prelude open import Prelude.Strings open import CoreTheory open import Bootstrap.InitEnv open import Parse.MultiChar open import Parse.LL1 open import Parse.Generate open import Parse.Escape continueIfInit : ∀ {a} {A : Set a} → List Char → List Char → (List Char → A) → Maybe A continueIfInit {A = A} init s = helper init s where helper : List Char → List Char → (List Char → A) → Maybe A helper [] s f = just $ f s helper (x₁ ∷ init) [] f = nothing helper (x₁ ∷ init) (x ∷ s) f with x ≟ x₁ ... | yes p = helper init s f ... | no ¬p = nothing ruleId : List Char → List Char → Maybe (ℕ ⊎ Char) ruleId nonterm rule = do rules ← lookup nonterm parseRuleMap i ← findIndexList (_≟ (nonterm + "$" + rule)) rules return $ inj₁ i _≡ᴹ_ : ℕ ⊎ Char → Maybe (ℕ ⊎ Char) → Bool x ≡ᴹ y = just x ≣ y toSort : Tree (ℕ ⊎ Char) → Maybe Sort toSort (Node x x₁) = if x ≡ᴹ ruleId "sort" "*" then return ⋆ else if x ≡ᴹ ruleId "sort" "□" then return □ else nothing toConst : Tree (ℕ ⊎ Char) → Maybe Const toConst (Node x x₁) = if x ≡ᴹ ruleId "const" "Char" then return CharT else nothing toChar : Tree (ℕ ⊎ Char) → Maybe Char toChar (Node (inj₁ x) x₁) = nothing toChar (Node (inj₂ y) x₁) = just y toChar' : Tree (ℕ ⊎ Char) → Maybe Char toChar' (Node x x₁) = if x ≡ᴹ ruleId "char" "!!" then (case x₁ of λ { (y ∷ []) → toChar y ; _ → nothing }) else nothing toName : Tree (ℕ ⊎ Char) → Maybe String toName (Node x x₁) = case x₁ of λ { (y ∷ y' ∷ _) → do c ← toChar y n ← toName y' return (fromChar c + n) ; [] → if x ≡ᴹ ruleId "string'" "" then return "" else nothing ; _ → nothing } toNameList : Tree (ℕ ⊎ Char) → Maybe (List String) toNameList (Node x []) = just [] toNameList (Node x (x₁ ∷ x₂ ∷ _)) = do n ← toName x₁ rest ← toNameList x₂ return $ n ∷ rest {-# CATCHALL #-} toNameList _ = nothing toIndex : Tree (ℕ ⊎ Char) → Maybe ℕ toIndex t = do res ← helper t foldl {A = Maybe ℕ} (λ x c → (λ x' → 10 * x' + c) <$> x) (just 0) res where helper' : Tree (ℕ ⊎ Char) → Maybe (List ℕ) helper' (Node x []) = if x ≡ᴹ ruleId "index'" "" then return [] else nothing helper' (Node x (x₁ ∷ _)) = do rest ← helper' x₁ decCase (just x) of (ruleId "index'" "0_index'_" , return (0 ∷ rest)) ∷ (ruleId "index'" "1_index'_" , return (1 ∷ rest)) ∷ (ruleId "index'" "2_index'_" , return (2 ∷ rest)) ∷ (ruleId "index'" "3_index'_" , return (3 ∷ rest)) ∷ (ruleId "index'" "4_index'_" , return (4 ∷ rest)) ∷ (ruleId "index'" "5_index'_" , return (5 ∷ rest)) ∷ (ruleId "index'" "6_index'_" , return (6 ∷ rest)) ∷ (ruleId "index'" "7_index'_" , return (7 ∷ rest)) ∷ (ruleId "index'" "8_index'_" , return (8 ∷ rest)) ∷ (ruleId "index'" "9_index'_" , return (9 ∷ rest)) ∷ [] default nothing helper : Tree (ℕ ⊎ Char) → Maybe (List ℕ) helper (Node x []) = nothing helper (Node x (x₁ ∷ _)) = do rest ← helper' x₁ decCase just x of (ruleId "index" "0_index'_" , return (0 ∷ rest)) ∷ (ruleId "index" "1_index'_" , return (1 ∷ rest)) ∷ (ruleId "index" "2_index'_" , return (2 ∷ rest)) ∷ (ruleId "index" "3_index'_" , return (3 ∷ rest)) ∷ (ruleId "index" "4_index'_" , return (4 ∷ rest)) ∷ (ruleId "index" "5_index'_" , return (5 ∷ rest)) ∷ (ruleId "index" "6_index'_" , return (6 ∷ rest)) ∷ (ruleId "index" "7_index'_" , return (7 ∷ rest)) ∷ (ruleId "index" "8_index'_" , return (8 ∷ rest)) ∷ (ruleId "index" "9_index'_" , return (9 ∷ rest)) ∷ [] default nothing toTerm : Tree (ℕ ⊎ Char) → Maybe AnnTerm toTerm = helper [] where helper : List String → Tree (ℕ ⊎ Char) → Maybe AnnTerm helper accu (Node x x₁) = decCase just x of (ruleId "term" "_var_" , (case x₁ of λ { ((Node y (n ∷ [])) ∷ []) → decCase just y of (ruleId "var" "_string_" , do n' ← toName n return $ case findIndexList (n' ≟_) accu of λ { (just x) → BoundVar $ fromℕ x ; nothing → FreeVar n' }) ∷ (ruleId "var" "_index_" , do n' ← toIndex n return $ BoundVar $ fromℕ n') ∷ [] default nothing ; _ → nothing })) ∷ (ruleId "term" "_sort_" , do s ← head x₁ >>= toSort return $ Sort-A s) ∷ (ruleId "term" "π^space^_term_" , (case x₁ of λ { (y ∷ []) → do y' ← helper accu y return $ Pr1-A y' ; _ → nothing })) ∷ (ruleId "term" "ψ^space^_term_" , (case x₁ of λ { (y ∷ []) → do y' ← helper accu y return $ Pr2-A y' ; _ → nothing })) ∷ (ruleId "term" "β^space^_term_^space^_term_" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ Beta-A t t' ; _ → nothing })) ∷ (ruleId "term" "δ^space^_term_^space^_term_" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ Delta-A t t' ; _ → nothing })) ∷ (ruleId "term" "σ^space^_term_" , (case x₁ of λ { (y ∷ []) → helper accu y >>= λ y' → return (Sigma-A y') ; _ → nothing })) ∷ (ruleId "term" "[^space'^_term_^space^_term_^space'^]" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ App-A t t' ; _ → nothing })) ∷ (ruleId "term" "<^space'^_term_^space^_term_^space'^>" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ AppE-A t t' ; _ → nothing })) ∷ (ruleId "term" "ρ^space^_term_^space^_string_^space'^.^space'^_term_^space^_term_" , (case x₁ of λ { (y ∷ n' ∷ y' ∷ y'' ∷ []) → do t ← helper accu y n ← toName n' t' ← helper (n ∷ accu) y' t'' ← helper accu y'' return $ Rho-A t t' t'' ; _ → nothing })) ∷ (ruleId "term" "∀^space^_string_^space'^:^space'^_term_^space^_term_" , (case x₁ of λ { (n' ∷ y ∷ y' ∷ []) → do n ← toName n' t ← helper accu y t' ← helper (n ∷ accu) y' return $ All-A n t t' ; _ → nothing })) ∷ (ruleId "term" "Π^space^_string_^space'^:^space'^_term_^space^_term_" , (case x₁ of λ { (n' ∷ y ∷ y' ∷ []) → do n ← toName n' t ← helper accu y t' ← helper (n ∷ accu) y' return $ Pi-A n t t' ; _ → nothing })) ∷ (ruleId "term" "ι^space^_string_^space'^:^space'^_term_^space^_term_" , (case x₁ of λ { (n' ∷ y ∷ y' ∷ []) → do n ← toName n' t ← helper accu y t' ← helper (n ∷ accu) y' return $ Iota-A n t t' ; _ → nothing })) ∷ (ruleId "term" "λ^space^_string_^space'^:^space'^_term_^space^_term_" , (case x₁ of λ { (n' ∷ y ∷ y' ∷ []) → do n ← toName n' t ← helper accu y t' ← helper (n ∷ accu) y' return $ Lam-A n t t' ; _ → nothing })) ∷ (ruleId "term" "Λ^space^_string_^space'^:^space'^_term_^space^_term_" , (case x₁ of λ { (n' ∷ y ∷ y' ∷ []) → do n ← toName n' t ← helper accu y t' ← helper (n ∷ accu) y' return $ LamE-A n t t' ; _ → nothing })) ∷ (ruleId "term" "{^space'^_term_^space'^,^space'^_term_^space^_string_^space'^.^space'^_term_^space'^}" , (case x₁ of λ { (y ∷ y' ∷ n' ∷ y'' ∷ []) → do t ← helper accu y t' ← helper accu y' n ← toName n' t'' ← helper (n ∷ accu) y'' return $ Pair-A t t' t'' ; _ → nothing })) ∷ (ruleId "term" "φ^space^_term_^space^_term_^space^_term_" , (case x₁ of λ { (y ∷ y' ∷ y'' ∷ []) → do t ← helper accu y t' ← helper accu y' t'' ← helper accu y'' return $ Phi-A t t' t'' ; _ → nothing })) ∷ (ruleId "term" "=^space^_term_^space^_term_" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ Eq-A t t' ; _ → nothing })) ∷ (ruleId "term" "ω^space^_term_" , (case x₁ of λ { (y ∷ []) → do t ← helper accu y return $ M-A t ; _ → nothing })) ∷ (ruleId "term" "μ^space^_term_^space^_term_" , (case x₁ of λ { (y ∷ y' ∷ []) → do t ← helper accu y t' ← helper accu y' return $ Mu-A t t' ; _ → nothing })) ∷ (ruleId "term" "ε^space^_term_" , (case x₁ of λ { (y ∷ []) → do t ← helper accu y return $ Epsilon-A t ; _ → nothing })) ∷ (ruleId "term" "ζEvalStmt^space^_term_" , (case x₁ of λ { (z ∷ []) → do t ← helper accu z return $ Ev-A EvalStmt t ; _ → nothing })) ∷ (ruleId "term" "ζShellCmd^space^_term_^space^_term_" , (case x₁ of λ { (z ∷ z' ∷ []) → do t ← helper accu z t' ← helper accu z' return $ Ev-A ShellCmd (t , t') ; _ → nothing })) ∷ (ruleId "term" "ζCheckTerm^space^_term_^space^_term_" , (case x₁ of λ { (z ∷ z' ∷ []) → do t ← helper accu z t' ← helper accu z' return $ Ev-A CheckTerm (t , t') ; _ → nothing })) ∷ (ruleId "term" "ζParse^space^_term_^space^_term_^space^_term_" , (case x₁ of λ { (z ∷ z' ∷ z'' ∷ []) → do t ← helper accu z t' ← helper accu z' t'' ← helper accu z'' return $ Ev-A Parse (t , t' , t'') ; _ → nothing })) ∷ (ruleId "term" "ζCatchErr^space^_term_^space^_term_" , (case x₁ of λ { (z ∷ z' ∷ []) → do t ← helper accu z t' ← helper accu z' return $ Gamma-A t t' ; _ → nothing })) ∷ (ruleId "term" "ζNormalize^space^_term_" , (case x₁ of λ { (z ∷ []) → do t ← helper accu z return $ Ev-A Normalize t ; _ → nothing })) ∷ (ruleId "term" "ζHeadNormalize^space^_term_" , (case x₁ of λ { (z ∷ []) → do t ← helper accu z return $ Ev-A HeadNormalize t ; _ → nothing })) ∷ (ruleId "term" "ζInferType^space^_term_" , (case x₁ of λ { (z ∷ []) → do t ← helper accu z return $ Ev-A InferType t ; _ → nothing })) ∷ (ruleId "term" "Κ_const_" , (case x₁ of λ { (z ∷ []) → do c ← toConst z return $ Const-A c ; _ → nothing })) ∷ (ruleId "term" "κ_char_" , (case x₁ of λ { (z ∷ []) → do c ← toChar z <∣> toChar' z return $ Char-A c ; _ → nothing })) ∷ (ruleId "term" "γ^space^_term_^space^_term_" , (case x₁ of λ { (z ∷ z' ∷ []) → do t ← helper accu z t' ← helper accu z' return $ CharEq-A t t' ; _ → nothing })) ∷ [] default nothing data Stmt : Set where Let : GlobalName → AnnTerm → Maybe AnnTerm → Stmt Ass : GlobalName → AnnTerm → Stmt SetEval : AnnTerm → String → String → Stmt Import : String → Stmt Empty : Stmt instance Stmt-Show : Show Stmt Stmt-Show = record { show = helper } where helper : Stmt → String helper (Let x x₁ (just x₂)) = "let " + x + " := " + show x₁ + " : " + show x₂ helper (Let x x₁ nothing) = "let " + x + " := " + show x₁ helper (Ass x x₁) = "ass " + x + " : " + show x₁ helper (SetEval x n n') = "seteval " + show x + " " + n + " " + n' helper (Import s) = "import " + s helper Empty = "Empty" toStmt : Tree (ℕ ⊎ Char) → Maybe Stmt toStmt (Node x ((Node x' x₂) ∷ [])) = if x ≡ᴹ ruleId "stmt" "^space'^_stmt'_" then decCase just x' of (ruleId "stmt'" "let^space^_string_^space'^:=^space'^_term_^space'^_lettail_" , (case x₂ of λ { (y ∷ y' ∷ y'' ∷ []) → do n ← toName y t ← toTerm y' return $ Let n t $ toLetTail y'' ; _ → nothing })) ∷ (ruleId "stmt'" "ass^space^_string_^space'^:^space'^_term_^space'^." , (case x₂ of λ { (y ∷ y₁ ∷ []) → do n ← toName y t ← toTerm y₁ return $ Ass n t ; _ → nothing })) ∷ (ruleId "stmt'" "seteval^space^_term_^space^_string_^space^_string_^space'^." , (case x₂ of λ { (y ∷ y' ∷ y'' ∷ []) → do t ← toTerm y n ← toName y' n' ← toName y'' return $ SetEval t n n' ; _ → nothing })) ∷ (ruleId "stmt'" "import^space^_string_^space'^." , (case x₂ of λ { (y ∷ []) → do n ← toName y return $ Import n ; _ → nothing })) ∷ (ruleId "stmt'" "" , return Empty) ∷ [] default nothing else nothing where toLetTail : Tree (ℕ ⊎ Char) → Maybe AnnTerm toLetTail (Node x x₁) = decCase just x of (ruleId "lettail" ":^space'^_term_^space'^." , (case x₁ of λ { (y ∷ []) → toTerm y ; _ → nothing })) ∷ [] default nothing {-# CATCHALL #-} toStmt _ = nothing private -- Folds a tree of constructors back into a term by properly applying the -- constructors and prefixing the namespace {-# TERMINATING #-} foldConstrTree : String → Tree (String ⊎ Char) → AnnTerm foldConstrTree namespace (Node x x₁) = foldl (λ t t' → t ⟪$⟫ t') (ruleToTerm x) (foldConstrTree namespace <$> x₁) where ruleToTerm : String ⊎ Char → AnnTerm ruleToTerm (inj₁ x) = FreeVar (namespace + "$" + ruleToConstr x) ruleToTerm (inj₂ y) = Char-A y convertIfChar : Tree (String ⊎ Char) → Maybe (Tree (ℕ ⊎ Char)) convertIfChar (Node (inj₁ x) x₁) = do rest ← stripPrefix "nameInitChar$" x <∣> stripPrefix "nameTailChar$" x (c , s) ← uncons rest just $ Node (inj₂ $ unescape c s) [] convertIfChar (Node (inj₂ x) x₁) = nothing module _ {M} {{_ : Monad M}} {{_ : MonadExcept M String}} where preCoreGrammar : M Grammar preCoreGrammar = generateCFGNonEscaped "stmt" (map fromList coreGrammarGenerator) private parseToConstrTree : (G : Grammar) → NonTerminal G → String → M (Tree (String ⊎ Char) × String) parseToConstrTree (_ , G , (showRule , showNT)) S s = do (t , rest) ← parseWithInitNT showNT matchMulti show G M S s return (_<$>_ {{Tree-Functor}} (Data.Sum.map₁ showRule) t , rest) parsePreCoreGrammar : String → M (Tree (String ⊎ Char) × String) parsePreCoreGrammar s = do G ← preCoreGrammar parseToConstrTree G (initNT G) s {-# TERMINATING #-} -- cannot just use sequence here because of the char special case synTreeToℕTree : Tree (String ⊎ Char) → M (Tree (ℕ ⊎ Char)) synTreeToℕTree t@(Node (inj₁ x) x₁) with convertIfChar t ... | (just t') = return t' ... | nothing = do id ← fullRuleId x ids ← sequence $ map synTreeToℕTree x₁ return (Node id ids) where fullRuleId : String → M (ℕ ⊎ Char) fullRuleId l with break (_≟ '$') (toList l) -- split at '$' ... | (x , []) = throwError "No '$' character found!" ... | (x , _ ∷ y) = maybeToError (ruleId x y) ("Rule " + l + "doesn't exist!") synTreeToℕTree (Node (inj₂ x) x₁) = return $ Node (inj₂ x) [] -- Parse the next top-level non-terminal symbol from a string, and return a -- term representing the result of the parse, as well as the unparsed rest of -- the string parse : (G : Grammar) → NonTerminal G → String → String → M (AnnTerm × String) parse G S namespace s = do (t , rest) ← parseToConstrTree G S s return (foldConstrTree namespace t , rest) -- Used for bootstrapping parseStmt : String → M (Stmt × String) parseStmt s = do (y' , rest) ← parsePreCoreGrammar s y ← synTreeToℕTree y' case toStmt y of λ where (just x) → return (x , rest) nothing → throwError ("Error while converting syntax tree to statement!\nTree:\n" + show y + "\nRemaining: " + s)
{ "alphanum_fraction": 0.4848052096, "avg_line_length": 33.4722753346, "ext": "agda", "hexsha": "e6e39d0cada84cc5c798f5370a2f77f7b0920529", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "src/Parse/TreeConvert.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "src/Parse/TreeConvert.agda", "max_line_length": 99, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "src/Parse/TreeConvert.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 5781, "size": 17506 }
{- Basic properties about Σ-types - Action of Σ on functions ([map-fst], [map-snd]) - Characterization of equality in Σ-types using dependent paths ([ΣPath{Iso,≃,≡}PathΣ], [Σ≡Prop]) - Proof that discrete types are closed under Σ ([discreteΣ]) - Commutativity and associativity ([Σ-swap-*, Σ-assoc-*]) - Distributivity of Π over Σ ([Σ-Π-*]) - Action of Σ on isomorphisms, equivalences, and paths ([Σ-cong-fst], [Σ-cong-snd], ...) - Characterization of equality in Σ-types using transport ([ΣPathTransport{≃,≡}PathΣ]) - Σ with a contractible base is its fiber ([Σ-contractFst, ΣUnit]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Sigma.Properties where open import Cubical.Data.Sigma.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Data.Unit.Base open import Cubical.Reflection.StrictEquiv open Iso private variable ℓ ℓ' ℓ'' : Level A A' : Type ℓ B B' : (a : A) → Type ℓ C : (a : A) (b : B a) → Type ℓ map-fst : {B : Type ℓ} → (f : A → A') → A × B → A' × B map-fst f (a , b) = (f a , b) map-snd : (∀ {a} → B a → B' a) → Σ A B → Σ A B' map-snd f (a , b) = (a , f b) map-× : {B : Type ℓ} {B' : Type ℓ'} → (A → A') → (B → B') → A × B → A' × B' map-× f g (a , b) = (f a , g b) ≡-× : {A : Type ℓ} {B : Type ℓ'} {x y : A × B} → fst x ≡ fst y → snd x ≡ snd y → x ≡ y ≡-× p q i = (p i) , (q i) -- Characterization of paths in Σ using dependent paths module _ {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ'} {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)} where ΣPathP : Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y) → PathP (λ i → Σ (A i) (B i)) x y ΣPathP eq i = fst eq i , snd eq i PathPΣ : PathP (λ i → Σ (A i) (B i)) x y → Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y) PathPΣ eq = (λ i → fst (eq i)) , (λ i → snd (eq i)) -- allows one to write -- open PathPΣ somePathInΣAB renaming (fst ... ) module PathPΣ (p : PathP (λ i → Σ (A i) (B i)) x y) where open Σ (PathPΣ p) public ΣPathIsoPathΣ : Iso (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y))) (PathP (λ i → Σ (A i) (B i)) x y) fun ΣPathIsoPathΣ = ΣPathP inv ΣPathIsoPathΣ = PathPΣ rightInv ΣPathIsoPathΣ _ = refl leftInv ΣPathIsoPathΣ _ = refl unquoteDecl ΣPath≃PathΣ = declStrictIsoToEquiv ΣPath≃PathΣ ΣPathIsoPathΣ ΣPath≡PathΣ : (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y))) ≡ (PathP (λ i → Σ (A i) (B i)) x y) ΣPath≡PathΣ = ua ΣPath≃PathΣ ×≡Prop : isProp A' → {u v : A × A'} → u .fst ≡ v .fst → u ≡ v ×≡Prop pB {u} {v} p i = (p i) , (pB (u .snd) (v .snd) i) -- Characterization of dependent paths in Σ module _ {A : I → Type ℓ} {B : (i : I) → (a : A i) → Type ℓ'} {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)} where ΣPathPIsoPathPΣ : Iso (Σ[ p ∈ PathP A (x .fst) (y .fst) ] PathP (λ i → B i (p i)) (x .snd) (y .snd)) (PathP (λ i → Σ (A i) (B i)) x y) ΣPathPIsoPathPΣ .fun (p , q) i = p i , q i ΣPathPIsoPathPΣ .inv pq .fst i = pq i .fst ΣPathPIsoPathPΣ .inv pq .snd i = pq i .snd ΣPathPIsoPathPΣ .rightInv _ = refl ΣPathPIsoPathPΣ .leftInv _ = refl unquoteDecl ΣPathP≃PathPΣ = declStrictIsoToEquiv ΣPathP≃PathPΣ ΣPathPIsoPathPΣ ΣPathP≡PathPΣ = ua ΣPathP≃PathPΣ -- Σ of discrete types discreteΣ : Discrete A → ((a : A) → Discrete (B a)) → Discrete (Σ A B) discreteΣ {B = B} Adis Bdis (a0 , b0) (a1 , b1) = discreteΣ' (Adis a0 a1) where discreteΣ' : Dec (a0 ≡ a1) → Dec ((a0 , b0) ≡ (a1 , b1)) discreteΣ' (yes p) = J (λ a1 p → ∀ b1 → Dec ((a0 , b0) ≡ (a1 , b1))) (discreteΣ'') p b1 where discreteΣ'' : (b1 : B a0) → Dec ((a0 , b0) ≡ (a0 , b1)) discreteΣ'' b1 with Bdis a0 b0 b1 ... | (yes q) = yes (transport ΣPath≡PathΣ (refl , q)) ... | (no ¬q) = no (λ r → ¬q (subst (λ X → PathP (λ i → B (X i)) b0 b1) (Discrete→isSet Adis a0 a0 (cong fst r) refl) (cong snd r))) discreteΣ' (no ¬p) = no (λ r → ¬p (cong fst r)) module _ {A : Type ℓ} {A' : Type ℓ'} where Σ-swap-Iso : Iso (A × A') (A' × A) fun Σ-swap-Iso (x , y) = (y , x) inv Σ-swap-Iso (x , y) = (y , x) rightInv Σ-swap-Iso _ = refl leftInv Σ-swap-Iso _ = refl unquoteDecl Σ-swap-≃ = declStrictIsoToEquiv Σ-swap-≃ Σ-swap-Iso module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where Σ-assoc-Iso : Iso (Σ[ (a , b) ∈ Σ A B ] C a b) (Σ[ a ∈ A ] Σ[ b ∈ B a ] C a b) fun Σ-assoc-Iso ((x , y) , z) = (x , (y , z)) inv Σ-assoc-Iso (x , (y , z)) = ((x , y) , z) rightInv Σ-assoc-Iso _ = refl leftInv Σ-assoc-Iso _ = refl unquoteDecl Σ-assoc-≃ = declStrictIsoToEquiv Σ-assoc-≃ Σ-assoc-Iso Σ-Π-Iso : Iso ((a : A) → Σ[ b ∈ B a ] C a b) (Σ[ f ∈ ((a : A) → B a) ] ∀ a → C a (f a)) fun Σ-Π-Iso f = (fst ∘ f , snd ∘ f) inv Σ-Π-Iso (f , g) x = (f x , g x) rightInv Σ-Π-Iso _ = refl leftInv Σ-Π-Iso _ = refl unquoteDecl Σ-Π-≃ = declStrictIsoToEquiv Σ-Π-≃ Σ-Π-Iso Σ-cong-iso-fst : (isom : Iso A A') → Iso (Σ A (B ∘ fun isom)) (Σ A' B) fun (Σ-cong-iso-fst isom) x = fun isom (x .fst) , x .snd inv (Σ-cong-iso-fst {B = B} isom) x = inv isom (x .fst) , subst B (sym (ε (x .fst))) (x .snd) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) rightInv (Σ-cong-iso-fst {B = B} isom) (x , y) = ΣPathP (ε x , toPathP goal) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) goal : subst B (ε x) (subst B (sym (ε x)) y) ≡ y goal = sym (substComposite B (sym (ε x)) (ε x) y) ∙∙ cong (λ x → subst B x y) (lCancel (ε x)) ∙∙ substRefl {B = B} y leftInv (Σ-cong-iso-fst {A = A} {B = B} isom) (x , y) = ΣPathP (leftInv isom x , toPathP goal) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) γ = isHAEquiv.com (snd (iso→HAEquiv isom)) lem : (x : A) → sym (ε (fun isom x)) ∙ cong (fun isom) (leftInv isom x) ≡ refl lem x = cong (λ a → sym (ε (fun isom x)) ∙ a) (γ x) ∙ lCancel (ε (fun isom x)) goal : subst B (cong (fun isom) (leftInv isom x)) (subst B (sym (ε (fun isom x))) y) ≡ y goal = sym (substComposite B (sym (ε (fun isom x))) (cong (fun isom) (leftInv isom x)) y) ∙∙ cong (λ a → subst B a y) (lem x) ∙∙ substRefl {B = B} y Σ-cong-equiv-fst : (e : A ≃ A') → Σ A (B ∘ equivFun e) ≃ Σ A' B -- we could just do this: -- Σ-cong-equiv-fst e = isoToEquiv (Σ-cong-iso-fst (equivToIso e)) -- but the following reduces slightly better Σ-cong-equiv-fst {A = A} {A' = A'} {B = B} e = intro , isEqIntro where intro : Σ A (B ∘ equivFun e) → Σ A' B intro (a , b) = equivFun e a , b isEqIntro : isEquiv intro isEqIntro .equiv-proof x = ctr , isCtr where PB : ∀ {x y} → x ≡ y → B x → B y → Type _ PB p = PathP (λ i → B (p i)) open Σ x renaming (fst to a'; snd to b) open Σ (equivCtr e a') renaming (fst to ctrA; snd to α) ctrB : B (equivFun e ctrA) ctrB = subst B (sym α) b ctrP : PB α ctrB b ctrP = symP (transport-filler (λ i → B (sym α i)) b) ctr : fiber intro x ctr = (ctrA , ctrB) , ΣPathP (α , ctrP) isCtr : ∀ y → ctr ≡ y isCtr ((r , s) , p) = λ i → (a≡r i , b!≡s i) , ΣPathP (α≡ρ i , coh i) where open PathPΣ p renaming (fst to ρ; snd to σ) open PathPΣ (equivCtrPath e a' (r , ρ)) renaming (fst to a≡r; snd to α≡ρ) b!≡s : PB (cong (equivFun e) a≡r) ctrB s b!≡s i = comp (λ k → B (α≡ρ i (~ k))) (λ k → (λ { (i = i0) → ctrP (~ k) ; (i = i1) → σ (~ k) })) b coh : PathP (λ i → PB (α≡ρ i) (b!≡s i) b) ctrP σ coh i j = fill (λ k → B (α≡ρ i (~ k))) (λ k → (λ { (i = i0) → ctrP (~ k) ; (i = i1) → σ (~ k) })) (inS b) (~ j) Σ-cong-fst : (p : A ≡ A') → Σ A (B ∘ transport p) ≡ Σ A' B Σ-cong-fst {B = B} p i = Σ (p i) (B ∘ transp (λ j → p (i ∨ j)) i) Σ-cong-iso-snd : ((x : A) → Iso (B x) (B' x)) → Iso (Σ A B) (Σ A B') fun (Σ-cong-iso-snd isom) (x , y) = x , fun (isom x) y inv (Σ-cong-iso-snd isom) (x , y') = x , inv (isom x) y' rightInv (Σ-cong-iso-snd isom) (x , y) = ΣPathP (refl , rightInv (isom x) y) leftInv (Σ-cong-iso-snd isom) (x , y') = ΣPathP (refl , leftInv (isom x) y') Σ-cong-equiv-snd : (∀ a → B a ≃ B' a) → Σ A B ≃ Σ A B' Σ-cong-equiv-snd h = isoToEquiv (Σ-cong-iso-snd (equivToIso ∘ h)) Σ-cong-snd : ((x : A) → B x ≡ B' x) → Σ A B ≡ Σ A B' Σ-cong-snd {A = A} p i = Σ[ x ∈ A ] (p x i) Σ-cong-iso : (isom : Iso A A') → ((x : A) → Iso (B x) (B' (fun isom x))) → Iso (Σ A B) (Σ A' B') Σ-cong-iso isom isom' = compIso (Σ-cong-iso-snd isom') (Σ-cong-iso-fst isom) Σ-cong-equiv : (e : A ≃ A') → ((x : A) → B x ≃ B' (equivFun e x)) → Σ A B ≃ Σ A' B' Σ-cong-equiv e e' = isoToEquiv (Σ-cong-iso (equivToIso e) (equivToIso ∘ e')) Σ-cong' : (p : A ≡ A') → PathP (λ i → p i → Type ℓ') B B' → Σ A B ≡ Σ A' B' Σ-cong' p p' = cong₂ (λ (A : Type _) (B : A → Type _) → Σ A B) p p' -- Alternative version for path in Σ-types, as in the HoTT book ΣPathTransport : (a b : Σ A B) → Type _ ΣPathTransport {B = B} a b = Σ[ p ∈ (fst a ≡ fst b) ] transport (λ i → B (p i)) (snd a) ≡ snd b IsoΣPathTransportPathΣ : (a b : Σ A B) → Iso (ΣPathTransport a b) (a ≡ b) IsoΣPathTransportPathΣ {B = B} a b = compIso (Σ-cong-iso-snd (λ p → invIso (equivToIso (PathP≃Path (λ i → B (p i)) _ _)))) ΣPathIsoPathΣ ΣPathTransport≃PathΣ : (a b : Σ A B) → ΣPathTransport a b ≃ (a ≡ b) ΣPathTransport≃PathΣ {B = B} a b = isoToEquiv (IsoΣPathTransportPathΣ a b) ΣPathTransport→PathΣ : (a b : Σ A B) → ΣPathTransport a b → (a ≡ b) ΣPathTransport→PathΣ a b = Iso.fun (IsoΣPathTransportPathΣ a b) PathΣ→ΣPathTransport : (a b : Σ A B) → (a ≡ b) → ΣPathTransport a b PathΣ→ΣPathTransport a b = Iso.inv (IsoΣPathTransportPathΣ a b) ΣPathTransport≡PathΣ : (a b : Σ A B) → ΣPathTransport a b ≡ (a ≡ b) ΣPathTransport≡PathΣ a b = ua (ΣPathTransport≃PathΣ a b) Σ-contractFst : (c : isContr A) → Σ A B ≃ B (c .fst) Σ-contractFst {B = B} c = isoToEquiv isom where isom : Iso _ _ isom .fun (a , b) = subst B (sym (c .snd a)) b isom .inv b = (c .fst , b) isom .rightInv b = cong (λ p → subst B p b) (isProp→isSet (isContr→isProp c) _ _ _ _) ∙ transportRefl _ isom .leftInv (a , b) = ΣPathTransport≃PathΣ _ _ .fst (c .snd a , transportTransport⁻ (cong B (c .snd a)) _) -- a special case of the above module _ (A : Unit → Type ℓ) where ΣUnit : Σ Unit A ≃ A tt unquoteDef ΣUnit = defStrictEquiv ΣUnit snd (λ { x → (tt , x) }) Σ-contractSnd : ((a : A) → isContr (B a)) → Σ A B ≃ A Σ-contractSnd c = isoToEquiv isom where isom : Iso _ _ isom .fun = fst isom .inv a = a , c a .fst isom .rightInv _ = refl isom .leftInv (a , b) = cong (a ,_) (c a .snd b) isEmbeddingFstΣProp : ((x : A) → isProp (B x)) → {u v : Σ A B} → isEquiv (λ (p : u ≡ v) → cong fst p) isEmbeddingFstΣProp {B = B} pB {u = u} {v = v} .equiv-proof x = ctr , isCtr where ctrP : u ≡ v ctrP = ΣPathP (x , isProp→PathP (λ _ → pB _) _ _) ctr : fiber (λ (p : u ≡ v) → cong fst p) x ctr = ctrP , refl isCtr : ∀ z → ctr ≡ z isCtr (z , p) = ΣPathP (ctrP≡ , cong (sym ∘ snd) fzsingl) where fzsingl : Path (singl x) (x , refl) (cong fst z , sym p) fzsingl = isContrSingl x .snd (cong fst z , sym p) ctrSnd : SquareP (λ i j → B (fzsingl i .fst j)) (cong snd ctrP) (cong snd z) _ _ ctrSnd = isProp→SquareP (λ _ _ → pB _) _ _ _ _ ctrP≡ : ctrP ≡ z ctrP≡ i = ΣPathP (fzsingl i .fst , ctrSnd i) Σ≡PropEquiv : ((x : A) → isProp (B x)) → {u v : Σ A B} → (u .fst ≡ v .fst) ≃ (u ≡ v) Σ≡PropEquiv pB = invEquiv (_ , isEmbeddingFstΣProp pB) Σ≡Prop : ((x : A) → isProp (B x)) → {u v : Σ A B} → (p : u .fst ≡ v .fst) → u ≡ v Σ≡Prop pB p = equivFun (Σ≡PropEquiv pB) p ≃-× : ∀ {ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → A ≃ C → B ≃ D → A × B ≃ C × D ≃-× eq1 eq2 = map-× (fst eq1) (fst eq2) , record { equiv-proof = λ {(c , d) → ((eq1⁻ c .fst .fst , eq2⁻ d .fst .fst) , ≡-× (eq1⁻ c .fst .snd) (eq2⁻ d .fst .snd)) , λ {((a , b) , p) → ΣPathP (≡-× (cong fst (eq1⁻ c .snd (a , cong fst p))) (cong fst (eq2⁻ d .snd (b , cong snd p))) , λ i → ≡-× (snd ((eq1⁻ c .snd (a , cong fst p)) i)) (snd ((eq2⁻ d .snd (b , cong snd p)) i)))}}} where eq1⁻ = equiv-proof (eq1 .snd) eq2⁻ = equiv-proof (eq2 .snd) {- Some simple ismorphisms -} prodIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → Iso A C → Iso B D → Iso (A × B) (C × D) Iso.fun (prodIso iAC iBD) (a , b) = (Iso.fun iAC a) , Iso.fun iBD b Iso.inv (prodIso iAC iBD) (c , d) = (Iso.inv iAC c) , Iso.inv iBD d Iso.rightInv (prodIso iAC iBD) (c , d) = ΣPathP ((Iso.rightInv iAC c) , (Iso.rightInv iBD d)) Iso.leftInv (prodIso iAC iBD) (a , b) = ΣPathP ((Iso.leftInv iAC a) , (Iso.leftInv iBD b)) toProdIso : {B C : A → Type ℓ} → Iso ((a : A) → B a × C a) (((a : A) → B a) × ((a : A) → C a)) Iso.fun toProdIso = λ f → (λ a → fst (f a)) , (λ a → snd (f a)) Iso.inv toProdIso (f , g) = λ a → (f a) , (g a) Iso.rightInv toProdIso (f , g) = refl Iso.leftInv toProdIso b = refl module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where curryIso : Iso (((a , b) : Σ A B) → C a b) ((a : A) → (b : B a) → C a b) Iso.fun curryIso f a b = f (a , b) Iso.inv curryIso f a = f (fst a) (snd a) Iso.rightInv curryIso a = refl Iso.leftInv curryIso f = refl unquoteDecl curryEquiv = declStrictIsoToEquiv curryEquiv curryIso
{ "alphanum_fraction": 0.5394923426, "avg_line_length": 39.1777777778, "ext": "agda", "hexsha": "d9a93a05ce1a7c291f00d288cc42ddab279d2ec4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Data/Sigma/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Data/Sigma/Properties.agda", "max_line_length": 140, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Data/Sigma/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6248, "size": 14104 }
{-# OPTIONS --cubical --no-import-sorts --guardedness --safe #-} module Cubical.Codata.M.AsLimit.Container where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv using (_≃_) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ ) open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Data.Sum open import Cubical.Foundations.Structure open import Cubical.Codata.M.AsLimit.helper ------------------------------------- -- Container and Container Functor -- ------------------------------------- -- Σ[ A ∈ (Type ℓ) ] (A → Type ℓ) Container : ∀ ℓ -> Type (ℓ-suc ℓ) Container ℓ = TypeWithStr ℓ (λ x → x → Type ℓ) -- Polynomial functor (P₀ , P₁) defined over a container -- https://ncatlab.org/nlab/show/polynomial+functor -- P₀ object part of functor P₀ : ∀ {ℓ} (S : Container ℓ) -> Type ℓ -> Type ℓ P₀ (A , B) X = Σ[ a ∈ A ] (B a -> X) -- P₁ morphism part of functor P₁ : ∀ {ℓ} {S : Container ℓ} {X Y} (f : X -> Y) -> P₀ S X -> P₀ S Y P₁ {S = S} f = λ { (a , g) -> a , f ∘ g } ----------------------- -- Chains and Limits -- ----------------------- record Chain ℓ : Type (ℓ-suc ℓ) where constructor _,,_ field X : ℕ -> Type ℓ π : {n : ℕ} -> X (suc n) -> X n open Chain public limit-of-chain : ∀ {ℓ} -> Chain ℓ → Type ℓ limit-of-chain (x ,, pi) = Σ[ x ∈ ((n : ℕ) → x n) ] ((n : ℕ) → pi {n = n} (x (suc n)) ≡ x n) shift-chain : ∀ {ℓ} -> Chain ℓ -> Chain ℓ shift-chain = λ X,π -> ((λ x → X X,π (suc x)) ,, λ {n} → π X,π {suc n}) ------------------------------------------------------ -- Limit type of a Container , and Shift of a Limit -- ------------------------------------------------------ Wₙ : ∀ {ℓ} -> Container ℓ -> ℕ -> Type ℓ Wₙ S 0 = Lift Unit Wₙ S (suc n) = P₀ S (Wₙ S n) πₙ : ∀ {ℓ} -> (S : Container ℓ) -> {n : ℕ} -> Wₙ S (suc n) -> Wₙ S n πₙ {ℓ} S {0} _ = lift tt πₙ S {suc n} = P₁ (πₙ S {n}) sequence : ∀ {ℓ} -> Container ℓ -> Chain ℓ X (sequence S) n = Wₙ S n π (sequence S) {n} = πₙ S {n} PX,Pπ : ∀ {ℓ} (S : Container ℓ) -> Chain ℓ PX,Pπ {ℓ} S = (λ n → P₀ S (X (sequence S) n)) ,, (λ {n : ℕ} x → P₁ (λ z → z) (π (sequence S) {n = suc n} x )) ----------------------------------- -- M type is limit of a sequence -- ----------------------------------- M : ∀ {ℓ} -> Container ℓ → Type ℓ M = limit-of-chain ∘ sequence
{ "alphanum_fraction": 0.5294579733, "avg_line_length": 28.606741573, "ext": "agda", "hexsha": "faefb7e660db43baa2cc0ea8347af1ab09a9f1e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Codata/M/AsLimit/Container.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Codata/M/AsLimit/Container.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Codata/M/AsLimit/Container.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 878, "size": 2546 }
module Issue1078.A where open import Common.Level using (Level)
{ "alphanum_fraction": 0.8, "avg_line_length": 16.25, "ext": "agda", "hexsha": "7c0afb15c2cf8e76936a053dfeabf98846a453b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1078/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1078/A.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1078/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 65 }
-- This module contains various line-ending characters in order -- to test that they don't affect module source hash calculation. module C where -- CR -- -- -- LF -- -- -- CRLF -- -- -- LFCR -- -- -- FF -- -- -- NEXT LINE --…-- -- LINE SEPARATOR --
-- -- PARAGRAPH SEPARATOR --
--
{ "alphanum_fraction": 0.593639576, "avg_line_length": 18.8666666667, "ext": "agda", "hexsha": "79a4e988a7126dbc7c50aa5890adccd6c8bdd0c8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/uptodate/C.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/uptodate/C.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/uptodate/C.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 283 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Unit module Oscar.Class.SimilaritySingleton where module SimilaritySingleton {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {𝔣} {𝔉 : Ø 𝔣} {𝔞̇ 𝔟̇} (∼₁ : Ø 𝔞̇) (_∼₂_ : 𝔅 → 𝔅 → Ø 𝔟̇) (let _∼₂_ = _∼₂_; infix 4 _∼₂_) (_◃_ : 𝔉 → 𝔄 → 𝔅) (let _◃_ = _◃_; infix 16 _◃_) (x y : 𝔄) (f : 𝔉) = ℭLASS (_◃_ , _∼₂_ , x , y) (∼₁ → f ◃ x ∼₂ f ◃ y) module _ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {𝔣} {𝔉 : Ø 𝔣} {𝔞̇ 𝔟̇} {∼₁ : Ø 𝔞̇} {_∼₂_ : 𝔅 → 𝔅 → Ø 𝔟̇} (let _∼₂_ = _∼₂_; infix 4 _∼₂_) {_◃_ : 𝔉 → 𝔄 → 𝔅} (let _◃_ = _◃_; infix 16 _◃_) {x y : 𝔄} {f : 𝔉} where similaritySingleton = SimilaritySingleton.method ∼₁ _∼₂_ _◃_ x y f module _ ⦃ _ : SimilaritySingleton.class ∼₁ _∼₂_ _◃_ x y f ⦄ where instance toUnit : Unit.class (∼₁ → f ◃ x ∼₂ f ◃ y) toUnit .⋆ = similaritySingleton
