Search is not available for this dataset
text
string | meta
dict |
---|---|
{- reported by Guillaume Brunerie on 2015-09-17 -}
{-# OPTIONS --rewriting #-}
data _==_ {A : Set} (a : A) : A → Set where
idp : a == a
{-# BUILTIN REWRITE _==_ #-}
postulate
A B : Set
f g : A → B
module M (x : A) where
postulate
rx : f x == g x
{-# REWRITE rx #-}
-- This shouldn't work
test : (y : A) → f y == g y
test y = idp
| {
"alphanum_fraction": 0.5211267606,
"avg_line_length": 16.1363636364,
"ext": "agda",
"hexsha": "123c0ad00c7eca54f9ad055ba6cb39860ce69eca",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1652.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1652.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1652.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 135,
"size": 355
} |
module NF {A : Set} where
open import Relation.Binary.PropositionalEquality
record Sing (a : A) : Set where
field
unpack : A
eq : unpack ≡ a
{-# INLINE Sing.unpack #-}
record NF (v : A) : Set where
field !! : Sing v
{-# INLINE NF.!! #-}
open NF {{...}}
open import Function.Reasoning
nf : (v : A){{nfv : NF v}} -> A
nf v = Sing.unpack (!! ∶ Sing v)
{-# INLINE nf #-}
nf≡ : {v : A}{{nfv : NF v}} -> nf v ≡ v
nf≡ = Sing.eq !! | {
"alphanum_fraction": 0.5550561798,
"avg_line_length": 16.4814814815,
"ext": "agda",
"hexsha": "0529ab1028f7dd656462f8a386b6e08e65d89895",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yanok/normalize-via-instances",
"max_forks_repo_path": "src/NF.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yanok/normalize-via-instances",
"max_issues_repo_path": "src/NF.agda",
"max_line_length": 49,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yanok/normalize-via-instances",
"max_stars_repo_path": "src/NF.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 148,
"size": 445
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Construction.Constant where
open import Level
open import Categories.Category
open import Categories.Category.Instance.One
open import Categories.Category.Product
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D : Category o ℓ e
const : (d : Category.Obj D) → Functor C D
const {D = D} d = record
{ F₀ = λ _ → d
; F₁ = λ _ → id
; identity = refl
; homomorphism = sym identity²
; F-resp-≈ = λ _ → refl
}
where open Category D
open Equiv
const! : (d : Category.Obj D) → Functor (One {0ℓ} {0ℓ} {0ℓ}) D
const! = const
constˡ : (c : Category.Obj C) → Functor D (Product C D)
constˡ c = const c ※ idF
constʳ : (c : Category.Obj C) → Functor D (Product D C)
constʳ c = idF ※ (const c)
constNat : ∀ {A B} → Category._⇒_ D A B → NaturalTransformation (const {D = D} {C = C} A) (const B)
constNat {D = D} f = ntHelper record
{ η = λ _ → f
; commute = λ _ → MR.id-comm D
}
| {
"alphanum_fraction": 0.6467065868,
"avg_line_length": 27.1860465116,
"ext": "agda",
"hexsha": "288d40ce30e85626b9fd10d6b73f5123bf9178e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Construction/Constant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Construction/Constant.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Construction/Constant.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 365,
"size": 1169
} |
module Structure.Relator.Equivalence where
import Lvl
open import Logic
open import Logic.Propositional
open import Structure.Relator.Properties
hiding (reflexivity ; symmetry ; transitivity)
open import Type
private variable ℓ₁ ℓ₂ : Lvl.Level
-- An equivalence relation is a reflexive, symmetric and transitive relation.
record Equivalence {T : Type{ℓ₁}} (_≡_ : T → T → Stmt{ℓ₂}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
instance constructor intro
field
instance ⦃ reflexivity ⦄ : Reflexivity (_≡_)
instance ⦃ symmetry ⦄ : Symmetry (_≡_)
instance ⦃ transitivity ⦄ : Transitivity (_≡_)
| {
"alphanum_fraction": 0.7215815486,
"avg_line_length": 31.9473684211,
"ext": "agda",
"hexsha": "7b138d80ed317ddc532ac511f7d6bdf50fb2b9d3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Equivalence.agda",
"max_line_length": 84,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 182,
"size": 607
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Exactness
open import homotopy.CofiberSequence
open import cohomology.Theory
{- Finite additivity is provable (and in a stronger form) without using
- the additivity axiom. We have
Cⁿ(X ∨ Y) == Cⁿ(X) × Cⁿ(Y)
- and over this path
- ∙ Cⁿ(winl) corresponds to fst : Cⁿ(X) × Cⁿ(Y) → Cⁿ(X),
- ∙ Cⁿ(winr) corresponds to snd : Cⁿ(X) × Cⁿ(Y) → Cⁿ(Y),
- ∙ Cⁿ(Wedge-rec winl* winr* wglue*) : Cⁿ(Z) → Cⁿ(X ∨ Y)
corresponds to Cⁿ(winl*) × Cⁿ(winr*).
- ∙ Cⁿ(f) : Cⁿ(X ∨ Y) → Cⁿ(Z)
corresponds to Cⁿ(projl ∘ f) + Cⁿ(projr ∘ f) : Cⁿ(X) × Cⁿ(Y) → Cⁿ(Z)
-}
module cohomology.Wedge {i} (CT : CohomologyTheory i)
(n : ℤ) (X Y : Ptd i) where
open import homotopy.WedgeCofiber X Y
open CohomologyTheory CT
open import cohomology.PtdMapSequence CT
private
abstract
βl : ∀ x → CEl-fmap n ⊙winl (CEl-fmap n (⊙projl X Y) x) == x
βl = CEl-fmap-inverse n ⊙winl (⊙projl X Y) λ _ → idp
βr : ∀ y → CEl-fmap n ⊙winr (CEl-fmap n (⊙projr X Y) y) == y
βr = CEl-fmap-inverse n ⊙winr (⊙projr X Y) λ _ → idp
C-projr-C-winl-is-exact : is-exact (C-fmap n (⊙projr X Y)) (C-fmap n ⊙winl)
C-projr-C-winl-is-exact = equiv-preserves'-exact
(C-comm-square n cfcod-winl-projr-comm-sqr)
(C-comm-square n $ comm-sqr λ _ → idp)
(snd (C-emap n CofWinl.⊙eq))
(C-isemap n (⊙idf _) (idf-is-equiv _))
(C-isemap n (⊙idf _) (idf-is-equiv _))
(C-exact n ⊙winl)
C-projl-C-winr-is-exact : is-exact (C-fmap n (⊙projl X Y)) (C-fmap n ⊙winr)
C-projl-C-winr-is-exact = equiv-preserves'-exact
(C-comm-square n cfcod-winr-projl-comm-sqr)
(C-comm-square n $ comm-sqr λ _ → idp)
(snd (C-emap n CofWinr.⊙eq))
(C-isemap n (⊙idf _) (idf-is-equiv _))
(C-isemap n (⊙idf _) (idf-is-equiv _))
(C-exact n ⊙winr)
import groups.ProductRepr
(C-fmap n (⊙projl X Y)) (C-fmap n (⊙projr X Y))
(C-fmap n ⊙winl) (C-fmap n ⊙winr) βl βr
C-projl-C-winr-is-exact
C-projr-C-winl-is-exact as PR
C-Wedge : C n (X ⊙∨ Y) ≃ᴳ C n X ×ᴳ C n Y
C-Wedge = PR.iso
{-
⊙Wedge-rec-over : {Z : Ptd i} (winl* : X ⊙→ Z) (winr* : Y ⊙→ Z)
→ CF-hom n (⊙Wedge-rec winl* winr*)
== ×ᴳ-fanout (CF-hom n winl*) (CF-hom n (winr*))
[ (λ K → C n Z →ᴳ K) ↓ path ]
⊙Wedge-rec-over winl* winr* = codomain-over-iso $
codomain-over-equiv (CF n R.⊙f) _
▹ ap2 (λ f g z → (f z , g z))
(ap GroupHom.f $ ! (CF-comp n R.⊙f ⊙winl) ∙ ap (CF-hom n) R.⊙winl-β)
(ap GroupHom.f $ ! (CF-comp n R.⊙f ⊙winr) ∙ ap (CF-hom n) R.⊙winr-β)
where
module R = ⊙WedgeRec winl* winr*
Wedge-hom-η : {Z : Ptd i} (φ : C n (⊙Wedge X Y) →ᴳ C n Z)
→ φ == ×ᴳ-fanin (C-is-abelian n _) (φ ∘ᴳ CF-hom n (⊙projl X Y))
(φ ∘ᴳ CF-hom n (⊙projr X Y))
[ (λ G → G →ᴳ C n Z) ↓ path ]
Wedge-hom-η φ =
lemma (C-is-abelian n _) (C-is-abelian n _) inl-over inr-over
where
lemma : {G H K L : Group i}
(aG : is-abelian G) (aL : is-abelian L) {p : G == H ×ᴳ K}
{φ : H →ᴳ G} {ψ : K →ᴳ G} {χ : G →ᴳ L}
→ φ == ×ᴳ-inl [ (λ J → H →ᴳ J) ↓ p ]
→ ψ == ×ᴳ-inr {G = H} [ (λ J → K →ᴳ J) ↓ p ]
→ χ == ×ᴳ-fanin aL (χ ∘ᴳ φ) (χ ∘ᴳ ψ) [ (λ J → J →ᴳ L) ↓ p ]
lemma {H = H} {K = K} aG aL {p = idp} {χ = χ} idp idp =
ap (λ α → χ ∘ᴳ α) (×ᴳ-fanin-η H K aG)
∙ ! (×ᴳ-fanin-pre∘ aG aL χ (×ᴳ-inl {G = H}) (×ᴳ-inr {G = H}))
Wedge-in-over : {Z : Ptd i} (f : Z ⊙→ ⊙Wedge X Y)
→ CF-hom n f
== ×ᴳ-fanin (C-is-abelian n _) (CF-hom n (⊙projl X Y ⊙∘ f))
(CF-hom n (⊙projr X Y ⊙∘ f))
[ (λ G → G →ᴳ C n Z) ↓ path ]
Wedge-in-over f =
Wedge-hom-η (CF-hom n f)
▹ ap2 (×ᴳ-fanin (C-is-abelian n _))
(! (CF-comp n (⊙projl X Y) f))
(! (CF-comp n (⊙projr X Y) f))
-}
| {
"alphanum_fraction": 0.5125383828,
"avg_line_length": 36.8679245283,
"ext": "agda",
"hexsha": "b77974f2c3b92a391977860d36f45a34192d30a5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Wedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Wedge.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1796,
"size": 3908
} |
-- Test case extracted from The Agda standard library
-- Properties related to Any
{-# OPTIONS --show-implicit #-}
module ProjectionNotNormalized where
open import Common.Level renaming (lsuc to suc)
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Carrier → Carrier → Set ℓ
refl : ∀ {x} → x ≈ x
open import Common.Equality
setoid : ∀ {a} → Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = _≡_
; refl = refl
}
infixr 4 _,_
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃ = Σ _
pmap : ∀ {a b p q}
{A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
pmap f g (x , y) = (f x , g y)
data List {a} (A : Set a) : Set a where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
-- Any P xs means that at least one element in xs satisfies P.
data Any {a p} {A : Set a}
(P : A → Set p) : List A → Set (a ⊔ p) where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)
-- Map.
map : ∀ {a p q} {A : Set a} {P : A → Set p} → {Q : A → Set q} →
(∀ {x} → P x → Q x) → ∀ {x} → Any P x → Any Q x
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
------------------------------------------------------------------------
-- List membership and some related definitions
module Membership {c ℓ : Level} (S : Setoid c ℓ) where
open module S = Setoid S using (_≈_) renaming (Carrier to A)
-- List membership.
infix 4 _∈_
_∈_ : A → List A → Set _
x ∈ xs = Any (_≈_ x) xs
-- Finds an element satisfying the predicate.
find : ∀ {p} {P : A → Set p} {xs} →
Any P xs → ∃ λ x → Σ (x ∈ xs) λ _ → P x
find (here px) = (_ , here S.refl , px)
find (there pxs) = pmap (λ x → x) (pmap there (λ x → x)) (find pxs)
lose : ∀ {p} {P : A → Set p} {x xs} →
(resp : ∀ {x y} → x ≈ y → P x → P y) →
x ∈ xs → P x → Any P xs
lose resp x∈xs px = map (λ eq → resp eq px) x∈xs
-- The code above instantiated (and slightly changed) for
-- propositional equality, along with some additional definitions.
open module M {a} {A : Set a} = Membership (setoid A)
hiding (lose)
lose : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} →
x ∈ xs → P x → Any P xs
lose {P = P} = M.lose (subst P)
------------------------------------------------------------------------
-- Some lemmas related to map, find and lose
-- Lemmas relating map and find.
find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q}
{xs : List A} (p : Any P xs) (f : ∀ {x} → P x → Q x) →
find (map f p) ≡ pmap (λ x → x) (pmap (λ x → x) f) (find p)
find∘map (here p) f = refl
find∘map (there p) f rewrite find∘map p f = refl
-- find satisfies a simple equality when the predicate is a
-- propositional equality.
find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) →
find x∈xs ≡ (x , x∈xs , refl)
find-∈ (here refl) = refl
find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl
-- find and lose are inverses (more or less).
{-
find∘lose : ∀ {a p} {A : Set a} (P : A → Set p)
{x : {!!}} {xs : List {!!}}
(x∈xs : x ∈ xs) (pp : P x) →
find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp)
find∘lose P x∈xs p = {!!}
-}
find∘lose : ∀ {a p} {A : Set a} (P : A → Set p)
{x : _} {xs : _}
(x∈xs : x ∈ xs) (pp : P x) →
find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp)
find∘lose P x∈xs p
rewrite find∘map x∈xs (λ y → subst P y p)
| find-∈ x∈xs
= refl
{- Problem WAS:
applySection
new = ProjectionNotNormalized.Membership.S
ptel = EmptyTel
old = ProjectionNotNormalized.Setoid
ts = [[]r{Var 2 []},[]r{Var 1 []},[]r(Var 0 [])]
S.refl : {c ℓ : Level} (S : Setoid c ℓ) {x : Setoid.Carrier S} →
(S Setoid.≈ x) x
is projection like in argument 2 for type ProjectionNotNormalized.Setoid
A : {c ℓ : Level} (S : Setoid c ℓ) → Set c
is projection like in argument 2 for type ProjectionNotNormalized.Setoid
_≈_ : {c ℓ : Level} (S : Setoid c ℓ) →
Setoid.Carrier S → Setoid.Carrier S → Set ℓ
is projection like in argument 2 for type ProjectionNotNormalized.Setoid
applySection
new = ProjectionNotNormalized.M
ptel = ExtendTel []r{El {getSort = Type (Max [Plus 0 (MetaLevel _224 [])]), unEl = MetaV _225 []}} (Abs "a" ExtendTel []r{El {getSort = Type (Max [Plus 1 (NeutralLevel (Var 0 []))]), unEl = Sort (Type (Max [Plus 0 (NeutralLevel (Var 0 []))]))}} (Abs "A" EmptyTel))
old = ProjectionNotNormalized.Membership
ts = [[]r{Var 1 []},[]r{Var 1 []},[]r(Def ProjectionNotNormalized.setoid [Apply []r{Var 1 []},Apply []r(Var 0 [])])]
conApp: constructor ProjectionNotNormalized.recCon-NOT-PRINTED with fields [ProjectionNotNormalized.Setoid.Carrier,ProjectionNotNormalized.Setoid._≈_,ProjectionNotNormalized.Setoid.refl] projected by ProjectionNotNormalized.Membership.S.Carrier
An internal error has occurred. Please report this as a bug.
Location of the error: src/full/Agda/TypeChecking/Substitute.hs:82
-}
| {
"alphanum_fraction": 0.5426136364,
"avg_line_length": 32.7950310559,
"ext": "agda",
"hexsha": "f30f292ca62be3f55bd6a56d296a4d8e04f6568c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/ProjectionNotNormalized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/ProjectionNotNormalized.agda",
"max_line_length": 264,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/ProjectionNotNormalized.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 1921,
"size": 5280
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types.EpochIndep
open import Optics.All
open import Util.ByteString
open import Util.Encode
open import Util.Hash
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
-- This module postulates a collision-resistant cryptographic hash
-- function (we call it sha256 for concreteness, but it could be any
-- collision-resistant cryptographic hash function), and defines hash
-- functions used in (an earlier version of) LibraBFT, properties
-- about it, and how Votes and Blocks are signed.
module LibraBFT.ImplShared.Util.Crypto where
-- Note that this is an abstraction of a hash function. It could be any such hash function, not
-- necessarily sha256. We just call it sha256 for "concreteness", to remind ourselves it's
-- modeling such a function.
postulate -- valid assumption (hash function)
sha256 : BitString → Hash
-- For two values x and y, if their hashes are equal, then either there is a hash collision, or x
-- and y are equal.
sha256-cr : ∀{x y} → sha256 x ≡ sha256 y → Collision sha256 x y ⊎ x ≡ y
sha256-cr {x} {y} hyp
with x ≟BitString y
...| no col = inj₁ (col , hyp)
...| yes refl = inj₂ refl
open WithCryptoHash sha256 sha256-cr
-- We do not yet have sufficient support to model precisely the hashing used in the Haskell code,
-- so it is better that we postulate its intended properties to ensure proofs have the desired
-- properties available. Note that a simpler injectivity property such as
--
-- hashBD-inj' : ∀ {bd1} {bd2}
-- → hashBD bd1 ≡ hashBD bd2
-- → NonInjective-≡ sha256
-- ⊎ bd1 ≡L bd2
--
-- does *not* hold because the input to the hash function used in hashBD does *not* include all
-- components of the BlockData being hashed.
-- TODO-2: Similarly express other hashing functions and their intended injectivity properties where
-- the Agda implementation does not accurately reflect the Haskell implementation.
-- TODO-2: Enable support for the hashS function we use in the Haskell code, which hashes tuples
-- of serializable types), and then define hashBD using this and prove that it ensures hashBD-inj.
-- Note also the TODO below related to HashTags.
record _BlockDataInjectivityProps_ (bd1 bd2 : BlockData) : Set where
constructor mkBdInjProps
field
bdInjEpoch : bd1 ≡L bd2 at bdEpoch
bdInjRound : bd1 ≡L bd2 at bdRound
bdInjVD : bd1 ≡L bd2 at (bdQuorumCert ∙ qcVoteData)
bdInjLI : bd1 ≡L bd2 at (bdQuorumCert ∙ qcSignedLedgerInfo ∙ liwsLedgerInfo)
bdInjBTNil : bd1 ^∙ bdBlockType ≡ NilBlock → bd2 ^∙ bdBlockType ≡ NilBlock
bdInjBTGen : bd1 ^∙ bdBlockType ≡ Genesis → bd2 ^∙ bdBlockType ≡ Genesis
bdInjBTProp : ∀ {tx}{auth} → bd1 ^∙ bdBlockType ≡ Proposal tx auth
→ bd1 ^∙ bdBlockType ≡ bd2 ^∙ bdBlockType
open _BlockDataInjectivityProps_
sameBlockData⇒≈ : ∀ {b1 b2}
→ b1 ^∙ bId ≡ b2 ^∙ bId
→ (b1 ^∙ bBlockData) BlockDataInjectivityProps (b2 ^∙ bBlockData)
→ b1 ≈Block b2
sameBlockData⇒≈ {b1} {b2} refl (mkBdInjProps refl refl refl refl nil gen prop)
with b1 ^∙ bBlockData ∙ bdBlockType
...| NilBlock rewrite nil refl = refl
...| Genesis rewrite gen refl = refl
...| Proposal tx auth rewrite prop refl = refl
BSL : Set
BSL = List ByteString
_≟-BSL_ : ∀ (bsl1 bsl2 : List ByteString) → Dec (bsl1 ≡ bsl2)
_≟-BSL_ = List-≡-dec _≟ByteString_
hashBSL = sha256 ∘ bs-concat
postulate -- TODO-2: implement after adding support for "HashTag" (see below)
blockData-bsl : BlockData → List ByteString
hashBD : BlockData → HashValue
hashBD = hashBSL ∘ blockData-bsl
Injective-BlockData : Set
Injective-BlockData = Injective-int _BlockDataInjectivityProps_ hashBSL blockData-bsl blockData-bsl
postulate -- TODO-1: prove it using bs-concat-inj
hashBD-inj : Injective-BlockData
hashBlock : Block → HashValue
hashBlock = hashBD ∘ (_^∙ bBlockData)
blockInfoBSList : BlockInfo → List ByteString
blockInfoBSList (BlockInfo∙new epoch round id execStId ver mes) =
encode epoch ∷ encode round ∷ encode id ∷ encode execStId ∷ encode ver ∷ encode mes ∷ []
hashBI : BlockInfo → HashValue
hashBI = sha256 ∘ bs-concat ∘ blockInfoBSList
hashBI-inj : ∀ {bi1 bi2} → hashBI bi1 ≡ hashBI bi2 → NonInjective-≡ sha256 ⊎ bi1 ≡ bi2
hashBI-inj {bi1} {bi2} hyp with sha256-cr hyp
...| inj₁ col = inj₁ (_ , col)
...| inj₂ res with bs-concat-inj (blockInfoBSList bi1) (blockInfoBSList bi2) res
...| final = inj₂ (BlockInfo-η (encode-inj (proj₁ (∷-injective final)))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective final)))))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective final)))))))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective final)))))))))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective final)))))))))))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective final))))))))))))))
voteDataHashList : VoteData → List Hash
voteDataHashList (VoteData∙new proposed parent) =
hProposed ∷ hParent ∷ []
where
hProposed = hashBI proposed
hParent = hashBI parent
hashVD : VoteData → HashValue
hashVD = hash-concat ∘ voteDataHashList
VoteData-≢-eid : ∀ {vd1 vd2 : VoteData}
→ vd1 ^∙ vdProposed ∙ biEpoch ≢ vd2 ^∙ vdProposed ∙ biEpoch
→ vd1 ≢ vd2
VoteData-≢-eid neq = λ x → neq (cong (_^∙ vdProposed ∙ biEpoch) x)
VoteData-hb : ∀ {vd1 vd2 : VoteData}
→ vd1 ^∙ vdProposed ∙ biEpoch ≢ vd2 ^∙ vdProposed ∙ biEpoch
→ hashVD vd1 ≡ hashVD vd2
→ NonInjective-≡ sha256
VoteData-hb {vd1} {vd2} neq hvd≡
with hash-concat-inj {voteDataHashList vd1} {voteDataHashList vd2} hvd≡
...| inj₁ hb = hb
...| inj₂ xxx
with cong head xxx
...| yyy
with cong tail xxx
...| yyy'
with cong head (just-injective yyy')
...| yyy''
with just-injective yyy | just-injective yyy''
...| zzz | zzz'
with hashBI-inj {vd1 ^∙ vdProposed} {vd2 ^∙ vdProposed} zzz |
hashBI-inj {vd1 ^∙ vdParent} {vd2 ^∙ vdParent} zzz'
...| inj₁ hb | _ = hb
...| inj₂ _ | inj₁ hb = hb
...| inj₂ aaa | inj₂ aaa' = ⊥-elim (VoteData-≢-eid {vd1} {vd2} neq (VoteData-η aaa aaa'))
hashVD-inj : ∀ {vd1 vd2} → hashVD vd1 ≡ hashVD vd2 → NonInjective-≡ sha256 ⊎ vd1 ≡ vd2
hashVD-inj {vd1} {vd2} prf
with hash-concat-inj {voteDataHashList vd1} {voteDataHashList vd2} prf
...| inj₁ hb = inj₁ hb
...| inj₂ vdLists≡
with hashBI-inj (proj₁ (∷-injective vdLists≡)) | hashBI-inj (proj₁ (∷-injective (proj₂ (∷-injective vdLists≡))))
...| inj₁ hb | _ = inj₁ hb
...| inj₂ _ | inj₁ hb = inj₁ hb
...| inj₂ prop≡ | inj₂ par≡ = inj₂ (VoteData-η prop≡ par≡)
-- The Haskell implementation includes "HashTag"s when hashing in order to ensure that it is not
-- possible (modulo hash collisions) for the encodings of two values of different types (e.g.,
-- Vote and Block) to yield the same bitstring and thus the same hash (and therefore potentially
-- the same signature, where hashes are signed). For example, the Haskell hashLI function is:
--
-- hashLI :: LedgerInfo -> HashValue
-- hashLI (LedgerInfo commitInfo (HashValue consensusDataHash)) =
-- hashS (HLI, biParts commitInfo, consensusDataHash)
--
-- Note the HashTag HLI, which is not yet reflected in the Agda implementation.
-- TODO-2: include HashTags in hash functions, consistent with the Haskell code.
--
-- As an aside, it is not clear whether these HashTags are necessary for all of the "inner"
-- hashes. They are needed to ensure that, for example, a dishonest peer cannot notice that the
-- bits signed for a Vote happen to decode to a valid Block, and therefore take a Vote signature
-- and use it to masquerade as a Block signture. However, the implementation does include
-- HashTags at each level, so we should too unless and until that changes.
hashLI : LedgerInfo → HashValue
hashLI (LedgerInfo∙new commitInfo consensusDataHash) =
hash-concat (hashBI commitInfo ∷ consensusDataHash ∷ [])
hashLI-inj : ∀ {li1 li2} → hashLI li1 ≡ hashLI li2 → NonInjective-≡ sha256 ⊎ li1 ≡ li2
hashLI-inj {LedgerInfo∙new ci1 cd1} {LedgerInfo∙new ci2 cd2} prf
with hash-concat-inj {hashBI ci1 ∷ cd1 ∷ []} {hashBI ci2 ∷ cd2 ∷ []} prf
...| inj₁ hb = inj₁ hb
...| inj₂ li1≡li2
with ∷-injective li1≡li2
...| ci≡ , rest≡
with ∷-injective rest≡
...| cdh≡ , _
with hashBI-inj ci≡
...| inj₁ hb = inj₁ hb
...| inj₂ cis≡
= inj₂ (LedgerInfo-η cis≡ cdh≡)
record Ledger2WaypointConverterInjectivityProps (l1 l2 : Ledger2WaypointConverter) : Set where
{- TODO-2 : implement Ledger2WaypointConverterInjectivityProps
field
l2wcInjEpoch : ?
l2wcInjRootHash : ?
l2wcInjVersion : ?
--timestamp
l2wcInjNextEpochState : ?
-}
postulate -- TODO-2: prove after defining Ledger2WaypointConverterInjectivityProps
hashL2WC : Ledger2WaypointConverter → HashValue
hashL2WC-inj : ∀ {l1 l2}
→ hashL2WC l1 ≡ hashL2WC l2
→ NonInjective-≡ sha256 ⊎ Ledger2WaypointConverterInjectivityProps l1 l2
constructLI : Vote → LedgerInfo
constructLI v = LedgerInfo∙new (_liCommitInfo (_vLedgerInfo v)) (hashVD (_vVoteData v))
hashVote : Vote → HashValue
hashVote = hashLI ∘ constructLI
hashVote-inj1 : ∀ {v1 v2} → hashVote v1 ≡ hashVote v2
→ NonInjective-≡ sha256 ⊎ _vVoteData v1 ≡ _vVoteData v2
hashVote-inj1 {v1} {v2} hyp with hashLI-inj {constructLI v1} {constructLI v2} hyp
...| inj₁ hb = inj₁ hb
...| inj₂ ok = hashVD-inj {_vVoteData v1} {_vVoteData v2} (cong _liConsensusDataHash ok)
-- A vote is always signed; as seen by the 'Unit'
-- in the definition of Signed.
instance
sig-Vote : WithSig Vote
sig-Vote = record
{ Signed = λ _ → Unit
; Signed-pi = λ _ _ _ → Unit-pi
; isSigned? = λ _ → yes unit
; signature = λ v _ → _vSignature v
; signableFields = encodeH ∘ hashVote
}
sameSig⇒sameVoteData : ∀ {v1 v2 : Vote} {pk}
→ WithVerSig pk v1
→ WithVerSig pk v2
→ v1 ^∙ vSignature ≡ v2 ^∙ vSignature
→ NonInjective-≡ sha256 ⊎ v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData
sameSig⇒sameVoteData {v1} {v2} wvs1 wvs2 refl
with verify-bs-inj (verified wvs1) (verified wvs2)
-- The signable fields of the votes must be the same (we do not model signature collisions)
...| bs≡
-- Therefore the LedgerInfo is the same for the new vote as for the previous vote
= sym <⊎$> (hashVote-inj1 {v1} {v2} (sameBS⇒sameHash bs≡))
-- Captures a proof that a vote was cast by α by recording that 'verify' returns true.
VoteSigVerifies : PK → Vote → Set
VoteSigVerifies pk v = T (verify (signableFields ⦃ sig-Vote ⦄ v) (_vSignature v) pk)
Signed-pi-Blk : (b : Block)
→ (is1 is2 : (Is-just ∘ _bSignature) b)
→ is1 ≡ is2
Signed-pi-Blk (Block∙new _ _ .(just _)) (just _) (just _) = cong just refl
-- A Block might carry a signature
instance
sig-Block : WithSig Block
sig-Block = record
{ Signed = Is-just ∘ _bSignature
; Signed-pi = Signed-pi-Blk
; isSigned? = λ b → Maybe-Any-dec (λ _ → yes tt) (b ^∙ bSignature)
; signature = λ { _ prf → to-witness prf }
; signableFields = λ b → concat (encodeH (_bId b) ∷ encode (b ^∙ bBlockData) ∷ [])
}
| {
"alphanum_fraction": 0.6431879113,
"avg_line_length": 44.76,
"ext": "agda",
"hexsha": "bfdb64ffc7bb8e1de44a719ec8f52c2ac8e8d909",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/ImplShared/Util/Crypto.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/ImplShared/Util/Crypto.agda",
"max_line_length": 184,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/ImplShared/Util/Crypto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3972,
"size": 12309
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pullback.Properties {o ℓ e} (C : Category o ℓ e) where
open import Function using (_$_)
open import Categories.Category.BinaryProducts C
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C hiding (up-to-iso)
open import Categories.Object.Product C hiding (up-to-iso)
open import Categories.Object.Terminal C hiding (up-to-iso)
open import Categories.Morphism C
open import Categories.Morphism.Reasoning C
open import Categories.Category.Complete.Finitely using (FinitelyComplete)
open import Data.Product using (∃; _,_)
private
open Category C
variable
X Y Z : Obj
f g h i : X ⇒ Y
open HomReasoning
open Equiv
-- pullbacks of a monomorphism along itself give us the identity arrow.
pullback-self-mono : Mono f → IsPullback id id f f
pullback-self-mono mono = record
{ commute = refl
; universal = λ {X} {h₁} {h₂} eq → h₁
; unique = λ id∘i≈h₁ _ → ⟺ identityˡ ○ id∘i≈h₁
; p₁∘universal≈h₁ = identityˡ
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → identityˡ ○ mono h₁ h₂ eq
}
-- pullback from a terminal object is the same as a product
module _ (t : Terminal) where
open Terminal t
pullback-⊤⇒product : Pullback (! {X}) (! {Y}) → Product X Y
pullback-⊤⇒product p = record
{ A×B = P
; π₁ = p₁
; π₂ = p₂
; ⟨_,_⟩ = λ f g → universal (!-unique₂ {f = ! ∘ f} {g = ! ∘ g})
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
product⇒pullback-⊤ : Product X Y → Pullback (! {X}) (! {Y})
product⇒pullback-⊤ p = record
{ p₁ = π₁
; p₂ = π₂
; isPullback = record
{ commute = !-unique₂
; universal = λ {_ f g} _ → ⟨ f , g ⟩
; unique = λ eq eq′ → ⟺ (unique eq eq′)
; p₁∘universal≈h₁ = project₁
; p₂∘universal≈h₂ = project₂
}
}
where open Product p
-- pullbacks respect _≈_
module _ (p : Pullback f g) where
open Pullback p
pullback-resp-≈ : f ≈ h → g ≈ i → Pullback h i
pullback-resp-≈ eq eq′ = record
{ p₁ = p₁
; p₂ = p₂
; isPullback = record
{ commute = ∘-resp-≈ˡ (⟺ eq) ○ commute ○ ∘-resp-≈ˡ eq′
; universal = λ eq″ → universal (∘-resp-≈ˡ eq ○ eq″ ○ ∘-resp-≈ˡ (⟺ eq′))
; unique = unique
; p₁∘universal≈h₁ = p₁∘universal≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂
}
}
-- Some facts about pulling back along identity
module _ (p : Pullback id f) where
open Pullback p
-- This is a more subtle way of saying that 'p₂ ≈ id', without involving heterogenous equality.
pullback-identity : universal id-comm-sym ∘ p₂ ≈ id
pullback-identity = begin
universal Basic.id-comm-sym ∘ p₂ ≈⟨ unique ( pullˡ p₁∘universal≈h₁ ) (pullˡ p₂∘universal≈h₂) ⟩
universal eq ≈⟨ universal-resp-≈ (⟺ commute ○ identityˡ) identityˡ ⟩
universal commute ≈˘⟨ Pullback.id-unique p ⟩
id ∎
where
eq : id ∘ f ∘ p₂ ≈ f ∘ id ∘ p₂
eq = begin
(id ∘ f ∘ p₂) ≈⟨ elimˡ Equiv.refl ⟩
(f ∘ p₂) ≈˘⟨ refl⟩∘⟨ identityˡ ⟩
(f ∘ id ∘ p₂) ∎
-- pullbacks in Cartesian categories create equalizers
module _ (pullbacks : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g)
(cartesian : Cartesian) where
open Cartesian cartesian
open BinaryProducts products using (⟨_,_⟩; π₁; π₂; ⟨⟩-cong₂; ⟨⟩∘; project₁; project₂)
pullback×cartesian⇒equalizer : Equalizer f g
pullback×cartesian⇒equalizer {f = f} {g = g} = record
{ arr = p.p₁
; isEqualizer = record
{ equality = equality
; equalize = λ {_ h} eq → p.universal $ begin
⟨ f , g ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ (identityˡ ○ eq) ⟩
⟨ id ∘ f ∘ h , id ∘ f ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ id , id ⟩ ∘ f ∘ h ∎
; universal = ⟺ p.p₁∘universal≈h₁
; unique = λ eq → p.unique (⟺ eq)
(⟺ (pullˡ eq′) ○ ⟺ (∘-resp-≈ʳ eq))
}
}
where p : Pullback ⟨ f , g ⟩ ⟨ id , id ⟩
p = pullbacks _ _
module p = Pullback p
eq : ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈ ⟨ p.p₂ , p.p₂ ⟩
eq = begin
⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ f , g ⟩ ∘ p.p₁ ≈⟨ p.commute ⟩
⟨ id , id ⟩ ∘ p.p₂ ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ p.p₂ , id ∘ p.p₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ p.p₂ , p.p₂ ⟩ ∎
eq′ : f ∘ p.p₁ ≈ p.p₂
eq′ = begin
f ∘ p.p₁ ≈˘⟨ project₁ ⟩
π₁ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈⟨ project₁ ⟩
p.p₂ ∎
equality : f ∘ p.p₁ ≈ g ∘ p.p₁
equality = begin
f ∘ p.p₁ ≈⟨ eq′ ⟩
p.p₂ ≈˘⟨ project₂ ⟩
π₂ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈˘⟨ refl⟩∘⟨ eq ⟩
π₂ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ project₂ ⟩
g ∘ p.p₁ ∎
-- all pullbacks and a terminal object make a category finitely complete
pullback-⊤⇒FinitelyComplete : (∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g) → Terminal → FinitelyComplete C
pullback-⊤⇒FinitelyComplete pullbacks ⊤ = record
{ cartesian = cartesian
; equalizer = λ _ _ → pullback×cartesian⇒equalizer pullbacks cartesian
}
where
open Category hiding (Obj)
open Pullback
open Terminal ⊤ hiding (⊤)
_×_ : (A B : Obj) → Pullback (IsTerminal.! ⊤-is-terminal) (IsTerminal.! ⊤-is-terminal)
A × B = pullbacks (IsTerminal.! ⊤-is-terminal) (IsTerminal.! ⊤-is-terminal)
cartesian = record
{ terminal = ⊤
; products = record
{ product = λ {A B} → record
{ A×B = P {A}{_}{B} (A × B)
; π₁ = p₁ (A × B)
; π₂ = p₂ (A × B)
; ⟨_,_⟩ = λ _ _ → universal (A × B) (!-unique₂)
; project₁ = p₁∘universal≈h₁ (A × B)
; project₂ = p₂∘universal≈h₂ (A × B)
; unique = λ eq₁ eq₂ → Equiv.sym C (unique (A × B) eq₁ eq₂)
}
}
}
-- extra properties of "up-to-iso"
module IsoPb {X Y Z} {f : X ⇒ Z} {g : Y ⇒ Z} (pull₀ pull₁ : Pullback f g) where
open Pullback using (P; p₁; p₂; p₁∘universal≈h₁; p₂∘universal≈h₂; commute; universal)
P₀≅P₁ : P pull₀ ≅ P pull₁
P₀≅P₁ = up-to-iso pull₀ pull₁
P₀⇒P₁ : P pull₀ ⇒ P pull₁
P₀⇒P₁ = _≅_.from P₀≅P₁
p₁-≈ : p₁ pull₁ ∘ P₀⇒P₁ ≈ p₁ pull₀
p₁-≈ = p₁∘universal≈h₁ pull₁ {eq = commute pull₀}
p₂-≈ : p₂ pull₁ ∘ P₀⇒P₁ ≈ p₂ pull₀
p₂-≈ = p₂∘universal≈h₂ pull₁ {eq = commute pull₀}
| {
"alphanum_fraction": 0.5178209215,
"avg_line_length": 35.9479166667,
"ext": "agda",
"hexsha": "2460328734a945ac0d117a47546868d6ff55ebcb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_line_length": 112,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 2602,
"size": 6902
} |
module Sandbox.Pred where
open import Data.Num
open import Data.Num.Properties
open import Data.Nat
open import Data.Fin using (Fin; suc; zero; #_)
open import Data.Vec
open import Relation.Nullary.Decidable using (True; fromWitness)
open import Relation.Binary.PropositionalEquality hiding ([_])
-- open import Relation.Binary
open ≡-Reasoning
data Term : ℕ → Set where
var : ∀ {n}
→ Fin n -- the index of this variable
→ Term n
_∔_ : ∀ {n} → Term n → Term n → Term n
data Pred : ℕ → Set where
_≣_ : ∀ {n} → Term n → Term n → Pred n
_⇒_ : ∀ {n} → Pred n → Pred n → Pred n
-- captures 1 free variable in the Pred
All : ∀ {n} → Pred (suc n) → Pred n
record Signature : Set₁ where
constructor signature
field
carrier : Set
_⊕_ : carrier → carrier → carrier
_≈_ : carrier → carrier → Set
open Signature
-- signatures
ℕ-sig : Signature
ℕ-sig = signature ℕ _+_ _≡_
Num-sig : (b d o : ℕ) → True (Surjective? b d o) → Signature
Num-sig b d o surj = signature (Num b d o) (_⊹_ {surj = surj}) _≋_
⟦_⟧Term : ∀ {n}
→ Term n
→ (sig : Signature)
→ let A = carrier sig in Vec A n
→ A
⟦ var x ⟧Term sig env = lookup x env
⟦ a ∔ b ⟧Term sig env = let (signature A _⊕_ _≈_) = sig in
(⟦ a ⟧Term sig env) ⊕ (⟦ b ⟧Term sig env)
⟦_⟧ : ∀ {n}
→ Pred n
→ (sig : Signature)
→ Vec (carrier sig) n
→ Set
⟦ p ≣ q ⟧ sig env = let (signature carrier _⊕_ _≈_) = sig in
⟦ p ⟧Term sig env ≈ ⟦ q ⟧Term sig env
⟦ p ⇒ q ⟧ sig env = ⟦ p ⟧ sig env → ⟦ q ⟧ sig env
⟦ All p ⟧ sig env = ∀ x → ⟦ p ⟧ sig (x ∷ env)
-- lemma for env
lookup-map : ∀ {i j} → {A : Set i} {B : Set j}
→ (f : A → B) →
∀ {n} → (xs : Vec A n) (i : Fin n)
→ lookup i (map f xs) ≡ f (lookup i xs)
lookup-map f [] ()
lookup-map f (x ∷ env) zero = refl
lookup-map f (x ∷ env) (suc i) = lookup-map f env i
toℕ-term-homo : ∀ {b d o}
→ {surj : True (Surjective? b d o)}
→ ∀ {n}
→ (t : Term n)
→ (env : Vec (Num b d o) n)
→ ⟦ t ⟧Term ℕ-sig (map toℕ env) ≡ toℕ (⟦ t ⟧Term (Num-sig b d o surj) env )
toℕ-term-homo (var x) env = lookup-map toℕ env x
toℕ-term-homo {b} {d} {o} {surj} (s ∔ t) env =
begin
⟦ s ∔ t ⟧Term ℕ-sig (map toℕ env)
≡⟨ cong₂ _+_ (toℕ-term-homo {surj = surj} s env) (toℕ-term-homo {surj = surj} t env) ⟩
toℕ (⟦ s ⟧Term _ env) + toℕ (⟦ t ⟧Term _ env)
≡⟨ sym (toℕ-⊹-homo (⟦ s ⟧Term _ env) (⟦ t ⟧Term _ env)) ⟩
toℕ (⟦ s ∔ t ⟧Term (Num-sig b d o surj) env)
∎
mutual
toℕ-pred-ℕ⇒Num : ∀ {b d o}
→ {surj : True (Surjective? b d o)}
→ ∀ {n}
→ (p : Pred n)
→ (env : Vec (Num b d o) n)
→ ⟦ p ⟧ ℕ-sig (map toℕ env)
→ ⟦ p ⟧ (Num-sig b d o surj) env
-- toℕ-pred-ℕ⇒Num (p ≣ q) env ⟦p≡q⟧ℕ = {! !}
toℕ-pred-ℕ⇒Num {b} {d} {o} {surj} (p ≣ q) env a =
-- a : ⟦ p ⟧Term ℕ-sig (ℕ-env) ≡ ⟦ q ⟧Term ℕ-sig (ℕ-env)
let p' = ⟦ p ⟧Term {! Num-sig b d o surj !} {! !} {! !}
temp = toℕ-injective p' {! !} a
in
{! toℕ-injective !}
toℕ-pred-ℕ⇒Num (p ⇒ q) env a = {! !}
toℕ-pred-ℕ⇒Num (All p) env a = {! !}
toℕ-pred-Num→ℕ : ∀ {b d o}
→ {surj : True (Surjective? b d o)}
→ ∀ {n}
→ (p : Pred n)
→ (env : Vec (Num b d o) n)
→ ⟦ p ⟧ (Num-sig b d o surj) env
→ ⟦ p ⟧ ℕ-sig (map toℕ env)
toℕ-pred-Num→ℕ (p ≣ q) env a = {! !}
toℕ-pred-Num→ℕ (p ⇒ q) env a = {! !}
toℕ-pred-Num→ℕ (All p) env a = {! !}
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
--
-- toℕ-term-homo : ∀ {b n}
-- → (t : Term n)
-- → (env : Vec (BijN b) n)
-- → ⟦ t ⟧Term ℕ-sig (map toℕ env) ≡ toℕ (⟦ t ⟧Term (BijN-sig b) env)
-- toℕ-term-homo (var i) env = ?
-- toℕ-term-homo {b} (t₁ ∔ t₂) env = ?
| {
"alphanum_fraction": 0.4759615385,
"avg_line_length": 28.8467153285,
"ext": "agda",
"hexsha": "622b3b8c74ebfff9a428ff71bd30d4204814fb7f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Sandbox/Pred.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Sandbox/Pred.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Sandbox/Pred.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1686,
"size": 3952
} |
{-# OPTIONS --show-implicit #-}
{-# OPTIONS --sized-types #-}
module Issue298 where
postulate
Size : Set
↑_ : Size → Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC ↑_ #-}
{-# BUILTIN SIZEINF ∞ #-}
data BTree : {i : Size} → Set where
leaf : ∀ {i} → BTree {↑ i}
node : ∀ {i} → BTree {i} → BTree {i} → BTree {↑ i}
recId : ∀ {i} → BTree {i} → BTree {i}
recId leaf = leaf
recId (node l r) = node (recId l) (recId r)
deepId : ∀ {i} → BTree {i} → BTree {i}
deepId leaf = leaf
deepId (node leaf leaf) = node leaf leaf
deepId (node leaf (node r1 r2)) = node leaf (node (deepId r1) (deepId r2))
deepId (node (node l1 l2) r) = node (node (deepId l1) (deepId l2)) (deepId r)
| {
"alphanum_fraction": 0.5720338983,
"avg_line_length": 24.4137931034,
"ext": "agda",
"hexsha": "0531ec487272e4a9fdb3098b3df9cb0ba20099fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/Issue298.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/Issue298.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue298.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 270,
"size": 708
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Reasoning facilities about morphism equivalences (not necessarily 'squares')
module Categories.Morphism.Reasoning {o ℓ e} (C : Category o ℓ e) where
-- some items are defined in sub-modules
open import Categories.Morphism.Reasoning.Core C public
open import Categories.Morphism.Reasoning.Iso C public
open Category C
open Definitions C
open HomReasoning
-- create a commutative square from an equivalence
toSquare : ∀ {A B} {f g : A ⇒ B} → f ≈ g → CommutativeSquare f id id g
toSquare {_} {_} {f} {g} f≈g = begin
id ∘ f ≈⟨ identityˡ ⟩
f ≈⟨ f≈g ⟩
g ≈˘⟨ identityʳ ⟩
g ∘ id ∎
| {
"alphanum_fraction": 0.6700434153,
"avg_line_length": 28.7916666667,
"ext": "agda",
"hexsha": "ab0538caf08aa8273588f2411394977232bea40b",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_line_length": 79,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 215,
"size": 691
} |
module Prelude where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
data _==_ {A : Set} (x : A) : A → Set where
refl : x == x
data Vec (A : Set) : Nat -> Set where
nil : Vec A 0
cons : forall {n} -> A -> Vec A n -> Vec A (suc n)
data List (A : Set) : Set where
nil : List A
cons : A -> List A -> List A
data Empty : Set where
data Not (A : Set) : Set where
is-absurd : (A -> Empty) -> Not A
data Dec (A : Set) : Set where
yes : A -> Dec A
no : Not A -> Dec A
| {
"alphanum_fraction": 0.5454545455,
"avg_line_length": 18.4642857143,
"ext": "agda",
"hexsha": "65d164ab9ffbc17b187a94b0cd57a39edf2c0364",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "carlostome/martin",
"max_forks_repo_path": "data/test-files/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "carlostome/martin",
"max_issues_repo_path": "data/test-files/Prelude.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "carlostome/martin",
"max_stars_repo_path": "data/test-files/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 185,
"size": 517
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Everything where
open import Cubical.Data.BinNat public
open import Cubical.Data.Bool public
open import Cubical.Data.Empty public
open import Cubical.Data.Fin public
open import Cubical.Data.Nat public
open import Cubical.Data.Int public renaming (_+_ to _+Int_ ; +-assoc to +Int-assoc; +-comm to +Int-comm)
open import Cubical.Data.Sum public
open import Cubical.Data.Prod public
open import Cubical.Data.Unit public
open import Cubical.Data.Sigma public
open import Cubical.Data.DiffInt public
open import Cubical.Data.Group public hiding (_≃_)
open import Cubical.Data.HomotopyGroup public
open import Cubical.Data.List public
open import Cubical.Data.Graph public
| {
"alphanum_fraction": 0.8049792531,
"avg_line_length": 38.0526315789,
"ext": "agda",
"hexsha": "a5fd548693227c98eeba26c6dd57482c089f104f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Data/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Data/Everything.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Data/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 176,
"size": 723
} |
{-
This second-order term syntax was created from the following second-order syntax description:
syntax Inception | IA
type
L : 0-ary
P : 0-ary
A : 0-ary
term
rec : L P -> A
inc : L.A P.A -> A
theory
(S) p : P a : P.A |> inc (l. rec (l, p[]), x. a[x]) = a[p[]]
(E) a : L.A |> k : L |- inc (l. a[l], x. rec(k, x)) = a[k]
(W) m : A a : P.A |> inc (l. m[], x. a[x]) = m[]
(A) p : (L,L).A a : (L,P).A b : P.A |> inc (l. inc (k. p[l, k], x. a[l,x]), y. b[y]) = inc (k. inc(l. p[l,k], y.b[y]), x. inc(l. a[l,x], y.b[y]))
-}
module Inception.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import Inception.Signature
private
variable
Γ Δ Π : Ctx
α : IAT
𝔛 : Familyₛ
-- Inductive term declaration
module IA:Terms (𝔛 : Familyₛ) where
data IA : Familyₛ where
var : ℐ ⇾̣ IA
mvar : 𝔛 α Π → Sub IA Π Γ → IA α Γ
rec : IA L Γ → IA P Γ → IA A Γ
inc : IA A (L ∙ Γ) → IA A (P ∙ Γ) → IA A Γ
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
IAᵃ : MetaAlg IA
IAᵃ = record
{ 𝑎𝑙𝑔 = λ where
(recₒ ⋮ a , b) → rec a b
(incₒ ⋮ a , b) → inc a b
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module IAᵃ = MetaAlg IAᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : IA ⇾̣ 𝒜
𝕊 : Sub IA Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (rec a b) = 𝑎𝑙𝑔 (recₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞 (inc a b) = 𝑎𝑙𝑔 (incₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ IAᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ IA α Γ) → 𝕤𝕖𝕞 (IAᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (recₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (incₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ IA ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : IA ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ IAᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : IA α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub IA Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (rec a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (inc a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
IA:Syn : Syntax
IA:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = IA:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open IA:Terms 𝔛 in record
{ ⊥ = IA ⋉ IAᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax IA:Syn public
open IA:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands IAᵃ public
open import SOAS.Metatheory IA:Syn public
| {
"alphanum_fraction": 0.5261418269,
"avg_line_length": 26.2047244094,
"ext": "agda",
"hexsha": "9e863180838ca5686963d0e0c6e75c57848b9ab4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Inception/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Inception/Syntax.agda",
"max_line_length": 163,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Inception/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2017,
"size": 3328
} |
-- The unit type; also used as proposition ``Truth''.
