Search is not available for this dataset
text
string
meta
dict
module Oscar.Data.Proposextensequality where open import Oscar.Data.Proposequality using (_≡_) open import Oscar.Level infix 4 _≡̇_ _≡̇_ : ∀ {a} {A : Set a} {b} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) → Set (a ⊔ b) f ≡̇ g = ∀ x → f x ≡ g x
{ "alphanum_fraction": 0.5607843137, "avg_line_length": 25.5, "ext": "agda", "hexsha": "133a78b3bbfc5299fca3e1533b9abf4336afeab6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Proposextensequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Proposextensequality.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Proposextensequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 111, "size": 255 }
module _ where open import Agda.Builtin.List open import Agda.Builtin.Reflection macro easy : Term → TC _ easy t = bindTC (freshName "A") λ A → bindTC (declarePostulate (arg (arg-info visible relevant) A) (agda-sort (lit 0))) λ _ → unify (def A []) t B : Set B = {!easy!} -- WAS: -- Parse error -- ;<ERROR> -- Example.A... -- SHOULD: complain that A is not in scope
{ "alphanum_fraction": 0.587529976, "avg_line_length": 17.375, "ext": "agda", "hexsha": "3d726055f8587bf3862d990841deb3d0a175b90d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3316.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3316.agda", "max_line_length": 64, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3316.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 122, "size": 417 }
-- There was a bug which caused the type checker to forget -- the name of implicit arguments which weren't used in the -- return type. module UnusedNamedImplicits where data Nat : Set where zero : Nat suc : Nat -> Nat -- Simple example f : {n m : Nat} -> Nat f {m = m} = m data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data Even : Nat -> Set where evenZ : Even zero evenSS : {n : Nat} -> Even n -> Even (suc (suc n)) index : {n : Nat} -> Even n -> Nat index evenZ = zero index (evenSS e) = suc (suc (index e)) sameIndex : {n : Nat}(e : Even n) -> index e == n sameIndex evenZ = refl sameIndex (evenSS e) with index e | sameIndex e ... | ._ | refl = refl -- It could also show up when the argument is used in the top level type, -- but not by the generated type for the with function. * : {n : Nat}{e : Even n} -> Even (index e) * {e = e} with index e | sameIndex e ... | ._ | refl = e
{ "alphanum_fraction": 0.6093073593, "avg_line_length": 24.972972973, "ext": "agda", "hexsha": "75d512df6743360b06b7d78742ee77eb09d545fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/succeed/UnusedNamedImplicits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/succeed/UnusedNamedImplicits.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/UnusedNamedImplicits.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 300, "size": 924 }
-- Andreas, 2018-10-27, issue #3323, reported by Guillaume Brunerie -- -- Mismatches between original and repeated parameter list -- should not lead to internal errors. open import Agda.Builtin.Bool open import Agda.Builtin.Equality record R ..(b : Bool) : Set record R .b where -- Cannot change relevance field foo : Bool -- Should fail.
{ "alphanum_fraction": 0.7362318841, "avg_line_length": 24.6428571429, "ext": "agda", "hexsha": "e770d29dd3ef9aa264a81b0f9872aee59e935c69", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3323r.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3323r.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3323r.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 345 }
------------------------------------------------------------------------ -- Bag equivalence for lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Bag-equivalence {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq hiding (trans) open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; swap) open import Bijection eq using (_↔_; module _↔_; Σ-≡,≡↔≡) open import Equality.Decision-procedures eq open import Fin eq as Finite open import Function-universe eq as Function-universe hiding (_∘_; Kind; module Kind; bijection) open import H-level eq open import H-level.Closure eq open import Injection eq using (_↣_) open import List eq open import Monad eq hiding (map) open import Nat eq hiding (_≟_) private variable a ℓ p q : Level A B : Type a P Q : A → Type p x y z : A xs xs₁ xs₂ ys ys₁ ys₂ zs : List A xss yss : List (List A) k : Function-universe.Kind m n : ℕ ------------------------------------------------------------------------ -- Any -- Any. Any : (A → Type p) → List A → Type p Any P [] = ⊥ Any P (x ∷ xs) = P x ⊎ Any P xs -- Alternative definition of Any. data Any′ {A : Type a} (P : A → Type p) : List A → Type (a ⊔ p) where here : ∀ {x xs} → P x → Any′ P (x ∷ xs) there : ∀ {x xs} → Any′ P xs → Any′ P (x ∷ xs) -- The two definitions of Any are isomorphic. Any′-[] : Any′ P [] ↔ ⊥ {ℓ = ℓ} Any′-[] = record { surjection = record { logical-equivalence = record { from = λ () ; to = λ () } ; right-inverse-of = λ () } ; left-inverse-of = λ () } Any′-∷ : Any′ P (x ∷ xs) ↔ P x ⊎ Any′ P xs Any′-∷ = record { surjection = record { logical-equivalence = record { from = [ here , there ] ; to = λ where (here p) → inj₁ p (there p) → inj₂ p } ; right-inverse-of = [ (λ _ → refl _) , (λ _ → refl _) ] } ; left-inverse-of = λ where (here _) → refl _ (there _) → refl _ } Any↔Any′ : Any P xs ↔ Any′ P xs Any↔Any′ {P = P} {xs = []} = ⊥ ↔⟨ inverse Any′-[] ⟩ Any′ P [] □ Any↔Any′ {P = P} {xs = x ∷ xs} = P x ⊎ Any P xs ↔⟨ id ⊎-cong Any↔Any′ {P = P} ⟩ P x ⊎ Any′ P xs ↔⟨ inverse Any′-∷ ⟩ Any′ P (x ∷ xs) □ ------------------------------------------------------------------------ -- Lemmas relating Any to some basic list functions Any-++ : (P : A → Type p) (xs ys : List A) → Any P (xs ++ ys) ↔ Any P xs ⊎ Any P ys Any-++ P [] ys = Any P ys ↔⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ Any P ys □ Any-++ P (x ∷ xs) ys = P x ⊎ Any P (xs ++ ys) ↔⟨ id ⊎-cong Any-++ P xs ys ⟩ P x ⊎ (Any P xs ⊎ Any P ys) ↔⟨ ⊎-assoc ⟩ (P x ⊎ Any P xs) ⊎ Any P ys □ Any-concat : (P : A → Type p) (xss : List (List A)) → Any P (concat xss) ↔ Any (Any P) xss Any-concat P [] = id Any-concat P (xs ∷ xss) = Any P (xs ++ concat xss) ↔⟨ Any-++ P xs (concat xss) ⟩ Any P xs ⊎ Any P (concat xss) ↔⟨ id ⊎-cong Any-concat P xss ⟩ Any P xs ⊎ Any (Any P) xss □ Any-map : (P : B → Type p) (f : A → B) (xs : List A) → Any P (map f xs) ↔ Any (P ∘ f) xs Any-map P f [] = id Any-map P f (x ∷ xs) = P (f x) ⊎ Any P (map f xs) ↔⟨ id ⊎-cong Any-map P f xs ⟩ (P ∘ f) x ⊎ Any (P ∘ f) xs □ Any->>= : {A B : Type ℓ} (P : B → Type p) (xs : List A) (f : A → List B) → Any P (xs >>= f) ↔ Any (Any P ∘ f) xs Any->>= P xs f = Any P (concat (map f xs)) ↔⟨ Any-concat P (map f xs) ⟩ Any (Any P) (map f xs) ↔⟨ Any-map (Any P) f xs ⟩ Any (Any P ∘ f) xs □ Any-filter : (P : A → Type p) (p : A → Bool) (xs : List A) → Any P (filter p xs) ↔ Any (λ x → P x × T (p x)) xs Any-filter P p [] = ⊥ □ Any-filter P p (x ∷ xs) with p x ... | true = P x ⊎ Any P (filter p xs) ↔⟨ inverse ×-right-identity ⊎-cong Any-filter P p xs ⟩ (P x × ⊤) ⊎ Any (λ x → P x × T (p x)) xs □ ... | false = Any P (filter p xs) ↔⟨ Any-filter P p xs ⟩ Any (λ x → P x × T (p x)) xs ↔⟨ inverse ⊎-left-identity ⟩ ⊥₀ ⊎ Any (λ x → P x × T (p x)) xs ↔⟨ inverse ×-right-zero ⊎-cong (_ □) ⟩ (P x × ⊥) ⊎ Any (λ x → P x × T (p x)) xs □ ------------------------------------------------------------------------ -- List membership infix 4 _∈_ _∈_ : A → List A → Type _ x ∈ xs = Any (λ y → x ≡ y) xs -- Any can be expressed using _∈_. Any-∈ : (P : A → Type p) (xs : List A) → Any P xs ↔ ∃ λ x → P x × x ∈ xs Any-∈ P [] = ⊥ ↔⟨ inverse ×-right-zero ⟩ (∃ λ x → ⊥₀) ↔⟨ ∃-cong (λ x → inverse ×-right-zero) ⟩ (∃ λ x → P x × ⊥) □ Any-∈ P (x ∷ xs) = P x ⊎ Any P xs ↔⟨ ∃-intro P x ⊎-cong Any-∈ P xs ⟩ (∃ λ y → P y × y ≡ x) ⊎ (∃ λ y → P y × y ∈ xs) ↔⟨ inverse ∃-⊎-distrib-left ⟩ (∃ λ y → P y × y ≡ x ⊎ P y × y ∈ xs) ↔⟨ ∃-cong (λ y → inverse ×-⊎-distrib-left) ⟩ (∃ λ y → P y × (y ≡ x ⊎ y ∈ xs)) □ -- Using this property we can prove that Any and _⊎_ commute. Any-⊎ : (P : A → Type p) (Q : A → Type q) (xs : List A) → Any (λ x → P x ⊎ Q x) xs ↔ Any P xs ⊎ Any Q xs Any-⊎ P Q xs = Any (λ x → P x ⊎ Q x) xs ↔⟨ Any-∈ (λ x → P x ⊎ Q x) xs ⟩ (∃ λ x → (P x ⊎ Q x) × x ∈ xs) ↔⟨ ∃-cong (λ x → ×-⊎-distrib-right) ⟩ (∃ λ x → P x × x ∈ xs ⊎ Q x × x ∈ xs) ↔⟨ ∃-⊎-distrib-left ⟩ (∃ λ x → P x × x ∈ xs) ⊎ (∃ λ x → Q x × x ∈ xs) ↔⟨ inverse $ Any-∈ P xs ⊎-cong Any-∈ Q xs ⟩ Any P xs ⊎ Any Q xs □ ------------------------------------------------------------------------ -- Some lemmas related to list membership -- If f and g are pointwise equal for elements in xs, then map f xs -- and map g xs are equal. map-cong-∈ : (f g : A → B) (xs : List A) → (∀ {x} → x ∈ xs → f x ≡ g x) → map f xs ≡ map g xs map-cong-∈ p q [] p≡q = refl _ map-cong-∈ p q (x ∷ xs) p≡q = cong₂ _∷_ (p≡q (inj₁ (refl _))) (map-cong-∈ p q xs (p≡q ∘ inj₂)) -- If p and q are pointwise equal for elements in xs, then filter p xs -- and filter q xs are equal. filter-cong-∈ : (p q : A → Bool) (xs : List A) → (∀ {x} → x ∈ xs → p x ≡ q x) → filter p xs ≡ filter q xs filter-cong-∈ p q [] p≡q = refl _ filter-cong-∈ p q (x ∷ xs) p≡q with p x | q x | p≡q (inj₁ (refl _)) | filter-cong-∈ p q xs (p≡q ∘ inj₂) ... | true | true | _ | ih = cong (x ∷_) ih ... | false | false | _ | ih = ih ... | true | false | t≡f | _ = ⊥-elim $ Bool.true≢false t≡f ... | false | true | f≡t | _ = ⊥-elim $ Bool.true≢false $ sym f≡t -- The ordering of natural numbers can be related to list membership -- and nats-<. <-↔-∈-nats-< : m < n ↔ m ∈ nats-< n <-↔-∈-nats-< {m = m} {n = zero} = m < zero ↝⟨ <zero↔ ⟩ ⊥ ↔⟨⟩ m ∈ nats-< zero □ <-↔-∈-nats-< {m = m} {n = suc n} = m < suc n ↔⟨⟩ suc m ≤ suc n ↝⟨ suc≤suc↔ ⟩ m ≤ n ↝⟨ ≤↔<⊎≡ ⟩ m < n ⊎ m ≡ n ↝⟨ ⊎-comm ⟩ m ≡ n ⊎ m < n ↝⟨ Function-universe.id ⊎-cong <-↔-∈-nats-< ⟩ m ≡ n ⊎ m ∈ nats-< n ↔⟨⟩ m ∈ nats-< (suc n) □ ------------------------------------------------------------------------ -- Bag and set equivalence and the subset and subbag orders -- Various kinds of relatedness. -- -- NOTE: Perhaps it would be better to define the subbag property in -- terms of embeddings, rather than injections. The HoTT book (first -- edition) claims that injectivity "is an ill-behaved notion for -- non-sets". open Function-universe public using (Kind) hiding (module Kind) module Kind where open Function-universe public using () renaming ( implication to subset ; logical-equivalence to set ; injection to subbag ; bijection to bag ; equivalence to bag-with-equivalence ; equivalenceᴱ to bag-with-equivalenceᴱ ) open Kind public -- A general definition of "relatedness" for lists. infix 4 _∼[_]_ _∼[_]_ : {A : Type a} → List A → Kind → List A → Type a xs ∼[ k ] ys = ∀ z → z ∈ xs ↝[ k ] z ∈ ys -- Bag equivalence. infix 4 _≈-bag_ _≈-bag_ : {A : Type a} → List A → List A → Type a xs ≈-bag ys = xs ∼[ bag ] ys -- Alternative definition of bag equivalence. infix 4 _≈-bag′_ record _≈-bag′_ {A : Type a} (xs ys : List A) : Type a where field bijection : Fin (length xs) ↔ Fin (length ys) related : xs And ys Are-related-by bijection -- Yet another definition of bag equivalence. This definition is taken -- from Coq's standard library. infixr 5 _∷_ infix 4 _≈-bag″_ data _≈-bag″_ {A : Type a} : List A → List A → Type a where [] : [] ≈-bag″ [] _∷_ : ∀ x {xs ys} (xs≈ys : xs ≈-bag″ ys) → x ∷ xs ≈-bag″ x ∷ ys swap : ∀ {x y xs} → x ∷ y ∷ xs ≈-bag″ y ∷ x ∷ xs trans : ∀ {xs ys zs} (xs≈ys : xs ≈-bag″ ys) (ys≈zs : ys ≈-bag″ zs) → xs ≈-bag″ zs ------------------------------------------------------------------------ -- Some congruence lemmas Any-cong : (∀ x → P x ↝[ k ] Q x) → xs ∼[ k ] ys → Any P xs ↝[ k ] Any Q ys Any-cong {P = P} {Q = Q} {xs = xs} {ys = ys} P↔Q xs≈ys = Any P xs ↔⟨ Any-∈ P xs ⟩ (∃ λ z → P z × z ∈ xs) ↝⟨ ∃-cong (λ z → P↔Q z ×-cong xs≈ys z) ⟩ (∃ λ z → Q z × z ∈ ys) ↔⟨ inverse (Any-∈ Q ys) ⟩ Any Q ys □ ++-cong : xs₁ ∼[ k ] ys₁ → xs₂ ∼[ k ] ys₂ → xs₁ ++ xs₂ ∼[ k ] ys₁ ++ ys₂ ++-cong {xs₁ = xs₁} {ys₁ = ys₁} {xs₂ = xs₂} {ys₂ = ys₂} xs₁∼ys₁ xs₂∼ys₂ = λ z → z ∈ xs₁ ++ xs₂ ↔⟨ Any-++ _ xs₁ xs₂ ⟩ z ∈ xs₁ ⊎ z ∈ xs₂ ↝⟨ xs₁∼ys₁ z ⊎-cong xs₂∼ys₂ z ⟩ z ∈ ys₁ ⊎ z ∈ ys₂ ↔⟨ inverse (Any-++ _ ys₁ ys₂) ⟩ z ∈ ys₁ ++ ys₂ □ map-cong : (f : A → B) → xs ∼[ k ] ys → map f xs ∼[ k ] map f ys map-cong {xs = xs} {ys = ys} f xs∼ys = λ z → z ∈ map f xs ↔⟨ Any-map _ f xs ⟩ Any (λ x → z ≡ f x) xs ↝⟨ Any-cong (λ x → z ≡ f x □) xs∼ys ⟩ Any (λ x → z ≡ f x) ys ↔⟨ inverse (Any-map _ f ys) ⟩ z ∈ map f ys □ concat-cong : xss ∼[ k ] yss → concat xss ∼[ k ] concat yss concat-cong {xss = xss} {yss = yss} xss∼yss = λ z → z ∈ concat xss ↔⟨ Any-concat _ xss ⟩ Any (λ zs → z ∈ zs) xss ↝⟨ Any-cong (λ zs → z ∈ zs □) xss∼yss ⟩ Any (λ zs → z ∈ zs) yss ↔⟨ inverse (Any-concat _ yss) ⟩ z ∈ concat yss □ >>=-cong : {A B : Type ℓ} {xs ys : List A} {f g : A → List B} → xs ∼[ k ] ys → (∀ x → f x ∼[ k ] g x) → (xs >>= f) ∼[ k ] (ys >>= g) >>=-cong {xs = xs} {ys = ys} {f = f} {g = g} xs∼ys f∼g = λ z → z ∈ xs >>= f ↔⟨ Any->>= _ xs f ⟩ Any (λ x → z ∈ f x) xs ↝⟨ Any-cong (λ x → f∼g x z) xs∼ys ⟩ Any (λ x → z ∈ g x) ys ↔⟨ inverse (Any->>= _ ys g) ⟩ z ∈ ys >>= g □ filter-cong : (p : A → Bool) (xs ys : List A) → xs ∼[ k ] ys → filter p xs ∼[ k ] filter p ys filter-cong p xs ys xs∼ys = λ z → z ∈ filter p xs ↔⟨ Any-filter _ p xs ⟩ Any (λ x → z ≡ x × T (p x)) xs ↝⟨ Any-cong (λ _ → _ □) xs∼ys ⟩ Any (λ x → z ≡ x × T (p x)) ys ↔⟨ inverse (Any-filter _ p ys) ⟩ z ∈ filter p ys □ ------------------------------------------------------------------------ -- More properties -- Any preserves decidability of equality. module Dec (dec : ∀ {x} → Decidable-equality (P x)) where infix 4 _≟_ _≟_ : Decidable-equality (Any P xs) _≟_ {xs = _ ∷ _} = ⊎.Dec._≟_ dec _≟_ -- If the type of x is a set, then equality is decidable for x ∈ xs. module Dec-∈ (A-set : Is-set A) where infix 4 _≟_ _≟_ : ∀ {x xs} → Decidable-equality (x ∈ xs) _≟_ = Dec._≟_ λ _ _ → yes (A-set _ _) -- Bind distributes from the left over append. >>=-left-distributive : {A B : Type ℓ} (xs : List A) (f g : A → List B) → xs >>= (λ x → f x ++ g x) ≈-bag (xs >>= f) ++ (xs >>= g) >>=-left-distributive xs f g = λ z → z ∈ xs >>= (λ x → f x ++ g x) ↔⟨ Any->>= (_≡_ z) xs (λ x → f x ++ g x) ⟩ Any (λ x → z ∈ f x ++ g x) xs ↔⟨ Any-cong (λ x → Any-++ (_≡_ z) (f x) (g x)) (λ _ → id) ⟩ Any (λ x → z ∈ f x ⊎ z ∈ g x) xs ↔⟨ Any-⊎ (λ x → z ∈ f x) (λ x → z ∈ g x) xs ⟩ Any (λ x → z ∈ f x) xs ⊎ Any (λ x → z ∈ g x) xs ↔⟨ inverse (Any->>= (_≡_ z) xs f ⊎-cong Any->>= (_≡_ z) xs g) ⟩ z ∈ xs >>= f ⊎ z ∈ xs >>= g ↔⟨ inverse (Any-++ (_≡_ z) (xs >>= f) (xs >>= g)) ⟩ z ∈ (xs >>= f) ++ (xs >>= g) □ -- This property does not hold for ordinary list equality. ¬->>=-left-distributive : ¬ ({A B : Type} (xs : List A) (f g : A → List B) → xs >>= (λ x → f x ++ g x) ≡ (xs >>= f) ++ (xs >>= g)) ¬->>=-left-distributive distrib = Bool.true≢false true≡false where tf = true ∷ false ∷ [] f = λ x → x ∷ [] g = f ttff≡tftf : true ∷ true ∷ false ∷ false ∷ [] ≡ true ∷ false ∷ true ∷ false ∷ [] ttff≡tftf = distrib tf f g true≡false : true ≡ false true≡false = List.cancel-∷-head (List.cancel-∷-tail ttff≡tftf) -- _++_ is commutative. ++-comm : (xs ys : List A) → xs ++ ys ≈-bag ys ++ xs ++-comm xs ys = λ z → z ∈ xs ++ ys ↔⟨ Any-++ (_≡_ z) xs ys ⟩ z ∈ xs ⊎ z ∈ ys ↔⟨ ⊎-comm ⟩ z ∈ ys ⊎ z ∈ xs ↔⟨ inverse (Any-++ (_≡_ z) ys xs) ⟩ z ∈ ys ++ xs □ -- _++_ is idempotent (when set equivalence is used). ++-idempotent : (xs : List A) → xs ++ xs ∼[ set ] xs ++-idempotent xs = λ z → z ∈ xs ++ xs ↔⟨ Any-++ (_≡_ z) xs xs ⟩ z ∈ xs ⊎ z ∈ xs ↝⟨ ⊎-idempotent ⟩ z ∈ xs □ -- The so-called "range splitting" property (see, for instance, -- Hoogendijks "(Relational) Programming Laws in the Boom Hierarchy of -- Types"). range-splitting : (p : A → Bool) (xs : List A) → filter p xs ++ filter (not ∘ p) xs ≈-bag xs range-splitting p xs = λ z → z ∈ filter p xs ++ filter (not ∘ p) xs ↔⟨ Any-++ _ _ (filter (not ∘ p) xs) ⟩ z ∈ filter p xs ⊎ z ∈ filter (not ∘ p) xs ↔⟨ Any-filter _ p xs ⊎-cong Any-filter _ (not ∘ p) xs ⟩ Any (λ x → z ≡ x × T (p x)) xs ⊎ Any (λ x → z ≡ x × T (not (p x))) xs ↔⟨ inverse $ Any-⊎ _ _ xs ⟩ Any (λ x → z ≡ x × T (p x) ⊎ z ≡ x × T (not (p x))) xs ↔⟨ Any-cong (λ x → lemma (z ≡ x) (p x)) (λ x → x ∈ xs □) ⟩ z ∈ xs □ where lemma : ∀ {a} (A : Type a) (b : Bool) → A × T b ⊎ A × T (not b) ↔ A lemma A b = A × T b ⊎ A × T (not b) ↔⟨ ×-comm ⊎-cong ×-comm ⟩ T b × A ⊎ T (not b) × A ↔⟨ if-lemma (λ _ → A) id id b ⟩ A □ -- The so-called "range disjunction" property, strengthened to use the -- subbag preorder instead of set equivalence. range-disjunction : (p q : A → Bool) (xs : List A) → filter (λ x → p x ∨ q x) xs ∼[ subbag ] filter p xs ++ filter q xs range-disjunction p q xs = λ z → z ∈ filter (λ x → p x ∨ q x) xs ↔⟨ Any-filter _ (λ x → p x ∨ q x) _ ⟩ Any (λ x → z ≡ x × T (p x ∨ q x)) xs ↝⟨ Any-cong (λ x → lemma (z ≡ x) (p x) (q x)) (λ x → x ∈ xs □) ⟩ Any (λ x → z ≡ x × T (p x) ⊎ z ≡ x × T (q x)) xs ↔⟨ Any-⊎ _ _ _ ⟩ Any (λ x → z ≡ x × T (p x)) xs ⊎ Any (λ x → z ≡ x × T (q x)) xs ↔⟨ inverse (Any-filter _ p _ ⊎-cong Any-filter _ q _) ⟩ z ∈ filter p xs ⊎ z ∈ filter q xs ↔⟨ inverse $ Any-++ _ _ _ ⟩ z ∈ filter p xs ++ filter q xs □ where inj : (b₁ b₂ : Bool) → T (b₁ ∨ b₂) ↣ T b₁ ⊎ T b₂ inj true true = record { to = inj₁; injective = λ _ → refl _ } inj true false = record { to = inj₁; injective = ⊎.cancel-inj₁ } inj false true = record { to = inj₂; injective = ⊎.cancel-inj₂ } inj false false = record { to = λ (); injective = λ {} } lemma : ∀ {a} (A : Type a) (b₁ b₂ : Bool) → A × T (b₁ ∨ b₂) ↣ A × T b₁ ⊎ A × T b₂ lemma A b₁ b₂ = A × T (b₁ ∨ b₂) ↝⟨ id ×-cong inj b₁ b₂ ⟩ A × (T b₁ ⊎ T b₂) ↔⟨ ×-⊎-distrib-left ⟩ A × T b₁ ⊎ A × T b₂ □ ------------------------------------------------------------------------ -- The first two definitions of bag equivalence above are logically -- equivalent -- One direction follows from the following lemma, which states that -- list membership can be expressed as "there is an index which points -- to the element". -- -- As an aside, note that the right-hand side is almost -- index xs ⁻¹ z. ∈-index : (xs : List A) → z ∈ xs ↔ ∃ λ i → z ≡ index xs i ∈-index {z = z} [] = ⊥ ↔⟨ inverse $ ∃-Fin-zero _ ⟩ (∃ λ (i : ⊥) → z ≡ index [] i) □ ∈-index {z = z} (x ∷ xs) = z ≡ x ⊎ z ∈ xs ↔⟨ id ⊎-cong ∈-index xs ⟩ z ≡ x ⊎ (∃ λ i → z ≡ index xs i) ↔⟨ inverse $ ∃-Fin-suc _ ⟩ (∃ λ i → z ≡ index (x ∷ xs) i) □ -- The index which points to the element. index-of : z ∈ xs → Fin (length xs) index-of = proj₁ ∘ _↔_.to (∈-index _) -- For the other direction a sequence of lemmas is used. -- The first lemma states that ∃ λ z → z ∈ xs is isomorphic to Fin n, -- where n is the length of xs. Thierry Coquand pointed out that this -- is a generalisation of singleton-contractible. Fin-length : (xs : List A) → (∃ λ z → z ∈ xs) ↔ Fin (length xs) Fin-length xs = (∃ λ z → z ∈ xs) ↔⟨ ∃-cong (λ _ → ∈-index xs) ⟩ (∃ λ z → ∃ λ i → z ≡ index xs i) ↔⟨ ∃-comm ⟩ (∃ λ i → ∃ λ z → z ≡ index xs i) ↔⟨⟩ (∃ λ i → Singleton (index xs i)) ↔⟨ ∃-cong (λ _ → _⇔_.to contractible⇔↔⊤ (singleton-contractible _)) ⟩ Fin (length xs) × ⊤ ↔⟨ ×-right-identity ⟩ Fin (length xs) □ -- From this lemma we get that lists which are bag equivalent have -- related lengths. Fin-length-cong : xs ≈-bag ys → Fin (length xs) ↔ Fin (length ys) Fin-length-cong {xs = xs} {ys = ys} xs≈ys = Fin (length xs) ↔⟨ inverse $ Fin-length xs ⟩ ∃ (λ z → z ∈ xs) ↔⟨ ∃-cong xs≈ys ⟩ ∃ (λ z → z ∈ ys) ↔⟨ Fin-length ys ⟩ Fin (length ys) □ abstract -- In fact, they have equal lengths. length-cong : xs ≈-bag ys → length xs ≡ length ys length-cong = _⇔_.to Finite.isomorphic-same-size ∘ Fin-length-cong -- All that remains (except for some bookkeeping) is to show that -- the isomorphism which Fin-length-cong returns relates the two -- lists. Fin-length-cong-relates : {xs ys : List A} (xs≈ys : xs ≈-bag ys) → xs And ys Are-related-by Fin-length-cong xs≈ys Fin-length-cong-relates {xs = xs} {ys = ys} xs≈ys i = index xs i ≡⟨ proj₂ $ to (∈-index _) $ to (xs≈ys _) (from (∈-index _) (i , refl _)) ⟩ index ys (proj₁ $ to (∈-index _) $ to (xs≈ys _) $ from (∈-index _) (i , refl _)) ≡⟨⟩ index ys (to (Fin-length-cong xs≈ys) i) ∎ where open _↔_ -- We get that the two definitions of bag equivalence are logically -- equivalent. ≈⇔≈′ : xs ≈-bag ys ⇔ xs ≈-bag′ ys ≈⇔≈′ = record { to = λ xs≈ys → record { bijection = Fin-length-cong xs≈ys ; related = Fin-length-cong-relates xs≈ys } ; from = from } where equality-lemma : y ≡ z → (x ≡ y) ↔ (x ≡ z) equality-lemma = flip-trans-isomorphism from : xs ≈-bag′ ys → xs ≈-bag ys from {xs = xs} {ys = ys} xs≈ys z = z ∈ xs ↔⟨ ∈-index xs ⟩ ∃ (λ i → z ≡ index xs i) ↔⟨ Σ-cong (_≈-bag′_.bijection xs≈ys) (λ i → equality-lemma $ _≈-bag′_.related xs≈ys i) ⟩ ∃ (λ i → z ≡ index ys i) ↔⟨ inverse (∈-index ys) ⟩ z ∈ ys □ ------------------------------------------------------------------------ -- Left cancellation -- We have basically already showed that cons is left cancellative for -- the (first) alternative definition of bag equivalence. ∷-left-cancellative′ : ∀ xs ys → x ∷ xs ≈-bag′ x ∷ ys → xs ≈-bag′ ys ∷-left-cancellative′ {x = x} xs ys x∷xs≈x∷ys = record { bijection = Finite.cancel-suc (_≈-bag′_.bijection x∷xs≈x∷ys) ; related = Finite.cancel-suc-preserves-relatedness x xs ys (_≈-bag′_.bijection x∷xs≈x∷ys) (_≈-bag′_.related x∷xs≈x∷ys) } -- By the equivalence above we get the result also for the first -- definition of bag equivalence, but we can show this directly, with -- the help of some lemmas. abstract -- The index-of function commutes with applications of certain -- inverses. Note that the last three equational reasoning steps do -- not need to be written out; I included them in an attempt to make -- it easier to understand why the lemma holds. index-of-commutes : {xs ys : List A} (xs≈ys : xs ≈-bag ys) (p : z ∈ xs) → index-of (_↔_.to (xs≈ys z) p) ≡ _↔_.to (Fin-length-cong xs≈ys) (index-of p) index-of-commutes {z = z} {xs = xs} {ys = ys} xs≈ys p = index-of $ to (xs≈ys z) p ≡⟨⟩ index-of $ proj₂ $ Σ-map P.id (λ {x} → to (xs≈ys x)) (z , p) ≡⟨ cong (index-of ∘ proj₂ ∘ Σ-map P.id (to (xs≈ys _))) $ sym $ left-inverse-of (Fin-length xs) (z , p) ⟩ index-of $ proj₂ $ Σ-map P.id (λ {x} → to (xs≈ys x)) $ from (Fin-length xs) $ to (Fin-length xs) (z , p) ≡⟨⟩ to (Fin-length ys) $ Σ-map P.id (λ {x} → to (xs≈ys x)) $ from (Fin-length xs) $ index-of p ≡⟨⟩ to (Fin-length-cong xs≈ys) $ index-of p ∎ where open _↔_ -- Bag equivalence isomorphisms preserve index equality. Note that -- this means that, even if the underlying equality is proof -- relevant, a bag equivalence isomorphism cannot map two distinct -- proofs, that point to the same position, to different positions. index-equality-preserved : {xs ys : List A} {p q : z ∈ xs} (xs≈ys : xs ≈-bag ys) → index-of p ≡ index-of q → index-of (_↔_.to (xs≈ys z) p) ≡ index-of (_↔_.to (xs≈ys z) q) index-equality-preserved {z = z} {p = p} {q = q} xs≈ys eq = index-of (_↔_.to (xs≈ys z) p) ≡⟨ index-of-commutes xs≈ys p ⟩ _↔_.to (Fin-length-cong xs≈ys) (index-of p) ≡⟨ cong (_↔_.to (Fin-length-cong xs≈ys)) eq ⟩ _↔_.to (Fin-length-cong xs≈ys) (index-of q) ≡⟨ sym $ index-of-commutes xs≈ys q ⟩∎ index-of (_↔_.to (xs≈ys z) q) ∎ -- If x ∷ xs is bag equivalent to x ∷ ys, then xs and ys are bag -- equivalent. ∷-left-cancellative : x ∷ xs ≈-bag x ∷ ys → xs ≈-bag ys ∷-left-cancellative {x = x} x∷xs≈x∷ys z = ⊎-left-cancellative (x∷xs≈x∷ys z) (lemma x∷xs≈x∷ys) (lemma (inverse ∘ x∷xs≈x∷ys)) where abstract -- If the equality type is proof irrelevant (so that p and q are -- equal), then this lemma can be proved without the help of -- index-equality-preserved. lemma : (inv : x ∷ xs ≈-bag x ∷ ys) → Well-behaved (_↔_.to (inv z)) lemma {xs = xs} inv {b = z∈xs} {a = p} {a′ = q} hyp₁ hyp₂ = ⊎.inj₁≢inj₂ ( fzero ≡⟨⟩ index-of {xs = x ∷ xs} (inj₁ p) ≡⟨ cong index-of $ sym $ to-from hyp₂ ⟩ index-of {xs = x ∷ xs} (from (inj₁ q)) ≡⟨ index-equality-preserved (inverse ∘ inv) (refl _) ⟩ index-of {xs = x ∷ xs} (from (inj₁ p)) ≡⟨ cong index-of $ to-from hyp₁ ⟩ index-of {xs = x ∷ xs} (inj₂ z∈xs) ≡⟨⟩ fsuc (index-of {xs = xs} z∈xs) ∎) where open _↔_ (inv z) -- Cons is not left cancellative for set equivalence. ∷-not-left-cancellative : ¬ (∀ {A : Type} {x : A} {xs ys} → x ∷ xs ∼[ set ] x ∷ ys → xs ∼[ set ] ys) ∷-not-left-cancellative cancel = _⇔_.to (cancel (++-idempotent (tt ∷ [])) tt) (inj₁ (refl _)) -- _++_ is left and right cancellative (for bag equivalence). ++-left-cancellative : ∀ xs → xs ++ ys ≈-bag xs ++ zs → ys ≈-bag zs ++-left-cancellative [] eq = eq ++-left-cancellative (x ∷ xs) eq = ++-left-cancellative xs (∷-left-cancellative eq) ++-right-cancellative : xs ++ zs ≈-bag ys ++ zs → xs ≈-bag ys ++-right-cancellative {xs = xs} {zs = zs} {ys = ys} eq = ++-left-cancellative zs (λ z → z ∈ zs ++ xs ↔⟨ ++-comm zs xs z ⟩ z ∈ xs ++ zs ↔⟨ eq z ⟩ z ∈ ys ++ zs ↔⟨ ++-comm ys zs z ⟩ z ∈ zs ++ ys □) ------------------------------------------------------------------------ -- The third definition of bag equivalence is sound with respect to -- the other two -- _∷_ preserves _∼[ k ]_. infixr 5 _∷-cong_ _∷-cong_ : x ≡ y → xs ∼[ k ] ys → x ∷ xs ∼[ k ] y ∷ ys _∷-cong_ {x = x} {y = y} {xs = xs} {ys = ys} x≡y xs≈ys = λ z → z ≡ x ⊎ z ∈ xs ↝⟨ from-bijection (flip-trans-isomorphism x≡y) ⊎-cong xs≈ys z ⟩□ z ≡ y ⊎ z ∈ ys □ -- We can swap the first two elements of a list. swap-first-two : x ∷ y ∷ xs ≈-bag y ∷ x ∷ xs swap-first-two {x = x} {y = y} {xs = xs} = λ z → z ≡ x ⊎ z ≡ y ⊎ z ∈ xs ↔⟨ ⊎-assoc ⟩ (z ≡ x ⊎ z ≡ y) ⊎ z ∈ xs ↔⟨ ⊎-comm ⊎-cong id ⟩ (z ≡ y ⊎ z ≡ x) ⊎ z ∈ xs ↔⟨ inverse ⊎-assoc ⟩ z ≡ y ⊎ z ≡ x ⊎ z ∈ xs □ -- The third definition of bag equivalence is sound with respect to -- the first one. ≈″⇒≈ : xs ≈-bag″ ys → xs ≈-bag ys ≈″⇒≈ [] = λ _ → id ≈″⇒≈ (x ∷ xs≈ys) = refl _ ∷-cong ≈″⇒≈ xs≈ys ≈″⇒≈ swap = swap-first-two ≈″⇒≈ (trans xs≈ys ys≈zs) = λ z → _ ↔⟨ ≈″⇒≈ xs≈ys z ⟩ ≈″⇒≈ ys≈zs z -- The other direction should also be provable, but I expect that this -- requires some work.
{ "alphanum_fraction": 0.4748243789, "avg_line_length": 36.7161383285, "ext": "agda", "hexsha": "c84cc6eeb172ff4f4555b1686edd079035b904d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Bag-equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Bag-equivalence.agda", "max_line_length": 131, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Bag-equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 9965, "size": 25481 }
module Numeric.Nat.Prime.Properties where open import Prelude open import Control.WellFounded open import Numeric.Nat.Properties open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.GCD open import Numeric.Nat.GCD.Extended open import Numeric.Nat.GCD.Properties open import Numeric.Nat.Prime open import Tactic.Nat prime-nonzero : ∀ {p} → Prime p → NonZero p prime-nonzero {0} (prime p>1 _) = refute p>1 prime-nonzero {suc _} _ = _ prime-coprime/divide : ∀ p a → Prime p → Either (Coprime p a) (p Divides a) prime-coprime/divide p a (prime _ isp) with gcd p a prime-coprime/divide p a (prime _ isp) | gcd-res d isGCD = case isp d (IsGCD.d|a isGCD) of λ where (left d=1) → left d=1 (right refl) → right (IsGCD.d|b isGCD) prime-divide-prime : ∀ {p q} → Prime p → Prime q → p Divides q → p ≡ q prime-divide-prime {p} (prime p>1 _) (prime _ dq) p|q = case dq p p|q of λ where (left refl) → refute p>1 (right p=q) → p=q prime-split : ∀ {p} a b → Prime p → p Divides (a * b) → Either (p Divides a) (p Divides b) prime-split a b isP p|ab = case prime-coprime/divide _ a isP of λ where (left p/a) → right (coprime-divide-mul-l _ a b p/a p|ab) (right p|a) → left p|a -- It's enough to check prime divisors when checking coprimality. module _ (a b : Nat) (f : ∀ p → Prime p → p Divides a → p Divides b → p Divides 1) where private coprimeByPrimes′ : (k : Nat) → Acc _<_ k → k Divides a → k Divides b → k Divides 1 coprimeByPrimes′ k (acc wf) k|a k|b = case isPrime k of λ where (yes isP) → f k isP k|a k|b (no (composite i j i>1 j>1 refl)) → let i|1 : i Divides 1 i|1 = coprimeByPrimes′ i (wf i (less-mul-l i>1 j>1)) (mul-divides-l i j a k|a) (mul-divides-l i j b k|b) j|1 : j Divides 1 j|1 = coprimeByPrimes′ j (wf j (less-mul-r i>1 j>1)) (mul-divides-r i j a k|a) (mul-divides-r i j b k|b) in case₂ divides-one i|1 , divides-one j|1 of λ where refl refl → factor! 1 (tiny (diff! 0)) → factor! 1 (tiny (diff! 1)) → case₂ divides-zero k|a , divides-zero k|b of λ where refl refl → let 2∤1 = fromDec (2 divides? 1) 2|0 = fromDec (2 divides? 0) in ⊥-elim (2∤1 (f 2 (fromDec (decPrime 2)) 2|0 2|0)) (tiny (diff (suc (suc _)) eq)) → refute eq coprimeByPrimes : Coprime a b coprimeByPrimes = coprimeByDivide a b λ k → coprimeByPrimes′ k (wfNat k) coprime-mul-r : ∀ a b c → Coprime a b → Coprime a c → Coprime a (b * c) coprime-mul-r a b c a/b a/c = coprimeByPrimes a (b * c) λ p isP p|a p|bc → case prime-split b c isP p|bc of λ where (left p|b) → divide-coprime p a b a/b p|a p|b (right p|c) → divide-coprime p a c a/c p|a p|c coprime-mul-l : ∀ a b c → Coprime a c → Coprime b c → Coprime (a * b) c coprime-mul-l a b c a/c b/c = coprime-sym c _ (coprime-mul-r c a b (coprime-sym a _ a/c) (coprime-sym b _ b/c)) prime-divide-coprime : ∀ p a b → Prime p → Coprime a b → p Divides a → p Divides b → ⊥ prime-divide-coprime p a b isP a/b p|a p|b = case divides-one {p} (divide-coprime p a b a/b p|a p|b) of λ where refl → fromDec (decPrime 1) isP
{ "alphanum_fraction": 0.5978326309, "avg_line_length": 40.512195122, "ext": "agda", "hexsha": "be5a297c0abda112a93c8ab5ffee1020d08b7190", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/Prime/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/Prime/Properties.agda", "max_line_length": 90, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/Prime/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1245, "size": 3322 }
open import Agda.Builtin.Bool public open import Agda.Builtin.Nat public data IsTrue : Bool → Set where instance truth : IsTrue true postulate foo : {{IsTrue (3 < 2)}} → Nat test : Nat test = foo
{ "alphanum_fraction": 0.7009803922, "avg_line_length": 15.6923076923, "ext": "agda", "hexsha": "ced75f194799f13e354b5a6b538640feb7941888", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4530.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4530.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4530.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 204 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Naturals.Order.WellFounded open import Orders.WellFounded.Induction open import Orders.Total.Definition open import Semirings.Definition module Numbers.Naturals.Division where open import Numbers.Naturals.EuclideanAlgorithm public using (_∣_ ; zeroDividesNothing ; divisionAlgResult ; divides ; biggerThanCantDivide ; aDivA ; aDivZero ; divEquality ; oneDivN ; dividesBothImpliesDividesSum ; dividesBothImpliesDividesDifference) divOneImpliesOne : {a : ℕ} → a ∣ 1 → a ≡ 1 divOneImpliesOne {zero} a|1 = exFalso (zeroDividesNothing _ a|1) divOneImpliesOne {succ zero} a|1 = refl divOneImpliesOne {succ (succ a)} (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | multiplicationNIsCommutative a 0 = exFalso (naughtE pr) divOneImpliesOne {succ (succ a)} (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring quot (succ (quot +N a *N succ quot)) = exFalso (naughtE (equalityCommutative (succInjective pr)))
{ "alphanum_fraction": 0.7753464624, "avg_line_length": 62.3181818182, "ext": "agda", "hexsha": "5f33221c8b35cc9889cab7e43b0ad050553076f7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/Division.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/Division.agda", "max_line_length": 285, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/Division.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 401, "size": 1371 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.PeifferGraph where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.ReflGraph open GroupLemmas open MorphismLemmas private variable ℓ ℓ' : Level module _ (𝒢 : ReflGraph ℓ ℓ') where open ReflGraphNotation 𝒢 ---------------------------------------------------- -- The peiffer condition for reflexive graphs, -- i.e. the missing property to turn a precrossed -- module into a crossed module ---------------------------------------------------- isPeifferGraph : Type ℓ' isPeifferGraph = (a b : ⟨ G₁ ⟩) → ((is b +₁ (a -₁ it a)) +₁ (-is b +₁ b)) +₁ it a ≡ b +₁ a -- G₁ is a set, so isPeifferGraph is a proposition isPropIsPeifferGraph : isProp isPeifferGraph isPropIsPeifferGraph = isPropΠ2 (λ a b → set₁ (((is b +₁ (a -₁ it a)) +₁ (-is b +₁ b)) +₁ it a) (b +₁ a)) --------------------------------------------------- -- lemmas about the peiffer graphs --------------------------------------------------- module _ (isPeifferG : isPeifferGraph) where abstract -- the peiffer condition can be simplified to this isPeifferGraph2 : (a b : ⟨ G₁ ⟩) → (a -₁ it a) +₁ (-is b +₁ b) ≡ (-is b +₁ (b +₁ a)) -₁ it a isPeifferGraph2 a b = (a -₁ ita) +₁ (-isb +₁ b) ≡⟨ sym (lCancel-lId G₁ isb ((a -₁ ita) +₁ (-isb +₁ b))) ∙ sym (rCancel-rId G₁ ((-isb +₁ isb) +₁ ((a -₁ ita) +₁ (-isb +₁ b))) ita) ⟩ ((-isb +₁ isb) +₁ ((a -₁ ita) +₁ (-isb +₁ b))) +₁ (ita -₁ ita) ≡⟨ assoc₁ ((-isb +₁ isb) +₁ ((a -₁ ita) +₁ (-isb +₁ b))) ita -ita ⟩ (((-isb +₁ isb) +₁ ((a -₁ ita) +₁ (-isb +₁ b))) +₁ ita) +₁ -ita ≡⟨ cong (λ z → (z +₁ ita) -₁ ita) (sym (assoc₁ -isb isb _)) ⟩ ((-isb +₁ (isb +₁ ((a -₁ ita) +₁ (-isb +₁ b)))) +₁ ita) +₁ -ita ≡⟨ cong (λ z → ((-isb +₁ z) +₁ ita) +₁ -ita) (assoc₁ _ _ _) ⟩ ((-isb +₁ ((isb +₁ (a -₁ ita)) +₁ (-isb +₁ b))) +₁ ita) +₁ -ita ≡⟨ cong (_+₁ -ita) (sym (assoc₁ -isb _ ita)) ⟩ (-isb +₁ (((isb +₁ (a -₁ ita)) +₁ (-isb +₁ b)) +₁ ita)) -₁ ita ≡⟨ cong (λ z → (-isb +₁ z) -₁ ita) (isPeifferG a b) ⟩ (-isb +₁ (b +₁ a)) -₁ ita ∎ where -a = -₁ a -ita = -it a ita = it a isb = is b -isb = -is b -b = -₁ b -- inverting both sides of the identity isPeifferGraph2 and simplifying -- gives this isPeifferGraph3 : (a b : ⟨ G₁ ⟩) → (-₁ b) +₁ (is b +₁ (it a -₁ a)) ≡ it a +₁ ((-₁ a) +₁ ((-₁ b) +₁ is b)) isPeifferGraph3 a b = -b +₁ (isb +₁ (ita -₁ a)) ≡⟨ cong (λ z → -b +₁ (z +₁ (ita -₁ a))) (sym (invInvo G₁ isb)) ∙ cong (λ z → -b +₁ ((-₁ -isb) +₁ (z -₁ a))) (sym (invInvo G₁ ita)) ⟩ -b +₁ ((-₁ -isb) +₁ ((-₁ -ita) -₁ a)) ≡⟨ sym (invDistr₄ G₁ a -ita -isb b) ⟩ -₁ (((a +₁ -ita) +₁ -isb) +₁ b) ≡⟨ cong -₁_ (sym (assoc₁ _ -isb b)) ⟩ -₁ ((a -₁ ita) +₁ (-isb +₁ b)) ≡⟨ cong -₁_ (isPeifferGraph2 a b) ⟩ -₁ ((-isb +₁ (b +₁ a)) -₁ ita) ≡⟨ cong (λ z → -₁ (z -₁ ita)) (assoc₁ -isb b a) ⟩ -₁ (((-isb +₁ b) +₁ a) -₁ ita) ≡⟨ invDistr₄ G₁ -isb b a -ita ⟩ (-₁ -ita) +₁ (-a +₁ (-b +₁ (-₁ -isb))) ≡⟨ cong (_+₁ (-a +₁ (-b +₁ (-₁ -isb)))) (invInvo G₁ ita) ∙ cong (λ z → ita +₁ (-a +₁ (-b +₁ z))) (invInvo G₁ isb) ⟩ ita +₁ (-a +₁ (-b +₁ isb)) ∎ where -a = -₁ a -ita = -₁ (it a) ita = it a isb = is b -isb = -₁ isb -b = -₁ b -- plugging -a and -b into isPeifferGraph4 gives this isPeifferGraph4 : (a b : ⟨ G₁ ⟩) → b +₁ ((-₁ (is b)) +₁ ((-₁ (it a)) +₁ a)) ≡ (-₁ (it a)) +₁ (a +₁ (b -₁ (is b))) isPeifferGraph4 a b = b +₁ (-isb +₁ (-ita +₁ a)) ≡⟨ cong (_+₁ (-isb +₁ (-ita +₁ a))) (sym (invInvo G₁ b)) ⟩ (-₁ -b) +₁ (-isb +₁ (-ita +₁ a)) ≡⟨ cong (λ z → (-₁ -b) +₁ (-isb +₁ (-ita +₁ z))) (sym (invInvo G₁ a)) ⟩ (-₁ -b) +₁ (-isb +₁ (-ita -₁ -a)) ≡⟨ cong (λ z → (-₁ -b) +₁ (-isb +₁ (z -₁ -a))) (sym (mapInv ι∘τ a)) ⟩ (-₁ -b) +₁ (-isb +₁ ((it -a) -₁ -a)) ≡⟨ cong (λ z → (-₁ -b) +₁ (z +₁ ((it -a) -₁ -a))) (sym (mapInv ι∘σ b)) ⟩ (-₁ -b) +₁ (is -b +₁ ((it -a) -₁ -a)) ≡⟨ isPeifferGraph3 -a -b ⟩ it -a +₁ ((-₁ -a) +₁ ((-₁ -b) +₁ is -b)) ≡⟨ cong (_+₁ ((-₁ -a) +₁ ((-₁ -b) +₁ is -b))) (mapInv ι∘τ a) ⟩ -ita +₁ ((-₁ -a) +₁ ((-₁ -b) +₁ is -b)) ≡⟨ cong (λ z → -ita +₁ (z +₁ ((-₁ -b) +₁ is -b))) (invInvo G₁ a) ⟩ -ita +₁ (a +₁ ((-₁ -b) +₁ is -b)) ≡⟨ cong (λ z → -ita +₁ (a +₁ (z +₁ is -b))) (invInvo G₁ b) ⟩ -ita +₁ (a +₁ (b +₁ is -b)) ≡⟨ cong (λ z → -ita +₁ (a +₁ (b +₁ z))) (mapInv ι∘σ b) ⟩ -ita +₁ (a +₁ (b -₁ isb)) ∎ where -a = -₁ a -ita = -it a isb = is b -isb = -is b -b = -₁ b ----------------------------------------------- -- URG structure on the type of peiffer graphs -- -- isPeifferGraph -- | -- ReflGraph ----------------------------------------------- module _ (ℓ ℓ' : Level) where private ℓℓ' = ℓ-max ℓ ℓ' 𝒮ᴰ-ReflGraph\Peiffer : URGStrᴰ (𝒮-ReflGraph ℓ ℓℓ') (λ 𝒢 → isPeifferGraph 𝒢) ℓ-zero 𝒮ᴰ-ReflGraph\Peiffer = Subtype→Sub-𝒮ᴰ (λ 𝒢 → isPeifferGraph 𝒢 , isPropIsPeifferGraph 𝒢) (𝒮-ReflGraph ℓ ℓℓ') PeifferGraph : Type (ℓ-suc ℓℓ') PeifferGraph = Σ[ 𝒢 ∈ ReflGraph ℓ ℓℓ' ] isPeifferGraph 𝒢 𝒮-PeifferGraph : URGStr PeifferGraph ℓℓ' 𝒮-PeifferGraph = ∫⟨ 𝒮-ReflGraph ℓ ℓℓ' ⟩ 𝒮ᴰ-ReflGraph\Peiffer
{ "alphanum_fraction": 0.3681439765, "avg_line_length": 47.2138728324, "ext": "agda", "hexsha": "aad692310ea949467d3bf5ed3ba64a9368a7abf0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/PeifferGraph.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/PeifferGraph.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/PeifferGraph.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2618, "size": 8168 }
open import FRP.JS.Behaviour using ( Beh ; [_] ; map ; accumHoldBy ) open import FRP.JS.Event using ( Evt ; tag ) open import FRP.JS.DOM using ( DOM ; element ; text ; listen ; click ; _++_ ; element+ ; _+++_ ) open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; ⟨_⟩ ; _⇒_ ) open import FRP.JS.Nat using ( ℕ ; _+_ ; _*_ ; _∸_ ; show ) open import FRP.JS.Time using ( Time ) open import FRP.JS.String using ( String ) open import FRP.JS.Bool using ( Bool ; true ; false ) open import FRP.JS.Product using ( _∧_ ; _,_ ) module FRP.JS.Demo.Calculator.Model where data Op : Set where plus minus times eq : Op data Button : Set where digit : ℕ → Button op : Op → Button clear : Button data State : Set where state : ℕ → ℕ → Bool → Op → State init : State init = state 0 0 false eq eval : ℕ → Op → ℕ → ℕ eval m plus n = m + n eval m minus n = m ∸ n eval m times n = m * n eval m eq n = n step : State → Button → State step (state m n true p) (digit d) = state m (n * 10 + d) true p step (state m n false p) (digit d) = state n d true p step (state m n true p) (op q) = state n (eval m p n) false q step (state m n false p) (op q) = state m (eval m p n) false q step (state m n b p) clear = state 0 0 false eq button$ : Button → String button$ (digit d) = show d button$ (op plus) = "+" button$ (op minus) = "-" button$ (op times) = "×" button$ (op eq) = "=" button$ clear = "C" state$ : State → String state$ (state m n b p) = show n model : ⟦ Evt ⟨ Button ⟩ ⇒ Beh ⟨ State ⟩ ⟧ model = accumHoldBy step init
{ "alphanum_fraction": 0.6001271456, "avg_line_length": 30.25, "ext": "agda", "hexsha": "4d7cef3925b47b0bdc0c503bcaf2a6e6b6f7be9a", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "demo/agda/FRP/JS/Demo/Calculator/Model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "demo/agda/FRP/JS/Demo/Calculator/Model.agda", "max_line_length": 96, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "demo/agda/FRP/JS/Demo/Calculator/Model.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 547, "size": 1573 }
module _ where open import DeadCodePatSyn.Lib -- Check that pattern synonyms count when computing dead code f : _ → Set₁ f not-hidden = Set
{ "alphanum_fraction": 0.7552447552, "avg_line_length": 15.8888888889, "ext": "agda", "hexsha": "0e7157505a46a45784cc8a636c9ca3497f5b2f86", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/DeadCodePatSyn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/DeadCodePatSyn.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/DeadCodePatSyn.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 37, "size": 143 }
module Eq where import Prelude open Prelude abstract data _=^=_ {a : Set} (x y : a) : Set1 where leibniz : ((P : a -> Set) -> P x <-> P y) -> x =^= y leibnizSubst : {a : Set} -> {x y : a} -> x =^= y -> (P : a -> Set) -> P x -> P y leibnizSubst (leibniz f) P p = iffLeft (f P) p leibnizRefl : {a : Set} -> {x : a} -> x =^= x leibnizRefl = leibniz (\_ -> iff id id) leibnizSym : {a : Set} -> {x y : a} -> x =^= y -> y =^= x leibnizSym (leibniz f) = leibniz (\P -> iff (iffRight (f P)) (iffLeft (f P)))
{ "alphanum_fraction": 0.4570928196, "avg_line_length": 25.9545454545, "ext": "agda", "hexsha": "844fb89834b4aeb056afb03d76a381077567fb9d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM4/bag/Eq.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM4/bag/Eq.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM4/bag/Eq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 247, "size": 571 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Maybes where one of the elements satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Relation.Unary.Any where open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Product as Prod using (∃; _,_; -,_) open import Function using (id) open import Function.Equivalence using (_⇔_; equivalence) open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_; cong) open import Relation.Unary open import Relation.Nullary import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data Any {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where just : ∀ {x} → P x → Any P (just x) ------------------------------------------------------------------------ -- Basic operations module _ {a p} {A : Set a} {P : Pred A p} where drop-just : ∀ {x} → Any P (just x) → P x drop-just (just px) = px just-equivalence : ∀ {x} → P x ⇔ Any P (just x) just-equivalence = equivalence just drop-just map : ∀ {q} {Q : Pred A q} → P ⊆ Q → Any P ⊆ Any Q map f (just px) = just (f px) satisfied : ∀ {x} → Any P x → ∃ P satisfied (just p) = -, p ------------------------------------------------------------------------ -- (un/)zip(/With) module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → Any P ∩ Any Q ⊆ Any R zipWith f (just px , just qx) = just (f (px , qx)) unzipWith : P ⊆ Q ∩ R → Any P ⊆ Any Q ∩ Any R unzipWith f (just px) = Prod.map just just (f px) module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where zip : Any P ∩ Any Q ⊆ Any (P ∩ Q) zip = zipWith id unzip : Any (P ∩ Q) ⊆ Any P ∩ Any Q unzip = unzipWith id ------------------------------------------------------------------------ -- Seeing Any as a predicate transformer module _ {a p} {A : Set a} {P : Pred A p} where dec : Decidable P → Decidable (Any P) dec P-dec nothing = no λ () dec P-dec (just x) = Dec.map just-equivalence (P-dec x) irrelevant : Irrelevant P → Irrelevant (Any P) irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q) satisfiable : Satisfiable P → Satisfiable (Any P) satisfiable P-satisfiable = Prod.map just just P-satisfiable
{ "alphanum_fraction": 0.5182186235, "avg_line_length": 32.0779220779, "ext": "agda", "hexsha": "714e6fc985326e23703c58dcccd3baf088961a9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/Any.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/Any.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 701, "size": 2470 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.NatPlusOne.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Nat open import Cubical.Data.NatPlusOne.Base open import Cubical.Reflection.StrictEquiv 1+Path : ℕ ≡ ℕ₊₁ 1+Path = ua e where unquoteDecl e = declStrictEquiv e 1+_ -1+_ ℕ₊₁→ℕ-inj : ∀ {m n} → ℕ₊₁→ℕ m ≡ ℕ₊₁→ℕ n → m ≡ n ℕ₊₁→ℕ-inj p i = 1+ (injSuc p i) infixl 7 _·₊₁_ _·₊₁_ : ℕ₊₁ → ℕ₊₁ → ℕ₊₁ (1+ m) ·₊₁ (1+ n) = 1+ (n + m · (suc n)) private ℕ₊₁→ℕ-·₊₁-comm : ∀ m n → ℕ₊₁→ℕ (m ·₊₁ n) ≡ (ℕ₊₁→ℕ m) · (ℕ₊₁→ℕ n) ℕ₊₁→ℕ-·₊₁-comm (1+ m) (1+ n) = refl ·₊₁-comm : ∀ m n → m ·₊₁ n ≡ n ·₊₁ m ·₊₁-comm (1+ m) (1+ n) = cong 1+_ (injSuc (·-comm (suc m) (suc n))) ·₊₁-assoc : ∀ m n o → m ·₊₁ (n ·₊₁ o) ≡ m ·₊₁ n ·₊₁ o ·₊₁-assoc (1+ m) (1+ n) (1+ o) = cong 1+_ (injSuc (·-assoc (suc m) (suc n) (suc o))) ·₊₁-identityˡ : ∀ n → 1 ·₊₁ n ≡ n ·₊₁-identityˡ (1+ n) = cong 1+_ (injSuc (·-identityˡ (suc n))) ·₊₁-identityʳ : ∀ n → n ·₊₁ 1 ≡ n ·₊₁-identityʳ (1+ n) = cong 1+_ (injSuc (·-identityʳ (suc n)))
{ "alphanum_fraction": 0.5644007156, "avg_line_length": 28.6666666667, "ext": "agda", "hexsha": "ca8a15a96f8644a803655ad80e330cd14d663c07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Data/NatPlusOne/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Data/NatPlusOne/Properties.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Data/NatPlusOne/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 594, "size": 1118 }