{ "alphanum_fraction": 0.5220417633, "avg_line_length": 23.9444444444, "ext": "agda", "hexsha": "a5f0c48973b975d5bea1d546cc42f0427b11fd32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/SimilaritySingleton.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/SimilaritySingleton.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/SimilaritySingleton.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 499, "size": 862 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.RelativelyConstantToSetExtendsViaSurjection as SurjExt module homotopy.VanKampen {i j k l} (span : Span {i} {j} {k}) {D : Type l} (h : D → Span.C span) (h-is-surj : is-surj h) where open Span span open import homotopy.vankampen.CodeAP span h h-is-surj open import homotopy.vankampen.CodeBP span h h-is-surj open import homotopy.vankampen.Code span h h-is-surj -- favonia: [pPP] means path from [P] to [P]. encode-idp : ∀ p → code p p encode-idp = Pushout-elim {P = λ p → code p p} (λ a → q[ ⟧a idp₀ ]) (λ b → q[ ⟧b idp₀ ]) lemma where abstract lemma : ∀ c → q[ ⟧a idp₀ ] == q[ ⟧b idp₀ ] [ (λ p → code p p) ↓ glue c ] lemma = SurjExt.ext {{↓-preserves-level ⟨⟩}} h h-is-surj (λ d → from-transp (λ p → code p p) (glue (h d)) $ transport (λ p → code p p) (glue (h d)) q[ ⟧a idp₀ ] =⟨ ap (λ pPP → coe pPP q[ pc-a idp₀ ]) ((! (ap2-diag code (glue (h d)))) ∙ ap2-out code (glue (h d)) (glue (h d))) ⟩ coe (ap (λ p₀ → code p₀ (left (f (h d)))) (glue (h d)) ∙ ap (codeBP (g (h d))) (glue (h d))) q[ ⟧a idp₀ ] =⟨ coe-∙ (ap (λ p₀ → code p₀ (left (f (h d)))) (glue (h d))) (ap (codeBP (g (h d))) (glue (h d))) q[ pc-a idp₀ ] ⟩ transport (codeBP (g (h d))) (glue (h d)) (transport (λ p₀ → code p₀ (left (f (h d)))) (glue (h d)) q[ ⟧a idp₀ ]) =⟨ transp-cPA-glue d (⟧a idp₀) |in-ctx transport (λ p₁ → code (right (g (h d))) p₁) (glue (h d)) ⟩ transport (codeBP (g (h d))) (glue (h d)) q[ ⟧b idp₀ bb⟦ d ⟧a idp₀ ] =⟨ transp-cBP-glue d (⟧b idp₀ bb⟦ d ⟧a idp₀) ⟩ q[ ⟧b idp₀ bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀ ] =⟨ quot-rel (pcBBr-idp₀-idp₀ (pc-b idp₀)) ⟩ q[ ⟧b idp₀ ] =∎) (λ _ _ _ → prop-has-all-paths-↓ {{↓-level ⟨⟩}}) encode : ∀ {p₀ p₁} → p₀ =₀ p₁ → code p₀ p₁ encode {p₀} {p₁} pPP = transport₀ (code p₀) {{code-is-set {p₀} {p₁}}} pPP (encode-idp p₀) abstract decode-encode-idp : ∀ p → decode {p} {p} (encode-idp p) == idp₀ decode-encode-idp = Pushout-elim {P = λ p → decode {p} {p} (encode-idp p) == idp₀} (λ _ → idp) (λ _ → idp) (λ c → prop-has-all-paths-↓) decode-encode' : ∀ {p₀ p₁} (pPP : p₀ == p₁) → decode {p₀} {p₁} (encode [ pPP ]) == [ pPP ] decode-encode' idp = decode-encode-idp _ decode-encode : ∀ {p₀ p₁} (pPP : p₀ =₀ p₁) → decode {p₀} {p₁} (encode pPP) == pPP decode-encode = Trunc-elim decode-encode' abstract transp-idcAA-r : ∀ {a₀ a₁} (p : a₀ == a₁) -- [idc] = identity code → transport (codeAA a₀) p q[ ⟧a idp₀ ] == q[ ⟧a [ p ] ] transp-idcAA-r idp = idp encode-decodeAA : ∀ {a₀ a₁} (c : precodeAA a₀ a₁) → encode (decodeAA q[ c ]) == q[ c ] encode-decodeAB : ∀ {a₀ b₁} (c : precodeAB a₀ b₁) → encode (decodeAB q[ c ]) == q[ c ] encode-decodeAA {a₀} (pc-a pA) = Trunc-elim {P = λ pA → encode (decodeAA q[ ⟧a pA ]) == q[ ⟧a pA ]} (λ pA → transport (codeAP a₀) (ap left pA) q[ ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ ⟧a idp₀ ]) (∘-ap (codeAP a₀) left pA) ⟩ transport (codeAA a₀) pA q[ ⟧a idp₀ ] =⟨ transp-idcAA-r pA ⟩ q[ ⟧a [ pA ] ] =∎) pA encode-decodeAA {a₀} (pc-aba d pc pA) = Trunc-elim {P = λ pA → encode (decodeAA q[ pc ab⟦ d ⟧a pA ]) == q[ pc ab⟦ d ⟧a pA ]} (λ pA → encode (decodeAB q[ pc ] ∙₀' [ ! (glue (h d)) ∙' ap left pA ]) =⟨ transp₀-∙₀' {{λ {p₁} → code-is-set {left a₀} {p₁}}} (decodeAB q[ pc ]) [ ! (glue (h d)) ∙' ap left pA ] (encode-idp (left a₀)) ⟩ transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA) (encode (decodeAB q[ pc ])) =⟨ ap (transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA)) (encode-decodeAB pc) ⟩ transport (codeAP a₀) (! (glue (h d)) ∙' ap left pA) q[ pc ] =⟨ transp-∙' {B = codeAP a₀} (! (glue (h d))) (ap left pA) q[ pc ] ⟩ transport (codeAP a₀) (ap left pA) (transport (codeAP a₀) (! (glue (h d))) q[ pc ]) =⟨ ap (transport (codeAP a₀) (ap left pA)) (transp-cAP-!glue d pc) ⟩ transport (codeAP a₀) (ap left pA) q[ pc ab⟦ d ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ pc ab⟦ d ⟧a idp₀ ]) (∘-ap (codeAP a₀) left pA) ⟩ transport (codeAA a₀) pA q[ pc ab⟦ d ⟧a idp₀ ] =⟨ transp-cAA-r d pA (pc ab⟦ d ⟧a idp₀) ⟩ q[ pc ab⟦ d ⟧a idp₀ aa⟦ d ⟧b idp₀ ab⟦ d ⟧a [ pA ] ] =⟨ quot-rel (pcAAr-cong (pcABr-idp₀-idp₀ pc) [ pA ]) ⟩ q[ pc ab⟦ d ⟧a [ pA ] ] =∎) pA encode-decodeAB {a₀} (pc-aab d pc pB) = Trunc-elim {P = λ pB → encode (decodeAB q[ pc aa⟦ d ⟧b pB ]) == q[ pc aa⟦ d ⟧b pB ]} (λ pB → encode (decodeAA q[ pc ] ∙₀' [ glue (h d) ∙' ap right pB ]) =⟨ transp₀-∙₀' {{λ {p₁} → code-is-set {left a₀} {p₁}}} (decodeAA q[ pc ]) [ glue (h d) ∙' ap right pB ] (encode-idp (left a₀)) ⟩ transport (codeAP a₀) (glue (h d) ∙' ap right pB) (encode (decodeAA q[ pc ])) =⟨ ap (transport (codeAP a₀) (glue (h d) ∙' ap right pB)) (encode-decodeAA pc) ⟩ transport (codeAP a₀) (glue (h d) ∙' ap right pB) q[ pc ] =⟨ transp-∙' {B = codeAP a₀} (glue (h d)) (ap right pB) q[ pc ] ⟩ transport (codeAP a₀) (ap right pB) (transport (codeAP a₀) (glue (h d)) q[ pc ]) =⟨ ap (transport (codeAP a₀) (ap right pB)) (transp-cAP-glue d pc) ⟩ transport (codeAP a₀) (ap right pB) q[ pc aa⟦ d ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ pc aa⟦ d ⟧b idp₀ ]) (∘-ap (codeAP a₀) right pB) ⟩ transport (codeAB a₀) pB q[ pc aa⟦ d ⟧b idp₀ ] =⟨ transp-cAB-r d pB (pc aa⟦ d ⟧b idp₀) ⟩ q[ pc aa⟦ d ⟧b idp₀ ab⟦ d ⟧a idp₀ aa⟦ d ⟧b [ pB ] ] =⟨ quot-rel (pcABr-cong (pcAAr-idp₀-idp₀ pc) [ pB ]) ⟩ q[ pc aa⟦ d ⟧b [ pB ] ] =∎) pB abstract transp-idcBB-r : ∀ {b₀ b₁} (p : b₀ == b₁) -- [idc] = identity code → transport (codeBB b₀) p q[ ⟧b idp₀ ] == q[ ⟧b [ p ] ] transp-idcBB-r idp = idp encode-decodeBA : ∀ {b₀ a₁} (c : precodeBA b₀ a₁) → encode (decodeBA q[ c ]) == q[ c ] encode-decodeBB : ∀ {b₀ b₁} (c : precodeBB b₀ b₁) → encode (decodeBB q[ c ]) == q[ c ] encode-decodeBA {b₀} (pc-bba d pc pA) = Trunc-elim {P = λ pA → encode (decodeBA q[ pc bb⟦ d ⟧a pA ]) == q[ pc bb⟦ d ⟧a pA ]} (λ pA → encode (decodeBB q[ pc ] ∙₀' [ ! (glue (h d)) ∙' ap left pA ]) =⟨ transp₀-∙₀' {{λ {p₁} → code-is-set {right b₀} {p₁}}} (decodeBB q[ pc ]) [ ! (glue (h d)) ∙' ap left pA ] (encode-idp (right b₀)) ⟩ transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA) (encode (decodeBB q[ pc ])) =⟨ ap (transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA)) (encode-decodeBB pc) ⟩ transport (codeBP b₀) (! (glue (h d)) ∙' ap left pA) q[ pc ] =⟨ transp-∙' {B = codeBP b₀} (! (glue (h d))) (ap left pA) q[ pc ] ⟩ transport (codeBP b₀) (ap left pA) (transport (codeBP b₀) (! (glue (h d))) q[ pc ]) =⟨ ap (transport (codeBP b₀) (ap left pA)) (transp-cBP-!glue d pc) ⟩ transport (codeBP b₀) (ap left pA) q[ pc bb⟦ d ⟧a idp₀ ] =⟨ ap (λ e → coe e q[ pc bb⟦ d ⟧a idp₀ ]) (∘-ap (codeBP b₀) left pA) ⟩ transport (codeBA b₀) pA q[ pc bb⟦ d ⟧a idp₀ ] =⟨ transp-cBA-r d pA (pc bb⟦ d ⟧a idp₀) ⟩ q[ pc bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀ bb⟦ d ⟧a [ pA ] ] =⟨ quot-rel (pcBAr-cong (pcBBr-idp₀-idp₀ pc) [ pA ]) ⟩ q[ pc bb⟦ d ⟧a [ pA ] ] =∎) pA encode-decodeBB {b₀} (pc-b pB) = Trunc-elim {P = λ pB → encode (decodeBB q[ ⟧b pB ]) == q[ ⟧b pB ]} (λ pB → transport (codeBP b₀) (ap right pB) q[ ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ ⟧b idp₀ ]) (∘-ap (codeBP b₀) right pB) ⟩ transport (codeBB b₀) pB q[ ⟧b idp₀ ] =⟨ transp-idcBB-r pB ⟩ q[ ⟧b [ pB ] ] =∎) pB encode-decodeBB {b₀} (pc-bab d pc pB) = Trunc-elim {P = λ pB → encode (decodeBB q[ pc ba⟦ d ⟧b pB ]) == q[ pc ba⟦ d ⟧b pB ]} (λ pB → encode (decodeBA q[ pc ] ∙₀' [ glue (h d) ∙' ap right pB ]) =⟨ transp₀-∙₀' {{λ {p₁} → code-is-set {right b₀} {p₁}}} (decodeBA q[ pc ]) [ glue (h d) ∙' ap right pB ] (encode-idp (right b₀)) ⟩ transport (codeBP b₀) (glue (h d) ∙' ap right pB) (encode (decodeBA q[ pc ])) =⟨ ap (transport (codeBP b₀) (glue (h d) ∙' ap right pB)) (encode-decodeBA pc) ⟩ transport (codeBP b₀) (glue (h d) ∙' ap right pB) q[ pc ] =⟨ transp-∙' {B = codeBP b₀} (glue (h d)) (ap right pB) q[ pc ] ⟩ transport (codeBP b₀) (ap right pB) (transport (codeBP b₀) (glue (h d)) q[ pc ]) =⟨ ap (transport (codeBP b₀) (ap right pB)) (transp-cBP-glue d pc) ⟩ transport (codeBP b₀) (ap right pB) q[ pc ba⟦ d ⟧b idp₀ ] =⟨ ap (λ e → coe e q[ pc ba⟦ d ⟧b idp₀ ]) (∘-ap (codeBP b₀) right pB) ⟩ transport (codeBB b₀) pB q[ pc ba⟦ d ⟧b idp₀ ] =⟨ transp-cBB-r d pB (pc ba⟦ d ⟧b idp₀) ⟩ q[ pc ba⟦ d ⟧b idp₀ bb⟦ d ⟧a idp₀ ba⟦ d ⟧b [ pB ] ] =⟨ quot-rel (pcBBr-cong (pcBAr-idp₀-idp₀ pc) [ pB ]) ⟩ q[ pc ba⟦ d ⟧b [ pB ] ] =∎) pB abstract encode-decode : ∀ {p₀ p₁} (cPP : code p₀ p₁) → encode {p₀} {p₁} (decode {p₀} {p₁} cPP) == cPP encode-decode {p₀} {p₁} = Pushout-elim {P = λ p₀ → ∀ p₁ → (cPP : code p₀ p₁) → encode (decode {p₀} {p₁} cPP) == cPP} (λ a₀ → Pushout-elim (λ a₁ → SetQuot-elim {P = λ cPP → encode (decodeAA cPP) == cPP} (encode-decodeAA {a₀} {a₁}) (λ _ → prop-has-all-paths-↓)) (λ b₁ → SetQuot-elim {P = λ cPP → encode (decodeAB cPP) == cPP} (encode-decodeAB {a₀} {b₁}) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓)) (λ b₀ → Pushout-elim (λ a₁ → SetQuot-elim {P = λ cPP → encode (decodeBA cPP) == cPP} (encode-decodeBA {b₀} {a₁}) (λ _ → prop-has-all-paths-↓)) (λ b₁ → SetQuot-elim {P = λ cPP → encode (decodeBB cPP) == cPP} (encode-decodeBB {b₀} {b₁}) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓ {{Π-level (λ p₁ → Π-level (λ cPP → has-level-apply (codeBP-is-set {p₁ = p₁}) _ _))}}) p₀ p₁ vankampen : ∀ p₀ p₁ → (p₀ =₀ p₁) ≃ code p₀ p₁ vankampen p₀ p₁ = equiv (encode {p₀} {p₁}) (decode {p₀} {p₁}) (encode-decode {p₀} {p₁}) (decode-encode {p₀} {p₁})
{ "alphanum_fraction": 0.4972813126, "avg_line_length": 50.8883495146, "ext": "agda", "hexsha": "aee8c42f499aeac68a4b43f481f251608aea28a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/VanKampen.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/VanKampen.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/VanKampen.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4591, "size": 10483 }
module evenodd where mutual data Even : Set where Z : Even S : Odd -> Even data Odd : Set where S' : Even -> Odd
{ "alphanum_fraction": 0.5547445255, "avg_line_length": 12.4545454545, "ext": "agda", "hexsha": "2f4d8611d38cf2c388a2b0a08339dec3e55c45e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/beyond/evenodd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/beyond/evenodd.agda", "max_line_length": 23, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/beyond/evenodd.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 44, "size": 137 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Predicate lifting for refinement types ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Refinement.Relation.Unary.All where open import Level open import Data.Refinement open import Function.Base open import Relation.Unary private variable a b p q : Level A : Set a B : Set b module _ {P : A → Set p} where All : (A → Set q) → Refinement A P → Set q All P (a , _) = P a
{ "alphanum_fraction": 0.4956369983, "avg_line_length": 22.0384615385, "ext": "agda", "hexsha": "4fe994de7ba79b1b5e2c76ffe9298cc5355eacc5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Refinement/Relation/Unary/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Refinement/Relation/Unary/All.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Refinement/Relation/Unary/All.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 127, "size": 573 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle sha256 sha256-cr open EpochConfig open import LibraBFT.Yasm.Base (ℓ+1 0ℓ) EpochConfig epochId authorsN -- In this module, we instantiate the system model with parameters to -- model a system using the simple implementation model we have so -- far, which aims to obey the VotesOnceRule, but not LockedRoundRule -- yet. This will evolve as we build out a model of a real -- implementation. module LibraBFT.Concrete.System.Parameters where ConcSysParms : SystemParameters ConcSysParms = mkSysParms NodeId _≟NodeId_ EventProcessor fakeEP NetworkMsg Vote sig-Vote _⊂Msg_ (_^∙ vEpoch) initialEventProcessorAndMessages peerStepWrapper
{ "alphanum_fraction": 0.6867838044, "avg_line_length": 36.3611111111, "ext": "agda", "hexsha": "580c1caf1c0dc1691c654c29770b0a102c6489bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/System/Parameters.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/System/Parameters.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/System/Parameters.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 319, "size": 1309 }
module Ag11 where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc) open import Data.Empty using (⊥; ⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_) open import Ag09 using (_≃_; extensionality) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contraposition) open import Ag03 using (_⟨_) ⟨-irreflexive : ∀ (n : ℕ) → ¬ (n ⟨ n) ⟨-irreflexive (suc n) (_⟨_.s⟨s H) = ⟨-irreflexive n H ⊎-dual-× : ∀ {A B : Set} → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B) ⊎-dual-× = record { to = λ z → (λ x → z (inj₁ x)) Data.Product., (λ x → z (inj₂ x)) ; from = λ{ (fst Data.Product., snd) → λ {(inj₁ x) → fst x; (inj₂ y) → snd y} } ; from∘to = λ x → extensionality λ { (inj₁ y) → refl ; (inj₂ z) → refl } ; to∘from = λ {(fst Data.Product., snd) → refl} } -- ×-dual-⊎ : ∀ {A B : Set} → ¬ (A × B) ≃ (¬ A) ⊎ (¬ B) -- ×-dual-⊎ = -- record -- { to = λ x → inj₁ λ y → {!!} -- ; from = λ { (inj₁ x) → λ z → x (Data.Product.proj₁ z) ; (inj₂ y) → λ z → y (Data.Product.proj₂ z)} -- ; from∘to = {!!} -- ; to∘from = {!!} -- } postulate em : ∀ {A : Set} → A ⊎ ¬ A em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A) em-irrefutable k = k (inj₂ (λ x → k (inj₁ x))) postulate dne : ∀ {A : Set} → ¬ ¬ A → A em-dne : ∀ {A : Set} → (A ⊎ ¬ A) → (¬ ¬ A → A) em-dne (inj₁ x) ¬¬A = x em-dne (inj₂ y) ¬¬A = ⊥-elim (¬¬A y) dne-em : (∀ (A : Set) → ¬ ¬ A → A) → (∀ (A : Set) → A ⊎ ¬ A) dne-em H = λ a → H (a ⊎ ((x : a) → ⊥)) (λ z → z (inj₂ (λ x → z (inj₁ x))))
{ "alphanum_fraction": 0.5163147793, "avg_line_length": 31.8979591837, "ext": "agda", "hexsha": "45499d732eb383dcb54da30daacda49cff6ce719", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Ag11.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Ag11.agda", "max_line_length": 103, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Ag11.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 694, "size": 1563 }
-- Andreas, Jesper, 2015-07-02 Error in copyScope {-# OPTIONS -v tc.decl:5 #-} -- KEEP, this forced Agda to look at A.Decls and loop -- To trigger the bug, it is important that -- the main module is in a subdirectory of the imported module. module Issue1597.Main2 where open import Issue1597 -- external import is needed module B where open A public -- public is needed module C = B -- hanged when trying to print the Syntax.Abstract.Declarations
{ "alphanum_fraction": 0.7298474946, "avg_line_length": 28.6875, "ext": "agda", "hexsha": "4353bda76d0c98c3b10ed4cc70c570e46ef5e439", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1597/Main2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1597/Main2.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1597/Main2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 123, "size": 459 }
------------------------------------------------------------------------ -- Aczel's structure identity principle (for 1-categories), more or -- less as found in "Homotopy Type Theory: Univalent Foundations of -- Mathematics" (first edition) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Structure-identity-principle {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq using (_↔_; Σ-≡,≡↔≡) open import Category eq open Derived-definitions-and-properties eq open import Equality.Decidable-UIP eq open import Equivalence eq hiding (id; _∘_; inverse; lift-equality) open import Function-universe eq hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Logical-equivalence using (_⇔_) open import Prelude hiding (id) -- Standard notions of structure. record Standard-notion-of-structure {c₁ c₂} ℓ₁ ℓ₂ (C : Precategory c₁ c₂) : Type (c₁ ⊔ c₂ ⊔ lsuc (ℓ₁ ⊔ ℓ₂)) where open Precategory C field P : Obj → Type ℓ₁ H : ∀ {X Y} (p : P X) (q : P Y) → Hom X Y → Type ℓ₂ H-prop : ∀ {X Y} {p : P X} {q : P Y} (f : Hom X Y) → Is-proposition (H p q f) H-id : ∀ {X} {p : P X} → H p p id H-∘ : ∀ {X Y Z} {p : P X} {q : P Y} {r : P Z} {f g} → H p q f → H q r g → H p r (g ∙ f) H-antisymmetric : ∀ {X} (p q : P X) → H p q id → H q p id → p ≡ q -- P constructs sets. (The proof was suggested by Michael Shulman in -- a mailing list post.) P-set : ∀ A → Is-set (P A) P-set A = propositional-identity⇒set (λ p q → H p q id × H q p id) (λ _ _ → ×-closure 1 (H-prop id) (H-prop id)) (λ _ → H-id , H-id) (λ p q → uncurry (H-antisymmetric p q)) -- Two Str morphisms (see below) of equal type are equal if their -- first components are equal. lift-equality : {X Y : ∃ P} {f g : ∃ (H (proj₂ X) (proj₂ Y))} → proj₁ f ≡ proj₁ g → f ≡ g lift-equality eq = Σ-≡,≡→≡ eq (H-prop _ _ _) -- A derived precategory. Str : Precategory (c₁ ⊔ ℓ₁) (c₂ ⊔ ℓ₂) Str = record { precategory = ∃ P , (λ { (X , p) (Y , q) → ∃ (H p q) , Σ-closure 2 Hom-is-set (λ f → mono₁ 1 (H-prop f)) }) , (id , H-id) , (λ { (f , hf) (g , hg) → f ∙ g , H-∘ hg hf }) , lift-equality left-identity , lift-equality right-identity , lift-equality assoc } module Str = Precategory Str -- A rearrangement lemma. proj₁-≡→≅-¹ : ∀ {X Y} (X≡Y : X ≡ Y) → proj₁ (Str.≡→≅ X≡Y Str.¹) ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ X≡Y) proj₁-≡→≅-¹ {X , p} = elim¹ (λ X≡Y → proj₁ (Str.≡→≅ X≡Y Str.¹) ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ X≡Y)) (proj₁ (Str.≡→≅ (refl (X , p)) Str.¹) ≡⟨ cong (proj₁ ∘ Str._¹) $ elim-refl (λ {X Y} _ → X Str.≅ Y) _ ⟩ proj₁ (Str.id {X = X , p}) ≡⟨⟩ id {X = X} ≡⟨ sym $ elim-refl (λ {X Y} _ → Hom X Y) _ ⟩ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (refl X) ≡⟨ cong (elim (λ {X Y} _ → Hom X Y) _) $ sym $ cong-refl proj₁ ⟩∎ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ (refl (X , p))) ∎) -- The structure identity principle states that the precategory Str is -- a category (assuming extensionality). -- -- The proof below is based on (but not quite identical to) the one in -- "Homotopy Type Theory: Univalent Foundations of Mathematics" (first -- edition). abstract structure-identity-principle : ∀ {c₁ c₂ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → (C : Category c₁ c₂) → (S : Standard-notion-of-structure ℓ₁ ℓ₂ (Category.precategory C)) → ∀ {X Y} → Is-equivalence (Precategory.≡→≅ (Standard-notion-of-structure.Str S) {X} {Y}) structure-identity-principle ext C S = Str.≡→≅-equivalence-lemma ≡≃≅ ≡≃≅-refl where open Standard-notion-of-structure S module C = Category C -- _≡_ is pointwise equivalent to Str._≅_. module ≅HH≃≅ where to : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) → (X , p) Str.≅ (Y , q) to ((f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) = (f , Hf) , (f⁻¹ , Hf⁻¹) , lift-equality f∙f⁻¹ , lift-equality f⁻¹∙f ≅HH≃≅ : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) ≃ ((X , p) Str.≅ (Y , q)) ≅HH≃≅ {X} {Y} {p} {q} = ↔⇒≃ (record { surjection = record { logical-equivalence = record { to = ≅HH≃≅.to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where from : (X , p) Str.≅ (Y , q) → ∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹) from ((f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) = (f , f⁻¹ , cong proj₁ f∙f⁻¹ , cong proj₁ f⁻¹∙f) , Hf , Hf⁻¹ to∘from : ∀ p → ≅HH≃≅.to (from p) ≡ p to∘from ((f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) = cong₂ (λ f∙f⁻¹ f⁻¹∙f → (f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) (Str.Hom-is-set _ _) (Str.Hom-is-set _ _) from∘to : ∀ p → from (≅HH≃≅.to p) ≡ p from∘to ((f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) = cong₂ (λ f∙f⁻¹ f⁻¹∙f → (f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) (C.Hom-is-set _ _) (C.Hom-is-set _ _) module ≡≡≃≅HH where to : ∀ {X Y} {p : P X} {q : P Y} → (X≡Y : X ≡ Y) → subst P X≡Y p ≡ q → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹) to {X} {p = p} X≡Y p≡q = elim¹ (λ X≡Y → ∀ {q} → subst P X≡Y p ≡ q → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹)) (elim¹ (λ {q} _ → H p q (C.≡→≅ (refl X) C.¹) × H q p (C.≡→≅ (refl X) C.⁻¹)) ( subst (λ { (q , f) → H p q f }) (sym $ cong₂ _,_ (subst P (refl X) p ≡⟨ subst-refl P _ ⟩∎ p ∎) (C.≡→≅ (refl X) C.¹ ≡⟨ cong C._¹ C.≡→≅-refl ⟩∎ C.id ∎)) H-id , subst (λ { (q , f) → H q p f }) (sym $ cong₂ _,_ (subst P (refl X) p ≡⟨ subst-refl P _ ⟩∎ p ∎) (C.≡→≅ (refl X) C.⁻¹ ≡⟨ cong C._⁻¹ C.≡→≅-refl ⟩∎ C.id ∎)) H-id )) X≡Y p≡q to-refl : ∀ {X} {p : P X} → subst (λ f → H p p (f C.¹) × H p p (f C.⁻¹)) C.≡→≅-refl (to (refl X) (subst-refl P p)) ≡ (H-id , H-id) to-refl = cong₂ _,_ (H-prop _ _ _) (H-prop _ _ _) ≡≡≃≅HH : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (eq : X ≡ Y) → subst P eq p ≡ q) ≃ (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) ≡≡≃≅HH {X} {p = p} {q} = Σ-preserves C.≡≃≅ λ X≡Y → _↔_.to (⇔↔≃ ext (P-set _) (×-closure 1 (H-prop _) (H-prop _))) (record { to = ≡≡≃≅HH.to X≡Y ; from = from X≡Y }) where from : ∀ X≡Y → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹) → subst P X≡Y p ≡ q from X≡Y (H¹ , H⁻¹) = elim¹ (λ {Y} X≡Y → ∀ {q} → H p q (C.≡→≅ X≡Y C.¹) → H q p (C.≡→≅ X≡Y C.⁻¹) → subst P X≡Y p ≡ q) (λ {q} H¹ H⁻¹ → subst P (refl X) p ≡⟨ subst-refl P _ ⟩ p ≡⟨ H-antisymmetric p q (subst (H p q) (cong C._¹ C.≡→≅-refl) H¹) (subst (H q p) (cong C._⁻¹ C.≡→≅-refl) H⁻¹) ⟩∎ q ∎) X≡Y H¹ H⁻¹ ≡≃≅ : ∀ {X Y} {p : P X} {q : P Y} → _≡_ {A = ∃ P} (X , p) (Y , q) ≃ ((X , p) Str.≅ (Y , q)) ≡≃≅ = ≅HH≃≅ ⊚ ≡≡≃≅HH ⊚ ↔⇒≃ (inverse Σ-≡,≡↔≡) -- …and the proof maps reflexivity to the identity morphism. ≡≃≅-refl : ∀ {Xp} → _≃_.to ≡≃≅ (refl Xp) Str.¹ ≡ Str.id ≡≃≅-refl {X , p} = cong Str._¹ ( ≅HH≃≅.to (_≃_.to ≡≡≃≅HH (Σ-≡,≡←≡ (refl (_,_ {B = P} X p)))) ≡⟨ cong (≅HH≃≅.to ∘ _≃_.to ≡≡≃≅HH) $ Σ-≡,≡←≡-refl {B = P} ⟩ ≅HH≃≅.to (_≃_.to ≡≡≃≅HH (refl X , subst-refl P p)) ≡⟨⟩ ≅HH≃≅.to (C.≡→≅ (refl X) , ≡≡≃≅HH.to (refl X) (subst-refl P p)) ≡⟨ cong ≅HH≃≅.to $ Σ-≡,≡→≡ C.≡→≅-refl ≡≡≃≅HH.to-refl ⟩ ≅HH≃≅.to (C.id≅ , H-id , H-id) ≡⟨ refl _ ⟩∎ Str.id≅ ∎)
{ "alphanum_fraction": 0.4028150134, "avg_line_length": 39.2631578947, "ext": "agda", "hexsha": "38f2e464a66d2a02a7e2bad8fb52b6971cb68246", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Structure-identity-principle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Structure-identity-principle.agda", "max_line_length": 137, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Structure-identity-principle.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3809, "size": 8952 }
module container.m.core where open import level open import sum open import equality.core open import equality.calculus open import function.core open import function.isomorphism open import function.extensionality open import container.core open import container.equality open import container.fixpoint infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} module Definition {li la lb}(c : Container li la lb) where open Container c public -- definition of indexed M-types using native Agda coinduction data M (i : I) : Set (la ⊔ lb) where inf : (a : A i) → ((b : B a) → ∞ (M (r b))) → M i -- the terminal coalgebra out : M →ⁱ F M out i (inf a f) = a , ♭ ∘' f -- normally, the constructor can be defined in terms of out and unfold, but -- Agda provides it natively, together with a definitional β rule inM' : F M →ⁱ M inM' i (a , f) = inf a (λ x → ♯ (f x)) inM'-β : {i : I}(x : F M i) → out i (inM' i x) ≡ x inM'-β x = refl module Elim {lx}{X : I → Set lx} (α : X →ⁱ F X) where -- anamorphisms unfold : X →ⁱ M unfold i x = inf a f where u : F X i u = α i x a : A i a = proj₁ u f : (b : B a) → ∞ (M (r b)) f b = ♯ unfold (r b) (proj₂ u b) -- computational rule for anamorphisms -- this holds definitionally unfold-β : {i : I}(x : X i) → out i (unfold i x) ≡ imap unfold i (α i x) unfold-β x = refl -- the corresponding η rule doesn't hold, so we postulate it postulate unfold-η : (h : X →ⁱ M) → (∀ {i} (x : X i) → out i (h i x) ≡ imap h i (α i x)) → ∀ {i} (x : X i) → h i x ≡ unfold i x open Elim public -- using η, we can prove that the unfolding of out is the identity unfold-id : ∀ {i} (x : M i) → unfold out i x ≡ x unfold-id x = sym (unfold-η out idⁱ (λ _ → refl) x) -- the usual definition of the constructor inM : F M →ⁱ M inM = unfold (imap out) -- the constructor is the inverse of the destructor inM-η : ∀ {i} (x : M i) → inM i (out i x) ≡ x inM-η x = unfold-η out (inM ∘ⁱ out) (λ _ → refl) x · unfold-id x inM-β : ∀ {i} (x : F M i) → out i (inM i x) ≡ x inM-β {i} x = ap u (funext (λ i → funext inM-η)) where u : (M →ⁱ M) → F M i u h = imap h i x fixpoint : ∀ i → M i ≅ F M i fixpoint i = iso (out i) (inM i) inM-η inM-β -- now we can prove that the constructor provided by Agda is equal to the -- usual one inM-alt : ∀ {i} (x : F M i) → inM' i x ≡ inM i x inM-alt {i} x = sym (inM-η (inM' i x))
{ "alphanum_fraction": 0.5502022803, "avg_line_length": 28.0309278351, "ext": "agda", "hexsha": "8efc7279cabdfa5a7ecf629b61a9948897fae628", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/core.agda", "max_line_length": 77, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1020, "size": 2719 }
{-# OPTIONS --without-K --safe #-} open import Level record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Obj → Obj → Set ℓ _≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _ CommutativeSquare f g h i = h ∘ f ≈ i ∘ g infix 10 _[_,_] _[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ _[_,_] = Category._⇒_ module Inner {x₁ x₂ x₃} (CC : Category x₁ x₂ x₃) where open import Level private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level open import Data.Product using (_×_; Σ; _,_; curry′; proj₁; proj₂; zip; map; <_,_>; swap) zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y) zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q) syntax zipWith f g h = f -< h >- g record Functor (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where eta-equality private module C = Category C private module D = Category D field F₀ : C.Obj → D.Obj F₁ : ∀ {A B} (f : C [ A , B ]) → D [ F₀ A , F₀ B ] Product : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product C D = record { Obj = C.Obj × D.Obj ; _⇒_ = C._⇒_ -< _×_ >- D._⇒_ ; _≈_ = C._≈_ -< _×_ >- D._≈_ ; _∘_ = zip C._∘_ D._∘_ } where module C = Category C module D = Category D Bifunctor : Category o ℓ e → Category o′ ℓ′ e′ → Category o″ ℓ″ e″ → Set _ Bifunctor C D E = Functor (Product C D) E private module CC = Category CC open CC infix 4 _≅_ record _≅_ (A B : Obj) : Set (x₂) where field from : A ⇒ B to : B ⇒ A private variable X Y Z W : Obj f g h : X ⇒ Y record Monoidal : Set (x₁ ⊔ x₂ ⊔ x₃) where infixr 10 _⊗₀_ _⊗₁_ field ⊗ : Bifunctor CC CC CC module ⊗ = Functor ⊗ open Functor ⊗ _⊗₀_ : Obj → Obj → Obj _⊗₀_ = curry′ F₀ -- this is also 'curry', but a very-dependent version _⊗₁_ : X ⇒ Y → Z ⇒ W → X ⊗₀ Z ⇒ Y ⊗₀ W f ⊗₁ g = F₁ (f , g) field associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z) module associator {X} {Y} {Z} = _≅_ (associator {X} {Y} {Z}) -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that private α⇒ = associator.from α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} field assoc-commute-from : CommutativeSquare ((f ⊗₁ g) ⊗₁ h) α⇒ α⇒ (f ⊗₁ (g ⊗₁ h)) assoc-commute-to : CommutativeSquare (f ⊗₁ (g ⊗₁ h)) α⇐ α⇐ ((f ⊗₁ g) ⊗₁ h)
{ "alphanum_fraction": 0.498128509, "avg_line_length": 29.4128440367, "ext": "agda", "hexsha": "18e948affb321af2fda685b7f446991e06a725a6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/LibSucceed/Issue4312.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/LibSucceed/Issue4312.agda", "max_line_length": 311, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/LibSucceed/Issue4312.agda", "max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z", "num_tokens": 1401, "size": 3206 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Containers, based on the work of Abbott and others ------------------------------------------------------------------------ module Data.Container where open import Data.M open import Data.Product as Prod hiding (map) open import Data.W open import Function renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse using (_↔_; module Inverse) import Function.Related as Related open import Level open import Relation.Binary using (Setoid; module Setoid; Preorder; module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl) open import Relation.Unary using (_⊆_) ------------------------------------------------------------------------ -- Containers -- A container is a set of shapes, and for every shape a set of -- positions. infix 5 _▷_ record Container (ℓ : Level) : Set (suc ℓ) where constructor _▷_ field Shape : Set ℓ Position : Shape → Set ℓ open Container public -- The semantics ("extension") of a container. ⟦_⟧ : ∀ {ℓ} → Container ℓ → Set ℓ → Set ℓ ⟦ C ⟧ X = Σ[ s ∈ Shape C ] (Position C s → X) -- The least and greatest fixpoints of a container. μ : ∀ {ℓ} → Container ℓ → Set ℓ μ C = W (Shape C) (Position C) ν : ∀ {ℓ} → Container ℓ → Set ℓ ν C = M (Shape C) (Position C) -- Equality, parametrised on an underlying relation. Eq : ∀ {c ℓ} {C : Container c} {X Y : Set c} → (X → Y → Set ℓ) → ⟦ C ⟧ X → ⟦ C ⟧ Y → Set (c ⊔ ℓ) Eq {C = C} _≈_ (s , f) (s′ , f′) = Σ[ eq ∈ s ≡ s′ ] (∀ p → f p ≈ f′ (P.subst (Position C) eq p)) private -- Note that, if propositional equality were extensional, then -- Eq _≡_ and _≡_ would coincide. Eq⇒≡ : ∀ {c} {C : Container c} {X : Set c} {xs ys : ⟦ C ⟧ X} → P.Extensionality c c → Eq _≡_ xs ys → xs ≡ ys Eq⇒≡ {xs = s , f} {ys = .s , f′} ext (refl , f≈f′) = P.cong (_,_ s) (ext f≈f′) setoid : ∀ {ℓ} → Container ℓ → Setoid ℓ ℓ → Setoid ℓ ℓ setoid C X = record { Carrier = ⟦ C ⟧ X.Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = (refl , λ _ → X.refl) ; sym = sym ; trans = λ {_ _ zs} → trans zs } } where module X = Setoid X _≈_ = Eq X._≈_ sym : {xs ys : ⟦ C ⟧ X.Carrier} → xs ≈ ys → ys ≈ xs sym {_ , _} {._ , _} (refl , f) = (refl , X.sym ⟨∘⟩ f) trans : ∀ {xs ys : ⟦ C ⟧ X.Carrier} zs → xs ≈ ys → ys ≈ zs → xs ≈ zs trans {_ , _} {._ , _} (._ , _) (refl , f₁) (refl , f₂) = (refl , λ p → X.trans (f₁ p) (f₂ p)) ------------------------------------------------------------------------ -- Functoriality -- Containers are functors. map : ∀ {c} {C : Container c} {X Y} → (X → Y) → ⟦ C ⟧ X → ⟦ C ⟧ Y map f = Prod.map ⟨id⟩ (λ g → f ⟨∘⟩ g) module Map where identity : ∀ {c} {C : Container c} X → let module X = Setoid X in (xs : ⟦ C ⟧ X.Carrier) → Eq X._≈_ (map ⟨id⟩ xs) xs identity {C = C} X xs = Setoid.refl (setoid C X) composition : ∀ {c} {C : Container c} {X Y : Set c} Z → let module Z = Setoid Z in (f : Y → Z.Carrier) (g : X → Y) (xs : ⟦ C ⟧ X) → Eq Z._≈_ (map f (map g xs)) (map (f ⟨∘⟩ g) xs) composition {C = C} Z f g xs = Setoid.refl (setoid C Z) ------------------------------------------------------------------------ -- Container morphisms -- Representation of container morphisms. record _⇒_ {c} (C₁ C₂ : Container c) : Set c where field shape : Shape C₁ → Shape C₂ position : ∀ {s} → Position C₂ (shape s) → Position C₁ s open _⇒_ public -- Interpretation of _⇒_. ⟪_⟫ : ∀ {c} {C₁ C₂ : Container c} → C₁ ⇒ C₂ → ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X ⟪ m ⟫ xs = (shape m (proj₁ xs) , proj₂ xs ⟨∘⟩ position m) module Morphism where -- Naturality. Natural : ∀ {c} {C₁ C₂ : Container c} → (∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Set (suc c) Natural {c} {C₁} m = ∀ {X} (Y : Setoid c c) → let module Y = Setoid Y in (f : X → Y.Carrier) (xs : ⟦ C₁ ⟧ X) → Eq Y._≈_ (m $ map f xs) (map f $ m xs) -- Natural transformations. NT : ∀ {c} (C₁ C₂ : Container c) → Set (suc c) NT C₁ C₂ = ∃ λ (m : ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Natural m -- Container morphisms are natural. natural : ∀ {c} {C₁ C₂ : Container c} (m : C₁ ⇒ C₂) → Natural ⟪ m ⟫ natural {C₂ = C₂} m Y f xs = Setoid.refl (setoid C₂ Y) -- In fact, all natural functions of the right type are container -- morphisms. complete : ∀ {c} {C₁ C₂ : Container c} → (nt : NT C₁ C₂) → ∃ λ m → (X : Setoid c c) → let module X = Setoid X in (xs : ⟦ C₁ ⟧ X.Carrier) → Eq X._≈_ (proj₁ nt xs) (⟪ m ⟫ xs) complete (nt , nat) = (m , λ X xs → nat X (proj₂ xs) (proj₁ xs , ⟨id⟩)) where m = record { shape = λ s → proj₁ (nt (s , ⟨id⟩)) ; position = λ {s} → proj₂ (nt (s , ⟨id⟩)) } -- Identity. id : ∀ {c} (C : Container c) → C ⇒ C id _ = record {shape = ⟨id⟩; position = ⟨id⟩} -- Composition. infixr 9 _∘_ _∘_ : ∀ {c} {C₁ C₂ C₃ : Container c} → C₂ ⇒ C₃ → C₁ ⇒ C₂ → C₁ ⇒ C₃ f ∘ g = record { shape = shape f ⟨∘⟩ shape g ; position = position g ⟨∘⟩ position f } -- Identity and composition commute with ⟪_⟫. id-correct : ∀ {c} {C : Container c} {X : Set c} → ⟪ id C ⟫ {X} ≗ ⟨id⟩ id-correct xs = refl ∘-correct : ∀ {c} {C₁ C₂ C₃ : Container c} (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) {X : Set c} → ⟪ f ∘ g ⟫ {X} ≗ (⟪ f ⟫ ⟨∘⟩ ⟪ g ⟫) ∘-correct f g xs = refl ------------------------------------------------------------------------ -- Linear container morphisms record _⊸_ {c} (C₁ C₂ : Container c) : Set c where field shape⊸ : Shape C₁ → Shape C₂ position⊸ : ∀ {s} → Position C₂ (shape⊸ s) ↔ Position C₁ s morphism : C₁ ⇒ C₂ morphism = record { shape = shape⊸ ; position = _⟨$⟩_ (Inverse.to position⊸) } ⟪_⟫⊸ : ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X ⟪_⟫⊸ = ⟪ morphism ⟫ open _⊸_ public using (shape⊸; position⊸; ⟪_⟫⊸) ------------------------------------------------------------------------ -- All and any -- All. □ : ∀ {c} {C : Container c} {X : Set c} → (X → Set c) → (⟦ C ⟧ X → Set c) □ P (s , f) = ∀ p → P (f p) □-map : ∀ {c} {C : Container c} {X : Set c} {P Q : X → Set c} → P ⊆ Q → □ {C = C} P ⊆ □ Q □-map P⊆Q = _⟨∘⟩_ P⊆Q -- Any. ◇ : ∀ {c} {C : Container c} {X : Set c} → (X → Set c) → (⟦ C ⟧ X → Set c) ◇ P (s , f) = ∃ λ p → P (f p) ◇-map : ∀ {c} {C : Container c} {X : Set c} {P Q : X → Set c} → P ⊆ Q → ◇ {C = C} P ⊆ ◇ Q ◇-map P⊆Q = Prod.map ⟨id⟩ P⊆Q -- Membership. infix 4 _∈_ _∈_ : ∀ {c} {C : Container c} {X : Set c} → X → ⟦ C ⟧ X → Set c x ∈ xs = ◇ (_≡_ x) xs -- Bag and set equality and related preorders. Two containers xs and -- ys are equal when viewed as sets if, whenever x ∈ xs, we also have -- x ∈ ys, and vice versa. They are equal when viewed as bags if, -- additionally, the sets x ∈ xs and x ∈ ys have the same size. open Related public using (Kind; Symmetric-kind) renaming ( implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag ) [_]-Order : ∀ {ℓ} → Kind → Container ℓ → Set ℓ → Preorder ℓ ℓ ℓ [ k ]-Order C X = Related.InducedPreorder₂ k (_∈_ {C = C} {X = X}) [_]-Equality : ∀ {ℓ} → Symmetric-kind → Container ℓ → Set ℓ → Setoid ℓ ℓ [ k ]-Equality C X = Related.InducedEquivalence₂ k (_∈_ {C = C} {X = X}) infix 4 _∼[_]_ _∼[_]_ : ∀ {c} {C : Container c} {X : Set c} → ⟦ C ⟧ X → Kind → ⟦ C ⟧ X → Set c _∼[_]_ {C = C} {X} xs k ys = Preorder._∼_ ([ k ]-Order C X) xs ys
{ "alphanum_fraction": 0.4830917874, "avg_line_length": 29.1333333333, "ext": "agda", "hexsha": "3d1909ffd83ded3eb9dffb63cb5e609ca23c58be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2971, "size": 7866 }
{-# OPTIONS --prop --rewriting #-} module index where -- Calf language implementation: import Calf -- Case studies: import Examples
{ "alphanum_fraction": 0.7185185185, "avg_line_length": 13.5, "ext": "agda", "hexsha": "5921223fb5fac4f403f9c3e122a6b21f0de96b89", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/index.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/index.agda", "max_line_length": 34, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/index.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 29, "size": 135 }
{-# OPTIONS --allow-unsolved-metas #-} module AgdaFeatureNoInstanceFromHidden where postulate A : Set R : A → A → Set Alrighty : A → Set₁ Alrighty l = ∀ {r} → R l r → Set record Foo (Q : A → Set₁) : Set₁ where field foo : ∀ {x y} → R x y → Q x → Q y open Foo {{...}} postulate instance theInstance : Foo Alrighty works1 : ∀ {x y} → R x y → Alrighty x → Alrighty y works1 r = foo r works2 : ∀ {x y} → R x y → Alrighty x → Alrighty y works2 r ax = works1 r ax works3 : ∀ {x y} → R x y → Alrighty x → Alrighty y works3 r ax = foo {{theInstance}} r ax works4 : ∀ {x y} → R x y → Alrighty x → Alrighty y works4 r ax = foo r (λ {v} → ax {v}) fails : ∀ {x y} → R x y → Alrighty x → Alrighty y fails r ax = {!foo r ax!} {- No instance of type Foo (λ v → R v _r_81 → Set) was found in scope. when checking that r ax are valid arguments to a function of type {Q : A → Set₁} {{r = r₁ : Foo Q}} {x y : A} → R x y → Q x → Q y -}
{ "alphanum_fraction": 0.5948553055, "avg_line_length": 24.5526315789, "ext": "agda", "hexsha": "5ba31ffeafd0bd619d7e7b2f75892b3112658d0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/AgdaFeatureNoInstanceFromHidden.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/AgdaFeatureNoInstanceFromHidden.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/AgdaFeatureNoInstanceFromHidden.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 346, "size": 933 }
module Issue157 where X : Set X = _ error : Set error = Set
{ "alphanum_fraction": 0.6507936508, "avg_line_length": 7, "ext": "agda", "hexsha": "44c7e405e367613e5bbc7a2d9f7c4c43f777aa17", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue157.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue157.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue157.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 63 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Relation.Boolean where open import Light.Library.Data.Boolean as Boolean using (Boolean) open import Light.Package using (Package) open import Light.Level using (_⊔_ ; Lifted) open import Light.Variable.Levels open import Light.Variable.Sets open import Light.Library.Data.Unit as Unit using (Unit ; unit) open import Light.Library.Data.Empty as Empty using (Empty) open import Light.Library.Relation using (Style) open import Light.Implementation.Data.Boolean open import Light.Implementation.Data.Unit open import Light.Implementation.Data.Empty instance relation : Style record { Proposition = λ _ → Boolean ; Index = Unit } relation = record { Implementation } where module Implementation where open Boolean using (true ; false ; ¬_ ; _∧_ ; _∨_ ; _⇢_) public True = Boolean.if_then Unit else Empty False = Boolean.if_then Empty else Unit
{ "alphanum_fraction": 0.7357001972, "avg_line_length": 40.56, "ext": "agda", "hexsha": "ec3cf8725889cc31edb5358095c32dd44836bdb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Relation/Boolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Relation/Boolean.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Relation/Boolean.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 215, "size": 1014 }