{-# OPTIONS --without-K --safe #-}
module Tools.Unit where
-- We reexport Agda's built-in unit type.
open import Agda.Builtin.Unit public using (⊤; tt)
open import Agda.Primitive
record ⊤′ : Setω where
instance constructor tt
| {
"alphanum_fraction": 0.7073170732,
"avg_line_length": 20.5,
"ext": "agda",
"hexsha": "7a8b7590c37575ee44f15cedde587c543fe82ef0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Tools/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Tools/Unit.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Tools/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 75,
"size": 287
} |
import Lvl
open import Structure.Category
open import Structure.Setoid
open import Type
module Structure.Category.Morphism.Transport
{ℓₒ ℓₘ ℓₑ : Lvl.Level}
(cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ})
where
import Functional.Dependent as Fn
import Function.Equals
open Function.Equals.Dependent
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_)
open import Relator.Equals.Proofs
import Structure.Category.Morphism.IdTransport as IdTransport
import Structure.Categorical.Names as Names
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Relator.Properties
open CategoryObject(cat)
open Category(category)
open Category.ArrowNotation(category)
open Morphism.OperModule ⦃ morphism-equiv ⦄ (\{x} → _∘_ {x})
open Morphism.IdModule ⦃ morphism-equiv ⦄ (\{x} → _∘_ {x})(id)
module _ {P : Object → Object} (p : ∀{x} → (x ⟶ P(x))) ⦃ isomorphism : ∀{x} → Isomorphism(p{x}) ⦄ where
private variable a b c : Object
transport : (a ≡ₑ b) → (P(a) ⟶ P(b))
transport ab = p ∘ IdTransport.transport(cat) ab ∘ inv(p)
| {
"alphanum_fraction": 0.7290431837,
"avg_line_length": 32.8055555556,
"ext": "agda",
"hexsha": "b96e7981bcddaa793fe4b338d287e89d38ca01c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Morphism/Transport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Morphism/Transport.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Morphism/Transport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 349,
"size": 1181
} |
module ModuleArityMismatch where
module M (A : Set) where
postulate
A : Set
module M′ = M A A
| {
"alphanum_fraction": 0.6699029126,
"avg_line_length": 11.4444444444,
"ext": "agda",
"hexsha": "65bba45d0a4466f9aada7393d98648dc075ab532",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ModuleArityMismatch.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ModuleArityMismatch.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ModuleArityMismatch.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 103
} |
module Prelude where
-- Function composition
_∘_ : ∀ {x y z : Set} -> (y -> z) -> (x -> y) -> (x -> z)
(f ∘ g) x = f (g x)
-- Product type
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
uncurry : ∀ {x y z : Set} -> (x -> y -> z) -> (x × y) -> z
uncurry f (a , b) = f a b
-- Lists
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
infixr 20 _::_
infixr 15 _++_
[_] : ∀ {A} -> A -> List A
[ x ] = x :: []
_++_ : ∀ {A} -> List A -> List A -> List A
[] ++ l = l
(x :: xs) ++ l = x :: (xs ++ l)
foldr : ∀ {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f b [] = b
foldr f b (x :: xs) = f x (foldr f b xs)
map : ∀ {A B} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
zip : ∀ {A B} -> List A -> List B -> List (A × B)
zip [] _ = []
zip _ [] = []
zip (x :: xs) (y :: ys) = (x , y) :: zip xs ys
| {
"alphanum_fraction": 0.3780359029,
"avg_line_length": 23.0975609756,
"ext": "agda",
"hexsha": "ff331ca03a3599d4529474279efda47f48e09a58",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z",
"max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "snowleopard/alga-proofs",
"max_forks_repo_path": "src/Prelude.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "snowleopard/alga-proofs",
"max_issues_repo_path": "src/Prelude.agda",
"max_line_length": 59,
"max_stars_count": 60,
"max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "snowleopard/alga-proofs",
"max_stars_repo_path": "src/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z",
"num_tokens": 377,
"size": 947
} |
module Issue49 where
module Dummy {A : Set1} where
postulate D : Set
T : Set
T = Dummy.D {Set}
T' : Set
T' = Dummy.D {A = Set} | {
"alphanum_fraction": 0.6183206107,
"avg_line_length": 13.1,
"ext": "agda",
"hexsha": "1c46b5174cd33b800fe2484ecffa04fc19065a62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue49.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue49.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue49.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 48,
"size": 131
} |
module NatCat where
open import Relation.Binary.PropositionalEquality
-- If you can show that a relation only ever has one inhabitant
-- you get the category laws for free
module
EasyCategory
(obj : Set)
(_⟶_ : obj → obj → Set)
(_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z)
(id : ∀ x → x ⟶ x)
(single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s)
where
idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r
idʳ x y r = single-inhabitant x y (r ∘ id y) r
idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r
idˡ x y r = single-inhabitant x y (id x ∘ r) r
∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t)
∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t))
open import Data.Nat
same : (x y : ℕ) (r s : x ≤ y) → r ≡ s
same .0 y z≤n z≤n = refl
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
≤-trans .0 y z z≤n s = z≤n
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
≤-refl : ∀ x → x ≤ x
≤-refl zero = z≤n
≤-refl (suc x) = s≤s (≤-refl x)
module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same
| {
"alphanum_fraction": 0.5008333333,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "7aada27ee452566e1de5dd8dd76591c9cbaf358e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fcfb45789f07778ac570e98629a6b767913425",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alexgracianoarj/detect-languages",
"max_forks_repo_path": "samples/Agda/NatCat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fcfb45789f07778ac570e98629a6b767913425",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alexgracianoarj/detect-languages",
"max_issues_repo_path": "samples/Agda/NatCat.agda",
"max_line_length": 96,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "89fcfb45789f07778ac570e98629a6b767913425",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alexgracianoarj/detect-languages",
"max_stars_repo_path": "samples/Agda/NatCat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-23T14:03:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-23T13:43:34.000Z",
"num_tokens": 607,
"size": 1200
} |
module Structure.Relator.Properties where
open import Functional
import Lvl
open import Lang.Instance
open import Logic
import Structure.Relator.Names as Names
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Lvl.Level
private variable T A B C D E : Type{ℓ}
-- Definition of a reflexive binary relation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record Reflexivity : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Reflexivity(_▫_)
reflexivity = inst-fn Reflexivity.proof
-- Definition of a transitive binary relation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record Transitivity : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Transitivity(_▫_)
transitivity = inst-fn Transitivity.proof
-- Definition of a antisymmetric binary relation
module _ {T : Type{ℓ₁}} (_▫₁_ : T → T → Stmt{ℓ₂}) (_▫₂_ : T → T → Stmt{ℓ₃}) where
record Antisymmetry : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where
constructor intro
field proof : Names.Antisymmetry(_▫₁_)(_▫₂_)
antisymmetry = inst-fn Antisymmetry.proof
-- Definition of a irreflexive binary relation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record Irreflexivity : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Irreflexivity(_▫_)
irreflexivity = inst-fn Irreflexivity.proof
-- Definition of a total binary relation.
-- Total in the sense that it, or its converse, holds.
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record ConverseTotal : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.ConverseTotal(_▫_)
converseTotal = inst-fn ConverseTotal.proof
-- Definition of a converse dichotomy.
-- It or its converse always holds, but never both at the same time.
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record ConverseDichotomy : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.ConverseDichotomy(_▫_)
dichotomy = inst-fn ConverseDichotomy.proof
module _ {T : Type{ℓ₁}} (_▫₁_ : T → T → Stmt{ℓ₂}) (_▫₂_ : T → T → Stmt{ℓ₃}) where
record ConverseTrichotomy : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where
constructor intro
field proof : Names.ConverseTrichotomy(_▫₁_)(_▫₂_)
trichotomy = inst-fn ConverseTrichotomy.proof
-- Definition of a converse binary operation for a binary operation
-- record Converse {T₁ T₂ : Type} (_▫₁_ : T₁ → T₂ → Stmt) (_▫₂_ : T₂ → T₁ → Stmt) : Stmt where
-- constructor intro
--
-- field
-- converseₗ : Names.ConversePattern (_▫₂_) (_▫₁_)
-- converseᵣ : Names.ConversePattern (_▫₁_) (_▫₂_)
-- open Converse ⦃ ... ⦄ public
-- {x : T₁}{y : T₂} → (x ▫₁ y) ↔ (y ▫₂ x)
-- Definition of a symmetric binary operation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record Symmetry : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Symmetry(_▫_)
symmetry = inst-fn Symmetry.proof
-- {x y : T} → (x ▫ y) → (y ▫ x)
-- Definition of an asymmetric binary operation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record Asymmetry : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Asymmetry(_▫_)
asymmetry = inst-fn Asymmetry.proof
-- {x y : T} → (x ▫ y) → ¬(y ▫ x)
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : A → B → Stmt{ℓ₂}) where
record _⊆₂_ : Stmt{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Subrelation(_▫₁_)(_▫₂_)
sub₂ = inst-fn _⊆₂_.proof
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : A → B → Stmt{ℓ₂}) where
_⊇₂_ = (_▫₂_) ⊆₂ (_▫₁_)
module _⊇₂_ inst = _⊆₂_ {_▫₁_ = _▫₂_}{_▫₂_ = _▫₁_} inst
super₂ = inst-fn _⊇₂_.proof
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : A → A → Stmt{ℓ₂}) where
record Subtransitivityₗ : Stmt{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Subtransitivityₗ(_▫₁_)(_▫₂_)
subtransitivityₗ = inst-fn Subtransitivityₗ.proof
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : B → B → Stmt{ℓ₂}) where
record Subtransitivityᵣ : Stmt{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Subtransitivityᵣ(_▫₁_)(_▫₂_)
subtransitivityᵣ = inst-fn Subtransitivityᵣ.proof
-- Definition of a cotransitive binary relation
module _ {T : Type{ℓ₁}} (_▫_ : T → T → Stmt{ℓ₂}) where
record CoTransitivity : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.CoTransitivity(_▫_)
cotransitivity = inst-fn CoTransitivity.proof
| {
"alphanum_fraction": 0.6658432517,
"avg_line_length": 37.7372881356,
"ext": "agda",
"hexsha": "ae363ec0dc0183c076a34ebc8cfc8607418a324c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Properties.agda",
"max_line_length": 94,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1748,
"size": 4453
} |
module Issue2486.ImportB where
open import Issue2486.Haskell
{-# FOREIGN GHC data BBool = BTrue | BFalse #-}
data BBool : Set where
BTrue BFalse : BBool
{-# COMPILE GHC BBool = data BBool ( BTrue | BFalse ) #-}
postulate BList : Set → Set
{-# FOREIGN GHC import MAlonzo.Code.Issue2486.Haskell (MyList) #-}
{-# COMPILE GHC BList = type MyList #-}
| {
"alphanum_fraction": 0.6960227273,
"avg_line_length": 25.1428571429,
"ext": "agda",
"hexsha": "b443d668840482c32c274b2dc4e5b410faba2044",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2486/ImportB.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2486/ImportB.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2486/ImportB.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 103,
"size": 352
} |
{-
This is mostly for convenience, when working with ideals
(which are defined for general rings) in a commutative ring.
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Ideal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.FinData
open import Cubical.Algebra.CommRing.Base
open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing)
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
IdealsIn : (R : CommRing ℓ) → Type _
IdealsIn R = IdealsInRing (CommRing→Ring R)
module _ (Ring@(R , str) : CommRing ℓ) where
open CommRingStr str
makeIdeal : (I : R → hProp ℓ)
→ (+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I)
→ (0r-closed : 0r ∈ I)
→ (·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I)
→ IdealsIn (R , str)
makeIdeal I +-closed 0r-closed ·-closedLeft = I ,
(record
{ +-closed = +-closed
; -closed = λ x∈I → subst-∈ I (useSolver _)
(·-closedLeft (- 1r) x∈I)
; 0r-closed = 0r-closed
; ·-closedLeft = ·-closedLeft
; ·-closedRight = λ r x∈I →
subst-∈ I
(·-comm r _)
(·-closedLeft r x∈I)
})
where useSolver : (x : R) → - 1r · x ≡ - x
useSolver = solve Ring
-- better?
module _ (R' : CommRing ℓ) where
private R = fst R'
open CommRingStr (snd R')
open Sum (CommRing→Ring R')
record isCommIdeal (I : ℙ R) : Type ℓ where
constructor
makeIsCommIdeal
field
+Closed : ∀ {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I
contains0 : 0r ∈ I
·Closed : ∀ {x : R} (r : R) → x ∈ I → r · x ∈ I
open isCommIdeal
isPropIsCommIdeal : (I : ℙ R) → isProp (isCommIdeal I)
+Closed (isPropIsCommIdeal I ici₁ ici₂ i) x∈I y∈I =
I _ .snd (ici₁ .+Closed x∈I y∈I) (ici₂ .+Closed x∈I y∈I) i
contains0 (isPropIsCommIdeal I ici₁ ici₂ i) = I 0r .snd (ici₁ .contains0) (ici₂ .contains0) i
·Closed (isPropIsCommIdeal I ici₁ ici₂ i) r x∈I =
I _ .snd (ici₁ .·Closed r x∈I) (ici₂ .·Closed r x∈I) i
CommIdeal : Type _
CommIdeal = Σ[ I ∈ ℙ R ] isCommIdeal I
∑Closed : (I : CommIdeal) {n : ℕ} (V : FinVec R n)
→ (∀ i → V i ∈ fst I) → ∑ V ∈ fst I
∑Closed I {n = zero} _ _ = I .snd .contains0
∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc))
| {
"alphanum_fraction": 0.5799621928,
"avg_line_length": 33.0625,
"ext": "agda",
"hexsha": "dce7bd56f4cca43a2747d912655f5048d80a8234",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_line_length": 94,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 930,
"size": 2645
} |
------------------------------------------------------------------------------
-- Equality reasoning on inductive PA
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module only re-export the preorder reasoning instanced on
-- the inductive PA propositional equality.
module PA.Inductive.Relation.Binary.EqReasoning where
open import PA.Inductive.Base
import Common.Relation.Binary.PreorderReasoning
open module ≡-Reasoning =
Common.Relation.Binary.PreorderReasoning _≡_ refl trans public
renaming ( _∼⟨_⟩_ to _≡⟨_⟩_ )
| {
"alphanum_fraction": 0.5432432432,
"avg_line_length": 35.2380952381,
"ext": "agda",
"hexsha": "93eecd0323b5929f069e2800dd645cec17e44f5d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/Relation/Binary/EqReasoning.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/Relation/Binary/EqReasoning.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/Relation/Binary/EqReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 144,
"size": 740
} |
------------------------------------------------------------------------
-- One can construct combinators which do not preserve equality
------------------------------------------------------------------------
module TotalParserCombinators.NotACongruence where
open import Codata.Musical.Notation
open import Data.Bool
open import Data.List
open import Function
open import Function.Equality
open import Function.Inverse as Inv
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary
open import TotalParserCombinators.Congruence using (_≅P_; _∷_)
open import TotalParserCombinators.Derivative
open import TotalParserCombinators.Laws
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics as S using (_∈_·_; _≅_)
-- It is easy to construct a combinator which does not preserve
-- equality. All it takes is to inspect the input combinator's
-- structure (or that of its index), and make some suitable decision
-- based on this information. Examples:
module Example₁ where
-- A combinator which removes ambiguity.
unambiguous : ∀ {Tok R xs} →
Parser Tok R xs → Parser Tok R (take 1 xs)
unambiguous {xs = xs} p =
token >>= (λ t → ♯ unambiguous (D t p))
∣ return⋆ (take 1 xs)
-- The following two parsers are (parser) equal.
p₁ : Parser Bool Bool (true ∷ (false ∷ []))
p₁ = return true ∣ return false
p₂ : Parser Bool Bool (false ∷ (true ∷ []))
p₂ = return false ∣ return true
equal : p₁ ≅P p₂
equal = AdditiveMonoid.commutative (return true) (return false)
-- However, unambiguous does not respect this equality.
unambiguous-is-not-a-congruence :
¬ (unambiguous p₁ ≅ unambiguous p₂)
unambiguous-is-not-a-congruence eq =
case Inverse.to eq ⟨$⟩ S.∣-right [] (S.∣-left S.return) of λ
{ (S.∣-right .[] (S.∣-left ()))
; (S.∣-right .[] (S.∣-right .([ false ]) ()))
; (S.∣-left []∈) → helper refl []∈
}
where
helper : ∀ {s} {f : Bool → List Bool}
{p : ∀ b → ∞ (Parser Bool Bool (f b))} →
s ≡ [] →
¬ (true ∈ token >>= p · s)
helper () (S._>>=_ S.token _)
module Example₂ where
-- A combinator which returns true (without consuming input) if its
-- argument is "fail", and false otherwise.
is-fail-bag : ∀ {Tok R xs} → Parser Tok R xs → List Bool
is-fail-bag fail = [ true ]
is-fail-bag _ = [ false ]
is-fail : ∀ {Tok R xs}
(p : Parser Tok R xs) → Parser Tok Bool (is-fail-bag p)
is-fail fail = return true
is-fail (return x) = return false
is-fail token = return false
is-fail (p₁ ∣ p₂) = return false
is-fail (f <$> p) = return false
is-fail (p₁ ⊛ p₂) = return false
is-fail (p₁ >>= p₂) = return false
is-fail (nonempty p) = return false
is-fail (cast xs₁≈xs₂ p) = return false
-- The following parsers are equal, but is-fail treats them
-- differently.
p₁ : Parser Bool Bool []
p₁ = fail
p₂ : Parser Bool Bool []
p₂ = fail ∣ fail
equal : p₁ ≅P p₂
equal = Inv.id ∷ λ _ → ♯ equal
is-fail-is-not-a-congruence : ¬ (is-fail p₁ ≅ is-fail p₂)
is-fail-is-not-a-congruence eq with Inverse.to eq ⟨$⟩ S.return
... | ()
| {
"alphanum_fraction": 0.6067008753,
"avg_line_length": 32.4803921569,
"ext": "agda",
"hexsha": "69d4793795bdacf345ae2be205c8ab4a17bf2c20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/NotACongruence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/NotACongruence.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/NotACongruence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 982,
"size": 3313
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.AssocList.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat using (ℕ; _+_)
private
variable
ℓ : Level
A : Type ℓ
infixr 5 ⟨_,_⟩∷_
data AssocList (A : Type ℓ) : Type ℓ where
⟨⟩ : AssocList A
⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A
per : ∀ a b xs → ⟨ a , 1 ⟩∷ ⟨ b , 1 ⟩∷ xs
≡ ⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ xs
agg : ∀ a m n xs → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs
≡ ⟨ a , m + n ⟩∷ xs
del : ∀ a xs → ⟨ a , 0 ⟩∷ xs ≡ xs
trunc : isSet (AssocList A)
pattern ⟨_⟩ a = ⟨ a , 1 ⟩∷ ⟨⟩
-- Elimination and recursion principle for association lists
module Elim {ℓ'} {B : AssocList A → Type ℓ'}
(⟨⟩* : B ⟨⟩) (⟨_,_⟩∷*_ : (x : A) (n : ℕ) {xs : AssocList A} → B xs → B (⟨ x , n ⟩∷ xs))
(per* : (x y : A) {xs : AssocList A} (b : B xs)
→ PathP (λ i → B (per x y xs i)) (⟨ x , 1 ⟩∷* ⟨ y , 1 ⟩∷* b) (⟨ y , 1 ⟩∷* ⟨ x , 1 ⟩∷* b))
(agg* : (x : A) (m n : ℕ) {xs : AssocList A} (b : B xs)
→ PathP (λ i → B (agg x m n xs i)) (⟨ x , m ⟩∷* ⟨ x , n ⟩∷* b) (⟨ x , m + n ⟩∷* b))
(del* : (x : A) {xs : AssocList A} (b : B xs)
→ PathP (λ i → B (del x xs i)) (⟨ x , 0 ⟩∷* b) b)
(trunc* : (xs : AssocList A) → isSet (B xs)) where
f : (xs : AssocList A) → B xs
f ⟨⟩ = ⟨⟩*
f (⟨ a , n ⟩∷ xs) = ⟨ a , n ⟩∷* f xs
f (per a b xs i) = per* a b (f xs) i
f (agg a m n xs i) = agg* a m n (f xs) i
f (del a xs i) = del* a (f xs) i
f (trunc xs ys p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f xs) (f ys) (cong f p) (cong f q) (trunc xs ys p q) i j
module ElimProp {ℓ'} {B : AssocList A → Type ℓ'} (BProp : {xs : AssocList A} → isProp (B xs))
(⟨⟩* : B ⟨⟩) (⟨_,_⟩∷*_ : (x : A) (n : ℕ) {xs : AssocList A} → B xs → B (⟨ x , n ⟩∷ xs)) where
f : (xs : AssocList A) → B xs
f = Elim.f ⟨⟩* ⟨_,_⟩∷*_
(λ x y {xs} b → toPathP (BProp (transp (λ i → B (per x y xs i)) i0 (⟨ x , 1 ⟩∷* ⟨ y , 1 ⟩∷* b)) (⟨ y , 1 ⟩∷* ⟨ x , 1 ⟩∷* b)))
(λ x m n {xs} b → toPathP (BProp (transp (λ i → B (agg x m n xs i)) i0 (⟨ x , m ⟩∷* ⟨ x , n ⟩∷* b)) (⟨ x , m + n ⟩∷* b)))
(λ x {xs} b → toPathP (BProp (transp (λ i → B (del x xs i)) i0 (⟨ x , 0 ⟩∷* b)) b))
(λ xs → isProp→isSet BProp)
module Rec {ℓ'} {B : Type ℓ'} (BType : isSet B)
(⟨⟩* : B) (⟨_,_⟩∷*_ : (x : A) (n : ℕ) → B → B)
(per* : (x y : A) (b : B) → (⟨ x , 1 ⟩∷* ⟨ y , 1 ⟩∷* b) ≡ (⟨ y , 1 ⟩∷* ⟨ x , 1 ⟩∷* b))
(agg* : (x : A) (m n : ℕ) (b : B) → (⟨ x , m ⟩∷* ⟨ x , n ⟩∷* b) ≡ (⟨ x , m + n ⟩∷* b))
(del* : (x : A) (b : B) → (⟨ x , 0 ⟩∷* b) ≡ b) where
f : AssocList A → B
f = Elim.f ⟨⟩* (λ x n b → ⟨ x , n ⟩∷* b) (λ x y b → per* x y b) (λ x m n b → agg* x m n b) (λ x b → del* x b) (λ _ → BType)
| {
"alphanum_fraction": 0.4238900634,
"avg_line_length": 40.5428571429,
"ext": "agda",
"hexsha": "d2d346fe7ac9f38cdb95c8208c364367c7ce91b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/AssocList/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/AssocList/Base.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/AssocList/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1409,
"size": 2838
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Finite where
open import Level
open import Categories.Category
open import Categories.Category.Finite renaming (Finite to FiniteC)
open import Categories.Functor
private
variable
o ℓ e : Level
J C : Category o ℓ e
record Finite (F : Functor J C) : Set (levelOfTerm F) where
field
finite : FiniteC J
open Functor F public
open FiniteC finite public
| {
"alphanum_fraction": 0.7310344828,
"avg_line_length": 19.7727272727,
"ext": "agda",
"hexsha": "191cc1062204a983c1b2ab00868919a1a6b50168",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Finite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Finite.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Finite.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 110,
"size": 435
} |
-- Exercises for session 2
--
-- If unsure which exercises to do start with those marked with *
--
{-# OPTIONS --cubical --allow-unsolved-metas #-}
module ExerciseSession2 where
open import Part1
open import Part2
open import ExerciseSession1
open import Cubical.Foundations.Equiv
-- Exercises about Part 2:
-- Exercise* 1: prove that the computation rule for J on refl
-- holds up to a path.
-- (hint: normalize the goal using C-u C-u C-c C-,)
JEq : {x : A} (P : (z : A) → x ≡ z → Type ℓ'')
(d : P x refl) → J P d refl ≡ d
JEq P p d = {!!}
-- Exercise* 2: prove that isContr implies isProp
isContr→isProp : isContr A → isProp A
isContr→isProp = {!!}
-- Exercise 3: prove that isProp implies isProp'
-- (hint: use isProp→isSet from the Part2)
isProp→isProp' : isProp A → isProp' A
isProp→isProp' = {!!}
-- Exercise 4: prove the following lemma
-- (hint: use the solutions to exercises 2 and 3)
isContr→isContr≡ : isContr A → (x y : A) → isContr (x ≡ y)
isContr→isContr≡ = {!!}
-- Exercise 5: use transp to turn a PathP into a transport
fromPathP : {A : I → Type ℓ} {x : A i0} {y : A i1}
→ PathP A x y
→ transport (λ i → A i) x ≡ y
fromPathP {A = A} p i = {!!}
-- The converse is harder to prove so we give it:
toPathP : {A : I → Type ℓ} {x : A i0} {y : A i1}
→ transport (λ i → A i) x ≡ y
→ PathP A x y
toPathP {A = A} {x = x} p i =
hcomp (λ j → λ { (i = i0) → x
; (i = i1) → p j })
(transp (λ j → A (i ∧ j)) (~ i) x)
-- Exercise* 6: prove that two Σ-types where the second component is a
-- proposition is equal if the first projections are equal.
-- (hint: use ΣPathP and toPathP)
Σ≡Prop : {B : A → Type ℓ'} {u v : Σ A B} (h : (x : A) → isProp (B x))
→ (p : fst u ≡ fst v) → u ≡ v
Σ≡Prop {B = B} {u = u} {v = v} h p = {!!}
-- Exercice 7 (harder): prove that being contractible is a proposition.
-- (hint: the second component can be given by a suitable higher
-- dimensional hcomp)
isPropIsContr : isProp (isContr A)
isPropIsContr = {!!}
-- Exercises about Part 3:
-- Exercise* 8: compose sucPathInt with itself n times. Transporting
-- along this will be addition, transporting with it backwards will be
-- subtraction.
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (addEq ; subEq)
-- a) Define a path "addEq n" by composing sucPathInt with itself n times.
addEq : ℕ → Int ≡ Int
addEq n = {!!}
-- b) Define another path "subEq n" by composing "sym sucPathInt" with
-- itself n times.
subEq : ℕ → Int ≡ Int
subEq n = {!!}
-- c) Define addition on integers by pattern-matching and transporting
-- along addEq/subEq appropriately.
_+Int_ : Int → Int → Int
m +Int n = {!!}
-- d) Do some concrete computations using _+Int_ (this would not work
-- in HoTT as the transport would be stuck!)
-- e) Use isEquivTransport from
open import Cubical.Foundations.Transport
-- to prove that +Int with a fixed number is an equivalence.
--
-- Note that proving this for the usual _+_ function would be a lot
-- longer, but now we get it for free as addition is defined using
-- transport which we already know is an equivalence.
-- Exercise* 9 (harder): prove that hSet is not a set
-- Let's import Bool instead so that we get it from the library
open import Cubical.Data.Bool renaming (notEq to notPath)
-- The empty type ⊥ (written \bot)
open import Cubical.Data.Empty
-- Just define hSets of level 0 for simplicity
hSet : Type₁
hSet = Σ[ A ∈ Type₀ ] isSet A
-- Bool is an hSet
BoolSet : hSet
BoolSet = Bool , isSetBool
-- (hint: use a suitable nested transport)
notPath≢refl : (notPath ≡ refl) → ⊥
notPath≢refl e = true≢false {!!}
-- (hint: use notPath≢refl and define two elements of BoolSet ≡
-- BoolSet, one based on notPath and one based on refl. Σ≡Prop and
-- isPropIsSet is probably handy)
¬isSet-hSet : isSet hSet → ⊥
¬isSet-hSet h = {!!}
-- Exercise 10 (more work): prove that FinData and Fin are equivalent
-- and hence equal. Transport some functions and proofs between the
-- two.
-- Orderings on ℕ
open import Cubical.Data.Nat.Order
data FinData : ℕ → Type₀ where
zero : {n : ℕ} → FinData (suc n)
suc : {n : ℕ} (i : FinData n) → FinData (suc n)
Fin : ℕ → Type₀
Fin n = Σ[ k ∈ ℕ ] k < n
| {
"alphanum_fraction": 0.6538188697,
"avg_line_length": 28.0066225166,
"ext": "agda",
"hexsha": "7a02ab01149e022f5d6a4b9ac1029928d357bae1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "EgbertRijke/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/ExerciseSession2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "EgbertRijke/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/ExerciseSession2.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "williamdemeo/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/ExerciseSession2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-03T16:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-03T16:28:06.000Z",
"num_tokens": 1353,
"size": 4229
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Homotopy.PointedFibration where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Homotopy.Base
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.Loopspace
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open LowerBoundedInduction
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Foundations.HLevels'
open import Cubical.Foundations.Structure
private
variable
ℓ ℓ' : Level
-- Different versions of Theorem 9. We abstract ℓ' again here
-- to avoid some issues with implicit arguments.
module _ {ℓ' : Level} (X : Pointed ℓ) where
-- block of private stuff to reduce redundancy in the proof of the theorem
private
module _ (n k : ℕ) where
-- A, together with its paramenters/context, is just the statement of the theorem.
A : Type (ℓ-max ℓ (ℓ-suc ℓ'))
A = (isConnX : isConnected (k + 1) (typ X))
→ (Y : typ X → Σ[ Yx ∈ Pointed ℓ' ] (isOfHLevel (n + k) (typ Yx)))
→ isOfHLevel (n) (Π∙ X (λ x → typ (fst (Y x))) (pt (fst (Y (pt X)))))
module PointSec (n k : ℕ)
(isConnX : isConnected (k + 1) (typ X))
(Y : typ X → Σ[ Yx ∈ Pointed ℓ' ] (isOfHLevel (n + k) (typ Yx))) where
-- The type of pointed sections (x : X) →ₚₜ Y x
sec∙ : Type (ℓ-max ℓ ℓ')
sec∙ = Π∙ X (λ x → typ (fst (Y x))) (pt (fst (Y (pt X))))
-- Note that if isOfHLevel had a uniform interface for n ≥ 1 then this should be a part of the where
-- clause in the theorem.
module PointSecProps where
-- Given s, the type of pointed sections (x : X) →ₚₜ Ω(Y x, s x)
sec∙' : (s : sec∙) → Type (ℓ-max ℓ ℓ')
sec∙' s = Π∙ X (λ x → s .fst x ≡ s .fst x) refl
-- towards sec∙' s ≃ (s ≡ s)
secIso : (s : sec∙) → Iso (sec∙' s) (s ∙∼ s)
secIso (_ , s₂) = iso (λ (H , p) → H , p ∙ sym (rCancel s₂))
(λ (H , p) → H , p ∙ rCancel s₂)
(λ (H , p) → ΣPathP (refl ,
sym (assoc p (rCancel s₂) (sym (rCancel s₂))) ∙∙
cong (p ∙_) (rCancel (rCancel s₂)) ∙∙
sym (rUnit p)))
(λ (H , p) → ΣPathP (refl ,
sym (assoc p
(sym (rCancel s₂))
(rCancel s₂)) ∙∙
cong (p ∙_) (lCancel (rCancel s₂)) ∙∙
sym (rUnit p)))
-- compose the equivalences
sec≃ : (s : sec∙) → sec∙' s ≃ (s ≡ s)
sec≃ = λ (s : sec∙) → compEquiv (isoToEquiv (secIso s)) (funExt∙≃ s s)
-- p.9 Theorem 3 of Higher Types in HoTT
sec∙Trunc : {n k : ℕ} → A (n + 1) (k)
sec∙Trunc {n = 0} {k} isConnX Y = isContr→isProp (s₀ , λ s → funExt∙ (s₀∙∼s s))
where
sec∙ : Type (ℓ-max ℓ ℓ')
sec∙ = Π∙ X (λ x → typ (fst (Y x))) (pt (fst (Y (pt X))))
module _ where
-- trivial section
s₀ : sec∙
s₀ = (λ a → pt (fst (Y a))) , refl
-- abbreviations
s₀₁ = fst s₀
⋆ = pt X
-- the k-connected map 𝟙 → X
f : Unit → typ X
f tt = ⋆
-- proof that f is k-connected
fkconn : isConnectedFun k f
fkconn = UnitConnectedFunElim isConnX f
-- notation
module _ (s : sec∙) where
s₁ = fst s
s₂ = snd s
-- the regular homotopies between the trivial section and s coincide with the
-- identity type s₀₁ ⋆ ≡ s₁ ⋆
-- the Unit type will be eliminated in the next step
IsoHtpy𝟙Idpt : Iso (s₀₁ ∼ s₁) (Unit → s₀₁ ⋆ ≡ s₁ ⋆)
IsoHtpy𝟙Idpt = elim.isIsoPrecompose f k (λ (x : typ X) → (s₀₁ x ≡ s₁ x) , HL← (HL→ (snd (Y x)) (s₀₁ x) (s₁ x))) fkconn
IsoHtpyIdpt : Iso (s₀₁ ∼ s₁) (s₀₁ ⋆ ≡ s₁ ⋆)
IsoHtpyIdpt = compIso IsoHtpy𝟙Idpt (𝟙-universal (s₀₁ ⋆ ≡ s₁ ⋆))
-- judgementally,
-- (s₀ ∙∼ s) ≡ (Σ[ h ∈ (s₀₁ ∼ s₁) ] (h ⋆ ≡ (snd s₀) ∙ s₂ ⁻¹))
-- The right inverse of IsoHtpyIdpt gives such a pointed homotopy
s₀∙∼s : s₀ ∙∼ s
fst s₀∙∼s = Iso.inv IsoHtpyIdpt (refl ∙ s₂ ⁻¹)
snd s₀∙∼s =
Iso.inv IsoHtpyIdpt (refl ∙ s₂ ⁻¹) ⋆
≡⟨ refl ⟩
Iso.fun IsoHtpyIdpt (Iso.inv IsoHtpyIdpt (refl ∙ s₂ ⁻¹))
≡⟨ Iso.rightInv IsoHtpyIdpt (refl ∙ s₂ ⁻¹) ⟩
refl ∙ s₂ ⁻¹ ∎
sec∙Trunc {n = 1} {k} isConnX Y = truncSelfId→truncId {n = 0} (λ s → EquivPresHLevel {n = 1} (sec≃ s) (sec∙Trunc {n = 0} {k} isConnX λ x → ((s .fst x ≡ s .fst x) , refl) , (snd (Y x) (s .fst x) (s .fst x))))
where
open PointSec 2 k isConnX Y
open PointSecProps
sec∙Trunc {n = suc (suc m)} {k} isConnX Y =
-- suffices to show that loop spaces are truncated
truncSelfId→truncId
-- each self-identity type of a section s is equivalent to a type of sections
λ s → EquivPresHLevel (sec≃ s)
-- that the induction hypothesis can be applied to
(sec∙Trunc {n = suc m} isConnX λ x → ((s .fst x ≡ s .fst x) , refl) , snd (Y x) (s .fst x) (s .fst x))
where
open PointSec (suc (suc m) + 1) k isConnX Y
open PointSecProps
-- alternate version of sec∙Trunc with bound on n instead of adding a bound
sec∙Trunc' : {n k : ℕ} (1≤n : 1 ≤ n) → A n k
sec∙Trunc' {n = n} {k = k} 1≤n
= +Type→≤Type 1 (λ n → A n k) (λ r isConnX Y → sec∙Trunc {n = r} {k = k} isConnX Y) n 1≤n
module _ (X : Pointed ℓ) (Y : Pointed ℓ') where
pointed-maps-truncated : {n k : ℕ}
→ 1 ≤ n
→ isConnected (k + 1) (typ X)
→ isOfHLevel (n + k) (typ Y)
→ isOfHLevel (n) (X →∙ Y)
pointed-maps-truncated {n = n} 1≤n connX truncY =
sec∙Trunc' X 1≤n connX λ _ → Y , truncY
| {
"alphanum_fraction": 0.5217117684,
"avg_line_length": 40.4840764331,
"ext": "agda",
"hexsha": "2b37bc3e3eda7e0ba8e6b02b59d83f6514ba057a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Homotopy/PointedFibration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Homotopy/PointedFibration.agda",
"max_line_length": 209,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Homotopy/PointedFibration.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2271,
"size": 6356
} |
{-# OPTIONS --without-K #-}
module Wow-It-is-FV where
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Primitive
levelEq : lzero ≡ lzero
levelEq = refl
levelEq′ : lsuc lzero ≡ lsuc lzero
levelEq′ = refl
trans : {l : Level} {Q : Set l} {a b c : Q}
→ a ≡ b → b ≡ c → a ≡ c
trans refl refl = refl
J : {A : Set} (P : (x y : A) → x ≡ y → Set)
→ ((x : A) → P x x refl)
→ (x y : A) (xy : x ≡ y) → P x y xy
J P p x .x refl = p x
cong : {A B : Set} (f : A → B)
→ {m n : A} → m ≡ n → f m ≡ f n
cong f refl = refl
sym : {A : Set} {m n : A} → m ≡ n → n ≡ m
sym refl = refl
theorem : suc zero + suc zero ≡ _
theorem = refl
theorem′ : 1 + 1 ≡ 2
theorem′ = refl
trivialEq : {a : _} {A : Set a} → A ≡ A
trivialEq = refl
trivialEq′ : ∀ {a} {A : Set a} → A ≡ A
trivialEq′ = refl
trivialEq′′ : ∀ a b → a + b ≡ a + b
trivialEq′′ a b = refl
trans′ : ∀ {a} {A : Set a} (a b c : A)
→ a ≡ b → b ≡ c → a ≡ c
trans′ a .a c refl bc = bc
data _<=_ : (a b : Nat) → Set where
0ltn : ∀ {n} → 0 <= n
nltm : ∀ {n m} → n <= m → suc n <= suc m
7lt13 : 7 <= 13
7lt13 = nltm (nltm (nltm (nltm (nltm (nltm (nltm 0ltn))))))
abc : ∀ {a b c} → a <= b → b <= c → a <= c
abc 0ltn bc = 0ltn
abc (nltm ab) (nltm bc) = nltm (abc ab bc)
data ⊥ : Set where
ridiculous : ⊥ → ⊥
ridiculous a = a
ridiculous′ : 1 ≡ 0 → ⊥
ridiculous′ ()
⊥-elim : ∀ {a} {A : Set a} → ⊥ → A
⊥-elim ()
4lt3 : 4 <= 3 → ⊥
4lt3 (nltm (nltm (nltm ())))
infix 3 ¬_
¬_ : ∀ {a} → Set a → Set a
¬ P = P → ⊥
_!=_ : ∀ {a} {A : Set a} → A → A → Set a
x != y = ¬ x ≡ y
_≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ refl ⟩ c = c
_QED : ∀ {A : Set} (x : A) → x ≡ x
_ QED = refl
lemma₀ : ∀ n → n + 0 ≡ n
lemma₀ zero = refl
lemma₀ (suc n) = cong suc (lemma₀ n)
lemma₁ : ∀ n m → suc (n + m) ≡ n + suc m
lemma₁ zero _ = refl
lemma₁ (suc n) m = cong suc (lemma₁ n m)
comm : ∀ n m → n + m ≡ m + n
comm zero n = sym (lemma₀ n)
comm (suc n) m = suc n + m
≡⟨ refl ⟩ suc (n + m)
≡⟨ cong suc (comm n m) ⟩ suc (m + n)
≡⟨ lemma₁ m n ⟩ m + suc n QED
infixr 2 _≡⟨_⟩_
infix 3 _QED
| {
"alphanum_fraction": 0.4923591213,
"avg_line_length": 20.1346153846,
"ext": "agda",
"hexsha": "d1b49b7dde0c2e2908c1430c819d52bc0fca3e27",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2021-09-24T16:49:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-09T03:41:20.000Z",
"max_forks_repo_head_hexsha": "a875d10f9a25d28e8e4f77e6ca32625a1e389227",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1000/Books",
"max_forks_repo_path": "Wow-FV-zh/Wow-It-is-FV.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "a875d10f9a25d28e8e4f77e6ca32625a1e389227",
"max_issues_repo_issues_event_max_datetime": "2018-10-16T19:29:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-09T22:48:45.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1000/Books",
"max_issues_repo_path": "Wow-FV-zh/Wow-It-is-FV.agda",
"max_line_length": 62,
"max_stars_count": 133,
"max_stars_repo_head_hexsha": "a875d10f9a25d28e8e4f77e6ca32625a1e389227",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1000/Books",
"max_stars_repo_path": "Obsolete/Wow-FV-zh/Wow-It-is-FV.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-05T10:37:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-08T16:02:07.000Z",
"num_tokens": 1013,
"size": 2094
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
module lemmas-general where
Coerce-unicity : ∀{r ex1 ex2} →
Coerce r := ex1 →
Coerce r := ex2 →
ex1 == ex2
Coerce-unicity CoerceUnit CoerceUnit = refl
Coerce-unicity (CoercePair C1 C2) (CoercePair C3 C4)
rewrite Coerce-unicity C1 C3 | Coerce-unicity C2 C4
= refl
Coerce-unicity (CoerceCtor C1) (CoerceCtor C2)
rewrite Coerce-unicity C1 C2
= refl
Fuel-depletion-unicity : ∀{⛽ ⛽↓1 ⛽↓2} →
⛽ ⛽⇓ ⛽↓1 →
⛽ ⛽⇓ ⛽↓2 →
⛽↓1 == ⛽↓2
Fuel-depletion-unicity CF∞ CF∞ = refl
Fuel-depletion-unicity CF⛽ CF⛽ = refl
| {
"alphanum_fraction": 0.5381630013,
"avg_line_length": 28.6296296296,
"ext": "agda",
"hexsha": "c9c8731243287a64c0b514d7097b37edfe2efa55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "lemmas-general.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "lemmas-general.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "lemmas-general.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 278,
"size": 773
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of lists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Lex.Core where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit.Base using (⊤; tt)
open import Function using (_∘_; flip; id)
open import Data.Product using (_,_; proj₁; proj₂)
open import Data.List.Base using (List; []; _∷_)
open import Level using (_⊔_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Binary
open import Data.List.Relation.Binary.Pointwise
using (Pointwise; []; _∷_; head; tail)
-- The lexicographic ordering itself can be either strict or non-strict,
-- depending on whether type P is inhabited.
data Lex {a ℓ₁ ℓ₂} {A : Set a} (P : Set)
(_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) :
Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂) where
base : P → Lex P _≈_ _≺_ [] []
halt : ∀ {y ys} → Lex P _≈_ _≺_ [] (y ∷ ys)
this : ∀ {x xs y ys} (x≺y : x ≺ y) → Lex P _≈_ _≺_ (x ∷ xs) (y ∷ ys)
next : ∀ {x xs y ys} (x≈y : x ≈ y)
(xs<ys : Lex P _≈_ _≺_ xs ys) → Lex P _≈_ _≺_ (x ∷ xs) (y ∷ ys)
-- Properties
module _ {a ℓ₁ ℓ₂} {A : Set a} {P : Set}
{_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where
private
_≋_ = Pointwise _≈_
_<_ = Lex P _≈_ _≺_
¬≤-this : ∀ {x y xs ys} → ¬ (x ≈ y) → ¬ (x ≺ y) →
¬ (x ∷ xs) < (y ∷ ys)
¬≤-this x≉y x≮y (this x≺y) = x≮y x≺y
¬≤-this x≉y x≮y (next x≈y xs<ys) = x≉y x≈y
¬≤-next : ∀ {x y xs ys} → ¬ x ≺ y → ¬ xs < ys →
¬ (x ∷ xs) < (y ∷ ys)
¬≤-next x≮y xs≮ys (this x≺y) = x≮y x≺y
¬≤-next x≮y xs≮ys (next _ xs<ys) = xs≮ys xs<ys
transitive : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → Transitive _≺_ →
Transitive _<_
transitive eq resp tr = trans
where
trans : Transitive (Lex P _≈_ _≺_)
trans (base p) (base _) = base p
trans (base y) halt = halt
trans halt (this y≺z) = halt
trans halt (next y≈z ys<zs) = halt
trans (this x≺y) (this y≺z) = this (tr x≺y y≺z)
trans (this x≺y) (next y≈z ys<zs) = this (proj₁ resp y≈z x≺y)
trans (next x≈y xs<ys) (this y≺z) =
this (proj₂ resp (IsEquivalence.sym eq x≈y) y≺z)
trans (next x≈y xs<ys) (next y≈z ys<zs) =
next (IsEquivalence.trans eq x≈y y≈z) (trans xs<ys ys<zs)
antisymmetric : Symmetric _≈_ → Irreflexive _≈_ _≺_ →
Asymmetric _≺_ → Antisymmetric _≋_ _<_
antisymmetric sym ir asym = as
where
as : Antisymmetric _≋_ _<_
as (base _) (base _) = []
as halt ()
as (this x≺y) (this y≺x) = ⊥-elim (asym x≺y y≺x)
as (this x≺y) (next y≈x ys<xs) = ⊥-elim (ir (sym y≈x) x≺y)
as (next x≈y xs<ys) (this y≺x) = ⊥-elim (ir (sym x≈y) y≺x)
as (next x≈y xs<ys) (next y≈x ys<xs) = x≈y ∷ as xs<ys ys<xs
respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → _<_ Respects₂ _≋_
respects₂ eq (resp₁ , resp₂) = resp¹ , resp²
where
open IsEquivalence eq using (sym; trans)
resp¹ : ∀ {xs} → Lex P _≈_ _≺_ xs Respects _≋_
resp¹ [] xs<[] = xs<[]
resp¹ (_ ∷ _) halt = halt
resp¹ (x≈y ∷ _) (this z≺x) = this (resp₁ x≈y z≺x)
resp¹ (x≈y ∷ xs≋ys) (next z≈x zs<xs) =
next (trans z≈x x≈y) (resp¹ xs≋ys zs<xs)
resp² : ∀ {ys} → flip (Lex P _≈_ _≺_) ys Respects _≋_
resp² [] []<ys = []<ys
resp² (x≈z ∷ _) (this x≺y) = this (resp₂ x≈z x≺y)
resp² (x≈z ∷ xs≋zs) (next x≈y xs<ys) =
next (trans (sym x≈z) x≈y) (resp² xs≋zs xs<ys)
decidable : Dec P → Decidable _≈_ → Decidable _≺_ → Decidable _<_
decidable (yes p) dec-≈ dec-≺ [] [] = yes (base p)
decidable (no ¬p) dec-≈ dec-≺ [] [] = no λ{(base p) → ¬p p}
decidable dec-P dec-≈ dec-≺ [] (y ∷ ys) = yes halt
decidable dec-P dec-≈ dec-≺ (x ∷ xs) [] = no λ()
decidable dec-P dec-≈ dec-≺ (x ∷ xs) (y ∷ ys) with dec-≺ x y
... | yes x≺y = yes (this x≺y)
... | no x≮y with dec-≈ x y
... | no x≉y = no (¬≤-this x≉y x≮y)
... | yes x≈y with decidable dec-P dec-≈ dec-≺ xs ys
... | yes xs<ys = yes (next x≈y xs<ys)
... | no xs≮ys = no (¬≤-next x≮y xs≮ys)
| {
"alphanum_fraction": 0.4862508384,
"avg_line_length": 40.6636363636,
"ext": "agda",
"hexsha": "1bbd85c1d46a18b17529502206f0399551c663ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Core.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1854,
"size": 4473
} |
-- ----------------------------------------------------------------------
-- The Agda σ-library
--
-- Substitutions
-- ----------------------------------------------------------------------
-- A substitution on T is defined as a mapping from
-- indices to T (w/ explicit bounds).
--
-- Since the domain is bounded, we may think
-- of substitutions as vectors.
module Sigma.Subst.Base where
open import Data.Nat using (ℕ; suc; zero; _+_)
open import Data.Fin using (Fin; zero; suc)
open import Function using (_∘_)
open import Data.Product using (_×_) renaming ( _,_ to ⟨_,_⟩ )
-- ----------------------------------------------------------------------
-- A subsitution σ : 𝕀ⁿ → T is denoted { i ↦ x : i ∈ 𝕀ⁿ, x ∈ T }
Sub : Set → ℕ → Set
Sub T m = Fin m → T
-- The empty subsitution.
-- Note that 𝕀⁰ ≡ ⊥. We note σ : 𝕀⁰ → T by []
-- Intuitively, this mimics an empty vector.
[] : ∀ { T } → Sub T 0
[] = λ ()
infixr 5 _∷_
-- The σ-cons operator ∷ ∶ T → (𝕀ⁿ → T) → (𝕀¹⁺ⁿ → T)
--
-- Intuitively, the σ-cons operator mimics the
-- semantics of cons operator on vectors.