-- Quotients of additive categories {-# OPTIONS --safe #-} module Cubical.Categories.Additive.Quotient where open import Cubical.Algebra.AbGroup.Base open import Cubical.Categories.Additive.Base open import Cubical.Categories.Additive.Properties open import Cubical.Categories.Category.Base open import Cubical.Categories.Constructions.Quotient open import Cubical.Categories.Limits.Terminal open import Cubical.Foundations.Prelude open import Cubical.HITs.SetQuotients renaming ([_] to ⟦_⟧) private variable ℓ ℓ' ℓq : Level -- Quotients of preadditive categories module _ (C : PreaddCategory ℓ ℓ') where open PreaddCategory C open PreaddCategoryTheory C module _ (_~_ : {x y : ob} (f g : Hom[ x , y ] ) → Type ℓq) (~refl : {x y : ob} (f : Hom[ x , y ] ) → f ~ f) (~cong⋆ : {x y z : ob} (f f' : Hom[ x , y ]) → f ~ f' → (g g' : Hom[ y , z ]) → g ~ g' → (f ⋆ g) ~ (f' ⋆ g')) (~cong+ : {x y : ob} (f f' g g' : Hom[ x , y ]) → f ~ f' → g ~ g' → (f + g) ~ (f' + g')) (~cong- : {x y : ob} (f f' : Hom[ x , y ]) → f ~ f' → (- f) ~ (- f')) where private C/~ = QuotientCategory cat _~_ ~refl ~cong⋆ Hom[_,_]/~ = λ (x y : ob) → (Hom[ x , y ]) / _~_ _⋆/~_ = C/~ .Category._⋆_ _+/~_ : {x y : ob} (f g : Hom[ x , y ]/~) → Hom[ x , y ]/~ _+/~_ = setQuotBinOp ~refl ~refl _+_ ~cong+ -- Quotient group structure on homsets private open AbGroupStr renaming (_+_ to add; -_ to inv) homAbStr/~ : (x y : ob) → AbGroupStr Hom[ x , y ]/~ homAbStr/~ x y .0g = ⟦ 0h ⟧ homAbStr/~ x y .add = _+/~_ homAbStr/~ x y .inv = (setQuotUnaryOp -_ ~cong-) homAbStr/~ x y .isAbGroup = makeIsAbGroup squash/ (elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong ⟦_⟧ (+assoc _ _ _)) (elimProp (λ _ → squash/ _ _) λ _ → cong ⟦_⟧ (+idr _)) (elimProp (λ _ → squash/ _ _) λ _ → cong ⟦_⟧ (+invr _)) (elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong ⟦_⟧ (+comm _ _)) -- Distributivity ⋆distl+/~ : {x y z : ob} → (f : Hom[ x , y ]/~) → (g g' : Hom[ y , z ]/~) → f ⋆/~ (g +/~ g') ≡ (f ⋆/~ g) +/~ (f ⋆/~ g') ⋆distl+/~ = elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong ⟦_⟧ (⋆distl+ _ _ _) ⋆distr+/~ : {x y z : ob} → (f f' : Hom[ x , y ]/~) → (g : Hom[ y , z ]/~) → (f +/~ f') ⋆/~ g ≡ (f ⋆/~ g) +/~ (f' ⋆/~ g) ⋆distr+/~ = elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong ⟦_⟧ (⋆distr+ _ _ _) -- Quotient of preadditive category open PreaddCategory open PreaddCategoryStr PreaddQuotient : PreaddCategory ℓ (ℓ-max ℓ' ℓq) PreaddQuotient .cat = QuotientCategory (cat C) _~_ ~refl ~cong⋆ PreaddQuotient .preadd .homAbStr = homAbStr/~ PreaddQuotient .preadd .⋆distl+ = ⋆distl+/~ PreaddQuotient .preadd .⋆distr+ = ⋆distr+/~ -- Quotients of additive categories module _ (A : AdditiveCategory ℓ ℓ') where open AdditiveCategory A module _ (_~_ : {x y : ob} (f g : Hom[ x , y ] ) → Type ℓq) (~refl : {x y : ob} (f : Hom[ x , y ] ) → f ~ f) (~cong⋆ : {x y z : ob} (f f' : Hom[ x , y ]) → f ~ f' → (g g' : Hom[ y , z ]) → g ~ g' → (f ⋆ g) ~ (f' ⋆ g')) (~cong+ : {x y : ob} (f f' g g' : Hom[ x , y ]) → f ~ f' → g ~ g' → (f + g) ~ (f' + g')) (~cong- : {x y : ob} (f f' : Hom[ x , y ]) → f ~ f' → (- f) ~ (- f')) where private A/~ = PreaddQuotient preaddcat _~_ ~refl ~cong⋆ ~cong+ ~cong- -- Zero object open ZeroObject zero/~ : ZeroObject A/~ zero/~ .z = zero .z zero/~ .zInit = isInitial/~ cat _~_ ~refl ~cong⋆ (zInit zero) zero/~ .zTerm = isTerminal/~ cat _~_ ~refl ~cong⋆ (zTerm zero) -- Biproducts module _ (x y : ob) where open Biproduct open IsBiproduct biprod/~ : Biproduct A/~ x y biprod/~ .x⊕y = x ⊕ y biprod/~ .i₁ = ⟦ i₁ (biprod x y) ⟧ biprod/~ .i₂ = ⟦ i₂ (biprod x y) ⟧ biprod/~ .π₁ = ⟦ π₁ (biprod x y) ⟧ biprod/~ .π₂ = ⟦ π₂ (biprod x y) ⟧ biprod/~ .isBipr .i₁⋆π₁ = cong ⟦_⟧ (i₁⋆π₁ (biprod x y)) biprod/~ .isBipr .i₁⋆π₂ = cong ⟦_⟧ (i₁⋆π₂ (biprod x y)) biprod/~ .isBipr .i₂⋆π₁ = cong ⟦_⟧ (i₂⋆π₁ (biprod x y)) biprod/~ .isBipr .i₂⋆π₂ = cong ⟦_⟧ (i₂⋆π₂ (biprod x y)) biprod/~ .isBipr .∑π⋆i = cong ⟦_⟧ (∑π⋆i (biprod x y)) open AdditiveCategoryStr AdditiveQuotient : AdditiveCategory ℓ (ℓ-max ℓ' ℓq) AdditiveQuotient .preaddcat = A/~ AdditiveQuotient .addit .zero = zero/~ AdditiveQuotient .addit .biprod = biprod/~
{ "alphanum_fraction": 0.492898914, "avg_line_length": 38.6129032258, "ext": "agda", "hexsha": "16e13ec179c8d6dffc4f5c0eb9ad0f8034b3e5dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Additive/Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Additive/Quotient.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Additive/Quotient.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1965, "size": 4788 }
module sn-calculus-compatconf.same where open import sn-calculus-compatconf.base open import sn-calculus open import sn-calculus-confluence.helper using (ready-irr-on-irr-θʳ) open import utility renaming (_U̬_ to _∪_) open import context-properties using (get-view ; wrap-rho ; ->E-view ; ->pot-view ; wrap-rho-pot' ; unwrap-rho ) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction using (Can ; Canₛ ; Canₛₕ ; Canₖ ; Canθ ; Canθₛ ; Canθₛₕ ; module CodeSet) open import Esterel.Lang.CanFunction.Properties using (canθₛ-mergeʳ ; canθₛₕ-mergeʳ) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (unplug ; unplugc ; plug ; plugc ; unplug-eq ; ⟦⟧c-to-⟦⟧e) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; subst₂ ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_ ; map) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_ ; _$_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ->E-view open ->pot-view open EvaluationContext1 open _≐_⟦_⟧e open Context1 open _≐_⟦_⟧c open ListSet Data.Nat._≟_ open ≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎) {- Modified proof from the old E-lift C-any confluence lemma. Basically this is arbitrary multi-wrap-rho given the correct binding of p: from a reduction (where E ⟦ ρ θ · qin ⟧ has correct binding) E ⟦ ρ θ · qin ⟧ sn⟶₁ E ⟦ ρ θr · ro ⟧ construct the E-wrapped reduction ρ θ · E ⟦ qin ⟧ sn⟶₁ ρ θr · E ⟦ ro ⟧ ( = q ) ( = r ) -} conf-lift-lemma : ∀ {E qin ro p q θ θr BV FV A Ar} → CorrectBinding p BV FV → p ≐ E ⟦ ρ⟨ θ , A ⟩· qin ⟧e → q ≐ E ⟦ qin ⟧e → ρ⟨ θ , A ⟩· qin sn⟶₁ ρ⟨ θr , Ar ⟩· ro → ∃ λ r → r ≐ E ⟦ ro ⟧e × ρ⟨ θ , A ⟩· q sn⟶₁ ρ⟨ θr , Ar ⟩· r conf-lift-lemma cb dehole dehole ρθ·pinsn⟶₁ρθq·qin = _ , dehole , ρθ·pinsn⟶₁ρθq·qin conf-lift-lemma cb@(CBpar cbp' cbq' _ _ _ _) (depar₁ p≐E⟦ρθ·pin⟧) (depar₁ r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cbp' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , depar₁ q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (depar₁ r≐E'⟦pin'⟧) (depar₁ q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (depar₁ p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , depar₁ dehole , ρθ·p'∥tsn⟶₁ρθq·p'∥t , pot' = -- need pattern matching for LHS of sn⟶₁ _ , depar₁ q≐E⟦qin⟧ ,′ ρθ·p'∥tsn⟶₁ρθq·p'∥t conf-lift-lemma cb@(CBpar cbp' cbq' _ _ _ _) (depar₂ p≐E⟦ρθ·pin⟧) (depar₂ r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cbq' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , depar₂ q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (depar₂ r≐E'⟦pin'⟧) (depar₂ q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (depar₂ p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , depar₂ dehole , ρθ·t∥q'sn⟶₁ρθq·t∥q' , pot' = _ , depar₂ q≐E⟦qin⟧ ,′ ρθ·t∥q'sn⟶₁ρθq·t∥q' conf-lift-lemma cb@(CBseq cbp' cbq' _) (deseq p≐E⟦ρθ·pin⟧) (deseq r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cbp' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , deseq q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (deseq r≐E'⟦pin'⟧) (deseq q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (deseq p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , deseq dehole , ρθ·t>>q'sn⟶₁ρθq·t>>q' , pot' = _ , deseq q≐E⟦qin⟧ ,′ ρθ·t>>q'sn⟶₁ρθq·t>>q' conf-lift-lemma cb@(CBloopˢ cbp' cbq' _ _) (deloopˢ p≐E⟦ρθ·pin⟧) (deloopˢ r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cbp' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , deloopˢ q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (deloopˢ r≐E'⟦pin'⟧) (deloopˢ q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (deloopˢ p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , deloopˢ dehole , ρθ·t>>q'sn⟶₁ρθq·t>>q' , pot' = _ , deloopˢ q≐E⟦qin⟧ ,′ ρθ·t>>q'sn⟶₁ρθq·t>>q' conf-lift-lemma cb@(CBsusp cb' _) (desuspend p≐E⟦ρθ·pin⟧) (desuspend r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cb' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , desuspend q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (desuspend r≐E'⟦pin'⟧) (desuspend q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (desuspend p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , desuspend dehole , ρθ·susptsn⟶₁ρθq·suspt , pot' = _ , desuspend q≐E⟦qin⟧ ,′ ρθ·susptsn⟶₁ρθq·suspt conf-lift-lemma cb@(CBtrap cb') (detrap p≐E⟦ρθ·pin⟧) (detrap r≐E⟦pin⟧) ρθ·pinsn⟶₁ρθq·qin with conf-lift-lemma cb' p≐E⟦ρθ·pin⟧ r≐E⟦pin⟧ ρθ·pinsn⟶₁ρθq·qin ... | q , q≐E⟦qin⟧ , ρθ·rsn⟶₁ρθq·q with get-view ρθ·rsn⟶₁ρθq·q ... | inj₁ (E' , pin' , qin' , r≐E'⟦pin'⟧ , q≐E'⟦qin'⟧ , e-view) = _ , detrap q≐E⟦qin⟧ ,′ proj₁ (wrap-rho ρθ·rsn⟶₁ρθq·q r≐E'⟦pin'⟧ q≐E'⟦qin'⟧ e-view _ (detrap r≐E'⟦pin'⟧) (detrap q≐E'⟦qin'⟧)) ... | inj₂ (refl , refl , pot) with wrap-rho-pot' (detrap p≐E⟦ρθ·pin⟧) cb ρθ·rsn⟶₁ρθq·q pot ... | _ , detrap dehole , ρθ·traptsn⟶₁ρθq·trapt , pot' = _ , detrap q≐E⟦qin⟧ ,′ ρθ·traptsn⟶₁ρθq·trapt {- Base case where (E, C) = ([], []). The most complicated case where LHS is ρθ.ρθ'.qin sn⟶₁ ρ(θ←θ').qin (qin = ρθ'.rin) and RHS is (ρθ.) ρθ'.rin sn⟶₁ (ρθ.) ρθr.ro, i.e. arbitrary ->E-view and ->pot-view. p ρθ. E⟦ρθ'.qin⟧ -- sn⟶₁ -> ρ(θ←θ'). E⟦qin⟧ (ρθ) E⟦ρθ'.qin⟧ -- sn⟶₁ -> (ρθ) E⟦ρθr.ro⟧ -} 1-steplρ-E-view-ecsame : ∀{E p qin q qo rin r ro θ θ←θ' BV FV A A⊓A'} → {ρθ·psn⟶₁ρθ←θ'·q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ←θ' , A⊓A' ⟩· q} → CorrectBinding p BV FV → (p≐E⟦qin⟧ : p ≐ E ⟦ qin ⟧e) → (q≐E⟦qo⟧ : q ≐ E ⟦ qo ⟧e) → ->E-view ρθ·psn⟶₁ρθ←θ'·q p≐E⟦qin⟧ q≐E⟦qo⟧ → (p≐E⟦rin⟧ : p ≐ (map ceval E) ⟦ rin ⟧c) → (r≐E⟦ro⟧ : r ≐ (map ceval E) ⟦ ro ⟧c) → -- rinsn⟶₁ro can only be (ρ⟨ θ' , A' ⟩· qin) sn⟶₁ (ρ⟨ θr , Ar ⟩· ro) (rinsn⟶₁ro : rin sn⟶₁ ro) → Σ ((Env × Ctrl × Term) × EvaluationContext × Term × Term) λ { ((θo , Ao , po) , E' , roin , poin) → ρ⟨ θ←θ' , A⊓A' ⟩· q sn⟶₁ ρ⟨ θo , Ao ⟩· po × Σ[ ρθ·rsn⟶₁ρθo·po ∈ ρ⟨ θ , A ⟩· r sn⟶₁ ρ⟨ θo , Ao ⟩· po ] Σ[ r≐E'⟦roin⟧ ∈ r ≐ E' ⟦ roin ⟧e ] Σ[ po≐E'⟦poin⟧ ∈ po ≐ E' ⟦ poin ⟧e ] ->E-view ρθ·rsn⟶₁ρθo·po r≐E'⟦roin⟧ po≐E'⟦poin⟧ } 1-steplρ-E-view-ecsame cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro with unplug-eq p≐E⟦ρθ'·qin⟧ (⟦⟧c-to-⟦⟧e p≐C⟦rin⟧) 1-steplρ-E-view-ecsame cb _ _ vis-present _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vis-absent _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vemit _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vraise-shared _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vset-shared-value-old _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vset-shared-value-new _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vraise-var _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vset-var _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vif-false _ _ () | refl 1-steplρ-E-view-ecsame cb _ _ vif-true _ _ () | refl 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl with ρ-stays-ρ-sn⟶₁ rinsn⟶₁ro ... | θr , roin , Ar , refl with conf-lift-lemma cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ rinsn⟶₁ro ... | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' -- q ≐ E ⟦ qin ⟧ with get-view ρθ'·qsn⟶₁ρθr·r' 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦present⟧ , r'≐E⟦roin'⟧ , vis-present {.θ'} {S} {E = .E'} {S∈Domθ'} {θ'S≡present} {q≐E'⟦present⟧}) = _ , (ris-present {S = S} (Env.sig-←-monoʳ S θr θ S∈Domθ') (trans (SigMap.get-U-right-irr-m {_} S (Env.sig θ) (Env.sig θr) (Env.sig-←-monoʳ S θr θ S∈Domθ') S∈Domθ') θ'S≡present) q≐E'⟦present⟧) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , q≐E⟦qo'⟧ , r'≐E⟦roin'⟧ , vis-absent {.θ'} {S} {E = .E'} {S∈Domθ'} {θ'S≡absent} {q≐E'⟦absent⟧}) = _ , (ris-absent {S = S} (Env.sig-←-monoʳ S θr θ S∈Domθ') (trans (SigMap.get-U-right-irr-m {_} S (Env.sig θ) (Env.sig θr) (Env.sig-←-monoʳ S θr θ S∈Domθ') S∈Domθ') θ'S≡absent) q≐E'⟦absent⟧) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦if⟧ , r'≐E⟦roin'⟧ , vif-false {x = x} {.E'} {x∈Domθ'} {θ'x≡zero} {q≐E'⟦if⟧}) = _ , (rif-false {x = x} (Env.seq-←-monoʳ x θr θ x∈Domθ') (trans (VarMap.get-U-right-irr-m {_} x (Env.var θ) (Env.var θr) (Env.seq-←-monoʳ x θr θ x∈Domθ') x∈Domθ') θ'x≡zero) q≐E'⟦if⟧) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦if⟧ , r'≐E⟦roin'⟧ , vif-true {x = x} {.E'} {_} {x∈Domθ'} {θ'x≡suc} {q≐E'⟦if⟧}) = _ , (rif-true {x = x} (Env.seq-←-monoʳ x θr θ x∈Domθ') (trans (Env.var-vals-←-right-irr' x θ θr x∈Domθ' (Env.seq-←-monoʳ x θr θ x∈Domθ')) θ'x≡suc) q≐E'⟦if⟧) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦shared⟧ , r'≐E⟦roin'⟧ , vraise-shared {s = s} {E = .E'} {e'} {q≐E'⟦shared⟧}) with ready-irr-on-irr-θʳ θ e' ... | e'' , δe'≡δe'' rewrite δe'≡δe'' = _ , rraise-shared e'' q≐E'⟦shared⟧ ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦var⟧ , r'≐E⟦roin'⟧ , vraise-var {E = .E'} {e'} {q≐E'⟦var⟧}) with ready-irr-on-irr-θʳ θ e' ... | e'' , δe'≡δe'' rewrite δe'≡δe'' = _ , rraise-var e'' q≐E'⟦var⟧ ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} {A₁ = A} {.GO} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦emit⟧ , r'≐E⟦roin'⟧ , vemit {S = S} {.E'} {S∈Domθ'} {θ'S≢absent} {q≐E'⟦emit⟧}) = _ , (subst₂ (λ θ* go → ρ⟨ (θ ← θ') , go ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , go ⟩· E' ⟦ nothin ⟧e) (begin Env.set-sig {S} (θ ← θ') S∈Domθ←θ' Signal.present ≡⟨ Env.sig-set=← (θ ← θ') S Signal.present S∈Domθ←θ' ⟩ (θ ← θ') ← [S↦present] ≡⟨ sym (Env.←-assoc θ θ' [S↦present]) ⟩ θ ← (θ' ← [S↦present]) ≡⟨ cong (θ ←_) (sym (Env.sig-set=← θ' S Signal.present S∈Domθ')) ⟩ θ ← (Env.set-sig {S} θ' S∈Domθ' Signal.present) ∎) (sym $ A-max-GO-≡-right A) (remit {θ ← θ'} {S = S} S∈Domθ←θ' (θ'S≢absent ∘ trans (sym ⟨θ←θ'⟩S≡θ'S)) q≐E'⟦emit⟧)) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where [S↦present] = Θ SigMap.[ S ↦ Signal.present ] ShrMap.empty VarMap.empty S∈Domθ←θ' = Env.sig-←-monoʳ S θ' θ S∈Domθ' ⟨θ←θ'⟩S≡θ'S = Env.sig-stats-←-right-irr' S θ θ' S∈Domθ' S∈Domθ←θ' 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} {A₁ = A} {.GO} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦s⇐e⟧ , r'≐E⟦roin'⟧ , vset-shared-value-old {s = s} {E = .E'} {e'} {s∈Domθ'} {θ's≡old} {q≐E'⟦s⇐e⟧}) with ready-irr-on-irr-θʳ θ e' ... | e'' , δe'≡δe'' rewrite δe'≡δe'' = _ , (subst₂ (λ θ* go → ρ⟨ (θ ← θ') , go ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , go ⟩· E' ⟦ nothin ⟧e) (begin Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.new (δ e'') ≡⟨ Env.shr-set=← (θ ← θ') s SharedVar.new (δ e'') s∈Domθ←θ' ⟩ (θ ← θ') ← [s↦new,δe''] ≡⟨ sym (Env.←-assoc θ θ' [s↦new,δe'']) ⟩ θ ← (θ' ← [s↦new,δe'']) ≡⟨ cong (θ ←_) (sym (Env.shr-set=← θ' s SharedVar.new (δ e'') s∈Domθ')) ⟩ θ ← (Env.set-shr {s} θ' s∈Domθ' SharedVar.new (δ e'')) ∎) (sym $ A-max-GO-≡-right A) (rset-shared-value-old {θ ← θ'} e'' s∈Domθ←θ' (trans (Env.shr-stats-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ') θ's≡old) q≐E'⟦s⇐e⟧)) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where [s↦new,δe''] = [s,δe-new]-env s (δ e'') s∈Domθ←θ' = Env.shr-←-monoʳ s θ' θ s∈Domθ' 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} {A₁ = A} {.GO} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , .q≐E'⟦s⇐e⟧ , r'≐E⟦roin'⟧ , vset-shared-value-new {s = s} {E = .E'} {e'} {s∈Domθ'} {θ's≡old} {q≐E'⟦s⇐e⟧}) with ready-irr-on-irr-θʳ θ e' ... | e'' , δe'≡δe'' rewrite δe'≡δe'' = _ , (subst₂ (λ θ* go → ρ⟨ (θ ← θ') , go ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , go ⟩· E' ⟦ nothin ⟧e) (begin Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.new (⟨θ←θ'⟩s + δ e'') ≡⟨ cong(Env.set-shr{s}(θ ← θ')s∈Domθ←θ' SharedVar.new ∘ (_+ δ e''))⟨θ←θ'⟩s≡θ's ⟩ Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.new (θ's + δ e'') ≡⟨ Env.shr-set=← (θ ← θ') s SharedVar.new (θ's + δ e'') s∈Domθ←θ' ⟩ (θ ← θ') ← [s↦new,θ's+δe''] ≡⟨ sym (Env.←-assoc θ θ' [s↦new,θ's+δe'']) ⟩ θ ← (θ' ← [s↦new,θ's+δe'']) ≡⟨ cong (θ ←_) (sym (Env.shr-set=← θ' s SharedVar.new (θ's + δ e'') s∈Domθ')) ⟩ θ ← (Env.set-shr {s} θ' s∈Domθ' SharedVar.new (θ's + δ e'')) ∎) (sym $ A-max-GO-≡-right A) (rset-shared-value-new {θ ← θ'} e'' s∈Domθ←θ' (trans (Env.shr-stats-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ') θ's≡old) q≐E'⟦s⇐e⟧)) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where s∈Domθ←θ' = Env.shr-←-monoʳ s θ' θ s∈Domθ' θ's = Env.shr-vals {s} θ' s∈Domθ' ⟨θ←θ'⟩s = Env.shr-vals {s} (θ ← θ') s∈Domθ←θ' ⟨θ←θ'⟩s≡θ's = Env.shr-vals-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ' [s↦new,θ's+δe''] = [s,δe-new]-env s (θ's + δ e'') 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} {A₁ = A} {A'} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , q≐E⟦qo'⟧ , r'≐E⟦roin'⟧ , vset-var {x = x} {E = .E'} {x∈Domθ'} {e'} {q≐E'⟦x≔e⟧}) with ready-irr-on-irr-θʳ θ e' ... | e'' , δe'≡δe'' rewrite δe'≡δe'' = _ , (subst (λ θ* → ρ⟨ (θ ← θ') , A-max A A' ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , A-max A A' ⟩· E' ⟦ nothin ⟧e) (begin Env.set-var {x} (θ ← θ') x∈Domθ←θ' (δ e'') ≡⟨ Env.seq-set=← (θ ← θ') x (δ e'') x∈Domθ←θ' ⟩ (θ ← θ') ← [x↦δe''] ≡⟨ sym (Env.←-assoc θ θ' [x↦δe'']) ⟩ θ ← (θ' ← [x↦δe'']) ≡⟨ cong (θ ←_) (sym (Env.seq-set=← θ' x (δ e'') x∈Domθ')) ⟩ θ ← (Env.set-var {x} θ' x∈Domθ' (δ e'')) ∎) (rset-var {θ ← θ'} x∈Domθ←θ' e'' q≐E'⟦x≔e⟧)) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where [x↦δe''] = [x,δe]-env x (δ e'') x∈Domθ←θ' = Env.seq-←-monoʳ x θ' θ x∈Domθ' 1-steplρ-E-view-ecsame {E} {A = A} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} {A₂ = A'} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | (.(θ' ← θr) , roin , .(A-max A' Ar) , refl) | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₁ (E' , qo' , roin' , q≐E⟦qo'⟧ , r'≐E⟦roin'⟧ , vmerge {.θ'} {θr} {_} {.roin'} {.E'} {_} {Ar} {q≐E'⟦ρθr·roin'⟧}) = ((_ , (A-max A (A-max A' Ar)) , _) , _) , (subst₂ (λ θ* A* → ρ⟨ (θ ← θ') , A-max A A' ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , A* ⟩· E' ⟦ roin' ⟧e) (sym (Env.←-assoc θ θ' θr)) (sym (A-max-assoc A A' Ar)) (rmerge {θ ← θ'} {θr} {A₁ = A-max A A'} {Ar} q≐E'⟦ρθr·roin'⟧)) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₂ (refl , refl , vabsence S S∈Domθ' θ'S≡unknown S∉canθ-θ'-q-[]) = _ , (subst (λ θ* → ρ⟨ (θ ← θ') , _ ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , _ ⟩· E ⟦ qin ⟧e) (begin Env.set-sig {S} (θ ← θ') S∈Domθ←θ' Signal.absent ≡⟨ Env.sig-set=← (θ ← θ') S Signal.absent S∈Domθ←θ' ⟩ (θ ← θ') ← [S↦absent] ≡⟨ sym (Env.←-assoc θ θ' [S↦absent]) ⟩ θ ← (θ' ← [S↦absent]) ≡⟨ cong (θ ←_) (sym (Env.sig-set=← θ' S Signal.absent S∈Domθ')) ⟩ θ ← (Env.set-sig {S} θ' S∈Domθ' Signal.absent) ∎) (rabsence {θ ← θ'} {S = S} S∈Domθ←θ' (trans (Env.sig-stats-←-right-irr' S θ θ' S∈Domθ' S∈Domθ←θ') θ'S≡unknown) (λ S∈canθ-θ←θ''-q-[] → S∉canθ-θ'-q-[] (canθₛ-mergeʳ (Env.sig θ) θ' (E ⟦ qin ⟧e) Env.[]env (λ _ ()) S S∈canθ-θ←θ''-q-[])))) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where [S↦absent] = Θ SigMap.[ S ↦ Signal.absent ] ShrMap.empty VarMap.empty S∈Domθ←θ' = Env.sig-←-monoʳ S θ' θ S∈Domθ' 1-steplρ-E-view-ecsame {E} {ρθ·psn⟶₁ρθ←θ'·q = rmerge {θ} {θ'} {_} {qin} {.E} .p≐E⟦ρθ'·qin⟧} cb p≐E⟦ρθ'·qin⟧ q≐E⟦qin⟧ vmerge p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro | refl | θr , roin , Ar , refl | r' , r'≐E⟦roin⟧ , ρθ'·qsn⟶₁ρθr·r' | inj₂ (refl , refl , vreadyness s s∈Domθ' θ's≡old⊎θ's≡new s∉canθ-θ'-q-[]) = _ , (subst (λ θ* → ρ⟨ (θ ← θ') , _ ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ θ* , _ ⟩· E ⟦ qin ⟧e) (begin Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.ready ⟨θ←θ'⟩s ≡⟨ cong (Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.ready) ⟨θ←θ'⟩s≡θ's ⟩ Env.set-shr {s} (θ ← θ') s∈Domθ←θ' SharedVar.ready θ's ≡⟨ Env.shr-set=← (θ ← θ') s SharedVar.ready θ's s∈Domθ←θ' ⟩ (θ ← θ') ← [s↦ready,θ's] ≡⟨ sym (Env.←-assoc θ θ' [s↦ready,θ's]) ⟩ θ ← (θ' ← [s↦ready,θ's]) ≡⟨ cong (θ ←_) (sym (Env.shr-set=← θ' s SharedVar.ready θ's s∈Domθ')) ⟩ θ ← (Env.set-shr {s} θ' s∈Domθ' SharedVar.ready θ's) ∎) (rreadyness {θ ← θ'} {s = s} s∈Domθ←θ' (Data.Sum.map (trans (Env.shr-stats-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ')) (trans (Env.shr-stats-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ')) θ's≡old⊎θ's≡new) (λ s∈canθ-θ←θ''-q-[] → s∉canθ-θ'-q-[] (canθₛₕ-mergeʳ (Env.sig θ) θ' (E ⟦ qin ⟧e) Env.[]env (λ _ ()) s s∈canθ-θ←θ''-q-[])))) ,′ (subst (λ po* → Σ[ r ∈ ρ⟨ _ , _ ⟩· _ sn⟶₁ ρ⟨ _ , _ ⟩· po* ] Σ[ a ∈ _ ≐ _ ⟦ _ ⟧e ] Σ[ b ∈ po* ≐ _ ⟦ _ ⟧e ] ->E-view r a b) (unplug r'≐E⟦roin⟧) (rmerge (⟦⟧c-to-⟦⟧e r≐C⟦ro⟧) , _ , plug refl , vmerge)) where s∈Domθ←θ' = Env.shr-←-monoʳ s θ' θ s∈Domθ' θ's = Env.shr-vals {s} θ' s∈Domθ' ⟨θ←θ'⟩s = Env.shr-vals {s} (θ ← θ') s∈Domθ←θ' ⟨θ←θ'⟩s≡θ's = Env.shr-vals-←-right-irr' s θ θ' s∈Domθ' s∈Domθ←θ' [s↦ready,θ's] = Θ ShrMap.empty ShrMap.[ s ↦ (SharedVar.ready , θ's) ] VarMap.empty
{ "alphanum_fraction": 0.476892321, "avg_line_length": 42.6605351171, "ext": "agda", "hexsha": "b3e82ff0196ea20d6b36e06dd1ffdcdb0493205e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf/same.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf/same.agda", "max_line_length": 113, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf/same.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 13936, "size": 25511 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The lifting of a strict order to incorporate a new supremum ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Supremum open import Relation.Binary module Relation.Binary.Construct.Add.Supremum.Strict {a r} {A : Set a} (_<_ : Rel A r) where open import Level using (_⊔_) open import Data.Product open import Function open import Relation.Nullary import Relation.Nullary.Decidable as Dec import Relation.Binary.PropositionalEquality as P open import Relation.Nullary.Construct.Add.Supremum import Relation.Binary.Construct.Add.Supremum.Equality as Equality import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict ------------------------------------------------------------------------ -- Definition infix 4 _<⁺_ data _<⁺_ : Rel (A ⁺) (a ⊔ r) where [_] : {k l : A} → k < l → [ k ] <⁺ [ l ] [_]<⊤⁺ : (k : A) → [ k ] <⁺ ⊤⁺ ------------------------------------------------------------------------ -- Relational properties [<]-injective : ∀ {k l} → [ k ] <⁺ [ l ] → k < l [<]-injective [ p ] = p <⁺-asym : Asymmetric _<_ → Asymmetric _<⁺_ <⁺-asym <-asym [ p ] [ q ] = <-asym p q <⁺-asym <-asym [ k ]<⊤⁺ () <⁺-trans : Transitive _<_ → Transitive _<⁺_ <⁺-trans <-trans [ p ] [ q ] = [ <-trans p q ] <⁺-trans <-trans [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-dec : Decidable _<_ → Decidable _<⁺_ <⁺-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l) <⁺-dec _<?_ [ k ] ⊤⁺ = yes [ k ]<⊤⁺ <⁺-dec _<?_ ⊤⁺ [ l ] = no (λ ()) <⁺-dec _<?_ ⊤⁺ ⊤⁺ = no (λ ()) <⁺-irrelevant : Irrelevant _<_ → Irrelevant _<⁺_ <⁺-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q) <⁺-irrelevant <-irr [ k ]<⊤⁺ [ k ]<⊤⁺ = P.refl module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈⁺_ _<⁺_ <⁺-cmp <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) ⊤⁺≈⊤⁺ (λ ()) <⁺-cmp <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺ <⁺-cmp <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ()) <⁺-cmp <-cmp [ k ] [ l ] with <-cmp k l ... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective) ... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective) ... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ] <⁺-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈⁺_ _<⁺_ <⁺-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q <⁺-irrefl <-irrefl ⊤⁺≈⊤⁺ () <⁺-respˡ-≈⁺ : _<_ Respectsˡ _≈_ → _<⁺_ Respectsˡ _≈⁺_ <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ] <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] ([ l ]<⊤⁺) = [ _ ]<⊤⁺ <⁺-respˡ-≈⁺ <-respˡ-≈ ⊤⁺≈⊤⁺ q = q <⁺-respʳ-≈⁺ : _<_ Respectsʳ _≈_ → _<⁺_ Respectsʳ _≈⁺_ <⁺-respʳ-≈⁺ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ] <⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q <⁺-resp-≈⁺ : _<_ Respects₂ _≈_ → _<⁺_ Respects₂ _≈⁺_ <⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺ module _ {r} {_≤_ : Rel A r} where open NonStrict _≤_ <⁺-transʳ : Trans _≤_ _<_ _<_ → Trans _≤⁺_ _<⁺_ _<⁺_ <⁺-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ] <⁺-transʳ <-transʳ [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-transˡ : Trans _<_ _≤_ _<_ → Trans _<⁺_ _≤⁺_ _<⁺_ <⁺-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ] <⁺-transˡ <-transˡ [ p ] ([ _ ] ≤⊤⁺) = [ _ ]<⊤⁺ <⁺-transˡ <-transˡ [ k ]<⊤⁺ (⊤⁺ ≤⊤⁺) = [ k ]<⊤⁺ ------------------------------------------------------------------------ -- Structures module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ → IsStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isStrictPartialOrder strict = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; irrefl = <⁺-irrefl irrefl ; trans = <⁺-trans trans ; <-resp-≈ = <⁺-resp-≈⁺ <-resp-≈ } where open IsStrictPartialOrder strict <⁺-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ → IsDecStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isDecStrictPartialOrder dectot = record { isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder ; _≟_ = ≈⁺-dec _≟_ ; _<?_ = <⁺-dec _<?_ } where open IsDecStrictPartialOrder dectot <⁺-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsStrictTotalOrder _≈⁺_ _<⁺_ <⁺-isStrictTotalOrder strictot = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; trans = <⁺-trans trans ; compare = <⁺-cmp compare } where open IsStrictTotalOrder strictot
{ "alphanum_fraction": 0.4810421521, "avg_line_length": 35.4962406015, "ext": "agda", "hexsha": "dfd228d98359e63e65f85540a38690c6aef9398d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2029, "size": 4721 }
-- The SIP applied to groups {-# OPTIONS --safe #-} module Cubical.Algebra.Group.GroupPath where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties private variable ℓ ℓ' ℓ'' : Level open Iso open GroupStr open IsGroupHom 𝒮ᴰ-Group : DUARel (𝒮-Univ ℓ) GroupStr ℓ 𝒮ᴰ-Group = 𝒮ᴰ-Record (𝒮-Univ _) IsGroupEquiv (fields: data[ _·_ ∣ autoDUARel _ _ ∣ pres· ] data[ 1g ∣ autoDUARel _ _ ∣ pres1 ] data[ inv ∣ autoDUARel _ _ ∣ presinv ] prop[ isGroup ∣ (λ _ _ → isPropIsGroup _ _ _) ]) where open GroupStr open IsGroupHom GroupPath : (M N : Group ℓ) → GroupEquiv M N ≃ (M ≡ N) GroupPath = ∫ 𝒮ᴰ-Group .UARel.ua -- The module below defines a group induced from an equivalence -- between a group G and a type A which preserves the full raw group -- structure from G to A. This version is useful when proving that -- some type equivalent to a group is a group while also specifying -- the binary operation, unit and inverse. module _ (G : Group ℓ) {A : Type ℓ} (m : A → A → A) (u : A) (inverse : A → A) (e : ⟨ G ⟩ ≃ A) (p· : ∀ x y → e .fst (G .snd ._·_ x y) ≡ m (e .fst x) (e .fst y)) (pu : e .fst (G .snd .1g) ≡ u) (pinv : ∀ x → e .fst (G .snd .inv x) ≡ inverse (e .fst x)) where private module G = GroupStr (G .snd) BaseΣ : Type (ℓ-suc ℓ) BaseΣ = Σ[ B ∈ Type ℓ ] (B → B → B) × B × (B → B) FamilyΣ : BaseΣ → Type ℓ FamilyΣ (B , m , u , i) = IsGroup u m i inducedΣ : FamilyΣ (A , m , u , inverse) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel BaseΣ) (e , p· , pu , pinv)) G.isGroup InducedGroup : Group ℓ InducedGroup .fst = A InducedGroup .snd ._·_ = m InducedGroup .snd .1g = u InducedGroup .snd .inv = inverse InducedGroup .snd .isGroup = inducedΣ InducedGroupEquiv : GroupEquiv G InducedGroup fst InducedGroupEquiv = e snd InducedGroupEquiv = makeIsGroupHom p· InducedGroupPath : G ≡ InducedGroup InducedGroupPath = GroupPath _ _ .fst InducedGroupEquiv -- The module below defines a group induced from an equivalence which -- preserves the binary operation (i.e. a group isomorphism). This -- version is useful when proving that some type equivalent to a group -- G is a group when one doesn't care about what the unit and inverse -- are. When using this version the unit and inverse will both be -- defined by transporting over the unit and inverse from G to A. module _ (G : Group ℓ) {A : Type ℓ} (m : A → A → A) (e : ⟨ G ⟩ ≃ A) (p· : ∀ x y → e .fst (G .snd ._·_ x y) ≡ m (e .fst x) (e .fst y)) where private module G = GroupStr (G .snd) FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ FamilyΣ (B , n) = Σ[ e ∈ B ] Σ[ i ∈ (B → B) ] IsGroup e n i inducedΣ : FamilyΣ (A , m) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·)) (G.1g , G.inv , G.isGroup) InducedGroupFromPres· : Group ℓ InducedGroupFromPres· .fst = A InducedGroupFromPres· .snd ._·_ = m InducedGroupFromPres· .snd .1g = inducedΣ .fst InducedGroupFromPres· .snd .inv = inducedΣ .snd .fst InducedGroupFromPres· .snd .isGroup = inducedΣ .snd .snd InducedGroupEquivFromPres· : GroupEquiv G InducedGroupFromPres· fst InducedGroupEquivFromPres· = e snd InducedGroupEquivFromPres· = makeIsGroupHom p· InducedGroupPathFromPres· : G ≡ InducedGroupFromPres· InducedGroupPathFromPres· = GroupPath _ _ .fst InducedGroupEquivFromPres· uaGroup : {G H : Group ℓ} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) -- Group-ua functoriality Group≡ : (G H : Group ℓ) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i) (1g (snd G)) (1g (snd H)) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_·_ (snd G)) (_·_ (snd H)) ] Σ[ s ∈ PathP (λ i → p i → p i) (inv (snd G)) (inv (snd H)) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H))) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (1g ∘ snd) x , cong (_·_ ∘ snd) x , cong (inv ∘ snd) x , cong (isGroup ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv {G = G}) ≡ refl uaGroupId G = caracGroup≡ _ _ uaIdEquiv uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎) -- J-rule for GroupEquivs GroupEquivJ : {G : Group ℓ} (P : (H : Group ℓ) → GroupEquiv G H → Type ℓ') → P G idGroupEquiv → ∀ {H} e → P H e GroupEquivJ {G = G} P p {H} e = transport (λ i → P (GroupPath G H .fst e i) (transp (λ j → GroupEquiv G (GroupPath G H .fst e (i ∨ ~ j))) i e)) (subst (P G) (sym lem) p) where lem : transport (λ j → GroupEquiv G (GroupPath G H .fst e (~ j))) e ≡ idGroupEquiv lem = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (Σ≡Prop (λ _ → isPropIsEquiv _) (funExt λ x → (λ i → fst (fst (fst e .snd .equiv-proof (transportRefl (fst (fst e) (transportRefl x i)) i)))) ∙ retEq (fst e) x))
{ "alphanum_fraction": 0.6094328869, "avg_line_length": 35.4444444444, "ext": "agda", "hexsha": "84c33a481e09ce8bca522e792d4235a5276dcae6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/GroupPath.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/GroupPath.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/GroupPath.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2585, "size": 7018 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.List.Properties where open import Agda.Builtin.List open import Cubical.Core.Everything open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Data.List.Base module _ {ℓ} {A : Type ℓ} where ++-unit-r : (xs : List A) → xs ++ [] ≡ xs ++-unit-r [] = refl ++-unit-r (x ∷ xs) = cong (_∷_ x) (++-unit-r xs) ++-assoc : (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs = cong (_∷_ x) (++-assoc xs ys zs) rev-snoc : (xs : List A) (y : A) → rev (xs ++ [ y ]) ≡ y ∷ rev xs rev-snoc [] y = refl rev-snoc (x ∷ xs) y = cong (_++ [ x ]) (rev-snoc xs y) rev-++ : (xs ys : List A) → rev (xs ++ ys) ≡ rev ys ++ rev xs rev-++ [] ys = sym (++-unit-r (rev ys)) rev-++ (x ∷ xs) ys = cong (λ zs → zs ++ [ x ]) (rev-++ xs ys) ∙ ++-assoc (rev ys) (rev xs) [ x ] rev-rev : (xs : List A) → rev (rev xs) ≡ xs rev-rev [] = refl rev-rev (x ∷ xs) = rev-snoc (rev xs) x ∙ cong (_∷_ x) (rev-rev xs) rev-rev-snoc : (xs : List A) (y : A) → Square (rev-rev (xs ++ [ y ])) (cong (_++ [ y ]) (rev-rev xs)) (cong rev (rev-snoc xs y)) refl rev-rev-snoc [] y = sym (lUnit refl) rev-rev-snoc (x ∷ xs) y i j = hcomp (λ k → λ { (i = i1) → compPath-filler (rev-snoc (rev xs) x) (cong (x ∷_) (rev-rev xs)) k j ++ [ y ] ; (j = i0) → rev (rev-snoc xs y i ++ [ x ]) ; (j = i1) → x ∷ rev-rev-snoc xs y i k }) (rev-snoc (rev-snoc xs y i) x j) data SnocView : List A → Type ℓ where nil : SnocView [] snoc : (x : A) → (xs : List A) → (sx : SnocView xs) → SnocView (xs ∷ʳ x) snocView : (xs : List A) → SnocView xs snocView xs = helper nil xs where helper : {l : List A} -> SnocView l -> (r : List A) -> SnocView (l ++ r) helper {l} sl [] = subst SnocView (sym (++-unit-r l)) sl helper {l} sl (x ∷ r) = subst SnocView (++-assoc l (x ∷ []) r) (helper (snoc x l sl) r) -- Path space of list type module ListPath {ℓ} {A : Type ℓ} where Cover : List A → List A → Type ℓ Cover [] [] = Lift Unit Cover [] (_ ∷ _) = Lift ⊥ Cover (_ ∷ _) [] = Lift ⊥ Cover (x ∷ xs) (y ∷ ys) = (x ≡ y) × Cover xs ys reflCode : ∀ xs → Cover xs xs reflCode [] = lift tt reflCode (_ ∷ xs) = refl , reflCode xs encode : ∀ xs ys → (p : xs ≡ ys) → Cover xs ys encode xs _ = J (λ ys _ → Cover xs ys) (reflCode xs) encodeRefl : ∀ xs → encode xs xs refl ≡ reflCode xs encodeRefl xs = JRefl (λ ys _ → Cover xs ys) (reflCode xs) decode : ∀ xs ys → Cover xs ys → xs ≡ ys decode [] [] _ = refl decode [] (_ ∷ _) (lift ()) decode (x ∷ xs) [] (lift ()) decode (x ∷ xs) (y ∷ ys) (p , c) = cong₂ _∷_ p (decode xs ys c) decodeRefl : ∀ xs → decode xs xs (reflCode xs) ≡ refl decodeRefl [] = refl decodeRefl (x ∷ xs) = cong (cong₂ _∷_ refl) (decodeRefl xs) decodeEncode : ∀ xs ys → (p : xs ≡ ys) → decode xs ys (encode xs ys p) ≡ p decodeEncode xs _ = J (λ ys p → decode xs ys (encode xs ys p) ≡ p) (cong (decode xs xs) (encodeRefl xs) ∙ decodeRefl xs) isOfHLevelCover : (n : HLevel) (p : isOfHLevel (suc (suc n)) A) (xs ys : List A) → isOfHLevel (suc n) (Cover xs ys) isOfHLevelCover n p [] [] = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isPropUnit) isOfHLevelCover n p [] (y ∷ ys) = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p (x ∷ xs) [] = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p (x ∷ xs) (y ∷ ys) = isOfHLevelΣ (suc n) (p x y) (\ _ → isOfHLevelCover n p xs ys) isOfHLevelList : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (List A) isOfHLevelList n ofLevel xs ys = isOfHLevelRetract (suc n) (ListPath.encode xs ys) (ListPath.decode xs ys) (ListPath.decodeEncode xs ys) (ListPath.isOfHLevelCover n ofLevel xs ys) private variable ℓ : Level A : Type ℓ caseList : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (n c : B) → List A → B caseList n _ [] = n caseList _ c (_ ∷ _) = c safe-head : A → List A → A safe-head x [] = x safe-head _ (x ∷ _) = x safe-tail : List A → List A safe-tail [] = [] safe-tail (_ ∷ xs) = xs cons-inj₁ : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y cons-inj₁ {x = x} p = cong (safe-head x) p cons-inj₂ : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → xs ≡ ys cons-inj₂ = cong safe-tail ¬cons≡nil : ∀ {x : A} {xs} → ¬ (x ∷ xs ≡ []) ¬cons≡nil {A = A} p = lower (subst (caseList (Lift ⊥) (List A)) p []) ¬nil≡cons : ∀ {x : A} {xs} → ¬ ([] ≡ x ∷ xs) ¬nil≡cons {A = A} p = lower (subst (caseList (List A) (Lift ⊥)) p []) ¬snoc≡nil : ∀ {x : A} {xs} → ¬ (xs ∷ʳ x ≡ []) ¬snoc≡nil {xs = []} contra = ¬cons≡nil contra ¬snoc≡nil {xs = x ∷ xs} contra = ¬cons≡nil contra ¬nil≡snoc : ∀ {x : A} {xs} → ¬ ([] ≡ xs ∷ʳ x) ¬nil≡snoc contra = ¬snoc≡nil (sym contra) cons≡rev-snoc : (x : A) → (xs : List A) → x ∷ rev xs ≡ rev (xs ∷ʳ x) cons≡rev-snoc _ [] = refl cons≡rev-snoc x (y ∷ ys) = λ i → cons≡rev-snoc x ys i ++ y ∷ [] isContr[]≡[] : isContr (Path (List A) [] []) isContr[]≡[] = refl , ListPath.decodeEncode [] [] isPropXs≡[] : {xs : List A} → isProp (xs ≡ []) isPropXs≡[] {xs = []} = isOfHLevelSuc 0 isContr[]≡[] isPropXs≡[] {xs = x ∷ xs} = λ p _ → ⊥.rec (¬cons≡nil p) discreteList : Discrete A → Discrete (List A) discreteList eqA [] [] = yes refl discreteList eqA [] (y ∷ ys) = no ¬nil≡cons discreteList eqA (x ∷ xs) [] = no ¬cons≡nil discreteList eqA (x ∷ xs) (y ∷ ys) with eqA x y | discreteList eqA xs ys ... | yes p | yes q = yes (λ i → p i ∷ q i) ... | yes _ | no ¬q = no (λ p → ¬q (cons-inj₂ p)) ... | no ¬p | _ = no (λ q → ¬p (cons-inj₁ q)) foldrCons : (xs : List A) → foldr _∷_ [] xs ≡ xs foldrCons [] = refl foldrCons (x ∷ xs) = cong (x ∷_) (foldrCons xs)
{ "alphanum_fraction": 0.5496721311, "avg_line_length": 34.4632768362, "ext": "agda", "hexsha": "20120e22d3bbd01f762bafa079945177c5b0f576", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/List/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/List/Properties.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/List/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2504, "size": 6100 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ; ⟨ABox⟩ ; _,_ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; _**_ ; ≲⌊_⌋ ; ≲-resp-ind ; _≋_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⊨a-resp-≲ ; ⟨ABox⟩-resp-⊨ ; *-resp-⟨ABox⟩ ; on-bnode ; bnodes ; _⊨b_ ; _,_ ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _⇒_w/_ ; _,_ ; BN ; impl ; impl✓ ) open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; iface ) open import Web.Semantic.DL.Integrity using ( Unique ; Mediated ; Mediator ; Initial ; _⊕_⊨_ ; _>>_ ; _,_ ; med-≲ ; med-≋ ; med-uniq ; init-≲ ; init-⊨ ; init-med ; extension ; ext-⊨ ; ext-init ; ext✓ ) open import Web.Semantic.DL.KB using ( KB ; _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; _,_ ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ) renaming ( Interp to Interp′ ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-image ; ≲-refl ; ≲-trans ; ≲-resp-≈ ) renaming ( _≲_ to _≲′_ ) open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; hmerge ; _∘_ ) module Web.Semantic.DL.Category.Composition {Σ : Signature} where infixr 5 _⟫_ _∙_ _⟫_ : ∀ {V W X Y Z} → ABox Σ (X ⊕ V ⊕ Y) → ABox Σ (Y ⊕ W ⊕ Z) → ABox Σ (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) F ⟫ G = (⟨ABox⟩ left F , ⟨ABox⟩ right G) pipe : ∀ {V W X Y Z} → (J : Interp Σ (X ⊕ V ⊕ Y)) → (K : Interp Σ (Y ⊕ W ⊕ Z)) → (enode * J ≲ inode * K) → (Interp Σ (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z)) pipe (J , j) (K , k) (J≲K , j≲k) = (K , hmerge (≲-image J≲K ∘ j) k) pipe-≳ : ∀ {V W X Y Z} → (I : Interp Σ X) → (J : Interp Σ (X ⊕ V ⊕ Y)) → (K : Interp Σ (Y ⊕ W ⊕ Z)) → (I≲J : I ≲ inode * J) → (J≲K : enode * J ≲ inode * K) → (I ≲ inode * (pipe J K J≲K)) pipe-≳ (I , i) (J , j) (K , k) (I≲J , i≲j) (J≲K , j≲k) = (≲-trans I≲J J≲K , λ x → ≲-resp-≈ J≲K (i≲j x)) pipe-left : ∀ {V W X Y Z} → (J : Interp Σ (X ⊕ V ⊕ Y)) → (K : Interp Σ (Y ⊕ W ⊕ Z)) → (J≲K : enode * J ≲ inode * K) → (J ≲ left * (pipe J K J≲K)) pipe-left (J , j) (K , k) (J≲K , j≲k) = (J≲K , lemma) where lemma : ∀ x → K ⊨ ≲-image J≲K (j x) ≈ hmerge (≲-image J≲K ∘ j) k (left x) lemma (inode x) = ≈-refl K lemma (bnode v) = ≈-refl K lemma (enode y) = j≲k y pipe-right : ∀ {V W X Y Z} → (J : Interp Σ (X ⊕ V ⊕ Y)) → (K : Interp Σ (Y ⊕ W ⊕ Z)) → (J≲K : enode * J ≲ inode * K) → (K ≲ right * (pipe J K J≲K)) pipe-right (J , j) (K , k) (J≲K , j≲k) = (≲-refl K , lemma) where lemma : ∀ x → K ⊨ k x ≈ hmerge (≲-image J≲K ∘ j) k (right x) lemma (inode y) = ≈-refl K lemma (bnode w) = ≈-refl K lemma (enode z) = ≈-refl K pipe-exp : ∀ {V W X Y Z} → (J : Interp Σ (X ⊕ V ⊕ Y)) → (K : Interp Σ (Y ⊕ W ⊕ Z)) → (J≲K : enode * J ≲ inode * K) → ∀ KB → (enode * K ⊨ KB) → (enode * pipe J K J≲K ⊨ KB) pipe-exp (J , j) (K , k) (J≲K , j≲k) KB K⊨KB = K⊨KB ⊨a-intro-⟫ : ∀ {V W X Y Z} → (I : Interp Σ (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z)) → (F : ABox Σ (X ⊕ V ⊕ Y)) → (G : ABox Σ (Y ⊕ W ⊕ Z)) → (left * I ⊨a F) → (right * I ⊨a G) → (I ⊨a F ⟫ G) ⊨a-intro-⟫ (I , i) F G I⊨F I⊨G = ( ⟨ABox⟩-resp-⊨ left (λ x → ≈-refl I) F I⊨F , ⟨ABox⟩-resp-⊨ right (λ x → ≈-refl I) G I⊨G ) ⊨b-intro-⟫ : ∀ {V₁ W₁ V₂ W₂ X Y Z} → (I : Interp Σ (X ⊕ (V₁ ⊕ Y ⊕ W₁) ⊕ Z)) → (F : ABox Σ (X ⊕ V₂ ⊕ Y)) → (G : ABox Σ (Y ⊕ W₂ ⊕ Z)) → (left * I ⊨b F) → (right * I ⊨b G) → (I ⊨b F ⟫ G) ⊨b-intro-⟫ {V₂ = V₂} {W₂ = W₂} {Y = Y} (I , i) F G (f , I⊨F) (g , I⊨G) = (h , I⊨F⟫G) where h : (V₂ ⊕ Y ⊕ W₂) → Δ I h (inode v) = f v h (bnode y) = i (bnode (bnode y)) h (enode w) = g w lemmaˡ : ∀ x → I ⊨ on-bnode f (i ∘ left) x ≈ on-bnode h i (left x) lemmaˡ (inode x) = ≈-refl I lemmaˡ (bnode v) = ≈-refl I lemmaˡ (enode y) = ≈-refl I lemmaʳ : ∀ x → I ⊨ on-bnode g (i ∘ right) x ≈ on-bnode h i (right x) lemmaʳ (inode x) = ≈-refl I lemmaʳ (bnode v) = ≈-refl I lemmaʳ (enode y) = ≈-refl I I⊨F⟫G : bnodes (I , i) h ⊨a F ⟫ G I⊨F⟫G = ⊨a-intro-⟫ (bnodes (I , i) h) F G (⊨a-resp-≲ (≲-refl I , lemmaˡ) F I⊨F) (⊨a-resp-≲ (≲-refl I , lemmaʳ) G I⊨G) pipe-uniq : ∀ {V W X Y Z} I J K (M : Interp Σ (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z)) (I≲J : I ≲ inode * J) (I≲M : I ≲ inode * M) → (J≲K : enode * J ≲ inode * K) (J≲M : J ≲ left * M) → (I≲M ≋ I≲J >> J≲M) → (Unique I J (left * M) I≲J I≲M) → (Unique (enode * J) K (right * M) J≲K (enode ** J≲M)) → (Unique I (pipe J K J≲K) M (pipe-≳ I J K I≲J J≲K) I≲M) pipe-uniq {V} {W} {X} {Y} {Z} (I , i) (J , j) (K , k) (M , m) (I≲J , i≲j) (I≲M , i≲m) (J≲K , j≲k) (J≲M , j≲m) I≲M≋I≲J≲M J≲M-uniq K≲M-uniq (L≲₁M , l≲₁m) (L≲₂M , l≲₂m) I≲M≋I≲L≲₁M I≲M≋I≲L≲₂M = K≲M-uniq (L≲₁M , lemmaʳ L≲₁M l≲₁m I≲M≋I≲L≲₁M) (L≲₂M , lemmaʳ L≲₂M l≲₂m I≲M≋I≲L≲₂M) (J≲M-uniq (J≲M , j≲m) (≲-trans J≲K L≲₁M , lemmaˡ L≲₁M l≲₁m I≲M≋I≲L≲₁M) I≲M≋I≲J≲M I≲M≋I≲L≲₁M ) (J≲M-uniq (J≲M , j≲m) ( ≲-trans J≲K L≲₂M , lemmaˡ L≲₂M l≲₂m I≲M≋I≲L≲₂M) I≲M≋I≲J≲M I≲M≋I≲L≲₂M ) where L : Interp′ Σ L = K l : (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) → Δ L l = hmerge (≲-image J≲K ∘ j) k I≲L : I ≲′ L I≲L = ≲-trans I≲J J≲K lemmaˡ : ∀ L≲M → (∀ x → M ⊨ ≲-image L≲M (l x) ≈ m x) → (∀ x → M ⊨ ≲-image I≲M x ≈ ≲-image L≲M (≲-image I≲L x)) → ∀ x → M ⊨ ≲-image L≲M (≲-image J≲K (j x)) ≈ m (left x) lemmaˡ L≲M l≲m I≲M≋I≲L≲M (inode x) = l≲m (inode x) lemmaˡ L≲M l≲m I≲M≋I≲L≲M (bnode v) = l≲m (bnode (inode v)) lemmaˡ L≲M l≲m I≲M≋I≲L≲M (enode y) = ≈-trans M (≲-resp-≈ L≲M (j≲k y)) (l≲m (bnode (bnode y))) lemmaʳ : ∀ L≲M → (∀ x → M ⊨ ≲-image L≲M (l x) ≈ m x) → (∀ x → M ⊨ ≲-image I≲M x ≈ ≲-image L≲M (≲-image I≲L x)) → ∀ x → M ⊨ ≲-image L≲M (k x) ≈ m (right x) lemmaʳ L≲M l≲m I≲M≋I≲L≲M (inode y) = l≲m (bnode (bnode y)) lemmaʳ L≲M l≲m I≲M≋I≲L≲M (bnode w) = l≲m (bnode (enode w)) lemmaʳ L≲M l≲m I≲M≋I≲L≲M (enode z) = l≲m (enode z) pipe-mediated : ∀ {V W X Y Z} I J K (M : Interp Σ (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z)) (I≲J : I ≲ inode * J) (I≲M : I ≲ inode * M) → (J≲K : enode * J ≲ inode * K) → (m : Mediated I J (left * M) I≲J I≲M) → (Mediated (enode * J) K (right * M) J≲K (enode ** (med-≲ m))) → (Mediated I (pipe J K J≲K) M (pipe-≳ I J K I≲J J≲K) I≲M) pipe-mediated {V} {W} {X} {Y} {Z} (I , i) (J , j) (K , k) (M , m) (I≲J , i≲j) (I≲M , i≲m) (J≲K , j≲k) ((J≲M , j≲m) , I≲M≋I≲J≲M , J≲M-uniq) ((K≲M , k≲m) , J≲M≋J≲K≲M , K≲M-uniq) = ( (L≲M , l≲m) , I≲M≋I≲L≲M , L≲M-uniq) where L : Interp′ Σ L = K l : (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) → Δ L l = hmerge (≲-image J≲K ∘ j) k I≲L : I ≲′ L I≲L = ≲-trans I≲J J≲K i≲l : ∀ x → L ⊨ ≲-image I≲L (i x) ≈ l (inode x) i≲l x = ≲-resp-≈ J≲K (i≲j x) L≲M : L ≲′ M L≲M = K≲M l≲m : ∀ x → M ⊨ ≲-image K≲M (l x) ≈ m x l≲m (inode x) = ≈-trans M (≈-sym M (J≲M≋J≲K≲M (j (inode x)))) (j≲m (inode x)) l≲m (bnode (inode v)) = ≈-trans M (≈-sym M (J≲M≋J≲K≲M (j (bnode v)))) (j≲m (bnode v)) l≲m (bnode (bnode y)) = k≲m (inode y) l≲m (bnode (enode w)) = k≲m (bnode w) l≲m (enode z) = k≲m (enode z) I≲M≋I≲L≲M : ∀ x → M ⊨ ≲-image I≲M x ≈ ≲-image L≲M (≲-image I≲L x) I≲M≋I≲L≲M x = ≈-trans M (I≲M≋I≲J≲M x) (J≲M≋J≲K≲M (≲-image I≲J x)) L≲M-uniq : Unique (I , i) (L , l) (M , m) (I≲L , i≲l) (I≲M , i≲m) L≲M-uniq = pipe-uniq (I , i) (J , j) (K , k) (M , m) (I≲J , i≲j) (I≲M , i≲m) (J≲K , j≲k) (J≲M , j≲m) I≲M≋I≲J≲M J≲M-uniq K≲M-uniq pipe-mediator : ∀ S {V W X Y Z I} {J : Interp Σ (X ⊕ V ⊕ Y)} {K : Interp Σ (Y ⊕ W ⊕ Z)} {I≲J J≲K} F G → (Mediator I J I≲J (S , F)) → (Mediator (enode * J) K J≲K (S , G)) → (Mediator I (pipe J K J≲K) (pipe-≳ I J K I≲J J≲K) (S , F ⟫ G)) pipe-mediator S {V} {W} {X} {Y} {Z} {I , i} {J , j} {K , k} {I≲J , i≲j} {J≲K , j≲k} F G J-med K-med (M , m) (I≲M , i≲m) (M⊨S , M⊨F , M⊨G) = pipe-mediated (I , i) (J , j) (K , k) (M , m) (I≲J , i≲j) (I≲M , i≲m) (J≲K , j≲k) I≲J≲M-med J≲K≲M-med where mˡ : (X ⊕ V ⊕ Y) → Δ M mˡ x = m (left x) mʳ : (Y ⊕ W ⊕ Z) → Δ M mʳ x = m (right x) I≲J≲M-med : Mediated (I , i) (J , j) (M , mˡ) (I≲J , i≲j) (I≲M , i≲m) I≲J≲M-med = J-med (M , mˡ) (I≲M , i≲m) (M⊨S , *-resp-⟨ABox⟩ left (M , m) F M⊨F) J≲M : J ≲′ M J≲M = ≲⌊ med-≲ I≲J≲M-med ⌋ j≲m : ∀ x → M ⊨ ≲-image J≲M (j x) ≈ mˡ x j≲m = ≲-resp-ind (med-≲ I≲J≲M-med) j′ : Y → Δ J j′ y = j (enode y) j≲m′ : ∀ x → M ⊨ ≲-image J≲M (j′ x) ≈ m (bnode (bnode x)) j≲m′ x = j≲m (enode x) J≲K≲M-med : Mediated (J , j′) (K , k) (M , mʳ) (J≲K , j≲k) (J≲M , j≲m′) J≲K≲M-med = K-med (M , mʳ) (J≲M , j≲m′) (M⊨S , *-resp-⟨ABox⟩ right (M , m) G M⊨G) pipe-init : ∀ {S V W X Y Z I} {J : Interp Σ (X ⊕ V ⊕ Y)} {K : Interp Σ (Y ⊕ W ⊕ Z)} {F G} → (J-init : J ∈ Initial I (S , F)) → (K-init : K ∈ Initial (enode * J) (S , G)) → (pipe J K (init-≲ K-init) ∈ Initial I (S , F ⟫ G)) pipe-init {S} {V} {W} {X} {Y} {Z} {I , i} {J , j} {K , k} {F} {G} ((I≲J , i≲j) , (J⊨S , J⊨F) , J-med) ((J≲K , j≲k) , (K⊨S , K⊨G) , K-med) = ( (I≲L , i≲l) , (L⊨S , L⊨F⟫G) , L-med) where L : Interp′ Σ L = K l : (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) → Δ L l = hmerge (≲-image J≲K ∘ j) k I≲L : I ≲′ L I≲L = ≲-trans I≲J J≲K i≲l : ∀ x → L ⊨ ≲-image I≲L (i x) ≈ l (inode x) i≲l x = ≲-resp-≈ J≲K (i≲j x) L⊨S : L ⊨t S L⊨S = K⊨S L⊨F⟫G : (L , l) ⊨a F ⟫ G L⊨F⟫G = ⊨a-intro-⟫ (L , l) F G (⊨a-resp-≲ (pipe-left (J , j) (K , k) (J≲K , j≲k)) F J⊨F) (⊨a-resp-≲ (pipe-right (J , j) (K , k) (J≲K , j≲k)) G K⊨G) L-med : Mediator (I , i) (L , l) (I≲L , i≲l) (S , F ⟫ G) L-med = pipe-mediator S F G J-med K-med compose-⊨ : ∀ {S T V W X Y Z} A B C (F : ABox Σ (X ⊕ V ⊕ Y)) (G : ABox Σ (Y ⊕ W ⊕ Z)) → (∀ I → (I ⊨ (S , T) , A) → (I ⊕ S , F ⊨ T , B)) → (∀ J → (J ⊨ (S , T) , B) → (J ⊕ S , G ⊨ T , C)) → (∀ I → (I ⊨ (S , T) , A) → (I ⊕ S , F ⟫ G ⊨ T , C)) compose-⊨ {S} {T} {V} {W} {X} {Y} {Z} A B C F G F✓ G✓ I I⊨STA = ( pipe J K J≲K , pipe-init J-init K-init , pipe-exp J K J≲K (T , C) K⊨TC ) where I⊕SF⊨TB : I ⊕ S , F ⊨ T , B I⊕SF⊨TB = F✓ I I⊨STA J : Interp Σ (X ⊕ V ⊕ Y) J = extension I⊕SF⊨TB J-init : J ∈ Initial I (S , F) J-init = ext-init I⊕SF⊨TB J⊕SG⊨TC : enode * J ⊕ S , G ⊨ T , C J⊕SG⊨TC = G✓ (enode * J) (ext✓ I⊕SF⊨TB) K : Interp Σ (Y ⊕ W ⊕ Z) K = extension J⊕SG⊨TC K⊨TC : enode * K ⊨ (T , C) K⊨TC = ext-⊨ J⊕SG⊨TC K-init : K ∈ Initial (enode * J) (S , G) K-init = ext-init J⊕SG⊨TC J≲K : enode * J ≲ inode * K J≲K = init-≲ K-init _∙′_ : ∀ {S T} {A B C : Object S T} → (F : A ⇒ B) → (G : B ⇒ C) → (A ⇒ C w/ (BN F ⊕ IN B ⊕ BN G)) _∙′_ {S} {T} {X , X∈Fin , A} {Y , Y∈Fin , B} {Z , Z∈Fin , C} (V , F , F✓) (W , G , G✓) = (F ⟫ G , compose-⊨ A B C F G F✓ G✓) _∙_ : ∀ {S T} {A B C : Object S T} → (A ⇒ B) → (B ⇒ C) → (A ⇒ C) F ∙ G = ( _ , F ∙′ G )
{ "alphanum_fraction": 0.4431014415, "avg_line_length": 35.4571428571, "ext": "agda", "hexsha": "07abe95cedf02c1b48e49e83d9a4624f85510011", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Composition.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Composition.agda", "max_line_length": 89, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Composition.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 6636, "size": 11169 }
module Utility.Bool where open import Agda.Builtin.Bool using (Bool; true; false) not : Bool → Bool not false = true not true = false _or_ : Bool → Bool → Bool true or _ = true _ or true = true _ or _ = false _and_ : Bool → Bool → Bool true and true = true _ and _ = false
{ "alphanum_fraction": 0.6823104693, "avg_line_length": 16.2941176471, "ext": "agda", "hexsha": "1afffb0da3abfd436439f361fec63588f59394b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Utility/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Utility/Bool.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Utility/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 84, "size": 277 }
{-# OPTIONS --no-pattern-matching #-} id : {A : Set} (x : A) → A id x = x const : {A B : Set} (x : A) (y : B) → A const x y = x happ : {A B C : Set} (f : A → B → C) (g : A → B) (x : A) → C happ f g x = f x (g x) K = const S = happ I : {A : Set} (x : A) → A I = S K K -- Mmh, pretty boring...