------------------------------------------------------------------------ -- The syntax of, and a type system for, an untyped λ-calculus with -- booleans and recursive unary function calls ------------------------------------------------------------------------ open import Prelude module Lambda.Syntax (Name : Type) where open import Equality.Propositional open import Prelude.Size open import Vec.Data equality-with-J ------------------------------------------------------------------------ -- Terms -- Variables are represented using de Bruijn indices. infixl 9 _·_ data Tm (n : ℕ) : Type where var : Fin n → Tm n lam : Tm (suc n) → Tm n _·_ : Tm n → Tm n → Tm n call : Name → Tm n → Tm n con : Bool → Tm n if : Tm n → Tm n → Tm n → Tm n ------------------------------------------------------------------------ -- Closure-based definition of values -- Environments and values. Defined in a module parametrised by the -- type of terms. module Closure (Tm : ℕ → Type) where mutual -- Environments. Env : ℕ → Type Env n = Vec Value n -- Values. Lambdas are represented using closures, so values do -- not contain any free variables. data Value : Type where lam : ∀ {n} → Tm (suc n) → Env n → Value con : Bool → Value ------------------------------------------------------------------------ -- Type system -- Recursive, simple types, defined coinductively. infixr 8 _⇾_ _⇾′_ mutual data Ty (i : Size) : Type where bool : Ty i _⇾′_ : (σ τ : Ty′ i) → Ty i record Ty′ (i : Size) : Type where coinductive field force : {j : Size< i} → Ty j open Ty′ public -- Some type formers. _⇾_ : ∀ {i} → Ty i → Ty i → Ty i σ ⇾ τ = (λ { .force → σ }) ⇾′ (λ { .force → τ }) -- Contexts. Ctxt : ℕ → Type Ctxt n = Vec (Ty ∞) n -- Type system. infix 4 _,_⊢_∈_ data _,_⊢_∈_ (Σ : Name → Ty ∞ × Ty ∞) {n} (Γ : Ctxt n) : Tm n → Ty ∞ → Type where var : ∀ {x} → Σ , Γ ⊢ var x ∈ index Γ x lam : ∀ {t σ τ} → Σ , force σ ∷ Γ ⊢ t ∈ force τ → Σ , Γ ⊢ lam t ∈ σ ⇾′ τ _·_ : ∀ {t₁ t₂ σ τ} → Σ , Γ ⊢ t₁ ∈ σ ⇾′ τ → Σ , Γ ⊢ t₂ ∈ force σ → Σ , Γ ⊢ t₁ · t₂ ∈ force τ call : ∀ {f t} → Σ , Γ ⊢ t ∈ proj₁ (Σ f) → Σ , Γ ⊢ call f t ∈ proj₂ (Σ f) con : ∀ {b} → Σ , Γ ⊢ con b ∈ bool if : ∀ {t₁ t₂ t₃ σ} → Σ , Γ ⊢ t₁ ∈ bool → Σ , Γ ⊢ t₂ ∈ σ → Σ , Γ ⊢ t₃ ∈ σ → Σ , Γ ⊢ if t₁ t₂ t₃ ∈ σ ------------------------------------------------------------------------ -- Examples -- A non-terminating term. ω-body : Tm 1 ω-body = var fzero · var fzero ω : Tm 0 ω = lam ω-body Ω : Tm 0 Ω = ω · ω -- Ω is well-typed. Ω-well-typed : ∀ {Σ} (τ : Ty ∞) → Σ , [] ⊢ Ω ∈ τ Ω-well-typed τ = _·_ {σ = σ} {τ = λ { .force → τ }} (lam (var · var)) (lam (var · var)) where σ : ∀ {i} → Ty′ i force σ = σ ⇾′ λ { .force → τ } -- A call-by-value fixpoint combinator. Z : Tm 0 Z = lam (t · t) where t = lam (var (fsuc fzero) · lam (var (fsuc fzero) · var (fsuc fzero) · var fzero)) -- This combinator is also well-typed. Z-well-typed : ∀ {Σ} {σ τ : Ty ∞} → Σ , [] ⊢ Z ∈ ((σ ⇾ τ) ⇾ (σ ⇾ τ)) ⇾ (σ ⇾ τ) Z-well-typed {σ = σ} {τ = τ} = lam (_·_ {σ = υ} {τ = λ { .force → σ ⇾ τ }} (lam (var · lam (var · var · var))) (lam (var · lam (var · var · var)))) where υ : ∀ {i} → Ty′ i force υ = υ ⇾′ λ { .force → σ ⇾ τ }
{ "alphanum_fraction": 0.4419213974, "avg_line_length": 23.0536912752, "ext": "agda", "hexsha": "f753640494b7bd746d881dd9983d30452aff9cea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Syntax.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1244, "size": 3435 }
open import Relation.Binary.Core module Mergesort.Impl2 {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Sum open import Function open import LRTree {A} open import OList _≤_ mutual merge' : {b : Bound} → OList b → OList b → OList b merge' onil ys = ys merge' xs onil = xs merge' (:< {x = x} b≤x xs) (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = :< b≤x (merge' xs (:< (lexy x≤y) ys)) ... | inj₂ y≤x = :< b≤y (merge'xs (lexy y≤x) xs ys) merge'xs : {b : Bound}{x : A} → LeB b (val x) → OList (val x) → OList b → OList b merge'xs b≤x xs onil = :< b≤x xs merge'xs {x = x} b≤x xs (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = :< b≤x (merge' xs (:< (lexy x≤y) ys)) ... | inj₂ y≤x = :< b≤y (merge'xs (lexy y≤x) xs ys) deal : List A → LRTree deal = foldr insert empty merge : LRTree → OList bot merge empty = onil merge (leaf x) = :< (lebx {val x}) onil merge (node t l r) = merge' (merge l) (merge r) mergesort : List A → OList bot mergesort = merge ∘ deal
{ "alphanum_fraction": 0.5587467363, "avg_line_length": 28.0243902439, "ext": "agda", "hexsha": "5579215cd662ff286535f8b0b581c7b168028780", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Mergesort/Impl2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Mergesort/Impl2.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Mergesort/Impl2.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 484, "size": 1149 }
{-# OPTIONS --without-K #-} module Hmm where -- using the HoTT-Agda library leads to highlighting error (missing metadata) -- open import lib.Base -- open import lib.types.Nat -- using this library does not, yet the code is copied/pasted from HoTT-Agda open import Base S= : {m n : ℕ} → m == n → S m == S n S= idp = idp
{ "alphanum_fraction": 0.6460176991, "avg_line_length": 22.6, "ext": "agda", "hexsha": "8778765fd42e056c6d5677e44bb2fa981f167048", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "aerskine/hott-ex", "max_forks_repo_path": "Hmm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "aerskine/hott-ex", "max_issues_repo_path": "Hmm.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8b6b11fb7ee0c54ce91a19338c5069a69a51dc7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "aerskine/hott-ex", "max_stars_repo_path": "Hmm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 101, "size": 339 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core open import Categories.Category.Monoidal.Core -- This module defines the category of monoids internal to a given monoidal -- category. module Categories.Category.Construction.Monoids {o ℓ e} {𝒞 : Category o ℓ e} (C : Monoidal 𝒞) where open import Level open import Categories.Functor using (Functor) open import Categories.Morphism.Reasoning 𝒞 open import Categories.Object.Monoid C open Category 𝒞 open Monoidal C open HomReasoning open Monoid using (η; μ) open Monoid⇒ Monoids : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e Monoids = record { Obj = Monoid ; _⇒_ = Monoid⇒ ; _≈_ = λ f g → arr f ≈ arr g ; id = record { arr = id ; preserves-μ = identityˡ ○ introʳ (Functor.identity ⊗) ; preserves-η = identityˡ } ; _∘_ = λ f g → record { arr = arr f ∘ arr g ; preserves-μ = glue (preserves-μ f) (preserves-μ g) ○ ∘-resp-≈ʳ (⟺ (Functor.homomorphism ⊗)) ; preserves-η = glueTrianglesˡ (preserves-η f) (preserves-η g) } ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² -- We cannot define equiv = equiv here, because _⇒_ of this category is a -- different level to the _⇒_ of 𝒞. ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Equiv
{ "alphanum_fraction": 0.6550976139, "avg_line_length": 27.1176470588, "ext": "agda", "hexsha": "3e9c6ca8e7131a1f749702c7beb9f0094891d483", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Monoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Monoids.agda", "max_line_length": 99, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Monoids.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 482, "size": 1383 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Homogeneously-indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Homogeneous`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Homogeneous.Definitions where open import Data.Product using (_×_) open import Level using (Level) import Relation.Binary as B open import Relation.Unary.Indexed using (IPred) open import Relation.Binary.Indexed.Homogeneous.Core private variable i a ℓ ℓ₁ ℓ₂ : Level I : Set i ------------------------------------------------------------------------ -- Definitions module _ (A : I → Set a) where syntax Implies A _∼₁_ _∼₂_ = _∼₁_ ⇒[ A ] _∼₂_ Implies : IRel A ℓ₁ → IRel A ℓ₂ → Set _ Implies _∼₁_ _∼₂_ = ∀ {i} → _∼₁_ B.⇒ (_∼₂_ {i}) Reflexive : IRel A ℓ → Set _ Reflexive _∼_ = ∀ {i} → B.Reflexive (_∼_ {i}) Symmetric : IRel A ℓ → Set _ Symmetric _∼_ = ∀ {i} → B.Symmetric (_∼_ {i}) Transitive : IRel A ℓ → Set _ Transitive _∼_ = ∀ {i} → B.Transitive (_∼_ {i}) Antisymmetric : IRel A ℓ₁ → IRel A ℓ₂ → Set _ Antisymmetric _≈_ _∼_ = ∀ {i} → B.Antisymmetric _≈_ (_∼_ {i}) Decidable : IRel A ℓ → Set _ Decidable _∼_ = ∀ {i} → B.Decidable (_∼_ {i}) Respects : IPred A ℓ₁ → IRel A ℓ₂ → Set _ Respects P _∼_ = ∀ {i} {x y : A i} → x ∼ y → P x → P y Respectsˡ : IRel A ℓ₁ → IRel A ℓ₂ → Set _ Respectsˡ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P x z → P y z Respectsʳ : IRel A ℓ₁ → IRel A ℓ₂ → Set _ Respectsʳ P _∼_ = ∀ {i} {x y z : A i} → x ∼ y → P z x → P z y Respects₂ : IRel A ℓ₁ → IRel A ℓ₂ → Set _ Respects₂ P _∼_ = (Respectsʳ P _∼_) × (Respectsˡ P _∼_)
{ "alphanum_fraction": 0.5375626043, "avg_line_length": 28.9838709677, "ext": "agda", "hexsha": "2bb21d31960f8759deef6a00ea111f31f0437e7c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Definitions.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 655, "size": 1797 }
{-# OPTIONS --rewriting #-} module Luau.ResolveOverloads where open import FFI.Data.Either using (Left; Right) open import Luau.Subtyping using (_<:_; _≮:_; Language; witness; scalar; unknown; never; function-ok) open import Luau.Type using (Type ; _⇒_; _∩_; _∪_; unknown; never) open import Luau.TypeSaturation using (saturate) open import Luau.TypeNormalization using (normalize) open import Properties.Contradiction using (CONTRADICTION) open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:-∪-right; scalar-≮:-never; <:-∪-left; <:-∪-right) open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; _∪_; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun) open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right) -- The domain of a normalized type srcⁿ : Type → Type srcⁿ (S ⇒ T) = S srcⁿ (S ∩ T) = srcⁿ S ∪ srcⁿ T srcⁿ never = unknown srcⁿ T = never -- To get the domain of a type, we normalize it first We need to do -- this, since if we try to use it on non-normalized types, we get -- -- src(number ∩ string) = src(number) ∪ src(string) = never ∪ never -- src(never) = unknown -- -- so src doesn't respect type equivalence. src : Type → Type src (S ⇒ T) = S src T = srcⁿ(normalize T) -- Calculate the result of applying a function type `F` to an argument type `V`. -- We do this by finding an overload of `F` that has the most precise type, -- that is an overload `(Sʳ ⇒ Tʳ)` where `V <: Sʳ` and moreover -- for any other such overload `(S ⇒ T)` we have that `Tʳ <: T`. -- For example if `F` is `(number -> number) & (nil -> nil) & (number? -> number?)` -- then to resolve `F` with argument type `number`, we pick the `number -> number` -- overload, but if the argument is `number?`, we pick `number? -> number?`./ -- Not all types have such a most precise overload, but saturated ones do. data ResolvedTo F G V : Set where yes : ∀ Sʳ Tʳ → Overloads F (Sʳ ⇒ Tʳ) → (V <: Sʳ) → (∀ {S T} → Overloads G (S ⇒ T) → (V <: S) → (Tʳ <: T)) → -------------------------------------------- ResolvedTo F G V no : (∀ {S T} → Overloads G (S ⇒ T) → (V ≮: S)) → -------------------------------------------- ResolvedTo F G V Resolved : Type → Type → Set Resolved F V = ResolvedTo F F V target : ∀ {F V} → Resolved F V → Type target (yes _ T _ _ _) = T target (no _) = unknown -- We can resolve any saturated function type resolveˢ : ∀ {F G V} → FunType G → Saturated F → Normal V → (G ⊆ᵒ F) → ResolvedTo F G V resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F with dec-subtypingⁿ Vⁿ Sⁿ resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F | Left V≮:S = no (λ { here → V≮:S }) resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F | Right V<:S = yes _ _ (G⊆F here) V<:S (λ { here _ → <:-refl }) resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F with resolveˢ Gᶠ (defn sat-∩ sat-∪) Vⁿ (G⊆F ∘ left) | resolveˢ Hᶠ (defn sat-∩ sat-∪) Vⁿ (G⊆F ∘ right) resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ with sat-∩ o₁ o₂ resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ | defn o p₁ p₂ = yes _ _ o (<:-trans (<:-∩-glb V<:S₁ V<:S₂) p₁) (λ { (left o) p → <:-trans p₂ (<:-trans <:-∩-left (tgt₁ o p)) ; (right o) p → <:-trans p₂ (<:-trans <:-∩-right (tgt₂ o p)) }) resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | no src₂ = yes _ _ o₁ V<:S₁ (λ { (left o) p → tgt₁ o p ; (right o) p → CONTRADICTION (<:-impl-¬≮: p (src₂ o)) }) resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | no src₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ = yes _ _ o₂ V<:S₂ (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p → tgt₂ o p }) resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | no src₁ | no src₂ = no (λ { (left o) → src₁ o ; (right o) → src₂ o }) -- Which means we can resolve any normalized type, by saturating it first resolveᶠ : ∀ {F V} → FunType F → Normal V → Type resolveᶠ Fᶠ Vⁿ = target (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o → o)) resolveⁿ : ∀ {F V} → Normal F → Normal V → Type resolveⁿ (Sⁿ ⇒ Tⁿ) Vⁿ = resolveᶠ (Sⁿ ⇒ Tⁿ) Vⁿ resolveⁿ (Fᶠ ∩ Gᶠ) Vⁿ = resolveᶠ (Fᶠ ∩ Gᶠ) Vⁿ resolveⁿ (Sⁿ ∪ Tˢ) Vⁿ = unknown resolveⁿ unknown Vⁿ = unknown resolveⁿ never Vⁿ = never -- Which means we can resolve any type, by normalizing it first resolve : Type → Type → Type resolve F V = resolveⁿ (normal F) (normal V)
{ "alphanum_fraction": 0.6148240683, "avg_line_length": 48.5151515152, "ext": "agda", "hexsha": "6717517632c45d7d6b9085c6473af39648b7e4a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sthagen/Roblox-luau", "max_forks_repo_path": "prototyping/Luau/ResolveOverloads.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sthagen/Roblox-luau", "max_issues_repo_path": "prototyping/Luau/ResolveOverloads.agda", "max_line_length": 277, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Libertus-Lab/luau", "max_stars_repo_path": "prototyping/Luau/ResolveOverloads.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z", "num_tokens": 1984, "size": 4803 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sum combinators for propositional equality preserving functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Function.Propositional where open import Data.Sum open import Data.Sum.Function.Setoid open import Data.Sum.Relation.Binary.Pointwise using (Pointwise-≡↔≡) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Injection as Inj using (_↣_; module Injection) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.LeftInverse as LeftInv using (_↞_; _LeftInverseOf_; module LeftInverse) open import Function.Related open import Function.Surjection as Surj using (_↠_; module Surjection) ------------------------------------------------------------------------ -- Combinators for various function types module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where _⊎-⇔_ : A ⇔ B → C ⇔ D → (A ⊎ C) ⇔ (B ⊎ D) _⊎-⇔_ A⇔B C⇔D = Inverse.equivalence (Pointwise-≡↔≡ B D) ⟨∘⟩ (A⇔B ⊎-equivalence C⇔D) ⟨∘⟩ Eq.sym (Inverse.equivalence (Pointwise-≡↔≡ A C)) where open Eq using () renaming (_∘_ to _⟨∘⟩_) _⊎-↣_ : A ↣ B → C ↣ D → (A ⊎ C) ↣ (B ⊎ D) _⊎-↣_ A↣B C↣D = Inverse.injection (Pointwise-≡↔≡ B D) ⟨∘⟩ (A↣B ⊎-injection C↣D) ⟨∘⟩ Inverse.injection (Inv.sym (Pointwise-≡↔≡ A C)) where open Inj using () renaming (_∘_ to _⟨∘⟩_) _⊎-↞_ : A ↞ B → C ↞ D → (A ⊎ C) ↞ (B ⊎ D) _⊎-↞_ A↞B C↞D = Inverse.left-inverse (Pointwise-≡↔≡ B D) ⟨∘⟩ (A↞B ⊎-left-inverse C↞D) ⟨∘⟩ Inverse.left-inverse (Inv.sym (Pointwise-≡↔≡ A C)) where open LeftInv using () renaming (_∘_ to _⟨∘⟩_) _⊎-↠_ : A ↠ B → C ↠ D → (A ⊎ C) ↠ (B ⊎ D) _⊎-↠_ A↠B C↠D = Inverse.surjection (Pointwise-≡↔≡ B D) ⟨∘⟩ (A↠B ⊎-surjection C↠D) ⟨∘⟩ Inverse.surjection (Inv.sym (Pointwise-≡↔≡ A C)) where open Surj using () renaming (_∘_ to _⟨∘⟩_) _⊎-↔_ : A ↔ B → C ↔ D → (A ⊎ C) ↔ (B ⊎ D) _⊎-↔_ A↔B C↔D = Pointwise-≡↔≡ B D ⟨∘⟩ (A↔B ⊎-inverse C↔D) ⟨∘⟩ Inv.sym (Pointwise-≡↔≡ A C) where open Inv using () renaming (_∘_ to _⟨∘⟩_) module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where _⊎-cong_ : ∀ {k} → A ∼[ k ] B → C ∼[ k ] D → (A ⊎ C) ∼[ k ] (B ⊎ D) _⊎-cong_ {implication} = map _⊎-cong_ {reverse-implication} = λ f g → lam (map (app-← f) (app-← g)) _⊎-cong_ {equivalence} = _⊎-⇔_ _⊎-cong_ {injection} = _⊎-↣_ _⊎-cong_ {reverse-injection} = λ f g → lam (app-↢ f ⊎-↣ app-↢ g) _⊎-cong_ {left-inverse} = _⊎-↞_ _⊎-cong_ {surjection} = _⊎-↠_ _⊎-cong_ {bijection} = _⊎-↔_
{ "alphanum_fraction": 0.5252890173, "avg_line_length": 37.9178082192, "ext": "agda", "hexsha": "f0f5586f94e6ca1897018e738ef719fed361a6da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Propositional.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1185, "size": 2768 }
module product where open import level open import unit public ---------------------------------------------------------------------- -- types ---------------------------------------------------------------------- data Σ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where _,_ : (a : A) → (b : B a) → Σ A B data Σi {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where ,_ : {a : A} → (b : B a) → Σi A B _×_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A × B = Σ A (λ x → B) _i×_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A i× B = Σi A (λ x → B) ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 2 Σ-syntax infixr 3 _×_ _i×_ _∧_ infixr 4 _,_ infix 4 ,_ -- This provides the syntax: Σ[ x ∈ A ] B it is taken from the Agda -- standard library. This style is nice when working in Set. Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b) Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- fst : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A × B → A fst (a , b) = a snd : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A × B → B snd (a , b) = b trans-× : ∀{ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁}{B : Set ℓ₂} {C : Set ℓ₃} → (C → A) → (C → B) → (C → A × B) trans-× f g c = f c , g c ⟨_,_⟩ : ∀{ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Set ℓ₁}{B : Set ℓ₂} {C : Set ℓ₃}{D : Set ℓ₄} → (A → C) → (B → D) → (A × B → C × D) ⟨ f , g ⟩ (a , b) = f a , g b twist-× : ∀{ℓ₁ ℓ₂} {A : Set ℓ₁}{B : Set ℓ₂} → A × B → B × A twist-× (a , b) = (b , a) rl-assoc-× : ∀{ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁}{B : Set ℓ₂} {C : Set ℓ₃} → A × (B × C) → (A × B) × C rl-assoc-× (a , b , c) = ((a , b) , c) lr-assoc-× : ∀{ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁}{B : Set ℓ₂} {C : Set ℓ₃} → (A × B) × C → A × (B × C) lr-assoc-× ((a , b) , c) = (a , b , c) func-× : ∀{ℓ₁ ℓ₂ ℓ₃ ℓ₄}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃}{D : Set ℓ₄} → (A → C) → (B → D) → (A × B) → (C × D) func-× f g (x , y) = (f x , g y) ×-diag : ∀{ℓ}{X : Set ℓ} → X → X × X ×-diag x = (x , x) ---------------------------------------------------------------------- -- some logical notation ---------------------------------------------------------------------- _∧_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') _∧_ = _×_ ∃ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ ⊔ ℓ') ∃ = Σ ∃i : ∀ {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') → Set (ℓ ⊔ ℓ') ∃i = Σi
{ "alphanum_fraction": 0.3068978237, "avg_line_length": 27.11, "ext": "agda", "hexsha": "0241a38273fde17e6b0735efff5e914edd374790", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "product.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1130, "size": 2711 }
open import Common.Nat open import Common.IO open import Common.Unit record Test : Set where field a b c : Nat f : Test -> Nat f r = a + b + c where open Test r open Test g : Nat g = (f (record {a = 100; b = 120; c = 140})) + a m + b m + c m where m = record {c = 400; a = 200; b = 300} main : IO Unit main = printNat g -- Expected Output: 1260
{ "alphanum_fraction": 0.5966850829, "avg_line_length": 15.0833333333, "ext": "agda", "hexsha": "c1cccf86ecec4004315966a49e66ed2f8d6534b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/NoRecordConstructor.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/NoRecordConstructor.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/NoRecordConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 133, "size": 362 }
{-# OPTIONS --without-K #-} open import M-types.Base module M-types.Coalg.Bisim (A : Ty ℓ) (B : A → Ty ℓ) where open import M-types.Coalg.Core A B TyBisim : Coalg → Ty (ℓ-suc ℓ) TyBisim X = ∑[ coalg ∈ Coalg ] CoalgMor coalg X × CoalgMor coalg X coalg = pr₀ spanRel : {X : Coalg} → ∏[ ∼ ∈ TyBisim X ] SpanRel (ty X) spanRel (coalg , ρ₀ , ρ₁) = (ty coalg , fun ρ₀ , fun ρ₁) tyLift : {X : Coalg} → ∏[ ∼ ∈ TyBisim X ] ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] (x₀ ⟨ spanRel {X} ∼ ⟩ x₁ → (obs X x₀) ⟨ P-SpanRel (spanRel {X} ∼) ⟩ (obs X x₁)) tyLift ∼ x₀ x₁ (s , refl , refl) = ( obs (coalg ∼) s , ≡-apply (com (ρ₀ ∼)⁻¹) s , ≡-apply (com (ρ₁ ∼)⁻¹) s ) ≡-TyBisim : {X : Coalg} → TyBisim X ≡-TyBisim {X} = ( X , (id , refl) , (id , refl) ) P-TyBisim : {X : Coalg} → TyBisim X → TyBisim (P-Coalg X) P-TyBisim {X} ∼ = ( P-Coalg (coalg ∼) , P-CoalgMor {coalg ∼} {X} (ρ₀ ∼) , P-CoalgMor {coalg ∼} {X} (ρ₁ ∼) ) TyBisimMor : {X : Coalg} → TyBisim X → TyBisim X → Ty ℓ TyBisimMor {X} ∼ ≈ = ∑[ mor ∈ SpanRelMor (spanRel {X} ∼) (spanRel {X} ≈) ] obs (coalg ≈) ∘ fun mor ≡ P-Fun (fun mor) ∘ obs (coalg ∼) FunBisim : Coalg → Ty (ℓ-suc ℓ) FunBisim X = ∑[ depRel ∈ (ty X → ty X → Ty ℓ) ] ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] (depRel x₀ x₁ → (P-DepRel depRel) (obs X x₀) (obs X x₁)) depRel : {X : Coalg} → ∏[ ∼ ∈ FunBisim X ] DepRel (ty X) depRel = pr₀ funLift : {X : Coalg} → ∏[ ∼ ∈ FunBisim X ] ∏[ d₀ ∈ ty X ] ∏[ d₁ ∈ ty X ] (d₀ [ depRel ∼ ] d₁ → (obs X d₀) [ P-DepRel (depRel ∼) ] (obs X d₁)) funLift = pr₁ ≡-funLift : {X : Coalg} → ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] (≡-depRel x₀ x₁ → P-DepRel ≡-depRel (obs X x₀) (obs X x₁)) ≡-funLift x x refl = (refl , λ b → refl) ≡-funBisim : {X : Coalg} → FunBisim X ≡-funBisim {X} = (≡-depRel , ≡-funLift) P-FunBisim : {X : Coalg} → FunBisim X → FunBisim (P-Coalg X) P-FunBisim {X} ∼ = ( P-DepRel (depRel ∼) , λ (a₀ , d₀) → λ (a₁ , d₁) → λ (p , e) → ( p , λ b₀ → pr₁ ∼ (d₀ b₀) (d₁ (tra B p b₀)) (e b₀) ) ) FunBisimMor : {X : Coalg} → FunBisim X → FunBisim X → Ty ℓ FunBisimMor {X} ∼ ≈ = ∑[ mor ∈ DepRelMor (depRel ∼) (depRel ≈) ] ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] funLift ≈ x₀ x₁ ∘ mor x₀ x₁ ≡ P-DepRelMor mor (obs X x₀) (obs X x₁) ∘ funLift ∼ x₀ x₁ fun-tra : {a₀ a₁ : A} {C : Ty ℓ} → ∏[ p ∈ a₀ ≡ a₁ ] ∏[ f₁ ∈ (B a₁ → C) ] tra (λ a → (B a → C)) p (f₁ ∘ (tra B p)) ≡ f₁ fun-tra refl f₁ = refl apply-pr₁ : {X : Coalg} {(a₀ , d₀) (a₁ , d₁) : P (ty X)} → ∏[ p ∈ (a₀ , d₀) ≡ (a₁ , d₁) ] ∏[ b₀ ∈ B a₀ ] d₀ b₀ ≡ d₁ (tra B (ap pr₀ p) b₀) apply-pr₁ refl b = refl TyBisim→FunBisim : {X : Coalg} → TyBisim X → FunBisim X TyBisim→FunBisim {X} ∼ = ( (λ x₀ → λ x₁ → x₀ ⟨ spanRel {X} ∼ ⟩ x₁) , (λ x₀ → λ x₁ → λ {(s , refl , refl) → let q₀ : obs X x₀ ≡ ( pr₀ (obs (coalg ∼) s) , fun (ρ₀ ∼) ∘ pr₁ (obs (coalg ∼) s) ) q₀ = ≡-apply (com (ρ₀ ∼)) s q₁ : obs X x₁ ≡ ( pr₀ (obs (coalg ∼) s) , fun (ρ₁ ∼) ∘ pr₁ (obs (coalg ∼) s) ) q₁ = ≡-apply (com (ρ₁ ∼)) s in ( (ap pr₀ q₀) · (ap pr₀ q₁) ⁻¹ , λ b₀ → ( pr₁ (obs (coalg ∼) s) (tra B (ap pr₀ q₀) b₀) , (apply-pr₁ {X} q₀ b₀) ⁻¹ , (apply-pr₁ {X} (q₁ ⁻¹) (tra B (ap pr₀ q₀) b₀)) · ap (pr₁ (obs X x₁)) (≡-apply ( tra-con B (ap pr₀ q₀) (ap pr₀ (q₁ ⁻¹)) · ap (λ r → tra B (ap pr₀ q₀ · r)) ((ap-inv pr₀ q₁) ⁻¹) ) b₀) ) )}) ) FunBisim→TyBisim : {X : Coalg} → FunBisim X → TyBisim X FunBisim→TyBisim {X} ∼ = ( ( (∑[ x₀ ∈ ty X ] ∑[ x₁ ∈ ty X ] x₀ [ depRel ∼ ] x₁) , λ (x₀ , x₁ , s) → ( pr₀ (obs X x₀) , λ b₀ → ( pr₁ (obs X x₀) b₀ , pr₁ (obs X x₁) (tra B (pr₀ (funLift ∼ x₀ x₁ s)) b₀) , pr₁ (funLift ∼ x₀ x₁ s) b₀ ) ) ) , ( pr₀ , funext (λ (x₀ , x₁ , s) → refl) ) , ( pr₀ ∘ pr₁ , funext (λ (x₀ , x₁ , s) → ≡-pair ( pr₀ (funLift ∼ x₀ x₁ s) , fun-tra (pr₀ (funLift ∼ x₀ x₁ s)) (pr₁ (obs X x₁)) ) ⁻¹) ) ) TyBisim→FunBisim-pres : {X : Coalg} → ∏[ ∼ ∈ TyBisim X ] ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] (x₀ [ depRel {X} (TyBisim→FunBisim {X} ∼) ] x₁) ≡ (x₀ ⟨ spanRel {X} ∼ ⟩ x₁) TyBisim→FunBisim-pres {X} ∼ x₀ x₁ = SpanRel→DepRel-pres (spanRel {X} ∼) x₀ x₁ FunBisim→TyBisim-pres : {X : Coalg} → ∏[ ∼ ∈ FunBisim X ] ∏[ x₀ ∈ ty X ] ∏[ x₁ ∈ ty X ] (x₀ ⟨ spanRel {X} (FunBisim→TyBisim {X} ∼) ⟩ x₁) ≃ (x₀ [ depRel {X} ∼ ] x₁) FunBisim→TyBisim-pres ∼ x₀ x₁ = DepRel→SpanRel-pres (depRel ∼) x₀ x₁
{ "alphanum_fraction": 0.378440367, "avg_line_length": 30.9726775956, "ext": "agda", "hexsha": "0cc12bfae1220fd6b8b0ed32489714fede55cf5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Coalg/Bisim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Coalg/Bisim.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Coalg/Bisim.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2369, "size": 5668 }
module STypeCongruence where open import Data.Fin open import DualCoinductive open import Direction open COI -- holes for session types mutual data TypeH : Set where TPair-l : TypeH → (T₂ : Type) → TypeH TPair-r : (T₁ : Type) → TypeH → TypeH TChan : (sh : STypeH) → TypeH data STypeH : Set where hole : STypeH transmit-s : (d : Dir) (T : Type) (sh : STypeH) → STypeH transmit-t : (d : Dir) (th : TypeH) (S : SType) → STypeH -- apply a hole to a session type apply-hole-T : TypeH → SType → Type apply-hole-S : STypeH → SType → SType apply-hole-T (TPair-l th T₂) S = TPair (apply-hole-T th S) T₂ apply-hole-T (TPair-r T₁ th) S = TPair T₁ (apply-hole-T th S) apply-hole-T (TChan sh) S = TChan (apply-hole-S sh S) apply-hole-S hole S = S apply-hole-S (transmit-s d T sh) S = delay (transmit d T (apply-hole-S sh S)) apply-hole-S (transmit-t d th S₁) S = delay (transmit d (apply-hole-T th S) S₁) -- test congruences ≈-cong-transmit : ∀ {d t S₁ S₂} → S₁ ≈ S₂ → transmit d t S₁ ≈' transmit d t S₂ ≈-cong-transmit S1≈S2 = eq-transmit _ ≈ᵗ-refl S1≈S2 ≈-cong-transmit-t : ∀ {d T₁ T₂ S} → T₁ ≈ᵗ T₂ → transmit d T₁ S ≈' transmit d T₂ S ≈-cong-transmit-t T1≈T2 = eq-transmit _ T1≈T2 ≈-refl ≈-cong-choice : ∀ {d m alt₁ alt₂} → ((i : Fin m) → alt₁ i ≈ alt₂ i) → choice d m alt₁ ≈' choice d m alt₂ ≈-cong-choice f = eq-choice _ f -- full congruences ≈-cong-hole-S : ∀ {sh S₁ S₂} → S₁ ≈ S₂ → apply-hole-S sh S₁ ≈ apply-hole-S sh S₂ ≈-cong-hole-T : ∀ {th S₁ S₂} → S₁ ≈ S₂ → apply-hole-T th S₁ ≈ᵗ apply-hole-T th S₂ ≈-cong-hole-S {hole} S1≈S2 = S1≈S2 ≈-cong-hole-S {transmit-s d T sh} S1≈S2 = record { force = ≈-cong-transmit (≈-cong-hole-S S1≈S2 ) } ≈-cong-hole-S {transmit-t d th S} S1≈S2 = record { force = ≈-cong-transmit-t (≈-cong-hole-T S1≈S2) } ≈-cong-hole-T {TPair-l th T₂} S1≈S2 = eq-pair (≈-cong-hole-T S1≈S2) ≈ᵗ-refl ≈-cong-hole-T {TPair-r T₁ th} S1≈S2 = eq-pair ≈ᵗ-refl (≈-cong-hole-T S1≈S2) ≈-cong-hole-T {TChan sh} S1≈S2 = eq-chan (≈-cong-hole-S S1≈S2)
{ "alphanum_fraction": 0.625, "avg_line_length": 32.3870967742, "ext": "agda", "hexsha": "09eb3c29f45c353fe824eb37591b219b41ac3a08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "kcaliban/dual-session", "max_forks_repo_path": "src/STypeCongruence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "kcaliban/dual-session", "max_issues_repo_path": "src/STypeCongruence.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "kcaliban/dual-session", "max_stars_repo_path": "src/STypeCongruence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 887, "size": 2008 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --termination-depth=2 #-} module _ where open import Common.Prelude module A where mutual f : Nat → Nat f zero = zero f (suc zero) = suc zero f (suc (suc x)) = g x g : Nat → Nat g x = f (suc ?) -- This should not fail termination checking, -- as ? := x is a terminating instance. module B where mutual f : Nat → Nat f zero = zero f (suc zero) = suc zero f (suc (suc x)) = g ? g : Nat → Nat g x = f (suc x) -- This should not fail termination checking, -- as ? := x is a terminating instance.
{ "alphanum_fraction": 0.56726094, "avg_line_length": 16.2368421053, "ext": "agda", "hexsha": "197f2cfcce91b1d4c0df9db971e5bf574a7af0c3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1281.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1281.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1281.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 192, "size": 617 }
module Type.Properties.Singleton {ℓ ℓₑ} where import Lvl open import Lang.Instance open import Structure.Setoid open import Type -- A type is a singleton type when it has exactly one inhabitant (there is only one object with this type). -- In other words: There is an unique inhabitant of type T. -- Also called: -- • "singleton type" -- • "unit type" -- • "contractible" record IsUnit (T : Type{ℓ}) ⦃ _ : Equiv{ℓₑ}(T) ⦄ : Type{ℓ Lvl.⊔ ℓₑ} where constructor intro field unit : T uniqueness : ∀{x : T} → (x ≡ unit) open IsUnit ⦃ ... ⦄ using (unit)
{ "alphanum_fraction": 0.6713780919, "avg_line_length": 28.3, "ext": "agda", "hexsha": "373230121e7b041d44642aa0f0d79e1432ac1912", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Properties/Singleton.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Properties/Singleton.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Properties/Singleton.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 184, "size": 566 }
{-# OPTIONS --guarded #-} module _ where primitive primLockUniv : _ postulate A B : primLockUniv c : A → B foo : (@tick x y : B) → Set bar2 : (@tick x : A) → Set bar2 x = foo (c x) (c x)
{ "alphanum_fraction": 0.5656565657, "avg_line_length": 14.1428571429, "ext": "agda", "hexsha": "aebc55488318b2da86c544086ae572ecedbc7e78", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/TickConstants.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/TickConstants.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/TickConstants.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 75, "size": 198 }
------------------------------------------------------------------------ -- Equivalence of the two variants of declarative kinding of Fω with -- interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Declarative.Equivalence where open import Data.Product using (proj₁) open import FOmegaInt.Syntax import FOmegaInt.Typing as Original open import FOmegaInt.Kinding.Declarative as Extended open import FOmegaInt.Kinding.Declarative.Validity private module O where open Original public open Typing public module E where open Extended public open Kinding public open Syntax open TermCtx open Kinding open KindedSubstitution open Original.Typing hiding (_ctx; _⊢_wf; _⊢_kd; _⊢Tp_∈_; _⊢_<∷_; _⊢_<:_∈_; _⊢_≅_; _⊢_≃_∈_) -- Soundness of extended declarative (sub)kinding w.r.t. original -- declarative (sub)kinding. -- -- This soundness proof simply forgets about all the validity -- conditions in the extended rules. mutual sound-wf : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ O.⊢ a wf sound-wf (wf-kd k-kd) = wf-kd (sound-kd k-kd) sound-wf (wf-tp a∈*) = wf-tp (sound-Tp∈ a∈*) sound-ctx : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ O.ctx sound-ctx E.[] = O.[] sound-ctx (a-wf E.∷ Γ-ctx) = sound-wf a-wf O.∷ sound-ctx Γ-ctx sound-kd : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ O.⊢ k kd sound-kd (kd-⋯ a∈* b∈*) = kd-⋯ (sound-Tp∈ a∈*) (sound-Tp∈ b∈*) sound-kd (kd-Π j-kd k-kd) = kd-Π (sound-kd j-kd) (sound-kd k-kd) sound-Tp∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ O.⊢Tp a ∈ k sound-Tp∈ (∈-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (sound-ctx Γ-ctx) Γ[x]≡kd-k sound-Tp∈ (∈-⊥-f Γ-ctx) = ∈-⊥-f (sound-ctx Γ-ctx) sound-Tp∈ (∈-⊤-f Γ-ctx) = ∈-⊤-f (sound-ctx Γ-ctx) sound-Tp∈ (∈-∀-f k-kd a∈*) = ∈-∀-f (sound-kd k-kd) (sound-Tp∈ a∈*) sound-Tp∈ (∈-→-f a∈* b∈*) = ∈-→-f (sound-Tp∈ a∈*) (sound-Tp∈ b∈*) sound-Tp∈ (∈-Π-i j-kd a∈k k-kd) = ∈-Π-i (sound-kd j-kd) (sound-Tp∈ a∈k) sound-Tp∈ (∈-Π-e a∈Πjk b∈j k-kd k[b]-kd) = ∈-Π-e (sound-Tp∈ a∈Πjk) (sound-Tp∈ b∈j) sound-Tp∈ (∈-s-i a∈b⋯c) = ∈-s-i (sound-Tp∈ a∈b⋯c) sound-Tp∈ (∈-⇑ a∈j j<∷k) = ∈-⇑ (sound-Tp∈ a∈j) (sound-<∷ j<∷k) sound-<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ O.⊢ j <∷ k sound-<∷ (<∷-⋯ a₂<:a₁∈* b₁<:b₂∈*) = <∷-⋯ (sound-<: a₂<:a₁∈*) (sound-<: b₁<:b₂∈*) sound-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-Π (sound-<∷ j₂<∷j₁) (sound-<∷ k₁<∷k₂) (sound-kd Πj₁k₁-kd) sound-<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ O.⊢ a <: b ∈ k sound-<: (<:-refl a∈k) = <:-refl (sound-Tp∈ a∈k) sound-<: (<:-trans a<:b∈k b<:c∈k) = <:-trans (sound-<: a<:b∈k) (sound-<: b<:c∈k) sound-<: (<:-β₁ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) = <:-β₁ (sound-Tp∈ a∈k) (sound-Tp∈ b∈j) sound-<: (<:-β₂ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) = <:-β₂ (sound-Tp∈ a∈k) (sound-Tp∈ b∈j) sound-<: (<:-η₁ a∈Πjk) = <:-η₁ (sound-Tp∈ a∈Πjk) sound-<: (<:-η₂ a∈Πjk) = <:-η₂ (sound-Tp∈ a∈Πjk) sound-<: (<:-⊥ a∈b⋯c) = <:-⊥ (sound-Tp∈ a∈b⋯c) sound-<: (<:-⊤ a∈b⋯c) = <:-⊤ (sound-Tp∈ a∈b⋯c) sound-<: (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀k₁a₁∈*) = <:-∀ (sound-<∷ k₂<∷k₁) (sound-<: a₁<:a₂∈*) (sound-Tp∈ ∀k₁a₁∈*) sound-<: (<:-→ a₂<:a₁∈* b₁<:b₂∈*) = <:-→ (sound-<: a₂<:a₁∈*) (sound-<: b₁<:b₂∈*) sound-<: (<:-λ a₁<:a₂∈Πjk Λj₁a₁∈Πjk Λj₂a₂∈Πjk) = <:-λ (sound-<: a₁<:a₂∈Πjk) (sound-Tp∈ Λj₁a₁∈Πjk) (sound-Tp∈ Λj₂a₂∈Πjk) sound-<: (<:-· a₁<:a₂∈Πjk b₁≃b₁∈j b₁∈j k-kd k[b₁]-kd) = <:-· (sound-<: a₁<:a₂∈Πjk) (sound-≃ b₁≃b₁∈j) sound-<: (<:-⟨| a∈b⋯c) = <:-⟨| (sound-Tp∈ a∈b⋯c) sound-<: (<:-|⟩ a∈b⋯c) = <:-|⟩ (sound-Tp∈ a∈b⋯c) sound-<: (<:-⋯-i a₁<:a₂∈b⋯c) = <:-⋯-i (sound-<: a₁<:a₂∈b⋯c) sound-<: (<:-⇑ a₁<:a₂∈j j<∷k) = <:-⇑ (sound-<: a₁<:a₂∈j) (sound-<∷ j<∷k) sound-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ∈ k → Γ O.⊢ a ≃ b ∈ k sound-≃ (<:-antisym a<:b∈k b<:a∈k) = <:-antisym (sound-<: a<:b∈k) (sound-<: b<:a∈k) sound-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ O.⊢ j ≅ k sound-≅ (<∷-antisym j<∷k k<∷j) = <∷-antisym (sound-<∷ j<∷k) (sound-<∷ k<∷j) -- Completeness of extended declarative (sub)kinding w.r.t. original -- declarative (sub)kinding. -- -- This proves that the validity conditions in the extended rules are -- in fact redundant, i.e. they follow from validity properties of the -- remaining premises (of the rules in question) mutual complete-wf : ∀ {n} {Γ : Ctx n} {a} → Γ O.⊢ a wf → Γ ⊢ a wf complete-wf (wf-kd k-kd) = wf-kd (complete-kd k-kd) complete-wf (wf-tp a∈*) = wf-tp (complete-Tp∈ a∈*) complete-ctx : ∀ {n} {Γ : Ctx n} → Γ O.ctx → Γ ctx complete-ctx O.[] = E.[] complete-ctx (a-wf O.∷ Γ-ctx) = complete-wf a-wf E.∷ complete-ctx Γ-ctx complete-kd : ∀ {n} {Γ : Ctx n} {k} → Γ O.⊢ k kd → Γ ⊢ k kd complete-kd (kd-⋯ a∈* b∈*) = kd-⋯ (complete-Tp∈ a∈*) (complete-Tp∈ b∈*) complete-kd (kd-Π j-kd k-kd) = kd-Π (complete-kd j-kd) (complete-kd k-kd) complete-Tp∈ : ∀ {n} {Γ : Ctx n} {a k} → Γ O.⊢Tp a ∈ k → Γ ⊢Tp a ∈ k complete-Tp∈ (∈-var x Γ-ctx Γ[x]≡kd-k) = ∈-var x (complete-ctx Γ-ctx) Γ[x]≡kd-k complete-Tp∈ (∈-⊥-f Γ-ctx) = ∈-⊥-f (complete-ctx Γ-ctx) complete-Tp∈ (∈-⊤-f Γ-ctx) = ∈-⊤-f (complete-ctx Γ-ctx) complete-Tp∈ (∈-∀-f k-kd a∈*) = ∈-∀-f (complete-kd k-kd) (complete-Tp∈ a∈*) complete-Tp∈ (∈-→-f a∈* b∈*) = ∈-→-f (complete-Tp∈ a∈*) (complete-Tp∈ b∈*) complete-Tp∈ (∈-Π-i j-kd a∈k) = ∈-Π-i (complete-kd j-kd) a∈k′ k-kd where a∈k′ = complete-Tp∈ a∈k k-kd = Tp∈-valid a∈k′ complete-Tp∈ (∈-Π-e a∈Πjk b∈j) with Tp∈-valid (complete-Tp∈ a∈Πjk) ... | (kd-Π j-kd k-kd) = ∈-Π-e (complete-Tp∈ a∈Πjk) b∈j′ k-kd k[b]-kd where b∈j′ = complete-Tp∈ b∈j k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-Tp∈ (∈-s-i a∈b⋯c) = ∈-s-i (complete-Tp∈ a∈b⋯c) complete-Tp∈ (∈-⇑ a∈j j<∷k) = ∈-⇑ (complete-Tp∈ a∈j) (complete-<∷ j<∷k) complete-<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ O.⊢ j <∷ k → Γ ⊢ j <∷ k complete-<∷ (<∷-⋯ a₂<:a₁∈* b₁<:b₂∈*) = <∷-⋯ (complete-<: a₂<:a₁∈*) (complete-<: b₁<:b₂∈*) complete-<∷ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-Π (complete-<∷ j₂<∷j₁) (complete-<∷ k₁<∷k₂) (complete-kd Πj₁k₁-kd) complete-<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ O.⊢ a <: b ∈ k → Γ ⊢ a <: b ∈ k complete-<: (<:-refl a∈k) = <:-refl (complete-Tp∈ a∈k) complete-<: (<:-trans a<:b∈k b<:c∈k) = <:-trans (complete-<: a<:b∈k) (complete-<: b<:c∈k) complete-<: (<:-β₁ a∈k b∈j) = <:-β₁ a∈k′ b∈j′ a[b]∈k[b] k-kd k[b]-kd where a∈k′ = complete-Tp∈ a∈k b∈j′ = complete-Tp∈ b∈j k-kd = Tp∈-valid a∈k′ a[b]∈k[b] = Tp∈-[] a∈k′ (∈-tp b∈j′) k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-<: (<:-β₂ a∈k b∈j) = <:-β₂ a∈k′ b∈j′ a[b]∈k[b] k-kd k[b]-kd where a∈k′ = complete-Tp∈ a∈k b∈j′ = complete-Tp∈ b∈j k-kd = Tp∈-valid a∈k′ a[b]∈k[b] = Tp∈-[] a∈k′ (∈-tp b∈j′) k[b]-kd = kd-[] k-kd (∈-tp b∈j′) complete-<: (<:-η₁ a∈Πjk) = <:-η₁ (complete-Tp∈ a∈Πjk) complete-<: (<:-η₂ a∈Πjk) = <:-η₂ (complete-Tp∈ a∈Πjk) complete-<: (<:-⊥ a∈b⋯c) = <:-⊥ (complete-Tp∈ a∈b⋯c) complete-<: (<:-⊤ a∈b⋯c) = <:-⊤ (complete-Tp∈ a∈b⋯c) complete-<: (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀k₁a₁∈*) = <:-∀ (complete-<∷ k₂<∷k₁) (complete-<: a₁<:a₂∈*) (complete-Tp∈ ∀k₁a₁∈*) complete-<: (<:-→ a₂<:a₁∈* b₁<:b₂∈*) = <:-→ (complete-<: a₂<:a₁∈*) (complete-<: b₁<:b₂∈*) complete-<: (<:-λ a₁<:a₂∈Πjk Λj₁a₁∈Πjk Λj₂a₂∈Πjk) = <:-λ (complete-<: a₁<:a₂∈Πjk) (complete-Tp∈ Λj₁a₁∈Πjk) (complete-Tp∈ Λj₂a₂∈Πjk) complete-<: (<:-· a₁<:a₂∈Πjk b₁≃b₁∈j) with <:-valid-kd (complete-<: a₁<:a₂∈Πjk) ... | (kd-Π j-kd k-kd) = <:-· (complete-<: a₁<:a₂∈Πjk) b₁≃b₂∈j′ b₁∈j k-kd k[b₁]-kd where b₁≃b₂∈j′ = complete-≃ b₁≃b₁∈j b₁∈j = proj₁ (≃-valid b₁≃b₂∈j′) k[b₁]-kd = kd-[] k-kd (∈-tp b₁∈j) complete-<: (<:-⟨| a∈b⋯c) = <:-⟨| (complete-Tp∈ a∈b⋯c) complete-<: (<:-|⟩ a∈b⋯c) = <:-|⟩ (complete-Tp∈ a∈b⋯c) complete-<: (<:-⋯-i a₁<:a₂∈b⋯c) = <:-⋯-i (complete-<: a₁<:a₂∈b⋯c) complete-<: (<:-⇑ a₁<:a₂∈j j<∷k) = <:-⇑ (complete-<: a₁<:a₂∈j) (complete-<∷ j<∷k) complete-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ O.⊢ a ≃ b ∈ k → Γ ⊢ a ≃ b ∈ k complete-≃ (<:-antisym a<:b∈k b<:a∈k) = <:-antisym (complete-<: a<:b∈k) (complete-<: b<:a∈k) complete-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ O.⊢ j ≅ k → Γ ⊢ j ≅ k complete-≅ (<∷-antisym j<∷k k<∷j) = <∷-antisym (complete-<∷ j<∷k) (complete-<∷ k<∷j)