--
-- x ∷ σ = { 0 ↦ x } ∪ { 1 + i ↦ σ i : i ∈ 𝕀ⁿ }
_∷_ : ∀ { n } { T } → T → Sub T n → Sub T (1 + n)
(x ∷ σ) zero = x
(x ∷ σ) (suc n) = σ n
[_] : ∀ { T } → T → Sub T 1
[ x ] = x ∷ []
head : ∀ { n } { T } → Sub T (1 + n) → T
head σ = σ zero
tail : ∀ { n } { T } → Sub T (1 + n) → Sub T n
tail σ = σ ∘ suc
map : ∀ { n } { T U } → (T → U) → Sub T n → Sub U n
map f σ = f ∘ σ
uncons : ∀ { n } { T } → Sub T (1 + n) → T × Sub T n
uncons σ = ⟨ head σ , tail σ ⟩
infixr 5 _++_
-- The σ-append operator ++ : (𝕀ᵐ → T) → (𝕀ⁿ → T) → (𝕀ᵐ⁺ⁿ → T)
--
-- σ₁ ++ σ₂ = { i ↦ σ₁ i : i ∈ 𝕀ᵐ⁺ⁿ, i < m } ∪ { i ↦ σ₂ i : i ∈ 𝕀ᵐ⁺ⁿ, i ≥ m }
_++_ : ∀ { m n } { T } → Sub T m → Sub T n → Sub T (m + n)
_++_ {zero} σ₁ σ₂ = σ₂
_++_ {suc m} σ₁ σ₂ = σ₁ zero ∷ (σ₁ ∘ suc) ++ σ₂
| {
"alphanum_fraction": 0.4451682953,
"avg_line_length": 25.2328767123,
"ext": "agda",
"hexsha": "ae1d17a6b7e6c6824d2e50be2d9d1fe51c992d63",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-sigma",
"max_forks_repo_path": "src/Sigma/Subst/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-sigma",
"max_issues_repo_path": "src/Sigma/Subst/Base.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-sigma",
"max_stars_repo_path": "src/Sigma/Subst/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 724,
"size": 1842
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary where
open import Cubical.Relation.Binary.Base public
open import Cubical.Relation.Binary.Properties public
open import Cubical.Relation.Binary.Fiberwise public
| {
"alphanum_fraction": 0.8073770492,
"avg_line_length": 34.8571428571,
"ext": "agda",
"hexsha": "cb9073a270920e25a56454967eee5d54039f6f54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 54,
"size": 244
} |
module RewriteAndWhere where
open import Common.Equality
data ℕ : Set where
zero : ℕ
good : (a b : ℕ) → a ≡ b → b ≡ a
good a b eq with a | eq
... | .b | refl = foo
where
foo : b ≡ b
foo = refl
mutual
aux : (a b : ℕ)(w : ℕ) → w ≡ b → b ≡ w
aux a b .b refl = foo
where
foo : b ≡ b
foo = refl
good₂ : (a b : ℕ) → a ≡ b → b ≡ a
good₂ a b eq = aux a b a eq
bad : (a b : ℕ) → a ≡ b → b ≡ a
bad a b eq rewrite eq = foo
where
foo : b ≡ b
foo rewrite sym eq = bar
where
bar : a ≡ a
bar = refl
| {
"alphanum_fraction": 0.4847396768,
"avg_line_length": 16.3823529412,
"ext": "agda",
"hexsha": "717142e7a4c2e750eb2959f2a3f36e834103cc92",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/RewriteAndWhere.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/RewriteAndWhere.agda",
"max_line_length": 40,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/RewriteAndWhere.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 226,
"size": 557
} |
{-# OPTIONS --cubical --safe #-}
module Strict.Properties where
open import Path
open import Level
open import Strict
open import Agda.Builtin.Strict
open import Function
$!-≡ : {A : Type a} {B : A → Type b} → (f : ∀ x → B x) → ∀ x → (f $! x) ≡ f x
$!-≡ f x = builtin-eq-to-path (primForceLemma x f)
$!≡$ : {A : Type a} {B : A → Type b} → _$!_ {A = A} {B = B} ≡ _$_ {A = A} {B = B}
$!≡$ i f x = $!-≡ f x i
| {
"alphanum_fraction": 0.5390243902,
"avg_line_length": 25.625,
"ext": "agda",
"hexsha": "f5382905c09cef1c68aa54bb00211da6bdcadb3b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Strict/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Strict/Properties.agda",
"max_line_length": 81,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Strict/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 169,
"size": 410
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Algebra.Properties.Group {g₁ g₂} (G : Group g₁ g₂) where
open Group G
open import Algebra.FunctionProperties _≈_
open import Relation.Binary.Reasoning.Setoid setoid
open import Function
open import Data.Product
⁻¹-involutive : ∀ x → x ⁻¹ ⁻¹ ≈ x
⁻¹-involutive x = begin
x ⁻¹ ⁻¹ ≈⟨ sym $ identityʳ _ ⟩
x ⁻¹ ⁻¹ ∙ ε ≈⟨ ∙-congˡ $ sym (inverseˡ _) ⟩
x ⁻¹ ⁻¹ ∙ (x ⁻¹ ∙ x) ≈⟨ sym $ assoc _ _ _ ⟩
x ⁻¹ ⁻¹ ∙ x ⁻¹ ∙ x ≈⟨ ∙-congʳ $ inverseˡ _ ⟩
ε ∙ x ≈⟨ identityˡ _ ⟩
x ∎
private
left-helper : ∀ x y → x ≈ (x ∙ y) ∙ y ⁻¹
left-helper x y = begin
x ≈⟨ sym (identityʳ x) ⟩
x ∙ ε ≈⟨ ∙-congˡ $ sym (inverseʳ y) ⟩
x ∙ (y ∙ y ⁻¹) ≈⟨ sym (assoc x y (y ⁻¹)) ⟩
(x ∙ y) ∙ y ⁻¹ ∎
right-helper : ∀ x y → y ≈ x ⁻¹ ∙ (x ∙ y)
right-helper x y = begin
y ≈⟨ sym (identityˡ y) ⟩
ε ∙ y ≈⟨ ∙-congʳ $ sym (inverseˡ x) ⟩
(x ⁻¹ ∙ x) ∙ y ≈⟨ assoc (x ⁻¹) x y ⟩
x ⁻¹ ∙ (x ∙ y) ∎
left-identity-unique : ∀ x y → x ∙ y ≈ y → x ≈ ε
left-identity-unique x y eq = begin
x ≈⟨ left-helper x y ⟩
(x ∙ y) ∙ y ⁻¹ ≈⟨ ∙-congʳ eq ⟩
y ∙ y ⁻¹ ≈⟨ inverseʳ y ⟩
ε ∎
right-identity-unique : ∀ x y → x ∙ y ≈ x → y ≈ ε
right-identity-unique x y eq = begin
y ≈⟨ right-helper x y ⟩
x ⁻¹ ∙ (x ∙ y) ≈⟨ refl ⟨ ∙-cong ⟩ eq ⟩
x ⁻¹ ∙ x ≈⟨ inverseˡ x ⟩
ε ∎
identity-unique : ∀ {x} → Identity x _∙_ → x ≈ ε
identity-unique {x} id = left-identity-unique x x (proj₂ id x)
left-inverse-unique : ∀ x y → x ∙ y ≈ ε → x ≈ y ⁻¹
left-inverse-unique x y eq = begin
x ≈⟨ left-helper x y ⟩
(x ∙ y) ∙ y ⁻¹ ≈⟨ ∙-congʳ eq ⟩
ε ∙ y ⁻¹ ≈⟨ identityˡ (y ⁻¹) ⟩
y ⁻¹ ∎
right-inverse-unique : ∀ x y → x ∙ y ≈ ε → y ≈ x ⁻¹
right-inverse-unique x y eq = begin
y ≈⟨ sym (⁻¹-involutive y) ⟩
y ⁻¹ ⁻¹ ≈⟨ ⁻¹-cong (sym (left-inverse-unique x y eq)) ⟩
x ⁻¹ ∎
| {
"alphanum_fraction": 0.4527117884,
"avg_line_length": 30.5616438356,
"ext": "agda",
"hexsha": "b8f9b423bae2f44ce9794d5287f56c425ffa9b3e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Group.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Group.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 965,
"size": 2231
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to All
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Relation.Unary.All.Properties where
open import Data.List using ([]; _∷_)
open import Data.List.Relation.Unary.All as List using ([]; _∷_)
open import Data.Product as Prod using (_×_; _,_; uncurry; uncurry′)
open import Data.Vec as Vec
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Function using (_∘_; id)
open import Function.Inverse using (_↔_; inverse)
open import Relation.Unary using (Pred) renaming (_⊆_ to _⋐_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong; cong₂; →-to-⟶)
------------------------------------------------------------------------
-- map
module _ {a b p} {A : Set a} {B : Set b} {P : Pred B p} {f : A → B} where
map⁺ : ∀ {n} {xs : Vec A n} → All (P ∘ f) xs → All P (map f xs)
map⁺ [] = []
map⁺ (px ∷ pxs) = px ∷ map⁺ pxs
map⁻ : ∀ {n} {xs : Vec A n} → All P (map f xs) → All (P ∘ f) xs
map⁻ {xs = []} [] = []
map⁻ {xs = _ ∷ _} (px ∷ pxs) = px ∷ map⁻ pxs
-- A variant of All.map
module _ {a b p q} {A : Set a} {B : Set b} {f : A → B}
{P : Pred A p} {Q : Pred B q} where
gmap : ∀ {n} → P ⋐ Q ∘ f → All P {n} ⋐ All Q {n} ∘ map f
gmap g = map⁺ ∘ All.map g
------------------------------------------------------------------------
-- _++_
module _ {a n p} {A : Set a} {P : Pred A p} where
++⁺ : ∀ {m} {xs : Vec A m} {ys : Vec A n} →
All P xs → All P ys → All P (xs ++ ys)
++⁺ [] pys = pys
++⁺ (px ∷ pxs) pys = px ∷ ++⁺ pxs pys
++ˡ⁻ : ∀ {m} (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P xs
++ˡ⁻ [] _ = []
++ˡ⁻ (x ∷ xs) (px ∷ pxs) = px ∷ ++ˡ⁻ xs pxs
++ʳ⁻ : ∀ {m} (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P ys
++ʳ⁻ [] pys = pys
++ʳ⁻ (x ∷ xs) (px ∷ pxs) = ++ʳ⁻ xs pxs
++⁻ : ∀ {m} (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P xs × All P ys
++⁻ [] p = [] , p
++⁻ (x ∷ xs) (px ∷ pxs) = Prod.map₁ (px ∷_) (++⁻ _ pxs)
++⁺∘++⁻ : ∀ {m} (xs : Vec A m) {ys : Vec A n} →
(p : All P (xs ++ ys)) →
uncurry′ ++⁺ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (px ∷ pxs) = cong (px ∷_) (++⁺∘++⁻ xs pxs)
++⁻∘++⁺ : ∀ {m} {xs : Vec A m} {ys : Vec A n} →
(p : All P xs × All P ys) →
++⁻ xs (uncurry ++⁺ p) ≡ p
++⁻∘++⁺ ([] , pys) = refl
++⁻∘++⁺ (px ∷ pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = refl
++↔ : ∀ {m} {xs : Vec A m} {ys : Vec A n} →
(All P xs × All P ys) ↔ All P (xs ++ ys)
++↔ {xs = xs} = inverse (uncurry ++⁺) (++⁻ xs) ++⁻∘++⁺ (++⁺∘++⁻ xs)
------------------------------------------------------------------------
-- concat
module _ {a m p} {A : Set a} {P : Pred A p} where
concat⁺ : ∀ {n} {xss : Vec (Vec A m) n} →
All (All P) xss → All P (concat xss)
concat⁺ [] = []
concat⁺ (pxs ∷ pxss) = ++⁺ pxs (concat⁺ pxss)
concat⁻ : ∀ {n} (xss : Vec (Vec A m) n) →
All P (concat xss) → All (All P) xss
concat⁻ [] [] = []
concat⁻ (xs ∷ xss) pxss = ++ˡ⁻ xs pxss ∷ concat⁻ xss (++ʳ⁻ xs pxss)
------------------------------------------------------------------------
-- toList
module _ {a p} {A : Set a} {P : A → Set p} where
toList⁺ : ∀ {n} {xs : Vec A n} → All P xs → List.All P (toList xs)
toList⁺ [] = []
toList⁺ (px ∷ pxs) = px ∷ toList⁺ pxs
toList⁻ : ∀ {n} {xs : Vec A n} → List.All P (toList xs) → All P xs
toList⁻ {xs = []} [] = []
toList⁻ {xs = x ∷ xs} (px ∷ pxs) = px ∷ toList⁻ pxs
------------------------------------------------------------------------
-- fromList
module _ {a p} {A : Set a} {P : A → Set p} where
fromList⁺ : ∀ {xs} → List.All P xs → All P (fromList xs)
fromList⁺ [] = []
fromList⁺ (px ∷ pxs) = px ∷ fromList⁺ pxs
fromList⁻ : ∀ {xs} → All P (fromList xs) → List.All P xs
fromList⁻ {[]} [] = []
fromList⁻ {x ∷ xs} (px ∷ pxs) = px ∷ (fromList⁻ pxs)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.16
All-map = map⁺
{-# WARNING_ON_USAGE All-map
"Warning: All-map was deprecated in v0.16.
Please use map⁺ instead."
#-}
map-All = map⁻
{-# WARNING_ON_USAGE map-All
"Warning: map-All was deprecated in v0.16.
Please use map⁻ instead."
#-}
All-++⁺ = ++⁺
{-# WARNING_ON_USAGE All-++⁺
"Warning: All-++⁺ was deprecated in v0.16.
Please use ++⁺ instead."
#-}
All-++ˡ⁻ = ++ˡ⁻
{-# WARNING_ON_USAGE All-++ˡ⁻
"Warning: All-++ˡ⁻ was deprecated in v0.16.
Please use ++ˡ⁻ instead."
#-}
All-++ʳ⁻ = ++ʳ⁻
{-# WARNING_ON_USAGE All-++ʳ⁻
"Warning: All-++ʳ⁻ was deprecated in v0.16.
Please use ++ʳ⁻ instead."
#-}
All-++⁻ = ++⁻
{-# WARNING_ON_USAGE All-++⁻
"Warning: All-++⁻ was deprecated in v0.16.
Please use ++⁻ instead."
#-}
All-++⁺∘++⁻ = ++⁺∘++⁻
{-# WARNING_ON_USAGE All-++⁺∘++⁻
"Warning: All-++⁺∘++⁻ was deprecated in v0.16.
Please use ++⁺∘++⁻ instead."
#-}
All-++⁻∘++⁺ = ++⁻∘++⁺
{-# WARNING_ON_USAGE All-++⁻∘++⁺
"Warning: All-++⁻∘++⁺ was deprecated in v0.16.
Please use ++⁻∘++⁺ instead."
#-}
All-concat⁺ = concat⁺
{-# WARNING_ON_USAGE All-concat⁺
"Warning: All-concat⁺ was deprecated in v0.16.
Please use concat⁺ instead."
#-}
All-concat⁻ = concat⁻
{-# WARNING_ON_USAGE All-concat⁻
"Warning: All-concat⁻ was deprecated in v0.16.
Please use concat⁻ instead."
#-}
| {
"alphanum_fraction": 0.4408396947,
"avg_line_length": 31.4972677596,
"ext": "agda",
"hexsha": "ed878b33d9bea7d0dffa3d9860ea55877defb3ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All/Properties.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/All/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2198,
"size": 5764
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Haskell.Modules.RWS.Lens where
open import Haskell.Modules.RWS
open import Haskell.Prelude
open import Optics.All
private
variable
Ev Wr St : Set
A B C : Set
-- Lens functionality
--
-- If we make RWS work for different level State types, we will break use and
-- modify because Lens does not support different levels, we define use and
-- modify' here for RoundManager. We are ok as long as we can keep
-- RoundManager in Set. If we ever need to make RoundManager at some higher
-- Level, we will have to consider making Lens level-agnostic. Preliminary
-- exploration by @cwjnkins showed this to be somewhat painful in particular
-- around composition, so we are not pursuing it for now.
use : Lens St A → RWS Ev Wr St A
use f = gets (_^∙ f)
modifyL : Lens St A → (A → A) → RWS Ev Wr St Unit
modifyL l f = modify (over l f)
syntax modifyL l f = l %= f
setL : Lens St A → A → RWS Ev Wr St Unit
setL l x = l %= const x
syntax setL l x = l ∙= x
setL? : Lens St (Maybe A) → A → RWS Ev Wr St Unit
setL? l x = l ∙= just x
syntax setL? l x = l ?= x
| {
"alphanum_fraction": 0.7083015994,
"avg_line_length": 32.0243902439,
"ext": "agda",
"hexsha": "f6f495f3d72a1cae4d9b873168687fd372852bc0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Haskell/Modules/RWS/Lens.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Haskell/Modules/RWS/Lens.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Haskell/Modules/RWS/Lens.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 1313
} |
module Nat where
open import Base
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_=N_ : Nat -> Nat -> Set
zero =N zero = True
zero =N suc _ = False
suc _ =N zero = False
suc n =N suc m = n =N m
refN : Refl _=N_
refN {zero} = T
refN {suc n} = refN {n}
symN : Sym _=N_
symN {zero}{zero} p = p
symN {suc n}{suc m} p = symN {n}{m} p
symN {zero}{suc _} ()
symN {suc _}{zero} ()
transN : Trans _=N_
transN {zero }{zero }{zero } p _ = p
transN {suc n}{suc m}{suc l} p q = transN {n}{m}{l} p q
transN {zero }{zero }{suc _} _ ()
transN {zero }{suc _}{_ } () _
transN {suc _}{zero }{_ } () _
transN {suc _}{suc _}{zero } _ ()
| {
"alphanum_fraction": 0.5605590062,
"avg_line_length": 18.9411764706,
"ext": "agda",
"hexsha": "47a8167d93a174c54e0947c7847749fc9d2c2ad8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/Nat.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/Nat.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 285,
"size": 644
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Power Functors, Exponentials over a Category C
-- Mainly categories where the objects are functions (Fin n -> Obj) considered pointwise
-- and then upgraded to Functors.
module Categories.Functor.Power {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning
open import Level using (Level; _⊔_)
open import Data.Nat using (ℕ; _+_; zero; suc; _<_)
open import Data.Product using (_,_)
open import Data.Fin using (Fin; inject+; raise; zero; suc; fromℕ<)
open import Data.Sum using (_⊎_; inj₁; inj₂; map) renaming ([_,_] to ⟦_,_⟧; [_,_]′ to ⟦_,_⟧′)
open import Data.Vec.N-ary hiding (curryⁿ)
open import Function as Fun using (flip; _$_) renaming (_∘_ to _∙_; id to idf)
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Functor hiding (id)
open import Categories.Functor.Bifunctor using (Bifunctor; overlap-×)
private
variable
i j k : Level
I I′ J J′ : Set i
D E : Category i j k
n n′ m m′ : ℕ
Exp : Set i → Category _ _ _
Exp I = record
{ Obj = I → Obj
; _⇒_ = λ x y → ∀ i → x i ⇒ y i
; _≈_ = λ f g → ∀ i → f i ≈ g i
; id = λ _ → id
; _∘_ = λ f g i → f i ∘ g i
; assoc = λ _ → assoc
; sym-assoc = λ _ → sym-assoc
; identityˡ = λ _ → identityˡ
; identityʳ = λ _ → identityʳ
; identity² = λ _ → identity²
; equiv = record
{ refl = λ _ → refl
; sym = λ eq i → sym $ eq i
; trans = λ eq₁ eq₂ i → trans (eq₁ i) (eq₂ i)
}
; ∘-resp-≈ = λ eq₁ eq₂ i → ∘-resp-≈ (eq₁ i) (eq₂ i)
}
Power : (n : ℕ) → Category o ℓ e
Power n = Exp (Fin n)
-- Convention: the ′ version is for a general index set, unprimed for a ℕ
-- representing Fin n. So Powerfunctor D n is Exp C (Fin n) ⇒ D, i.e.
-- essentially C ^ n ⇒ D.
Powerfunctor′ : (D : Category o ℓ e) (I : Set i) → Set (i ⊔ e ⊔ ℓ ⊔ o)
Powerfunctor′ D I = Functor (Exp I) D
Powerfunctor : (D : Category o ℓ e) (n : ℕ) → Set (e ⊔ ℓ ⊔ o)
Powerfunctor D n = Powerfunctor′ D (Fin n)
-- With C = D, so Powerendo n is C ^ n => C
Powerendo′ : (I : Set i) → Set (i ⊔ e ⊔ ℓ ⊔ o)
Powerendo′ I = Powerfunctor′ C I
Powerendo : (n : ℕ) → Set (e ⊔ ℓ ⊔ o)
Powerendo n = Powerfunctor C n
-- Hyperendo n m is C ^ n ⇒ C ^ m
Hyperendo : (n m : ℕ) → Set (e ⊔ ℓ ⊔ o)
Hyperendo n m = Functor (Power n) (Power m)
-- Hyperendo′ I J is C ^ I → C ^ J
Hyperendo′ : (I : Set i) (J : Set j) → Set (i ⊔ j ⊔ e ⊔ ℓ ⊔ o)
Hyperendo′ I J = Functor (Exp I) (Exp J)
-- Parallel composition of Hyperendo′ (via disjoint union of index sets)
infixr 9 _par_
_par_ : (F : Hyperendo′ I I′) (G : Hyperendo′ J J′) → Hyperendo′ (I ⊎ J) (I′ ⊎ J′)
F par G = record
{ F₀ = λ xs → ⟦ F.F₀ (xs ∙ inj₁) , G.F₀ (xs ∙ inj₂) ⟧′
; F₁ = λ fs → ⟦ F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂) ⟧
; identity = ⟦ F.identity , G.identity ⟧
; homomorphism = ⟦ F.homomorphism , G.homomorphism ⟧
; F-resp-≈ = λ fs≈gs → ⟦ F.F-resp-≈ (fs≈gs ∙ inj₁) , G.F-resp-≈ (fs≈gs ∙ inj₂) ⟧
}
where module F = Functor F
module G = Functor G
-- "flattening" means going from a general disjoint union of Fin to a single Fin,
-- which has the effect of doing from Powerfunctor′ to Powerfunctor
flattenP : (F : Powerfunctor′ D (Fin n ⊎ Fin m)) → Powerfunctor D (n + m)
flattenP {n = n} {m = m} F = record
{ F₀ = λ As → F₀ (As ∙ pack)
; F₁ = λ fs → F₁ (fs ∙ pack)
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = λ fs≈gs → F-resp-≈ (fs≈gs ∙ pack)
}
where open Functor F
pack = ⟦ inject+ m , raise n ⟧′
-- TODO unpackFun (and pack above) should be in stdlib
private
unpackFin : ∀ n → Fin (n + m) → Fin n ⊎ Fin m
unpackFin zero f = inj₂ f
unpackFin (suc n) zero = inj₁ zero
unpackFin (suc n) (suc f) = map suc idf (unpackFin n f)
-- needs a better name?
unflattenP : Powerfunctor D (n + m) → Powerfunctor′ D (Fin n ⊎ Fin m)
unflattenP {n = n} {m = m} F = record
{ F₀ = λ As → F₀ (As ∙ unpackFin _)
; F₁ = λ fs → F₁ (fs ∙ unpackFin _)
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = λ fs≈gs → F-resp-≈ (fs≈gs ∙ unpackFin _)
}
where open Functor F
-- flatten a Hyperendo′ "on the right" when over a union of Fin
flattenHʳ : (F : Hyperendo′ I (Fin n ⊎ Fin m)) → Hyperendo′ I (Fin (n + m))
flattenHʳ {n = n} {m = m} F = record
{ F₀ = λ As → F₀ As ∙ unpackFin n
; F₁ = λ fs → F₁ fs ∙ unpackFin n
; identity = identity ∙ unpackFin n
; homomorphism = homomorphism ∙ unpackFin n
; F-resp-≈ = λ fs≈gs → F-resp-≈ fs≈gs ∙ unpackFin n
}
where open Functor F
-- flatten on both sides.
flattenH : (F : Hyperendo′ (Fin n ⊎ Fin m) (Fin n′ ⊎ Fin m′)) → Hyperendo (n + m) (n′ + m′)
flattenH = flattenHʳ ∙ flattenP
-- Pretty syntax for flattening of parallel composition of Hyperendo
infixr 9 _∥_
_∥_ : (F : Hyperendo n n′) (G : Hyperendo m m′) → Hyperendo (n + m) (n′ + m′)
F ∥ G = flattenH (F par G)
-- split is C ^ (I ⊎ J) to C ^ I × C ^ J, as a Functor
split : Functor (Exp (I ⊎ J)) (Product (Exp I) (Exp J))
split = record
{ F₀ = λ As → As ∙ inj₁ , As ∙ inj₂
; F₁ = λ fs → fs ∙ inj₁ , fs ∙ inj₂
; identity = (λ _ → refl) , λ _ → refl
; homomorphism = (λ _ → refl) , λ _ → refl
; F-resp-≈ = λ eq → (λ i → eq (inj₁ i)) , λ i → eq (inj₂ i)
}
reduce′ : (H : Bifunctor C C C) (F : Powerendo′ I) (G : Powerendo′ J) → Powerendo′ (I ⊎ J)
reduce′ H F G = H ∘F (F ⁂ G) ∘F split
reduce : ∀ (H : Bifunctor C C C) {n m} (F : Powerendo n) (G : Powerendo m) → Powerendo (n + m)
reduce H F G = flattenP $ reduce′ H F G
flattenP-assocʳ : ∀ {n₁ n₂ n₃} (F : Powerendo′ (Fin n₁ ⊎ Fin n₂ ⊎ Fin n₃)) → Powerendo (n₁ + n₂ + n₃)
flattenP-assocʳ {n₁} {n₂} {n₃} F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ fs → F.F₁ (fs ∙ pack)
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack)
}
where module F = Functor F
pack = ⟦ inject+ n₃ ∙ inject+ n₂ , ⟦ inject+ n₃ ∙ raise n₁ , raise (n₁ + n₂) ⟧′ ⟧′
reduce2ʳ : ∀ (G : Bifunctor C C C) {n₁ n₂ n₃} (F₁ : Powerendo n₁) (F₂ : Powerendo n₂) (F₃ : Powerendo n₃) → Powerendo ((n₁ + n₂) + n₃)
reduce2ʳ G F₁ F₂ F₃ = flattenP-assocʳ $ reduce′ G F₁ $ reduce′ G F₂ F₃
overlaps : (H : Bifunctor D D E) (F G : Powerfunctor′ D I) → Powerfunctor′ E I
overlaps = overlap-×
overlap2ʳ : (G : Bifunctor C C C) (F₁ F₂ F₃ : Powerendo n) → Powerendo n
overlap2ʳ G F₁ F₂ F₃ = overlaps G F₁ (overlaps G F₂ F₃)
-- select′ i always evaluates at i
select′ : (i : I) → Powerendo′ I
select′ i = record
{ F₀ = _$ i
; F₁ = _$ i
; identity = refl
; homomorphism = refl
; F-resp-≈ = _$ i
}
-- select (m < n) is really select′ (Fin n), but only for m < n
select : m < n → Powerendo n
select m<n = select′ (fromℕ< m<n)
triv : (n : ℕ) → Hyperendo n n
triv n = record
{ F₀ = idf
; F₁ = idf
; identity = λ _ → refl
; homomorphism = λ _ → refl
; F-resp-≈ = idf
}
-- pad a Hyperendo on the left and right by trivial (i.e. identity) endofunctors
pad : ∀ (l r : ℕ) (F : Hyperendo n m) → Hyperendo ((l + n) + r) ((l + m) + r)
pad l r F = (triv l ∥ F) ∥ triv r
padˡ : ∀ (l : ℕ) (F : Hyperendo n m) → Hyperendo (l + n) (l + m)
padˡ l F = triv l ∥ F
padʳ : ∀ (r : ℕ) (F : Hyperendo n m) → Hyperendo (n + r) (m + r)
padʳ r F = F ∥ triv r
unary : Endofunctor C → Powerendo 1
unary F = record
{ F₀ = λ As → F.F₀ (As zero)
; F₁ = λ fs → F.F₁ (fs zero)
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs zero)
}
where module F = Functor F
unaryH : Endofunctor C → Hyperendo 1 1
unaryH F = record
{ F₀ = λ As → F.F₀ ∙ As
; F₁ = λ fs → F.F₁ ∙ fs
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ ∙ fs≈gs
}
where module F = Functor F
-- "constant"
nullary : Obj → Powerendo 0
nullary X = record
{ F₀ = λ _ → X
; F₁ = λ _ → id
; identity = refl
; homomorphism = sym identity²
; F-resp-≈ = λ _ → refl
}
nullaryH : Obj → Hyperendo 0 1
nullaryH X = record
{ F₀ = λ _ _ → X
; F₁ = λ _ _ → id
; identity = λ _ → refl
; homomorphism = λ _ → sym identity²
; F-resp-≈ = λ _ _ → refl
}
binary : Bifunctor C C C → Powerendo 2
binary F = record
{ F₀ = λ As → F.F₀ (As zero , As (suc zero))
; F₁ = λ fs → F.F₁ (fs zero , fs (suc zero))
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs zero , fs≈gs (suc zero))
}
where module F = Functor F
binaryH : Bifunctor C C C → Hyperendo 2 1
binaryH F = record
{ F₀ = λ As _ → F.F₀ (As zero , As (suc zero))
; F₁ = λ fs _ → F.F₁ (fs zero , fs (suc zero))
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≈ = λ fs≈gs _ → F.F-resp-≈ (fs≈gs zero , fs≈gs (suc zero))
}
where module F = Functor F
hyp : Powerendo n → Hyperendo n 1
hyp F = record
{ F₀ = λ As _ → F.F₀ As
; F₁ = λ fs _ → F.F₁ fs
; identity = λ _ → F.identity
; homomorphism = λ _ → F.homomorphism
; F-resp-≈ = λ fs≈gs _ → F.F-resp-≈ fs≈gs
}
where module F = Functor F
private
curryⁿ : ∀ n {a b} {A : Set a} {B : Set b} → ((Fin n → A) → B) → N-ary n A B
curryⁿ zero f = f (λ ())
curryⁿ (suc n) {A = A} f = λ x → curryⁿ n (f ∙ addon x)
where addon : A → (Fin n → A) → Fin (suc n) → A
addon x _ zero = x
addon _ g (suc i) = g i
plex′ : (J → Powerendo′ I) → Hyperendo′ I J
plex′ Fs = record
{ F₀ = flip (Functor.F₀ ∙ Fs)
; F₁ = flip (λ j → Functor.F₁ (Fs j))
; identity = λ j → Functor.identity (Fs j)
; homomorphism = λ j → Functor.homomorphism (Fs j)
; F-resp-≈ = flip (λ j → Functor.F-resp-≈ (Fs j))
}
plex : N-ary n (Powerendo′ I) (Hyperendo′ I (Fin n))
plex {n = n} = curryⁿ n plex′
-- like pad, but for Powerendo -- on left or right.
widenˡ : ∀ (l : ℕ) (F : Powerendo n) → Powerendo (l + n)
widenˡ l F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack)
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack)
}
where module F = Functor F
pack = raise l
widenʳ : ∀ (r : ℕ) (F : Powerendo n) → Powerendo (n + r)
widenʳ r F = record
{ F₀ = λ As → F.F₀ (As ∙ pack)
; F₁ = λ fs → F.F₁ (fs ∙ pack)
; identity = F.identity
; homomorphism = F.homomorphism
; F-resp-≈ = λ fs≈gs → F.F-resp-≈ (fs≈gs ∙ pack)
}
where module F = Functor F
pack = inject+ r
| {
"alphanum_fraction": 0.5487670225,
"avg_line_length": 33.3374233129,
"ext": "agda",
"hexsha": "2dc5408365d1c35e80516973248a0a040af5b03c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Power.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Power.agda",
"max_line_length": 134,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Power.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4332,
"size": 10868
} |
------------------------------------------------------------------------
-- Possibly infinite binary trees
------------------------------------------------------------------------
module Tree where
open import Codata.Musical.Notation
import Relation.Binary.PropositionalEquality as PropEq
open PropEq using (_≡_)
data Tree (A : Set) : Set where
leaf : Tree A
node : (l : ∞ (Tree A)) (x : A) (r : ∞ (Tree A)) → Tree A
map : ∀ {A B} → (A → B) → Tree A → Tree B
map f leaf = leaf
map f (node l x r) = node (♯ map f (♭ l)) (f x) (♯ map f (♭ r))
data _≈_ {A : Set} : (t₁ t₂ : Tree A) → Set where
leaf : leaf ≈ leaf
node : ∀ {l₁ l₂ x₁ x₂ r₁ r₂}
(l≈ : ∞ (♭ l₁ ≈ ♭ l₂)) (x≡ : x₁ ≡ x₂) (r≈ : ∞ (♭ r₁ ≈ ♭ r₂)) →
node l₁ x₁ r₁ ≈ node l₂ x₂ r₂
refl : ∀ {A} (t : Tree A) → t ≈ t
refl leaf = leaf
refl (node l x r) = node (♯ refl (♭ l)) PropEq.refl (♯ refl (♭ r))
trans : ∀ {A} {t₁ t₂ t₃ : Tree A} →
t₁ ≈ t₂ → t₂ ≈ t₃ → t₁ ≈ t₃
trans leaf leaf = leaf
trans (node l≈ x≡ r≈) (node l≈′ x≡′ r≈′) =
node (♯ trans (♭ l≈) (♭ l≈′)) (PropEq.trans x≡ x≡′)
(♯ trans (♭ r≈) (♭ r≈′))
map-cong : ∀ {A B} (f : A → B) {t₁ t₂ : Tree A} →
t₁ ≈ t₂ → map f t₁ ≈ map f t₂
map-cong f leaf = leaf
map-cong f (node l≈ x≡ r≈) =
node (♯ map-cong f (♭ l≈)) (PropEq.cong f x≡) (♯ map-cong f (♭ r≈))
| {
"alphanum_fraction": 0.4333576111,
"avg_line_length": 33.487804878,
"ext": "agda",
"hexsha": "c307109dd6597ed394500885f0687d236ea2e6c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Tree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Tree.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Tree.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 577,
"size": 1373
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- N-ary products
------------------------------------------------------------------------
-- Vectors (as in Data.Vec) also represent n-ary products, so what is
-- the point of this module? The n-ary products below are intended to
-- be used with a fixed n, in which case the nil constructor can be
-- avoided: pairs are represented as pairs (x , y), not as triples
-- (x , y , unit).
module Data.Product.N-ary where
open import Data.Nat
open import Data.Product
open import Data.Unit
open import Data.Vec
open import Function.Inverse
open import Level using (Lift; lift)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
-- N-ary product.
infix 8 _^_
_^_ : ∀ {ℓ} → Set ℓ → ℕ → Set ℓ
A ^ 0 = Lift ⊤
A ^ 1 = A
A ^ suc (suc n) = A × A ^ suc n
-- Conversions.
↔Vec : ∀ {a} {A : Set a} n → A ^ n ↔ Vec A n
↔Vec n = record
{ to = P.→-to-⟶ (toVec n)
; from = P.→-to-⟶ fromVec
; inverse-of = record
{ left-inverse-of = fromVec∘toVec n
; right-inverse-of = toVec∘fromVec
}
}
where
toVec : ∀ {a} {A : Set a} n → A ^ n → Vec A n
toVec 0 (lift tt) = []
toVec 1 x = [ x ]
toVec (suc (suc n)) (x , xs) = x ∷ toVec _ xs
fromVec : ∀ {a} {A : Set a} {n} → Vec A n → A ^ n
fromVec [] = lift tt
fromVec (x ∷ []) = x
fromVec (x ∷ y ∷ xs) = (x , fromVec (y ∷ xs))
fromVec∘toVec : ∀ {a} {A : Set a} n (xs : A ^ n) →
fromVec (toVec n xs) ≡ xs
fromVec∘toVec 0 (lift tt) = P.refl
fromVec∘toVec 1 x = P.refl
fromVec∘toVec 2 (x , y) = P.refl
fromVec∘toVec (suc (suc (suc n))) (x , y , xs) =
P.cong (_,_ x) (fromVec∘toVec (suc (suc n)) (y , xs))
toVec∘fromVec : ∀ {a} {A : Set a} {n} (xs : Vec A n) →
toVec n (fromVec xs) ≡ xs
toVec∘fromVec [] = P.refl
toVec∘fromVec (x ∷ []) = P.refl
toVec∘fromVec (x ∷ y ∷ xs) = P.cong (_∷_ x) (toVec∘fromVec (y ∷ xs))
| {
"alphanum_fraction": 0.4898823529,
"avg_line_length": 31.7164179104,
"ext": "agda",
"hexsha": "b8b4e2815967a178053d0ab56e193b56fa6a26d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Product/N-ary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Product/N-ary.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Product/N-ary.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 755,
"size": 2125
} |
module Properties.Equality where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Contradiction using (¬)
sym : ∀ {A : Set} {a b : A} → (a ≡ b) → (b ≡ a)
sym refl = refl
trans : ∀ {A : Set} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c)
trans refl refl = refl
cong : ∀ {A B : Set} {a b : A} (f : A → B) → (a ≡ b) → (f a ≡ f b)
cong f refl = refl
subst₁ : ∀ {A : Set} {a b : A} (F : A → Set) → (a ≡ b) → (F a) → (F b)
subst₁ F refl x = x
subst₂ : ∀ {A B : Set} {a b : A} {c d : B} (F : A → B → Set) → (a ≡ b) → (c ≡ d) → (F a c) → (F b d)
subst₂ F refl refl x = x
_≢_ : ∀ {A : Set} → A → A → Set
(a ≢ b) = ¬(a ≡ b)
| {
"alphanum_fraction": 0.4727838258,
"avg_line_length": 26.7916666667,
"ext": "agda",
"hexsha": "c027bee31c81d9894e78646bb3c6610508cf1147",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Properties/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Properties/Equality.agda",
"max_line_length": 100,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Properties/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 296,
"size": 643
} |
{-# OPTIONS --without-K #-}
{-
Ribbon is an explicit covering space construction.
This construction is given by Daniel Grayson, Favonia
and Guillaume Brunerie together.
-}
open import HoTT
-- A is the pointed base space.
-- El is intended to be a (group-)set,
module homotopy.RibbonCover {i : ULevel} where
-- The HIT ribbon---reconstructed covering space
private
π1 = fundamental-group
private
module _ (A∙ : Ptd i) {j} (gs : Gset (π1 A∙) j) where
private
A = fst A∙
a = snd A∙
El = Gset.El gs
El-level = Gset.El-level gs
_⊙_ = Gset.act gs
{-
What the following data type definition should be
when we have a proof assistant for HoTT:
data Ribbon (a₂ : A) : Set where
trace : El → a =₀ a₂ → Ribbon a₂
paste : ∀ el loop (p : a =₀ a₂)
→ trace (el ⊙ loop) p == trace el (loop ∙₀ p)
-}
data #Ribbon-aux (a₂ : A) : Type (lmax i j) where
#trace : El → a =₀ a₂ → #Ribbon-aux a₂
data #Ribbon (a₂ : A) : Type (lmax i j) where
#ribbon : #Ribbon-aux a₂ → (Unit → Unit) → #Ribbon a₂
Ribbon : ∀ (A∙ : Ptd i) {j} (gs : Gset (π1 A∙) j)
→ fst A∙ → Type (lmax i j)
Ribbon = #Ribbon
module _ {A∙ : Ptd i} {j} {gs : Gset (fundamental-group A∙) j} {a₂ : fst A∙} where
private
A = fst A∙
a = snd A∙
El = Gset.El gs
El-level = Gset.El-level gs
_⊙_ = Gset.act gs
-- A point in the fiber [a₂].
{-
[e] is a point in the [fiber a], and
[p] is a path to transport [y] to fiber [a₂].
-}
trace : El → a =₀ a₂ → Ribbon A∙ gs a₂
trace el p = #ribbon (#trace el p) _
{-
A loop based at [a] can used as a group action
or for concatination. Both should be equivalent.
-}
postulate -- HIT
paste : ∀ el loop (p : a =₀ a₂)
→ trace (el ⊙ loop) p == trace el (loop ∙₀ p)
{-
Make each fiber a set and cancel all higher structures
due to [paste].
-}
postulate -- HIT
Ribbon-is-set : is-set (Ribbon A∙ gs a₂)
Ribbon-level = Ribbon-is-set
-- Elimination rules.
module RibbonElim {j} {P : Ribbon A∙ gs a₂ → Type j}
(P-level : ∀ {r} → is-set (P r))
(trace* : ∀ el p → P (trace el p))
(paste* : ∀ el loop p
→ trace* (el ⊙ loop) p == trace* el (loop ∙₀ p)
[ P ↓ paste el loop p ]) where
f : Π (Ribbon A∙ gs a₂) P
f = f-aux phantom phantom where
f-aux : Phantom trace* → Phantom paste* → Π (Ribbon A∙ gs a₂) P
f-aux phantom phantom (#ribbon (#trace el p) _) = trace* el p
open RibbonElim public using () renaming (f to Ribbon-elim)
module RibbonRec {j} {P : Type j}
(P-level : is-set P)
(trace* : ∀ el p → P)
(paste* : ∀ el loop p
→ trace* (el ⊙ loop) p == trace* el (loop ∙₀ p)) where
private
module M = RibbonElim P-level trace*
(λ el loop p → ↓-cst-in (paste* el loop p))
f : Ribbon A∙ gs a₂ → P
f = M.f
open RibbonRec public using () renaming (f to Ribbon-rec)
-- This data structure gives a cover.
Ribbon-cover : ∀ (A∙ : Ptd i) {j} (gs : Gset (π1 A∙) j)
→ Cover (fst A∙) (lmax i j)
Ribbon-cover A∙ gs = record
{ Fiber = Ribbon A∙ gs
; Fiber-level = λ a → Ribbon-level
}
trans-trace : ∀ {A : Type i} {a₁} {j}
{gs : Gset (π1 (A , a₁)) j}
{a₂} (q : a₁ == a₂) y p
→ transport (Ribbon (A , a₁) gs) q (trace y p) == trace y (p ∙₀ [ q ])
trans-trace idp y p = ap (trace y) $ ! $ ∙₀-unit-r p
| {
"alphanum_fraction": 0.5310498468,
"avg_line_length": 28.2755905512,
"ext": "agda",
"hexsha": "17d6841f64901235ce0a3a529307d93d3e13cc4e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/RibbonCover.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/RibbonCover.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/RibbonCover.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1231,
"size": 3591
} |
{-# OPTIONS --cubical #-}
module Equality where
import Algebra.FunctionProperties
import Algebra.Structures
open import Cubical.Core.Everything public hiding (module Σ)
open import Data.Empty
open import Data.Nat as ℕ
open import Data.Nat.Properties
open import Data.Product as Σ
open import Data.Unit
open import Function
open import Quotient
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as ♥ public using () renaming (refl to ♥)
open module FunctionProperties {a} {A : Set a} =
Algebra.FunctionProperties {A = A} _≡_
open module Structures {a} {A : Set a} =
Algebra.Structures {A = A} _≡_
coe : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B
coe = subst id
infix 1 _$⃗_
_$⃗_ : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B
_$⃗_ = coe
infix 1 _$⃖_
_$⃖_ : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → B → A
p $⃖ x = sym p $⃗ x
≡-isEquivalence : ∀ {ℓ} {A : Set ℓ} → IsEquivalence {A = A} _≡_
≡-isEquivalence = record
{ refl = refl
; sym = sym
; trans = compPath
}
≡-isPreorder : ∀ {ℓ} {A : Set ℓ} → IsPreorder {A = A} _≡_ _≡_
≡-isPreorder = record
{ isEquivalence = ≡-isEquivalence
; reflexive = id
; trans = compPath
}
module _ {ℓ} {A : Set ℓ} {a b : A} where
⟨_⟩ : a ♥.≡ b → a ≡ b
⟨ ♥ ⟩ = refl
⟪_⟫ : a ≡ b → a ♥.≡ b
⟪_⟫ = J (λ x _ → _ ♥.≡ x) ♥
infixl 5 _≫_
_≫_ : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
_≫_ = compPath
module _ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} {f f′ : A → B} where
happly : ∀ a → f ≡ f′ → f a ≡ f′ a
happly a = cong λ g → g a
congApp : ∀ {a a′} → f ≡ f′ → a ≡ a′ → f a ≡ f′ a′
congApp p q = compPath (happly _ p) (cong f′ q)
cong₂ : ∀
{ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃}
{a a′} {b b′}
(f : A → B → C) →
a ≡ a′ → b ≡ b′ →
f a b ≡ f a′ b′
cong₂ f p q = congApp (cong f p) q
| {
"alphanum_fraction": 0.5636261261,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "6285edc9a85b5fa42131b4a24ece8bf3b40441ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kcsmnt0/numbers",
"max_forks_repo_path": "src/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kcsmnt0/numbers",
"max_issues_repo_path": "src/Equality.agda",
"max_line_length": 91,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kcsmnt0/numbers",
"max_stars_repo_path": "src/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z",
"num_tokens": 800,
"size": 1776
} |
open import Level
module ordinal where
open import logic
open import nat
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Data.Empty
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Definitions
open import Data.Nat.Properties
open import Relation.Nullary
open import Relation.Binary.Core
----
--
-- Countable Ordinals
--
data OrdinalD {n : Level} : (lv : Nat) → Set n where
Φ : (lv : Nat) → OrdinalD lv
OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv
record Ordinal {n : Level} : Set n where
constructor ordinal
field
lv : Nat
ord : OrdinalD {n} lv
data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where
Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x
s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y
open Ordinal
_o<_ : {n : Level} ( x y : Ordinal ) → Set n
_o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y )
s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x
s<refl {n} {lv} {Φ lv} = Φ<
s<refl {n} {lv} {OSuc lv x} = s< s<refl
trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥
trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t
trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< ()
d<→lv : {n : Level} {x y : Ordinal {n}} → ord x d< ord y → lv x ≡ lv y
d<→lv Φ< = refl
d<→lv (s< lt) = refl
o∅ : {n : Level} → Ordinal {n}
o∅ = record { lv = Zero ; ord = Φ Zero }
open import Relation.Binary.HeterogeneousEquality using (_≅_;refl)
ordinal-cong : {n : Level} {x y : Ordinal {n}} →
lv x ≡ lv y → ord x ≅ ord y → x ≡ y
ordinal-cong refl refl = refl
≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥
≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t
trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥
trio<≡ refl = ≡→¬d<
trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥
trio>≡ refl = ≡→¬d<
triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} )
triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< )
triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ<
triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y
triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) )
triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d<
triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c)
osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n}
osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox }
<-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x
<-osuc {n} {record { lv = lx ; ord = Φ .lx }} = case2 Φ<
<-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl )
o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy → ox o< oy → ⊥
o<¬≡ {_} {ox} {ox} refl (case1 lt) = =→¬< lt
o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt
¬x<0 : {n : Level} → { x : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} )
¬x<0 {n} {x} (case1 ())
¬x<0 {n} {x} (case2 ())
o<> : {n : Level} → {x y : Ordinal {n} } → y o< x → x o< y → ⊥
o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<> x₁ x₂
o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁
o<> {n} {x} {y} (case2 x₁) (case1 x₂) = nat-≡< (sym (d<→lv x₁)) x₂
o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) (case2 ())
o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y<x)) (case2 (s< x<y)) =
o<> (case2 y<x) (case2 x<y)
orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z
orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ<
orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z )
osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a → (x ≡ a ) ∨ (x o< a)
osuc-≡< {n} {a} {x} (case1 lt) = case2 (case1 lt)
osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case1 refl
osuc-≡< {n} {record { lv = lv₁ ; ord = OSuc .lv₁ ord₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case2 (case2 Φ<)
osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< ()))
osuc-≡< {n} {record { lv = la ; ord = OSuc la oa }} {record { lv = la ; ord = (OSuc la ox) }} (case2 (s< lt)) with
osuc-≡< {n} {record { lv = la ; ord = oa }} {record { lv = la ; ord = ox }} (case2 lt )
... | case1 refl = case1 refl
... | case2 (case2 x) = case2 (case2( s< x) )
... | case2 (case1 x) = ⊥-elim (¬a≤a x)
osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x → x o< y → ⊥
osuc-< {n} {x} {y} y<ox x<y with osuc-≡< y<ox
osuc-< {n} {x} {x} y<ox (case1 x₁) | case1 refl = ⊥-elim (¬a≤a x₁)
osuc-< {n} {x} {x} (case1 x₂) (case2 x₁) | case1 refl = ⊥-elim (¬a≤a x₂)
osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d< x₁
osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁
osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂
osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x
ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z
ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂
... | refl = case1 x₁
ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁
... | refl = case1 x₂
ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
... | refl | refl = case2 ( orddtrans x₁ x₂ )
trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_
trio< a b with <-cmp (lv a) (lv b)
trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
lemma1 (case1 x) = ¬c x
lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) a₁ )
trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where
lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b)
lemma1 (case1 x) = ¬a x
lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) c )
trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b )
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where
lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b
lemma1 refl = refl
lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x)
lemma2 (case1 x) = ¬a x
lemma2 (case2 x) = trio<> x a
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where
lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b
lemma1 refl = refl
lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b)
lemma2 (case1 x) = ¬a x
lemma2 (case2 x) = trio<> x c
trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where
lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b)
lemma1 (case1 x) = ¬a x
lemma1 (case2 x) = ≡→¬d< x
open _∧_
TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m }
→ ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) )
→ ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x) → ψ y ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) )
→ ∀ (x : Ordinal) → ψ x
TransFinite {n} {m} {ψ} caseΦ caseOSuc x = proj1 (TransFinite1 (lv x) (ord x) ) where
TransFinite1 : (lx : Nat) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx ox → ψ x ) )
TransFinite1 Zero (Φ 0) = ⟪ caseΦ Zero lemma , lemma1 ⟫ where
lemma : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
lemma x (case1 ())
lemma x (case2 ())
lemma1 : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
lemma1 x (case1 ())
lemma1 x (case2 ())
TransFinite1 (Suc lx) (Φ (Suc lx)) = ⟪ caseΦ (Suc lx) (λ x → lemma (lv x) (ord x)) , (λ x → lemma (lv x) (ord x)) ⟫ where
lemma0 : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy o< ordinal lx (Φ lx) → ψ (ordinal ly oy)
lemma0 ly oy lt = proj2 ( TransFinite1 lx (Φ lx) ) (ordinal ly oy) lt
lemma : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy o< ordinal (Suc lx) (Φ (Suc lx)) → ψ (ordinal ly oy)
lemma lx1 ox1 (case1 lt) with <-∨ lt
lemma lx (Φ lx) (case1 lt) | case1 refl = proj1 ( TransFinite1 lx (Φ lx) )
lemma lx (Φ lx) (case1 lt) | case2 lt1 = lemma0 lx (Φ lx) (case1 lt1)
lemma lx (OSuc lx ox1) (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx ox1) → ψ y
lemma2 y lt1 with osuc-≡< lt1
lemma2 y lt1 | case1 refl = lemma lx ox1 (case1 a<sa)
lemma2 y lt1 | case2 t = proj2 (TransFinite1 lx ox1) y t
lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx1) ∨ (ord y d< OSuc lx1 ox1) → ψ y
lemma2 y lt2 with osuc-≡< lt2
lemma2 y lt2 | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
lemma2 y lt2 | case2 (case1 lt3) = proj2 (TransFinite1 lx (Φ lx)) y (case1 (<-trans lt3 lt1 ))
lemma2 y lt2 | case2 (case2 lt3) with d<→lv lt3
... | refl = proj2 (TransFinite1 lx (Φ lx)) y (case1 lt1)
TransFinite1 lx (OSuc lx ox) = ⟪ caseOSuc lx ox lemma , lemma ⟫ where
lemma : (y : Ordinal) → y o< ordinal lx (OSuc lx ox) → ψ y
lemma y lt with osuc-≡< lt
lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox )
lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1
-- record CountableOrdinal {n : Level} : Set (suc (suc n)) where
-- field
-- ctl→ : Nat → Ordinal {suc n}
-- ctl← : Ordinal → Nat
-- ctl-iso→ : { x : Ordinal } → ctl→ (ctl← x ) ≡ x
-- ctl-iso← : { x : Nat } → ctl← (ctl→ x ) ≡ x
--
-- is-C-Ordinal : {n : Level} → CountableOrdinal {n}
-- is-C-Ordinal {n} = record {
-- ctl→ = {!!}
-- ; ctl← = λ x → TransFinite {n} (λ lx lt → Zero ) ctl01 x
-- ; ctl-iso→ = {!!}
-- ; ctl-iso← = {!!}
-- } where
-- ctl01 : (lx : Nat) (x : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x) → Nat) → Nat
-- ctl01 Zero (Φ Zero) prev = Zero
-- ctl01 Zero (OSuc Zero x) prev = Suc ( prev (ordinal Zero x) (ordtrans <-osuc <-osuc ))
-- ctl01 (Suc lx) (Φ (Suc lx)) prev = Suc ( prev (ordinal lx {!!}) {!!})
-- ctl01 (Suc lx) (OSuc (Suc lx) x) prev = Suc ( prev (ordinal (Suc lx) x) (ordtrans <-osuc <-osuc ))
open import Ordinals
C-Ordinal : {n : Level} → Ordinals {suc n}
C-Ordinal {n} = record {
Ordinal = Ordinal {suc n}
; o∅ = o∅
; osuc = osuc
; _o<_ = _o<_
; next = next
; isOrdinal = record {
ordtrans = ordtrans
; trio< = trio<
; ¬x<0 = ¬x<0
; <-osuc = <-osuc
; osuc-≡< = osuc-≡<
; TransFinite = TransFinite2
; Oprev-p = Oprev-p
} ;
isNext = record {
x<nx = x<nx
; osuc<nx = λ {x} {y} → osuc<nx {x} {y}
; ¬nx<nx = ¬nx<nx
}
} where
next : Ordinal {suc n} → Ordinal {suc n}
next (ordinal lv ord) = ordinal (Suc lv) (Φ (Suc lv))
x<nx : { y : Ordinal } → (y o< next y )
x<nx = case1 a<sa
osuc<nx : { x y : Ordinal } → x o< next y → osuc x o< next y
osuc<nx (case1 lt) = case1 lt
¬nx<nx : {x y : Ordinal} → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ (x ≡ osuc z))
¬nx<nx {x} {y} = lemma2 x where
lemma2 : (x : Ordinal) → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ x ≡ osuc z)
lemma2 (ordinal Zero (Φ 0)) (case2 ()) (case1 (s≤s z≤n)) not
lemma2 (ordinal Zero (OSuc 0 dx)) (case2 Φ<) (case1 (s≤s z≤n)) not = not _ refl
lemma2 (ordinal Zero (OSuc 0 dx)) (case2 (s< x)) (case1 (s≤s z≤n)) not = not _ refl
lemma2 (ordinal (Suc lx) (OSuc (Suc lx) ox)) y<x (case1 (s≤s (s≤s lt))) not = not _ refl
lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where
lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥
lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n
open Oprev
Oprev-p : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n}) osuc x )
Oprev-p (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where
lemma : (x : Ordinal) → osuc x ≡ (ordinal lv (Φ lv)) → ⊥
lemma x ()
Oprev-p (ordinal lv (OSuc lv ox)) = yes record { oprev = ordinal lv ox ; oprev=x = refl }
ord1 : Set (suc n)
ord1 = Ordinal {suc n}
TransFinite2 : { ψ : ord1 → Set (suc (suc n)) }
→ ( (x : ord1) → ( (y : ord1 ) → y o< x → ψ y ) → ψ x )
→ ∀ (x : ord1) → ψ x
TransFinite2 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where
caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) →
ψ (record { lv = lx ; ord = Φ lx })
caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev
caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) →
ψ (record { lv = lx ; ord = OSuc lx x₁ })
caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev
| {
"alphanum_fraction": 0.5042452151,
"avg_line_length": 49.109540636,
"ext": "agda",
"hexsha": "e190185e8640ef16a1547a379461a39ee2cd0bdf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/ordinal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/ordinal.agda",
"max_line_length": 155,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/ordinal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 6174,
"size": 13898
} |
{-# OPTIONS --sized-types #-}
-- {-# OPTIONS -v tc.size.solve:20 -v tc.decl.ax:10 #-}
module SizeUnsolvedConstraintsInTypeSignature where
open import Common.Size
data Nat : (i : Size) -> Set where
Z : {i : Size} -> Nat (↑ i)
S : {i : Size} -> Nat i → Nat (↑ i)
one1 : (i : Size) → Nat (↑ (↑ i))
one1 i = S Z
one2 : (i : Size) → Nat (↑ (↑ (↑ i)))
one2 i = S Z
postulate
_≡_ : {A : Set} → A → A → Set
works : (i : Size) → one2 i ≡ one1 i
bug : (i : Size) → one1 i ≡ one2 i
-- bug caused an interal error due to absense of range info
-- should not print a proper error message (or better, work!)
| {
"alphanum_fraction": 0.567961165,
"avg_line_length": 24.72,
"ext": "agda",
"hexsha": "8bab2a9e7e325e146c3f1f0706d36278344f3f3a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/SizeUnsolvedConstraintsInTypeSignature.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/SizeUnsolvedConstraintsInTypeSignature.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/SizeUnsolvedConstraintsInTypeSignature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 224,
"size": 618
} |
module Section3 where
open import Section1 public
-- 3. The calculus of proof trees
-- ==============================
--
-- We define the set of proof trees of implicational logic in the ordinary style à la Church,
-- except that we use explicit substitutions.