{ "alphanum_fraction": 0.432885906, "avg_line_length": 15.6842105263, "ext": "agda", "hexsha": "904e68ac34e5b2e72b11f98b12587670dc48a28d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/NoPatternMatching.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/NoPatternMatching.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/NoPatternMatching.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 137, "size": 298 }
-- Andreas, 2013-11-07 -- Instance candidates are now considered module judgemental equality. module Issue899 where postulate A B : Set f : {{ x : A }} → B instance a : A instance a' : A a' = a test : B test = f {- The previous code fails with the following message: Resolve implicit argument _x_257 : A. Candidates: [a : A, a : A] There are indeed two values in scope of type A (a and a'), but given that they are definitionally equal, Agda should not complain about it but just pick any one of them. -}
{ "alphanum_fraction": 0.6889312977, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "5f7c15b87879e5971ca3d58866d9e4abd1166806", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue899.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue899.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue899.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 151, "size": 524 }
{-# OPTIONS --cubical --no-import-sorts #-} module Test3 where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic abstract !_ : ∀{ℓ} {X : Type ℓ} → X → X ! x = x !-≡ : ∀{ℓ} {X : Type ℓ} → (! X) ≡ X !-≡ = refl -- makes use of the definition of `!_` within this block !!_ : ∀{ℓ} {X : Type ℓ} → X → ! X !!_ {X = X} x = transport (sym (!-≡ {X = X})) x !!⁻¹_ : ∀{ℓ} {X : Type ℓ} → ! X → X !!⁻¹_ {X = X} x = transport (!-≡ {X = X}) x infix 1 !_ infix 1 !!_ infix 1 !!⁻¹_ -- !-≡' : ∀{ℓ} {X : Type ℓ} → (! X) ≡ X -- !-≡' = refl -- cannot make use of the definition of `!_` anymore hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) hPropRel A B ℓ' = A → B → hProp ℓ' module TestB {ℓ ℓ'} (X : Type ℓ) (0ˣ : X) (_+_ _·_ : X → X → X) (_<_ : hPropRel X X ℓ') (let infixl 5 _+_; _+_ = _+_) where _≤_ : hPropRel X X ℓ' x ≤ y = ¬(y < x) postulate sqrt : (x : X) → {{ ! [ 0ˣ ≤ x ] }} → X 0≤x² : ∀ x → [ 0ˣ ≤ (x · x) ] instance -- module-scope instances _ = λ {x} → !! 0≤x² x test4 : (x y z : X) → [ 0ˣ ≤ x ] → [ 0ˣ ≤ y ] → X test4 x y z 0≤x 0≤y = let instance -- let-scope instances _ = !! 0≤x _ = !! 0≤y _ = !! 0≤x² x -- preferred over the instance from module-scope in ( (sqrt x) -- works + (sqrt y) -- also works + (sqrt (z · z)) -- uses instance from module scope + (sqrt (x · x)) -- uses instance from let-scope (?) -- NOTE: see https://github.com/agda/agda/issues/4688 )
{ "alphanum_fraction": 0.4796044499, "avg_line_length": 28.8928571429, "ext": "agda", "hexsha": "738e18110147d5ec290a0007fdcff896608f64fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/Test3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/Test3.agda", "max_line_length": 113, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/Test3.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 695, "size": 1618 }
module Oscar where import Everything import Test -- journals import $RequiredForInstanceResolution import AbstractStrictlyPositive import AgdaErrorDisplayForm197 import AgdaFeatureInstanceResolutionViaConstraint import AgdaFeatureNeedHiddenVariableTypeConstructorWrapper import AgdaFeatureNoInstanceFromHidden import AgdaFeaturePitfallInstanceResolution import AgdaFeatureTerminationViaExplicitness import AgdaIssue2557 import AgdaModuleEqualsSyntaxProblem import AgdaSubstitute98Bug import ExplicitInstanceSearchRequired import MutualLevel import NoEtaExpandedInstanceFromSuperclass import NonuniqueUnification import ReflexivityInFlexibility import TroubleUnifyingExtensionalReflection import UnificationIncompleteness import UnificationRant
{ "alphanum_fraction": 0.9290495315, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "831cf91e3d7c102e529a4825f0fac7d2fef86df7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 161, "size": 747 }
module Coirc where open import Coinduction open import IO open import Data.String open import Data.Maybe data SP (A B : Set) : Set where get : (A → SP A B) → SP A B put : B → ∞ (SP A B) → SP A B data Event : Set where notice mode numeric ping : Event privmsg : (source text : String) → Event data Action : Set where print : (text : String) → Action nick : (name : String) → Action user : (name real : String) → Action pong : (name : String) → Action join part : (channel : String) → Action privmsg : (target text : String) → Action quit : (text : String) → Action Bot = SP Event Action
{ "alphanum_fraction": 0.647634584, "avg_line_length": 23.5769230769, "ext": "agda", "hexsha": "5307d157ed367841957377faa890d69bb49706b0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/coirc", "max_forks_repo_path": "src/Coirc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/coirc", "max_issues_repo_path": "src/Coirc.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/coirc", "max_stars_repo_path": "src/Coirc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 189, "size": 613 }
{-# OPTIONS --warning=error --safe --without-K #-} open import Functions.Definition open import Groups.Definition open import Rings.Homomorphisms.Definition open import Setoids.Setoids open import Rings.Definition open import Sets.EquivalenceRelations open import Groups.Lemmas open import Rings.Ideals.Definition module Rings.Cosets {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) {pred : A → Set c} (ideal : Ideal R pred) where open Ring R open import Rings.Lemmas R open import Groups.Subgroups.Normal.Lemmas open import Groups.Cosets additiveGroup (Ideal.isSubgroup ideal) open Setoid S open Equivalence eq open Ideal ideal open Group additiveGroup cosetRing : Ring cosetSetoid _+_ _*_ Ring.additiveGroup cosetRing = cosetGroup (abelianGroupSubgroupIsNormal (Ideal.isSubgroup ideal) abelianUnderlyingGroup) Ring.*WellDefined cosetRing {r} {s} {t} {u} r=t s=u = need where r=t' : pred ((inverse t + r) * u) r=t' = accumulatesTimes r=t s=u' : pred ((inverse u + s) * r) s=u' = accumulatesTimes s=u need : pred (inverse (t * u) + (r * s)) need = isSubset (transitive (+WellDefined (*DistributesOver+') *DistributesOver+') (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined ringMinusExtracts' (transitive (+WellDefined reflexive (transitive ringMinusExtracts' (inverseWellDefined additiveGroup *Commutative))) invRight)) identRight)) *Commutative))) (closedUnderPlus r=t' s=u') Ring.1R cosetRing = 1R Ring.groupIsAbelian cosetRing = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup groupIsAbelian) reflexive)) containsIdentity Ring.*Associative cosetRing = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup *Associative) reflexive)) containsIdentity Ring.*Commutative cosetRing {a} {b} = isSubset (transitive (symmetric invLeft) (+WellDefined (inverseWellDefined additiveGroup *Commutative) reflexive)) containsIdentity Ring.*DistributesOver+ cosetRing = isSubset (symmetric (transitive (+WellDefined (inverseWellDefined additiveGroup (symmetric *DistributesOver+)) reflexive) invLeft)) containsIdentity Ring.identIsIdent cosetRing = isSubset (symmetric (transitive (Group.+WellDefined additiveGroup reflexive identIsIdent) invLeft)) containsIdentity cosetRingHom : RingHom R cosetRing id RingHom.preserves1 cosetRingHom = isSubset (symmetric invLeft) (Ideal.containsIdentity ideal) RingHom.ringHom cosetRingHom = isSubset (symmetric invLeft) (Ideal.containsIdentity ideal) RingHom.groupHom cosetRingHom = cosetGroupHom (abelianGroupSubgroupIsNormal (Ideal.isSubgroup ideal) abelianUnderlyingGroup)
{ "alphanum_fraction": 0.7810650888, "avg_line_length": 58.7826086957, "ext": "agda", "hexsha": "ad4da7f550d20f00277bf7289df850162ccfa8f7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Cosets.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Cosets.agda", "max_line_length": 392, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Cosets.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 753, "size": 2704 }
module BasicIPC.Metatheory.Hilbert-TarskiGluedClosedImplicit where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.TarskiGluedClosedImplicit public open ImplicitSyntax (∅ ⊢_) public -- Completeness with respect to a particular model, for closed terms only. module _ {{_ : Model}} where reify : ∀ {A} → ⊩ A → ∅ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ⟪K⟫ a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ → app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B _⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = ci ⅋ I eval ck γ = ck ⅋ ⟪K⟫ eval cs γ = cs ⅋ ⟪S⟫′ eval cpair γ = cpair ⅋ _⟪,⟫′_ eval cfst γ = cfst ⅋ π₁ eval csnd γ = csnd ⅋ π₂ eval unit γ = ∙ -- Correctness of evaluation with respect to conversion. eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (congapp⋙ p q) = cong² _⟦$⟧_ (eval✓ p) (eval✓ q) eval✓ (congi⋙ p) = cong I (eval✓ p) eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q) eval✓ (congs⋙ p q r) = cong³ ⟦S⟧ (eval✓ p) (eval✓ q) (eval✓ r) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ beta▻ₖ⋙ = refl eval✓ beta▻ₛ⋙ = refl eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ∅ ⊢ α P } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A quot₀ t = reify (t ∙) -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A norm₀ = quot₀ ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.5118723239, "avg_line_length": 28.2307692308, "ext": "agda", "hexsha": "2980f84052b6f1a00e58f67b4fb40adffdeafbb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1121, "size": 2569 }
------------------------------------------------------------------------ -- Code related to the paper draft "Structurally Recursive Descent -- Parsing" -- -- Nils Anders Danielsson and Ulf Norell ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing where -- The code presented here is not identical to that in the paper; it -- has evolved. -- Parser type indices. import StructurallyRecursiveDescentParsing.Index -- Parsers containing non-terminals, and grammars using such parsers. import StructurallyRecursiveDescentParsing.Grammar -- A library of derived parser combinators. import StructurallyRecursiveDescentParsing.Lib -- Some small examples. import StructurallyRecursiveDescentParsing.Examples -- An example: parsing PBM image files. import StructurallyRecursiveDescentParsing.PBM -- A depth-first backend. import StructurallyRecursiveDescentParsing.DepthFirst -- The backend does not work directly on the parsers in -- StructurallyRecursiveDescentParsing.Grammar. The following -- simplified parsers are used instead. The function -- StructurallyRecursiveDescentParsing.Grammar.⟦_⟧ turns parsers -- containing non-terminals into simplified parsers. import StructurallyRecursiveDescentParsing.Simplified import StructurallyRecursiveDescentParsing.Simplified.Semantics
{ "alphanum_fraction": 0.7400295421, "avg_line_length": 30.0888888889, "ext": "agda", "hexsha": "4800965ee93be941731df20e01ab9a52938a7df8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 260, "size": 1354 }
module IrrelevantRecordField where import Common.Irrelevance record R (A : Set) : Set where constructor inn field .out : A proj : {A : Set} -> R A -> A proj (inn a) = a -- needs to fail, since a is irrelevant under inn
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 21, "ext": "agda", "hexsha": "08419b244884b7a8a420c90c7efd101f4879140b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IrrelevantRecordField.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IrrelevantRecordField.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantRecordField.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 70, "size": 231 }
{-# OPTIONS --without-K --rewriting #-} module Base where open import lib.Basics open import lib.Funext open import lib.NType2 open import lib.types.Truncation open import lib.types.Bool quodlibet : {i : ULevel} {A : Type i} → ⊥ → A quodlibet = ⊥-elim -- infix notation for piping a term argument into a dependent function _|>_ : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) (f : (a : A) → B a) → B a a |> f = f a -- infix notation for applying a path between two functions to an argument to give a path from f x to g x _at_ : ∀ {i j} {A : Type i} {P : A → Type j} {f g : Π A P} (p : f == g) → f ∼ g p at x = app= p x End : ∀ {i} (X : Type i) → Type i End X = X → X -- composition of a dependent function with a fiberwise dependent function infixl 80 _>>_ _>>_ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → (B a → Type k)} → (f : Π A B) → (g : {a : A} → Π (B a) (C a)) → Π A (λ a → C a (f a)) f >> g = λ x → g (f x) -- Crisp function types (the domain must be crisp) _::→_ : {@♭ i : ULevel} {j : ULevel} (@♭ A : Type i) (B : Type j) → Type (lmax i j) A ::→ B = (@♭ _ : A) → B crispen : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : A → Type j} → ((a : A) → B a) → ((@♭ a : A) → B a) crispen f a = f a const : {i j : ULevel} {A : Type i} {B : Type j} (b : B) → A → B const b _ = b crisp-const : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : Type j} (b : B) → A ::→ B crisp-const b _ = b -- Crisp function extensionality (postulated for now, because I'm lazy) postulate -- domain is a crisp term of a crisp type ♭λ= : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : A → Type j} {f g : (@♭ a : A) → B a} (h : (@♭ a : A) → f a == g a) → f == g -- Fully crisp function extensionalty: domain and codomain are crisp types ♭♭λ= : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : A → Type j} {@♭ f g : (@♭ a : A) → B a} (@♭ h : (@♭ a : A) → f a == g a) → f == g ♭♭λ= h = ♭λ= h -- The "identity path" is called refl -- refl : ∀ {i} { A : Type i} {a : A} → a == a pattern refl = idp _is-an-equiv = is-equiv _is-an-equivalence-because_is-inverse-by_and_ : ∀ {i} {j} {A : Type i} {B : Type j} → (f : A → B) (g : B → A) (f-g : (b : B) → f (g b) == b) (g-f : (a : A) → g (f a) == a) → is-equiv f f is-an-equivalence-because g is-inverse-by f-g and g-f = is-eq f g f-g g-f _is-split-inj : {i j : ULevel} {A : Type i} {B : Type j} (s : A → B) → Type (lmax i j) _is-split-inj {A = A} {B = B} s = Σ (B → A) (λ r → (a : A) → r (s a) == a) -- Implicit and Explicit function types are equivalent imp-equiv-exp : {i j : ULevel} {A : Type i} {B : A → Type j} → ({a : A} → B a) ≃ ((a : A) → B a) imp-equiv-exp = (λ f x → f {x}) , record { g = λ z {x} → z x ; f-g = λ b → idp ; g-f = λ a → idp ; adj = λ a → idp } exp-equiv-imp : {i j : ULevel} {A : Type i} {B : A → Type j} → ((a : A) → B a) ≃ ({a : A} → B a) exp-equiv-imp = imp-equiv-exp ⁻¹ _⊔→_ : {i j k l : ULevel} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : A → C) (g : B → D) → A ⊔ B → C ⊔ D (f ⊔→ g) (inl a) = inl (f a) (f ⊔→ g) (inr b) = inr (g b) _⊔e_ : {i j k l : ULevel} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : A ≃ C) (g : B ≃ D) → A ⊔ B ≃ C ⊔ D f ⊔e g = equiv ((–> f) ⊔→ (–> g)) ((<– f) ⊔→ (<– g)) (λ {(inl c) → ap inl ((<–-inv-r f) c) ; (inr d) → ap inr ((<–-inv-r g) d) }) (λ {(inl a) → ap inl ((<–-inv-l f) a) ; (inr b) → ap inr ((<–-inv-l g) b) }) -- A non-instance version of this function because I find that instance so annoying ≃-preserves-level : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B) → has-level n A → has-level n B ≃-preserves-level e p = equiv-preserves-level e {{p}} -- An equivalence version of the above ≃-preserves-level-eq : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B) → has-level n A ≃ has-level n B ≃-preserves-level-eq e = equiv (≃-preserves-level e) (≃-preserves-level (e ⁻¹)) (λ b → prop-path has-level-is-prop _ _) (λ a → prop-path has-level-is-prop _ _) -- An equivalence between has-level-aux and has-level has-level-def-eq : {i : ULevel} {A : Type i} {n : ℕ₋₂} → (has-level n A) ≃ (has-level-aux n A) has-level-def-eq {A = A} {n = n} = equiv has-level-apply has-level-in (λ b → refl) (λ a → refl) -- Compositional reasoning (like equational reasoning, but for composing) infixr 15 _→∎ infixr 10 _–⟨_⟩→_ _–⟨_⟩→_ : ∀ {i j k} (A : Type i) {B : A → Type j} {C : (a : A) → B a → Type k} → (f : (a : A) → B a) → (g : {a : A} → (b : B a) → C a b) → ((a : A) → C a (f a)) _ –⟨ f ⟩→ g = f >> g _→∎ : ∀ {i} (A : Type i) → A → A _→∎ = idf {- -- SKETCHING lemma : ∀ {i j} (A : Type i) (B : Type j) (a₀ : A) (p : (f : A → B) (a : A) → (f a₀) == (f a)) → (const {A = A} {B = B}) is-an-equiv lemma A B a₀ p = is-eq const (λ f → f a₀) fro-to to-fro where to-fro : ∀ a → ((const a) a₀) == a to-fro a = refl fro-to : ∀ (f : A → B) → (const (f a₀)) == f fro-to f = λ= $ λ a → p f a module _ {i j} (R : Type i) (r₀ : R) (B : Type j) (S : Type j) where postulate σ : B → S contr : (γ : R → S) (r : R) → (γ r₀) == (γ r) _is-discrete : ∀ {k} (X : Type k) → Type _ X is-discrete = (const {A = R} {B = X}) is-an-equiv S-is-discrete : S is-discrete S-is-discrete = lemma R S r₀ contr -}
{ "alphanum_fraction": 0.4358421751, "avg_line_length": 34.4685714286, "ext": "agda", "hexsha": "d34847f5ec15296c6f9f00e87af3b53d12c2a790", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Base.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 2384, "size": 6032 }
record R : Set where a : R a = r -- r should not ever be in scope
{ "alphanum_fraction": 0.6, "avg_line_length": 17.5, "ext": "agda", "hexsha": "c0ba732828078319f785a8998d0ace1fa0b9ff0a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3566-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3566-4.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3566-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 70 }
-- Andreas, 2021-07-14, issue #5470, reported by HarrisonGrodin -- -- Importing a rewrite rule that was declared private -- at the point of definition caused an internal error. {-# OPTIONS --rewriting #-} -- {-# OPTIONS -v impossible:10 #-} -- {-# OPTIONS -v rewriting:100 #-} module Issue5470 where open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Issue5470.Import postulate _≤_ : (n m : Nat) → Set ≤-refl : ∀{n} → n ≤ n infix 4 _IsRelatedTo_ data _IsRelatedTo_ (x : Nat) : (y : Nat) → Set where equals : x IsRelatedTo x begin : ∀ {x y} → x IsRelatedTo y → x ≤ y begin equals = ≤-refl example : ∀ n → n ≤ bar n example n = begin equals -- WAS: internal error -- Unbound name: Issue5470Import.lemma[0,10]@ModuleNameHash 8608063155492000951
{ "alphanum_fraction": 0.6858237548, "avg_line_length": 22.3714285714, "ext": "agda", "hexsha": "7ade1a1ec9ed926f733e71471073a572da2d6664", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue5470.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue5470.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue5470.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 251, "size": 783 }
------------------------------------------------------------------------ -- Connectedness for pointed types ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Pointed-type.Connected {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J open import Group equality-with-J as G using (_≃ᴳ_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣) import Nat equality-with-J as Nat open import Pointed-type equality-with-J open import Pointed-type.Homotopy-group eq private variable p : Level P : Pointed-type p -- Connectedness. -- -- This definition of what it means for a pointed type to be connected -- is based on a characterisation given in the HoTT Book. Connected : Pointed-type p → Type p Connected (A , x) = (y : A) → ∥ x ≡ y ∥ -- The connected component of a pointed type. -- -- I got this definition from Christian Sattler. Connected-component : Pointed-type p → Pointed-type p Connected-component (A , x) = (∃ λ y → ∥ x ≡ y ∥) , (x , ∣ refl _ ∣) -- There is a based embedding from the connected component of P to P. -- -- This definition was suggested to me by Christian Sattler. Connected-component↣ᴮ : Connected-component P ↝[ embedding ]ᴮ P Connected-component↣ᴮ = record { to = proj₁ ; is-embedding = λ x y → _≃_.is-equivalence $ Eq.with-other-function (x ≡ y ↔⟨ inverse $ ignore-propositional-component T.truncation-is-proposition ⟩□ proj₁ x ≡ proj₁ y □) (cong proj₁) proj₁-Σ-≡,≡←≡ } , refl _ -- The connected component is connected. -- -- This definition was suggested to me by Christian Sattler. Connected-Connected-component : {P : Pointed-type p} → Connected (Connected-component P) Connected-Connected-component y = flip T.∥∥-map (proj₂ y) λ eq → Σ-≡,≡→≡ eq (T.truncation-is-proposition _ _) -- If P has a certain positive h-level, then the same applies to the -- connected component of P. H-level-Connected-component : ∀ {P : Pointed-type p} n → H-level (1 + n) (proj₁ P) → H-level (1 + n) (proj₁ (Connected-component P)) H-level-Connected-component {P = A , x} n = H-level (1 + n) A ↝⟨ (λ h → Σ-closure (1 + n) h λ _ → mono (Nat.suc≤suc (Nat.zero≤ n)) T.truncation-is-proposition) ⟩ H-level (1 + n) (∃ λ y → ∥ x ≡ y ∥) □ -- If the loop space of P has a certain h-level, then the same applies -- to the loop space of the connected component of P. H-level-Ω-Connected-component : ∀ {P : Pointed-type p} n → H-level n (proj₁ (Ω P)) → H-level n (proj₁ (Ω (Connected-component P))) H-level-Ω-Connected-component {P = _ , x} n = H-level n (x ≡ x) ↝⟨ H-level-cong _ _ (ignore-propositional-component T.truncation-is-proposition) ⟩□ H-level n ((x , _) ≡ (x , _)) □ -- The fundamental group of the connected component of P is equivalent -- to the fundamental group of P. -- -- This definition was suggested to me by Christian Sattler. Fundamental-group′-Connected-component≃ᴳ : {s₁ : Is-set (proj₁ (Ω (Connected-component P)))} {s₂ : Is-set (proj₁ (Ω P))} → Fundamental-group′ (Connected-component P) s₁ ≃ᴳ Fundamental-group′ P s₂ Fundamental-group′-Connected-component≃ᴳ {P = _ , x} = λ where .G.Homomorphic.related → Eq.with-other-function ((x , _) ≡ (x , _) ↔⟨ inverse $ ignore-propositional-component T.truncation-is-proposition ⟩□ x ≡ x □) (cong proj₁) proj₁-Σ-≡,≡←≡ .G.Homomorphic.homomorphic p q → cong proj₁ (trans p q) ≡⟨ cong-trans _ _ _ ⟩∎ trans (cong proj₁ p) (cong proj₁ q) ∎
{ "alphanum_fraction": 0.5963636364, "avg_line_length": 34.375, "ext": "agda", "hexsha": "fffbbbe035e22de6f2870128249fb797b6b60469", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Pointed-type/Connected.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Pointed-type/Connected.agda", "max_line_length": 116, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Pointed-type/Connected.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1203, "size": 4125 }
-- Example: -- postulate ℓ : Lvl.Level -- postulate A B C D : Type{ℓ} -- postulate a : A -- postulate ab : A → B -- postulate bc : B → C -- postulate cd : C → D -- -- ad : A → D -- ad = -- A ⇒-[ ab ] -- B ⇒-[ bc ] -- C ⇒-[ cd ] -- D ⇒-end -- -- d : D -- d = -- a ⇒ -- A ⇒-[ ab ] -- B ⇒-[ bc ] -- C ⇒-[ cd ] -- D ⇒-end module Syntax.Implication where open import Functional using (const ; id ; _∘_ ; _∘₂_ ; _∘₃_ ; swap) open import Logic.Propositional import Lvl import Syntax.Implication.Dependent as Dependent open import Type private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Lvl.Level open Dependent using (_⇒-end ; _⇒_) public _⇒-start_ : ∀{X : Type{ℓ₁}}{Y : Type{ℓ₂}} → X → (X → Y) → Y _⇒-start_ x xy = xy x infixr 0.98 _⇒-start_ {-# INLINE _⇒-start_ #-} _⇒-[_]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (X → Y) → (Y → Z) → (X → Z) _⇒-[_]_ _ = swap(_∘_) infixr 0.98 _⇒-[_]_ {-# INLINE _⇒-[_]_ #-} _⇒-[]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}} → (X → Y) → (X → Y) _⇒-[]_ _ = id infixr 0.98 _⇒-[]_ {-# INLINE _⇒-[]_ #-} •_•_⇒₂-[_]_ : ∀{X₁ : Type{ℓ₁}}{X₂ : Type{ℓ₂}}{Y : Type{ℓ₃}}{Z : Type{ℓ₄}} → X₁ → X₂ → (X₁ → X₂ → Y) → (Y → Z) → Z •_•_⇒₂-[_]_ x₁ x₂ g f = (f ∘₂ g) x₁ x₂ infixr 0.97 •_•_⇒₂-[_]_ {-# INLINE •_•_⇒₂-[_]_ #-} •_•_•_⇒₃-[_]_ : ∀{X₁ : Type{ℓ₁}}{X₂ : Type{ℓ₂}}{X₃ : Type{ℓ₃}}{Y : Type{ℓ₄}}{Z : Type{ℓ₅}} → X₁ → X₂ → X₃ → (X₁ → X₂ → X₃ → Y) → (Y → Z) → Z •_•_•_⇒₃-[_]_ x₁ x₂ x₃ g f = (f ∘₃ g) x₁ x₂ x₃ infixr 0.97 •_•_•_⇒₃-[_]_ {-# INLINE •_•_•_⇒₃-[_]_ #-} _⇔-end : ∀(X : Type{ℓ₁}) → (X ↔ X) _⇔-end _ = [↔]-intro id id infixr 0.99 _⇔-end {-# INLINE _⇔-end #-} _⇔_ = Functional.apply infixl 0.97 _⇔_ {-# INLINE _⇔_ #-} _⇔-[_]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (X ↔ Y) → (Y ↔ Z) → (X ↔ Z) _⇔-[_]_ _ ([↔]-intro pₗ pᵣ) ([↔]-intro qₗ qᵣ) = [↔]-intro (pₗ ∘ qₗ) (qᵣ ∘ pᵣ) infixr 0.98 _⇔-[_]_ {-# INLINE _⇔-[_]_ #-} _⇔-[_]-sym_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}}{Z : Type{ℓ₃}} → (Y ↔ X) → (Y ↔ Z) → (X ↔ Z) _⇔-[_]-sym_ X ([↔]-intro pₗ pᵣ) q = X ⇔-[ ([↔]-intro pᵣ pₗ) ] q infixr 0.98 _⇔-[_]-sym_ {-# INLINE _⇔-[_]-sym_ #-} _⇔-[]_ : ∀(X : Type{ℓ₁}){Y : Type{ℓ₂}} → (X ↔ Y) → (X ↔ Y) _⇔-[]_ _ = id infixr 0.98 _⇔-[]_ {-# INLINE _⇔-[]_ #-}
{ "alphanum_fraction": 0.4666064982, "avg_line_length": 26.6987951807, "ext": "agda", "hexsha": "dc90a3f57fee49eafa8283522ef59dee01f7b1d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Implication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Implication.agda", "max_line_length": 140, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Implication.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1270, "size": 2216 }
{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Type (ℓ i)) → P i0 ≃ P i1 ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Type ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ} -- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more -- informative as they demonstrate the computational behavior. -- -- Full inference rules can be found in Section 6 of CCHM: -- https://arxiv.org/pdf/1611.02108.pdf -- Cubical Type Theory: a constructive interpretation of the univalence axiom -- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg private module GluePrims (A : Type ℓ) {φ : I} (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) where T : Partial φ (Type ℓ') T φ1 = Te φ1 .fst e : PartialP φ (λ φ → T φ ≃ A) e φ1 = Te φ1 .snd -- Glue can be seen as a subtype of Type that, at φ, is definitionally equal to the left type -- of the given equivalences. Glue-S : Type ℓ' [ φ ↦ T ] Glue-S = inS (Glue A Te) -- Which means partial elements of T are partial elements of Glue coeT→G : ∀ (t : PartialP φ T) → Partial φ (Glue A Te) coeT→G t (φ = i1) = t 1=1 -- ... and elements of Glue can be seen as partial elements of T coeG→T : ∀ (g : Glue A Te) → PartialP φ T coeG→T g (φ = i1) = g -- What about elements that are applied to the equivalences? trans-e : ∀ (t : PartialP φ T) → Partial φ A trans-e t ϕ1 = equivFun (e ϕ1) (t ϕ1) -- glue gives a partial element of Glue given an element of A. Note that it "undoes" -- the application of the equivalences! glue-S : ∀ (t : PartialP φ T) → A [ φ ↦ trans-e t ] → Glue A Te [ φ ↦ coeT→G t ] glue-S t s = inS (glue t (outS s)) -- typechecking glue enforces this, e.g. you can not simply write -- glue-bad : (t : PartialP φ T) → A → Glue A Te -- glue-bad t s = glue t s -- unglue does the inverse: unglue-S : ∀ (b : Glue A Te) → A [ φ ↦ trans-e (coeG→T b) ] unglue-S b = inS (unglue φ b) module GlueTransp (A : I → Type ℓ) (Te : (i : I) → Partial (i ∨ ~ i) (Σ[ T ∈ Type ℓ' ] T ≃ A i)) where A0 A1 : Type ℓ A0 = A i0 A1 = A i1 T : (i : I) → Partial (i ∨ ~ i) (Type ℓ') T i φ = Te i φ .fst e : (i : I) → PartialP (i ∨ ~ i) (λ φ → T i φ ≃ A i) e i φ = Te i φ .snd T0 T1 : Type ℓ' T0 = T i0 1=1 T1 = T i1 1=1 e0 : T0 ≃ A0 e0 = e i0 1=1 e1 : T1 ≃ A1 e1 = e i1 1=1 open import Cubical.Foundations.Prelude using (transport) transportA : A0 → A1 transportA = transport (λ i → A i) -- copied over from Foundations/Equiv for readability, can't directly import due to cyclic dependency invEq : ∀ {X : Type ℓ'} {ℓ''} {Y : Type ℓ''} (w : X ≃ Y) → Y → X invEq w y = w .snd .equiv-proof y .fst .fst -- transport in Glue reduces to transport in A + the application of the equivalences in forward and backward -- direction. transp-S : (t0 : T0) → T1 [ i1 ↦ (λ _ → invEq e1 (transportA (equivFun e0 t0))) ] transp-S t0 = inS (transport (λ i → Glue (A i) (Te i)) t0)
{ "alphanum_fraction": 0.5252997358, "avg_line_length": 34.6549295775, "ext": "agda", "hexsha": "521fa3b6dc191bf05cd8c94227b26cd024b30405", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Core/Glue.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Core/Glue.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Core/Glue.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1807, "size": 4921 }
module Tactic.Nat.Subtract.Reflect where open import Prelude import Agda.Builtin.Nat as Builtin open import Builtin.Reflection open import Control.Monad.State open import Control.Monad.Transformer open import Tactic.Reflection open import Tactic.Reflection.Quote open import Tactic.Nat.Reflect open import Tactic.Nat.Subtract.Exp ⟨suc⟩s : SubExp → SubExp ⟨suc⟩s (lit n) = lit (suc n) ⟨suc⟩s (lit n ⟨+⟩ e) = lit (suc n) ⟨+⟩ e ⟨suc⟩s e = lit 1 ⟨+⟩ e freshS : Term → R SubExp freshS t = get >>= uncurry′ λ i Γ → var i <$ put (suc i , (t , i) ∷ Γ) pattern _`-_ x y = def (quote Builtin._-_) (vArg x ∷ vArg y ∷ []) private forceInstance : Name → Term → R ⊤ forceInstance i v = lift $ unify v (def₀ i) forceNumber = forceInstance (quote NumberNat) forceSemiring = forceInstance (quote SemiringNat) forceSubtractive = forceInstance (quote SubtractiveNat) termToSubExpR : Term → R SubExp termToSubExpR (a `+ b) = _⟨+⟩_ <$> termToSubExpR a <*> termToSubExpR b termToSubExpR (a `* b) = _⟨*⟩_ <$> termToSubExpR a <*> termToSubExpR b termToSubExpR (a `- b) = _⟨-⟩_ <$> termToSubExpR a <*> termToSubExpR b -- Handle unsolved instances termToSubExpR (def (quote Semiring._+_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do forceSemiring i ⦇ termToSubExpR a ⟨+⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Semiring._*_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do lift $ unify i (def₀ (quote SemiringNat)) ⦇ termToSubExpR a ⟨*⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Subtractive._-_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ vArg b ∷ [])) = do forceSubtractive i ⦇ termToSubExpR a ⟨-⟩ termToSubExpR b ⦈ termToSubExpR (def (quote Semiring.zro) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ [])) = do forceSemiring i pure (lit 0) termToSubExpR (def (quote Semiring.one) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ [])) = do forceSemiring i pure (lit 1) termToSubExpR (def (quote Number.fromNat) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg a ∷ _ ∷ [])) = do forceNumber i termToSubExpR a termToSubExpR `0 = pure (lit 0) termToSubExpR (`suc a) = ⟨suc⟩s <$> termToSubExpR a termToSubExpR (meta x _) = lift (blockOnMeta x) termToSubExpR (lit (nat n)) = pure (lit n) termToSubExpR unknown = fail termToSubExpR t = do lift $ ensureNoMetas t just i ← gets (flip lookup t ∘ snd) where nothing → freshS t pure (var i) termToSubEqR : Term → R (SubExp × SubExp) termToSubEqR (lhs `≡ rhs) = _,_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqR (def (quote _≡_) (_ ∷ hArg (meta x _) ∷ _)) = lift (blockOnMeta x) termToSubEqR _ = fail termToSubEq : Term → TC (Maybe ((SubExp × SubExp) × List Term)) termToSubEq t = runR (termToSubEqR t) pattern _`<_ a b = def (quote LessNat) (vArg a ∷ vArg b ∷ []) termToSubEqnR : Term → R Eqn termToSubEqnR (def (quote Ord._<_) (_ ∷ _ ∷ vArg i@(meta _ _) ∷ vArg lhs ∷ vArg rhs ∷ [])) = do forceInstance (quote OrdNat) i ⦇ termToSubExpR lhs :< termToSubExpR rhs ⦈ termToSubEqnR (lhs `< rhs) = _:<_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqnR (lhs `≡ rhs) = _:≡_ <$> termToSubExpR lhs <*> termToSubExpR rhs termToSubEqnR (def (quote _≡_) (_ ∷ hArg (meta x _) ∷ _)) = lift (blockOnMeta x) termToSubEqnR t = lift (ensureNoMetas t) *> fail termToSubEqn : Term → TC (Maybe (Eqn × List Term)) termToSubEqn t = runR (termToSubEqnR t) private lower : Nat → Term → R Term lower 0 = pure lower i = liftMaybe ∘ strengthen i termToSubHypsR′ : Nat → Term → R (List Eqn) termToSubHypsR′ i (pi (vArg hyp) (abs _ a)) = _∷_ <$> (termToSubEqnR =<< lower i hyp) <*> termToSubHypsR′ (suc i) a termToSubHypsR′ _ (meta x _) = lift (blockOnMeta x) termToSubHypsR′ i a = [_] <$> (termToSubEqnR =<< lower i a) termToSubHypsR : Term → R (List Eqn) termToSubHypsR = termToSubHypsR′ 0 termToSubHyps : Term → TC (Maybe (List Eqn × List Term)) termToSubHyps t = runR (termToSubHypsR t) instance QuotableSubExp : Quotable SubExp ` {{QuotableSubExp}} (var x) = con (quote SubExp.var) (vArg (` x) ∷ []) ` {{QuotableSubExp}} (lit n) = con (quote SubExp.lit) (vArg (` n) ∷ []) ` {{QuotableSubExp}} (e ⟨+⟩ e₁) = con (quote SubExp._⟨+⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) ` {{QuotableSubExp}} (e ⟨-⟩ e₁) = con (quote SubExp._⟨-⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) ` {{QuotableSubExp}} (e ⟨*⟩ e₁) = con (quote SubExp._⟨*⟩_) (map defaultArg $ ` e ∷ ` e₁ ∷ []) QuotableEqn : Quotable Eqn ` {{QuotableEqn}} (a :≡ b) = con (quote _:≡_) (vArg (` a) ∷ vArg (` b) ∷ []) ` {{QuotableEqn}} (a :< b) = con (quote _:<_) (vArg (` a) ∷ vArg (` b) ∷ [])
{ "alphanum_fraction": 0.6457964602, "avg_line_length": 38.3050847458, "ext": "agda", "hexsha": "0399f5bba390b7c0ca0176d4820316b2dccfa1b7", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract/Reflect.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract/Reflect.agda", "max_line_length": 99, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract/Reflect.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1818, "size": 4520 }
data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x record R₁ (F : Set → Set) : Set₁ where constructor mkR₁ field f₁ : ∀ {A} → A → F A open R₁ {{...}} record R₂ (F : Set → Set) : Set₁ where constructor mkR₂ field instance r₁ : R₁ F record R₃ (_ : Set) : Set where constructor mkR₃ postulate instance r₃ : R₂ R₃ A : Set a : A record R₄ : Set where constructor c field f₂ : A postulate F : (r₄ : R₄) → c a ≡ r₄ → Set G : Set → Set G _ = F _ (refl {x = f₁ a})
{ "alphanum_fraction": 0.5415860735, "avg_line_length": 13.6052631579, "ext": "agda", "hexsha": "19688adbc28545d38471f0549a3b9e22f21ccb26", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue1974.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue1974.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue1974.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 223, "size": 517 }
open import Relation.Binary.Core module PLRTree.DropLast.Heap {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import PLRTree {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.Heap _≤_ lemma-dropLast-≤* : {x : A}{t : PLRTree} → x ≤* t → x ≤* dropLast t lemma-dropLast-≤* {x} (lf≤* .x) = lf≤* x lemma-dropLast-≤* (nd≤* {perfect} {x} {y} {l} {r} x≤y x≤*l x≤*r) with r ... | leaf = x≤*r ... | node _ _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r) lemma-dropLast-≤* (nd≤* {left} {x} {y} {l} {r} x≤y x≤*l x≤*r) with l | x≤*l | dropLast l | lemma-dropLast-≤* x≤*l ... | leaf | _ | _ | _ = lf≤* x ... | node perfect _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node perfect _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r ... | node perfect _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node perfect _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node left _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node left _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r ... | node left _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node left _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node right _ _ _ | _ | node perfect y' l' r' | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node right _ _ _ | _ | leaf | (lf≤* .x) = nd≤* x≤y (lf≤* x) x≤*r ... | node right _ _ _ | _ | node left _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r ... | node right _ _ _ | _ | node right _ _ _ | x≤*dll = nd≤* x≤y x≤*dll x≤*r lemma-dropLast-≤* (nd≤* {right} {x} {y} {l} {r} x≤y x≤*l x≤*r) with r ... | leaf = nd≤* x≤y x≤*r x≤*r ... | node perfect y' l' r' = nd≤* x≤y (lemma-dropLast-≤* x≤*l) x≤*r ... | node left _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r) ... | node right _ _ _ = nd≤* x≤y x≤*l (lemma-dropLast-≤* x≤*r) lemma-dropLast-heap : {t : PLRTree} → Heap t → Heap (dropLast t) lemma-dropLast-heap leaf = leaf lemma-dropLast-heap (node {perfect} {x} {l} {r} x≤*l x≤*r hl hr) with r ... | leaf = hr ... | node _ _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr) lemma-dropLast-heap (node {left} {x} {l} {r} x≤*l x≤*r hl hr) with l | x≤*l | hl | dropLast l | lemma-dropLast-≤* x≤*l | lemma-dropLast-heap hl ... | leaf | _ | _ | _ | _ | _ = leaf ... | node perfect _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node perfect _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr ... | node perfect _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node perfect _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node left _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node left _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr ... | node left _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node left _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node right _ _ _ | _ | _ | node perfect y' l' r' | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node right _ _ _ | _ | _ | leaf | (lf≤* .x) | leaf = node (lf≤* x) x≤*r leaf hr ... | node right _ _ _ | _ | _ | node left _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr ... | node right _ _ _ | _ | _ | node right _ _ _ | x≤*dll | hdll = node x≤*dll x≤*r hdll hr lemma-dropLast-heap (node {right} {x} {l} {r} x≤*l x≤*r hl hr) with r ... | leaf = node x≤*r x≤*r hr hr ... | node perfect y' l' r' = node (lemma-dropLast-≤* x≤*l) x≤*r (lemma-dropLast-heap hl) hr ... | node left _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr) ... | node right _ _ _ = node x≤*l (lemma-dropLast-≤* x≤*r) hl (lemma-dropLast-heap hr)
{ "alphanum_fraction": 0.5173126615, "avg_line_length": 58.6363636364, "ext": "agda", "hexsha": "c8163dd694c20f8101cb7c713e77f8c46aac2e68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/DropLast/Heap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/DropLast/Heap.agda", "max_line_length": 100, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/DropLast/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 1892, "size": 3870 }
data D : Set where @0 c : D postulate P : D → Set p : (x : D) → P x bad : P c bad = p _
{ "alphanum_fraction": 0.46875, "avg_line_length": 9.6, "ext": "agda", "hexsha": "a8bb750073c7a06bec94582cdbd1fb6db44e41c7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue4727.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue4727.agda", "max_line_length": 19, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue4727.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 44, "size": 96 }
module Datalog where open import Data.Nat as ℕ open import Data.List open import Data.Integer as ℤ open import Relation.Binary.PropositionalEquality open import Data.List.Any module Term where data tt : Set where τ-int : tt open Membership (setoid tt) ctx = List tt data Lit : tt → Set where int : ℤ → Lit τ-int data Expr {τ : tt} {{ Γ : ctx }} {{ Δ : ctx }} : Set where lit : (Lit τ) → Expr {τ} e-var : (τ ∈ Γ) → Expr {τ} a-var : (τ ∈ Δ) → Expr {τ} module Program where at = List Term.tt open Membership (setoid at) ctx = List at data PartialAtom {Γ : Term.ctx} {Δ : Term.ctx} {Ρ : ctx} (ρ : at) : Set where predicate : (ρ ∈ Ρ) → PartialAtom ρ apply : ∀ {τ : Term.tt} → PartialAtom {Γ} {Δ} {Ρ} (τ ∷ ρ) → Term.Expr {τ} ⦃ Γ ⦄ ⦃ Δ ⦄ → PartialAtom {Γ} {Δ} {Ρ} ρ data Atom {Γ : Term.ctx} {Δ : Term.ctx} ⦃ Ρ : ctx ⦄ : Set where close : PartialAtom {Γ} {Δ} {Ρ} [] → Atom data Rule {Ρ : ctx} : Set where -- Here, we should also be checking that the rhs uses Γ to make it a relevant ctx -- when used in the universal position -- I don't think I need that property for proofs yet, so it can wait rule : {Γ : Term.ctx} → Atom {Γ} {[]} → List (Atom {[]} {Γ}) → Rule Program : {Ρ : ctx} → Set Program {Ρ} = List (Rule {Ρ}) data Derivable {Ρ} : Program {Ρ} → Atom {[]} {[]} → Set where {- Proof sketch: 0.) match as an assumed-correct-primitive 1.) Proof of upper bound : prog, ∀ r ∈ prog. ∀ db. ∀ s ∈ match db r.body. subst s r.head ∈ upper 2.) semantics : p : Program → db → ∀ a ∈ db. Derivable Ρ prog a → upper → (∀ r ∈ p. ∀ vdb. ∀ s ∈ match vdb r.body. let h = subst s r.head in (h ∈ upper) || (h ∈ db)) a.) Go through prog, trying to generate the proof of termination b.) If on any rule you fail, take the failing fact: i.) Move the fact from upper to db ii.) Add derivability proof for the fact you just derived (look up the matched facts derivation and build up) iii.) Fix up the completeness term by demonstrating that if all that happened moved from upper to db, the property is just as true 3.) Proof of correctness is: db, ∀ a ∈ db. Derivable {Ρ} prog a, ∀ r ∈ prog. ∀ s ∈ match db r.body. subst s r.head ∈ db e.g. database, proof that database is sound, proof that database is complete -}