{ "alphanum_fraction": 0.4826040807, "avg_line_length": 40.7644230769, "ext": "agda", "hexsha": "39b8b50c3c1e4760ed880f06057f823d99fae931", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Declarative/Equivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Declarative/Equivalence.agda", "max_line_length": 78, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Declarative/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 4833, "size": 8479 }
------------------------------------------------------------------------ -- Lists of identifiers ------------------------------------------------------------------------ -- This example is based on one in Swierstra and Chitil's "Linear, -- bounded, functional pretty-printing". {-# OPTIONS --guardedness #-} module Examples.Identifier-list where open import Codata.Musical.Notation open import Data.List import Data.List.NonEmpty as List⁺ open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Examples.Identifier open import Grammar.Infinite as Grammar using (Grammar) hiding (module Grammar) open import Pretty using (Pretty-printer) open import Renderer open import Utilities identifier-list-body : Grammar (List Identifier) identifier-list-body = return [] ∣ List⁺.toList <$> (identifier-w sep-by symbol′ ",") where open Grammar identifier-list : Grammar (List Identifier) identifier-list = symbol′ "[" ⊛> identifier-list-body <⊛ symbol′ "]" where open Grammar open Pretty identifier-list-printer : Pretty-printer identifier-list identifier-list-printer ns = symbol ⊛> body ns <⊛ symbol where body : Pretty-printer identifier-list-body body [] = left nil body (n ∷ ns) = right (<$> (<$> identifier-w-printer n ⊛ map⋆ (λ n → group symbol-line ⊛> identifier-w-printer n) ns)) identifiers : List Identifier identifiers = str⁺ "aaa" ∷ str⁺ "bbbbb" ∷ str⁺ "ccc" ∷ str⁺ "dd" ∷ str⁺ "eee" ∷ [] test₁ : render 80 (identifier-list-printer identifiers) ≡ "[aaa, bbbbb, ccc, dd, eee]" test₁ = refl test₂ : render 11 (identifier-list-printer identifiers) ≡ "[aaa,\nbbbbb, ccc,\ndd, eee]" test₂ = refl test₃ : render 8 (identifier-list-printer identifiers) ≡ "[aaa,\nbbbbb,\nccc, dd,\neee]" test₃ = refl
{ "alphanum_fraction": 0.6135881104, "avg_line_length": 29.9047619048, "ext": "agda", "hexsha": "2eca80d5b5d669ab8e2069b589f364a4d5a25750", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Examples/Identifier-list.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Examples/Identifier-list.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Examples/Identifier-list.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 471, "size": 1884 }
{- Comments of the following form are parsed automatically by [extract.py] in order to convert them to LaTeX and include them in the pdf. {-<nameofbloc>-} code code code {-</>-} -} {-# OPTIONS --without-K --rewriting #-} open import PathInduction open import Pushout module JamesTwoMaps {i} (A : Type i) (⋆A : A) where -- We first define [J], [ι], [α] and [β]. -- We need [JS] to make the termination checker happy. {-<defJiab>-} J : ℕ → Type i JS : ℕ → Type i ι : (n : ℕ) → J n → JS n α : (n : ℕ) → A → J n → JS n β : (n : ℕ) (x : J n) → α n ⋆A x == ι n x data J0 : Type i where ε : J0 J 0 = J0 J (S n) = JS n JS 0 = A JS (S n) = Pushout (span (A × JS n) (JS n) X f g) module JS where X : Type i X = Pushout (span (A × J n) (JS n) (J n) (λ x → (⋆A , x)) (ι n)) f : X → A × JS n f = Pushout-rec (λ {(a , x) → (a , ι n x)}) (λ y → (⋆A , y)) (λ x → idp) g : X → JS n g = Pushout-rec (λ {(a , x) → α n a x}) (λ y → y) (β n) ι 0 ε = ⋆A ι (S n) x = inr x α 0 a ε = a α (S n) a x = inl (a , x) β 0 ε = idp β (S n) x = push (inr x) {-</>-} -- We can now define [γ] and [η] {-<defge>-} γ : (n : ℕ) (a : A) (x : J n) → α (S n) a (ι n x) == ι (S n) (α n a x) γ n a x = push (inl (a , x)) η : (n : ℕ) (x : J n) → Square (γ n ⋆A x) idp (ap (ι (S n)) (β n x)) (β (S n) (ι n x)) η n x = natural-square push (push x) α-f-push ι-g-push where α-f-push : ap (uncurry (α (S n)) ∘ JS.f n) (push x) == idp α-f-push = ap-∘ (uncurry (α (S n))) (JS.f n) (push x) ∙ ap (ap (uncurry (α (S n)))) (push-β _) ι-g-push : ap (ι (S n) ∘ JS.g n) (push x) == ap (ι (S n)) (β n x) ι-g-push = ap-∘ (ι (S n)) (JS.g n) (push x) ∙ ap (ap (ι (S n))) (push-β _) {-</>-} -- We define the more convenient elimination principle for JSS n: {-<JSSElim>-} module _ {l} (n : ℕ) {P : JS (S n) → Type l} (ι* : (x : JS n) → P (ι (S n) x)) (α* : (a : A) (x : JS n) → P (α (S n) a x)) (β* : (x : JS n) → α* ⋆A x == ι* x [ P ↓ β (S n) x ]) (γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x) [ P ↓ γ n a x ]) (η* : (x : J n) → SquareOver P (η n x) (γ* ⋆A x) idp (↓-ap-in P inr (apd ι* (β n x))) (β* (ι n x))) where JSS-elim : (x : JS (S n)) → P x JSS-elim = Pushout-elim (uncurry α*) ι* JSS-elim-push where JSS-elim-push : (x : JS.X n) → uncurry α* (JS.f n x) == ι* (JS.g n x) [ P ↓ push x ] JSS-elim-push = Pushout-elim (uncurry γ*) β* (λ x → ↓-PathOver-from-square (adapt-SquareOver (↓-ap-in-coh P (uncurry α*)) (↓-ap-in-coh P ι*) (η* x))) {-</>-} {-<JSSRec>-} module _ {l} (n : ℕ) {X : Type l} (ι* : JS n → X) (α* : A → JS n → X) (β* : (x : JS n) → α* ⋆A x == ι* x) (γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x)) (η* : (x : J n) → Square (γ* ⋆A x) idp (ap ι* (β n x)) (β* (ι n x))) where JSS-rec : JS (S n) → X JSS-rec = Pushout-rec (uncurry α*) ι* JSS-rec-push module _ where JSS-rec-push : (c : JS.X n) → uncurry α* (JS.f n c) == ι* (JS.g n c) JSS-rec-push = Pushout-elim (uncurry γ*) β* (λ x → ↓-='-from-square (α-f-push x) (ι-g-push x) (η* x)) where α-f-push : (x : J n) → ap ((uncurry α*) ∘ (JS.f n)) (push x) == idp α-f-push x = ap-∘ _ _ (push x) ∙ ap (ap (uncurry α*)) (push-β x) ι-g-push : (x : J n) → ap (ι* ∘ (JS.g n)) (push x) == ap ι* (β n x) ι-g-push x = ap-∘ ι* _ (push x) ∙ ap (ap ι*) (push-β x) module _ {l} (n : ℕ) {X : Type l} {ι* : JS n → X} {α* : A → JS n → X} {β* : (x : JS n) → α* ⋆A x == ι* x} {γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x)} {η* : (x : J n) → Square (γ* ⋆A x) idp (ap ι* (β n x)) (β* (ι n x))} where private JSS-rec' = JSS-rec n ι* α* β* γ* η* private JSS-rec-push' = JSS-rec-push n ι* α* β* γ* η* β-β : (x : JS n) → ap JSS-rec' (β (S n) x) == β* x β-β x = push-β (inr x) γ-β : (a : A) (x : J n) → ap JSS-rec' (γ n a x) == γ* a x γ-β a x = push-β (inl (a , x)) η-β : (x : J n) → FlatCube (ap-square JSS-rec' (η n x)) (η* x) (γ-β ⋆A x) idp (∘-ap JSS-rec' inr (β n x)) (β-β (ι n x)) η-β x = adapt-flatcube ∙idp (& coh (ap-∘3 JSS-rec' inl _ (push x)) (natural-square (ap-∘ JSS-rec' inl) (push-β x) idp (ap-∘ (ap JSS-rec') (ap inl) _)) (ap-∙ _ _ _)) (& coh (ap-∘3 JSS-rec' inr _ (push x)) (natural-square (ap-∘ JSS-rec' inr) (push-β x) idp (ap-∘ (ap JSS-rec') (ap inr) _)) (ap-∙ _ _ _)) ∙idp ((& (ap-square-natural-square JSS-rec') (push x) push idp idp /∙³ & natural-square-homotopy push-β (push x) ∙fc & natural-square== JSS-rec-push' (push x) idp idp ∙³/ natural-square-β JSS-rec-push' (push x) (push-βd x))) where coh : Coh ({A : Type l} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq1 : Square p q r s) {e : A} {t : c == e} {f : A} {u : d == f} {v : e == f} (sq2 : Square s t u v) {ru : b == f} (ru= : ru == r ∙ u) → idp ∙ ! (p ∙ ru) ∙ q ∙ t == ! v) coh = path-induction {-</>-} -- Let’s now define JA {-<defJA>-} postulate JA : Type i εJ : JA αJ : A → JA → JA δJ : (x : JA) → x == αJ ⋆A x module _ {l} {P : JA → Type l} (εJ* : P εJ) (αJ* : (a : A) (x : JA) → P x → P (αJ a x)) (δJ* : (x : JA) (y : P x) → y == αJ* ⋆A x y [ P ↓ (δJ x)]) where postulate JA-elim : (x : JA) → P x εJ-β : JA-elim εJ ↦ εJ* αJ-β : (a : A) (x : JA) → JA-elim (αJ a x) ↦ αJ* a x (JA-elim x) {-# REWRITE εJ-β #-} {-# REWRITE αJ-β #-} δJ-βd' : (x : JA) → apd JA-elim (δJ x) == δJ* x (JA-elim x) {-</>-} δJ-βd : ∀ {l} {P : JA → Type l} {εJ* : P εJ} {αJ* : (a : A) (x : JA) → P x → P (αJ a x)} {δJ* : (x : JA) (y : P x) → y == αJ* ⋆A x y [ P ↓ (δJ x)]} → (x : JA) → apd (JA-elim εJ* αJ* δJ*) (δJ x) == δJ* x (JA-elim εJ* αJ* δJ* x) δJ-βd = δJ-βd' _ _ _ JA-rec : ∀ {l} {P : Type l} (εJ* : P) (αJ* : (a : A) → P → P) (δJ* : (y : P) → y == αJ* ⋆A y) → JA → P JA-rec εJ* αJ* δJ* = JA-elim εJ* (λ a x y → αJ* a y) (λ x y → ↓-cst-in (δJ* y)) δJ-β : ∀ {l} {P : Type l} {εJ* : P} {αJ* : (a : A) → P → P} {δJ* : (y : P) → y == αJ* ⋆A y} → (x : JA) → ap (JA-rec εJ* αJ* δJ*) (δJ x) == δJ* (JA-rec εJ* αJ* δJ* x) δJ-β x = apd=cst-in (δJ-βd x) -- We define the structure on JA {-<defgJeJ>-} module _ {i} {X : Type i} (α : A → X → X) (δ : (x : X) → x == α ⋆A x) where γ-ify : (a : A) (x : X) → α a (α ⋆A x) == α ⋆A (α a x) γ-ify a x = ! (ap (α a) (δ x)) ∙ δ (α a x) η-ify : (x : X) → γ-ify ⋆A x == idp η-ify = λ x → & coh (natural-square δ (δ x) (ap-idf (δ x)) idp) module ηIfy where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q r : b == c} (sq : Square p p q r) → ! q ∙ r == idp) coh = path-induction γJ : (a : A) (x : JA) → αJ a (αJ ⋆A x) == αJ ⋆A (αJ a x) γJ = γ-ify αJ δJ ηJ : (x : JA) → γJ ⋆A x == idp ηJ = η-ify αJ δJ {-</>-} -- The functions [inJS-ι], [inJS-α] and [inJS-β] are to be thought of as -- reduction rules. {-<definJpushJ>-} inJ : (n : ℕ) → J n → JA inJS : (n : ℕ) → J (S n) → JA inJS-ι : (n : ℕ) (x : J n) → inJS n (ι n x) == αJ ⋆A (inJ n x) inJS-α : (n : ℕ) (a : A) (x : J n) → inJS n (α n a x) == αJ a (inJ n x) inJS-β : (n : ℕ) (x : J n) → Square (ap (inJS n) (β n x)) (inJS-α n ⋆A x) (inJS-ι n x) idp inJ 0 ε = εJ inJ (S n) x = inJS n x inJS 0 a = αJ a εJ inJS (S n) = JSS-rec n ι* α* β* γ* η* module InJS where ι* : JS n → JA ι* x = αJ ⋆A (inJS n x) α* : A → JS n → JA α* a x = αJ a (inJS n x) β* : (x : JS n) → α* ⋆A x == ι* x β* x = idp γ* : (a : A) (x : J n) → α* a (ι n x) == ι* (α n a x) γ* a x = ap (αJ a) (inJS-ι n x) ∙ γJ a (inJ n x) ∙ ! (ap (αJ ⋆A) (inJS-α n a x)) η* : (x : J n) → Square (γ* ⋆A x) idp (ap (αJ ⋆A ∘ inJS n) (β n x)) (β* (ι n x)) η* x = & coh (ηJ (inJ n x)) (ap-square (αJ ⋆A) (inJS-β n x)) (ap-∘ (αJ ⋆A) (inJS n) _) module η* where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r : c == b} {q : b == b} (q= : q == idp) {t : c == a} (sq : Square t r p idp) {t' : c == a} (t= : t' == t) → Square (p ∙ q ∙ ! r) idp t' idp) coh = path-induction inJS-ι 0 ε = idp inJS-ι (S n) x = idp inJS-α 0 a ε = idp inJS-α (S n) a x = idp inJS-β 0 ε = ids inJS-β (S n) x = horiz-degen-square (push-β _) pushJ : (n : ℕ) (x : J n) → inJ n x == inJ (S n) (ι n x) pushJ n x = δJ (inJ n x) ∙ ! (inJS-ι n x) {-</>-} -- [inJS-β] applied for [n = S n] gives a degenerate square. -- It is sometimes more convenient to see it as a 2-path as belown. inJS-βS : (n : ℕ) (x : J (S n)) → ap (inJS (S n)) (β (S n) x) == idp inJS-βS n x = push-β _ -- We give reduction rules for [inJS (S n)] applied to [γ] and [η] which are -- more convenient to use inJSS-γ : (n : ℕ) (a : A) (x : J n) → Square (ap (inJS (S n)) (γ n a x)) (ap (αJ a) (inJS-ι n x)) (ap (αJ ⋆A) (inJS-α n a x)) (γJ a (inJ n x)) inJSS-γ n a x = & coh (γ-β n a x) module InJSγ where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {s : c == d} {b : A} {r : b == d} {p : a == b} → p == q ∙ s ∙ ! r → Square p q r s) coh = path-induction ap-inJSS-ι : (n : ℕ) {x y : J (S n)} (p : x == y) → ap (inJS (S n)) (ap (ι (S n)) p) == ap (αJ ⋆A) (ap (inJS n) p) ap-inJSS-ι n p = ∘-ap (inJS (S n)) (ι (S n)) p ∙ ap-∘ (αJ ⋆A) (inJS n) p inJSS-η : (n : ℕ) (x : J n) → Cube (ap-square (inJS (S n)) (η n x)) (horiz-degen-square (ηJ (inJ n x))) (inJSS-γ n ⋆A x) vid-square (ap-inJSS-ι n (β n x) |∙ ap-square (αJ ⋆A) (inJS-β n x)) (inJS-βS n (ι n x) |∙ vid-square) inJSS-η n x = & coh (η-β n x) where coh : {A : Type i} {a : A} → Coh ({r : a == a} {right : r == idp} {b : A} {s : b == a} {c : A} {t : b == c} {u : c == c} {to : u == idp} {s' : b == a} {down : s == s'} {s'' : b == a} {down' : s' == s''} {p : a == c} {down2 : Square s'' t p idp} {q : a == b} {sq : q == p ∙ u ∙ ! t} {from : Square q idp s r} → FlatCube from (& (InJS.η*.coh n x) to down2 down') sq idp down right → Cube from (horiz-degen-square to) (& (InJSγ.coh n ⋆A x) sq) vid-square ((down ∙ down') |∙ down2) (right |∙ vid-square)) coh = path-induction -- This function is used to apply a function to the result of [inJSS-η] ap-shapeInJSη : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a : A} → Coh ({r : a == a} {right : r == idp} {b : A} {q : a == b} {c : A} {p : a == c} {u : c == c} {to : u == idp} {t : b == c} {left : Square q p t u} {s' : b == a} {down3 : Square s' t p idp} {s : b == a} {down1 : s == s'} {from : Square q idp s r} → Cube from (horiz-degen-square to) left vid-square (down1 |∙ down3) (right |∙ vid-square) → {ft : f b == f c} (ft= : ap f t == ft) {fp : f a == f c} (fp= : ap f p == fp) → Cube (ap-square f from) (horiz-degen-square (ap (ap f) to)) (adapt-square (ap-square f left) fp= ft=) vid-square (adapt-square (ap (ap f) down1 |∙ ap-square f down3) ft= fp=) (ap (ap f) right |∙ vid-square)) ap-shapeInJSη f = path-induction -- Definition of J∞A {-<defJiA>-} postulate J∞A : Type i in∞ : (n : ℕ) (x : J n) → J∞A push∞ : (n : ℕ) (x : J n) → in∞ n x == in∞ (S n) (ι n x) module _ {l} {P : J∞A → Type l} (in∞* : (n : ℕ) (x : J n) → P (in∞ n x)) (push∞* : (n : ℕ) (x : J n) → in∞* n x == in∞* (S n) (ι n x) [ P ↓ (push∞ n x) ]) where postulate J∞A-elim : (x : J∞A) → P x in∞-β : (n : ℕ) (x : J n) → J∞A-elim (in∞ n x) ↦ in∞* n x {-# REWRITE in∞-β #-} push∞-βd' : (n : ℕ) (x : J n) → apd J∞A-elim (push∞ n x) == push∞* n x {-</>-} push∞-βd : ∀ {l} {P : J∞A → Type l} {in∞* : (n : ℕ) (x : J n) → P (in∞ n x)} {push∞* : (n : ℕ) (x : J n) → in∞* n x == in∞* (S n) (ι n x) [ P ↓ (push∞ n x) ]} → (n : ℕ) (x : J n) → apd (J∞A-elim in∞* push∞*) (push∞ n x) == push∞* n x push∞-βd = push∞-βd' _ _ J∞A-rec : ∀ {l} {P : Type l} (in∞* : (n : ℕ) (x : J n) → P) (push∞* : (n : ℕ) (x : J n) → in∞* n x == in∞* (S n) (ι n x)) → J∞A → P J∞A-rec in∞* push∞* = J∞A-elim in∞* (λ n x → ↓-cst-in (push∞* n x)) push∞-β : ∀ {l} {P : Type l} {in∞* : (n : ℕ) (x : J n) → P} {push∞* : (n : ℕ) (x : J n) → in∞* n x == in∞* (S n) (ι n x)} → (n : ℕ) (x : J n) → ap (J∞A-rec in∞* push∞*) (push∞ n x) == push∞* n x push∞-β n x = apd=cst-in (push∞-βd n x) -- Structure on J∞A {-<defstructinf>-} ε∞ : J∞A ε∞ = in∞ 0 ε α∞ : A → J∞A → J∞A α∞ a = J∞A-rec α∞-in∞ α∞-push∞ module _ where α∞-in∞ : (n : ℕ) (x : J n) → J∞A α∞-in∞ n x = in∞ (S n) (α n a x) α∞-push∞ : (n : ℕ) (x : J n) → α∞-in∞ n x == α∞-in∞ (S n) (ι n x) α∞-push∞ n x = push∞ (S n) (α n a x) ∙ ! (ap (in∞ (S (S n))) (γ n a x)) δ∞ : (x : J∞A) → x == α∞ ⋆A x δ∞ = J∞A-elim δ∞-in∞ (λ n x → ↓-='-from-square (ap-idf (push∞ n x)) idp (δ∞-push∞ n x)) module _ where δ∞-in∞ : (n : ℕ) (x : J n) → in∞ n x == α∞ ⋆A (in∞ n x) δ∞-in∞ n x = push∞ n x ∙ ! (ap (in∞ (S n)) (β n x)) δ∞-push∞ : (n : ℕ) (x : J n) → Square (δ∞-in∞ n x) (push∞ n x) (ap (α∞ ⋆A) (push∞ n x)) (δ∞-in∞ (S n) (ι n x)) δ∞-push∞ = λ n x → & coh (push∞ n x) (ap-square (in∞ (S (S n))) (η n x)) (natural-square (push∞ (S n)) (β n x) idp (ap-∘ _ _ _)) (push∞-β n x) module δ∞Push∞ where coh : Coh ({A : Type i} {a b : A} (p : a == b) {d : A} {s : d == b} {c : A} {r : b == c} {f : A} {u : f == c} {e : A} {t : e == c} {w : f == e} (eta : Square w idp t u) {v : d == e} (nat : Square v s t r) {vw : d == f} (vw= : vw == v ∙ ! w) → Square (p ∙ ! s) p vw (r ∙ ! u)) coh = path-induction {-</>-} ap-coh : {A B : Type i} (g : A → B) → Coh ({a b : A} {p : a == b} {d : A} {s : d == b} {c : A} {r : b == c} {f : A} {u : f == c} {e : A} {t : e == c} {w : f == e} {eta : Square w idp t u} {v : d == e} {nat : Square v s t r} {vw : d == f} {vw= : vw == v ∙ ! w} → FlatCube (ap-square g (& coh p eta nat vw=)) (& coh (ap g p) (ap-square g eta) (ap-square g nat) (ap-shape-∙! g vw=)) (ap-∙! g p s) idp idp (ap-∙! g r u)) ap-coh g = path-induction ap-α∞-in∞ : (n : ℕ) (a : A) {x y : J n} (p : x == y) → ap (α∞ a) (ap (in∞ n) p) == ap (in∞ (S n)) (ap (α n a) p) ap-α∞-in∞ n a p = ∘-ap _ _ _ ∙ ap-∘ _ _ _ δ∞-in∞-β : (n : ℕ) (x : J n) → Square (δ∞ (in∞ n x)) idp (ap (in∞ (S n)) (β n x)) (push∞ n x) δ∞-in∞-β = λ n x → & coh module δ∞Inβ where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : c == b} → Square (p ∙ ! q) idp q p) coh = path-induction -- [γ∞] and the reduction rule for [γ∞ a (in∞ n x)] (3.2.6) {-<gammainfin>-} γ∞ : (a : A) (x : J∞A) → α∞ a (α∞ ⋆A x) == α∞ ⋆A (α∞ a x) γ∞ = γ-ify α∞ δ∞ γ∞-in : (a : A) (n : ℕ) (x : J n) → Square (γ∞ a (in∞ n x)) (ap (in∞ (S (S n))) (ap (α (S n) a) (β n x))) (ap (in∞ (S (S n))) (β (S n) (α n a x))) (ap (in∞ (S (S n))) (γ n a x)) γ∞-in = λ a n x → & coh (push∞-β n x) (ap-∙! _ _ _) (ap-α∞-in∞ (S n) a (β n x)) module γ∞In where coh : Coh ({A : Type i} {a d : A} {r : a == d} {b : A} {s : b == d} {c : A} {t' : c == b} {e : A} {u : e == d} {rs' : a == b} (rs= : rs' == r ∙ ! s) {fpq : a == c} (fpq= : fpq == rs' ∙ ! t') {t : c == b} (t= : t' == t) → Square (! fpq ∙ (r ∙ ! u)) t u s) coh = path-induction {-</>-} -- [η∞] and the reduction rule for [η∞ a (in∞ n x)] (3.2.7) comp-square : {A : Type i} {a b c : A} {p : a == b} {q : b == c} → Square idp p (p ∙ q) q comp-square {p = idp} {q = idp} = ids skew : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} → Square p q r s → Square idp q (p ∙ r) s skew ids = ids ope1 : {A B : Type i} (f : A → B) {a b c : A} {p : a == b} {q : c == b} {fp : _} (fp= : ap f p == fp) {fq : _} (fq= : ap f q == fq) {fpq : _} (fpq= : ap f (p ∙ ! q) == fpq) → fpq == fp ∙ ! fq ope1 f {p = idp} {q = idp} idp idp idp = idp _∙!²_ : {A : Type i} {a b c : A} {p p' : a == b} (p= : p == p') {q q' : c == b} (q= : q == q') → (p ∙ ! q) == (p' ∙ ! q') idp ∙!² idp = idp ope1-idf : {A B : Type i} (f : A → B) → Coh ({b c : A} {q : c == b} {a : B} {p : a == f b} → ope1 (λ z → z) (ap-idf p) (∘-ap (λ z → z) f q ∙ idp) (ap-idf (p ∙ ! (ap f q))) == idp) ope1-idf f = path-induction natural-square-∙! : {A B : Type i} {a b c : A} (p : a == b) (q : c == b) → Coh ({f g : A → B} (h : (a : A) → f a == g a) {fp : _} {fp= : ap f p == fp} {gp : _} {gp= : ap g p == gp} {fq : _} {fq= : ap f q == fq} {gq : _} {gq= : ap g q == gq} {fpq : _ } {fpq= : ap f (p ∙ ! q) == fpq} {gpq : _ } {gpq= : ap g (p ∙ ! q) == gpq} → FlatCube (natural-square h (p ∙ ! q) fpq= gpq=) (natural-square h p fp= gp= ∙□ !² (natural-square h q fq= gq=)) idp (ope1 f fp= fq= fpq=) (ope1 g gp= gq= gpq=) idp) natural-square-∙! {a = a} idp idp = path-induction vcomp! : {A : Type i} {a b c d e f : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {t : e == b} {u : f == d} {v : e == f} (sq1 : Square p q r s) (sq2 : Square t v r u) → Square (p ∙ ! t) q v (s ∙ ! u) vcomp! {t = idp} ids ids = ids natural-square∙! : {A B : Type i} {a b : A} (p : a == b) → Coh ({f g : A → B} (k : (a : A) → f a == g a) {h : A → B} (l : (a : A) → h a == g a) {fp : _} {fp= : ap f p == fp} {gp : _} {gp= : ap g p == gp} {hp : _} {hp= : ap h p == hp} → natural-square (λ x → k x ∙ ! (l x)) p fp= hp= == vcomp! (natural-square k p fp= gp=) (natural-square l p hp= gp=)) natural-square∙! {a = a} idp = path-induction η∞ : (x : J∞A) → γ∞ ⋆A x == idp η∞ = η-ify α∞ δ∞ η∞-in : (n : ℕ) (x : J n) → Cube (horiz-degen-square (η∞ (in∞ n x))) (ap-square (in∞ (S (S n))) (η n x)) (γ∞-in ⋆A n x) vid-square comp-square (skew (ap-square (in∞ (S (S n))) (natural-square (β (S n)) (β n x) idp idp))) η∞-in n x = & coh (push∞-β n x) (& (coh-ope1 (α∞ ⋆A))) (& (ope1-idf (in∞ (S n)))) (natural-square-β δ∞ (push∞ n x) (push∞-βd n x)) (& (ap-square-natural-square (in∞ (S (S n)))) (β n x) (β (S n)) ∙idp ∙idp) (& (natural-square∙! (β n x)) (push∞ (S n)) (ap (in∞ (S (S n))) ∘ β (S n))) (& (natural-square-∘ (β n x) (in∞ (S n))) δ∞ idp idp) (& (natural-square-∙! (push∞ n x) (ap (in∞ (S n)) (β n x))) δ∞) where coh-ope1 : {A B : Type i} (f : A → B) → Coh ({x y : A} {p : x == y} {z : A} {q : z == y} {fq : f z == f y} {r : ap f q == fq} → ap-∙! f p q == ope1 f idp r idp ∙ (idp ∙!² ! r)) coh-ope1 f = path-induction -- X = apin∞SS coh : Coh ({A : Type i} {a b : A} {push∞Sα : a == b} {c : A} {apin∞Sβ : a == c} {d : A} {XapιSβ : b == d} {f : A} {Xγ : f == b} {XβSι : f == d} {apinη : Square Xγ idp XapιSβ XβSι} {push∞Sι : c == d} {natpush∞Sβ : Square push∞Sα apin∞Sβ XapιSβ push∞Sι} {e : A} {XβSα : e == b} {XapαSβ : e == f} {natβSβ : Square XβSα XapαSβ XapιSβ XβSι} {g : A} {p : g == c} {rs : a == f} (rs= : rs == push∞Sα ∙ ! Xγ) {z : _} {z= : z == rs ∙ ! XapαSβ} {t : _} {t= : t == XapαSβ} {fpq= : z == rs ∙ ! t} (fpq== : fpq= == z= ∙ (idp ∙!² ! t=)) {pq=' : _} (pq== : pq=' == idp) {α' : _} (α= : α' == (& δ∞Push∞.coh p apinη natpush∞Sβ rs=)) {γ' : _} (γ= : natβSβ == γ') {βγ : _} (βγ=comp : βγ == vcomp! natpush∞Sβ γ') {βγ' : _} (βγ= : βγ == βγ') {sq : _} (sq= : FlatCube sq (α' ∙□ !² βγ') idp pq=' z= idp) → Cube (horiz-degen-square (& (ηIfy.coh α∞ δ∞) sq)) apinη (& γ∞In.coh rs= fpq= t=) vid-square comp-square (skew natβSβ)) coh = path-induction -- The two maps {-<twomaps>-} to : J∞A → JA to = J∞A-rec inJ pushJ from : JA → J∞A from = JA-rec ε∞ α∞ δ∞ {-</>-} -- Rules which better match the intuitive definition of [pushJ n x] to-push∞ : (n : ℕ) (x : J n) → Square (ap to (push∞ n x)) idp (inJS-ι n x) (δJ (inJ n x)) to-push∞ n x = & coh (push∞-β n x) where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : c == b} {r : a == c} (r= : r == p ∙ ! q) → Square r idp q p) coh = path-induction to-push∞-S : (n : ℕ) (x : J (S n)) → ap to (push∞ (S n) x) == δJ (inJ (S n) x) to-push∞-S n x = horiz-degen-path (to-push∞ (S n) x) ap-from-αJ : (a : A) {x y : JA} (p : x == y) → ap from (ap (αJ a) p) == ap (α∞ a) (ap from p) ap-from-αJ a p = ∘-ap _ _ _ ∙ ap-∘ _ _ _ ap-square-from-αJ : (a : A) {x y z t : JA} {p : x == y} {q : x == z} {r : y == t} {s : z == t} (sq : Square p q r s) → FlatCube (ap-square from (ap-square (αJ a) sq)) (ap-square (α∞ a) (ap-square from sq)) (ap-from-αJ _ _) (ap-from-αJ _ _) (ap-from-αJ _ _) (ap-from-αJ _ _) ap-square-from-αJ a ids = idfc -- Abbreviation for the natural square of [δJ] ap-δJ : {x y : JA} (p : x == y) → Square (δJ x) p (ap (αJ ⋆A) p) (δJ y) ap-δJ p = natural-square δJ p (ap-idf p) idp
{ "alphanum_fraction": 0.4047413205, "avg_line_length": 36.9361344538, "ext": "agda", "hexsha": "957a8f6e88d94ac677619d1fe28b8ec7ccff7076", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/JamesConstruction", "max_forks_repo_path": "JamesTwoMaps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/JamesConstruction", "max_issues_repo_path": "JamesTwoMaps.agda", "max_line_length": 175, "max_stars_count": 5, "max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/JamesConstruction", "max_stars_repo_path": "JamesTwoMaps.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z", "num_tokens": 10346, "size": 21977 }
module Numeric.Nat.LCM where open import Prelude open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.GCD open import Numeric.Nat.GCD.Extended open import Numeric.Nat.GCD.Properties open import Numeric.Nat.Properties open import Tactic.Nat --- Least common multiple --- record IsLCM m a b : Set where no-eta-equality constructor is-lcm field a|m : a Divides m b|m : b Divides m l : ∀ k → a Divides k → b Divides k → m Divides k record LCM a b : Set where no-eta-equality constructor lcm-res field m : Nat isLCM : IsLCM m a b open LCM using () renaming (m to get-lcm) public eraseIsLCM : ∀ {a b m} → IsLCM m a b → IsLCM m a b eraseIsLCM (is-lcm a|m b|m g) = is-lcm (fast-divides a|m) (fast-divides b|m) λ k a|k b|k → fast-divides (g k a|k b|k) eraseLCM : ∀ {a b} → LCM a b → LCM a b eraseLCM (lcm-res m p) = lcm-res m (eraseIsLCM p) private lem-is-lcm : ∀ {a b d} (g : IsGCD d a b) → IsLCM (is-gcd-factor₁ g * b) a b lem-is-lcm {a} {b} {0} (is-gcd (factor q eq) d|b g) rewrite a ≡⟨ by eq ⟩ 0 ∎ | divides-zero d|b | q * 0 ≡⟨ auto ⟩ 0 ∎ = is-lcm divides-refl divides-refl (λ _ 0|k _ → 0|k) lem-is-lcm {a} {b} {d@(suc d′)} isg@(is-gcd (factor! q) d|b@(factor! q′) g) = is-lcm (divides-mul-cong-l q d|b) (divides-mul-r q divides-refl) least where lem : IsGCD d a b lem = is-gcd (factor! q) d|b g lem₂ : Coprime q q′ lem₂ = is-gcd-factors-coprime lem least : ∀ k → a Divides k → b Divides k → (q * b) Divides k least k (factor qa qa=k) (factor qb qb=k) = case lem₄ of λ where (factor! qqb) → factor qqb (by qb=k) where lem₃ : qa * q ≡ q′ * qb lem₃ = mul-inj₁ (qa * q) (q′ * qb) (suc d′) (by (qa=k ⟨≡⟩ʳ qb=k)) lem₄ : q Divides qb lem₄ = coprime-divide-mul-l q q′ qb (is-gcd-factors-coprime isg) (factor qa lem₃) lcm : ∀ a b → LCM a b lcm a b = eraseLCM $ case gcd a b of λ where (gcd-res d g) → lcm-res (is-gcd-factor₁ g * b) (lem-is-lcm g) lcm! : Nat → Nat → Nat lcm! a b = get-lcm (lcm a b)
{ "alphanum_fraction": 0.5666066607, "avg_line_length": 29.2368421053, "ext": "agda", "hexsha": "8a4bd1c5c57b6bffd5ddc57ba6cd78334e24addd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/LCM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/LCM.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/LCM.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 838, "size": 2222 }
module Vector where infixr 10 _∷_ data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} infixl 6 _+_ _+_ : ℕ → ℕ → ℕ 0 + n = n suc m + n = suc (m + n) data Vec (A : Set) : ℕ → Set where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) _++_ : ∀ {A n m} → Vec A n → Vec A m → Vec A (n + m) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) infix 4 _≡_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x subst : {A : Set} → (P : A → Set) → ∀{x y} → x ≡ y → P x → P y subst P refl p = p cong : {A B : Set} (f : A → B) → {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl vec : ∀ {A} (k : ℕ) → Set vec {A} k = Vec A k plus_zero : {n : ℕ} → n + 0 ≡ n plus_zero {zero} = refl plus_zero {suc n} = cong suc plus_zero plus_suc : {n : ℕ} → n + (suc 0) ≡ suc n plus_suc {zero} = refl plus_suc {suc n} = cong suc (plus_suc {n}) reverse : ∀ {A n} → Vec A n → Vec A n reverse [] = [] reverse {A} {suc n} (x ∷ xs) = subst vec (plus_suc {n}) (reverse xs ++ (x ∷ []))
{ "alphanum_fraction": 0.4788732394, "avg_line_length": 20.4807692308, "ext": "agda", "hexsha": "10381222abae558cfd1a3d3a5e6bf9cd74634bd7", "lang": "Agda", "max_forks_count": 339, "max_forks_repo_forks_event_max_datetime": "2022-03-26T17:55:39.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-01T19:23:43.000Z", "max_forks_repo_head_hexsha": "c64f5d26e299be85b85e1c370a7a5de6037e2e3e", "max_forks_repo_licenses": [ "BSD-Source-Code" ], "max_forks_repo_name": "aavogt/wiwinwlh", "max_forks_repo_path": "src/17-promotion/Vector.agda", "max_issues_count": 151, "max_issues_repo_head_hexsha": "c64f5d26e299be85b85e1c370a7a5de6037e2e3e", "max_issues_repo_issues_event_max_datetime": "2021-06-29T15:20:06.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-16T07:43:41.000Z", "max_issues_repo_licenses": [ "BSD-Source-Code" ], "max_issues_repo_name": "aavogt/wiwinwlh", "max_issues_repo_path": "src/17-promotion/Vector.agda", "max_line_length": 80, "max_stars_count": 2479, "max_stars_repo_head_hexsha": "c64f5d26e299be85b85e1c370a7a5de6037e2e3e", "max_stars_repo_licenses": [ "BSD-Source-Code" ], "max_stars_repo_name": "aavogt/wiwinwlh", "max_stars_repo_path": "src/17-promotion/Vector.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-29T15:34:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-01T14:39:03.000Z", "num_tokens": 475, "size": 1065 }
module Data.Vec.Exts where open import Data.Fin open import Data.Maybe open import Data.Nat open import Data.Vec using (Vec; []; _∷_) open import Relation.Nullary open import Relation.Unary open import Data.Vec.Relation.Unary.Any findIndex : {n : ℕ} {A : Set} {P : A -> Set} -> Decidable P -> Vec A n -> Maybe (Fin n) findIndex P? xs with any? P? xs ... | yes ix = just (index ix) ... | no _ = nothing
{ "alphanum_fraction": 0.6806930693, "avg_line_length": 26.9333333333, "ext": "agda", "hexsha": "d0af7257e32b10848d04ecb3f0fdadf348b9f207", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Vec/Exts.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Vec/Exts.agda", "max_line_length": 87, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Vec/Exts.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 125, "size": 404 }
module Ag10 where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) open import Ag09 using (_≃_; _≲_; extensionality; _⇔_) open Ag09.≃-Reasoning open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) renaming ([_,_] to case-⊎) open import Data.Empty using (⊥; ⊥-elim) import Function.Equivalence using (_⇔_) ⇔≃× : ∀ {A B : Set} → (A ⇔ B) ≃ ((A → B) × (B → A)) ⇔≃× = record { to = λ{ x → ⟨ Ag09._⇔_.to x , Ag09._⇔_.from x ⟩} ; from = λ{ ⟨ x , y ⟩ → record { to = x ; from = y } } ; from∘to = λ{ x → refl } ; to∘from = λ{ x → refl } } ⊎-comm : ∀ {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) ⊎-comm = record { to = λ{ (inj₁ x) → inj₂ x ; (inj₂ y) → inj₁ y } ; from = λ{ (inj₁ x) → inj₂ x ; (inj₂ y) → inj₁ y} ; from∘to = λ{ (inj₁ x) → refl ; (inj₂ y) → refl } ; to∘from = λ{ (inj₁ x) → refl ; (inj₂ y) → refl} } ⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc = record { to = λ{ (inj₁ (inj₁ x)) → inj₁ x ; (inj₁ (inj₂ y)) → inj₂ (inj₁ y) ; (inj₂ z) → inj₂ (inj₂ z) } ; from = λ{ (inj₁ x) → inj₁ (inj₁ x) ; (inj₂ (inj₁ y)) → inj₁ (inj₂ y) ; (inj₂ (inj₂ z)) → inj₂ z } ; from∘to = λ{ (inj₁ (inj₁ x)) → refl ; (inj₁ (inj₂ y)) → refl ; (inj₂ z) → refl } ; to∘from = λ{ (inj₁ x) → refl ; (inj₂ (inj₁ y)) → refl ; (inj₂ (inj₂ z)) → refl } } ⊥-identityˡ : ∀ {A : Set} → ⊥ ⊎ A ≃ A ⊥-identityˡ = record { to = λ{ (inj₂ a) → a } ; from = λ{ a → (inj₂ a) } ; from∘to = λ{ (inj₂ a) → refl } ; to∘from = λ{ a → refl } } ⊥-identityʳ : ∀ {A : Set} → A ⊎ ⊥ ≃ A ⊥-identityʳ {A} = ≃-begin (A ⊎ ⊥) ≃⟨ ⊎-comm ⟩ (⊥ ⊎ A) ≃⟨ ⊥-identityˡ ⟩ A ≃-∎ ⊎-weak-× : ∀ {A B C : Set} → (A ⊎ B) × C → A ⊎ (B × C) ⊎-weak-× ⟨ inj₁ x , snd ⟩ = inj₁ x ⊎-weak-× ⟨ inj₂ y , snd ⟩ = inj₂ ⟨ y , snd ⟩ ⊎×-implies-×⊎ : ∀ {A B C D : Set} → (A × B) ⊎ (C × D) → (A ⊎ C) × (B ⊎ D) ⊎×-implies-×⊎ (inj₁ ⟨ fst , snd ⟩) = ⟨ inj₁ fst , inj₁ snd ⟩ ⊎×-implies-×⊎ (inj₂ ⟨ fst , snd ⟩) = ⟨ inj₂ fst , inj₂ snd ⟩
{ "alphanum_fraction": 0.4891655141, "avg_line_length": 30.9857142857, "ext": "agda", "hexsha": "47019599a9d30a9291ccb0cdfe58c390004dc1bd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Ag10.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Ag10.agda", "max_line_length": 101, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Ag10.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 1088, "size": 2169 }
module Issue846.Imports where open import Data.Nat public using (ℕ; zero; suc; _≤_; _∸_) open import Data.List public using (List; []; _∷_) open import Data.Bool public using (Bool; true; false; not) open import Data.Nat.DivMod public using (_mod_) open import Data.Fin public using (Fin; toℕ; zero; suc) open import Relation.Binary.PropositionalEquality public using (_≡_; _≢_; cong) open import Relation.Binary public using (nonEmpty) -- this is the bad guy open import Issue846.DivModUtils public using (1'; lem-sub-p) record Move : Set where constructor pick field picked : ℕ 1≤n : 1 ≤ picked n≤6 : picked ≤ 6 open Move using (picked) Strategy = ℕ → Move {-# NO_TERMINATION_CHECK #-} play : ℕ → Strategy → Strategy → List ℕ play 0 _ _ = [] play n p1 p2 = n ∷ play (n ∸ picked (p1 n)) p2 p1 postulate opt : Strategy evenList : {A : Set} → List A → Bool evenList [] = true evenList (_ ∷ xs) = not (evenList xs) winner : ℕ → Strategy → Strategy → Bool winner n p1 p2 = evenList (play n p1 p2) postulate opt-is-opt : ∀ n s → n mod 7 ≢ 1' → winner n opt s ≡ true ‌‌
{ "alphanum_fraction": 0.6757493188, "avg_line_length": 26.8536585366, "ext": "agda", "hexsha": "22c7187d0dbd8705989eca12068fdb360fa681f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/lib-succeed/Issue846/Imports.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/lib-succeed/Issue846/Imports.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/lib-succeed/Issue846/Imports.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 349, "size": 1101 }
------------------------------------------------------------------------------ -- FOTC terms properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Base.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base ------------------------------------------------------------------------------ -- Congruence properties ·-leftCong : ∀ {a b c} → a ≡ b → a · c ≡ b · c ·-leftCong refl = refl ·-rightCong : ∀ {a b c} → b ≡ c → a · b ≡ a · c ·-rightCong refl = refl ·-cong : ∀ {a b c d} → a ≡ b → c ≡ d → a · c ≡ b · d ·-cong refl refl = refl succCong : ∀ {m n} → m ≡ n → succ₁ m ≡ succ₁ n succCong refl = refl predCong : ∀ {m n} → m ≡ n → pred₁ m ≡ pred₁ n predCong refl = refl ifCong₁ : ∀ {b b' t t'} → b ≡ b' → (if b then t else t') ≡ (if b' then t else t') ifCong₁ refl = refl ifCong₂ : ∀ {b t₁ t₂ t} → t₁ ≡ t₂ → (if b then t₁ else t) ≡ (if b then t₂ else t) ifCong₂ refl = refl ifCong₃ : ∀ {b t t₁ t₂} → t₁ ≡ t₂ → (if b then t else t₁) ≡ (if b then t else t₂) ifCong₃ refl = refl ------------------------------------------------------------------------------ -- Injective properties succInjective : ∀ {m n} → succ₁ m ≡ succ₁ n → m ≡ n succInjective {m} {n} h = m ≡⟨ sym (pred-S m) ⟩ pred₁ (succ₁ m) ≡⟨ predCong h ⟩ pred₁ (succ₁ n) ≡⟨ pred-S n ⟩ n ∎ ------------------------------------------------------------------------------ -- Discrimination rules S≢0 : ∀ {n} → succ₁ n ≢ zero S≢0 S≡0 = 0≢S (sym S≡0)
{ "alphanum_fraction": 0.4137931034, "avg_line_length": 28.5245901639, "ext": "agda", "hexsha": "533d82fddcb738a650f198678b742d7d1631bf67", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Base/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Base/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Base/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 543, "size": 1740 }
-- {-# OPTIONS -v interaction.case:20 -v tc.cover:20 #-} -- Andreas, 2015-05-29, issue reported by Stevan Andjelkovic record Cont : Set₁ where constructor _◃_ field Sh : Set Pos : Sh → Set open Cont data W (C : Cont) : Set where sup : (s : Sh C) (k : Pos C s → W C) → W C -- If I case split on w: bogus : {C : Cont} → W C → Set bogus w = {!w!} -- WAS internally : bogus {Sh ◃ Pos} w = ? -- WAS after split: bogus {Sh ◃ Pos} (sup s k) = ? -- NOW internally : bogus {_} w = ? -- NOW as expected: bogus (sup s k) = ?