-- 3.1. Definition of types
-- ------------------------
--
-- The types we have are base type and function types. The set of types `𝒯 : Set` is introduced
-- by:
infixr 7 _⊃_
data 𝒯 : Set where
• : 𝒯
_⊃_ : 𝒯 → 𝒯 → 𝒯
-- Types are denoted by `A`, `B`. (…)
--
-- We write `•` for the base type and `A ⊃ B` for the function type.
module _ where
inj₁⊃ : ∀ {A A′ B B′} → A ⊃ B ≡ A′ ⊃ B′ → A ≡ A′
inj₁⊃ refl = refl
inj₂⊃ : ∀ {A A′ B B′} → A ⊃ B ≡ A′ ⊃ B′ → B ≡ B′
inj₂⊃ refl = refl
_≟𝒯_ : (A A′ : 𝒯) → Dec (A ≡ A′)
• ≟𝒯 • = yes refl
• ≟𝒯 (A′ ⊃ B′) = no λ ()
(A ⊃ B) ≟𝒯 • = no λ ()
(A ⊃ B) ≟𝒯 (A′ ⊃ B′) with A ≟𝒯 A′ | B ≟𝒯 B′
… | yes refl | yes refl = yes refl
… | yes refl | no B≢B′ = no (λ p → inj₂⊃ p ↯ B≢B′)
… | no A≢A′ | _ = no (λ p → inj₁⊃ p ↯ A≢A′)
-- 3.2. Definition of contexts
-- ---------------------------
--
-- Suppose a countably infinite set, `Name`, with names together with a decidable equality on it.
-- The set of contexts `𝒞` is mutually defined with a boolean-valued function `fresh` which describes
-- when a name is fresh in a context. (…)
--
-- Ordinarily, the freshness condition is written as a side-condition, but since we are to
-- formalise the proof trees, this information must be represented, too.
--
-- We write `[]` for the empty context and `[ Γ , x ∷ A ]` for adding an element to a context,
-- hence when we write `[ Γ , x ∷ A ]`
-- it is implicit that we also have a proof that `x` is fresh in `Γ` (when `[ Γ , x ∷ A ]` occurs in the
-- conclusion of a statement, then it is implicit that `T (fresh x Γ)` is an assumption.) The
-- function `fresh` is defined by induction on the context as:
mutual
data 𝒞 : Set where
[] : 𝒞
[_,_∷_] : (Γ : 𝒞) (x : Name) {{_ : T (fresh x Γ)}} → 𝒯 → 𝒞
fresh : Name → 𝒞 → Bool
fresh x [] = true
fresh x [ Γ , y ∷ A ] = and (x ≠ y) (fresh x Γ)
-- We use `Γ`, `Δ` and `Θ` for contexts.
--
-- The predicate `Γ ∋ x ∷ A` is true when a name with its type occurs in a context.
--
-- The introduction rules are:
data _∋_∷_ : 𝒞 → Name → 𝒯 → Set where
zero : ∀ {Γ A x} {{_ : T (fresh x Γ)}} →
[ Γ , x ∷ A ] ∋ x ∷ A
suc : ∀ {Γ A B x y} {{_ : T (fresh y Γ)}} →
Γ ∋ x ∷ A →
[ Γ , y ∷ B ] ∋ x ∷ A
module _ where
injsuc : ∀ {Γ A B x y} {{_ : T (fresh y Γ)}} {i i′ : Γ ∋ x ∷ A} →
suc {B = B} {y = y} i ≡ suc i′ → i ≡ i′
injsuc refl = refl
_≟∋_ : ∀ {Γ A x} → (i i′ : Γ ∋ x ∷ A) → Dec (i ≡ i′)
zero ≟∋ zero = yes refl
zero ≟∋ suc i′ = no (λ ())
suc i ≟∋ zero = no (λ ())
suc i ≟∋ suc i′ with i ≟∋ i′
… | yes refl = yes refl
… | no i≢i′ = no (λ p → injsuc p ↯ i≢i′)
module _ where
_∌_∷_ : 𝒞 → Name → 𝒯 → Set
Γ ∌ x ∷ A = ¬ (Γ ∋ x ∷ A)
fresh→∌ : ∀ {x Γ A} {{_ : T (fresh x Γ)}} → Γ ∌ x ∷ A
fresh→∌ {x} {{φ}} zero with x ≟ x
fresh→∌ {x} {{()}} zero | yes refl
fresh→∌ {x} {{φ}} zero | no x≢x = refl ↯ x≢x
fresh→∌ {x} {{φ}} (suc {y = y} i) with x ≟ y
fresh→∌ {x} {{()}} (suc {y = .x} i) | yes refl
fresh→∌ {x} {{φ}} (suc {y = y} i) | no x≢y = i ↯ fresh→∌
freshlem₁ : ∀ {b′} → (x : Name) → ¬ (T (and (x ≠ x) b′))
freshlem₁ x p with x ≟ x
… | yes refl = p
… | no x≢x = refl ↯ x≢x
freshlem₂ : ∀ {b′} → (x {y} : Name) → T (and (x ≠ y) b′) → T b′
freshlem₂ x {y} p with x ≟ y
… | yes refl = elim⊥ p
… | no x≢y = p
-- We also define the relation that describes when a context contains another.
--
-- We use the notational convention `Γ ⊇ Δ` for `Γ` being greater than `Δ`.
-- The set `_⊇_` has the constructors:
infix 3 _⊇_
data _⊇_ : 𝒞 → 𝒞 → Set where
done : ∀ {Γ} →
Γ ⊇ []
step : ∀ {Γ Δ A x} {{_ : T (fresh x Δ)}} →
Γ ⊇ Δ → Γ ∋ x ∷ A →
Γ ⊇ [ Δ , x ∷ A ]
module _ where
inj₁step : ∀ {Γ Δ A x} {{_ : T (fresh x Δ)}} {c c′ : Γ ⊇ Δ} {i i′ : Γ ∋ x ∷ A} →
step c i ≡ step c′ i′ → c ≡ c′
inj₁step refl = refl
inj₂step : ∀ {Γ Δ A x} {{_ : T (fresh x Δ)}} {c c′ : Γ ⊇ Δ} {i i′ : Γ ∋ x ∷ A} →
step c i ≡ step c′ i′ → i ≡ i′
inj₂step refl = refl
_≟⊇_ : ∀ {Γ Δ} → (c c′ : Γ ⊇ Δ) → Dec (c ≡ c′)
done ≟⊇ done = yes refl
step c i ≟⊇ step c′ i′ with c ≟⊇ c′ | i ≟∋ i′
… | yes refl | yes refl = yes refl
… | yes refl | no i≢i′ = no (λ p → inj₂step p ↯ i≢i′)
… | no c≢c′ | _ = no (λ p → inj₁step p ↯ c≢c′)
-- The following lemmas are easy to prove:
-- Lemma 1.
ext⊇ : ∀ {Δ Γ} → (∀ {A x} → Δ ∋ x ∷ A → Γ ∋ x ∷ A) → Γ ⊇ Δ
ext⊇ {[]} f = done
ext⊇ {[ Δ , x ∷ A ]} f = step (ext⊇ (λ i → f (suc i))) (f zero)
-- Lemma 2.
module _ where
↑⟨_⟩∋ : ∀ {Γ Δ A x} → Δ ⊇ Γ → Γ ∋ x ∷ A → Δ ∋ x ∷ A
↑⟨ done ⟩∋ ()
↑⟨ step c i ⟩∋ zero = i
↑⟨ step c i ⟩∋ (suc j) = ↑⟨ c ⟩∋ j
instance
raise∋ : ∀ {A x} → Raiseable (_∋ x ∷ A)
raise∋ = record { ↑⟨_⟩ = ↑⟨_⟩∋ }
-- Lemma 3.
refl⊇ : ∀ {Γ} → Γ ⊇ Γ
refl⊇ = ext⊇ id
-- Lemma 4.
module _ where
_○_ : ∀ {Γ Δ Θ} → Γ ⊇ Δ → Θ ⊇ Γ → Θ ⊇ Δ
c ○ c′ = ext⊇ (λ i → ↑⟨ c′ ⟩ (↑⟨ c ⟩ i))
trans⊇ : ∀ {Γ Δ Θ} → Θ ⊇ Γ → Γ ⊇ Δ → Θ ⊇ Δ
trans⊇ = flip _○_
-- Lemma 5.
weak⊇ : ∀ {Γ A x} {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊇ Γ
weak⊇ = ext⊇ suc
-- Lemma 6.
uniq∋ : ∀ {Γ A x} → (i i′ : Γ ∋ x ∷ A) → i ≡ i′
uniq∋ zero zero = refl
uniq∋ zero (suc i′) = i′ ↯ fresh→∌
uniq∋ (suc i) zero = i ↯ fresh→∌
uniq∋ (suc i) (suc i′) = cong suc (uniq∋ i i′)
-- Lemma 7.
uniq⊇ : ∀ {Γ Δ} → (c c′ : Γ ⊇ Δ) → c ≡ c′
uniq⊇ done done = refl
uniq⊇ (step c i) (step c′ i′) = cong² step (uniq⊇ c c′) (uniq∋ i i′)
-- `ext⊇`, `↑⟨_⟩∋` and `uniq⊇` are proven by induction on `Δ` and `uniq∋` is proven by
-- induction on `Γ`. `refl⊇` and `weak⊇` are direct consequences of `ext⊇` and for `trans⊇`
-- we also use `↑⟨_⟩∋`. (…)
--
-- The last two lemmas may seem slightly strange: they are used for guaranteeing independence
-- of the proofs of `_∋_∷_` and `_⊇_`. For example, `uniq∋` says that if it can be shown that
-- `x ∷ A` occurs in a context `Γ`, then there is a unique proof of this fact. The need to prove
-- independence of proofs might point to a problem in using type theory for formalising proofs. On
-- the other hand, as we shall see, proof objects can also be useful: the present formalisation
-- heavily uses the possibilities to perform case analysis on proof objects, which reduces the
-- number of cases to consider.
module _ where
id₁○ : ∀ {Γ Δ} → (c : Γ ⊇ Γ) (c′ : Δ ⊇ Γ) → c ○ c′ ≡ c′
id₁○ c c′ = uniq⊇ (c ○ c′) c′
id₂○ : ∀ {Γ Δ} → (c : Δ ⊇ Γ) (c′ : Δ ⊇ Δ) → c ○ c′ ≡ c
id₂○ c c′ = uniq⊇ (c ○ c′) c
assoc○ : ∀ {Γ Δ Θ Ω} → (c : Δ ⊇ Γ) (c′ : Θ ⊇ Δ) (c″ : Ω ⊇ Θ) →
c ○ (c′ ○ c″) ≡ (c ○ c′) ○ c″
assoc○ c c′ c″ = uniq⊇ (c ○ (c′ ○ c″)) ((c ○ c′) ○ c″)
comp○ : ∀ {Γ Δ Θ} → (c : Δ ⊇ Γ) (c′ : Θ ⊇ Δ) (c″ : Θ ⊇ Γ) →
c ○ c′ ≡ c″
comp○ c c′ c″ = uniq⊇ (c ○ c′) c″
-- 3.3. Definition of proof trees
-- ------------------------------
--
-- Proof trees and substitutions are mutually inductively defined. (…)
--
-- We use the notational convention `Γ ⊢ A` and `Δ ⋙ Γ` for a proof of `A` in context `Γ` and
-- a substitution of `Γ` by `Δ`, respectively.
--
-- A substitution of type `Δ ⋙ Γ` intuitively is a list that associates to each `x ∷ A` in `Γ` a unique
-- proof tree of type `Δ ⊢ A`.
--
-- The proof trees are defined by the following rules.
--
-- We recall that hidden assumptions in the definition above are implicitly universally defined
-- and that the notation `[ Γ , x ∷ A ]` implies that `x` is fresh in `Γ`. (…)
--
-- In the definition of variables we can see that a proof of occurrence is part of the proof
-- tree. The advantage is that we can do case-analysis on this proof to find out where in the
-- context `x ∷ A` occurs. The disadvantage is that we need to prove that two variables are the
-- same even if they have two possibly different proofs of occurrence of `x ∷ A` (by Lemma 6 we
-- know that the proofs are the same).
mutual
infix 3 _⊢_
data _⊢_ : 𝒞 → 𝒯 → Set where
ν : ∀ {Γ A} →
(x : Name) → Γ ∋ x ∷ A →
Γ ⊢ A
ƛ : ∀ {Γ A B} →
(x : Name) {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊢ B →
Γ ⊢ A ⊃ B
_∙_ : ∀ {Γ A B} →
Γ ⊢ A ⊃ B → Γ ⊢ A →
Γ ⊢ B
_▶_ : ∀ {Γ Δ A} →
Γ ⊢ A → Δ ⋙ Γ →
Δ ⊢ A
infix 3 _⋙_
data _⋙_ : 𝒞 → 𝒞 → Set where
π⟨_⟩ : ∀ {Γ Δ} →
Δ ⊇ Γ →
Δ ⋙ Γ
_●_ : ∀ {Γ Δ Θ} →
Γ ⋙ Δ → Θ ⋙ Γ →
Θ ⋙ Δ
[_,_≔_] : ∀ {Γ Δ A} →
Δ ⋙ Γ → (x : Name) {{_ : T (fresh x Γ)}} → Δ ⊢ A →
Δ ⋙ [ Γ , x ∷ A ]
-- Explicit substitutions are built from a projection map, update and composition (see below
-- for a discussion on the projection map).
--
-- We use the following notational conventions:
--
-- - `ν x` for referencing the occurrence `x`, where `x : Γ ∋ x ∷ A`
-- - `M ▶ γ` for applying the substitution `γ` to the term `M`
-- - `ƛ x M` for abstracting the occurrence `x` from the term `M`, where `M : [ Γ , x ∷ A ] ⊢ B`
-- - `M ∙ N` for applying the term `M` to the term `N`
-- - `π⟨ c ⟩` for projecting the inclusion `c` as a substitution
-- - `[ γ , x ≔ M ]` for updating the substitution `γ` with the term `M` for the occurrence `x`
-- - `γ ● δ` for composing the substitution `δ` with the substitution `γ`
--
-- Proof trees and substitutions are named `M, N` and `γ, δ, θ` respectively.
--
-- The substitution `π⟨_⟩` is not a standard primitive for explicit substitutions. Often one rather
-- has an identity substitution (in `Γ ⋙ Γ`) [1, 13] or the empty substitution (in `Γ ⋙ []`) [5].
-- Instead we have taken `π⟨_⟩` as primitive. If `c : Γ ⊇ Γ`, then `π⟨ c ⟩` is the identity substitution and
-- if `c : Γ ⊇ []`, then `π⟨ c ⟩` is the empty substitution. Abadi et al. [1] use a substitution `↑` that
-- corresponds to a shift on substitutions; the same substitution is here defined as `π⟨ c ⟩` where
-- `c : [ Γ , x ∷ A ] ⊇ Γ`. In Martin-Löf’s substitution calculus [13, 20] we have as primitives also
-- thinning rules (i.e., if a term is well-typed in a given context, then it is also well-typed in a
-- larger context and likewise for substitutions.) Here, thinning is achieved using `π⟨_⟩`, since if,
-- for example, `M : Γ ⊢ A` and `c : Δ ⊇ Γ`, then `M ▶ π⟨ c ⟩ : Δ ⊢ A`.
--
-- The first version of our work used combinators for the thinning rules, since we wanted it to
-- be a start for a complete mechanical analysis of Martin-Löf’s substitution calculus [13, 20].
-- The set of conversion rules we obtained using these combinators suggested the use of `π⟨_⟩`,
-- which gives fewer conversion rules. There might be other advantages in using `π⟨_⟩`: if a proof
-- tree is of the form `M ▶ π⟨_⟩` we know which are the possible free variables of the term `M`,
-- information that might be used in a computation.
module _ where
↑⟨_⟩⊢ : ∀ {Γ Δ A} → Δ ⊇ Γ → Γ ⊢ A → Δ ⊢ A
↑⟨ c ⟩⊢ M = M ▶ π⟨ c ⟩
↑⟨_⟩⋙ : ∀ {Γ Δ Θ} → Δ ⊇ Γ → Γ ⋙ Θ → Δ ⋙ Θ
↑⟨ c ⟩⋙ δ = δ ● π⟨ c ⟩
↓⟨_⟩⋙ : ∀ {Γ Δ Θ} → Δ ⊇ Γ → Θ ⋙ Δ → Θ ⋙ Γ
↓⟨ c ⟩⋙ δ = π⟨ c ⟩ ● δ
refl⋙ : ∀ {Γ} → Γ ⋙ Γ
refl⋙ = π⟨ refl⊇ ⟩
trans⋙ : ∀ {Γ Δ Θ} → Θ ⋙ Γ → Γ ⋙ Δ → Θ ⋙ Δ
trans⋙ = flip _●_
weak⋙ : ∀ {Γ A x} {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⋙ Γ
weak⋙ = π⟨ weak⊇ ⟩
instance
raise⊢ : ∀ {A} → Raiseable (_⊢ A)
raise⊢ = record { ↑⟨_⟩ = ↑⟨_⟩⊢ }
raise⋙ : ∀ {Γ} → Raiseable (_⋙ Γ)
raise⋙ = record { ↑⟨_⟩ = ↑⟨_⟩⋙ }
lower⋙ : ∀ {Δ} → Lowerable (Δ ⋙_)
lower⋙ = record { ↓⟨_⟩ = ↓⟨_⟩⋙ }
-- 3.4. Convertibility of proof trees
-- ----------------------------------
--
-- The rules for conversion between proof trees and substitutions are inductively defined.
--
-- We use the notational convention `M ≅ N` and `γ ≅ₛ δ` for convertibility on proof trees and
-- on substitutions respectively. (…)
--
-- The conversion rules for proof trees are the reflexivity, symmetry, transitivity, congruence
-- rules and the following rules:
mutual
infix 3 _≅_
data _≅_ : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A → Set where
refl≅ : ∀ {Γ A} {M : Γ ⊢ A} →
M ≅ M
sym≅ : ∀ {Γ A} {M M′ : Γ ⊢ A} →
M ≅ M′ →
M′ ≅ M
trans≅ : ∀ {Γ A} {M M′ M″ : Γ ⊢ A} →
M ≅ M′ → M′ ≅ M″ →
M ≅ M″
congƛ≅ : ∀ {Γ A B x} {{_ : T (fresh x Γ)}} {M M′ : [ Γ , x ∷ A ] ⊢ B} →
M ≅ M′ →
ƛ x M ≅ ƛ x M′
cong∙≅ : ∀ {Γ A B} {M M′ : Γ ⊢ A ⊃ B} {N N′ : Γ ⊢ A} →
M ≅ M′ → N ≅ N′ →
M ∙ N ≅ M′ ∙ N′
cong▶≅ : ∀ {Γ Δ A} {M M′ : Γ ⊢ A} {γ γ′ : Δ ⋙ Γ} →
M ≅ M′ → γ ≅ₛ γ′ →
M ▶ γ ≅ M′ ▶ γ′
conv₁≅ : ∀ {Γ Δ A B x} {{_ : T (fresh x Γ)}} →
(M : [ Γ , x ∷ A ] ⊢ B) (N : Δ ⊢ A) (γ : Δ ⋙ Γ) →
(ƛ x M ▶ γ) ∙ N ≅ M ▶ [ γ , x ≔ N ]
conv₂≅ : ∀ {Γ A B x} {{_ : T (fresh x Γ)}} →
(c : [ Γ , x ∷ A ] ⊇ Γ) (M : Γ ⊢ A ⊃ B) →
M ≅ ƛ x ((M ▶ π⟨ c ⟩) ∙ ν x zero)
conv₃≅ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} →
(M : Δ ⊢ A) (γ : Δ ⋙ Γ) →
ν x zero ▶ [ γ , x ≔ M ] ≅ M
conv₄≅ : ∀ {Γ Δ A x} →
(c : Δ ⊇ Γ) (i : Γ ∋ x ∷ A) (j : Δ ∋ x ∷ A) →
ν x i ▶ π⟨ c ⟩ ≅ ν x j
conv₅≅ : ∀ {Γ A} →
(c : Γ ⊇ Γ) (M : Γ ⊢ A) →
M ▶ π⟨ c ⟩ ≅ M
conv₆≅ : ∀ {Γ Δ A B} →
(M : Γ ⊢ A ⊃ B) (N : Γ ⊢ A) (γ : Δ ⋙ Γ) →
(M ∙ N) ▶ γ ≅ (M ▶ γ) ∙ (N ▶ γ)
conv₇≅ : ∀ {Γ Δ Θ A} →
(M : Γ ⊢ A) (γ : Δ ⋙ Γ) (δ : Θ ⋙ Δ) →
(M ▶ γ) ▶ δ ≅ M ▶ (γ ● δ)
infix 3 _≅ₛ_
data _≅ₛ_ : ∀ {Γ Δ} → Δ ⋙ Γ → Δ ⋙ Γ → Set where
refl≅ₛ : ∀ {Γ Δ} {γ : Δ ⋙ Γ} →
γ ≅ₛ γ
sym≅ₛ : ∀ {Γ Δ} {γ γ′ : Δ ⋙ Γ} →
γ ≅ₛ γ′ →
γ′ ≅ₛ γ
trans≅ₛ : ∀ {Γ Δ} {γ γ′ γ″ : Δ ⋙ Γ} →
γ ≅ₛ γ′ → γ′ ≅ₛ γ″ →
γ ≅ₛ γ″
cong●≅ₛ : ∀ {Γ Δ Θ} {γ γ′ : Δ ⋙ Γ} {δ δ′ : Θ ⋙ Δ} →
γ ≅ₛ γ′ → δ ≅ₛ δ′ →
γ ● δ ≅ₛ γ′ ● δ′
cong≔≅ₛ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} {γ γ′ : Δ ⋙ Γ} {M M′ : Δ ⊢ A} →
γ ≅ₛ γ′ → M ≅ M′ →
[ γ , x ≔ M ] ≅ₛ [ γ′ , x ≔ M′ ]
conv₁≅ₛ : ∀ {Γ Δ Θ Ω} →
(γ : Δ ⋙ Γ) (δ : Θ ⋙ Δ) (θ : Ω ⋙ Θ) →
(γ ● δ) ● θ ≅ₛ γ ● (δ ● θ)
conv₂≅ₛ : ∀ {Γ Δ Θ A x} {{_ : T (fresh x Γ)}} →
(M : Δ ⊢ A) (γ : Δ ⋙ Γ) (δ : Θ ⋙ Δ) →
[ γ , x ≔ M ] ● δ ≅ₛ [ γ ● δ , x ≔ M ▶ δ ]
conv₃≅ₛ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} →
(c : [ Γ , x ∷ A ] ⊇ Γ) (M : Δ ⊢ A) (γ : Δ ⋙ Γ) →
π⟨ c ⟩ ● [ γ , x ≔ M ] ≅ₛ γ
conv₄≅ₛ : ∀ {Γ Δ Θ} →
(c : Θ ⊇ Γ) (c′ : Δ ⊇ Γ) (c″ : Θ ⊇ Δ) →
π⟨ c′ ⟩ ● π⟨ c″ ⟩ ≅ₛ π⟨ c ⟩
conv₅≅ₛ : ∀ {Γ Δ} →
(c : Δ ⊇ Δ) (γ : Δ ⋙ Γ) →
γ ● π⟨ c ⟩ ≅ₛ γ
conv₆≅ₛ : ∀ {Γ} →
(c : Γ ⊇ []) (γ : Γ ⋙ []) →
γ ≅ₛ π⟨ c ⟩
conv₇≅ₛ : ∀ {Γ Δ A x} {{_ : T (fresh x Γ)}} →
(c : [ Γ , x ∷ A ] ⊇ Γ) (γ : Δ ⋙ [ Γ , x ∷ A ]) (i : [ Γ , x ∷ A ] ∋ x ∷ A) →
γ ≅ₛ [ π⟨ c ⟩ ● γ , x ≔ ν x i ▶ γ ]
-- The first two `conv≅` rules correspond to the ordinary β- and η-rules, the next three define the effect
-- of substitutions and the last two rules can be seen as the correspondence of the η-rule for
-- substitutions. The remaining `conv≅ₛ` rules define how the substitutions distribute.
module _ where
≡→≅ : ∀ {Γ A} {M M′ : Γ ⊢ A} → M ≡ M′ → M ≅ M′
≡→≅ refl = refl≅
module ≅-Reasoning where
infix 1 begin_
begin_ : ∀ {Γ A} {M M′ : Γ ⊢ A} → M ≅ M′ → M ≅ M′
begin p = p
infixr 2 _≅⟨⟩_
_≅⟨⟩_ : ∀ {Γ A} (M {M′} : Γ ⊢ A) → M ≅ M′ → M ≅ M′
M ≅⟨⟩ p = p
infixr 2 _≅⟨_⟩_
_≅⟨_⟩_ : ∀ {Γ A} (M {M′ M″} : Γ ⊢ A) → M ≅ M′ → M′ ≅ M″ → M ≅ M″
M ≅⟨ p ⟩ p′ = trans≅ p p′
infixr 2 _≡⟨⟩_
_≡⟨⟩_ : ∀ {Γ A} (M {M′} : Γ ⊢ A) → M ≅ M′ → M ≅ M′
M ≡⟨⟩ p = p
infixr 2 _≡⟨_⟩_
_≡⟨_⟩_ : ∀ {Γ A} (M {M′ M″} : Γ ⊢ A) → M ≡ M′ → M′ ≅ M″ → M ≅ M″
M ≡⟨ p ⟩ p′ = trans≅ (≡→≅ p) p′
infix 3 _∎
_∎ : ∀ {Γ A} (M : Γ ⊢ A) → M ≅ M
M ∎ = refl≅
≡→≅ₛ : ∀ {Γ Δ} {γ γ′ : Δ ⋙ Γ} → γ ≡ γ′ → γ ≅ₛ γ′
≡→≅ₛ refl = refl≅ₛ
module ≅ₛ-Reasoning where
infix 1 begin_
begin_ : ∀ {Γ Δ} {γ γ′ : Δ ⋙ Γ} → γ ≅ₛ γ′ → γ ≅ₛ γ′
begin p = p
infixr 2 _≅ₛ⟨⟩_
_≅ₛ⟨⟩_ : ∀ {Γ Δ} (γ {γ′} : Δ ⋙ Γ) → γ ≅ₛ γ′ → γ ≅ₛ γ′
γ ≅ₛ⟨⟩ p = p
infixr 2 _≅ₛ⟨_⟩_
_≅ₛ⟨_⟩_ : ∀ {Γ Δ} (γ {γ′ γ″} : Δ ⋙ Γ) → γ ≅ₛ γ′ → γ′ ≅ₛ γ″ → γ ≅ₛ γ″
γ ≅ₛ⟨ p ⟩ p′ = trans≅ₛ p p′
infixr 2 _≡⟨⟩_
_≡⟨⟩_ : ∀ {Γ Δ} (γ {γ′} : Δ ⋙ Γ) → γ ≅ₛ γ′ → γ ≅ₛ γ′
γ ≡⟨⟩ p = p
infixr 2 _≡⟨_⟩_
_≡⟨_⟩_ : ∀ {Γ Δ} (γ {γ′ γ″} : Δ ⋙ Γ) → γ ≡ γ′ → γ′ ≅ₛ γ″ → γ ≅ₛ γ″
γ ≡⟨ p ⟩ p′ = trans≅ₛ (≡→≅ₛ p) p′
infix 3 _∎
_∎ : ∀ {Γ Δ} (γ : Δ ⋙ Γ) → γ ≅ₛ γ
γ ∎ = refl≅ₛ
| {
"alphanum_fraction": 0.4464295973,
"avg_line_length": 35.6700819672,
"ext": "agda",
"hexsha": "b124fec5b9f403ca7b2dcc7b6921eb87e8dfda59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand",
"max_forks_repo_path": "src/Section3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand",
"max_issues_repo_path": "src/Section3.agda",
"max_line_length": 109,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand",
"max_stars_repo_path": "src/Section3.agda",
"max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z",
"num_tokens": 7820,
"size": 17407
} |
-- Andreas, 2015-07-07 Let _ pattern be instantiable by an inaccessible pattern
module _ where
open import Common.Equality
-- These used to work and should still work:
transV1 : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transV1 _ ._ ._ refl refl = refl
transV2 : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transV2 ._ _ ._ refl refl = refl
transV3 : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transV3 ._ ._ _ refl refl = refl
transH : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transH refl refl = refl
transH1 : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transH1 {a = _}{b = ._}{c = ._} refl refl = refl
transH1' : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transH1' {a = _} refl refl = refl
-- NEW: the following should also work:
transVNew : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transVNew _ _ _ refl refl = refl
transHNew : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transHNew {a = _}{b = _}{c = _} refl refl = refl
| {
"alphanum_fraction": 0.5321576763,
"avg_line_length": 28.3529411765,
"ext": "agda",
"hexsha": "b7fe33580a69be2e90c0f62272503f6f59d8b2b0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1605.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1605.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1605.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 417,
"size": 964
} |
module PatternShadowsConstructor2 where
module A where
data A (X : Set) : Set where
c : A X → A X
x : A X
open A using (A; c)
f : ∀ {X} → A X → A X → A X
f (c y) x = x
f A.x _ = A.x
| {
"alphanum_fraction": 0.5303030303,
"avg_line_length": 14.1428571429,
"ext": "agda",
"hexsha": "75a872328c15b53dfb06721c193b10f8a96a1c3a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/PatternShadowsConstructor2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/PatternShadowsConstructor2.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/PatternShadowsConstructor2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 81,
"size": 198
} |
------------------------------------------------------------------------
-- All library modules, along with short descriptions
------------------------------------------------------------------------
-- Note that core modules are not included.
module Everything where
-- Definitions of algebraic structures like monoids and rings
-- (packed in records together with sets, operations, etc.)
import Algebra
-- Properties of functions, such as associativity and commutativity
import Algebra.FunctionProperties
-- Morphisms between algebraic structures
import Algebra.Morphism
-- Some defined operations (multiplication by natural number and
-- exponentiation)
import Algebra.Operations
-- Some derivable properties
import Algebra.Props.AbelianGroup
-- Some derivable properties
import Algebra.Props.BooleanAlgebra
-- Some derivable properties
import Algebra.Props.DistributiveLattice
-- Some derivable properties
import Algebra.Props.Group
-- Some derivable properties
import Algebra.Props.Lattice
-- Some derivable properties
import Algebra.Props.Ring
-- Solver for commutative ring or semiring equalities
import Algebra.RingSolver
-- Commutative semirings with some additional structure ("almost"
-- commutative rings), used by the ring solver
import Algebra.RingSolver.AlmostCommutativeRing
-- Some boring lemmas used by the ring solver
import Algebra.RingSolver.Lemmas
-- Instantiates the ring solver with two copies of the same ring
import Algebra.RingSolver.Simple
-- Some algebraic structures (not packed up with sets, operations,
-- etc.)
import Algebra.Structures
-- Applicative functors
import Category.Applicative
-- Indexed applicative functors
import Category.Applicative.Indexed
-- Functors
import Category.Functor
-- Monads
import Category.Monad
-- A delimited continuation monad
import Category.Monad.Continuation
-- The identity monad
import Category.Monad.Identity
-- Indexed monads
import Category.Monad.Indexed
-- The partiality monad
import Category.Monad.Partiality
-- The state monad
import Category.Monad.State
-- Types used to make recursive arguments coinductive
import Coinduction
-- AVL trees
import Data.AVL
-- Finite maps with indexed keys and values, based on AVL trees
import Data.AVL.IndexedMap
-- Finite sets, based on AVL trees
import Data.AVL.Sets
-- A binary representation of natural numbers
import Data.Bin
-- Booleans
import Data.Bool
-- A bunch of properties
import Data.Bool.Properties
-- Showing booleans
import Data.Bool.Show
-- Bounded vectors
import Data.BoundedVec
-- Bounded vectors (inefficient, concrete implementation)
import Data.BoundedVec.Inefficient
-- Characters
import Data.Char
-- "Finite" sets indexed on coinductive "natural" numbers
import Data.Cofin
-- Coinductive lists
import Data.Colist
-- Coinductive "natural" numbers
import Data.Conat
-- Coinductive vectors
import Data.Covec
-- Lists with fast append
import Data.DifferenceList
-- Natural numbers with fast addition (for use together with
-- DifferenceVec)
import Data.DifferenceNat
-- Vectors with fast append
import Data.DifferenceVec
-- Digits and digit expansions
import Data.Digit
-- Empty type
import Data.Empty
-- Empty type (in Set₁)
import Data.Empty1
-- Finite sets
import Data.Fin
-- Decision procedures for finite sets and subsets of finite sets
import Data.Fin.Dec
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
import Data.Fin.Props
-- Subsets of finite sets
import Data.Fin.Subset
-- Some properties about subsets
import Data.Fin.Subset.Props
-- Substitutions
import Data.Fin.Substitution
-- An example of how Data.Fin.Substitution can be used: a definition
-- of substitution for the untyped λ-calculus, along with some lemmas
import Data.Fin.Substitution.Example
-- Substitution lemmas
import Data.Fin.Substitution.Lemmas
-- Application of substitutions to lists, along with various lemmas
import Data.Fin.Substitution.List
-- Simple combinators working solely on and with functions
import Data.Function
-- Directed acyclic multigraphs
import Data.Graph.Acyclic
-- Integers
import Data.Integer
-- Divisibility and coprimality
import Data.Integer.Divisibility
-- Some properties about integers
import Data.Integer.Properties
-- Lists
import Data.List
-- Lists where all elements satisfy a given property
import Data.List.All
-- Properties relating All to various list functions
import Data.List.All.Properties
-- Lists where at least one element satisfies a given property
import Data.List.Any
-- Properties relating Any to various list functions
import Data.List.Any.Properties
-- A data structure which keeps track of an upper bound on the number
-- of elements /not/ in a given list
import Data.List.Countdown
-- List equality
import Data.List.Equality
-- Non-empty lists
import Data.List.NonEmpty
-- Properties of non-empty lists
import Data.List.NonEmpty.Properties
-- List-related properties
import Data.List.Properties
-- Lists parameterised on things in Set₁
import Data.List1
-- Finite maps, i.e. lookup tables (currently only some type
-- signatures)
import Data.Map
-- The Maybe type
import Data.Maybe
-- Natural numbers
import Data.Nat
-- Coprimality
import Data.Nat.Coprimality
-- Integer division
import Data.Nat.DivMod
-- Divisibility
import Data.Nat.Divisibility
-- Greatest common divisor
import Data.Nat.GCD
-- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality
import Data.Nat.GCD.Lemmas
-- Least common multiple
import Data.Nat.LCM
-- A bunch of properties about natural number operations
import Data.Nat.Properties
-- Showing natural numbers
import Data.Nat.Show
-- Products
import Data.Product
-- Products implemented using records
import Data.Product.Record
-- Products (variants for Set₁)
import Data.Product1
-- Rational numbers
import Data.Rational
-- Finite sets (currently only some type signatures)
import Data.Sets
-- Signs
import Data.Sign
-- Some properties about signs
import Data.Sign.Properties
-- The reflexive transitive closures of McBride, Norell and Jansson
import Data.Star
-- Bounded vectors (inefficient implementation)
import Data.Star.BoundedVec
-- Decorated star-lists
import Data.Star.Decoration
-- Environments (heterogeneous collections)
import Data.Star.Environment
-- Finite sets defined in terms of Data.Star
import Data.Star.Fin
-- Lists defined in terms of Data.Star
import Data.Star.List
-- Natural numbers defined in terms of Data.Star
import Data.Star.Nat
-- Pointers into star-lists
import Data.Star.Pointer
-- Some properties related to Data.Star
import Data.Star.Properties
-- Vectors defined in terms of Data.Star
import Data.Star.Vec
-- Streams
import Data.Stream
-- Strings
import Data.String
-- Sums (disjoint unions)
import Data.Sum
-- The unit type
import Data.Unit
-- The unit type (in Set₁)
import Data.Unit1
-- Vectors
import Data.Vec
-- Semi-heterogeneous vector equality
import Data.Vec.Equality
-- Code for converting Vec n A → B to and from n-ary functions
import Data.Vec.N-ary
-- Code for converting Vec₁ n A → B to and from n-ary functions
import Data.Vec.N-ary1
-- Some Vec-related properties
import Data.Vec.Properties
-- Vectors parameterised on types in Set₁
import Data.Vec1
-- Types used (only) when calling out to Haskell via the FFI
import Foreign.Haskell
-- IO
import IO
-- Primitive IO: simple bindings to Haskell types and functions
import IO.Primitive
-- An abstraction of various forms of recursion/induction
import Induction
-- Lexicographic induction
import Induction.Lexicographic
-- Various forms of induction for natural numbers
import Induction.Nat
-- Well-founded induction
import Induction.WellFounded
-- A variant of Induction for Set₁
import Induction1
-- One form of induction for natural numbers
import Induction1.Nat
-- Well-founded induction
import Induction1.WellFounded
-- Properties of homogeneous binary relations
import Relation.Binary
-- Some properties imply others
import Relation.Binary.Consequences
-- Convenient syntax for equational reasoning
import Relation.Binary.EqReasoning
-- Many properties which hold for _∼_ also hold for flip₁ _∼_
import Relation.Binary.Flip
-- Function setoids and related constructions
import Relation.Binary.FunctionSetoid
-- Heterogeneous equality
import Relation.Binary.HeterogeneousEquality
-- Conversion of ≤ to <, along with a number of properties
import Relation.Binary.NonStrictToStrict
-- Many properties which hold for _∼_ also hold for _∼_ on₁ f
import Relation.Binary.On
-- Order morphisms
import Relation.Binary.OrderMorphism
-- Convenient syntax for "equational reasoning" using a partial order
import Relation.Binary.PartialOrderReasoning
-- Convenient syntax for "equational reasoning" using a preorder
import Relation.Binary.PreorderReasoning
-- Lexicographic products of binary relations
import Relation.Binary.Product.NonStrictLex
-- Pointwise products of binary relations
import Relation.Binary.Product.Pointwise
-- Lexicographic products of binary relations
import Relation.Binary.Product.StrictLex
-- Propositional (intensional) equality
import Relation.Binary.PropositionalEquality
-- Propositional equality
import Relation.Binary.PropositionalEquality1
-- Properties satisfied by decidable total orders
import Relation.Binary.Props.DecTotalOrder
-- Properties satisfied by posets
import Relation.Binary.Props.Poset
-- Properties satisfied by strict partial orders
import Relation.Binary.Props.StrictPartialOrder
-- Properties satisfied by strict partial orders
import Relation.Binary.Props.StrictTotalOrder
-- Properties satisfied by total orders
import Relation.Binary.Props.TotalOrder
-- Helpers intended to ease the development of "tactics" which use
-- proof by reflection
import Relation.Binary.Reflection
-- Some simple binary relations
import Relation.Binary.Simple
-- Convenient syntax for "equational reasoning" using a strict partial
-- order
import Relation.Binary.StrictPartialOrderReasoning
-- Conversion of < to ≤, along with a number of properties
import Relation.Binary.StrictToNonStrict
-- Sums of binary relations
import Relation.Binary.Sum
-- Operations on nullary relations (like negation and decidability)
import Relation.Nullary
-- Operations on and properties of decidable relations
import Relation.Nullary.Decidable
-- Properties related to negation
import Relation.Nullary.Negation
-- Products of nullary relations
import Relation.Nullary.Product
-- Sums of nullary relations
import Relation.Nullary.Sum
-- A universe of proposition functors, along with some properties
import Relation.Nullary.Universe
-- Unary relations
import Relation.Unary
-- Unary relations (variant for Set₁)
import Relation.Unary1
-- Sizes for Agda's sized types
import Size
| {
"alphanum_fraction": 0.7861896839,
"avg_line_length": 22.4906444906,
"ext": "agda",
"hexsha": "3f34b34d54e390728731697d8dad1d8ecf0a9740",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/Everything.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 2391,
"size": 10818
} |
{-# OPTIONS --sized-types #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
mutual
data D (i : Size) : Set where
c : D′ i → D i
record D′ (i : Size) : Set where
coinductive
field
force : (j : Size< i) → D j
data R (i : Size) : D ∞ → D ∞ → Set where
c₁ : ∀ x y → R i (c x) (c y)
c₂ : ∀ x y → R i (c x) y
postulate
F : (x : D ∞) (x′ : D′ ∞) → x ≡ c x′ → Set₁
G : Size → Set₁
G i = Set
where
G′ :
(x′ y′ : D ∞) (x y : D′ ∞) →
R i (c x) y′ →
R i x′ (c y) →
x .D′.force _ {- ∞ -} ≡ x′ →
Set₁
G′ _ _ _ _ (c₁ x _) (c₂ u _) eq = F _ {- x .D′.force ∞ -} u eq
G′ _ _ _ _ (c₂ _ _) _ refl = Set
G′ _ _ _ _ _ _ _ = Set
| {
"alphanum_fraction": 0.4377622378,
"avg_line_length": 20.4285714286,
"ext": "agda",
"hexsha": "f6cc37aea6299ecac8531f808d7a776734b80254",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Bugs/Issue5007-sizedtypes.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Bugs/Issue5007-sizedtypes.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Bugs/Issue5007-sizedtypes.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 326,
"size": 715
} |
{-# OPTIONS --allow-unsolved-metas #-}
-- Andreas, 2014-05-17 reported by Fabien Renaud
open import Common.Equality
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data List {a} (A : Set a) : Set a where
[] : List A
_∷_ : A → List A → List A
length : ∀{a}{A : Set a} → List A → Nat
length [] = zero
length (x ∷ xs) = suc (length xs)
foldr : ∀{a b}{A : Set a}{B : Set b} → (A → B → B) → B → List A → B
foldr c n [] = n
foldr c n (x ∷ xs) = c x (foldr c n xs)
length-cons : ∀{b} {B : Set b} (L : List B) x → length (x ∷ L) ≡ suc (length L)
length-cons [] _ = refl
length-cons (x ∷ L) _ = refl
suc-foldr-eq : ∀{b} {c} {B : Set b} {C : Set c} (LL : List B) (LA : List C)
→ suc (foldr (λ _ → suc) 0 LL) ≡
suc (foldr (λ _ → suc) 0 LA)
→ length LL ≡
length LA
suc-foldr-eq [] [] Eq = refl
suc-foldr-eq [] (x ∷ LA) ()
suc-foldr-eq (x ∷ LL) [] ()
suc-foldr-eq (x ∷ LL) (y ∷ LA) Eq rewrite length-cons LL x = {!!}
-- WAS:
-- Failed to infer the value of dotted pattern
-- when checking that the pattern ._ has type Nat
-- NOW: unsolved meta
| {
"alphanum_fraction": 0.5541401274,
"avg_line_length": 23.3829787234,
"ext": "agda",
"hexsha": "fb793932d4f9672abe5a6ff865895bbda6678870",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1110.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1110.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1110.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 428,
"size": 1099
} |
module _ (A : Set) where
data A where
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 9.75,
"ext": "agda",
"hexsha": "98902766c791e8bbe0e24154e9bc1d60caf1aa31",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2576MissingData.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2576MissingData.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2576MissingData.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 39
} |
------------------------------------------------------------------------
-- The classical definition of (strong) bisimilarity
------------------------------------------------------------------------
-- This module is largely based on "Enhancements of the bisimulation
-- proof method" by Pous and Sangiorgi.
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Classical {ℓ} (lts : LTS ℓ) where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Function-universe equality-with-J hiding (id; _∘_)
open LTS lts
open import Bisimilarity.Step lts _[_]⟶_ _[_]⟶_ as S hiding (⟨_,_⟩)
open import Indexed-container
hiding (⟨_⟩; Bisimilarity; larger⇔smallest)
open import Relation
------------------------------------------------------------------------
-- Progressions, bisimulations and bisimilarity
-- Progressions.
Progression : ∀ {r s} → Rel₂ r Proc → Rel₂ s Proc → Type (ℓ ⊔ r ⊔ s)
Progression R S = R ⊆ Step S
module Progression
{r s} {R : Rel₂ r Proc} {S : Rel₂ s Proc}
(P : Progression R S)
where
-- Some "projections".
left-to-right :
∀ {p p′ q μ} →
R (p , q) → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]⟶ q′ × S (p′ , q′)
left-to-right pRq = Step.left-to-right (P pRq)
right-to-left :
∀ {p q q′ μ} →
R (p , q) → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]⟶ p′ × S (p′ , q′)
right-to-left pRq = Step.right-to-left (P pRq)
open Progression public
-- A "constructor" for Progression.
⟪_,_⟫ :
∀ {r s} {R : Rel₂ r Proc} {S : Rel₂ s Proc} →
(∀ {p p′ q μ} →
R (p , q) → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]⟶ q′ × S (p′ , q′)) →
(∀ {p q q′ μ} →
R (p , q) → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]⟶ p′ × S (p′ , q′)) →
Progression R S
⟪ lr , rl ⟫ = λ pRq → S.⟨ lr pRq , rl pRq ⟩
-- Bisimulations.
Bisimulation : ∀ {r} → Rel₂ r Proc → Type (ℓ ⊔ r)
Bisimulation R = Progression R R
-- Bisimilarity with a level argument.
Bisimilarity′ : ∀ ℓ′ → Rel₂ (lsuc (ℓ ⊔ ℓ′)) Proc
Bisimilarity′ ℓ′ = gfp ℓ′ StepC
-- Bisimilarity′ ℓ′ is pointwise logically equivalent to
-- Bisimilarity′ lzero.
--
-- For this reason the code below is mostly restricted to
-- Bisimilarity′ lzero.
larger⇔smallest :
∀ ℓ′ {p} → Bisimilarity′ ℓ′ p ⇔ Bisimilarity′ lzero p
larger⇔smallest ℓ′ = Indexed-container.larger⇔smallest ℓ′
-- Bisimilarity.
Bisimilarity : Rel₂ (lsuc ℓ) Proc
Bisimilarity = Bisimilarity′ lzero
infix 4 _∼_
_∼_ : Proc → Proc → Type (lsuc ℓ)
p ∼ q = ∃ λ R → R ⊆ ⟦ StepC ⟧ R × R (p , q)
private
-- The definition of _∼_ could also have been given more indirectly.
indirect-∼ : _∼_ ≡ curry Bisimilarity
indirect-∼ = refl
-- An unfolding lemma for Bisimilarity′.
Bisimilarity′↔ :
∀ {k} ℓ′ {pq} →
Extensionality? k (ℓ ⊔ ℓ′) (ℓ ⊔ ℓ′) →
Bisimilarity′ ℓ′ pq
↝[ k ]
∃ λ (R : Rel₂ (ℓ ⊔ ℓ′) Proc) → Bisimulation R × R pq
Bisimilarity′↔ {k} ℓ′ {pq} ext =
Bisimilarity′ ℓ′ pq ↔⟨⟩
gfp ℓ′ StepC pq ↔⟨⟩
(∃ λ (R : Rel₂ (ℓ ⊔ ℓ′) Proc) → R ⊆ ⟦ StepC ⟧ R × R pq) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → ⊆-congʳ ext $
inverse-ext? Step↔StepC (lower-extensionality? k ℓ′ lzero ext)) ⟩□
(∃ λ (R : Rel₂ (ℓ ⊔ ℓ′) Proc) → Bisimulation R × R pq) □
-- An unfolding lemma for Bisimilarity.
Bisimilarity↔ :
∀ {k pq} →
Extensionality? k ℓ ℓ →
Bisimilarity pq
↝[ k ]
∃ λ (R : Rel₂ ℓ Proc) → Bisimulation R × R pq
Bisimilarity↔ = Bisimilarity′↔ lzero
-- A "constructor".