{ "alphanum_fraction": 0.60749255, "avg_line_length": 36.703125, "ext": "agda", "hexsha": "2a63c843b62489067f882822ea72b2b440f3c268", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-03-18T13:51:18.000Z", "max_forks_repo_forks_event_min_datetime": "2016-01-12T23:35:10.000Z", "max_forks_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maurer/holmes", "max_forks_repo_path": "formal/Datalog.agda", "max_issues_count": 21, "max_issues_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_issues_repo_issues_event_max_datetime": "2017-12-08T02:45:23.000Z", "max_issues_repo_issues_event_min_datetime": "2016-12-13T11:15:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maurer/holmes", "max_issues_repo_path": "formal/Datalog.agda", "max_line_length": 167, "max_stars_count": 27, "max_stars_repo_head_hexsha": "0348b702860f1252458e657001989c154030f03c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maurer/holmes", "max_stars_repo_path": "formal/Datalog.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-14T22:21:39.000Z", "max_stars_repo_stars_event_min_datetime": "2015-11-24T18:04:01.000Z", "num_tokens": 769, "size": 2349 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Well-founded induction ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Induction.WellFounded where open import Data.Product open import Function open import Induction open import Level open import Relation.Binary.PropositionalEquality hiding (trans) open import Relation.Unary private variable a b ℓ ℓ₁ ℓ₂ r : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definitions -- When using well-founded recursion you can recurse arbitrarily, as -- long as the arguments become smaller, and "smaller" is -- well-founded. WfRec : Rel A r → ∀ {ℓ} → RecStruct A ℓ _ WfRec _<_ P x = ∀ y → y < x → P y -- The accessibility predicate: x is accessible if everything which is -- smaller than x is also accessible (inductively). data Acc {A : Set a} (_<_ : Rel A ℓ) (x : A) : Set (a ⊔ ℓ) where acc : (rs : WfRec _<_ (Acc _<_) x) → Acc _<_ x acc-inverse : ∀ {_<_ : Rel A ℓ} {x : A} (q : Acc _<_ x) → (y : A) → y < x → Acc _<_ y acc-inverse (acc rs) y y<x = rs y y<x -- The accessibility predicate encodes what it means to be -- well-founded; if all elements are accessible, then _<_ is -- well-founded. WellFounded : Rel A ℓ → Set _ WellFounded _<_ = ∀ x → Acc _<_ x Well-founded = WellFounded {-# WARNING_ON_USAGE Well-founded "Warning: Well-founded was deprecated in v0.15. Please use WellFounded instead." #-} ------------------------------------------------------------------------ -- Basic properties Acc-resp-≈ : {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} → Symmetric _≈_ → _<_ Respectsʳ _≈_ → (Acc _<_) Respects _≈_ Acc-resp-≈ sym respʳ x≈y (acc rec) = acc (λ z z<y → rec z (respʳ (sym x≈y) z<y)) ------------------------------------------------------------------------ -- Well-founded induction for the subset of accessible elements: module Some {_<_ : Rel A r} {ℓ} where wfRecBuilder : SubsetRecursorBuilder (Acc _<_) (WfRec _<_ {ℓ = ℓ}) wfRecBuilder P f x (acc rs) = λ y y<x → f y (wfRecBuilder P f y (rs y y<x)) wfRec : SubsetRecursor (Acc _<_) (WfRec _<_) wfRec = subsetBuild wfRecBuilder unfold-wfRec : (P : Pred A ℓ) (f : WfRec _<_ P ⊆′ P) {x : A} (q : Acc _<_ x) → wfRec P f x q ≡ f x (λ y y<x → wfRec P f y (acc-inverse q y y<x)) unfold-wfRec P f (acc rs) = refl wfRec-builder = wfRecBuilder {-# WARNING_ON_USAGE wfRec-builder "Warning: wfRec-builder was deprecated in v0.15. \ \Please use wfRecBuilder instead." #-} ------------------------------------------------------------------------ -- Well-founded induction for all elements, assuming they are all -- accessible: module All {_<_ : Rel A r} (wf : WellFounded _<_) ℓ where wfRecBuilder : RecursorBuilder (WfRec _<_ {ℓ = ℓ}) wfRecBuilder P f x = Some.wfRecBuilder P f x (wf x) wfRec : Recursor (WfRec _<_) wfRec = build wfRecBuilder wfRec-builder = wfRecBuilder {-# WARNING_ON_USAGE wfRec-builder "Warning: wfRec-builder was deprecated in v0.15. \ \Please use wfRecBuilder instead." #-} module FixPoint {_<_ : Rel A ℓ} (wf : WellFounded _<_) (P : Pred A ℓ) (f : WfRec _<_ P ⊆′ P) (f-ext : (x : A) {IH IH' : WfRec _<_ P x} → (∀ {y} y<x → IH y y<x ≡ IH' y y<x) → f x IH ≡ f x IH') where some-wfRec-irrelevant : ∀ x → (q q' : Acc _<_ x) → Some.wfRec P f x q ≡ Some.wfRec P f x q' some-wfRec-irrelevant = All.wfRec wf _ (λ x → (q q' : Acc _<_ x) → Some.wfRec P f x q ≡ Some.wfRec P f x q') (λ { x IH (acc rs) (acc rs') → f-ext x (λ y<x → IH _ y<x (rs _ y<x) (rs' _ y<x)) }) open All wf ℓ wfRecBuilder-wfRec : ∀ {x y} y<x → wfRecBuilder P f x y y<x ≡ wfRec P f y wfRecBuilder-wfRec {x} {y} y<x with wf x ... | acc rs = some-wfRec-irrelevant y (rs y y<x) (wf y) unfold-wfRec : ∀ {x} → wfRec P f x ≡ f x (λ y _ → wfRec P f y) unfold-wfRec {x} = f-ext x wfRecBuilder-wfRec ------------------------------------------------------------------------ -- It might be useful to establish proofs of Acc or Well-founded using -- combinators such as the ones below (see, for instance, -- "Constructing Recursion Operators in Intuitionistic Type Theory" by -- Lawrence C Paulson). module Subrelation {_<₁_ : Rel A ℓ₁} {_<₂_ : Rel A ℓ₂} (<₁⇒<₂ : ∀ {x y} → x <₁ y → x <₂ y) where accessible : Acc _<₂_ ⊆ Acc _<₁_ accessible (acc rs) = acc (λ y y<x → accessible (rs y (<₁⇒<₂ y<x))) wellFounded : WellFounded _<₂_ → WellFounded _<₁_ wellFounded wf = λ x → accessible (wf x) well-founded = wellFounded {-# WARNING_ON_USAGE well-founded "Warning: well-founded was deprecated in v0.15. \ \Please use wellFounded instead." #-} module InverseImage {_<_ : Rel B ℓ} (f : A → B) where accessible : ∀ {x} → Acc _<_ (f x) → Acc (_<_ on f) x accessible (acc rs) = acc (λ y fy<fx → accessible (rs (f y) fy<fx)) wellFounded : WellFounded _<_ → WellFounded (_<_ on f) wellFounded wf = λ x → accessible (wf (f x)) well-founded = wellFounded {-# WARNING_ON_USAGE well-founded "Warning: well-founded was deprecated in v0.15. \ \Please use wellFounded instead." #-} module TransitiveClosure {A : Set a} (_<_ : Rel A ℓ) where infix 4 _<⁺_ data _<⁺_ : Rel A (a ⊔ ℓ) where [_] : ∀ {x y} (x<y : x < y) → x <⁺ y trans : ∀ {x y z} (x<y : x <⁺ y) (y<z : y <⁺ z) → x <⁺ z downwardsClosed : ∀ {x y} → Acc _<⁺_ y → x <⁺ y → Acc _<⁺_ x downwardsClosed (acc rs) x<y = acc (λ z z<x → rs z (trans z<x x<y)) mutual accessible : ∀ {x} → Acc _<_ x → Acc _<⁺_ x accessible acc-x = acc (accessible′ acc-x) accessible′ : ∀ {x} → Acc _<_ x → WfRec _<⁺_ (Acc _<⁺_) x accessible′ (acc rs) y [ y<x ] = accessible (rs y y<x) accessible′ acc-x y (trans y<z z<x) = downwardsClosed (accessible′ acc-x _ z<x) y<z wellFounded : WellFounded _<_ → WellFounded _<⁺_ wellFounded wf = λ x → accessible (wf x) downwards-closed = downwardsClosed {-# WARNING_ON_USAGE downwards-closed "Warning: downwards-closed was deprecated in v0.15. \ \Please use downwardsClosed instead." #-} well-founded = wellFounded {-# WARNING_ON_USAGE well-founded "Warning: well-founded was deprecated in v0.15. \ \Please use wellFounded instead." #-} -- DEPRECATED in v1.3. -- Please use `×-Lex` from `Data.Product.Relation.Binary.Lex.Strict` instead. module Lexicographic {A : Set a} {B : A → Set b} (RelA : Rel A ℓ₁) (RelB : ∀ x → Rel (B x) ℓ₂) where data _<_ : Rel (Σ A B) (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where left : ∀ {x₁ y₁ x₂ y₂} (x₁<x₂ : RelA x₁ x₂) → (x₁ , y₁) < (x₂ , y₂) right : ∀ {x y₁ y₂} (y₁<y₂ : RelB x y₁ y₂) → (x , y₁) < (x , y₂) mutual accessible : ∀ {x y} → Acc RelA x → (∀ {x} → WellFounded (RelB x)) → Acc _<_ (x , y) accessible accA wfB = acc (accessible′ accA (wfB _) wfB) accessible′ : ∀ {x y} → Acc RelA x → Acc (RelB x) y → (∀ {x} → WellFounded (RelB x)) → WfRec _<_ (Acc _<_) (x , y) accessible′ (acc rsA) _ wfB ._ (left x′<x) = accessible (rsA _ x′<x) wfB accessible′ accA (acc rsB) wfB ._ (right y′<y) = acc (accessible′ accA (rsB _ y′<y) wfB) wellFounded : WellFounded RelA → (∀ {x} → WellFounded (RelB x)) → WellFounded _<_ wellFounded wfA wfB p = accessible (wfA (proj₁ p)) wfB well-founded = wellFounded {-# WARNING_ON_USAGE _<_ "Warning: _<_ was deprecated in v1.3. \ \Please use `×-Lex` from `Data.Product.Relation.Binary.Lex.Strict` instead." #-} {-# WARNING_ON_USAGE accessible "Warning: accessible was deprecated in v1.3." #-} {-# WARNING_ON_USAGE accessible′ "Warning: accessible′ was deprecated in v1.3." #-} {-# WARNING_ON_USAGE wellFounded "Warning: wellFounded was deprecated in v1.3. \ \Please use `×-wellFounded` from `Data.Product.Relation.Binary.Lex.Strict` instead." #-} {-# WARNING_ON_USAGE well-founded "Warning: well-founded was deprecated in v0.15. \ \Please use wellFounded instead." #-} ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 module Inverse-image = InverseImage module Transitive-closure = TransitiveClosure
{ "alphanum_fraction": 0.5666627785, "avg_line_length": 32.7213740458, "ext": "agda", "hexsha": "d98386891fb892ede22523001dbba0058111e86c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Induction/WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Induction/WellFounded.agda", "max_line_length": 118, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Induction/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2723, "size": 8573 }
-- Andreas, 2016-02-02 postpone type checking of extended lambda -- See also issue 480 and 1159 open import Common.Maybe open import Common.String record ⊤ : Set where record IOInterface : Set₁ where field Command : Set Response : (m : Command) → Set open IOInterface data IO I A : Set where do' : (c : Command I) (f : Response I c → IO I A) → IO I A return : (a : A) → IO I A -- Alias of constructor which is a function do : ∀{I A} (c : Command I) (f : Response I c → IO I A) → IO I A do c f = do' c f data C : Set where getLine : C putStrLn : String → C R : C → Set R getLine = Maybe String R (putStrLn s) = ⊤ I : IOInterface Command I = C Response I = R works : IO I ⊤ works = do' getLine λ{ nothing → return _ ; (just line) → do (putStrLn line) λ _ → return _ } test : IO I ⊤ test = do getLine λ{ nothing → return _ ; (just line) → do (putStrLn line) λ _ → return _ }
{ "alphanum_fraction": 0.5442435775, "avg_line_length": 24.4418604651, "ext": "agda", "hexsha": "b784c80c4164ec9273c6645d3239600c072bd770", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1811.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1811.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1811.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 343, "size": 1051 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver open import homotopy.elims.CofPushoutSection module cohomology.MayerVietoris {i} where {- Mayer-Vietoris Sequence: Given a span X ←f– Z –g→ Y, the cofiber space of the natural map [reglue : X ∨ Y → X ⊔_Z Y] (defined below) is equivalent to the suspension of Z. -} {- Relevant functions -} module MayerVietorisFunctions (ps : ⊙Span {i} {i} {i}) where open ⊙Span ps module Reglue = ⊙WedgeRec (⊙left ps) (⊙right ps) reglue : X ∨ Y → fst (⊙Pushout ps) reglue = Reglue.f ⊙reglue : fst (X ⊙∨ Y ⊙→ ⊙Pushout ps) ⊙reglue = Reglue.⊙f module MVDiff = SuspensionRec (fst Z) {C = Suspension (X ∨ Y)} (north _) (north _) (λ z → merid _ (winl (fst f z)) ∙ ! (merid _ (winr (fst g z)))) mv-diff : Suspension (fst Z) → Suspension (X ∨ Y) mv-diff = MVDiff.f ⊙mv-diff : fst (⊙Susp Z ⊙→ ⊙Susp (X ⊙∨ Y)) ⊙mv-diff = (mv-diff , idp) {- We use path induction (via [⊙pushout-J]) to assume that the basepoint preservation paths of the span maps are [idp]. The module [MayerVietorisBase] contains the proof of the theorem for this case. -} module MayerVietorisBase {A B : Type i} (Z : Ptd i) (f : fst Z → A) (g : fst Z → B) where X = ⊙[ A , f (snd Z) ] Y = ⊙[ B , g (snd Z) ] ps = ⊙span X Y Z (f , idp) (g , idp) F : fst (Z ⊙→ X) F = (f , idp) G : fst (Z ⊙→ Y) G = (g , idp) open MayerVietorisFunctions ps {- Definition of the maps into : Cofiber reglue → ΣZ out : ΣZ → Cofiber reglue -} private into-glue-square : Square idp idp (ap (ext-glue ∘ reglue) wglue) (merid _ (snd Z)) into-glue-square = connection ⊡v∙ ! (ap-∘ ext-glue reglue wglue ∙ ap (ap ext-glue) (Reglue.glue-β ∙ !-! (glue (snd Z))) ∙ ExtGlue.glue-β (snd Z)) module IntoGlue = WedgeElim {P = λ xy → north _ == ext-glue (reglue xy)} (λ _ → idp) (λ _ → merid _ (snd Z)) (↓-cst=app-from-square into-glue-square) into-glue = IntoGlue.f module Into = CofiberRec reglue (north _) ext-glue into-glue private out-glue-and-square : (z : fst Z) → Σ (cfbase reglue == cfbase reglue) (λ p → Square (cfglue _ (winl (f z))) p (ap (cfcod _) (glue z)) (cfglue _ (winr (g z)))) out-glue-and-square z = fill-square-top _ _ _ out-glue = fst ∘ out-glue-and-square out-square = snd ∘ out-glue-and-square module Out = SuspensionRec (fst Z) {C = Cofiber reglue} (cfbase _) (cfbase _) out-glue into = Into.f out = Out.f {- [out] is a right inverse for [into] -} private into-out-sq : (z : fst Z) → Square idp (ap into (ap out (merid _ z))) (merid _ z) (merid _ (snd Z)) into-out-sq z = (ap (ap into) (Out.glue-β z) ∙v⊡ (! (Into.glue-β (winl (f z)))) ∙h⊡ ap-square into (out-square z) ⊡h∙ (Into.glue-β (winr (g z)))) ⊡v∙ (∘-ap into (cfcod _) (glue z) ∙ ExtGlue.glue-β z) into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim (fst Z) idp (merid _ (snd Z)) (λ z → ↓-∘=idf-from-square into out (into-out-sq z)) {- [out] is a left inverse for [into] -} {- [out] is left inverse on codomain part of cofiber space, - i.e. [out (into (cfcod _ γ)) == cfcod _ γ] -} private out-into-cod-square : (z : fst Z) → Square (cfglue reglue (winl (f z))) (ap (out ∘ ext-glue {s = ⊙span-out ps}) (glue z)) (ap (cfcod _) (glue z)) (cfglue _ (winr (g z))) out-into-cod-square z = (ap-∘ out ext-glue (glue z) ∙ ap (ap out) (ExtGlue.glue-β z) ∙ Out.glue-β z) ∙v⊡ out-square z module OutIntoCod = PushoutElim {d = ⊙span-out ps} {P = λ γ → out (into (cfcod _ γ)) == cfcod _ γ} (λ x → cfglue _ (winl x)) (λ y → cfglue _ (winr y)) (λ z → ↓-='-from-square (out-into-cod-square z)) out-into-cod = OutIntoCod.f out-into : ∀ κ → out (into κ) == κ out-into = CofPushoutSection.elim reglue (λ _ → unit) (λ _ → idp) idp out-into-cod (↓-='-from-square ∘ λ x → (ap-∘ out into (cfglue _ (winl x)) ∙ ap (ap out) (Into.glue-β (winl x))) ∙v⊡ connection ⊡v∙ ! (ap-idf (glue (winl x)))) (↓-='-from-square ∘ λ y → (ap-∘ out into (cfglue _ (winr y)) ∙ ap (ap out) (Into.glue-β (winr y)) ∙ Out.glue-β (snd Z) ∙ square-top-unique (out-square (snd Z)) (! (ap-cst (cfbase _) wglue) ∙v⊡ natural-square (cfglue _) wglue ⊡v∙ (ap-∘ (cfcod _) reglue wglue ∙ ap (ap (cfcod _)) (Reglue.glue-β ∙ !-! (glue (snd Z)))))) ∙v⊡ connection ⊡v∙ ! (ap-idf (glue (winr y)))) {- equivalence and path -} eq : Cofiber reglue ≃ Suspension (fst Z) eq = equiv into out into-out out-into ⊙eq : ⊙Cof ⊙reglue ⊙≃ ⊙Susp Z ⊙eq = ⊙≃-in eq idp path = ua eq ⊙path = ⊙ua ⊙eq {- Transporting [cfcod reglue] over the equivalence -} cfcod-over : cfcod reglue == ext-glue [ (λ W → fst (⊙Pushout ps) → fst W) ↓ ⊙path ] cfcod-over = ↓-cst2-in _ _ $ codomain-over-equiv _ _ {- Transporting [ext-glue] over the equivalence. -} ext-over : ext-glue == mv-diff [ (λ W → fst W → fst (⊙Susp (X ⊙∨ Y))) ↓ ⊙path ] ext-over = ↓-cst2-in _ _ $ ! (λ= fn-lemma) ◃ domain-over-equiv _ _ where fn-lemma : ∀ κ → mv-diff (into κ) == ext-glue κ fn-lemma = CofPushoutSection.elim reglue (λ _ → unit) (λ _ → idp) idp (Pushout-elim (λ x → merid _ (winl x)) (λ y → merid _ (winr y)) (↓-='-from-square ∘ λ z → (ap-∘ mv-diff ext-glue (glue z) ∙ ap (ap mv-diff) (ExtGlue.glue-β z) ∙ MVDiff.glue-β z) ∙v⊡ (lt-square (merid _ (winl (f z))) ⊡h rt-square (merid _ (winr (g z)))) ⊡v∙ ! (ap-cst (south _) (glue z)))) (↓-='-from-square ∘ λ x → (ap-∘ mv-diff into (cfglue _ (winl x)) ∙ ap (ap mv-diff) (Into.glue-β (winl x))) ∙v⊡ connection ⊡v∙ ! (ExtGlue.glue-β (winl x))) (↓-='-from-square ∘ λ y → (ap-∘ mv-diff into (cfglue _ (winr y)) ∙ ap (ap mv-diff) (Into.glue-β (winr y)) ∙ MVDiff.glue-β (snd Z) ∙ ap (λ w → merid _ w ∙ ! (merid _ (winr (g (snd Z))))) wglue ∙ !-inv-r (merid _ (winr (g (snd Z))))) ∙v⊡ connection ⊡v∙ ! (ExtGlue.glue-β (winr y))) {- Main results -} module MayerVietoris (ps : ⊙Span {i} {i} {i}) where private record Results (ps : ⊙Span {i} {i} {i}) : Type (lsucc i) where open ⊙Span ps open MayerVietorisFunctions ps public field eq : Cofiber reglue ≃ Suspension (fst Z) ⊙eq : ⊙Cof ⊙reglue ⊙≃ ⊙Susp Z path : Cofiber reglue == Suspension (fst Z) ⊙path : ⊙Cof ⊙reglue == ⊙Susp Z cfcod-over : cfcod reglue == ext-glue [ (λ W → fst (⊙Pushout ps) → fst W) ↓ ⊙path ] ext-over : ext-glue == mv-diff [ (λ W → fst W → fst (⊙Susp (X ⊙∨ Y))) ↓ ⊙path ] results : Results ps results = ⊙pushout-J Results base-results ps where base-results : ∀ {A} {B} Z (f : fst Z → A) (g : fst Z → B) → Results (⊙span _ _ Z (f , idp) (g , idp)) base-results Z f g = record { eq = eq; ⊙eq = ⊙eq; path = path; ⊙path = ⊙path; cfcod-over = cfcod-over; ext-over = ext-over} where open MayerVietorisBase Z f g open Results results public
{ "alphanum_fraction": 0.5310787328, "avg_line_length": 30.7860082305, "ext": "agda", "hexsha": "e77a4aaa06ce29854aaad842e5043e6471b764de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2917, "size": 7481 }
module hnf-tests where open import bool open import list open import nat open import product open import string open import cedille-types open import conversion open import ctxt open import is-free open import rename open import subst open import syntax-util open import to-string S : term S = mlam "n" (mlam "s" (mlam "z" (mapp (mvar "s") (mapp (mapp (mvar "n") (mvar "s")) (mvar "z"))))) plus : term plus = mlam "n" (mlam "m" (mapp (mapp (mvar "n") S) (mvar "m"))) run : term → term run t = hnf new-ctxt unfold-head t show : term → string show t = term-to-string t s2 = show (run (mapp S (mvar "z"))) -- λ s . (λ x . λ s . x λ s' . f s' s) s t1 = mlam "s" (mapp (mlam "x" (mlam "s" (mapp (mvar "x") (mlam "s'" (mapp (mapp (mvar "f") (mvar "s'")) (mvar "s")))))) (mvar "s")) s1 = show (run t1) Γ = ctxt-var-decl "s" new-ctxt q = show (subst-term Γ (mvar "s") "x" (mlam "s" (mapp (mvar "x") (mlam "s'" (mapp (mapp (mvar "f") (mvar "s'")) (mvar "s")))))) r = show (subst-term Γ (mvar "s") "x" (mlam "s" (mlam "s'" (mapp (mapp (mvar "f") (mvar "s'")) (mvar "s"))))) aa = rename-var-if Γ empty-renamectxt "s" (mvar "s") Γ' = ctxt-var-decl "s'" Γ ρ = renamectxt-insert empty-renamectxt "s" "s'" bb = show (substh-term Γ' ρ (mvar "s") "x" (mlam "s'" (mapp (mapp (mvar "f") (mvar "s'")) (mvar "s")))) cc = rename-var-if Γ' ρ "s'" (mvar "s") try-pull-lift-types : type → type → type try-pull-lift-types tp1 tp2 with decompose-tpapps tp1 | decompose-tpapps (hnf new-ctxt unfold-head tp2) try-pull-lift-types tp1 tp2 | Lft _ _ X t l , args1 | Lft _ _ X' t' l' , args2 = if conv-tty* new-ctxt args1 args2 then try-pull-term-in t l (length args1) [] [] else TpApp tp1 tp2 where try-pull-term-in : term → liftingType → ℕ → 𝕃 var → 𝕃 liftingType → type try-pull-term-in t (LiftParens _ l _) n vars ltps = try-pull-term-in t l n vars ltps try-pull-term-in t (LiftArrow _ l) 0 vars ltps = recompose-tpapps (Lft posinfo-gen posinfo-gen X (Lam* vars (hnf Γ no-unfolding (App t NotErased (App* t' (map mvar vars))))) (LiftArrow* ltps l) , args1) try-pull-term-in (Lam _ _ _ x _ t) (LiftArrow l1 l2) (suc n) vars ltps = try-pull-term-in t l2 n (x :: vars) (l1 :: ltps) try-pull-term-in t (LiftArrow l1 l2) (suc n) vars ltps = let x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt in try-pull-term-in (App t NotErased (mvar x)) l2 n (x :: vars) (l1 :: ltps) try-pull-term-in t l n vars ltps = TpApp tp1 tp2 try-pull-lift-types tp1 tp2 | h , a | h' , a' = TpApp tp1 tp2 lta = (TpApp (Lft posinfo-gen posinfo-gen "X" (mvar "f") (LiftArrow (LiftStar posinfo-gen) (LiftArrow (LiftStar posinfo-gen) (LiftStar posinfo-gen)))) (mtpvar "doit")) ltb = (TpApp (Lft posinfo-gen posinfo-gen "X" (mvar "t") (LiftStar posinfo-gen)) (mtpvar "doit")) lt = try-pull-lift-types lta ltb lts = to-string lt
{ "alphanum_fraction": 0.5972409152, "avg_line_length": 34.9647058824, "ext": "agda", "hexsha": "b8d9ffa96cd43ecd5ca191e9571f051ca343ddb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/hnf-tests.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/hnf-tests.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/hnf-tests.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1143, "size": 2972 }
{-# OPTIONS --without-K --safe #-} open import Categories.Bicategory -- The two Hom 2-functors from (op C) and C to Cats. module Categories.Pseudofunctor.Hom {o ℓ e t} (C : Bicategory o ℓ e t) where open import Data.Product using (_,_) import Categories.Bicategory.Extras as BicategoryExtras open import Categories.Bicategory.Opposite using (op) open import Categories.Bicategory.Instance.Cats using (Cats) import Categories.Category.Construction.Core as Core open import Categories.Functor.Bifunctor.Properties open import Categories.Pseudofunctor using (Pseudofunctor) import Categories.Morphism.Reasoning as MorphismReasoning import Categories.Morphism as Morphism open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) open BicategoryExtras C open Shorthands open hom.HomReasoning private module MR {A} {B} where open Core.Shorthands (hom A B) public open MorphismReasoning (hom A B) public open MR -- The left and right hom-pseudofunctors for a given bicategory. -- -- Note that these are *not* simply partial applications of a single -- *binary* hom-pseudofunctor because pre-/post-composition with -- identity 1-cells in bicategories is only weakly unitary, i.e. the -- partial applications Hom[ id , f ] and Hom[ g , id ] would send a -- 1-cell h to (id ∘ h ∘ f) and (g ∘ h ∘ id) which are isomorphic but -- not strictly equal to (h ∘ f) and (g ∘ h). -- The right hom-pseudofunctor (post-composition) Hom[_,-] : Obj → Pseudofunctor C (Cats o ℓ e) Hom[ A ,-] = record { P₀ = hom A ; P₁ = [-]⊚- -- A curried version of the left unitor ; P-identity = niHelper (record { η = λ _ → ntHelper (record { η = λ f → unitˡ.⇐.η (_ , f) ; commute = λ _ → ⟺ ▷-∘ᵥ-λ⇐ }) ; η⁻¹ = λ _ → ntHelper (record { η = λ f → unitˡ.⇒.η (_ , f) ; commute = λ _ → λ⇒-∘ᵥ-▷ }) ; commute = λ _ → unitˡ.⇐.commute (_ , hom.id) ; iso = λ _ → record { isoˡ = λ {f} → unitˡ.iso.isoʳ (_ , f) ; isoʳ = λ {f} → unitˡ.iso.isoˡ (_ , f) } }) -- A curried version of the associator ; P-homomorphism = niHelper (record { η = λ{ (f , g) → ntHelper (record { η = λ h → ⊚-assoc.⇐.η ((f , g) , h) ; commute = λ _ → α⇐-▷-∘₁ }) } ; η⁻¹ = λ{ (f , g) → ntHelper (record { η = λ h → ⊚-assoc.⇒.η ((f , g) , h) ; commute = λ _ → α⇒-▷-∘₁ }) } ; commute = λ{ {f₁ , g₁} {f₂ , g₂} (β , γ) {h} → begin α⇐ ∘ᵥ f₂ ▷ (γ ◁ h) ∘ᵥ β ◁ (g₁ ⊚₀ h) ≈˘⟨ refl⟩∘⟨ [ ⊚ ]-decompose₂ ⟩ α⇐ ∘ᵥ β ⊚₁ (γ ◁ h) ≈⟨ ⊚-assoc.⇐.commute ((β , γ) , id₂) ⟩ (β ⊚₁ γ) ◁ h ∘ᵥ α⇐ ∎ } ; iso = λ{ (f , g) → record { isoˡ = λ {h} → ⊚-assoc.iso.isoʳ ((f , g) , h) ; isoʳ = λ {h} → ⊚-assoc.iso.isoˡ ((f , g) , h) } } }) ; unitaryˡ = λ {_ _ f g} → begin λ⇒ ◁ g ∘ᵥ α⇐ ∘ᵥ (id₂ ◁ (f ⊚₀ g)) ∘ᵥ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⊚.identity ⟩∘⟨refl ⟩ λ⇒ ◁ g ∘ᵥ α⇐ ∘ᵥ id₂ ∘ᵥ λ⇐ ≈⟨ unitorˡ-coherence ⟩∘⟨ refl⟩∘⟨ hom.identityˡ ⟩ (λ⇒ ∘ᵥ α⇒) ∘ᵥ α⇐ ∘ᵥ λ⇐ ≈⟨ isoʳ (unitorˡ ∘ᵢ associator) ⟩ id₂ ∎ ; unitaryʳ = λ {_ _ f g} → begin ρ⇒ ◁ g ∘ᵥ α⇐ ∘ᵥ f ▷ λ⇐ ∘ᵥ id₂ ≈⟨ pushʳ (refl⟩∘⟨ hom.identityʳ) ⟩ (ρ⇒ ◁ g ∘ᵥ α⇐) ∘ᵥ f ▷ λ⇐ ≈˘⟨ switch-tofromʳ (associator ⁻¹) triangle ⟩∘⟨refl ⟩ f ▷ λ⇒ ∘ᵥ f ▷ λ⇐ ≈⟨ isoʳ (f ▷ᵢ unitorˡ) ⟩ id₂ ∎ ; assoc = λ {_ _ _ _ f g h e} → begin α⇒ ◁ e ∘ᵥ α⇐ ∘ᵥ (id₂ ⊚₁ id₂) ∘ᵥ α⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⊚.identity ⟩∘⟨refl ⟩ α⇒ ◁ e ∘ᵥ α⇐ ∘ᵥ id₂ ∘ᵥ α⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ hom.identityˡ ⟩ α⇒ ◁ e ∘ᵥ α⇐ ∘ᵥ α⇐ ≈˘⟨ switch-fromtoˡ ((associator ◁ᵢ e) ⁻¹) (hom.sym-assoc ○ pentagon-inv) ⟩ α⇐ ∘ᵥ h ▷ α⇐ ≈˘⟨ pushʳ hom.identityʳ ○ hom.identityʳ ⟩ α⇐ ∘ᵥ (h ▷ α⇐ ∘ᵥ id₂) ∘ᵥ id₂ ∎ } -- The left hom-pseudofunctor (pre-composition) Hom[-,_] : Obj → Pseudofunctor (op C) (Cats o ℓ e) Hom[-, B ] = record { P₀ = λ A → hom A B ; P₁ = -⊚[-] -- A curried version of the right unitor ; P-identity = niHelper (record { η = λ _ → ntHelper (record { η = λ f → unitʳ.⇐.η (f , _) ; commute = λ _ → ⟺ ◁-∘ᵥ-ρ⇐ }) ; η⁻¹ = λ _ → ntHelper (record { η = λ f → unitʳ.⇒.η (f , _) ; commute = λ _ → ρ⇒-∘ᵥ-◁ }) ; commute = λ _ → unitʳ.⇐.commute (hom.id , _) ; iso = λ _ → record { isoˡ = λ {f} → unitʳ.iso.isoʳ (f , _) ; isoʳ = λ {f} → unitʳ.iso.isoˡ (f , _) } }) -- A curried version of the associator ; P-homomorphism = niHelper (record { η = λ{ (f , g) → ntHelper (record { η = λ h → ⊚-assoc.⇒.η ((h , g) , f) ; commute = λ _ → α⇒-◁-∘₁ }) } ; η⁻¹ = λ{ (f , g) → ntHelper (record { η = λ h → ⊚-assoc.⇐.η ((h , g) , f) ; commute = λ _ → α⇐-◁-∘₁ }) } ; commute = λ{ {f₁ , g₁} {f₂ , g₂} (β , γ) {h} → begin α⇒ ∘ᵥ (h ▷ γ) ◁ f₂ ∘ᵥ (h ⊚₀ g₁) ▷ β ≈˘⟨ refl⟩∘⟨ [ ⊚ ]-decompose₁ ⟩ α⇒ ∘ᵥ (h ▷ γ) ⊚₁ β ≈⟨ ⊚-assoc.⇒.commute ((id₂ , γ) , β) ⟩ h ▷ (γ ⊚₁ β) ∘ᵥ α⇒ ∎ } ; iso = λ{ (f , g) → record { isoˡ = λ {h} → ⊚-assoc.iso.isoˡ ((h , g) , f) ; isoʳ = λ {h} → ⊚-assoc.iso.isoʳ ((h , g) , f) } } }) ; unitaryˡ = λ {_ _ f g} → begin g ▷ ρ⇒ ∘ᵥ α⇒ ∘ᵥ ((g ⊚₀ f) ▷ id₂) ∘ᵥ ρ⇐ ≈⟨ pushʳ (refl⟩∘⟨ ⊚.identity ⟩∘⟨refl) ⟩ (g ▷ ρ⇒ ∘ᵥ α⇒) ∘ᵥ id₂ ∘ᵥ ρ⇐ ≈⟨ ⟺ unitorʳ-coherence ⟩∘⟨ hom.identityˡ ⟩ ρ⇒ ∘ᵥ ρ⇐ ≈⟨ isoʳ unitorʳ ⟩ id₂ ∎ ; unitaryʳ = λ {_ _ f g} → begin g ▷ λ⇒ ∘ᵥ α⇒ ∘ᵥ ρ⇐ ◁ f ∘ᵥ id₂ ≈⟨ pushʳ (refl⟩∘⟨ hom.identityʳ) ⟩ (g ▷ λ⇒ ∘ᵥ α⇒) ∘ᵥ ρ⇐ ◁ f ≈⟨ triangle ⟩∘⟨refl ⟩ ρ⇒ ◁ f ∘ᵥ ρ⇐ ◁ f ≈⟨ isoʳ (unitorʳ ◁ᵢ f) ⟩ id₂ ∎ ; assoc = λ {_ _ _ _ f g h e} → begin e ▷ α⇐ ∘ᵥ α⇒ ∘ᵥ (id₂ ⊚₁ id₂) ∘ᵥ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⊚.identity ⟩∘⟨refl ⟩ e ▷ α⇐ ∘ᵥ α⇒ ∘ᵥ id₂ ∘ᵥ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ hom.identityˡ ⟩ e ▷ α⇐ ∘ᵥ α⇒ ∘ᵥ α⇒ ≈˘⟨ switch-fromtoˡ (e ▷ᵢ associator) pentagon ⟩ α⇒ ∘ᵥ α⇒ ◁ h ≈˘⟨ pushʳ hom.identityʳ ○ hom.identityʳ ⟩ α⇒ ∘ᵥ (α⇒ ◁ h ∘ᵥ id₂) ∘ᵥ id₂ ∎ }
{ "alphanum_fraction": 0.4750272289, "avg_line_length": 34.5537634409, "ext": "agda", "hexsha": "91879d8600222188f3cb907b74b2a585b1100b4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maxsnew/agda-categories", "max_forks_repo_path": "src/Categories/Pseudofunctor/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maxsnew/agda-categories", "max_issues_repo_path": "src/Categories/Pseudofunctor/Hom.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maxsnew/agda-categories", "max_stars_repo_path": "src/Categories/Pseudofunctor/Hom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3173, "size": 6427 }
------------------------------------------------------------------------ -- A counterexample: The trace of stack sizes produced by the virtual -- machine is not necessarily bisimilar to that produced by the -- instrumented interpreter ------------------------------------------------------------------------ module Lambda.Interpreter.Stack-sizes.Counterexample where open import Equality.Propositional as E using (_≡_) open import Prelude open import Prelude.Size open import Colist E.equality-with-J open import Function-universe E.equality-with-J open import Vec.Data E.equality-with-J import Lambda.Compiler import Lambda.Interpreter.Stack-sizes import Lambda.Virtual-machine import Lambda.Virtual-machine.Instructions -- This module uses a name type with two inhabitants. open import Lambda.Syntax Bool open Closure Tm -- Two unary functions. def : Bool → Tm 1 def true = call false (con true) def false = con true -- The instrumented interpreter, compiler and virtual machine are -- instantiated with this definition. module I = Lambda.Interpreter.Stack-sizes def open Lambda.Compiler def open Lambda.Virtual-machine.Instructions Bool open module VM = Lambda.Virtual-machine comp-name -- A top-level term to get things going. The important property of -- this term is that when it is compiled and the resulting code is -- executed on the virtual machine, then one tail call is made to a -- function that terminates successfully. go : Tm 0 go = call true (con true) -- The trace of stack sizes produced by the virtual machine is not -- necessarily bisimilar to that produced by the instrumented -- interpreter. stack-sizes-not-bisimilar : ¬ [ ∞ ] VM.stack-sizes ⟨ comp₀ go , [] , [] ⟩ ∼ I.stack-sizes go stack-sizes-not-bisimilar = [ ∞ ] VM.stack-sizes ⟨ comp₀ go , [] , [] ⟩ ∼ I.stack-sizes go ↝⟨ take-cong 8 ⟩ take 8 (VM.stack-sizes ⟨ comp₀ go , [] , [] ⟩) ≡ take 8 (I.stack-sizes go) ↔⟨⟩ 0 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ 2 ∷ 1 ∷ [] ≡ 0 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ 2 ∷ 2 ∷ 1 ∷ [] ↝⟨ (λ ()) ⟩□ ⊥ □
{ "alphanum_fraction": 0.6266915539, "avg_line_length": 32.4696969697, "ext": "agda", "hexsha": "24efdf03b9c942d4f7873ea3d043d1fa28deddbc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Interpreter/Stack-sizes/Counterexample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Interpreter/Stack-sizes/Counterexample.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Interpreter/Stack-sizes/Counterexample.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 535, "size": 2143 }
{-# OPTIONS --without-K --safe #-} module Categories.2-Category where open import Level open import Categories.Category.Monoidal.Instance.StrictCats using (module Product) open import Categories.Enriched.Category using (Category) 2-Category : (o ℓ e t : Level) → Set (suc (o ⊔ ℓ ⊔ e ⊔ t)) 2-Category o ℓ e t = Category (Product.Cats-Monoidal {o} {ℓ} {e}) t
{ "alphanum_fraction": 0.7119113573, "avg_line_length": 30.0833333333, "ext": "agda", "hexsha": "9c1323bef43d759cabac2a21b3754eb6eaf98b2c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/2-Category.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/2-Category.agda", "max_line_length": 83, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/2-Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 106, "size": 361 }
-- {-# OPTIONS -v tc.with:40 #-} module RewriteAndWhere where open import Common.Equality data ℕ : Set where zero : ℕ -- good : (a b : ℕ) → a ≡ b → b ≡ a -- good a b eq with a | eq -- ... | .b | refl = foo -- where -- foo : b ≡ b -- foo = refl mutual aux : (a b : ℕ)(w : ℕ) → w ≡ b → b ≡ w aux a b .b refl = foo where foo : b ≡ b foo = refl good₂ : (a b : ℕ) → a ≡ b → b ≡ a good₂ a b eq = aux a b a eq bad : (a b : ℕ) → a ≡ b → b ≡ a bad a b eq rewrite eq = foo where foo : b ≡ b foo = refl -- Andreas, 2014-11-06: this rewrite is trying to touch -- variable b bound in pattern of parent function, which is -- illegal. -- -- foo rewrite sym eq = bar -- where -- bar : a ≡ a -- bar = refl -- Andreas, 2015-11-18 added test during exploration of issue 1692. -- Ulf, 2016-02-25 after fix to #745 this no longer works. -- test : (a b : ℕ) → a ≡ b → b ≡ a -- test a b eq with a | eq -- test a b eq | .b | refl = eq
{ "alphanum_fraction": 0.5184079602, "avg_line_length": 21.847826087, "ext": "agda", "hexsha": "ca34666bd7c6e3b4918a7ebea3091519a85304d5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/RewriteAndWhere.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/RewriteAndWhere.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/RewriteAndWhere.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 378, "size": 1005 }
{-# OPTIONS --type-in-type #-} -- yes, I will let you cheat in this exercise {-# OPTIONS --allow-unsolved-metas #-} -- allows import, unfinished ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- CS410 2017/18 Exercise 3 WINDOWS AND OTHER STORIES (worth 25%) ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Dependencies ------------------------------------------------------------------------------ open import CS410-Prelude open import CS410-Categories open import Ex2 ------------------------------------------------------------------------------ -- PART I: Splittings ------------------------------------------------------------------------------ -- The type ls <[ ms ]> rs -- is similar to that found in Lec2.agda, but it works on lists, not numbers. -- It provides the evidence that a list ms can be split into a left sublist ls -- and a right sublist rs. In effect, it's a vector of bits that say which -- elements of ms go left and which go right. data _<[_]>_ {X : Set} : List X -> List X -> List X -> Set where sz : [] <[ [] ]> [] sl : forall {l ls ms rs} -> ls <[ ms ]> rs -> (l ,- ls) <[ l ,- ms ]> rs sr : forall {r ls ms rs} -> ls <[ ms ]> rs -> ls <[ r ,- ms ]> (r ,- rs) --??--3.1--------------------------------------------------------------------- -- Adapt _>[_]<_ from Lec2 to work for All. Given a P for each element of -- ls and rs, riffle them together to get Ps for all the ms. _>[_]<_ : {X : Set}{ls ms rs : List X} -> {P : X -> Set} -> All P ls -> ls <[ ms ]> rs -> All P rs -> All P ms pl >[ s ]< pr = {!!} -- Now, buikd the view that shows riffling can be inverted, using a splitting -- as the instructions to discover how to split an All in two. data IsRiffle {X : Set}{ls ms rs : List X}(s : ls <[ ms ]> rs){P : X -> Set} : All P ms -> Set where mkRiffle : (pl : All P ls)(pr : All P rs) -> IsRiffle s (pl >[ s ]< pr) isRiffle : {X : Set}{ls ms rs : List X}(s : ls <[ ms ]> rs) {P : X -> Set}(pm : All P ms) -> IsRiffle s pm isRiffle s pm = {!!} --??-------------------------------------------------------------------------- --??--3.2--------------------------------------------------------------------- -- Construct the "all on the right" splitting. srs : forall {X : Set}{xs : List X} -> [] <[ xs ]> xs srs = {!!} -- Construct a view to show that any "none on the left" splitting is -- "all on the right". Come up with the type yourself. -- Construct the splitting that corresponds to concatenation. slrs : forall {X : Set}(xs ys : List X) -> xs <[ xs +L ys ]> ys slrs xs ys = {!!} --??-------------------------------------------------------------------------- --??--3.3--------------------------------------------------------------------- -- Invent other useful operations which transform splittings. -- You will need some to do later parts of the exercise, so maybe -- wait until you see what you need. -- I expect you will need at least something that takes a pair of splittings -- that make a tree, like -- -- ms -- <[ ]> -- ls rs -- <[ ]> -- lrs rrs -- -- and compute a "rotated" pair of splittings like -- -- ms -- <[ ]> -- ?? rrs -- <[ ]> -- ls lrs -- HINT: Sg is your friend -- You'll probably need some other stuff, too. --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- PART II: Permutations ------------------------------------------------------------------------------ -- When is one list a permutation of another? data _~_ {X : Set} : List X -> List X -> Set where -- [] is a permutation of [] [] : [] ~ [] -- if xs ~ ys, then (x ,- xs) is a permutation of any list made by -- shoving x somewhere into ys _,-_ : forall {x xs ys' ys} -> (x ,- []) <[ ys' ]> ys -> xs ~ ys -> (x ,- xs) ~ ys' --??--3.4--------------------------------------------------------------------- -- Show that every list is a permutation of itself. reflP : {X : Set}{xs : List X} -> xs ~ xs reflP = {!!} --??-------------------------------------------------------------------------- --??--3.5--------------------------------------------------------------------- -- Construct an "unbiased" insertion operator which lets you grow a -- permutation by inserting a new element anywhere, left and right insP : forall {X : Set}{z : X}{xs xs' ys ys'} -> (z ,- []) <[ xs' ]> xs -> (z ,- []) <[ ys' ]> ys -> xs ~ ys -> xs' ~ ys' insP l r p = {!!} -- Now show that, given a permutation, and any element on the left, -- you can find out where it ended up on the right, and why the -- remaining elements form a permutation. findLonR : forall {X : Set}{z : X}{xs xs' ys'} -> (z ,- []) <[ xs' ]> xs -> xs' ~ ys' -> {!!} findLonR l p = {!!} -- HINT: again, you may need Sg to give a sensible return type. --??-------------------------------------------------------------------------- --??--3.6--------------------------------------------------------------------- -- Show that permutation is transitive. transP : {X : Set}{xs ys zs : List X} -> xs ~ ys -> ys ~ zs -> xs ~ zs transP p q = {!!} -- HINT: you will need to define some useful operations on splittings to -- get this to work. -- HINT: this may help you figure out what you need for findLonR -- For a small bonus, show that permutations are the morphisms of a -- Category. -- Show that permutation is symmetric. symP : {X : Set}{xs ys : List X} -> xs ~ ys -> ys ~ xs symP p = {!!} -- A category where all morphisms are invertible is called a "groupoid". --??-------------------------------------------------------------------------- --??--3.7--------------------------------------------------------------------- -- Make permutations act on All. permute : {X : Set}{xs ys : List X} -> xs ~ ys -> {Q : X -> Set} -> All Q xs -> All Q ys permute p qs = {!!} --??-------------------------------------------------------------------------- -- MORE TO FOLLOW
{ "alphanum_fraction": 0.3972560976, "avg_line_length": 32.6368159204, "ext": "agda", "hexsha": "3534de0eff1bef19987253152ef623b54cec9593", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "m-schmidt/CS410-17-Exercises", "max_forks_repo_path": "Ex3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "m-schmidt/CS410-17-Exercises", "max_issues_repo_path": "Ex3.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "m-schmidt/CS410-17-Exercises", "max_stars_repo_path": "Ex3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1503, "size": 6560 }
------------------------------------------------------------------------------ -- Totality properties for Forest ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.Forest.TotalityI where open import FOTC.Base open import FOTC.Data.List open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ ++-Forest : ∀ {xs ys} → Forest xs → Forest ys → Forest (xs ++ ys) ++-Forest {ys = ys} fnil Fys = subst Forest (sym (++-[] ys)) Fys ++-Forest {ys = ys} (fcons {x} {xs} Tx Fxs) Fys = subst Forest (sym (++-∷ x xs ys)) (fcons Tx (++-Forest Fxs Fys)) map-Forest : ∀ {xs} f → (∀ {x} → Tree x → Tree (f · x)) → Forest xs → Forest (map f xs) map-Forest f fTree fnil = subst Forest (sym (map-[] f)) fnil map-Forest f fTree (fcons {x} {xs} Tx Fxs) = subst Forest (sym (map-∷ f x xs)) (fcons (fTree Tx) (map-Forest f fTree Fxs)) rev-Forest : ∀ {xs ys} → Forest xs → Forest ys → Forest (rev xs ys) rev-Forest {ys = ys} fnil Fys = subst Forest (sym (rev-[] ys)) Fys rev-Forest {ys = ys} (fcons {x} {xs} Tx Fxs) Fys = subst Forest (sym (rev-∷ x xs ys)) (rev-Forest Fxs (fcons Tx Fys)) reverse-Forest : ∀ {xs} → Forest xs → Forest (reverse xs) reverse-Forest Fxs = rev-Forest Fxs fnil
{ "alphanum_fraction": 0.5013404826, "avg_line_length": 39.2631578947, "ext": "agda", "hexsha": "906620f8d04eaa7222d37f213be197c257482bab", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 424, "size": 1492 }
module Oscar.Builtin.Objectevel where open import Agda.Primitive public using () renaming (Level to Ł̂; lzero to Ø̂; lsuc to ↑̂_; _⊔_ to _∙̂_) infix 0 Ø_ Ø_ : ∀ 𝔬 → Set (↑̂ 𝔬) Ø_ 𝔬 = Set 𝔬
{ "alphanum_fraction": 0.6428571429, "avg_line_length": 17.8181818182, "ext": "agda", "hexsha": "5dc99b883f43830377e9a6fbe1aa6623d6dc0c25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Builtin/Objectevel.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Builtin/Objectevel.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Builtin/Objectevel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 94, "size": 196 }
module DigitsInNames where data 1D : Set where 1d : 1D 2d : 1D -> 1D
{ "alphanum_fraction": 0.6315789474, "avg_line_length": 9.5, "ext": "agda", "hexsha": "b3153ba05e982eb92c14339ffb24455054fba85c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/DigitsInNames.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/DigitsInNames.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/DigitsInNames.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 76 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between monoid-like structures ------------------------------------------------------------------------ -- See Data.Nat.Binary.Properties for examples of how this and similar -- modules can be used to easily translate properties between types. {-# OPTIONS --without-K --safe #-} open import Algebra.Bundles open import Algebra.Morphism.Structures open import Relation.Binary.Core module Algebra.Morphism.MonoidMonomorphism {a b ℓ₁ ℓ₂} {M₁ : RawMonoid a ℓ₁} {M₂ : RawMonoid b ℓ₂} {⟦_⟧} (isMonoidMonomorphism : IsMonoidMonomorphism M₁ M₂ ⟦_⟧) where open IsMonoidMonomorphism isMonoidMonomorphism open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁) open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂) open import Algebra.Definitions open import Algebra.Structures open import Data.Product using (map) import Relation.Binary.Reasoning.Setoid as SetoidReasoning ------------------------------------------------------------------------ -- Re-export all properties of magma monomorphisms open import Algebra.Morphism.MagmaMonomorphism isMagmaMonomorphism public ------------------------------------------------------------------------ -- Properties module _ (◦-isMagma : IsMagma _≈₂_ _◦_) where open IsMagma ◦-isMagma renaming (∙-cong to ◦-cong) open SetoidReasoning setoid identityˡ : LeftIdentity _≈₂_ ε₂ _◦_ → LeftIdentity _≈₁_ ε₁ _∙_ identityˡ idˡ x = injective (begin ⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩ ⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩ ε₂ ◦ ⟦ x ⟧ ≈⟨ idˡ ⟦ x ⟧ ⟩ ⟦ x ⟧ ∎) identityʳ : RightIdentity _≈₂_ ε₂ _◦_ → RightIdentity _≈₁_ ε₁ _∙_ identityʳ idʳ x = injective (begin ⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩ ⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩ ⟦ x ⟧ ◦ ε₂ ≈⟨ idʳ ⟦ x ⟧ ⟩ ⟦ x ⟧ ∎) identity : Identity _≈₂_ ε₂ _◦_ → Identity _≈₁_ ε₁ _∙_ identity = map identityˡ identityʳ zeroˡ : LeftZero _≈₂_ ε₂ _◦_ → LeftZero _≈₁_ ε₁ _∙_ zeroˡ zeˡ x = injective (begin ⟦ ε₁ ∙ x ⟧ ≈⟨ homo ε₁ x ⟩ ⟦ ε₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong ε-homo refl ⟩ ε₂ ◦ ⟦ x ⟧ ≈⟨ zeˡ ⟦ x ⟧ ⟩ ε₂ ≈˘⟨ ε-homo ⟩ ⟦ ε₁ ⟧ ∎) zeroʳ : RightZero _≈₂_ ε₂ _◦_ → RightZero _≈₁_ ε₁ _∙_ zeroʳ zeʳ x = injective (begin ⟦ x ∙ ε₁ ⟧ ≈⟨ homo x ε₁ ⟩ ⟦ x ⟧ ◦ ⟦ ε₁ ⟧ ≈⟨ ◦-cong refl ε-homo ⟩ ⟦ x ⟧ ◦ ε₂ ≈⟨ zeʳ ⟦ x ⟧ ⟩ ε₂ ≈˘⟨ ε-homo ⟩ ⟦ ε₁ ⟧ ∎) zero : Zero _≈₂_ ε₂ _◦_ → Zero _≈₁_ ε₁ _∙_ zero = map zeroˡ zeroʳ ------------------------------------------------------------------------ -- Structures isMonoid : IsMonoid _≈₂_ _◦_ ε₂ → IsMonoid _≈₁_ _∙_ ε₁ isMonoid isMonoid = record { isSemigroup = isSemigroup M.isSemigroup ; identity = identity M.isMagma M.identity } where module M = IsMonoid isMonoid isCommutativeMonoid : IsCommutativeMonoid _≈₂_ _◦_ ε₂ → IsCommutativeMonoid _≈₁_ _∙_ ε₁ isCommutativeMonoid isCommMonoid = record { isMonoid = isMonoid C.isMonoid ; comm = comm C.isMagma C.comm } where module C = IsCommutativeMonoid isCommMonoid
{ "alphanum_fraction": 0.5577578198, "avg_line_length": 33.9894736842, "ext": "agda", "hexsha": "416a17bc3b54abca550f946407c1d970286d21c7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/MonoidMonomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1227, "size": 3229 }
------------------------------------------------------------------------------ -- Testing the --without-K flag ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} -- {-# OPTIONS --without-K #-} module WithoutK where -- The following code fails with the --without-K flag. data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x K : {A : Set} (P : {x : A} → x ≡ x → Set) → (∀ x → P (refl x)) → ∀ {x} (x≡x : x ≡ x) → P x≡x K P p (refl x) = p x
{ "alphanum_fraction": 0.3593004769, "avg_line_length": 29.9523809524, "ext": "agda", "hexsha": "06f274ec2d12407a86246b55d530928a3f04b894", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/k-axiom/WithoutK.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/k-axiom/WithoutK.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/k-axiom/WithoutK.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 165, "size": 629 }
open import Level open import Data.Unit open import Data.Bool open import Data.Nat open import Data.Fin open import Data.Sum open import Data.Maybe open import Data.Product open import Data.Vec using (Vec; _∷_; []) import Data.Vec as Vec open import Data.List open import Relation.Binary.PropositionalEquality --------------- lenses Lens : Set → Set → Set Lens A B = A → B × (B → A) idₗ : {A : Set} → Lens A A idₗ = λ z → z , λ x → x _∘ₗ_ : {A B C : Set} → Lens A B → Lens B C → Lens A C l ∘ₗ k = λ a → let (l₁ , l₂) = l a; (k₁ , k₂) = k l₁ in k₁ , λ x → l₂ (k₂ x) infixl 9 _∘ₗ_ --- composition laws _≡ₗ_ : {A B : Set} (k l : Lens A B) → Set _≡ₗ_ {A} {B} k l = (a : A) → let (k₁ , k₂) = k a; (l₁ , l₂) = l a in k₁ ≡ l₁ × ((b : B) → k₂ b ≡ l₂ b) infix 4 _≡ₗ_ id-left : {A B : Set} (k : Lens A B) → idₗ ∘ₗ k ≡ₗ k id-left k a = refl , λ b → refl id-right : {A B : Set} (k : Lens A B) → k ≡ₗ idₗ ∘ₗ k id-right k a = refl , λ b → refl comp-assoc : {A B C D : Set} (k : Lens A B) (l : Lens B C) (m : Lens C D) → k ∘ₗ (l ∘ₗ m) ≡ₗ (k ∘ₗ l) ∘ₗ m comp-assoc k l m a = refl , λ b → refl --------------- heterogeneous lists TList : Set₁ TList = List Set data HList : TList → Set where [] : HList [] _∷_ : ∀ {t : Set} {ts : TList} → (v : t) → HList ts → HList (t ∷ ts) --- operations _+++_ : ∀ {ts xs : TList} → HList ts → HList xs → HList (ts ++ xs) [] +++ y = y (v ∷ x) +++ y = v ∷ (x +++ y) splitH : ∀ {ts xs : TList} → HList (ts ++ xs) → HList ts × HList xs splitH {ts = []} xs₁ = [] , xs₁ splitH {ts = x ∷ ts} (v ∷ xs₁) = let (r₁ , r₂) = splitH {ts = ts} xs₁ in v ∷ r₁ , r₂ ---------------- auxiliary stuff TList′ : ℕ → Set₁ TList′ = Vec Set data HList′ : {n : ℕ} → TList′ n → Set where [] : HList′ [] _∷_ : ∀ {n} {t : Set} {ts : TList′ n} → (v : t) → HList′ ts → HList′ (t ∷ ts) pattern ex a = ._ , a toVec : ∀ {ℓ} {A : Set ℓ} (as : List A) → Σ ℕ λ n → (n ≡ length as) × Vec A n toVec [] = 0 , refl , [] toVec (x ∷ as) with toVec as toVec (x ∷ as) | ex (refl , as′) = _ , refl , x ∷ as′ toVec′ : ∀ {ts : TList} → HList ts → let (_ , _ , ts′) = toVec ts in HList′ ts′ × (HList′ ts′ → HList ts) toVec′ {[]} [] = [] , (λ _ → []) toVec′ {x ∷ ts} (v ∷ xs) with toVec ts | toVec′ xs toVec′ {x ∷ ts} (v ∷ xs) | ex (refl , _) | xs′ , f = v ∷ xs′ , λ { (v₁ ∷ x₁) → v₁ ∷ f x₁ } ---------- lookup : (ts : TList) → Fin (length ts) → Set lookup x i with toVec x lookup x i | ex (refl , v) = Vec.lookup i v ---------------------------------------------- signals Signal : ∀ {ℓ} → TList → Set ℓ → Set ℓ Signal ts A = HList ts → A widenSignal : ∀ {ts xs : TList} {A : Set} → Signal ts A → Signal (ts ++ xs) A widenSignal s vs = s (proj₁ (splitH vs)) sig : ∀ {ts : TList} (i : Fin (length ts)) → Signal ts (lookup ts i) sig {ts} i st with toVec ts | toVec′ st sig i st | ex (refl , v) | z , _ = sig′ i z where sig′ : ∀ {n} {ts : Vec Set n} (i : Fin n) → HList′ ts → Vec.lookup i ts sig′ zero (v ∷ x) = v sig′ (suc i) (v ∷ x) = sig′ i x join : ∀ {ts : TList} {A : Set} → Signal ts (Signal ts A) → Signal ts A join s vs = s vs vs ret : ∀ {ts : TList} {A : Set} → A → Signal ts A ret a _ = a -- TODO: ret + join monad laws ------------------------------------ references Ref : TList → Set → Set Ref ts = Lens (HList ts) widenRef : {ts xs : TList} {A : Set} → Ref ts A → Ref (ts ++ xs) A widenRef r vs = let (vs₁ , vs₂) = splitH vs; (r₁ , r₂) = r vs₁ in r₁ , λ x → r₂ x +++ vs₂ ref : {ts : TList} (i : Fin (length ts)) → Ref ts (lookup ts i) ref {ts} i st with toVec ts | toVec′ st ref {ts} i st | ex (refl , v) | z , tr = let (r₁ , r₂) = ref′ i z in r₁ , λ x → tr (r₂ x) where ref′ : ∀ {n} {ts : TList′ n} (i : Fin n) → Lens (HList′ ts) (Vec.lookup i ts) ref′ zero (v ∷ x) = v , λ v → v ∷ x ref′ (suc i) (v ∷ x) with ref′ i x ref′ (suc i) (v ∷ x) | z , f = z , λ z → v ∷ f z unitRef : ∀ {ts : TList} → Ref ts ⊤ unitRef st = tt , λ tt → st joinRef : ∀ {ts : TList} {A : Set} → Signal ts (Ref ts A) → Ref ts A joinRef s st = s st st lensMap : ∀ {ts : TList} {A B : Set} → Ref ts A → Lens A B → Ref ts B lensMap = _∘ₗ_ readRef : ∀ {ts : TList} {A : Set} → Ref ts A → Signal ts A readRef r st = proj₁ (r st) ---------------------------------- programs open import Coinduction Event : TList → Set Event ts = Σ (Fin (length ts)) λ i → lookup ts i mutual data R (ts : TList) : Set₁ where step : HList ts → (Event ts → ∞ (W ts)) → R ts W : TList → Set₁ W ts = Σ TList λ vs → R (ts ++ vs) Prog : Set₁ Prog = W [] ----------------------------------------- Gen : TList → TList → Set → Set Gen ts xs A = HList ts → A × HList (ts ++ xs) Gen′ : TList → Set → Set₁ Gen′ ts A = HList ts → A × Σ TList λ xs → HList (ts ++ xs) -- TODO: widenGen data Trigger (ts : TList) (A : Set) : Set₁ where extend : {B : Set} → Ref ts B → Lens A B → Trigger ts A stabilize : (A → A → Bool) → Signal ts A → Trigger ts A onChange : Signal ts (Gen′ ts A) → Trigger ts A runTrigger : ∀ {ts : TList} {A : Set} → Trigger ts A → Gen′ ts A runTrigger (extend x x₁) x₂ = {!!} runTrigger (stabilize x x₁) x₂ = {!!} runTrigger (onChange x) x₁ = {!!} -- ...