{ "alphanum_fraction": 0.5706319703, "avg_line_length": 23.3913043478, "ext": "agda", "hexsha": "c2c8d12dbeac6f7ee996f24804995c3e824da18b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue635a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue635a.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue635a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 197, "size": 538 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Pullback where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Instances.Cospan open import Cubical.Categories.Limits.Limits private variable ℓ ℓ' : Level module _ (C : Category ℓ ℓ') where open Category C open Functor record Cospan : Type (ℓ-max ℓ ℓ') where constructor cospan field l m r : ob s₁ : C [ l , m ] s₂ : C [ r , m ] open Cospan isPullback : (cspn : Cospan) → {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → Type (ℓ-max ℓ ℓ') isPullback cspn {c} p₁ p₂ H = ∀ {d} (h : C [ d , cspn .l ]) (k : C [ d , cspn .r ]) (H' : h ⋆ cspn .s₁ ≡ k ⋆ cspn .s₂) → ∃![ hk ∈ C [ d , c ] ] (h ≡ hk ⋆ p₁) × (k ≡ hk ⋆ p₂) isPropIsPullback : (cspn : Cospan) → {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → isProp (isPullback cspn p₁ p₂ H) isPropIsPullback cspn p₁ p₂ H = isPropImplicitΠ (λ x → isPropΠ3 λ h k H' → isPropIsContr) record Pullback (cspn : Cospan) : Type (ℓ-max ℓ ℓ') where field pbOb : ob pbPr₁ : C [ pbOb , cspn .l ] pbPr₂ : C [ pbOb , cspn .r ] pbCommutes : pbPr₁ ⋆ cspn .s₁ ≡ pbPr₂ ⋆ cspn .s₂ univProp : isPullback cspn pbPr₁ pbPr₂ pbCommutes open Pullback pullbackArrow : {cspn : Cospan} (pb : Pullback cspn) {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → C [ c , pb . pbOb ] pullbackArrow pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .fst pullbackArrowPr₁ : {cspn : Cospan} (pb : Pullback cspn) {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → p₁ ≡ pullbackArrow pb p₁ p₂ H ⋆ pbPr₁ pb pullbackArrowPr₁ pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .snd .fst pullbackArrowPr₂ : {cspn : Cospan} (pb : Pullback cspn) {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) → p₂ ≡ pullbackArrow pb p₁ p₂ H ⋆ pbPr₂ pb pullbackArrowPr₂ pb p₁ p₂ H = pb .univProp p₁ p₂ H .fst .snd .snd pullbackArrowUnique : {cspn : Cospan} (pb : Pullback cspn) {c : ob} (p₁ : C [ c , cspn .l ]) (p₂ : C [ c , cspn .r ]) (H : p₁ ⋆ cspn .s₁ ≡ p₂ ⋆ cspn .s₂) (pbArrow' : C [ c , pb .pbOb ]) (H₁ : p₁ ≡ pbArrow' ⋆ pbPr₁ pb) (H₂ : p₂ ≡ pbArrow' ⋆ pbPr₂ pb) → pullbackArrow pb p₁ p₂ H ≡ pbArrow' pullbackArrowUnique pb p₁ p₂ H pbArrow' H₁ H₂ = cong fst (pb .univProp p₁ p₂ H .snd (pbArrow' , (H₁ , H₂))) Pullbacks : Type (ℓ-max ℓ ℓ') Pullbacks = (cspn : Cospan) → Pullback cspn hasPullbacks : Type (ℓ-max ℓ ℓ') hasPullbacks = ∥ Pullbacks ∥₁ -- Pullbacks from limits module _ {C : Category ℓ ℓ'} where open Category C open Functor open Pullback open LimCone open Cone open Cospan Cospan→Func : Cospan C → Functor CospanCat C Cospan→Func (cospan l m r f g) .F-ob ⓪ = l Cospan→Func (cospan l m r f g) .F-ob ① = m Cospan→Func (cospan l m r f g) .F-ob ② = r Cospan→Func (cospan l m r f g) .F-hom {⓪} {①} k = f Cospan→Func (cospan l m r f g) .F-hom {②} {①} k = g Cospan→Func (cospan l m r f g) .F-hom {⓪} {⓪} k = id Cospan→Func (cospan l m r f g) .F-hom {①} {①} k = id Cospan→Func (cospan l m r f g) .F-hom {②} {②} k = id Cospan→Func (cospan l m r f g) .F-id {⓪} = refl Cospan→Func (cospan l m r f g) .F-id {①} = refl Cospan→Func (cospan l m r f g) .F-id {②} = refl Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {⓪} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {①} {①} φ ψ = sym (⋆IdR _) Cospan→Func (cospan l m r f g) .F-seq {①} {①} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {②} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {①} {①} φ ψ = sym (⋆IdR _) LimitsOfShapeCospanCat→Pullbacks : LimitsOfShape CospanCat C → Pullbacks C pbOb (LimitsOfShapeCospanCat→Pullbacks H cspn) = lim (H (Cospan→Func cspn)) pbPr₁ (LimitsOfShapeCospanCat→Pullbacks H cspn) = limOut (H (Cospan→Func cspn)) ⓪ pbPr₂ (LimitsOfShapeCospanCat→Pullbacks H cspn) = limOut (H (Cospan→Func cspn)) ② pbCommutes (LimitsOfShapeCospanCat→Pullbacks H cspn) = limOutCommutes (H (Cospan→Func cspn)) {v = ①} tt ∙ sym (limOutCommutes (H (Cospan→Func cspn)) tt) univProp (LimitsOfShapeCospanCat→Pullbacks H cspn) {d = d} h k H' = uniqueExists (limArrow (H (Cospan→Func cspn)) d cc) ( sym (limArrowCommutes (H (Cospan→Func cspn)) d cc ⓪) , sym (limArrowCommutes (H (Cospan→Func cspn)) d cc ②)) (λ _ → isProp× (isSetHom _ _) (isSetHom _ _)) λ a' ha' → limArrowUnique (H (Cospan→Func cspn)) d cc a' (λ { ⓪ → sym (ha' .fst) ; ① → cong (a' ⋆_) (sym (limOutCommutes (H (Cospan→Func cspn)) {⓪} {①} tt)) ∙∙ sym (⋆Assoc _ _ _) ∙∙ cong (_⋆ cspn .s₁) (sym (ha' .fst)) ; ② → sym (ha' .snd) }) where cc : Cone (Cospan→Func cspn) d coneOut cc ⓪ = h coneOut cc ① = h ⋆ cspn .s₁ coneOut cc ② = k coneOutCommutes cc {⓪} {⓪} e = ⋆IdR h coneOutCommutes cc {⓪} {①} e = refl coneOutCommutes cc {①} {①} e = ⋆IdR _ coneOutCommutes cc {②} {①} e = sym H' coneOutCommutes cc {②} {②} e = ⋆IdR k Limits→Pullbacks : Limits C → Pullbacks C Limits→Pullbacks H = LimitsOfShapeCospanCat→Pullbacks (H CospanCat)
{ "alphanum_fraction": 0.5695608448, "avg_line_length": 38.7402597403, "ext": "agda", "hexsha": "a872212b80e5bc814d29102895e2594cbc2acbfa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_line_length": 109, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Pullback.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2650, "size": 5966 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.Consensus.Liveness.RoundState as RoundState import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile open import LibraBFT.Impl.IO.OBM.InputOutputHandlers import LibraBFT.Impl.IO.OBM.Start as Start open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.OBM.Time import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.Impl.Consensus.RoundManager open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Encode open import Util.Hash open import Util.KVMap as KVMap open import Util.Lemmas open import Util.PKCS open import Util.Prelude open import Yasm.Base import Yasm.Types as YT -- This module connects implementation handlers to the interface of the SystemModel. module LibraBFT.Impl.Handle where open EpochConfig ------------------------------------------------------------------------------ -- This function works with any implementation of a RoundManager. -- NOTE: The system layer only cares about this step function. -- 0 is given as a timestamp. peerStep : NodeId → NetworkMsg → RoundManager → RoundManager × List (YT.Action NetworkMsg) peerStep nid msg st = runHandler st (handle nid msg 0) where -- This invokes an implementation handler. runHandler : RoundManager → LBFT Unit → RoundManager × List (YT.Action NetworkMsg) runHandler st handler = ×-map₂ (outputsToActions {st}) (proj₂ (LBFT-run handler st)) ------------------------------------------------------------------------------ -- This connects the implementation handler to the system model so it can be initialized. module InitHandler where {- IMPL-DIFF: In Haskell, nodes are started with a filepath of a file containing - number of faults allowed - genesis LedgerInfoWithSignatures - network addresses/name and secret and public keys of all nodes in the genesis epoch Main reads/checks that file then calls a network specific 'run' functions (e.g., ZMQ.hs) that setup the network handlers then eventually call 'Start.startViaConsensusProvider'. That functions calls 'ConsensusProvider.startConsensus' which returns '(EpochManager, [Output]'. 'Start.startViaConsensusProvider' then goes on to create and wire up internal communication channels and starts threads. The most relevant thread starts up `(EpochManager.obmStartLoop epochManager output ...)' to handle the initialization output and then to handle new messages from the network. In Agda below, - we assume 'BootstrapInfo' known to all peers - i.e., the same info that Haskell creates via 'GenKeyFile.create' - the assumed info is given to 'mkSysInitAndHandlers' in 'InitAndHandlers' - System initialization calls 'initHandler' - 'initHandler' eventually calls 'initialize' - 'initialize' calls 'State.startViaConsensusProvider' when then calls 'ConsensusProvider.startConsensus' which returns '(EpochManager, List Output)', just like Haskell. - Since there is no network, internal channels and threads, this is the end of this process. Note: although both the Haskell and Agda version support non-uniform voting, the above initialization process assumes one-vote per peer. -} postulate -- TODO-2: Eliminate when/if timestamps are modeled now : Instant proposalGenerator : ProposalGenerator proposalGenerator = ProposalGenerator∙new 0 initialize-ed : Instant → GenKeyFile.NfLiwsVsVvPe → EitherD ErrLog (EpochManager × List Output) initialize-ed now nfLiwsVsVvPe = Start.startViaConsensusProvider-ed-abs now nfLiwsVsVvPe (TxTypeDependentStuffForNetwork∙new proposalGenerator (StateComputer∙new BlockInfo.gENESIS_VERSION)) abstract initialize-ed-abs = initialize-ed initialize-ed-abs≡ : initialize-ed-abs ≡ initialize-ed initialize-ed-abs≡ = refl mkNfLiwsVsVvPe : BootstrapInfo → ValidatorSigner → GenKeyFile.NfLiwsVsVvPe mkNfLiwsVsVvPe bsi vs = (bsi ^∙ bsiNumFaults , bsi ^∙ bsiLIWS , vs , bsi ^∙ bsiVV , bsi ^∙ bsiPE) -- No need to break this one into steps, no decision points initEMWithOutput-ed : BootstrapInfo → ValidatorSigner → EitherD ErrLog (EpochManager × List Output) initEMWithOutput-ed bsi vs = initialize-ed-abs now (mkNfLiwsVsVvPe bsi vs) abstract initEMWithOutput-e-abs : BootstrapInfo → ValidatorSigner → Either ErrLog (EpochManager × List Output) initEMWithOutput-e-abs bsi vs = toEither $ initEMWithOutput-ed bsi vs initEMWithOutput-ed-abs = initEMWithOutput-ed initEMWithOutput-ed-abs≡ : initEMWithOutput-ed-abs ≡ initEMWithOutput-ed initEMWithOutput-ed-abs≡ = refl -- This shows that the Either and EitherD versions are equivalent. -- This is a first step towards eliminating the painful VariantOf stuff, -- so we can have the version that looks (almost) exactly like the Haskell, -- and the EitherD variant, broken into explicit steps, etc. for proving. initEMWithOutput≡ : ∀ {bsi : BootstrapInfo} {vs : ValidatorSigner} → initEMWithOutput-e-abs bsi vs ≡ EitherD-run (initEMWithOutput-ed-abs bsi vs) initEMWithOutput≡ {bsi} {vs} = refl getEmRm-ed : EpochManager → EitherD ErrLog RoundManager getEmRm-ed em = case em ^∙ emProcessor of λ where nothing → LeftD fakeErr (just p) → case p of λ where (RoundProcessorRecovery _) → LeftD fakeErr (RoundProcessorNormal rm) → RightD rm abstract getEmRm-ed-abs : EpochManager → EitherD ErrLog RoundManager getEmRm-ed-abs = getEmRm-ed getEmRm-ed-abs≡ : getEmRm-ed-abs ≡ getEmRm-ed getEmRm-ed-abs≡ = refl getEmRm-e-abs : EpochManager → Either ErrLog RoundManager getEmRm-e-abs = toEither ∘ getEmRm-ed-abs postulate -- TODO getEMRM≡ : ∀ {em : EpochManager} → getEmRm-e-abs em ≡ EitherD-run (getEmRm-ed-abs em) -- Below is a small exploration in how we define, use, and prove properties about functions in the -- Either monad. We would like to: -- -- * use the EitherD-weakestPre machinery to help structure proofs -- * avoid functions being "unrolled" in proof states to make them more readable and proofs more -- robust to change -- * break functions in to smaller pieces with names and explicit type signatures, making it -- easier to employ the EitherD machinery, especially for those not yet fluent using it -- * be able to easily compare the Agda code to the Haskell code it models -- -- These desires entail some tradeoffs. The exploration below helps to illustrate the -- possibilities. We first express the initRMWithOutput function in several different ways, with -- different suffixes to clarify which is which. -- -- * initRMWithOutput-e -- - An Either version that is virtually identical to the Haskell -- * initRMWithOutput-ed -- - An EitherD version broken into steps -- * Abstract versions of each of these, two for initRMWithOutput-e (initRMWithOutput-e-abs and -- initRMWithOutput-e-abs1) and one for initRMWithOutput-ed (initRMWithOutput-ed-abs). -- initRMWithOutput-e-abs is defined simply using initRMWithOutput-ed and toEither, whereas -- initRMWithOutput-e-abs1 is defined using initRMWithOutput-e. We also prove below a number of -- properties showing that these are all equivalent (in the sense that the Either versions -- return the same value as EitherD-run when given the EitherD version). These proofs serve as -- useful rewrites in various proofs, as illustrated in the proof of -- initRMWithOutputSpec.contract and of initRMWithOutput-e-versions-≡ below. -- -- While it is nice to have both versions and prove their equivalence (one for relating to Haskell -- code, one for proving using the EitherD machinery), it does entail extra work and may be -- overkill. With a little experience, it's probably not too difficult in most cases to compare -- the original Haskell code to the EitherD version broken into steps, and to convince oneself -- that the latter faithfully reflects the former. If we keep some examples (such as this one) -- showing a function written in Either and an "equivalent" one written in EitherD, broken into -- steps, etc. for proof convenience, then this may help people who are not (yet) comfortable with -- this translation to become more comfortable. -- -- In some cases, the EitherD proof-friendly version may depart further from the Haskell-like -- version, and for such cases, it may be worthwhile to write the Haskell-equivalent version. -- This makes proving that the Either and EitherD versions are "equivalent" a bit more work -- (compare initRMWithOutput≡ and initRMWithOutput≡' below, and note in particular that the latter -- requires properties about the functions called as well). Of course, writing both versions is -- too extra work too. In general, it's question of judgement whether we're OK with considering -- that the Either version defined using toEither and the EitherD version is sufficiently -- obviously equivalent to the Haskell code we're modeling. -- -- Tentative conclusion -- -- Default to writing the proof-friendly EitherD version and defining the Either version in terms -- of it. For cases in which the correspondence is judged not to be obvious enough, we can add an -- explicit Either version and prove that is is equivalent. -- -- Calling convention -- -- When calling a function within and EitherD function, we should call an abstract version of that -- function, which ensures modularity of proofs and readability of proof states by avoiding Agda -- "unrolling" defintions prematurely. Similarly, for cases in which we do write an explicit -- Either version and prove it equivalent, we should also call an abstract version of Either -- functions. -- Relationship to "VariantFor" -- -- We have previously defined variants for functions in EitherLike monads using EL-func (search -- for VariantFor). In light of the above exploration, perhaps that machinery adds less value -- than it is worth? It seems we can get everything we need from following simple conventions as -- outlined above. initRMWithOutput-e : BootstrapInfo → ValidatorSigner → Either ErrLog (RoundManager × List Output) initRMWithOutput-e bsi vs = do (em , lo) ← initEMWithOutput-e-abs bsi vs rm ← getEmRm-e-abs em Right (rm , lo) module initRMWithOutput-ed (bsi : BootstrapInfo) (vs : ValidatorSigner) where step₀ : EitherD ErrLog (RoundManager × List Output) step₁ : EpochManager × List Output → EitherD ErrLog (RoundManager × List Output) step₀ = do (em , lo) ← initEMWithOutput-ed-abs bsi vs step₁ (em , lo) step₁ (em , lo) = do rm ← getEmRm-ed-abs em RightD (rm , lo) abstract initRMWithOutput-e-abs initRMWithOutput-e-abs1 : BootstrapInfo → ValidatorSigner → Either ErrLog (RoundManager × List Output) -- Avoids duplication, but eliminates version that looks exactly like the Haskell initRMWithOutput-e-abs bsi vs = toEither $ initRMWithOutput-ed.step₀ bsi vs initRMWithOutput-ed-abs = initRMWithOutput-ed.step₀ initRMWithOutput-ed-abs≡ : initRMWithOutput-ed-abs ≡ initRMWithOutput-ed.step₀ initRMWithOutput-ed-abs≡ = refl initRMWithOutput-e-abs1 = initRMWithOutput-e initRMWithOutput-e-abs1≡ : initRMWithOutput-e-abs1 ≡ initRMWithOutput-e initRMWithOutput-e-abs1≡ = refl initRMWithOutput≡ : ∀ {bsi : BootstrapInfo} {vs : ValidatorSigner} → initRMWithOutput-e-abs bsi vs ≡ EitherD-run (initRMWithOutput-ed-abs bsi vs) initRMWithOutput≡ {bsi} {vs} = refl initRMWithOutput≡' : ∀ {bsi : BootstrapInfo} {vs : ValidatorSigner} → initRMWithOutput-e-abs1 bsi vs ≡ EitherD-run (initRMWithOutput-ed.step₀ bsi vs) initRMWithOutput≡' {bsi} {vs} rewrite initRMWithOutput-e-abs1≡ | initEMWithOutput≡ {bsi} {vs} with EitherD-run (initEMWithOutput-ed-abs bsi vs) ... | Left x = refl ... | Right (em , lo) rewrite getEMRM≡ {em} with EitherD-run (getEmRm-ed-abs em) ... | Left x = refl ... | Right y = refl -- Not used, just for satisfying ourselves that the versions really are equivalent, and -- demonstrating the use of the various equivalences for rewriting. initRMWithOutput-e-versions-≡ : ∀ {bsi} {vs} → initRMWithOutput-e-abs1 bsi vs ≡ initRMWithOutput-e-abs bsi vs initRMWithOutput-e-versions-≡ {bsi} {vs} rewrite initRMWithOutput≡' {bsi} {vs} | initRMWithOutput≡ {bsi} {vs} | initRMWithOutput-ed-abs≡ = refl initHandler : Author → BootstrapInfo → Maybe (RoundManager × List (YT.Action NetworkMsg)) initHandler pid bsi = case ValidatorSigner.obmGetValidatorSigner pid (bsi ^∙ bsiVSS) of λ where (Left _) → nothing (Right vs) → case initRMWithOutput-e-abs bsi vs of λ where (Left _) → nothing (Right (rm , lo)) → just (rm , outputsToActions {State = rm} lo) initAndHandlers : SystemInitAndHandlers ℓ-RoundManager ConcSysParms initAndHandlers = mkSysInitAndHandlers fakeBootstrapInfo fakeInitRM initHandler peerStep where postulate -- TODO-1: eliminate by constructing inhabitants bs : BlockStore pe : ProposerElection rs : RoundState sr : SafetyRules vv : BootstrapInfo → ValidatorVerifier -- For uninitialised peers, so we know nothing about their state. -- Construct a value of type `RoundManager` to ensure it is inhabitable. fakeInitRM : RoundManager fakeInitRM = RoundManager∙new ObmNeedFetch∙new (EpochState∙new 1 (vv fakeBootstrapInfo)) bs rs pe proposalGenerator sr false
{ "alphanum_fraction": 0.7233605153, "avg_line_length": 46.0347003155, "ext": "agda", "hexsha": "d2d7fb375af72afd8bddeec74e481935cb80f400", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Handle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Handle.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Handle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3809, "size": 14593 }
{- This second-order equational theory was created from the following second-order syntax description: syntax PDiff | PD type * : 0-ary term zero : * | 𝟘 add : * * -> * | _⊕_ l20 one : * | 𝟙 mult : * * -> * | _⊗_ l20 neg : * -> * | ⊖_ r50 pd : *.* * -> * | ∂_∣_ theory (𝟘U⊕ᴸ) a |> add (zero, a) = a (𝟘U⊕ᴿ) a |> add (a, zero) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊕C) a b |> add(a, b) = add(b, a) (𝟙U⊗ᴸ) a |> mult (one, a) = a (𝟙U⊗ᴿ) a |> mult (a, one) = a (⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c)) (⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c)) (⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c)) (𝟘X⊗ᴸ) a |> mult (zero, a) = zero (𝟘X⊗ᴿ) a |> mult (a, zero) = zero (⊖N⊕ᴸ) a |> add (neg (a), a) = zero (⊖N⊕ᴿ) a |> add (a, neg (a)) = zero (⊗C) a b |> mult(a, b) = mult(b, a) (∂⊕) a : * |> x : * |- d0 (add (x, a)) = one (∂⊗) a : * |> x : * |- d0 (mult(a, x)) = a (∂C) f : (*,*).* |> x : * y : * |- d1 (d0 (f[x,y])) = d0 (d1 (f[x,y])) (∂Ch₂) f : (*,*).* g h : *.* |> x : * |- d0 (f[g[x], h[x]]) = add (mult(pd(z. f[z, h[x]], g[x]), d0(g[x])), mult(pd(z. f[g[x], z], h[x]), d0(h[x]))) (∂Ch₁) f g : *.* |> x : * |- d0 (f[g[x]]) = mult (pd (z. f[z], g[x]), d0(g[x])) -} module PDiff.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import PDiff.Signature open import PDiff.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution PD:Syn open import SOAS.Metatheory.SecondOrder.Equality PD:Syn private variable α β γ τ : *T Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ PD) α Γ → (𝔐 ▷ PD) α Γ → Set where 𝟘U⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝟘 ⊕ 𝔞 ≋ₐ 𝔞 ⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠) ⊕C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ 𝔟 ≋ₐ 𝔟 ⊕ 𝔞 𝟙U⊗ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝟙 ⊗ 𝔞 ≋ₐ 𝔞 ⊗A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊗ 𝔟) ⊗ 𝔠 ≋ₐ 𝔞 ⊗ (𝔟 ⊗ 𝔠) ⊗D⊕ᴸ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊗ (𝔟 ⊕ 𝔠) ≋ₐ (𝔞 ⊗ 𝔟) ⊕ (𝔞 ⊗ 𝔠) 𝟘X⊗ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝟘 ⊗ 𝔞 ≋ₐ 𝟘 ⊖N⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (⊖ 𝔞) ⊕ 𝔞 ≋ₐ 𝟘 ⊗C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊗ 𝔟 ≋ₐ 𝔟 ⊗ 𝔞 ∂⊕ : ⁅ * ⁆̣ ▹ ⌊ * ⌋ ⊢ ∂₀ (x₀ ⊕ 𝔞) ≋ₐ 𝟙 ∂⊗ : ⁅ * ⁆̣ ▹ ⌊ * ⌋ ⊢ ∂₀ (𝔞 ⊗ x₀) ≋ₐ 𝔞 ∂C : ⁅ * · * ⊩ * ⁆̣ ▹ ⌊ * ∙ * ⌋ ⊢ ∂₁ ∂₀ 𝔞⟨ x₀ ◂ x₁ ⟩ ≋ₐ ∂₀ ∂₁ 𝔞⟨ x₀ ◂ x₁ ⟩ ∂Ch₂ : ⁅ * · * ⊩ * ⁆ ⁅ * ⊩ * ⁆ ⁅ * ⊩ * ⁆̣ ▹ ⌊ * ⌋ ⊢ ∂₀ 𝔞⟨ (𝔟⟨ x₀ ⟩) ◂ (𝔠⟨ x₀ ⟩) ⟩ ≋ₐ ((∂ 𝔞⟨ x₀ ◂ (𝔠⟨ x₁ ⟩) ⟩ ∣ 𝔟⟨ x₀ ⟩) ⊗ (∂₀ 𝔟⟨ x₀ ⟩)) ⊕ ((∂ 𝔞⟨ (𝔟⟨ x₁ ⟩) ◂ x₀ ⟩ ∣ 𝔠⟨ x₀ ⟩) ⊗ (∂₀ 𝔠⟨ x₀ ⟩)) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning -- Derived equations 𝟘U⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ 𝟘 ≋ 𝔞 𝟘U⊕ᴿ = tr (ax ⊕C with《 𝔞 ◃ 𝟘 》) (ax 𝟘U⊕ᴸ with《 𝔞 》) 𝟙U⊗ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊗ 𝟙 ≋ 𝔞 𝟙U⊗ᴿ = tr (ax ⊗C with《 𝔞 ◃ 𝟙 》) (ax 𝟙U⊗ᴸ with《 𝔞 》) ⊗D⊕ᴿ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊗ 𝔠 ≋ (𝔞 ⊗ 𝔠) ⊕ (𝔟 ⊗ 𝔠) ⊗D⊕ᴿ = begin (𝔞 ⊕ 𝔟) ⊗ 𝔠 ≋⟨ ax ⊗C with《 𝔞 ⊕ 𝔟 ◃ 𝔠 》 ⟩ 𝔠 ⊗ (𝔞 ⊕ 𝔟) ≋⟨ ax ⊗D⊕ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩ (𝔠 ⊗ 𝔞) ⊕ (𝔠 ⊗ 𝔟) ≋⟨ cong₂[ ax ⊗C with《 𝔠 ◃ 𝔞 》 ][ ax ⊗C with《 𝔠 ◃ 𝔟 》 ]inside ◌ᵈ ⊕ ◌ᵉ ⟩ (𝔞 ⊗ 𝔠) ⊕ (𝔟 ⊗ 𝔠) ∎ 𝟘X⊗ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊗ 𝟘 ≋ 𝟘 𝟘X⊗ᴿ = tr (ax ⊗C with《 𝔞 ◃ 𝟘 》) (ax 𝟘X⊗ᴸ with《 𝔞 》) ⊖N⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ (⊖ 𝔞) ≋ 𝟘 ⊖N⊕ᴿ = tr (ax ⊕C with《 𝔞 ◃ (⊖ 𝔞) 》) (ax ⊖N⊕ᴸ with《 𝔞 》) -- Derivative of a variable is 1 ∂id : ⁅⁆ ▹ ⌊ * ⌋ ⊢ ∂₀ x₀ ≋ 𝟙 ∂id = begin ∂₀ x₀ ≋⟨ cong[ thm 𝟘U⊕ᴿ with《 x₀ 》 ]inside ∂₀ ◌ᵃ ⟩ₛ ∂₀ (x₀ ⊕ 𝟘) ≋⟨ ax ∂⊕ with《 𝟘 》 ⟩ 𝟙 ∎ -- Derivative of 0 is 0 ∂𝟘 : ⁅⁆ ▹ ⌊ * ⌋ ⊢ ∂₀ 𝟘 ≋ 𝟘 ∂𝟘 = begin ∂₀ 𝟘 ≋⟨ cong[ ax 𝟘X⊗ᴸ with《 x₀ 》 ]inside ∂₀ ◌ᵃ ⟩ₛ ∂₀ (𝟘 ⊗ x₀) ≋⟨ ax ∂⊗ with《 𝟘 》 ⟩ 𝟘 ∎ -- Unary chain rule ∂Ch₁ : ⁅ * ⊩ * ⁆ ⁅ * ⊩ * ⁆̣ ▹ ⌊ * ⌋ ⊢ ∂₀ 𝔞⟨ (𝔟⟨ x₀ ⟩) ⟩ ≋ (∂ 𝔞⟨ x₀ ⟩ ∣ 𝔟⟨ x₀ ⟩) ⊗ (∂₀ 𝔟⟨ x₀ ⟩) ∂Ch₁ = begin ∂₀ (𝔞⟨ (𝔟⟨ x₀ ⟩) ⟩) ≋⟨ ax ∂Ch₂ with《 𝔞⟨ x₀ ⟩ ◃ 𝔟⟨ x₀ ⟩ ◃ 𝟘 》 ⟩ (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) ⊕ ((∂ 𝔞⟨ (𝔟⟨ x₁ ⟩) ⟩ ∣ 𝟘) ⊗ (∂₀ 𝟘)) ≋⟨ cong[ thm ∂𝟘 ]inside (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) ⊕ ((∂ 𝔞⟨ (𝔟⟨ x₁ ⟩) ⟩ ∣ 𝟘) ⊗ ◌ᶜ) ⟩ (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) ⊕ (∂ 𝔞⟨ (𝔟⟨ x₁ ⟩) ⟩ ∣ 𝟘) ⊗ 𝟘 ≋⟨ cong[ thm 𝟘X⊗ᴿ with《 (∂ 𝔞⟨ (𝔟⟨ x₁ ⟩) ⟩ ∣ 𝟘) 》 ]inside (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) ⊕ ◌ᶜ ⟩ (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) ⊕ 𝟘 ≋⟨ thm 𝟘U⊕ᴿ with《 (∂ 𝔞⟨ x₀ ⟩ ∣ (𝔟⟨ x₀ ⟩)) ⊗ (∂₀ (𝔟⟨ x₀ ⟩)) 》 ⟩ (∂ 𝔞⟨ x₀ ⟩ ∣ 𝔟⟨ x₀ ⟩) ⊗ (∂₀ 𝔟⟨ x₀ ⟩) ∎
{ "alphanum_fraction": 0.341352136, "avg_line_length": 37.0923076923, "ext": "agda", "hexsha": "e97cd90599893217a0bdb158c688694201bddadd", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/PDiff/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/PDiff/Equality.agda", "max_line_length": 151, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/PDiff/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 3450, "size": 4822 }
{-# OPTIONS --safe #-} module Definition.Typed.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties -- Weak head expansion of type equality reduction : ∀ {A A′ B B′ r Γ} → Γ ⊢ A ⇒* A′ ^ r → Γ ⊢ B ⇒* B′ ^ r → Whnf A′ → Whnf B′ → Γ ⊢ A′ ≡ B′ ^ r → Γ ⊢ A ≡ B ^ r reduction D D′ whnfA′ whnfB′ A′≡B′ = trans (subset* D) (trans A′≡B′ (sym (subset* D′))) reduction′ : ∀ {A A′ B B′ r Γ} → Γ ⊢ A ⇒* A′ ^ r → Γ ⊢ B ⇒* B′ ^ r → Whnf A′ → Whnf B′ → Γ ⊢ A ≡ B ^ r → Γ ⊢ A′ ≡ B′ ^ r reduction′ D D′ whnfA′ whnfB′ A≡B = trans (sym (subset* D)) (trans A≡B (subset* D′)) -- Weak head expansion of term equality reductionₜ : ∀ {a a′ b b′ A B l Γ} → Γ ⊢ A ⇒* B ^ [ ! , l ] → Γ ⊢ a ⇒* a′ ∷ B ^ l → Γ ⊢ b ⇒* b′ ∷ B ^ l → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a′ ≡ b′ ∷ B ^ [ ! , l ] → Γ ⊢ a ≡ b ∷ A ^ [ ! , l ] reductionₜ D d d′ whnfB whnfA′ whnfB′ a′≡b′ = conv (trans (subset*Term d) (trans a′≡b′ (sym (subset*Term d′)))) (sym (subset* D)) reductionₜ′ : ∀ {a a′ b b′ A B l Γ} → Γ ⊢ A ⇒* B ^ [ ! , l ] → Γ ⊢ a ⇒* a′ ∷ B ^ l → Γ ⊢ b ⇒* b′ ∷ B ^ l → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a ≡ b ∷ A ^ [ ! , l ] → Γ ⊢ a′ ≡ b′ ∷ B ^ [ ! , l ] reductionₜ′ D d d′ whnfB whnfA′ whnfB′ a≡b = trans (sym (subset*Term d)) (trans (conv a≡b (subset* D)) (subset*Term d′))
{ "alphanum_fraction": 0.4007352941, "avg_line_length": 28.1379310345, "ext": "agda", "hexsha": "edf1d5d042b176b66a6ab877835f79bb4daf29b9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Reduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Reduction.agda", "max_line_length": 55, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Reduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 656, "size": 1632 }
open import Prelude open import Data.Nat using (_≤?_) open import Data.Maybe using (Maybe; just; nothing; is-just) open import Reflection using (_≟-Lit_; _≟-Name_) open import RW.Language.RTerm open import RW.Utils.Monads module RW.Language.RTermUtils where open Monad {{...}} -- The complexity annotations might require -- a slight notational introduction. -- -- If a variable name overlaps one in the corresponding type signature, -- this is intentional. -- -- Sₜ is defined by (S t). -- #Fvₜ is defined by length (Fv t). -- Both measures are defined below. -- -------------- -- Measures -- -------------- -- The TERMINATING pragmas are required since Agda does not -- recognize a call to map as terminating. {-# TERMINATING #-} height : {A : Set} → RTerm A → ℕ height (ovar _) = 0 height (ivar _) = 0 height (rlit _) = 0 height (rlam t) = 1 + height t height (rapp _ ts) = 1 + max* (map height ts) where max : ℕ → ℕ → ℕ max a b with a ≤? b ...| yes _ = b ...| no _ = a max* : List ℕ → ℕ max* [] = 0 max* (h ∷ t) = max h (max* t) {-# TERMINATING #-} S : {A : Set} → RTerm A → ℕ S (ovar _) = 1 S (ivar _) = 1 S (rlit _) = 1 S (rlam t) = 1 + S t S (rapp n ts) = 1 + sum (map S ts) where open import Data.List using (sum) {-# TERMINATING #-} Fv : {A : Set} → RTerm A → List A Fv (ovar a) = a ∷ [] Fv (ivar _) = [] Fv (rlit _) = [] Fv (rlam t) = Fv t Fv (rapp _ ts) = concatMap Fv ts where open import Data.List using (concatMap) ------------------------------------------------------- -- Terms with Context -- -- Holes will be represented by a nothing; pattern hole = ovar nothing isHole : ∀{a}{A : Set a} → RTerm (Maybe A) → Bool isHole (ovar nothing) = true isHole _ = false -- Term Intersection -- -- Complexity analisys follows below. {-# TERMINATING #-} _∩_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm A → RTerm A → RTerm (Maybe A) _∩_ (rapp x ax) (rapp y ay) with x ≟-RTermName y ...| no _ = ovar nothing ...| yes _ = rapp x (map (uncurry _∩_) (zip ax ay)) _∩_ (ivar x) (ivar y) with x ≟-ℕ y ...| no _ = ovar nothing ...| yes _ = ivar x _∩_ ⦃ eq _≟_ ⦄ (ovar x) (ovar y) with x ≟ y ...| no _ = ovar nothing ...| yes _ = ovar (just x) _∩_ (rlit x) (rlit y) with x ≟-Lit y ...| no _ = ovar nothing ...| yes _ = rlit x _∩_ (rlam x) (rlam y) = rlam (x ∩ y) _∩_ _ _ = ovar nothing -- The wors case for a intersection is, of course, both terms being -- equal. But in that case, (t ∩ t) is just a (fmap just), as we -- can see below. -- -- Therefore, t ∩ t ∈ O(Sₜ) -- -- In case we have two different terms, the smaller of -- them will make _∩_ halt. Therefore, -- -- t ∩ u ∈ O(min(Sₜ , Sᵤ)) -- private mutual t∩t≡t : {A : Set}⦃ eqA : Eq A ⦄{t : RTerm A} → t ∩ t ≡ replace-A (ovar ∘ just) t t∩t≡t ⦃ eq _≟_ ⦄ {t = ovar x} with x ≟ x ...| yes x≡x = refl ...| no x≢x = ⊥-elim (x≢x refl) t∩t≡t {t = ivar n} with n ≟-ℕ n ...| yes n≡n = refl ...| no n≢n = ⊥-elim (n≢n refl) t∩t≡t {t = rlit l} with l ≟-Lit l ...| yes l≡l = refl ...| no l≢l = ⊥-elim (l≢l refl) t∩t≡t {A} {t = rlam t} = trans (cong rlam (t∩t≡t {t = t})) (sym (lemma-replace-rlam {A = A} {f = ovar ∘ just} {t = t})) t∩t≡t {t = rapp n ts} with n ≟-RTermName n ...| no n≢n = ⊥-elim (n≢n refl) ...| yes n≡n = cong (rapp n) t∩t≡t* t∩t≡t* : {A : Set}⦃ eqA : Eq A ⦄{ts : List (RTerm A)} → map (uncurry _∩_) (zip ts ts) ≡ map (replace-A (ovar ∘ just)) ts t∩t≡t* {ts = []} = refl t∩t≡t* {ts = t ∷ ts} rewrite sym (t∩t≡t {t = t}) = cong (_∷_ (t ∩ t)) (t∩t≡t* {ts = ts}) -- Lifting holes. -- -- Will translate every definition with only holes as arguments -- into a single hole. -- -- The worst case for lifting holes is to find a term t -- with no holes. Therefore _↑ ∈ O(Sₜ). {-# TERMINATING #-} _↑ : ∀{a}{A : Set a} → RTerm (Maybe A) → RTerm (Maybe A) _↑ (rapp x []) = rapp x [] _↑ (rapp x ax) with all isHole ax ...| true = ovar nothing ...| false = rapp x (map _↑ ax) _↑ (rlam x) = rlam (x ↑) _↑ t = t -- It is commom to need only "linear" intersections; -- -- _∩↑_ ∈ O(Sₜ + Sₜ) ≈ O(Sₜ) -- _∩↑_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm A → RTerm A → RTerm (Maybe A) v ∩↑ u = (v ∩ u) ↑ -- Casting ⊥2UnitCast : RTerm (Maybe ⊥) → RTerm Unit ⊥2UnitCast = replace-A (maybe ⊥-elim (ovar unit)) -- Converting Holes to Abstractions -- -- Will replace holes for "var 0", -- and increment every other non-captured variable. -- {-# TERMINATING #-} holeElim : ℕ → RTerm Unit → RTerm ⊥ holeElim d (ovar unit) = ivar zero holeElim d (ivar n) with suc n ≤? d ...| yes _ = ivar n ...| no _ = ivar (suc n) holeElim d (rlit l) = rlit l holeElim d (rlam rt) = rlam (holeElim (suc d) rt) holeElim d (rapp n ts) = rapp n (map (holeElim d) ts) -- Specialized version for handling indexes. hole2Abs : RTerm Unit → RTerm ⊥ hole2Abs = rlam ∘ holeElim 0 hole2Absℕ : RTerm Unit → RTerm ℕ hole2Absℕ = replace-A ⊥-elim ∘ hole2Abs open import Data.String hiding (_++_) postulate err : ∀{a}{A : Set a} → String → A private joinInner : {A : Set} → List (Maybe (List A)) → Maybe (List A) joinInner [] = just [] joinInner (nothing ∷ _) = nothing -- err "2" joinInner (just x ∷ xs) = maybe (λ l → just (x ++ l)) nothing (joinInner xs) lemma-joinInner : {A : Set}{x : List A}{l : List (Maybe (List A))} → joinInner (just x ∷ l) ≡ maybe (λ l → just (x ++ l)) nothing (joinInner l) lemma-joinInner = refl -- Term Subtraction -- -- Compelxity analisys follows below. -- {-# TERMINATING #-} _-_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm (Maybe A) → RTerm A → Maybe (List (RTerm A)) hole - t = return (t ∷ []) (rapp x ax) - (rapp y ay) with x ≟-RTermName y ...| no _ = nothing -- err "1" ...| yes _ = joinInner (map (uncurry _-_) (zip ax ay)) (rlam x) - (rlam y) = x - y x - y with x ≟-RTerm (replace-A (ovar ∘ just) y) ...| yes _ = just [] ...| no _ = nothing -- err "3" -- Similarly to _∩_, we will prove the worst case complexity -- based on lemma t-t≡Fvt. -- That is, looking at term subtraction, the wors possible case -- is that our roadmap (RTerm (Maybe A)) perfectly matches the -- term we are looking for, and has all occurences of ovars as holes. -- (a simple drawing might help to see this). -- -- Well, when this is the case, our lemma tells us that -- subtraction is the same as getting the free variables -- and mapping ovar over them. -- -- It is clear that we have some additional complexity on -- the function joinInner, but we will ignore this for -- the sake of simplicity, for now. -- If we consider that most of the lemmas do not have more than 10 -- free variables, joinInner is of negligible run-time -- (TODO: dangerous afirmation!!) -- -- We'll then say that _-_ ∈ O(#Fvₜ). -- private fmap-nothing : {A : Set} → RTerm A → RTerm (Maybe A) fmap-nothing = replace-A (const $ ovar nothing) mutual t-t≡Fvt : {A : Set}⦃ eqA : Eq A ⦄(t : RTerm A) → (fmap-nothing t) - t ≡ just (map ovar (Fv t)) t-t≡Fvt (ovar x) = refl t-t≡Fvt (ivar n) with n ≟-ℕ n ...| yes n≡n = refl ...| no n≢n = ⊥-elim (n≢n refl) t-t≡Fvt (rlit l) with l ≟-Lit l ...| yes l≡l = refl ...| no l≢l = ⊥-elim (l≢l refl) t-t≡Fvt (rlam t) = t-t≡Fvt t t-t≡Fvt (rapp n ts) with n ≟-RTermName n ...| yes n≡n = t-t≡Fvt* ts ...| no n≢n = ⊥-elim (n≢n refl) t-t≡Fvt* : {A : Set}⦃ eqA : Eq A ⦄(ts : List (RTerm A)) → joinInner (map (uncurry _-_) (zip (map fmap-nothing ts) ts)) ≡ just (map ovar (concat (map Fv ts))) t-t≡Fvt* [] = refl t-t≡Fvt* (t ∷ ts) rewrite t-t≡Fvt t with joinInner (map (uncurry _-_) (zip (map fmap-nothing ts) ts)) | t-t≡Fvt* ts t-t≡Fvt* (t ∷ ts) | nothing | () t-t≡Fvt* (t ∷ ts) | just .(map ovar (foldr _++_ [] (map Fv ts))) | refl = cong just (sym (map-++-commute ovar (Fv t) (concat (map Fv ts)))) where open import Data.List.Properties using (map-++-commute) -- Term Subtraction, single result. -- -- Disconsidering lazyness, (_-↓_ t) = fmap head ∘ (_-_ t) -- Therefore, _-↓_ ∈ O(#Fvₜ). -- _-↓_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm (Maybe A) → RTerm A → Maybe (RTerm A) t -↓ u with t - u ...| just [] = nothing ...| just (x ∷ _) = just x ...| nothing = nothing -- Structural Manipulation {-# TERMINATING #-} map-ivar : {A : Set} → ℕ → (ℕ → RTerm A) → RTerm ⊥ → RTerm A map-ivar _ f (ovar ()) map-ivar d f (ivar n) with d ≤? n ...| yes _ = f n ...| no _ = ivar n map-ivar _ f (rlit l) = rlit l map-ivar d f (rlam t) = rlam (map-ivar (suc d) f t) map-ivar d f (rapp n ts) = rapp n (map (map-ivar d f) ts) -- Lift ivar's to ovar's lift-ivar : RTerm ⊥ → RTerm ℕ lift-ivar = map-ivar 0 ovar private last : {A : Set} → List A → Maybe A last [] = nothing last (x ∷ []) = just x last (_ ∷ xs) = last xs strip-last : {A : Set} → List A → List A strip-last [] = [] strip-last (x ∷ []) = [] strip-last (x ∷ xs) = x ∷ (strip-last xs) -- last argument larg : {B : Set} → RTerm B → Maybe (RTerm B) larg (rapp n []) = nothing larg (rapp n ts) = last ts larg _ = nothing dec : ℕ → ℕ dec zero = zero dec (suc x) = x strip-larg : {B : Set} → RTerm B → RTerm B strip-larg (rapp n ts) = rapp n (strip-last ts) strip-larg t = t {-# TERMINATING #-} n-is-in : {B : Set} → ℕ → RTerm B → Bool n-is-in n (ivar k) = dec-elim (const true) (const false) (n ≟-ℕ k) n-is-in n (rapp _ ts) = foldr (λ h r → n-is-in n h or r) false ts n-is-in n (rlam t) = n-is-in (suc n) t n-is-in _ _ = false {-# TERMINATING #-} η : RTerm ⊥ → RTerm ⊥ η (ovar x) = ovar x η (ivar n) = ivar n η (rlit l) = rlit l η (rlam t) with η t ...| t' with larg t' ...| just (ivar 0) = if n-is-in 0 (strip-larg t') then rlam t' else map-ivar 0 (ivar ∘ dec) (strip-larg t') ...| _ = rlam t' η (rapp n ts) = rapp n (map η ts) -- Models a binary application RBinApp : ∀{a} → Set a → Set _ RBinApp A = RTermName × RTerm A × RTerm A -- Opens a term representing a binary application. forceBinary : ∀{a}{A : Set a} → RTerm A → Maybe (RBinApp A) forceBinary (rapp n (a₁ ∷ a₂ ∷ [])) = just (n , a₁ , a₂) forceBinary _ = nothing -- Given a 'impl' chain, return it's result. typeResult : ∀{a}{A : Set a} → RTerm A → RTerm A typeResult (rapp impl (t1 ∷ t2 ∷ [])) = typeResult t2 typeResult t = t -- Gives the length of a 'impl' chain. typeArity : ∀{a}{A : Set a} → RTerm A → ℕ typeArity (rapp impl (t1 ∷ t2 ∷ [])) = suc (typeArity t2) typeArity _ = 0