⟨_,_,_⟩ :
∀ {p q} →
(R : Rel₂ ℓ Proc) → Bisimulation R → R (p , q) → p ∼ q
⟨ R , bisim , pRq ⟩ = _⇔_.from (Bisimilarity↔ _) (R , bisim , pRq)
------------------------------------------------------------------------
-- Bisimilarity is an equivalence relation
-- Reflexivity, proved generally for Bisimilarity′.
reflexive-∼′ : ∀ ℓ {p} → Bisimilarity′ ℓ (p , p)
reflexive-∼′ ℓ = _⇔_.from (Bisimilarity′↔ ℓ _)
( ↑ ℓ ∘ uncurry _≡_
, ⟪ (λ p≡q p⟶p′ →
_ , subst (_[ _ ]⟶ _) (lower p≡q) p⟶p′ , lift refl)
, (λ p≡q q⟶q′ →
_ , subst (_[ _ ]⟶ _) (sym $ lower p≡q) q⟶q′ , lift refl)
⟫
, lift refl
)
-- Reflexivity.
reflexive-∼ : ∀ {p} → p ∼ p
reflexive-∼ = reflexive-∼′ lzero
-- Symmetry.
symmetric-∼ : ∀ {p q} → p ∼ q → q ∼ p
symmetric-∼ p∼q with _⇔_.to (Bisimilarity↔ _) p∼q
... | R , R-is-a-bisimulation , pRq =
⟨ R ⁻¹
, ⟪ right-to-left R-is-a-bisimulation
, left-to-right R-is-a-bisimulation
⟫
, pRq
⟩
-- Transitivity.
transitive-∼ : ∀ {p q r} → p ∼ q → q ∼ r → p ∼ r
transitive-∼ p∼q q∼r with _⇔_.to (Bisimilarity↔ _) p∼q
| _⇔_.to (Bisimilarity↔ _) q∼r
... | R₁ , R-is₁ , pR₁q | R₂ , R-is₂ , qR₂r =
⟨ R₁ ⊙ R₂
, ⟪_,_⟫ {R = _ ⊙ _}
(λ { (q , pR₁q , qR₂r) p⟶p′ →
let q′ , q⟶q′ , p′R₁q′ = left-to-right R-is₁ pR₁q p⟶p′
r′ , r⟶r′ , q′R₂r′ = left-to-right R-is₂ qR₂r q⟶q′
in r′ , r⟶r′ , (q′ , p′R₁q′ , q′R₂r′) })
(λ { (q , pR₁q , qR₂r) r⟶r′ →
let q′ , q⟶q′ , q′R₂r′ = right-to-left R-is₂ qR₂r r⟶r′
p′ , p⟶p′ , p′R₁q′ = right-to-left R-is₁ pR₁q q⟶q′
in p′ , p⟶p′ , (q′ , p′R₁q′ , q′R₂r′) })
, (_ , pR₁q , qR₂r)
⟩
-- A function that can be used to aid the instance resolution
-- mechanism.
infix -2 ∼:_
∼:_ : ∀ {p q} → p ∼ q → p ∼ q
∼:_ = id
------------------------------------------------------------------------
-- Lemmas relating bisimulations and bisimilarity
-- Bisimilarity is a bisimulation.
bisimilarity-is-a-bisimulation : Bisimulation Bisimilarity
bisimilarity-is-a-bisimulation =
Bisimilarity ⊆⟨ gfp-out ℓ ⟩
⟦ StepC ⟧ Bisimilarity ⊆⟨ _⇔_.from (Step↔StepC _) ⟩∎
Step Bisimilarity ∎
-- Bisimilarity is larger than every bisimulation.
bisimulation⊆∼ :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation R → R ⊆ Bisimilarity
bisimulation⊆∼ {r} {R} R-is-a-bisimulation =
R ⊆⟨ gfp-unfold lzero (
R ⊆⟨ R-is-a-bisimulation ⟩
Step R ⊆⟨ Step↔StepC _ ⟩∎
⟦ StepC ⟧ R ∎) ⟩
Bisimilarity′ r ⊆⟨ _⇔_.to (larger⇔smallest r) ⟩∎
Bisimilarity ∎
------------------------------------------------------------------------
-- Bisimulations up to bisimilarity
-- Bisimulations up to bisimilarity.
Bisimulation-up-to-bisimilarity :
∀ {r} → Rel₂ r Proc → Type (lsuc ℓ ⊔ r)
Bisimulation-up-to-bisimilarity R =
Progression R (Bisimilarity ⊙ R ⊙ Bisimilarity)
-- If R is a bisimulation up to bisimilarity, then ∼R∼ is a
-- bisimulation.
bisimulation-up-to-∼⇒bisimulation :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation-up-to-bisimilarity R →
Bisimulation (Bisimilarity ⊙ R ⊙ Bisimilarity)
bisimulation-up-to-∼⇒bisimulation R-is =
⟪_,_⟫ {R = _ ⊙ _ ⊙ _}
(λ { (q , p∼q , r , qRr , r∼s) p⟶p′ →
let q′ , q⟶q′ , p′∼q′ =
left-to-right bisimilarity-is-a-bisimulation p∼q p⟶p′
r′ , r⟶r′ , (q″ , q′∼q″ , r″ , q″Rr″ , r″∼r′) =
left-to-right R-is qRr q⟶q′
s′ , s⟶s′ , r′∼s′ =
left-to-right bisimilarity-is-a-bisimulation r∼s r⟶r′
in
s′ , s⟶s′ , q″
, transitive-∼ p′∼q′ q′∼q″
, r″ , q″Rr″
, transitive-∼ r″∼r′ r′∼s′ })
(λ { (q , p∼q , r , qRr , r∼s) s⟶s′ →
let r′ , r⟶r′ , r′∼s′ =
right-to-left bisimilarity-is-a-bisimulation r∼s s⟶s′
q′ , q⟶q′ , (q″ , q′∼q″ , r″ , q″Rr″ , r″∼r′) =
right-to-left R-is qRr r⟶r′
p′ , p⟶p′ , p′∼q′ =
right-to-left bisimilarity-is-a-bisimulation p∼q q⟶q′
in
p′ , p⟶p′ , q″
, transitive-∼ p′∼q′ q′∼q″
, r″ , q″Rr″
, transitive-∼ r″∼r′ r′∼s′ })
-- If R is a bisimulation up to bisimilarity, then R is contained in
-- bisimilarity.
bisimulation-up-to-∼⊆∼ :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation-up-to-bisimilarity R →
R ⊆ Bisimilarity
bisimulation-up-to-∼⊆∼ {R = R} R-is =
R ⊆⟨ (λ { {p , q} pRq → p , reflexive-∼ , q , pRq , reflexive-∼ }) ⟩
Bisimilarity ⊙ R ⊙ Bisimilarity ⊆⟨ bisimulation⊆∼ (bisimulation-up-to-∼⇒bisimulation R-is) ⟩∎
Bisimilarity ∎
------------------------------------------------------------------------
-- Bisimulations up to union
-- Bisimulations up to ∪.
Bisimulation-up-to-∪ : ∀ {r} → Rel₂ r Proc → Type (lsuc ℓ ⊔ r)
Bisimulation-up-to-∪ R = Progression R (R ∪ Bisimilarity)
-- If _R_ is a bisimulation up to ∪, then _R_ ∪ _∼_ is a bisimulation.
bisimulation-up-to-∪⇒bisimulation :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation-up-to-∪ R →
Bisimulation (R ∪ Bisimilarity)
bisimulation-up-to-∪⇒bisimulation R-is =
⟪ [ left-to-right R-is
, (λ p∼q → Σ-map id (Σ-map id inj₂) ∘
left-to-right bisimilarity-is-a-bisimulation p∼q)
]
, [ right-to-left R-is
, (λ p∼q → Σ-map id (Σ-map id inj₂) ∘
right-to-left bisimilarity-is-a-bisimulation p∼q)
]
⟫
-- If R is a bisimulation up to ∪, then R is contained in
-- bisimilarity.
bisimulation-up-to-∪⊆∼ :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation-up-to-∪ R →
R ⊆ Bisimilarity
bisimulation-up-to-∪⊆∼ {R = R} R-is =
R ⊆⟨ inj₁ ⟩
R ∪ Bisimilarity ⊆⟨ bisimulation⊆∼ (bisimulation-up-to-∪⇒bisimulation R-is) ⟩∎
Bisimilarity ∎
------------------------------------------------------------------------
-- Bisimulations up to reflexive transitive closure
-- Bisimulations up to reflexive transitive closure.
Bisimulation-up-to-* : Rel₂ ℓ Proc → Type ℓ
Bisimulation-up-to-* R = Progression R (R *)
-- If R is a bisimulation up to reflexive transitive closure, then R *
-- is a bisimulation.
bisimulation-up-to-*⇒bisimulation :
∀ {R} → Bisimulation-up-to-* R → Bisimulation (R *)
bisimulation-up-to-*⇒bisimulation {R} R-is = ⟪ lr , rl ⟫
where
lr : ∀ {p p′ q μ} →
(R *) (p , q) → p [ μ ]⟶ p′ →
∃ λ q′ → q [ μ ]⟶ q′ × (R *) (p′ , q′)
lr (zero , refl) q⟶p′ = _ , q⟶p′ , zero , refl
lr (suc n , r , pRr , rRⁿq) p⟶p′ =
let r′ , r⟶r′ , p′R*r′ = left-to-right R-is pRr p⟶p′
q′ , q⟶q′ , r′R*q′ = lr (n , rRⁿq) r⟶r′
in q′ , q⟶q′ , *-trans p′R*r′ r′R*q′
rl : ∀ {p q q′ μ} →
(R *) (p , q) → q [ μ ]⟶ q′ →
∃ λ p′ → p [ μ ]⟶ p′ × (R *) (p′ , q′)
rl (zero , refl) p⟶q′ = _ , p⟶q′ , zero , refl
rl (suc n , r , pRr , rRⁿq) q⟶q′ =
let r′ , r⟶r′ , r′R*q′ = rl (n , rRⁿq) q⟶q′
p′ , p⟶p′ , p′R*r′ = right-to-left R-is pRr r⟶r′
in p′ , p⟶p′ , *-trans p′R*r′ r′R*q′
-- If R is a bisimulation up to reflexive transitive closure, then R
-- is contained in bisimilarity.
bisimulation-up-to-*⊆∼ :
∀ {R} → Bisimulation-up-to-* R → R ⊆ Bisimilarity
bisimulation-up-to-*⊆∼ {R} R-is =
R ⊆⟨ (λ pRq → 1 , _ , pRq , refl) ⟩
(R *) ⊆⟨ bisimulation⊆∼ (bisimulation-up-to-*⇒bisimulation R-is) ⟩∎
Bisimilarity ∎
------------------------------------------------------------------------
-- Some preservation results
-- These results are not taken from "Enhancements of the bisimulation
-- proof method".
-- Equal processes are bisimilar.
≡⇒∼ : ∀ {p q} → p ≡ q → p ∼ q
≡⇒∼ refl = reflexive-∼
-- Precomposition with the lifting operator preserves the "is a
-- bisimulation" relation.
↑-preserves-bisimulations :
∀ {ℓ r} {R : Rel₂ r Proc} →
Bisimulation R → Bisimulation (↑ ℓ ∘ R)
↑-preserves-bisimulations R-is =
⟪ (λ pRq → Σ-map id (Σ-map id lift) ∘ left-to-right R-is (lower pRq))
, (λ pRq → Σ-map id (Σ-map id lift) ∘ right-to-left R-is (lower pRq))
⟫
-- The "times two" operator preserves the "is a bisimulation"
-- relation.
×2-preserves-bisimulations :
∀ {r} {R : Rel₂ r Proc} →
Bisimulation R →
Bisimulation (R ∪ R)
×2-preserves-bisimulations R-is =
⟪ (let f = λ pRq p⟶p′ →
Σ-map id (Σ-map id inj₁) (left-to-right R-is pRq p⟶p′) in
[ f , f ])
, (let f = λ pRq q⟶q′ →
Σ-map id (Σ-map id inj₁) (right-to-left R-is pRq q⟶q′) in
[ f , f ])
⟫
| {
"alphanum_fraction": 0.5163797426,
"avg_line_length": 30.0653266332,
"ext": "agda",
"hexsha": "e4660d9505c9937850ad8759c30f5189ae5c5f31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Classical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Classical.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Classical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4786,
"size": 11966
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Definitions where
open import Function
open import Data.Binary.Bits public
open import Data.List using (_∷_) renaming ([] to 1ᵇ) public
open import Data.Maybe
open import Data.Product
𝔹⁺ : Set
𝔹⁺ = Data.List.List Bit
𝔹 : Set
𝔹 = Maybe 𝔹⁺
infixr 5 0<_
pattern 0ᵇ = nothing
pattern 0<_ x = just x
𝔹± : Set
𝔹± = Maybe (Bit × 𝔹⁺)
| {
"alphanum_fraction": 0.6917098446,
"avg_line_length": 16.7826086957,
"ext": "agda",
"hexsha": "5eeff306b293cf74a1b1836a42ed5cdd95c2c312",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Definitions.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 143,
"size": 386
} |
------------------------------------------------------------------------
-- The delay monad quotiented by weak bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --sized-types #-}
module Partiality-monad.Coinductive where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Prelude.Size
open import H-level.Truncation.Propositional equality-with-paths
open import Quotient equality-with-paths
open import Delay-monad
open import Delay-monad.Bisimilarity
-- The partiality monad, defined as the delay monad quotiented by
-- (propositionally truncated) weak bisimilarity.
_⊥ : ∀ {a} → Type a → Type a
A ⊥ = Delay A ∞ / λ x y → ∥ x ≈ y ∥
-- The partiality monad is a set.
⊥-is-set : ∀ {a} {A : Type a} → Is-set (A ⊥)
⊥-is-set = /-is-set
| {
"alphanum_fraction": 0.5957193817,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "9a35e1b8d0e650c28bed051016c6286fa22f13ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Coinductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Coinductive.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Coinductive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 219,
"size": 841
} |
module _ where
record R : Set₁ where
constructor c
open R {{...}}
| {
"alphanum_fraction": 0.6338028169,
"avg_line_length": 8.875,
"ext": "agda",
"hexsha": "5965d4e8a8d274a19bf56e94da7b9c1aa30ec488",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2007.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2007.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2007.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 71
} |
-- Andreas, 2019-10-01, continuing issue #3855 (erasure modality @0)
-- Test case by Nisse at https://github.com/agda/agda/issues/3855#issuecomment-527164352
-- Occurs check needs to take erasure status of definitions
-- (here: postulates) into account.
postulate
P : Set → Set
p : (A : Set) → P A
@0 A : Set
-- fails : P A
-- fails = p A
test : P A
test = p _
-- Should fail with error like:
--
-- Cannot instantiate the metavariable _2 to solution A
-- since (part of) the solution was created in an erased context
-- when checking that the expression p _ has type P A
| {
"alphanum_fraction": 0.6870748299,
"avg_line_length": 25.5652173913,
"ext": "agda",
"hexsha": "18f29788b940c4eb0211e45645b991954ea25623",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3855OccursErasedDefinition.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3855OccursErasedDefinition.agda",
"max_line_length": 88,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3855OccursErasedDefinition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 174,
"size": 588
} |
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Loop.Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
open import Algebra.Core
open import Level using (_⊔_)
open import Data.Product using (_,_; proj₁; proj₂)
open import Algebra.Definitions _≈_
open import Loop.Definitions _≈_
open import Algebra.Structures _≈_
record IsLeftBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
leftBol : LeftBol ∙
open IsLoop isLoop public
record IsRightBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
rightBol : RightBol ∙
open IsLoop isLoop public
record IsMoufangLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
moufangIdentity : MoufangIdentity₁ ∙
moufangIdentity₂ : MoufangIdentity₂ ∙
moufangIdentity₃ : MoufangIdentity₃ ∙
moufangIdentity₄ : MoufangIdentity₄ ∙
open IsLoop isLoop public
| {
"alphanum_fraction": 0.6518518519,
"avg_line_length": 27.6923076923,
"ext": "agda",
"hexsha": "6018aaeb192aa2c899b41597faf5f38d09d2c1c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "src/Loop/Structures.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "src/Loop/Structures.agda",
"max_line_length": 67,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "src/Loop/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 369,
"size": 1080
} |
-- Andreas, 2015-07-21 Issue 1612
-- Error "D is not strictly positive" should appear immediately.
-- (There was a performance problem due to the use of Utils.Graph.....allPaths).
{-# NON_TERMINATING #-}
mutual
data D : Set where
c0 : A0 → D
c1 : A1 → D
c2 : A2 → D
c3 : A3 → D
c4 : A4 → D
c5 : A5 → D
c6 : A6 → D
c7 : A7 → D
c8 : A8 → D
c9 : A9 → D
A0 : Set
A0 = B0
B0 : Set
B0 = A0 → D
A1 : Set
A1 = B1
B1 : Set
B1 = A1 → D
A2 : Set
A2 = B2
B2 : Set
B2 = A2 → D
A3 : Set
A3 = B3
B3 : Set
B3 = A3 → D
A4 : Set
A4 = B4
B4 : Set
B4 = A4 → D
A5 : Set
A5 = B5
B5 : Set
B5 = A5 → D
A6 : Set
A6 = B6
B6 : Set
B6 = A6 → D
A7 : Set
A7 = B7
B7 : Set
B7 = A7 → D
A8 : Set
A8 = B8
B8 : Set
B8 = A8 → D
A9 : Set
A9 = B9
B9 : Set
B9 = A9 → D
| {
"alphanum_fraction": 0.464,
"avg_line_length": 10.9375,
"ext": "agda",
"hexsha": "05807c6460a1a950e165b907daab6f1240c243bf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1612.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1612.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1612.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 431,
"size": 875
} |
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (from-yes)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Tri)
open Tri
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; trans)
open import Data.Empty using (⊥)
open import Data.Sum using (inj₁; inj₂)
module AKS.Primality.Properties where
open import AKS.Nat using (ℕ; _+_; _≟_; _<_; _>_; _<?_; _≤_)
open import AKS.Nat using (<-cmp; <-irrefl; <-trans; 0<1+n; ≤-antisym; 0≤n; suc-injective-≤; <⇒≤; ≢⇒¬≟; <⇒≱; n≤m⇒n<m⊎n≡m; ≤-refl; n<1+n)
open import AKS.Nat using (Acc; acc; <-well-founded; _⊂_; Interval; [_,_∣_]; ⊂-well-founded; upward)
open import AKS.Nat.GCD
using (_∣_; _∤_; _∣?_; gcd; bézout; lemma; Identity; gcd[a,b]∣a; gcd[a,b]∣b; 0∣n⇒n≈0; ∣-respˡ; ∣⇒≤; ∣-trans)
renaming (_⊥_ to _coprime_)
open import AKS.Primality.Base
prime≢0 : ∀ {p} → IsPrime p → p ≢ 0
prime≢0 (IsPrime✓ 1<p _) p≡0 = <-irrefl (sym p≡0) (<-trans 0<1+n 1<p)
¬prime<2 : ∀ p → p < 2 → ¬ (IsPrime p)
¬prime<2 p p<2 (IsPrime✓ 1<p ∀i∣p[i≡p]) = contradiction 1<p (<⇒≱ p<2)
exclusive : ∀ {n} → IsPrime n → IsComposite n → ⊥
exclusive {n} (IsPrime✓ 1<n ∀i∣n[i≡n]) (IsComposite✓ p p<n (IsPrime✓ 1<p _) p∣n)
= contradiction p<n (<-irrefl (∀i∣n[i≡n] 1<p p∣n))
n<1⇒n≡0 : ∀ {n} → n < 1 → n ≡ 0
n<1⇒n≡0 {n} n<1 = ≤-antisym (suc-injective-≤ n<1) 0≤n
n⊥prime : ∀ {p} n {n≢0 : n ≢ 0} → n < p → IsPrime p → n coprime p
n⊥prime {p} n {n≢0} n<p (IsPrime✓ 1<p ∀i∣p[i≡p]) with <-cmp 1 (gcd n p)
... | tri> _ _ 1>gcd[n,p] = contradiction (0∣n⇒n≈0 (∣-respˡ (n<1⇒n≡0 1>gcd[n,p]) (gcd[a,b]∣a n p))) n≢0
... | tri≈ _ 1≡gcd[n,p] _ = sym 1≡gcd[n,p]
... | tri< 1<gcd[n,p] _ _ = contradiction p≤n (<⇒≱ n<p)
where
gcd[n,p]≡p : gcd n p ≡ p
gcd[n,p]≡p = ∀i∣p[i≡p] 1<gcd[n,p] (gcd[a,b]∣b n p)
p∣n : p ∣ n
p∣n = ∣-respˡ gcd[n,p]≡p (gcd[a,b]∣a n p)
p≤n : p ≤ n
p≤n = ∣⇒≤ {n≢0 = ≢⇒¬≟ n≢0} p∣n
bézout-prime : ∀ x p → x ≢ 0 → x < p → IsPrime p → Identity 1 x p
bézout-prime x p x≢0 x<p p-isPrime with bézout x p | n⊥prime x {x≢0} x<p p-isPrime
bézout-prime x p x≢0 x<p p-isPrime | lemma d gcd[x,p]≡d ident | gcd[x,p]≡1 with trans (sym gcd[x,p]≡d) gcd[x,p]≡1
bézout-prime x p x≢0 x<p p-isPrime | lemma .1 gcd[x,p]≡d ident | gcd[x,p]≡1 | refl = ident
compositionalityⁱ : ∀ n → 1 < n → Acc _<_ n → Compositionality n
primalityⁱ : ∀ n → 1 < n → Acc _<_ n → Primality n
compositionalityⁱ n 1<n (acc downward)
= loop 2 (from-yes (1 <? 2)) 1<n ⊂-well-founded ¬p<2[p∤n]
where
¬p<2[p∤n] : ∀ {p} → p < 2 → IsPrime p → p ∤ n
¬p<2[p∤n] {p} p<2 p-isPrime _ = contradiction p-isPrime (¬prime<2 p p<2)
cons
: ∀ {x}
→ (IsPrime x → x ∤ n)
→ (∀ {p} → p < x → IsPrime p → p ∤ n)
→ (∀ {p} → p < 1 + x → IsPrime p → p ∤ n)
cons {x} x-isPrime⇒x∤n ∀p<x[p∤n] {p} p<1+x p-isPrime p∣n with <-cmp p x
... | tri< p<x _ _ = contradiction p∣n (∀p<x[p∤n] p<x p-isPrime)
... | tri≈ _ refl _ = contradiction p∣n (x-isPrime⇒x∤n p-isPrime)
... | tri> _ _ x<p = contradiction (suc-injective-≤ p<1+x) (<⇒≱ x<p)
loop
: ∀ x → 1 < x → (x≤n : x ≤ n) → Acc _⊂_ [ x , n ∣ x≤n ]
→ (∀ {p} → p < x → IsPrime p → p ∤ n)
→ Compositionality n
loop x 1<x x≤n (acc next) ∀p<x⇒p∤n with n≤m⇒n<m⊎n≡m x≤n
... | inj₂ refl = Prime✓ ∀p<x⇒p∤n
... | inj₁ x<n with primalityⁱ x 1<x (downward x<n)
... | Composite✓ x-isComposite = loop (1 + x) (<-trans 1<x n<1+n) x<n (next [1+x,n]⊂[x,n]) ∀p<1+x⇒p∤n
where
[1+x,n]⊂[x,n] : [ 1 + x , n ∣ x<n ] ⊂ [ x , n ∣ x≤n ]
[1+x,n]⊂[x,n] = upward n<1+n ≤-refl
∀p<1+x⇒p∤n = cons (λ x-isPrime _ → exclusive x-isPrime x-isComposite) ∀p<x⇒p∤n
... | Prime✓ x-isPrime with x ∣? n
... | yes x∣n = Composite✓ (IsComposite✓ x x<n x-isPrime x∣n)
... | no ¬x∣n = loop (1 + x) (<-trans 1<x n<1+n) x<n (next [1+x,n]⊂[x,n]) ∀p<1+x[p∤n]
where
[1+x,n]⊂[x,n] : [ 1 + x , n ∣ x<n ] ⊂ [ x , n ∣ x≤n ]
[1+x,n]⊂[x,n] = upward n<1+n ≤-refl
∀p<1+x[p∤n] = cons (λ _ x∣n → ¬x∣n x∣n) ∀p<x⇒p∤n
primalityⁱ n 1<n wf@(acc downward) with compositionalityⁱ n 1<n wf
... | Composite✓ isComposite = Composite✓ isComposite
-- n is a composite so just return the proof of compositionality
... | Prime✓ ∀p<n[p∤n] = Prime✓ (IsPrime✓ 1<n ∀i∣n[i≡n])
-- All prime divisors less then n do not divide n therefore n is prime (#1)
where
n≢0 : n ≢ 0
n≢0 n≡0 = <-irrefl (sym n≡0) (<-trans 0<1+n 1<n)
∀i∣n[i≡n] : ∀ {i} → 1 < i → i ∣ n → i ≡ n
∀i∣n[i≡n] {i} 1<i i∣n with <-cmp i n
... | tri> _ _ n<i = contradiction (∣⇒≤ {n≢0 = ≢⇒¬≟ n≢0} i∣n) (<⇒≱ n<i)
-- i is larger than n so i divides n so i is less then or equal to n ⇒⇐
... | tri≈ _ i≡n _ = i≡n
... | tri< i<n _ _ with primalityⁱ i 1<i (downward i<n)
... | Prime✓ i-isPrime
= contradiction i∣n (∀p<n[p∤n] i<n i-isPrime)
-- i is a prime divisor of n (#1) ⇒⇐
... | Composite✓ (IsComposite✓ p p<i p-isPrime p∣i)
= contradiction (∣-trans p∣i i∣n) (∀p<n[p∤n] (<-trans p<i i<n) p-isPrime)
-- i is a composite number with a prime divisor therefore there exists a prime divisor of n (#1) ⇒⇐
primality : ∀ n → 1 < n → Primality n
primality n 1<n = primalityⁱ n 1<n <-well-founded
prime? : ∀ n → Dec (IsPrime n)
prime? n with 1 <? n
... | no ¬1<n = no λ { (IsPrime✓ 1<n _) → ¬1<n 1<n }
... | yes 1<n with primality n 1<n
... | Prime✓ isPrime = yes isPrime
... | Composite✓ isComposite = no λ { isPrime → exclusive isPrime isComposite }
composite? : ∀ n → Dec (IsComposite n)
composite? n with 1 <? n
... | no ¬1<n = no λ { (IsComposite✓ p p<n (IsPrime✓ 1<p _) _) → ¬1<n (<-trans 1<p p<n) }
... | yes 1<n with primality n 1<n
... | Prime✓ isPrime = no λ { isComposite → exclusive isPrime isComposite }
... | Composite✓ isComposite = yes isComposite
-- 13-isPrime : IsPrime 13
-- 13-isPrime = from-yes (prime? 13)
-- 24-isComposite : IsComposite 24
-- 24-isComposite = from-yes (composite? 24)
| {
"alphanum_fraction": 0.5555181129,
"avg_line_length": 44.2910447761,
"ext": "agda",
"hexsha": "4892ab15fdc6f99006ef813a3f11eb14c69d75c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Primality/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Primality/Properties.agda",
"max_line_length": 136,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Primality/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 2814,
"size": 5935
} |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Common syntax.
module BasicIS4.Syntax.Common where
open import Common.ContextPair public
-- Types, or propositions.
infixr 10 □_
infixl 9 _∧_
infixr 7 _▻_
data Ty : Set where
α_ : Atom → Ty
_▻_ : Ty → Ty → Ty
□_ : Ty → Ty
_∧_ : Ty → Ty → Ty
⊤ : Ty
-- Additional useful types.
infix 7 _▻◅_
_▻◅_ : Ty → Ty → Ty
A ▻◅ B = (A ▻ B) ∧ (B ▻ A)
infixr 7 _▻⋯▻_
_▻⋯▻_ : Cx Ty → Ty → Ty
∅ ▻⋯▻ B = B
(Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B)
infixr 10 □⋆_
□⋆_ : Cx Ty → Cx Ty
□⋆ ∅ = ∅
□⋆ (Ξ , A) = □⋆ Ξ , □ A
dist□⋆₁ : ∀ Ξ Ξ′ → □⋆ (Ξ ⧺ Ξ′) ≡ (□⋆ Ξ) ⧺ (□⋆ Ξ′)
dist□⋆₁ Ξ ∅ = refl
dist□⋆₁ Ξ (Ξ′ , A) = cong² _,_ (dist□⋆₁ Ξ Ξ′) refl
lift⊆ : ∀ {Δ Δ′} → Δ ⊆ Δ′ → □⋆ Δ ⊆ □⋆ Δ′
lift⊆ done = done
lift⊆ (skip θ) = skip (lift⊆ θ)
lift⊆ (keep θ) = keep (lift⊆ θ)
-- Inversion principles.
invα : ∀ {P P′} → α P ≡ α P′ → P ≡ P′
invα refl = refl
inv▻₁ : ∀ {A A′ B B′} → A ▻ B ≡ A′ ▻ B′ → A ≡ A′
inv▻₁ refl = refl
inv▻₂ : ∀ {A A′ B B′} → A ▻ B ≡ A′ ▻ B′ → B ≡ B′
inv▻₂ refl = refl
inv□ : ∀ {A A′} → □ A ≡ □ A′ → A ≡ A′
inv□ refl = refl
inv∧₁ : ∀ {A A′ B B′} → A ∧ B ≡ A′ ∧ B′ → A ≡ A′
inv∧₁ refl = refl
inv∧₂ : ∀ {A A′ B B′} → A ∧ B ≡ A′ ∧ B′ → B ≡ B′
inv∧₂ refl = refl
-- Decidable equality on types.
_≟ᵀ_ : (A A′ : Ty) → Dec (A ≡ A′)
(α P) ≟ᵀ (α P′) with P ≟ᵅ P′
(α P) ≟ᵀ (α .P) | yes refl = yes refl
(α P) ≟ᵀ (α P′) | no P≢P′ = no (P≢P′ ∘ invα)
(α P) ≟ᵀ (A′ ▻ B′) = no λ ()
(α P) ≟ᵀ (□ A′) = no λ ()
(α P) ≟ᵀ (A′ ∧ B′) = no λ ()
(α P) ≟ᵀ ⊤ = no λ ()
(A ▻ B) ≟ᵀ (α P′) = no λ ()
(A ▻ B) ≟ᵀ (A′ ▻ B′) with A ≟ᵀ A′ | B ≟ᵀ B′
(A ▻ B) ≟ᵀ (.A ▻ .B) | yes refl | yes refl = yes refl
(A ▻ B) ≟ᵀ (A′ ▻ B′) | no A≢A′ | _ = no (A≢A′ ∘ inv▻₁)
(A ▻ B) ≟ᵀ (A′ ▻ B′) | _ | no B≢B′ = no (B≢B′ ∘ inv▻₂)
(A ▻ B) ≟ᵀ (□ A′) = no λ ()
(A ▻ B) ≟ᵀ (A′ ∧ B′) = no λ ()
(A ▻ B) ≟ᵀ ⊤ = no λ ()
(□ A) ≟ᵀ (α P′) = no λ ()
(□ A) ≟ᵀ (A′ ▻ B′) = no λ ()
(□ A) ≟ᵀ (□ A′) with A ≟ᵀ A′
(□ A) ≟ᵀ (□ .A) | yes refl = yes refl
(□ A) ≟ᵀ (□ A′) | no A≢A′ = no (A≢A′ ∘ inv□)
(□ A) ≟ᵀ (A′ ∧ B′) = no λ ()
(□ A) ≟ᵀ ⊤ = no λ ()
(A ∧ B) ≟ᵀ (α P′) = no λ ()
(A ∧ B) ≟ᵀ (A′ ▻ B′) = no λ ()
(A ∧ B) ≟ᵀ (□ A′) = no λ ()
(A ∧ B) ≟ᵀ (A′ ∧ B′) with A ≟ᵀ A′ | B ≟ᵀ B′
(A ∧ B) ≟ᵀ (.A ∧ .B) | yes refl | yes refl = yes refl
(A ∧ B) ≟ᵀ (A′ ∧ B′) | no A≢A′ | _ = no (A≢A′ ∘ inv∧₁)
(A ∧ B) ≟ᵀ (A′ ∧ B′) | _ | no B≢B′ = no (B≢B′ ∘ inv∧₂)
(A ∧ B) ≟ᵀ ⊤ = no λ ()
⊤ ≟ᵀ (α P′) = no λ ()
⊤ ≟ᵀ (A′ ▻ B′) = no λ ()
⊤ ≟ᵀ (□ A′) = no λ ()
⊤ ≟ᵀ (A′ ∧ B′) = no λ ()
⊤ ≟ᵀ ⊤ = yes refl
open ContextEquality (_≟ᵀ_) public
| {
"alphanum_fraction": 0.3785185185,
"avg_line_length": 24.7706422018,
"ext": "agda",
"hexsha": "f08ac8e9c92f022935a06d33c745c3effad236b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Syntax/Common.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Syntax/Common.agda",
"max_line_length": 62,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Syntax/Common.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1668,
"size": 2700
} |
-- 2011-09-15 posted by Nisse
-- {-# OPTIONS --show-implicit -v tc.lhs.unify:15 #-}
module Issue292-16 where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
postulate
A : Set
f : A → A
data C : A → Set where
c : ∀ x → C (f x)
record Box : Set where
constructor box
field
a : A
b : C a
test : ∀ {x₁ x₂} → box (f x₁) (c x₁) ≡ box (f x₂) (c x₂) → x₁ ≡ x₂
test refl = refl
-- this failed before because we tried
--
-- c x₁ : C (f x₁) =?= c₂ x₂ : C (f x₂)
--
-- and did not recognize that
--
-- x₁ : A =?= x₂ : A
--
-- is homogeneous | {
"alphanum_fraction": 0.538869258,
"avg_line_length": 17.6875,
"ext": "agda",
"hexsha": "ab62339d721393cd48c9808730f6320db7074bd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue292-16.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue292-16.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue292-16.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 232,
"size": 566
} |
{-# OPTIONS --without-K --safe --overlapping-instances #-}
module Interpreter where
open import Data.Char hiding (_≤_)
open import Data.Bool hiding (_≤_)
open import Data.Nat hiding (_≤_)
open import Data.Unit
import Data.Nat as N
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality as PropEq
open import Relation.Nullary
import Data.String as Str
open import Data.Nat.Show
import Data.List as List
open import Data.Empty
infix 3 _:::_,_
infix 2 _∈_
infix 1 _⊢_
data `Set : Set where
`ℕ : `Set
`Bool : `Set
_`⇨_ : `Set → `Set → `Set
`⊤ : `Set
_`×_ : `Set → `Set → `Set
_`+_ : `Set → `Set → `Set
infixr 2 _`⇨_
data Var : Set where
x' : Var
y' : Var
z' : Var
-- Inequality proofs on variables
data _≠_ : Var → Var → Set where
x≠y : x' ≠ y'
x≠z : x' ≠ z'
y≠x : y' ≠ x'
y≠z : y' ≠ z'
z≠x : z' ≠ x'
z≠y : z' ≠ y'
⟦_⟧ : `Set → Set
⟦ `ℕ ⟧ = ℕ
⟦ `Bool ⟧ = Bool
⟦ (t `⇨ s) ⟧ = ⟦ t ⟧ → ⟦ s ⟧
⟦ `⊤ ⟧ = ⊤
⟦ (t `× s) ⟧ = ⟦ t ⟧ × ⟦ s ⟧
⟦ (t `+ s) ⟧ = ⟦ t ⟧ ⊎ ⟦ s ⟧
data Γ : Set where
· : Γ
_:::_,_ : Var → `Set → Γ → Γ
data _∈_ : Var → Γ → Set where
H : ∀ {x Δ t } → x ∈ x ::: t , Δ
TH : ∀ {x y Δ t } → ⦃ prf : x ∈ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∈ y ::: t , Δ
!Γ_[_] : ∀ {x} → (Δ : Γ) → x ∈ Δ → `Set
!Γ_[_] · ()
!Γ _ ::: t , Δ [ H ] = t
!Γ _ ::: _ , Δ [ TH ⦃ prf = i ⦄ ] = !Γ Δ [ i ]
infix 30 `v_
infix 30 `n_
infix 30 `¬_
infix 26 _`+_
infix 27 _`*_
infix 27 _`∧_
infix 26 _`∨_
infix 24 _`≤_
infix 24 _`,_
infixl 22 _`₋_
data _⊢_ : Γ → `Set → Set where
`false : ∀ {Δ} → Δ ⊢ `Bool
`true : ∀ {Δ} → Δ ⊢ `Bool
`n_ : ∀ {Δ} → ℕ → Δ ⊢ `ℕ
`v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ]
_`₋_ : ∀ {Δ t s} → Δ ⊢ t `⇨ s → Δ ⊢ t → Δ ⊢ s --application
`λ_`:_⇨_ : ∀ {Δ tr} → (x : Var) → (tx : `Set)
→ x ::: tx , Δ ⊢ tr → Δ ⊢ tx `⇨ tr
_`+_ : ∀ {Δ} → Δ ⊢ `ℕ → Δ ⊢ `ℕ → Δ ⊢ `ℕ
_`*_ : ∀ {Δ} → Δ ⊢ `ℕ → Δ ⊢ `ℕ → Δ ⊢ `ℕ
_`∧_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool
_`∨_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool
_`≤_ : ∀ {Δ} → Δ ⊢ `ℕ → Δ ⊢ `ℕ → Δ ⊢ `Bool
`¬_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool
_`,_ : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ s → Δ ⊢ t `× s
`fst : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ t
`snd : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ s
`left : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ t `+ s
`right : ∀ {Δ t s} → Δ ⊢ s → Δ ⊢ t `+ s
`case_`of_||_ : ∀ {Δ t s u} → Δ ⊢ t `+ s
→ Δ ⊢ t `⇨ u → Δ ⊢ s `⇨ u → Δ ⊢ u
`tt : ∀ {Δ} → Δ ⊢ `⊤
`let_`=_`in_ : ∀ {Δ th tb} → (x : Var)
→ Δ ⊢ th → x ::: th , Δ ⊢ tb → Δ ⊢ tb
`if_`then_`else_ : ∀ {Δ t} → Δ ⊢ `Bool → Δ ⊢ t → Δ ⊢ t → Δ ⊢ t
data ⟨_⟩ : Γ → Set₁ where
[] : ⟨ · ⟩
_∷_ : ∀ {x t Δ} → ⟦ t ⟧ → ⟨ Δ ⟩ → ⟨ x ::: t , Δ ⟩
!_[_] : ∀ {x Δ} → ⟨ Δ ⟩ → (i : x ∈ Δ) → ⟦ !Γ Δ [ i ] ⟧
!_[_] [] ()
!_[_] (val ∷ env) H = val
!_[_] (val ∷ env) (TH ⦃ prf = i ⦄) = ! env [ i ]
interpret : ∀ {t} → · ⊢ t → ⟦ t ⟧
interpret = interpret' []
where interpret' : ∀ {Δ t} → ⟨ Δ ⟩ → Δ ⊢ t → ⟦ t ⟧
interpret' env `true = true
interpret' env `false = false
interpret' env `tt = tt
interpret' env (`n n) = n
interpret' env ((`v x) ⦃ i = idx ⦄) = ! env [ idx ]
interpret' env (f `₋ x) = (interpret' env f) (interpret' env x)
interpret' env (`λ _ `: tx ⇨ body) = λ (x : ⟦ tx ⟧) → interpret' (x ∷ env) body
interpret' env (l `+ r) = interpret' env l + interpret' env r
interpret' env (l `* r) = interpret' env l * interpret' env r
interpret' env (l `∧ r) = interpret' env l ∧ interpret' env r
interpret' env (l `∨ r) = interpret' env l ∨ interpret' env r
interpret' env (l `≤ r) with interpret' env l N.≤? interpret' env r
... | yes p = true
... | no ¬p = false
interpret' env (`¬ x) = not (interpret' env x)
interpret' env (f `, s) = interpret' env f ,′ interpret' env s
interpret' env (`fst p) with interpret' env p
interpret' env (`fst p) | f , s = f
interpret' env (`snd p) with interpret' env p
interpret' env (`snd p) | f , s = s
interpret' env (`left v) = inj₁ (interpret' env v)
interpret' env (`right v) = inj₂ (interpret' env v)
interpret' env (`case s `of le || re) with interpret' env s
interpret' env (`case s `of le || re) | inj₁ l = (interpret' env le) l
interpret' env (`case s `of le || re) | inj₂ r = (interpret' env re) r
interpret' env (`let _ `= h `in b) = let hval = interpret' env h in interpret' (hval ∷ env) b
interpret' env (`if b `then et `else ef) with interpret' env b
interpret' env (`if b `then et `else ef) | true = interpret' env et
interpret' env (`if b `then et `else ef) | false = interpret' env ef
instance
v_type₁ : ∀ {x Δ t} → x ∈ x ::: t , Δ
v_type₁ = H
v_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∈ y ::: t , Δ
v_type₂ = TH
instance
xy : x' ≠ y'
xy = x≠y
xz : x' ≠ z'
xz = x≠z
yx : y' ≠ x'
yx = y≠x
yz : y' ≠ z'
yz = y≠z
zx : z' ≠ x'
zx = z≠x
zy : z' ≠ y'
zy = z≠y
| {
"alphanum_fraction": 0.4306460622,
"avg_line_length": 30.3446327684,
"ext": "agda",
"hexsha": "988dac4843cabaeafba54ccbcfcffe73358f22c9",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-06-18T12:31:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-18T06:14:18.000Z",
"max_forks_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sseefried/well-typed-agda-interpreter",
"max_forks_repo_path": "Interpreter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sseefried/well-typed-agda-interpreter",
"max_issues_repo_path": "Interpreter.agda",
"max_line_length": 101,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sseefried/well-typed-agda-interpreter",
"max_stars_repo_path": "Interpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-18T12:37:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-18T12:06:14.000Z",
"num_tokens": 2335,
"size": 5371
} |
-- Andreas, 2016-10-23 issue #2280:
-- Solver throws away meta arguments.
-- (Issue discovered by code review.)
open import Common.Equality
open import Common.Product
data Bool : Set where
true false : Bool
postulate
not : Bool → Bool
data D (f : Bool → Bool) : Set where
c : ∀ x → x ≡ not (f true) → D f
test : D {!!}
test = c {!!} refl
-- C-c C-= says
-- ?1 := not (?0 true)
-- But C-c C-s solves
-- ?1 := not ?
-- Ulf says this is fine, since we create a new interaction meta.
-- I must agree.
data E (p : Bool × Bool) : Set where
c : ∀ x → x ≡ not (proj₁ p) → E p
test2 : E {!!}
test2 = c {!!} refl
-- Consequently, C-c C-s should solve the last meta as
-- ?3 := not ?
| {
"alphanum_fraction": 0.5968208092,
"avg_line_length": 18.7027027027,
"ext": "agda",
"hexsha": "b35b9fdc37024fa0e055cd5d2549baf62966d0e1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2280.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2280.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2280.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 223,
"size": 692
} |
module Lib.Prelude where
infixr 90 _∘_
infixr 1 _,_
id : {A : Set} -> A -> A
id x = x
_∘_ : {A : Set}{B : A -> Set}{C : {x : A} -> B x -> Set}
(f : {x : A}(y : B x) -> C y)(g : (x : A) -> B x)(x : A) ->
C (g x)
(f ∘ g) x = f (g x)
data Unit : Set where
unit : Unit
{-# COMPILED_DATA Unit () () #-}
postulate String : Set
{-# BUILTIN STRING String #-}
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
{-# COMPILED_DATA _×_ (,) (,) #-}
fst : {A B : Set} -> A × B -> A
fst (x , y) = x
snd : {A B : Set} -> A × B -> B
snd (x , y) = y
| {
"alphanum_fraction": 0.4371681416,
"avg_line_length": 16.1428571429,
"ext": "agda",
"hexsha": "2df62dfa469f25a8ff7b72b33a66b030c0198e87",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "examples/simple-lib/Lib/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "examples/simple-lib/Lib/Prelude.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "examples/simple-lib/Lib/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 240,
"size": 565
} |
------------------------------------------------------------------------
-- Up-to techniques for the delay monad and the alternative
-- coinductive definition of weak bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Bisimilarity.Weak.Alternative.Up-to.Delay-monad
{a} {A : Type a} where
open import Delay-monad
import Delay-monad.Bisimilarity as B
import Delay-monad.Partial-order as P
open import Equality.Propositional as Eq
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Excluded-middle equality-with-J
open import Function-universe equality-with-J hiding (id)
open import H-level equality-with-J
import Bisimilarity.Weak.Alternative.Equational-reasoning-instances
import Bisimilarity.Weak.Delay-monad as W′
open import Bisimilarity.Weak.Equivalent
open import Equational-reasoning
open import Labelled-transition-system
open import Labelled-transition-system.Delay-monad A
open import Relation
open import Bisimilarity.Step (weak delay-monad) _[_]⇒̂_ _[_]⇒̂_
open import Bisimilarity.Up-to (weak delay-monad)
import Bisimilarity.Weak delay-monad as BW
open import Bisimilarity.Weak.Alternative delay-monad
-- Everything is an up-to technique for the alternative coinductive
-- definition of weak bisimilarity for the delay monad (if A is a set,
-- and assuming excluded middle and extensionality).
everything-up-to :
Excluded-middle a →
Eq.Extensionality a a →
Is-set A →
(F : Trans₂ a (Delay A ∞)) →
Up-to-technique F
everything-up-to em ext A-set F {R = R} R-prog {x = x , y} =
everything-up-to′ x y
where
lemma :
∀ {x y} {P : Rel₂ a (Delay A ∞)} →
(∀ {x′ z} → x [ just z ]⇒̂ x′ →
∃ λ y′ → y [ just z ]⇒̂ y′ × P (x′ , y′)) →
(∃ λ z → now z B.≈ x) →
x ≈ y
lemma {x} {y} hyp = uncurry λ z →
now z B.≈ x ↝⟨ _⇔_.to W′.direct⇔alternative ⟩
now z ≈ x ↝⟨ (λ nz≈x → Σ-map id proj₁ $ left-to-right nz≈x (⟶→⇒̂ now)) ⟩
∃ (x [ just z ]⇒̂_) ↝⟨ (λ x⇒̂ → x⇒̂ , Σ-map id proj₁ (hyp (proj₂ x⇒̂))) ⟩
∃ (x [ just z ]⇒̂_) × ∃ (y [ just z ]⇒̂_) ↝⟨ (uncurry λ x⇒̂ y⇒̂ → W′.⇒̂-with-equal-labels→≈ id (proj₂ x⇒̂) (proj₂ y⇒̂)) ⟩
x BW.≈ y ↝⟨ ⇒alternative ⟩□
x ≈ y □
everything-up-to′ : ∀ x y → R (x , y) → x ≈ y
everything-up-to′ x y Rxy =
case P.⇑⊎⇓ em ext A-set x ,′ P.⇑⊎⇓ em ext A-set y of λ where
(inj₂ x⇓ , _) → lemma (StepC.left-to-right (R-prog Rxy)) x⇓
(_ , inj₂ y⇓) → symmetric
(lemma (StepC.right-to-left (R-prog Rxy))
y⇓)
(inj₁ x⇑ , inj₁ y⇑) →
x ∼⟨ symmetric (_⇔_.to W′.direct⇔alternative x⇑) ⟩
never ∼⟨ _⇔_.to W′.direct⇔alternative y⇑ ⟩■
y
| {
"alphanum_fraction": 0.5603006491,
"avg_line_length": 39.0266666667,
"ext": "agda",
"hexsha": "e00d627a33c62bff867a0317c0decf6258c61109",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Alternative/Up-to/Delay-monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Alternative/Up-to/Delay-monad.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Alternative/Up-to/Delay-monad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1003,
"size": 2927
} |
-- TODO
-- Gentzen-style formalisation of syntax.
-- Simple terms.
module BasicT.Syntax.Gentzen where
open import BasicT.Syntax.Common public
-- Derivations.
infix 3 _⊢_
data _⊢_ (Γ : Cx Ty) : Ty → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A
snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B
unit : Γ ⊢ ⊤
true : Γ ⊢ BOOL
false : Γ ⊢ BOOL
if : ∀ {C} → Γ ⊢ BOOL → Γ ⊢ C → Γ ⊢ C → Γ ⊢ C
zero : Γ ⊢ NAT
suc : Γ ⊢ NAT → Γ ⊢ NAT
it : ∀ {C} → Γ ⊢ NAT → Γ ⊢ C ▻ C → Γ ⊢ C → Γ ⊢ C
rec : ∀ {C} → Γ ⊢ NAT → Γ ⊢ NAT ▻ C ▻ C → Γ ⊢ C → Γ ⊢ C
infix 3 _⊢⋆_
_⊢⋆_ : Cx Ty → Cx Ty → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
-- Monotonicity with respect to context inclusion.
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢ η true = true
mono⊢ η false = false
mono⊢ η (if t u v) = if (mono⊢ η t) (mono⊢ η u) (mono⊢ η v)
mono⊢ η zero = zero
mono⊢ η (suc t) = suc (mono⊢ η t)
mono⊢ η (it t u v) = it (mono⊢ η t) (mono⊢ η u) (mono⊢ η v)
mono⊢ η (rec t u v) = rec (mono⊢ η t) (mono⊢ η u) (mono⊢ η v)
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Shorthand for variables.
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A
v₂ = var i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
-- Deduction theorem is built-in.
lam⋆ : ∀ {Ξ Γ A} → Γ ⧺ Ξ ⊢ A → Γ ⊢ Ξ ▻⋯▻ A
lam⋆ {∅} = I
lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam
lam⋆₀ : ∀ {Γ A} → Γ ⊢ A → ∅ ⊢ Γ ▻⋯▻ A
lam⋆₀ {∅} = I
lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam
-- Detachment theorem.
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
det⋆ : ∀ {Ξ Γ A} → Γ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⊢ A
det⋆ {∅} = I
det⋆ {Ξ , B} = det ∘ det⋆ {Ξ}
det⋆₀ : ∀ {Γ A} → ∅ ⊢ Γ ▻⋯▻ A → Γ ⊢ A
det⋆₀ {∅} = I
det⋆₀ {Γ , B} = det ∘ det⋆₀
-- Cut and multicut.
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
-- Transitivity.
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
-- Contraction.
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
-- Useful theorems in combinatory form.
ci : ∀ {A Γ} → Γ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
-- Substitution.