{ "alphanum_fraction": 0.5130162458, "avg_line_length": 27.6162162162, "ext": "agda", "hexsha": "14ba1d374f6f57726a96da105ab6ecb4b4fa9235", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-04-01T04:10:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-16T10:01:44.000Z", "max_forks_repo_head_hexsha": "2f0b9a36ac8853780e2b09ad0769464dd3837dab", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "silky/lensref", "max_forks_repo_path": "Model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2f0b9a36ac8853780e2b09ad0769464dd3837dab", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "silky/lensref", "max_issues_repo_path": "Model.agda", "max_line_length": 106, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2f0b9a36ac8853780e2b09ad0769464dd3837dab", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "divipp/lensref", "max_stars_repo_path": "Model.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-06T18:57:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-14T22:51:43.000Z", "num_tokens": 2096, "size": 5109 }
module Binding where open import Agda.Primitive data Freer {ℓ} (F : Set ℓ → Set (lsuc ℓ)) (A : Set (lsuc ℓ)) : Set (lsuc ℓ) where pure : A → Freer F A free : ∀ {a : Set ℓ} → (a → Freer F A) → F a → Freer F A
{ "alphanum_fraction": 0.576744186, "avg_line_length": 23.8888888889, "ext": "agda", "hexsha": "e98506e20e19a5e13d38c5d7de6601bf5ecc76d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Binding.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Binding.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Binding.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 92, "size": 215 }
{- LEMMAS FOR BOUNDING THEOREM WITH NEW COMPLEXITY LANGUAGE -} open import Preliminaries open import Source open import Pilot open import Translation-New module Bounding-Lemmas-New where mutual valBound : ∀{τ} → (e : [] Source.|- τ) → val e → [] Pilot.|- ⟨⟨ τ ⟩⟩ → Set valBound .z z-isval E = z ≤s E valBound .(suc e) (suc-isval e v) E = Σ (λ E' → valBound e v E' × s E' ≤s E) valBound .(prod e1 e2) (pair-isval e1 e2 v1 v2) E = valBound e1 v1 (l-proj E) × valBound e2 v2 (r-proj E) valBound {τ1 ->s τ2} .(lam e) (lam-isval e) E = (v₁ : [] Source.|- τ1) (vv : val v₁) (E1 : [] Pilot.|- ⟨⟨ τ1 ⟩⟩) → valBound v₁ vv E1 → expBound (Source.subst e (Source.q v₁)) (app E E1) valBound .unit unit-isval E = Unit valBound .(delay e) (delay-isval e) E = expBound e E valBound .nil nil-isval E = nil ≤s E valBound .(x ::s xs) (cons-isval x xs v v₁) E = Σ (λ E' → Σ (λ E'' → (valBound x v E' × valBound xs v₁ E'') × (E' ::c E'') ≤s E)) valBound .true true-isval E = true ≤s E valBound .false false-isval E = false ≤s E expBound : ∀{τ} → [] Source.|- τ → [] Pilot.|- || τ || → Set expBound {τ} e b = (v₁ : [] Source.|- τ) (vv : val v₁) (n : Cost) → evals e v₁ n → interp-Cost n ≤s l-proj b × valBound v₁ vv (r-proj b) mutual weakeningExp : ∀{τ} → (e : [] Source.|- τ) → (E E' : [] Pilot.|- || τ ||) → expBound e E → E ≤s E' → expBound e E' weakeningExp e c1 c2 d c1≤c2 e' ve' n i = trans-s (fst (d e' ve' n i)) (cong-lproj c1≤c2) , weakeningVal e' ve' (r-proj c1) (r-proj c2) (snd (d e' ve' n i)) (cong-rproj c1≤c2) weakeningVal : ∀{τ} → (v : [] Source.|- τ) → (vv : val v) → (E E' : [] Pilot.|- ⟨⟨ τ ⟩⟩) → valBound v vv E → E ≤s E' → valBound v vv E' weakeningVal {unit} unit unit-isval E E' vb e≤e' = <> weakeningVal {nat} .z z-isval E E' vb e≤e' = vb trans e≤e' weakeningVal {nat} .(suc e) (suc-isval e vv) E E' (i , vbi , si≤se) e≤e' = i , (vbi , (trans-s si≤se e≤e')) weakeningVal {susp τ} .(delay e) (delay-isval e) E E' vb e≤e' v₁ vv n x = weakeningExp e _ E' vb e≤e' v₁ vv n x weakeningVal {τ ->s τ₁} .(lam e) (lam-isval e) E E' vb e≤e' v₁ vv c1 x v₂ vv₁ n x₁ = (λ a va a' vba b b' n₁ x₂ → fst (vb a va a' vba b b' n₁ x₂) trans cong-lproj (cong-app e≤e') , weakeningVal b b' (r-proj (app E a')) (r-proj (app E' a')) (snd (vb a va a' vba b b' n₁ x₂)) (cong-rproj (cong-app e≤e'))) v₁ vv c1 x v₂ vv₁ n x₁ weakeningVal {τ ×s τ₁} .(prod e1 e2) (pair-isval e1 e2 vv1 vv2) E E' vb e≤e' = weakeningVal e1 vv1 (l-proj E) (l-proj E') (fst vb) (cong-lproj e≤e') , weakeningVal e2 vv2 (r-proj E) (r-proj E') (snd vb) (cong-rproj e≤e') weakeningVal {list τ} .nil nil-isval E E' vb e≤e' = vb trans e≤e' weakeningVal {list τ} .(x ::s xs) (cons-isval x xs vv vv₁) E E' (h , t , (hvb , tvb) , steps) e≤e' = h , (t , ((hvb , tvb) , (steps trans e≤e'))) weakeningVal {bool} .true true-isval E E' vb e≤e' = vb trans e≤e' weakeningVal {bool} .false false-isval E E' vb e≤e' = vb trans e≤e' weakeningExp' : ∀{τ} {e : [] Source.|- τ} {E E' : [] Pilot.|- || τ ||} → expBound e E → E ≤s E' → expBound e E' weakeningExp' eb e≤ = weakeningExp _ _ _ eb e≤ weakeningVal' : ∀{τ} { v : [] Source.|- τ} (vv : val v) {E E' : [] Pilot.|- ⟨⟨ τ ⟩⟩} → valBound v vv E → E ≤s E' → valBound v vv E' weakeningVal' vv v e = weakeningVal _ vv _ _ v e substVal : ∀{Γ} → (Θ : Source.sctx [] Γ) → Set substVal {Γ} Θ = {τ : _} (x : τ Source.∈ Γ) → val (Θ x) extend-substVal : ∀ {Γ' τ} {Θ : Source.sctx [] Γ'} {e : [] Source.|- τ} → substVal Θ → val e → substVal (Source.lem3' Θ e) extend-substVal sv vv i0 = vv extend-substVal sv vv (iS x) = sv x extend-substVal2 : ∀ {Γ' τ1 τ2} {Θ : Source.sctx [] Γ'} {e : [] Source.|- τ1} {e' : [] Source.|- τ2} → substVal Θ → val e → val e' → substVal (Source.lem4' Θ e e') extend-substVal2 sv vv vv' i0 = vv extend-substVal2 sv vv vv' (iS i0) = vv' extend-substVal2 sv vv vv' (iS (iS x)) = sv x extend-substVal3 : ∀ {Γ' τ1 τ2 τ3} {Θ : Source.sctx [] Γ'} {e : [] Source.|- τ1} {e' : [] Source.|- τ2} {e'' : [] Source.|- τ3} → substVal Θ → val e → val e' → val e'' → substVal (Source.lem5' Θ e e' e'') extend-substVal3 sv vv vv' vv'' i0 = vv extend-substVal3 sv vv vv' vv'' (iS i0) = vv' extend-substVal3 sv vv vv' vv'' (iS (iS i0)) = vv'' extend-substVal3 sv vv vv' vv'' (iS (iS (iS x))) = sv x substBound : ∀{Γ} → (Θ : Source.sctx [] Γ) → substVal Θ → (Θ' : Pilot.sctx [] ⟨⟨ Γ ⟩⟩c) → Set substBound {Γ} Θ vΘ Θ' = {τ : _} (x : τ Source.∈ Γ) → valBound (Θ x) (vΘ x) (Θ' (lookup x)) extend-substBound : ∀{Γ τ} → {Θ : Source.sctx [] Γ} {vΘ : substVal Θ} {Θ' : Pilot.sctx [] ⟨⟨ Γ ⟩⟩c} → {e : [] Source.|- τ} {ve : val e} {E : [] Pilot.|- ⟨⟨ τ ⟩⟩} → substBound Θ vΘ Θ' → valBound e ve E → substBound (Source.lem3' Θ e) (extend-substVal vΘ ve) (Pilot.lem3' Θ' E) extend-substBound sb vb i0 = vb extend-substBound sb vb (iS x) = sb x extend-substBound2 : ∀{Γ τ1 τ2} → {Θ : Source.sctx [] Γ} {vΘ : substVal Θ} {Θ' : Pilot.sctx [] ⟨⟨ Γ ⟩⟩c} → {e : [] Source.|- τ1} {ve : val e} {e' : [] Source.|- τ2} {ve' : val e'} {E : [] Pilot.|- ⟨⟨ τ1 ⟩⟩} {E' : [] Pilot.|- ⟨⟨ τ2 ⟩⟩} → substBound Θ vΘ Θ' → valBound e ve E → valBound e' ve' E' → substBound (Source.lem4' Θ e e') (extend-substVal2 vΘ ve ve') (Pilot.lem4' Θ' E E') extend-substBound2 sb vbE vbE' i0 = vbE extend-substBound2 sb vbE vbE' (iS i0) = vbE' extend-substBound2 sb vbE vbE' (iS (iS x)) = sb x extend-substBound3 : ∀{Γ τ1 τ2 τ3} → {Θ : Source.sctx [] Γ} {vΘ : substVal Θ} {Θ' : Pilot.sctx [] ⟨⟨ Γ ⟩⟩c} → {e : [] Source.|- τ1} {ve : val e} {e' : [] Source.|- τ2} {ve' : val e'} {e'' : [] Source.|- τ3} {ve'' : val e''} {E : [] Pilot.|- ⟨⟨ τ1 ⟩⟩} {E' : [] Pilot.|- ⟨⟨ τ2 ⟩⟩} {E'' : [] Pilot.|- ⟨⟨ τ3 ⟩⟩} → substBound Θ vΘ Θ' → valBound e ve E → valBound e' ve' E' → valBound e'' ve'' E'' → substBound (Source.lem5' Θ e e' e'') (extend-substVal3 vΘ ve ve' ve'') (Pilot.lem5' Θ' E E' E'') extend-substBound3 sb vbE vbE' vbE'' i0 = vbE extend-substBound3 sb vbE vbE' vbE'' (iS i0) = vbE' extend-substBound3 sb vbE vbE' vbE'' (iS (iS i0)) = vbE'' extend-substBound3 sb vbE vbE' vbE'' (iS (iS (iS x))) = sb x -- inversion lemma inv1 : ∀ {τ} {v v' : [] Source.|- τ} {n : Cost} → val v → evals v v' n → _≤s_{[]} (interp-Cost n) 0C inv1 z-isval z-evals = refl-s inv1 (suc-isval e v) (s-evals evals) = inv1 v evals inv1 (pair-isval e1 e2 v v₁) (pair-evals evals evals₁) = cong-+ (inv1 v evals) (inv1 v₁ evals₁) trans +-unit-l trans refl-s inv1 (lam-isval e) lam-evals = refl-s inv1 unit-isval unit-evals = refl-s inv1 (delay-isval e) delay-evals = refl-s inv1 nil-isval nil-evals = refl-s inv1 (cons-isval x xs v v₁) (cons-evals evals evals₁) = cong-+ (inv1 v evals) (inv1 v₁ evals₁) trans +-unit-l inv1 true-isval true-evals = refl-s inv1 false-isval false-evals = refl-s inv2 : ∀ {τ} {v e : [] Source.|- τ} {n : Cost} -> val v → evals v e n → v == e inv2 z-isval z-evals = Refl inv2 (suc-isval e₁ v) (s-evals evals) = ap suc (inv2 v evals) inv2 (pair-isval e1 e2 v v₁) (pair-evals evals evals₁) = ap2 prod (inv2 v evals) (inv2 v₁ evals₁) inv2 (lam-isval e₁) lam-evals = Refl inv2 unit-isval unit-evals = Refl inv2 (delay-isval e₁) delay-evals = Refl inv2 nil-isval nil-evals = Refl inv2 (cons-isval x xs v v₁) (cons-evals evals evals₁) = ap2 _::s_ (inv2 v evals) (inv2 v₁ evals₁) inv2 true-isval true-evals = Refl inv2 false-isval false-evals = Refl val-hprop : ∀ {τ} {v : [] Source.|- τ} → (d1 d2 : val v) → d1 == d2 val-hprop z-isval z-isval = Refl val-hprop (suc-isval e d1) (suc-isval .e d2) = ap (suc-isval e) (val-hprop d1 d2) val-hprop (pair-isval e1 e2 d1 d2) (pair-isval .e1 .e2 d3 d4) = ap2 (pair-isval e1 e2) (val-hprop d1 d3) (val-hprop d2 d4) val-hprop (lam-isval e) (lam-isval .e) = Refl val-hprop unit-isval unit-isval = Refl val-hprop (delay-isval e) (delay-isval .e) = Refl val-hprop nil-isval nil-isval = Refl val-hprop (cons-isval x xs d1 d2) (cons-isval .x .xs d3 d4) = ap2 (cons-isval x xs) (val-hprop d1 d3) (val-hprop d2 d4) val-hprop true-isval true-isval = Refl val-hprop false-isval false-isval = Refl transport-valBound : ∀{τ} {e e' : [] Source.|- τ} {d : val e} {d' : val e'} → (α : e == e') → transport val α d == d' → (E : [] Pilot.|- ⟨⟨ τ ⟩⟩) → valBound e d E → valBound e' d' E transport-valBound Refl Refl E vb = vb Eq0C-≤0 : ∀ {n} → Equals0c n → _≤s_{[]} (interp-Cost n) 0C Eq0C-≤0 Eq0-0c = refl-s Eq0C-≤0 (Eq0-+c e e₁) = cong-+ (Eq0C-≤0 e) (Eq0C-≤0 e₁) trans +-unit-l
{ "alphanum_fraction": 0.503139475, "avg_line_length": 58.5240963855, "ext": "agda", "hexsha": "61f6c25b212db34454376e197191e5aa45361446", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/Bounding-Lemmas-New.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/Bounding-Lemmas-New.agda", "max_line_length": 160, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/Bounding-Lemmas-New.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 3835, "size": 9715 }
module StateSizedIO.Object where open import Data.Product open import StateSizedIO.Base public {- -- This definition was probably moved to StateSizedIO.Base -- and by accident left here. Delete this. record Interfaceˢ : Set₁ where field Stateˢ : Set Methodˢ : Stateˢ → Set Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set nextˢ : (s : Stateˢ) → (m : Methodˢ s) → Resultˢ s m → Stateˢ open Interfaceˢ public -} module _ (I : Interfaceˢ)(let S = Stateˢ I) (let M = Methodˢ I) (let R = Resultˢ I) (let next = nextˢ I) where -- A simple object just returns for a method the response -- and the object itself record Objectˢ (s : S) : Set where coinductive field objectMethod : (m : M s) → Σ[ r ∈ R s m ] Objectˢ (next s m r) open Objectˢ public _▹_ : {A : Set } → { B : Set } → A → (A → B) → B a ▹ f = f a -- Bisimilation for Objectˢ module Bisim (I : Interfaceˢ) (let S = Stateˢ I) (let M = Methodˢ I) (let R = Resultˢ I) (let next = nextˢ I) (let O = Objectˢ I) where mutual record _≅_ {s : S} (o o' : O s) : Set where coinductive field bisimMethod : (m : M s) → objectMethod o m ≡×≅ objectMethod o' m data _≡×≅_ {s m} : (p p' : Σ[ r ∈ R s m ] O (next s m r)) → Set where bisim : ∀{r} (let s' = next s m r) {o o' : O s'} (p : o ≅ o') → (r , o) ≡×≅ (r , o') open _≅_ public refl≅ : ∀{s} (o : O s) → o ≅ o bisimMethod (refl≅ o) m = bisim (refl≅ (proj₂ (objectMethod o m)))
{ "alphanum_fraction": 0.560546875, "avg_line_length": 26.4827586207, "ext": "agda", "hexsha": "99d4fead9ced15eb0003ea05501847ef01be07a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/StateSizedIO/Object.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/StateSizedIO/Object.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/StateSizedIO/Object.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 595, "size": 1536 }
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality module Spire.Examples.InferredPropositionalDesc where ---------------------------------------------------------------------- elimEq : {A : Set} (x : A) (P : (y : A) → x ≡ y → Set) → P x refl → (y : A) (p : x ≡ y) → P y p elimEq .x P prefl x refl = prefl ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Cases : {E : Enum} (P : Tag E → Set) → Set Cases {[]} P = ⊤ Cases {l ∷ E} P = P here × Cases λ t → P (there t) case : {E : Enum} (P : Tag E → Set) (cs : Cases P) (t : Tag E) → P t case {l ∷ E} P (c , cs) here = c case {l ∷ E} P (c , cs) (there t) = case (λ t → P (there t)) cs t ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where `End : (i : I) → Desc I `Rec : (i : I) (D : Desc I) → Desc I `Arg : (A : Set) (B : A → Desc I) → Desc I `RecFun : (A : Set) (B : A → I) (D : Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) (X : ISet I) → ISet I El (`End j) X i = j ≡ i El (`Rec j D) X i = X j × El D X i El (`Arg A B) X i = Σ A (λ a → El (B a) X i) El (`RecFun A B D) X i = ((a : A) → X (B a)) × El D X i data μ {I : Set} (D : Desc I) (i : I) : Set where con : El D (μ D) i → μ D i All : {I : Set} (D : Desc I) {X : ISet I} (P : (i : I) → X i → Set) (i : I) (xs : El D X i) → Set All (`End j) P i q = ⊤ All (`Rec j D) P i (x , xs) = P j x × All D P i xs All (`Arg A B) P i (a , b) = All (B a) P i b All (`RecFun A B D) P i (f , xs) = ((a : A) → P (B a) (f a)) × All D P i xs caseD : (E : Enum) (I : Set) (cs : Cases (λ _ → Desc I)) (t : Tag E) → Desc I caseD E I cs t = case (λ _ → Desc I) cs t ---------------------------------------------------------------------- ind : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (pcon : (i : I) (xs : El D (μ D) i) → All D P i xs → P i (con xs)) {i : I} (x : μ D i) → P i x hyps : {I : Set} (D₁ : Desc I) (P : (i : I) → μ D₁ i → Set) (pcon : (i : I) (xs : El D₁ (μ D₁) i) → All D₁ P i xs → P i (con xs)) (D₂ : Desc I) {i : I} (xs : El D₂ (μ D₁) i) → All D₂ P i xs ind D P pcon (con xs) = pcon _ xs (hyps D P pcon D xs) hyps D P pcon (`End j) q = tt hyps D P pcon (`Rec j A) (x , xs) = ind D P pcon x , hyps D P pcon A xs hyps D P pcon (`Arg A B) (a , b) = hyps D P pcon (B a) b hyps D P pcon (`RecFun A B E) (f , xs) = (λ a → ind D P pcon (f a)) , hyps D P pcon E xs ---------------------------------------------------------------------- module Desugared where ℕT : Enum ℕT = "zero" ∷ "suc" ∷ [] VecT : Enum VecT = "nil" ∷ "cons" ∷ [] ℕC : Tag ℕT → Desc ⊤ ℕC = caseD ℕT ⊤ ( `End tt , `Rec tt (`End tt) , tt ) ℕD : Desc ⊤ ℕD = `Arg (Tag ℕT) ℕC ℕ : ⊤ → Set ℕ = μ ℕD zero : ℕ tt zero = con (here , refl) suc : ℕ tt → ℕ tt suc n = con (there here , n , refl) VecC : (A : Set) → Tag VecT → Desc (ℕ tt) VecC A = caseD VecT (ℕ tt) ( `End zero , `Arg (ℕ tt) (λ n → `Arg A λ _ → `Rec n (`End (suc n))) , tt ) VecD : (A : Set) → Desc (ℕ tt) VecD A = `Arg (Tag VecT) (VecC A) Vec : (A : Set) (n : ℕ tt) → Set Vec A n = μ (VecD A) n nil : (A : Set) → Vec A zero nil A = con (here , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = con (there here , n , x , xs , refl) ---------------------------------------------------------------------- module Induction where add : ℕ tt → ℕ tt → ℕ tt add = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → n) , (λ m,q ih,tt n → suc (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) mult : ℕ tt → ℕ tt → ℕ tt mult = ind ℕD (λ _ _ → ℕ tt → ℕ tt) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → ℕ u → ℕ u) u (t , c)) → ℕ u → ℕ u ) ( (λ q ih n → zero) , (λ m,q ih,tt n → add n (proj₁ ih,tt n)) , tt ) (proj₁ t,c) (proj₂ t,c) ) append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A m = ind (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ m t,c → case (λ t → (c : El (VecC A t) (Vec A) m) (ih : All (VecD A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) m (t , c)) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) ) ( (λ q ih n ys → subst (λ m → Vec A (add m n)) q ys) , (λ m',x,xs,q ih,tt n ys → let m' = proj₁ m',x,xs,q x = proj₁ (proj₂ m',x,xs,q) q = proj₂ (proj₂ (proj₂ m',x,xs,q)) ih = proj₁ ih,tt in subst (λ m → Vec A (add m n)) q (cons A (add m' n) x (ih n ys)) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m n = ind (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) (λ n t,c → case (λ t → (c : El (VecC (Vec A m) t) (Vec (Vec A m)) n) (ih : All (VecD (Vec A m)) (λ n xss → Vec A (mult n m)) n (t , c)) → Vec A (mult n m) ) ( (λ q ih → subst (λ n → Vec A (mult n m)) q (nil A)) , (λ n',xs,xss,q ih,tt → let n' = proj₁ n',xs,xss,q xs = proj₁ (proj₂ n',xs,xss,q) q = proj₂ (proj₂ (proj₂ n',xs,xss,q)) ih = proj₁ ih,tt in subst (λ n → Vec A (mult n m)) q (append A m xs (mult n' m) ih) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- module Eliminator where elimℕ : (P : (ℕ tt) → Set) (pzero : P zero) (psuc : (m : ℕ tt) → P m → P (suc m)) (n : ℕ tt) → P n elimℕ P pzero psuc = ind ℕD (λ u n → P n) (λ u t,c → case (λ t → (c : El (ℕC t) ℕ u) (ih : All ℕD (λ u n → P n) u (t , c)) → P (con (t , c)) ) ( (λ q ih → elimEq tt (λ u q → P (con (here , q))) pzero u q ) , (λ n,q ih,tt → elimEq tt (λ u q → P (con (there here , proj₁ n,q , q))) (psuc (proj₁ n,q) (proj₁ ih,tt)) u (proj₂ n,q) ) , tt ) (proj₁ t,c) (proj₂ t,c) ) elimVec : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (pnil : P zero (nil A)) (pcons : (n : ℕ tt) (a : A) (xs : Vec A n) → P n xs → P (suc n) (cons A n a xs)) (n : ℕ tt) (xs : Vec A n) → P n xs elimVec A P pnil pcons n = ind (VecD A) (λ n xs → P n xs) (λ n t,c → case (λ t → (c : El (VecC A t) (Vec A) n) (ih : All (VecD A) (λ n xs → P n xs) n (t , c)) → P n (con (t , c)) ) ( (λ q ih → elimEq zero (λ n q → P n (con (here , q))) pnil n q ) , (λ n',x,xs,q ih,tt → let n' = proj₁ n',x,xs,q x = proj₁ (proj₂ n',x,xs,q) xs = proj₁ (proj₂ (proj₂ n',x,xs,q)) q = proj₂ (proj₂ (proj₂ n',x,xs,q)) ih = proj₁ ih,tt in elimEq (suc n') (λ n q → P n (con (there here , n' , x , xs , q))) (pcons n' x xs ih ) n q ) , tt ) (proj₁ t,c) (proj₂ t,c) ) ---------------------------------------------------------------------- add : ℕ tt → ℕ tt → ℕ tt add = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → n) (λ m ih n → suc (ih n)) mult : ℕ tt → ℕ tt → ℕ tt mult = elimℕ (λ _ → ℕ tt → ℕ tt) (λ n → zero) (λ m ih n → add n (ih n)) append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elimVec A (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elimVec (Vec A m) (λ n xss → Vec A (mult n m)) (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.381273914, "avg_line_length": 28.9446254072, "ext": "agda", "hexsha": "651eb44520f5e0a6b00974b668efe1cdb063af68", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/Examples/InferredPropositionalDesc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/Examples/InferredPropositionalDesc.agda", "max_line_length": 99, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/Examples/InferredPropositionalDesc.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 3355, "size": 8886 }
{-# OPTIONS --without-K #-} module Midi where open import Agda.Builtin.String using (String) open import Data.Fin using (toℕ) open import Data.Nat using (ℕ) open import Data.List open import Data.Product using (_,_) open import Note open import Pitch open import MidiEvent open import Music {-# FOREIGN GHC import Codec.Midi import Data.Text (Text, unpack) import Data.List (sort) type HsTicksPerBeat = Integer type HsTicks = Integer type HsKey = Integer type HsVelocity = Integer type HsPreset = Integer type HsChannel = Integer type HsTempo = Integer type HsAbsTime = Integer type HsTrackName = Text -- convert beats per minute to microseconds per beat bpmToTempo :: Int -> Tempo bpmToTempo bpm = round $ 1000000 * 60 / fromIntegral bpm data HsMidiMessage = HsNoteOn HsVelocity HsTicks HsKey | HsNoteOff HsVelocity HsTicks HsKey deriving Eq getTicks :: HsMidiMessage -> HsTicks getTicks (HsNoteOn _ t _) = t getTicks (HsNoteOff _ t _) = t instance Ord HsMidiMessage where a <= b = getTicks a <= getTicks b data HsMidiTrack = HsMidiTrack HsTrackName HsPreset HsChannel HsTempo [HsMidiMessage] fi = fromInteger makeTrack :: Channel -> HsAbsTime -> [HsMidiMessage] -> (Track Ticks , HsAbsTime) makeTrack c t [] = ([(0, TrackEnd)], t) makeTrack c t (HsNoteOn v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOn c (fi k) (fi v)) : rest, t'') makeTrack c t (HsNoteOff v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOff c (fi k) (fi v)) : rest, t'') toTrack :: HsMidiTrack -> Track Ticks toTrack (HsMidiTrack name preset channel tempo messages) = (0, TrackName (unpack name)) : (0, ProgramChange (fi channel) (fi preset)) : (0, TempoChange (bpmToTempo (fi tempo))) : fst (makeTrack (fi channel) 0 (sort messages)) toMidi :: HsTicksPerBeat -> [HsMidiTrack] -> Midi toMidi ticks tracks = let mtracks = map toTrack tracks in Midi MultiTrack (TicksPerBeat (fi ticks)) mtracks exportTracks :: Text -> HsTicksPerBeat -> [HsMidiTrack] -> IO () exportTracks filePath ticksPerBeat tracks = do let path = unpack filePath putStrLn $ "Writing file " ++ path -- putStrLn $ show $ toMidi ticksPerBeat tracks exportFile path (toMidi ticksPerBeat tracks) #-} data Unit : Set where unit : Unit {-# COMPILE GHC Unit = data () (()) #-} postulate IO : Set → Set {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} FilePath = String data Pair (A : Set) (B : Set) : Set where pair : A → B → Pair A B {-# COMPILE GHC Pair = data (,) ((,)) #-} HInstrument HPitch HVelocity : Set HInstrument = ℕ HPitch = ℕ HVelocity = ℕ HChannel = ℕ HTempo = ℕ data MidiMessage : Set where noteOn : HVelocity → Tick → HPitch → MidiMessage noteOff : HVelocity → Tick → HPitch → MidiMessage {-# COMPILE GHC MidiMessage = data HsMidiMessage (HsNoteOn | HsNoteOff) #-} event→messages : MidiEvent → List MidiMessage event→messages (midiEvent p start stop v) = let v' = toℕ v p' = unpitch p in noteOn v' start p' ∷ noteOff v' stop p' ∷ [] data HMidiTrack : Set where htrack : String → HInstrument → HChannel → HTempo → List MidiMessage → HMidiTrack {-# COMPILE GHC HMidiTrack = data HsMidiTrack (HsMidiTrack) #-} track→htrack : MidiTrack → HMidiTrack track→htrack (track n i c t m) = htrack n (toℕ i) (toℕ c) t (concatMap event→messages m) postulate exportTracks : FilePath → -- path to the file to save the MIDI data to ℕ → -- number of ticks per beat (by default a beat is a quarter note) List HMidiTrack → -- tracks, one per instrument IO Unit {-# COMPILE GHC exportTracks = exportTracks #-}
{ "alphanum_fraction": 0.6354140127, "avg_line_length": 30.4263565891, "ext": "agda", "hexsha": "4120fe3ca782570d97aab9ac072947b841139e5c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/Midi.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/Midi.agda", "max_line_length": 100, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/Midi.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1188, "size": 3925 }
-- | In this module we show that the substream relation is transitive. open import Size open import Streams open import Relation.Binary.PropositionalEquality as P open import Data.Product open import Function tl' : ∀{A} → Stream A → Stream A tl' s = tl s {∞} {- data Reachable {A : Set} (P : A → Set) : Stream A → Set where nowR : (s : Stream A) → P (hd s) → Reachable P s laterR : (s : Stream A) → Reachable P (tl s) → Reachable P (tl s) -} {- data Eventually {A : Set} (P : A → Set) (s : Stream A) : Set where now : P (hd s) → Eventually P s later : Eventually P (tl s) → Eventually P s -} record Always {A : Set} (P : A → Set) (s : Stream A) : Set where coinductive field hd-valid : P (hd s) tl-valid : Always P (tl s) open Always public Always-coiter : ∀{A} {P : A → Set} {B : Stream A → Set} (hv : ∀ s → B s → P (hd s)) (tv : ∀ s → B s → B (tl s)) → ∀ s → B s → Always P s hd-valid (Always-coiter hv tv s b) = hv s b tl-valid (Always-coiter hv tv s b) = Always-coiter hv tv (tl s) (tv s b) data E {A : Set} (P : A → Set) (F : Stream A → Set) (s : Stream A) : Set where now : P (hd s) → F (tl s) → E P F s later : E P F (tl s) → E P F s record Fair {A : Set} (P : A → Set) (s : Stream A) : Set where coinductive field step : E P (Fair P) s open Fair public Eventually : ∀{A} → (P : A → Set) → Stream A → Set Eventually P = E P (Fair P) Fair-coiter : ∀{A} {P : A → Set} {B : Stream A → Set} (st : ∀ s → B s → E P B s) → ∀ s → B s → Fair P s xFair-coiter : ∀{A} {P : A → Set} {B : Stream A → Set} (st : ∀ s → B s → E P B s) → ∀ s → E P B s → Eventually P s step (Fair-coiter st s b) = xFair-coiter st s (st s b) xFair-coiter st s (now p b) = now p (Fair-coiter st (tl s) b) xFair-coiter st s (later e) = later (xFair-coiter st (tl s) e) Stream-coiter : ∀{A B : Set} → (B → A) → (B → B) → B → Stream A hd (Stream-coiter h t b) = h b tl (Stream-coiter h t b) = Stream-coiter h t (t b) ∃-elim : ∀{A : Set} {B : A → Set} {C : Set} → ((a : A) → B a → C) → Σ A B → C ∃-elim f (a , b) = f a b ≡-elim : ∀{A : Set} {B : A → A → Set} → ((x : A) → B x x) → {x y : A} → x ≡ y → B x y ≡-elim f {x = x} refl = f x Always-coind : ∀{A} {P : A → Set} {B : Set} -- {C : Stream A → Set} {h : B → A} {t : B → B} (hv : ∀ b → P (h b)) → ∀ b → Always P (Stream-coiter h t b) Always-coind {A} {P = P} {B} {h} {t} hv b = Always-coiter {B = λ s → ∃ λ b → s ≡ Stream-coiter h t b} f g (Stream-coiter h t b) (b , refl) where f : (s : Stream A) → ∃ (λ b → s ≡ Stream-coiter h t b) → P (hd s) f s = ∃-elim u where u : (b : B) → s ≡ Stream-coiter h t b → P (hd s) u b p = subst P (sym (cong hd p)) (hv b) g : (s : Stream A) → ∃ (λ b → s ≡ Stream-coiter h t b) → ∃ (λ b → tl s ≡ Stream-coiter h t b) g s = ∃-elim u where u : (b : B) → s ≡ Stream-coiter h t b → ∃ (λ b₁ → tl s ≡ Stream-coiter h t b₁) u b p = (t b , cong tl' p) {- hd-valid (Always-coind h t hv b) = hv b tl-valid (Always-coind h t hv b) = Always-coind h t hv (t b) -} dcoiter-Fair : ∀{A} {P : A → Set} {B : Set} {C : Stream A → Set} {h : B → A} {t : B → B} (st : ∀ b → C (Stream-coiter h t b) → E P C (Stream-coiter h t b)) → ∀ b → C (Stream-coiter h t b) → Fair P (Stream-coiter h t b) xdcoiter-Fair : ∀{A} {P : A → Set} {B : Set} {C : Stream A → Set} {h : B → A} {t : B → B} (st : ∀ b → C (Stream-coiter h t b) → E P C (Stream-coiter h t b)) → ∀ b → E P C (Stream-coiter h t b) → Eventually P (Stream-coiter h t b) step (dcoiter-Fair st b c) = xdcoiter-Fair st b (st b c) xdcoiter-Fair st b (now p c) = now p (dcoiter-Fair st _ c) xdcoiter-Fair st b (later e) = later (xdcoiter-Fair st _ e) E-iter : ∀{A} {P : A → Set} {F : Stream A → Set} {B : Stream A → Set} (n : ∀ s → P (hd s) → F (tl s) → B s) (l : ∀ s → B (tl s) → B s) → ∀ s → E P F s → B s E-iter n l s (now p f) = n s p f E-iter n l s (later e) = l s (E-iter n l (tl s) e) {- Ev-iter : ∀{A} {P : A → Set} {F : Stream A → Set} {B : Stream A → Set} (st : ∀ s → Fair P s → F s) (n : ∀ s → F (tl s) → B s) (l : ∀ s → B (tl s) → B s) → ∀ s → Eventually P s → B s Ev-iter st n l s (now p f) = n s (st (tl s) f) Ev-iter st n l s (later e) = l s (Ev-iter st n l (tl s) e) -} {- Ev-iter : ∀{A} {P : A → Set} {B : Stream A → Set} (n : ∀ s → Fair P (tl s) → B s) (l : ∀ s → B (tl s) → B s) → ∀ s → Eventually P s → B s Ev-iter n l s (now p f) = n s f Ev-iter n l s (later e) = l s (Ev-iter n l (tl s) e) -} {- Ev-ind : ∀{A} {P : A → Set} (F : (t : Stream A) → Set) (B : (t : Stream A) → Eventually P t → Set) (st : ∀{t} → Fair P t → F t) (n : ∀{t} → (p : P (hd t)) → (f : F (tl t)) → B t (now p f)) → (l : ∀{t e} → B (tl t) e → B t (later e)) → (s : Stream A) → (e : Eventually P s) → B s e Ev-ind F B st n l s (now p f) = let r = n p {!st!} in {!!} Ev-ind F B st n l s (later e) = l (Ev-ind F B st n l (tl s) e) -} filter : ∀{A} {P : A → Set} (s : Stream A) → Fair P s → Stream A xfilter : ∀{A} {P : A → Set} (s : Stream A) → Eventually P s → Stream A filter s p = xfilter s (step p) hd (xfilter s (now p q)) = hd s tl (xfilter s (now p q)) = filter (tl s) q xfilter s (later p) = xfilter (tl s) p filter-find : ∀{A} {P : A → Set} (s : Stream A) → Eventually P s → A × ∃ (Fair P) filter-find = E-iter (λ s p f → (hd s , tl s , f)) (λ s → id) filter-h : ∀{A} {P : A → Set} → ∃ (Fair P) → A filter-h (s , f) = proj₁ (filter-find s (step f)) filter-t : ∀{A} {P : A → Set} → ∃ (Fair P) → ∃ (Fair P) filter-t {A} {P} (s , f) = proj₂ (filter-find s (step f)) filter' : ∀{A} {P : A → Set} → ∃ (Fair P) → Stream A filter' = Stream-coiter filter-h filter-t -- filter' : ∀{A} {P : A → Set} (s : Stream A) → Fair P s → Stream A -- filter' s f = filter'' (s , f) {- filter-pres-fair : ∀{A} {P : A → Set} (u : ∃ (Fair P)) → Fair P (filter' u) filter-pres-fair u = {!!} filter-always' : ∀{A} {P : A → Set} (u : ∃ (Fair P)) → Always P (filter' u) filter-always' {A} {P} (s , f) = Always-coiter {B = Fair P} {!!} {!!} (filter' (s , f)) {!!} -} filter-always' : ∀{A} {P : A → Set} (u : ∃ (Fair P)) → Always P (filter' u) filter-always' {A} {P} = Always-coind f where xf : (s : Stream A) (e : Eventually P s) → P (proj₁ (filter-find s e)) xf s (now p _) = p xf s (later e) = xf (tl s) e f : (u : ∃ (Fair P)) → P (filter-h u) f (s , f) = xf s (step f) filter-always : ∀{A} {P : A → Set} (s : Stream A) → (f : Fair P s) → Always P (filter s f) xfilter-always : ∀{A} {P : A → Set} (s : Stream A) → (e : Eventually P s) → Always P (xfilter s e) filter-always s f = xfilter-always s (step f) hd-valid (xfilter-always s (now p f)) = p tl-valid (xfilter-always s (now p f)) = filter-always (tl s) f xfilter-always s (later e) = xfilter-always (tl s) e {- filter-pres : ∀{A} {P Q : A → Set} (s : Stream A) → (f : Fair P s) → Always Q s → Always Q (filter s f) xfilter-pres : ∀{A} {P Q : A → Set} (s : Stream A) → (e : Eventually P s) → Always Q s → Always Q (xfilter s e) filter-pres s f a = xfilter-pres s (step f) a xfilter-pres = {!!} -} -- xfilter-pres {Q = Q} s e a = -- Ev-ind (λ t e → Always Q (xfilter t e)) -- (λ p f → record { hd-valid = {!hd-valid a!} ; tl-valid = {!!} }) -- {!!} -- s -- e {- hd-valid (xfilter-pres s (now p f) a) = hd-valid a tl-valid (xfilter-pres s (now p f) a) = filter-pres (tl s) f (tl-valid a) xfilter-pres s (later e) a = xfilter-pres (tl s) e (tl-valid a) -}
{ "alphanum_fraction": 0.4817629179, "avg_line_length": 32.7634854772, "ext": "agda", "hexsha": "74db0fbdf823a5768069780fa37ea088598d12bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Streams/PredFilter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Streams/PredFilter.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Streams/PredFilter.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3124, "size": 7896 }
module Bools where open import Agda.Builtin.Bool public renaming (Bool to 𝔹) not : 𝔹 → 𝔹 not true = false not false = true -- T : 𝔹 → Set -- T true = ⊤ -- T false = ⊥ if_then_else_ : ∀ {a} {A : Set a} → 𝔹 → A → A → A if true then t else _ = t if false then _ else f = f _∧_ : 𝔹 → 𝔹 → 𝔹 true ∧ b = b false ∧ _ = false _∨_ : 𝔹 → 𝔹 → 𝔹 true ∨ _ = true false ∨ b = b _xor_ : 𝔹 → 𝔹 → 𝔹 true xor b = not b false xor b = b
{ "alphanum_fraction": 0.5522041763, "avg_line_length": 14.8620689655, "ext": "agda", "hexsha": "29f8cd23911db7cc8a26eeb8ac4916657e32c114", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Bools.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Bools.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Bools.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 204, "size": 431 }
{- Definition of finitely indexed types A type is finitely indexed if, for some `n`, there merely exists a surjective function from `Fin n` to it. Note that a type doesn't need to be a set in order for it to be finitely indexed. For example, the circle is finitely indexed. This definition is weaker than `isFinSet`. -} {-# OPTIONS --safe #-} module Cubical.Data.FinInd where open import Cubical.Data.Nat open import Cubical.Data.SumFin open import Cubical.Data.Sigma open import Cubical.Data.FinSet open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Functions.Surjection open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.S1 private variable ℓ : Level A : Type ℓ isFinInd : Type ℓ → Type ℓ isFinInd A = ∃[ n ∈ ℕ ] Fin n ↠ A isFinSet→isFinInd : isFinSet A → isFinInd A isFinSet→isFinInd h = PT.elim (λ _ → squash) (λ equiv → ∣ _ , invEq equiv , section→isSurjection (retEq equiv) ∣) (h .snd) isFinInd-S¹ : isFinInd S¹ isFinInd-S¹ = ∣ 1 , f , isSurjection-f ∣ where f : Fin 1 → S¹ f _ = base isSurjection-f : isSurjection f isSurjection-f b = PT.map (λ base≡b → fzero , base≡b) (isConnectedS¹ b)
{ "alphanum_fraction": 0.7192118227, "avg_line_length": 24.8571428571, "ext": "agda", "hexsha": "cebab1042025dbd929b5c10cca5730571d3ae99a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinInd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinInd.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinInd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 402, "size": 1218 }
{-# OPTIONS --without-K #-} module higher.circle.core where open import equality data S¹ : Set where base : S¹ postulate loop : base ≡ base private module Eliminators' {i}(B : S¹ → Set i) (m : B base) (l : subst B loop m ≡ m) where elim' : (x : S¹) → B x elim' base = m β-base' : elim' base ≡ m β-base' = refl postulate β-loop' : ap' elim' loop ≡ l private module Eliminators {i} {B : Set i} (m : B) (l : m ≡ m) where open Eliminators' (λ _ → B) m (subst-const loop m · l) elim : S¹ → B elim = elim' β-base : elim base ≡ m β-base = refl postulate β-loop : ap elim loop ≡ l open Eliminators public open Eliminators' public
{ "alphanum_fraction": 0.5387700535, "avg_line_length": 19.6842105263, "ext": "agda", "hexsha": "70f37ae039250b60fceea25a09afc60a2de2f83e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/higher/circle/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/higher/circle/core.agda", "max_line_length": 58, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/higher/circle/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 243, "size": 748 }
open import Type open import Logic.Classical as Logic using (Classical) open import Logic.Predicate as Logic using () module Formalization.ClassicalPropositionalLogic.SequentCalculus ⦃ classical : ∀{ℓ} → Logic.∀ₗ(Classical{ℓ}) ⦄ where import Lvl open import Data open import Data.Boolean import Data.Boolean.Operators open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_ ; Left ; Right) open import Data.List open import Data.List.Functions using () renaming (singleton to · ; _++_ to _∪_) open import Data.List.Relation.Permutation open import Data.Tuple as Tuple using (_⨯_ ; _,_) private module BoolOp = Data.Boolean.Operators.Logic open import Functional as Fn open import Function.Names using (_⊜_) open import Logic open import Logic.Propositional as Logic using (_←_) open import Logic.Propositional.Theorems as Logic using () open import Logic.Predicate.Theorems as Logic using () open import Relator.Equals renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs open import Relator.Equals.Proofs.Equiv open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Type open import Syntax.Implication hiding (_⇒_) open import Type.Size.Countable private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level open import Formalization.ClassicalPropositionalLogic.Syntax open import Formalization.ClassicalPropositionalLogic.Syntax.Proofs open import Formalization.ClassicalPropositionalLogic.Semantics open import Formalization.ClassicalPropositionalLogic.Semantics.Proofs import Formalization.ClassicalPropositionalLogic.TruthTable as TruthTable _∪·_ : ∀{T : Type{ℓ}} → List(T) → T → List(T) _∪·_ = Fn.swap(_⊰_) infixl 1000 _∪·_ module _ {ℓₚ} {P : Type{ℓₚ}} where private variable Γ Γ₁ Γ₂ Γ₃ Δ Δ₁ Δ₂ Δ₃ : List(Formula(P)) private variable φ φ₁ φ₂ ψ A B C : Formula(P) private variable p : P data _⇒_ : List(Formula(P)) → List(Formula(P)) → Stmt{Lvl.𝐒(ℓₚ)} where axiom : ((·(• p)) ⇒ (·(• p))) weakenₗ : (Γ ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) permuteₗ : .(Γ₁ permutes Γ₂) → (Γ₁ ⇒ Δ) → (Γ₂ ⇒ Δ) contractₗ : ((Γ ∪· A ∪· A) ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) ⊥ₗ : (Γ ∪· ⊥) ⇒ ∅ ∧ₗₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∧ₗᵣ : ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∨ₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∨ B)) ⇒ Δ) ⟶ₗ : (Γ ⇒ (Δ ∪· A)) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ⟶ B)) ⇒ Δ) ¬ₗ : (Γ ⇒ (Δ ∪· A)) → ((Γ ∪· (¬ A)) ⇒ Δ) weakenᵣ : (Γ ⇒ Δ) → (Γ ⇒ (Δ ∪· A)) permuteᵣ : .(Δ₁ permutes Δ₂) → (Γ ⇒ Δ₁) → (Γ ⇒ Δ₂) contractᵣ : (Γ ⇒ (Δ ∪· A ∪· A)) → (Γ ⇒ (Δ ∪· A)) ⊤ᵣ : ∅ ⇒ (Δ ∪· ⊤) ∧ᵣ : (Γ ⇒ (Δ ∪· A)) → (Γ ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ∧ B))) ∨ᵣₗ : (Γ ⇒ (Δ ∪· A)) → (Γ ⇒ (Δ ∪· (A ∨ B))) ∨ᵣᵣ : (Γ ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ∨ B))) ⟶ᵣ : ((Γ ∪· A) ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ⟶ B))) ¬ᵣ : ((Γ ∪· A) ⇒ Δ) → (Γ ⇒ (Δ ∪· (¬ A))) permute : .(Γ₁ permutes Γ₂) → .(Δ₁ permutes Δ₂) → (Γ₁ ⇒ Δ₁) → (Γ₂ ⇒ Δ₂) permute permΓ permΔ ΓΔ = permuteₗ permΓ (permuteᵣ permΔ ΓΔ) open import Data.List.Equiv.Id open import Data.List.Relation.Membership open import Data.List.Proofs open import Structure.Operator.Properties refl : (· A) ⇒ (· A) refl {• x} = axiom refl {⊤} = weakenₗ ⊤ᵣ refl {⊥} = weakenᵣ ⊥ₗ refl {¬ A} = ¬ᵣ (permuteₗ(_permutes_.swap) (¬ₗ refl)) refl {A ∧ B} = ∧ᵣ (∧ₗₗ refl) (∧ₗᵣ refl) refl {A ∨ B} = ∨ₗ (∨ᵣₗ refl) (∨ᵣᵣ refl) refl {A ⟶ B} = ⟶ᵣ (permuteₗ(_permutes_.swap) (⟶ₗ (permuteᵣ(_permutes_.swap) (weakenᵣ refl)) (permuteₗ(_permutes_.swap) (weakenₗ refl)))) refl {A ⟷ B} = {!!} --[⇒]-trans : (Γ₁ ⇒ Γ₂) → (Γ₂ ⇒ Γ₃) → (Γ₁ ⇒ Γ₃) --[⇒]-trans p12 p23 = {!-c -t 10!} [⇒][++]ᵣ-weakenₗ : (Γ₂ ⇒ Δ) → ((Γ₁ ∪ Γ₂) ⇒ Δ) [⇒][++]ᵣ-weakenₗ {Γ₁ = ∅} p = p [⇒][++]ᵣ-weakenₗ {Γ₁ = φ₁ ⊰ Γ₁} p = weakenₗ([⇒][++]ᵣ-weakenₗ {Γ₁ = Γ₁} p) [⇒][++]ₗ-weakenₗ : (Γ₁ ⇒ Δ) → ((Γ₁ ∪ Γ₂) ⇒ Δ) [⇒][++]ₗ-weakenₗ {Γ₁ = Γ₁}{Δ = Δ}{Γ₂ = Γ₂} Γ₁Δ = permuteₗ (sub₂(_≡ₑ_)(_permutes_) (commutativity(_∪_) ⦃ {!!} ⦄ {Γ₂}{Γ₁})) ([⇒][++]ᵣ-weakenₗ {Γ₁ = Γ₂} Γ₁Δ) [⇒][++]-weakenᵣ : (Γ ⇒ Δ₂) → (Γ ⇒ (Δ₁ ∪ Δ₂)) [⇒][++]-weakenᵣ {Δ₁ = ∅} p = p [⇒][++]-weakenᵣ {Δ₁ = φ₁ ⊰ Δ₁} p = weakenᵣ([⇒][++]-weakenᵣ {Δ₁ = Δ₁} p) [⇒][⊥]-arbitrary : ((Γ ∪· ⊥) ⇒ Δ) [⇒][⊥]-arbitrary {Γ = Γ}{Δ = Δ} = permuteᵣ (sub₂(_≡ₑ_)(_permutes_) (identityᵣ(_∪_)(∅))) ([⇒][++]-weakenᵣ{Δ₂ = ∅}{Δ} ⊥ₗ) [⇒]-nonempty-reflexivity : ((φ ⊰ Γ) ⇒ (φ ⊰ Γ)) [⇒]-nonempty-reflexivity {Γ = ∅} = refl [⇒]-nonempty-reflexivity {Γ = φ ⊰ Γ} = weakenₗ (weakenᵣ ([⇒]-nonempty-reflexivity {Γ = Γ})) {- TODO: Maybe not [⇒]-symmetric-by-side : ((Γ₁ ⇒ Δ) → (Γ₂ ⇒ Δ)) → ((Δ ⇒ Γ₂) → (Δ ⇒ Γ₁)) [⇒]-symmetric-by-side p axiom = {!!} [⇒]-symmetric-by-side p (weakenₗ q) = {!!} [⇒]-symmetric-by-side p (permuteₗ x q) = {!!} [⇒]-symmetric-by-side p (contractₗ q) = {!!} [⇒]-symmetric-by-side p ⊥ₗ = [⇒][⊥]-arbitrary [⇒]-symmetric-by-side p (∧ₗₗ q) = {!!} [⇒]-symmetric-by-side p (∧ₗᵣ q) = {!!} [⇒]-symmetric-by-side p (∨ₗ q q₁) = {!!} [⇒]-symmetric-by-side p (⟶ₗ q q₁) = {!!} [⇒]-symmetric-by-side p (weakenᵣ q) = {!!} [⇒]-symmetric-by-side p (permuteᵣ x q) = {!!} [⇒]-symmetric-by-side p (contractᵣ q) = [⇒]-symmetric-by-side (weakenₗ ∘ p) q [⇒]-symmetric-by-side p (∧ᵣ q q₁) = {!!} [⇒]-symmetric-by-side p (∨ᵣₗ q) = {!!} [⇒]-symmetric-by-side p (∨ᵣᵣ q) = {!!} [⇒]-symmetric-by-side p (⟶ᵣ q) = {!!} -} open import Structure.Function [⇒]-super : ((Γ₁ ∪· φ₁) ⊇ (Γ₂ ∪· φ₂)) → ((Γ₁ ∪· φ₁) ⇒ (Γ₂ ∪· φ₂)) [⇒]-super {Γ₁ = Γ₁} {Γ₂ = φ₂ ⊰ Γ₂} p = weakenᵣ ([⇒]-super {Γ₁ = Γ₁} {Γ₂ = Γ₂} (p ∘ skip)) [⇒]-super {Γ₁ = ∅} {Γ₂ = ∅} p with use [≡]-intro ← p (use [≡]-intro) = refl [⇒]-super {Γ₁ = φ₁ ⊰ Γ₁} {Γ₂ = ∅}{φ₂ = φ₂} p with p (use [≡]-intro) ... | use [≡]-intro = permuteₗ Proofs.postpend-prepend-permutes (permuteₗ(sub₂(_≡ₑ_)(_permutes_) (symmetry(_≡ₑ_) (congruence₁(φ₁ ⊰_) (postpend-[++] {a = φ₂}{l = Γ₁})))) (weakenₗ ([⇒][++]ᵣ-weakenₗ{Γ₁ = Γ₁} refl))) ... | skip q = weakenₗ([⇒]-super {Γ₁ = Γ₁} {Γ₂ = ∅} \{(use [≡]-intro) → q ; (skip ())}) [⇒]-membership : (φ ∈ Γ) → (Γ ⇒ (· φ)) [⇒]-membership (use [≡]-intro) = [⇒][++]ₗ-weakenₗ refl [⇒]-membership (skip p) = weakenₗ([⇒]-membership p) Inconsistent : List(Formula(P)) → Type Inconsistent(Γ) = Γ ⇒ ∅ test : ∅ ⇒ ·((A ∧ B) ⟶ A) test {A = A}{B = B} = refl ⇒-start ((· A) ⇒ (· A)) ⇒-[ ∧ₗₗ ] (·(A ∧ B) ⇒ (· A)) ⇒-[ ⟶ᵣ ] (∅ ⇒ ·((A ∧ B) ⟶ A)) ⇒-end --test2 : ∅ ⇒ ·(A ∨ (¬ A)) test3 : ∅ ⇒ ·(((¬ ¬ A) ⟶ (¬ ¬ B)) ⟶ (¬ ¬(A ⟶ B))) test3{A = A}{B = B} = • ( refl ⇒-start ((· A) ⇒ (· A)) ⇒-[ weakenᵣ ] ((· A) ⇒ ((· A) ∪· B)) ⇒-[ permuteᵣ _permutes_.swap ] ((· A) ⇒ ((· B) ∪· A)) ⇒-[ ¬ₗ ] (((· A) ∪· (¬ A)) ⇒ (· B)) ⇒-[ permuteₗ _permutes_.swap ] ((·(¬ A) ∪· A) ⇒ (· B)) ⇒-[ ⟶ᵣ ] (·(¬ A) ⇒ ·(A ⟶ B)) ⇒-[ ¬ₗ ] ((·(¬ A) ∪· ¬(A ⟶ B)) ⇒ ∅) ⇒-[ permuteₗ _permutes_.swap ] ((·(¬(A ⟶ B)) ∪· (¬ A)) ⇒ ∅) ⇒-[ ¬ᵣ ] (·(¬(A ⟶ B)) ⇒ (∅ ∪· (¬ ¬ A))) ⇒-end ) • ( refl ⇒-start ((· B) ⇒ (· B)) ⇒-[ weakenₗ ] (((· B) ∪· A) ⇒ (· B)) ⇒-[ ⟶ᵣ ] ((· B) ⇒ ·(A ⟶ B)) ⇒-[ ¬ₗ ] (((· B) ∪· ¬(A ⟶ B)) ⇒ ∅) ⇒-[ permuteₗ _permutes_.swap ] ((·(¬(A ⟶ B)) ∪· B) ⇒ ∅) ⇒-[ ¬ᵣ ] (·(¬(A ⟶ B)) ⇒ ·(¬ B)) ⇒-[ ¬ₗ ] ((·(¬(A ⟶ B)) ∪· (¬ ¬ B)) ⇒ ∅) ⇒-end ) ⇒₂-[ ⟶ₗ ] ((·(¬(A ⟶ B)) ∪· ((¬ ¬ A) ⟶ (¬ ¬ B))) ⇒ ∅) ⇒-[ permuteₗ _permutes_.swap ] ((·((¬ ¬ A) ⟶ (¬ ¬ B)) ∪· ¬(A ⟶ B)) ⇒ ∅) ⇒-[ ¬ᵣ ] (·((¬ ¬ A) ⟶ (¬ ¬ B)) ⇒ ·(¬ ¬(A ⟶ B))) ⇒-[ ⟶ᵣ ] (∅ ⇒ ·(((¬ ¬ A) ⟶ (¬ ¬ B)) ⟶ (¬ ¬(A ⟶ B)))) ⇒-end test4 : (∅ ⇒ ·(((A ⟶ B) ⟶ A) ⟶ A)) test4 {A = A}{B = B} = • ( refl ⇒-start ((· A) ⇒ (· A)) ⇒-[ weakenᵣ ] ((· A) ⇒ ((· A) ∪· B)) ⇒-[ ⟶ᵣ ] (∅ ⇒ ((· A) ∪· (A ⟶ B))) ⇒-end ) • ((· A) ⇒ (· A)) :-[ refl ] ⇒₂-[ ⟶ₗ ] ((∅ ∪· ((A ⟶ B) ⟶ A)) ⇒ (∅ ∪· A)) ⇒-[ ⟶ᵣ ] (∅ ⇒ ·(((A ⟶ B) ⟶ A) ⟶ A)) ⇒-end -- ⟶ᵣ (¬ᵣ (permuteₗ _permutes_.swap (⟶ₗ (¬ᵣ (permuteₗ _permutes_.swap (¬ₗ (⟶ᵣ (permuteₗ _permutes_.swap (¬ₗ (permuteᵣ _permutes_.swap (weakenᵣ axiom)))))))) (¬ₗ (¬ᵣ (permuteₗ _permutes_.swap (¬ₗ (⟶ᵣ (weakenₗ axiom))))))))) {- [∧]-intro : ((Γ ∪· A ∪· B) ⇒ (Γ ∪· (A ∧ B))) [∧]-intro = ∧ᵣ ([⇒]-super skip) ([⇒]-super (p ↦ {!!})) [∧]-elimₗ : ((Γ ∪· (A ∧ B)) ⇒ (Γ ∪· A)) [∧]-elimₗ = {!!} -} {- test : (Γ ⇒ Δ₁) → .