{ "alphanum_fraction": 0.5248672566, "avg_line_length": 30.9589041096, "ext": "agda", "hexsha": "597123c617c07a6ce9e2a88bb08d8537cec05fd3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Language/RTermUtils.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Language/RTermUtils.agda", "max_line_length": 80, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Language/RTermUtils.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 4304, "size": 11300 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some defined operations (multiplication by natural number and -- exponentiation) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Operations.CommutativeMonoid {s₁ s₂} (CM : CommutativeMonoid s₁ s₂) where open import Data.Nat.Base using (ℕ; zero; suc) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.List as List using (List; []; _∷_; _++_) open import Data.Fin using (Fin; zero) open import Data.Product using (proj₁; proj₂) open import Data.Table.Base as Table using (Table) open import Function using (_∘_; _⟨_⟩_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open CommutativeMonoid CM renaming ( _∙_ to _+_ ; ∙-cong to +-cong ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; assoc to +-assoc ; comm to +-comm ; ε to 0# ) open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Operations -- Multiplication by natural number. infixr 8 _×_ _×′_ _×_ : ℕ → Carrier → Carrier 0 × x = 0# suc n × x = x + n × x -- A variant that includes a "redundant" case which ensures that `1 × x` -- is definitionally equal to `x`. _×′_ : ℕ → Carrier → Carrier 0 ×′ x = 0# 1 ×′ x = x suc n ×′ x = x + n ×′ x -- Summation over lists/tables sumₗ : List Carrier → Carrier sumₗ = List.foldr _+_ 0# sumₜ : ∀ {n} → Table Carrier n → Carrier sumₜ = Table.foldr _+_ 0# -- An alternative mathematical-style syntax for sumₜ infixl 10 sumₜ-syntax sumₜ-syntax : ∀ n → (Fin n → Carrier) → Carrier sumₜ-syntax _ = sumₜ ∘ Table.tabulate syntax sumₜ-syntax n (λ i → x) = ∑[ i < n ] x ------------------------------------------------------------------------ -- Properties of _×_ ×-congʳ : ∀ n → (n ×_) Preserves _≈_ ⟶ _≈_ ×-congʳ 0 x≈x′ = refl ×-congʳ (suc n) x≈x′ = x≈x′ ⟨ +-cong ⟩ ×-congʳ n x≈x′ ×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_ ×-cong {u} P.refl x≈x′ = ×-congʳ u x≈x′ -- _×_ is homomorphic with respect to _ℕ+_/_+_. ×-homo-+ : ∀ c m n → (m ℕ+ n) × c ≈ m × c + n × c ×-homo-+ c 0 n = sym (+-identityˡ (n × c)) ×-homo-+ c (suc m) n = begin c + (m ℕ+ n) × c ≈⟨ +-cong refl (×-homo-+ c m n) ⟩ c + (m × c + n × c) ≈⟨ sym (+-assoc c (m × c) (n × c)) ⟩ c + m × c + n × c ∎ ------------------------------------------------------------------------ -- Properties of _×′_ 1+×′ : ∀ n x → suc n ×′ x ≈ x + n ×′ x 1+×′ 0 x = sym (+-identityʳ x) 1+×′ (suc n) x = refl -- _×_ and _×′_ are extensionally equal (up to the setoid -- equivalence). ×≈×′ : ∀ n x → n × x ≈ n ×′ x ×≈×′ 0 x = begin 0# ∎ ×≈×′ (suc n) x = begin x + n × x ≈⟨ +-cong refl (×≈×′ n x) ⟩ x + n ×′ x ≈⟨ sym (1+×′ n x) ⟩ suc n ×′ x ∎ -- _×′_ is homomorphic with respect to _ℕ+_/_+_. ×′-homo-+ : ∀ c m n → (m ℕ+ n) ×′ c ≈ m ×′ c + n ×′ c ×′-homo-+ c m n = begin (m ℕ+ n) ×′ c ≈⟨ sym (×≈×′ (m ℕ+ n) c) ⟩ (m ℕ+ n) × c ≈⟨ ×-homo-+ c m n ⟩ m × c + n × c ≈⟨ +-cong (×≈×′ m c) (×≈×′ n c) ⟩ m ×′ c + n ×′ c ∎ -- _×′_ preserves equality. ×′-cong : _×′_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_ ×′-cong {n} {_} {x} {y} P.refl x≈y = begin n ×′ x ≈⟨ sym (×≈×′ n x) ⟩ n × x ≈⟨ ×-congʳ n x≈y ⟩ n × y ≈⟨ ×≈×′ n y ⟩ n ×′ y ∎
{ "alphanum_fraction": 0.4858641795, "avg_line_length": 27.0157480315, "ext": "agda", "hexsha": "91130b6193ba23bcb2de997aef3f8f9cf8d1effb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/CommutativeMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/CommutativeMonoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/CommutativeMonoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1377, "size": 3431 }
{-# OPTIONS --rewriting #-} data _==_ {A : Set} (a : A) : A → Set where idp : a == a {-# BUILTIN REWRITE _==_ #-} ap : {A B : Set} (f : A → B) {x y : A} → x == y → f x == f y ap f idp = idp postulate Circle : Set base : Circle loop : base == base module _ (A : Set) (base* : A) (loop* : base* == base*) where postulate Circle-rec : Circle → A Circle-base-β : Circle-rec base == base* {-# REWRITE Circle-base-β #-} postulate Circle-loop-β : ap Circle-rec loop == loop* {-# REWRITE Circle-loop-β #-} test : (x : Circle) → ap (Circle-rec (Circle → Circle) (λ y → y) idp x) loop == idp test x = idp {- An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Rewriting/NonLinMatch.hs:178 -}
{ "alphanum_fraction": 0.5881595882, "avg_line_length": 24.28125, "ext": "agda", "hexsha": "05c52e23095b7ffeac077c81543e3ce16200f613", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1563-15.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1563-15.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1563-15.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 268, "size": 777 }
{-# OPTIONS --type-in-type --no-pattern-matching #-} open import Spire.IDarkwingDuck.Primitive module Spire.IDarkwingDuck.Derived where ---------------------------------------------------------------------- ISet : Set → Set ISet I = I → Set Enum : Set Enum = List String Tag : Enum → Set Tag xs = PointsTo String xs proj₁ : ∀{A B} → Σ A B → A proj₁ = elimPair _ (λ a b → a) proj₂ : ∀{A B} (ab : Σ A B) → B (proj₁ ab) proj₂ = elimPair _ (λ a b → b) Branches : (E : List String) (P : Tag E → Set) → Set Branches = elimList _ (λ P → ⊤) (λ l E ih P → Σ (P here) (λ _ → ih (λ t → P (there t)))) case' : (E : List String) (t : Tag E) (P : Tag E → Set) (cs : Branches E P) → P t case' = elimPointsTo _ (λ l E P c,cs → proj₁ c,cs) (λ l E t ih P c,cs → ih (λ t → P (there t)) (proj₂ c,cs)) case : {E : List String} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t case P cs t = case' _ t P cs Elᵀ : Tel → Set Elᵀ = elimTel _ ⊤ (λ A B ih → Σ A ih) (λ A B ih → Σ A ih) ---------------------------------------------------------------------- UncurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set UncurriedBranches E P X = Branches E P → X CurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set CurriedBranches = elimList _ (λ P X → X) (λ l E ih P X → P here → ih (λ t → P (there t)) X) curryBranches : (E : Enum) (P : Tag E → Set) (X : Set) → UncurriedBranches E P X → CurriedBranches E P X curryBranches = elimList _ (λ P X f → f tt) (λ l E ih P X f c → ih (λ t → P (there t)) X (λ cs → f (c , cs))) ---------------------------------------------------------------------- UncurriedElᵀ : (T : Tel) (X : Elᵀ T → Set) → Set UncurriedElᵀ T X = (xs : Elᵀ T) → X xs CurriedElᵀ : (T : Tel) (X : Elᵀ T → Set) → Set CurriedElᵀ = elimTel _ (λ X → X tt) (λ A B ih X → (a : A) → ih a (λ b → X (a , b))) (λ A B ih X → {a : A} → ih a (λ b → X (a , b))) curryElᵀ : (T : Tel) (X : Elᵀ T → Set) → UncurriedElᵀ T X → CurriedElᵀ T X curryElᵀ = elimTel _ (λ X f → f tt) (λ A B ih X f a → ih a (λ b → X (a , b)) (λ b → f (a , b))) (λ A B ih X f {a} → ih a (λ b → X (a , b)) (λ b → f (a , b))) uncurryElᵀ : (T : Tel) (X : Elᵀ T → Set) → CurriedElᵀ T X → UncurriedElᵀ T X uncurryElᵀ = elimTel _ (λ X x → elimUnit X x) (λ A B ih X f → elimPair X (λ a b → ih a (λ b → X (a , b)) (f a) b)) (λ A B ih X f → elimPair X (λ a b → ih a (λ b → X (a , b)) f b)) ICurriedElᵀ : (T : Tel) (X : Elᵀ T → Set) → Set ICurriedElᵀ = elimTel _ (λ X → X tt) (λ A B ih X → {a : A} → ih a (λ b → X (a , b))) (λ A B ih X → {a : A} → ih a (λ b → X (a , b))) icurryElᵀ : (T : Tel) (X : Elᵀ T → Set) → UncurriedElᵀ T X → ICurriedElᵀ T X icurryElᵀ = elimTel _ (λ X f → f tt) (λ A B ih X f {a} → ih a (λ b → X (a , b)) (λ b → f (a , b))) (λ A B ih X f {a} → ih a (λ b → X (a , b)) (λ b → f (a , b))) ---------------------------------------------------------------------- UncurriedElᴰ : {I : Set} (D : Desc I) (X : ISet I) → Set UncurriedElᴰ D X = ∀{i} → Elᴰ D X i → X i CurriedElᴰ : {I : Set} (D : Desc I) (X : ISet I) → Set CurriedElᴰ = elimDesc _ (λ i X → X i) (λ i D ih X → (x : X i) → ih X ) (λ A B ih X → (a : A) → ih a X) (λ A B ih X → {a : A} → ih a X) curryElᴰ : {I : Set} (D : Desc I) (X : ISet I) → UncurriedElᴰ D X → CurriedElᴰ D X curryElᴰ = elimDesc _ (λ i X cn → cn refl) (λ i D ih X cn x → ih X (λ xs → cn (x , xs))) (λ A B ih X cn a → ih a X (λ xs → cn (a , xs))) (λ A B ih X cn {a} → ih a X (λ xs → cn (a , xs))) ---------------------------------------------------------------------- UncurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedElᴰ D X) → Set UncurriedHyps D X P cn = ∀ i (xs : Elᴰ D X i) (ihs : Hyps D X P i xs) → P i (cn xs) CurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedElᴰ D X) → Set CurriedHyps = elimDesc _ (λ i X P cn → P i (cn refl)) (λ i D ih X P cn → (x : X i) → P i x → ih X P (λ xs → cn (x , xs))) (λ A B ih X P cn → (a : A) → ih a X P (λ xs → cn (a , xs))) (λ A B ih X P cn → {a : A} → ih a X P (λ xs → cn (a , xs))) uncurryHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedElᴰ D X) → CurriedHyps D X P cn → UncurriedHyps D X P cn uncurryHyps = elimDesc _ (λ j X P cn pf → elimEq _ (λ u → pf)) (λ j D ih X P cn pf i → elimPair _ (λ x xs ih,ihs → ih X P (λ ys → cn (x , ys)) (pf x (proj₁ ih,ihs)) i xs (proj₂ ih,ihs))) (λ A B ih X P cn pf i → elimPair _ (λ a xs → ih a X P (λ ys → cn (a , ys)) (pf a) i xs)) (λ A B ih X P cn pf i → elimPair _ (λ a xs → ih a X P (λ ys → cn (a , ys)) pf i xs)) ---------------------------------------------------------------------- record Data : Set where field P : Tel I : Elᵀ P → Tel E : Enum B : (A : Elᵀ P) → Branches E (λ _ → Desc (Elᵀ (I A))) C : (A : Elᵀ P) → Tag E → Desc (Elᵀ (I A)) C A = case (λ _ → Desc (Elᵀ (I A))) (B A) D : (A : Elᵀ P) → Desc (Elᵀ (I A)) D A = Arg (Tag E) (C A) ---------------------------------------------------------------------- Decl : (P : Tel) (I : CurriedElᵀ P (λ _ → Tel)) (E : Enum) (B : let I = uncurryElᵀ P (λ _ → Tel) I in CurriedElᵀ P λ A → Branches E (λ _ → Desc (Elᵀ (I A)))) → Data Decl P I E B = record { P = P ; I = uncurryElᵀ P _ I ; E = E ; B = uncurryElᵀ P _ B } ---------------------------------------------------------------------- End[_] : (I : Tel) → CurriedElᵀ I (λ _ → Desc (Elᵀ I)) End[_] I = curryElᵀ I _ End Rec[_] : (I : Tel) → CurriedElᵀ I (λ _ → Desc (Elᵀ I) → Desc (Elᵀ I)) Rec[_] I = curryElᵀ I _ Rec ---------------------------------------------------------------------- FormUncurried : (R : Data) → UncurriedElᵀ (Data.P R) λ p → UncurriedElᵀ (Data.I R p) λ i → Set FormUncurried R p i = μ (Data.D R p) i Form : (R : Data) → CurriedElᵀ (Data.P R) λ p → CurriedElᵀ (Data.I R p) λ i → Set Form R = curryElᵀ (Data.P R) (λ p → CurriedElᵀ (Data.I R p) λ i → Set) λ p → curryElᵀ (Data.I R p) (λ i → Set) λ i → FormUncurried R p i ---------------------------------------------------------------------- injUncurried : (R : Data) → UncurriedElᵀ (Data.P R) λ p → let D = Data.D R p in CurriedElᴰ D (μ D) injUncurried R p t = curryElᴰ (Data.C R p t) (μ (Data.D R p)) (λ xs → init (t , xs)) inj : (R : Data) → ICurriedElᵀ (Data.P R) λ p → let D = Data.D R p in CurriedElᴰ D (μ D) inj R = icurryElᵀ (Data.P R) (λ p → let D = Data.D R p in CurriedElᴰ D (μ D)) (injUncurried R) ---------------------------------------------------------------------- indCurried : {I : Set} (D : Desc I) (M : (i : I) → μ D i → Set) (f : CurriedHyps D (μ D) M init) (i : I) (x : μ D i) → M i x indCurried D M f i x = ind D M (uncurryHyps D (μ D) M init f) i x SumCurriedHyps : (R : Data) → UncurriedElᵀ (Data.P R) λ p → let D = Data.D R p in (M : CurriedElᵀ (Data.I R p) (λ i → μ D i → Set)) → Tag (Data.E R) → Set SumCurriedHyps R p M t = let unM = uncurryElᵀ (Data.I R p) (λ i → μ (Data.D R p) i → Set) M in CurriedHyps (Data.C R p t) (μ (Data.D R p)) unM (λ xs → init (t , xs)) elimUncurried : (R : Data) → UncurriedElᵀ (Data.P R) λ p → let D = Data.D R p in (M : CurriedElᵀ (Data.I R p) (λ i → μ D i → Set)) → let unM = uncurryElᵀ (Data.I R p) (λ i → μ D i → Set) M in UncurriedBranches (Data.E R) (SumCurriedHyps R p M) (CurriedElᵀ (Data.I R p) (λ i → (x : μ D i) → unM i x)) elimUncurried R p M cs = let D = Data.D R p unM = uncurryElᵀ (Data.I R p) (λ i → μ D i → Set) M in curryElᵀ (Data.I R p) (λ i → (x : μ D i) → unM i x) λ i x → indCurried (Data.D R p) unM (case (SumCurriedHyps R p M) cs) i x elim : (R : Data) → ICurriedElᵀ (Data.P R) λ p → let D = Data.D R p in (M : CurriedElᵀ (Data.I R p) (λ i → μ D i → Set)) → let unM = uncurryElᵀ (Data.I R p) (λ i → μ D i → Set) M in CurriedBranches (Data.E R) (SumCurriedHyps R p M) (CurriedElᵀ (Data.I R p) (λ i → (x : μ D i) → unM i x)) elim R = icurryElᵀ (Data.P R) (λ p → let D = Data.D R p in (M : CurriedElᵀ (Data.I R p) (λ i → μ D i → Set)) → let unM = uncurryElᵀ (Data.I R p) (λ i → μ D i → Set) M in CurriedBranches (Data.E R) (SumCurriedHyps R p M) (CurriedElᵀ (Data.I R p) (λ i → (x : μ D i) → unM i x))) (λ p M → curryBranches (Data.E R) _ _ (elimUncurried R p M)) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4691809075, "avg_line_length": 30.1957295374, "ext": "agda", "hexsha": "00ffbac8c3ce054465a8028ce1706553b585cbe6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/IDarkwingDuck/Derived.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/IDarkwingDuck/Derived.agda", "max_line_length": 81, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/IDarkwingDuck/Derived.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 3623, "size": 8485 }
module Relator.Equals.Proofs where import Lvl open import Functional as Fn using (_→ᶠ_ ; _∘_) open import Logic open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Propositional.Proofs.Structures open import Relator.Equals open import Relator.Equals.Proofs.Equiv public open import Structure.Function.Names open import Structure.Relator.Properties open import Structure.Setoid using (Equiv ; intro) renaming (_≡_ to _≡ₛ_) open import Structure.Type.Identity open import Syntax.Function open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ ℓₑ ℓₚ : Lvl.Level private variable T A B : Type{ℓ} private variable x y : T [≡]-coercion : (_≡_ {T = Type{ℓ}}) ⊆₂ (_→ᶠ_) [≡]-coercion = [≡]-sub-of-reflexive [≡]-unsubstitution : (∀{f : T → Stmt} → f(x) → f(y)) → (x ≡ y) [≡]-unsubstitution {x = x} F = F {x ≡_} [≡]-intro -- The statement that two functions are equal when all their values are equal are not provable. -- Also called: Extensional equality, function extensionality. -- [≡]-function : ∀{A B : Type}{f₁ f₂ : A → B) → (∀{x} → (f₁(x) ≡ f₂(x))) → (f₁ ≡ f₂) [≡]-function-application : FunctionApplication A B [≡]-function-application [≡]-intro = [≡]-intro [≡]-with-specific : ∀{x y : A} → (f : (a : A) → ⦃ _ : (a ≡ x) ⦄ → ⦃ _ : (a ≡ y) ⦄ → B) → (p : (x ≡ y)) → (f(x) ⦃ [≡]-intro ⦄ ⦃ p ⦄ ≡ f(y) ⦃ symmetry(_≡_) p ⦄ ⦃ [≡]-intro ⦄) [≡]-with-specific f [≡]-intro = [≡]-intro
{ "alphanum_fraction": 0.6551236749, "avg_line_length": 38.2432432432, "ext": "agda", "hexsha": "9637f02000b9908b0e166f344ffb7103d25cd26d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Equals/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Equals/Proofs.agda", "max_line_length": 172, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Equals/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 537, "size": 1415 }
module T where open import Prelude module GÖDEL-T where -- Core syntax infixr 30 _⇒_ infixl 30 _$_ data TTp : Set where nat : TTp _⇒_ : (A B : TTp) → TTp Ctx = List TTp data TExp (Γ : Ctx) : TTp → Set where var : ∀{A} (x : A ∈ Γ) → TExp Γ A Λ : ∀{A B} (e : TExp (A :: Γ) B) → TExp Γ (A ⇒ B) _$_ : ∀{A B} (e₁ : TExp Γ (A ⇒ B)) (e₂ : TExp Γ A) → TExp Γ B zero : TExp Γ nat suc : (e : TExp Γ nat) → TExp Γ nat rec : ∀{A} → (e : TExp Γ nat) → (e₀ : TExp Γ A) → (es : TExp (A :: Γ) A) → TExp Γ A TCExp = TExp [] TNat = TCExp nat ---- denotational semantics interp : TTp → Set interp nat = Nat interp (A ⇒ B) = interp A → interp B meaningη : (Γ : Ctx) → Set meaningη Γ = ∀{A} (x : A ∈ Γ) → interp A emptyη : meaningη [] emptyη () extendη : ∀{Γ A} → meaningη Γ → interp A → meaningη (A :: Γ) extendη η M Z = M extendη η M (S n) = η n meaning : ∀{A Γ} → TExp Γ A → meaningη Γ → interp A meaning (var x) η = η x meaning (Λ e) η = λ x → meaning e (extendη η x) meaning (e₁ $ e₂) η = meaning e₁ η (meaning e₂ η) meaning zero η = Z meaning (suc e) η = S (meaning e η) meaning (rec e e₀ es) η = NAT.fold (meaning e₀ η) (λ n x → meaning es (extendη η x)) (meaning e η) cmeaning : ∀{A} → TCExp A → interp A cmeaning e = meaning e emptyη ---- Definition related to substitution. -- Renamings TRen : Ctx → Ctx → Set TRen Γ Γ' = ∀ {A} → A ∈ Γ → A ∈ Γ' renId : ∀{Γ} → TRen Γ Γ renId = \ x -> x renComp : ∀{B Γ Δ} → TRen Γ Δ → TRen B Γ → TRen B Δ renComp f g = f o g wk : ∀{Γ Γ' A} → TRen Γ Γ' → TRen (A :: Γ) (A :: Γ') wk f Z = Z wk f (S n) = S (f n) ren : ∀{Γ Γ'} → TRen Γ Γ' → ∀ {A} → TExp Γ A → TExp Γ' A ren γ (var x) = var (γ x) ren γ (Λ e) = Λ (ren (wk γ) e) ren γ (e₁ $ e₂) = (ren γ e₁) $ (ren γ e₂) ren γ zero = zero ren γ (suc e) = suc (ren γ e) ren γ (rec e e₀ es) = rec (ren γ e) (ren γ e₀) (ren (wk γ) es) -- Substitutions TSubst : Ctx → Ctx → Set TSubst Γ Γ' = ∀ {A} → A ∈ Γ → TExp Γ' A emptyγ : ∀{Γ} → TSubst Γ Γ emptyγ = λ x → var x liftγ : ∀{Γ Γ' A} → TSubst Γ Γ' → TSubst (A :: Γ) (A :: Γ') liftγ γ Z = var Z liftγ γ (S n) = ren S (γ n) singγ : ∀{Γ A} → TExp Γ A → TSubst (A :: Γ) Γ singγ e Z = e singγ e (S n) = var n dropγ : ∀{Γ A Γ'} → TSubst (A :: Γ) Γ' → TSubst Γ Γ' dropγ γ n = γ (S n) closed-wkγ : {Γ : Ctx} → TRen [] Γ closed-wkγ () ssubst : ∀{Γ Γ' C} → (γ : TSubst Γ Γ') → (e : TExp Γ C) → TExp Γ' C ssubst γ (var x) = γ x ssubst γ (Λ e) = Λ (ssubst (liftγ γ) e) ssubst γ (e₁ $ e₂) = (ssubst γ e₁) $ (ssubst γ e₂) ssubst γ zero = zero ssubst γ (suc e) = suc (ssubst γ e) ssubst γ (rec e e₀ es) = rec (ssubst γ e) (ssubst γ e₀) (ssubst (liftγ γ) es) subComp : ∀{B Γ Γ'} → TSubst Γ Γ' → TSubst B Γ → TSubst B Γ' subComp f g = ssubst f o g extendγ : ∀{Γ Γ' A} → TSubst Γ Γ' → TExp Γ' A → TSubst (A :: Γ) Γ' extendγ γ e = subComp (singγ e) (liftγ γ) -- substituting one thing in a closed term subst : ∀{A C} → (e' : TCExp A) → (e : TExp (A :: []) C) → TCExp C subst e' e = ssubst (singγ e') e weaken-closed : ∀{Γ B} → TCExp B → TExp Γ B weaken-closed e = ren closed-wkγ e ---- dynamic semantics (and, implicitly, preservation) data TVal : ∀{Γ A} → TExp Γ A → Set where val-zero : ∀{Γ} → TVal {Γ} zero val-suc : ∀{Γ e} → TVal {Γ} e → TVal {Γ} (suc e) val-lam : ∀{A B} {e : TExp (A :: []) B} → TVal (Λ e) -- only worry about closed steps; embed preservation in the statement -- We are call-by-name for function application, but call-by-value for natural evaluation. -- This is so that any value of type nat is a numeral. data _~>_ : ∀{A} → TCExp A → TCExp A → Set where step-app-l : ∀{A B} {e₁ e₁' : TCExp (A ⇒ B)} {e₂ : TCExp A} → e₁ ~> e₁' → (e₁ $ e₂) ~> (e₁' $ e₂) step-beta : ∀{A B} {e : TExp (A :: []) B} {e' : TCExp A} → ((Λ e) $ e') ~> (subst e' e) step-suc : ∀{e e' : TCExp nat} → e ~> e' → (suc e) ~> (suc e') step-rec : ∀{A} {e e' : TCExp nat} {e₀ : TCExp A} {es : TExp (A :: []) A} → e ~> e' → (rec e e₀ es) ~> (rec e' e₀ es) step-rec-z : ∀{A} {e₀ : TCExp A} {es : TExp (A :: []) A} → (rec zero e₀ es) ~> e₀ step-rec-s : ∀{A} {e : TCExp nat} {e₀ : TCExp A} {es : TExp (A :: []) A} → TVal e → (rec (suc e) e₀ es) ~> subst (rec e e₀ es) es -- iterated stepping data _~>*_ : ∀{A} → TCExp A → TCExp A → Set where eval-refl : ∀{A} {e : TCExp A} → e ~>* e eval-cons : ∀{A} {e e' e'' : TCExp A} → e ~> e' → e' ~>* e'' → e ~>* e'' eval-step : ∀{A} {e e' : TCExp A} → e ~> e' → e ~>* e' eval-step s = eval-cons s eval-refl -- Should I use a record, or the product thing, or something else? data THalts : ∀{A} → TCExp A → Set where halts : {A : TTp} {e e' : TCExp A} → (eval : (e ~>* e')) → (val : TVal e') → THalts e open GÖDEL-T public
{ "alphanum_fraction": 0.4908518591, "avg_line_length": 31.3765432099, "ext": "agda", "hexsha": "e50111759215996d5e63937db3b5609401cecc67", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "T.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "T.agda", "max_line_length": 92, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "T.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 2169, "size": 5083 }
module Categories.Preorder where
{ "alphanum_fraction": 0.8787878788, "avg_line_length": 16.5, "ext": "agda", "hexsha": "14eb157b9126663cbc143cc0f5b2769ff3e92338", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Preorder.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Preorder.agda", "max_line_length": 32, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Preorder.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 6, "size": 33 }
------------------------------------------------------------------------------ -- Totality properties respect to OrdList (flatten-OrdList-helper) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.OrdList.FlattenATP where open import FOTC.Base open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.ListN-ATP open import FOTC.Program.SortList.Properties.Totality.OrdTreeATP open import FOTC.Program.SortList.Properties.MiscellaneousATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ flatten-OrdList-helper : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → ≤-Lists (flatten t₁) (flatten t₂) flatten-OrdList-helper {t₂ = t₂} tnil Ni Tt₂ OTt = subst (λ t → ≤-Lists t (flatten t₂)) (sym (flatten-nil)) (le-Lists-[] (flatten t₂)) flatten-OrdList-helper (ttip {i₁} Ni₁) Tt₁ tnil OTt = prf where postulate prf : ≤-Lists (flatten (tip i₁)) (flatten nil) {-# ATP prove prf #-} flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni (ttip {i₂} Ni₂) OTt = prf where postulate lemma : i₁ ≤ i₂ {-# ATP prove lemma ≤-trans &&-list₄-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool #-} postulate prf : ≤-Lists (flatten (tip i₁)) (flatten (tip i₂)) {-# ATP prove prf lemma #-} flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni (tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (ttip Ni₁) helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂) helper₃ = le-TreeItem-Bool (ttip Ni₁) Ni helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂) helper₅ = trans (sym (ordTree-node (tip i₁) i (node t₂₁ i₂ t₂₂))) OTt -- Helper terms to get the conjuncts from the fourth conjunct of OTt helper₆ = le-ItemTree-Bool Ni Tt₂₁ helper₇ = le-ItemTree-Bool Ni Tt₂₂ helper₈ = trans (sym (le-ItemTree-node i t₂₁ i₂ t₂₂)) (&&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅) -- Common terms for the lemma₁ and lemma₂. -- The ATPs could not figure out them. OrdTree-tip-i₁ : OrdTree (tip i₁) OrdTree-tip-i₁ = &&-list₄-t₁ helper₁ helper₂ helper₃ helper₄ helper₅ ≤-TreeItem-tip-i₁-i : ≤-TreeItem (tip i₁) i ≤-TreeItem-tip-i₁-i = &&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅ lemma₁ : ≤-Lists (flatten (tip i₁)) (flatten t₂₁) lemma₁ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₁ OT where -- The ATPs could not figure these terms. OrdTree-t₂₁ : OrdTree t₂₁ OrdTree-t₂₁ = leftSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅) ≤-ItemTree-i-t₂₁ : ≤-ItemTree i t₂₁ ≤-ItemTree-i-t₂₁ = &&-list₂-t₁ helper₆ helper₇ helper₈ postulate OT : OrdTree (node (tip i₁) i t₂₁) {-# ATP prove OT ≤-TreeItem-tip-i₁-i ≤-ItemTree-i-t₂₁ OrdTree-tip-i₁ OrdTree-t₂₁ #-} lemma₂ : ≤-Lists (flatten (tip i₁)) (flatten t₂₂) lemma₂ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₂ OT where -- The ATPs could not figure these terms. OrdTree-t₂₂ : OrdTree t₂₂ OrdTree-t₂₂ = rightSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅) ≤-ItemTree-i-t₂₂ : ≤-ItemTree i t₂₂ ≤-ItemTree-i-t₂₂ = &&-list₂-t₂ helper₆ helper₇ helper₈ postulate OT : OrdTree (node (tip i₁) i t₂₂) {-# ATP prove OT ≤-TreeItem-tip-i₁-i ≤-ItemTree-i-t₂₂ OrdTree-tip-i₁ OrdTree-t₂₂ #-} postulate prf : ≤-Lists (flatten (tip i₁)) (flatten (node t₂₁ i₂ t₂₂)) {-# ATP prove prf xs≤ys→xs≤zs→xs≤ys++zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni tnil OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool tnil helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni tnil helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i nil)) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten nil) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni tnil OT where postulate OT : OrdTree (node t₁₁ i nil) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten nil) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni tnil OT where postulate OT : OrdTree (node t₁₂ i nil) {-# ATP prove OT rightSubTree-OrdTree &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten nil) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni (ttip {i₂} Ni₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool (ttip Ni₂) helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni (ttip Ni₂) helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (tip i₂))) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten (tip i₂)) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (ttip Ni₂) OT where postulate OT : OrdTree (node t₁₁ i (tip i₂)) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten (tip i₂)) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (ttip Ni₂) OT where postulate OT : OrdTree (node t₁₂ i (tip i₂)) {-# ATP prove OT rightSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (tip i₂)) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni (tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂) helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂) helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (node t₂₁ i₂ t₂₂))) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten (node t₂₁ i₂ t₂₂)) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT where postulate OT : OrdTree (node t₁₁ i (node t₂₁ i₂ t₂₂)) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten (node t₂₁ i₂ t₂₂)) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT where postulate OT : OrdTree (node t₁₂ i (node t₂₁ i₂ t₂₂)) {-# ATP prove OT rightSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (node t₂₁ i₂ t₂₂)) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-}
{ "alphanum_fraction": 0.6486360457, "avg_line_length": 43.5431472081, "ext": "agda", "hexsha": "22c42bec315e8ed9711b5f3d3b70a604bd06658b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda", "max_line_length": 131, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 3118, "size": 8578 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.SigmaQ.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.Ints.QuoInt open import Cubical.Data.Nat as ℕ hiding (_·_) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.Data.Nat.GCD open import Cubical.Data.Nat.Coprime -- ℚ as the set of coprime pairs in ℤ × ℕ₊₁ ℚ : Type₀ ℚ = Σ[ (a , b) ∈ ℤ × ℕ₊₁ ] areCoprime (abs a , ℕ₊₁→ℕ b) isSetℚ : isSet ℚ isSetℚ = isSetΣ (isSet× isSetℤ (subst isSet 1+Path isSetℕ)) (λ _ → isProp→isSet isPropIsGCD) signedPair : Sign → ℕ × ℕ₊₁ → ℤ × ℕ₊₁ signedPair s (a , b) = (signed s a , b) [_] : ℤ × ℕ₊₁ → ℚ [ signed s a , b ] = signedPair s (toCoprime (a , b)) , toCoprimeAreCoprime (a , b) [ posneg i , b ] = (posneg i , 1) , toCoprimeAreCoprime (0 , b) []-cancelʳ : ∀ ((a , b) : ℤ × ℕ₊₁) k → [ a · pos (ℕ₊₁→ℕ k) , b ·₊₁ k ] ≡ [ a , b ] []-cancelʳ (signed s zero , b) k = Σ≡Prop (λ _ → isPropIsGCD) (λ i → signed-zero spos s i , 1) []-cancelʳ (signed s (suc a) , b) k = Σ≡Prop (λ _ → isPropIsGCD) (λ i → signedPair (·S-comm s spos i) (toCoprime-cancelʳ (suc a , b) k i)) []-cancelʳ (posneg i , b) k j = isSet→isSet' isSetℚ ([]-cancelʳ (pos zero , b) k) ([]-cancelʳ (neg zero , b) k) (λ i → [ posneg i · pos (ℕ₊₁→ℕ k) , b ·₊₁ k ]) (λ i → [ posneg i , b ]) i j -- Natural number and negative integer literals for ℚ open import Cubical.Data.Nat.Literals public instance fromNatℚ : HasFromNat ℚ fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → (pos n , 1) , oneGCD n } instance fromNegℚ : HasFromNeg ℚ fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → (neg n , 1) , oneGCD n }
{ "alphanum_fraction": 0.6029654036, "avg_line_length": 33.1090909091, "ext": "agda", "hexsha": "06c8305dab78e058c1377ddf174cb4e1171a8f35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Rationals/SigmaQ/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Rationals/SigmaQ/Base.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Rationals/SigmaQ/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 727, "size": 1821 }