[_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[ i ≔ s ] true = true
[ i ≔ s ] false = false
[ i ≔ s ] if t u v = if ([ i ≔ s ] t) ([ i ≔ s ] u) ([ i ≔ s ] v)
[ i ≔ s ] zero = zero
[ i ≔ s ] suc t = suc ([ i ≔ s ] t)
[ i ≔ s ] it t u v = it ([ i ≔ s ] t) ([ i ≔ s ] u) ([ i ≔ s ] v)
[ i ≔ s ] rec t u v = rec ([ i ≔ s ] t) ([ i ≔ s ] u) ([ i ≔ s ] v)
[_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
-- Convertibility.
data _⋙_ {Γ : Cx Ty} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where
refl⋙ : ∀ {A} → {t : Γ ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : Γ ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : Γ ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⊢ B}
→ t ⋙ t′
→ lam t ⋙ lam t′
congapp⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ▻ B} → {u u′ : Γ ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
congpair⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ pair t u ⋙ pair t′ u′
congfst⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B}
→ t ⋙ t′
→ fst t ⋙ fst t′
congsnd⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B}
→ t ⋙ t′
→ snd t ⋙ snd t′
congsuc⋙ : ∀ {t t′ : Γ ⊢ NAT} → t ⋙ t′
→ suc t ⋙ suc t′
congif⋙ : ∀ {C} → {t t′ : Γ ⊢ BOOL} → {u u′ : Γ ⊢ C} → {v v′ : Γ ⊢ C}
→ t ⋙ t′
→ if t u v ⋙ if t′ u′ v′
congit⋙ : ∀ {C} → {t t′ : Γ ⊢ NAT} → {u u′ : Γ ⊢ C ▻ C} → {v v′ : Γ ⊢ C}
→ t ⋙ t′
→ it t u v ⋙ it t′ u′ v′
congrec⋙ : ∀ {C} → {t t′ : Γ ⊢ NAT} → {u u′ : Γ ⊢ NAT ▻ C ▻ C} → {v v′ : Γ ⊢ C}
→ t ⋙ t′
→ rec t u v ⋙ rec t′ u′ v′
beta▻⋙ : ∀ {A B} → {t : Γ , A ⊢ B} → {u : Γ ⊢ A}
→ app (lam t) u ⋙ ([ top ≔ u ] t)
eta▻⋙ : ∀ {A B} → {t : Γ ⊢ A ▻ B}
→ t ⋙ lam (app (mono⊢ weak⊆ t) v₀)
beta∧₁⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B}
→ fst (pair t u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B}
→ snd (pair t u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : Γ ⊢ A ∧ B}
→ t ⋙ pair (fst t) (snd t)
eta⊤⋙ : ∀ {t : Γ ⊢ ⊤} → t ⋙ unit
betaBOOL₁⋙ : ∀ {C} → {u v : Γ ⊢ C}
→ if true u v ⋙ u
betaBOOL₂⋙ : ∀ {C} → {u v : Γ ⊢ C}
→ if false u v ⋙ v
betaNATit₁⋙ : ∀ {C} → {u : Γ ⊢ C ▻ C} → {v : Γ ⊢ C}
→ it zero u v ⋙ v
-- TODO: Verify this.
betaNATit₂⋙ : ∀ {C} → {t : Γ ⊢ NAT} → {u : Γ ⊢ C ▻ C} → {v : Γ ⊢ C}
→ it (suc t) u v ⋙ app u (it t u v)
betaNATrec₁⋙ : ∀ {C} → {u : Γ ⊢ NAT ▻ C ▻ C} → {v : Γ ⊢ C}
→ rec zero u v ⋙ v
-- TODO: Verify this.
betaNATrec₂⋙ : ∀ {C} → {t : Γ ⊢ NAT} → {u : Γ ⊢ NAT ▻ C ▻ C} → {v : Γ ⊢ C}
→ rec (suc t) u v ⋙ app (app u t) (rec t u v)
-- TODO: What about eta for BOOL and NAT?
| {
"alphanum_fraction": 0.3533702213,
"avg_line_length": 27.901754386,
"ext": "agda",
"hexsha": "181fdf6f08ad9667f4103a87d30f1aebf89486ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicT/Syntax/Gentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicT/Syntax/Gentzen.agda",
"max_line_length": 85,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicT/Syntax/Gentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 4052,
"size": 7952
} |
-- Andreas, 2015-05-01
-- With clauses for functions with flexible arity.
-- {-# OPTIONS -v tc.with:40 #-}
open import Common.Prelude
open import Common.Equality
mutual
even : Nat → Bool
even 0 = true
even (suc n) = odd n
odd : Nat → Bool
odd 0 = false
odd (suc n) = even n
NPred : Nat → Set
NPred 0 = Bool
NPred (suc n) = Nat → NPred n
const : Bool → ∀{n} → NPred n
const b {0} = b
const b {suc n} m = const b {n}
allOdd : ∀ n → NPred n
allOdd 0 = true
allOdd (suc n) m with even m
... | true = const false
... | false = allOdd n
test : allOdd 4 1 3 5 7 ≡ true
test = refl
| {
"alphanum_fraction": 0.5944625407,
"avg_line_length": 18.0588235294,
"ext": "agda",
"hexsha": "d47339a10243c83dc52968e063625e471adc6c9c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/WithFlexibleArity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/WithFlexibleArity.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/WithFlexibleArity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 230,
"size": 614
} |
module par-swap.dpg where
open import par-swap
open import par-swap.properties
open import par-swap.confluent
open import par-swap.dpg-pot
open import par-swap.dpg-e-view
open import noetherian using (noetherian ; ∥_∥s)
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Lang.Binding
open import Esterel.Environment as Env
open import Esterel.Context
open import Data.Product
open import Data.Bool
open import Data.Empty
open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_)
open import Data.Sum
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; subst ; cong ; trans ;
module ≡-Reasoning ; cong₂ ; subst₂ ; inspect)
open import sn-calculus
open import context-properties -- get view, E-views
DPG₁ : ∀ {p q r} ->
(p ∥ q) sn⟶₁ r ->
∃ \ {(d , d₁) -> (q ∥ p) sn⟶ d₁ × d₁ sn⟶* d × r ∥R* d}
DPG₁{p} {q} {r} (rpar-done-right haltedp doneq) =
(r , r) ,
fixup-valuemax₁ doneq haltedp (rcontext [] dchole (rpar-done-left doneq haltedp)) ,
rrefl , ∥R0 where
fixup-valuemax₁ : ∀ {p q} ->
(doneq : done q) ->
(haltedp : halted p) ->
q ∥ p sn⟶ value-max doneq (dhalted haltedp) (inj₂ haltedp) ->
q ∥ p sn⟶ value-max (dhalted haltedp) doneq (inj₁ haltedp)
fixup-valuemax₁ donep haltedq rewrite value-max-sym donep haltedq = λ z → z
DPG₁{p}{q}{r} (rpar-done-left donep haltedq) =
(r , r) ,
fixup-valuemax₂ donep haltedq (rcontext [] dchole (rpar-done-right haltedq donep)) ,
rrefl , ∥R0 where
fixup-valuemax₂ : ∀ {p q} ->
(donep : done p) ->
(haltedq : halted q) ->
q ∥ p sn⟶ value-max (dhalted haltedq) donep (inj₁ haltedq) ->
q ∥ p sn⟶ value-max donep (dhalted haltedq) (inj₂ haltedq)
fixup-valuemax₂ donep haltedq rewrite sym (value-max-sym donep haltedq) = λ z → z
par-not-halted : ∀ {p C q₁ q₂} -> halted p -> p ≐ C ⟦ q₁ ∥ q₂ ⟧c -> ⊥
par-not-halted hnothin ()
par-not-halted (hexit n) ()
swap-paused-is-paused :
∀ {p C q₁ q₂} ->
paused p ->
p ≐ C ⟦ q₁ ∥ q₂ ⟧c ->
paused (C ⟦ q₂ ∥ q₁ ⟧c)
swap-paused-is-paused ppause ()
swap-paused-is-paused (pseq pausedp) (dcseq₁ dc)
= pseq (swap-paused-is-paused pausedp dc)
swap-paused-is-paused (pseq pausedp) (dcseq₂ dc)
= pseq pausedp
swap-paused-is-paused (ploopˢ pausedp) (dcloopˢ₁ dc)
= ploopˢ (swap-paused-is-paused pausedp dc)
swap-paused-is-paused (ploopˢ pausedp) (dcloopˢ₂ dc)
= ploopˢ pausedp
swap-paused-is-paused (ppar pausedp pausedp₁) dchole
= ppar pausedp₁ pausedp
swap-paused-is-paused (ppar pausedp pausedp₁) (dcpar₁ dc)
= ppar (swap-paused-is-paused pausedp dc) pausedp₁
swap-paused-is-paused (ppar pausedp pausedp₁) (dcpar₂ dc)
= ppar pausedp (swap-paused-is-paused pausedp₁ dc)
swap-paused-is-paused (psuspend pausedp) (dcsuspend dc)
= psuspend (swap-paused-is-paused pausedp dc)
swap-paused-is-paused (ptrap pausedp) (dctrap dc)
= ptrap (swap-paused-is-paused pausedp dc)
DPG : ∀ {a b c} ->
a ∥R b ->
a sn⟶ c ->
Σ (Term × Term) λ {(d , d₁) -> b sn⟶ d₁ × d₁ sn⟶* d × c ∥R* d}
DPG (∥Rstep dchole) (rcontext _ dchole psn⟶₁p')
= DPG₁ psn⟶₁p'
DPG (∥Rstep dchole) (rcontext _ (dcpar₁ dcsn⟶) psn⟶₁p')
= _ , rcontext _ (dcpar₂ dcsn⟶) psn⟶₁p' , rrefl , ∥Rn (∥Rstep dchole) ∥R0
DPG (∥Rstep dchole) (rcontext _ (dcpar₂ dcsn⟶) psn⟶₁p')
= _ , rcontext _ (dcpar₁ dcsn⟶) psn⟶₁p' , rrefl , ∥Rn (∥Rstep dchole) ∥R0
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext .[] dchole (rpar-done-right haltedp doneq))
= ⊥-elim (par-not-halted haltedp dc∥R)
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext .[] dchole (rpar-done-left (dhalted p/halted) haltedq))
= ⊥-elim (par-not-halted p/halted dc∥R)
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext .[] dchole (rpar-done-left (dpaused p/paused) hnothin))
= _ ,
rcontext [] dchole (rpar-done-left (dpaused (swap-paused-is-paused p/paused dc∥R)) hnothin) ,
rrefl ,
∥Rn (∥Rstep dc∥R) ∥R0
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext .[] dchole (rpar-done-left (dpaused p/paused) (hexit n)))
= _ ,
rcontext [] dchole (rpar-done-left (dpaused (swap-paused-is-paused p/paused dc∥R)) (hexit n)) ,
rrefl ,
∥R0
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext (ceval (epar₁ _) ∷ C) (dcpar₁ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ (ceval (epar₁ _)) sn⟶step ,
Context1-sn⟶* (ceval (epar₁ _)) sn⟶*step ,
Context1-∥R* (ceval (epar₁ _)) ∥R*step
DPG (∥Rstep (dcpar₁ dc∥R)) (rcontext _ (dcpar₂ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcpar₂ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcpar₁ dc∥R)) ∥R0
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext .[] dchole (rpar-done-right haltedp (dhalted p/halted)))
= ⊥-elim (par-not-halted p/halted dc∥R)
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext .[] dchole (rpar-done-right hnothin (dpaused p/paused)))
= _ ,
rcontext [] dchole (rpar-done-right hnothin (dpaused (swap-paused-is-paused p/paused dc∥R))) ,
rrefl ,
∥Rn (∥Rstep dc∥R) ∥R0
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext .[] dchole (rpar-done-right (hexit n) (dpaused p/paused)))
= _ ,
rcontext [] dchole (rpar-done-right (hexit n) (dpaused (swap-paused-is-paused p/paused dc∥R))) ,
rrefl ,
∥R0
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext .[] dchole (rpar-done-left donep haltedq))
= ⊥-elim (par-not-halted haltedq dc∥R)
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext _ (dcpar₁ dcsn⟶) psn⟶₁p')
= _ ,
(rcontext _ (dcpar₁ dcsn⟶) psn⟶₁p') ,
rrefl ,
∥Rn (∥Rstep (dcpar₂ dc∥R)) ∥R0
DPG (∥Rstep (dcpar₂ dc∥R)) (rcontext (c ∷ C) (dcpar₂ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcseq₁ ())) (rcontext .[] dchole rseq-done)
DPG (∥Rstep (dcseq₁ ())) (rcontext .[] dchole rseq-exit)
DPG (∥Rstep (dcseq₁ dc∥R)) (rcontext (c ∷ C) (dcseq₁ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcseq₁ dc∥R)) (rcontext _ (dcseq₂ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcseq₂ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcseq₁ dc∥R)) ∥R0
DPG (∥Rstep (dcseq₂ dc∥R)) (rcontext .[] dchole rseq-done)
= _ , rcontext [] dchole rseq-done , rrefl , ∥Rn (∥Rstep dc∥R) ∥R0
DPG (∥Rstep (dcseq₂ dc∥R)) (rcontext .[] dchole rseq-exit)
= _ , rcontext [] dchole rseq-exit , rrefl , ∥R0
DPG (∥Rstep (dcseq₂ dc∥R)) (rcontext _ (dcseq₁ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcseq₁ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcseq₂ dc∥R)) ∥R0
DPG (∥Rstep (dcseq₂ dc∥R)) (rcontext (c ∷ C) (dcseq₂ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcsuspend dc∥R)) (rcontext .[] dchole (rsuspend-done haltedp))
= ⊥-elim (par-not-halted haltedp dc∥R)
DPG (∥Rstep (dcsuspend dc∥R)) (rcontext (c ∷ C) (dcsuspend dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dctrap dc∥R)) (rcontext .[] dchole (rtrap-done haltedp))
= ⊥-elim (par-not-halted haltedp dc∥R)
DPG (∥Rstep (dctrap dc∥R)) (rcontext (c ∷ C) (dctrap dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcsignl dc∥R)) (rcontext .[] dchole rraise-signal)
= _ ,
(rcontext [] dchole rraise-signal) ,
rrefl ,
(∥Rn (∥Rstep (dcenv dc∥R)) ∥R0)
DPG (∥Rstep (dcsignl dc∥R)) (rcontext (c ∷ C) (dcsignl dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcpresent₁ dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcpresent₁ dc∥R)) (rcontext (c ∷ C) (dcpresent₁ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcpresent₁ dc∥R)) (rcontext _ (dcpresent₂ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcpresent₂ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcpresent₁ dc∥R)) ∥R0
DPG (∥Rstep (dcpresent₂ dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcpresent₂ dc∥R)) (rcontext _ (dcpresent₁ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcpresent₁ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcpresent₂ dc∥R)) ∥R0
DPG (∥Rstep (dcpresent₂ dc∥R)) (rcontext (c ∷ C) (dcpresent₂ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcloop dc∥R)) (rcontext .[] dchole rloop-unroll)
= _ ,
(rcontext [] dchole rloop-unroll) ,
rrefl ,
∥Rn (∥Rstep (dcloopˢ₁ dc∥R)) (∥Rn (∥Rstep (dcloopˢ₂ dc∥R)) ∥R0)
DPG (∥Rstep (dcloop dc∥R)) (rcontext (c ∷ C) (dcloop dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcloopˢ₁ ())) (rcontext .[] dchole rloopˢ-exit)
DPG (∥Rstep (dcloopˢ₁ dc∥R)) (rcontext (c ∷ C) (dcloopˢ₁ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcloopˢ₁ dc∥R)) (rcontext _ (dcloopˢ₂ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcloopˢ₂ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcloopˢ₁ dc∥R)) ∥R0
DPG (∥Rstep (dcloopˢ₂ dc∥R)) (rcontext .[] dchole rloopˢ-exit)
= _ ,
(rcontext [] dchole rloopˢ-exit) ,
rrefl ,
∥R0
DPG (∥Rstep (dcloopˢ₂ dc∥R)) (rcontext _ (dcloopˢ₁ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcloopˢ₁ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcloopˢ₂ dc∥R)) ∥R0
DPG (∥Rstep (dcloopˢ₂ dc∥R)) (rcontext (c ∷ C) (dcloopˢ₂ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcshared dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcshared dc∥R)) (rcontext (c ∷ C) (dcshared dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcvar dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcvar dc∥R)) (rcontext (c ∷ C) (dcvar dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcif₁ dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcif₁ dc∥R)) (rcontext (c ∷ C) (dcif₁ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcif₁ dc∥R)) (rcontext _ (dcif₂ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcif₂ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcif₁ dc∥R)) ∥R0
DPG (∥Rstep (dcif₂ dc∥R)) (rcontext .[] dchole ())
DPG (∥Rstep (dcif₂ dc∥R)) (rcontext _ (dcif₁ dcsn⟶) psn⟶₁p')
= _ ,
rcontext _ (dcif₁ dcsn⟶) psn⟶₁p' ,
rrefl ,
∥Rn (∥Rstep (dcif₂ dc∥R)) ∥R0
DPG (∥Rstep (dcif₂ dc∥R)) (rcontext (c ∷ C) (dcif₂ dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
DPG (∥Rstep (dcenv dc∥R)) (rcontext{p' = p'} .[] dchole psn⟶₁p')
with ρ-stays-ρ-sn⟶₁ psn⟶₁p'
... | θ' , q , A' , refl
with get-view psn⟶₁p'
... | inj₂ (eq , eq2 , pot-view) = DPG-pot-view dc∥R psn⟶₁p' eq eq2 pot-view
... | inj₁ (E , pin , qin , peq , qeq , E-view) with
DPG-E-view peq qeq dc∥R psn⟶₁p' E-view
... | (d , sn⟶step , ∥R*-step , _ )
= _ ,
rcontext [] dchole sn⟶step ,
rrefl ,
Context1-∥R* (cenv θ' _) ∥R*-step
DPG (∥Rstep (dcenv dc∥R)) (rcontext (c ∷ C) (dcenv dcsn⟶) psn⟶₁p')
with DPG (∥Rstep dc∥R) (rcontext C dcsn⟶ psn⟶₁p')
... | _ , sn⟶step , sn⟶*step , ∥R*step
= _ ,
Context1-sn⟶ c sn⟶step ,
Context1-sn⟶* c sn⟶*step ,
Context1-∥R* c ∥R*step
| {
"alphanum_fraction": 0.6097329001,
"avg_line_length": 32.6865284974,
"ext": "agda",
"hexsha": "8f811f640ac2b5ff504b75304278b40baa06a65e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/par-swap/dpg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/par-swap/dpg.agda",
"max_line_length": 100,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/par-swap/dpg.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 6047,
"size": 12617
} |
module UnSizedIO.Console where
open import NativeIO
open import UnSizedIO.Base hiding (main)
data ConsoleCommand : Set where
putStrLn : String → ConsoleCommand
getLine : ConsoleCommand
ConsoleResponse : ConsoleCommand → Set
ConsoleResponse (putStrLn s) = Unit
ConsoleResponse getLine = String
ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse
IOConsole : Set → Set
IOConsole = IO ConsoleInterface
IOConsole+ : Set → Set
IOConsole+ = IO+ ConsoleInterface
translateIOConsoleLocal : (c : ConsoleCommand) → NativeIO (ConsoleResponse c)
translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine
translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal
main : NativeIO Unit
main = nativePutStrLn "Console"
| {
"alphanum_fraction": 0.796875,
"avg_line_length": 27.1515151515,
"ext": "agda",
"hexsha": "16914c3a8448288cf41773f86a25ecac4fc02cf1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/UnSizedIO/Console.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/UnSizedIO/Console.agda",
"max_line_length": 77,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/UnSizedIO/Console.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 215,
"size": 896
} |
module Base.Free.Instance.Maybe.Properties where
open import Relation.Binary.PropositionalEquality using (refl; cong)
open import Base.Free using (Free; pure; impure; _>>=_)
open import Base.Free.Instance.Maybe using (Just; Nothing) renaming (Maybe to MaybeF)
open import Base.Isomorphism using (_≃_)
open _≃_
open import Base.Extensionality using (ext)
open import Data.Unit using (tt)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
-- The usual `Maybe` monad representation an the free version are isomorphic.
data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A
Maybe≃MaybeF : ∀ {A} → Maybe A ≃ MaybeF A
to Maybe≃MaybeF (just x) = Just x
to Maybe≃MaybeF nothing = Nothing
from Maybe≃MaybeF (pure x) = just x
from Maybe≃MaybeF (impure tt _) = nothing
from∘to Maybe≃MaybeF (just x) = refl
from∘to Maybe≃MaybeF nothing = refl
to∘from Maybe≃MaybeF (pure x) = refl
to∘from Maybe≃MaybeF (impure tt x) = cong (impure tt) (ext λ())
Nothing>>=k≡Nothing : ∀ {A B} → (k : A → MaybeF B) → (Nothing >>= k) ≡ Nothing
Nothing>>=k≡Nothing k = cong (impure tt) (ext (λ ()))
| {
"alphanum_fraction": 0.612804878,
"avg_line_length": 38.5882352941,
"ext": "agda",
"hexsha": "52405cd380a6f4f2394427efcc097e387287b08d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z",
"max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "FreeProving/free-compiler",
"max_forks_repo_path": "base/agda/Base/Free/Instance/Maybe/Properties.agda",
"max_issues_count": 120,
"max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "FreeProving/free-compiler",
"max_issues_repo_path": "base/agda/Base/Free/Instance/Maybe/Properties.agda",
"max_line_length": 110,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "FreeProving/free-compiler",
"max_stars_repo_path": "base/agda/Base/Free/Instance/Maybe/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z",
"num_tokens": 366,
"size": 1312
} |
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Data.Empty
open import Data.Product
open import Data.List using ([]; _∷_; _∷ʳ_)
open import Relation.Unary using (_∈_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
import Relation.Binary.HeterogeneousEquality as Het
open import Common
module Transitions {ℙ : Set} (message : Message ℙ)
where
open import SessionType message
open import Trace message
data Transition : SessionType -> Action -> SessionType -> Set where
inp : ∀{f x} -> Transition (inp f) (I x) (f x .force)
out : ∀{f x} (!x : x ∈ dom f) -> Transition (out f) (O x) (f x .force)
data Transitions : SessionType -> Trace -> SessionType -> Set where
refl : ∀{T} -> Transitions T [] T
step : ∀{T α T' φ T''} (t : Transition T α T') (tr : Transitions T' φ T'') -> Transitions T (α ∷ φ) T''
transition->defined : ∀{T a S} -> Transition T a S -> Defined T
transition->defined inp = inp
transition->defined (out _) = out
output-transition->defined : ∀{T x S} -> Transition T (O x) S -> Defined S
output-transition->defined (out !x) = !x
output-transitions->defined : ∀{T φ x S} -> Transitions T (φ ∷ʳ O x) S -> Defined S
output-transitions->defined {_} {[]} (step (out fx) refl) = fx
output-transitions->defined {_} {_ ∷ _} (step _ tr) = output-transitions->defined tr
unsnoc-transitions : ∀{T φ α S} -> Transitions T (φ ∷ʳ α) S -> ∃[ R ] (Transitions T φ R × Transition R α S)
unsnoc-transitions {_} {[]} (step t refl) = _ , refl , t
unsnoc-transitions {_} {x ∷ φ} (step t tr) with unsnoc-transitions tr
... | _ , sr , s = _ , step t sr , s
transitions+defined->defined : ∀{T as S} -> Transitions T as S -> Defined S -> Defined T
transitions+defined->defined refl def = def
transitions+defined->defined (step t _) _ = transition->defined t
transitions-eq : ∀{T T' T'' φ} (tr : Transitions T φ T') (sr : Transitions T φ T'') ->
T' ≡ T'' × tr Het.≅ sr
transitions-eq refl refl = refl , Het.refl
transitions-eq (step inp tr) (step inp sr) with transitions-eq tr sr
... | refl , Het.refl = refl , Het.refl
transitions-eq (step (out fx) tr) (step (out gx) sr) with Defined-eq fx gx | transitions-eq tr sr
... | refl | refl , Het.refl = refl , Het.refl
win-reduces-⊥ : ∀{S S' α} → Win S → Transition S α S' → ⊥
win-reduces-⊥ (out e) (out !x) = e _ !x
| {
"alphanum_fraction": 0.6841953193,
"avg_line_length": 42.2073170732,
"ext": "agda",
"hexsha": "0af6e1d97ea83d88c44a0b5f686154436b8455da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Transitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Transitions.agda",
"max_line_length": 108,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Transitions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 997,
"size": 3461
} |
{-# OPTIONS --sized-types --show-implicit #-}
module WrongSizeAssignment where
postulate
Size : Set
_^ : Size -> Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC _^ #-}
{-# BUILTIN SIZEINF ∞ #-}
data Empty : Set where
data N : {_ : Size} -> Set where
zero : N {∞}
suc : forall {i} -> N {i ^} -> N {i}
lift : forall {i} -> N {i} -> N {i ^}
lift zero = zero
lift (suc x) = suc (lift x)
f : forall {i} -> N {i ^} -> Empty
f x = f (suc (lift x))
| {
"alphanum_fraction": 0.5301455301,
"avg_line_length": 18.5,
"ext": "agda",
"hexsha": "9bca601399886463edb1ab77b2a99a7a19cd297e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/WrongSizeAssignment.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/WrongSizeAssignment.agda",
"max_line_length": 45,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/WrongSizeAssignment.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 171,
"size": 481
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Function.Base using (_∋_; _$_)
import Cubical.Algebra.Monoid as Std
open import MorePropAlgebra.Bundles
module MorePropAlgebra.Properties.Monoid {ℓ} (assumptions : Monoid {ℓ}) where
open Monoid assumptions renaming (Carrier to F)
import MorePropAlgebra.Properties.Semigroup
module Semigroup'Properties = MorePropAlgebra.Properties.Semigroup (record { Monoid assumptions })
module Semigroup' = Semigroup (record { Monoid assumptions })
( Semigroup') = Semigroup ∋ (record { Monoid assumptions })
stdIsMonoid : Std.IsMonoid ε _·_
stdIsMonoid .Std.IsMonoid.isSemigroup = Semigroup'Properties.stdIsSemigroup
stdIsMonoid .Std.IsMonoid.identity = is-identity
stdMonoid : Std.Monoid {ℓ}
stdMonoid = record { Monoid assumptions ; isMonoid = stdIsMonoid }
| {
"alphanum_fraction": 0.7112244898,
"avg_line_length": 44.5454545455,
"ext": "agda",
"hexsha": "8c3ed2466fe57b65049d4ee7a959516dd7a69bcc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Properties/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Properties/Monoid.agda",
"max_line_length": 100,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Properties/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 261,
"size": 980
} |
module _ (C Dummy : Set) where
data Maybe : Set where
nothing : Maybe
IfJust : Maybe → Set → Set
IfJust nothing P = P
postulate
qCtx : C
inferRes : Maybe
-- v-- Implicit is important here
inferResBest : IfJust inferRes ({G : Maybe} → C)
inferResBest with inferRes
inferResBest | nothing = qCtx -- Error: Dummy != C when checking qCtx : C
-- Test also with an existing implicit argument
inferResBest₁ : {A : Set} → IfJust inferRes ({G : Maybe} → C)
inferResBest₁ with inferRes
inferResBest₁ | nothing = qCtx -- Error: Dummy != C when checking qCtx : C
-- Make sure it does break down on underapplied clauses
underapplied : Maybe → C
underapplied with inferRes
underapplied | nothing = λ _ → qCtx
| {
"alphanum_fraction": 0.6760374833,
"avg_line_length": 26.6785714286,
"ext": "agda",
"hexsha": "2eab347236c3aaeb4189029ba24e83a87031c4c5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2827.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2827.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2827.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 211,
"size": 747
} |
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --no-double-check #-}
-- {-# OPTIONS -v impossible:70 #-}
-- {-# OPTIONS -v tc.interaction:30 #-}
-- {-# OPTIONS -v tc.check.internal:20 #-}
open import Agda.Builtin.Sigma
record R1 (A : Set) : Set where
instance
prodR1 : {A : Set} {B : A → Set} → ⦃ {a : A} → R1 (B a) ⦄ → R1 (Σ A B)
prodR1 = record {}
record R2 (A : Set) ⦃ aR1 : R1 A ⦄ : Set₁ where
field
f : A → Set
open R2 ⦃...⦄ public
record R3 (A : Set) (B : A → Set) : Set₁ where
instance
bR1 : {a : A} → R1 (B a)
bR1 = {!!} -- record {}
field
⦃ r2 ⦄ : R2 (Σ A B)
fab : ∀ {a} {b : B a} → f (a , b)
| {
"alphanum_fraction": 0.5109034268,
"avg_line_length": 22.9285714286,
"ext": "agda",
"hexsha": "91129846023dce49dc74e46320812ca753e519ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5478-orig.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5478-orig.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5478-orig.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 265,
"size": 642
} |
module DeclSN where
open import Data.Sum
open import Library
open import Terms
open import Substitution
open import TermShape
open import SN
open import Reduction
-- SN as accessibility
data sn {Γ} {a} (t : Tm Γ a) : Set where
acc : (∀ {t'} → t ⇒β t' → sn t') → sn t
sn⇒β : ∀ {Γ} {a} {t t' : Tm Γ a} → sn t → t ⇒β t' → sn t'
sn⇒β (acc h) r = h r
varsn : ∀ {Γ} {a} (x : Var Γ a) → sn (var x)
varsn x = acc λ { (cong () _ _) }
abssn : ∀ {Γ} {a b} {t : Tm (a ∷ Γ) b} → sn t → sn (abs t)
abssn (acc f) = acc (λ { {._} (cong abs abs x) → abssn (f x) })
subsn : ∀ {Γ Δ} {a b} {f : Tm Γ a -> Tm Δ b} →
(g : ∀ {t t' : Tm Γ a} → t ⇒β t' → f t ⇒β f t') →
∀ {t} → sn (f t) → sn t
subsn g (acc ft) = acc λ t⇒ → subsn g (ft (g t⇒))
-- Goal here: prove that sne is closed under application.
appsn : ∀ {Γ a b} {t : Tm Γ (a →̂ b)} {u} → sn t → sn u → SNe t →
∀ {r : Tm Γ b} → app t u ⇒β r → sn r
appsn (acc 𝒕) 𝒖 𝒏 (cong (appl u) (appl .u) t⇒) = acc (appsn (𝒕 t⇒) 𝒖 (mapβSNe t⇒ 𝒏 ))
appsn 𝒕 (acc u) 𝒏 (cong (appr t) (appr .t) t⇒) = acc (appsn 𝒕 (u t⇒) 𝒏)
appsn 𝒕 u (elim 𝒏 ()) β
elimsn : ∀ {Γ a b}{E : ECxt Γ a b}{t : Tm Γ a}{Et : Tm Γ b} → sn t → PCxt sn Et E t → SNe t →
∀ {Et' : Tm Γ b} → Et ⇒β Et' → sn Et'
elimsn 𝒕 (appl 𝒖) 𝒏 t⇒ = appsn 𝒕 𝒖 𝒏 t⇒
substβsn : ∀ {i m vt a Γ} {Δ} {σ ρ : RenSub {m} vt Γ Δ} → (∀ {b} (x : Var Γ b) → vt2tm _ (σ x) ⇒β* vt2tm _ (ρ x))
→ (t : Tm Γ a) → SN {i} (subst σ t) → SN {i} (subst ρ t)
substβsn f t = mapβ*SN (subst⇒β* f t)
antiSubst : ∀ {Γ a b} {t : Tm (a ∷ Γ) b}{u : Tm Γ a} → sn (subst (sgs u) t) → sn t
antiSubst {t = t} = subsn (λ x → subst⇒β (sgs _) x)
_[_]⇒β : ∀ {Γ} {a b} (E : ECxt Γ a b) {t₁ t₂ : Tm Γ a} → t₁ ⇒β t₂ → E [ t₁ ] ⇒β E [ t₂ ]
appl u [ t⇒ ]⇒β = cong (appl u) (appl u) t⇒
_[_]⇒β* : ∀ {Γ} {a b} (E : ECxt* Γ a b) {t₁ t₂ : Tm Γ a} → t₁ ⇒β t₂ → E [ t₁ ]* ⇒β E [ t₂ ]*
[] [ t⇒ ]⇒β* = t⇒
(E ∷ Es) [ t⇒ ]⇒β* = Es [ E [ t⇒ ]⇒β ]⇒β*
cong*2 : ∀ {Γ a b t t'}(E : ECxt* Γ a b)
→ (t⇒ : t ⇒β t')
→ E [ t ]* ⇒β E [ t' ]*
cong*2 E t⇒ = E [ t⇒ ]⇒β*
subexpsn : ∀ {Γ a b} (E : ECxt* Γ a b) {t : Tm Γ a} → sn (E [ t ]*) -> sn t
subexpsn E = subsn (cong*3 E)
data _Redex {Γ} : ∀ {a} → Tm Γ a → Set where
β : ∀ {a b}{t : Tm (a ∷ Γ) b}{u}
→ (app (abs t) u) Redex
mkHole2 : ∀ {Γ} {a b} (E : ECxt Γ a b) {t : Tm Γ a} → βEhole (E [ t ]) (EC→βEC E) t
mkHole2 (appl u) = appl u
mkHole3 : ∀ {Γ} {a b c} (E : ECxt Γ a b) {Es : ECxt* Γ _ _} {t : Tm Γ c} → βEhole ((Es ∷r E) [ t ]*) (EC→βEC E) (Es [ t ]*)
mkHole3 E {Es} {t} rewrite ≡.sym (lemma {t = t} Es {E = E}) = mkHole2 E {Es [ t ]*}
≡subst⇒β : ∀ {a Γ} {t t1 t' t'1 : Tm Γ a} → t ≡ t1 → t' ≡ t'1 → t ⇒β t' → t1 ⇒β t'1
≡subst⇒β ≡.refl ≡.refl x = x
split : ∀ {Γ} {a b} (E : ECxt* Γ a b) {t₁ : Tm Γ a}{t₂ Et₁ : Tm Γ b} →
Ehole* Et₁ E t₁ → t₁ Redex →
Et₁ ⇒β t₂ → (∃ λ t₃ → Ehole* t₂ E t₃ × t₁ ⇒β t₃)
⊎ (∃ λ E₁ → Ehole* t₂ E₁ t₁ × (∀ t → E [ t ]* ⇒β E₁ [ t ]*))
split ._ [] r t⇒ = inj₁ (_ , [] , t⇒)
split .(appl u ∷ []) (appl u ∷ []) () β
split ._ (appl u ∷ (() ∷ eq)) r β
split ._ (appl u ∷ eq) r (cong (appl .u) (appl .u) t⇒) with split _ eq r t⇒
split ._ (appl u ∷ eq) r (cong (appl .u) (appl .u) t⇒) | inj₁ (x , eq0 , t⇒') = inj₁ (_ , ((appl u) ∷ eq0) , t⇒')
split ._ (_∷_ {Es = Es} (appl u) eq) r (cong (appl .u) (appl .u) t⇒) | inj₂ (Es' , eq0 , f) = inj₂ (_ , ((appl u ∷ eq0) ,
(λ t → cong (mkHole3 (appl u) {Es}) (mkHole3 (appl u) {Es'}) (f t))))
split ._ (_∷_ {Es = Es} (appl t) eq) r (cong (appr Est) (appr .Est) t⇒) = inj₂ (_ , ((appl _ ∷ eq) ,
(λ t₁ → ≡subst⇒β (lemma Es {E = appl t}) (lemma Es {E = appl _}) (_⇒β_.cong {E = (appr (Es [ t₁ ]*))} (βEhole.appr (Es [ t₁ ]*)) (appr (Es [ t₁ ]*)) t⇒))))
mutual
-- it seems possible to use sn (Es [ subst (sgs u) t ]*) instead of SN {i} (Es [ subst (sgs u) t ]*) ? - bp
appsn₃ : ∀ {i a b c Γ} {u : Tm Γ a} {t : Tm (a ∷ Γ) b}{Es : ECxt* Γ b c}{x}
→ sn (Es [ x ]*)
→ sn t
→ SN {i} (Es [ subst (sgs u) t ]*) -- TODO: use sn here?
→ sn u
→ sn (Es [ app (abs t) u ]*)
appsn₃ {Es = Es} x t t[u] u = acc (λ t⇒ → help {Es = Es} x t t[u] u (mkEhole* Es) t⇒)
where
help : ∀ {i a b c Γ} {u : Tm Γ a} {t : Tm (a ∷ Γ) b} {t' : Tm Γ c} {x} {z}{Es : ECxt* Γ b c} → sn (Es [ x ]*) → sn t →
SN {i} (Es [ subst (u ∷s var) t ]*) →
sn u → Ehole* z Es (app (abs t) u) → z ⇒β t' → sn t'
help {Es = Es} x t t[u]∈sn u∈sn eq t⇒ with split Es eq β t⇒
help x t₂ t[u]∈sn u∈sn eq t⇒ | inj₁ (._ , a₁ , β) rewrite hole*→≡ a₁ = fromSN t[u]∈sn
help {Es = Es} x (acc t₃) t[u]∈sn u∈sn eq t⇒ | inj₁ (._ , a₁ , cong (appl u₁) (appl .u₁) (cong abs abs b₁)) rewrite hole*→≡ a₁
= appsn₃ {Es = Es} x (t₃ b₁) (mapβSN (cong*3 Es (subst⇒β (sgs u₁) b₁)) t[u]∈sn) u∈sn
help {t = t} {Es = Es} x t₃ t[u]∈sn (acc u∈sn) eq t⇒ | inj₁ (._ , a₁ , cong (appr ._) (appr ._) b₁) rewrite hole*→≡ a₁
= appsn₃ {Es = Es} x t₃ (mapβ*SN (cong*4 Es
(subst⇒β* (λ { {._} zero → b₁ ∷ [] ; (suc n) → [] }) t)) t[u]∈sn) (u∈sn b₁)
help {x = x} (acc f) t₂ t[u]∈sn u∈sn eq t⇒ | inj₂ (Es' , a , g) rewrite hole*→≡ a
= appsn₃ {Es = Es'} (f (g x)) t₂ (mapβSN (g _) t[u]∈sn) u∈sn
helperCxt : ∀ {i j Γ a b} {t th to : Tm Γ a} → (Es : ECxt* Γ a b)
→ t ⟨ i ⟩⇒ th → SN {j} (Es [ th ]*) → sn (Es [ th ]*) -> t ⇒β to → sn (Es [ to ]*)
helperCxt E (β 𝒖) 𝒕h 𝑡h β = 𝑡h
helperCxt E (β 𝒖) 𝒕h 𝑡h (cong (appl u) (appl .u) (cong abs abs t⇒))
= appsn₃ {Es = E} 𝑡h (sn⇒β (antiSubst (subexpsn E 𝑡h)) t⇒)
(mapβSN (cong*3 E (subst⇒β (sgs u) t⇒)) 𝒕h)
(fromSN 𝒖)
helperCxt E (β {t = t} 𝒖) 𝒕h 𝑡h (cong (appr ._) (appr ._) t⇒)
= appsn₃ {Es = E} 𝑡h (antiSubst (subexpsn E 𝑡h))
(mapβ*SN (cong*4 E (subst⇒β* (λ { zero → t⇒ ∷ [] ; (suc _) → [] }) t)) 𝒕h)
(sn⇒β (fromSN 𝒖) t⇒)
helperCxt E (cong (appl u) (appl .u) (cong () 𝑬𝒕' th⇒)) 𝒕h 𝑡h β
helperCxt E (cong (appl u) (appl .u) th⇒) 𝒕h 𝑡h (cong (appl .u) (appl .u) t⇒) = helperCxt (appl u ∷ E) th⇒ 𝒕h 𝑡h t⇒
helperCxt E (cong (appl u) (appl .u) th⇒) 𝒕h (acc 𝑡h) (cong (appr t) (appr .t) t⇒)
= acc (helperCxt [] (E [ cong (appl _) (appl _) th⇒ ]⇒*) (mapβSN t⇒' 𝒕h) (𝑡h t⇒'))
where
t⇒' = E [ cong (appr _) (appr _) t⇒ ]⇒β*
fromSN : ∀ {i} {Γ} {a} {t : Tm Γ a} → SN {i} t → sn t
fromSN (ne 𝒏) = fromSNe 𝒏
fromSN (abs t₁) = abssn (fromSN t₁)
fromSN (exp t⇒ t₁) = acc (helperCxt [] t⇒ t₁ (fromSN t₁))
fromSNe : ∀ {i Γ a} {t : Tm Γ a} → SNe {i} t → sn t
fromSNe (elim 𝒏 E) = acc (elimsn (fromSNe 𝒏) (mapPCxt fromSN E) 𝒏)
fromSNe (var x) = varsn x
| {
"alphanum_fraction": 0.4496989279,
"avg_line_length": 43.9290322581,
"ext": "agda",
"hexsha": "ba2b50989b0ceb629554a6fe1f7c82ebedcfd7a1",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z",
"max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "ryanakca/strong-normalization",
"max_forks_repo_path": "agda-aplas14/DeclSN.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "ryanakca/strong-normalization",
"max_issues_repo_path": "agda-aplas14/DeclSN.agda",
"max_line_length": 161,
"max_stars_count": 32,
"max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "ryanakca/strong-normalization",
"max_stars_repo_path": "agda-aplas14/DeclSN.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z",
"num_tokens": 3547,
"size": 6809
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.TypeUnicity where
open import Definition.Untyped hiding (U≢ℕ; U≢Π; U≢ne; ℕ≢Π; ℕ≢ne; Π≢ne; U≢Empty; ℕ≢Empty; Empty≢Π; Empty≢ne)
open import Definition.Untyped.Properties using (subst-Univ-either)
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening
open import Definition.Typed.Consequences.Equality
import Definition.Typed.Consequences.Inequality as Ineq
open import Definition.Typed.Consequences.Inversion
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.NeTypeEq
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.PiNorm
open import Definition.Typed.Consequences.Substitution
open import Definition.Conversion.Stability
open import Tools.Product
open import Tools.Empty
open import Tools.Sum using (_⊎_; inj₁; inj₂)
import Tools.PropositionalEquality as PE
type-uniq : ∀ {Γ t T₁ T₂ r₁ r₂ l₁ l₂} → Γ ⊢ t ∷ T₁ ^ [ r₁ , l₁ ] → Γ ⊢ t ∷ T₂ ^ [ r₂ , l₂ ] →
r₁ PE.≡ r₂ × l₁ PE.≡ l₂ × Γ ⊢ T₁ ≡ T₂ ^ [ r₁ , l₁ ]
type-uniq (univ 0<1 x) (univ 0<1 x') = PE.refl , PE.refl , refl (Ugenⱼ x)
type-uniq (ℕⱼ x) (ℕⱼ x₁) = PE.refl , PE.refl , refl (Ugenⱼ x)
type-uniq (Emptyⱼ x) (Emptyⱼ x₁) = PE.refl , PE.refl , refl (Ugenⱼ x)
type-uniq (Πⱼ x ▹ x₁ ▹ X ▹ X₁) (Πⱼ x₂ ▹ x₃ ▹ Y ▹ Y₁) =
let _ , _ , eU = type-uniq X₁ Y₁
er , el = Uinjectivity eU
in PE.refl , PE.refl , PE.subst (λ r → _ ⊢ _ ≡ Univ r _ ^ _ ) er (refl ((Ugenⱼ (wfTerm Y))) )
type-uniq (∃ⱼ X ▹ X₁) (∃ⱼ Y ▹ Y₁) =
let _ , enextl , eU = type-uniq X Y
el = next-inj enextl
in PE.refl , enextl , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _ ) el (refl ((Ugenⱼ (wfTerm Y))) )
type-uniq (var xx x) (var _ y) =
let T≡T , e = varTypeEq′ x y
er , el = typelevel-injectivity e
in er , el , PE.subst (λ A → _ ⊢ _ ≡ A ^ _ ) T≡T (refl (syntacticTerm (var xx x)))
type-uniq (lamⱼ x x₁ x₂ X) (lamⱼ y y₁ y₂ Y) =
let _ , _ , F≡F = type-uniq (un-univ x₂) (un-univ y₂)
erF , elF = Uinjectivity F≡F
erG , elG , G≡G = type-uniq X (PE.subst₂ (λ r l → _ ∙ _ ^ [ r , ι l ] ⊢ _ ∷ _ ^ _) (PE.sym erF) (PE.sym elF) Y)
in erG , PE.refl , PE.subst₃ (λ rF lF lG → _ ⊢ _ ≡ Π _ ^ rF ° lF ▹ _ ° lG ° _ ^ _) erF elF (ιinj elG)
(univ (Π-cong x x₁ x₂ (refl (un-univ x₂)) (un-univ≡ G≡G)))
type-uniq (X ∘ⱼ X₁) (Y ∘ⱼ Y₁) =
let er , _ , Π≡Π = type-uniq X Y
F≡F , erF , elF , elG , G≡G = injectivity Π≡Π
in er , PE.cong _ elG , (substitutionEq G≡G (substRefl (singleSubst X₁)) (wfTerm X₁))
type-uniq {Γ} ⦅ x , x₁ , X , X₁ ⦆ⱼ (⦅_,_,_,_⦆ⱼ {F = F} {G = G} y y₁ Y Y₁) =
let _ , el , F≡F = type-uniq X Y
_ , el' , G≡G = type-uniq (un-univ x₁) (un-univ (stability (reflConEq (wf x) ∙ sym F≡F)
(PE.subst (λ l → Γ ∙ F ^ [ % , l ] ⊢ G ^ [ % , l ]) (PE.sym el) y₁)))
in PE.refl , el , univ (∃-cong x (un-univ≡ F≡F) (un-univ≡ (refl x₁)))
type-uniq (fstⱼ X X₁ X₂) (fstⱼ Y Y₁ Y₂) =
let er , el , ∃≡∃ = type-uniq X₂ Y₂
F≡F , _ = ∃injectivity ∃≡∃
in PE.refl , el , F≡F
type-uniq (sndⱼ X X₁ X₂) (sndⱼ Y Y₁ Y₂) =
let er , el , ∃≡∃ = type-uniq X₂ Y₂
F≡F , G≡G = ∃injectivity ∃≡∃
in PE.refl , el , substitutionEq G≡G (substRefl (singleSubst (fstⱼ X X₁ X₂))) (wfTerm X)
type-uniq (zeroⱼ x) (zeroⱼ x₁) = PE.refl , PE.refl , refl (univ (ℕⱼ x))
type-uniq (sucⱼ X) (sucⱼ Y) = PE.refl , PE.refl , refl (univ (ℕⱼ (wfTerm X)))
type-uniq (natrecⱼ x X X₁ X₂) (natrecⱼ y Y Y₁ Y₂) =
let _ , _ , U≡U = type-uniq (un-univ x) (un-univ y)
er , _ = Uinjectivity U≡U
in er , PE.refl , refl (substitution x (singleSubst X₂) (wfTerm X) )
type-uniq (Emptyrecⱼ x X) (Emptyrecⱼ y Y) =
let _ , _ , U≡U = type-uniq (un-univ x) (un-univ y)
er , _ = Uinjectivity U≡U
in er , PE.refl , refl x
type-uniq (Idⱼ X X₁ X₂) (Idⱼ Y Y₁ Y₂) =
let _ , enl , U≡U = type-uniq X Y
el = next-inj enl
in PE.refl , enl , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm X)))
type-uniq (Idreflⱼ X) (Idreflⱼ Y) =
let _ , el , _ = type-uniq X Y
in PE.refl , el , refl (syntacticTerm (Idreflⱼ X))
type-uniq (transpⱼ x x₁ X X₁ X₂ X₃) (transpⱼ x₂ x₃ Y Y₁ Y₂ Y₃) =
let _ , el , _ = type-uniq X Y
in PE.refl , el , refl (substitution x₁ (singleSubst X₂) (wfTerm X))
type-uniq (castⱼ X X₁ X₂ X₃) (castⱼ Y Y₁ Y₂ Y₃) =
let er , _ , _ = type-uniq X₃ Y₃
in er , PE.refl , refl (univ X₁)
type-uniq (castreflⱼ X X₁) (castreflⱼ Y Y₁) = PE.refl , PE.refl , refl (syntacticTerm (castreflⱼ X X₁))
type-uniq (conv X x) Y = let er , el , eA = type-uniq X Y in er , el , trans (sym x) eA
type-uniq X (conv Y y) =
let er , el , eA = type-uniq X Y
in er , el , trans eA (PE.subst₂ (λ r l → _ ⊢ _ ≡ _ ^ [ r , l ]) (PE.sym er) (PE.sym el) y)
| {
"alphanum_fraction": 0.5857288481,
"avg_line_length": 52.1808510638,
"ext": "agda",
"hexsha": "7f42e5440e262d3a32d3b9aa916b7107b42e0e49",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/TypeUnicity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/TypeUnicity.agda",
"max_line_length": 126,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/TypeUnicity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 2162,
"size": 4905
} |
import Data.Empty
import Data.Unit
import Data.Bool
import Data.Nat
import Data.Fin
module SecondOrder.Arity where
-- A notion of arity is given by a set of possible arities, and a mapping which to each arity assings a set of
-- argument positions.
record Arity : Set₁ where
field
arity : Set -- the set of permissible arities, e.g., ℕ for finitary arities
arg : arity → Set -- every arity gives a set of argument (position), e.g. Fin
-- finitary arities
arity-finite : Arity
arity-finite = record { arity = Data.Nat.ℕ ; arg = Data.Fin.Fin }
module Arity012 where
-- For example, in algebra we quite often only consider constants, unary and binary
-- operations. Thus we would only need three arities.
data arity012 : Set where
Constant Unary Binary : arity012
arg012 : arity012 → Set
arg012 Constant = Data.Empty.⊥
arg012 Unary = Data.Unit.⊤
arg012 Binary = Data.Bool.Bool
arity-012 : Arity
arity-012 = record { arity = arity012 ; arg = arg012 }
| {
"alphanum_fraction": 0.689688716,
"avg_line_length": 29.3714285714,
"ext": "agda",
"hexsha": "3f07926443edf16f4ffb95788ca529228b9da256",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Arity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Arity.agda",
"max_line_length": 112,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/Arity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 280,
"size": 1028
} |
------------------------------------------------------------------------------
-- Paradoxical combinator properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- See (Barendregt 2004, corollary 6.1.3).
module FOT.LTC-PCF.Y.Properties where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOT.LTC-PCF.Y
open import LTC-PCF.Base hiding ( fix ; fix-eq )
open import LTC-PCF.Base.Properties
------------------------------------------------------------------------------
-- The conversion rule for Y.
Y-eq : ∀ f → Y · f ≡ f · (Y · f)
Y-eq f = Y · f ≡⟨ beta helper f ⟩
lamW · lamW ≡⟨ beta W lamW ⟩
W lamW ≡⟨ refl ⟩
f · (lamW · lamW) ≡⟨ ·-rightCong (sym (beta helper f)) ⟩
f · (Y · f) ∎
where
helper : D → D
helper = λ f → lam (λ x → f · (x · x)) · lam (λ x → f · (x · x))
W : D → D
W = λ x → f · (x · x)
lamW : D
lamW = lam W
-- The conversion rule for the higher-order Y₁.