(Δ₁ permutes Δ₂) → (Δ₂ ⇒ Δ₃) → (Γ ⇒ Δ₃) [∧]-intro : (Γ ⇒ ·(A)) → (Γ ⇒ ·(B)) → (Γ ⇒ ·(A ∧ B)) [∧]-intro = ∧ᵣ [∧]-elimₗ : (Γ ⇒ Δ ∪· (A ∧ B)) → (Γ ⇒ (Δ ∪· A)) [∧]-elimₗ axiom = ∧ₗₗ axiom [∧]-elimₗ (weakenₗ p) = weakenₗ ([∧]-elimₗ p) [∧]-elimₗ (permuteₗ x p) = permuteₗ x ([∧]-elimₗ p) [∧]-elimₗ (contractₗ p) = contractₗ ([∧]-elimₗ p) [∧]-elimₗ (∧ₗₗ p) = ∧ₗₗ ([∧]-elimₗ p) [∧]-elimₗ (∧ₗᵣ p) = ∧ₗᵣ ([∧]-elimₗ p) [∧]-elimₗ (∨ₗ p q) = ∨ₗ ([∧]-elimₗ p) ([∧]-elimₗ q) [∧]-elimₗ (⟶ₗ p q) = ⟶ₗ (permuteᵣ _permutes_.swap ([∧]-elimₗ(permuteᵣ _permutes_.swap p))) ([∧]-elimₗ q) [∧]-elimₗ (weakenᵣ p) = weakenᵣ p [∧]-elimₗ (permuteᵣ x p) = test p x {!!} [∧]-elimₗ (contractᵣ p) = contractᵣ([∧]-elimₗ(permuteᵣ _permutes_.swap ([∧]-elimₗ p))) [∧]-elimₗ (∧ᵣ p q) = p -} {- soundness : (Γ ⇒ Δ) → ((_∈ Γ) ⊨₊ (_∈ Δ)) soundness axiom 𝔐Γ = 𝔐Γ soundness (weakenₗ p) 𝔐Γ = soundness p (𝔐Γ ∘ skip) soundness (permuteₗ x p) 𝔐Γ = {!!} soundness (contractₗ p) 𝔐Γ = {!!} soundness ⊥ₗ 𝔐Γ () soundness (∧ₗₗ p) 𝔐Γ {elem} (use [≡]-intro) = soundness p (q ↦ 𝔐Γ {!!}) (use [≡]-intro) -- 𝔐Γ{elem} {!soundness p ? ?!} -- soundness p {!!} (use {!!}) soundness (∧ₗₗ p) 𝔐Γ (skip q) = {!!} soundness (∧ₗᵣ p) 𝔐Γ = {!!} soundness (∨ₗ p q) 𝔐Γ = {!!} soundness (⟶ₗ p q) 𝔐Γ = soundness p (𝔐Γ ∘ skip) ∘ skip soundness (weakenᵣ p) 𝔐Γ = {!!} soundness (permuteᵣ x p) 𝔐Γ = {!!} soundness (contractᵣ p) 𝔐Γ = soundness p 𝔐Γ ∘ skip soundness (∧ᵣ p q) 𝔐Γ = {!!} soundness (∨ᵣₗ p) 𝔐Γ = {!!} soundness (∨ᵣᵣ p) 𝔐Γ = {!!} soundness (⟶ᵣ p) 𝔐Γ = {!!} -} {- excluded-middle : Γ ⇒ (Δ ∪ ·(A ∨ (¬ A))) excluded-middle = ∨ᵣₗ {!!} soundness : (Γ ⇒ Δ) → (Γ ⊨₊ Δ) soundness axiom = id soundness (weakenₗ p) 𝔐Γ = soundness p (𝔐Γ ∘ Left) soundness (∧ₗₗ p) 𝔐Γ e = soundness p (\{(Left Γelem) → 𝔐Γ(Left Γelem) ; (Right [≡]-intro) → 𝔐Γ (Right {!!})}) e soundness (∧ₗᵣ p) 𝔐Γ e = soundness p (\{(Left Γelem) → 𝔐Γ (Left Γelem) ; (Right [≡]-intro) → 𝔐Γ (Right {!!})}) e soundness (∨ₗ p q) 𝔐Γ e = soundness p (\{(Left r) → 𝔐Γ (Left r) ; (Right r) → {!!}}) e soundness (⟶ₗ p q) 𝔐Γ = soundness p (𝔐Γ ∘ Left) ∘ Left soundness (weakenᵣ p) 𝔐Γ (Left Δelem) = soundness p 𝔐Γ Δelem soundness (weakenᵣ p) 𝔐Γ (Right [≡]-intro) = {!!} soundness (∧ᵣ p q) 𝔐Γ (Left Δelem) = soundness p 𝔐Γ (Left Δelem) soundness (∧ᵣ p q) 𝔐Γ (Right [≡]-intro) = Logic.[∧]-intro (soundness p 𝔐Γ (Right [≡]-intro)) (soundness q 𝔐Γ (Right [≡]-intro)) soundness (∨ᵣₗ p) 𝔐Γ e = {!!} soundness (∨ᵣᵣ p) 𝔐Γ e = {!!} soundness (⟶ᵣ p) 𝔐Γ (Left x) = {!!} soundness (⟶ᵣ p) 𝔐Γ (Right [≡]-intro) = {!soundness p ? ?!} -} module _ (cut : ∀{Γ₁ Γ₂ Δ₁ Δ₂}{φ} → (Γ₁ ⇒ (Δ₁ ∪· φ)) → ((Γ₂ ∪· φ) ⇒ Δ₂) → ((Γ₁ ∪ Γ₂) ⇒ (Δ₁ ∪ Δ₂))) where open import Formalization.ClassicalPropositionalLogic.NaturalDeduction open import Data.List.Relation.Quantification open import Lang.Instance open import Sets.PredicateSet as PredSet using (PredSet) open import Sets.PredicateSet.Listable open import Type.Properties.MereProposition ¬ᵣ-⊥ : ((Γ ∪· A) ⇒ (· ⊥)) → (Γ ⇒ (Δ ∪· (¬ A))) ¬ᵣ-⊥ {Γ = Γ}{A = A}{Δ = Δ} p = permute{Γ₁ = Γ ∪ Γ}{Γ₂ = Γ} {!!} {!!} (cut{Γ₁ = Γ}{Γ₂ = Γ}{Δ₁ = Δ}{Δ₂ = ·(¬ A)} {!!} {!!}) from-naturalDeduction : ∀{Γ} ⦃ _ : Listable{ℓ}(Γ) ⦄ → (Γ ⊢ φ) → (list(Γ) ⇒ (· φ)) to-naturalDeduction : (Γ ⇒ (· φ)) → ((_∈ Γ) ⊢ φ) from-naturalDeduction (direct x) = [⇒]-membership(Listable.proof infer x) from-naturalDeduction [⊤]-intro = [⇒][++]ₗ-weakenₗ ⊤ᵣ from-naturalDeduction ([⊥]-intro p q) = {!!} from-naturalDeduction ([⊥]-elim p) = {!from-naturalDeduction p!} from-naturalDeduction {Γ = Γ} ([¬]-intro p) = {!(permuteₗ (list-[∪·] {Γ = Γ}) (from-naturalDeduction ⦃ ? ⦄ p))!} from-naturalDeduction ([¬]-elim p) = {!!} from-naturalDeduction ([∧]-intro p q) = ∧ᵣ (from-naturalDeduction p) (from-naturalDeduction q) from-naturalDeduction ([∧]-elimₗ p) = permute permₗ permᵣ (cut (from-naturalDeduction p) (∧ₗₗ refl)) where permₗ = sub₂(_≡ₑ_)(_permutes_) (identityᵣ(_∪_)(∅)) permᵣ = sub₂(_≡ₑ_)(_permutes_) (identityₗ(_∪_)(∅)) from-naturalDeduction ([∧]-elimᵣ p) = permute permₗ permᵣ (cut (from-naturalDeduction p) (∧ₗᵣ refl)) where permₗ = sub₂(_≡ₑ_)(_permutes_) (identityᵣ(_∪_)(∅)) permᵣ = sub₂(_≡ₑ_)(_permutes_) (identityₗ(_∪_)(∅)) from-naturalDeduction ([∨]-introₗ p) = ∨ᵣₗ (from-naturalDeduction p) from-naturalDeduction ([∨]-introᵣ p) = ∨ᵣᵣ (from-naturalDeduction p) from-naturalDeduction ([∨]-elim p q r) = {!!} from-naturalDeduction {Γ = Γ} ([⟶]-intro p) = ⟶ᵣ (permuteₗ (list-[∪·] {S = Γ}) (from-naturalDeduction ⦃ {!!} ⦄ p)) from-naturalDeduction ([⟶]-elim p q) = {!!} -- permute {!!} {!!} (cut (from-naturalDeduction p) {!cut (from-naturalDeduction q) ?!}) from-naturalDeduction ([⟷]-intro p q) = {!!} from-naturalDeduction ([⟷]-elimₗ p q) = {!!} from-naturalDeduction ([⟷]-elimᵣ p q) = {!!} {- from-naturalDeduction : ((_∈ Γ) ⊢ φ) → (Γ ⇒ (· φ)) from-naturalDeduction (direct (use {x = x}{l = l} [≡]-intro)) = [⇒][++]ₗ-weakenₗ {Γ₁ = · x}{Γ₂ = l} axiom from-naturalDeduction (direct (skip x)) = weakenₗ(from-naturalDeduction (direct x)) from-naturalDeduction [⊤]-intro = [⇒][++]ₗ-weakenₗ ⊤ᵣ from-naturalDeduction ([⊥]-intro p q) = {!!} from-naturalDeduction ([⊥]-elim p) = {!!} from-naturalDeduction ([¬]-intro p) = {!!} from-naturalDeduction ([¬]-elim p) = {!!} from-naturalDeduction ([∧]-intro p q) = ∧ᵣ (from-naturalDeduction p) (from-naturalDeduction q) from-naturalDeduction ([∧]-elimₗ p) = permute permₗ permᵣ (cut (from-naturalDeduction p) (∧ₗₗ axiom)) where permₗ = sub₂(_≡ₑ_)(_permutes_) (identityᵣ(_∪_)(∅)) permᵣ = sub₂(_≡ₑ_)(_permutes_) (identityₗ(_∪_)(∅)) from-naturalDeduction ([∧]-elimᵣ p) = permute permₗ permᵣ (cut (from-naturalDeduction p) (∧ₗᵣ axiom)) where permₗ = sub₂(_≡ₑ_)(_permutes_) (identityᵣ(_∪_)(∅)) permᵣ = sub₂(_≡ₑ_)(_permutes_) (identityₗ(_∪_)(∅)) from-naturalDeduction ([∨]-introₗ p) = ∨ᵣₗ (from-naturalDeduction p) from-naturalDeduction ([∨]-introᵣ p) = ∨ᵣᵣ (from-naturalDeduction p) from-naturalDeduction ([∨]-elim p q r) = {!!} from-naturalDeduction ([⟶]-intro p) = ⟶ᵣ {!from-naturalDeduction p!} from-naturalDeduction ([⟶]-elim p q) = {!!} from-naturalDeduction ([⟷]-intro p q) = {!!} from-naturalDeduction ([⟷]-elimₗ p q) = {!!} from-naturalDeduction ([⟷]-elimᵣ p q) = {!!} -} {- to-naturalDeduction axiom = direct (use [≡]-intro) to-naturalDeduction (weakenₗ p) = {!!} to-naturalDeduction (permuteₗ x p) = {!!} to-naturalDeduction (contractₗ p) = {!!} to-naturalDeduction (∧ₗₗ p) = {!!} to-naturalDeduction (∧ₗᵣ p) = {!!} to-naturalDeduction (∨ₗ p p₁) = {!!} to-naturalDeduction (⟶ₗ p p₁) = {!!} to-naturalDeduction (weakenᵣ p) = {!!} to-naturalDeduction (permuteᵣ x p) = {!!} to-naturalDeduction (contractᵣ p) = {!!} to-naturalDeduction (∧ᵣ p p₁) = [∧]-intro (to-naturalDeduction p) (to-naturalDeduction p₁) to-naturalDeduction (∨ᵣₗ p) = [∨]-introₗ (to-naturalDeduction p) to-naturalDeduction (∨ᵣᵣ p) = [∨]-introᵣ (to-naturalDeduction p) to-naturalDeduction (⟶ᵣ p) = [⟶]-intro {!to-naturalDeduction p!} -}
{ "alphanum_fraction": 0.5004937662, "avg_line_length": 45.6394366197, "ext": "agda", "hexsha": "8d5467c2a0107817fe804694bac671c6088dacd8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/SequentCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/SequentCalculus.agda", "max_line_length": 224, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/SequentCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 7771, "size": 16202 }
open import Prelude module Bij where record bij (From To : Set) : Set where field convert : From → To inj : ∀{f1 f2} → convert f1 == convert f2 → f1 == f2 surj : (t : To) → Σ[ f ∈ From ] (convert f == t) convert-inv : ∀{F T : Set} {{bijFT : bij F T}} → T → F convert-inv {{bijFT}} t with bij.surj bijFT t ... | f , _ = f convert-inv-inj : ∀{F T : Set} {{bijFT : bij F T}} {t1 t2 : T} → convert-inv {{bijFT}} t1 == convert-inv {{bijFT}} t2 → t1 == t2 convert-inv-inj ⦃ bijFT = bijFT ⦄ {t1} {t2} eq with bij.surj bijFT t1 | bij.surj bijFT t2 ... | _ , p1 | _ , p2 rewrite eq = ! p1 · p2 convert-inv-surj : ∀{F T : Set} {{bijFT : bij F T}} (f : F) → Σ[ t ∈ T ] (convert-inv {{bijFT}} t == f) convert-inv-surj ⦃ bijFT = bijFT ⦄ f with expr-eq (λ _ → bij.convert bijFT f) ... | t , teq with expr-eq (λ _ → bij.surj bijFT t) ... | (_ , seq) , refl = _ , bij.inj bijFT (seq · teq) convert-bij1 : ∀{F T : Set} {{bijFT : bij F T}} {f : F} → convert-inv (bij.convert bijFT f) == f convert-bij1 ⦃ bijFT = bijFT ⦄ {f} with expr-eq (λ _ → convert-inv-surj f) ... | (_ , eq) , refl = eq convert-bij2 : ∀{F T : Set} {{bijFT : bij F T}} {t : T} → bij.convert bijFT (convert-inv t) == t convert-bij2 ⦃ bijFT = bijFT ⦄ {t} with expr-eq (λ _ → bij.surj bijFT t) ... | (_ , eq) , refl = eq
{ "alphanum_fraction": 0.4979338843, "avg_line_length": 39.2432432432, "ext": "agda", "hexsha": "7926a1a134772d4cf56c2f0f2ba8b487d92a658b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts-agda", "max_forks_repo_path": "Bij.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts-agda", "max_issues_repo_path": "Bij.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts-agda", "max_stars_repo_path": "Bij.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 557, "size": 1452 }
module Control.Monad.Identity where open import Prelude open import Container.Foldable open import Container.Traversable record Identity {a} (A : Set a) : Set a where constructor mkIdentity field runIdentity : A open Identity public instance FunctorId : ∀ {a} → Functor (Identity {a}) runIdentity (fmap {{FunctorId}} f m) = f (runIdentity m) ApplicativeId : ∀ {a} → Applicative (Identity {a}) runIdentity (pure {{ApplicativeId}} x) = x runIdentity (_<*>_ {{ApplicativeId}} mf mx) = runIdentity mf (runIdentity mx) MonadId : ∀ {a} → Monad (Identity {a}) _>>=_ {{MonadId}} m f = f (runIdentity m) FunctorId′ : ∀ {a b} → Functor′ {a} {b} Identity runIdentity (fmap′ {{FunctorId′}} f m) = f (runIdentity m) ApplicativeId′ : ∀ {a b} → Applicative′ {a} {b} Identity runIdentity (_<*>′_ {{ApplicativeId′}} mf mx) = runIdentity mf (runIdentity mx) MonadId′ : ∀ {a b} → Monad′ {a} {b} Identity _>>=′_ {{MonadId′}} m f = f (runIdentity m) FoldableId : ∀ {a w} → Foldable {w = w} (Identity {a}) foldMap {{FoldableId}} f m = f (runIdentity m) TraversableId : ∀ {a} → Traversable (Identity {a}) traverse {{TraversableId}} f m = pure mkIdentity <*> f (runIdentity m)
{ "alphanum_fraction": 0.6487158244, "avg_line_length": 30.175, "ext": "agda", "hexsha": "861ceac126452c5a7272fad4afb1f3d65a9890ac", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Control/Monad/Identity.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Control/Monad/Identity.agda", "max_line_length": 81, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Control/Monad/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 395, "size": 1207 }
------------------------------------------------------------------------ -- Well-typed substitutions -- From ------------------------------------------------------------------------ module Extensions.Fin.TypedSubstitution where import Category.Applicative.Indexed as Applicative open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Vec as Vec using (Vec; []; _∷_; map) open import Data.Vec.All using (All₂; []; _∷_; map₂; gmap₂; gmap₂₁; gmap₂₂) open import Data.Vec.Properties using (lookup-morphism) open import Function using (_∘_; flip) open import Relation.Binary.PropositionalEquality as PropEq hiding (trans) open PropEq.≡-Reasoning ------------------------------------------------------------------------ -- Abstract typing contexts and well-typedness relations -- Abstract typing contexts over T-types. -- -- A typing context Ctx n maps n free variables to types containing up -- to n free variables each. module Context where infixr 5 _∷_ -- Typing contexts. data Ctx (T : ℕ → Set) : ℕ → Set where [] : Ctx T 0 _∷_ : ∀ {n} → T (1 + n) → Ctx T n → Ctx T (1 + n) -- Operations on context that require weakening of types. record WeakenOps (T : ℕ → Set) : Set where -- Weakening of types. field weaken : ∀ {n} → T n → T (1 + n) infixr 5 _i∷_ -- Convert a context to its vector representation. toVec : ∀ {n} → Ctx T n → Vec (T n) n toVec [] = [] toVec (a ∷ Γ) = a ∷ map weaken (toVec Γ) -- Shorthand for extending contexts with variables that are typed -- independently of themselves. _i∷_ : ∀ {n} → T n → Ctx T n → Ctx T (1 + n) a i∷ Γ = weaken a ∷ Γ -- Lookup the type of a variable in a context. lookup : ∀ {n} → Fin n → Ctx T n → T n lookup x = Vec.lookup x ∘ toVec open Context -- Abstract typings. -- -- An abtract typing _⊢_∈_ : Typing Tp₁ Tm Tp₂ is a ternary relation -- which, in a given Tp₂-context, relates Tm-terms to their Tp₁-types. Typing : (ℕ → Set) → (ℕ → Set) → (ℕ → Set) → Set₁ Typing Tp₁ Tm Tp₂ = ∀ {n} → Ctx Tp₁ n → Tm n → Tp₂ n → Set ------------------------------------------------------------------------ -- Abstract well-typed substitutions (i.e. substitution lemmas) -- Abstract typed substitutions. record TypedSub (Tp₁ Tp₂ Tm : ℕ → Set) : Set₁ where infix 4 _⊢_∈_ field _⊢_∈_ : Typing Tp₂ Tm Tp₁ -- the associated typing -- Application of Tm-substitutions to (source) Tp₁-types application : Application Tp₁ Tm -- Operations on the (source) Tp₁-context. weakenOps : WeakenOps Tp₁ open Application application public using (_/_) open WeakenOps weakenOps using (toVec) infix 4 _⇒_⊢_ -- Typed substitutions. -- -- A typed substitution Γ ⇒ Δ ⊢ σ is a substitution σ which, when -- applied to something that is well-typed in a source context Γ, -- yields something well-typed in a target context Δ. _⇒_⊢_ : ∀ {m n} → Ctx Tp₁ m → Ctx Tp₂ n → Sub Tm m n → Set Γ ⇒ Δ ⊢ σ = All₂ (λ t a → Δ ⊢ t ∈ (a / σ)) σ (toVec Γ) -- Abstract extensions of substitutions. record ExtensionTyped {Tp₁ Tp₂ Tm} (simple : Simple Tm) (typedSub : TypedSub Tp₁ Tp₂ Tm) : Set where open TypedSub typedSub private module S = SimpleExt simple module L₀ = Lemmas₀ (record { simple = simple }) module C = WeakenOps weakenOps open C using (_i∷_) field -- Weakens well-typed Ts. weaken : ∀ {n} {Δ : Ctx Tp₂ n} {t a b} → Δ ⊢ t ∈ a → b ∷ Δ ⊢ S.weaken t ∈ C.weaken a -- Weakening commutes with other substitutions. wk-commutes : ∀ {m n} {σ : Sub Tm m n} {t} a → a / σ / S.wk ≡ a / S.wk / (t S./∷ σ) -- Relates weakening of types to weakening of Ts. /-wk : ∀ {n} {a : Tp₁ n} → a / S.wk ≡ C.weaken a -- A helper lemma. weaken-/ : ∀ {m n} {σ : Sub Tm m n} {t} a → C.weaken (a / σ) ≡ C.weaken a / (t S./∷ σ) weaken-/ {σ = σ} {t} a = begin C.weaken (a / σ) ≡⟨ sym /-wk ⟩ a / σ / S.wk ≡⟨ wk-commutes a ⟩ a / S.wk / (t S./∷ σ) ≡⟨ cong₂ _/_ /-wk refl ⟩ C.weaken a / (t S./∷ σ) ∎ infixr 5 _/∷_ _/i∷_ -- Extension. _/∷_ : ∀ {m n} {Γ : Ctx Tp₁ m} {Δ : Ctx Tp₂ n} {t a b σ} → b ∷ Δ ⊢ t ∈ a / (t S./∷ σ) → Γ ⇒ Δ ⊢ σ → a ∷ Γ ⇒ b ∷ Δ ⊢ (t S./∷ σ) t∈a/t∷σ /∷ σ-wt = t∈a/t∷σ ∷ gmap₂ (subst (_⊢_∈_ _ _) (weaken-/ _) ∘ weaken) σ-wt -- A variant of extension tailored to _i∷_. _/i∷_ : ∀ {m n} {Γ : Ctx Tp₁ m} {Δ : Ctx Tp₂ n} {t a b σ} → b ∷ Δ ⊢ t ∈ C.weaken (a / σ) → Γ ⇒ Δ ⊢ σ → a i∷ Γ ⇒ b ∷ Δ ⊢ (t S./∷ σ) t∈a/σ /i∷ σ-wt = (subst (_⊢_∈_ _ _) (weaken-/ _) t∈a/σ) /∷ σ-wt -- Abstract simple typed substitutions. record SimpleTyped {Tp Tm} (simple : Simple Tm) (typedSub : TypedSub Tp Tp Tm) : Set where field extensionTyped : ExtensionTyped simple typedSub open TypedSub typedSub open ExtensionTyped extensionTyped public private module S = SimpleExt simple module L₀ = Lemmas₀ (record { simple = simple }) module C = WeakenOps weakenOps open C using (_i∷_) field -- Takes variables to well-typed Ts. var : ∀ {n} {Γ : Ctx Tp n} (x : Fin n) → Γ ⊢ S.var x ∈ C.lookup x Γ -- Types are invariant under the identity substitution. id-vanishes : ∀ {n} (a : Tp n) → a / S.id ≡ a -- Single-variable substitution is a left-inverse of weakening. wk-sub-vanishes : ∀ {n b} (a : Tp n) → a / S.wk / S.sub b ≡ a infix 10 _↑ _↑i -- Lifting. _↑ : ∀ {m n} {Γ : Ctx Tp m} {Δ : Ctx Tp n} {σ} → Γ ⇒ Δ ⊢ σ → ∀ {a} → a ∷ Γ ⇒ a / σ S.↑ ∷ Δ ⊢ (σ S.↑) σ-wt ↑ = var zero /∷ σ-wt -- A variant of lifting tailored to _i∷_. _↑i : ∀ {m n} {Γ : Ctx Tp m} {Δ : Ctx Tp n} {σ} → Γ ⇒ Δ ⊢ σ → ∀ {a} → a i∷ Γ ⇒ a / σ i∷ Δ ⊢ σ S.↑ σ-wt ↑i = var zero /i∷ σ-wt -- The identity substitution. id : ∀ {n} {Γ : Ctx Tp n} → Γ ⇒ Γ ⊢ S.id id {zero} = [] id {suc n} {a ∷ Γ} = subst₂ (λ Δ σ → a ∷ Γ ⇒ Δ ⊢ σ) (cong (flip _∷_ Γ) (id-vanishes a)) (L₀.id-↑⋆ 1) (id ↑) where id-vanishes′ : ∀ {n} (a : Tp (1 + n)) → a / S.id S.↑ ≡ a id-vanishes′ a = begin a / S.id S.↑ ≡⟨ cong (_/_ a) (L₀.id-↑⋆ 1) ⟩ a / S.id ≡⟨ id-vanishes a ⟩ a ∎ -- Weakening. wk : ∀ {n} {Γ : Ctx Tp n} {a} → Γ ⇒ a ∷ Γ ⊢ S.wk wk {n} {Γ = Γ} {a = a} = gmap₂₁ (weaken′ ∘ subst (_⊢_∈_ _ _) (id-vanishes _)) id where weaken′ : ∀ {n} {Γ : Ctx Tp n} {t a b} → Γ ⊢ t ∈ a → b ∷ Γ ⊢ S.weaken t ∈ a / S.wk weaken′ = subst (_⊢_∈_ _ _) (sym /-wk) ∘ weaken private wk-sub-vanishes′ : ∀ {n a} {t : Tm n} → a ≡ C.weaken a / S.sub t wk-sub-vanishes′ {a = a} {t} = begin a ≡⟨ sym (wk-sub-vanishes a) ⟩ a / S.wk / S.sub t ≡⟨ cong (flip _/_ _) /-wk ⟩ C.weaken a / S.sub t ∎ id-wk-sub-vanishes : ∀ {n a} {t : Tm n} → a / S.id ≡ C.weaken a / S.sub t id-wk-sub-vanishes {a = a} {t} = begin a / S.id ≡⟨ id-vanishes a ⟩ a ≡⟨ wk-sub-vanishes′ ⟩ C.weaken a / S.sub t ∎ -- A substitution which only replaces the first variable. sub : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢ t ∈ a → a i∷ Γ ⇒ Γ ⊢ S.sub t sub t∈a = t∈a′ ∷ gmap₂₂ (subst (_⊢_∈_ _ _) id-wk-sub-vanishes) id where t∈a′ = subst (_⊢_∈_ _ _) wk-sub-vanishes′ t∈a -- A variant of single-variable substitution that handles -- self-dependently typed variables. sub′ : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢ t ∈ a / S.sub t → a ∷ Γ ⇒ Γ ⊢ S.sub t sub′ t∈a[/t] = t∈a[/t] ∷ gmap₂₂ (subst (_⊢_∈_ _ _) id-wk-sub-vanishes) id -- A substitution which only changes the type of the first variable. tsub : ∀ {n} {Γ : Ctx Tp n} {a b} → b ∷ Γ ⊢ S.var zero ∈ a → a ∷ Γ ⇒ b ∷ Γ ⊢ S.id tsub z∈a = z∈a′ ∷ gmap₂ (subst (_⊢_∈_ _ _) (weaken-/ _) ∘ weaken) id where z∈a′ = subst (_⊢_∈_ _ _) (sym (id-vanishes _)) z∈a -- Abstract typed liftings from Tm₁ to Tm₂. record LiftTyped {Tp Tm₁ Tm₂} (l : Lift Tm₁ Tm₂) (typedSub : TypedSub Tp Tp Tm₁) (_⊢₂_∈_ : Typing Tp Tm₂ Tp) : Set where open TypedSub typedSub renaming (_⊢_∈_ to _⊢₁_∈_) private module L = Lift l -- The underlying well-typed simple Tm₁-substitutions. field simpleTyped : SimpleTyped L.simple typedSub open SimpleTyped simpleTyped public -- Lifts well-typed Tm₁-terms to well-typed Tm₂-terms. field lift : ∀ {n} {Γ : Ctx Tp n} {t a} → Γ ⊢₁ t ∈ a → Γ ⊢₂ (L.lift t) ∈ a -- Abstract variable typings. module VarTyping {Tp} (weakenOps : Context.WeakenOps Tp) where open WeakenOps weakenOps infix 4 _⊢Var_∈_ -- Abstract variable typings. data _⊢Var_∈_ {n} (Γ : Ctx Tp n) : Fin n → Tp n → Set where var : ∀ x → Γ ⊢Var x ∈ lookup x Γ -- Abstract typed variable substitutions (α-renamings). record TypedVarSubst (Tp : ℕ → Set) : Set where field application : Application Tp Fin weakenOps : WeakenOps Tp open VarTyping weakenOps public typedSub : TypedSub Tp Tp Fin typedSub = record { _⊢_∈_ = _⊢Var_∈_ ; application = application ; weakenOps = weakenOps } open TypedSub typedSub public using () renaming (_⇒_⊢_ to _⇒_⊢α_) open Application application using (_/_) open Lemmas₄ VarLemmas.lemmas₄ using (id; wk; _⊙_) private module C = WeakenOps weakenOps field /-wk : ∀ {n} {a : Tp n} → a / wk ≡ C.weaken a id-vanishes : ∀ {n} (a : Tp n) → a / id ≡ a /-⊙ : ∀ {m n k} {σ₁ : Sub Fin m n} {σ₂ : Sub Fin n k} a → a / σ₁ ⊙ σ₂ ≡ a / σ₁ / σ₂ appLemmas : AppLemmas Tp Fin appLemmas = record { application = application ; lemmas₄ = VarLemmas.lemmas₄ ; id-vanishes = id-vanishes ; /-⊙ = /-⊙ } open ExtAppLemmas appLemmas hiding (var; weaken; /-wk; id-vanishes; subst) -- Extensions of renamings. extensionTyped : ExtensionTyped VarLemmas.simple typedSub extensionTyped = record { weaken = weaken ; wk-commutes = wk-commutes ; /-wk = /-wk } where open Applicative.Morphism using (op-<$>) weaken : ∀ {n} {Γ : Ctx Tp n} {x a b} → Γ ⊢Var x ∈ a → b ∷ Γ ⊢Var suc x ∈ C.weaken a weaken (var x) = subst (_⊢Var_∈_ _ _) (op-<$> (lookup-morphism x) _ _) (var (suc x)) -- Simple typed renamings. simpleTyped : SimpleTyped VarLemmas.simple typedSub simpleTyped = record { extensionTyped = extensionTyped ; var = var ; id-vanishes = id-vanishes ; wk-sub-vanishes = wk-sub-vanishes } open SimpleTyped simpleTyped public hiding (extensionTyped; var; /-wk; id-vanishes; wk-sub-vanishes) -- Context-replacing substitutions. record ContextSub (Tp₁ Tp₂ Tm : ℕ → Set) : Set₁ where infix 4 _⊢_∈_ field _⊢_∈_ : Typing Tp₂ Tm Tp₁ -- the associated typing -- Simple Tm-substitutions (e.g. id). simple : Simple Tm -- Operations on the (source) Tp₁-context. weakenOps : WeakenOps Tp₁ open Simple simple using (id) open WeakenOps weakenOps using (toVec) infix 4 _⇒_⊢-id -- Context-replacing substitutions. -- -- An alternative representation for substitutions that only change -- the context of a well-typed Tm-term, i.e. where the underlying -- untyped substitution is the identity. _⇒_⊢-id : ∀ {n} → Ctx Tp₁ n → Ctx Tp₂ n → Set Γ ⇒ Δ ⊢-id = All₂ (λ t a → Δ ⊢ t ∈ a) id (toVec Γ) -- Equivalences between (simple) typed substitutions and their -- context-replacing counterparts. record Equivalence {Tp₁ Tp₂ Tm} (simple : Simple Tm) (typedSub : TypedSub Tp₁ Tp₂ Tm) : Set where open Simple simple open TypedSub typedSub -- The type of context substitutions participating in this -- equivalence. contextSub : ContextSub Tp₁ Tp₂ Tm contextSub = record { _⊢_∈_ = _⊢_∈_ ; simple = simple ; weakenOps = weakenOps } open ContextSub contextSub hiding (_⊢_∈_; simple) -- Types are invariant under the identity substitution. field id-vanishes : ∀ {n} (a : Tp₁ n) → a / id ≡ a -- There is a context substitution for every typed identity -- substitution. sound : ∀ {n} {Γ : Ctx Tp₁ n} {Δ : Ctx Tp₂ n} → Γ ⇒ Δ ⊢-id → Γ ⇒ Δ ⊢ id sound ρ = map₂ (subst (_⊢_∈_ _ _) (sym (id-vanishes _))) ρ -- There is a context substitution for every typed identity -- substitution. complete : ∀ {n} {Γ : Ctx Tp₁ n} {Δ : Ctx Tp₂ n} → Γ ⇒ Δ ⊢ id → Γ ⇒ Δ ⊢-id complete σ-wt = map₂ (subst (_⊢_∈_ _ _) (id-vanishes _)) σ-wt -- Variants of some simple typed substitutions. record ContextSimple {Tp Tm} (simple : Simple Tm) (typedSub : TypedSub Tp Tp Tm) : Set where field simpleTyped : SimpleTyped simple typedSub open TypedSub typedSub hiding (_⊢_∈_) private module U = SimpleExt simple module C = WeakenOps weakenOps module S = SimpleTyped simpleTyped open C using (_i∷_) equivalence : Equivalence simple typedSub equivalence = record { id-vanishes = S.id-vanishes } open Equivalence equivalence public open ContextSub contextSub public infixr 5 _/∷_ infix 10 _↑ -- Extension. _/∷_ : ∀ {n} {Γ : Ctx Tp n} {Δ : Ctx Tp n} {a b} → b ∷ Δ ⊢ U.var zero ∈ a → Γ ⇒ Δ ⊢-id → a ∷ Γ ⇒ b ∷ Δ ⊢-id z∈a /∷ σ-wt = z∈a ∷ gmap₂ S.weaken σ-wt -- Lifting. _↑ : ∀ {n} {Γ : Ctx Tp n} {Δ : Ctx Tp n} → Γ ⇒ Δ ⊢-id → ∀ {a} → a ∷ Γ ⇒ a ∷ Δ ⊢-id ρ ↑ = S.var zero /∷ ρ -- The identity substitution. id : ∀ {n} {Γ : Ctx Tp n} → Γ ⇒ Γ ⊢-id id = complete S.id
{ "alphanum_fraction": 0.5604571595, "avg_line_length": 32.5521327014, "ext": "agda", "hexsha": "27756f8de22e2fb335ceaed1131032e49e827418", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Fin/TypedSubstitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Fin/TypedSubstitution.agda", "max_line_length": 80, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Fin/TypedSubstitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 5119, "size": 13737 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed applicative functors ------------------------------------------------------------------------ -- Note that currently the applicative functor laws are not included -- here. {-# OPTIONS --without-K --safe #-} module Category.Applicative.Indexed where open import Category.Functor using (RawFunctor) open import Data.Product using (_×_; _,_) open import Function open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_) private variable a b c i f : Level A : Set a B : Set b C : Set c IFun : Set i → (ℓ : Level) → Set (i ⊔ suc ℓ) IFun I ℓ = I → I → Set ℓ → Set ℓ ------------------------------------------------------------------------ -- Type, and usual combinators record RawIApplicative {I : Set i} (F : IFun I f) : Set (i ⊔ suc f) where infixl 4 _⊛_ _<⊛_ _⊛>_ infix 4 _⊗_ field pure : ∀ {i} → A → F i i A _⊛_ : ∀ {i j k} → F i j (A → B) → F j k A → F i k B rawFunctor : ∀ {i j} → RawFunctor (F i j) rawFunctor = record { _<$>_ = λ g x → pure g ⊛ x } private open module RF {i j : I} = RawFunctor (rawFunctor {i = i} {j = j}) public _<⊛_ : ∀ {i j k} → F i j A → F j k B → F i k A x <⊛ y = const <$> x ⊛ y _⊛>_ : ∀ {i j k} → F i j A → F j k B → F i k B x ⊛> y = flip const <$> x ⊛ y _⊗_ : ∀ {i j k} → F i j A → F j k B → F i k (A × B) x ⊗ y = (_,_) <$> x ⊛ y zipWith : ∀ {i j k} → (A → B → C) → F i j A → F j k B → F i k C zipWith f x y = f <$> x ⊛ y zip : ∀ {i j k} → F i j A → F j k B → F i k (A × B) zip = zipWith _,_ ------------------------------------------------------------------------ -- Applicative with a zero record RawIApplicativeZero {I : Set i} (F : IFun I f) : Set (i ⊔ suc f) where field applicative : RawIApplicative F ∅ : ∀ {i j} → F i j A open RawIApplicative applicative public ------------------------------------------------------------------------ -- Alternative functors: `F i j A` is a monoid record RawIAlternative {I : Set i} (F : IFun I f) : Set (i ⊔ suc f) where infixr 3 _∣_ field applicativeZero : RawIApplicativeZero F _∣_ : ∀ {i j} → F i j A → F i j A → F i j A open RawIApplicativeZero applicativeZero public ------------------------------------------------------------------------ -- Applicative functor morphisms, specialised to propositional -- equality. record Morphism {I : Set i} {F₁ F₂ : IFun I f} (A₁ : RawIApplicative F₁) (A₂ : RawIApplicative F₂) : Set (i ⊔ suc f) where module A₁ = RawIApplicative A₁ module A₂ = RawIApplicative A₂ field op : ∀ {i j} → F₁ i j A → F₂ i j A op-pure : ∀ {i} (x : A) → op (A₁.pure {i = i} x) ≡ A₂.pure x op-⊛ : ∀ {i j k} (f : F₁ i j (A → B)) (x : F₁ j k A) → op (f A₁.⊛ x) ≡ (op f A₂.⊛ op x) op-<$> : ∀ {i j} (f : A → B) (x : F₁ i j A) → op (f A₁.<$> x) ≡ (f A₂.<$> op x) op-<$> f x = begin op (A₁._⊛_ (A₁.pure f) x) ≡⟨ op-⊛ _ _ ⟩ A₂._⊛_ (op (A₁.pure f)) (op x) ≡⟨ P.cong₂ A₂._⊛_ (op-pure _) P.refl ⟩ A₂._⊛_ (A₂.pure f) (op x) ∎ where open P.≡-Reasoning
{ "alphanum_fraction": 0.4531438936, "avg_line_length": 28.7652173913, "ext": "agda", "hexsha": "816d31c502b9cf18d899de5523963de9af8644a6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Category/Applicative/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Category/Applicative/Indexed.agda", "max_line_length": 74, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Category/Applicative/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1185, "size": 3308 }
import Fragment.Algebra.Algebra import Fragment.Algebra.Free import Fragment.Algebra.Free.Atoms import Fragment.Algebra.Free.Base import Fragment.Algebra.Free.Evaluation import Fragment.Algebra.Free.Monad import Fragment.Algebra.Free.Properties import Fragment.Algebra.Free.Syntax import Fragment.Algebra.Homomorphism import Fragment.Algebra.Homomorphism.Base import Fragment.Algebra.Homomorphism.Definitions import Fragment.Algebra.Homomorphism.Equivalence import Fragment.Algebra.Homomorphism.Properties import Fragment.Algebra.Homomorphism.Setoid import Fragment.Algebra.Properties import Fragment.Algebra.Quotient import Fragment.Algebra.Signature import Fragment.Equational.Coproduct import Fragment.Equational.FreeExtension import Fragment.Equational.FreeExtension.Base import Fragment.Equational.FreeExtension.Properties import Fragment.Equational.FreeExtension.Synthetic import Fragment.Equational.Model import Fragment.Equational.Model.Base import Fragment.Equational.Model.Properties import Fragment.Equational.Model.Satisfaction import Fragment.Equational.Model.Synthetic import Fragment.Equational.Structures import Fragment.Equational.Theory import Fragment.Equational.Theory.Base import Fragment.Equational.Theory.Bundles import Fragment.Equational.Theory.Combinators import Fragment.Equational.Theory.Laws import Fragment.Examples.CSemigroup.Arith.Atomic import Fragment.Examples.CSemigroup.Arith.Base import Fragment.Examples.CSemigroup.Arith.Functions import Fragment.Examples.CSemigroup.Arith.Reasoning import Fragment.Examples.CSemigroup.Types import Fragment.Examples.Semigroup.Arith.Atomic import Fragment.Examples.Semigroup.Arith.Base import Fragment.Examples.Semigroup.Arith.Functions import Fragment.Examples.Semigroup.Arith.Reasoning import Fragment.Examples.Semigroup.Types import Fragment.Extensions.CSemigroup import Fragment.Extensions.CSemigroup.Base import Fragment.Extensions.CSemigroup.Monomial import Fragment.Extensions.CSemigroup.Nat -- import Fragment.Extensions.Combinators import Fragment.Extensions.Semigroup import Fragment.Prelude import Fragment.Setoid.Morphism import Fragment.Setoid.Morphism.Base import Fragment.Setoid.Morphism.Properties import Fragment.Setoid.Morphism.Setoid import Fragment.Tactic.Fragment import Fragment.Tactic.Utils
{ "alphanum_fraction": 0.8809628009, "avg_line_length": 40.0877192982, "ext": "agda", "hexsha": "0f54c52465b70d31a0748d789a66f4c6b5a8ff52", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "Everything.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "Everything.agda", "max_line_length": 51, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 498, "size": 2285 }
open import Agda.Builtin.Bool open import Agda.Builtin.List data Singleton : List Bool → Set where singleton : ∀ b → Singleton (b ∷ []) Works : (bs : List Bool) → Singleton bs → Set₁ Works bs s with s ... | singleton b with Set Works .(b ∷ []) s | singleton b | _ = Set Fails : (bs : List Bool) → Singleton bs → Set₁ Fails bs s with singleton b ← s with Set Fails .(b ∷ []) s | _ = Set
{ "alphanum_fraction": 0.6306532663, "avg_line_length": 26.5333333333, "ext": "agda", "hexsha": "c9a1814151fe64ccb62f3f159a0e86d66ca365e5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4079.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4079.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4079.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 398 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category using (Category; _[_,_]) -- Various conclusions that can be drawn from Yoneda -- over a particular Category C module Categories.Yoneda.Properties {o ℓ e : Level} (C : Category o ℓ e) where open import Function.Base using (_$_) open import Function.Bundles using (Inverse) open import Function.Equality using (Π; _⟨$⟩_; cong) open import Relation.Binary.Bundles using (module Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR open import Data.Product using (_,_; Σ) open import Categories.Category.Product open import Categories.Category.Construction.Presheaves open import Categories.Category.Construction.Functors open import Categories.Category.Instance.Setoids open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties using (Full; Faithful; FullyFaithful) open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-]) open import Categories.Functor.Bifunctor open import Categories.Functor.Presheaf open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open import Categories.Yoneda import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR import Categories.NaturalTransformation.Hom as NT-Hom open Category C using (module HomReasoning; id; _∘_; identityˡ; identityʳ; Obj; ∘-resp-≈ˡ; ∘-resp-≈ʳ) open HomReasoning open NaturalTransformation using (η; commute) open Yoneda C using (embed; yoneda-inverse; module yoneda) private module CE = Category.Equiv C using (refl) module C = Category C using (op; id) YoFull : Full embed YoFull {X} {Y} = record { from = record { _⟨$⟩_ = λ ε → η ε X ⟨$⟩ id ; cong = λ i≈j → i≈j CE.refl } ; right-inverse-of = λ ε {x} {z} {y} z≈y → begin (η ε X ⟨$⟩ id) ∘ z ≈˘⟨ identityˡ ⟩ id ∘ (η ε X ⟨$⟩ id) ∘ z ≈˘⟨ commute ε z CE.refl ⟩ η ε x ⟨$⟩ id ∘ id ∘ z ≈⟨ cong (η ε x) (identityˡ ○ identityˡ ○ z≈y) ⟩ η ε x ⟨$⟩ y ∎ } YoFaithful : Faithful embed YoFaithful f g pres-≈ = begin f ≈˘⟨ identityʳ ⟩ f ∘ id ≈⟨ pres-≈ CE.refl ⟩ g ∘ id ≈⟨ identityʳ ⟩ g ∎ YoFullyFaithful : FullyFaithful embed YoFullyFaithful = YoFull , YoFaithful open Mor C using (_≅_) yoneda-iso : ∀ {A B : Obj} → NaturalIsomorphism Hom[ C ][-, A ] Hom[ C ][-, B ] → A ≅ B yoneda-iso {A} {B} niso = record { from = ⇒.η A ⟨$⟩ id ; to = ⇐.η B ⟨$⟩ id ; iso = record { isoˡ = begin (⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈⟨ B⇒A.inverseʳ F⇐G CE.refl ⟩ ⇐.η A ⟨$⟩ (⇒.η A ⟨$⟩ id) ≈⟨ isoX.isoˡ CE.refl ⟩ id ∎ ; isoʳ = begin (⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈⟨ A⇒B.inverseʳ F⇒G CE.refl ⟩ ⇒.η B ⟨$⟩ (⇐.η B ⟨$⟩ id) ≈⟨ isoX.isoʳ CE.refl ⟩ id ∎ } } where open NaturalIsomorphism niso A⇒B = yoneda-inverse A (Functor.F₀ embed B) B⇒A = yoneda-inverse B (Functor.F₀ embed A) module A⇒B = Inverse A⇒B using (inverseʳ) module B⇒A = Inverse B⇒A using (inverseʳ) module isoX {X} = Mor.Iso (iso X) using (isoʳ; isoˡ) module _ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} where private module D = Category D using (id) module _ {F G : Functor D C} where private module F = Functor F using (₀; ₁; identity) module G = Functor G using (₀; ₁; identity) Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F) Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G) nat-appʳ : ∀ X → NaturalTransformation Hom[-,F-] Hom[-,G-] → NaturalTransformation Hom[ C ][-, F.₀ X ] Hom[ C ][-, G.₀ X ] nat-appʳ X α = ntHelper record { η = λ Y → η α (Y , X) ; commute = λ {_ Y} f eq → cong (η α (Y , X)) (∘-resp-≈ˡ (⟺ F.identity)) ○ commute α (f , D.id) eq ○ ∘-resp-≈ˡ G.identity } transform : NaturalTransformation Hom[-,F-] Hom[-,G-] → NaturalTransformation F G transform α = ntHelper record { η = λ X → η α (F.₀ X , X) ⟨$⟩ id ; commute = λ {X Y} f → begin (η α (F.₀ Y , Y) ⟨$⟩ id) ∘ F.₁ f ≈˘⟨ identityˡ ⟩ id ∘ (η α (F.₀ Y , Y) ⟨$⟩ id) ∘ F.₁ f ≈˘⟨ lower (yoneda.⇒.commute {Y = Hom[ C ][-, G.₀ Y ] , _} (idN , F.₁ f) {nat-appʳ Y α} {nat-appʳ Y α} (cong (η α _))) ⟩ η α (F.₀ X , Y) ⟨$⟩ F.₁ f ∘ id ≈⟨ cong (η α (F.₀ X , Y)) (∘-resp-≈ʳ (⟺ identityˡ)) ⟩ η α (F.₀ X , Y) ⟨$⟩ F.₁ f ∘ id ∘ id ≈⟨ commute α (id , f) CE.refl ⟩ G.₁ f ∘ (η α (F.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ G.₁ f ∘ (η α (F.₀ X , X) ⟨$⟩ id) ∎ } module _ (F G : Functor D C) where private module F = Functor F using (₀) module G = Functor G using (₀) Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F) Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G) -- The implicits given below are sometimes needed (yellow), sometimes make an enormous difference in -- typechecking time. For example, in yoneda.⇒.commute, "nat-appʳ X F⇐G" is needed, while -- nat-appʳ {F = G} {F} X F⇐G makes a huge difference in checking time. yoneda-NI : NaturalIsomorphism Hom[-,F-] Hom[-,G-] → NaturalIsomorphism F G yoneda-NI ni = record { F⇒G = transform F⇒G ; F⇐G = transform F⇐G ; iso = λ X → record { isoˡ = begin (⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈⟨ introˡ CE.refl ⟩ id ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈˘⟨ lower {e} (yoneda.⇒.commute {Y = Hom[ C ][-, F.₀ X ] , _} (idN , (⇒.η (F.₀ X , X) ⟨$⟩ id)) {nat-appʳ {F = G} {F} X F⇐G} {nat-appʳ {F = G} {F} X F⇐G} (cong (⇐.η (_ , X) ))) ⟩ ⇐.η (F.₀ X , X) ⟨$⟩ (⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇐.η _) identityʳ ⟩ ⇐.η (F.₀ X , X) ⟨$⟩ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoˡ _ CE.refl ⟩ id ∎ ; isoʳ = begin (⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈⟨ introˡ CE.refl ⟩ id ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈˘⟨ lower {e} (yoneda.⇒.commute {Y = Hom[ C ][-, G.₀ X ] , _} (idN , (⇐.η (G.₀ X , X) ⟨$⟩ C.id)) {nat-appʳ {F = F} {G} X F⇒G} {nat-appʳ {F = F} {G} X F⇒G} (cong (⇒.η _))) ⟩ ⇒.η (G.₀ X , X) ⟨$⟩ (⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇒.η _) identityʳ ⟩ ⇒.η (G.₀ X , X) ⟨$⟩ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoʳ _ CE.refl ⟩ id ∎ } } where open NaturalIsomorphism ni using (F⇒G; F⇐G; module ⇐; module ⇒; module iso) open MR C using (introˡ)
{ "alphanum_fraction": 0.4813155874, "avg_line_length": 46.7904191617, "ext": "agda", "hexsha": "b33ccec73863a338f559cc8cfdc5d2e36ab27b1c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Yoneda/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Yoneda/Properties.agda", "max_line_length": 168, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Yoneda/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2979, "size": 7814 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) open import Categories.Category.Cartesian using (Cartesian) -- Defines the following properties of a Category: -- Cartesian.SymmetricMonoidal -- a Cartesian category is Symmetric Monoidal if its induced monoidal structure is symmetric module Categories.Category.Cartesian.SymmetricMonoidal {o ℓ e} (𝒞 : Category o ℓ e) (cartesian : Cartesian 𝒞) where open import Data.Product using (_,_) open Category 𝒞 open Commutation 𝒞 open HomReasoning open import Categories.Category.BinaryProducts 𝒞 using (module BinaryProducts) open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal) open import Categories.Category.Monoidal using (Monoidal) import Categories.Category.Monoidal.Symmetric as Sym open import Categories.NaturalTransformation using (ntHelper) private variable W X Y Z : Obj open Cartesian cartesian using (products) open CartesianMonoidal cartesian using (monoidal) open Sym monoidal using (Symmetric; symmetricHelper) open Monoidal monoidal using (_⊗₀_; _⊗₁_; module associator) open BinaryProducts products private B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B = swap hexagon : [ (X ⊗₀ Y) ⊗₀ Z ⇒ Y ⊗₀ Z ⊗₀ X ]⟨ B ⊗₁ id ⇒⟨ (Y ⊗₀ X) ⊗₀ Z ⟩ associator.from ⇒⟨ Y ⊗₀ X ⊗₀ Z ⟩ id ⊗₁ B ≈ associator.from ⇒⟨ X ⊗₀ Y ⊗₀ Z ⟩ B ⇒⟨ (Y ⊗₀ Z) ⊗₀ X ⟩ associator.from ⟩ hexagon = begin id ⊗₁ swap ∘ assocˡ ∘ swap ⊗₁ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩ id ⊗₁ swap ∘ assocˡ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₁ ∘ π₁ ⟩ , id ∘ π₂ ⟩ ≈⟨ refl⟩∘⟨ assocˡ∘⟨⟩ ⟩ id ⊗₁ swap ∘ ⟨ π₂ ∘ π₁ , ⟨ π₁ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩ ⟨ id ∘ π₂ ∘ π₁ , swap ∘ ⟨ π₁ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ swap∘⟨⟩ ⟩ ⟨ π₂ ∘ π₁ , ⟨ id ∘ π₂ , π₁ ∘ π₁ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ (⟨⟩-congʳ identityˡ) ⟩ ⟨ π₂ ∘ π₁ , ⟨ π₂ , π₁ ∘ π₁ ⟩ ⟩ ≈˘⟨ assocˡ∘⟨⟩ ⟩ assocˡ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ , π₁ ∘ π₁ ⟩ ≈˘⟨ refl⟩∘⟨ swap∘⟨⟩ ⟩ assocˡ ∘ swap ∘ assocˡ ∎ symmetric : Symmetric symmetric = symmetricHelper record { braiding = record { F⇒G = ntHelper record { η = λ _ → swap ; commute = λ _ → swap∘⁂ } ; F⇐G = ntHelper record { η = λ _ → swap ; commute = λ _ → swap∘⁂ } ; iso = λ _ → record { isoˡ = swap∘swap ; isoʳ = swap∘swap } } ; commutative = swap∘swap ; hexagon = hexagon }
{ "alphanum_fraction": 0.5506542056, "avg_line_length": 35.1973684211, "ext": "agda", "hexsha": "84670dfe26bfc2a8bbc07778e7d9a42794ef26cc", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cartesian/SymmetricMonoidal.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cartesian/SymmetricMonoidal.agda", "max_line_length": 115, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cartesian/SymmetricMonoidal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 951, "size": 2675 }
module plfa-exercises.Practice4 where open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_ ; ∃-syntax; ∃; _,_) -- renaming (_,_ to ⟨_,_⟩) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; _≤?_; _≟_; s≤s; z≤n) open import Data.Nat.Binary.Properties using (≰⇒>) open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym; ≤-total) open import Data.Maybe using (Maybe; just; nothing; maybe; _>>=_; from-just; From-just) open import Data.Bool using (Bool; true; false; T; _∧_; _∨_; not) open import Relation.Nullary.Decidable using (⌊_⌋; toWitness; fromWitness; from-yes; From-yes) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Unit using (⊤; tt) --data OrderedTree (A : Set) : (smallest middle biggest : ℕ) → Set where -- leaf : ∀ (n : ℕ) → A → OrderedTree A n n -- node : ∀ {s₁ m₁ b₁ s₂ m₂ b₂ : ℕ} -- → (m : ℕ) -- → b₁ ≤ m -- → m ≤ s₂ -- → OrderedTree A s₁ m₁ b₁ -- → OrderedTree A s₂ m₂ b₂ -- → OrderedTree A s₁ m b₂ -- ---- node 7 _ _ (leaf 5 300) (leaf 10 200) ----middle_values_in_node_are_smaller : -- --insert_left : ∀ {s m b : ℕ} → (n : ℕ) → A → OrderedTree A s m b data BST : ℕ → ℕ → Set where leaf : ∀ {l u : ℕ} → l ≤ u → BST l u node : ∀ {l l₀ u₁ u : ℕ} (d : ℕ) → BST l₀ d → BST d u₁ → l ≤ l₀ -- This overcomplicates some stuff in later code. Better get rid off it → u₁ ≤ u → BST l u -- node {l = 0} {u = 30} 5 (leaf {2} {5} _) (leaf {5} {6} _) -- If we use the long definition of BST this function gets short, otherwise it's quite complicated widen : ∀ {l l' u u' : ℕ} → BST l' u' → l ≤ l' → u' ≤ u → BST l u widen (leaf l'≤u') l≤l' u'≤u = leaf (≤-trans l≤l' (≤-trans l'≤u' u'≤u)) widen (node d left right l'≤l₀ u₁≤u') l≤l' u'≤u = node d left right (≤-trans l≤l' l'≤l₀) (≤-trans u₁≤u' u'≤u) -- node {l = 0} {u = 30} 5 (leaf {2} {5} _) (widen (leaf {23} {29} _) _ _) z≤n _ a-tree : BST 0 30 -- A tree with a single node!! --a-tree = node 5 (leaf 2≤5) (leaf 5≤30) z≤n 30≤30 a-tree = node 5 (leaf 2≤5) (widen (leaf 23≤29) 5≤23 29≤30) z≤n 30≤30 --a-tree = node {l = 0} {u = 30} 5 (leaf {2} {5} 2≤5) (widen (leaf {23} {29} 23≤29) 5≤23 29≤30) z≤n 30≤30 where --2≤5 = toWitness {Q = 2 ≤? 5} tt 2≤5 = from-yes ( 2 ≤? 5) 23≤29 = from-yes (23 ≤? 29) 5≤23 = from-yes ( 5 ≤? 23) 29≤30 = from-yes (29 ≤? 30) 30≤30 = from-yes (30 ≤? 30) binary-search : ∀ {l u : ℕ} → (n : ℕ) → l ≤ n → n ≤ u → BST l u → Maybe (∃[ l' ] (∃[ u' ] (BST l' u'))) binary-search _ _ _ (leaf _) = nothing binary-search n l≤n n≤u (node {l'} {l₀} {u₁} {u'} d left right l'≤l₀ u₁≤u') with d ≟ n --binary-search n _ _ (node {_} {l} {_} {u} d left right l≤l₀ u₁≤u) with d ≟ n ... | yes d=n = just (l' , u' , node d left right l'≤l₀ u₁≤u') ... | no d≠n with ≤-total n d | l₀ ≤? n | n ≤? u₁ ... | inj₁ n≤d | yes l₀≤n | _ = binary-search n l₀≤n n≤d left ... | inj₁ n≤d | no ¬l₀≤n | _ = nothing -- This shouldn't exist if the definition of BST wasn't so overcomcomplicated ... | inj₂ d≤n | _ | yes n≤u₁ = binary-search n d≤n n≤u₁ right ... | inj₂ d≤n | _ | no ¬n≤u₁ = nothing smaller : ℕ → ℕ → Bool smaller m n with m ≤? n ... | yes m≤n = true ... | _ = false _≤ℕ_ : ∀ (m n : ℕ) → From-yes (m ≤? n) m ≤ℕ n = from-yes (m ≤? n) --_ : Maybe (∃ (λ l' → ∃ (BST l'))) --_ = binary-search 5 _ _ a-tree ≡ nothing --where --5≤30 = from-yes (5 ≤? 30) _ : binary-search 2 z≤n (2 ≤ℕ 30) a-tree ≡ nothing _ = refl _ : binary-search 5 z≤n (5 ≤ℕ 30) a-tree ≡ just (0 , 30 , node 5 _ _ _ _) _ = refl insert : ∀ {l u} (d : ℕ) → l ≤ d → d ≤ u → BST l u → BST l u insert d l≤d d≤u (leaf _) = node d (leaf l≤d) (leaf d≤u) ≤-refl ≤-refl insert d l≤d d≤u (node {_} {l₀} m left right l≤m m≤u) with ≤-total m d ... | inj₁ m≤d = node m (insert d ? ? left) right l≤m m≤u -- This shouldn't exist if the definition of BST wasn't so overcomcomplicated ... | inj₂ d≤m = ? -- ≰⇒> ¬3≤4