-- Equality of terms module Syntax.Equality where open import Syntax.Types open import Syntax.Context open import Syntax.Terms open import Syntax.Substitution.Kits open import Syntax.Substitution.Instances open import Syntax.Substitution.Lemmas open Kit 𝒯erm -- Shorthands for de Bruijn indices x₁ : ∀{Γ A} -> Γ , A now ⊢ A now x₁ = var top x₂ : ∀{Γ A B} -> Γ , A now , B ⊢ A now x₂ = var (pop top) x₃ : ∀{Γ A B C} -> Γ , A now , B , C ⊢ A now x₃ = var (pop (pop top)) x₄ : ∀{Γ A B C D} -> Γ , A now , B , C , D ⊢ A now x₄ = var (pop (pop (pop top))) s₁ : ∀{Γ A} -> Γ , A always ⊢ A always s₁ = var top s₂ : ∀{Γ A B} -> Γ , A always , B ⊢ A always s₂ = var (pop top) s₃ : ∀{Γ A B C} -> Γ , A always , B , C ⊢ A always s₃ = var (pop (pop top)) s₄ : ∀{Γ A B C D} -> Γ , A always , B , C , D ⊢ A always s₄ = var (pop (pop (pop top))) -- β-η equality of terms data Eq (Γ : Context) : (A : Judgement) -> Γ ⊢ A -> Γ ⊢ A -> Set data Eq′ (Γ : Context) : (A : Judgement) -> Γ ⊨ A -> Γ ⊨ A -> Set syntax Eq Γ A M N = Γ ⊢ M ≡ N ∷ A syntax Eq′ Γ A M N = Γ ⊨ M ≡ N ∷ A data Eq Γ where -- | Equivalence relation -- Reflexivity refl : ∀{A} -> (M : Γ ⊢ A) --------------- -> Γ ⊢ M ≡ M ∷ A -- Symmetry sym : ∀{A}{M₁ M₂ : Γ ⊢ A} -> Γ ⊢ M₁ ≡ M₂ ∷ A ----------------- -> Γ ⊢ M₂ ≡ M₁ ∷ A -- Transitivity trans : ∀{A}{M₁ M₂ M₃ : Γ ⊢ A} -> Γ ⊢ M₁ ≡ M₂ ∷ A -> Γ ⊢ M₂ ≡ M₃ ∷ A ----------------------------------------- -> Γ ⊢ M₁ ≡ M₃ ∷ A -- | β-equality -- β-reduction for function application β-lam : ∀{A B} -> (N : Γ , A now ⊢ B now) (M : Γ ⊢ A now) ------------------------------------------- -> Γ ⊢ (lam N) $ M ≡ [ M /] N ∷ B now -- β-reduction for first projection β-fst : ∀{A B} -> (M : Γ ⊢ A now) (N : Γ ⊢ B now) ----------------------------------- -> Γ ⊢ fst [ M ,, N ] ≡ M ∷ A now -- β-reduction for second projection β-snd : ∀{A B} -> (M : Γ ⊢ A now) (N : Γ ⊢ B now) ----------------------------------- -> Γ ⊢ snd [ M ,, N ] ≡ N ∷ B now -- β-reduction for case split on first injection β-inl : ∀{A B C} -> (M : Γ ⊢ A now) (N₁ : Γ , A now ⊢ C now) (N₂ : Γ , B now ⊢ C now) --------------------------------------------------- -> Γ ⊢ case (inl M) inl↦ N₁ ||inr↦ N₂ ≡ [ M /] N₁ ∷ C now -- β-reduction for case split on first injection β-inr : ∀{A B C} -> (M : Γ ⊢ B now) (N₁ : Γ , A now ⊢ C now) (N₂ : Γ , B now ⊢ C now) --------------------------------------------------- -> Γ ⊢ case (inr M) inl↦ N₁ ||inr↦ N₂ ≡ [ M /] N₂ ∷ C now -- β-reduction for signal binding β-sig : ∀{A B} -> (N : Γ , A always ⊢ B now) (M : Γ ⊢ A always) -------------------------------------------------- -> Γ ⊢ letSig (sig M) In N ≡ [ M /] N ∷ B now -- | η-equality -- η-expansion for functions η-lam : ∀{A B} -> (M : Γ ⊢ A => B now) -------------------------------------- -> Γ ⊢ M ≡ lam (𝓌 M $ x₁) ∷ A => B now -- η-expansion for pairs η-pair : ∀{A B} -> (M : Γ ⊢ A & B now) ---------------------------------------- -> Γ ⊢ M ≡ [ fst M ,, snd M ] ∷ A & B now -- η-expansion for unit η-unit : (M : Γ ⊢ Unit now) ------------------------- -> Γ ⊢ M ≡ unit ∷ Unit now -- η-expansion for sums η-sum : ∀{A B} -> (M : Γ ⊢ A + B now) ------------------------------------------ -> Γ ⊢ M ≡ case M inl↦ inl x₁ ||inr↦ inr x₁ ∷ A + B now -- η-expansion for signals η-sig : ∀{A} -> (M : Γ ⊢ Signal A now) ------------------------------------------- -> Γ ⊢ M ≡ letSig M In (sig s₁) ∷ Signal A now -- η-expansion for events in computational terms η-evt : ∀{A} -> (M : Γ ⊢ Event A now) ---------------------------------------------------- -> Γ ⊢ M ≡ event (letEvt M In pure x₁) ∷ Event A now -- | Congruence rules -- Congruence in pairs cong-pair : ∀{A B}{M₁ M₂ : Γ ⊢ A now}{N₁ N₂ : Γ ⊢ B now} -> Γ ⊢ M₁ ≡ M₂ ∷ A now -> Γ ⊢ N₁ ≡ N₂ ∷ B now ------------------------------------------------ -> Γ ⊢ [ M₁ ,, N₁ ] ≡ [ M₂ ,, N₂ ] ∷ A & B now -- Congruence in first projection cong-fst : ∀{A B}{M₁ M₂ : Γ ⊢ A & B now} -> Γ ⊢ M₁ ≡ M₂ ∷ A & B now ------------------------------ -> Γ ⊢ fst M₁ ≡ fst M₂ ∷ A now -- Congruence in second projection cong-snd : ∀{A B}{M₁ M₂ : Γ ⊢ A & B now} -> Γ ⊢ M₁ ≡ M₂ ∷ A & B now ------------------------------ -> Γ ⊢ snd M₁ ≡ snd M₂ ∷ B now -- Congruence in lambda body cong-lam : ∀{A B}{M₁ M₂ : Γ , A now ⊢ B now} -> Γ , A now ⊢ M₁ ≡ M₂ ∷ B now ---------------------------------- -> Γ ⊢ lam M₁ ≡ lam M₂ ∷ A => B now -- Congruence in application cong-app : ∀{A B}{N₁ N₂ : Γ ⊢ A => B now}{M₁ M₂ : Γ ⊢ A now} -> Γ ⊢ N₁ ≡ N₂ ∷ A => B now -> Γ ⊢ M₁ ≡ M₂ ∷ A now --------------------------------------------------- -> Γ ⊢ N₁ $ M₁ ≡ N₂ $ M₂ ∷ B now -- Congruence in case split cong-case : ∀{A B C}{M₁ M₂ : Γ ⊢ A + B now} -> Γ ⊢ M₁ ≡ M₂ ∷ A + B now -> (N₁ : Γ , A now ⊢ C now) (N₂ : Γ , B now ⊢ C now) --------------------------------------------------- -> Γ ⊢ case M₁ inl↦ N₁ ||inr↦ N₂ ≡ case M₂ inl↦ N₁ ||inr↦ N₂ ∷ C now -- Congruence in first injection cong-inl : ∀{A B}{M₁ M₂ : Γ ⊢ A now} -> Γ ⊢ M₁ ≡ M₂ ∷ A now ------------------------------------ -> Γ ⊢ inl M₁ ≡ inl M₂ ∷ A + B now -- Congruence in second injection cong-inr : ∀{A B}{M₁ M₂ : Γ ⊢ B now} -> Γ ⊢ M₁ ≡ M₂ ∷ B now ------------------------------------ -> Γ ⊢ inr M₁ ≡ inr M₂ ∷ A + B now -- Congruence in signal constructor cong-sig : ∀{A}{M₁ M₂ : Γ ⊢ A always} -> Γ ⊢ M₁ ≡ M₂ ∷ A always ------------------------------------ -> Γ ⊢ sig M₁ ≡ sig M₂ ∷ Signal A now -- Congruence in signal binding cong-letSig : ∀{A B}{S₁ S₂ : Γ ⊢ Signal A now} -> Γ ⊢ S₁ ≡ S₂ ∷ Signal A now -> (N : Γ , A always ⊢ B now) --------------------------------------------- -> Γ ⊢ letSig S₁ In N ≡ letSig S₂ In N ∷ B now -- Congruence in sampling cong-sample : ∀{A}{M₁ M₂ : Γ ⊢ A always} -> Γ ⊢ M₁ ≡ M₂ ∷ A always ------------------------------------- -> Γ ⊢ sample M₁ ≡ sample M₂ ∷ A now -- Congruence in stabilisation cong-stable : ∀{A}{M₁ M₂ : Γ ˢ ⊢ A now} -> Γ ˢ ⊢ M₁ ≡ M₂ ∷ A now ------------------------------------- -> Γ ⊢ stable M₁ ≡ stable M₂ ∷ A always -- Congruence in events cong-event : ∀{A}{E₁ E₂ : Γ ⊨ A now} -> Γ ⊨ E₁ ≡ E₂ ∷ A now ------------------------------------- -> Γ ⊢ event E₁ ≡ event E₂ ∷ Event A now data Eq′ (Γ : Context) where -- | Equivalence relation -- Reflexivity refl : ∀{A} -> (M : Γ ⊨ A) --------------- -> Γ ⊨ M ≡ M ∷ A -- Symmetry sym : ∀{A}{M₁ M₂ : Γ ⊨ A} -> Γ ⊨ M₁ ≡ M₂ ∷ A ----------------- -> Γ ⊨ M₂ ≡ M₁ ∷ A -- Transitivity trans : ∀{A}{M₁ M₂ M₃ : Γ ⊨ A} -> Γ ⊨ M₁ ≡ M₂ ∷ A -> Γ ⊨ M₂ ≡ M₃ ∷ A ----------------------------------------- -> Γ ⊨ M₁ ≡ M₃ ∷ A -- | β-equality -- β-reduction for signal binding in computational terms β-sig′ : ∀{A B} -> (C : Γ , A always ⊨ B now) (M : Γ ⊢ A always) -------------------------------------------------- -> Γ ⊨ letSig (sig M) InC C ≡ [ M /′] C ∷ B now -- β-reduction for event binding in computational terms β-evt′ : ∀{A B} -> (C : Γ ˢ , A now ⊨ B now) (D : Γ ⊨ A now) --------------------------------------------- -> Γ ⊨ letEvt (event D) In C ≡ ⟨ D /⟩ C ∷ B now -- β-reduction for event binding in computational terms β-selectₚ : ∀{A B C} -> (C₁ : Γ ˢ , A now , Event B now ⊨ C now) (C₂ : Γ ˢ , Event A now , B now ⊨ C now) (C₃ : Γ ˢ , A now , B now ⊨ C now) (M₁ : Γ ⊢ A now) (M₂ : Γ ⊢ B now) --------------------------------------------- -> Γ ⊨ select event (pure M₁) ↦ C₁ || event (pure M₂) ↦ C₂ ||both↦ C₃ ≡ [ M₁ /′] ([ 𝓌 M₂ /′] (weakening′ (keep (keep (Γˢ⊆Γ Γ))) C₃)) ∷ C now -- | η-equality -- η-expansion for signals in computational terms η-sig′ : ∀{A} -> (M : Γ ⊢ Signal A now) -------------------------------------------------------- -> Γ ⊨ pure M ≡ letSig M InC (pure (sig s₁)) ∷ Signal A now -- | Congruence rules -- Congruence in pure computational term cong-pure′ : ∀{A}{M₁ M₂ : Γ ⊢ A} -> Γ ⊢ M₁ ≡ M₂ ∷ A --------------------------- -> Γ ⊨ pure M₁ ≡ pure M₂ ∷ A -- Congruence in signal binding cong-letSig′ : ∀{A B}{S₁ S₂ : Γ ⊢ Signal A now} -> Γ ⊢ S₁ ≡ S₂ ∷ Signal A now -> (N : Γ , A always ⊨ B now) ----------------------------------------------- -> Γ ⊨ letSig S₁ InC N ≡ letSig S₂ InC N ∷ B now -- Congruence in event binding cong-letEvt′ : ∀{A B}{E₁ E₂ : Γ ⊢ Event A now} -> Γ ⊢ E₁ ≡ E₂ ∷ Event A now -> (D : Γ ˢ , A now ⊨ B now) ----------------------------------------------- -> Γ ⊨ letEvt E₁ In D ≡ letEvt E₂ In D ∷ B now test : ∀{A} -> ∙ ⊢ (Signal A => A) now test = lam (letSig x₁ In sample s₁) tes : ∀{A} -> ∙ ⊢ (Signal A => Signal (Signal A)) now tes = lam (letSig x₁ In sig (stable (sig s₁))) te : ∀{A} -> ∙ ⊢ (A => Event A) now te = lam (event (pure x₁)) t2 : ∀{A} -> ∙ ⊢ (Signal A) now -> ∙ ⊢ A always t2 M = stable (letSig M In sample s₁) t : ∀{A} -> ∙ ⊢ (Event (Event A) => Event A) now t = lam (event (letEvt x₁ In (letEvt x₁ In pure x₁))) t3 : ∀{A B} -> ∙ ⊢ (Event A => Signal (A => Event B) => Event B) now t3 = lam (lam (letSig x₁ In (event (letEvt x₃ In (letEvt (sample s₂ $ x₁) In pure x₁))))) -- t4 : ∀{A B C} -> ∙ ⊢ (Event A => Event B => Signal (A => Event C) => Signal (B => Event C) => Event C) now -- t4 = lam (lam (lam (lam ( -- letSig x₂ In ( -- letSig x₂ In (event ( -- select (var (pop (pop (pop (pop (pop top)))))) ↦ letEvt sample s₄ $ x₁ In pure x₁ -- || (var (pop (pop (pop (pop top))))) ↦ letEvt (sample s₃ $ x₁) In pure x₁ -- ||both↦ {! !}))))))) t5 : ∀{A B} -> ∙ , Signal A now , Event (A => B) now ⊨ B now t5 = letSig (var (pop top)) InC (letEvt (var (pop top)) In pure (x₁ $ sample s₂)) t6 : ∀{A B} -> ∙ , Event (Signal A) now , Signal B now ⊢ Event (Signal (A & B)) now t6 = event (letSig x₁ InC (letEvt x₃ In (pure (letSig x₁ In (sig (stable [ sample s₁ ,, sample s₂ ])))))) -- t6 = event (letSig x₁ InC (letEvt x₃ In (letSig x₁ InC (pure [ sample s₁ ,, sample s₃ ])))) too : ∀{A B} -> ∙ ⊢ Signal (A => B) => (Event A => Event B) now too = lam (lam (letSig x₂ In event (letEvt x₂ In pure (sample s₂ $ x₁))))
{ "alphanum_fraction": 0.2973046556, "avg_line_length": 45.6273291925, "ext": "agda", "hexsha": "261976b34afabb7cefed709fb50210a125d006dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Syntax/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Syntax/Equality.agda", "max_line_length": 109, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Syntax/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 4114, "size": 14692 }
module All where open import Basics open import Ix All : {X : Set} -> (X -> Set) -> (List X -> Set) All P [] = One All P (x ,- xs) = P x * All P xs allPu : forall {X}{T : X -> Set} -> [ T ] -> [ All T ] allPu t [] = <> allPu t (x ,- xs) = t x , allPu t xs allAp : forall {X}{S T : X -> Set} -> [ All (S -:> T) -:> All S -:> All T ] allAp [] <> <> = <> allAp (x ,- xs) (f , fs) (s , ss) = f s , allAp xs fs ss all : {X : Set}{S T : X -> Set} -> [ S -:> T ] -> [ All S -:> All T ] all f xs = allAp xs (allPu f xs) allRe : forall {X Y}(f : X -> Y){P : Y -> Set} (xs : List X) -> All (\ x -> P (f x)) xs -> All P (list f xs) allRe f [] <> = <> allRe f (x ,- xs) (p , ps) = p , allRe f xs ps collect : {I J : Set}(is : List I) -> All (\ i -> List J) is -> List J collect [] <> = [] collect (i ,- is) (js , jss) = js +L collect is jss
{ "alphanum_fraction": 0.4504084014, "avg_line_length": 28.5666666667, "ext": "agda", "hexsha": "6b3033595ebf9de81e94a32700ea1f8fc426e92c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "All.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "All.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 337, "size": 857 }
-- {-# OPTIONS --without-K #-} module Evaluator where open import Agda.Prim open import Data.Unit open import Data.Nat hiding (_⊔_) open import Data.Sum open import Data.Product open import Function open import Relation.Binary.PropositionalEquality open import Paths ------------------------------------------------------------------------------ -- For the usual situation, we can only establish one direction of univalence swap₊ : {ℓ : Level} {A B : Set ℓ} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b assocl₊ : {ℓ : Level} {A B C : Set ℓ} → A ⊎ (B ⊎ C) → (A ⊎ B) ⊎ C assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {ℓ : Level} {A B C : Set ℓ} → (A ⊎ B) ⊎ C → A ⊎ (B ⊎ C) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) unite⋆ : {ℓ : Level} {A : Set ℓ} → ⊤ × A → A unite⋆ (tt , a) = a uniti⋆ : {ℓ : Level} {A : Set ℓ} → A → ⊤ × A uniti⋆ a = (tt , a) swap⋆ : {ℓ : Level} {A B : Set ℓ} → A × B → B × A swap⋆ (a , b) = (b , a) assocl⋆ : {ℓ : Level} {A B C : Set ℓ} → A × (B × C) → (A × B) × C assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {ℓ : Level} {A B C : Set ℓ} → (A × B) × C → A × (B × C) assocr⋆ ((a , b) , c) = (a , (b , c)) dist : {ℓ : Level} {A B C : Set ℓ} → (A ⊎ B) × C → (A × C ⊎ B × C) dist (inj₁ a , c) = inj₁ (a , c) dist (inj₂ b , c) = inj₂ (b , c) fact : {ℓ : Level} {A B C : Set ℓ} → (A × C ⊎ B × C) → (A ⊎ B) × C fact (inj₁ (a , c)) = (inj₁ a , c) fact (inj₂ (b , c)) = (inj₂ b , c) eval : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → Path a b → (A → B) eval swap₁₊⇛ = swap₊ eval swap₂₊⇛ = swap₊ eval assocl₁₊⇛ = assocl₊ eval assocl₁₊⇛' = assocl₊ {-- eval (assocl₂₁₊⇛ _) = assocl₊ eval (assocl₂₂₊⇛ _) = assocl₊ eval (assocr₁₁₊⇛ _) = assocr₊ eval (assocr₁₂₊⇛ _) = assocr₊ eval (assocr₂₊⇛ _) = assocr₊ eval (unite⋆⇛ _) = unite⋆ eval (uniti⋆⇛ _) = uniti⋆ eval (swap⋆⇛ _ _) = swap⋆ eval (assocl⋆⇛ _ _ _) = assocl⋆ eval (assocr⋆⇛ _ _ _) = assocr⋆ eval (dist₁⇛ _ _) = dist eval (dist₂⇛ _ _) = dist eval (factor₁⇛ _ _) = fact eval (factor₂⇛ _ _) = fact eval (id⇛ _) = id eval (trans⇛ c d) = eval d ∘ eval c eval (plus₁⇛ c d) = Data.Sum.map (eval c) (eval d) eval (plus₂⇛ c d) = Data.Sum.map (eval c) (eval d) eval (times⇛ c d) = Data.Product.map (eval c) (eval d) --} -- Inverses evalB : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → Path a b → (B → A) evalB swap₂₊⇛ = swap₊ evalB swap₁₊⇛ = swap₊ evalB assocl₁₊⇛ = assocr₊ evalB assocl₁₊⇛' = assocr₊ {-- evalB (assocr₂₊⇛ _) = assocl₊ evalB (assocr₁₂₊⇛ _) = assocl₊ evalB (assocr₁₁₊⇛ _) = assocl₊ evalB (assocl₂₂₊⇛ _) = assocr₊ evalB (assocl₂₁₊⇛ _) = assocr₊ evalB (uniti⋆⇛ _) = unite⋆ evalB (unite⋆⇛ _) = uniti⋆ evalB (swap⋆⇛ _ _) = swap⋆ evalB (assocr⋆⇛ _ _ _) = assocl⋆ evalB (assocl⋆⇛ _ _ _) = assocr⋆ evalB (dist₁⇛ _ _) = fact evalB (dist₂⇛ _ _) = fact evalB (factor₁⇛ _ _) = dist evalB (factor₂⇛ _ _) = dist evalB (id⇛ _) = id evalB (trans⇛ c d) = evalB c ∘ evalB d evalB (plus₁⇛ c d) = Data.Sum.map (evalB c) (evalB d) evalB (plus₂⇛ c d) = Data.Sum.map (evalB c) (evalB d) evalB (times⇛ c d) = Data.Product.map (evalB c) (evalB d) --} ------------------------------------------------------------------------------ -- Proving univalence• eval-resp-• : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (c : Path a b) → eval c a ≡ b eval-resp-• swap₁₊⇛ = refl eval-resp-• swap₂₊⇛ = refl eval-resp-• assocl₁₊⇛ = refl eval-resp-• assocl₁₊⇛' = refl {-- eval-resp-• (assocl₂₁₊⇛ b) = refl eval-resp-• (assocl₂₂₊⇛ c) = refl eval-resp-• (assocr₁₁₊⇛ a) = refl eval-resp-• (assocr₁₂₊⇛ b) = refl eval-resp-• (assocr₂₊⇛ c) = refl eval-resp-• {b = b} (unite⋆⇛ .b) = refl eval-resp-• {a = a} (uniti⋆⇛ .a) = refl eval-resp-• (swap⋆⇛ a b) = refl eval-resp-• (assocl⋆⇛ a b c) = refl eval-resp-• (assocr⋆⇛ a b c) = refl eval-resp-• (dist₁⇛ a c) = refl eval-resp-• (dist₂⇛ b c) = refl eval-resp-• (factor₁⇛ a c) = refl eval-resp-• (factor₂⇛ b c) = refl eval-resp-• {a = a} (id⇛ .a) = refl eval-resp-• {a = a} (trans⇛ c d) rewrite eval-resp-• c | eval-resp-• d = refl eval-resp-• (plus₁⇛ c d) rewrite eval-resp-• c = refl eval-resp-• (plus₂⇛ c d) rewrite eval-resp-• d = refl eval-resp-• (times⇛ c d) rewrite eval-resp-• c | eval-resp-• d = refl --} evalB-resp-• : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (c : Path a b) → evalB c b ≡ a evalB-resp-• swap₁₊⇛ = refl evalB-resp-• swap₂₊⇛ = refl evalB-resp-• assocl₁₊⇛ = refl evalB-resp-• assocl₁₊⇛' = refl {-- evalB-resp-• (assocl₂₁₊⇛ b) = refl evalB-resp-• (assocl₂₂₊⇛ c) = refl evalB-resp-• (assocr₁₁₊⇛ a) = refl evalB-resp-• (assocr₁₂₊⇛ b) = refl evalB-resp-• (assocr₂₊⇛ c) = refl evalB-resp-• {b = b} (unite⋆⇛ .b) = refl evalB-resp-• {a = a} (uniti⋆⇛ .a) = refl evalB-resp-• (swap⋆⇛ a b) = refl evalB-resp-• (assocl⋆⇛ a b c) = refl evalB-resp-• (assocr⋆⇛ a b c) = refl evalB-resp-• (dist₁⇛ a c) = refl evalB-resp-• (dist₂⇛ b c) = refl evalB-resp-• (factor₁⇛ a c) = refl evalB-resp-• (factor₂⇛ b c) = refl evalB-resp-• {a = a} (id⇛ .a) = refl evalB-resp-• {a = a} (trans⇛ c d) rewrite evalB-resp-• d | evalB-resp-• c = refl evalB-resp-• (plus₁⇛ c d) rewrite evalB-resp-• c = refl evalB-resp-• (plus₂⇛ c d) rewrite evalB-resp-• d = refl evalB-resp-• (times⇛ c d) rewrite evalB-resp-• c | evalB-resp-• d = refl --} -- the proof that eval ∙ evalB x ≡ x will be useful below eval∘evalB≡id : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (c : Path a b) → evalB c (eval c a) ≡ a eval∘evalB≡id c rewrite eval-resp-• c | evalB-resp-• c = refl {-- -- if this is useful, move it elsewhere -- but it might not be, as it appears to be 'level raising' cong⇚ : {ℓ : Level} {A B : Set ℓ} {a₁ a₂ : A} (f : Path a₁ a₂ ) → (x : A) → Path (evalB f x) (evalB f x) cong⇚ f x = id⇛ (evalB f x) --} {-- eval∘evalB : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (c : Path a b) → (x : A) → Path (evalB c (eval c x)) x eval∘evalB (swap₁₊⇛ a) (inj₁ x) = id⇛ (inj₁ x) eval∘evalB (swap₁₊⇛ a) (inj₂ y) = id⇛ (inj₂ y) eval∘evalB (swap₂₊⇛ b) (inj₁ x) = id⇛ (inj₁ x) eval∘evalB (swap₂₊⇛ b) (inj₂ y) = id⇛ (inj₂ y) eval∘evalB (assocl₁₊⇛ a) (inj₁ x) = id⇛ (inj₁ x) eval∘evalB (assocl₁₊⇛ a) (inj₂ (inj₁ x)) = id⇛ (inj₂ (inj₁ x)) eval∘evalB (assocl₁₊⇛ a) (inj₂ (inj₂ y)) = id⇛ (inj₂ (inj₂ y)) eval∘evalB (assocl₂₁₊⇛ b) (inj₁ x) = id⇛ (inj₁ x) eval∘evalB (assocl₂₁₊⇛ b) (inj₂ (inj₁ x)) = id⇛ (inj₂ (inj₁ x)) eval∘evalB (assocl₂₁₊⇛ b) (inj₂ (inj₂ y)) = id⇛ (inj₂ (inj₂ y)) eval∘evalB (assocl₂₂₊⇛ c) (inj₁ x) = id⇛ (inj₁ x) eval∘evalB (assocl₂₂₊⇛ c) (inj₂ (inj₁ x)) = id⇛ (inj₂ (inj₁ x)) eval∘evalB (assocl₂₂₊⇛ c) (inj₂ (inj₂ y)) = id⇛ (inj₂ (inj₂ y)) eval∘evalB (assocr₁₁₊⇛ a) (inj₁ (inj₁ x)) = id⇛ (inj₁ (inj₁ x)) eval∘evalB (assocr₁₁₊⇛ a) (inj₁ (inj₂ y)) = id⇛ (inj₁ (inj₂ y)) eval∘evalB (assocr₁₁₊⇛ a) (inj₂ y) = id⇛ (inj₂ y) eval∘evalB (assocr₁₂₊⇛ b) (inj₁ (inj₁ x)) = id⇛ (inj₁ (inj₁ x)) eval∘evalB (assocr₁₂₊⇛ b) (inj₁ (inj₂ y)) = id⇛ (inj₁ (inj₂ y)) eval∘evalB (assocr₁₂₊⇛ b) (inj₂ y) = id⇛ (inj₂ y) eval∘evalB (assocr₂₊⇛ c) (inj₁ (inj₁ x)) = id⇛ (inj₁ (inj₁ x)) eval∘evalB (assocr₂₊⇛ c) (inj₁ (inj₂ y)) = id⇛ (inj₁ (inj₂ y)) eval∘evalB (assocr₂₊⇛ c) (inj₂ y) = id⇛ (inj₂ y) eval∘evalB {b = b} (unite⋆⇛ .b) (tt , x) = id⇛ (tt , x) eval∘evalB {a = a} (uniti⋆⇛ .a) x = id⇛ x eval∘evalB (swap⋆⇛ a b) (x , y) = id⇛ (x , y) eval∘evalB (assocl⋆⇛ a b c) (x , y , z) = id⇛ (x , y , z) eval∘evalB (assocr⋆⇛ a b c) ((x , y) , z) = id⇛ ((x , y) , z) eval∘evalB (dist₁⇛ a c) (inj₁ x , y) = id⇛ (inj₁ x , y) eval∘evalB (dist₁⇛ a c) (inj₂ y , z) = id⇛ (inj₂ y , z) eval∘evalB (dist₂⇛ b c) (inj₁ x , z) = id⇛ (inj₁ x , z) eval∘evalB (dist₂⇛ b c) (inj₂ y , z) = id⇛ (inj₂ y , z) eval∘evalB (factor₁⇛ a c) (inj₁ (x , y)) = id⇛ (inj₁ (x , y)) eval∘evalB (factor₁⇛ a c) (inj₂ (x , y)) = id⇛ (inj₂ (x , y)) eval∘evalB (factor₂⇛ b c) (inj₁ (x , y)) = id⇛ (inj₁ (x , y)) eval∘evalB (factor₂⇛ b c) (inj₂ (x , y)) = id⇛ (inj₂ (x , y)) eval∘evalB {a = a} (id⇛ .a) x = id⇛ x eval∘evalB (trans⇛ {A = A} {B} {C} {a} {b} {c} c₁ c₂) x = trans⇛ {!cong⇚ ? (id⇛ (eval c₁ x))!} (eval∘evalB c₁ x) eval∘evalB (plus₁⇛ {b = b} c₁ c₂) (inj₁ x) = plus₁⇛ (eval∘evalB c₁ x) (id⇛ b) eval∘evalB (plus₁⇛ {a = a} c₁ c₂) (inj₂ y) = plus₂⇛ (id⇛ a) (eval∘evalB c₂ y) eval∘evalB (plus₂⇛ {b = b} c₁ c₂) (inj₁ x) = plus₁⇛ (eval∘evalB c₁ x) (id⇛ b) eval∘evalB (plus₂⇛ {a = a} c₁ c₂) (inj₂ y) = plus₂⇛ (id⇛ a) (eval∘evalB c₂ y) eval∘evalB (times⇛ c₁ c₂) (x , y) = times⇛ (eval∘evalB c₁ x) (eval∘evalB c₂ y) --} {-- eval-gives-id⇛ : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (c : Path a b) → Path (eval c a) b eval-gives-id⇛ {b = b} c rewrite eval-resp-• c = id⇛ b --}
{ "alphanum_fraction": 0.5237406872, "avg_line_length": 39.2707423581, "ext": "agda", "hexsha": "01bd91709fa09cab95f5f4e55e9e21d78a43da9a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Evaluator.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Evaluator.agda", "max_line_length": 113, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Evaluator.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4742, "size": 8993 }
open import Prelude open import core open import contexts module synth-unicity where -- synthesis only produces equal types. note that there is no need for an -- analagous theorem for analytic positions because we think of -- the type as an input synthunicity : {Γ : tctx} {e : hexp} {t t' : htyp} → (Γ ⊢ e => t) → (Γ ⊢ e => t') → t == t' synthunicity (SAsc _) (SAsc _) = refl synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2 synthunicity (SAp _ D1 MAHole _) (SAp _ D2 MAHole y) = refl synthunicity (SAp _ D1 MAHole _) (SAp _ D2 MAArr y) with synthunicity D1 D2 ... | () synthunicity (SAp _ D1 MAArr _) (SAp _ D2 MAHole y) with synthunicity D1 D2 ... | () synthunicity (SAp _ D1 MAArr _) (SAp _ D2 MAArr y) with synthunicity D1 D2 ... | refl = refl synthunicity SEHole SEHole = refl synthunicity (SNEHole _ _) (SNEHole _ _) = refl synthunicity SConst SConst = refl synthunicity (SLam _ D1) (SLam _ D2) with synthunicity D1 D2 synthunicity (SLam x₁ D1) (SLam x₂ D2) | refl = refl
{ "alphanum_fraction": 0.6394495413, "avg_line_length": 40.3703703704, "ext": "agda", "hexsha": "a817078d577465e6bf23fd4016c877bf2e1d005b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "synth-unicity.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "synth-unicity.agda", "max_line_length": 77, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "synth-unicity.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 408, "size": 1090 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.MappingCones where open import Cubical.HITs.MappingCones.Base public open import Cubical.HITs.MappingCones.Properties public
{ "alphanum_fraction": 0.7929292929, "avg_line_length": 28.2857142857, "ext": "agda", "hexsha": "301b90621d4a0f1322c69f97d4331f10821dbc3c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/MappingCones.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/MappingCones.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/MappingCones.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 51, "size": 198 }
module Web.Semantic.DL.Signature where infixr 4 _,_ data Signature : Set₁ where _,_ : (CN RN : Set) → Signature CN : Signature → Set CN (CN , RN) = CN RN : Signature → Set RN (CN , RN) = RN
{ "alphanum_fraction": 0.6428571429, "avg_line_length": 15.0769230769, "ext": "agda", "hexsha": "e5bf243dbeba0850b76de300e97e7ddc6633d45c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Signature.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Signature.agda", "max_line_length": 38, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 68, "size": 196 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.FunctionOver open import cohomology.ProductRepr open import cohomology.Theory open import cohomology.WedgeCofiber {- For the cohomology group of a suspension ΣX, the group inverse has the - explicit form Cⁿ(flip-susp) : Cⁿ(ΣX) → Cⁿ(ΣX). -} module cohomology.InverseInSusp {i} (CT : CohomologyTheory i) (n : ℤ) {X : Ptd i} where open CohomologyTheory CT open import cohomology.Functor CT open import cohomology.BaseIndependence CT open import cohomology.Wedge CT private module CW = CWedge n (⊙Susp X) (⊙Susp X) module Subtract = SuspensionRec (fst X) {C = fst (⊙Susp X ⊙∨ ⊙Susp X)} (winl (south _)) (winr (south _)) (λ x → ap winl (! (merid _ x)) ∙ wglue ∙ ap winr (merid _ x)) subtract = Subtract.f ⊙subtract : fst (⊙Susp X ⊙→ ⊙Susp X ⊙∨ ⊙Susp X) ⊙subtract = (subtract , ! (ap winl (merid _ (snd X)))) projl-subtract : ∀ σ → projl _ _ (subtract σ) == flip-susp σ projl-subtract = Suspension-elim (fst X) idp idp $ ↓-='-from-square ∘ vert-degen-square ∘ λ x → ap-∘ (projl _ _) subtract (merid _ x) ∙ ap (ap (projl _ _)) (Subtract.glue-β x) ∙ ap-∙ (projl _ _) (ap winl (! (merid _ x))) (wglue ∙ ap winr (merid _ x)) ∙ ((∘-ap (projl _ _) winl (! (merid _ x)) ∙ ap-idf _) ∙2 (ap-∙ (projl _ _) wglue (ap winr (merid _ x)) ∙ (Projl.glue-β _ _ ∙2 (∘-ap (projl _ _) winr (merid _ x) ∙ ap-cst _ _)))) ∙ ∙-unit-r _ ∙ ! (FlipSusp.glue-β x) projr-subtract : ∀ σ → projr _ _ (subtract σ) == σ projr-subtract = Suspension-elim (fst X) idp idp $ ↓-∘=idf-in (projr _ _) subtract ∘ λ x → ap (ap (projr _ _)) (Subtract.glue-β x) ∙ ap-∙ (projr _ _) (ap winl (! (merid _ x))) (wglue ∙ ap winr (merid _ x)) ∙ ((∘-ap (projr _ _) winl (! (merid _ x)) ∙ ap-cst _ _) ∙2 (ap-∙ (projr _ _) wglue (ap winr (merid _ x)) ∙ (Projr.glue-β _ _ ∙2 (∘-ap (projr _ _) winr (merid _ x) ∙ ap-idf _)))) fold-subtract : ∀ σ → fold (subtract σ) == south _ fold-subtract = Suspension-elim (fst X) idp idp $ ↓-app=cst-in ∘ ! ∘ λ x → ∙-unit-r _ ∙ ap-∘ fold subtract (merid _ x) ∙ ap (ap fold) (Subtract.glue-β x) ∙ ap-∙ fold (ap winl (! (merid _ x))) (wglue ∙ ap winr (merid _ x)) ∙ ((∘-ap fold winl (! (merid _ x)) ∙ ap-idf _) ∙2 (ap-∙ fold wglue (ap winr (merid _ x)) ∙ (Fold.glue-β ∙2 (∘-ap fold winr (merid _ x) ∙ ap-idf _)))) ∙ !-inv-l (merid _ x) cancel : ×ᴳ-sum-hom (C-abelian n _) (CF-hom n (⊙flip-susp X)) (idhom _) ∘ᴳ ×ᴳ-diag == cst-hom cancel = ap2 (λ φ ψ → ×ᴳ-sum-hom (C-abelian n _) φ ψ ∘ᴳ ×ᴳ-diag) (! (CF-λ= n projl-subtract)) (! (CF-ident n) ∙ ! (CF-λ= n projr-subtract)) ∙ transport (λ {(G , φ , ψ) → φ ∘ᴳ ψ == cst-hom}) (pair= (CW.path) $ ↓-×-in (CW.wedge-in-over ⊙subtract) (CW.⊙wedge-rec-over (⊙idf _) (⊙idf _) ▹ ap2 ×ᴳ-hom-in (CF-ident n) (CF-ident n))) (! (CF-comp n ⊙fold ⊙subtract) ∙ CF-λ= n (λ σ → fold-subtract σ ∙ ! (merid _ (snd X))) ∙ CF-cst n) C-flip-susp-is-inv : CF-hom n (⊙flip-susp X) == inv-hom (C n (⊙Susp X)) (C-abelian _ _) C-flip-susp-is-inv = hom= _ _ $ λ= $ λ g → ! (group-inv-unique-l (C n (⊙Susp X)) _ g (app= (ap GroupHom.f cancel) g))
{ "alphanum_fraction": 0.5466510676, "avg_line_length": 37.1630434783, "ext": "agda", "hexsha": "48a40f599b5c8d19f992e491b3735a0916f6a453", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "cohomology/InverseInSusp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "cohomology/InverseInSusp.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "cohomology/InverseInSusp.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1396, "size": 3419 }
open import Agda.Builtin.Nat open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Sigma open import Agda.Builtin.Equality pattern vArg x = arg (arg-info visible relevant) x pattern hArg x = arg (arg-info hidden relevant) x idClause-ok : Clause idClause-ok = clause (("A" , hArg (agda-sort (lit 0))) ∷ ("x" , vArg (var 0 [])) ∷ []) (hArg (var 1) ∷ vArg (var 0) ∷ []) (var 0 []) id-ok : {A : Set} → A → A unquoteDef id-ok = defineFun id-ok (idClause-ok ∷ []) idClause-fail : Clause idClause-fail = clause (("A" , hArg (agda-sort (lit 0))) ∷ ("x" , vArg (var 0 [])) ∷ []) ({-hArg (var 1) ∷-} vArg (var 0) ∷ []) (var 0 []) id-fail : {A : Set} → A → A unquoteDef id-fail = defineFun id-fail (idClause-fail ∷ []) -- Panic: unbound variable A (id: 191@9559440724209987811) -- when checking that the expression A has type _7
{ "alphanum_fraction": 0.5914893617, "avg_line_length": 31.3333333333, "ext": "agda", "hexsha": "e115d2149072ca0494be0d47bb746b0db76c7203", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guilhermehas/agda", "max_forks_repo_path": "test/Fail/Issue5044.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guilhermehas/agda", "max_issues_repo_path": "test/Fail/Issue5044.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guilhermehas/agda", "max_stars_repo_path": "test/Fail/Issue5044.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 319, "size": 940 }
module L.Base.Empty.Properties where -- There are no properties yet.
{ "alphanum_fraction": 0.7714285714, "avg_line_length": 17.5, "ext": "agda", "hexsha": "4921dd1ab92f8fcc3627a1bed26a053681007c85", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Empty/Properties.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Empty/Properties.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Empty/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14, "size": 70 }
------------------------------------------------------------------------------ -- Reasoning about a function without a termination proof ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Collatz.CollatzSL where open import Data.Bool.Base open import Data.Empty open import Data.Nat renaming ( suc to succ ) open import Data.Nat.Properties open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary ------------------------------------------------------------------------------ isEven : ℕ → Bool isEven 0 = true isEven 1 = false isEven (succ (succ n)) = isEven n {-# TERMINATING #-} collatz : ℕ → ℕ collatz zero = 1 collatz (succ zero) = 1 {-# CATCHALL #-} collatz n with isEven n ... | true = collatz ⌊ n /2⌋ ... | false = collatz (3 * n + 1) -- 25 April 2014: Failed with Andreas' --without-K. xy≡0→x≡0∨y≡0 : (m n : ℕ) → m * n ≡ zero → m ≡ zero ⊎ n ≡ zero xy≡0→x≡0∨y≡0 zero n h = inj₁ refl xy≡0→x≡0∨y≡0 (succ m) zero h = inj₂ refl xy≡0→x≡0∨y≡0 (succ m) (succ n) () +∸2 : ∀ {n} → n ≢ zero → n ≢ 1 → n ≡ succ (succ (n ∸ 2)) +∸2 {zero} 0≢0 _ = ⊥-elim (0≢0 refl) +∸2 {succ zero} _ 1≢1 = ⊥-elim (1≢1 refl) +∸2 {succ (succ n)} _ _ = refl 2^x≢0 : (n : ℕ) → 2 ^ n ≢ zero 2^x≢0 zero () 2^x≢0 (succ n) h = [ (λ ()) , (λ 2^n≡0 → ⊥-elim (2^x≢0 n 2^n≡0)) ]′ (xy≡0→x≡0∨y≡0 2 (2 ^ n) h) 2^[x+1]/2≡2^x : ∀ n → ⌊ 2 ^ succ n /2⌋ ≡ 2 ^ n 2^[x+1]/2≡2^x zero = refl 2^[x+1]/2≡2^x (succ zero) = refl 2^[x+1]/2≡2^x (succ (succ n)) = {!!} collatz-2^x : ∀ n → Σ ℕ (λ k → n ≡ 2 ^ k) → collatz n ≡ 1 collatz-2^x zero h = refl collatz-2^x (succ n) (zero , proj₂) = subst (λ t → collatz t ≡ 1) (sym proj₂) refl collatz-2^x (succ n) (succ k , proj₂) = subst (λ t → collatz t ≡ 1) (sym proj₂) {!!} succInjective : ∀ {m n} → succ m ≡ succ n → m ≡ n succInjective refl = refl Sx≡x→⊥ : ∀ n → succ n ≢ n Sx≡x→⊥ zero () Sx≡x→⊥ (succ n) h = ⊥-elim (Sx≡x→⊥ n (succInjective h)) 2^[x+1]≢1 : ∀ n → 2 ^ (succ n) ≢ 1 2^[x+1]≢1 n h = Sx≡x→⊥ 1 (i*j≡1⇒i≡1 2 (2 ^ n) h)
{ "alphanum_fraction": 0.4753492194, "avg_line_length": 32.8918918919, "ext": "agda", "hexsha": "7926cae74a0e6c18c6a9bd3d5bebaf346c7d1899", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzSL.agda", "max_line_length": 84, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Collatz/CollatzSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 967, "size": 2434 }
{-# OPTIONS --without-K --safe #-} module Categories.Bicategory where open import Level open import Data.Product using (Σ; _,_) open import Relation.Binary using (Rel) open import Categories.Category open import Categories.Category.Monoidal.Instance.Cats using (module Product) open import Categories.Category.Instance.Cats open import Categories.Enriched.Category renaming (Category to Enriched) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR -- https://ncatlab.org/nlab/show/bicategory -- notice that some axioms in nLab is inconsistent. they have been fixed in this definition. record Bicategory o ℓ e t : Set (suc (o ⊔ ℓ ⊔ e ⊔ t)) where field enriched : Enriched (Product.Cats-Monoidal {o} {ℓ} {e}) t open Enriched enriched public module hom {A B} = Category (hom A B) open Functor module ⊚ {A B C} = Functor (⊚ {A} {B} {C}) module ⊚-assoc {A B C D} = NaturalIsomorphism (⊚-assoc {A} {B} {C} {D}) module unitˡ {A B} = NaturalIsomorphism (unitˡ {A} {B}) module unitʳ {A B} = NaturalIsomorphism (unitʳ {A} {B}) module id {A} = Functor (id {A}) infix 4 _⇒₁_ _⇒₂_ _≈_ infixr 7 _∘ᵥ_ _∘ₕ_ infixr 9 _▷_ infixl 9 _◁_ infixr 11 _⊚₀_ _⊚₁_ _⇒₁_ : Obj → Obj → Set o A ⇒₁ B = Category.Obj (hom A B) _⇒₂_ : {A B : Obj} → A ⇒₁ B → A ⇒₁ B → Set ℓ _⇒₂_ = hom._⇒_ _⊚₀_ : {A B C : Obj} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C f ⊚₀ g = ⊚.F₀ (f , g) _⊚₁_ : {A B C : Obj} {f h : B ⇒₁ C} {g i : A ⇒₁ B} → f ⇒₂ h → g ⇒₂ i → f ⊚₀ g ⇒₂ h ⊚₀ i α ⊚₁ β = ⊚.F₁ (α , β) _≈_ : {A B : Obj} {f g : A ⇒₁ B} → Rel (f ⇒₂ g) e _≈_ = hom._≈_ id₁ : {A : Obj} → A ⇒₁ A id₁ {_} = id.F₀ _ id₂ : {A B : Obj} {f : A ⇒₁ B} → f ⇒₂ f id₂ = hom.id -- horizontal composition _∘ₕ_ : {A B C : Obj} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C _∘ₕ_ = _⊚₀_ -- vertical composition _∘ᵥ_ : {A B : Obj} {f g h : A ⇒₁ B} (α : g ⇒₂ h) (β : f ⇒₂ g) → f ⇒₂ h _∘ᵥ_ = hom._∘_ _◁_ : {A B C : Obj} {g h : B ⇒₁ C} (α : g ⇒₂ h) (f : A ⇒₁ B) → g ∘ₕ f ⇒₂ h ∘ₕ f α ◁ f = α ⊚₁ id₂ _▷_ : {A B C : Obj} {f g : A ⇒₁ B} (h : B ⇒₁ C) (α : f ⇒₂ g) → h ∘ₕ f ⇒₂ h ∘ₕ g h ▷ α = id₂ ⊚₁ α unitorˡ : {A B : Obj} {f : A ⇒₁ B} → Mor._≅_ (hom A B) (id₁ ∘ₕ f) f unitorˡ {_} {_} {f} = record { from = unitˡ.⇒.η (_ , f) ; to = unitˡ.⇐.η (_ , f) ; iso = unitˡ.iso (_ , f) } module unitorˡ {A B f} = Mor._≅_ (unitorˡ {A} {B} {f}) unitorʳ : {A B : Obj} {f : A ⇒₁ B} → Mor._≅_ (hom A B) (f ∘ₕ id₁) f unitorʳ {_} {_} {f} = record { from = unitʳ.⇒.η (f , _) ; to = unitʳ.⇐.η (f , _) ; iso = unitʳ.iso (f , _) } module unitorʳ {A B f} = Mor._≅_ (unitorʳ {A} {B} {f}) associator : {A B C D : Obj} {f : D ⇒₁ B} {g : C ⇒₁ D} {h : A ⇒₁ C} → Mor._≅_ (hom A B) ((f ∘ₕ g) ∘ₕ h) (f ∘ₕ g ∘ₕ h) associator {_} {_} {_} {_} {f} {g} {h} = record { from = ⊚-assoc.⇒.η ((f , g) , h) ; to = ⊚-assoc.⇐.η ((f , g) , h) ; iso = ⊚-assoc.iso ((f , g) , h) } module associator {A B C D} {f : C ⇒₁ B} {g : D ⇒₁ C} {h} = Mor._≅_ (associator {A = A} {B = B} {f = f} {g = g} {h = h}) open hom.Commutation field triangle : {A B C : Obj} {f : A ⇒₁ B} {g : B ⇒₁ C} → [ (g ∘ₕ id₁) ∘ₕ f ⇒ g ∘ₕ f ]⟨ associator.from ⇒⟨ g ∘ₕ id₁ ∘ₕ f ⟩ g ▷ unitorˡ.from ≈ unitorʳ.from ◁ f ⟩ pentagon : {A B C D E : Obj} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} → [ ((i ∘ₕ h) ∘ₕ g) ∘ₕ f ⇒ i ∘ₕ h ∘ₕ g ∘ₕ f ]⟨ associator.from ◁ f ⇒⟨ (i ∘ₕ h ∘ₕ g) ∘ₕ f ⟩ associator.from ⇒⟨ i ∘ₕ (h ∘ₕ g) ∘ₕ f ⟩ i ▷ associator.from ≈ associator.from ⇒⟨ (i ∘ₕ h) ∘ₕ g ∘ₕ f ⟩ associator.from ⟩ private variable A B C D : Obj f g h i : A ⇒₁ B α β γ : f ⇒₂ g -⊚_ : C ⇒₁ A → Functor (hom A B) (hom C B) -⊚_ = appʳ ⊚ _⊚- : B ⇒₁ C → Functor (hom A B) (hom A C) _⊚- = appˡ ⊚ identity₂ˡ : id₂ ∘ᵥ α ≈ α identity₂ˡ = hom.identityˡ identity₂ʳ : α ∘ᵥ id₂ ≈ α identity₂ʳ = hom.identityʳ assoc₂ : (α ∘ᵥ β) ∘ᵥ γ ≈ α ∘ᵥ β ∘ᵥ γ assoc₂ = hom.assoc id₂◁ : id₂ {f = g} ◁ f ≈ id₂ id₂◁ = ⊚.identity ▷id₂ : f ▷ id₂ {f = g} ≈ id₂ ▷id₂ = ⊚.identity open hom.HomReasoning private module MR′ {A} {B} where open MR (hom A B) public open Mor (hom A B) public open MR′ ∘ᵥ-distr-◁ : (α ◁ f) ∘ᵥ (β ◁ f) ≈ (α ∘ᵥ β) ◁ f ∘ᵥ-distr-◁ {f = f} = ⟺ (Functor.homomorphism (-⊚ f)) ∘ᵥ-distr-▷ : (f ▷ α) ∘ᵥ (f ▷ β) ≈ f ▷ (α ∘ᵥ β) ∘ᵥ-distr-▷ {f = f} = ⟺ (Functor.homomorphism (f ⊚-)) ρ-∘ᵥ-▷ : unitorˡ.from ∘ᵥ (id₁ ▷ α) ≈ α ∘ᵥ unitorˡ.from ρ-∘ᵥ-▷ {α = α} = begin unitorˡ.from ∘ᵥ (id₁ ▷ α) ≈˘⟨ hom.∘-resp-≈ʳ (⊚.F-resp-≈ (id.identity , refl)) ⟩ unitorˡ.from ∘ᵥ id.F₁ _ ⊚₁ α ≈⟨ unitˡ.⇒.commute (_ , α) ⟩ α ∘ᵥ unitorˡ.from ∎ ▷-∘ᵥ-ρ⁻¹ : (id₁ ▷ α) ∘ᵥ unitorˡ.to ≈ unitorˡ.to ∘ᵥ α ▷-∘ᵥ-ρ⁻¹ = conjugate-to (≅.sym unitorˡ) (≅.sym unitorˡ) ρ-∘ᵥ-▷ λ-∘ᵥ-◁ : unitorʳ.from ∘ᵥ (α ◁ id₁) ≈ α ∘ᵥ unitorʳ.from λ-∘ᵥ-◁ {α = α} = begin unitorʳ.from ∘ᵥ (α ◁ id₁) ≈˘⟨ hom.∘-resp-≈ʳ (⊚.F-resp-≈ (refl , id.identity)) ⟩ unitorʳ.from ∘ᵥ (α ⊚₁ id.F₁ _) ≈⟨ unitʳ.⇒.commute (α , _) ⟩ α ∘ᵥ unitorʳ.from ∎ ◁-∘ᵥ-λ⁻¹ : (α ◁ id₁) ∘ᵥ unitorʳ.to ≈ unitorʳ.to ∘ᵥ α ◁-∘ᵥ-λ⁻¹ = conjugate-to (≅.sym unitorʳ) (≅.sym unitorʳ) λ-∘ᵥ-◁ assoc⁻¹-◁-∘ₕ : associator.to ∘ᵥ (α ◁ (g ∘ₕ f)) ≈ ((α ◁ g) ◁ f) ∘ᵥ associator.to assoc⁻¹-◁-∘ₕ {α = α} {g = g} {f = f} = begin associator.to ∘ᵥ (α ◁ (g ∘ₕ f)) ≈˘⟨ hom.∘-resp-≈ʳ (⊚.F-resp-≈ (refl , ⊚.identity)) ⟩ associator.to ∘ᵥ (α ⊚₁ id₂ ⊚₁ id₂) ≈⟨ ⊚-assoc.⇐.commute ((α , id₂) , id₂) ⟩ ((α ◁ g) ◁ f) ∘ᵥ associator.to ∎ assoc⁻¹-▷-◁ : associator.to ∘ᵥ (f ▷ (α ◁ g)) ≈ ((f ▷ α) ◁ g) ∘ᵥ associator.to assoc⁻¹-▷-◁ {f = f} {α = α} {g = g} = ⊚-assoc.⇐.commute ((id₂ , α) , id₂) assoc⁻¹-▷-∘ₕ : associator.to ∘ᵥ (g ▷ (f ▷ α)) ≈ ((g ∘ₕ f) ▷ α) ∘ᵥ associator.to assoc⁻¹-▷-∘ₕ {g = g} {f = f} {α = α} = begin associator.to ∘ᵥ (g ▷ (f ▷ α)) ≈⟨ ⊚-assoc.⇐.commute ((id₂ , id₂) , α) ⟩ ((id₂ ⊚₁ id₂) ⊚₁ α) ∘ᵥ associator.to ≈⟨ hom.∘-resp-≈ˡ (⊚.F-resp-≈ (⊚.identity , refl)) ⟩ ((g ∘ₕ f) ▷ α) ∘ᵥ associator.to ∎ ◁-▷-exchg : ∀ {α : f ⇒₂ g} {β : h ⇒₂ i} → (i ▷ α) ∘ᵥ (β ◁ f) ≈ (β ◁ g) ∘ᵥ (h ▷ α) ◁-▷-exchg = [ ⊚ ]-commute
{ "alphanum_fraction": 0.4867495134, "avg_line_length": 33.7323232323, "ext": "agda", "hexsha": "afadb522b7c1207a0c2517a3810a496dd061d890", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3455, "size": 6679 }
{-# OPTIONS --cubical #-} module Agda.Builtin.Cubical.Id where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path postulate Id : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ {-# BUILTIN ID Id #-} {-# BUILTIN CONID conid #-} primitive primDepIMin : _ primIdFace : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → I primIdPath : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → x ≡ y primitive primIdJ : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → P x (conid i1 (λ i → x)) → ∀ {y} (p : Id x y) → P y p
{ "alphanum_fraction": 0.4838160136, "avg_line_length": 27.9523809524, "ext": "agda", "hexsha": "c2b4e06a821280cae5114a7b57a8f5373236ef4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 238, "size": 587 }
module FixityOutOfScopeInRecord where record R : Set where infixl 30 _+_ -- Should complain that _+_ is not in scope -- in its fixity declaration.