Y₁-eq : (f : D → D) → Y₁ f ≡ f (Y₁ f)
Y₁-eq f = Y₁ f ≡⟨ refl ⟩
Y · lam f ≡⟨ Y-eq (lam f) ⟩
lam f · (Y · lam f) ≡⟨ ·-rightCong refl ⟩
lam f · Y₁ f ≡⟨ beta f (Y₁ f) ⟩
f (Y₁ f) ∎
------------------------------------------------------------------------------
-- References
--
-- Barendregt, Henk (2004). The Lambda Calculus. Its Syntax and
-- Semantics. 2nd ed. Vol. 103. Studies in Logic and the Foundations
-- of Mathematics. 6th impression. Elsevier.
| {
"alphanum_fraction": 0.4203488372,
"avg_line_length": 32.4528301887,
"ext": "agda",
"hexsha": "096ff44ff7ea3f1e9fd82ee670b4608820adf9d2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/LTC-PCF/Y/Properties.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/LTC-PCF/Y/Properties.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/LTC-PCF/Y/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 505,
"size": 1720
} |
--------------------------------------------------------------------------------
-- Strings with markers, used for parsing
--------------------------------------------------------------------------------
{-# OPTIONS --type-in-type #-}
module Parse.MarkedString where
open import Data.String using (fromList; fromChar; toList)
open import Prelude
data Marker : Set where
NonTerminalBracket : Bool → Marker
NameDivider : Marker
WildcardBracket : Bool → Marker
WildcardSeparator : Marker
instance
Marker-Show : Show Marker
Marker-Show = record { show = λ where
(NonTerminalBracket true) → "NonTerminalBracket"
(NonTerminalBracket false) → "IgnoredNonTerminalBracket"
NameDivider → "NameDivider"
(WildcardBracket true) → "BlacklistWildcardBracket"
(WildcardBracket false) → "WhitelistWildcardBracket"
WildcardSeparator → "WildcardSeparator" }
Marker-Eq : Eq Marker
Marker-Eq = record { _≟_ = λ where
(NonTerminalBracket x) (NonTerminalBracket x₁) →
case x ≟ x₁ of λ { (yes refl) → yes refl ; (no ¬p) → no (λ { refl → ¬p refl }) }
(NonTerminalBracket x) NameDivider → no (λ ())
(NonTerminalBracket x) (WildcardBracket x₁) → no (λ ())
(NonTerminalBracket x) WildcardSeparator → no (λ ())
NameDivider (NonTerminalBracket x) → no (λ ())
NameDivider NameDivider → yes refl
NameDivider (WildcardBracket x) → no (λ ())
NameDivider WildcardSeparator → no (λ ())
(WildcardBracket x) (NonTerminalBracket x₁) → no (λ ())
(WildcardBracket x) NameDivider → no (λ ())
(WildcardBracket x) (WildcardBracket x₁) →
case x ≟ x₁ of λ { (yes refl) → yes refl ; (no ¬p) → no (λ { refl → ¬p refl }) }
(WildcardBracket x) WildcardSeparator → no (λ ())
WildcardSeparator (NonTerminalBracket x) → no (λ ())
WildcardSeparator NameDivider → no (λ ())
WildcardSeparator (WildcardBracket x) → no (λ ())
WildcardSeparator WildcardSeparator → yes refl }
Marker-EqB = Eq→EqB {{Marker-Eq}}
enumerateMarkers : List Marker
enumerateMarkers =
NonTerminalBracket true ∷
NonTerminalBracket false ∷
NameDivider ∷
WildcardBracket true ∷
WildcardBracket false ∷
WildcardSeparator ∷ []
markerRepresentation : Marker → Char
markerRepresentation (NonTerminalBracket true) = '_'
markerRepresentation (NonTerminalBracket false) = '^'
markerRepresentation NameDivider = '$'
markerRepresentation (WildcardBracket true) = '!'
markerRepresentation (WildcardBracket false) = '@'
markerRepresentation WildcardSeparator = '&'
-- other good candidates: &*#~%
escapeMarker = '\\'
MarkedChar = Char ⊎ Marker
MarkedString = List MarkedChar
markedStringToString : MarkedString → String
markedStringToString [] = ""
markedStringToString (inj₁ x ∷ s) =
fromList (decCase x of
map (λ x → (x , escapeMarker ∷ [ x ])) $
-- if we find anything in this list, escape it
escapeMarker ∷ map markerRepresentation enumerateMarkers
default [ x ])
+ markedStringToString s
markedStringToString (inj₂ x ∷ s) = (fromChar $ markerRepresentation x) + markedStringToString s
convertToMarked : String → MarkedString
convertToMarked s = helper false (toList s)
where
-- first argument is whether the current character is escaped
helper : Bool → List Char → MarkedString
helper _ [] = []
helper false (x ∷ l) =
decCase x of
(escapeMarker , helper true l) ∷
map (λ y → (markerRepresentation y , inj₂ y ∷ helper false l)) enumerateMarkers
default (inj₁ x ∷ helper false l)
helper true (x ∷ l) = inj₁ x ∷ helper false l
| {
"alphanum_fraction": 0.6441466083,
"avg_line_length": 37.306122449,
"ext": "agda",
"hexsha": "024d4c60f8fc6e1d09ce2370a5bba2be9e25ecc4",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "src/Parse/MarkedString.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "src/Parse/MarkedString.agda",
"max_line_length": 96,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "src/Parse/MarkedString.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 932,
"size": 3656
} |
{-# OPTIONS --without-K #-}
module well-typed-syntax where
infixl 2 _▻_
infixl 3 _‘’_
infixl 3 _‘’₁_
infixl 3 _‘’₂_
infixl 3 _‘’₃_
infixl 3 _‘’ₐ_
infixr 1 _‘→’_
infixl 3 _‘‘’’_
infixl 3 _w‘‘’’_
infixr 1 _‘‘→'’’_
infixr 1 _w‘‘→'’’_
mutual
data Context : Set where
ε : Context
_▻_ : (Γ : Context) → Typ Γ → Context
data Typ : Context → Set where
_‘’_ : ∀ {Γ A} → Typ (Γ ▻ A) → Term {Γ} A → Typ Γ
_‘’₁_ : ∀ {Γ A B} → (C : Typ (Γ ▻ A ▻ B)) → (a : Term {Γ} A) → Typ (Γ ▻ B ‘’ a)
_‘’₂_ : ∀ {Γ A B C} → (D : Typ (Γ ▻ A ▻ B ▻ C)) → (a : Term {Γ} A) → Typ (Γ ▻ B ‘’ a ▻ C ‘’₁ a)
_‘’₃_ : ∀ {Γ A B C D} → (E : Typ (Γ ▻ A ▻ B ▻ C ▻ D)) → (a : Term {Γ} A) → Typ (Γ ▻ B ‘’ a ▻ C ‘’₁ a ▻ D ‘’₂ a)
W : ∀ {Γ A} → Typ Γ → Typ (Γ ▻ A)
W1 : ∀ {Γ A B} → Typ (Γ ▻ B) → Typ (Γ ▻ A ▻ (W {Γ = Γ} {A = A} B))
W2 : ∀ {Γ A B C} → Typ (Γ ▻ B ▻ C) → Typ (Γ ▻ A ▻ W B ▻ W1 C)
_‘→’_ : ∀ {Γ} (A : Typ Γ) → Typ (Γ ▻ A) → Typ Γ
‘Σ’ : ∀ {Γ} (T : Typ Γ) → Typ (Γ ▻ T) → Typ Γ
‘Context’ : ∀ {Γ} → Typ Γ
‘Typ’ : ∀ {Γ} → Typ (Γ ▻ ‘Context’)
‘Term’ : ∀ {Γ} → Typ (Γ ▻ ‘Context’ ▻ ‘Typ’)
data Term : ∀ {Γ} → Typ Γ → Set where
w : ∀ {Γ A B} → Term {Γ} B → Term {Γ = Γ ▻ A} (W {Γ = Γ} {A = A} B)
‘λ∙’ : ∀ {Γ A B} → Term {Γ = (Γ ▻ A)} B → Term {Γ} (A ‘→’ B)
_‘’ₐ_ : ∀ {Γ A B} → (f : Term {Γ} (A ‘→’ B)) → (x : Term {Γ} A) → Term {Γ} (B ‘’ x)
‘VAR₀’ : ∀ {Γ T} → Term {Γ = Γ ▻ T} (W T)
⌜_⌝c : ∀ {Γ} → Context → Term {Γ} ‘Context’
⌜_⌝T : ∀ {Γ Γ'} → Typ Γ' → Term {Γ} (‘Typ’ ‘’ ⌜ Γ' ⌝c)
⌜_⌝t : ∀ {Γ Γ'} {T : Typ Γ'} → Term T → Term {Γ} (‘Term’ ‘’₁ ⌜ Γ' ⌝c ‘’ ⌜ T ⌝T)
‘quote-term’ : ∀ {Γ Γ'} {A : Typ Γ'} → Term {Γ} (‘Term’ ‘’₁ ⌜ Γ' ⌝c ‘’ ⌜ A ⌝T ‘→’ W (‘Term’ ‘’₁ ⌜ Γ ⌝c ‘’ ⌜ ‘Term’ ‘’₁ ⌜ Γ' ⌝c ‘’ ⌜ A ⌝T ⌝T))
‘quote-sigma’ : ∀ {Γ Γ'} → Term {Γ} (‘Σ’ ‘Context’ ‘Typ’ ‘→’ W (‘Term’ ‘’₁ ⌜ Γ' ⌝c ‘’ ⌜ ‘Σ’ ‘Context’ ‘Typ’ ⌝T))
{-‘substTyp’ : ∀ {Γ' Γ} {A : Typ Γ}
→ Term {Γ'} (‘Typ’ ‘’ ⌜ Γ ▻ A ⌝c
‘→’ W (‘Term’ ‘’₁ ⌜ Γ ⌝c ‘’ ⌜ A ⌝T
‘→’ W (‘Typ’ ‘’ ⌜ Γ ⌝c)))-}
‘cast’ : Term {ε} (‘Σ’ ‘Context’ ‘Typ’ ‘→’ W (‘Typ’ ‘’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c))
SW : ∀ {Γ A B} {a : Term {Γ} A} → Term {Γ} (W B ‘’ a) → Term {Γ} B
weakenTyp-substTyp-tProd : ∀ {Γ T T' A B} {a : Term {Γ} T} → Term {Γ = Γ ▻ T'} (W ((A ‘→’ B) ‘’ a)) → Term {Γ ▻ T'} (W ((A ‘’ a) ‘→’ (B ‘’₁ a)))
substTyp-weakenTyp1-VAR₀ : ∀ {Γ A T} → Term {Γ ▻ A} (W1 T ‘’ ‘VAR₀’) → Term {Γ ▻ A} T
weakenTyp-tProd : ∀ {Γ A B C} → Term {Γ = Γ ▻ C} (W (A ‘→’ B)) → Term {Γ = Γ ▻ C} (W A ‘→’ W1 B)
weakenTyp-tProd-inv : ∀ {Γ A B C} → Term {Γ = Γ ▻ C} (W A ‘→’ W1 B) → Term {Γ = Γ ▻ C} (W (A ‘→’ B))
weakenTyp-weakenTyp-tProd : ∀ {Γ A B C D} → Term {Γ ▻ C ▻ D} (W (W (A ‘→’ B))) → Term {Γ ▻ C ▻ D} (W (W A ‘→’ W1 B))
substTyp1-tProd : ∀ {Γ T T' A B} {a : Term {Γ} T} → Term {Γ ▻ T' ‘’ a} ((A ‘→’ B) ‘’₁ a) → Term {Γ ▻ T' ‘’ a} ((A ‘’₁ a) ‘→’ (B ‘’₂ a))
weakenTyp1-tProd : ∀ {Γ C D A B} → Term {Γ ▻ C ▻ W D} (W1 (A ‘→’ B)) → Term {Γ ▻ C ▻ W D} (W1 A ‘→’ W2 B)
substTyp2-tProd : ∀ {Γ T T' T'' A B} {a : Term {Γ} T} → Term {Γ ▻ T' ‘’ a ▻ T'' ‘’₁ a} ((A ‘→’ B) ‘’₂ a) → Term {Γ ▻ T' ‘’ a ▻ T'' ‘’₁ a} ((A ‘’₂ a) ‘→’ (B ‘’₃ a))
substTyp1-substTyp-weakenTyp-inv : ∀ {Γ C T A} {a : Term {Γ} C} {b : Term {Γ} (T ‘’ a)} → Term {Γ} (A ‘’ a) → Term {Γ} (W A ‘’₁ a ‘’ b)
substTyp1-substTyp-weakenTyp : ∀ {Γ C T A} {a : Term {Γ} C} {b : Term {Γ} (T ‘’ a)} → Term {Γ} (W A ‘’₁ a ‘’ b) → Term {Γ} (A ‘’ a)
weakenTyp-weakenTyp-substTyp1-substTyp-weakenTyp : ∀ {Γ C T A D E} {a : Term {Γ} C} {b : Term {Γ} (T ‘’ a)} → Term {Γ ▻ D ▻ E} (W (W (W A ‘’₁ a ‘’ b))) → Term {Γ ▻ D ▻ E} (W (W (A ‘’ a)))
weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp-inv : ∀ {Γ A B C T T'} {a : Term {Γ} A} {b : Term {Γ} (B ‘’ a)} {c : Term {Γ} (C ‘’₁ a ‘’ b)}
→ Term {Γ ▻ T'} (W (T ‘’₁ a ‘’ b))
→ Term {Γ ▻ T'} (W (W T ‘’₂ a ‘’₁ b ‘’ c))
substTyp2-substTyp1-substTyp-weakenTyp : ∀ {Γ A B C T} {a : Term {Γ} A} {b : Term {Γ} (B ‘’ a)} {c : Term {Γ} (C ‘’₁ a ‘’ b)}
→ Term {Γ} (W T ‘’₂ a ‘’₁ b ‘’ c)
→ Term {Γ} (T ‘’₁ a ‘’ b)
weakenTyp-substTyp2-substTyp1-substTyp-tProd : ∀ {Γ T T' T'' T''' A B} {a : Term {Γ} T} {b : Term {Γ} (T' ‘’ a)} {c : Term {Γ} (T'' ‘’₁ a ‘’ b)}
→ Term {Γ ▻ T'''} (W ((A ‘→’ B) ‘’₂ a ‘’₁ b ‘’ c))
→ Term {Γ ▻ T'''} ((W (A ‘’₂ a ‘’₁ b ‘’ c)) ‘→’ (W1 (B ‘’₃ a ‘’₂ b ‘’₁ c)))
weakenTyp2-weakenTyp1 : ∀ {Γ A B C D} → Term {Γ ▻ A ▻ W B ▻ W1 C} (W2 (W D)) → Term {Γ ▻ A ▻ W B ▻ W1 C} (W (W1 D))
weakenTyp1-weakenTyp : ∀ {Γ A B C} → Term {Γ ▻ A ▻ W B} (W1 (W C)) → Term {Γ ▻ A ▻ W B} (W (W C))
weakenTyp1-weakenTyp-inv : ∀ {Γ A B C} → Term {Γ ▻ A ▻ W B} (W (W C)) → Term {Γ ▻ A ▻ W B} (W1 (W C))
weakenTyp1-weakenTyp1-weakenTyp : ∀ {Γ A B C T} → Term {Γ ▻ A ▻ B ▻ W (W C)} (W1 (W1 (W T))) → Term {Γ ▻ A ▻ B ▻ W (W C)} (W1 (W (W T)))
substTyp1-weakenTyp1 : ∀ {Γ A B C} {a : Term {Γ} A} → Term {Γ ▻ W B ‘’ a} (W1 C ‘’₁ a) → Term {Γ ▻ B} C
weakenTyp1-substTyp-weakenTyp1-inv : ∀ {Γ A T'' T' T} {a : Term {Γ} A}
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W (T ‘’ a)))
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W T ‘’₁ a))
weakenTyp1-substTyp-weakenTyp1 : ∀ {Γ A T'' T' T} {a : Term {Γ} A}
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W T ‘’₁ a))
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W (T ‘’ a)))
weakenTyp-substTyp-substTyp-weakenTyp1 : ∀ {Γ T' B A} {b : Term {Γ} B} {a : Term {Γ ▻ B} (W A)} {T : Typ (Γ ▻ A)}
→ Term {Γ ▻ T'} (W (W1 T ‘’ a ‘’ b))
→ Term {Γ ▻ T'} (W (T ‘’ (SW ((‘λ∙’ a) ‘’ₐ b))))
weakenTyp-substTyp-substTyp-weakenTyp1-inv : ∀ {Γ T' B A} {b : Term {Γ} B} {a : Term {Γ ▻ B} (W A)} {T : Typ (Γ ▻ A)}
→ Term {Γ ▻ T'} (W (T ‘’ (SW ((‘λ∙’ a) ‘’ₐ b))))
→ Term {Γ ▻ T'} (W (W1 T ‘’ a ‘’ b))
substTyp-weakenTyp1-weakenTyp : ∀ {Γ T} {A : Typ Γ} {B : Typ Γ}
→ {a : Term {Γ = Γ ▻ T} (W {Γ = Γ} {A = T} B)}
→ Term {Γ = Γ ▻ T} (W1 (W A) ‘’ a)
→ Term {Γ = Γ ▻ T} (W A)
substTyp3-substTyp2-substTyp1-substTyp-weakenTyp : ∀ {Γ A B C D T T'} {a : Term {Γ} A} {b : Term {Γ} (B ‘’ a)} {c : Term {Γ} (C ‘’₁ a ‘’ b)}
{d : Term {Γ = (Γ ▻ T')} (W (D ‘’₂ a ‘’₁ b ‘’ c))}
→ Term {Γ = (Γ ▻ T')} (W1 (W T ‘’₃ a ‘’₂ b ‘’₁ c) ‘’ d)
→ Term {Γ = (Γ ▻ T')} (W (T ‘’₂ a ‘’₁ b ‘’ c))
weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp1 : ∀ {Γ A B C T T'} {a : Term {Γ} A} {b : Term (B ‘’ a)} {c : Term (C ‘’ a)}
→ Term {Γ = (Γ ▻ T')} (W (W1 T ‘’₂ a ‘’₁ b ‘’ substTyp1-substTyp-weakenTyp-inv c))
→ Term {Γ = (Γ ▻ T')} (W (T ‘’₁ a ‘’ c))
substTyp1-substTyp-tProd : ∀ {Γ T T' A B a b} → Term ((_‘→’_ {Γ = Γ ▻ T ▻ T'} A B) ‘’₁ a ‘’ b) → Term (_‘→’_ {Γ = Γ} (A ‘’₁ a ‘’ b) (B ‘’₂ a ‘’₁ b))
substTyp2-substTyp-substTyp-weakenTyp1-weakenTyp-weakenTyp : ∀ {Γ A} {T : Typ (Γ ▻ A)} {T' C B} {a : Term {Γ} A} {b : Term {Γ = (Γ ▻ C ‘’ a)} (B ‘’₁ a)}
{c : Term {Γ = (Γ ▻ T')} (W (C ‘’ a))}
→ Term {Γ = (Γ ▻ T')} (W1 (W (W T) ‘’₂ a ‘’ b) ‘’ c)
→ Term {Γ = (Γ ▻ T')} (W (T ‘’ a))
substTyp1-substTyp-weakenTyp2-weakenTyp : ∀ {Γ T' A B T} {a : Term {Γ ▻ T'} (W A)} {b : Term {Γ ▻ T'} (W1 B ‘’ a)}
→ Term {Γ ▻ T'} (W2 (W T) ‘’₁ a ‘’ b)
→ Term {Γ ▻ T'} (W1 T ‘’ a)
weakenTyp-weakenTyp1-weakenTyp : ∀ {Γ A B C D} → Term {Γ ▻ A ▻ W B ▻ W1 C} (W (W1 (W D))) → Term {Γ ▻ A ▻ W B ▻ W1 C} (W (W (W D)))
beta-under-subst : ∀ {Γ A B B'} {g : Term {Γ} (A ‘→’ W B)} {x : Term {Γ} A}
→ Term (B' ‘’ SW (‘λ∙’ (SW (‘λ∙’ (weakenTyp1-weakenTyp (substTyp-weakenTyp1-VAR₀ (weakenTyp-tProd (w (weakenTyp-tProd (w g))) ‘’ₐ ‘VAR₀’))) ‘’ₐ ‘VAR₀’)) ‘’ₐ x))
→ Term (B' ‘’ SW (g ‘’ₐ x))
‘proj₁'’ : ∀ {Γ} {T : Typ Γ} {P : Typ (Γ ▻ T)} → Term (‘Σ’ T P ‘→’ W T)
‘proj₂'’ : ∀ {Γ} {T : Typ Γ} {P : Typ (Γ ▻ T)} → Term {Γ ▻ ‘Σ’ T P} (W1 P ‘’ SW (‘λ∙’ (weakenTyp1-weakenTyp (substTyp-weakenTyp1-VAR₀ (weakenTyp-tProd (w (weakenTyp-tProd (w ‘proj₁'’))) ‘’ₐ ‘VAR₀’))) ‘’ₐ ‘VAR₀’))
‘existT’ : ∀ {Γ T P} (x : Term {Γ} T) (p : Term (P ‘’ x)) → Term (‘Σ’ T P)
{- these are redundant, but useful for not having to normalize the subsequent ones -}
_‘‘’’_ : ∀ {Γ} {A : Typ Γ}
→ Term {ε} (‘Typ’ ‘’ ⌜ Γ ▻ A ⌝c)
→ Term {ε} (‘Term’ ‘’₁ ⌜ Γ ⌝c ‘’ ⌜ A ⌝T)
→ Term {ε} (‘Typ’ ‘’ ⌜ Γ ⌝c)
_w‘‘’’_ : ∀ {X Γ} {A : Typ Γ}
→ Term {ε ▻ X} (W (‘Typ’ ‘’ ⌜ Γ ▻ A ⌝c))
→ Term {ε ▻ X} (W (‘Term’ ‘’₁ ⌜ Γ ⌝c ‘’ ⌜ A ⌝T))
→ Term {ε ▻ X} (W (‘Typ’ ‘’ ⌜ Γ ⌝c))
_‘‘→'’’_ : ∀ {Γ}
→ Term {ε} (‘Typ’ ‘’ Γ)
→ Term {ε} (‘Typ’ ‘’ Γ)
→ Term {ε} (‘Typ’ ‘’ Γ)
_w‘‘→'’’_ : ∀ {X Γ}
→ Term {ε ▻ X} (W (‘Typ’ ‘’ Γ))
→ Term {ε ▻ X} (W (‘Typ’ ‘’ Γ))
→ Term {ε ▻ X} (W (‘Typ’ ‘’ Γ))
w→ : ∀ {Γ A B C} → Term (A ‘→’ W B) → Term {Γ = Γ ▻ C} (W A ‘→’ W (W B))
{- things that were postulates, but are no longer -}
‘‘→'’’→w‘‘→'’’ : ∀ {T'}
{b : Term {ε} (‘Typ’ ‘’ ⌜ ε ⌝c)}
{c : Term {ε ▻ T'} (W (‘Typ’ ‘’ ⌜ ε ⌝c))}
{e : Term {ε} T'}
→ Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (SW (‘λ∙’ (c w‘‘→'’’ w b) ‘’ₐ e))
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (SW (‘λ∙’ c ‘’ₐ e) ‘‘→'’’ b)))
w‘‘→'’’→‘‘→'’’ : ∀ {T'}
{b : Term {ε} (‘Typ’ ‘’ ⌜ ε ⌝c)}
{c : Term {ε ▻ T'} (W (‘Typ’ ‘’ ⌜ ε ⌝c))}
{e : Term {ε} T'}
→ Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (SW (‘λ∙’ c ‘’ₐ e) ‘‘→'’’ b)
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (SW (‘λ∙’ (c w‘‘→'’’ w b) ‘’ₐ e))))
‘tApp-nd’ : ∀ {Γ} {A : Term {ε} (‘Typ’ ‘’ Γ)} {B : Term {ε} (‘Typ’ ‘’ Γ)} →
Term {ε} (‘Term’ ‘’₁ Γ ‘’ (A ‘‘→'’’ B)
‘→’ W (‘Term’ ‘’₁ Γ ‘’ A
‘→’ W (‘Term’ ‘’₁ Γ ‘’ B)))
⌜←'⌝ : ∀ {H X} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (⌜ H ⌝T ‘‘→'’’ ⌜ X ⌝T)
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ ⌜ H ‘→’ W X ⌝T))
⌜→'⌝ : ∀ {H X} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ ⌜ H ‘→’ W X ⌝T
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (⌜ H ⌝T ‘‘→'’’ ⌜ X ⌝T)))
‘‘fcomp-nd’’ : ∀ {A B C} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (A ‘‘→'’’ C)
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (C ‘‘→'’’ B)
‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ (A ‘‘→'’’ B))))
⌜‘’⌝ : ∀ {B A} {b : Term {ε} B} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’
(⌜ A ‘’ b ⌝T ‘‘→'’’ ⌜ A ⌝T ‘‘’’ ⌜ b ⌝t))
⌜‘’⌝' : ∀ {B A} {b : Term {ε} B} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’
(⌜ A ⌝T ‘‘’’ ⌜ b ⌝t ‘‘→'’’ ⌜ A ‘’ b ⌝T))
‘cast-refl’ : ∀ {T : Typ (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’
((⌜ T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T ⌝T)
‘‘→'’’
(SW (‘cast’ ‘’ₐ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
‘‘’’ SW (‘quote-sigma’ ‘’ₐ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T))))
‘cast-refl'’ : ∀ {T : Typ (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)} →
Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’
((SW (‘cast’ ‘’ₐ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
‘‘’’ SW (‘quote-sigma’ ‘’ₐ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T))
‘‘→'’’
(⌜ T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T ⌝T)))
‘s→→’ : ∀ {T B}
{b : Term {ε} (T ‘→’ W (‘Typ’ ‘’ ⌜ ε ▻ B ⌝c))}
{c : Term {ε} (T ‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ ⌜ B ⌝T))}
{v : Term {ε} T} →
(Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c
‘’ ((SW (((‘λ∙’ (SW (w→ b ‘’ₐ ‘VAR₀’) w‘‘’’ SW (w→ c ‘’ₐ ‘VAR₀’)) ‘’ₐ v))))
‘‘→'’’ (SW (b ‘’ₐ v) ‘‘’’ SW (c ‘’ₐ v)))))
‘s←←’ : ∀ {T B}
{b : Term {ε} (T ‘→’ W (‘Typ’ ‘’ ⌜ ε ▻ B ⌝c))}
{c : Term {ε} (T ‘→’ W (‘Term’ ‘’₁ ⌜ ε ⌝c ‘’ ⌜ B ⌝T))}
{v : Term {ε} T} →
(Term {ε} (‘Term’ ‘’₁ ⌜ ε ⌝c
‘’ ((SW (b ‘’ₐ v) ‘‘’’ SW (c ‘’ₐ v))
‘‘→'’’ (SW (((‘λ∙’ (SW (w→ b ‘’ₐ ‘VAR₀’) w‘‘’’ SW (w→ c ‘’ₐ ‘VAR₀’)) ‘’ₐ v)))))))
| {
"alphanum_fraction": 0.3701784197,
"avg_line_length": 61.3020833333,
"ext": "agda",
"hexsha": "b3040b68af1eff366fea9f95fd5444e8d3d020ab",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/well-typed-syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/well-typed-syntax.agda",
"max_line_length": 216,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/well-typed-syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 6522,
"size": 11770
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.QuotientRing where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Data.FinData
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.QuotientRing renaming (_/_ to _/Ring_) hiding (asRing)
private
variable
ℓ ℓ' : Level
_/_ : (R : CommRing ℓ) → (I : IdealsIn R) → CommRing ℓ
R / I =
fst asRing , commringstr _ _ _ _ _
(iscommring (RingStr.isRing (snd asRing))
(elimProp2 (λ _ _ → squash/ _ _)
commEq))
where
asRing = (CommRing→Ring R) /Ring (CommIdeal→Ideal I)
_·/_ : fst asRing → fst asRing → fst asRing
_·/_ = RingStr._·_ (snd asRing)
commEq : (x y : fst R) → ([ x ] ·/ [ y ]) ≡ ([ y ] ·/ [ x ])
commEq x y i = [ CommRingStr.·Comm (snd R) x y i ]
[_]/ : {R : CommRing ℓ} {I : IdealsIn R} → (a : fst R) → fst (R / I)
[ a ]/ = [ a ]
--
module Quotient-FGideal-CommRing-Ring
(A'@(A , Ar) : CommRing ℓ)
(B'@(B , Br) : Ring ℓ')
(g'@(g , gr) : RingHom (CommRing→Ring A') B')
where
open CommRingStr Ar using ()
renaming
( 0r to 0A
; 1r to 1A
; _+_ to _+A_
; -_ to -A_
; _·_ to _·A_ )
open RingStr Br using ()
renaming
( 0r to 0B
; 1r to 1B
; _+_ to _+B_
; -_ to -B_
; _·_ to _·B_
; +Lid to +BIdL
; is-set to isSetB)
open CommRingStr
open IsRingHom
module _
{n : ℕ}
(v : FinVec A n)
(gnull : (k : Fin n) → g ( v k) ≡ 0B)
where
f : RingHom (CommRing→Ring (A' / (generatedIdeal _ v))) B'
fst f = SQ.rec (isSetB)
g
λ a b → PT.rec (isSetB _ _)
λ x → g a ≡⟨ cong g (sym (+Rid Ar a)) ⟩
g (a +A 0A) ≡⟨ cong (λ X → g (a +A X)) (sym (snd (+Inv Ar b))) ⟩
g (a +A ((-A b) +A b)) ≡⟨ cong g (+Assoc Ar a (-A b) b) ⟩
g ((a +A -A b) +A b) ≡⟨ pres+ gr (a +A -A b) b ⟩
(g(a +A -A b) +B g b) ≡⟨ cong (λ X → g X +B g b) (snd x) ⟩
(g (linearCombination A' (fst x) v) +B g b) ≡⟨ cong (λ X → X +B g b) (cancelLinearCombination A' B' g' n (fst x) v gnull) ⟩
0B +B g b ≡⟨ +BIdL (g b) ⟩
g b ∎
snd f = makeIsRingHom
(pres1 gr)
(elimProp (λ x p q i y j → isSetB _ _ (p y) (q y) i j)
λ a → elimProp (λ _ → isSetB _ _)
λ a' → pres+ gr a a')
(elimProp (λ x p q i y j → isSetB _ _ (p y) (q y) i j)
λ a → elimProp (λ _ → isSetB _ _)
λ a' → pres· gr a a')
module Quotient-FGideal-CommRing-CommRing
(A'@(A , Ar) : CommRing ℓ)
(B'@(B , Br) : CommRing ℓ')
(g'@(g , gr) : CommRingHom A' B')
{n : ℕ}
(v : FinVec A n)
(gnull : (k : Fin n) → g ( v k) ≡ CommRingStr.0r (snd B'))
where
f : CommRingHom (A' / (generatedIdeal _ v)) B'
f = Quotient-FGideal-CommRing-Ring.f A' (CommRing→Ring B') g' v gnull
| {
"alphanum_fraction": 0.4683544304,
"avg_line_length": 33.2242990654,
"ext": "agda",
"hexsha": "057300ee3915a28511c57482b620746d9ea9cc0b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xekoukou/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xekoukou/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_line_length": 145,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xekoukou/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1251,
"size": 3555
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Logic where
import Cubical.Data.Empty as D
import Cubical.Data.Prod as D
import Cubical.Data.Sum as D
import Cubical.Data.Unit as D
open import Cubical.Foundations.Prelude
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Foundations.HLevels using (hProp; ΣProp≡; isPropIsProp; propPi) public
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Relation.Nullary hiding (¬_)
infix 10 ¬_
infixr 8 _⊔_
infixr 8 _⊔′_
infixr 8 _⊓_
infixr 8 _⊓′_
infixr 6 _⇒_
infixr 4 _⇔_
infix 30 _≡ₚ_
infix 30 _≢ₚ_
infix 2 ∃[]-syntax
infix 2 ∃[∶]-syntax
infix 2 ∀[∶]-syntax
infix 2 ∀[]-syntax
infix 2 ⇒∶_⇐∶_
infix 2 ⇐∶_⇒∶_
--------------------------------------------------------------------------------
-- The type hProp of mere propositions
-- the definition hProp is given in Foundations.HLevels
-- hProp {ℓ} = Σ (Type ℓ) isProp
private
variable
ℓ ℓ' ℓ'' : Level
P Q R : hProp {ℓ}
A B C : Type ℓ
[_] : hProp → Type ℓ
[_] = fst
∥_∥ₚ : Type ℓ → hProp
∥ A ∥ₚ = ∥ A ∥ , propTruncIsProp
_≡ₚ_ : (x y : A) → hProp
x ≡ₚ y = ∥ x ≡ y ∥ₚ
hProp≡ : [ P ] ≡ [ Q ] → P ≡ Q
hProp≡ p = ΣProp≡ (\ _ → isPropIsProp) p
--------------------------------------------------------------------------------
-- Logical implication of mere propositions
_⇒_ : (A : hProp {ℓ}) → (B : hProp {ℓ'}) → hProp
A ⇒ B = ([ A ] → [ B ]) , propPi λ _ → B .snd
⇔toPath : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q
⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (isoToPath
(iso P⇒Q Q⇒P (λ b → Q .snd (P⇒Q (Q⇒P b)) b) λ a → P .snd (Q⇒P (P⇒Q a)) a))
pathTo⇒ : P ≡ Q → [ P ⇒ Q ]
pathTo⇒ p x = subst fst p x
pathTo⇐ : P ≡ Q → [ Q ⇒ P ]
pathTo⇐ p x = subst fst (sym p) x
substₚ : {x y : A} (B : A → hProp {ℓ}) → [ x ≡ₚ y ⇒ B x ⇒ B y ]
substₚ {x = x} {y = y} B = elimPropTrunc (λ _ → propPi λ _ → B y .snd) (subst (fst ∘ B))
--------------------------------------------------------------------------------
-- Mixfix notations for ⇔-toPath
-- see ⊔-identityˡ and ⊔-identityʳ for the difference
⇒∶_⇐∶_ : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q
⇒∶_⇐∶_ = ⇔toPath
⇐∶_⇒∶_ : [ Q ⇒ P ] → [ P ⇒ Q ] → P ≡ Q
⇐∶ g ⇒∶ f = ⇔toPath f g
--------------------------------------------------------------------------------
-- False and True
⊥ : hProp
⊥ = D.⊥ , λ ()
⊤ : hProp
⊤ = D.Unit , (λ _ _ _ → D.tt)
--------------------------------------------------------------------------------
-- Pseudo-complement of mere propositions
¬_ : hProp {ℓ} → hProp
¬ A = ([ A ] → D.⊥) , propPi λ _ → D.isProp⊥
_≢ₚ_ : (x y : A) → hProp
x ≢ₚ y = ¬ x ≡ₚ y
--------------------------------------------------------------------------------
-- Disjunction of mere propositions
_⊔′_ : Type ℓ → Type ℓ' → Type _
A ⊔′ B = ∥ A D.⊎ B ∥
_⊔_ : hProp {ℓ} → hProp {ℓ'} → hProp
P ⊔ Q = ∥ [ P ] D.⊎ [ Q ] ∥ₚ
inl : A → A ⊔′ B
inl x = ∣ D.inl x ∣
inr : B → A ⊔′ B
inr x = ∣ D.inr x ∣
⊔-elim : (P : hProp {ℓ}) (Q : hProp {ℓ'}) (R : [ P ⊔ Q ] → hProp {ℓ''})
→ (∀ x → [ R (inl x) ]) → (∀ y → [ R (inr y) ]) → (∀ z → [ R z ])
⊔-elim _ _ R P⇒R Q⇒R = elimPropTrunc (snd ∘ R) (D.elim-⊎ P⇒R Q⇒R)
--------------------------------------------------------------------------------
-- Conjunction of mere propositions
_⊓′_ : Type ℓ → Type ℓ' → Type _
A ⊓′ B = A D.× B
_⊓_ : hProp {ℓ} → hProp {ℓ'} → hProp
A ⊓ B = [ A ] ⊓′ [ B ] , D.hLevelProd 1 (A .snd) (B .snd)
⊓-intro : (P : hProp {ℓ}) (Q : [ P ] → hProp {ℓ'}) (R : [ P ] → hProp {ℓ''})
→ (∀ a → [ Q a ]) → (∀ a → [ R a ]) → (∀ (a : [ P ]) → [ Q a ⊓ R a ] )
⊓-intro _ _ _ = D.intro-×
--------------------------------------------------------------------------------
-- Logical bi-implication of mere propositions
_⇔_ : hProp {ℓ} → hProp {ℓ'} → hProp
A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A)
--------------------------------------------------------------------------------
-- Universal Quantifier
∀[∶]-syntax : (A → hProp {ℓ}) → hProp
∀[∶]-syntax {A = A} P = (∀ x → [ P x ]) , propPi (snd ∘ P)
∀[]-syntax : (A → hProp {ℓ}) → hProp
∀[]-syntax {A = A} P = (∀ x → [ P x ]) , propPi (snd ∘ P)
syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P
syntax ∀[]-syntax (λ a → P) = ∀[ a ] P
--------------------------------------------------------------------------------
-- Existential Quantifier
∃[]-syntax : (A → hProp {ℓ}) → hProp
∃[]-syntax {A = A} P = ∥ Σ A (fst ∘ P) ∥ₚ
∃[∶]-syntax : (A → hProp {ℓ}) → hProp
∃[∶]-syntax {A = A} P = ∥ Σ A (fst ∘ P) ∥ₚ
syntax ∃[]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P
syntax ∃[∶]-syntax (λ x → P) = ∃[ x ] P
--------------------------------------------------------------------------------
-- Decidable mere proposition
Decₚ : (P : hProp {ℓ}) → hProp {ℓ}
Decₚ P = Dec [ P ] , isPropDec (snd P)
--------------------------------------------------------------------------------
-- Negation commutes with truncation
∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → D.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ)
∥¬A∥≡¬∥A∥ _ =
⇒∶ (λ ¬A A → elimPropTrunc (λ _ → D.isProp⊥)
(elimPropTrunc (λ _ → propPi λ _ → D.isProp⊥) (λ ¬p p → ¬p p) ¬A) A)
⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣) ∣
--------------------------------------------------------------------------------
-- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice
⊔-assoc : (P : hProp {ℓ}) (Q : hProp {ℓ'}) (R : hProp {ℓ''})
→ P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R
⊔-assoc P Q R =
⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R)
(inl ∘ inl)
(⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr)
⇐∶ assoc2
where
assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C)
assoc2 ∣ D.inr a ∣ = ∣ D.inr ∣ D.inr a ∣ ∣
assoc2 ∣ D.inl ∣ D.inr b ∣ ∣ = ∣ D.inr ∣ D.inl b ∣ ∣
assoc2 ∣ D.inl ∣ D.inl c ∣ ∣ = ∣ D.inl c ∣
assoc2 ∣ D.inl (squash x y i) ∣ = propTruncIsProp (assoc2 ∣ D.inl x ∣) (assoc2 ∣ D.inl y ∣) i
assoc2 (squash x y i) = propTruncIsProp (assoc2 x) (assoc2 y) i
⊔-idem : (P : hProp {ℓ}) → P ⊔ P ≡ P
⊔-idem P =
⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x))
⇐∶ inl
⊔-comm : (P : hProp {ℓ}) (Q : hProp {ℓ'}) → P ⊔ Q ≡ Q ⊔ P
⊔-comm P Q =
⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl)
⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl)
⊔-identityˡ : (P : hProp {ℓ}) → ⊥ ⊔ P ≡ P
⊔-identityˡ P =
⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x))
⇐∶ inr
⊔-identityʳ : (P : hProp {ℓ}) → P ⊔ ⊥ ≡ P
⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl
--------------------------------------------------------------------------------
-- (hProp, ⊓, ⊤) is a bounded ⊓-lattice
⊓-assoc : (P : hProp {ℓ}) (Q : hProp {ℓ'}) (R : hProp {ℓ''})
→ P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R
⊓-assoc _ _ _ =
⇒∶ (λ {(x D., (y D., z)) → (x D., y) D., z})
⇐∶ (λ {((x D., y) D., z) → x D., (y D., z) })
⊓-comm : (P : hProp {ℓ}) (Q : hProp {ℓ'}) → P ⊓ Q ≡ Q ⊓ P
⊓-comm _ _ = ⇔toPath D.swap D.swap
⊓-idem : (P : hProp {ℓ}) → P ⊓ P ≡ P
⊓-idem _ = ⇔toPath D.proj₁ (λ x → x D., x)
⊓-identityˡ : (P : hProp {ℓ}) → ⊤ ⊓ P ≡ P
⊓-identityˡ _ = ⇔toPath D.proj₂ λ x → D.tt D., x
⊓-identityʳ : (P : hProp {ℓ}) → P ⊓ ⊤ ≡ P
⊓-identityʳ _ = ⇔toPath D.proj₁ λ x → x D., D.tt
--------------------------------------------------------------------------------
-- Distributive laws
⇒-⊓-distrib : (P : hProp {ℓ}) (Q : hProp {ℓ'})(R : hProp {ℓ''})
→ P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R)
⇒-⊓-distrib _ _ _ =
⇒∶ (λ f → (D.proj₁ ∘ f) D., (D.proj₂ ∘ f))
⇐∶ (λ { (f D., g) x → f x D., g x})
⊓-⊔-distribˡ : (P : hProp {ℓ}) (Q : hProp {ℓ'})(R : hProp {ℓ''})
→ P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R)
⊓-⊔-distribˡ P Q R =
⇒∶ (λ { (x D., a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R))
(λ y → ∣ D.inl (x D., y) ∣ )
(λ z → ∣ D.inr (x D., z) ∣ ) a })
⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R)
(λ y → D.proj₁ y D., inl (D.proj₂ y))
(λ z → D.proj₁ z D., inr (D.proj₂ z))
⊔-⊓-distribˡ : (P : hProp {ℓ}) (Q : hProp {ℓ'})(R : hProp {ℓ''})
→ P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R)
⊔-⊓-distribˡ P Q R =
⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) )
(D.intro-× inl inl) (D.map-× inr inr)
⇐∶ (λ { (x D., y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl
(λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y D., z)) x) y })
⊓-∀-distrib : (P : A → hProp {ℓ}) (Q : A → hProp {ℓ'})
→ (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a))
⊓-∀-distrib P Q =
⇒∶ (λ {(p D., q) a → p a D., q a})
⇐∶ λ pq → (D.proj₁ ∘ pq ) D., (D.proj₂ ∘ pq)
| {
"alphanum_fraction": 0.3973068058,
"avg_line_length": 29.865942029,
"ext": "agda",
"hexsha": "0f62982ab3167c3a167eed2264c64969894356e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Logic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Logic.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Logic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3839,
"size": 8243
} |
------------------------------------------------------------------------
-- Propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Equality.Propositional where
open import Equality
open import Logical-equivalence hiding (_∘_)
open import Prelude
------------------------------------------------------------------------
-- Equality
open import Agda.Builtin.Equality public using (_≡_; refl)
private
refl′ : ∀ {a} {A : Type a} (x : A) → x ≡ x
refl′ x = refl
elim : ∀ {a p} {A : Type a} {x y}
(P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl′ x)) →
(x≡y : x ≡ y) → P x≡y
elim P r refl = r _
elim-refl : ∀ {a p} {A : Type a} {x}
(P : {x y : A} → x ≡ y → Type p)
(r : ∀ x → P (refl′ x)) →
elim P r (refl′ x) ≡ r x
elim-refl P r = refl
------------------------------------------------------------------------
-- Various derived definitions and properties
reflexive-relation : ∀ ℓ → Reflexive-relation ℓ
Reflexive-relation._≡_ (reflexive-relation _) = _≡_
Reflexive-relation.refl (reflexive-relation _) = refl′
equality-with-J₀ : ∀ {a p} → Equality-with-J₀ a p reflexive-relation
Equality-with-J₀.elim equality-with-J₀ = elim
Equality-with-J₀.elim-refl equality-with-J₀ = elim-refl
equivalence-relation⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ
equivalence-relation⁺ _ = J₀⇒Equivalence-relation⁺ equality-with-J₀
-- The following definition has been expanded in order to ensure that
-- it does not reduce (unless a projection is applied to it).
equality-with-J : ∀ {a p} → Equality-with-J a p equivalence-relation⁺
equality-with-J .Equality-with-J.equality-with-J₀ = J₀⇒J equality-with-J₀ .Equality-with-J.equality-with-J₀
equality-with-J .Equality-with-J.cong = J₀⇒J equality-with-J₀ .Equality-with-J.cong
equality-with-J .Equality-with-J.cong-refl = J₀⇒J equality-with-J₀ .Equality-with-J.cong-refl
equality-with-J .Equality-with-J.subst = J₀⇒J equality-with-J₀ .Equality-with-J.subst
equality-with-J .Equality-with-J.subst-refl = J₀⇒J equality-with-J₀ .Equality-with-J.subst-refl
equality-with-J .Equality-with-J.dcong = J₀⇒J equality-with-J₀ .Equality-with-J.dcong
equality-with-J .Equality-with-J.dcong-refl = J₀⇒J equality-with-J₀ .Equality-with-J.dcong-refl
open Derived-definitions-and-properties equality-with-J public
hiding (_≡_; refl; reflexive-relation; equality-with-J₀)
| {
"alphanum_fraction": 0.5850258861,
"avg_line_length": 39.8571428571,
"ext": "agda",
"hexsha": "35fc5ee37c9192e94782d563726ffe6f56668e32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Propositional.agda",
"max_line_length": 107,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 712,
"size": 2511
} |
-- Andreas, 2011-04-11
-- taken from test/succeed/HereditarilySingletonRecord.agda
module FrozenMVar where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
one : ℕ
one = _
force : one ≡ suc zero
force = refl
-- this tries to instantiate the frozen metavar for one | {
"alphanum_fraction": 0.6524390244,
"avg_line_length": 18.2222222222,
"ext": "agda",
"hexsha": "a20d12d2b08fb674beb7fc8cb1da57dc97ce8efe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/FrozenMVar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/FrozenMVar.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/FrozenMVar.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 113,
"size": 328
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.KernelCstImage {i j k}
{G : Group i} {H : Group j} (K : Group k)
(φ : G →ᴳ H) (H-ab : is-abelian H) where
open import groups.KernelImage {K = K} cst-hom φ H-ab
open import groups.Cokernel φ H-ab
Ker-cst-quot-Im : Ker/Im ≃ᴳ Coker
Ker-cst-quot-Im = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to : Ker/Im.El → Coker.El
to = SetQuot-rec SetQuot-level to' quot-rel where
to' : Ker.El (cst-hom {G = H} {H = K}) → Coker.El
to' ker = q[ fst ker ]
from : Coker.El → Ker/Im.El
from = SetQuot-rec SetQuot-level from' quot-rel where
from' : Group.El H → Ker/Im.El
from' h = q[ h , idp ]
abstract
to-from : ∀ cok → to (from cok) == cok
to-from = SetQuot-elim (λ _ → =-preserves-set SetQuot-level)
(λ _ → idp)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
from-to : ∀ ker → from (to ker) == ker
from-to = SetQuot-elim (λ _ → =-preserves-set SetQuot-level)
(λ _ → ap q[_] $ ker-El=-out idp)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
to-pres-comp : preserves-comp Ker/Im.comp Coker.comp to
to-pres-comp = SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level)
(λ _ → SetQuot-elim
(λ _ → =-preserves-set SetQuot-level)
(λ _ → idp)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuot-level _ _))
| {
"alphanum_fraction": 0.5679579777,
"avg_line_length": 35.4186046512,
"ext": "agda",
"hexsha": "36a67387c4a50b0233de7d289906f0aaf12b63f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/KernelCstImage.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/KernelCstImage.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/KernelCstImage.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 548,
"size": 1523
} |
{-
Pointed structure: X ↦ X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Pointed where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.Univalence
open import Cubical.Relation.ZigZag.Base
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Structures.Pointed
private
variable
ℓ : Level
-- Structured relations
preservesSetsPointed : preservesSets {ℓ = ℓ} PointedStructure
preservesSetsPointed setX = setX
PointedRelStr : StrRel PointedStructure ℓ
PointedRelStr R = R
open SuitableStrRel
open isQuasiEquivRel
pointedSuitableRel : SuitableStrRel {ℓ = ℓ} PointedStructure PointedRelStr
pointedSuitableRel .quo _ _ _ = isContrSingl _
pointedSuitableRel .symmetric _ r = r
pointedSuitableRel .transitive _ _ r r' = ∣ _ , r , r' ∣
pointedSuitableRel .prop propR = propR
pointedRelMatchesEquiv : StrRelMatchesEquiv {ℓ = ℓ} PointedRelStr PointedEquivStr
pointedRelMatchesEquiv _ _ _ = idEquiv _
| {
"alphanum_fraction": 0.8077586207,
"avg_line_length": 26.976744186,
"ext": "agda",
"hexsha": "a66de3e188fe26ed40a522d34b6566671a5cb6de",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 350,
"size": 1160
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Data.𝟙
module Oscar.Class.Unit where
module Unit {𝔞} (𝔄 : Ø 𝔞) = ℭLASS 𝟙 𝔄
module _ {𝔞} {𝔄 : Ø 𝔞} where ‼ = Unit.method 𝔄
| {
"alphanum_fraction": 0.6958762887,
"avg_line_length": 17.6363636364,
"ext": "agda",
"hexsha": "5d65c26124af5ef8819ffd9d05c12b26ff041108",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Unit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Unit.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 80,
"size": 194
} |
------------------------------------------------------------------------
-- A proof of univalence
------------------------------------------------------------------------
-- The code is based on code by Anders Mörtberg from Agda's reference
-- manual or the cubical library.
{-# OPTIONS --cubical --safe #-}
module Equality.Path.Univalence where
open import Agda.Builtin.Cubical.Glue as Glue hiding (_≃_)
open import Equality.Path
open import Prelude
open import Equivalence equality-with-J as Eq using (_≃_)
import Equivalence.Contractible-preimages equality-with-J as CP
import Equivalence.Half-adjoint equality-with-J as HA
open import Function-universe equality-with-J hiding (id)
open import Preimage equality-with-J
open import Univalence-axiom equality-with-J hiding (≃⇒≡)
private
variable
a b ℓ : Level
A : Type a
private
-- Conversions between CP._≃_ and Glue._≃_.
≃-CP⇒≃-Glue : {B : Type b} → A CP.≃ B → A Glue.≃ B
≃-CP⇒≃-Glue = Σ-map id (λ eq → record { equiv-proof = eq })
≃-Glue⇒≃-CP : {B : Type b} → A Glue.≃ B → A CP.≃ B
≃-Glue⇒≃-CP = Σ-map id Glue.isEquiv.equiv-proof
-- Equivalences can be converted to equalities (if the two types live
-- in the same universe).
≃-CP⇒≡ : {A B : Type ℓ} → A CP.≃ B → A ≡ B
≃-CP⇒≡ {A = A} {B = B} A≃B = λ i → primGlue B
(λ { (i = 0̲) → A
; (i = 1̲) → B
})
(λ { (i = 0̲) → ≃-CP⇒≃-Glue A≃B
; (i = 1̲) → ≃-CP⇒≃-Glue CP.id
})
-- If ≃-CP⇒≡ is applied to the identity equivalence, then the result
-- is equal to CP.id.
≃-CP⇒≡-id : ≃-CP⇒≡ CP.id ≡ refl {x = A}
≃-CP⇒≡-id {A = A} = λ i j → primGlue A
{φ = max i (max j (- j))}
(λ _ → A)
(λ _ → ≃-CP⇒≃-Glue CP.id)
-- ≃-CP⇒≡ is a left inverse of CP.≡⇒≃.
≃-CP⇒≡∘≡⇒≃ :
{A B : Type ℓ} (A≡B : A ≡ B) →
≃-CP⇒≡ (CP.≡⇒≃ A≡B) ≡ A≡B
≃-CP⇒≡∘≡⇒≃ = elim
(λ A≡B → ≃-CP⇒≡ (CP.≡⇒≃ A≡B) ≡ A≡B)
(λ A →
≃-CP⇒≡ (CP.≡⇒≃ refl) ≡⟨ cong ≃-CP⇒≡ CP.≡⇒≃-refl ⟩
≃-CP⇒≡ CP.id ≡⟨ ≃-CP⇒≡-id ⟩∎
refl ∎)
-- ≃-CP⇒≡ is a right inverse of CP.≡⇒≃.