{ "alphanum_fraction": 0.5249764373, "avg_line_length": 42.44, "ext": "agda", "hexsha": "c779329ec21b3ea8b5f2ffc87a4f23c6b53e6a6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice4.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice4.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1807, "size": 4244 }
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Translation between different formalisations of syntax. module BasicIS4.Syntax.Translation where open import BasicIS4.Syntax.Common public import BasicIS4.Syntax.ClosedHilbertSequential as CHS import BasicIS4.Syntax.ClosedHilbert as CH import BasicIS4.Syntax.HilbertSequential as HS import BasicIS4.Syntax.Hilbert as H import BasicIS4.Syntax.Gentzen as G import BasicIS4.Syntax.DyadicHilbertSequential as DHS import BasicIS4.Syntax.DyadicHilbert as DH import BasicIS4.Syntax.DyadicGentzen as DG import BasicIS4.Syntax.LabelledGentzen as LG open HS using () renaming (_⊦⊢_ to HS⟨_⊦⊢_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open H using () renaming (_⊢_ to H⟨_⊢_⟩ ; _⊢⋆_ to H⟨_⊢⋆_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩ ; _⊢⋆_ to G⟨_⊢⋆_⟩) public open DHS using () renaming (_⊦⊢_ to DHS⟨_⊦⊢_⟩ ; _⊢_ to DHS⟨_⊢_⟩) public open DH using () renaming (_⊢_ to DH⟨_⊢_⟩) public open DG using () renaming (_⊢_ to DG⟨_⊢_⟩ ; _⊢⋆_ to DG⟨_⊢⋆_⟩) public open LG using (_↝_ ; _◎_ ; _◎⋆_) renaming (_⊢_ to LG⟨_⊢_⟩ ; _⊢⋆_ to LG⟨_⊢⋆_⟩) public -- Available translations. -- -- ┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ -- │ CHS │ CH │ HS │ H │ G │ DHS │ DH │ DG │ LG │ -- ┌─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CHS │ │ d │ d │ ∘ │ ∘ │ ∘ │ ∘ │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CH │ d │ │ ∘ │ d │ ∘ │ ∘ │ ∘ │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ HS │ d │ ∘ │ │ d │ ∘ │ d │ ∘ │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ H │ ∘ │ d │ d │ │ d │ ∘ │ d │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ G │ ∘ │ ∘ │ ∘ │ d │ │ ∘ │ ∘ │ d │ d │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ DHS │ ∘ │ ∘ │ d │ ∘ │ ∘ │ │ d │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ DH │ ∘ │ ∘ │ ∘ │ d │ ∘ │ d │ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ DG │ ∘ │ ∘ │ ∘ │ ∘ │ ∘! │ ∘ │ d │ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ -- │ LG │ ∘ │ ∘ │ ∘ │ WIP │ WIP │ ∘ │ ∘ │ ∘ │ │ -- └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘ -- -- d : Direct translation. -- ∘ : Composition of translations. -- ∘! : Composition; direct translation fails the termination check. -- WIP : Work in progress. -- Translation from closed Hilbert-style sequential to closed Hilbert-style. chs→ch : ∀ {A} → CHS.⊢ A → CH.⊢ A chs→ch (Ξ , ts) = chs⊦→ch ts top where chs⊦→ch : ∀ {A Ξ} → CHS.⊦⊢ Ξ → A ∈ Ξ → CH.⊢ A chs⊦→ch (CHS.mp i j ts) top = CH.app (chs⊦→ch ts i) (chs⊦→ch ts j) chs⊦→ch (CHS.ci ts) top = CH.ci chs⊦→ch (CHS.ck ts) top = CH.ck chs⊦→ch (CHS.cs ts) top = CH.cs chs⊦→ch (CHS.nec ss ts) top = CH.box (chs⊦→ch ss top) chs⊦→ch (CHS.cdist ts) top = CH.cdist chs⊦→ch (CHS.cup ts) top = CH.cup chs⊦→ch (CHS.cdown ts) top = CH.cdown chs⊦→ch (CHS.cpair ts) top = CH.cpair chs⊦→ch (CHS.cfst ts) top = CH.cfst chs⊦→ch (CHS.csnd ts) top = CH.csnd chs⊦→ch (CHS.unit ts) top = CH.unit chs⊦→ch (CHS.mp i j ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ci ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ck ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cs ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.nec ss ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cdist ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cup ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cdown ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cpair ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cfst ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.csnd ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.unit ts) (pop k) = chs⊦→ch ts k -- Translation from closed Hilbert-style to closed Hilbert-style sequential. ch→chs : ∀ {A} → CH.⊢ A → CHS.⊢ A ch→chs (CH.app t u) = CHS.app (ch→chs t) (ch→chs u) ch→chs CH.ci = ∅ , CHS.ci CHS.nil ch→chs CH.ck = ∅ , CHS.ck CHS.nil ch→chs CH.cs = ∅ , CHS.cs CHS.nil ch→chs (CH.box t) = CHS.box (ch→chs t) ch→chs CH.cdist = ∅ , CHS.cdist CHS.nil ch→chs CH.cup = ∅ , CHS.cup CHS.nil ch→chs CH.cdown = ∅ , CHS.cdown CHS.nil ch→chs CH.cpair = ∅ , CHS.cpair CHS.nil ch→chs CH.cfst = ∅ , CHS.cfst CHS.nil ch→chs CH.csnd = ∅ , CHS.csnd CHS.nil ch→chs CH.unit = ∅ , CHS.unit CHS.nil -- Translation from Hilbert-style sequential to Hilbert-style. hs→h : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ hs→h (Ξ , ts) = hs⊦→h ts top where hs⊦→h : ∀ {A Ξ Γ} → HS⟨ Γ ⊦⊢ Ξ ⟩ → A ∈ Ξ → H⟨ Γ ⊢ A ⟩ hs⊦→h (HS.var i ts) top = H.var i hs⊦→h (HS.mp i j ts) top = H.app (hs⊦→h ts i) (hs⊦→h ts j) hs⊦→h (HS.ci ts) top = H.ci hs⊦→h (HS.ck ts) top = H.ck hs⊦→h (HS.cs ts) top = H.cs hs⊦→h (HS.nec ss ts) top = H.box (hs⊦→h ss top) hs⊦→h (HS.cdist ts) top = H.cdist hs⊦→h (HS.cup ts) top = H.cup hs⊦→h (HS.cdown ts) top = H.cdown hs⊦→h (HS.cpair ts) top = H.cpair hs⊦→h (HS.cfst ts) top = H.cfst hs⊦→h (HS.csnd ts) top = H.csnd hs⊦→h (HS.unit ts) top = H.unit hs⊦→h (HS.var i ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.mp i j ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ci ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ck ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cs ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.nec ss ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cdist ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cup ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cdown ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cpair ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cfst ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.csnd ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.unit ts) (pop k) = hs⊦→h ts k -- Translation from Hilbert-style to Hilbert-style sequential. h→hs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ h→hs (H.var i) = ∅ , HS.var i HS.nil h→hs (H.app t u) = HS.app (h→hs t) (h→hs u) h→hs H.ci = ∅ , HS.ci HS.nil h→hs H.ck = ∅ , HS.ck HS.nil h→hs H.cs = ∅ , HS.cs HS.nil h→hs (H.box t) = HS.box (h→hs t) h→hs H.cdist = ∅ , HS.cdist HS.nil h→hs H.cup = ∅ , HS.cup HS.nil h→hs H.cdown = ∅ , HS.cdown HS.nil h→hs H.cpair = ∅ , HS.cpair HS.nil h→hs H.cfst = ∅ , HS.cfst HS.nil h→hs H.csnd = ∅ , HS.csnd HS.nil h→hs H.unit = ∅ , HS.unit HS.nil -- Translation from dyadic Hilbert-style sequential to dyadic Hilbert-style. dhs→dh : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ dhs→dh (Ξ , ts) = dhs⊦→dh ts top where dhs⊦→dh : ∀ {A Ξ Γ Δ} → DHS⟨ Γ ⁏ Δ ⊦⊢ Ξ ⟩ → A ∈ Ξ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ dhs⊦→dh (DHS.var i ts) top = DH.var i dhs⊦→dh (DHS.mp i j ts) top = DH.app (dhs⊦→dh ts i) (dhs⊦→dh ts j) dhs⊦→dh (DHS.ci ts) top = DH.ci dhs⊦→dh (DHS.ck ts) top = DH.ck dhs⊦→dh (DHS.cs ts) top = DH.cs dhs⊦→dh (DHS.mvar i ts) top = DH.mvar i dhs⊦→dh (DHS.nec ss ts) top = DH.box (dhs⊦→dh ss top) dhs⊦→dh (DHS.cdist ts) top = DH.cdist dhs⊦→dh (DHS.cup ts) top = DH.cup dhs⊦→dh (DHS.cdown ts) top = DH.cdown dhs⊦→dh (DHS.cpair ts) top = DH.cpair dhs⊦→dh (DHS.cfst ts) top = DH.cfst dhs⊦→dh (DHS.csnd ts) top = DH.csnd dhs⊦→dh (DHS.unit ts) top = DH.unit dhs⊦→dh (DHS.var i ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.mp i j ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.ci ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.ck ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cs ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.mvar i ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.nec ss ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cdist ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cup ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cdown ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cpair ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.cfst ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.csnd ts) (pop k) = dhs⊦→dh ts k dhs⊦→dh (DHS.unit ts) (pop k) = dhs⊦→dh ts k -- Translation from dyadic Hilbert-style to dyadic Hilbert-style sequential dh→dhs : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ dh→dhs (DH.var i) = ∅ , DHS.var i DHS.nil dh→dhs (DH.app t u) = DHS.app (dh→dhs t) (dh→dhs u) dh→dhs DH.ci = ∅ , DHS.ci DHS.nil dh→dhs DH.ck = ∅ , DHS.ck DHS.nil dh→dhs DH.cs = ∅ , DHS.cs DHS.nil dh→dhs (DH.mvar i) = ∅ , DHS.mvar i DHS.nil dh→dhs (DH.box t) = DHS.box (dh→dhs t) dh→dhs DH.cdist = ∅ , DHS.cdist DHS.nil dh→dhs DH.cup = ∅ , DHS.cup DHS.nil dh→dhs DH.cdown = ∅ , DHS.cdown DHS.nil dh→dhs DH.cpair = ∅ , DHS.cpair DHS.nil dh→dhs DH.cfst = ∅ , DHS.cfst DHS.nil dh→dhs DH.csnd = ∅ , DHS.csnd DHS.nil dh→dhs DH.unit = ∅ , DHS.unit DHS.nil -- Deduction and detachment theorems for Hilbert-style sequential. hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ hs-lam = h→hs ∘ H.lam ∘ hs→h hs-lam⋆₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ hs-lam⋆₀ = h→hs ∘ H.lam⋆₀ ∘ hs→h hs-det : ∀ {A B Γ} → HS⟨ Γ ⊢ A ▻ B ⟩ → HS⟨ Γ , A ⊢ B ⟩ hs-det = h→hs ∘ H.det ∘ hs→h hs-det⋆₀ : ∀ {A Γ} → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ → HS⟨ Γ ⊢ A ⟩ hs-det⋆₀ = h→hs ∘ H.det⋆₀ ∘ hs→h -- Deduction and detachment theorems for dyadic Hilbert-style sequential. dhs-lam : ∀ {A B Γ Δ} → DHS⟨ Γ , A ⁏ Δ ⊢ B ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ▻ B ⟩ dhs-lam = dh→dhs ∘ DH.lam ∘ dhs→dh dhs-lam⋆₀ : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → DHS⟨ ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A ⟩ dhs-lam⋆₀ = dh→dhs ∘ DH.lam⋆₀ ∘ dhs→dh dhs-mlam : ∀ {A B Γ Δ} → DHS⟨ Γ ⁏ Δ , A ⊢ B ⟩ → DHS⟨ Γ ⁏ Δ ⊢ □ A ▻ B ⟩ dhs-mlam = dh→dhs ∘ DH.mlam ∘ dhs→dh dhs-mlam⋆₀ : ∀ {Δ A Γ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → DHS⟨ Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A ⟩ dhs-mlam⋆₀ = dh→dhs ∘ DH.mlam⋆₀ ∘ dhs→dh dhs-det : ∀ {A B Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ▻ B ⟩ → DHS⟨ Γ , A ⁏ Δ ⊢ B ⟩ dhs-det = dh→dhs ∘ DH.det ∘ dhs→dh dhs-det⋆₀ : ∀ {A Γ Δ} → DHS⟨ ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ dhs-det⋆₀ = dh→dhs ∘ DH.det⋆₀ ∘ dhs→dh dhs-mdet : ∀ {A B Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ □ A ▻ B ⟩ → DHS⟨ Γ ⁏ Δ , A ⊢ B ⟩ dhs-mdet = dh→dhs ∘ DH.mdet ∘ dhs→dh dhs-mdet⋆₀ : ∀ {Δ A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ dhs-mdet⋆₀ = dh→dhs ∘ DH.mdet⋆₀ ∘ dhs→dh -- Context manipulation for dyadic Hilbert-style sequential. dhs-merge : ∀ {Δ A Γ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → DHS⟨ Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A ⟩ dhs-merge {Δ} = dh→dhs ∘ DH.merge ∘ dhs→dh dhs-split : ∀ {Δ A Γ} → DHS⟨ Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ dhs-split {Δ} = dh→dhs ∘ DH.split ∘ dhs→dh -- Translation from closed Hilbert-style sequential to Hilbert-style sequential. chs→hs₀ : ∀ {A} → CHS.⊢ A → HS⟨ ∅ ⊢ A ⟩ chs→hs₀ (Ξ , ts) = Ξ , chs⊦→hs⊦ ts where chs⊦→hs⊦ : ∀ {Ξ} → CHS.⊦⊢ Ξ → HS⟨ ∅ ⊦⊢ Ξ ⟩ chs⊦→hs⊦ CHS.nil = HS.nil chs⊦→hs⊦ (CHS.mp i j ts) = HS.mp i j (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.ci ts) = HS.ci (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.ck ts) = HS.ck (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cs ts) = HS.cs (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cpair ts) = HS.cpair (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cfst ts) = HS.cfst (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.csnd ts) = HS.csnd (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.unit ts) = HS.unit (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.nec ss ts) = HS.nec (chs⊦→hs⊦ ss) (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cdist ts) = HS.cdist (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cup ts) = HS.cup (chs⊦→hs⊦ ts) chs⊦→hs⊦ (CHS.cdown ts) = HS.cdown (chs⊦→hs⊦ ts) chs→hs : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ chs→hs t = hs-det⋆₀ (chs→hs₀ t) -- Translation from Hilbert-style sequential to closed Hilbert-style sequential. hs₀→chs : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CHS.⊢ A hs₀→chs (Ξ , ts) = Ξ , hs₀⊦→chs⊦ ts where hs₀⊦→chs⊦ : ∀ {Ξ} → HS⟨ ∅ ⊦⊢ Ξ ⟩ → CHS.⊦⊢ Ξ hs₀⊦→chs⊦ HS.nil = CHS.nil hs₀⊦→chs⊦ (HS.var () ts) hs₀⊦→chs⊦ (HS.mp i j ts) = CHS.mp i j (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ci ts) = CHS.ci (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ck ts) = CHS.ck (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cs ts) = CHS.cs (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cpair ts) = CHS.cpair (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cfst ts) = CHS.cfst (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.csnd ts) = CHS.csnd (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.unit ts) = CHS.unit (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.nec ss ts) = CHS.nec (hs₀⊦→chs⊦ ss) (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cdist ts) = CHS.cdist (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cup ts) = CHS.cup (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cdown ts) = CHS.cdown (hs₀⊦→chs⊦ ts) hs→chs : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A hs→chs t = hs₀→chs (hs-lam⋆₀ t) -- Translation from dyadic Hilbert-style sequential to Hilbert-style sequential. dhs₀→hs : ∀ {A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ dhs₀→hs (Ξ , ts) = Ξ , dhs₀⊦→hs⊦ ts where dhs₀⊦→hs⊦ : ∀ {Ξ Γ} → DHS⟨ Γ ⁏ ∅ ⊦⊢ Ξ ⟩ → HS⟨ Γ ⊦⊢ Ξ ⟩ dhs₀⊦→hs⊦ DHS.nil = HS.nil dhs₀⊦→hs⊦ (DHS.var i ts) = HS.var i (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.mp i j ts) = HS.mp i j (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.ci ts) = HS.ci (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.ck ts) = HS.ck (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cs ts) = HS.cs (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.mvar () ts) dhs₀⊦→hs⊦ (DHS.nec ss ts) = HS.nec (dhs₀⊦→hs⊦ ss) (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cdist ts) = HS.cdist (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cup ts) = HS.cup (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cdown ts) = HS.cdown (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cpair ts) = HS.cpair (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.cfst ts) = HS.cfst (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.csnd ts) = HS.csnd (dhs₀⊦→hs⊦ ts) dhs₀⊦→hs⊦ (DHS.unit ts) = HS.unit (dhs₀⊦→hs⊦ ts) dhs→hs : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dhs→hs = dhs₀→hs ∘ dhs-merge -- Translation from Hilbert-style sequential to dyadic Hilbert-style sequential. hs→dhs₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ hs→dhs₀ (Ξ , ts) = Ξ , hs⊦→dhs₀⊦ ts where hs⊦→dhs₀⊦ : ∀ {Ξ Γ} → HS⟨ Γ ⊦⊢ Ξ ⟩ → DHS⟨ Γ ⁏ ∅ ⊦⊢ Ξ ⟩ hs⊦→dhs₀⊦ HS.nil = DHS.nil hs⊦→dhs₀⊦ (HS.var i ts) = DHS.var i (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.mp i j ts) = DHS.mp i j (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.ci ts) = DHS.ci (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.ck ts) = DHS.ck (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cs ts) = DHS.cs (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.nec ss ts) = DHS.nec (hs⊦→dhs₀⊦ ss) (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cdist ts) = DHS.cdist (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cup ts) = DHS.cup (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cdown ts) = DHS.cdown (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cpair ts) = DHS.cpair (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.cfst ts) = DHS.cfst (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.csnd ts) = DHS.csnd (hs⊦→dhs₀⊦ ts) hs⊦→dhs₀⊦ (HS.unit ts) = DHS.unit (hs⊦→dhs₀⊦ ts) hs→dhs : ∀ {A Γ Δ} → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ hs→dhs = dhs-split ∘ hs→dhs₀ -- Translation from closed Hilbert-style to Hilbert-style. ch→h₀ : ∀ {A} → CH.⊢ A → H⟨ ∅ ⊢ A ⟩ ch→h₀ (CH.app t u) = H.app (ch→h₀ t) (ch→h₀ u) ch→h₀ CH.ci = H.ci ch→h₀ CH.ck = H.ck ch→h₀ CH.cs = H.cs ch→h₀ CH.cpair = H.cpair ch→h₀ CH.cfst = H.cfst ch→h₀ CH.csnd = H.csnd ch→h₀ CH.unit = H.unit ch→h₀ (CH.box t) = H.box (ch→h₀ t) ch→h₀ CH.cdist = H.cdist ch→h₀ CH.cup = H.cup ch→h₀ CH.cdown = H.cdown ch→h : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ ch→h t = H.det⋆₀ (ch→h₀ t) -- Translation from Hilbert-style to closed Hilbert-style. h₀→ch : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CH.⊢ A h₀→ch (H.var ()) h₀→ch (H.app t u) = CH.app (h₀→ch t) (h₀→ch u) h₀→ch H.ci = CH.ci h₀→ch H.ck = CH.ck h₀→ch H.cs = CH.cs h₀→ch H.cpair = CH.cpair h₀→ch H.cfst = CH.cfst h₀→ch H.csnd = CH.csnd h₀→ch H.unit = CH.unit h₀→ch (H.box t) = CH.box (h₀→ch t) h₀→ch H.cdist = CH.cdist h₀→ch H.cup = CH.cup h₀→ch H.cdown = CH.cdown h→ch : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A h→ch t = h₀→ch (H.lam⋆₀ t) -- Translation from dyadic Hilbert-style to Hilbert-style. dh₀→h : ∀ {A Γ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ dh₀→h (DH.var i) = H.var i dh₀→h (DH.app t u) = H.app (dh₀→h t) (dh₀→h u) dh₀→h DH.ci = H.ci dh₀→h DH.ck = H.ck dh₀→h DH.cs = H.cs dh₀→h (DH.mvar ()) dh₀→h (DH.box t) = H.box (dh₀→h t) dh₀→h DH.cdist = H.cdist dh₀→h DH.cup = H.cup dh₀→h DH.cdown = H.cdown dh₀→h DH.cpair = H.cpair dh₀→h DH.cfst = H.cfst dh₀→h DH.csnd = H.csnd dh₀→h DH.unit = H.unit dh→h : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dh→h = dh₀→h ∘ DH.merge -- Translation from Hilbert-style to dyadic Hilbert-style. h→dh₀ : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ h→dh₀ (H.var i) = DH.var i h→dh₀ (H.app t u) = DH.app (h→dh₀ t) (h→dh₀ u) h→dh₀ H.ci = DH.ci h→dh₀ H.ck = DH.ck h→dh₀ H.cs = DH.cs h→dh₀ (H.box t) = DH.box (h→dh₀ t) h→dh₀ H.cdist = DH.cdist h→dh₀ H.cup = DH.cup h→dh₀ H.cdown = DH.cdown h→dh₀ H.cpair = DH.cpair h→dh₀ H.cfst = DH.cfst h→dh₀ H.csnd = DH.csnd h→dh₀ H.unit = DH.unit h→dh : ∀ {A Γ Δ} → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ h→dh = DH.split ∘ h→dh₀ -- Translation from Hilbert-style to Gentzen-style. h→g : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ h→g (H.var i) = G.var i h→g (H.app t u) = G.app (h→g t) (h→g u) h→g H.ci = G.ci h→g H.ck = G.ck h→g H.cs = G.cs h→g (H.box t) = G.box (h→g t) h→g H.cdist = G.cdist h→g H.cup = G.cup h→g H.cdown = G.cdown h→g H.cpair = G.cpair h→g H.cfst = G.cfst h→g H.csnd = G.csnd h→g H.unit = G.unit -- Translation from Gentzen-style to Hilbert-style. mutual g→h : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ g→h (G.var i) = H.var i g→h (G.lam t) = H.lam (g→h t) g→h (G.app t u) = H.app (g→h t) (g→h u) g→h (G.multibox ts u) = H.multibox (g→h⋆ ts) (g→h u) g→h (G.down t) = H.down (g→h t) g→h (G.pair t u) = H.pair (g→h t) (g→h u) g→h (G.fst t) = H.fst (g→h t) g→h (G.snd t) = H.snd (g→h t) g→h G.unit = H.unit g→h⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → H⟨ Γ ⊢⋆ Ξ ⟩ g→h⋆ {∅} ∙ = ∙ g→h⋆ {Ξ , A} (ts , t) = g→h⋆ ts , g→h t -- Translation from dyadic Hilbert-style to dyadic Gentzen-style. dh→dg : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ dh→dg (DH.var i) = DG.var i dh→dg (DH.app t u) = DG.app (dh→dg t) (dh→dg u) dh→dg DH.ci = DG.ci dh→dg DH.ck = DG.ck dh→dg DH.cs = DG.cs dh→dg (DH.mvar i) = DG.mvar i dh→dg (DH.box t) = DG.box (dh→dg t) dh→dg DH.cdist = DG.cdist dh→dg DH.cup = DG.cup dh→dg DH.cdown = DG.cdown dh→dg DH.cpair = DG.cpair dh→dg DH.cfst = DG.cfst dh→dg DH.csnd = DG.csnd dh→dg DH.unit = DG.unit -- Translation from dyadic Gentzen-style to dyadic Hilbert-style. dg→dh : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ dg→dh (DG.var i) = DH.var i dg→dh (DG.lam t) = DH.lam (dg→dh t) dg→dh (DG.app t u) = DH.app (dg→dh t) (dg→dh u) dg→dh (DG.mvar i) = DH.mvar i dg→dh (DG.box t) = DH.box (dg→dh t) dg→dh (DG.unbox t u) = DH.unbox (dg→dh t) (dg→dh u) dg→dh (DG.pair t u) = DH.pair (dg→dh t) (dg→dh u) dg→dh (DG.fst t) = DH.fst (dg→dh t) dg→dh (DG.snd t) = DH.snd (dg→dh t) dg→dh DG.unit = DH.unit -- Translation from Gentzen-style to dyadic Gentzen-style. mutual g→dg₀ : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ g→dg₀ (G.var i) = DG.var i g→dg₀ (G.lam t) = DG.lam (g→dg₀ t) g→dg₀ (G.app t u) = DG.app (g→dg₀ t) (g→dg₀ u) g→dg₀ (G.multibox ts u) = DG.multibox (g→dg₀⋆ ts) (g→dg₀ u) g→dg₀ (G.down t) = DG.down (g→dg₀ t) g→dg₀ (G.pair t u) = DG.pair (g→dg₀ t) (g→dg₀ u) g→dg₀ (G.fst t) = DG.fst (g→dg₀ t) g→dg₀ (G.snd t) = DG.snd (g→dg₀ t) g→dg₀ G.unit = DG.unit g→dg₀⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → DG⟨ Γ ⁏ ∅ ⊢⋆ Ξ ⟩ g→dg₀⋆ {∅} ∙ = ∙ g→dg₀⋆ {Ξ , A} (ts , t) = g→dg₀⋆ ts , g→dg₀ t g→dg : ∀ {A Γ Δ} → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ g→dg = DG.split ∘ g→dg₀ -- Translation from Hilbert-style to labelled Gentzen-style. h→lg : ∀ {x A Γ Λ} → H⟨ Γ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ h→lg (H.var i) = LG.var i h→lg (H.app t u) = LG.app (h→lg t) (h→lg u) h→lg H.ci = LG.ci h→lg H.ck = LG.ck h→lg H.cs = LG.cs h→lg (H.box t) = LG.box (h→lg t) h→lg H.cdist = LG.cdist h→lg H.cup = LG.cup h→lg H.cdown = LG.cdown h→lg H.cpair = LG.cpair h→lg H.cfst = LG.cfst h→lg H.csnd = LG.csnd h→lg H.unit = LG.unit -- Translation from labelled Gentzen-style to Hilbert-style. -- FIXME: Stronger hypothesis? postulate h-oops : ∀ {x A Γ Λ} → (∀ {y} → LG⟨ Γ ⁏ Λ , x ↝ y ⊢ A ◎ y ⟩) → H⟨ Γ ⊢ □ A ⟩ lg→h : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → H⟨ Γ ⊢ A ⟩ lg→h (LG.var i) = H.var i lg→h (LG.lam t) = H.lam (lg→h t) lg→h (LG.app t u) = H.app (lg→h t) (lg→h u) lg→h (LG.scan t) = h-oops t lg→h (LG.move t u) = H.down (lg→h t) lg→h (LG.pair t u) = H.pair (lg→h t) (lg→h u) lg→h (LG.fst t) = H.fst (lg→h t) lg→h (LG.snd t) = H.snd (lg→h t) lg→h LG.unit = H.unit -- Translation from Gentzen-style to labelled Gentzen-style. mutual g→lg : ∀ {x A Γ Λ} → G⟨ Γ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ g→lg (G.var i) = LG.var i g→lg (G.lam t) = LG.lam (g→lg t) g→lg (G.app t u) = LG.app (g→lg t) (g→lg u) g→lg (G.multibox ts u) = LG.multibox (g→lg⋆ ts) (g→lg u) g→lg (G.down t) = LG.move (g→lg t) LG.rrefl g→lg (G.pair t u) = LG.pair (g→lg t) (g→lg u) g→lg (G.fst t) = LG.fst (g→lg t) g→lg (G.snd t) = LG.snd (g→lg t) g→lg G.unit = LG.unit g→lg⋆ : ∀ {x Ξ Γ Λ} → G⟨ Γ ⊢⋆ Ξ ⟩ → LG⟨ Γ ⁏ Λ ⊢⋆ Ξ ◎⋆ x ⟩ g→lg⋆ {x} {∅} ∙ = ∙ g→lg⋆ {x} {Ξ , A} (ts , t) = g→lg⋆ ts , g→lg t -- Translation from labelled Gentzen-style to Gentzen-style. -- FIXME: Stronger hypothesis? postulate g-oops : ∀ {x A Γ Λ} → (∀ {y} → LG⟨ Γ ⁏ Λ , x ↝ y ⊢ A ◎ y ⟩) → G⟨ Γ ⊢ □ A ⟩ lg→g : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → G⟨ Γ ⊢ A ⟩ lg→g (LG.var i) = G.var i lg→g (LG.lam t) = G.lam (lg→g t) lg→g (LG.app t u) = G.app (lg→g t) (lg→g u) lg→g (LG.scan t) = g-oops t lg→g (LG.move t u) = G.down (lg→g t) lg→g (LG.pair t u) = G.pair (lg→g t) (lg→g u) lg→g (LG.fst t) = G.fst (lg→g t) lg→g (LG.snd t) = G.snd (lg→g t) lg→g LG.unit = G.unit -- Additional translations from closed Hilbert-style sequential. chs→h₀ : ∀ {A} → CHS.⊢ A → H⟨ ∅ ⊢ A ⟩ chs→h₀ = ch→h₀ ∘ chs→ch chs→h : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ chs→h = ch→h ∘ chs→ch chs→g₀ : ∀ {A} → CHS.⊢ A → G⟨ ∅ ⊢ A ⟩ chs→g₀ = h→g ∘ chs→h₀ chs→g : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ chs→g = h→g ∘ chs→h chs→dhs₀₀ : ∀ {A} → CHS.⊢ A → DHS⟨ ∅ ⁏ ∅ ⊢ A ⟩ chs→dhs₀₀ = hs→dhs₀ ∘ chs→hs₀ chs→dhs₀ : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ chs→dhs₀ = hs→dhs₀ ∘ chs→hs chs→dhs : ∀ {A Γ Δ} → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ chs→dhs = hs→dhs ∘ chs→hs chs→dh₀₀ : ∀ {A} → CHS.⊢ A → DH⟨ ∅ ⁏ ∅ ⊢ A ⟩ chs→dh₀₀ = h→dh₀ ∘ chs→h₀ chs→dh₀ : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ chs→dh₀ = h→dh₀ ∘ chs→h chs→dh : ∀ {A Γ Δ} → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DH⟨ Γ ⁏ Δ ⊢ A ⟩ chs→dh = h→dh ∘ chs→h chs→dg₀₀ : ∀ {A} → CHS.⊢ A → DG⟨ ∅ ⁏ ∅ ⊢ A ⟩ chs→dg₀₀ = g→dg₀ ∘ chs→g₀ chs→dg₀ : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ chs→dg₀ = g→dg₀ ∘ chs→g chs→dg : ∀ {A Γ Δ} → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DG⟨ Γ ⁏ Δ ⊢ A ⟩ chs→dg = g→dg ∘ chs→g chs→lg₀ : ∀ {x A Λ} → CHS.⊢ A → LG⟨ ∅ ⁏ Λ ⊢ A ◎ x ⟩ chs→lg₀ = g→lg ∘ chs→g₀ chs→lg : ∀ {x A Γ Λ} → CHS.⊢ Γ ▻⋯▻ A → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ chs→lg = g→lg ∘ chs→g -- Additional translations from closed Hilbert-style. ch→hs₀ : ∀ {A} → CH.⊢ A → HS⟨ ∅ ⊢ A ⟩ ch→hs₀ = chs→hs ∘ ch→chs ch→hs : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ ch→hs = chs→hs ∘ ch→chs ch→g₀ : ∀ {A} → CH.⊢ A → G⟨ ∅ ⊢ A ⟩ ch→g₀ = h→g ∘ ch→h₀ ch→g : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ ch→g = h→g ∘ ch→h ch→dhs₀₀ : ∀ {A} → CH.⊢ A → DHS⟨ ∅ ⁏ ∅ ⊢ A ⟩ ch→dhs₀₀ = hs→dhs₀ ∘ ch→hs₀ ch→dhs₀ : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ ch→dhs₀ = hs→dhs₀ ∘ ch→hs ch→dhs : ∀ {A Γ Δ} → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ ch→dhs = hs→dhs ∘ ch→hs ch→dh₀₀ : ∀ {A} → CH.⊢ A → DH⟨ ∅ ⁏ ∅ ⊢ A ⟩ ch→dh₀₀ = h→dh₀ ∘ ch→h₀ ch→dh₀ : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ ch→dh₀ = h→dh₀ ∘ ch→h ch→dh : ∀ {A Γ Δ} → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DH⟨ Γ ⁏ Δ ⊢ A ⟩ ch→dh = h→dh ∘ ch→h ch→dg₀₀ : ∀ {A} → CH.⊢ A → DG⟨ ∅ ⁏ ∅ ⊢ A ⟩ ch→dg₀₀ = g→dg₀ ∘ ch→g₀ ch→dg₀ : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ ch→dg₀ = g→dg₀ ∘ ch→g ch→dg : ∀ {A Γ Δ} → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A → DG⟨ Γ ⁏ Δ ⊢ A ⟩ ch→dg = g→dg ∘ ch→g ch→lg₀ : ∀ {x A Λ} → CH.⊢ A → LG⟨ ∅ ⁏ Λ ⊢ A ◎ x ⟩ ch→lg₀ = g→lg ∘ ch→g₀ ch→lg : ∀ {x A Γ Λ} → CH.⊢ Γ ▻⋯▻ A → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ ch→lg = g→lg ∘ ch→g -- Additional translations from Hilbert-style sequential. hs₀→ch : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CH.⊢ A hs₀→ch = chs→ch ∘ hs₀→chs hs→ch : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A hs→ch = chs→ch ∘ hs→chs hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ hs→g = h→g ∘ hs→h hs→dh₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ hs→dh₀ = h→dh₀ ∘ hs→h hs→dh : ∀ {A Γ Δ} → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ hs→dh = h→dh ∘ hs→h hs→dg₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ hs→dg₀ = dh→dg ∘ hs→dh₀ hs→dg : ∀ {A Γ Δ} → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ hs→dg = dh→dg ∘ hs→dh hs→lg : ∀ {x A Γ Λ} → HS⟨ Γ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ hs→lg = h→lg ∘ hs→h -- Additional translations from Hilbert-style. h₀→chs : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CHS.⊢ A h₀→chs = ch→chs ∘ h₀→ch h→chs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A h→chs = ch→chs ∘ h→ch h→dhs₀ : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ h→dhs₀ = hs→dhs₀ ∘ h→hs h→dhs : ∀ {A Γ Δ} → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ h→dhs = hs→dhs ∘ h→hs h→dg₀ : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ h→dg₀ = dh→dg ∘ h→dh₀ h→dg : ∀ {A Γ Δ} → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ h→dg = dh→dg ∘ h→dh -- Additional translations from Gentzen-style. g₀→chs : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CHS.⊢ A g₀→chs = h₀→chs ∘ g→h g→chs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A g→chs = h→chs ∘ g→h g₀→ch : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CH.⊢ A g₀→ch = h₀→ch ∘ g→h g→ch : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A g→ch = h→ch ∘ g→h g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ g→hs = h→hs ∘ g→h g→dhs₀ : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ g→dhs₀ = h→dhs₀ ∘ g→h g→dhs : ∀ {A Γ Δ} → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ g→dhs = h→dhs ∘ g→h g→dh₀ : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ g→dh₀ = h→dh₀ ∘ g→h g→dh : ∀ {A Γ Δ} → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ g→dh = h→dh ∘ g→h -- Additional translations from dyadic Hilbert-style sequential. dhs₀₀→chs : ∀ {A} → DHS⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ A dhs₀₀→chs = hs₀→chs ∘ dhs₀→hs dhs₀→chs : ∀ {A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A dhs₀→chs = hs→chs ∘ dhs₀→hs dhs→chs : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dhs→chs = hs→chs ∘ dhs→hs dhs₀₀→ch : ∀ {A} → DHS⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CH.⊢ A dhs₀₀→ch = hs₀→ch ∘ dhs₀→hs dhs₀→ch : ∀ {A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A dhs₀→ch = hs→ch ∘ dhs₀→hs dhs→ch : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dhs→ch = hs→ch ∘ dhs→hs dhs₀→h : ∀ {A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ dhs₀→h = hs→h ∘ dhs₀→hs dhs→h : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dhs→h = hs→h ∘ dhs→hs dhs₀→g : ∀ {A Γ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ dhs₀→g = hs→g ∘ dhs₀→hs dhs→g : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dhs→g = hs→g ∘ dhs→hs dhs→dg : ∀ {A Γ Δ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ dhs→dg = dh→dg ∘ dhs→dh dhs₀→lg : ∀ {x A Γ Λ} → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ dhs₀→lg = hs→lg ∘ dhs₀→hs dhs→lg : ∀ {x A Γ Δ Λ} → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ dhs→lg = hs→lg ∘ dhs→hs -- Additional translations from dyadic Hilbert-style. dh₀₀→chs : ∀ {A} → DH⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ A dh₀₀→chs = h₀→chs ∘ dh₀→h dh₀→chs : ∀ {A Γ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A dh₀→chs = h→chs ∘ dh₀→h dh→chs : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dh→chs = h→chs ∘ dh→h dh₀₀→ch : ∀ {A} → DH⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CH.⊢ A dh₀₀→ch = h₀→ch ∘ dh₀→h dh₀→ch : ∀ {A Γ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A dh₀→ch = h→ch ∘ dh₀→h dh→ch : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dh→ch = h→ch ∘ dh→h dh₀→hs : ∀ {A Γ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ dh₀→hs = h→hs ∘ dh₀→h dh→hs : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dh→hs = h→hs ∘ dh→h dh₀→g : ∀ {A Γ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ dh₀→g = h→g ∘ dh₀→h dh→g : ∀ {A Γ Δ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dh→g = h→g ∘ dh→h dh₀→lg : ∀ {x A Γ Λ} → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ dh₀→lg = h→lg ∘ dh₀→h dh→lg : ∀ {x A Γ Δ Λ} → DH⟨ Γ ⁏ Δ ⊢ A ⟩ → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ dh→lg = h→lg ∘ dh→h -- Additional translations from dyadic Gentzen-style. dg₀₀→chs : ∀ {A} → DG⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ A dg₀₀→chs = dh₀→chs ∘ dg→dh dg₀→chs : ∀ {A Γ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A dg₀→chs = dh→chs ∘ dg→dh dg→chs : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → CHS.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dg→chs = dh→chs ∘ dg→dh dg₀₀→ch : ∀ {A} → DG⟨ ∅ ⁏ ∅ ⊢ A ⟩ → CH.⊢ A dg₀₀→ch = dh₀→ch ∘ dg→dh dg₀→ch : ∀ {A Γ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A dg₀→ch = dh→ch ∘ dg→dh dg→ch : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → CH.⊢ Γ ⧺ (□⋆ Δ) ▻⋯▻ A dg→ch = dh→ch ∘ dg→dh dg₀→hs : ∀ {A Γ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ dg₀→hs = dh₀→hs ∘ dg→dh dg→hs : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → HS⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dg→hs = dh→hs ∘ dg→dh dg₀→h : ∀ {A Γ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ dg₀→h = dh₀→h ∘ dg→dh dg→h : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → H⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dg→h = dh→h ∘ dg→dh -- NOTE: Direct translation fails the termination check. dg₀→g : ∀ {A Γ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ dg₀→g = h→g ∘ dg₀→h dg→g : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → G⟨ Γ ⧺ (□⋆ Δ) ⊢ A ⟩ dg→g = h→g ∘ dg→h dg→dhs : ∀ {A Γ Δ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ dg→dhs = dh→dhs ∘ dg→dh dg₀→lg : ∀ {x A Γ Λ} → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ dg₀→lg = g→lg ∘ dg₀→g dg→lg : ∀ {x A Γ Δ Λ} → DG⟨ Γ ⁏ Δ ⊢ A ⟩ → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ dg→lg = g→lg ∘ dg→g -- Additional translations from labelled Gentzen-style. lg₀→chs : ∀ {x A Λ} → LG⟨ ∅ ⁏ Λ ⊢ A ◎ x ⟩ → CHS.⊢ A lg₀→chs = h₀→chs ∘ lg→h lg→chs : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → CHS.⊢ Γ ▻⋯▻ A lg→chs = h→chs ∘ lg→h lg₀→ch : ∀ {x A Λ} → LG⟨ ∅ ⁏ Λ ⊢ A ◎ x ⟩ → CH.⊢ A lg₀→ch = h₀→ch ∘ lg→h lg→ch : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → CH.⊢ Γ ▻⋯▻ A lg→ch = h→ch ∘ lg→h lg→hs : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → HS⟨ Γ ⊢ A ⟩ lg→hs = h→hs ∘ lg→h lg→dhs₀ : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → DHS⟨ Γ ⁏ ∅ ⊢ A ⟩ lg→dhs₀ = h→dhs₀ ∘ lg→h lg→dhs : ∀ {x A Γ Δ Λ} → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ → DHS⟨ Γ ⁏ Δ ⊢ A ⟩ lg→dhs = h→dhs ∘ lg→h lg→dh₀ : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → DH⟨ Γ ⁏ ∅ ⊢ A ⟩ lg→dh₀ = h→dh₀ ∘ lg→h lg→dh : ∀ {x A Γ Δ Λ} → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ → DH⟨ Γ ⁏ Δ ⊢ A ⟩ lg→dh = h→dh ∘ lg→h lg→dg₀ : ∀ {x A Γ Λ} → LG⟨ Γ ⁏ Λ ⊢ A ◎ x ⟩ → DG⟨ Γ ⁏ ∅ ⊢ A ⟩ lg→dg₀ = h→dg₀ ∘ lg→h lg→dg : ∀ {x A Γ Δ Λ} → LG⟨ Γ ⧺ (□⋆ Δ) ⁏ Λ ⊢ A ◎ x ⟩ → DG⟨ Γ ⁏ Δ ⊢ A ⟩ lg→dg = h→dg ∘ lg→h
{ "alphanum_fraction": 0.4593860188, "avg_line_length": 32.4716386555, "ext": "agda", "hexsha": "96dde4e78f44c97e8484e06dd3eb81efcf74cf51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Syntax/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Syntax/Translation.agda", "max_line_length": 84, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Syntax/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 17975, "size": 30913 }
module PiQ.AuxLemmas where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import PiQ.Syntax open import PiQ.Opsem Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁ → A ≡ C × B ≡ D Lemma₁ ↦⃖₁ = refl , refl Lemma₁ ↦⃖₂ = refl , refl Lemma₁ ↦⃖ηₓ₁ = refl , refl Lemma₁ ↦⃖εₓ = refl , refl Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁ → c ≡ c' × κ ≡ κ' Lemma₂ ↦⃖₁ = refl , refl Lemma₂ ↦⃖₂ = refl , refl Lemma₂ ↦⃖ηₓ₁ = refl , refl Lemma₂ ↦⃖εₓ = refl , refl Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁ → base c ⊎ dual c ⊎ A ≡ B Lemma₃ (↦⃖₁ {b = b}) = inj₁ b Lemma₃ ↦⃖₂ = inj₂ (inj₂ refl) Lemma₃ ↦⃖ηₓ₁ = inj₂ (inj₁ tt) Lemma₃ ↦⃖εₓ = inj₂ (inj₁ tt) Lemma₄ : ∀ {A v v' κ} {c : A ↔ A} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁ → base c ⊎ c ≡ id↔ Lemma₄ (↦⃖₁ {b = b}) = inj₁ b Lemma₄ ↦⃖₂ = inj₂ refl Lemma₅ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷ → A ≡ C × B ≡ D Lemma₅ ↦η₊₁ = refl , refl Lemma₅ ↦η₊₂ = refl , refl Lemma₆ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷ → c ≡ c' × κ ≡ κ' Lemma₆ ↦η₊₁ = refl , refl Lemma₆ ↦η₊₂ = refl , refl Lemma₇ : ∀ {A B v v' κ} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ [ c ∣ v' ∣ κ ]▷ → A ≡ 𝟘 Lemma₇ ↦η₊₁ = refl Lemma₇ ↦η₊₂ = refl Lemma₈ : ∀ {A B v κ} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⊠ → ¬ (base c) Lemma₈ ↦⃖ηₓ₂ () Lemma₉ : ∀ {A B} {κ : Context} {v : ⟦ B ⟧} {v' : ⟦ A ⟧} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁ → [ c ∣ v ∣ κ ]◁ ↦ ⊠ → ⊥ Lemma₉ r' r with Lemma₈ r Lemma₉ (↦⃖₁ {b = b}) r | nb = nb b Lemma₉ (↦⃖ηₓ₁ {eq = eq}) (↦⃖ηₓ₂ {neq = neq}) | _ = ⊥-elim (neq eq) Lemma₁₀ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷ → (A ≡ C × B ≡ D) Lemma₁₀ ↦⃗₁ = refl , refl Lemma₁₀ ↦⃗₂ = refl , refl Lemma₁₀ ↦⃗ηₓ = refl , refl Lemma₁₀ ↦⃗εₓ₁ = refl , refl Lemma₁₁ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷ → c ≡ c' × κ ≡ κ' Lemma₁₁ ↦⃗₁ = refl , refl Lemma₁₁ ↦⃗₂ = refl , refl Lemma₁₁ ↦⃗ηₓ = refl , refl Lemma₁₁ ↦⃗εₓ₁ = refl , refl Lemma₁₂ : ∀ {A B v v' κ} {c : A ↔ B} → (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷) → base c ⊎ dual c ⊎ A ≡ B Lemma₁₂ (↦⃗₁ {b = b}) = inj₁ b Lemma₁₂ ↦⃗₂ = inj₂ (inj₂ refl) Lemma₁₂ ↦⃗ηₓ = inj₂ (inj₁ tt) Lemma₁₂ ↦⃗εₓ₁ = inj₂ (inj₁ tt) Lemma₁₃ : ∀ {A v v' κ} {c : A ↔ A} → (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷) → base c ⊎ c ≡ id↔ Lemma₁₃ (↦⃗₁ {b = b}) = inj₁ b Lemma₁₃ ↦⃗₂ = inj₂ refl
{ "alphanum_fraction": 0.4428274428, "avg_line_length": 27.75, "ext": "agda", "hexsha": "5e604565ef449a0e64f91ff94f01063170b0634c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiQ/AuxLemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiQ/AuxLemmas.agda", "max_line_length": 67, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiQ/AuxLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1621, "size": 2886 }
{-# OPTIONS --universe-polymorphism #-} module NiceGoals where ------------------------------------------------------------------------ postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} ------------------------------------------------------------------------ record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ _∙_ : Carrier → Carrier → Carrier ε : Carrier module M (rm : RawMonoid zero zero) where open RawMonoid rm thm : ∀ x → x ∙ ε ≈ x thm = {!!} -- agda2-goal-and-context: -- rm : RawMonoid zero zero -- ------------------------ -- Goal: (x : RawMonoid.Carrier rm) → -- RawMonoid._≈_ rm (RawMonoid._∙_ rm x (RawMonoid.ε rm)) x ------------------------------------------------------------------------ record RawMonoid′ : Set₁ where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier module M′ (rm : RawMonoid′) where open RawMonoid′ rm thm′ : ∀ x → x ∙ ε ≈ x thm′ = {!!} -- agda2-goal-and-context: -- rm : RawMonoid′ -- --------------- -- Goal: (x : Carrier) → x ∙ ε ≈ x ------------------------------------------------------------------------ -- UP isn't relevant. record RawMonoid″ (Carrier : Set) : Set₁ where infixl 7 _∙_ infix 4 _≈_ field _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier data Bool : Set where true false : Bool data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A module M″ (rm : RawMonoid″ (List Bool)) where open RawMonoid″ rm thm″ : ∀ x → x ∙ ε ≈ x thm″ = {!!} -- agda2-goal-and-context: -- rm : RawMonoid″ (List Bool) -- --------------------------- -- Goal: (x : List Bool) → -- RawMonoid″._≈_ rm (RawMonoid″._∙_ rm x (RawMonoid″.ε rm)) x module M₁ (Z : Set₁) where postulate P : Set Q : Set → Set module M₂ (X Y : Set) where module M₁′ = M₁ Set open M₁′ p : P p = {!!} q : Q X q = {!!} postulate X : Set pp : M₂.M₁′.P X X pp = {!!}
{ "alphanum_fraction": 0.4560301508, "avg_line_length": 19.4146341463, "ext": "agda", "hexsha": "ad6aab2d832e215aa20babe8e8dc074875b572fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/interaction/NiceGoals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/interaction/NiceGoals.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/interaction/NiceGoals.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 782, "size": 2388 }
open import FRP.JS.Nat using ( ℕ ; suc ; _+_ ; _≟_ ; _<_ ) open import FRP.JS.Array using ( Array ; IArray ; [] ; _∷_ ; array ; ⟨⟩ ; ⟨_ ; _,_ ; _⟩ ; lookup ; lookup? ; map ; filter ; _≟[_]_ ; _⊆[_]_ ; _++_ ) open import FRP.JS.Bool using ( Bool ; not ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) renaming ( _≟[_]_ to _≟?[_]_ ) open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ ) module FRP.JS.Test.Array where infixr 2 _≟*_ _≟*_ : Array ℕ → Array ℕ → Bool xs ≟* ys = xs ≟[ _≟_ ] ys _⊆*_ : Array ℕ → Array ℕ → Bool xs ⊆* ys = xs ⊆[ _≟_ ] ys _≟?_ : Maybe ℕ → Maybe ℕ → Bool xs ≟? ys = xs ≟?[ _≟_ ] ys iincr : ∀ {m n} → IArray ℕ m n → IArray ℕ m n iincr [] = [] iincr (n ∷ ns) = suc n ∷ iincr ns incr : Array ℕ → Array ℕ incr (array ns) = array (iincr ns) ⟨0⟩ = ⟨ 0 ⟩ ⟨1⟩ = ⟨ 1 ⟩ ⟨2⟩ = ⟨ 2 ⟩ ⟨3⟩ = ⟨ 3 ⟩ ⟨0,1⟩ = ⟨ 0 , 1 ⟩ ⟨0,2⟩ = ⟨ 0 , 2 ⟩ ⟨1,2⟩ = ⟨ 1 , 2 ⟩ ⟨2,3⟩ = ⟨ 2 , 3 ⟩ ⟨0,1,2⟩ = ⟨ 0 , 1 , 2 ⟩ tests : TestSuite tests = ( test "≟" ( ok "⟨⟩ ≟ ⟨⟩" (⟨⟩ ≟* ⟨⟩) , ok "⟨⟩ ≟ ⟨0⟩" (not (⟨⟩ ≟* ⟨0⟩)) , ok "⟨0⟩ ≟ ⟨⟩" (not (⟨0⟩ ≟* ⟨⟩)) , ok "⟨0⟩ ≟ ⟨0⟩" (⟨0⟩ ≟* ⟨0⟩) , ok "⟨⟩ ≟ ⟨0,1⟩" (not (⟨⟩ ≟* ⟨0,1⟩)) , ok "⟨0,1⟩ ≟ ⟨⟩" (not (⟨0,1⟩ ≟* ⟨⟩)) , ok "⟨1⟩ ≟ ⟨0,1⟩" (not (⟨1⟩ ≟* ⟨0,1⟩)) , ok "⟨0⟩ ≟ ⟨0,1⟩" (not (⟨0⟩ ≟* ⟨0,1⟩)) , ok "⟨0,1⟩ ≟ ⟨0,1⟩" (⟨0,1⟩ ≟* ⟨0,1⟩) , ok "⟨0,1⟩ ≟ ⟨0,2⟩" (not (⟨0,1⟩ ≟* ⟨0,2⟩)) , ok "⟨0,1⟩ ≟ ⟨1,2⟩" (not (⟨0,1⟩ ≟* ⟨1,2⟩)) ) , test "⊆" ( ok "⟨⟩ ⊆ ⟨⟩" (⟨⟩ ⊆* ⟨⟩) , ok "⟨⟩ ⊆ ⟨0⟩" (⟨⟩ ⊆* ⟨0⟩) , ok "⟨0⟩ ⊆ ⟨⟩" (not (⟨0⟩ ⊆* ⟨⟩)) , ok "⟨0⟩ ⊆ ⟨0⟩" (⟨0⟩ ⊆* ⟨0⟩) , ok "⟨⟩ ⊆ ⟨0,1⟩" (⟨⟩ ⊆* ⟨0,1⟩) , ok "⟨0,1⟩ ⊆ ⟨⟩" (not (⟨0,1⟩ ⊆* ⟨⟩)) , ok "⟨1⟩ ⊆ ⟨0,1⟩" (not (⟨1⟩ ⊆* ⟨0,1⟩)) , ok "⟨0⟩ ⊆ ⟨0,1⟩" (⟨0⟩ ⊆* ⟨0,1⟩) , ok "⟨0,1⟩ ⊆ ⟨0,1⟩" (⟨0,1⟩ ⊆* ⟨0,1⟩) , ok "⟨0,1⟩ ⊆ ⟨0,2⟩" (not (⟨0,1⟩ ⊆* ⟨0,2⟩)) , ok "⟨0,1⟩ ⊆ ⟨1,2⟩" (not (⟨0,1⟩ ⊆* ⟨1,2⟩)) ) , test "++" ( ok "⟨⟩ ++ ⟨⟩" (⟨⟩ ++ ⟨⟩ ≟* ⟨⟩) , ok "⟨⟩ ++ ⟨2⟩" (⟨⟩ ++ ⟨2⟩ ≟* ⟨2⟩) , ok "⟨⟩ ++ ⟨1,2⟩" (⟨⟩ ++ ⟨1,2⟩ ≟* ⟨1,2⟩) , ok "⟨0⟩ ++ ⟨⟩" (⟨0⟩ ++ ⟨⟩ ≟* ⟨0⟩) , ok "⟨0⟩ ++ ⟨2⟩" (⟨0⟩ ++ ⟨2⟩ ≟* ⟨0,2⟩) , ok "⟨0⟩ ++ ⟨1,2⟩" (⟨0⟩ ++ ⟨1,2⟩ ≟* ⟨0,1,2⟩) , ok "⟨0,1⟩ ++ ⟨⟩" (⟨0,1⟩ ++ ⟨⟩ ≟* ⟨0,1⟩) , ok "⟨0,1⟩ ++ ⟨2⟩" (⟨0,1⟩ ++ ⟨2⟩ ≟* ⟨0,1,2⟩) ) , test "lookup" ( ok "lookup? ⟨1,2⟩ 0" (lookup? ⟨1,2⟩ 0 ≟? just 1) , ok "lookup? ⟨1,2⟩ 1" (lookup? ⟨1,2⟩ 1 ≟? just 2) , ok "lookup? ⟨1,2⟩ 2" (lookup? ⟨1,2⟩ 2 ≟? nothing) , ok "lookup ⟨1,2⟩ 0" (lookup ⟨1,2⟩ 0 ≟ 1) , ok "lookup ⟨1,2⟩ 1" (lookup ⟨1,2⟩ 1 ≟ 2) ) , test "map" ( ok "map suc ⟨⟩" (map suc ⟨⟩ ≟* ⟨⟩) , ok "map suc ⟨1⟩" (map suc ⟨1⟩ ≟* ⟨2⟩) , ok "map suc ⟨1,2⟩" (map suc ⟨1,2⟩ ≟* ⟨2,3⟩) , ok "incr ⟨⟩" (map suc ⟨⟩ ≟* incr ⟨⟩) , ok "incr ⟨1⟩" (map suc ⟨1⟩ ≟* incr ⟨1⟩) , ok "incr ⟨1,2⟩" (map suc ⟨1,2⟩ ≟* incr ⟨1,2⟩) ) , test "filter" ( ok "filter 0< ⟨1,2⟩" (filter (_<_ 0) ⟨1,2⟩ ≟* ⟨1,2⟩) , ok "filter 1< ⟨1,2⟩" (filter (_<_ 1) ⟨1,2⟩ ≟* ⟨2⟩) , ok "filter 2< ⟨1,2⟩" (filter (_<_ 2) ⟨1,2⟩ ≟* ⟨⟩) ) )