{ "alphanum_fraction": 0.7549668874, "avg_line_length": 18.875, "ext": "agda", "hexsha": "89f65f6e6f930e20b31b3d2d7d3151048c24a163", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/FixityOutOfScopeInRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/FixityOutOfScopeInRecord.agda", "max_line_length": 43, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/FixityOutOfScopeInRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 41, "size": 151 }
------------------------------------------------------------------------------ -- Non-intuitionistic logic theorems ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.NonIntuitionistic.TheoremsI where -- The theorems below are valid with an empty domain. open import FOL.Base hiding ( D≢∅ ) ------------------------------------------------------------------------------ -- The principle of indirect proof (proof by contradiction). ¬-elim : ∀ {A} → (¬ A → ⊥) → A ¬-elim h = case (λ a → a) (λ ¬a → ⊥-elim (h ¬a)) pem -- Double negation elimination. ¬¬-elim : ∀ {A} → ¬ ¬ A → A ¬¬-elim {A} h = ¬-elim h -- The reductio ab absurdum rule. (Some authors uses this name for the -- principle of indirect proof). raa : ∀ {A} → (¬ A → A) → A raa h = case (λ a → a) h pem -- ∃ in terms of ∀ and ¬. ¬∃¬→∀ : {A : D → Set} → ¬ (∃[ x ] ¬ A x) → ∀ {x} → A x ¬∃¬→∀ h {x} = ¬-elim (λ ah → h (x , ah))
{ "alphanum_fraction": 0.4277929155, "avg_line_length": 34.40625, "ext": "agda", "hexsha": "5fe69200eb927300f025b6494ab8157235d8ad75", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 307, "size": 1101 }
module GGT.Group.Definitions {a ℓ} where open import Relation.Unary using (Pred) open import Algebra.Bundles using (Group) open import Level IsOpInvClosed : {l : Level} → (G : Group a ℓ) → (Pred (Group.Carrier G) l) → Set (a ⊔ l) IsOpInvClosed G P = ∀ {x y : Carrier} → P x → P y → P (x - y) where open Group G
{ "alphanum_fraction": 0.6593059937, "avg_line_length": 28.8181818182, "ext": "agda", "hexsha": "4261e0827fa4de7dad780b34100c94aeafec2fe8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/group/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/group/Definitions.agda", "max_line_length": 88, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/group/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 109, "size": 317 }
{-# OPTIONS --prop --rewriting --confluence-check #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data _≐_ {ℓ} {A : Set ℓ} (x : A) : A → Prop ℓ where refl : x ≐ x postulate subst : ∀ {ℓ ℓ′} {A : Set ℓ} (P : A → Set ℓ′) → (x y : A) → x ≐ y → P x → P y subst-rew : ∀ {ℓ ℓ′} {A : Set ℓ} (P : A → Set ℓ′) → {x : A} (e : x ≐ x) (p : P x) → subst P x x e p ≡ p {-# REWRITE subst-rew #-} data Box (A : Prop) : Set where box : A -> Box A foo : (A : Prop)(x y : A)(P : Box A → Set)(p : P (box x)) → subst P (box x) (box y) refl p ≐ p foo A x y P p = refl -- refl does not type check
{ "alphanum_fraction": 0.5053435115, "avg_line_length": 28.4782608696, "ext": "agda", "hexsha": "e3bb4b0ba417e2338b9e28063e5208715f47d6fb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3525.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3525.agda", "max_line_length": 94, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3525.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 274, "size": 655 }
------------------------------------------------------------------------ -- Polymorphic and iso-recursive lambda terms ------------------------------------------------------------------------ module SystemF.Term where open import Data.Fin using (Fin; zero; suc; inject+) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Nat using (ℕ; suc; _+_; _∸_) open import Data.Product using (Σ; _,_) open import Data.Vec using (Vec; []; _∷_; lookup; map) open import Function as Fun hiding (id) open import Relation.Binary.PropositionalEquality as PropEq using (refl; _≡_; cong; cong₂; sym) open PropEq.≡-Reasoning open import SystemF.Type ------------------------------------------------------------------------ -- Untyped terms and values infixl 9 _[_] _·_ -- Untyped terms with up to m free term variables and up to n free -- type variables data Term (m n : ℕ) : Set where var : (x : Fin m) → Term m n -- term variable Λ : Term m (1 + n) → Term m n -- type abstraction λ' : Type n → Term (1 + m) n → Term m n -- term abstraction μ : Type n → Term (1 + m) n → Term m n -- recursive term _[_] : Term m n → Type n → Term m n -- type application _·_ : Term m n → Term m n → Term m n -- term application fold : Type (1 + n) → Term m n → Term m n -- fold recursive type unfold : Type (1 + n) → Term m n → Term m n -- unfold recursive type -- Untyped values with up to m free term variables and up to n free -- type variables data Val (m n : ℕ) : Set where Λ : Term m (1 + n) → Val m n -- type abstraction λ' : Type n → Term (1 + m) n → Val m n -- term abstraction fold : Type (1 + n) → Val m n → Val m n -- fold recursive type -- Conversion from values to terms ⌜_⌝ : ∀ {m n} → Val m n → Term m n ⌜ Λ x ⌝ = Λ x ⌜ λ' a t ⌝ = λ' a t ⌜ fold a t ⌝ = fold a ⌜ t ⌝ ------------------------------------------------------------------------ -- Substitutions in terms -- Type substitutions in terms module TermTypeSubst where module TermTypeApp {T : ℕ → Set} (l : Lift T Type) where open Lift l hiding (var) open TypeSubst.TypeApp l renaming (_/_ to _/tp_) infixl 8 _/_ -- Apply a type substitution to a term _/_ : ∀ {m n k} → Term m n → Sub T n k → Term m k var x / σ = var x Λ t / σ = Λ (t / σ ↑) λ' a t / σ = λ' (a /tp σ) (t / σ) μ a t / σ = μ (a /tp σ) (t / σ) t [ a ] / σ = (t / σ) [ a /tp σ ] s · t / σ = (s / σ) · (t / σ) fold a t / σ = fold (a /tp σ ↑) (t / σ) unfold a t / σ = unfold (a /tp σ ↑) (t / σ) open TypeSubst using (varLift; termLift; sub) module Lifted {T} (lift : Lift T Type) {m} where application : Application (Term m) T application = record { _/_ = TermTypeApp._/_ lift {m = m} } open Application application public open Lifted termLift public -- Apply a type variable substitution (renaming) to a term _/Var_ : ∀ {m n k} → Term m n → Sub Fin n k → Term m k _/Var_ = TermTypeApp._/_ varLift -- Weaken a term with an additional type variable weaken : ∀ {m n} → Term m n → Term m (suc n) weaken t = t /Var VarSubst.wk infix 8 _[/_] -- Shorthand for single-variable type substitutions in terms _[/_] : ∀ {m n} → Term m (1 + n) → Type n → Term m n t [/ b ] = t / sub b -- Lemmas about type substitutions in terms. module TermTypeLemmas where open TermTypeSubst public private module T = TypeLemmas private module V = VarLemmas /-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} → let open T.Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/tp₁_) open Lifted lift₁ using () renaming (_/_ to _/₁_) open T.Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/tp₂_) open Lifted lift₂ using () renaming (_/_ to _/₂_) in ∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) → (∀ i x → Type.var x /tp₁ ρ₁ ↑⋆₁ i ≡ Type.var x /tp₂ ρ₂ ↑⋆₂ i) → ∀ i {m} (t : Term m (i + n)) → t /₁ ρ₁ ↑⋆₁ i ≡ t /₂ ρ₂ ↑⋆₂ i /-↑⋆ ρ₁ ρ₂ hyp i (var x) = refl /-↑⋆ ρ₁ ρ₂ hyp i (Λ t) = cong Λ (/-↑⋆ ρ₁ ρ₂ hyp (1 + i) t) /-↑⋆ ρ₁ ρ₂ hyp i (λ' a t) = cong₂ λ' (T./-↑⋆ ρ₁ ρ₂ hyp i a) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (μ a t) = cong₂ μ (T./-↑⋆ ρ₁ ρ₂ hyp i a) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (t [ b ]) = cong₂ _[_] (/-↑⋆ ρ₁ ρ₂ hyp i t) (T./-↑⋆ ρ₁ ρ₂ hyp i b) /-↑⋆ ρ₁ ρ₂ hyp i (s · t) = cong₂ _·_ (/-↑⋆ ρ₁ ρ₂ hyp i s) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (fold a t) = cong₂ fold (T./-↑⋆ ρ₁ ρ₂ hyp (1 + i) a) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-↑⋆ ρ₁ ρ₂ hyp i (unfold a t) = cong₂ unfold (T./-↑⋆ ρ₁ ρ₂ hyp (1 + i) a) (/-↑⋆ ρ₁ ρ₂ hyp i t) /-wk : ∀ {m n} (t : Term m n) → t / TypeSubst.wk ≡ weaken t /-wk t = /-↑⋆ TypeSubst.wk VarSubst.wk (λ k x → begin tpVar x T./ T.wk T.↑⋆ k ≡⟨ T.var-/-wk-↑⋆ k x ⟩ tpVar (Data.Fin.lift k suc x) ≡⟨ cong tpVar (sym (V.var-/-wk-↑⋆ k x)) ⟩ tpVar (lookup (V.wk V.↑⋆ k) x) ≡⟨ refl ⟩ tpVar x T./Var V.wk V.↑⋆ k ∎) 0 t where open Type using () renaming (var to tpVar) -- Term substitutions in terms module TermTermSubst where -- Substitutions of terms in terms -- -- A TermSub T m n k is a substitution which, when applied to a term -- with at most m free term variables and n free type variables, -- yields a term with at most k free term variables and n free type -- variables. TermSub : (ℕ → ℕ → Set) → ℕ → ℕ → ℕ → Set TermSub T m n k = Sub (flip T n) m k record TermLift (T : ℕ → ℕ → Set) : Set where infix 10 _↑tm _↑tp field lift : ∀ {m n} → T m n → Term m n _↑tm : ∀ {m n k} → TermSub T m n k → TermSub T (suc m) n (suc k) _↑tp : ∀ {m n k} → TermSub T m n k → TermSub T m (suc n) k module TermTermApp {T} (l : TermLift T) where open TermLift l infixl 8 _/_ -- Apply a term substitution to a term _/_ : ∀ {m n k} → Term m n → TermSub T m n k → Term k n var x / ρ = lift (lookup ρ x) Λ t / ρ = Λ (t / ρ ↑tp) λ' a t / ρ = λ' a (t / ρ ↑tm) μ a t / ρ = μ a (t / ρ ↑tm) t [ a ] / ρ = (t / ρ) [ a ] s · t / ρ = (s / ρ) · (t / ρ) fold a t / ρ = fold a (t / ρ) unfold a t / ρ = unfold a (t / ρ) Fin′ : ℕ → ℕ → Set Fin′ m _ = Fin m varLift : TermLift Fin′ varLift = record { lift = var; _↑tm = VarSubst._↑; _↑tp = Fun.id } infixl 8 _/Var_ _/Var_ : ∀ {m n k} → Term m n → Sub Fin m k → Term k n _/Var_ = TermTermApp._/_ varLift Term′ : ℕ → ℕ → Set Term′ = flip Term private module ExpandSimple {n : ℕ} where simple : Simple (Term′ n) simple = record { var = var; weaken = λ t → t /Var VarSubst.wk } open Simple simple public open ExpandSimple using (_↑; simple) open TermTypeSubst using () renaming (weaken to weakenTp) termLift : TermLift Term termLift = record { lift = Fun.id; _↑tm = _↑ ; _↑tp = λ ρ → map weakenTp ρ } private module ExpandSubst {n : ℕ} where app : Application (Term′ n) (Term′ n) app = record { _/_ = TermTermApp._/_ termLift {n = n} } subst : Subst (flip Term n) subst = record { simple = simple ; application = app } open Subst subst public open ExpandSubst public hiding (var; simple) infix 8 _[/_] -- Shorthand for single-variable term substitutions in terms _[/_] : ∀ {m n} → Term (1 + m) n → Term m n → Term m n s [/ t ] = s / sub t open TermTypeSubst renaming (weaken to weakenTmTp) open TermTermSubst renaming (weaken to weakenTmTm) hiding (id) open TypeSubst renaming (weaken to weakenTp; weaken↑ to weakenTp↑) hiding (id) ------------------------------------------------------------------------ -- Encoding of additional term operators -- -- NOTE: These encoded operators require more type information than -- their "classic" untyped counterparts. The additional types are -- required by the underlying (untyped) abstractions and type -- applications. Cf. TAPL sec. 24.3, pp. 377-379. module TermOperators where open TypeOperators using (⊤; ⊥; _→ⁿ_) -- Polymorphic identity function id : {m n : ℕ} → Term m n id = Λ (λ' (var zero) (var zero)) -- Bottom elimination/univeral property of the initial type ⊥-elim : ∀ {m n} → Type n → Term m n ⊥-elim a = λ' ⊥ ((var zero) [ a ]) -- Unit value tt = id -- Top introduction/universal property of the terminal type ⊤-intro : ∀ {m n} → Type n → Term m n ⊤-intro a = λ' a id -- Packing existential types as-∃_pack_,_ : ∀ {m n} → Type (1 + n) → Type n → Term m n → Term m n as-∃ a pack b , t = Λ (λ' (∀' (weakenTp↑ a →' var (suc zero))) ((var zero [ weakenTp b ]) · weakenTmTm (weakenTmTp t))) -- Unpacking existential types unpack_in'_ : ∀ {m n} → Term m n → Term (1 + m) (1 + n) → {a : Type (1 + n)} {b : Type n} → Term m n unpack_in'_ s t {a} {b} = (s [ b ]) · (Λ (λ' a t)) -- n-ary term abstraction λⁿ : ∀ {m n k} → Vec (Type n) k → Term (k + m) n → Term m n λⁿ [] t = t λⁿ (a ∷ as) t = λⁿ as (λ' a t) infixl 9 _·ⁿ_ -- n-ary term application _·ⁿ_ : ∀ {m n k} → Term m n → Vec (Term m n) k → Term m n s ·ⁿ [] = s s ·ⁿ (t ∷ ts) = s ·ⁿ ts · t -- Record/tuple constructor new : ∀ {m n k} → Vec (Term m n) k → {as : Vec (Type n) k} → Term m n new [] = tt new (t ∷ ts) {a ∷ as} = Λ (λ' (map weakenTp (a ∷ as) →ⁿ var zero) (var zero ·ⁿ map weakenTmTm (map weakenTmTp (t ∷ ts)))) -- Field access/projection π : ∀ {m n k} → Fin k → Term m n → {as : Vec (Type n) k} → Term m n π () t {[]} π {m} x t {a ∷ as} = (t [ lookup (a ∷ as) x ]) · (λⁿ (a ∷ as) (var (inject+ m x)))
{ "alphanum_fraction": 0.5240690282, "avg_line_length": 33.9349315068, "ext": "agda", "hexsha": "670a14fbde264a8c14e2ad13b2bf9876ddba95ff", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/SystemF/Term.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/SystemF/Term.agda", "max_line_length": 78, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/SystemF/Term.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 3720, "size": 9909 }
module Codata where codata D : Set where
{ "alphanum_fraction": 0.7619047619, "avg_line_length": 10.5, "ext": "agda", "hexsha": "ca675ac4c132ccf2ebd1610e38736999c2e60ed2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Fail/Codata.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Codata.agda", "max_line_length": 20, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Codata.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 12, "size": 42 }
-- 2010-10-15 module DoNotEtaExpandMVarsWhenComparingAgainstRecord where open import Common.Irrelevance data _==_ {A : Set1}(a : A) : A -> Set where refl : a == a record IR : Set1 where constructor mkIR field .fromIR : Set open IR reflIR2 : (r : IR) -> _ == mkIR (fromIR r) reflIR2 r = refl {a = _} -- this would fail if -- ? = mkIR (fromIR r) -- would be solved by -- mkIR ?1 = mkIR (fromIR r) -- because then no constraint is generated for ?1 due to triviality
{ "alphanum_fraction": 0.6617954071, "avg_line_length": 19.9583333333, "ext": "agda", "hexsha": "56c997513a433e0162afb97bcb438031bf9fb1d0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 165, "size": 479 }
----------------------------------------------------------------------- -- This file defines Degenerate Dial₂(Sets) and shows that it is a -- -- CCC. -- ----------------------------------------------------------------------- module DeDial2Sets where open import prelude data UnitType : Set₁ where unit : UnitType mod : UnitType -- comp : UnitType → UnitType → UnitType ⟦_⟧ : UnitType → Set ⟦ unit ⟧ = ⊤ ⟦ mod ⟧ = (⊤ *) × (⊤ *) -- ⟦ comp t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ Obj⊤ : Set₁ Obj⊤ = Σ[ U ∈ Set ] (Σ[ X ∈ UnitType ](U → ⟦ X ⟧ → Set)) Hom⊤ : Obj⊤ → Obj⊤ → Set Hom⊤ (U , X , α) (V , Y , β) = Σ[ f ∈ (U → V) ] (Σ[ F ∈ (⟦ Y ⟧ → ⟦ X ⟧) ] (∀{u : U}{y : ⟦ Y ⟧} → α u (F y) → β (f u) y)) comp⊤ : {A B C : Obj⊤} → Hom⊤ A B → Hom⊤ B C → Hom⊤ A C comp⊤ {(U , X , α)} {(V , Y , β)} {(W , Z , γ)} (f , F , p₁) (g , G , p₂) = (g ∘ f , F ∘ G , (λ {u z} p-α → p₂ (p₁ p-α))) infixl 5 _○⊤_ _○⊤_ = comp⊤ -- The contravariant hom-functor: Hom⊤ₐ : {A' A B B' : Obj⊤} → Hom⊤ A' A → Hom⊤ B B' → Hom⊤ A B → Hom⊤ A' B' Hom⊤ₐ f h g = comp⊤ f (comp⊤ g h) -- The identity function: id⊤ : {A : Obj⊤} → Hom⊤ A A id⊤ {(U , X , α)} = (id-set , id-set , id-set) -- In this formalization we will only worry about proving that the -- data of morphisms are equivalent, and not worry about the morphism -- conditions. This will make proofs shorter and faster. -- -- If we have parallel morphisms (f,F) and (g,G) in which we know that -- f = g and F = G, then the condition for (f,F) will imply the -- condition of (g,G) and vice versa. Thus, we can safly ignore it. infix 4 _≡h⊤_ _≡h⊤_ : {A B : Obj⊤} → (f g : Hom⊤ A B) → Set _≡h⊤_ {(U , X , α)}{(V , Y , β)} (f , F , p₁) (g , G , p₂) = f ≡ g × F ≡ G ≡h⊤-refl : {A B : Obj⊤}{f : Hom⊤ A B} → f ≡h⊤ f ≡h⊤-refl {U , X , α}{V , Y , β}{f , F , _} = refl , refl ≡h⊤-trans : ∀{A B}{f g h : Hom⊤ A B} → f ≡h⊤ g → g ≡h⊤ h → f ≡h⊤ h ≡h⊤-trans {U , X , α}{V , Y , β}{f , F , _}{g , G , _}{h , H , _} (p₁ , p₂) (p₃ , p₄) rewrite p₁ | p₂ | p₃ | p₄ = refl , refl ≡h⊤-sym : ∀{A B}{f g : Hom⊤ A B} → f ≡h⊤ g → g ≡h⊤ f ≡h⊤-sym {U , X , α}{V , Y , β}{f , F , _}{g , G , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl ≡h⊤-subst-○ : ∀{A B C : Obj⊤}{f₁ f₂ : Hom⊤ A B}{g₁ g₂ : Hom⊤ B C}{j : Hom⊤ A C} → f₁ ≡h⊤ f₂ → g₁ ≡h⊤ g₂ → f₂ ○⊤ g₂ ≡h⊤ j → f₁ ○⊤ g₁ ≡h⊤ j ≡h⊤-subst-○ {U , X , α} {V , Y , β} {W , Z , γ} {f₁ , F₁ , _} {f₂ , F₂ , _} {g₁ , G₁ , _} {g₂ , G₂ , _} {j , J , _} (p₅ , p₆) (p₇ , p₈) (p₉ , p₁₀) rewrite p₅ | p₆ | p₇ | p₈ | p₉ | p₁₀ = refl , refl ○⊤-assoc : ∀{A B C D}{f : Hom⊤ A B}{g : Hom⊤ B C}{h : Hom⊤ C D} → f ○⊤ (g ○⊤ h) ≡h⊤ (f ○⊤ g) ○⊤ h ○⊤-assoc {U , X , α}{V , Y , β}{W , Z , γ}{S , T , ι} {f , F , _}{g , G , _}{h , H , _} = refl , refl ○⊤-idl : ∀{A B}{f : Hom⊤ A B} → id⊤ ○⊤ f ≡h⊤ f ○⊤-idl {U , X , _}{V , Y , _}{f , F , _} = refl , refl ○⊤-idr : ∀{A B}{f : Hom⊤ A B} → f ○⊤ id⊤ ≡h⊤ f ○⊤-idr {U , X , _}{V , Y , _}{f , F , _} = refl , refl _⊗ᵣ_ : ∀{U V : Set}{X Y : UnitType} → (α : U → ⟦ X ⟧ → Set) → (β : V → ⟦ Y ⟧ → Set) → Σ U (λ x → V) → Σ ⟦ X ⟧ (λ x → ⟦ Y ⟧) → Set (α ⊗ᵣ β) (u , v) (l₁ , l₂) = (α u l₁) × (β v l₂) _⊗ₒ_ : (A B : Obj⊤) → Obj⊤ (U , unit , α) ⊗ₒ (V , unit , β) = (U × V) , unit , (λ p t → (α (fst p) triv) × (β (snd p) triv)) (U , unit , α) ⊗ₒ (V , mod , β) = (U × V) , (mod , (λ p t → (α (fst p) triv) × (β (snd p) t))) (U , mod , α) ⊗ₒ (V , unit , β) = (U × V) , (mod , (λ p t → (α (fst p) t) × (β (snd p) triv))) (U , mod , α) ⊗ₒ (V , mod , β) = (U × V) , (mod , (λ p t → (α (fst p) t) × (β (snd p) t))) -- F⊗ : ∀{S Z W T V X U Y : Set ℓ}{f : U → W}{F : Z → X}{g : V → S}{G : T → Y} → (S → Z) × (W → T) → (V → X) × (U → Y) -- F⊗ {f = f}{F}{g}{G} (h₁ , h₂) = (λ v → F(h₁ (g v))) , (λ u → G(h₂ (f u))) -- _⊗ₐ_ : {A B C D : Obj} → Hom A C → Hom B D → Hom (A ⊗ₒ B) (C ⊗ₒ D) -- _⊗ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) = ⟨ f , g ⟩ , F⊗ {f = f}{F}{g}{G} , (λ {u y} → cond {u}{y}) -- where -- cond : {u : Σ U (λ x → V)} {y : Σ (S → Z) (λ x → W → T)} → -- ((α ⊗ᵣ β) u (F⊗ {f = f}{F}{g}{G} y)) ≤L ((γ ⊗ᵣ δ) (⟨ f , g ⟩ u) y) -- cond {u , v}{h , j} = l-mul-funct {p = mproset l-pf} (p₁ {u}{h (g v)}) (p₂ {v}{j (f u)}) -- □ᵣ : {U : Set}{X : UnitType} → (U → ⟦ X ⟧ → Set) → U → 𝕃 ⟦ X ⟧ → Set -- □ᵣ α u [] = ⊤ -- □ᵣ {U}{X} α u (x :: l) = (α u x) × (□ᵣ {U}{X} α u l) -- □ₒ : Obj⊤ → Obj⊤ -- □ₒ (U , X , α) = U , seq X , □ᵣ {U}{X} α -- □ₐ : {A B : Obj⊤} → Hom⊤ A B → Hom⊤ (□ₒ A) (□ₒ B) -- □ₐ {U , n₁ , α}{V , n₂ , β} (f , F , p) = f , map F , {!!} π₁ : {A B : Obj⊤} → Hom⊤ (A ⊗ₒ B) A π₁ {U , unit , α} {V , unit , β} = fst , id-set , (λ {u y} → aux {u}{y}) where aux : {u : Σ U (λ x → V)} {y : ⊤} → Σ (α (fst u) triv) (λ x → β (snd u) triv) → α (fst u) y aux {u , v}{triv} = fst π₁ {U , mod , α} {V , unit , β} = fst , id-set , (λ {u y} → aux {u}{y}) where aux : {u : Σ U (λ x → V)} {y : Σ (𝕃 ⊤) (λ x → 𝕃 ⊤)} → Σ (α (fst u) y) (λ x → β (snd u) triv) → α (fst u) y aux {u , v}{l₁ , l₂} = fst π₁ {U , unit , α} {V , mod , β} = fst , (λ x → [ x ] , [ x ]) , (λ {u y} → aux {u}{y}) where aux : {u : Σ U (λ x → V)} {y : ⊤} → Σ (α (fst u) triv) (λ x → β (snd u) (y :: [] , y :: [])) → α (fst u) y aux {u , v}{triv} = fst π₁ {U , mod , α} {V , mod , β} = fst , id-set , (λ {u y} → aux {u}{y}) where aux : {u : Σ U (λ x → V)} {y : Σ (𝕃 ⊤) (λ x → 𝕃 ⊤)} → Σ (α (fst u) y) (λ x → β (snd u) y) → α (fst u) y aux {u , v}{l} = fst π₂ : {A B : Obj⊤} → Hom⊤ (A ⊗ₒ B) B π₂ {U , unit , α} {V , unit , β} = snd , {!!} , {!!} π₂ {U , mod , α} {V , unit , β} = snd , {!!} , {!!} π₂ {U , unit , α} {V , mod , β} = snd , {!!} , {!!} π₂ {U , mod , α} {V , mod , β} = snd , {!!} , {!!} postulate rel-++ : ∀{W : Set}{w : W}{γ : W → 𝕃 (⊤ {lzero}) → Set}{l₁ l₂ : 𝕃 ⊤} → γ w (l₁ ++ l₂) → ((γ w l₁) × (γ w l₂)) cart-ar : {A B C : Obj⊤} → (f : Hom⊤ C A) → (g : Hom⊤ C B) → Hom⊤ C (A ⊗ₒ B) cart-ar {U , unit , α} {V , unit , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , id-set , (λ {u y} → aux {u}{y}) where aux : {u : W} {y : ⊤} → γ u y → Σ (α (f u) triv) (λ x → β (g u) triv) aux {w}{triv} p with p₁ {w}{triv} | p₂ {w}{triv} ... | p₃ | p₄ with F triv | G triv ... | triv | triv = p₃ p , p₄ p cart-ar {U , unit , α} {V , unit , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , (λ x → (fst (F x)) ++ (snd (F x)) , (fst (G x)) ++ (snd (G x))) , {!!} cart-ar {U , unit , α} {V , mod , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-ar {U , unit , α} {V , mod , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-ar {U , mod , α} {V , unit , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-ar {U , mod , α} {V , unit , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-ar {U , mod , α} {V , mod , β} {W , unit , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-ar {U , mod , α} {V , mod , β} {W , mod , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} cart-diag₁ : ∀{A B C : Obj⊤} → {f : Hom⊤ C A} → {g : Hom⊤ C B} → (cart-ar f g) ○⊤ π₁ ≡h⊤ f cart-diag₁ {U , unit , α} {V , unit , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = refl , {!!} cart-diag₁ {U , unit , α} {V , unit , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = refl , {!!} cart-diag₁ {U , unit , α} {V , mod , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!} cart-diag₁ {U , unit , α} {V , mod , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!} cart-diag₁ {U , mod , α} {V , unit , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!} cart-diag₁ {U , mod , α} {V , unit , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!} cart-diag₁ {U , mod , α} {V , mod , β} {W , unit , γ} {f , F , p₁} {g , G , p₂} = {!!} cart-diag₁ {U , mod , α} {V , mod , β} {W , mod , γ} {f , F , p₁} {g , G , p₂} = {!!} -- cart-diag₂ : ∀{A B C : Obj⊤} -- → {f : Hom (toObj C) (toObj A)} -- → {g : Hom (toObj C) (toObj B)} -- → (cart-ar f g) ○ π₂ ≡h g -- cart-diag₂ {U , α}{V , β}{W , γ}{f , F , p₁}{g , G , p₂} = refl , ext-set ctr -- where -- ctr : {a : ⊤} → triv ≡ G a -- ctr {triv} with G triv -- ... | triv = refl -- □ₒ-cond : ∀{U X : Set} -- → (U → X → Set) -- → U -- → (X *) -- → Set -- □ₒ-cond {U} α u l = all-pred (α u) l -- fromObj : (A : Obj) → Σ[ B ∈ Obj⊤ ]( A ≡ toObj(B)) → Obj⊤ -- fromObj _ ((a , b) , b₁) = a , b -- □ₒ : Obj → Obj -- □ₒ (U , X , α) = (U , X * , □ₒ-cond α) -- □ₐ : {A B : Obj} → Hom A B → Hom (□ₒ A) (□ₒ B) -- □ₐ {U , X , α}{V , Y , β} (f , F , p) = f , map F , cond -- where -- cond : {u : U} {y : 𝕃 Y} → all-pred (α u) (map F y) → all-pred (β (f u)) y -- cond {y = []} x = triv -- cond {y = x :: y} (a , b) = p a , cond b -- □-ε : ∀{A : Obj} → Hom (□ₒ A) A -- □-ε {U , X , α} = id-set , (λ x → [ x ] ) , aux -- where -- aux : {u : U} {y : X} → Σ (α u y) (λ x → ⊤) → α u y -- aux (a , b) = a -- □-δ : ∀{A : Obj} → Hom (□ₒ A) (□ₒ (□ₒ A)) -- □-δ {U , X , α} = id-set , (foldr _++_ []) , cond -- where -- cond : {u : U} {y : 𝕃 (𝕃 X)} → all-pred (α u) (foldr _++_ [] y) → all-pred (λ l → all-pred (α u) l) y -- cond {y = []} p = triv -- cond {u}{y = y :: y₁} p rewrite -- (all-pred-append {X}{α u}{y}{foldr _++_ [] y₁} ∧-unit ∧-assoc) -- with p -- ... | p₁ , p₂ = p₁ , cond p₂ -- comonand-diag₁ : ∀{A : Obj} -- → (□-δ {A}) ○ (□ₐ (□-δ {A})) ≡h (□-δ {A}) ○ (□-δ { □ₒ (A)}) -- comonand-diag₁ {U , X , α} = refl , ext-set (λ {a} → ctr {a}) -- where -- ctr : {a : 𝕃 (𝕃 (𝕃 X))} → foldr _++_ [] (map (foldr _++_ []) a) ≡ foldr _++_ [] (foldr _++_ [] a) -- ctr {[]} = refl -- ctr {a :: a₁} rewrite sym (foldr-append {l₁ = a}{foldr _++_ [] a₁}) | ctr {a₁} = refl -- comonand-diag₂ : ∀{A : Obj} -- → (□-δ {A}) ○ (□-ε { □ₒ A}) ≡h (□-δ {A}) ○ (□ₐ (□-ε {A})) -- comonand-diag₂ {U , X , α} = refl , ext-set (λ {a} → cond {a}) -- where -- cond : {a : 𝕃 X} → a ++ [] ≡ foldr _++_ [] (map (λ x → x :: []) a) -- cond {a} rewrite ++[] a = foldr-map -- □-ctr : {U V : Set} → 𝕃 (Σ (V → ⊤) (λ x → U → ⊤)) → Σ (V → 𝕃 ⊤) (λ x → U → 𝕃 ⊤) -- □-ctr [] = (λ x → [ triv ]) , (λ x → [ triv ]) -- □-ctr ((a , b) :: l) = (λ v → a v :: (fst (□-ctr l)) v) , (λ u → b u :: (snd (□-ctr l)) u) -- □-m : {A B : Obj⊤} → Hom ((□ₒ (toObj A)) ⊗ₒ (□ₒ (toObj B))) (□ₒ ((toObj A) ⊗ₒ (toObj B))) -- □-m {U , α}{V , β} = id-set , □-ctr , cond -- where -- cond : {u : Σ U (λ x → V)} {y : 𝕃 (Σ (V → ⊤) (λ x → U → ⊤))} → -- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u -- (□-ctr y) → all-pred ((α ⊗ᵣ β) u) y -- cond {a , b} {[]} x = triv -- cond {a , b} {(a₁ , b₁) :: y} ((a₂ , b₂) , a₃ , b₃) with cond {a , b}{y} -- ... | IH with □-ctr y -- ... | c , d = (a₂ , a₃) , IH (b₂ , b₃) -- □-m-nat : ∀{A A' B B' : Obj⊤} -- → (f : Hom (toObj A) (toObj A')) -- → (g : Hom (toObj B) (toObj B')) -- → ((□ₐ f) ⊗ₐ (□ₐ g)) ○ □-m ≡h □-m ○ (□ₐ (f ⊗ₐ g)) -- □-m-nat {U , α}{U' , α'}{V , β}{V' , β'} (f , F , p₁) (g , G , p₂) = refl , ext-set (λ {a} → aux {a}) -- where -- aux : {a : 𝕃 (Σ (V' → ⊤) (λ x → U' → ⊤))} → F⊗ {V'}{𝕃 ⊤}{U'}{𝕃 ⊤}{V}{𝕃 ⊤}{U}{𝕃 ⊤}{f}{map F}{g}{map G} (□-ctr a) ≡ □-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a) -- aux {[]} with G triv | F triv -- ... | triv | triv = refl -- aux {(a , b) :: a₁} = eq-× (ext-set aux₁) (ext-set aux₄) -- where -- aux₂ : ∀{v}{l : 𝕃 (Σ (V' → ⊤) (λ x → U' → ⊤))} → map F (fst (□-ctr l) (g v)) ≡ fst (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) l)) v -- aux₂ {_}{[]} with F triv -- ... | triv = refl -- aux₂ {v}{(a₂ , b₁) :: l} rewrite aux₂ {v}{l} = refl -- aux₁ : {a₂ : V} → F (a (g a₂)) :: map F (fst (□-ctr a₁) (g a₂)) ≡ F (a (g a₂)) :: fst (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a₁)) a₂ -- aux₁ {v} with F (a (g v)) -- ... | triv rewrite aux₂ {v}{a₁} = refl -- aux₃ : ∀{u l} → map G (snd (□-ctr l) (f u)) ≡ snd (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) l)) u -- aux₃ {u}{[]} with G triv -- ... | triv = refl -- aux₃ {u}{(a₂ , b₁) :: l} rewrite aux₃ {u}{l} = refl -- aux₄ : {a₂ : U} → G (b (f a₂)) :: map G (snd (□-ctr a₁) (f a₂)) ≡ G (b (f a₂)) :: snd (□-ctr (map (F⊗ {V'} {⊤} {U'} {⊤} {V} {⊤} {U} {⊤} {f} {F} {g} {G}) a₁)) a₂ -- aux₄ {u} rewrite aux₃ {u}{a₁} = refl -- □-m-I : Hom I (□ₒ I) -- □-m-I = id-set , (λ _ → triv) , cond -- where -- cond : {u : ⊤} {y : 𝕃 ⊤} → ι u triv → all-pred (ι u) y -- cond {triv} {[]} x = triv -- cond {triv} {triv :: y} triv = triv , cond triv -- π-□-ctr : {U V : Set} → 𝕃 ⊤ → Σ (V → 𝕃 ⊤) (λ _ → U → 𝕃 ⊤) -- π-□-ctr [] = (λ x → [ triv ]) , (λ x → [ triv ]) -- π-□-ctr {U}{V} (triv :: l) = (λ v → triv :: fst (π-□-ctr {U}{V} l) v) , ((λ v → triv :: snd (π-□-ctr {U}{V} l) v)) -- π₁-□ : ∀{U α V β} → Hom ((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))) (□ₒ (U , ⊤ , α)) -- π₁-□ {U}{α}{V}{β} = fst , π-□-ctr , cond -- where -- cond : {u : Σ U (λ x → V)} {y : 𝕃 ⊤} → -- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u -- (π-□-ctr y) → -- all-pred (α (fst u)) y -- cond {a , b} {[]} x = triv -- cond {a , b} {triv :: y} ((a₁ , b₁) , a₂ , b₂) with cond {a , b} {y} -- ... | IH with π-□-ctr {U}{V} y -- ... | c , d = a₁ , IH (b₁ , b₂) -- □-prod₁ : ∀{U α V β} → _≡h_ {((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β)))} -- {(□ₒ (U , ⊤ , α))} -- (_○_ {(□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))}{□ₒ ((U , ⊤ , α) ⊗ₒ (V , ⊤ , β))}{□ₒ (U , ⊤ , α)} (□-m {U , α}{V , β}) (□ₐ {(U , ⊤ , α) ⊗ₒ (V , ⊤ , β)}{U , ⊤ , α} (π₁ {U , α}{V , β}))) -- (π₁-□ {U}{α}{V}{β}) -- □-prod₁ {U}{α}{V}{β} = refl , ext-set (λ {a} → aux {a}) -- where -- aux : {a : 𝕃 ⊤} → □-ctr {U}{V} (map π-ctr a) ≡ π-□-ctr a -- aux {[]} = refl -- aux {triv :: a} rewrite aux {a} = refl -- π₂-□ : ∀{U α V β} → Hom ((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))) (□ₒ (V , ⊤ , β)) -- π₂-□ {U}{α}{V}{β} = snd , π-□-ctr , cond -- where -- cond : {u : Σ U (λ x → V)} {y : 𝕃 ⊤} → -- ((λ u₁ l → all-pred (α u₁) l) ⊗ᵣ (λ u₁ l → all-pred (β u₁) l)) u -- (π-□-ctr y) → -- all-pred (β (snd u)) y -- cond {a , b} {[]} x = triv -- cond {a , b} {triv :: y} ((a₁ , b₁) , a₂ , b₂) with cond {a , b}{y} -- ... | IH with π-□-ctr {U}{V} y -- ... | c , d = a₂ , (IH (b₁ , b₂)) -- □-prod₂ : ∀{U α V β} → _≡h_ {((□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β)))} -- {(□ₒ (V , ⊤ , β))} -- (_○_ {(□ₒ (U , ⊤ , α)) ⊗ₒ (□ₒ (V , ⊤ , β))}{□ₒ ((U , ⊤ , α) ⊗ₒ (V , ⊤ , β))}{□ₒ (V , ⊤ , β)} (□-m {U , α}{V , β}) (□ₐ {(U , ⊤ , α) ⊗ₒ (V , ⊤ , β)}{V , ⊤ , β} (π₂ {U , α}{V , β}))) -- (π₂-□ {U}{α}{V}{β}) -- □-prod₂ {U}{α}{V}{β} = refl , (ext-set (λ {a} → aux {a})) -- where -- aux : {a : 𝕃 ⊤} → □-ctr {U}{V} (map π-ctr a) ≡ π-□-ctr a -- aux {[]} = refl -- aux {triv :: a} rewrite aux {a} = refl -- cart-ar-□ : {A B C : Obj⊤} -- → (f : Hom (□ₒ (toObj C)) (□ₒ (toObj A))) -- → (g : Hom (□ₒ (toObj C)) (□ₒ (toObj B))) -- → Hom (□ₒ (toObj C)) ((□ₒ (toObj A)) ⊗ₒ (□ₒ (toObj B))) -- cart-ar-□ {U , α}{V , β}{W , γ} (f , F , p₁) (g , G , p₂) = trans-× f g , {!!} , {!!} -- where -- -}
{ "alphanum_fraction": 0.361194224, "avg_line_length": 43.0644257703, "ext": "agda", "hexsha": "143cb059bbc9916b7abdc0aa2f7f8cbdeaedd6a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "dialectica-cats/DeDial2Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "dialectica-cats/DeDial2Sets.agda", "max_line_length": 210, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "dialectica-cats/DeDial2Sets.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8329, "size": 15374 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Hom.Properties.Contra {o ℓ e} (C : Category o ℓ e) where private module C = Category C open import Level open import Function.Equality renaming (id to idFun) open import Categories.Category.Instance.Setoids open import Categories.Diagram.Limit open import Categories.Diagram.Limit.Properties open import Categories.Diagram.Colimit open import Categories.Diagram.Duality open import Categories.Functor open import Categories.Functor.Hom open import Categories.Functor.Hom.Properties.Covariant C.op open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism private variable o′ ℓ′ e′ : Level J : Category o′ ℓ′ e′ open C open Hom C -- contravariant hom functor sends colimit of F to its limit. module _ (W : Obj) {F : Functor J C} (col : Colimit F) where private module F = Functor F module J = Category J open HomReasoning HomF : Functor J.op (Setoids ℓ e) HomF = Hom[-, W ] ∘F F.op hom-colimit⇒limit : Limit HomF hom-colimit⇒limit = ≃-resp-lim (Hom≃ ⓘʳ F.op) (hom-resp-limit W (Colimit⇒coLimit _ col)) where Hom≃ : Hom[ op ][ W ,-] ≃ Hom[-, W ] Hom≃ = record { F⇒G = ntHelper record { η = λ _ → idFun ; commute = λ _ eq → C.∘-resp-≈ˡ (C.∘-resp-≈ʳ eq) ○ C.assoc } ; F⇐G = ntHelper record { η = λ _ → idFun ; commute = λ _ eq → C.sym-assoc ○ C.∘-resp-≈ˡ (C.∘-resp-≈ʳ eq) } ; iso = λ _ → record { isoˡ = λ eq → eq ; isoʳ = λ eq → eq } }
{ "alphanum_fraction": 0.6139130435, "avg_line_length": 29.2372881356, "ext": "agda", "hexsha": "6cc4b3bda5ee77d26c79bf2ddbec3ca643f69ebe", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Hom/Properties/Contra.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Hom/Properties/Contra.agda", "max_line_length": 90, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Hom/Properties/Contra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 528, "size": 1725 }
open import Type module Graph.Walk.Functions.Proofs {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where import Data.Either as Either open import Data.Either.Proofs open import Logic.Propositional import Lvl open import Graph{ℓ₁}{ℓ₂}(V) open import Graph.Properties open import Graph.Walk{ℓ₁}{ℓ₂}{V} open import Graph.Walk.Properties{ℓ₁}{ℓ₂}{V} open import Graph.Walk.Functions{ℓ₁}{ℓ₂}{V} open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator.Properties open import Syntax.Function open import Type.Dependent open import Type.Dependent.Functions module _ (_⟶_ : Graph) where at-path-length : ∀{a} → length{_⟶_}(at{x = a}) ≡ 0 at-path-length = reflexivity(_≡_) edge-path-length : ∀{a b}{e : a ⟶ b} → length{_⟶_}(edge e) ≡ 1 edge-path-length = reflexivity(_≡_) join-path-length : ∀{a b c}{e₁ : a ⟶ b}{e₂ : b ⟶ c} → length{_⟶_}(join e₁ e₂) ≡ 2 join-path-length = reflexivity(_≡_) prepend-path-length : ∀{a b c}{e : a ⟶ b}{w : Walk(_⟶_) b c} → length(prepend e w) ≡ 𝐒(length w) prepend-path-length {w = at} = reflexivity(_≡_) prepend-path-length {w = prepend e w} = [≡]-with(𝐒) (prepend-path-length{e = e}{w = w}) [++]-identityᵣ : ∀{a b}{w : Walk(_⟶_) a b} → (w ++ at ≡ w) [++]-identityᵣ {w = at} = reflexivity(_≡_) [++]-identityᵣ {w = prepend x w} = [≡]-with(prepend x) ([++]-identityᵣ {w = w}) {-# REWRITE [++]-identityᵣ #-} [++]-path-length : ∀{a b c}{w₁ : Walk(_⟶_) a b}{w₂ : Walk(_⟶_) b c} → length(w₁ ++ w₂) ≡ length w₁ + length w₂ [++]-path-length {a} {.a} {.a} {at} {at} = reflexivity(_≡_) [++]-path-length {a} {.a} {c} {at} {prepend e w} = prepend-path-length {e = e}{w = w} [++]-path-length {a} {b} {c} {prepend e₁ w₁} {w₂} = [≡]-with(𝐒) ([++]-path-length {w₁ = w₁}{w₂ = w₂}) {-# REWRITE [++]-path-length #-} at-visits : ∀{v} → Visits(_⟶_) v (at{x = v}) at-visits = current edge-visits-left : ∀{a b}{e : a ⟶ b} → Visits(_⟶_) a (edge e) edge-visits-left = current edge-visits-right : ∀{a b}{e : a ⟶ b} → Visits(_⟶_) b (edge e) edge-visits-right = skip current join-visits-1 : ∀{a b c}{e₁ : a ⟶ b}{e₂ : b ⟶ c} → Visits(_⟶_) a (join e₁ e₂) join-visits-1 = current join-visits-2 : ∀{a b c}{e₁ : a ⟶ b}{e₂ : b ⟶ c} → Visits(_⟶_) b (join e₁ e₂) join-visits-2 = skip current join-visits-3 : ∀{a b c}{e₁ : a ⟶ b}{e₂ : b ⟶ c} → Visits(_⟶_) c (join e₁ e₂) join-visits-3 = skip (skip current) prepend-visitsᵣ-left : ∀{a b c}{e : a ⟶ b}{w : Walk(_⟶_) b c} → Visits(_⟶_) a (prepend e w) prepend-visitsᵣ-left = current prepend-visitsᵣ-right : ∀{v b c}{w : Walk(_⟶_) b c} → Visits(_⟶_) v w → ∀{a}{e : a ⟶ b} → Visits(_⟶_) v (prepend e w) prepend-visitsᵣ-right p = skip p prepend-visitsₗ : ∀{v a b c}{e : a ⟶ b}{w : Walk(_⟶_) b c} → Visits(_⟶_) v (prepend e w) → ((v ≡ a) ∨ Visits(_⟶_) v w) prepend-visitsₗ current = [∨]-introₗ(reflexivity(_≡_)) prepend-visitsₗ (skip p) = [∨]-introᵣ p [++]-visitsᵣ : ∀{v a b c}{w₁ : Walk(_⟶_) a b}{w₂ : Walk(_⟶_) b c} → (Visits(_⟶_) v w₁) ∨ (Visits(_⟶_) v w₂) → Visits(_⟶_) v (w₁ ++ w₂) [++]-visitsᵣ ([∨]-introₗ current) = current [++]-visitsᵣ {w₂ = w₂} ([∨]-introₗ (skip {rest = rest} p)) = skip ([++]-visitsᵣ {w₁ = rest}{w₂ = w₂} ([∨]-introₗ p)) [++]-visitsᵣ {w₁ = at} ([∨]-introᵣ p) = p [++]-visitsᵣ {w₁ = prepend x w₁} {w₂ = w₂} ([∨]-introᵣ p) = skip ([++]-visitsᵣ {w₁ = w₁}{w₂ = w₂} ([∨]-introᵣ p)) [++]-visitsₗ : ∀{v a b c}{w₁ : Walk(_⟶_) a b}{w₂ : Walk(_⟶_) b c} → (Visits(_⟶_) v w₁) ∨ (Visits(_⟶_) v w₂) ← Visits(_⟶_) v (w₁ ++ w₂) [++]-visitsₗ {v} {a} {.a} {.a} {at} {at} p = [∨]-introₗ p [++]-visitsₗ {v} {a} {.a} {c} {at} {prepend x w₂} p = [∨]-introᵣ p [++]-visitsₗ {v} {a} {b} {c} {prepend e w₁} {w₂} p with prepend-visitsₗ p [++]-visitsₗ {v} {a} {b} {c} {prepend e w₁} {w₂} p | [∨]-introₗ eq = [∨]-introₗ ([≡]-substitutionₗ eq (Visits.current {path = prepend e w₁})) [++]-visitsₗ {v} {a} {b} {c} {prepend e w₁} {w₂} _ | [∨]-introᵣ p = Either.mapLeft skip ([++]-visitsₗ {w₁ = w₁} {w₂ = w₂} p)
{ "alphanum_fraction": 0.556745182, "avg_line_length": 47.2247191011, "ext": "agda", "hexsha": "6c866e8121e01fc2a88d2bf508ace59b87d6c83c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Graph/Walk/Functions/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Graph/Walk/Functions/Proofs.agda", "max_line_length": 156, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Graph/Walk/Functions/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1843, "size": 4203 }
module BadTermination where data N : Set where zero : N suc : N -> N postulate inf : N data D : N -> Set where d₁ : D (suc inf) d₂ : D inf f : (n : N) -> D n -> N f .inf d₂ = zero f .(suc inf) d₁ = f inf d₂
{ "alphanum_fraction": 0.5307017544, "avg_line_length": 12.6666666667, "ext": "agda", "hexsha": "9856292fb9fe30d0f77e9ee85b30dde5db5ad876", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/fail/BadTermination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/fail/BadTermination.agda", "max_line_length": 27, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/BadTermination.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 94, "size": 228 }
{-# OPTIONS --cumulativity #-} postulate F : (X : Set) → X → Set X : Set₁ a : X shouldfail : F _ a
{ "alphanum_fraction": 0.5277777778, "avg_line_length": 13.5, "ext": "agda", "hexsha": "32d62e9ff80b06ca7f2b8d865be0f8b328341a4a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Cumulativity-bad-meta-solution.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Cumulativity-bad-meta-solution.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Cumulativity-bad-meta-solution.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 108 }
{-# OPTIONS --without-K #-} open import M-types.Base module M-types.Coalg.Core (A : Ty ℓ) (B : A → Ty ℓ) where P : Ty ℓ → Ty ℓ P X = ∑[ a ∈ A ] (B a → X) P-Fun : {X Y : Ty ℓ} → (X → Y) → (P X → P Y) P-Fun f = λ (a , d) → (a , f ∘ d) P-SpanRel : {X : Ty ℓ} → SpanRel X → SpanRel (P X) P-SpanRel {X} ∼ = (P (ty ∼) , P-Fun (ρ₀ ∼) , P-Fun (ρ₁ ∼)) P-SpanRelMor : {X : Ty ℓ} {∼ ≈ : SpanRel X} → SpanRelMor ∼ ≈ → SpanRelMor (P-SpanRel ∼) (P-SpanRel ≈) P-SpanRelMor {X} {∼} {≈} f = ( P-Fun (fun f) , ap P-Fun (com₀ f) , ap P-Fun (com₁ f) ) P-DepRel : {X : Ty ℓ} → DepRel X → DepRel (P X) P-DepRel {X} ∼ = λ (a₀ , d₀) → λ (a₁ , d₁) → ∑[ p ∈ a₀ ≡ a₁ ] ∏[ b₀ ∈ B a₀ ] d₀ b₀ [ ∼ ] d₁ (tra B p b₀) P-DepRelMor : {X : Ty ℓ} {∼ ≈ : DepRel X} → DepRelMor ∼ ≈ → DepRelMor (P-DepRel ∼) (P-DepRel ≈) P-DepRelMor {X} {∼} {≈} f = λ (a₀ , d₀) → λ (a₁ , d₁) → λ (p , e) → ( p , λ b₀ → f (d₀ b₀) (d₁ (tra B p b₀)) (e b₀) ) Coalg : Ty (ℓ-suc ℓ) Coalg = ∑[ ty ∈ Ty ℓ ] (ty → P ty) obs = pr₁ P-Coalg : Coalg → Coalg P-Coalg X = (P (ty X) , P-Fun (obs X)) CoalgMor : Coalg → Coalg → Ty ℓ CoalgMor X Y = ∑[ fun ∈ (ty X → ty Y) ] obs Y ∘ fun ≡ P-Fun fun ∘ obs X com = pr₁ P-CoalgMor : {X Y : Coalg} → CoalgMor X Y → CoalgMor (P-Coalg X) (P-Coalg Y) P-CoalgMor {X} {Y} f = ( P-Fun (fun f) , ap P-Fun (com f) )
{ "alphanum_fraction": 0.4028912634, "avg_line_length": 23.7462686567, "ext": "agda", "hexsha": "810375da88d8af6923783f2f70b8bd13154f84d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Coalg/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Coalg/Core.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Coalg/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 715, "size": 1591 }