≡⇒≃∘≃-CP⇒≡ :
{A B : Type ℓ} (A≃B : A CP.≃ B) →
CP.≡⇒≃ (≃-CP⇒≡ A≃B) ≡ A≃B
≡⇒≃∘≃-CP⇒≡ {A = A} {B = B} A≃B =
Σ-≡,≡→≡
(proj₁ (CP.≡⇒≃ (≃-CP⇒≡ A≃B)) ≡⟨⟩
proj₁ (transport (λ i → A CP.≃ ≃-CP⇒≡ A≃B i) 0̲ CP.id) ≡⟨⟩
transport (λ i → A → ≃-CP⇒≡ A≃B i) 0̲ id ≡⟨⟩
transport (λ _ → A → B) 0̲ (proj₁ A≃B) ≡⟨ cong (_$ proj₁ A≃B) $ transport-refl 0̲ ⟩∎
proj₁ A≃B ∎)
(CP.propositional ext _ _ _)
-- Univalence for CP._≃_.
univ-CP : CP.Univalence ℓ
univ-CP =
Is-equivalence≃Is-equivalence-CP _ $
_≃_.is-equivalence $
Eq.↔→≃ _ ≃-CP⇒≡ ≡⇒≃∘≃-CP⇒≡ ≃-CP⇒≡∘≡⇒≃
-- Univalence.
univ : ∀ {ℓ} → Univalence ℓ
univ {A = A} {B = B} = record
{ univalence = from , proofs
}
where
univ′ : Univalence′ A B
univ′ = _≃_.from (Univalence≃Univalence-CP ext) univ-CP
from : A ≃ B → A ≡ B
from = proj₁ (Univalence′.univalence univ′)
abstract
proofs : HA.Proofs ≡⇒≃ from
proofs = proj₂ (Univalence′.univalence univ′)
-- Equivalences can be converted to equalities (if the two types live
-- in the same universe).
≃⇒≡ : {A B : Type ℓ} → A ≃ B → A ≡ B
≃⇒≡ = _≃_.from Eq.⟨ _ , Univalence′.univalence univ ⟩
private
-- The type primGlue A B f is equivalent to A.
primGlue≃-CP :
(φ : I)
(B : Partial φ (Type ℓ))
(f : PartialP φ (λ x → B x Glue.≃ A)) →
primGlue A B f CP.≃ A
primGlue≃-CP {A = A} φ B f =
prim^unglue {φ = φ}
, λ x →
( prim^glue
(λ p → CP.inverse (proj₂ (f-CP p)) x)
(hcomp (lemma₁ x) x)
, (hcomp (lemma₁ x) x ≡⟨ sym $ hfill (lemma₁ x) (inˢ x) ⟩∎
x ∎)
)
, λ y i →
prim^glue (λ { (φ = 1̲) → proj₁ (lemma₂ is-one y i) })
(hcomp (lemma₃ y i) x)
, (hcomp (lemma₃ y i) x ≡⟨ sym $ hfill (lemma₃ y i) (inˢ x) ⟩∎
x ∎)
where
f-CP : PartialP φ (λ x → B x CP.≃ A)
f-CP p = ≃-Glue⇒≃-CP (f p)
lemma₁ : A → ∀ i → Partial φ A
lemma₁ x i (φ = 1̲) = (
x ≡⟨ sym (CP.right-inverse-of (proj₂ (f-CP is-one)) x) ⟩∎
proj₁ (f-CP _) (CP.inverse (proj₂ (f-CP _)) x) ∎) i
lemma₂ :
∀ {x} p (y : proj₁ (f-CP p) ⁻¹ x) →
( CP.inverse (proj₂ (f-CP p)) x
, CP.right-inverse-of (proj₂ (f-CP p)) x
) ≡
y
lemma₂ {x} p = CP.irrelevance (proj₂ (f-CP p)) x
lemma₃ : ∀ {x} → prim^unglue {e = f} ⁻¹ x →
∀ i → I → Partial (max φ (max i (- i))) A
lemma₃ y i j (φ = 1̲) = sym (proj₂ (lemma₂ is-one y i)) j
lemma₃ {x} _ i j (i = 0̲) = hfill (lemma₁ x) (inˢ x) j
lemma₃ y i j (i = 1̲) = sym (proj₂ y) j
-- An alternative formulation of univalence.
other-univ : Other-univalence ℓ
other-univ {ℓ = ℓ} {B = B} = $⟨ other-univ-CP ⟩
Contractible (∃ λ (A : Type ℓ) → A CP.≃ B) ↝⟨ (H-level-cong _ 0 $
∃-cong λ _ → inverse $
≃≃≃-CP {k = equivalence} ext) ⦂ (_ → _) ⟩□
Contractible (∃ λ (A : Type ℓ) → A ≃ B) □
where
other-univ-CP : Contractible (∃ λ (A : Type ℓ) → A CP.≃ B)
other-univ-CP =
(B , CP.id)
, λ (A , A≃B) i →
let C : ∀ i → Partial (max i (- i)) (Type ℓ)
C = λ { i (i = 0̲) → B
; i (i = 1̲) → A
}
f : ∀ i → PartialP (max i (- i)) (λ j → C i j Glue.≃ B)
f = λ { i (i = 0̲) → ≃-CP⇒≃-Glue CP.id
; i (i = 1̲) → ≃-CP⇒≃-Glue A≃B
}
in
primGlue _ _ (f i)
, primGlue≃-CP _ _ (f i)
| {
"alphanum_fraction": 0.447435679,
"avg_line_length": 31.0529100529,
"ext": "agda",
"hexsha": "13a3440b21bb7718db82ade7d4b61136915f3a11",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Path/Univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Path/Univalence.agda",
"max_line_length": 109,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Path/Univalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2579,
"size": 5869
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Product
open import Data.Integer as ℤ using (ℤ)
open import Data.Rational as ℝ using () renaming (ℚ to ℝ)
module andGate-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
andGate : ℝ → (ℝ → ℝ)
andGate = evaluate record
{ projectFile = VEHICLE_PROJECT_FILE
; networkUUID = "TODO_networkUUID"
}
Truthy : ℝ → Set
Truthy x = x ℝ.≥ ℤ.+ 1 ℝ./ 2
Falsey : ℝ → Set
Falsey x = x ℝ.≤ ℤ.+ 1 ℝ./ 2
ValidInput : ℝ → Set
ValidInput x = ℤ.+ 0 ℝ./ 1 ℝ.≤ x × x ℝ.≤ ℤ.+ 1 ℝ./ 1
CorrectOutput : ℝ → (ℝ → Set)
CorrectOutput x1 x2 = let y = andGate x1 x2 in (Truthy x1 × Truthy x2 → Truthy y) × ((Truthy x1 × Falsey x2 → Falsey y) × ((Falsey x1 × Truthy x2 → Falsey y) × (Falsey x1 × Falsey x2 → Falsey y)))
abstract
andGateCorrect : ∀ (x1 : ℝ) → ∀ (x2 : ℝ) → ValidInput x1 × ValidInput x2 → CorrectOutput x1 x2
andGateCorrect = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
} | {
"alphanum_fraction": 0.6614368291,
"avg_line_length": 28.1627906977,
"ext": "agda",
"hexsha": "b054e7623ed95988aa46b56e821d5c4fae9105ac",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "examples/network/andGate/andGate-output.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "examples/network/andGate/andGate-output.agda",
"max_line_length": 196,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "examples/network/andGate/andGate-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 414,
"size": 1211
} |
{-# OPTIONS --without-K #-}
module VecHelpers where
open import Data.Nat
import Data.Fin as F
open import Data.Vec
open import Function renaming (_∘_ to _○_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
infixl 10 _∘̬_ -- vector composition
------------------------------------------------------------------
-- VECTOR LEMMAS AND HELPERS
vmap : {n : ℕ} → {A B : Set} → (A → B) → Vec A n → Vec B n
vmap f [] = []
vmap f (x ∷ xs) = (f x) ∷ (vmap f xs)
-- Syntactic sugar for lookup that's a lot nicer
_!!_ : {A : Set} → {n : ℕ} → Vec A n → F.Fin n → A
_!!_ v i = lookup i v
-- XXX: is this in the right order?
_∘̬_ : {m n : ℕ} {A : Set} → Vec (F.Fin n) m → Vec A n → Vec A m
v₁ ∘̬ v₂ = tabulate (λ i → v₂ !! (v₁ !! i))
_∘̬′_ : {m n : ℕ} {A : Set} → Vec (F.Fin n) m → Vec A n → Vec A m
[] ∘̬′ v₂ = []
(i ∷ is) ∘̬′ v₂ = (v₂ !! i) ∷ (is ∘̬′ v₂)
∘̬≡∘̬′ : {m n : ℕ} {A : Set} (v₁ : Vec (F.Fin n) m) (v₂ : Vec A n) →
(v₁ ∘̬ v₂) ≡ (v₁ ∘̬′ v₂)
∘̬≡∘̬′ [] v₂ = refl
∘̬≡∘̬′ (x ∷ v₁) v₂ = cong (_∷_ (v₂ !! x)) (∘̬≡∘̬′ v₁ v₂)
ntimes : {A : Set} → ℕ → (f : A → A) → A → A
ntimes zero f a = a
ntimes (suc n) f a = f (ntimes n f a)
ntimesD : {A : Set} → {B : A → Set} → {g : A → A} → (n : ℕ) →
(f : {a : A} → B a → B (g a)) →
{a : A} →
B a → B (ntimes n g a)
ntimesD zero f b = b
ntimesD {g = g} (suc n) f {a = a} b =
f {ntimes n g a} (ntimesD {g = g} n (λ {a} → f {a}) {a = a} b)
ntails : {A : Set} → {n k : ℕ} → Vec A (ntimes k suc n) → Vec A n
ntails {k = zero} v = v
ntails {k = suc n} (x ∷ xs) = ntails {k = n} xs
ntails₀ : {A : Set} → {k : ℕ} → (v : Vec A (ntimes k suc zero)) →
[] ≡ ntails {k = k} v
ntails₀ {k = zero} [] = refl
ntails₀ {k = suc k} (x ∷ v) = ntails₀ {k = k} v
-- Important lemma about lookup; for some reason it doesn't seem to be in the
-- library even though it's in the main agda tutorial, iirc
map!! : {n : ℕ} → {A B : Set} → (f : A → B) → (v : Vec A n) → (i : F.Fin n) →
(vmap f v) !! i ≡ f (v !! i)
map!! {zero} f [] ()
map!! {suc n} f (x ∷ xs) F.zero = refl
map!! {suc n} f (x ∷ xs) (F.suc i) = map!! f xs i
lookupTab : {A : Set} {n : ℕ} {f : F.Fin n → A} → (i : F.Fin n) →
(tabulate f) !! i ≡ (f i)
lookupTab {f = f} F.zero = refl
lookupTab (F.suc i) = lookupTab i
mapTab : {A B : Set} → {n : ℕ} → (f : A → B) → (g : F.Fin n → A) →
vmap f (tabulate g) ≡ tabulate (f ○ g)
mapTab {n = zero} f g = refl
mapTab {n = suc n} f g =
cong (_∷_ (f (g F.zero))) (mapTab {n = n} f (g ○ F.suc))
-- Lemma for proving that two vectors are equal if their tabulates agree
-- on all inputs.
tabf∼g : {n : ℕ} → {A : Set} → (f g : F.Fin n → A) → (∀ x → f x ≡ g x) →
tabulate f ≡ tabulate g
tabf∼g {zero} f g p = refl
tabf∼g {suc n} f g p with f F.zero | g F.zero | p F.zero
tabf∼g {suc n} f g p | x | .x | refl =
cong (_∷_ x) (tabf∼g {n} (f ○ F.suc) (g ○ F.suc) (p ○ F.suc))
lookup∼vec : {n : ℕ} → {A : Set} →
(v₁ v₂ : Vec A n) → (∀ i → v₁ !! i ≡ v₂ !! i) → v₁ ≡ v₂
lookup∼vec [] [] p = refl
lookup∼vec (x ∷ v₁) (x₁ ∷ v₂) p with p F.zero
lookup∼vec (x ∷ v₁) (.x ∷ v₂) p | refl =
cong (_∷_ x) (lookup∼vec v₁ v₂ (p ○ F.suc))
∘̬id : {A : Set} → {n : ℕ} → (k : ℕ) → (v : Vec A (ntimes k suc n)) →
(tabulate {n} (ntimesD {ℕ} {F.Fin} {suc} k F.suc)) ∘̬ v ≡
(tabulate (λ i → v !! (ntimesD {ℕ} {F.Fin} {suc} k F.suc i)))
∘̬id {n = n} k v = begin
(tabulate {n} (ntimesD {ℕ} {F.Fin} {suc} k F.suc)) ∘̬ v
≡⟨ refl ⟩
(tabulate
(λ i → v !! (tabulate (ntimesD {ℕ} {F.Fin} {suc} k F.suc) !! i)))
≡⟨ tabf∼g
(λ i → v !! (tabulate (ntimesD {ℕ} {F.Fin} {suc} k F.suc) !! i))
(λ i → v !! ntimesD {ℕ} {F.Fin} {suc} k F.suc i)
(λ i → cong (_!!_ v) (lookupTab i)) ⟩
(tabulate (λ i → v !! (ntimesD {ℕ} {F.Fin} {suc} k F.suc i))) ∎
map2+id : {m n : ℕ} → (v : Vec (F.Fin n) m) → {x y : F.Fin (suc (suc n))} →
(vmap F.suc (vmap F.suc v)) ∘̬′
(x ∷ y ∷ tabulate {n} (F.suc ○ F.suc)) ≡
(vmap F.suc (vmap F.suc v))
map2+id [] = refl
map2+id {suc m} {n} (i ∷ v) {x} {y} =
begin
(vmap F.suc (vmap F.suc (i ∷ v))) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc))
≡⟨ refl ⟩
(tabulate (F.suc ○ F.suc) !! i) ∷
(vmap F.suc (vmap F.suc v)) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc))
≡⟨ cong (λ z → z ∷ ((vmap F.suc (vmap F.suc v))) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc)))
(lookupTab i) ⟩
F.suc (F.suc i) ∷ (vmap F.suc (vmap F.suc v) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc)))
≡⟨ cong (_∷_ (F.suc (F.suc i))) (map2+id v) ⟩
F.suc (F.suc i) ∷ (vmap F.suc (vmap F.suc v))
≡⟨ refl ⟩
(vmap F.suc (vmap F.suc (i ∷ v))) ∎
head!!0 : {n : ℕ} {A : Set} (v : Vec A (suc n)) → v !! F.zero ≡ head v
head!!0 (x ∷ v) = refl
headmap : {n : ℕ} {A B : Set} {f : A → B} (v : Vec A (suc n)) →
head (vmap f v) ≡ f (head v)
headmap (x ∷ v) = refl
tailmap : {n : ℕ} {A B : Set} {f : A → B} (v : Vec A (suc n)) →
tail (vmap f v) ≡ vmap f (tail v)
tailmap (x ∷ v) = refl
2suc∘̬2tail : {n : ℕ} {A : Set} (v : Vec A (suc (suc n))) →
(tabulate (F.suc ○ F.suc)) ∘̬ v ≡ (tail (tail v))
2suc∘̬2tail (x ∷ x₁ ∷ v) =
begin
(tabulate (F.suc ○ F.suc)) ∘̬ (x ∷ x₁ ∷ v)
≡⟨ refl ⟩
tabulate (λ i → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i))
≡⟨ lookup∼vec
(tabulate (λ i → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i)))
v
(λ i →
begin
tabulate (λ j → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! j)) !! i
≡⟨ lookupTab i ⟩
(x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i)
≡⟨ cong (λ q → (x ∷ x₁ ∷ v) !! q) (lookupTab i) ⟩
v !! i ∎) ⟩
v ∎
-- upTo n returns [0, 1, ..., n-1] as Fins
upTo : (n : ℕ) → Vec (F.Fin n) n
upTo n = tabulate {n} id
upToTail : (n : ℕ) → (tail (tail (upTo (suc (suc n))))) ≡ (vmap F.suc (tail (upTo (suc n))))
upToTail n =
begin
tail (tail (upTo (suc (suc n))))
≡⟨ refl ⟩
tabulate (F.suc ○ F.suc)
≡⟨ sym (mapTab F.suc F.suc) ⟩
vmap F.suc (tabulate F.suc) ∎
sidfn : {A : Set} {n : ℕ} (v : Vec A n) (i : F.Fin n) →
((upTo n) ∘̬ v) !! i ≡ v !! i
sidfn {n = n} v i =
begin
((upTo n) ∘̬ v) !! i
≡⟨ lookupTab {f = λ x → v !! ((upTo n) !! x)} i ⟩
v !! ((upTo n) !! i)
≡⟨ cong (_!!_ v) (lookupTab {f = id} i) ⟩
v !! i ∎
∘̬simpleid : {A : Set} {n : ℕ} (v : Vec A n) → (upTo n) ∘̬ v ≡ v
∘̬simpleid {n = n} v = lookup∼vec (upTo n ∘̬ v) v (sidfn v)
lookupMap : {A B : Set} → {n : ℕ} → {f : A → B} →
(i : F.Fin n) → (v : Vec A n) →
lookup i (vmap f v) ≡ f (lookup i v)
lookupMap F.zero (x ∷ _) = refl
lookupMap (F.suc i) (_ ∷ v) = lookupMap i v
lookup∘tabulate : ∀ {a n} → {A : Set a} →
(i : F.Fin n) → (f : F.Fin n → A) →
lookup i (tabulate f) ≡ f i
lookup∘tabulate F.zero f = refl
lookup∘tabulate (F.suc i) f = lookup∘tabulate i (f ○ F.suc)
vmap∘vmap : {n : ℕ} {A B C : Set} (f : B → C) (g : A → B) (v : Vec A n) →
vmap f (vmap g v) ≡ vmap (f ○ g) v
vmap∘vmap {zero} f g [] = refl
vmap∘vmap {suc n} f g (x ∷ v) = cong (λ y → f (g x) ∷ y) (vmap∘vmap f g v)
vmap∘id : {n : ℕ} {A : Set} {v : Vec A n} {f : A → A } → (∀ {x} → f x ≡ x) → vmap f v ≡ v
vmap∘id {zero} {v = []} eq = refl
vmap∘id {suc n} {v = (x ∷ v)} {f} eq = cong₂ _∷_ eq (vmap∘id {v = v} eq)
| {
"alphanum_fraction": 0.4501075847,
"avg_line_length": 36.4509803922,
"ext": "agda",
"hexsha": "31373b278160a89e2ac193ff2d7a4215107ca9a9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/VecHelpers.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/VecHelpers.agda",
"max_line_length": 92,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/VecHelpers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3570,
"size": 7436
} |
open import Data.Unit
open import Data.Product
open import Relation.Binary.PropositionalEquality
module Spire.Examples.ComputationalDesc where
----------------------------------------------------------------------
data Desc (I : Set) : Set₁ where
`⊤ : Desc I
`X : (i : I) → Desc I
`Σ `Π : (A : Set) (B : A → Desc I) → Desc I
El : (I : Set) (D : Desc I) (X : I → Set) → Set
El I `⊤ X = ⊤
El I (`X i) X = X i
El I (`Σ A B) X = Σ A (λ a → El I (B a) X)
El I (`Π A B) X = (a : A) → El I (B a) X
data μ (I : Set) (R : I → Desc I) (i : I) : Set where
con : El I (R i) (μ I R) → μ I R i
All : (I : Set) (X : I → Set) (D : Desc I) (xs : El I D X) (P : (i : I) → X i → Set) → Set
All I X `⊤ tt P = ⊤
All I X (`X i) x P = P i x
All I X (`Σ A B) (a , b) P = All I X (B a) b P
All I X (`Π A B) f P = (a : A) → All I X (B a) (f a) P
----------------------------------------------------------------------
ind :
(I : Set)
(R : I → Desc I)
(P : (i : I) → μ I R i → Set)
(pcon : (i : I) (xs : El I (R i) (μ I R)) → All I (μ I R) (R i) xs P → P i (con xs))
(i : I)
(x : μ I R i)
→ P i x
hyps :
(I : Set)
(R : I → Desc I)
(P : (i : I) → μ I R i → Set)
(pcon : (i : I) (xs : El I (R i) (μ I R)) → All I (μ I R) (R i) xs P → P i (con xs))
(D : Desc I)
(xs : El I D (μ I R))
→ All I (μ I R) D xs P
ind I R P pcon i (con xs) = pcon i xs (hyps I R P pcon (R i) xs)
hyps I R P pcon `⊤ tt = tt
hyps I R P pcon (`X i) xs = ind I R P pcon i xs
hyps I R P pcon (`Σ A B) (a , b) = hyps I R P pcon (B a) b
hyps I R P pcon (`Π A B) f = λ a → hyps I R P pcon (B a) (f a)
----------------------------------------------------------------------
data ℕT : Set where `zero `suc : ℕT
data VecT : Set where `nil `cons : VecT
ℕD : ⊤ → Desc ⊤
ℕD tt = `Σ ℕT λ
{ `zero → `⊤
; `suc → `X tt
}
ℕ : ⊤ → Set
ℕ = μ ⊤ ℕD
-- zero : ℕ tt
pattern zero = con (`zero , tt)
-- suc : ℕ tt → ℕ tt
pattern suc n = con (`suc , n)
----------------------------------------------------------------------
VecD : (A : Set) (n : ℕ tt) → Desc (ℕ tt)
VecD A zero = `⊤
VecD A (suc n) = `Σ A λ _ → `X n
Vec : (A : Set) (n : ℕ tt) → Set
Vec A n = μ (ℕ tt) (VecD A) n
nil : (A : Set) → Vec A zero
nil A = con tt
cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n)
cons A n x xs = con (x , xs)
----------------------------------------------------------------------
add : ℕ tt → ℕ tt → ℕ tt
add = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt)
(λ
{ tt (`zero , tt) tt n → n
; tt (`suc , m) ih n → suc (ih n)
}
)
tt
mult : ℕ tt → ℕ tt → ℕ tt
mult = ind ⊤ ℕD (λ _ _ → ℕ tt → ℕ tt)
(λ
{ tt (`zero , tt) tt n → zero
; tt (`suc , m) ih n → add n (ih n)
}
)
tt
append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)
append A = ind (ℕ tt) (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n))
(λ
{ zero tt tt n ys → ys
; (suc m) (x , xs) ih n ys → cons A (add m n) x (ih n ys)
}
)
concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m = ind (ℕ tt) (VecD (Vec A m)) (λ n xss → Vec A (mult n m))
(λ
{ zero tt tt → nil A
; (suc n) (xs , xss) ih → append A m xs (mult n m) ih
}
)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.4026845638,
"avg_line_length": 25.811023622,
"ext": "agda",
"hexsha": "00ec185383828f55ac8432b9ed9d021170aee05b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/Examples/ComputationalDesc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/Examples/ComputationalDesc.agda",
"max_line_length": 90,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/Examples/ComputationalDesc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 1362,
"size": 3278
} |
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module BBHeap.Height.Log {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_ ) where
open import BBHeap _≤_ hiding (#)
open import BBHeap.Height _≤_
open import BBHeap.Properties _≤_
open import Bound.Lower A
open import Data.Sum renaming (_⊎_ to _∨_)
open import SNat
open import SNat.Log
open import SNat.Order
open import SNat.Order.Properties
open import SNat.Properties
open import SNat.Sum
open import Relation.Binary.PropositionalEquality
lemma-height-≃ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ≃ r → height l ≡ height r
lemma-height-≃ ≃lf = refl
lemma-height-≃ (≃nd _ _ _ _ _ _ l≃l') rewrite lemma-height-≃ l≃l' = refl
lemma-height'-≃ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ≃ r → height' l ≡ height' r
lemma-height'-≃ ≃lf = refl
lemma-height'-≃ (≃nd _ _ _ _ l≃r l'≃r' l≃l') rewrite lemma-height'-≃ (trans≃ (trans≃ (sym≃ l≃r) l≃l') l'≃r') = refl
lemma-height-height'-⋗ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋗ r → height l ≡ succ (height' r)
lemma-height-height'-⋗ (⋗lf _) = refl
lemma-height-height'-⋗ (⋗nd _ _ _ _ _ l'≃r' l⋗l') rewrite lemma-height-height'-⋗ l⋗l' | lemma-height'-≃ l'≃r' = refl
lemma-height-height'-⋘ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋘ r → height l ≡ height' r ∨ height l ≡ succ (height' r)
lemma-height-height'-⋘ lf⋘ = inj₁ refl
lemma-height-height'-⋘ (ll⋘ _ _ l⋘r _ l'≃r' r≃l')
with lemma-height-height'-⋘ l⋘r
... | inj₁ hl≡h'r rewrite hl≡h'r | lemma-height'-≃ (trans≃ r≃l' l'≃r') = inj₁ refl
... | inj₂ hl≡h'r+1 rewrite hl≡h'r+1 | lemma-height'-≃ (trans≃ r≃l' l'≃r') = inj₂ refl
lemma-height-height'-⋘ (lr⋘ _ _ _ _ l'≃r' l⋗l') rewrite lemma-height-height'-⋗ (lemma⋗≃ l⋗l' l'≃r')= inj₂ refl
lemma-height-height'-⋙ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋙ r → height l ≡ height' r ∨ height l ≡ succ (height' r)
lemma-height-height'-⋙ (⋙lf _) = inj₂ refl
lemma-height-height'-⋙ (⋙rl _ _ _ _ _ l⋗r') rewrite lemma-height-height'-⋗ l⋗r' = inj₂ refl
lemma-height-height'-⋙ (⋙rr _ _ _ _ l'⋙r' l≃l')
with lemma-height-height'-⋙ l'⋙r'
... | inj₁ hl'≡h'r' rewrite lemma-height-≃ l≃l' | hl'≡h'r' = inj₁ refl
... | inj₂ hl'≡h'r'+1 rewrite lemma-height-≃ l≃l' | hl'≡h'r'+1 = inj₂ refl
lemma-height-height' : {b : Bound}(h : BBHeap b) → height h ≡ height' h ∨ height h ≡ succ (height' h)
lemma-height-height' leaf = inj₁ refl
lemma-height-height' (left _ l⋘r)
with lemma-height-height'-⋘ l⋘r
... | inj₁ hl≡h'r rewrite hl≡h'r = inj₁ refl
... | inj₂ hl≡h'r+1 rewrite hl≡h'r+1 = inj₂ refl
lemma-height-height' (right _ l⋙r)
with lemma-height-height'-⋙ l⋙r
... | inj₁ hl≡h'r rewrite hl≡h'r = inj₁ refl
... | inj₂ hl≡h'r+1 rewrite hl≡h'r+1 = inj₂ refl
lemma-#-≃ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ≃ r → # l ≡ # r
lemma-#-≃ ≃lf = refl
lemma-#-≃ (≃nd _ _ _ _ l≃r l'≃r' l≃l')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-≃ l≃l'
| lemma-#-≃ l'≃r' = refl
lemma-#-⋗ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋗ r → # l ≡ succ (# r + # r)
lemma-#-⋗ (⋗lf _) = refl
lemma-#-⋗ (⋗nd _ _ _ _ l≃r l'≃r' l⋗l')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-⋗ l⋗l'
| lemma-#-≃ l'≃r' = refl
lemma-⋘-# : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋘ r → # r ≤′ # l
lemma-⋘-# lf⋘ = refl≤′
lemma-⋘-# (ll⋘ {r' = r'} _ _ l⋘r _ l'≃r' r≃l')
rewrite lemma-#-≃ r≃l'
| lemma-#-≃ l'≃r' = lemma-s≤′s (+-right-monotony-≤′ (# r') (lemma-≡-≤′ (lemma-#-≃ (sym≃ (trans≃ r≃l' l'≃r'))) (lemma-⋘-# l⋘r)))
lemma-⋘-# (lr⋘ {r = r} {r' = r'} _ _ _ _ l'≃r' l⋗l')
rewrite lemma-#-⋗ l⋗l'
| lemma-#-≃ l'≃r' = lemma-s≤′s (≤′-step (lemma-m≤′m+n (# r' + # r') (# r)))
lemma-#-⋙ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋙ r → # l ≤′ succ (# r + # r)
lemma-#-⋙ (⋙lf _) = refl≤′
lemma-#-⋙ (⋙rl {l' = l'}{r' = r'} _ _ _ l≃r l'⋘r' l⋗r')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-⋗ l⋗r'
| +-assoc-succ (# r' + # r') (# r' + # r')
| +-assoc-succ (# l' + # r') (# l' + # r') = lemma-s≤′s (lemma-s≤′s (lemma-s≤′s (lemma-4m≤′n+m+n+m (lemma-⋘-# l'⋘r'))))
lemma-#-⋙ (⋙rr {l' = l'} {r' = r'} _ _ _ l≃r _ l≃l')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-≃ l≃l'
| +-assoc-succ (# l' + # r') (# l' + # r') = lemma-s≤′s (≤′-step (≤′-step (lemma-2m≤′m+n+m+n (# l') (# r'))))
mutual
lemma-⋙-# : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋙ r → # r ≤′ # l
lemma-⋙-# (⋙lf _) = ≤′-step refl≤′
lemma-⋙-# (⋙rl {r' = r'} _ _ _ l≃r l'⋘r' l⋗r')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-⋗ l⋗r' = lemma-s≤′s (trans≤′ (+-right-monotony-≤′ (# r') (lemma-#-⋘ l'⋘r')) (lemma-s≤′s (+-left-monotony-≤′ (# r' + # r') (≤′-step (lemma-n≤′2n (# r'))))))
lemma-⋙-# (⋙rr {l' = l'} {r' = r'} _ _ _ l≃r l'⋙r' l≃l')
rewrite lemma-#-≃ (sym≃ l≃r)
| lemma-#-≃ l≃l'
| +-comm (# l') (# r') = lemma-s≤′s (+-right-monotony-≤′ (# l') (lemma-⋙-# l'⋙r'))
lemma-#-⋘ : {b b' : Bound}{l : BBHeap b}{r : BBHeap b'} → l ⋘ r → # l ≤′ succ (# r + # r)
lemma-#-⋘ lf⋘ = ≤′-step refl≤′
lemma-#-⋘ (ll⋘ {r = r} _ _ l⋘r _ l'≃r' r≃l')
rewrite lemma-#-≃ (sym≃ l'≃r')
| lemma-#-≃ (sym≃ r≃l')
| +-assoc-succ (# r + # r) (# r + # r)
| +-assoc-left (# r + # r) (# r) (# r) = lemma-s≤′s (≤′-step (trans≤′ (+-right-monotony-≤′ (# r) (lemma-#-⋘ l⋘r)) (lemma-s≤′s (lemma-m≤′m+n ((# r + # r) + # r) (# r)))))
lemma-#-⋘ (lr⋘ {r' = r'} _ _ l⋙r _ l'≃r' l⋗l')
rewrite lemma-#-⋗ l⋗l'
| lemma-#-≃ l'≃r' = lemma-s≤′s (lemma-s≤′s (+-left-monotony-≤′ (# r' + # r') (trans≤′ (lemma-⋙-# l⋙r) (lemma-≡-≤′ (lemma-#-⋗ (lemma⋗≃ l⋗l' l'≃r')) refl≤′))))
lemma-#-#' : {b : Bound}(h : BBHeap b) → #' h ≤′ # h
lemma-#-#' leaf = refl≤′
lemma-#-#' (left {r = r} _ l⋘r) = lemma-s≤′s (trans≤′ (lemma-2m≤′2n (lemma-#-#' r)) (+-right-monotony-≤′ (# r) (lemma-⋘-# l⋘r)))
lemma-#-#' (right {r = r} _ l⋙r) = lemma-s≤′s (trans≤′ (lemma-2m≤′2n (lemma-#-#' r)) (+-right-monotony-≤′ (# r) (lemma-⋙-# l⋙r)))
lemma-height'-#' : {b : Bound}(h : BBHeap b) → height' h ≤′ log₂ (#' h + #' h)
lemma-height'-#' leaf = refl≤′
lemma-height'-#' (left {r = r} _ _) = trans≤′ (lemma-s≤′s (trans≤′ (lemma-height'-#' r) (lemma-≤′-log (≤′-step (refl≤′ {#' r + #' r}))))) (lemma-1+logn≤′log2n (#' r + #' r))
lemma-height'-#' (right {r = r} _ _) = trans≤′ (lemma-s≤′s (trans≤′ (lemma-height'-#' r) (lemma-≤′-log (≤′-step (refl≤′ {#' r + #' r}))))) (lemma-1+logn≤′log2n (#' r + #' r))
lemma-height'-# : {b : Bound}(h : BBHeap b) → height' h ≤′ succ (log₂ (# h))
lemma-height'-# h = trans≤′ (trans≤′ (lemma-height'-#' h) (lemma-log2n≤′1+logn (#' h))) (lemma-s≤′s (lemma-≤′-log (lemma-#-#' h)))
theorem-height-# : {b : Bound}(h : BBHeap b) → height h ≤′ succ (succ (log₂ (# h)))
theorem-height-# h
with lemma-height-height' h
... | inj₁ hh≡h'h rewrite hh≡h'h = ≤′-step (lemma-height'-# h)
... | inj₂ hh≡h'h+1 rewrite hh≡h'h+1 = lemma-s≤′s (lemma-height'-# h)
| {
"alphanum_fraction": 0.4670938459,
"avg_line_length": 54.6788321168,
"ext": "agda",
"hexsha": "3c278cb001de3eccf4ebd589f8f8de4d899f5a53",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Height/Log.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Height/Log.agda",
"max_line_length": 198,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Height/Log.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 3443,
"size": 7491
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Paths
open import lib.types.Unit
open import lib.types.Empty
module lib.Equivalence2 where
{- Pre- and post- composition with equivalences are equivalences -}
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
{h : A → B} (e : is-equiv h) where
pre∘-is-equiv : is-equiv (λ (k : B → C) → k ∘ h)
pre∘-is-equiv = is-eq f g f-g g-f
where f = _∘ h
g = _∘ is-equiv.g e
f-g = λ k → ap (k ∘_) (λ= $ is-equiv.g-f e)
g-f = λ k → ap (k ∘_) (λ= $ is-equiv.f-g e)
post∘-is-equiv : is-equiv (λ (k : C → A) → h ∘ k)
post∘-is-equiv = is-eq f g f-g g-f
where f = h ∘_
g = is-equiv.g e ∘_
f-g = λ k → ap (_∘ k) (λ= $ is-equiv.f-g e)
g-f = λ k → ap (_∘ k) (λ= $ is-equiv.g-f e)
{- The same thing on the abstraction level of equivalences -}
module _ {i j k} {A : Type i} {B : Type j} {C : Type k}
(e : A ≃ B) where
pre∘-equiv : (B → C) ≃ (A → C)
pre∘-equiv = (_ , pre∘-is-equiv (snd e))
post∘-equiv : (C → A) ≃ (C → B)
post∘-equiv = (_ , post∘-is-equiv (snd e))
is-contr-map : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
→ Type (lmax i j)
is-contr-map {A = A} {B = B} f = (y : B) → is-contr (hfiber f y)
equiv-is-contr-map : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ (is-equiv f → is-contr-map f)
equiv-is-contr-map e y =
equiv-preserves-level (Σ-emap-l (_== y) (_ , e) ⁻¹) (pathto-is-contr y)
contr-map-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ (is-contr-map f → is-equiv f)
contr-map-is-equiv {f = f} cm = is-eq _
(λ b → fst (fst (cm b)))
(λ b → snd (fst (cm b)))
(λ a → ap fst (snd (cm (f a)) (a , idp)))
fiber=-econv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B} {y : B}
(r s : Σ A (λ x → h x == y))
→ (r == s) ≃ Σ (fst r == fst s) (λ γ → ap h γ ∙ snd s == snd r)
fiber=-econv r s = Σ-emap-r (λ γ → !-equiv ∘e (↓-app=cst-econv ⁻¹)) ∘e ((=Σ-econv r s)⁻¹)
module _ {i j} {A : Type i} {B : Type j} where
linv : (A → B) → Type (lmax i j)
linv f = Σ (B → A) (λ g → (∀ x → g (f x) == x))
rinv : (A → B) → Type (lmax i j)
rinv f = Σ (B → A) (λ g → (∀ y → f (g y) == y))
lcoh : (f : A → B) → linv f → Type (lmax i j)
lcoh f (g , g-f) = Σ (∀ y → f (g y) == y)
(λ f-g → ∀ y → ap g (f-g y) == g-f (g y))
rcoh : (f : A → B) → rinv f → Type (lmax i j)
rcoh f (g , f-g) = Σ (∀ x → g (f x) == x)
(λ g-f → ∀ x → ap f (g-f x) == f-g (f x))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} (e : is-equiv f) where
equiv-linv-is-contr : is-contr (linv f)
equiv-linv-is-contr = equiv-preserves-level (Σ-emap-r λ _ → λ=-equiv ⁻¹)
(equiv-is-contr-map (pre∘-is-equiv e) (idf A))
equiv-rinv-is-contr : is-contr (rinv f)
equiv-rinv-is-contr = equiv-preserves-level (Σ-emap-r λ _ → λ=-equiv ⁻¹)
(equiv-is-contr-map (post∘-is-equiv e) (idf B))
module _ {i j} {A : Type i} {B : Type j} {f : A → B} where
rcoh-econv : (v : rinv f)
→ rcoh f v ≃ Π A (λ x → (fst v (f x) , snd v (f x)) == (x , idp {a = f x}))
rcoh-econv v = Π-emap-r (λ x → ((fiber=-econv {h = f} _ _)⁻¹) ∘e apply-unit-r x) ∘e choice ⁻¹
where
apply-unit-r : ∀ x → Σ _ (λ γ → ap f γ == _) ≃ Σ _ (λ γ → ap f γ ∙ idp == _)
apply-unit-r x = Σ-emap-r λ γ
→ coe-equiv (ap (λ q → q == snd v (f x)) (! (∙-unit-r _)))
lcoh-econv : (v : linv f)
→ lcoh f v ≃ Π B (λ y → (f (fst v y) , snd v (fst v y)) == (y , idp))
lcoh-econv v = Π-emap-r (λ y → ((fiber=-econv {h = fst v} _ _)⁻¹) ∘e apply-unit-r y) ∘e choice ⁻¹
where
apply-unit-r : ∀ y → Σ _ (λ γ → ap (fst v) γ == _) ≃ Σ _ (λ γ → ap (fst v) γ ∙ idp == _)
apply-unit-r y = Σ-emap-r λ γ
→ coe-equiv (ap (λ q → q == snd v (fst v y)) (! (∙-unit-r _)))
equiv-rcoh-is-contr : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
(e : is-equiv f) → (v : rinv f) → is-contr (rcoh f v)
equiv-rcoh-is-contr {f = f} e v = equiv-preserves-level ((rcoh-econv v)⁻¹)
(Π-level (λ x → =-preserves-level (equiv-is-contr-map e (f x))))
rinv-and-rcoh-is-equiv : ∀ {i j} {A : Type i} {B : Type j} {h : A → B}
→ Σ (rinv h) (rcoh h) ≃ is-equiv h
rinv-and-rcoh-is-equiv {h = h} = equiv f g (λ _ → idp) (λ _ → idp)
where f : Σ (rinv h) (rcoh h) → is-equiv h
f s = record {g = fst (fst s); f-g = snd (fst s);
g-f = fst (snd s); adj = snd (snd s)}
g : is-equiv h → Σ (rinv h) (rcoh h)
g t = ((is-equiv.g t , is-equiv.f-g t) , (is-equiv.g-f t , is-equiv.adj t))
is-equiv-is-prop : ∀ {i j} {A : Type i} {B : Type j} {f : A → B}
→ is-prop (is-equiv f)
is-equiv-is-prop = inhab-to-contr-is-prop λ e →
equiv-preserves-level rinv-and-rcoh-is-equiv
(Σ-level (equiv-rinv-is-contr e) (equiv-rcoh-is-contr e))
is-equiv-prop : ∀ {i j} {A : Type i} {B : Type j}
→ SubtypeProp (A → B) (lmax i j)
is-equiv-prop = is-equiv , λ f → is-equiv-is-prop
∘e-unit-r : ∀ {i} {A B : Type i} (e : A ≃ B) → (e ∘e ide A) == e
∘e-unit-r e = pair= idp (prop-has-all-paths is-equiv-is-prop _ _)
ua-∘e : ∀ {i} {A B : Type i}
(e₁ : A ≃ B) {C : Type i} (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂
ua-∘e =
equiv-induction
(λ {A} {B} e₁ → ∀ {C} → ∀ (e₂ : B ≃ C) → ua (e₂ ∘e e₁) == ua e₁ ∙ ua e₂)
(λ A → λ e₂ → ap ua (∘e-unit-r e₂) ∙ ap (λ w → (w ∙ ua e₂)) (! (ua-η idp)))
{- Not sure about the interface.
{- Adjointion where hom = path -}
module _ {i j} {A : Type i} {B : Type j} (e : A ≃ B) where
=-adjunct : ∀ {a b} → (–> e a == b) → (a == <– e b)
=-adjunct p = ! (<–-inv-l e _) ∙ ap (<– e) p
=-adjunct' : ∀ {a b} → (a == <– e b) → (–> e a == b)
=-adjunct' p = ap (–> e) p ∙ (<–-inv-r e _)
-}
{- Type former equivalences involving Empty may require λ=. -}
module _ {j} {B : Empty → Type j} where
Σ₁-Empty : Σ Empty B ≃ Empty
Σ₁-Empty = equiv (⊥-rec ∘ fst) ⊥-rec ⊥-elim (⊥-rec ∘ fst)
Π₁-Empty : Π Empty B ≃ Unit
Π₁-Empty = equiv (cst tt) (cst ⊥-elim) (λ _ → contr-has-all-paths Unit-is-contr _ _) (λ _ → λ= ⊥-elim)
Σ₂-Empty : ∀ {i} {A : Type i} → Σ A (λ _ → Empty) ≃ Empty
Σ₂-Empty = equiv (⊥-rec ∘ snd) ⊥-rec ⊥-elim (⊥-rec ∘ snd)
{- Fiberwise equivalence -}
module _ {i j k} {A : Type i} {P : A → Type j} {Q : A → Type k}
(f : ∀ x → P x → Q x) where
private
f-tot : Σ A P → Σ A Q
f-tot (x , y) = x , f x y
fiber-equiv-is-total-equiv : (∀ x → is-equiv (f x)) → is-equiv f-tot
fiber-equiv-is-total-equiv f-ise = is-eq _ from to-from from-to
where
from : Σ A Q → Σ A P
from (x , y) = x , is-equiv.g (f-ise x) y
abstract
to-from : ∀ q → f-tot (from q) == q
to-from (x , q) = pair= idp (is-equiv.f-g (f-ise x) q)
from-to : ∀ p → from (f-tot p) == p
from-to (x , p) = pair= idp (is-equiv.g-f (f-ise x) p)
total-equiv-is-fiber-equiv : is-equiv f-tot → (∀ x → is-equiv (f x))
total-equiv-is-fiber-equiv f-tot-ise x = is-eq _ from to-from from-to
where
module f-tot = is-equiv f-tot-ise
from : Q x → P x
from q = transport P (fst= (f-tot.f-g (x , q))) (snd (f-tot.g (x , q)))
abstract
from-lemma : ∀ q → snd (f-tot.g (x , q)) == from q
[ P ↓ fst= (f-tot.f-g (x , q)) ]
from-lemma q = from-transp P (fst= (f-tot.f-g (x , q))) idp
to-from : ∀ q → f x (from q) == q
to-from q =
transport (λ path → f x (from q) == q [ Q ↓ path ])
(!-inv-l (fst= (f-tot.f-g (x , q))))
(!ᵈ (ap↓ (λ {x} → f x) (from-lemma q)) ∙ᵈ snd= (f-tot.f-g (x , q)))
from-to : ∀ p → from (f x p) == p
from-to p =
transport (λ path → from (f x p) == p [ P ↓ path ])
( ap (λ path → ! path ∙ fst= (f-tot.g-f (x , p)))
(ap fst= (! (f-tot.adj (x , p))) ∙ ∘-ap fst f-tot (f-tot.g-f (x , p)))
∙ !-inv-l (fst= (f-tot.g-f (x , p))))
(!ᵈ (from-lemma (f x p)) ∙ᵈ snd= (f-tot.g-f (x , p)))
| {
"alphanum_fraction": 0.4816290945,
"avg_line_length": 37.5186915888,
"ext": "agda",
"hexsha": "0ac516c9fb0e0e4ac762f21f91d1e9d75b6d2f10",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/Equivalence2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/Equivalence2.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/Equivalence2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3368,
"size": 8029
} |
-- This file defines instances for natural numbers and integers to
-- overload various operations.
{-# OPTIONS --without-K --safe #-}
module Instances where
-- imports from stdlib.
import Data.Nat as Nat
import Data.Integer as Int
import Data.Integer.DivMod as IDM
import Data.Nat.DivMod as NDM
-- imports from local.
open import Typeclasses public
-- Natural numbers form a semiring.
instance
SMℕ : SemiRing Nat.ℕ
SMℕ ._+_ = Nat._+_
SMℕ ._*_ = Nat._*_
SMℕ .0# = 0
SMℕ .1# = 1
-- Integers form a semiring.
instance
SMℤ : SemiRing Int.ℤ
SMℤ ._+_ = Int._+_
SMℤ ._*_ = Int._*_
SMℤ .0# = Int.0ℤ
SMℤ .1# = Int.1ℤ
-- The set of intergers is a ring.
instance
Ringℤ : Ring Int.ℤ
Ringℤ .sra = SMℤ
Ringℤ .-_ = Int.-_
-- The usual order on ℕ is decidable.
instance
DOℕ : DecOrd Nat.ℕ
DOℕ ._≤_ = Nat._≤_
DOℕ ._≤?_ = Nat._≤?_
DOℕ ._<_ = Nat._<_
DOℕ ._<?_ = Nat._<?_
-- The usual order on ℤ is decidable.
instance
DOℤ : DecOrd Int.ℤ
DOℤ ._≤_ = Int._≤_
DOℤ ._≤?_ = Int._≤?_
DOℤ ._<_ = Int._<_
DOℤ ._<?_ = Int._<?_
-- ℕ has NonZero stucture on it defined in Data.Nat.Base.
instance
NZTℕ : NonZeroTypeclass Nat.ℕ
NZTℕ .NonZero = Nat.NonZero
-- ℤ has NonZero stucture on it defined in Data.Integer.Base.
NZTℤ : NonZeroTypeclass Int.ℤ
NZTℤ .NonZero = Int.NonZero
-- div and mod function on ℕ. They are defined in Data.Nat.DivMod.
instance
DMℕ : DivMod Nat.ℕ
DMℕ .NZT = NZTℕ
DMℕ ._/_ = NDM._/_
DMℕ ._%_ = NDM._%_
-- div and mod function on ℤ. They are defined in Data.Integer.DivMod.
instance
DMℤ : DivMod Int.ℤ
DMℤ .NZT = NZTℤ
DMℤ ._/_ = IDM._div_
DMℤ ._%_ n d = Int.+ (n IDM.mod d)
-- Identity function can be used as the rank function.
instance
Rankℕ : Rank Nat.ℕ
Rankℕ .rank x = x
-- Absolute value function can be used as the rank function.
instance
Rankℤ : Rank Int.ℤ
Rankℤ .rank = Int.∣_∣
| {
"alphanum_fraction": 0.6480799579,
"avg_line_length": 21.8505747126,
"ext": "agda",
"hexsha": "e23be1bd88f8fe3cc5e13e107692ec4b21ec7a31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "onestruggler/EucDomain",
"max_forks_repo_path": "Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "onestruggler/EucDomain",
"max_issues_repo_path": "Instances.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "onestruggler/EucDomain",
"max_stars_repo_path": "Instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 742,
"size": 1901
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Data.Unit renaming (Unit to UnitType)
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open GroupStr
open IsGroupHom
private
variable
ℓ : Level
Unit : Group₀
Unit = UnitType , groupstr tt (λ _ _ → tt) (λ _ → tt)
(makeIsGroup isSetUnit (λ _ _ _ → refl) (λ _ → refl) (λ _ → refl)
(λ _ → refl) (λ _ → refl))
open Iso
-- The trivial group is a unit.
lUnitGroupIso : {G : Group ℓ} → GroupIso (DirProd Unit G) G
fun (fst lUnitGroupIso) = snd
inv (fst lUnitGroupIso) g = tt , g
rightInv (fst lUnitGroupIso) _ = refl
leftInv (fst lUnitGroupIso) _ = refl
snd lUnitGroupIso = makeIsGroupHom λ _ _ → refl
rUnitGroupIso : {G : Group ℓ} → GroupIso (DirProd G Unit) G
fun (fst rUnitGroupIso) = fst
inv (fst rUnitGroupIso) g = g , tt
rightInv (fst rUnitGroupIso) _ = refl
leftInv (fst rUnitGroupIso) _ = refl
snd rUnitGroupIso = makeIsGroupHom λ _ _ → refl
lUnitGroupEquiv : {G : Group ℓ} → GroupEquiv (DirProd Unit G) G
lUnitGroupEquiv = GroupIso→GroupEquiv lUnitGroupIso
rUnitGroupEquiv : ∀ {ℓ} {G : Group ℓ} → GroupEquiv (DirProd G Unit) G
rUnitGroupEquiv = GroupIso→GroupEquiv rUnitGroupIso
contrGroupIsoUnit : {G : Group ℓ} → isContr ⟨ G ⟩ → GroupIso G Unit
fun (fst (contrGroupIsoUnit contr)) _ = tt
inv (fst (contrGroupIsoUnit contr)) _ = fst contr
rightInv (fst (contrGroupIsoUnit contr)) _ = refl
leftInv (fst (contrGroupIsoUnit contr)) x = snd contr x
snd (contrGroupIsoUnit contr) = makeIsGroupHom λ _ _ → refl
contrGroupEquivUnit : {G : Group ℓ} → isContr ⟨ G ⟩ → GroupEquiv G Unit
contrGroupEquivUnit contr = GroupIso→GroupEquiv (contrGroupIsoUnit contr)
isContr→≡UnitGroup : {G : Group ℓ-zero} → isContr (fst G) → Unit ≡ G
isContr→≡UnitGroup c =
fst (GroupPath _ _)
(invGroupEquiv ((isContr→≃Unit c)
, (makeIsGroupHom (λ _ _ → refl))))
GroupIsoUnitGroup→isContr : {G : Group ℓ-zero}
→ GroupIso Unit G → isContr (fst G)
GroupIsoUnitGroup→isContr is =
isOfHLevelRetractFromIso 0 (invIso (fst is)) isContrUnit
| {
"alphanum_fraction": 0.7137724551,
"avg_line_length": 35.2816901408,
"ext": "agda",
"hexsha": "daf64d93082aa4001577508279e0e771e0b807c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FernandoLarrain/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FernandoLarrain/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z",
"num_tokens": 786,
"size": 2505
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.