{ "alphanum_fraction": 0.3555114201, "avg_line_length": 33.9438202247, "ext": "agda", "hexsha": "87aef6fb9b6801059c78b16edd74ffeed2185bb5", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/Array.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/Array.agda", "max_line_length": 148, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/Array.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 1811, "size": 3021 }
variable S : Set data D (A : Set) : Set1 where d : S → D A
{ "alphanum_fraction": 0.53125, "avg_line_length": 10.6666666667, "ext": "agda", "hexsha": "9804b1c79841a6e1412448dfe80adc6a262c17b4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/GeneralizeIssue1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/GeneralizeIssue1.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/GeneralizeIssue1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 64 }
-- Andreas, 2020-04-19, issue #4560, raised by Andrea -- Having both matching on constructor and copattern matching -- for non-eta records leads to loss of subject reduction. open import Agda.Builtin.Equality postulate A : Set a : A record R : Set where constructor con no-eta-equality field X Y : A foo : R → A foo (con x y) = x -- Expected error here: -- Pattern matching on no-eta record types is by default not allowed -- when checking that the pattern con x y has type R bar : R bar .R.X = a bar .R.Y = a test : foo bar ≡ a test = refl -- Problem was: -- foo bar != a of type A -- when checking that the expression refl has type foo bar ≡ a
{ "alphanum_fraction": 0.6856287425, "avg_line_length": 19.6470588235, "ext": "agda", "hexsha": "c727eb2b2cd9f7d6821989ca97ce06f484f8dd6e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4560NoPatternMatchingWithoutEta.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4560NoPatternMatchingWithoutEta.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4560NoPatternMatchingWithoutEta.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-14T11:08:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-14T11:08:59.000Z", "num_tokens": 198, "size": 668 }
open import Prelude open import core open import contexts module lemmas-freshG where -- the def above buries the sort of obvious pattern matching we'd like to -- do on the freshness in the conclusion, so we need lemmas that extract -- it for each constructor freshΓ-asc : {A : Set} → {Γ : A ctx} → ∀{e τ} → freshΓ Γ (e ·: τ) → freshΓ Γ e freshΓ-asc fr x x₁ with fr x x₁ freshΓ-asc fr x x₁ | FRHAsc qq = qq freshΓ-ap1 : {A : Set} → {Γ : A ctx} → ∀{e1 e2} → freshΓ Γ (e1 ∘ e2) → freshΓ Γ e1 freshΓ-ap1 fr x y with fr x y freshΓ-ap1 fr x y | FRHAp qq qq₁ = qq freshΓ-ap2 : {A : Set} → {Γ : A ctx} → ∀{e1 e2} → freshΓ Γ (e1 ∘ e2) → freshΓ Γ e2 freshΓ-ap2 fr x y with fr x y freshΓ-ap2 fr x y | FRHAp qq qq₁ = qq₁ freshΓ-nehole : {A : Set} → {Γ : A ctx} → ∀{e u} → freshΓ Γ (⦇⌜ e ⌟⦈[ u ]) → freshΓ Γ e freshΓ-nehole fr x y with fr x y freshΓ-nehole fr x y | FRHNEHole qq = qq freshΓ-lam1 : {A : Set} → {Γ : A ctx} → ∀{e x} → freshΓ Γ (·λ x e) → freshΓ Γ e freshΓ-lam1 fr x y with fr x y freshΓ-lam1 fr x y | FRHLam1 x₂ qq = qq freshΓ-lam2 : {A : Set} → {Γ : A ctx} → ∀{e τ x} → freshΓ Γ (·λ_[_]_ x τ e) → freshΓ Γ e freshΓ-lam2 fr x y with fr x y freshΓ-lam2 fr x y | FRHLam2 x₂ qq = qq lem-fresh-lam1 : ∀{x e} → freshe x (·λ x e) → ⊥ lem-fresh-lam1 (FRHLam1 x₁ f) = x₁ refl lem-fresh-lam2 : ∀{x τ e} → freshe x (·λ x [ τ ] e) → ⊥ lem-fresh-lam2 (FRHLam2 x₁ f) = x₁ refl freshΓ-pair1 : {A : Set} → {Γ : A ctx} → ∀{e1 e2} → freshΓ Γ ⟨ e1 , e2 ⟩ → freshΓ Γ e1 freshΓ-pair1 fr x y with fr x y freshΓ-pair1 fr x y | FRHPair qq qq₁ = qq freshΓ-pair2 : {A : Set} → {Γ : A ctx} → ∀{e1 e2} → freshΓ Γ ⟨ e1 , e2 ⟩ → freshΓ Γ e2 freshΓ-pair2 fr x y with fr x y freshΓ-pair2 fr x y | FRHPair qq qq₁ = qq₁ freshΓ-fst : {A : Set} → {Γ : A ctx} → ∀{e} → freshΓ Γ (fst e) → freshΓ Γ e freshΓ-fst fr x x₁ with fr x x₁ freshΓ-fst fr x x₁ | FRHFst qq = qq freshΓ-snd : {A : Set} → {Γ : A ctx} → ∀{e} → freshΓ Γ (snd e) → freshΓ Γ e freshΓ-snd fr x x₁ with fr x x₁ freshΓ-snd fr x x₁ | FRHSnd qq = qq fresh-freshΓ : {A : Set} {τ : A} → ∀{x e} → freshe x e → freshΓ (■ (x , τ)) e fresh-freshΓ fr x y with lem-dom-eq y fresh-freshΓ fr x y | refl = fr
{ "alphanum_fraction": 0.5834084761, "avg_line_length": 38.2413793103, "ext": "agda", "hexsha": "2dc307cf6ccda23a09c4417566547145a2521c54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "lemmas-freshG.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "lemmas-freshG.agda", "max_line_length": 90, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "lemmas-freshG.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 1056, "size": 2218 }
open import Data.Nat --using (ℕ; suc; zero; _≤?_; _≤_; s≤s; z≤n) open import Data.Bool using (true; false) --open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary -- using (Dec; yes; no; _because_) open import Relation.Nullary.Decidable --using (True; fromWitness) --open import Data.Unit using (tt) -- stack exec -- agda -c --ghc-dont-call-ghc --no-main nats.agda data Maybe (A : Set) : Set where nothing : Maybe A just : (x : A) → Maybe A {-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-} n-3 : (n : ℕ) → .{3≤n : True (3 ≤? n)} → ℕ n-3 (suc (suc (suc n))) = n exportFunc : ℕ → Maybe ℕ exportFunc n with 3 ≤? n ... | yes 3≤n = just (n-3 n {fromWitness 3≤n}) ... | no ¬3≤n = nothing {-# COMPILE GHC exportFunc as exportFunc #-}
{ "alphanum_fraction": 0.6383248731, "avg_line_length": 34.2608695652, "ext": "agda", "hexsha": "7320e15cd6531ced0cf4018986523d96eadb5b0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/reals-with-restrictions/nats.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/reals-with-restrictions/nats.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/reals-with-restrictions/nats.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 277, "size": 788 }
module dependentProduct2 where postulate A : Set postulate B : A -> Set data AB : Set where p : (a : A) -> B a -> AB π0 : AB -> A π0 (p a b) = a π1 : (ab : AB) -> B (π0 ab) π1 (p a b) = b postulate a : A postulate b : B a ab : AB ab = p a b postulate ab' : AB a' : A a' = π0 ab' b' : B a' b' = π1 ab'
{ "alphanum_fraction": 0.5125, "avg_line_length": 9.4117647059, "ext": "agda", "hexsha": "ff32294fc938a8e290823b71bcb7e671ff96293d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/dependentProduct2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/dependentProduct2.agda", "max_line_length": 30, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/dependentProduct2.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 137, "size": 320 }
------------------------------------------------------------------------ -- M-types for indexed containers, defined coinductively (in Cubical -- Agda) ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe --guardedness #-} import Equality.Path as P module Container.Indexed.M.Codata {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Container.Indexed equality-with-J import Container.Indexed.M.Function equality-with-J as F import Container.Indexed.Variant equality-with-J as V open import Container.Indexed.Variant.M.Codata eq as VM using (out-M) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Univalence-axiom equality-with-J private variable a iℓ s p : Level A I : Type a i x : A C : Container I s p n : ℕ ------------------------------------------------------------------------ -- The M-type and some basic results -- An M-type for a given container. -- -- This definition is similar to one in "Indexed containers" by -- Altenkirch, Ghani, Hancock, McBride and Morris. record M {I : Type iℓ} (C : Container I s p) (i : I) : Type (iℓ ⊔ s ⊔ p) where coinductive constructor in-M field out-M : ⟦ C ⟧ (M C) i open M public -- An η-law. η : in-M (out-M x) ≡ x η = _↔_.from ≡↔≡ η′ where η′ : in-M (out-M x) P.≡ x η′ {x = x} _ .out-M = x .out-M -- M C is, in a certain sense, a fixpoint of ⟦ C ⟧. M-fixpoint : ⟦ C ⟧ (M C) i ≃ M C i M-fixpoint = Eq.↔→≃ in-M out-M (λ _ → η) refl -- A coalgebra defined using M and out-M. M-coalgebra : (C : Container I s p) → Coalgebra C M-coalgebra C = M C , λ _ → out-M ------------------------------------------------------------------------ -- Some conversion lemmas -- One can convert between M and VM.M. M≃M : ∀ p {I : Type i} {C : V.Container I s (i ⊔ p)} {i} → M (_⇔_.to (V.Container⇔Container p) C) i ≃ VM.M C i M≃M p {C = C} = Eq.↔→≃ to from (λ c → _↔_.from ≡↔≡ (to-from c)) (λ c → _↔_.from ≡↔≡ (from-to c)) where to : M (_⇔_.to (V.Container⇔Container p) C) i → VM.M C i to x .out-M .proj₁ = x .out-M .proj₁ to x .out-M .proj₂ i p = to (x .out-M .proj₂ (i , p)) from : VM.M C i → M (_⇔_.to (V.Container⇔Container p) C) i from x .out-M .proj₁ = x .out-M .proj₁ from x .out-M .proj₂ (i , p) = from (x .out-M .proj₂ i p) to-from : (x : VM.M C i) → to (from x) P.≡ x to-from x i .out-M .proj₁ = x .out-M .proj₁ to-from x i .out-M .proj₂ j p = to-from (x .out-M .proj₂ j p) i from-to : (x : M (_⇔_.to (V.Container⇔Container p) C) i) → from (to x) P.≡ x from-to x i .out-M .proj₁ = x .out-M .proj₁ from-to x i .out-M .proj₂ p = from-to (x .out-M .proj₂ p) i -- M-coalgebra is related to VM.M-coalgebra (assuming univalence). M-coalgebra≡M-coalgebra : ∀ p {I : Type i} (C : V.Container I s (i ⊔ p)) → Univalence (i ⊔ s ⊔ p) → M-coalgebra (_⇔_.to (V.Container⇔Container p) C) ≡ _≃_.to (V.Coalgebra≃Coalgebra p C ext) (VM.M-coalgebra C) M-coalgebra≡M-coalgebra p C univ = Σ-≡,≡→≡ (⟨ext⟩ lemma₁) (⟨ext⟩ λ i → ⟨ext⟩ λ x → subst (λ P → P ⇾ ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P) (⟨ext⟩ lemma₁) (λ _ → out-M) i x ≡⟨ cong (_$ x) $ sym $ push-subst-application _ _ ⟩ subst (λ P → P i → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) out-M x ≡⟨ subst-→ ⟩ subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) (subst (_$ i) (sym (⟨ext⟩ lemma₁)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) _) $ cong out-M $ cong (flip (subst (_$ i)) _) $ sym $ ext-sym lemma₁ ⟩ subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) (subst (_$ i) (⟨ext⟩ (sym ∘ lemma₁)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) _) $ cong out-M $ subst-ext id (sym ∘ lemma₁) ⟩ subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) (subst id (sym (lemma₁ i)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) _) $ cong out-M $ subst-id-in-terms-of-inverse∘≡⇒↝ equivalence {A≡B = lemma₁ i} ⟩ subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) (_≃_.from (≡⇒≃ (lemma₁ i)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) _) $ cong (λ (eq : M (_⇔_.to (V.Container⇔Container p) C) i ≃ VM.M C i) → _≃_.from eq x .out-M) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩ subst (λ P → ⟦ _⇔_.to (V.Container⇔Container p) C ⟧ P i) (⟨ext⟩ lemma₁) (_≃_.from (M≃M p {i = i}) x .out-M) ≡⟨⟩ subst (λ P → ∃ λ (s : V.Shape C i) → ((i , _) : ∃ (V.Position C s)) → P i) (⟨ext⟩ lemma₁) (_≃_.from (M≃M p {i = i}) x .out-M) ≡⟨ push-subst-pair-× _ _ ⟩ ( x .out-M .proj₁ , subst (λ P → ((i , _) : ∃ (V.Position C (x .out-M .proj₁))) → P i) (⟨ext⟩ lemma₁) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂) ) ≡⟨ cong (x .out-M .proj₁ ,_) $ ⟨ext⟩ (lemma₃ i x) ⟩∎ Σ-map id uncurry (x .out-M) ∎) where lemma₁ = λ _ → ≃⇒≡ univ (M≃M p) lemma₂ : ∀ _ _ _ → _ lemma₂ _ _ p = sym (Σ-≡,≡→≡ (sym (⟨ext⟩ lemma₁)) (refl p′)) ≡⟨ cong sym $ cong (Σ-≡,≡→≡ (sym (⟨ext⟩ lemma₁))) $ sym $ trans-symʳ _ ⟩ sym (Σ-≡,≡→≡ (sym (⟨ext⟩ lemma₁)) (trans (subst-const _) (sym (subst-const _)))) ≡⟨ cong sym $ Σ-≡,≡→≡-subst-const _ _ ⟩ sym (cong₂ _,_ (sym (⟨ext⟩ lemma₁)) (sym (subst-const _))) ≡⟨ cong sym cong₂-sym ⟩ sym (sym (cong₂ _,_ (⟨ext⟩ lemma₁) (subst-const _))) ≡⟨ sym-sym _ ⟩∎ cong₂ _,_ (⟨ext⟩ lemma₁) (subst-const _) ∎ where p′ = subst (const _) (sym (⟨ext⟩ lemma₁)) p lemma₃ : ∀ _ _ _ → _ lemma₃ i x (i′ , p′) = subst (λ P → ((i , _) : ∃ _) → P i) (⟨ext⟩ lemma₁) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂) (i′ , p′) ≡⟨ subst-∀ ⟩ subst (λ ((P , i , _) : _ × ∃ _) → P i) (sym $ Σ-≡,≡→≡ (sym (⟨ext⟩ lemma₁)) (refl _)) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ $ subst (const _) (sym (⟨ext⟩ lemma₁)) (i′ , p′)) ≡⟨ cong (flip (subst (λ ((P , i , _) : _ × ∃ _) → P i)) _) $ lemma₂ i x _ ⟩ subst (λ ((P , i , _) : _ × ∃ _) → P i) (cong₂ _,_ (⟨ext⟩ lemma₁) (subst-const _)) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ $ subst (const _) (sym (⟨ext⟩ lemma₁)) (i′ , p′)) ≡⟨ elim₁ (λ {q} eq → subst (λ ((P , i , _) : _ × ∃ _) → P i) (cong₂ _,_ (⟨ext⟩ lemma₁) eq) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ q) ≡ subst (λ ((P , i , _) : _ × ∃ (V.Position C (x .out-M .proj₁))) → P i) (cong₂ {u = i′ , p′} _,_ (⟨ext⟩ lemma₁) (refl _)) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ (i′ , p′))) (refl _) _ ⟩ subst (λ ((P , i , _) : _ × ∃ _) → P i) (cong₂ _,_ (⟨ext⟩ lemma₁) (refl _)) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ (i′ , p′)) ≡⟨ cong (flip (subst (λ ((P , i , _) : _ × ∃ _) → P i)) _) $ cong₂-reflʳ _ ⟩ subst (λ ((P , i , _) : _ × ∃ _) → P i) (cong (_, i′ , p′) (⟨ext⟩ lemma₁)) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ (i′ , p′)) ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (_$ i′) (⟨ext⟩ lemma₁) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ (i′ , p′)) ≡⟨ subst-ext _ _ ⟩ subst id (lemma₁ i′) (_≃_.from (M≃M p {i = i}) x .out-M .proj₂ (i′ , p′)) ≡⟨⟩ subst id (≃⇒≡ univ (M≃M p {i = i′})) (_≃_.from (M≃M p {i = i′}) (x .out-M .proj₂ i′ p′)) ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩ _≃_.to (≡⇒≃ (≃⇒≡ univ (M≃M p {i = i′}))) (_≃_.from (M≃M p {i = i′}) (x .out-M .proj₂ i′ p′)) ≡⟨ cong (λ eq → _≃_.to eq (_≃_.from (M≃M p {i = i′}) (x .out-M .proj₂ i′ p′))) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩ _≃_.to (M≃M p {i = i′}) (_≃_.from (M≃M p {i = i′}) (x .out-M .proj₂ i′ p′)) ≡⟨ _≃_.right-inverse-of (M≃M p {i = i′}) _ ⟩ x .out-M .proj₂ i′ p′ ≡⟨⟩ Σ-map id uncurry (x .out-M) .proj₂ (i′ , p′) ∎ ------------------------------------------------------------------------ -- Lemmas related to lift-positions -- Lifting the position type family using lift-positions does not -- affect the resulting M type (up to pointwise equivalence). M≃M-lift-positions : M C i ≃ M (lift-positions C) i M≃M-lift-positions = Eq.↔→≃ to from (λ c → _↔_.from ≡↔≡ (to-from c)) (λ c → _↔_.from ≡↔≡ (from-to c)) where to : M C i → M (lift-positions C) i to x .out-M .proj₁ = x .out-M .proj₁ to x .out-M .proj₂ (lift p) = to (x .out-M .proj₂ p) from : M (lift-positions C) i → M C i from x .out-M .proj₁ = x .out-M .proj₁ from x .out-M .proj₂ p = from (x .out-M .proj₂ (lift p)) to-from : (x : M (lift-positions C) i) → to (from x) P.≡ x to-from x i .out-M .proj₁ = x .out-M .proj₁ to-from x i .out-M .proj₂ p = to-from (x .out-M .proj₂ p) i from-to : (x : M C i) → from (to x) P.≡ x from-to x i .out-M .proj₁ = x .out-M .proj₁ from-to x i .out-M .proj₂ p = from-to (x .out-M .proj₂ p) i -- M-coalgebra C is related to M-coalgebra (lift-positions C) -- (assuming univalence). ≡M-coalgebra-lift-positions : {I : Type i} {C : Container I s p} → Univalence (i ⊔ s ⊔ p) → Coalgebra≃Coalgebra-lift-positions _ (M-coalgebra C) ≡ M-coalgebra (lift-positions C) ≡M-coalgebra-lift-positions {C = C} univ = Σ-≡,≡→≡ (⟨ext⟩ lemma) (⟨ext⟩ λ i → ⟨ext⟩ λ x → subst (λ P → P ⇾ ⟦ lift-positions C ⟧ P) (⟨ext⟩ lemma) ((Σ-map id (_∘ lower) ∘_) ∘ (λ _ → out-M)) i x ≡⟨ cong (_$ x) $ sym $ push-subst-application _ _ ⟩ subst (λ P → P i → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) ∘ out-M) x ≡⟨ subst-→ ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) $ subst (_$ i) (sym (⟨ext⟩ lemma)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (Σ-map id (_∘ lower)) $ cong out-M $ cong (flip (subst (_$ i)) _) $ sym $ ext-sym lemma ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) $ subst (_$ i) (⟨ext⟩ (sym ∘ lemma)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (Σ-map id (_∘ lower)) $ cong out-M $ subst-ext id (sym ∘ lemma) ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) $ subst id (sym (lemma i)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (Σ-map id (_∘ lower)) $ cong out-M $ subst-id-in-terms-of-inverse∘≡⇒↝ equivalence {A≡B = lemma i} ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) $ _≃_.from (≡⇒≃ (lemma i)) x .out-M) ≡⟨ cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (λ (eq : M C i ≃ M (lift-positions C) i) → Σ-map id (_∘ lower) (_≃_.from eq x .out-M)) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) (Σ-map id (_∘ lower) $ _≃_.from M≃M-lift-positions x .out-M) ≡⟨⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) ( x .out-M .proj₁ , _≃_.from M≃M-lift-positions ∘ x .out-M .proj₂ ) ≡⟨ (cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (_ ,_) $ ⟨ext⟩ λ p → cong (λ eq → _≃_.from eq (x .out-M .proj₂ p)) $ sym $ _≃_.right-inverse-of (≡≃≃ univ) _) ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) ( x .out-M .proj₁ , _≃_.from (≡⇒≃ (lemma _)) ∘ x .out-M .proj₂ ) ≡⟨ (cong (subst (λ P → ⟦ lift-positions C ⟧ P i) _) $ cong (_ ,_) $ ⟨ext⟩ λ p → cong (λ (f : ∀ i → M C i ≡ M (lift-positions C) i) → _≃_.from (≡⇒≃ (f _)) (x .out-M .proj₂ p)) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) _) ⟩ subst (λ P → ⟦ lift-positions C ⟧ P i) (⟨ext⟩ lemma) ( x .out-M .proj₁ , _≃_.from (≡⇒≃ (ext⁻¹ (⟨ext⟩ lemma) _)) ∘ x .out-M .proj₂ ) ≡⟨ elim₁ (λ eq → subst (λ P → ⟦ lift-positions C ⟧ P i) eq ( x .out-M .proj₁ , _≃_.from (≡⇒≃ (ext⁻¹ eq _)) ∘ x .out-M .proj₂ ) ≡ x .out-M) ( subst (λ P → ⟦ lift-positions C ⟧ P i) (refl _) ( x .out-M .proj₁ , _≃_.from (≡⇒≃ (ext⁻¹ (refl (M (lift-positions C))) _)) ∘ x .out-M .proj₂ ) ≡⟨ subst-refl _ _ ⟩ x .out-M .proj₁ , _≃_.from (≡⇒≃ (ext⁻¹ (refl (M (lift-positions C))) _)) ∘ x .out-M .proj₂ ≡⟨ (cong (_ ,_) $ ⟨ext⟩ λ p → cong (λ eq → _≃_.from eq (x .out-M .proj₂ p)) $ trans (cong ≡⇒≃ $ ext⁻¹-refl (M (lift-positions C))) $ ≡⇒↝-refl) ⟩∎ x .out-M ∎) (⟨ext⟩ lemma) ⟩∎ x .out-M ∎) where lemma = λ _ → ≃⇒≡ univ M≃M-lift-positions ------------------------------------------------------------------------ -- Finality private -- M-coalgebra C is sometimes a final coalgebra (assuming -- univalence). Note that the last index argument of C is not -- unrestricted. M-final′ : ∀ p {I : Type i} {C : Container I s (i ⊔ p)} → Univalence (i ⊔ s ⊔ p) → Univalence (i ⊔ p) → Final′ (M-coalgebra C) M-final′ p {C = C} univ₁ univ₂ = $⟨ VM.M-final′ C′ ⟩ V.Final′ (VM.M-coalgebra C′) ↝⟨ subst V.Final′ $ sym $ _≃_.to-from C≃C $ sym $ M-coalgebra≡M-coalgebra p C′ univ₁ ⟩ V.Final′ (_≃_.from C≃C (M-coalgebra (_⇔_.to C⇔C C′))) ↔⟨ V.Final′≃Final′ p C′ ext ext (_≃_.from C≃C (M-coalgebra (_⇔_.to C⇔C C′))) ⟩ Final′ (_≃_.to C≃C $ _≃_.from C≃C $ M-coalgebra (_⇔_.to C⇔C C′)) ↝⟨ subst Final′ (_≃_.right-inverse-of C≃C (M-coalgebra (_⇔_.to C⇔C C′))) ⟩ Final′ (M-coalgebra (_⇔_.to C⇔C C′)) ↝⟨ subst (Final′ ∘ M-coalgebra) $ _≃_.right-inverse-of (V.Container≃Container p ext univ₂) _ ⟩□ Final′ (M-coalgebra C) □ where C⇔C = V.Container⇔Container p C′ = _⇔_.from C⇔C C C≃C = V.Coalgebra≃Coalgebra p C′ ext -- M-coalgebra C is sometimes a final coalgebra (assuming univalence). -- Note that the last index argument of C is not unrestricted. M-final″ : ∀ p {I : Type i} {C : Container I s (i ⊔ p)} → Univalence (i ⊔ s ⊔ p) → Univalence (i ⊔ p) → Final (M-coalgebra C) M-final″ p {C = C} univ₁ univ₂ = block λ b → Final′→Final ext ( F.M-coalgebra b ext C , F.M-final b ext ext ) ( M-coalgebra C , M-final′ p univ₁ univ₂ ) -- M-coalgebra C is a final coalgebra (assuming univalence). -- -- TODO: Can this be proved directly, without using VM.M-final′ or -- univalence? M-final : {I : Type i} {C : Container I s p} → Univalence (i ⊔ s ⊔ p) → Univalence (i ⊔ p) → Final (M-coalgebra C) M-final {p = p} {C = C} univ₁ univ₂ = $⟨ M-final″ p univ₁ univ₂ ⟩ Final (M-coalgebra (lift-positions C)) ↔⟨⟩ (∀ Y → Contractible (Y ⇨ M-coalgebra (lift-positions C))) ↝⟨ (Π-cong-contra-→ (Coalgebra≃Coalgebra-lift-positions _) λ Y → H-level-cong _ 0 ( Coalgebra≃Coalgebra-lift-positions _ Y ⇨ M-coalgebra (lift-positions C) ↝⟨ ≡⇒↝ _ $ cong (Coalgebra≃Coalgebra-lift-positions _ Y ⇨_) $ sym $ ≡M-coalgebra-lift-positions univ₁ ⟩ Coalgebra≃Coalgebra-lift-positions _ Y ⇨ Coalgebra≃Coalgebra-lift-positions _ (M-coalgebra C) ↝⟨ inverse $ ⇨≃⇨-lift-positions ext _ (M-coalgebra C) ⟩□ Y ⇨ M-coalgebra C □)) ⟩ (∀ Y → Contractible (Y ⇨ M-coalgebra C)) ↔⟨⟩ Final (M-coalgebra C) □ ------------------------------------------------------------------------ -- H-levels -- If the shape types of C have h-level n, then M C i has h-level n -- (assuming univalence). H-level-M : {I : Type i} {C : Container I s p} → Univalence (i ⊔ s ⊔ p) → Univalence (i ⊔ p) → (∀ i → H-level n (Shape C i)) → ∀ {i} → H-level n (M C i) H-level-M {C = C} univ₁ univ₂ h = F.H-level-final-coalgebra ext (M-coalgebra C , M-final univ₁ univ₂) h
{ "alphanum_fraction": 0.3775556982, "avg_line_length": 48.3680709534, "ext": "agda", "hexsha": "f576746780015e274a6cf4b7789ee97ae471cfdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/Indexed/M/Codata.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/Indexed/M/Codata.agda", "max_line_length": 144, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/Indexed/M/Codata.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6907, "size": 21814 }
module Data.Strict.Primitive where data Strict (A : Set) : Set where ! : A → Strict A {-# IMPORT Data.Strict.AgdaFFI #-} {-# COMPILED_DATA Strict Data.Strict.AgdaFFI.Strict Data.Strict.AgdaFFI.Strict #-}
{ "alphanum_fraction": 0.7115384615, "avg_line_length": 26, "ext": "agda", "hexsha": "d559b17c69c1a391aa4928d9a07f5182415a0b01", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/Strict/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/Strict/Primitive.agda", "max_line_length": 82, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/Strict/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 56, "size": 208 }
------------------------------------------------------------------------------ -- Definition of FOTC streams using the Agda co-inductive combinators ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Stream.TypeSL where open import Codata.Musical.Notation open import Data.Product renaming ( _×_ to _∧_ ) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/List.agda). infixr 8 _∷_ data D : Set where _∷_ : D → D → D data Stream : D → Set where consS : ∀ x {xs} → ∞ (Stream xs) → Stream (x ∷ xs) Stream-out : ∀ {xs} → Stream xs → ∃ λ x' → ∃ λ xs' → Stream xs' ∧ xs ≡ x' ∷ xs' Stream-out (consS x' {xs'} Sxs') = x' , xs' , ♭ Sxs' , refl {-# NON_TERMINATING #-} Stream-coind : (A : D → Set) → (∀ {xs} → A xs → ∃ λ x' → ∃ λ xs' → xs ≡ x' ∷ xs' ∧ A xs') → ∀ {xs} → A xs → Stream xs Stream-coind A h Axs with h Axs ... | x' , xs' , prf₁ , Axs' = subst Stream (sym prf₁) prf₂ where prf₂ : Stream (x' ∷ xs') prf₂ = consS x' (♯ Stream-coind A h Axs')
{ "alphanum_fraction": 0.4745387454, "avg_line_length": 32.2619047619, "ext": "agda", "hexsha": "1e842938634c7b6ccbd0a017609fd36e183bf89f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Stream/TypeSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Stream/TypeSL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Stream/TypeSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 400, "size": 1355 }
module Numeral.Rational.SternBrocot where
{ "alphanum_fraction": 0.880952381, "avg_line_length": 21, "ext": "agda", "hexsha": "bca2a332538552a4c5f0610e1b30417574abcd30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Rational/SternBrocot.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Rational/SternBrocot.agda", "max_line_length": 41, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Rational/SternBrocot.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 11, "size": 42 }
module FFI.Data.Aeson where open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.String using (String) open import FFI.Data.ByteString using (ByteString) open import FFI.Data.HaskellString using (HaskellString; pack) open import FFI.Data.Maybe using (Maybe) open import FFI.Data.Either using (Either; mapLeft) open import FFI.Data.Scientific using (Scientific) open import FFI.Data.Vector using (Vector) {-# FOREIGN GHC import qualified Data.Aeson #-} {-# FOREIGN GHC import qualified Data.Aeson.Key #-} {-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-} postulate KeyMap : Set → Set Key : Set fromString : String → Key toString : Key → String lookup : ∀ {A} → Key -> KeyMap A -> Maybe A {-# POLARITY KeyMap ++ #-} {-# COMPILE GHC KeyMap = type Data.Aeson.KeyMap.KeyMap #-} {-# COMPILE GHC Key = type Data.Aeson.Key.Key #-} {-# COMPILE GHC fromString = Data.Aeson.Key.fromText #-} {-# COMPILE GHC toString = Data.Aeson.Key.toText #-} {-# COMPILE GHC lookup = \_ -> Data.Aeson.KeyMap.lookup #-} data Value : Set where object : KeyMap Value → Value array : Vector Value → Value string : String → Value number : Scientific → Value bool : Bool → Value null : Value {-# COMPILE GHC Value = data Data.Aeson.Value (Data.Aeson.Object|Data.Aeson.Array|Data.Aeson.String|Data.Aeson.Number|Data.Aeson.Bool|Data.Aeson.Null) #-} Object = KeyMap Value Array = Vector Value postulate decode : ByteString → Maybe Value eitherHDecode : ByteString → Either HaskellString Value {-# COMPILE GHC decode = Data.Aeson.decodeStrict #-} {-# COMPILE GHC eitherHDecode = Data.Aeson.eitherDecodeStrict #-} eitherDecode : ByteString → Either String Value eitherDecode bytes = mapLeft pack (eitherHDecode bytes)
{ "alphanum_fraction": 0.7263824885, "avg_line_length": 34.0392156863, "ext": "agda", "hexsha": "a9082d31a25cf0900a184f054857e998bca8e252", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_line_length": 154, "max_stars_count": 1, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/FFI/Data/Aeson.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 438, "size": 1736 }
------------------------------------------------------------------------ -- Various utility functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Utilities where open import Data.Bool open import Data.Bool.Properties using (T-∧) open import Data.Char import Data.Char.Properties as Char open import Data.List open import Data.List.NonEmpty as List⁺ open import Data.Nat import Data.Nat.Properties as NP open import Data.Product open import Data.String as String using (String) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using () renaming (module Equivalence to Eq) open import Relation.Binary import Relation.Binary.Properties.StrictTotalOrder as STO open import Relation.Nullary.Decidable ------------------------------------------------------------------------ -- Some comparison operators -- Is one number strictly smaller than another? _<?ℕ_ : ℕ → ℕ → Bool n₁ <?ℕ n₂ = ⌊ n₁ NP.<? n₂ ⌋ -- Is one character smaller than or equal to another? _≤?C_ : Char → Char → Bool c₁ ≤?C c₂ = ⌊ DecTotalOrder._≤?_ (STO.decTotalOrder Char.<-strictTotalOrder) c₁ c₂ ⌋ ------------------------------------------------------------------------ -- Conversion of strings satisfying given predicates to annotated -- lists private mutual str′ : {p : Char → Bool} (s : List Char) → T (all p s) → List (∃ (T ∘ p)) str′ [] _ = [] str′ (t ∷ ts) ok = List⁺.toList (str⁺′ (t ∷ ts) ok) str⁺′ : {p : Char → Bool} (s : List⁺ Char) → T (all p (List⁺.toList s)) → List⁺ (∃ (T ∘ p)) str⁺′ (t ∷ ts) ok = let (ok₁ , ok₂) = Eq.to T-∧ ⟨$⟩ ok in (t , ok₁) ∷ str′ ts ok₂ str : {p : Char → Bool} (s : String) {ok : T (all p $ String.toList s)} → List (∃ (T ∘ p)) str s {ok} = str′ (String.toList s) ok str⁺ : {p : Char → Bool} (s : String) {ok₁ : T (all p $ String.toList s)} {ok₂ : T (not $ null $ String.toList s)} → List⁺ (∃ (T ∘ p)) str⁺ s {ok₂ = _} with String.toList s str⁺ s {ok₂ = ()} | [] str⁺ s {ok₁ = ok} | c ∷ cs = str⁺′ (c ∷ cs) ok
{ "alphanum_fraction": 0.5190735695, "avg_line_length": 29.36, "ext": "agda", "hexsha": "f1ab593bfde7dfab97cad404bda580ba9983b8fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Utilities.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Utilities.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Utilities.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 630, "size": 2202 }
------------------------------------------------------------------------ -- Booleans ------------------------------------------------------------------------ {-# OPTIONS --guardedness #-} module Examples.Bool where open import Codata.Musical.Notation open import Data.Bool open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Grammar.Infinite using (Grammar) import Pretty open import Renderer module _ where open Grammar.Infinite bool : Grammar Bool bool = true <$ string′ "true" ∣ false <$ string′ "false" open Pretty bool-printer : Pretty-printer bool bool-printer true = left (<$ text) bool-printer false = right (<$ text) test₁ : render 4 (bool-printer true) ≡ "true" test₁ = refl test₂ : render 0 (bool-printer false) ≡ "false" test₂ = refl
{ "alphanum_fraction": 0.5855181024, "avg_line_length": 22.25, "ext": "agda", "hexsha": "0e9b67207f7b2bccce6d43c696efcb23b9f508d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Examples/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Examples/Bool.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Examples/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 180, "size": 801 }
{-# OPTIONS --safe #-} module Cubical.Categories.Additive.Instances.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Categories.Category open import Cubical.Categories.Additive.Base open import Cubical.Categories.Instances.Discrete open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.Unit open import Cubical.Data.Unit private variable ℓ ℓ' : Level open PreaddCategory open PreaddCategoryStr open AdditiveCategory open AdditiveCategoryStr private terminalCategory : Category ℓ ℓ terminalCategory = DiscreteCategory (Unit* , isOfHLevelUnit* 3) terminalAbGroupStr : AbGroupStr {ℓ = ℓ} Unit* terminalAbGroupStr = snd UnitAbGroup homProp : (x y : Category.ob {ℓ = ℓ} terminalCategory) → isProp (terminalCategory [ x , y ]) homProp x y = isOfHLevelUnit* 2 x y homContr : (x y : Category.ob {ℓ = ℓ} terminalCategory) → isContr (terminalCategory [ x , y ]) homContr x y = isProp→isContrPath (isOfHLevelUnit* 1) x y terminalPreAdd : PreaddCategory ℓ ℓ cat terminalPreAdd = terminalCategory homAbStr (preadd terminalPreAdd) = λ x y → subst AbGroupStr (sym (isContr→≡Unit* (homContr x y))) terminalAbGroupStr ⋆distl+ (preadd terminalPreAdd) = λ _ _ _ _ → refl ⋆distr+ (preadd terminalPreAdd) = λ _ _ _ → refl terminalAdditiveCategory : AdditiveCategory ℓ ℓ preaddcat terminalAdditiveCategory = terminalPreAdd ZeroObject.z (zero (addit terminalAdditiveCategory)) = tt* ZeroObject.zInit (zero (addit terminalAdditiveCategory)) y = homContr _ _ ZeroObject.zTerm (zero (addit terminalAdditiveCategory)) y = homContr _ _ biprod (addit terminalAdditiveCategory) x y = trivProd where trivProd : Biproduct terminalPreAdd x y Biproduct.x⊕y trivProd = tt* Biproduct.i₁ trivProd = refl Biproduct.i₂ trivProd = refl Biproduct.π₁ trivProd = refl Biproduct.π₂ trivProd = refl IsBiproduct.i₁⋆π₁ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₁⋆π₂ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₂⋆π₁ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.i₂⋆π₂ (Biproduct.isBipr trivProd) = homProp _ _ _ _ IsBiproduct.∑π⋆i (Biproduct.isBipr trivProd) = homProp _ _ _ _
{ "alphanum_fraction": 0.7345360825, "avg_line_length": 34.7462686567, "ext": "agda", "hexsha": "3db94f28f40c5c1591aed1deab022e532f43ddfc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Additive/Instances/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Additive/Instances/Terminal.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Additive/Instances/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 743, "size": 2328 }
------------------------------------------------------------------------ -- A view of the syntax ------------------------------------------------------------------------ module RecursiveTypes.Syntax.UnfoldedOrFixpoint where open import RecursiveTypes.Syntax open import RecursiveTypes.Substitution -- Unfolded types, i.e. types where the outermost construction is -- not a fixpoint. infixr 10 _⟶_ data Unfolded {n} : Ty n → Set where ⊥ : Unfolded ⊥ ⊤ : Unfolded ⊤ var : ∀ x → Unfolded (var x) _⟶_ : (τ₁ τ₂ : Ty n) → Unfolded (τ₁ ⟶ τ₂) -- A view of types as either unfolded (U) or fixpoints (Μ). data U∨Μ {n} : Ty n → Set where unfolded : ∀ {σ} (u : Unfolded σ) → U∨Μ σ fixpoint : ∀ {τ₁ τ₂} (u : U∨Μ unfold[μ τ₁ ⟶ τ₂ ]) → U∨Μ (μ τ₁ ⟶ τ₂) u∨μ : ∀ {n} (σ : Ty n) → U∨Μ σ u∨μ ⊥ = unfolded ⊥ u∨μ ⊤ = unfolded ⊤ u∨μ (var x) = unfolded (var x) u∨μ (τ₁ ⟶ τ₂) = unfolded (τ₁ ⟶ τ₂) u∨μ (μ τ₁ ⟶ τ₂) = fixpoint (unfolded ((τ₁ [0≔ μ τ₁ ⟶ τ₂ ]) ⟶ (τ₂ [0≔ μ τ₁ ⟶ τ₂ ]))) u∨μ⁻¹ : ∀ {n} {σ : Ty n} → U∨Μ σ → Ty n u∨μ⁻¹ {σ = σ} _ = σ
{ "alphanum_fraction": 0.4873713751, "avg_line_length": 28.8918918919, "ext": "agda", "hexsha": "c8e465c80b712608906a8d829f5ae9ff4507dfff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "RecursiveTypes/Syntax/UnfoldedOrFixpoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "RecursiveTypes/Syntax/UnfoldedOrFixpoint.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "RecursiveTypes/Syntax/UnfoldedOrFixpoint.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 428, "size": 1069 }
-- We define ZigZag-complete relations and prove that quasi equivalence relations -- give rise to equivalences on the set quotients. {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.ZigZag.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.HITs.SetQuotients open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.Relation.Binary.Base open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level isZigZagComplete : {A B : Type ℓ} (R : A → B → Type ℓ') → Type (ℓ-max ℓ ℓ') isZigZagComplete R = ∀ {a b a' b'} → R a b → R a' b → R a' b' → R a b' ZigZagRel : (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) ZigZagRel A B ℓ' = Σ[ R ∈ (A → B → Type ℓ') ] (isZigZagComplete R) record isQuasiEquivRel {A B : Type ℓ} (R : A → B → Type ℓ') : Type (ℓ-max ℓ ℓ') where field zigzag : isZigZagComplete R fwd : A → B fwdRel : (a : A) → R a (fwd a) bwd : B → A bwdRel : (b : B) → R (bwd b) b open isQuasiEquivRel QuasiEquivRel : (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) QuasiEquivRel A B ℓ' = Σ[ R ∈ PropRel A B ℓ' ] isQuasiEquivRel (R .fst) invQER : {A B : Type ℓ} {ℓ' : Level} → QuasiEquivRel A B ℓ' → QuasiEquivRel B A ℓ' invQER (R , qer) .fst = invPropRel R invQER (R , qer) .snd .zigzag aRb aRb' a'Rb' = qer .zigzag a'Rb' aRb' aRb invQER (R , qer) .snd .fwd = qer .bwd invQER (R , qer) .snd .fwdRel = qer .bwdRel invQER (R , qer) .snd .bwd = qer .fwd invQER (R , qer) .snd .bwdRel = qer .fwdRel QER→EquivRel : {A B : Type ℓ} → QuasiEquivRel A B ℓ' → EquivPropRel A ℓ' QER→EquivRel (R , sim) .fst .fst a₀ a₁ = R .fst a₀ (sim .fwd a₁) QER→EquivRel (R , sim) .fst .snd _ _ = R .snd _ _ QER→EquivRel (R , sim) .snd .reflexive a = sim .fwdRel a QER→EquivRel (R , sim) .snd .symmetric a₀ a₁ r = sim .zigzag (sim .fwdRel a₁) r (sim .fwdRel a₀) QER→EquivRel (R , sim) .snd .transitive a₀ a₁ a₂ r s = sim .zigzag r (sim .fwdRel a₁) s -- The following result is due to Carlo Angiuli module QER→Equiv {A B : Type ℓ} (R : QuasiEquivRel A B ℓ') where private sim = R .snd f = sim .fwd g = sim .bwd Rᴸ = QER→EquivRel R .fst .fst Rᴿ = QER→EquivRel (invQER R) .fst .fst Thm : (A / Rᴸ) ≃ (B / Rᴿ) Thm = isoToEquiv (iso φ ψ η ε) where φ : _ φ [ a ] = [ f a ] φ (eq/ a₀ a₁ r i) = eq/ _ _ (sim .zigzag (sim .bwdRel (f a₁)) r (sim .fwdRel a₀)) i φ (squash/ _ _ p q j i) = squash/ _ _ (cong φ p) (cong φ q) j i ψ : _ ψ [ b ] = [ g b ] ψ (eq/ b₀ b₁ s i) = eq/ _ _ (sim .zigzag (sim .bwdRel b₀) s (sim .fwdRel (g b₁))) i ψ (squash/ _ _ p q j i) = squash/ _ _ (cong ψ p) (cong ψ q) j i η = elimProp (λ _ → squash/ _ _) (λ b → eq/ _ _ (sim .fwdRel (g b))) ε = elimProp (λ _ → squash/ _ _) (λ a → eq/ _ _ (sim .bwdRel (f a)))
{ "alphanum_fraction": 0.6133561644, "avg_line_length": 33.9534883721, "ext": "agda", "hexsha": "d85d5c671eb090d7c44bea9a6bb885389a2ce0b1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1283, "size": 2920 }
{-# OPTIONS --without-K #-} module equality where open import equality.core public open import equality.reasoning public open import equality.groupoid public open import equality.calculus public open import equality.inspect public
{ "alphanum_fraction": 0.8189655172, "avg_line_length": 25.7777777778, "ext": "agda", "hexsha": "f053b23b05267ae56bd73fd61c2e82f5fd6fc0cf", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/equality.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/equality.agda", "max_line_length": 37, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 43, "size": 232 }
module Productivity (char : Set) where open import Common.Coinduction infix 50 _⋆ _+ infixl 40 _⊛_ infixl 30 _∣_ data P : Set where ε : P sym : char -> P _⊛_ : ∞ P -> ∞ P -> P _∣_ : ∞ P -> ∞ P -> P mutual _⋆ : P -> P p ⋆ = ♯ ε ∣ ♯ (p +) _+ : P -> P p + = ♯ p ⊛ ♯ (p ⋆) _sepBy_ : P -> P -> P p sepBy sep = ♯ p ⊛ ♯ ((♯ sep ⊛ ♯ p) ⋆) postulate addOp : P mulOp : P number : P openP : char closeP : char -- Not guarded: mutual expr = term sepBy addOp term = factor sepBy mulOp factor = ♯ number ∣ ♯ (♯ (♯ sym openP ⊛ ♯ expr) ⊛ ♯ sym closeP) -- Guarded and incomprehensible: mutual expr₁ = ♯ term₁ ⊛ ♯ expr₂ expr₂ = ♯ ε ∣ ♯ expr₃ expr₃ = ♯ (♯ addOp ⊛ ♯ term₁) ⊛ ♯ expr₂ term₁ = ♯ factor₁ ⊛ ♯ term₂ term₂ = ♯ ε ∣ ♯ term₃ term₃ = ♯ (♯ mulOp ⊛ ♯ factor₁) ⊛ ♯ term₂ factor₁ = ♯ number ∣ ♯ (♯ (♯ sym openP ⊛ ♯ expr₁) ⊛ ♯ sym closeP)
{ "alphanum_fraction": 0.4751037344, "avg_line_length": 18.5384615385, "ext": "agda", "hexsha": "8aeb24e9452230156ee73d125bc040972413a125", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Productivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Productivity.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Productivity.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 451, "size": 964 }
-- 2012-10-20 Andreas module Issue721a where data Bool : Set where false true : Bool record Foo (b : Bool) : Set where field _*_ : Bool → Bool → Bool data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x test : (F : Foo false) (x : Bool) → let open Foo F in _*_ x ≡ (λ x → x) test F x = x -- Don't want to see .Issue632._.* in the error message
{ "alphanum_fraction": 0.595567867, "avg_line_length": 21.2352941176, "ext": "agda", "hexsha": "a6e9e537bdfd95e83f077a0a3793a07e6e08f607", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue721a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue721a.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue721a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 133, "size": 361 }
module ExtractCaseSplit where open import Data.Maybe open import Agda.Builtin.Bool not : Bool -> Bool not true = false not false = true func : Maybe Bool -> Bool func nothing = false func (just x) = not x open import Data.List func2 : List Bool -> Bool func2 [] = true func2 (x ∷ x₁) = not (func2 x₁)
{ "alphanum_fraction": 0.6948051948, "avg_line_length": 14.6666666667, "ext": "agda", "hexsha": "f9bed5f6eeadbb3ee4bf92cb250aa85f34257637", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractCaseSplit.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractCaseSplit.agda", "max_line_length": 31, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractCaseSplit.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 92, "size": 308 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; trans ; cong₂ ) open import Relation.Unary using ( ∅ ; _∪_ ) open import Web.Semantic.DL.Signature using ( Signature ; CN ; RN ) open import Web.Semantic.Util using ( id ; _∘_ ; Subset ; ⁅_⁆ ) module Web.Semantic.DL.ABox where infixr 5 _∼_ _∈₁_ _∈₂_ infixr 4 _,_ data ABox (Σ : Signature) (X : Set) : Set where ε : ABox Σ X _,_ : (A B : ABox Σ X) → ABox Σ X _∼_ : (x y : X) → ABox Σ X _∈₁_ : (x : X) → (c : CN Σ) → ABox Σ X _∈₂_ : (xy : X × X) → (r : RN Σ) → ABox Σ X ⟨ABox⟩ : ∀ {Σ X Y} → (X → Y) → ABox Σ X → ABox Σ Y ⟨ABox⟩ f ε = ε ⟨ABox⟩ f (A , B) = (⟨ABox⟩ f A , ⟨ABox⟩ f B) ⟨ABox⟩ f (x ∼ y) = (f x ∼ f y) ⟨ABox⟩ f (x ∈₁ C) = (f x ∈₁ C) ⟨ABox⟩ f ((x , y) ∈₂ R) = ((f x , f y) ∈₂ R) ⟨ABox⟩-resp-id : ∀ {Σ X} (A : ABox Σ X) → (⟨ABox⟩ id A ≡ A) ⟨ABox⟩-resp-id ε = refl ⟨ABox⟩-resp-id (A , B) = cong₂ _,_ (⟨ABox⟩-resp-id A) (⟨ABox⟩-resp-id B) ⟨ABox⟩-resp-id (x ∼ y) = refl ⟨ABox⟩-resp-id (x ∈₁ c) = refl ⟨ABox⟩-resp-id ((x , y) ∈₂ r) = refl ⟨ABox⟩-resp-∘ : ∀ {Σ X Y Z} (f : Y → Z) (g : X → Y) (A : ABox Σ X) → (⟨ABox⟩ f (⟨ABox⟩ g A) ≡ ⟨ABox⟩ (f ∘ g) A) ⟨ABox⟩-resp-∘ f g ε = refl ⟨ABox⟩-resp-∘ f g (A , B) = cong₂ _,_ (⟨ABox⟩-resp-∘ f g A) (⟨ABox⟩-resp-∘ f g B) ⟨ABox⟩-resp-∘ f g (x ∼ y) = refl ⟨ABox⟩-resp-∘ f g (x ∈₁ c) = refl ⟨ABox⟩-resp-∘ f g ((x , y) ∈₂ r) = refl ⟨ABox⟩-resp-∘² : ∀ {Σ W X Y Z} (f : Y → Z) (g : X → Y) (h : W → X) → ∀ (A : ABox Σ W) → (⟨ABox⟩ f (⟨ABox⟩ g (⟨ABox⟩ h A)) ≡ ⟨ABox⟩ (f ∘ g ∘ h) A) ⟨ABox⟩-resp-∘² f g h A = trans (⟨ABox⟩-resp-∘ f g (⟨ABox⟩ h A)) (⟨ABox⟩-resp-∘ (f ∘ g) h A) Assertions : ∀ {Σ X} → ABox Σ X → Subset (ABox Σ X) Assertions ε = ∅ Assertions (A , B) = (Assertions A) ∪ (Assertions B) Assertions (x ∼ y) = ⁅ x ∼ y ⁆ Assertions (x ∈₁ c) = ⁅ x ∈₁ c ⁆ Assertions (xy ∈₂ r) = ⁅ xy ∈₂ r ⁆
{ "alphanum_fraction": 0.4986972381, "avg_line_length": 36.9038461538, "ext": "agda", "hexsha": "7edca738a30be61b3ceb81c167424b84a37d682a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/ABox.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/ABox.agda", "max_line_length": 111, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/ABox.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 1007, "size": 1919 }
-- Andreas, 2014-05-02 Negative fixities allow now. module _ where infix -1 _+_ infix 0 _*_ postulate _+_ : Set1 → Set2 → Set1 _*_ : Set2 → Set2 → Set2 test = Set + Set1 * Set1
{ "alphanum_fraction": 0.6363636364, "avg_line_length": 14.3846153846, "ext": "agda", "hexsha": "c51ff8f647e1390819c6c6e15cf7ecb74c60c87b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1109.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1109.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1109.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 75, "size": 187 }